


RWTHedition

RWTH Aachen



Wolfgang Marquardt · Jan Morbach ·
Andreas Wiesner · Aidong Yang

OntoCAPE

A Re-Usable Ontology
for Chemical Process Engineering

123



Prof. Dr. Wolfgang Marquardt
RWTH Aachen University
AVT-Process Systems Engineering
52056 Aachen
Germany
wolfgang.marquardt@avt.rwth-aachen.de

Dipl. Ing. Andreas Wiesner
RWTH Aachen University
AVT-Process Systems Engineering
52056 Aachen
Germany
andreas.wiesner@avt.rwth-aachen.de

Dipl. Ing. Jan Morbach
RWTH Aachen University
AVT-Process Systems Engineering
52056 Aachen
Germany
jan.morbach@web.de

Dr. Aidong Yang
University of Surrey
Fac. Engineering & Physical Sciences
Guildford
United Kingdom GU2 7XH
a.yang@surrey.ac.uk

ISSN 1865-0899 e-ISSN 1865-0902
ISBN 978-3-642-04654-4 e-ISBN 978-3-642-04655-1
DOI 10.1007/978-3-642-04655-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009939134

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: deblik, Berlin, Germany

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



 

Preface 

Motivation for this Book 

Ontologies have received increasing attention over the last two decades. Their 
roots can be traced back to the ancient philosophers, who were interested in a con-
ceptualization of the world. In the more recent past, ontologies and ontological 
engineering have evolved in computer science, building on various roots such as 
logics, knowledge representation, information modeling and management, and 
(knowledge-based) information systems. Most recently, largely driven by the next 
generation internet, the so-called Semantic Web, ontological software engineering 
has developed into a scientific field of its own, which puts particular emphasis on 
the theoretical foundations of representation and reasoning, and on the methods 
and tools required for building ontology-based software applications in diverse 
domains. Though this field is largely dominated by computer science, close rela-
tionships have been established with its diverse areas of application, where re-
searchers are interested in exploiting the results of ontological software engineer-
ing, particularly to build large knowledge-intensive applications at high 
productivity and low maintenance effort.  
Consequently, a large number of scientific papers and monographs have been pub-
lished in the very recent past dealing with the theory and practice of ontological 
software engineering. So far, the majority of those books are dedicated to the theo-
retical foundations of ontologies, including philosophical treatises and their rela-
tionships to established methods in information systems and ontological software 
engineering. Only few of these contributions deal with the topic of a concrete, 
formal ontology, which targets a particular application domain, and even less also 
include a thorough and comprehensive description of ontology design, usage, and 
maintenance.  
The majority of the existing domain- and application-centered publications ad-
dress problems in the life sciences, such as diagnostic systems in medicine or 
knowledge management systems in molecular and cell biology. Only little activity 
can be observed in the engineering sciences. In particular, very few ontologies 
have been elaborated for the domain of chemical engineering. And those few not-
able engineering ontologies available today are often found to be inappropriate for 
use in a context different from the one they have actually been developed for. 
Hence, there is hardly any ontology in the engineering sciences which can be 
broadly used and which is actually applicable.  
The objective of this book is to contribute to closing the gap between theory and 
practice in ontological software engineering. In the first place, it provides a fully 
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elaborated formal ontology for the domain of chemical engineering. This ontology 
provides a reasonable conceptualization of the chemical engineering domain, 
which is a prerequisite for establishing a shared understanding of concepts and 
terms in a certain scientific field and for fostering the communication in a typical 
cross-disciplinary engineering design team. The ontology is also supposed to sup-
port and to simplify the development of future software applications in computer-
aided process engineering (CAPE), a sub-discipline of chemical engineering. The 
intention associated with the development of this ontology has been expressed in 
its name OntoCAPE, linking ontologies with computer-aided process engineering.  
Besides this very concrete engineering objective, the development of OntoCAPE 
also aimed at the elucidation and the benchmarking of architectural principles for 
the design of large-scale ontologies, which can be reused in the same domain for 
different applications or even across related (engineering) domains. The strive for 
said architectural principles is closely related to the derivation of a set of guide-
lines, which assist the ontology engineer in capturing, structuring, formalizing, 
and documenting the knowledge in a complex engineering domain. Hence, we 
hope that the development of OntoCAPE – the process as well as the resulting ar-
chitecture and design principles – can serve as a role model or at least as a best-
practice example to guide related efforts in other (engineering) domains.  
OntoCAPE is the result of close to two decades of research in knowledge repre-
sentation and information modeling applied to chemical engineering, which was 
performed by the research group lead by Wolfgang Marquardt. In the first decade, 
the primary research objective was to find a conceptualization of the chemical en-
gineering domain that can support the mathematical modeling of chemical process 
systems. In particular, the construction of phenomena-based computer-aided mod-
eling tools has been envisioned in order to reach beyond the established equation-
oriented and block-oriented modeling tools. Later, the research activities have 
been extended to cover the complete lifecycle of chemical process and plant de-
sign with its enormous variety of tasks and model-based solution techniques.  
The development of OntoCAPE, has been conducted as part of two large, interdis-
ciplinary research projects, the IMPROVE1 project (Marquardt and Nagl 2004; 
Nagl and Marquardt 2008) funded by DFG, the German Research Foundation, as 
part of the collaborative research center CRC 476, and the COGents project 
(Braunschweig et al. 2002; Yang et al. 2008), funded by the European Commis-
sion in the 5th Framework Program as part of the Information Society Technolo-
gies track. The former has been concerned with the development of novel methods 
and software tools for the support of collaborative design processes in chemical 
engineering, while the latter has explored a future approach to numerical simula-
tion enabling the assembly of large simulation models from model components 
provided by libraries distributed on the internet. 

                                                           

1 IMPROVE has been continued by the Transfer Center 61 (Nagl and Marquardt 2008), the goal 
of which has been the transfer of selected research results obtained in IMPROVE into industrial 
practice. 
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The conceptual basis for OntoCAPE has been established by the information 
model CLiP (Bayer 2003). Developed in IMPROVE, CLiP itself has been built on 
previous work carried out prior to IMPROVE and resulting in the knowledge-base 
VeDa (Bogusch 2001; Baumeister 2000). Version 1.0 of OntoCAPE (Yang and 
Marquardt 2004; Yang et al. 2008) was developed in the COGents project using 
CLiP as a starting point. At that time, the development had still a quite narrow fo-
cus resulting in an overall structure and content which is very different from the 
current version of OntoCAPE presented in this book. After completion of the 
COGents project, the further development and extension of OntoCAPE was taken 
over by IMPROVE. In 2007, version 2.0 of OntoCAPE was released. Since then, 
OntoCAPE has been continuously improved to reach the status described in this 
book. A more extensive overview on the history of OntoCAPE can be found in 
Chapter 11.1 of this book. 

Target Audience 

The book is targeted at three major groups of readers. Firstly, the book addresses 
potential users of the ontology, i.e., practitioners in chemical engineering who are 
interested in the development and employment of intelligent software applications. 
They can derive a customized knowledge-base from OntoCAPE, which contains 
the knowledge they consider to be relevant for an intended application. Such a 
customization may include specializations of OntoCAPE to incorporate concepts 
on a more fine-grained, application-specific layer as well as extensions relating to 
other process engineering tasks which have not yet been addressed by the current 
version of OntoCAPE. 
Secondly, OntoCAPE may serve as an example for knowledge engineers who are 
willing to develop an ontology for a related, but different (engineering) domain. 
Such an adaptation of (i) the architecture and of (ii) part of the concepts covered 
by OntoCAPE requires that the knowledge can be represented according to the 
principles of general systems theory (Bunge 1979) and systems engineering 
(Thomé 1993). Candidate domains for an adaptation of OntoCAPE are all engi-
neering domains such as energy, automotive, aerospace, civil, or production engi-
neering. Technical systems in various manifestations are at the heart of these en-
gineering disciplines. Consequently, the more abstract concepts of the ontology 
should be transferable without the need for modification. In addition, applications 
in these and other domains are expected to explicitly benefit from the general de-
sign patterns employed in OntoCAPE, since they have been explicitly incorpo-
rated to support the applications developers in refining, extending, or changing the 
ontology to their particular needs. 
Finally, this book is supposed to be of interest to experts in ontology engineering. 
OntoCAPE is expected to serve as a good example to illustrate how the plethora of 
design principles reported largely in the computer science literature can be put in 
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practice to organize a complex ontology in an engineering domain. This book 
summarizes our experience gained during two decades of research in the design of 
engineering ontologies. We hope that it can serve as a guideline for ontology en-
gineering experts to illustrate how the suggested design principles support and fa-
cilitate the development of a complex ontology. 

Accessing and Using OntoCAPE 

OntoCAPE is publicly accessible at http://www.avt.rwth-aachen.de/Ontocape, 
where it is distributed under the terms of the GNU General Public License. It is 
available as an informal and as a formal specification. Both specifications of On-
toCAPE can be accessed via this website free of charge. 
For the formal specification of OntoCAPE, the Ontology Web Language OWL 
has been chosen (OWL-DL, in particular, cf. Bechhofer et al. 2004). The model 
development was done by means of the ontology editor Protégé (Stanford 2008). 
For verification, the reasoner RacerPro (Racer Systems 2007) has been used. The 
current release of OntoCAPE consists of 62 OWL files, each of which includes 
one module of the ontology. 
The informal specification currently takes the form of six technical reports, which 
jointly comprise about 500 pages. It serves the double function of (i) a users ma-
nual and (ii) a reference guide. These reports present the organization and struc-
ture of OntoCAPE; the conceptualizations of various topic areas are described in 
great detail. Special emphasis was placed on making OntoCAPE as user-friendly 
as possible by (i) providing a detailed description of concepts, relations and in-
stances and an explanation of the corresponding interrelations in descriptive 
UML-like diagrams, by (ii) defining the terms of proper usage of the ontology, 
and by (iii) highlighting the important design decision and principles leading to 
the organization and structure at hand. This informal specification complements 
the contents of this book. While the book focuses on the design principles and ar-
chitecture of OntoCAPE, concept definitions comprising class, relations and indi-
viduals definitions are only sketched and detailed in few instances for illustration 
purposes. In contrast, the informal specification provides all the concept defini-
tions in a comprehensive manner for reference.   
OntoCAPE complies with the two principal types of usage for an ontology that are 
typically mentioned in the computer science literature: Firstly, an ontology may 
serve as a library of knowledge components to efficiently build intelligent sys-
tems. To this aim, the generic ontology is to be transformed (i.e., extended and 
customized) into a knowledge-base according to the requirements of the respective 
application. The second type of usage refers to a shared vocabulary for communi-
cation between interacting human and/or software agents. According to their re-
spective functions, the communicating agents may have different knowledge- 
bases, but all the knowledge-bases must be consistent with the ontology (Gruber 
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1995). Both types of usage require a consensual knowledge representation that is 
reusable in different application contexts. 
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1 Introduction 

1.1 The Need of Knowledge-Based Systems 

Data, information, knowledge, understanding, and wisdom (Ackoff 1989) drive 
the society, economy, and science. Data refers to a collection of symbols without 
any meaning beyond its existence. Information refers to a set of data which have 
been given a meaning by formulating relations between the data elements in a giv-
en context. Knowledge constitutes a collection of information with the intention of 
a certain kind of use. Understanding (or reasoning) refers to an analytic and cogni-
tive process, which takes some knowledge as its input to infer new knowledge as 
its output by some kind of interpolation. In contrast to understanding, wisdom is 
an extrapolative and non-deterministic process to provide (i) understanding where 
there was no understanding before and (ii) a kind of knowledge which cannot be 
inferred solely by analytical means from available knowledge. Wisdom not only 
calls upon all previous levels of consciousness, but also extends to human pro-
gramming such as moral and ethical codes. Wisdom is a human feature and there-
fore very different from data, information, and knowledge, which can be stored, 
processed, and even extended by computers by algorithmic reasoning.    
Knowledge comes in two forms, either tacit or explicit (Nonaka and Takeuchi 
1995). Tacit knowledge is implicit – it is difficult to grasp for the individual hold-
ing it therefore hard to communicate. To be of value to other individuals, know-
ledge has to be made explicit by some kind of articulation, codification, and sto-
rage by means of some media to facilitate communication to others. Technical 
reports, patents, journal articles, monographs, textbooks, or encyclopedias are 
classical media where the information and knowledge contained is codified by 
means of natural language. Despite its explicit representation, knowledge is often 
hard to access and difficult to process, because natural language representations 
often lack precision and coherence resulting in texts of ambiguous meaning.  
This deficiency is not necessarily a consequence of the imperfect presentation 
skills of the author, but is rather due to the lack of a common vocabulary and 
common understanding, which is a prerequisite for a shared memory and shared 
meaning across different domains of discourse (Konda et al. 1992). Typically, this 
unavoidable shortcoming of natural language knowledge representations is reme-
died by the intellectual skills, i.e., the wisdom of the reader, who is often well-
trained in the domain providing the context of the text.  
The codification of tacit knowledge has to go beyond the use of natural language 
to facilitate sharing, use, and reuse of information and knowledge. The scientific 
and engineering disciplines have come up with very specific ways to address this 
representation problem well before computers have been introduced and used for 
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information and knowledge management. For reasons of conciseness, we will fo-
cus here and in the remainder of this book only on the engineering perspective. 
Engineering knowledge – that is general domain knowledge of the different engi-
neering disciplines as well as specific knowledge evolving, for example, during an 
engineering design project – is not only represented and stored as text documents 
in natural language. Rather, more structured and formalized means of representa-
tion are being used, such as sets of linked text documents with a prescribed struc-
ture, structured worksheets, forms and tables, mathematical models, graphical 
sketches, technical drawings, and the like. These auxiliary, and at least to some 
extent formalized, representational schemes are supposed to enhance the expres-
siveness of natural language, thereby facilitating access and use of information 
and knowledge. However, the exchange of information and knowledge – be it 
within a project team or between different organizations –  is still hampered be-
cause there is no general agreement on the precise syntax and semantics of these 
representational formalisms.  
The problem has not only a logical, but also a technological dimension: That is, 
the syntactic and semantic heterogeneity is aggravated by the diversity of electron-
ic means and formats for storage, communication, and processing of information 
and knowledge. For example, during the individual stages of a process and plant 
design project, information is created and manipulated by diverse software tools 
and stored in heterogeneous proprietary formats, such as electronic documents, da-
ta bases, Computer-Aided Design (CAD) and Computer-Aided Engineering 
(CAE) systems, simulation files, or asset management tools. The lack of integra-
tion between these software tools and their associated data stores unavoidably 
creates a significant overhead for the project engineers, since much time has to be 
spent on re-entering of data, interpreting and understanding the data, manually re-
conciling overlapping data sets, and searching for data. NIST, the National Insti-
tute of Standards and Technology in the U.S., has recently analyzed the efficiency 
losses resulting from inadequate interoperability among computer-aided design, 
engineering, and software systems (Gallaher et al. 2004). According to this study, 
insufficient interoperability causes costs of 15.8 billion dollars in the US capital 
facilities industries, compared to a hypothetical scenario where the exchange of 
data and the access to information are not restricted by technical or organizational 
boundaries. 
In order to improve this situation, we need to introduce new methods and tools 
that enable computer-based information and knowledge management in interdis-
ciplinary and cross-institutional engineering projects – methods and tools, which 
help to cope with the diverse and therefore heterogeneous application software in-
frastructure. As a prerequisite for the solution of these extremely demanding inte-
roperability problems, one has to define a common vocabulary in order to estab-
lish a shared understanding of concepts and terms. Such a shared understanding 
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constitutes the basis of the shared memory of an organization2, regardless of 
whether the organization is a project team, an enterprise, or a collection of coope-
rating institutions. Regardless of its technical realization, a shared memory can 
cover data, information, and – at least to some extent – knowledge implemented 
by algorithmic reasoning, but not wisdom in the sense of the definitions intro-
duced above. Also, the management of data, information, and knowledge relies on 
a carefully designed and implemented shared memory. Its realization constitutes a 
true scientific and technological challenge, given the complexity of the engineer-
ing domains and industrial design projects.   
There is a much simpler, but still similar problem, which has been successfully 
addressed in the past decades – namely, the design and implementation of soft-
ware systems for the mathematical modeling and simulation of technical systems. 
The approach to this particular problem might serve as a useful role model for the 
development of future knowledge-based systems supporting engineering work 
processes. We will briefly draw on this analogy next:  
Modeling and simulation systems3 have originated from an academic environ-
ment. A broad acceptance and routine use in the chemical and process industries 
can be traced back to the 1980s, when commercial systems became widely availa-
ble. The success of these systems relied (and still relies) on three distinct modules: 
editors with tailored representational schemes for the formulation of mathematical 
models; libraries providing reusable mathematical models for standard devices; 
and, finally, numerical solution techniques for the simulation-based evaluation of 
the physicochemical knowledge encoded in the models.   
We conjecture that for the successful implementation of knowledge-based tools in 
engineering projects, three comparable modules are required: Knowledge editors 
providing a semantically rich formalism for knowledge representation; knowledge 
libraries with self-contained and easily accessible chunks of reusable knowledge; 
and, finally, efficient reasoning capabilities to interpret the knowledge encoded in 
the system and to derive new knowledge from it. In fact, mathematical modeling 
and simulation are themselves a kind of knowledge-based application, working 
with chunks of reusable knowledge formalized in a special way, namely by means 
of mathematical equations. The seamless integration of mathematical modeling in 
the traditional sense with information modeling and knowledge representation to 
support model-based engineering work processes is widely considered to be an 
emerging trend (Marquardt et al. 2000; Subrahmanian and Rachuri 2008; Venka-
tasubramanian 2009).    

                                                           
2 Such interoperability problems in collaborative and distributed chemical engineering are 
covered in depth in the recent monograph edited by Nagl and Marquardt (2008). Their solution 
relies on the concept of a shared memory of an organization, but has to reach far beyond.  
3 There is a vast literature on this subject, often with emphasis on a certain engineering domain. 
We exemplarily cite the book of Braunschweig and Gani (2002) for a chemical engineering 
perspective.  
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As a result of the research and development related to the Semantic Web – the 
next-generation internet – semantic technologies are ready for application in other 
scientific disciplines. They are based on ontologies and include exactly the three 
enabling building blocks, namely knowledge editors, knowledge representation (or 
modeling) languages, and powerful reasoning algorithms. 

1.2 The Role of Ontologies 

In the context of this book, ontologies are primarily seen as a means to efficiently 
build the knowledge-based software necessary to effectively support engineering 
work processes. Such software – also referred to as ‘intelligent systems’, ‘artificial 
intelligence’, ‘AI systems’, or ‘expert systems’ – comprises two basic software 
components: the knowledge base, which contains generic domain knowledge as 
well as concrete facts about the case under consideration, and the inference engine 
(also known as reasoner), which processes the knowledge and facts stored in the 
knowledge base and autonomously inferences a solution for the case at hand.  
Traditionally, intelligent systems were built from scratch. For large systems, how-
ever, this proceeding turned out to be too costly and time consuming. Particularly, 
the construction of the knowledge bases proved to be the main cost-driver that 
hindered the further development of intelligent systems in the late 1980s. Neches 
et al. (1991) diagnosed: “knowledge base construction remains one of the major 
costs in building an AI system […] As a result, most systems remain small to me-
dium in size.  […] The cost […] will become prohibitive as we attempt to build 
larger and larger systems.”  
To overcome this economic barrier, Neches et al. (1991) proposed a new approach 
for the building of intelligent systems: “Building knowledge-based systems today 
usually entails constructing new knowledge bases from scratch. It could be instead 
done by assembling reusable components. System developers would then only 
need to worry about creating the specialized knowledge […] new to the specific 
task of the system […] In this way, declarative knowledge […] and reasoning ser-
vices would all be shared among systems.” 
Besides the obvious economic benefits that can be achieved by reusing existing 
knowledge components, the strategy has other considerable advantages:  

– First to mention is the reduced error rate of the software: The robustness 
of a software system increases to the extent to which well-tested parts can 
be reused (Neches et al. 1991). Plus, due to the continuous revision of the 
knowledge components, the number of remaining errors will decrease with 
each reuse cycle. 

– A further advantage results from a mandatory change of system architec-
ture required by the new approach: Traditionally, the knowledge represen-
tation was heavily intertwined with the reasoning services and the program 
code in order to optimize the performance of the overall system. As a re-
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sult, the knowledge was only accessible to developers with programming 
experience; domain experts (i.e., the actual knowledge holders) had to get 
acquainted with the program code first before being able to enter know-
ledge into the system or to maintain and customize the knowledge base to 
their particular needs. In practice, this often proved too great an obstacle 
for the users to overcome. The new approach, by contrast, enforces a strict 
separation of knowledge base, inference engine, and application-specific 
program logic. This novel software architecture enables a domain expert to 
focus on the representation of the knowledge and shields him or her from 
the implementation details.  Therefore, the domain expert is likely to create 
a knowledge base of improved quality. At the same time, the maintainabil-
ity of the entire system is enhanced, since reasoner, program code, and 
knowledge base can be maintained independently by software engineers, 
application programmers, and domain experts, respectively. 

Within the suggested approach, ontologies have the function of providing a con-
sensual knowledge representation, which can be reused and shared across software 
systems and by different groups of users. Domain ontologies, in particular, aim at 
capturing the knowledge of an entire application domain, such as physics, chemi-
stry, or engineering. Note that, in order to be widely applicable, the knowledge 
represented in an ontology must be generic; that is, the ontology is expected to 
provide “a conceptual foundation for a range of anticipated tasks”, but not to “in-
clude vocabulary sufficient to express all the knowledge relevant to those tasks” 
(Gruber 1995). Thus, to convert an ontology into a knowledge base for a particular 
application, the knowledge must be specialized and customized. 

1.3 The Reusability-Usability Trade-off Problem 

Principally, any ontology has to meet two major goals: to be usable and to be 
reusable. 

– According to the IEEE Standard Glossary of Software Engineering Termi-
nology, reusability is defined as “the degree to which a software module or 
other work product can be used in more than one computing program or 
software system” (IEEE 1990). Ontology reusability, in particular, can be 
defined as “the adaptation capability of an ontology to arbitrary application 
contexts” (Pâslaru-Bontaş 2007), including those contexts “that were not 
envisioned at the time of the creation of the ontology” (Russ et al. 1999). 
Note that it is neither feasible nor desirable to design an ontology that is 
equally appropriate for all application contexts (Borst 1997); rather, the 
goal of reusability is to come up with an ontology that can be adapted to a 
preferably large number of applications. 
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– Usability, on the other hand, denotes the degree to which the software 
component is useful for a specific task or application. The term also has 
the connotation of “ease of use”, pertaining to the effort required by a user 
to utilize a given (software) system. By definition, an ontology is never 
ready for use, but must always be adapted and refined to a knowledge base 
for the envisioned application. Therefore, the goal of ontology usability 
can be phrased as minimizing “the effort required to customize the ontolo-
gy so that it can be used by humans or machines in a given application 
context” (Pâslaru-Bontaş 2007).  

A subtle but important difference between ontology usability and reusability is 
pointed out by Jarrar and Meersmann (2002):  

“Increasing the reusability of knowledge implies the maximization of using 
this knowledge among several kinds of (autonomously specified) tasks, 
while increasing ontology usability could mean just maximizing the number 
of different applications using an ontology for the same kind of task”.  

Consequently, it is difficult to simultaneously achieve high degrees of usability 
and reusability: Specializing in one kind of task makes the ontology more useable 
for this particular task, but it also decreases the likelihood of its reusability; a 
highly abstract ontology, on the other hand, may be applicable to a variety of dif-
ferent tasks, but it is unlikely to prove very useful for any of these without exten-
sive modification and detailing. This challenge is known as the reusability-
usability trade-off problem (Klinker et al. 1991) in the literature.  
This trade-off problem has to be one of the drivers for research on ontologies, not 
only for academic, but also for very practical reasons.  

– This problem is academically challenging and rewarding. It constitutes an 
exciting research problem at the interface between computer science and 
its applications in science and engineering. Its solution is of great signific-
ance to both the theory and practice of ontological engineering.  

– The development and maintenance of any major IT system requires a sig-
nificant effort. The software industry has established development 
processes based on proven technologies to reduce cost to the extent possi-
ble. The introduction of a new paradigm and associated technologies not 
only requires some reference systems, which demonstrate the improved 
capabilities from a technological or even from an end-user’s perspective. 
Rather, the economical advantage over established software technologies 
has to be clearly demonstrated in order to motivate a software company to 
take the significant risk of integrating the principles and technologies of 
ontological engineering into their software engineering processes.    

Based on this assessment, an appropriate solution to the reusability-usability trade-
off problem should be considered as the major enabler for a future use of ontolo-
gies in the software industries. Therefore, this trade-off problem has shaped the 
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major guiding principle for our research, the results of which are presented in this 
book.  

1.4 Objective and Outline of the Book 

This book presents OntoCAPE, a general-purpose ontology for applications in the 
domain of computer-aided process engineering (CAPE). CAPE is a sub-discipline 
of chemical engineering focusing on IT methods and tools to support the design, 
planning, construction, commissioning, and operation of chemical process systems 
and plants. We will discuss the architecture of OntoCAPE, thereby putting par-
ticular emphasis on the design rationale we followed. We will show how Onto-
CAPE reconciles the trade-off between reusability and usability, and is thus broad-
ly applicable to a variety of chemical and process engineering tasks with only 
moderate customization effort.  
The content of his book is organized as follows. 
Chapter 2 reviews the scientific background and establishes the terminology re-
quired for discussing ontologies, thus providing the basis for the subsequent chap-
ters. It starts off by contrasting the similar but different perceptions of ‘ontology’ 
in the areas of philosophy and computer science. Next, the specification of ontolo-
gies through informal and formal languages is discussed; the latter option is fur-
ther elaborated by describing the modeling capabilities of formal ontology lan-
guages. Having established these basic facts, it is argued that an ontology must be 
both formally and informally specified in order to be of practical use. The model-
ing language OWL is briefly introduced for the sake of completeness. Moreover, it 
is clarified what differentiates a “true” ontology (i.e., a reusable knowledge repre-
sentation, as defined in Sect. 1.2) from so-called pseudo-ontologies and 
lightweight ontologies. The chapter closes with a classification of ontology types 
according to their respective functions. 
Chapter 3 gives an overview on the scope and content of the OntoCAPE ontolo-
gy. Initially, a short overview is given on its three structural elements – layers , 
modules and partial models – by which the ontology is organized. Furthermore, 
the representation and dissemination of OntoCAPE are presented. Finally, the 
scope and content of the individual parts that constitute OntoCAPE are briefly 
summarized.  
Chapter 4 introduces the Meta Layer, which is located on top of the OntoCAPE 
ontology. The Meta Layer explicitly represents the underlying design principles of 
OntoCAPE and introduces common standards for the design and organization of 
the ontology. In particular, domain-independent root concepts and a theory of me-
reotopology are introduced on the Meta Layer.  
Chapter 5 introduces a number of key concepts, which establish the principles of 
general systems theory and systems engineering, according to which the ontology 
is organized. Important systems-theoretical and physicochemical primitives com-
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plement the mereotopological concepts adopted from the Meta Layer. It also es-
tablishes the means to model a system from a particular viewpoint. These view-
points are used to partition the representation of complex systems into manageable 
parts and to emphasize a certain perspective the system is viewed from. Further-
more, a representation of vectors and higher-order tensors is suggested. We intro-
duce a concept for coordinate system, which serves as a frame of reference for the 
observation of system properties. Finally, we establish the principles of network 
theory to lay a solid foundation for a structured representation of any kind of com-
plex system showing a network character. 
Chapter 6 holds fundamental notions such as space, time, physical dimensions, 
SI-units, mathematical relations, etc., which do not directly belong to the CAPE 
domain but are required for the definition of or as supplements to the domain con-
cepts. Since OntoCAPE is not supposed to conceptualize domains beyond the 
scope of CAPE, this partial model is only rudimentarily elaborated. 
Chapter 7 collects all the concepts which are required to provide an abstract de-
scription of materials processed in a chemical plant. This partial model comprises 
the essential concepts for the description of pure chemical substances and mix-
tures thereof at the macroscopic and atomic scales. Mechanisms and stoichiometry 
of chemical reactions are presented next. Finally, the principles and concepts for a 
rigorous description of the thermodynamic behavior of materials in a certain phys-
ical context are described. 
Chapter 8 presents all those concepts which are directly related to the processing 
of materials and to plant operations. This part of the ontology is of particular in-
terest for chemical process design. The concepts are modeled on a conceptual as 
well as on a more concrete, application-oriented level by adding classes and rela-
tions needed for a specific use of the ontology. This includes the extension to-
wards two alternative classification schemata for unit operations as well as exem-
plary descriptions of typical process units. 
Chapter 9 defines the notions required for a representation of mathematical mod-
els. It introduces the basics concepts for mathematical modeling, including model 
variables and equations, as well as concepts for representing the composition of a 
model from sub-models and their connections. Some specialized types of models 
are presented, including models for representing the behavior of materials and 
process units as well as models for the estimation of investment costs. 
Chapter 10 presents the major design principles that guided the development of 
OntoCAPE: These principles, which subsume the plethora of recommendations 
stated in the literature, are coherence, conciseness, intelligibility, adaptability, mi-
nimal ontological commitment, and efficiency. The principles are defined indivi-
dually, and their general implication on ontology design is critically assessed. Fi-
nally, we describe the translation of these principles into concrete design decisions 
to be taken during the realization of OntoCAPE. 
Chapter 11 gives a review of related work. The earlier efforts in information 
modeling at the authors’ institute are summarized first, since the results of this re-
search have laid the foundation for the development of OntoCAPE. Next, related 
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work of other research groups is reviewed and compared with OntoCAPE. The re-
view is confined to ontologies which are of particular relevance in the context of 
this work. In particular, only those ontologies are considered, which bear close re-
semblance to OntoCAPE with respect to both scope and level of complexity, or 
which had a significant influence on the development of OntoCAPE. 
Chapter 12 describes some software applications, which have been realized on 
the basis of OntoCAPE and thus demonstrate the ontology’s potential for use and 
reuse. At first, two early applications in the area of mathematical modeling and 
simulation are presented. Next, an ontology-based knowledge management system 
is described, which has been based on version 2.0 of OntoCAPE. The last example 
refers to an ongoing project, which realizes information integration and manage-
ment across the plant lifecycle in an industrial setting. The last part of the chapter 
gives an assessment of the improvement achieved by transitioning from Onto-
CAPE version 1.0 to version 2.0 by means a few quantitative measures.  
Chapter 13 concludes the book with a brief summary of the major results, with an 
assessment of the design rationale, and with a review of the continuous improve-
ment process chosen. Future research opportunities are identified, particularly an 
extension of OntoCAPE in scope to also cover work processes.  
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2 Scientific Background 

2.1 Ontology in Philosophy 

Originally, Ontology is a philosophical discipline concerned with the question of 
what exists and what is the essence of things. The term ‘Ontology’ stems from an-
cient Greek and can be translated as ‘theory of existence’4. The discipline of On-
tology was founded by Greek philosophers, such as Parmenides of Elea and Aris-
totle, during the 4th Century BC. Ontology has been a topic of active research 
throughout the Middle Ages and Modern Age until today, with contributions from 
such renowned philosophers as Kant and Wittgenstein. Nowadays, Ontology con-
stitutes an important area of contemporary philosophy, covering large research 
projects and reaching out to such different areas as artificial intelligence, database 
theory, and natural language processing. 
According to the Stanford Encyclopedia of Philosophy (cf. Hofweber 2005), the 
discipline of modern Ontology comprises four different aspects, denoted by (O1) 
to (O4): 

(O1) The study of what there is, what exists. 

(O2) The study of the most general features and relations of the entities which 
do exist. 

A prerequisite for (O1) is to clarify in which things one must (initially) believe be-
fore one may reason about the existence of other things. Therefore, Ontology also 
includes  

(O3) the study of ontological commitment, i.e., to become aware of what one 
is committed to. 

Generally, an ontological commitment to the existence of an entity (A) becomes 
necessary in order to make a statement about the existence of another entity (B). 
In other words: the existence of entity A is presupposed or implied by asserting 
the existence of entity B. A typical commitment would be the choice of a model-
ing language (cf. Sect. 2.3); that is, one commits to abstract entities, such as 
classes or relations, or to particular theories, such as second order logic 
Finally, the field of Ontology incorporates 

(O4) the study of Meta-Ontology, i.e., saying what task it is that the discipline 
of Ontology should aim to accomplish, if any, how the questions it aims 

                                                           

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_2,  
© Springer-Verlag Berlin Heidelberg 2010 

4 ὄ (Ontos), the genitive of ὄ (On), means ‘of being‘; the suffix - (-logia) denotes a science, 
study, or theory. So originally, the word signifies ‘theory of being’. 
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to answer should be understood, and with what methodology they can be 
answered. 

In the following, a particular ontological theory is referred to as an ontology5. The 
individual ontologies considered in the context of this work will mainly focus on 
the aspects (O1) and (O2). 
An ontology can be specified on different levels of formality. According to 
Uschold and Grüninger (1996) and Hofweber (2005), an ontology is designated as  

– informal if expressed in natural language; 
– semi-informal if expressed in a restricted and structured form of natural 

language; 
– semi-formal if expressed in an artificial and formally defined language; 

and 
– (rigorously) formal if the ontology contains precise mathematical defini-

tions of certain entities in terms of their properties and their relations to 
other entities. Such definitions are usually given in form of axioms formu-
lated in a logic-based language. This allows proving certain properties 
about an ontology, such as its consistency6. 

Formal ontologies have proven to be applicable in numerous areas; a particularly 
popular field of application is based on utilizing a formal ontology as a framework 
for information representation.. Information represented in such a framework is 
easily accessible to automated information processing. For that reason, ontologies 
have become a subject of intensive research in the area of computer science. 

2.2 Ontology in Computer Science 

Over the last decades, the term ‘ontology’ has been adopted by computer scien-
tists, firstly in the field of artificial intelligence (AI) and more recently in other 
areas, as well. Within this community, the term is used in a more narrow sense 
than in the context of philosophy, denoting a formal ontology for information re-
presentation7 (see above). Viewed from the perspective of an AI system, this con-
ception of an ontology is equivalent to the original philosophical definition of On-
tology as a “theory of existence”, since, as Gruber (1995) put it, “for AI systems, 
what ‘exists’ is that which can be [formally] represented”. 

                                                           
5 Adopting a proposal of Guarino and Giaretta (1995), we use the uncountable noun ‘Ontology’ 
(with capital ‘O’) to refer to the philosophical discipline; in contrast, the countable noun ‘ontolo-
gy’ (with lowercase ‘o’) refers to a specific ontological theory, such as ‘Aristotle’s ontology’ or 
‘the Cyc ontology’. 

6 An ontology is said to be consistent if it does not contain any logically conflicting statements. 

7 ‘Knowledge representation’ is often used synonymously with ‘information representation’. 
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In computer science, there are two principal types of usage for an ontology: 

– The first type of usage has already been explicated in Chap. 1: An ontolo-
gy serves as a library of knowledge components to efficiently build intelli-
gent systems. To this aim, the generic ontology is to be transformed (i.e., 
extended and customized) into a knowledge base according to the require-
ments of the respective application. 

– The second type of usage is as a shared vocabulary for communication be-
tween interacting human and/or software agents. According to their respec-
tive functions, the communicating agents may have different knowledge 
bases, but all the knowledge bases must be consistent with the ontology 
(Gruber 1995).  

Both types of usage make the same demand on the ontology: They both require a 
consensual knowledge representation that is reusable in different application con-
texts. For the first case, this is obvious and has been extensively discussed in 
Chap. 1. As for the second case, the communicating agents perform different tasks 
requiring different knowledge bases, and thus the ontology must be suitable for 
each of these8. Thus, a properly crafted ontology should be applicable to both 
types of usage. As will be explained in Chaps. 11 and 12 OntoCAPE originally 
started as a shared vocabulary, but later evolved to a library for building know-
ledge-based systems. 
Guarino (1998) points out that in philosophy, the term ‘ontology’ denotes a con-
ceptual framework, whereas in computer science, ‘ontology’ often (but not al-
ways) refers to the engineering artifact used to represent such a conceptual frame-
work:  

“In the philosophical sense, we may refer to an ontology as a particular 
system of categories accounting for a certain vision of the world. As such, 
this system does not depend on a particular language: Aristotle's ontology is 
always the same, independently of the language used to describe it.  
On the other hand, in its most prevalent use in AI, an ontology refers to an 
engineering artifact, constituted by a specific vocabulary used to describe a 
certain reality, plus a set of explicit assumptions regarding the intended 
meaning of the vocabulary words.”  

In this book, the term ‘ontology’ is used ambiguously with both meanings. If ne-
cessary, we will use the phrases ‘ontology at the syntactic level’ to refer to the en-
gineering artifact, and ‘ontology at the semantic level’ to refer to the abstract con-
ceptual framework9.  
                                                           
8 The only difference is that, in the first case, the ontology is directly reused for building the 
knowledge base, whereas this is not necessarily true in the second case. Yet even if a knowledge 
base has not developed directly from the ontology, it must still be consistent with the ontology’s 
definitions. 

9 The synonymous terms ‘symbolic level’ and ‘knowledge level’, first suggested by Newell 
(1982), are also used in the literature. 
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Note that in computer science, the term ‘ontological commitment’ has a special 
meaning, as well: If some human or software agents agree on using an ontology 
for a given task in a consistent manner, they are said to commit to that ontology 
(Gruber and Olsen 1994; Studer et al. 1998). In other words, “an agent commits to 
an ontology if its observable actions are consistent with the definitions in the on-
tology” (Gruber 1995). 

2.3 Representation of Formal Ontologies 

Ontologies can be modeled with different modeling techniques, and they can be 
implemented in various kinds of languages (Uschold and Grüninger 1996). Exam-
ples of common modeling techniques, or modeling paradigms, include frames 
(e.g., Minsky 1975), first-order logic (e.g., Hodges 1983), description logic (abbr. 
DL; e.g., Baader et al. 2003), database modeling techniques (e.g., Chen 1976), and 
rule-based languages (a.k.a. rule languages; e.g., Lloyd 1987); for each paradigm, 
multiple implementations, or modeling languages, exist. 
In spite of their diversity, the different modeling languages share structural simi-
larities and have comparable modeling elements. In particular, most languages 
provide constructs for classes, individuals, relations, and attributes, although they 
may be named differently in the respective implementations. Moreover, some lan-
guage allow for the definition of axioms. In the following, these different model 
components will be described in detail. 

2.3.1 Classes and Individuals 

A class represents a collection of entities that share a common characteristic. De-
pending on the respective modeling paradigm, classes are also denoted as concepts 
or frames. If referred to in the text, class identifiers are highlighted by italicized 
sans-serif font. 
Entities that belong to a particular class are said to be instances or members of that 
class; for example, water and ethanol are instances of the substance class. Some 
modeling languages allow for the definition of metaclasses, the instances of which 
are again classes. The instances of an ordinary class are called individuals. 
Throughout this book, individuals are accentuated by bold sans-serif font. 
Classes can be hierarchically organized by means of subsumption relations, which 
are also known as specialization relations or subclassing relations: The class B is 
said to be a specialization or a subclass of the class A if every instance of B is also 
an instance of A. In this case, B is said to be subsumed by A, and A is called a su-
perclass of B.  
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By means of axioms (see below), it is possible to state certain properties about a 
class, such as the existence of relations (see below). In this context, two types of 
classes can be distinguished:  

– Primitive classes have only necessary conditions (expressed in terms of 
their properties) for membership: An instance of a primitive class must al-
ways comply with the properties of that class, but there may be other indi-
viduals with the same properties which are not members of that class. Con-
sequently, membership to a primitive class must be explicitly stated. 

– Defined classes are characterized by necessary and sufficient conditions 
for membership. Thus, an individual whose properties match those of a de-
fined class is automatically inferred to be a member of that class. Similar-
ly, the subclasses of a defined class can be inferred if their properties 
match the class definition. 

Most languages support inheritance between the classes in a subsumption hie-
rarchy; that is, a subclass inherits all the properties of its superclass. Some lan-
guages allow for multiple inheritance, which means that a particular class can in-
herit properties from more than one superclass.  

2.3.2 Relations 

A relation represents an interrelation between some classes; depending on the re-
spective modeling paradigm, relations are also called properties, roles, slots, or 
associations. While most modeling languages only provide modeling constructs 
for binary relations (i.e., relations between exactly two classes), a few have built-
in constructs for higher-arity relations (a.k.a. n-ary relations) involving three or 
more classes. In the following, the term ‘relation’ is synonymously used for ‘bi-
nary relation’. Relation identifiers will be denoted by sans-serif font throughout the 
text. 
By default, a relation is (uni-)directional, which means that it points from a partic-
ular domain class to a designated range class: As an example, consider the relation 
hasReactant, which refers from a chemical reaction (its domain) to a substance (its 
range).  
A relation can be instantiated, which means that it can be applied between an in-
stance of the domain class and an instance of the range class. For example the 
above hasReactant relation can refer from the esterification of acetic acid (an in-
stance of chemical reaction) to the individual ethanol. Unlike a class instance, an in-
stantiated relation is not given a specific name but is identified via its domain and 
range individuals. 
Some languages allow to further specify the relations by means of relation proper-
ties (sometimes called property characteristics). The following relation properties 
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are quite common, although a single language does not necessarily support all of 
them:  

– A relation may be associated with another relation denoting its inverse – 
for example, isReactantOf would be the inverse of hasReactant, thus point-
ing from a substance to a chemical reaction.  

– Alternatively, a relation may be declared to be symmetric – in this case, it 
is equivalent to its own inverse: A concrete example is the isEqualTo rela-
tion – it implies that, if A is equal to B, then B is equal to A, as well. 

– A different property is antisymmetry, which is defined as follows: Given 
an antisymmetric relation R and two entities, A and B. If A is R-related to 
B, and B is R-related to A, then A and B must be identical. Note that sym-
metry and antisymmetry are not mutually exclusive – for instance, the isE-
qualTo relation is both symmetric and antisymmetric. 

– Additionally, a relation may be declared to be transitive. This means that if 
entities A and B are related via a transitive relation R, and so are B and C, 
then A and C must also be R-related. A concrete example would again be 
the isEqualTo relation – if A equals B, and if B equals C, then A equals C. 

– A relation may be declared to be reflexive, meaning that each entity to 
which a reflexive relation R is applicable is R-related to itself. For instance, 
the isEqualTo relation is reflexive since each entity is equal to itself. 

– Alternatively, a relation R may be declared to be irreflexive; in conse-
quence, an entity can never be R-related to itself. The relation isGreaterThan 
is a typical example of an irreflexive relation. 

– A functional relation (sometimes also referred to as a function) cannot 
have more than one unique range individual; if a domain individual is re-
lated to more than one range individual via a functional relation, it will be 
concluded that the range individuals are identical. For obvious reasons, this 
property should not be combined with transitivity.  

– The opposite effect is caused by an inverse-functional relation: If two do-
main individuals are related to the same range individual via an inverse-
functional relation, it will be inferred that the domain individuals are iden-
tical. Thus, the range individuals of an inverse-functional relation can be 
utilized as unique identifiers for the domain individuals. Note that the in-
verse of a functional relation is automatically an inverse-functional rela-
tion. 

A few modeling languages treat subsumption as a special case of a (transitive, ref-
lexive, and antisymmetric) relation. Other languages allow for a hierarchical or-
ganization of relations, which is similar to that of classes. Unlike in class hierar-
chies, a subrelation may have properties different from those of its superrelation. 
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2.3.3 Attributes 

Attributes represent features, characteristics, or parameters of classes and their in-
stances. An attribute is identified by its name; it takes one or several values, which 
are specific to the class or instance the attribute is attached to. Usually, the values 
of a particular attribute are restricted to a specific datatype such as boolean, string, 
or integer. 
Often, the same modeling constructs are used for the representation of relations 
and attributes; they differ from each other only with respect to their ranges: The 
range of a relation is given by its range class, whereas the range of an attribute is 
specified by its datatype. Due to the absence of a range class, most of the above 
relation properties cannot be applied to attributes. However, it is possible to dec-
lare an attribute to be functional or inverse functional; also, attributes may be hie-
rarchically ordered. 

2.3.4 Axioms 

An axiom models a proposition or sentence that is always true. Generally, axioms 
provide an additional means for knowledge representation: They allow formaliz-
ing such knowledge that goes beyond stating the mere existence of classes, rela-
tions, and instances. Therefore, modeling paradigms that include axioms have a 
greater expressiveness than those without. In particular, axioms serve  

– to explicitly define the semantics (or at least to constrain the possible in-
terpretations and uses) of an ontological concept by imposing constraints 
on its values and/or its interactions with other concepts in the ontology;  

– to verify the consistency of the knowledge represented in the ontology; and 
– to infer new (i.e., formerly implicit) knowledge from the explicitly stated 

facts. 

Formal axioms may be embedded in class or relation definitions, where they spe-
cify the properties of the respective class or relation. In fact, the declaration of the 
above introduced relation properties is usually realized by means of embedded 
axioms.  
The following are common types of class-embedded axioms, stating  

– the disjointness of classes – if the classes A and B are declared to be dis-
joint, then an instance of class A cannot simultaneously be an instance of 
class B;  

– the equivalence of classes, meaning that such classes have precisely the 
same instances; 

– the extension of a class by means of an explicit enumeration of its mem-
bers. 
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Another common type of class-embedded axioms puts constraints on the relations 
originating from the respective class. Unlike relation properties, which are univer-
sally valid, these constraints are specific to the domain class, i.e., they are only lo-
cally valid. These local constraints include, but are not restricted to 

– (local) range restrictions, stating that the range of a relation originating 
from the domain class is restricted to certain classes;10 

– cardinality constraints, which specify either the exact number or the max-
imum/minimum number of range individuals for a given relation;  

– qualified cardinality restrictions (a.k.a. qualified cardinality constraints, 
abbr.: QCR), which, in addition to specifying the number of range individ-
uals, also prescribe the range class of which the individuals are to be in-
stantiated from.11  

The above introduced basic axiom types can be combined to more complex ex-
pressions. To this end, ontology languages provide additional constructors, such as 
the set operators of union, intersection, and complement. 
Finally, rules constitute a further, very powerful mechanism for stating axioms. A 
rule axiom consists of an antecedent (or rule body) and a consequent (or rule 
head). Both the antecedent and the consequent are logical expressions, which are 
formulated in terms of the other constructs of the modeling language. Whenever 
the expression specified in the antecedent holds true, then the expression specified 
in the consequent must also hold. Thus, if an antecedent matches the current state 
of the ontology, then the consequent is affirmed, i.e., added to the ontology. Note 
that, while the antecedent is not necessarily true, the rule as a whole is universally 
valid, and therefore matches the above definition of an axiom; ‘classical’ axioms 
(i.e., axioms without a precondition) can be modeled as rules with an empty rule 
body.  

2.3.5 Modularization 

Virtually all of the modern ontology modeling languages support the modulariza-
tion of ontologies, i.e., the subdivision of an ontology into small, manageable 
pieces. This requires two complementary mechanisms: (1) a clustering mechanism 
for grouping a subset of interdependent model components (classes, instances, re-
lations, attributes, and accompanying axioms) into a common module, and (2) an 
inclusion or import mechanism, which allows including the model components of 

                                                           
10 Local range restrictions are typically formulated by means of the universal quantifier (∀). 

11 Postulating the existence of at least one instance of a particular range class is a special case, 
which can be formulated by means of the existential quantifier (∃). 
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some ontology module into another module12. That way, an ontology can be orga-
nized as an inclusion hierarchy of interdependent subontologies. 

2.3.6 Notation of Modeling Elements 

Having established the major elements of ontology modeling languages, we will 
now introduce a graphical notation for these elements. This notation, which is 
based on the UML notation for class diagrams (e.g., Fowler 1997), will be applied 
throughout this book. Its main components are depicted in Fig. 2.1.  

 

Fig. 2.1: Basic elements for the graphical representation of ontologies 

Grey shaded boxes with solid boundary lines represent classes, white boxes 
represent individuals. Datatypes are denoted by grey shaded boxes with dashed 
boundary lines, attribute values by white boxes with dashed boundary lines. Spe-
cialization is depicted through a solid line with a solid arrowhead pointing from 
the subclass to the superclass. A dashed line with an open arrowhead denotes in-
stantiation. Binary relations are depicted through solid lines, thereby 
distinguishing three different cases: a line with one open arrowhead represents the 
standard case of an unidirectional relation; a line with two open arrowheads 
represents a symmetric relation; finally, a line without any arrowheads represents a 
relation and its inverse (cf. Fig. 2.2). Please note, that there are further specializa-
tions of relations (i.e. for aggregation and composition) which are introduced in 
detail in Sect. 5.1.3. Cardinality constraints are depicted by numbers placed close 
to the range class of the respective relation. No particular symbols are provided for 
the other types of axioms. 

                                                           
12 Inclusion means that if module A includes module B, the model components specified in B are 
valid in A and can thus be directly used (i.e., extended, refined …) in A. Inclusion is transitive, 
that is, if module B includes another module C, the ontological definitions specified in C are va-
lid and usable in A, as well. 
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Fig. 2.2: Graphical notation for cardinalities and inverse relations 

Generally, classes and relations will be named in accordance with the Camel-
Case13 naming convention: UpperCamelCase notation is used to denote identifiers 
of classes, while relation identifiers are represented in lowerCamelCase notation. 
No particular naming convention is followed for identifiers of individuals. For bet-
ter readability, the UpperCamelCase notation is not applied in the text; instead, the 
individual words that constitute the class identifiers are written separately and in 
lowercase (e.g., class identifier). 

2.4 Informal and Formal Specification of an Ontology 

Next, we need to discuss the overall form that an ontology must have at the syn-
tactic level in order to be of practical use. An often quoted definition for an ontol-
ogy stipulates that “an ontology may take a variety of forms, but it will necessarily 
include a vocabulary of terms and some specification of their meaning. This in-
cludes definitions and an indication of how concepts are inter-related” (Uschold 
et al. 1998). Smith (1996) further postulates that “the ontology should be […] ex-
plained in ways which make its content intelligible to human beings, and […] im-
plemented in ways which make this content accessible to computers”. From these 
statements, it can be concluded that two different representations of the ontology 
are required for practical use, which are referred to as formal specification and in-
formal specification hereafter14. The formal specification is to be processed by AI 
systems, while the informal specification addresses the human users of the ontolo-
gy. 

– The formal specification constitutes an implementation of the ontology in 
machine-readable form. It specifies the meaning of the vocabulary terms 

                                                           
13 CamelCase is the practice of writing compound words joined without spaces; each word is 
capitalized within the compound. While the UpperCamelCase notation also capitalizes the initial 
letter of the compound, the lowerCamelCase notation leaves the first letter in lowercase. 

14 The informal and the formal specification are different ontologies at the syntactic level, but 
they represent the same ontology at the semantic level. 
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and constrains their interrelations (and thus their possible uses) by means 
of axiomatic definitions, which are stated in a formal modeling language. 

– The informal specification expresses the definitions of the formal specifi-
cation in human-readable form. Particularly, it clarifies the meaning of the 
ontological vocabulary by giving precise term definitions in natural lan-
guage. Additionally, the interrelations of the terms and their intended 
usage are described in some appropriate way (e.g., through UML-like dia-
grams and/or textual descriptions). Some further documentation may be 
provided, which goes beyond the knowledge stated in the formal specifica-
tion – for instance, user guidelines for the extension of the ontology. 

One of the most common current formal modelling languages is the OWL Web 
Ontology Language (Smith et al. 2004; Bechhofer et al. 2004). OWL and its pre-
decessor DAML+OIL (Connolly et al. 2001) are ontology markup languages that 
have been developed for publishing and sharing ontologies in the Web. Their syn-
tax is based on existing Web markup languages, the most prominent of which is 
XML (W3C 2006). By now, DAML+OIL has been superseded by its successor 
OWL, which has been endorsed as a W3C recommendation15. As OWL is derived 
from DAML+OIL, it shares most of its features (a listing of the differences be-
tween the two languages can be found in Appendix D of Bechhofer et al. 2004). 
Therefore, only OWL will be discussed in the following.  
Model entities are represented through classes and individuals in OWL. Classes 
can be hierarchically ordered, thereby allowing multiple inheritances. They can al-
so be further specified through class-embedded axioms stating the disjointness of 
classes, the equivalence of classes, or the extension of a class. These basic axiom 
types can be combined by means of the set operators of union, intersection, and 
complement. 
Furthermore, OWL provides language primitives for attributes (called ‘datataype 
properties’) and binary relations (called ‘object properties’); higher-arity relations 
must be represented through classes in OWL. Attributes and relations can be hie-
rarchically ordered, and their usage can be restricted through range and cardinali-
ty constraints. Relations may be further specified through axioms declaring a rela-
tion to be transitive, symmetric, functional, or inverse-functional (the latter two are 
also applicable to attributes). Additionally, two distinct relations can be declared 
to be equivalent to, or the inverse of, each other. Modularization is supported by 
the import mechanism of OWL, which allows including the definitions and 
axioms of other ontologies into the current ontology.  
The OWL language provides three increasingly expressive sublanguages, called 
OWL Lite, OWL DL, and OWL Full. Each of these sublanguages is an extension 
of its simpler predecessor, both in what can be legally expressed and in what can 

                                                           
15 A W3C recommendation is the final stage of a ratification process of the World Wide Web 
Consortium (W3C) concerning a standard for the Web. It is the equivalent of a published stan-
dard in other industries. 
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be validly concluded (Smith et al. 2004). Save for a few exceptions, the represen-
tation of OntoCAPE, is restricted to the OWL DL subset. This sublanguage is 
compatible with a particular type of description logic (DL) called SHOIN(D) 
(Horrocks and Patel-Schneider 2004). As a consequence, the models represented 
in OWL DL can be processed with standard DL reasoners. 
The current release of OWL (version 1.0) lacks certain language constructs, such 
as those for the relation properties of antisymmetry and reflexivity, or for the re-
presentation of qualified cardinality constraints. These (and other) language con-
structs will be included in the next release of OWL DL, which will move from the 
SHOIN(D) Description Logic to the more expressive SROIQ(D) Description Logic 
(Patel-Schneider and Horrocks 2006). 
Rules are currently not part of OWL; however there are plans for an additional 
rule language that is to be defined on top of OWL (Horrocks et al. 2004). Yet the 
problem of how to efficiently combine logic-based reasoning and rule-based rea-
soning still remains to be solved. 

2.5 What an Ontology Is and Isn’t 

With the growing popularity of web-enabled ontology languages like OWL (Smith 
et al. 2004; Bechhofer et al. 2004), the term ‘ontology’ is more and more being 
used in an inflationary manner to denote all kinds of knowledge representation 
structures. In many of these cases, it is erroneously assumed that the mere use of 
an ontology modeling language qualifies the respective structure as an ontology. 
However, this is definitely not the case: Being represented in an ontology model-
ing language is only a necessary, but not a sufficient criterion for being considered 
a (formal) ontology.  
To better illustrate our point of view, we will below identify two types of ontolo-
gy-like structures that we do not categorize as full-fledged ontologies: We refer to 
them as pseudo ontologies and lightweight ontologies, respectively. In the follow-
ing, we will define these terms and explain why they do not comply with our – 
admittedly quite strict – conception of an ontology. 
By “pseudo ontology” we mean a part of a software system that is formulated in a 
formal ontology language such as OWL, but has not been explicitly designed for 
reuse. A typical example would be the knowledge base of an intelligent system: In 
our judgment, such a knowledge base – or rather the state-independent part of that 
knowledge base (cf. Sect. 2.6) –can only be considered an ontology if it is reusa-
ble and can thus be shared across software applications and by different groups of 
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users16 (cf. Chap. 1). If, on the other hand, the knowledge base has been designed 
for a single purpose only, we refer to it as a pseudo ontology. 
In addition to pseudo ontologies, a second class of ontology-like structures must 
be differentiated from “true” ontologies. Unlike before, the differentiating factor is 
not the reusability of the respective structure, but its semantic richness: Structures 
of this class are not considered full-fledged ontologies as they do not formally de-
fine the semantics of the vocabulary terms through axiomatic definitions. Due to 
their simple internal design, they are sometimes referred to as ‘lightweight ontolo-
gies’ in the literature – as opposed to ‘heavyweight ontologies’, which model the 
domain in a deeper way and provide more restrictions on domain semantics 
(Gómez-Pérez et al. 2004). While a lightweight ontology may be represented in a 
formal ontology modeling language, it utilizes only a subset of the available mod-
eling elements – that is, a lightweight ontology is built using classes, sometimes 
instances, and possibly relations, but it does not include relation properties, local 
constraints, or other forms of axioms. Four types of lightweight ontologies may be 
distinguished: 

– A controlled vocabulary is a list of predefined, authorized terms with an 
unambiguous description given in natural language. The terms may be 
modeled as classes or instances, but there are no further axiomatic specifi-
cations of the meaning of terms. 

– A taxonomy is a controlled vocabulary that is organized in a hierarchical 
structure; the hierarchy is usually modeled by means of subsumption rela-
tions.  

– A thesaurus is a taxonomy that additionally specifies certain semantic re-
lationships between its vocabulary terms. Unlike a semantic network (see 
below), a thesaurus includes only very few types of semantic relationships 
(typically the synonyms or near-synonyms and the antonyms of a term). 
These relationships can be modeled through associative relations. 

– A semantic network is a knowledge representation formalism, which de-
scribes terms their relationships in form of a network consisting of labeled 
nodes and arcs. Typically, the labels of the nodes are nouns, and the labels 
of the arcs are verbs; that way, the triple formed by two nodes and the in-
terconnecting arc represents a declarative sentence of the form subject-
predicate-object. The nodes can be modeled as classes and/or instances, 
and the arcs can be modeled through associative relations.  

Some ontologists (e.g., Guarino 1998; Lassila and McGuinness 2001) prefer a 
gradual approach to defining ontologies. They do not draw a clear distinction be-
tween lightweight and heavyweight ontologies, but postulate an “ontology spec-
trum” (McGuinness 2002), which ranges from simple taxonomies to sophisticated 

                                                           
16 This view is supported by numerous ontologists, such as Neches et al. (1991), Borst (1997), 
Studer et al. (1998), Chandrasekaran et al. (1999), Jarrar and Meersman (2002), Gómez-Pérez et 
al. (2004), Smith (2006), or Pâslaru-Bontaş (2007). 
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heavyweight ontologies: Originating from taxonomies, the level of complexity is 
incrementally increased by adding instances, relations, relation properties, local 
constraints, and finally global axioms. 

2.6 Classification of Ontologies 

As the final topic of this theory chapter, a classification framework for ontologies 
is introduced, and the interdependencies between the different ontology types are 
discussed. In the later chapters of this book, the classification framework will 
serve as a frame of orientation to clarify the roles of the individual subontologies 
that constitute OntoCAPE as well as the roles of those ontologies that are related 
to OntoCAPE. 
According to Guarino (1997b), ontologies can be classified into the following 
types, which are distinguished by their level of dependence on a particular task or 
point of view: 

– Top-level ontologies define general-purpose concepts like object, state, ac-
tion, etc., which are independent of a particular problem or domain and can 
therefore be universally applied. In the literature, top-level ontologies are 
also referred to as abstract ontologies (e.g., Borst 1997), generic ontolo-
gies (e.g., van Heijst et al. 1997a), foundation(al) ontologies (e.g., 
Schneider 2003), or upper (level) ontologies (e.g., Guarino 1998). Promi-
nent examples of top-level ontologies are the Top-Elements Classification 
by Sowa (1995), UpperCyc (Lenat and Guha 1990), or the Suggested Up-
per Level Merged Ontology SUMO (Niles and Pease 2001). 

– Domain ontologies capture the knowledge of a domain of expertise, such 
as medicine or engineering. A domain ontology is not specifically tailored 
to a particular task or application; instead, it defines general domain know-
ledge that is relevant for a wide range of different tasks and applications. 
The goal of a domain ontology is to be universally applicable (and thus 
reusable) within the respective domain of expertise. 

– A task ontology (often also referred to as method ontology) describes gen-
eral problem-solving methods that can be applied in different contexts. 
Such methods are task-specific, but the task itself should be generic in the 
sense that it occurs in different applications and domains of expertise. An 
example of a generic task would be graph searching, for which different 
search methods (e.g., depths-first search or breadth-first search) could be 
specified in a task ontology. Note that a task ontology does not actually 
realize (i.e., implement) the method, but only specifies the “terminology 
for expressing the competence and the knowledge requirements of a me-
thod” (Fensel et al. 1996). For a graph searching method, the terminology 
could, for example, include the concepts of ‘current node’, ‘visited node’, 
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‘search depth’, etc. Do also note that domain ontology and task ontology 
have different but complementary objectives with respect to reusability: 
the former is applicable to different tasks but restricted to a particular ap-
plication domain; the latter is designated for a particular task but reusable 
across domains. 

– Finally, an application ontology provides the concepts that are required for 
a particular application. To clarify the difference between an application 
ontology and a knowledge base, Guarino (1997b) proposed the following 
definition: An application ontology comprises only state-independent in-
formation (i.e., facts that are always true), whereas a knowledge base may 
also hold state-dependent information (i.e., facts and assertions related to a 
particular state of affairs). 

The interdependencies between these four ontology types are depicted in Fig. 2.3: 
According to Borst (1997) and Guarino (1997b), a task ontology may import the 
terminology from a top-level ontology and utilize it for the specification of me-
thods. In a similar manner, a domain ontology may describe domain concepts as 
specializations of the top-level concepts. Furthermore, the concepts in an applica-
tion ontology can typically be defined by combining and refining concepts from 
both a domain and a task ontology; this is particularly facilitated if the domain and 
task ontology are founded on the same top-level concepts and thus share a com-
mon world-view. As an example, consider a top-level ontology that introduces the 
terminology to describe directed graphs. Based on this terminology, a task ontolo-
gy could specify a graph searching method. Likewise, a domain ontology for 
chemical engineering could define the concept of a process flowsheets as a special 
form of a directed graph. An application ontology could finally combine domain 
knowledge and problem-solving knowledge in order to realize a search application 
for process flowsheets.  

Fig. 2.3: Ontology types and interdependencies according to Guarino (1997b); ar-
rows indicate specialization relationships 
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While the above classification framework is widely accepted in principle, some 
points remain subject to debate: The borderline between top-level ontologies on 
the one hand, and domain and task ontologies on the other hand, is rather vague, 
as pointed out by van Heijst et al. (1997a); yet, as further argued by these authors, 
the distinction is intuitively meaningful and useful for building libraries of reusa-
ble ontologies. More controversial is the question whether or not it is feasible to 
separate domain knowledge from knowledge about problem-solving methods (cf. 
the discussion between van Heijst et al. 1997a, 1997b, and Guarino 1997a). At the 
core of the discussion is the so-called interaction problem (Bylander and Chandra-
sekaran 1988), which states the following: a method cannot be described without 
knowing the domain knowledge it will be applied to, and, vice versa, domain 
knowledge cannot be represented without knowing for what tasks or methods it 
will be used. Guarino (1997a), while admitting the validity of the interaction prob-
lem in principle, argues that one should nevertheless strive for a task-independent 
representation of domain knowledge; even though the goal cannot be fully 
achieved, it is quite possible to build a domain ontology that is reusable for a large 
number of different tasks.  
As an extension to the above classification framework, some authors introduce 
subtypes and combinations of the four basic ontology types: 

– Gómez-Pérez et al. (2004) recognize the so-called general ontologies (van 
Heijst et al. 1997a) or common ontologies (Mizoguchi et al. 1995) as an 
additional, distinct type of ontologies. According to these authors, ontolo-
gies of this type represent common-sense knowledge that is reusable across 
domains. However, the differentiating criterion between top-level ontolo-
gies and common ontologies remains vague – presumably, a top-level on-
tology contains only high-level concepts, which must be specialized in 
domain and task ontologies to become usable, whereas the concepts of a 
common ontology are directly applicable. A special type of a common on-
tology would be a supertheory – the term has been coined by Borst (1997) 
to denote an abstract ontology that defines a self-contained theory. Promi-
nent examples of this category are the mereology and topology ontologies 
created by Borst (1997). 

– Some authors (e.g., Mizoguchi et al. 1995; Gómez-Pérez et al. 2004) ex-
plicitly subdivide a task ontology in a task part and a method part; only the 
former part is then referred to as ‘task ontology’, while the latter part is 
called ‘method ontology’. 

– Gómez-Pérez et al. (2004) additionally introduce the type of a domain-task 
ontology which is defined as an application-independent task ontologies 
that is reusable in a given domain, but not across domains. 

– Pâslaru-Bontaş (2007) differentiates between application domain ontolo-
gies and application task ontologies. The former refines and extends the 
general-purpose knowledge of a domain ontology to the requirements of a 
particular application, whereas the latter corresponds to a combination of 
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application-relevant domain and task-related knowledge, similar to the ap-
plication ontologies introduced by Guarino (1997b). 

– Some authors (e.g., Valente and Breuker 1996; van Heist et al. 1997a; 
Doerr et al. 2003) suggest an additional ontology type called core ontolo-
gy. In the literature, there is no general agreement on what constitutes a 
core ontology. A core ontology, as we understand it (cf. Brandt et al. 
2008a; Morbach et al. 2007; Chap. 12), constitutes the top-level part of an 
application ontology. More specifically, the function of a core ontology is 
(1) to select and retrieve the top-level concepts that are relevant for the par-
ticular application from the respective domain and task ontologies, (2) to 
specify how these concepts are to be used (i.e., interpreted) by the applica-
tion, and (3) to introduce additional top-level concepts required by the ap-
plication that cannot be retrieved from the available ontologies. 

A further type of ontologies, which is not covered by the above classification 
framework, is the so-called (knowledge) representation ontology. Representation 
ontologies explicate the conceptualizations that underlie knowledge representation 
formalisms (Davis et al 1993). They are intended to be neutral with respect to 
world entities (Guarino and Boldrin 1993). That is, they provide a representational 
framework without making claims about the world (van Heijst et al. 1997a). Top-
level ontologies as well as domain and task ontologies are described through the 
primitives provided by representation ontologies. Well-known examples of this 
ontology type are the Frame Ontology (Gruber 1993) or the representation ontolo-
gies for the Semantic Web languages RDFS (W3C 2000) and OWL (W3C 2002). 
Finally, the notion of a meta model, or meta ontology, needs to be defined. Gener-
ally, a meta model is “a design framework, that describes the basic model ele-
ments and the relationships between the model elements as well as their seman-
tics. This framework also defines rules for the use […] of model elements and 
relationships” (Ferstl and Sinz 2001, p. 86). There are two possible interpretations 
of the term ‘meta model’ which are consistent with this definition: for their diffe-
rentiation, Atkinson and Kühne (2002) coined the terms physical metalevel and 
logical metalevel. A meta model at the physical metalevel defines the concepts 
and mechanisms of the modeling language and it thus equivalent to a representa-
tion ontology. By contrast, a meta model at the logical metalevel guides the devel-
opment of the actual ontology by means of predefined types and patterns, which 
reflect modeling best practice. 
Fig. 2.4 presents the extended classification framework, now including both types 
of meta ontologies17. Also, the degree of usability and reusability of the respective 
ontology types is shown in the figure: Compliant with the usability-reusability 
trade-off (cf. Sect. 1.3), the usability increases with the ontology type’s degree of 
specialization, whereas its reusability decreases. 

                                                           
17 The other ontology types introduced above are not depicted since they are merely subtypes of 
the ones presented in the figure. 
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Fig. 2.4: Extended classification framework 
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or as a library of reusable knowledge components for building intelligent systems; 
moreover, a computer science ontology is always formal (and thus machine-
interpretable), even though the provision of an additional informal specification 
for human users is highly advisable. 
Over the last decades, several modeling paradigms and modeling languages have 
been proposed for the representation of formal ontologies. We have presented the 
common elements and pointed out the differences of these paradigms and lan-
guages. 
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Different types of ontologies can be differentiated: Firstly, one needs to distin-
guish between full-fledged ‘heavyweight’ ontologies and ‘lightweight’ ontologies, 
which do not make use of axiomatic definitions. Secondly, one must distinguish 
truly reusable ontologies from ‘pseudo ontologies’, which are built for a single 
application only. Finally, an ontology may be partitioned into sub-ontologies of 
different types, which can be classified according to their respective functions; the 
most common types, ordered by increasing usability, are meta ontology, top-level 
ontology, domain ontology, task ontology, and application ontology. 
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3 Overview on OntoCAPE 
 
Having established the scientific background of ontology engineering, we now 
present version 2.0 of the ontology OntoCAPE. Compliant with the terminology 
introduced in the previous chapter, OntoCAPE can be characterized as a formal, 
heavyweight ontology, which is represented in the OWL modeling language. It 
consists of several sub-ontologies, which perform different functions: According 
to the classification framework introduced in Sect. 2.6, the individual sub-
ontologies serve the functions of a meta ontology (at the logical metalevel), a top-
level ontology, a domain ontology, as well as some application ontologies.  

3.1 Overview and Structure 

As for any complex system, a sound architecture is critical for an ontology (1) to 
facilitate its efficient construction and long-term maintenance, and (2) to enable its 
reuse in different application contexts. In the following, we discuss how this con-
cern is addressed by the design of OntoCAPE. 
Fig. 3.1 gives an overview on OntoCAPE. As can be observed, the ontology is or-
ganized by means of two orthogonal structuring principles, which will be dis-
cussed in the two consecutive subsections: abstraction layering and modulariza-
tion. 

3.1.1 Abstraction Layering 

To improve the usability and reusability of an ontology, numerous authors (e.g., 
Chandrasekaran and Johnson 1993; Russ et al. 1999; Borst 1997; Jarrar and 
Meersman 2002) have proposed the idea of structuring an ontology into different 
levels of abstractions. Following their recommendation, OntoCAPE has been 
subdivided by means of layers (cf. Fig. 3.1), which separate general knowledge 
from knowledge about particular domains and applications. 
The design of each layer follows the principle of “minimal ontological commit-
ment” (Gruber 1995) (cf. Sect. 10.5), meaning that a layer holds only those onto-
logical terms and axioms that are essential for its function; terms and axioms that 
are not essential for the layer’s purpose are sourced out to lower layers. The top-
most Meta Layer, is the most abstract one; it holds a meta ontology (cf. Sect. 2.6), 
which introduces fundamental modeling concepts and states the design guidelines 
for the construction of the actual ontology. Next, the Upper Layer of OntoCAPE 
defines the principles of general systems theory according to which the ontology is 
organized. On the subjacent Conceptual Layer, a conceptual model of the CAPE 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_3,  
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Fig. 3.1: Structure of OntoCAPE 
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domain is established, which covers such different areas as unit operations, 
equipment and machinery, materials and their thermophysical properties, chemical 
process behavior, modeling and simulation, and others. The two bottommost lay-
ers refine the conceptual model by adding classes and relations required for the 
practical application of the ontology: The Application-Oriented Layer generically 
extends the ontology towards certain application areas, whereas the Application-
Specific Layer provides specialized classes and relations for concrete software ap-
plications. 
The layered design takes the reusability-usability trade-off problem (cf. Sect. 1.3) 
into account: According to the trade-off problem, the general knowledge, which is 
located on the Upper Layer of OntoCAPE, can be reused in a variety of applica-
tion contexts, but it is not immediately usable. By contrast, the knowledge located 
on the lower layers is ready for use, but problem-specific and thus hardly transfer-
able to other applications. Thus, each layer contains knowledge of a specific de-
gree of usability and reusability; traversing down the ontology, the usability of the 
knowledge increases, whereas its reusability decreases. Now, if (a part of) the on-
tology is to be reused for building some knowledge-based application, the appro-
priate abstraction level for knowledge reuse must be found. In practice, this means 
that one needs to traverse up the ontology (starting from the Application-Specific 
Layer) until the encountered knowledge is generic enough to fit the respective ap-
plication context. 
As an example, consider an intelligent CAPE tool, for the development of which a 
preferably large part of OntoCAPE is to be reused. The knowledge on the bot-
tommost layer is application-specific and therefore of little value for any new tool. 
Yet already the above Application-Oriented Layer may contain some reusable 
knowledge, provided that the tool operates in an application area that is covered 
by OntoCAPE at all. If this is not the case, we need to move up to the Conceptual 
Layer; here, at the latest, some reusable knowledge can be found. Thus, for build-
ing a CAPE tool, one may reuse the ontology down to and including the Concep-
tual Layer at least. If, on the other hand, the tool was from a different application 
area than CAPE, it would still be possible to reuse knowledge from the Upper 
Layer and the Meta Layer. 

3.1.2 Modularization 

Modularization (i.e., the subdivision of the ontology into largely self-contained 
units), has been recommended by many authors (e.g., Gruber and Olsen 1994; 
Borst 1997; Bernaras et al. 1996; Visser and Cui 1998; Pinto et al. 1999; Heflin 
and Hendler 2000; Rector 2003; Stuckenschmidt and Klein 2003) as a means to 
promote the intelligibility (cf. Sect. 10.3), the adaptability (cf. Sect. 10.4), and 
generally the reusability of an ontology. 
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In OntoCAPE, modularization has been realized by partitioning the ontology into 
modules and partial models. Throughout the text, the identifiers of modules will 
be denoted in italicized serif font, whereas the identifiers of partial models will be 
denoted in bold serif font. 

3.1.2.1 Modules 

A module assembles a number of interrelated classes, relations, and axioms, which 
jointly conceptualize a particular topic (e.g., the module plant holds a conceptuali-
zation of chemical plants). The boundaries of a module are to be chosen such that 
the module can be designed, adapted, and reused to some extent independently 
from other parts of an ontology (Stuckenschmidt and Klein 2003). A module may 
include another module, meaning that if module A includes module B, the 
ontological definitions specified in B are valid in A and can thus be directly used 
(i.e., extended, refined …) in A. This allows to decompose OntoCAPE into an 
“inclusion lattice” (Gruber and Olsen 1994) of loosely coupled modules, as shown 
in Fig. 3.1. 
By definition, modules have strong internal coherence but relatively loose coupl-
ing with the other parts of the ontology (Borst 1997), which facilitates their han-
dling, thus improving the adaptability of the ontology (this issue is discussed in 
Sect. 10.4). Moreover, the modules are concise and therefore easier to compre-
hend than an entire ontology, hence bringing advantages with respect to intelligi-
bility (cf. Sect. 10.3). Furthermore, the modular structure facilitates the selective 
reuse of the ontology: A user may choose to reuse only a selected part of the on-
tology if other parts are not relevant in the respective application context. In this 
case, it is relatively simple to cut the connections between the modules to be 
reused and the remainder of the ontology. 
In the formal specification of OntoCAPE, modules are manifested through XML 
namespaces (Bray et al. 2006a). By convention, the concepts of a common na-
mespace are stored in a single OWL file of the same name as the corresponding 
module. Inclusion is realized by means of the OWL import mechanism. Moreover, 
each module is (conceptually) assigned to one particular layer (cf. Fig. 3.2), thus 
integrating the structuring mechanisms of layering and modularization. 

3.1.2.2 Partial Models 

Modules that address closely related topics are grouped into a common partial 
model – for instance, the partial model plant_equipment clusters the thematically 
related modules fixture, apparatus, and machine. 
The partial models constitute a coarse categorization of the domain. Unlike mod-
ules, partial models may be nested and may stretch across several layers. While 
the boundaries of the modules are chosen for practical considerations (i.e., such 
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that the interdependencies between the individual modules are minimized), the 
boundaries of the partial models reflect the ‘natural’ thematic boundaries of the 
domain. In the course of ontology evolution (cf. Sect. 11.1), the partial model 
structure is therefore supposed to remain relatively stable, whereas the number of 
modules as well as their content and mutual dependencies are likely to change 
over time. Thus, the partial model structure provides a stable frame of orientation 
for the organization of the modules. 
In the formal specification of OntoCAPE, the partial models are implemented as 
(file) directories. That way, they establish a directory structure for managing the 
OWL files. 

3.1.2.3 Variants 

As there is no unique way of modeling an area of interest, different variants of an 
ontology module may evolve. These variants represent alternative conceptualiza-
tions of the subject covered by the module. Variants will particularly arise on the 
application-near layers whenever the ontology is adapted to a new application be-
cause a new application usually implies a different view on the domain and conse-
quently a different conceptualization (Noy and Klein 2004). Consider for example 
the module plant (cf. Sect. 8.3.1), which holds a conceptualization of plant equip-
ments and their connections: A knowledge management system, as the one de-
scribed in Sect. 12.2, calls for a simple, coarse-grained description of connectivity 
(i.e., the mere indication that equipment A is connected to equipment B is suffi-
cient for this application). On the other hand, an ontology-based system for the in-
tegration of engineering data, as the one sketched in Sect. 12.3, would require a 
more precise description: Connectivity must be addressed by indicating the num-
ber and position of flanges, specification of their type and diameter, etc. Yet for 
the knowledge management system, these details are irrelevant and should thus be 
omitted. As a solution, two variants of the module plant can be developed, provid-
ing different conceptualizations of connectivity specifically tailored to the infor-
mation demands of the respective application. 
While the variants will predominantly emerge on the lower layers of the ontology, 
the basis for their evolvement must be established on the higher layers already, 
particularly on the Meta Layer and the Upper Layer. These layers define the fun-
damental theories on which the variants are based. Consequently, these theories 
must be formulated in a flexible manner, such that they allow for alternative re-
finements in form of different variants. In the above example, for instance, both 
variants of plant are based on a generic theory of connectivity formulated in the 
Meta Model (partial model topology, cf. Sect. 4.4). Thus, the generic theory must 
tolerate both the coarse-grained and the fine-grained specification of connectivity. 
In the formal specification of OntoCAPE, the variants of a module are represented 
as separate OWL files. These files are stored in the same directory, and they have 
the first part of their two-part file name in common. However, this proceeding is 
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only appropriate for a small number of variants; with an increasing number, the 
use of a variant management software (such as Pure::Variants; Pure Systems 
2008) should be considered. 

Fig. 3.2: Formal model of the structuring elements used for organizing OntoCAPE 

Summarizing the above discussion, Fig. 3.2 displays a formal model of the struc-
turing elements that have been used to organize OntoCAPE. 

3.2 Representation and Dissemination 

As stated in Sect. 2.6, a reusable ontology must be available both in form of an in-
formal specification and in form of a formal specification. Accordingly, Onto-
CAPE 2.0 is issued in both forms of representation: 

– The informal specification currently takes the form of six technical reports 
(Morbach et al. 2008f; 2008g; 2008h; 2008i; 2008j; Wiesner et al. 2008a), 
which jointly comprise about 500 pages. The important concepts intro-
duced in these reports are summarized in the respective chapters of this 
book (cf. Chaps. 4-9). Within these chapters, the organization and structure 
of OntoCAPE are presented, and the conceptualizations of various topic 
areas are described in detail, often complemented by intuitive UML-like 
diagrams. Moreover, the major design decisions of ontology engineering 
are explicated, thus providing the reader with the necessary background 
knowledge for extending and customizing the ontology to his/her own pur-
poses. Finally, the usage of the ontology is explained, and some sample 
applications are presented. 
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– As mentioned before, the formal specification of OntoCAPE has been rea-
lized in OWL. A short introduction to that particular modeling language 
can be found in Sect. 2.4. The current release of OntoCAPE consists of 62 
OWL files, each of which includes one module of the ontology. In total, 
the implementation comprises about 500 classes, 200 relations, and 40,000 
individuals18.  

According to Smith (2006), an ontology must be “open and available to be used 
by all potential users without any constraint, other than (1) its origin must be ac-
knowledged and (2) it should not to be altered and subsequently redistributed ex-
cept under a new name”19. Compliant with this demand, OntoCAPE is publicly 
accessible at http://www.avt.rwth-aachen.de/Ontocape. Via this webpage, both the 
informal and the formal specification of OntoCAPE can be accessed free of 
charge. OntoCAPE is distributed under the terms of the GNU General Public Li-
cense (cf. GNU Project 2007) 

3.3 The Meta Model 

Fig. 3.3 gives an overview on the Meta Model. As can be observed, the Meta 
Model is partitioned into the partial models fundamental_concepts, mereology, 
topology, and data_structures. While both mereology and topology contain only 
a single module, data_structures comprises five: array, linked_list, multiset, bi-
nary_tree, and loop. 
The module meta_model includes all these modules, thus assembling the ontologi-
cal definitions of the Meta Model. The module meta_model is, in turn, included by 
the top-level module of the target ontology (shown here is the module system, 
which resides on the upper level of OntoCAPE). That way, the concepts defined in 
the Meta Model are available in the target ontology. 
In the following, we will give a very brief overview on the structure and contents 
of these four partial models. 

3.3.1 Fundamental Concepts 

The partial model fundamental_concepts introduces meta root terms and their re-
finements. Meta root terms are the root classes and relations in the Meta Model 
and all other classes and relations – in the Meta Model as well as in the Onto-

                                                           
18 Virtually all of the individuals represent chemical species data. 

19 The formulation has been adopted from the distribution terms of the Open Biomedical Ontolo-
gies Foundry, as stated at http://www.obofoundry.org/crit.shtml. 
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CAPE ontology – can be derived from the meta root terms by specialization. Typ-
ical meta root terms are, for example, the classes object and relation class: The 
former subsumes all “self-standing” (Rector 2003) entities – whether physical or 
abstract – that exist in an application domain; the latter denotes all kinds of n-ary 
relations that may exist between objects. 

Fig. 3.3: Relations between the modules of the Meta Model and those of Onto-
CAPE 

3.3.2 Data Structures 

The partial model data_structures provides design patterns for the representation 
of the following structures, which frequently occur within ontologies. 

– The module array establishes a pattern for representing an ordered collec-
tion of elements. The elements are ordered by an index, which specifies the 
position of an element within the array through a consecutive sequence of 
integer values. A particular element can be accessed via its respective in-
dex value. The array pattern is applied several times in OntoCAPE, e.g., 
for the conceptualization of vector quantities (cf. Sect. 4.5.3). 

– Similar to an array, a linked list is a sequentially ordered collection of ele-
ments. The position of an element is defined by pointing to the next (and 
optionally also to the previous) element in the list. The pattern for linked 
lists is, for example, utilized to represent the version history of a document 
(cf. Sect. 4.5.4). 

– A multiset differs from an ordinary set in that there may be multiple ap-
pearances of the same element (e.g., the multiset {a, b, b, b, c, c} has three 
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appearances of element b). The corresponding design pattern provides a 
shorthand for representing such multisets; to this end, each element is as-
signed a multiplicity, which indicates the number of its appearances in the 
multiset (e.g., in the above multiset, element b is assigned a multiplicity of 
3). Amongst others, this pattern is used to conceptualize reaction stoichi-
ometry in OntoCAPE (cf. Sect. 4.5.2). 

– A binary tree is a tree-like structure that is formed by a set of linked nodes. 
A node can have zero, one, or two child nodes, which are clearly identified 
as either the left or the right child node. In OntoCAPE, the pattern for bi-
nary trees is particularly utilized to represent mathematical equations (cf. 
Sect. 4.5.1). 

– The design pattern loop20 allows for a compact representation of repetitive 
structures, the elements of which differ in a systematic manner. Instead of 
enumerating such structures explicitly, the design pattern models only the 
first (and optionally also the last) element, the systematic change from one 
element to the next, and the total number of repetitions. A typical applica-
tion of this pattern is the representation of mathematical models, which are 
composed of submodels of the same type (e.g., the tray-by-tray model of a 
distillation column; cf. Sect. 4.5.5). 

3.3.3 Mereology 

The partial model mereology establishes a theory for describing the relations be-
tween parts and wholes. 
It follows common best-practice guidelines and takes up an idea from UML to dis-
tinguish between aggregation and composition. To that end, aggregation is the bi-
nary relation that exists between an aggregate (or whole) and one of its parts. A 
part may be part of more than one aggregate, i.e., it may be shared by several ag-
gregates. A part can exist independently from the aggregate. Furthermore, a com-
position is identified as a special type of an aggregation relation, which exists be-
tween a composite object and its parts. These parts are non-shareable, i.e., they 
cannot be part of more than one composite object. If the composite object ceases 
to exist, its parts cease to exist, as well. For a more comprehensive description re-
fer to Sect. 4.3. 

                                                           
20 The name ‘loop’ is chosen because the syntax used to represent the loop pattern is similar to 
that of a ‘for loop’ in a programming language. 
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3.3.4 Topology 

The partial model topology establishes a theory for describing topological rela-
tions between distributed entities.  
The most fundamental concept of module topology is the relation isConnectedTo, 
which denotes the connectivity between objects. The relation is declared to be 
both symmetric and transitive. A key aspect of our topological theory is to keep 
mereological and topological relations strictly apart: Only the former or the latter 
relation can be applied between individuals. This approach, which has been 
adopted from Borst et al. (1997), enables the formulation of a compact but suffi-
cient theory of mereotopology; theories that do not make this assumption require 
the definition of additional concepts like overlap, boundary, interior and exterior, 
etc., which can be avoided here. Please refer to Sect. 4.4 for a more detailed de-
scription. 

3.4 The Upper Layer 

The Upper Layer of OntoCAPE contains only a single partial model, called up-
per_level, which serves the function of a top-level ontology (cf. Sect. 2.6). Thus, 
the upper_level introduces a number of key concepts, which are specialized and 
refined on the lower layers. Moreover, it establishes the principles of general sys-
tems theory21 and systems engineering22, according to which the ontology is orga-
nized. The explicit representation of these principles, on the one hand, imparts an 
overview on the design of OntoCAPE, which helps a user to find his/her way 
around the ontology; on the other hand, it provides some guidance for extending 
or refining the ontology. 
The concepts introduced by the upper_level are generic in the sense that they are 
applicable to different domains; thus, the partial model resembles the Meta Model 
in this respect. Yet unlike the Meta Model concepts, the concepts of the up-
per_level are intended for direct use and will be passed on to the domain-specific 
parts of OntoCAPE. 

                                                           
21 General systems theory is an interdisciplinary field that studies the structure and properties of 
systems. 

22 Systems engineering can be viewed as the application of engineering techniques to the engi-
neering of systems, as well as the application of a systems approach to engineering efforts 
(Thomé 1993). 
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Fig. 3.4: The partial model upper_level 

The upper_level partial model comprises five ontology modules (cf. Fig. 3.4). 
The module system is the most fundamental one of these. It establishes the consti-
tutive systems-theoretical and physicochemical primitives, such as system, subsys-
tem, property, physical quantity, physical dimension, etc., and specifies their interrela-
tions. It also introduces the concept of an aspect system (cf. Sect. 5.1.7), which 
yields an abstraction of a system with respect to a particular viewpoint and thus al-
lows partitioning a complex system into manageable parts. 
As indicated in Fig. 3.4, the system module is located at the top of the inclusion 
hierarchy; it may import the ontology modules of the Meta Model, provided that 
such an import is desired (cf. the discussion in Chapt. 4). The remaining modules 
of the upper_level complement the system module: 

– The ontology module network_system introduces a structured representa-
tion for complex systems, which is applicable to such different domains as 
biology, sociology, and engineering. To this end, the system is modeled as 
a network – that is, as a modular structure which “is determined on hierar-
chical ordered levels by coupling of components and linking elements” 
(Gilles 1998).  

– The ontology module technical_system introduces the concept of a technic-
al system, which represents a system that has been developed through an 
engineering design process. For a comprehensive description of a technical 
system, five designated viewpoints are of major importance (Bayer 2003): 
the system requirements, the function of the system, its realization, the 
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behavior of the system, and the performance of the system. These viewpoints 
are explicitly modeled as aspect systems. 

– The module tensor_quantity extends the concept of a physical quantity 
(which is restricted to scalars in module system) to vectors and higher-
order tensors. 

– Finally, module coordinate_system introduces the concept of a coordinate 
system, which serves as a frame of reference for the observation of system 
properties. 

For a more extensive description of the upper_level, refer to Chap. 5. 

3.5 The Conceptual Layer 

The Conceptual Layer constitutes the core of OntoCAPE. It is structured into four 
large partial models, which jointly conceptualize the CAPE domain. 

– The partial model material provides an abstract description of materials 
and material behavior. 

– The chemical_process_system conceptualizes all those notions that are di-
rectly related to materials processing and plant operating, such as plant 
equipment, process flowsheets, control systems, etc. 

– The partial model mathematical_model defines terms required for a de-
scription of mathematical models and model building.  

– Finally, supporting_concepts supplies auxiliary concepts, such as com-
monly used physical dimensions, SI units, mathematical expressions, etc. 
These concepts do not directly belong to the CAPE domain, but support 
the specification of domain concepts. 

In the following, we will give a very brief overview on the structure and contents 
of these four partial models. 

3.5.1 Supporting Concepts 

The partial model supporting_concepts defines basic notions, such as spatial and 
temporal coordinate systems, geometrical concepts, mathematical relations, as 
well as commonly used physical dimensions and SI-units. The concepts defined in 
this partial model do not belong to the core of the CAPE domain, but are merely 
utilized by the other partial models of OntoCAPE for defining domain concepts. 
For that reason, supporting_concepts is only rudimentarily developed, as it is not 
the objective of OntoCAPE to conceptualize areas that are beyond the scope of the 
CAPE domain. For example, the partial model mathematical_relation does not 
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aim at establishing a full-fledged algebraic theory, as does the EngMath ontology 
(Gruber and Olsen 1994; cf. Chap. 11); rather, it provides a simple but pragmatic 
mechanism for the representation of mathematical relations, which serves the 
needs of the other partial models of OntoCAPE23.  

Fig. 3.5: Overview on partial model supporting_concepts 

As depicted in Fig. 3.5, supporting_concepts comprises five subordinate partial 
models, which are mathematical_relation, physical_dimension, SI_unit, 
space_and_time, and geometry.  

– Partial model mathematical_relation introduces concepts to represent 
mathematical expressions. However, it is not the objective of this module 
to describe mathematical models – this is the responsibility of the partial 
model mathematical_model (cf. Chap. 9). Rather, it provides auxiliary 
concepts, which are utilized by other ontology modules (e.g., for the defi-
nition of units). 

– Partial model physical_dimension comprises two modules. The main 
module, physical_dimension, defines a set of base dimensions and estab-
lishes the proceedings to derive further physical dimensions from these 
base dimensions. It is extended by the module derived_dimensions, which 
introduces a number of frequently used derived dimensions.  

– Partial model SI_unit comprises the modules SI_unit and de-
rived_SI_units. The former module introduces the base units of the SI sys-
tem and establishes a mechanism to derive further units from these. The 
latter module utilizes this mechanism to define a number of frequently 
used SI units. 

                                                           
23 Note that this choice has been made deliberately since a full-fledged algebraic theory is not 
required in this context. It would only complicate matters and reduce the efficiency (cf. Sect. 
10.6) of the ontology. 
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– Refining the concept of a coordinate system introduced on the Upper Layer, 
the partial model space_and_time establishes common types of spatial 
and temporal coordinate systems. Moreover, it provides concepts for the 
representation of spatial and temporal points as well as periods of time.  

– Finally, the partial model geometry provides the concepts for describing 
the shapes and main dimensions of simple geometric figures. 

More detailed descriptions of the above partial models can be found in Chap. 6. 

3.5.2 Material 

The partial model material provides concepts that enable an abstract description 
of matter. In this context, ‘matter’ refers to “anything that has mass and occupies 
space” (Gold et al 1987). The partial model considers only those characteristics of 
matter that are independent of a material’s concrete occurrence24 in time and 
space; complementary, the partial model CPS_behavior (cf. Sect. 8.6) describes 
the behavior of materials in the concrete setting of a chemical process. 
Material comprises two partial models, called substance and phase_system (cf. 
Fig. 3.6). 

Fig. 3.6: Partial model material on the Conceptual Layer 

On the Conceptual Layer, substance includes the following modules: 

– Substance is the main module of partial model substance. It provides es-
sential concepts for the description of pure substances and mixtures at the 
macroscopic scale. 

                                                           
24 By ‘concrete occurrence’, we mean the actual spatiotemporal setting – for example, the manu-
facturing of some material in a chemical plant or its usage as a construction material. For details 
on this issue, we refer to Morbach et al. (2008j). 
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– The module molecular_structure is concerned with the characterization of 
pure substances at the atomic scale. 

– Polymers completes molecular_structure with concepts for the description 
of macromolecular structures. 

Finally, reaction_mechanism allows representing the mechanism and the stoichi-
ometry of chemical reactions.The partial model phase_system comprises a single 
ontology module, named phase_system; it describes the thermodynamic behavior 
of materials subject to a certain physical context. 
Refer to Chap. 7 for an extensive description of the partial model material. 

3.5.3 Chemical Process System 

Partial model chemical_process_system is concerned with the conceptualization 
of chemical processes and chemical plants. Its key concept is the chemical process 
system, which is a special type of a technical system (cf. Sect. 5.3) designed for the 
production of chemical compounds. The chemical process system is characterized 
from four distinct viewpoints; these viewpoints are modeled as aspect systems and 
are represented in separate partial models (cf. Fig. 3.7):  

 

Fig. 3.7: Partial model chemical_process_system on the Conceptual Layer 

– CPS_function enables a functional specification of chemical process sys-
tems. Its main module process describes chemical processes by an ap-
proach called ‘the phase model of production’ (Polke 1994; Bayer 2003). 
This formalism, which may be transformed into a process flow diagram or 
a state-task network, is suitable for describing both continuous processes 
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and batch processes. The supplementary module process_control allows 
the specification of control strategies in terms of function blocks and con-
trol loops. 

– CPS_realization describes the technical realization of a chemical process 
system. The main module plant conceptualizes the major types of 
processing equipment and machinery as well as the connectivity of the 
equipments via pipes and fittings. Complementarily, the module 
process_control_sys-tem defines the basic components required for process 
automation, such as measuring instruments, signal lines, and controllers. 

– CPS_behavior describes the behavior of the chemical process system. The 
module enables both a qualitative and a quantitative-empirical characteri-
zation of chemical process behavior – the former is achieved by indicating 
the prevailing physicochemical phenomena, the latter by indicating the 
(measured or projected) values of the system properties. 

Finally, the CPS_performance evaluates the economic performance of the chemi-
cal process system in terms of investment and production costs. 
A more extensive description of the partial model is given in Chap. 8. 

3.5.4 Mathematical Model 

The partial model mathematical_model is concerned with the description of ma-
thematical models; CapeML (von Wedel 2002) has been used as an important 
source. Fig. 3.8 gives an overview on mathematical_model on the Conceptual 
Layer. The main module, mathematical_model, introduces the basics concepts for 
mathematical modeling, including model variables and items pertaining to sub-
models and their connections: A mathematical model is conceptualized as a special 
type of system, the properties of which are reflected by its model variables. 

Fig. 3.8: Partial model mathematical_model on the Conceptual Layer 
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The ontology module equation_system further specifies the characteristics of the 
model equations that constitute a mathematical model. Based on these characteris-
tics, an appropriate numerical solver can be selected, which is the concern of the 
ontology module numerical_solution_strategy. The modules process_model and 
cost_model describe two particular types of mathematical models: process models 
model the behavior of chemical process systems and materials, while cost models 
predict the costs of chemical process systems.  
Further information about the partial model can be found in Chap. 9. 

3.6 The Application Layers 

The Application-Oriented Layer and the Application-Specific Layer (collectively 
referred to as ‘application layers’) extend the ontology towards concrete applica-
tions. As explained in Sect. 3.1.1, the major difference between the two applica-
tion layers is that the concepts of the Application-Oriented Layer are relevant for a 
whole range of applications, whereas the concepts of the Application-Specific 
Layer are rather intended for one particular application. 
Typically, the terms introduced on the application layers are instances or speciali-
zations of terms introduced on the Conceptual Layer. Accordingly, the modules 
located on the application layers do not open up new subject areas, but complete 
and refine existing partial models. These modules can thus be considered as appli-
cation (domain) ontologies: As explained in Sect. 2.6, an application ontology 
holds application-specific, but state-independent information.  
Over the lifecycle of OntoCAPE, new modules are expected to appear on the ap-
plication layers with each new application encountered. For the applications rea-
lized so far (cf. Chapt. 12), the following extensions have been developed: 

– Partial model material is extended by modules holding instance data about 
chemical elements, pure substances, and technical polymers. Further mod-
ules provide classification schemata for substance classes (such as alcohols 
or esters) and for types of chemical reactions (such as esterification or hy-
drohalogenation). 

– Partial model chemical process system is refined by a number of classifi-
cation schemata, which introduce special types of unit operations, of plant 
equipment (i.e., apparatuses, machines, and fixtures), of measuring and 
control instruments as well as of controller types. Furthermore, the beha-
viors of typical process units25 are modeled in an application-oriented ex-
tension of the partial model CPS_behavior. 

                                                           
25 The term process unit denotes an elementary subsystem of a chemical process system, 
such as a reactor, a heat exchanger, or a distillation column.  
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– Within the partial model mathematical_model, a number of modules are 
added to complement the module process_model. For sake of illustration, 
these add-ons will be discussed in more detail below. 

As explained in Chap. 9, the module process_model enables the definition of spe-
cialized process models, which model the behavior of chemical process systems and 
materials. Typically, a process model is composed of submodels, of which laws and 
property models are important subtypes. A law constitutes the mathematical repre-
sentation of a scientific law, such as the law of energy conservation. A property 
model, in turn, represents a mathematical correlation for the computation of a sin-
gle physical property. Typical property models would be vapor pressure correla-
tions or activity coefficient models. 
The terms law and property model have already been defined on the Conceptual 
Layer in the module process_model. On the Application-Oriented Layer, 
process_model is extended by the ontology modules laws and property_models 
(cf. Fig. 3.9). The former module establishes models for a number of physical 
laws that are common in the context of chemical engineering. These laws 
represent  

– the conservation of energy, mass, and momentum;  
– thermal, mechanical, or phase equilibrium, as well as reaction equilibrium; 
– non-equilibrium transport phenomena, such as diffusion. 

Similarly, the property_models module defines special types of property models, 
which can be categorized into three major classes: 

– Chemical kinetics property models specify how to calculate the rate coeffi-
cients of homogenous or heterogeneous reactions. 

– Phase interface transport property models provide correlations for computing 
certain phase interface transport properties. 

– Thermodynamic models indicate the correlations between certain intensive 
thermodynamics state variables and intra-phase transport properties. 

Module process_model is furthermore extended by module process_unit_models, 
which defines a number of specialized process models for customary process units. 
Examples of such process unit models are a CSTR model or a tray-by-tray distillation 
column model. Typically, a process unit model includes one or several laws (e.g., a 
tray-by-tray distillation column model includes a phase equilibrium law); therefore, mod-
ule laws is imported by process_unit_models. 
The above described modules are all located on the Application-Oriented Layer. 
By contrast, the module aspen_pus_model constitutes a further extension of mod-
ule process_model on the Application-Specific Layer. It has been developed for an 
application in knowledge management, which is presented in Sect. 12.2. Basically, 
the module provides concepts for the semantic annotation of simulation docu-
ments in the format of the simulation software Aspen Plus (AspenTech 2008). 
Such documents contain the specification of an Aspen Plus model, which is a spe-
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cial type of a process model. The average Aspen Plus model includes at least one 
property model as well as a number of process unit models. The latter are process unit 
models of particular types, which are provided by the model library of the simula-
tion software. To give an example, the Aspen Plus model library holds a model 
named RadFrac, which is a particular implementation of a tray-by-tray distillation col-
umn model. In contrast to the more general tray-by-tray distillation column model, the 
RadFrac model has a number of preassigned properties – such as being a closed-
form model of nonlinear algebraic type. 

Fig. 3.9: Extension of the module process_model on the application layers 

3.7 References 

Bernaras A, Laresgoiti I, Corera J (1996) Building and reusing ontologies for elec-
trical network applications. In: Wahlster W (ed.): ECAI 1996 – Proceed-
ings of the 12th European Conference on Artificial Intelligence. Wiley, 
Chichester:298–302. 

Borst P, Akkermans JM, Top JL (1997) Engineering ontologies. Int. J. Hum Com-
put Stud. 46:365–406. 

AspenTech (2008) Aspen Plus. Online available at http://www.aspentech.com/ 
products/aspen-plus.cfm. Accessed June 2008. 

Bayer B (2003) Conceptual Information Modeling for Computer Aided Support of 
Chemical Process Design. Fortschritt-Berichte VDI: Reihe 3, Nr. 787. 
VDI-Verlag, Düsseldorf. 

mathematical_model

process_model
Conceptual
Layer

property_models laws process_unit_model

aspen_plus_model

Application-Oriented Layer

Application-Specific Layer

mathematical_model

process_model
Conceptual
Layer

property_models laws process_unit_model

aspen_plus_model

Application-Oriented Layer

Application-Specific Layer

mathematical_model

process_model
Conceptual
Layer
Conceptual
Layer

property_models laws process_unit_model

aspen_plus_model

Application-Oriented Layer

Application-Specific Layer
 



54      Overview on OntoCAPE 

Borst WN (1997) Construction of Engineering Ontologies for Knowledge Sharing 
and Reuse. PhD Thesis, Centre for Telematics and Information Technol-
ogy, University of Twente. 

Bray T, Hollander D, Layman A, Tobin R, eds. (2006a) Namespaces in XML 1.0 
(Second Edition). W3C Recommendation, 16 August 2006. Online avail-
able at http://www.w3.org/TR/xml-names. Accessed September 2008. 

Chandrasekaran B, Johnson TR (1993) Generic tasks and task structures: history, 
critique and new directions. In: David JM, Krivine JP, Simmons R (eds.): 
Second Generation Expert Systems. Springer, New York:232–272. 

Gilles ED (1998) Network theory for chemical processes. Chem. Eng. Technol. 21 
(8):121–132. 

GNU Project (2007) The GNU General Public Licence. Online available at 
http://www.gnu.org/copyleft/gpl.html. Accessed December 2007. 

Gold V, Loening KL, McNaught AD, Sehmi P (1987) Compendium of Chemical 
Terminology. Blackwell, Oxford. 

Gruber TR (1995) Toward principles for the design of ontologies used for know-
ledge sharing. Int. J. Hum Comput Stud. 43 (5/6):907–928. 

Morbach J, Bayer B, Wiesner A, Yang A, Marquardt W (2008g) OntoCAPE 2.0 – 
The Upper Level. Technical Report (LPT-2008-25), Lehrstuhl für Pro-
zesstechnik, RWTH Aachen University. Online available at http://www. 

Gruber TR, Olsen GR (1994) An Ontology for Engineering Mathematics. In: 
Doyle J, Torasso P, Sandewall E (eds.): Proceedings of Fourth Interna-
tional Conference on Principles of Knowledge Representation and Rea-
soning. Morgan Kaufmann. Online available at http://www-ksl.stan-
ford.edu/knowledge-sharing/pa-pers/engmath.html. Accessed September 
2007. 

Heflin J, Hendler J (2000) Dynamic ontologies on the web. In: Proceedings of the 
Seventeenth National Conference on Artificial Intelligence (AAAI-
2000). AAAI Press, Menlo Park, CA:443–449. 

Jarrar M, Meersman R (2002) Scalability and knowledge reusability in ontology 
modeling. In: Proceedings of the International Conference on Infrastruc-
ture for e-Business, e-Education, e-Science, and e-Medicine SSGRR2002. 

Morbach J, Wiesner A, Marquardt W (2008f) OntoCAPE 2.0 – The Meta Model. 
Technical Report (LPT-2008-24), Lehrstuhl für Prozesstechnik, RWTH 
Aachen University. Online available at http://www.avt.rwth-aachen.de/ 
AVT/index.php?id=541&L=0&Nummer=LPT-2008-24. 

avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-
25. 



References     55 

Morbach J, Yang A, Wiesner A, Marquardt W (2008h) OntoCAPE 2.0 – Support-
ing Concepts. Technical Report (LPT-2008-26), Lehrstuhl für Pro-
zesstechnik, RWTH Aachen University. Online available at http://www. 
avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-
26. 

Morbach J, Yang A, Marquardt W (2008i) OntoCAPE 2.0 – Materials. Technical 
Report (LPT-2008-27), Lehrstuhl für Prozesstechnik, RWTH Aachen 
University. Online available at http://www.avt.rwth-aachen.de/AVT/in-
dex.php?id=541&L=0&Nummer=LPT-2008-27. 

Morbach J, Yang A, Marquardt W (2008j) OntoCAPE 2.0 – Mathematical Mod-
els. Technical Report (LPT-2008-28), Lehrstuhl für Prozesstechnik, 
RWTH Aachen University. Online available at http://www.avt.rwth-
aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-28. 

Noy NF, Klein M (2004) Ontology evolution: not the same as schema evolution. 
Knowl. Inform. Syst. 6:428–440. 

Pinto HS, Gomez-Perez A, Martins JP (1999) Some issues on ontology integra-
tion. In: Proceedings of the IJCAI’99 Workshop on Ontologies and Prob-
lem Solving Methods. 

Polke M, ed. (1994) Process Control Engineering. VCH, Weinheim. 

Pure-Systems (2008) Pure::Variants. Online available at http://www.pure-
systems.com. Accessed September 2008. 

Rector A (2003) Modularisation of domain ontologies implemented in description 
logics and related formalisms including OWL. In: Genari J (ed.): Know-
ledge Capture 2003. ACM Press:121–128. 

Russ T, Valente A, MacGregor R, Swartout W (1999) Practical experiences in 
trading off ontology usability and reusability. In: Proceedings of the 12th 
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. 
SRDG Publications. 

Smith B (2006) Against idiosyncrasy in ontology development. In: Bennett B, 
Fellbaum C (eds.): Formal Ontology in Information Systems. IOS 
Press:15–26. 

Stuckenschmidt H, Klein M (2003) Integrity and change in modular ontologies. 
In: Gottlob G, Walsh T (eds.): IJCAI-03 – Proceedings of the Eighteenth 
International Joint Conference on Artificial Intelligence. Morgan Kauf-
mann:900–905. 

Thomé B, ed. (1993) Systems Engineering: Principles and Practice of Computer-
based Systems Engineering. John Wiley, New York. 



56      Overview on OntoCAPE 

Visser PRS, Cui Z (1998) Heterogeneous ontology structures for distributed archi-
tectures. In: Proceedings of the ECAI-98 Workshop on Applications of 
Ontologies and Problem-Solving Methods:112–119. 

von Wedel L (2002) CapeML – A Model Exchange Language for Chemical 
Process Modeling. Technical Report (LPT-2002-16), Lehrstuhl für Pro-
zesstechnik, RWTH Aachen University. 

Wiesner A, Morbach J, Bayer B, Yang A, Marquardt W (2008a) OntoCAPE 2.0 – 
Chemical Process System. Technical Report (LPT-2008-29), Lehrstuhl 
für Prozesstechnik, RWTH Aachen University. Online available at http:// 
www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-
2008-26. 



 

4 Meta Model  

4.1 Introduction 

As explained in Sect. 2.6, a meta ontology constitutes the most generic type of on-
tologies within the classification framework. A meta ontology is usually defined 
on top of some target ontology, which may be a domain ontology as well as a task 
ontology or even an upper-level ontology. The meta ontology establishes the fun-
damental modeling concepts to be used in the target ontology as well as the rules 
for their proper application. Thus, it explicitly represents the underlying design 
principles of the target ontology. 
Over the lifecycle of the target ontology, a meta ontology serves different func-
tions: 

– In the development phase, the meta ontology guides the design and organi-
zation of the target ontology: It establishes general standards for ontology 
engineering, which serve as a sort of style guide for the development team, 
thus ensuring a consistent way of knowledge representation across the tar-
get ontology (cf. the discussion of the design principle of homogeneity in 
Sect. 10.3.2).  

– When it comes to (re)using the target ontology, the meta ontology has 
three different benefits: Firstly, it provides guidance for extending the on-
tology in scope by offering templates for recurring design problems. Se-
condly, when the target ontology is tailored to a particular application, it 
ensures compliance with the overall design principles. Thirdly, by examin-
ing the rather concise meta ontology, new users can quickly familiarize 
themselves with the modeling style of the more complex target ontology. 
Consequently, the users can quickly evaluate if the target ontology is gen-
erally compatible with the requirements of the envisioned application. This 
is of special importance, since assessing the suitability of an ontology for a 
given application is one of the most time-consuming tasks in ontology 
reuse (Pâslaru-Bontaş 2007). 

The Meta Model, which is defined on top of OntoCAPE, constitutes a meta ontol-
ogy at the logical metalevel (cf. Sect. 2.6). Although the Meta Model has been de-
veloped specifically for OntoCAPE, it is in fact domain-independent and can thus 
be reused to guide the construction of other OWL-based ontologies. Currently, the 
Meta Model constitutes the basic framework of three further ontologies, named 
Document Model (Morbach et al. 2008), Process Ontology (Eggersmann et al. 
2008), and Decision Ontology (Theißen and Marquardt 2008).  

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_4,  
© Springer-Verlag Berlin Heidelberg 2010 
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As shown in Fig. 4.1, it is partitioned into the partial models26 fundamen-
tal_concepts, mereology, topology, and data_structures. While both mereology 
and topology contain only a single ontology module27, data_structures comprises 
five: array, linked_list, multiset, binary_tree, and loop. The module meta_model 
includes28 all these ontology modules, thus assembling the ontological definitions 
of the Meta Model. The module meta_model is, in turn, included by the top-level 
module of the target ontology (shown here is the module system, which resides on 
the Upper Layer of OntoCAPE). That way, the concepts defined in the Meta Mod-
el are available in the target ontology. 

Fig. 4.1: Relations between the ontology modules of the Meta Model and those of 
OntoCAPE 

The Meta Model is not a genuine part of the target ontology. Rather, its function is 
(a) to explicitly represent the underlying design principles and (b) to establish 
some common standards for the design and organization of the target ontology. 

                                                           
26 Ontology modules assemble a number of classes that cover a common topic as well as the rela-
tions describing the interactions between the classes and the constraints defined on them.  

27 Ontology modules that address closely related topics are grouped into partial models. The par-
tial models constitute a coarse categorization of the domain. 

28 Inclusion means that if module A includes module B, the ontological assertions provided by B 
are included in A. Inclusion is transitive, that is, if module B includes another module C, the on-
tological assertions specified in C will also be valid in A. 
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Thus, the Meta Model supports ontology engineering and ensures a consistent 
modeling style across the target ontology. These goals are achieved by means of 
two different mechanisms: the introduction of fundamental concepts, and the defi-
nition of design patterns. 
Fundamental concepts are fundamental classes and relations from which all the 
root terms of the target ontology can be derived (either directly or indirectly). By 
linking a root term of the target ontology to a fundamental concept, its role within 
the ontology is characterized. That way, a user or a software program is advised 
how to properly treat that particular root term and the classes or relations derived 
from it: For instance, all classes in the target ontology that are derived from the 
fundamental concept ‘relation class’ are auxiliary constructs for the representation 
of n-ary relations. Since instances of such classes do not need to be given mea-
ningful names (cf. Noy and Rector 2006), a user or an intelligent software pro-
gram can conclude that such instances can be labeled automatically, according to 
some standardized naming convention. 
Conceptually, the linkage between the ontological terms of the Meta Model and 
those of the target ontology should be established by means of instantiation. How-
ever, while the OWL modeling language supports such metamodeling (i.e., instan-
tiation across multiple levels) in principle, it is at the cost of loosing scalability 
and compatibility with DL reasoners (Smith et al. 2004). Therefore, it is not advis-
able to interlink the Meta Model and the target ontology via instantiation. Hence, 
the linkage between OntoCAPE and the Meta Model is currently realized via spe-
cialization. 
A design pattern29 is a template formed by a set of classes, interconnecting rela-
tions, and constraining axioms; it establishes a best-practice solution to a recurring 
design problem. That way, patterns encourage a consistent, uniform design 
throughout the target ontology. A typical example is the representation of mereo-
logic relations (part-whole relations): A design pattern defines a standard way of 
modeling this relation type, which is adopted by all ontology modules of the target 
ontology. 
It is worthwhile noting that the design patterns of the Meta Model are implementa-
tion-dependent; that is, they constitute a best-practice solution only for an ontolo-
gy that is represented in OWL and processed by a customary DL reasoner. For in-
stance, the abovementioned mereology pattern states how to implement part-
whole relations in OWL such that they efficiently scale for large amounts of in-
stance data. Yet if the part-whole relations were implemented in a different model-
ing language, or if the ontology was processed by a non-standard reasoner, the 
mereology pattern might not constitute the best possible solution. 
To apply a design pattern in the target ontology, we have adopted a rather prag-
matic approach that was suggested by Clark et al. (2000): The classes, relations, 

                                                           
29 Design patterns are popular in software engineering (e.g., Gamma et al. 1995), where they 
specify general solutions for recurring problems. In ontology engineering, the term ‘knowledge 
pattern’ (Clark et al. 2000) is sometimes used instead. 
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and axioms that constitute the design pattern in the Meta Model are simply rede-
fined in the target ontology. Practically, this is realized by (1) copying the axi-
omatic definitions of the design pattern into the target ontology and (2) renaming 
the non-logical symbols within these expressions (i.e., the classes and relations); 
additionally, the duplicated classes and relations may be linked to their respective 
originals in the Meta Model, but this is not mandatory (cf. the discussion in the 
subsequent paragraph). The advantage of this approach is its flexibility: Often, on-
ly a selected part of a theory is to be transferred (i.e., there may be symbols in the 
pattern that have no counterpart in the target ontology) – either because only the 
transferred part is needed in the target ontology, or because the omitted part is to 
be implemented differently from the Meta Model. For this purpose, the transfer of 
the design pattern via rigorous specialization (or instantiation) would not be flexi-
ble enough, as it would call for copying the entire pattern in an “all-or-nothing” 
fashion. By contrast, the selected approach allows for deviations and variants. 
Clark et al. (2000) stress that this is architecturally significant, as well, since the 
approach supports a better modularization of the target ontology. 
While the Meta Model has proven to be highly useful during the design of the tar-
get ontology and its refinement to a knowledge base, it becomes less relevant once 
the refined ontology is actually used as a knowledge base of some application; in 
some cases it might even be harmful, as the additional, abstract concepts of the 
Meta Model could confuse the user. Thus, the interconnectivity between target on-
tology and the Meta Model should be kept at a minimum, such that the two ontol-
ogies can be separated easily if desired. Therefore, the classes and relations de-
fined in Meta Model are not to be used directly within the target ontology; rather, 
they are redefined by copying the respective concepts in the target ontology, as 
explained above. The duplicates may subsequently be linked to the originals in the 
Meta Model30. That way, only the links to the Meta Model need to be discon-
nected if a stand-alone usage of the target ontology is desired. Particularly for rela-
tions, the principle of overloading31 is often applied: that is, the relation in the tar-
get ontology receives the same name as the original relation in the Meta Model. 
That way, a relation with the same name can be implemented in different ontology 
modules, however each time possibly with a different range and domain, and thus 
with a different semantics. 
The Meta Model is completely implemented in OWL. The ontology modules are 
realized through namespaces, each of which is stored in a single OWL file. The 
partial models are implemented as directories. A directory may contain some addi-
tional OWL files, the names of which start with the prefix “example_”; these files 
illustrate the usage of the Meta Model by means of exemplary applications. 

                                                           
30 Linking a duplicate to the original through specialization has proven valuable during ontology 
design, since it allows checking the consistency of the duplicate against the original by means of 
a reasoner. 

31 The idea of overloading originates from computer science; originally, it means that multiple 
functions, taking different types of input, can be defined with the same name. 
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The reasoner RacerPro (Racer Systems 2006) has been used to validate the consis-
tency of the Meta Model. 
The remainder of this chapter is organized as follows: each ontology module is 
first described in natural language and by means of UML-like class diagrams, 
which show the main interrelations between classes and relations, including their 
hierarchical organization. Some application examples may be provided. Subse-
quently, the usage of the ontology module is explained, and some competency 
questions32 are presented that characterize the functionality of the ontology mod-
ule. Finally, the individual concepts (classes, relations, attributes and instances) of 
the respective ontology module are described in natural language. For defined 
classes a definition in natural language is provided to explain the nature of the 
class beyond the often brief formal definition. 

4.2 Fundamental Concepts 

The ontology module fundamental concepts forms the basis of the Meta Model. It 
introduces meta root concepts and their refinements. A root concept is a class or a 
relation without ancestors. Accordingly, meta root concepts are the root classes 
and relations in the Meta Model. They form the topmost layer of the concept hie-
rarchy; all other classes and relations – in the Meta Model as well as in the target 
ontology – can be derived from the meta root terms by specialization. As can be 
seen from Fig. 4.2, three root classes are defined in the Meta Model: object, relation 
class, and feature space. 
Object is a generic class that subsumes all “self-standing” (Rector 2003) entities – 
whether physical or abstract – that exist in an application domain. In conjunction 
with the object class, the root relation interObjectRelation is introduced, which sub-
sumes all types of binary relations that exist between objects. 
An object can be characterized by means of descriptive features. A feature space 
defines the range of values that a feature can take (Rector 2005). Three specializa-
tions of feature space are distinguished, which reflect different ways to define the 
values of a particular feature: A value partition describes the feature values by parti-
tioning a class into disjoint subclasses. In contrast, a value set defines the values as 
an enumeration of individuals. While a value set has a fixed number of individuals, 
the number of individuals is not predetermined in a non-exhaustive value set. 
                                                           
32 The formulation of competency questions forms part of the methodology for ontology engi-
neering that was first suggested by Grüninger and Fox (1995) and later explicated in detail by 
Uschold and Grüninger (1996). Informal competency questions are questions in natural language 
that specify the requirements for the ontology to be developed, thus determining its scope. Once 
the ontology is implemented in a formal language, the competency questions are formalized in a 
machine-interpretable language such that they can be evaluated by a reasoner. By running the 
formal competency questions against the ontology (or rather against a set of test data instantiated 
from the ontology), it can be verified that the ontology complies with the specifications. 
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Fig. 4.2: Fundamental classes 

A feature value (i.e., an instance of feature space) can be assigned to an object via 
the unidirectional object-featureRelation. Feature values are independent of a partic-
ular object; thus, a feature value may be assigned to different objects, as indicated 
in Fig. 4.3. 

Fig. 4.3: A feature value may be assigned to different objects 

Relations that refer from a feature value to an object are not permitted – such a re-
lation would imply that the individual represents the feature of a particular object, 
i.e., the feature value would loose its independence. Therefore, a feature value 
cannot be the origin of an unidirectional object-feature relation, and there must not 
be any bidirectional relations between object and feature space, either. 
The OWL language merely provides language primitives for binary relations; 
there is no predefined language element for an n-ary relation that could link three 
or more individuals. Also, binary relations cannot be characterized through 
attributes. To overcome these limitations, the concept of a relation class is intro-
duced. A relation class may be used to 

– represent n-ary relations between individuals of type object or feature space, 
and/or 

– characterize a relation between two or more individuals by some additional 
attribute. 
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These two application cases are depicted in Fig. 4.4. 
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Fig. 4.4: Application cases for a relation class 

Fig. 4.5 shows the design pattern that defines a relation class. A relation class in-
volves at least one object and at least one other individual of type object or feature 
space. Moreover, it may be characterized by some relationAttributes. The objects in-
volved in the n-ary relation can be explicitly identified via the inverse relations in-
volvesObject and isInvovledInN-aryRelation. 

Fig. 4.5: Design pattern for a relation class 

Two specializations of relation class are introduced:  

– A directed n-ary relation describes an n-ary relation among some individuals 
of type object or feature space where at least one object is distinguished as 
the origin of the relation (Fig. 4.6). 

– By contrast, a coequal n-ary relation describes an n-ary relation among some 
individuals where none of the individuals involved in the relation stands 
out as the origin of the relation.  

The origin of a directed n-ary relation is identified by means of the inverse relations 
hasOrigin and isOriginOf. 
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Fig. 4.6: Directed n-ary relation 

The other involved individuals are denoted as targets of the n-ary relation through 
the hasTarget relation. The target objects can be explicitly identified via the inverse 
relations hasTargetObject and isTargetOf. The specialization hierarchy of these rela-
tions is displayed in Fig. 4.7. 
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Fig. 4.7: Specialization hierarchy of the relations for the class directed n-ary relation 

Fig. 4.8 gives an application sample of a directed n-ary relation. As can be seen in 
the figure, a directed n-ary relation may have more than one relation origin. The 
class unique origin n-ary relation is introduced to denote the special case of a directed 
n-ary relation which has exactly one relation origin. 
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Fig. 4.8: Application sample of a directed n-ary relation 

Practical applications require different views on the ontology. Comparable to a 
view on a relational database33, an ontology view is a set of concepts (classes or 

                                                           
33 A view of a relational database is a virtual or logical table that is composed of the result set of 
a pre-compiled query. 
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instance data) that is retrieved from the ontology as the result of a pre-defined 
query class. 
To realize ontology views, Rector (2003) proposes to establish alternative axes of 
classification in the ontology, where each axis assembles concepts for a particular 
use. Generally, such axes can be implemented by means of multiple classification, 
as presented in Fig. 4.9 for the classification of objects: First, different object types 
(here: Type_1, Type_2, and Type_3) are introduced; then the actual objects (here: A, 
B, and C) are explicitly assigned to one or more of these object types through sub-
classing. 

Fig. 4.9: Realization of ontology views by multiple classification 

The problem with this approach is that complex polyhierarchies will evolve, 
which are hard to grasp for human users and thus difficult to manage and to main-
tain. Therefore, another approach is recommended here: Adopting the mechanism 
for ontology normalization suggested by Rector (2003), objects are explicitly clas-
sified along a single axis only. Specialization along this classification axis should 
preferably be based on the same (or progressively narrower) criteria, throughout. 
The classes introduced on this axis may be either primitive class (i.e., characte-
rized through necessary conditions only) or defined class (i.e., characterized 
through necessary and sufficient conditions). 
All further axes must be defined implicitly by (1) assigning value types to the ob-
jects, and (2) defining the object types as classes that are of a particular value type 
(cf. Fig. 4.10). That is, having an isOfType relation to a particular value type is a ne-
cessary and sufficient condition for an object being subsumed by a particular ob-
ject type. Following this mechanism, a pattern evolves which is comparable to the 
one shown in Fig. 4.10. From this pattern, a polyhierarchy like the one presented 
in Fig. 4.9 can be automatically inferred by a reasoner. 
Value types can either be subclasses or, as exemplarily shown in Fig. 4.10, in-
stances of a value type class. Thus, value types can either be subclasses of value parti-
tion or (non-exhaustive) value set. They can again be organized in hierarchies. 
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Fig. 4.10: Implicit classification through value types 

4.2.1 Usage 

The fundamental concepts introduced above are not intended to be used (i.e., in-
stantiated) directly; rather, they serve the purpose of (a) organizing the derived 
classes and relations, and (b) characterizing their role within the ontology. By 
means of the latter, a user or a software program is advised how to properly treat 
that particular concept. For example, classes that are derived from the relation class 
are obviously auxiliary constructs for the representation of n-ary relations. Conse-
quently, instances of such classes do not need to be given meaningful names (cf. 
Noy and Rector 2006). Instead, they may be labeled according to some standar-
dized naming convention (a possible naming convention would be to use the iden-
tifier of the relation class and append an underscore (“_”), followed by a unique 
number, i.e., <identifier of relation class>_<unique number>). Thus, each time a 
class is identified as a specialization of relation class, the user (or an intelligent 
software program) can conclude that the instance should be labeled automatically, 
following the chosen naming convention. 
Concerning the assignment of ontology views, the above classes (object type, value 
type, etc.) were introduced for explication only. They do not form part of the OWL 
implementation of the Meta Model, but should be introduced in the target ontolo-
gy. Only the relation isOfType is implemented in the Meta Model. To simplify mat-
ters, it belongs to the ontology module fundamental_concepts (as it does not make 
sense to establish a new module for a single relation). 
The following notation convention is recommended for target ontologies:  

– Classes that represent value types should be labeled by the suffix ‘VT’.  
– Classes that implement ontology views may be labeled by the suffix 

‘Type’. 
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Fig. 4.11: Classification of function blocks 

An application example from the area of control theory is presented in Fig. 4.11 
and Fig. 4.12: A control loop is composed of different types of function blocks, 
which can be classified as sensor function, actuator function, controller, and controlled 
system.  

Fig. 4.12: The value types linearity VT and response characteristics VT 

Two further features are of interest about a function block: its linearity and its re-
sponse characteristics. These features are modeled through the value types linearity 
VT and response characteristics VT: 

– Linearity VT is a value set made up of the individuals linear and nonlinear. 
– Response characteristics VT is a non-exhaustive value set, which comprises the 

individuals P-element, I-element, D-element, PID-element, PT1-element, and 
others. 

Instances of these two value types are linked to a function block and linear function 
block respectively, via the relations hasLinearity and hasResponseCharacteristics, 
which are specializations of the relation isOfType. 
Based on these concepts, different ontology views on function blocks can be estab-
lished. For example, all linear function blocks can be retrieved by the class function 
block linear type, which is defined as follows: 

– linear function block type ≡ function block AND hasLinearity linear. 
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Similarly, all PID controllers could be retrieved via the class: 

– controller PID type ≡ controller AND hasResponseCharacteristicsVT PID-
element. 

Further ontology views can be realized accordingly. 

4.2.2 Concept Descriptions 

Individual concepts of the module fundamental_ concepts are defined below. 

Class Descriptions 

Coequal n-ary relation 
Coequal n-ary relation is a relation class that describes an n-ary relation among three 
or more individuals or dataype values. None of the individuals involved in the re-
lation stands out as the origin (or owner) of the relation. 

Directed n-ary relation  
Directed n-ary relation is a relation class that describes an n-ary relation among three 
or more individuals or attribute values. Some of the individuals involved in the n-
ary relation are distinguished from the others in that they are origins of the rela-
tion. A relation class that has at least one object as origin. 

Feature space 
An object can be characterized by means of descriptive features (qualities, charac-
teristics). There are various ways how to model the values of such features, for ex-
ample by representing the values as partitions of classes or as enumerations of in-
dividuals – see (Rector 2005) for a detailed discussion of this issue. A feature 
space defines the range of values that a particular feature can take. The meta root 
term feature space subsumes the different ways to define such a feature space. A 
feature space is either a value set or a value partition or a non-exhaustive value set. 

Non-exhaustive value set  
A non-exhaustive value set is a feature space that represents its possible values 
through individuals. These individuals, which are typically declared to be all dif-
ferent from each other, are instances of the non-exhaustive value set. Note that, in 
contrast to a value set, this class is not defined by an (exhaustive) enumeration of 
its instances. Thus, the number of individuals may change at run time. 

Object 
Object is a meta root term that subsumes all the self-standing (Rector 2003) entities 
– whether physical or abstract – that exist in an application domain. 
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Relation class 
The OWL language merely provides language primitives to establish binary rela-
tions between two individuals or between an individual and an attribute value. To 
create an n-ary relation that links three or more individuals or attribute values, an 
auxiliary relation class needs to be introduced, which acts as an intermediate node. 
Relation class is a meta root term that subsumes the different types of n-ary rela-
tions that can be defined (Noy and Rector 2006).  
Formal definition: A relation class is either a directed n-ary relation or a coequal n-ary 
relation.  

Unique origin n-ary relation 
A unique origin n-ary relation is a relation among three or more individuals or 
attribute values. Exactly one of the individuals involved in the unique origin n-ary re-
lation is distinguished from the others in that it is the origin of the relation. 

Value partition 
A value partition is a feature space that represents its possible values as disjoint sub-
classes. These subclasses exhaustively partition the feature space and can in turn be 
further subpartitioned. It is possible to define alternative partitions of the same 
feature space. Further details about this particular type of feature space can be 
found elsewhere (Rector 2005: “Pattern 2: Values as subclasses partitioning a fea-
ture”). 

Value set  
A value set is a feature space that represents its possible values through individuals. 
The individuals, which are typically declared to be all different from each other, 
are instances of the value set. The value set is sufficiently defined by an exhaustive 
enumeration of its instances. 

Relation Descriptions 

hasOrigin 
The relation identifies the object that is the origin of a directed n-ary relation. 

hasTaget 
The relation hasTarget identifies the objects or feature values (i.e., instances of fea-
ture space) that are the targets of a directed n-ary relation. 

hasTagetObject 
The relation hasTargetObject identifies the objects that are the targets of a directed n-
ary relation. 

inter-objectRelation 
The relation inter-objectRelation subsumes all types of binary relations between ob-
jects. 
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involves 
The relation identifies the objects and feature values (i.e., instances of feature 
space) that are involved in an n-ary relation. 

involvesObject 
The relation identifies the objects involved in an n-ary relation. 

isInvolvedInN-aryRelation 
The relation isInvolvedInN-aryRelation denotes the relation between an object and a 
relation class. 

isOriginOf 
The relation points from an object that is the origin of an n-ary relation to a directed 
n-ary relation. 

isOfType 
The relation isOfType assigns value types to objects. Based on these characteristics, 
a reasoner can infer if an object belongs to a predefined ontology view.  

isTargetOf 
The relation points from an object that is the target of an n-ary relation to a directed 
n-ary relation. 

object-featureRelation 
The relation object-featureRelation denotes the relation between an object and its fea-
ture values (i.e., instances of feature space). 

Attribute Descriptions 

relationAttribute 
The attribute relationAttribute identifies an attribute value that is an attribute of a re-
lation class. 

4.3 Mereology 

Mereology is the theory of parthood relations (a.k.a. part-whole relations), i.e., the 
relations that exist between a part and the whole. There are numerous publications 
on this subject, e.g. by Simons (1987) or by Casati and Varzi (1999). Varzi (2006) 
gives an excellent introduction to the field in the Standford Encyclopedia of Phi-
losophy. Different axiomatic systems of mereology exist, which have dissimilar 
properties. However, the following three axioms form the basis of any mereologi-
cal theory and can thus be considered as the core principles of mereology. The 
axioms state the parthood relation to be  
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– transitive: an object that is a part of a part of a whole is itself a part of the 
whole – if object A is part of object B, and if B is part of object C, then A 
is part of C; 

– reflexive: an object is part of itself – A is part of A; 
– antisymmetric: two distinct objects cannot be part of each other – if A is 

part of B and A ≠ B, then B cannot be part of A. 

Unlike other modeling languages such as UML (e.g., Fowler 1997), OWL does 
not provide any built-in primitives for part-whole relations. There are various pos-
sibilities to model such parthood relations, and the respective approaches have dif-
ferent effects on the usability, expressiveness, and reusability of the ontology as 
well as on the performance of a reasoner for classifying the ontology. Thus, a de-
sign pattern needs to be established that defines a standard way of modeling me-
reological relations. 
The mereology design pattern suggested below follows the best-practice guide-
lines set out by Rector and Welty (2005) for representing part-whole relations in 
OWL. In addition, it takes up an idea from UML to distinguish two types of the 
part-whole relationship: aggregation and composition: 

– Aggregation is the binary relation that exists between an aggregate (or 
whole) and one of its parts. A part may be part of more than one aggregate, 
i.e., it may be shared by several aggregates. A part can exist independently 
from the aggregate. 

– Composition is a special type of an aggregation relation that exists be-
tween a composite object and its parts (hereafter: part of composite object). 
Parts of composite objects are non-shareable, i.e., they cannot be part of 
more than one composite object. If the composite object ceases to exist, its 
parts cease to exist, as well. 

Mereology makes no assumptions on the nature of aggregates or parts: “They can 
be material bodies, events, geometric entities, or geographical regions, […] as 
well as numbers, sets, types, or properties” (Varzi 2006). 
Thus, both aggregates and parts are defined as specializations of the generic object 
class, without imposing any further constraints on them. The two classes are not 
declared to be disjoint, as an aggregate could be at the same time a part of another 
aggregate. The relation between a part and an aggregate is modeled via the relation 
isPartOf and its inverse hasPart; it is usually depicted through a line with a white 
diamond-shaped arrowhead pointing towards the aggregate class (cf. Fig. 4.13). 
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Fig. 4.13: Aggregation and composition 

At present, OWL does not provide any language constructs for representing the 
aforementioned axiom of antisymmetry; neither can the reflexive properties of the 
parthood relation be properly modeled with the current version of OWL (cf. Rec-
tor and Welty 2005). The required extensions to the modeling language have been 
announced to be incorporated in the next release of OWL (Patel-Schneider and 
Horrocks 2006). Transitivity, on the other hand, can already be modeled in current 
OWL by declaring the relations isPartOf and hasPart to be transitive (Fig. 4.14). 
This enables an OWL-compatible reasoner to infer that, if object A is a part of ob-
ject B and B is in turn a part of object C, then A must be a part of C, as well. 
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Fig. 4.14: Mereologic relations 

Many applications require not a list of all parts but rather a list of the next level 
breakdown of parts, the so-called direct parts of a given entity (Rector and Welty 
2005). To this end, the relation hasDirectPart is introduced as a specialization of 
hasPart; similarly, its inverse isDirectPartOf is declared to be a specialization of the 
isPartOf relation. These relations are non-transitive and link each subpart just to the 
next level. Declaring hasDirectPart (and isDirectPartOf) to be a specialization of a 
hasPart (isPartOf) has the following advantage: If objects are repeatedly linked via 
hasDirectPart (or isDirectPartOf) relation, a reasoner can still infer that a hasPart (is-
PartOf) relation exists between the aggregate and the part of a part. For example, if 
A is a direct part of B, and B is a direct part of C, it can be inferred that A is a part 
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of C. That way, an aggregate can be repeatedly decomposed into parts and sub-
parts until the desired decomposition level is achieved. 
While the declaration of direct parts seems intuitive at first sight, a possible prob-
lem pointed out by Rector and Welty (2005) is that, “the mere idea of a direct part 
is subjective, one may invent intermediate direct parts depending on numerous 
factors, or eliminate them. For example, we may choose not to represent engine as 
a part of cars, but rather represent all the components of engines as direct car 
parts. Grouping subparts into larger parts may also be subjective, a common ex-
ample is a flywheel in a car, which can be viewed as an engine part or a transmis-
sion part in an ontology that includes those classes”. Thus, care must be taken 
when applying these relations. 
For some applications (cf. Chap. 12), it is advantageous to know to which decom-
position level a certain part belongs. This requires the definition of ‘real’ parts, i.e., 
parts that have no parts of their own; alternatively, ‘real’ aggregates may be intro-
duced. These concepts are located on the top and bottom level, respectively, of the 
decomposition hierarchy. An exemplary decomposition across four levels is de-
picted in Fig. 4.15: The class aggregate only is defined as an aggregate that is not a 
part of any object. First level part is defined as an object that is linked to an aggregate 
only by an isDirectPartOf relation. Similarly, second level part is a direct part of a first 
level part, and arbitrary higher-level parts can be defined in an analogous manner. 
Eventually, the class part only is defined as a part that does not have any parts of its 
own.  

Fig. 4.15: Decomposition structure 

Due to the open world assumption customarily made by DL reasoners, member-
ship to the classes part only and aggregate only cannot be inferred, but must be 
declared explicitly. Once the top (or bottom) of a decomposition hierarchy has 
been defined that way, the membership to the intermediate decomposition levels 
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can be inferred automatically. Utilizing these class definitions, a reasoner should 
be able to assign an object to one of these decomposition levels34. 
To represent composition, the classes composite object and part of composite object 
are introduced as specializations of aggregate and part, respectively (Fig. 4.13). 
Moreover, the relations isComposedOf and its inverse isExclusivelyPartOf are intro-
duced as specializations of the relations hasDirectPart and isDirectPartOf, respective-
ly35 (cf. Fig. 4.14; in figures, these relations are often depicted through a line with 
a black diamond-shaped arrowhead pointing towards the composite object). A car-
dinality restriction is imposed on the isExclusivelyPartOf relation to ensure that a 
part of composite object is part of exactly one composite object. 
Unfortunately, the current OWL reasoners scale very badly when processing large 
collections of individuals connected via transitive, inverse relations. Hence, part-
whole hierarchies that are connected by both hasPart and its inverse isPartOf can 
cause performance problems. Consequently, Rector and Welty (2005) advice to 
use either hasPart or isPartOf but not both in large-scale applications. Which one to 
choose depends very much on the occasion: isPartOf is frequently needed for query 
formulation, as the most common queries ask for the parts of an object (e.g., the 
equipment list for a particular plant). On the other hand, many class definitions re-
quire a hasPart relation – in OntoCAPE, for instance, the class plant is defined as 
the sum of its parts. Thus, as no relation can be ruled out in advance, both rela-
tions are provisionally defined in the Meta Model. Yet for large-scale applications 
using a reasoner, it might be necessary to abandon one of these. 

4.3.1 Usage 

The parthood relation is broadly applicable. According to Varzi (2006), it can be 
used to indicate any portion of a given entity, whatever the nature of the entity, 
and regardless of whether the portion is material or immaterial, whether it is con-
nected to the remainder or disconnected, whether the part-whole relation has a 
spatial or a temporal character, and so on. Odell (1994) and Varzi (2006) discuss 
different kinds of relationships that can be considered as special types of part-
whole relations, among which are the following: 

– Material constitution describes the relation between an object and the ma-
terial it is made of. This type of relation denotes the constituents of a mix-
ture (Gin is part of Martini) as well as the construction material of a tech-

                                                           
34 Implementation advice: Unfortunately, most reasoners are currently not able to infer if an in-
dividual is a member of the class part only or aggregate only; hence, the membership to these 
classes must be declared explicitly for the time being. Membership to the intermediate decompo-
sition levels can be inferred automatically. 

35 If isExclusivelyPartOf was a specialization of isPartOf, it would be impossible to state that a part 
of composite object is part of exactly one composite object, as there might be additional 
composite objects on higher aggregation levels. 
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nical artifact (a car is partly of steel). Material constitution is a special 
form of aggregation, as a part (i.e., the material) can exist independently of 
the whole. Hence, hasPart should be used to model this type of relation.  

– Membership is also a special form of aggregation, as a member can be part 
of different groups and exists independently of these groups. The isPartOf 
relation is used to indicate a membership to a group. 

– A portion is a part that is of the same type as the whole; for example, a 
slice of bread is a portion of a loaf of bread. A portion relationship is a 
special type of composition, as the part cannot exist on its own if the whole 
ceases to exist. Thus, a portion can be linked to the whole via the isExclusi-
velyPartOf relation. 

Rector and Welty (2005) list some potential applications of a mereological ontol-
ogy; among those are 

– a parts inventory for a technical artifact, which requires the "explosion" of 
parts;  

– a fault detection system for a technical device in which one progressively 
narrows down the functional region of the fault; or.  

– a document retrieval system, in which documents are divided into subunits, 
such as chapters, sections, paragraphs, etc.  

Typically, the functionality of such applications can be summarized by the follow-
ing competency questions: 

– Query for the parts of an object. 
– Query for the direct parts of an object. 
– Query for the first (second …) level parts of an object. 
– Query for the bottom-level parts (part only) of an object. 
– Query for all aggregates an object is part of.  
– Query for the aggregates an object is directly part of. 
– Query for the top-level aggregates (aggregates only) an object is directly part 

of. 
– Query if a particular object is a part only. 
– Query if a particular object is a first (second …) level part. 
– Query if a particular object is an aggregate only. 
– Query if a particular object is a part of an object. 
– Query if a particular object is a direct part of an object. 
– Query if an object has a particular object as a part.  
– Query if an object has a particular object as a direct part. 

Tests have been performed to ensure that the mereology ontology module com-
plies with these competency questions: To this end, a test data set was generated, 
against which the reasoner RacerPro (Racer Systems 2006) evaluated the above 
queries. The queries were formulated partly as class definitions in OWL and partly 
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as query expression in the nRQL (new Racer Query Language) (Haarslev et al. 
2004)36. 

4.3.2 Concept Descriptions 

Individual concepts of the module mereology are defined below. 

Class Descriptions 

Aggregate 
An object that has one or more distinct parts.  
Formal definition: An object that has some parts of type object. 

Aggregate only 
An object that has one or more distinct parts and is not part of any object itself.  
Formal definition: An aggregate that is not a part. 

Composite object 
An object that is composed of one or more objects. The parts of the composite object 
are non-shareable, i.e. an object that is part of a composite object cannot be part of 
another composite object.  
Formal definition: An object that is composed of some objects. 

First level part 
A part at the first level of decomposition.  
Formal definition: A part that is a direct part of aggregate only. 

Part 
An object that is part of another object. A part can be part of more than one object. 
Formal definition: An object that is part of an object. 

Part of composite object 
An object that is part of a composite object. The parts of the composite object are non-
shareable, i.e. an object that is part of a composite object cannot be part of another 
composite object.  
Formal definition: An object that is exclusively part of an object. 

                                                           
36 Implementation advice: While the ontology module successfully passed the tests, two short-
comings of the reasoner were detected: 
 - The reasoner is currently not able to infer membership to a class that is defined as the com
 plement of another class. Consequently, membership to the classes part only and aggregate 
 only must be declared explicitly. 
- The protégé (Stanford 2008) query interface for the nRQL currently cannot handle concepts 
 that are defined in an external (but included) ontology; thus, it is inappropriate for any modu
 larly structured ontology. 
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Part only 
An object that is part of another object and has no parts of its own.  
Formal definition: A part that is not an aggregate. 

Second level part 
A part at the second level of decomposition.  
Formal definition: A part that is a direct part of a first level part. 

Relation Descriptions 

hasDirectPart 
Parthood relation that indicates the direct parts of an object, i.e., the parts on the 
next level breakdown. 

hasPart 
Parthood relation that refers from an aggregate to its parts.  

isComposedOf 
Parthood relation that indicates the direct parts of a composite object. The parts of 
the composite object are non-shareable, i.e. a part cannot be part of more than one 
composite object. If the composite object is destroyed, all its parts are destroyed, as 
well. 

isDirectPartOf 
Parthood relation that links a part to the object on the next aggregation level. 

isExclusivelyPartOf  
Parthood relation that links a part to a composite object on the next aggregation lev-
el. The parts of the composite object are non-shareable, i.e. a part cannot be part of 
more than one composite object. If the composite object is destroyed, all its parts are 
destroyed, as well. 

isPartOf 
Parthood relation that refers from a part to the aggregate.  

4.4 Topology 

The ontology module topology defines a theory of connectedness. It provides con-
cepts for describing topological relations between distributed entities where there 
exists the possibility of emergent37 or supervenient38 relations between items of in-

                                                           
37 Emergence is the process of complex pattern formation from more basic constituent parts or 
behaviors, and manifests itself as an emergent property of the relationships between those ele-
ments (Blitz 1992). 
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terest (Little and Rogova 2005). Examples of topological relations are the connec-
tions between geographical and/or physical entities in 2D and 3D space. Moreo-
ver, the concepts of the topology module can be used to describe the 
ness of abstract entities, such as the unit operations in a process flowsheet or the 
activities in a business process model. 
According to Borst (1997), there are two different approaches to create a topologi-
cal ontology. One is to extend an existing theory of mereology with topological re-
lations. The other is to integrate mereological and topological concepts and rela-
tions into one mereo-topological theory. The approach employed in the Meta 
Model responds to the former and will be introduced subsequently. 
The most fundamental concept of the ontology module topology (cf. Fig. 4.16) is 
the relation isConnectedTo, which denotes the connectivity between objects.  

Fig. 4.16: Basic concepts of module topology 

A first requirement for such a basic topological relation is symmetry: if object A is 
connected to object B, then B is connected to A, as well. A second requirements is 
transitivity – that is, if A is connected to B, and B is in turn connected to C, then A 
is also (indirectly) connected to C. As an example, consider a vessel (A) that is 
connected to a pipe (B), which is again connected to storage tank (C) – in this 
case, storage tank and vessel are (indirectly) connected via the pipe.  
Frequently, only the direct connections between objects are of interest – in the 
above example, these would be the relations between A and B, and between B and 
C, respectively. The relation isDirectlyConnectedTo is introduced to represent direct 
connectivity. Similar to the definition of the hasDirectPart relation in the mereology 
module, isDirectlyConnectedTo is declared to be a non-transitive specialization of 
isConnectedTo. This way of defining direct connectivity enables a reasoner to infer 
the existence of (indirect) connections from explicitly stated direct connections: 
For example, if A is directly connected to B, and B is directly connected to C, it 
can be inferred that A is (indirectly) connected to C (cf. Fig. 4.17). 

                                                                                                                                      
38 A set of properties A supervenes upon another set B just in case no two things can differ with 
respect to A-properties without also differing with respect to their B-properties (McLaughlin and 
Bennett 2005). 
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Fig. 4.17: Application example of module topology 

4.4.1 Mereotopology 

A significant aspect of this approach is that mereological and topological relations 
exclude each other, which prohibits topological relations (connections) between 
parts and wholes. Hence, a part that is linked to an aggregate via an isPartOf relation 
cannot refer to this aggregate by any topological relation. An example is given in 
Fig. 4.18. It shows an aggregate Y which has the distinct parts a, b, and c. A part 
cannot be directly connected to an aggregate (Fig. 4.18a); however, the parts may 
be directly connected to each other (Fig. 4.18b). 

Fig. 4.18: Interdependency between mereological and topological relations 

For a more concrete example, consider a cartwheel (a) that isPartOf a car (Y). 
Hence, an isConnectedTo relation between the cartwheel (a) and the car (Y) is pro-
hibited (Fig. 4.18a). Yet a cartwheel isDirectlyConnectedTo an axis (b), an axis isDi-
rectlyConnectedTo the car body (c), and for the sake of completeness the cartwheel 
(a) isConnectedTo the car body (c) (Fig. 4.18b). 
To prevent that a direct connection between an aggregate and one of its parts is es-
tablished, the following range restrictions are imposed on the isDirectlyConnectedTo 
relation: 
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– A first (second …) level part can only be directly connected to (connected to) 
a first (second …) level part. 

– A part only can only be directly connected to (connected to) a part only. 
– An aggregate only can only be directly connected to (connected to) an ag-

gregate only. 

A violation of these restrictions will be considered as an error. Hence, objects can 
only be topologically connected if they are situated at the same level of decompo-
sition. That way, mereological and topological relations are strictly kept apart, on-
ly the former or the latter relation can be applied between individuals. 
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Fig. 4.19: A connection between parts implies a connection between aggregates 

Another important point to make is that a connection between two parts of distinct 
aggregates implies a connection between these aggregates (cf. Fig. 4.19). This can 
be formulated as a rule: If the parts of distinct aggregates are directly connected, 
then these aggregates must be directly connected, as well. In contrary, if distinct 
aggregates are directly connected, the reasoning of connectivity of parts is by no 
means valid. Unfortunately, there is no means to implement such a rule in OWL; 
thus, the rule must currently be enforced by the user. 

4.4.2 Connectors 

The type and number of connections that an object may have can be constrained by 
means of connectors. A connector represents the interface through which an object 
can be connected to another. A connector is a part that is linked to an object via the 
isExclusivelyPartOf relation, and it can be connected to exactly one other connector 
via the isDirectlyConnectedTo relation (cf. left-hand side of Fig. 4.20). 
Optionally, the possible connections of a connector can be further constrained, for 
instance by postulating that certain properties of two linked connectors need to 
match for a feasible connection. Take the example of two pipes that are to be con-
nected: A connection between two pipes is feasible if the diameters of their noz-
zles are the same. This situation can be modeled by representing the pipes as in-
stances of object, the nozzles as connectors, and their diameters as attributes of the 
respective nozzles (right-hand side of Fig. 4.20). An additional constraint permits 
only connections between nozzles that have the same diameter. 
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Fig. 4.20: Connecting objects via connectors 

4.4.3 Representation of Graphs 

An extended topology which allows for the representation of graphs is represented 
in Fig. 4.21; the major concepts of this approach are nodes and arcs. Basically, an 
arc cannot connect to more than two nodes, which excludes arcs that fork. A node, 
on the other hand, can be connected to several arcs.  

Fig. 4.21: Nodes and arcs 

Optionally, a node may have a list of ports, and an arc may have up to two connec-
tion points. Ports and connection points are specializations of the connector class; they 
are linked to the corresponding node or arc via the isExclusivelyPartOf relation and 
can be connected to each other via the isDirectlyConnectedTo relation.  
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Fig. 4.22: Decomposition of nodes and arcs 

Ports and connection points act as interfaces to nodes and arcs, respectively: like 
connectors, they carry specific characteristics that have to match if a port is to be 
connected to a connection point. That way, they restrict and further specify the type 
and number of connections that a node or an arc can have. 
Another important issue is that both nodes and arcs can be decomposed into a 
number of sub-nodes and sub-arcs, respectively (Fig. 4.22). 
When a node is decomposed into a number of sub-nodes, it is necessary for these 
sub-nodes to be connected by internal arcs. Similarly, when arcs are decomposed 
into sub-arcs, there must be internal nodes between the sub-arcs. Thus, a node has 
to be decomposed into two nodes and one connecting arc, at least; likewise, an arc 
cannot be decomposed in less than two arcs and one node39. The sub-nodes and 
sub-arcs are connected via isDirectlyConnectedTo relations (Fig. 4.23).  
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Fig. 4.23: Connections between sub-nodes and sub-arcs 

A special situation arises if a node is decomposed while the connected arc is not40. 
Such a pattern occurs, for example, when a process flowsheet is hierarchically re-
fined, as it is exemplarily shown in Fig. 4.24: Here, the node representing the 
overall process is decomposed into a reaction section and a separation section, 
whereas the arcs representing the feed and product streams are not decomposed at 
all. Now the question arises, which sub-node is connected to which arc (in the ex-

                                                           
39 Unfortunately, it is presently not possible to model this decomposition axiom in OWL, as the 
current version of OWL does not support qualified cardinality restrictions (QCR). However, 
QCRs will be incorporated in the upcoming OWL 1.1 (Patel-Schneider and Horrocks 2006). 

40 Of course, the same considerations apply to the opposite case, when the arc is decomposed 
while the node is not. To simplify matters, only the first case is discussed here. 
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ample, the feed stream enters the reaction section, whereas the product stream 
leaves the separation section). 

Process

Reaction Separation

Feed Product

Recycle

Intermediate

Process

Reaction Separation

Feed Product

Recycle

Intermediate

Process

Reaction Separation

Feed Product

Recycle

Intermediate

 

Fig. 4.24: Hierarchical refinement of a process flowsheet 

A straight-forward solution is to connect the arcs representing the feed and product 
streams directly to the nodes representing the reaction and separation sections, as 
indicated in Fig. 4.25. Remember however, that topological connections are only 
permitted between nodes and arcs that are situated on the same level of decompo-
sition. Therefore, this solution is only applicable if the mereological levels of the 
feed and product arcs are not fixed, that is, if the feed and product arcs can be as-
signed the same level of decomposition as the sub-nodes for reaction and separa-
tion. If this is not possible, an alternative solution must be chosen. Note that for 
the sake of clarity, the internal arc representing the recycle stream is neglected in 
the following.  
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Fig. 4.25: Solution alternative 1 – the arcs are directly connected to the refined 
sub-nodes 

If a direct connection between an arc and a sub-node is not feasible, the two may 
still be indirectly linked via their respective ports and connection points. Fig. 4.26 
presents the corresponding pattern: Port and connection point are to be linked via an 
isDirectlyConnectedTo relation.  
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Fig. 4.26: Alternative 2 – an arc is indirectly linked to a sub-node via a port and a 
connection point 

While the port may be a direct part of the sub-node, the connection point must only 
be an indirect part of the arc. The reason for this is, again, the required compatibil-
ity of the decomposition levels: If the connection point was a direct part of the arc, 
then port and connection point would be situated on different levels and thus could 
not be connected. Note that this alternative is not feasible for the refinement of the 
process flowsheet and thus represented in a generic way. 
In case that the node and arc do not have designated ports and connection points, the 
above solution is not applicable. Alternatively, the arc may simply be duplicated; 
that is, a placeholder arc is to be introduced (cf. Fig. 4.27). The correspondence 
between the placeholder arc and the original arc is established via the relation sa-
meAs. 
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Fig. 4.27: Alternative 3 – duplication of the arc; correspondence is established via 
the sameAs relation 

4.4.4 Directed Graphs 

A further extension of the topology module allows for the representation of di-
rected graphs: To this end, the class directed arc is introduced, which can be em-
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ployed to indicate a directed connection between nodes such that one node is the 
predecessor or the successor of the other. As shown in Fig. 4.28 a directed arc is 
linked to a node via the relations enters and leaves, respectively.  

Fig. 4.28: Extended topology including directed arcs  

The relation taxonomy presented in Fig. 4.12 is extended, as shown in Fig. 4.29. 
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Fig. 4.29: Extended relation taxonomy 

The relation enters and its inverse hasOutput are specializations of the transitive re-
lation isPredecessorOf, which is a specialization of isConnectedTo. Similarly, the re-
lations leaves and its inverse hasInput are specializations of isSuccessorOf, which is 
the inverse of isPredecessorOf. The relations hasInput and hasOutput are to be used 
to identify the directed arcs that are directly attached to a node. The main purpose 
of the supplementary relations isPredecessorOf and isSuccessorOf is to identify the 
nodes (or directed arcs) that precede or succeed a specific node (or directed arc) in a 
directed graph41. As mentioned in the specification of the mereology module, the 
current OWL reasoners scale badly when processing large collections of individu-
als connected via transitive, inverse relations. Thus, for large-scale applications, it 

                                                           
41 In graph theory, a node B is considered to be the successor of node A, if a path leads from A to 
B. 
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might be necessary to abandon either the isPredecessorOf relation or the isSucces-
sorOf relation. 

4.4.5 Usage 

To illustrate the functionality of the topology module, several competency ques-
tions are introduced; afterwards two examples are given to demonstrate that the 
topology module complies with the competency questions. 
A primary distinction is made between directed and non-directed connections. For 
the non-directed connections, the following competency questions are defined (the 
classes in parenthesis are optional): 

– Query for all objects (nodes, arcs) that are directly connected to a specific 
object. 

– Query for all objects (nodes, arcs) that are connected to a specific object. 
– Query for all arcs that are connected to a node via a particular port. 
– Query if two objects (nodes, arcs) are connected directly. 
– Query if two objects (nodes, arcs) are connected (either directly or indirect-

ly). 
– Check if topological relations are wrongly defined across different levels 

of aggregation. 

Competency questions for the directed connections may comprise the former as 
well as the subsequent ones: 

– Query for all directed arcs that enter a specified node. 
– Query for all directed arcs that leave a specified node. 
– Query for all objects (nodes, arcs) that are predecessors of a specified object 

(node, arc). 
– Query for all objects (nodes, arcs) that are successors of a specified object 

(node, arc). 

The first example presented in Fig. 4.30 shows a directed graph consisting of four 
different nodes (A, B, C, D), which are connected by three directed arcs (AÆB, 
BÆC, CÆD). The lower part of Fig. 4.30 shows how such a graph is represented 
through an instantiation of the above concepts. If the example is used as a test case 
for the topology module, a reasoner will give the following results (relating to in-
dividual C) for directed relations. Please note that for the sake of clarity, the re-
spective class names in brackets are omitted hereafter. 
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Fig. 4.30: Application example 1: acyclic directed graph 

– Objects connected to C: {A, AÆB, B, BÆC, C, CÆD, D}(as C is directly 
connected to BÆC, and BÆC is in turn connected to C, the reasoner infers 
that C is indirectly connected to itself). 

– Nodes connected to C: {A, B, C, D}. 
– Arcs connected to C : {AÆB, BÆC, CÆD}. 
– Objects preceding C: {A, AÆB, B, BÆC}. 
– Nodes preceding C: {A, B}. 
– Arcs preceding C: {AÆB, BÆC}. 
– Objects succeeding C: {CÆD, D}. 
– Nodes succeeding C: {D}. 
– Arcs succeeding C: {CÆD }. 
– Arcs entering C: {BÆC}. 
– Arcs leaving C: {CÆD}. 

Fig. 4.31: Application example 2: directed graph with a cycle and a bifurcation 
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The second example presented in Fig. 4.31 shows a directed graph consisting of 8 
different nodes (A, B, C, D, W, X, Y, Z) connected by directed arcs. The graph in-
cludes a cycle (X, Y, Z) as well as a bifurcation (A, B, C). Fig. 4.31 illustrates 
how this example is represented by an instantiation of the topological concepts. 
Taking this example as a test case, the following interesting results are obtained: 

– Nodes preceding D: {A, B, C, W, X, Y, Z}. 
– Nodes succeeding W: {A, B, C, D, X, Y, Z}. 
– Nodes succeeding Y: {A, B, C, D, X, Y, Z} (i.e., the reasoner infers that all 

cycle nodes, including Y, are successors of Y). 

4.4.6 Concept Descriptions 

Individual concepts of the module topology are defined below. 

Class Descriptions 

Arc 
Arc is a specialization of object and represents the connecting element between 
nodes. 

Connection point 
Connection point represents the interface through which an arc can be connected to 
the port of a node. Connection points may have certain attributes that further specify 
the type of connection. Connection points are parts of the corresponding arc or di-
rected arc. 

Connector 
A connector represents the interface through which an object can be connected to 
another object. Typically, the possible connections of the connector are further con-
strained, for instance by postulating that certain properties of the connected con-
nectors need to match for a feasible connection. 

Directed arc 
Directed arc is a specialization of arc and represents likewise the connecting ele-
ment between nodes. However, the usage of directed arc implies the indication of a 
directed connection. 

Node 
Node is a specialization of object and is used to model the crucial elements (joints) 
which are connected by arcs.  
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Port 
Ports represent the interfaces through which nodes are connected to arcs. A port 
may have certain attributes that characterize the type of connection. 

Relation Descriptions 

enters 
The relation enters connects an incoming directed arc to its target node. 

hasInput 
The relation hasInput connects a node to an incoming directed arc. 

hasOutput 
The relation hasOutput connects a node to an outgoing directed arc. 

isConnectedTo 
The relation isConnectedTo represents topological connectivity between objects. 

isDirectlyConnectedTo 
The relation isDirectlyConnectedTo denotes the direct topological connectedness of 
two objects.  

isSuccessorOf 
The relation isSuccessorOf identifies all nodes and directed arcs that are successors 
of the considered one.  

isPredecessorOf 
The relation isPredecessorOf identifies all nodes and directed arcs that are predeces-
sors of the considered one. 

leaves 
The relation leaves connects an outgoing directed arc to its source node. 

sameAs 
The relation denotes a correspondence between an arc and its placeholder in a de-
composition hierarchy. 

4.5 Data Structures 

The partial model data_structures provides a design pattern for the representation 
of customary data structures. The below pattern provide some data structures 
which occur repeatedly with special relevance to the modeling of OntoCAPE. 
However, these data structures are fully consistent with those typically defined 
and applied in computer science (e.g., Black 2004). It comprises the ontology 
modules binary_tree, array, linked_list, multiset, and loop, which are presented in 
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the following. Note that the design patterns incorporate transitive, inverse rela-
tions, which may cause performance problems (cf. Sect.3.2). Thus, for large-scale 
applications, it might prove necessary to abstain from implementing the inverse 
relations. 

4.5.1 Binary Tree 

A binary tree is a tree-like data structure that is formed by a set of linked nodes. A 
node can have zero, one, or two child nodes. Each child node is identified as either 
the left child or the right child. Fig. 4.32 shows an exemplary binary tree.  

Fig. 4.32: Example of a binary tree 

The topmost42 element of the tree is called the root node (node A in Fig. 4.32). A 
node that has a child is called the child's parent node. Except for the root node, 
each node has one parent node. 
Nodes that lie below a certain node (i.e., its children, grandchildren, etc.) are 
called the descendents of this node. Similarly, a node’s ancestors are the nodes 
that are traversed when moving up the tree (i.e., the node’s parent, grandparent, 
etc.). In Fig. 4.32, for example, the nodes B, C, D, and E are descendents of node 
A; node E has the ancestors A and C. 

Fig. 4.33: Design pattern for the representation of binary trees 

                                                           
42 By convention, binary trees are depicted top-down. 
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Fig. 4.33 and Fig. 4.34 illustrate how a binary tree is represented in the Meta 
Model. Node is the basic element for the construction of a tree. Three specializa-
tions of node are introduced: 

– the root node is a node without a parent; 
– an internal node is a node that has both a parent node and a child node; 
– a leaf is a node without children. 

A node is linked to its child nodes via the relations hasLeftChild and hasRightChild. 
The relation hasChild subsumes these two relations, as shown in Fig. 4.34.  
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inter-objectRelation
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Fig. 4.34: Relations for the representation of binary trees 

The relation hasParent is defined as the inverse of hasChild. It has two specializa-
tions: isLeftChildOf, which is the inverse of hasLeftChild, and isRightChildOf, which is 
the inverse of hasRightChild. Finally, the relation hasAncestor and its inverse has-
Descendent are introduced to denote the ancestors and descendents of a particular 
node. 
An application example is shown in Fig. 4.35, which uses the above concepts to 
represent the tree depicted in Fig. 4.32.  
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Fig. 4.35: Application example 
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Only the relations hasLeftChild and hasRightChild need to be explicitly defined be-
tween the nodes. All the other relations (i.e., the parent, ancestors, and descendents 
of a particular node) can be automatically inferred by a reasoner. 
Note that a node may have more than one parent node, if that particular node forms 
part of more than one binary tree. 

4.5.1.1 Usage 

The design pattern binary_tree complies with the following competency ques-
tions: 

– Query for all nodes of a particular tree (which is identified through its root 
node).  

– Query for the leaves of a particular tree (which is identified through its root 
node). 

– Query for the direct children of a particular node. 
– Query for the left/right child of a particular node. 
– Query for the descendents of a particular node. 
– Query for the direct parent of a particular node. 
– Query for the ancestors of a particular node. 
– Query for the root node of a particular tree (which is identified through one 

of its nodes). 

A possible application of the binary_tree pattern is the representation of mathe-
matical expressions. The leaves of such an expression tree denote the operands in 
the expression, and the internal nodes denote the operators43.  

4.5.1.2 Concept Descriptions 

Individual concepts of the module binary_tree are defined below. 

Class Descriptions 

Internal node 
An internal node is a node that has one parent and at least one child.  
Formal definition: A node that has both a parent node and a child node. 

                                                           
43 Implementation advice: In principle, it is not necessary to explicitly declare a node to be a root 
node or leaf, as this can be inferred by a reasoner. However, some reasoners cannot evaluate this 
kind of statement (i.e., that a node has zero ancestors/descendents) – in this case, root node and 
leaves must be explicitly identified if required for an application. Internal nodes are automatical-
ly found by a reasoner. 
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Leaf 
A leaf is a node without any children.  
Formal definition: A node that has no child nodes. 

Node 
A node44 is the basic element of a binary tree. It can be linked to up to two child 
nodes.  
Formal definition: A node is either a leaf or a root node or an internal node. 

Root node 
A root node is the root element of a binary tree. All other nodes are descendents of 
the root node.  
Formal definition: A node without any parent. 

Relation Descriptions 

hasAncestor 
The ancestors of a node are the nodes that precede the current node in the tree (i.e., 
the node’s parent, grandparent, etc.). 

hasChild 
The relation hasChild points to the children of a node; it subsumes the relations 
hasLeftChild and hasRightChild. 

hasDescendent 
The descendents of a node are the nodes that succeed the current node in the tree 
(i.e., the node’s children, grandchildren, etc.). 

hasLeftChild 
The relation hasLeftChild links a parent node to its left child node. 

hasParent 
The relation hasParent denotes the parent of a node.  

hasRightChild 
The relation hasRightChild links a parent node to its right child node.  

isLeftChildOf 
The relation isLeftChildOf points from the left child node to its parent node. 

isRightChildOf 
The relation isRightChildOf points from the right child node to its parent node. 

                                                           
44 Please note that this node is different to the one defined in topology (cf. Section 4.4.3). This is 
indicated by different namespace prefixes in the formal specification. 
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4.5.2 Multiset 

A multiset differs from an ordinary set in that there may be multiple appearances 
of the same element. For example, the multiset {a, a, b, b, b, c} has two appear-
ances of element a and three appearances of element b.  

Fig. 4.36: Design pattern for the representation of multisets 

In the Meta Model, a multiset is modeled as a special type of aggregate (cf. Fig. 
4.36). Its elements, which are direct parts of the multiset, are called members. Each 
member has a multiplicity that indicates the number of its appearances within the 
multiset. A member may be a member of more than one multiset; in this case, the 
member must have one multiplicity for each of these memberships. For this reason, 
the multiplicity is modeled as a unique origin n-ary relation that relates the various mul-
tiplicities of a member to the respective multisets.  
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Fig. 4.37: Application example: element a is a member of both multisets 
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An application example is given in Fig. 4.37. It shows the ontological representa-
tion of two multisets: 

– Multiset 1 = {a, a, b, b, b}, and 
– Multiset 2 = {a, a, a, c, c}. 

Obviously, individual a is a member of both multisets. a has a multiplicity of two in 
Multiset 1, and a multiplicity of three in Multiset 2. The relation refersToMultiset indi-
cates which multiplicity is related to which multiset. 

4.5.2.1 Usage 

The design pattern multiset complies with the following competency questions: 

– Query for the members of a particular multiset. 
– Query for the multiplicity that a member has in a particular multiset. 
– Query for the multiset of which a member is a part. 

A multiset may be used as a shorthand to specify an object that is composed of alike 
parts (in this context, ‘alike’ means that the parts share certain characteristic fea-
tures). Instead of specifying all these parts individually, it is sufficient to describe 
one representative part (member) and indicate its multiplicity. For example, a distilla-
tion column can be thermodynamically characterized by (1) describing the VLE 
on one tray and (2) indicating the total number of trays. 

4.5.2.2 Concept Descriptions 

Individual concepts of the module multiset are defined below. 

Class Descriptions 

Multiplicity 
The multiplicity of a member indicates the number of its appearances in the asso-
ciated multiset.  
Formal definition: A multiplicity indicates the multiplicity of some member. 

Multiset 
A multiset differs from an ordinary aggregate in that each of its parts (members) 
has an associated multiplicity, which indicates the number of its appearances in the 
multiset.  
Formal definition: A multiset is an aggregate that has at least one member. 
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Member 
A member is a direct part of a multiset; it has a multiplicity that indicates the number 
of its appearances in the multiset.  
Formal definition: A member is a part that has a multiplicity. 

Relation Descriptions 

hasMultiplicity 
The relation hasMultiplicity points from a member to a multiplicity that indicates the 
number of its appearances in a particular multiset. 

indicatesMultiplicityOf 
The relation indicatesMultiplicityOf links a multiplicity to the corresponding member. 

refersToMultiset  
The relation refersToMultiset assigns a multiplicity to the corresponding multiset. 

Attribute Description 

multiplicity  
The attribute multiplicity indicates the numerical value of a multiplicity. 

4.5.3 Array 

An array holds an ordered collection of objects, which are called the elements of 
the array. Similar to a multiset, an element can have multiple appearances in the ar-
ray. The elements are ordered by an index, which specifies the position of an ele-
ment within the array through a consecutive sequence of integer values. Individual 
elements can be accessed via their respective index values. Fig. 4.38 shows the de-
sign pattern that defines an array in the Meta Model. 

 

Fig. 4.38: Design pattern for the representation of arrays 
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An array is a specialization of a composite object which is composed of two or more 
elements. The position of an element within the array is specified by the index. An 
index is a coequal n-ray relation between an array, one of its elements, and the integer 
attribute value that denotes the position of the element in the array. 
An application example of the array design pattern is given in Fig. 4.39. The array 
A[i] has the elements x and y. The index of x (Index_of_x) has an index value of 1, 
whereas the index of y (Index_of_y) has an index value of 2. Thus, x is the first ele-
ment of A[i], and y is the second one.  
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Fig. 4.39: Application example: representation of an array A[i] with elements  
A[1] = x and A[2] = y 

 

4.5.3.1 Usage 

The design pattern array complies with the following competency questions: 

– Query for an element with a particular index value. 
– Query for the index of a particular element. 
– Query for all elements of an array. 
– Query for the array to which a particular elements belongs. 
– Query for the array to which a particular index belongs. 

In the ontology OntoCAPE, the design pattern array is applied to model tensor 
quantities, such as vectors and matrices. 

4.5.3.2 Concept Descriptions 

Individual concepts of the module array are defined below. 
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Class Descriptions 

Array 
An array is an ordered list that is composed of two or more elements. The position 
of an element within the array is specified by the index. 

Element 
An element is part of an array. Its position within the array is determined by an in-
dex. 

Index 
An index represents the coequal n-ary relation between an array, one of its elements, 
and the integer attribute value that denotes the position of the element in the array. 
Formal definition: An index determines the position of some element. 

Relation Descriptions 

determinesPositionOf 
The one-to-one relation between an index and the corresponding element. 

hasIndex 
The one-to-one relation between an element and its index. 

isIndexOfArray 
The relation isIndexOfArray points form an index to the associated array 

isOrderedBy 
The relation isOrderedBy points from an array and to the sorting index. 

Attribute Description 

index  
The attribute index indicates the numerical value of an index. 

4.5.4 Linked List 

Similar to an array, a linked list is an ordered collection of objects (cf. Fig. 4.40). 
It is formed by a sequence of list elements, each pointing to the next (and possibly 
the previous) element in the list. List elements can be inserted and removed at any 
point in the list. Unlike an array, a linked list does not allow random access45.  

                                                           
45 Random access is the ability to access any particular element in the list in constant time. 
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In the Meta Model, a linked list is modeled as a specialization of a composite object 
that is composed of two or more list elements. A list element points to the next as 
well as to the previous list element through the relations nextElement and previou-
sElement, respectively. Three disjoint subclasses of list element are introduced:  

– the first element of the list, which is a list element that does not point to a 
previous list element; it must have one next list element; 

– the last element of the list, which is a list element that does not point to a 
next list element; it must have one previous list element; and 

– internal element, which is defined as a list element that points to both a pre-
vious and a next list element.  

 

Fig. 4.40: Design pattern for the representation of a linked list 

4.5.4.1 Usage 

An application example is given in Fig. 4.41. It demonstrates how to represent a 
linked list with the list elements x, y and z; x is the first element, y is an internal ele-
ment, and z is the last element of the linked list. 
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[ListElement]
y
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x

Æ nextElement
 previousElement

[ListElement]
z

Æ nextElement
 previousElement

[LinkedList]
(x,y,z)

[ListElement]
y

[ListElement]
x

Æ nextElement
 previousElement

[ListElement]
z

Æ nextElement
 previousElement

[LinkedList]
(x,y,z)

[ListElement]
y

[ListElement]
x

Æ nextElement
 previousElement

[ListElement]
z

Æ nextElement
 previousElement

 

Fig. 4.41: Application example – a linked list with elements x, y, and z 

The design pattern linked list complies with the following competency questions: 

– Query for the first element of a particular linked list. 
– Query for the second (third, fourth, …) list element of a particular linked list. 
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– Query for the last element of a particular linked list. 
– Query for all list elements. 
– Query for the list element succeeding a particular list element. 
– Query for the list element preceding a particular list element. 

Note that a list element cannot have multiple appearances in a linked list46. 

4.5.4.2 Concept Descriptions 

Individual concepts of the module linked list are defined below. 

Class Descriptions 

First element 
The first list element of a linked list.  

Internal element 
A list element that is neither the first nor the last element of a linked list.  
Formal definition: Internal element is a list element that points to both a next and a 
pervious list element.  

Last element 
The last list element of a linked list.  

Linked list 
A linked list is formed by a sequence of list elements, each pointing to the next as 
well as to the previous list element. 

List element 
A list element is an element of a linked list; it may point to a next as well as to a pre-
vious list element. 

                                                           
46 Implementation advice: In principle, it is not necessary to declare the first element and last 
element of a linked list explicitly, as they can be automatically found by a reasoner. This facili-
tates to add and remove list elements at arbitrary positions. However, some reasoners cannot eva-
luate the definition – in this case, the first element and last elements must be explicitly defined. 
The following ontological assertions cause problems with the reasoner RacerPro and have there-
fore been omitted in the current version of the Meta Model: 
- A list element is either a first element or an internal element or a last element. 
- A linked list is composed of some first element (for some reason does the corresponding 
 statement “A linked list is composed of some last element not cause any trouble). 
- nextElement is only of type internal element oder last element (requires too much computation 
 time). 
- previousElement is only of type internal element or first element (as above). 
- first element is a list element that does not have a previous list element. 
- last element is a list element that does not have a next list element. 
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Relation Descriptions 

nextElement 
The relation nextElement points from a list element to the next list element. 

previousElement 
The relation previousElement points from a list element to the previous list element. 

4.5.5 Loop 

The design pattern loop47 introduces a shorthand for representing structures that 
consist of repetitive, interlinked objects. This is best explained by means of an ex-
ample: Consider the structure displayed in Fig. 4.42: the individuals O1 to O5 are 
sequentially connected via the relation ‘o’. Furthermore, O1 is linked to A1, O2 is 
linked to A2, and so forth, via the relation ‘a’. Also, each of the Oi is linked to in-
dividual X via the relation ‘x’; thus, X represents a common feature of the Oi. Indi-
vidual R is linked to O1, and O5 is linked to S; thus, R and S represent the endpoint 
conditions of the structure. 

Fig. 4.42: Repetitive, interlinked structure 

Instead of defining this structure explicitly, it can be represented as indicated in 
Fig. 4.43: First, a Loop is introduced, which has 5 numbersOfIteration. Several indi-
viduals are linked to the Loop. The relation ‘statementFor_i’ identifies those indi-
viduals that depend on the iterations i; in this example, these are the individuals 
O_i and A_i. This means that, for each iteration i, one Oi and one Ai exists. 
O_i and A_i are connected via the relation ‘a’; consequently, one ‘a’ is established 
between each occurrence of Oi and Ai. The relation ‘x’ points from O_i to individu-
al X, which is not linked to the Loop; thus, each occurrence of Oi points to the same 
X. For i = 1 and i = 5, the Oi have connections to R and S, respectively. To 
represent these additional connections, the individuals O_1 and O_N are intro-

                                                           
47 The name ‘for loop’ is chosen because the syntax used to represent the loop pattern is similar 
to that of a ‘for loop’ in a programming language. 
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duced. O_1 is linked to R, and O_N is linked to S. To indicate that O_1 and O_N 
represent the first and last occurrence of Oi in the Loop, they are (1) linked to O_i 
via the relation sameObject, and (2) connected to the Loop by means of the rela-
tions initialStatement and finalStatement. 

[Object]
O_NS s

[ForLoop]
Loop

[Object]
O_i

numberOf
Iterations

5X

[Object]
A_i

[Object]
O_1

initialStatement

a

x

statementFor_i

statementFor_i

sameObject

[Object]
O_i+1

o

finalStatement

sameObject

sameObject

R r

statementFor_iPlus1

[ForLoop]
Loop

[Object]
O_i

numberOf
Iterations

5X

[Object]
A_i

[Object]
O_1

initialStatement

a

x

statementFor_i

statementFor_i

sameObject

[Object]
O_i+1

o

finalStatement

sameObject

sameObject

R r

statementFor_iPlus1

 

Fig. 4.43: Representation of the structure shown in Fig. 4.41 by using the loop de-
sign pattern 

Finally the relations between the Oi must be specified. To this end, the individual 
O_i+1 is introduced, which represents the occurrence of Oi in the iteration (i + 1). 
The semantics of O_i+1 is explicitly defined by (1) establishing a sameObject rela-
tionship between O_i and O_i+1, and (2) linking O_i+1 to the Loop via the relation 
statementFor_iPlus1. Lastly, the relation ‘o’ is declared between O_i and O_i+1, 
thus indicating that ‘o’ exists in between the different Oi. 
Fig. 4.44 defines the classes and relations that are required to establish a loop pat-
tern as the one exemplarily shown above. A for loop must have at least one state-
mentFor_i. Additionally, a for loop may have an initialStatement, a finalStatement, and 
a statementFor_iPlus1. Any object that is linked to a for loop via one of these latter 
relations must have a sameObject relation to an object that is linked to a for loop via 
a statementFor_i relation. This is guaranteed by logical constraints imposed on the 
for loop class. 
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Fig. 4.44: Class diagram of the loop design pattern 

The relations of the loop design pattern are given in Fig. 4.45. 
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Fig. 4.45: Hierarchy of relations introduced in the loop ontology module 

4.5.5.1 Usage 

The loop pattern is used to represent structures that consist of repetitive, inter-
linked objects.  
If the structure represented by the for loop is part of an aggregate, then all objects 
that are linked to the for loop should be declared as parts of the aggregate. 
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B1

[Object]
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B2
[Object]

A1
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B1
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B2

[Object]
A1

[Object]
A2r r r …r

 

Fig. 4.46: Structure consisting of alternating As and Bs 

Properties (i.e. relations or attributes) that are common to all objects of the struc-
ture must only be declared once, namely as properties of the individual that linked 
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to the for loop via a statementFor_i relation. Individuals that are linked to the for loop 
via a ininitalStatement, finalStatement, or statementFor_iPlus1 relation should carry 
only those properties that are specific for the respective iteration. 
Note that the loop pattern also allows for the representation of structures that con-
sist of alternating elements. An example of such a structure composed of alternat-
ing As and Bs is given in Fig. 4.46. The equivalent loop pattern is shown in Fig. 
4.47. 

[Object]
A_i

[Object]
B_i

sameObject
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statementFor_iPlus1

[ForLoop]
Loop
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r
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B_i
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[Object]
A_i+1

statementFor_i

statementFor_iPlus1

[ForLoop]
Loop

r

r

 

Fig. 4.47: Loop pattern representing the structure displayed in Fig. 4.46 

4.5.5.2 Concept Descriptions 

Individual concepts of them module loop are defined below. 

Class Descriptions 

For loop 
A for loop is used to represent structures that consist of repetitive, interlinked ob-
jects. 

Relation Descriptions 

finalStatment 
Denotes the final statement in a for loop. 

hasLoopStatement 
Subsumes the different statements of a for loop. 

ininitalStatement 
Denotes the initial statement in a for loop. 
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isFinalStatmentOf 
Denotes the final statement in a for loop. 

isIninitalStatementOf 
Denotes the initial statement in a for loop. 

isStatementFor_iOf 
Denotes the objects that appear in each iteration of a for loop. 

isStatementFor_iPlus1Of 
Denotes the objects in the next iteration of a for loop. 

isStatementOfLoop 
Subsumes all the individuals that represent statements in a for loop. 

sameObject 
Identity relation between an object involved in a statementFor_i and an object that 
appears in an initialStatement, a finalStatement, or a statementFor_iPlus1. 

statementFor_i 
Denotes the objects that appear in each iteration of a for loop. 

statementFor_iPlus1 
Denotes the objects in the next iteration of a for loop. 

Attribute Descriptions 

numberOfIterations 
Indicates the number of iterations of a particular for loop. 
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5 Upper Level 
 
The partial model upper_level is located on the Upper Layer of OntoCAPE. It es-
tablishes the fundamental organizational paradigm for the ontology and states the 
principles governing its design and evolution. The concepts introduced by the up-
per_level partial model are generic in the sense that they are applicable to differ-
ent domains; thus, the partial model resembles the meta_model (Chap. 4) in this 
respect. Yet unlike the Meta Model concepts, the concepts of the upper_level are 
intended for direct use and will be passed on to the domain-specific parts of On-
toCAPE. 
As for its function within the ontology, the upper_level serves two major purpos-
es: Firstly, it gives a concise and comprehensive overview on OntoCAPE, thus 
helping a user to find his/her way around the ontology and to understand its major 
design principles. Secondly, it establishes a framework for the development (and 
later extension) of the ontology. 

 

Fig. 5.1: The partial model upper_level 

The upper_level partial model comprises five ontology modules (cf. Fig. 5.1). 
The module system is the most fundamental part of OntoCAPE. Consequently, it 
is located at the top of the “inclusion lattice” (Gruber and Olsen 1994) that consti-
tutes the ontology. As indicated in Fig. 5.1, the system module may import the on-
tology modules of the meta_model, provided that such an import is desired (cf. 
discussion in Sect. 4.1). 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_5,  
© Springer-Verlag Berlin Heidelberg 2010 
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The system module establishes the fundamental design paradigm according to 
which the ontology is organized: OntoCAPE is based on general systems theory48 
and systems engineering49, which are considered advantageous organizing prin-
ciples for building large engineering ontologies (e.g., Alberts 1994; Borst 1997; 
Bayer and Marquardt 2004). The system module introduces the constitutive sys-
tems-theoretical and physicochemical primitives, such as system, property, physical 
quantity, physical dimension, etc., and specifies their mutual relations.  
The remaining modules of the upper_level complement the system module: The 
modules network_system and technical_system introduce two important types of 
systems and their characteristics. The module tensor_quantity provides concepts 
for the representation of vectors and higher-order tensors, while coordi-
nate_system introduces the concept of a coordinate system, which serves as a frame 
of reference for the observation of system properties. 

5.1 System 

5.1.1 Basic Axioms of Systems Theory 

The system class is the central concept of the system module. It denotes all kinds 
of systems, which may be physical or abstract. The notion of a system is defined 
by the following axioms, which summarize the numerous definitions of the sys-
tems concept given in the literature (e.g., von Bertalanffy 1968; Bunge 1979; Pat-
zak 1982; Klir 1985; Gigch 1991): 

(1) A system interacts with, or is related to, other systems. 
(2) The constituents of a system are again systems50. 
(3) A system is separable from its environment by means of a conceptual or 

physical boundary.  
(4) A system has properties which may take different values. 
(5) The properties of a system can be explicitly declared or inferred from the 

properties of its constituent subsystems. 

                                                           
48 General systems theory is an interdisciplinary field that studies the structure and properties of 
systems (von Bertalanffy 1968). 

49 Systems engineering can be viewed as the application of engineering techniques to the engi-
neering of systems, as well as the application of a systems approach to engineering efforts 
(Thomé 1993). 

50 In systems theory, there are divergent views on the nature of system constituents (e.g., Bunge 
1979: “A system component may or may not be a system itself.”). Sect. 5.2.3 addresses this issue 
in greater detail. 
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The above axioms constitute the basic principles of systems theory, as it is con-
ceptualized in OntoCAPE. They will be revisited in the following sections, which 
discuss the concrete realization of the systems concept.  

5.1.2 Inter-System Relations 

Axiom (1) states that systems interact with, or are related to, other systems. These 
interactions are modeled by the relation isRelatedTo, which subsumes all kinds of 
binary relationships51 between systems (cf. Fig. 5.2). The isRelatedTo relation is 
symmetric to account for the fact that, if system A is related to system B, then B is 
related to A, as well. Moreover, the relation is declared to be transitive, such that a 
third system C, which is explicitly related to B, can be inferred to be related to A, 
as well. Additionally, the non-transitive relation isDirectlyRelatedTo is established, 
which subsumes all direct relations between systems. 

Fig. 5.2: Inter-system relations 

5.1.3 Subsystems and Supersystems 

For the realization of axiom (2) – the constituents of a system are again systems – 
the following concepts are introduced. 
Firstly, the transitive relations hasSubsystem and its inverse isSubsystemOf are in-
troduced as specializations of the isRelatedTo relation. They are derived from the 
aggregation relations hasPart and isPartOf introduced in the Meta Model (partial 
model mereology, cf. Sect. 4.3; their respective definitions are identical, except 
that their ranges and domains are restricted to systems. 
Next, the classes subsystem and supersystem are introduced as subclasses of system; 
they correspond to the generic parts and aggregates defined in the Meta Model. A 
necessary and sufficient condition that a system qualifies as a subsystem is that the 

                                                           
51 A class to represent n-ary relations between systems is currently not implemented in Onto-
CAPE. 
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system is linked to another system via an isSubsystemOf relation. Similarly, a su-
persystem is a system that has a hasSubsystem relation with some other system. In 
accordance with the mereological theory defined in the partial model mereology, 
a subsystem can have subsystems of its own, and a supersystem may be part of 
another supersystem.  
The relation hasDirectSubsystem is established as a means to indicate the direct 
subsystems of a system; hasDirectSubsystem is a subrelation of both hasSubsystem 
and isDirectlyRelatedTo, and it is defined analogously to the hasDirectPart relation 
introduced in the Meta Model. Similarly, its inverse isDirectSubsystemOf is de-
clared to be a specialization of the isSubsystemOf relation.  
A particular subsystem may be part of more than one system52. To indicate a sub-
system’s unambiguous affiliation to a supersystem, the relation isExclusivelySubsys-
temOf and its inverse isComposedOfSubsystem are to be used. These relations are 
subrelations of isDirectSubsystemOf and hasDirectSubsystem, respectively; they are 
special types of the composition relations introduced in the partial model mere-
ology. Systems that are involved in these relations are named exclusive subsystem 
and composite system. 

 

Fig. 5.3: Composition and decomposition of systems 

Fig. 5.3 summarizes the classes and relations that represent the (de)composition of 
systems. In analogy to UML notation, we use a line with a white diamond-shaped 
arrowhead to represent the relations isSubsystemOf and isDirectSubsystemOf; a black 
diamond-shaped arrowhead indicates the relation isExclusivelySubsystemOf. 
Unfortunately, current OWL reasoners scale badly when processing large collec-
tions of individuals connected via transitive, inverse relations (Rector and Welty 
2005). Hence, the relations hasSubsystem and isSubsystemOf can cause perfor-
mance problems if applied to large data sets. A possibility to avoid these problems 
is to employ a single, non-inverse relation, instead. To this end, the unidirectional 
contains relation is introduced as a replacement for hasSubsytem. Like hasSubsys-
tem, it is a transitive relation; unlike hasSubsystem, it has no inverse counterpart. 

                                                           
52 A typical example for such a case are the classes property model (which models, e.g., the 
thermodynamic behavior of materials) and process model (which represents the mathematical 
model of a chemical process). These classes, introduced in the partial model process_model, are 
special types of systems. A particular property model may be a subsystem of different 
process models. 

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem

System

Subsystem Supersystem

isRelatedTo

hasSubsystem

hasDirectSubsystem

isComposedOfSubsystem

isSubsystemOf

isDirectSubsystemOf

isExclusivelySubsystemtOfCompositeSystemExclusiveSubsystem
 



System     113 

The non-transitive relation containsDirectly is established as a specialization of con-
tains; it is to be used analogously to the hasDirectSubsystem relation (cf. Fig. 5.4).  
Aside from the performance considerations, there is another application case for 
the contains(Directly) relation: It is to be used when only one side of the aggregation 
relation is of interest, namely the indication of the constituting elements of a su-
persystem; by contrast, the inverse relation (i.e., the affiliation of a subsystem to a 
particular supersystem) is of little or no concern in this application case. As an ex-
ample, consider the relation between the concepts mixture and chemical compo-
nent53. For the definition of a particular mixture, the information about its constitu-
ent chemical components is essential. However, for the definition of a chemical 
component, it is irrelevant to know of which mixtures the chemical component is part 
of. For that reason, the constituents of a mixture are indicated by means of the con-
tainsDirectly relation. 
Note that the contained systems are not classified as subsystems, as this informa-
tion is not relevant, as explained above. Only the containing systems are classified 
as supersystems.  

Fig. 5.4: The hasSubsystem relation may be replaced by the contains relation 
 
As a graphical notation for the contains(Directly) relation, we use a line with a white 
diamond at the one end and an arrowhead at the other end. The diamond indicates 
the containing system, whereas the arrow points towards the contained system.  
Closing the discussion on system (de)composition, it should be pointed out that 
some systems theorists (e.g., Bunge 1979) prefer an alternative formulation of 
axiom (2): 

(2*) A system consists of multiple elements, which may or may not be 
systems themselves. 

Thus, contrary to the original formulation of the axiom, the decomposition of a 
system into its constituent elements is mandatory, whereas these elements being 
systems is optional. This alternative version of axiom (2) will be referred to as 
axiom (2*) hereafter. 

                                                           
53 Mixture and chemical component are special types of systems, which are introduced in the 
partial model substance (cf. Sect. 7.2). 
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Fig. 5.5 shows the formal representation of axiom (2*). As can be seen, the repre-
sentation of axiom (2) must be extended by one additional class (element) and two 
inverse relations (hasElement and isElementOf). 

Fig. 5.5: Formal representation of axiom (2*) 

There may be application cases where axiom (2*) is more advantageous than 
axiom (2). However, for the applications of OntoCAPE encountered so far, axiom 
(2) has proven to be adequate. Furthermore, since axiom (2) can be represented in 
a more compact way (cf. Fig. 5.3 and Fig. 5.5), it has been preferred over (2*). As 
demonstrated, axiom (2) can be easily converted into axiom (2*) by adding the 
abovementioned classes and relations to the ontology, if such an extension is re-
quired by some application. 

5.1.4 Levels of Decomposition 

A (sub)system is considered elementary if it is not further partitioned into subsys-
tems. However, it is often impossible to decide definitively if a system is elemen-
tary or composite. It might be elementary in one context, but in a different context 
a further refinement of the system’s description might be needed (Bayer 2003). 
Thus, being elementary is not a static classification. 
In OntoCAPE, an elementary system is defined as a subsystem that (currently) has 
no subsystems of its own.  
In an analogous manner, further (de)composition levels of systems can be estab-
lished: 

– A top-level system is a supersystem that is not a constituent of some other 
system. 

– A first level subsystem is a subsystem that is a direct subsystem of a top-level 
system. 

– A second level subsystem is a direct subsystem of a first level subsystem.  
– Etc. 
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Due to the open world assumption, a DL reasoner cannot infer the membership to 

must be declared explicitly. Once the top (or bottom) of a decomposition hie-
rarchy has been defined that way, the membership to the intermediate decomposi-
tion levels can be inferred automatically. 

5.1.5 Topological Connectivity of Systems 

The relations isConnectedTo and isDirectlyConnectedTo are introduced to describe 
the topological connectedness of systems. They are defined and used just like the 
homonymic topological relations introduced in the Sect. 4.4, except that their 
ranges and domains are restricted to systems (cf. Fig. 5.6). 

 

Fig. 5.6: Connectivity of systems 

The relation isConnectedTo is symmetric and transitive; it summarizes all types of 
connections between systems (including indirect connectivity). The relation isDi-
rectlyConnectedTo, a non-transitive specialization of isConnectedTo, represents di-
rect connectivity between systems. 
As explained in the Meta Model, mereological and topological relations exclude 
each other. Thus, isConnectedTo relations between a subsystem and its supersystem 
are prohibited. To enforce this restriction, the following range restrictions are im-
posed on the isDirectlyConnectedTo relation: 

– A first (second …) level system can only be connected to a first (second …) 
level system. 

– An elementary system can only be connected to an elementary system. 
– A top-level system can only be connected to a top-level system.  

Hence, connectivity is only allowed if two systems are on the same level of de-
composition. If these restrictions are violated, the reasoner will produce an error 
message. 
The class system interface represents the interfaces through which systems are con-
nected to each other. The usage of this class is optional. It is derived from the meta 
class connector and should be utilized analogously. 

the classes top-level system and elementary system (cf. Sect. 4.3). Thus, membership 

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

System

isDirectlyConnectedTo

isConnectedTo
(symmetric, transitive)

isDirectlyConnectedTo
(symmetric)

isRelatedTo (transitive)

0..n

0..n

System
Interface

isDirectlyConnectedTo

0..n

0..n

isDirectlyRelatedTo
(symmetric)

 



116      Upper Level 

5.1.6  Model 

According to Wüsteneck (1963), a model is a system that is used, selected, or pro-
duced by a third system to enable the understanding of or the command over the 
original system, or to replace the original system. Model system and original sys-
tem share certain characteristics that are of relevance to the task at hand. 
Following this definition, the class model is introduced as a subclass of system (cf. 
Fig. 5.7). A system qualifies as a model if it models some other system (i.e., having 
a models relation to another system is a necessary and sufficient condition for being 
subsumed as a model). The relation isModeldBy is defined as the inverse of models.  

Fig. 5.7: Representation of models 

Different types of models can be distinguished: 

– Iconic models resemble the physical object they represent, but are simpli-
fied and/or employ a change of scale or materials. Typical examples would 
be an aircraft mockup used for wind tunnel testing, or a pilot plant that si-
mulates the behavior of an industrial scale plant. 

– Symbolic models represent the modeled system by means of some symbol-
ic representation. Typical examples are mathematical models or informa-
tion models. 

Iconic models are technical systems, as defined in the ontology module technic-
al_system (cf. Sect. 5.3). Symbolic models may be considered as technical systems, 
as well; however, this is not necessarily the case. A special class of symbolic 
models, mathematical models, is introduced in the ontology module mathemati-
cal_model (cf. Sect. 9.1). 

5.1.7 Representation of Viewpoints 

Systems are often too complex to be understood and handled as a whole. A tech-
nique for complexity reduction that is widely used in systems engineering is the 
adoption of a viewpoint54. A viewpoint is an abstraction that yields a specification 

                                                           
54 In the literature, the viewpoint approach is also referred to as “viewing the system from a cer-
tain perspective” or “considering the system under a particular aspect”. 
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of the whole system restricted to a particular set of concerns (IEEE 2000). Adopt-
ing a viewpoint makes certain aspects of the system ‘visible’ and focuses attention 
on them, while making other aspects ‘invisible’, such that issues in those aspects 
can be addressed separately (Barkmeyer et al. 2003).  
In the following, the term aspect system (Patzak 1982) will be used to denote 
those aspects about the overall system that are relevant to a particular viewpoint. 
An aspect system consists of a subset of the components (elements, relationships, 
and constraints) of the overall system. These components constitute again a sys-
tem, which is a subsystem of the overall system. Thus, an aspect system is a par-
ticular subsystem, which contains only those components of the overall system 
that are considered under the respective aspect.  
In OntoCAPE, an aspect system is modeled as a subclass of an exclusive subsystem 
(cf. Fig. 5.8). The type of the respective aspect system can be explicitly labeled by 
an instance of the aspect class: To this end, the aspect system is linked to that as-
pect via the relation isConsideredUnderAspectOf. Like any system, an aspect system 
can be further decomposed – either into ‘normal’ subsystems or into further aspect 
systems. By means of the latter, an aspect system can be gradually refined. 

Fig. 5.8: Representation of aspect systems 

The relationship between the aspect system and the overall (composite) system is 
given by the inverse relations representsAspectOf and hasAspectSystem, which are 
specializations of the composition relations isExclusivelySubsystemOf and isCompo-
sedOfSubsystem. These relations can be further refined to indicate the type of the 
aspect system: In the ontology module technical_system, for example, the class 
system function is introduced as a special type of an aspect system (cf. Sect. 5.1.7); a 
system function is linked to the overall system via the relation representsFunctionOf, 
which is a specialization of representsAspectOf. 
Aspect systems play a key role in the organization of the OntoCAPE ontology. 
They are used to partition complex systems into manageable parts, which can be 
implemented in segregate ontology modules. An example is given in Fig. 5.9. Two 
aspect systems, process and plant, are shown, which represent a functional and a 
constitutional view on a chemical process system (cf. Sect. 8.1.1). Each aspect sys-
tem is represented in its own ontology module (process and plant, respectively). 
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These modules are imported by the ontology module that holds the overall system 
(here, module chemical_process_system holding the chemical process system). 
Within their respective ontology modules, plant and process are modeled as sub-
classes of system; only in the chemical_process_system module, they are identified 
as aspect systems. This is achieved by linking plant and process to the chemical 
process system via the relations representsRealizationOf and representsFunctionOf, re-
spectively, which are specializations of the representsAspectOf relation. Based on 
this information, a reasoner can infer that plant and process are special types of as-
pect systems. 

Fig. 5.9: Partitioning of a complex system into manageable parts 

The above pattern is universally applied in OntoCAPE. The advantage of this pat-
tern is that the aspect systems can be used and maintained independently of the 
overall system. 

5.1.8 System Environment 

Axiom (3) states that a system is separable from its environment by means of 
some conceptual boundary (which may or may not coincide with a physical sys-
tem boundary). The key idea of this axiom is that the scope of a system is unique-
ly defined, i.e., it is clearly determinable whether a particular object forms part of 
the system or belongs to the system’s environment. In OntoCAPE, the environ-
ment of a system can be modeled explicitly, as discussed in the following. The 
system boundary, on the other hand, is not represented in OntoCAPE, as it is 
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merely an auxiliary construct to mentally demarcate the system from its environ-
ment55. 
Generally, the environment of a system includes everything that is not defined as 
that system (Alberts 1994). Thus, the environment of a given system S can be de-
fined as the class of all things that are not S. Note that such an environment class 
must be individually defined for each system, since the environment concept is 
relative. 
However, the above definition is too broad for practical use. Normally, one is only 
interested in the immediate environment of a system, as defined by Bunge (1979): 

“Our definition of the environment of a system as the set of all things 
coupled with components of the system makes it clear that it is the 
immediate environment, not the total one – i.e., the set of all the things that 
are not parts of the system. […] we are interested not in the transactions of a 
system with the rest of the universe but only in that portion of the world that 
exerts a significant influence on the thing of interest.” 

In OntoCAPE, the immediate environment of a system is even further constrained 
to those individuals that are again systems56. Therefore, the environment of a sys-
tem is defined as follows: The immediate environment of a particular system S in-
cludes all systems that (1) are not S, (2) are no subsystems of S, (3) are no super-
systems of S, but (4) are directly related to S. 
Note that the definition excludes subsystems since they form part of S and thus 
cannot be part of the environment of S. Supersystems are excluded since this 

of the environment of S. On the other hand, S is a subsystem of SupS by defini-
tion. This would eventually imply that S is a subsystem of its environment. 
In the formal specification of OntoCAPE, the class system environment exemplarily 
implements this definition for a sample system S57.  

5.1.9 Properties of Systems 

Axiom (4) states that a system has properties which may take different values. In 
OntoCAPE, the property class represents the individual properties (traits, qualities) 

                                                           
55 “The choice of the system boundary corresponds to a division of the universe of discourse into 
those parts included in the system under consideration and those belonging to the environment” 
(Marquardt 1995). 

56 As opposed to properties, values, etc. 

57 Implementation advice: Currently, as of 2008, the reasoner RacerPro is not able to infer the 
environment of a system correctly. The problem is possibly caused by the allDifferent statement 
for individuals, which is not evaluated properly. Nevertheless, the definition is correct in prin-
ciple. 

would lead to false conclusions: It would allow a supersystem SupS of S to be part 
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of a system, which distinguish the system from others. Typical examples would be 
size, color, or weight, which are modeled as subclasses of property.  
The subclasses of property represent general properties, which exist autonomously 
(i.e., independent of a particular system). The individual property of a system is 
modeled by (1) instantiating the respective subclass of property and (2) linking that 
property instance to the system. For (2), the inverse relations hasProperty and isPro-
pertyOf are to be used (cf. Fig. 5.10). As soon as the property instance is linked to a 
system, it represents an inherent quality of that particular system and thus must not 
be assigned to any other system. To ensure that a property instance is assigned to 
one system instance at most58, the isPropertyOf relation is declared to be functional.  
Subclasses of property will be introduced on the lower levels of OntoCAPE to 
represent properties such as height, volume, diameter etc. These classes can be fur-
ther specialized in order to clarify the meaning of the respective property (e.g., re-
fine diameter to internal diameter, nominal diameter, etc.). However, the refinement 
must not imply the affiliation to a particular system; for example, neither pipe di-
ameter nor vessel diameter are valid refinements of diameter59. Instead, the affilia-
tion to a specific system is modeled on the instance level by assigning a property 
instance to a system instance via the isPropertyOf relation.  

Fig. 5.10: A system has properties which may take different values 

A property has certain values – for example the property ‘color’ may take the values 
‘red’, ‘green’, ‘blue’, etc. In OntoCAPE, the values of a property are represented 
through the value class, which is linked to a property via the isValueOf relation and 
its inverse hasValue, respectively. A value is either of qualitative nature (pertaining 
to properties like color, taste, etc.) or of quantitative nature (pertaining to properties 
like weight, height, or temperature). To avoid ambiguities, the isValueOf relation is 
declared to be functional; thus, an instance of value can be assigned to one property 
instance at most. A property, in contrast, may have multiple values: Take for exam-
ple the temperature of a solid body – while the existence of this property itself is 

                                                           
58 Some properties are not owned by a particular system at all (cf. Sect. 5.1.15) 

59 As an exception to this rule, one may define high-level categorizing properties which sub-
sume the properties of a specific system; for instance, the class phase system properties 
subsumes the various properties of a phase system. However, these kinds of properties are 
only introduced for organizational purposes and are not to be instantiated for practical use.  
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invariant (a solid body will always have a temperature), the temperature values 
may change over time. 

5.1.10 Backdrop  

To distinguish the different values of a property, the concept of a backdrop (Klir 
1985) is introduced. Adapting Klir’s definition60 to the terminology of OntoCAPE, 
a backdrop is some sort of background against which the different values of a 
property can be observed. Thus, a backdrop provides a frame of reference for the 
observation of a property. Space and time are typical choices of backdrops. 
In OntoCAPE, the values of any property can act as a backdrop to distinguish the 
values of another property. The relation isObservedAgainstBackdrop maps the values 
that are to be distinguished to their respective backdrop values. An example is pre-
sented in Fig. 5.11: Here, the values of the property Time are used to distinguish the 
different values of the property Temperature, which arises in the course of an obser-
vation61. In this particular example, a temperature of 285 Kelvin was observed at 
the beginning of the observation; after 300 seconds, the temperature had cooled 
down to 273 Kelvin.  

Fig. 5.11: Distinguishing the different values of a property by means of the back-
drop relation 

                                                           
60 Klir defines a backdrop as “any underlying property that is actually used to distinguish differ-
ent observations of the same attribute […]. The choice of this term, which may seem peculiar, is 
motivated by the recognition that the distinguishing property […] is in fact some sort of back-
ground against which the attribute is observed”. 

61 The properties in the example are physical quantities (cf. Sect. 5.1.11). Actually, the values 
of physical quantities are represented in a slightly different manner, but the representation is 
simplified here for the sake of clarity. The exact representation of the example is shown in Fig. 
5.11.  
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The observed property and its backdrop property may both be owned by the same 
system; however, this is not mandatory. Often, the backdrop property is owned by a 
coordinate system, which is introduced in the ontology module coordinate_system 
(cf. Sect. 5.4). 
Note that the backdrop concept is relative: A physical quantity acting as a backdrop 
may be observed against another backdrop quantity. Consider for instance a physi-
cal quantity that is observed against the space coordinate of a moving system; the 
movement of this space coordinate could in turn be measured against the space 
coordinate of a fixed coordinate system. Another example is given in Fig. 5.12. It 
extends the above example of temperature measurement (Fig. 5.11) by indicating 
the time and date of the observation. To this end, one defines a backdrop relation 
between the starting time of the observation (t = 0 sec) and the date-time, given by 
the time standard UTC (Coordinated Universal Time, cf. Sect. 6.4). 
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Fig. 5.12: UTC as a backdrop for the starting time of the observation 

The indication of backdrop is not mandatory; it can be omitted if it is not impor-
tant or if it can be recognized from the context. In particular, a backdrop is often 
superfluous if the property can take only a single value. In this case, the property is 
classified as a constant property. 

5.1.11 Physical Quantity 

The International Vocabulary of Basic and General Terms in Metrology defines a 
physical quantity (often abbreviated as a ‘quantity’) as a “property of a phenome-
non, body, or substance, to which a magnitude can be assigned” (VIM 1993). A 
more extensive definition of the term is given in the EngMath ontology (Gruber 
and Olsen 1994): 

“Physical quantities come in several types, such as the mass of a body (a 
scalar quantity), the displacement of a point on the body (a vector quantity), 
[…] and the stress at a particular point in a deformed body (a second order 
tensor quantity). […] Although we use the term "physical quantity" for this 
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generalized notion of quantitative measure, the definition allows for 
nonphysical quantities such as amounts of money or rates of inflation. 
However, it excludes values associated with nominal scales, such as 
Boolean state and part number […].” 

In OntoCAPE, a physical quantity is a property that has quantifiable values (the latter 
are represented through the class quantitative value, cf. Fig. 5.13). In agreement 
with the definition given in the EngMath ontology, the class denotes both physical 
and nonphysical quantities, and it comprises scalars as well as vectors and higher-
order tensors. Only scalar quantities are considered here; the representation of vector 
quantities and higher-order tensor quantities is discussed in Sect. 5.5. 

Fig. 5.13: Representing the values of physical quantities 

Generally, the value of a scalar quantity consists of a number and (possibly) a unit 
of measure. The unit of measure is a particular example of the quantity concerned, 
which is used as a reference, and the number is the ratio of the value of the quanti-
ty to the unit of measure (BIPM 2006).  
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Fig. 5.14: Application example: Temperature T1 has a value of 351.8 K 

In OntoCAPE, the values of a scalar quantity are represented by instances of the 
class scalar value, a subclass of quantitative value: The number part of a scalar value 
is expressed by the attribute numericalValue62, and the unit of measure part is 
represented by an instance of the unit of measure class, which is connected to the 
scalar value via the relation hasUnitOfMeasure (cf. Fig. 5.13). An application exam-
                                                           
62 Ordinarily, the values of numericalValue are of type float; however, other XML Schema datatypes are 
also possible, such as dateTime. 
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ple is presented in Fig. 5.14, which shows the representation of a temperature val-

represents the time-dependent measurement of a temperature. The scalar quantity 
Time acts as a backdrop to distinguish the different values of the scalar quantity 
Temperature.  
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Fig. 5.15: Application example: Temperature measurement with multiple values 

5.1.12 Physical Dimension 

By convention, physical quantities are organized in a system of dimensions (BIPM 
2006). In such systems, each physical quantity has exactly one associated physical 
dimension. A typical example would be the dimension of length, which can be as-
sociated with such physical quantities as height, thickness, or diameter. 
In OntoCAPE, dimensions are modeled by the class physical dimension. A particu-
lar instance of physical dimension can be assigned to both a physical quantity and a 
unit of measure via the relation hasDimension (cf. Fig. 5.16). For instance, both the 
scalar quantity ‘radius’ and the unit of measure ‘meter’ have the dimension of length. 
Physical dimensions serve two functions in OntoCAPE: 

(1) Physical quantities of the same physical dimension share certain characteristics; 
for instance, their scalar values relate to the same set of units of measure. Thus, the 

ue of 351.8 Kelvin. Figure 5.15 shows a more extensive example than Fig. 5.11; it 
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concept of physical dimension may be used to identify physical quantities of the same 
kind63 and to differentiate those from other kinds of physical quantities. 
(2) According to the conceptualizations stated so far, arbitrary units of measure can 
be assigned to the scalar value of a particular scalar quantity. Now, the physical di-
mension provides a means to constrain the set of possible units of measure for a giv-
en quantity. To this end, one needs to implement64 the following constraint:  

Fig. 5.16: Physical dimensions 

On the basis of this constraint, the consistency of unit of measure assignment and 
conversion can be checked. For example, a meter is a valid unit of measure for 
measuring the scalar value of a radius, as both radius and meter have the dimension 

                                                           
63 The International Vocabulary of Basic and General Terms in Metrology (VIM 1993) defines 
‘quantities of the same kind’ as “quantities that can be placed in order of magnitude relative to 
one another”. While it is true that quantities of the same kind must have the same physical di-
mension, the opposite is not true, i.e., having the same physical quantity is a necessary, but not a 
sufficient condition for being of the same kind. For example, moment of force and energy are, by 
convention, not regarded as being of the same kind, although they have the same dimension, nor 
are heat capacity and entropy (VIM 1993). 

64 In principle, the constraint could be formulated in the OWL modeling language; however, 
such an implementation would be quite exhausting, as the constraint would have to be formu-
lated individually for each scalar quantity. Alternatively, the constraint can be implemented 

A unit of measure that is assigned to the scalar value of a scalar quantity must have the 
same physical dimension as the scalar quantity. 

of length. Similarly, meters can be converted into feet, as both units of measure 
have the same dimension. 

through a single, generic rule, which applies to all quantities. Rules do not form part of current 
OWL, but can be formulated on top of the language. The latter approach is taken in OntoCAPE. 
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5.1.13 Qualitative Value 

Obviously, not all properties are physical quantities. The values of properties like 
‘color’ or ‘flavor’ are not (numerically) quantifiable. Instead, such values are 
represented by means of the class qualitative value, a subclass of value (cf. Fig. 
5.17). 

Fig. 5.17: Representation of qualitative values 

The actual value of a qualitative value can be specified in two alternative ways: ei-
ther by means of the attribute value, which accepts any string input, or by referring 
to an instance of the class value enumeration via the relation qualitativeValue. A value 
enumeration defines a (finite) set of possible values, which may be assigned to dif-
ferent qualitative values. The value enumeration class is derived from the meta class 
feature space and can be either a fixed value set or an extensible value set: 

– A fixed value set is a specialization of the meta class value set. It is uniquely 
defined by an exhaustive enumeration of its instances. Thus, the number of 
possible values is fixed. 

– An extensible value set is a specialization of the meta class non-exhaustive 
value set. Unlike a fixed value set, it is not defined by an (exhaustive) enu-
meration of its instances. Thus, the number of possible values may change 
at run time. 

Like every other value, a qualitative value can be related to a backdrop value. Fig. 
5.18 provides the example of a chameleon, whose skin color is observed against a 
temporal backdrop.  
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Fig. 5.18: Application example of a qualitative value 
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At first sight, the representation of a qualitative value may seem unnecessarily 
complicated as it requires an instantiation of both the qualitative value class and the 
value enumeration class. Yet both classes are required for the complete specification 
of the qualitative value: While the value enumeration class represents the actual 
value, the qualitative value class serves the function of correlating the actual value 
with the corresponding backdrop value. A combination of these two functions into 
a single class is not possible, since the instances of value enumeration must not be 
the origin of a relation (cf. the discussion on feature values in the Meta Model). 
However, in cases where the specification of a backdrop is not required, the value 
representation can be simplified, as will be explained in the following section. 

5.1.14 The hasCharacteristic Relation 

Generally, the characterization of a system through properties and their values is 
fairly complex, requiring the concatenation of several concepts: First, the property 
class must be instantiated and linked to the system via a hasProperty relation; only 
then can the value be specified and assigned to the property by means of the hasVa-
lue relation. Such a ‘chain of concepts’ is indispensable for representing properties 
that take multiple values, as explained in the previous sections. However, in the 
case of a constant property having only a single value, the function of the constant 
property is reduced to that of a binary relation relating the value to the system. 
Hence, one may use a shorthand notation instead. To this end, the relation hasCha-
racteristic is introduced. Via this relation, the values of constant properties can be di-
rectly assigned to a system, thus substituting the constant property.  

Fig. 5.19: Shorthand notation for constant physical quantities 

Two cases must be distinguished:  

– If the constant property is a physical quantity, hasCharacteristic replaces the 
concepts hasProperty, physical quantity, and hasValue (cf. Fig. 5.19).  
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– If the constant property has a qualitative value, the relation additionally substi-
tutes the concepts qualitative value and the relation qualitativeValue, thus re-
ferring directly to the value enumeration (cf. Fig. 5.20).  

 

Fig. 5.20: Shorthand notation for constant properties with qualitative values 

Finally some remarks on the usage of the introduced primatives: 

– Just like the property class can be specialized to represent specific types of 
properties, the hasCharacteric relation needs to be specialized to substitute 
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– Specializations of hasCharacteristic may be utilized to implicitly define po-
lyhierarchies of classes (cf. Sect. 4.2). In this case, the utilized relation 
should be declared to be a specialization of both the relation hasCharacteris-
tic and the meta relation isOfType.  

– The hasCharacterstic relation allows linking a single value instance to dif-
ferent system instances. This is exploited to relate the value of a physical 
constant to different systems (cf. Sect. 5.1.15). 

5.1.15 Physical Constant 

A physical constant is a special type of a constant property with a fixed (scalar) value. 
It is defined as a physical quantity, the value of which is believed to be both univer-
sal in nature and invariant over time. Examples are the elementary charge, the 
gravitational constant, Planck's constant, and the speed of light in the vacuum. 
Such specific constants are modeled as instances of the physical constant class. 
Due to its universal nature, a physical constant cannot be owned by a specific sys-
tem and thus must not be assigned to a system instance via the hasProperty relation. 
Instead, the hasCharacteristic relation is used to relate the value of the physical con-
stant to a system. That way, the physical constant itself remains independent. 
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Fig. 5.21: Modeling of the elementary charge 

Exemplarily, Fig. 5.21 illustrates the modeling of the elementary_charge as an in-
stance of physical constant. The elementary_charge has a physical dimension of elec-
tric_charge; its value e equals 1.6021765314e-19 coulomb. By means of the rela-
tion hasIonicCharge (a specialization of hasCharacteristic), e can be assigned to 
different systems, such as the sodium_cation or the potassium_cation. 

5.1.16 Internal and External Properties 

According to axiom (5), not all the properties of a system need to be declared expli-
citly. Instead, they can be represented as properties of its constituent subsystems. 
We call those properties of a system that are explicitly assigned to the system the 
‘external properties’ of the system. Accordingly, the ‘internal properties’ of a system 
are the external properties of its constituent subsystems. 
The internal properties of a system can be inferred from the external properties of its 
subsystems by means of a reasoner. To this aim, one needs to define a query class, 
which subsumes the (external) properties of all systems that are subsystems of a 
given system. Such a query class must be individually defined for each system in-
stance. An exemplary query class named ‘internal properties’ has been implemented 
in the formal specification of this ontology module. The query class retrieves the 
internal properties of a sample system S65. 

                                                           
65 A system can have both internal and external properties of the same type. For example, con-
sider a phase system, which is composed of two single phases. Both the overall phase sys-
tem and the two single phases have a property of type density. However, their meanings are 
different: The external property of the phase system represents the (averaged) density of over-
all system, whereas the internal properties represent the densities of the constituent liquid phase 
and vapor phase. 
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5.1.17 Property Set 

A property set constitutes an (unordered) collection of properties, which may be of 
different types. The properties contained in a property set are identified via the rela-
tion comprisesDirectly, which is a specialization of the transitive relation comprises. 
These relations are defined analogously to the contains(Directly) relation between 
supersystems and subsystems, yet with their ranges and domains restricted to prop-
erties. Consequently, the comprises(Directly) relation is depicted by the same symbol 
as the contains(Directly) relation: a white diamond with directed arrow (Fig. 5.22). 

Fig. 5.22: Property set 

A property set is itself a property; thus, a property set may comprise other property 
sets. However, a property set cannot have a value of its own. 
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Elementary system 

Exclusive subsystem 
An exclusive subsystem is a direct subsystem of a composite system; it cannot be a 
direct subsystem of any other system.  
Formal definition: An exclusive subsystem is exclusively a subsystem of some sys-
tem. 

Extensible value set 
An extensible value set is a value enumeration which, unlike a fixed value set, is not 
defined by an (exhaustive) enumeration of its instances. Thus, the number of poss-
ible values may change at run time. 

First-level subsystem 
A subsystem at the first level of decomposition.  
Formal definition: A subsystem that is a direct subsystem of a top-level system. 

Fixed value set 
A fixed value set is a value enumeration that is defined by an exhaustive enumeration 
of its instances. Thus, the number of possible values is fixed. 

Internal properties 

They can be specified by means of a query class and thus inferred by a reasoner. 
Such a query class must be defined individually for each system instance. The 
query class ‘internal properties’ exemplarily demonstrates this approach for a sam-
ple system S.  
Formal definition: The internal properties of the system instance S are equivalent to 
the properties of the subsystems of S. 

Model 
A model is a system that is used to enable the understanding of or the command 
over the original system, or to replace the original system. Model system and orig-
inal system share certain characteristics that are of relevance to the task at hand 
(Wüsteneck 1963).  
Formal definition: A model is a system that models some other system. 

Physical constant 
A physical constant is a scalar quantity, the value of which is believed to be both uni-
versal in nature and invariant over time. Examples are the elementary charge, the 
gravitational constant, Planck's constant, and the speed of light in the vacuum. 

Physical dimension 
A physical dimension is a characteristic associated with physical quantities and units of 
measure for purposes of organization or differentiation. Mass, length, and force are 
exemplary instances of physical dimension. 

An elementary system is a subsystem that cannot be further partitioned into subsys-
tems. Formal definition: An elementary system is a subsystem that is not a supersystem. 

The ‘internal properties’ of a system are the properties of its constituent subsystems. 
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Physical quantity 
A physical quantity is a property that has quantifiable values. The concept includes 
scalars as well as vectors and higher-order tensors. Moreover, it comprises both 
physical quantities, such as mass or velocity, and nonphysical quantities, such as 
amount of money or rate of inflation.  
Formal definition: A physical quantity is a property that has a physical dimension. 

Property 
The property class represents the individual properties (traits, qualities) of a system, 
which distinguish the system from others. Typical examples are size, color, or 
weight, which are modeled as subclasses of property.  

Property set 
A property set constitutes an (unordered) collection of properties, which may be of 
different types.  

Qualitative value 
A qualitative value is a value that is not (numerically) quantifiable.  

Quantitative value 
A quantitative value is the value of a physical quantity. 

Scalar quantity 
A scalar quantity is a scalar-valued physical quantity. 

Scalar value 
A scalar value is the value of a scalar quantity. 

Second-level subsystem66 
A subsystem at the second level of decomposition.  
Formal definition: A subsystem that is a direct subsystem of a first-level subsystem. 

Subsystem 
A subsystem is a system that is a constituent of another system.  
Formal definition: A subsystem is a system that refers to another system via the is-
SubsystemOf relation. 

Supersystem 
A supersystem is a system that has some constituent subsystems.  
Formal definition: A supersystem is a system that refers to another system via the 
hasSubsystem relation. 

System 
The system class denotes all kinds of systems, which may be physical or abstract. 

                                                           
66 This concept simply demonstrates that second, third, fourth, level subsystems can be defined 
in an analogues manner to the , if required. 

Formal definition: A property set is a property that directly comprises some proper-
ties.  

first-level subsystem
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System environment 
The immediate environment of a given system S consists of all systems that are di-
rectly related to S. It can be specified by means of a query class. As the environ-
ment concept is relative, such a query class must be defined individually for each 
system instance. The query class system environment exemplarily demonstrates the 
approach for sample system S.  
Formal definition: The immediate environment of the system instance S includes 
all systems that (1) are not S, (2) are not subsystems of S, (3) are directly related to 
S. 

System interface 
The class system interface represents the interface through which a system can be 
connected to another system.  

Top-level system 
A top-level system is a supersystem that is not a constituent of some other system.  
Formal definition: A top-level system is a supersystem that is not a subsystem. 

Unit of measure 
A unit of measure is a standard measure for the scalar value of physical quantity, 
which has been adopted by convention. 

Value 
The value class denotes the different values of a property. 

Value enumeration 
A value enumeration specifies the (finite) set of possible values of a qualitative value. 
Formal definition: A value enumeration is either a fixed value set or an extensible val-
ue set. 

Relation Descriptions 

comprises 
The relation comprises indicates the members of a property set. 

comprisesDirectly 
The relation comprisesDirectly indicates the direct members of a property set. 

contains 
The contains relation constitutes an alternative to the hasSubsystem relation. It 
should be used instead of hasSubsystem  

– if the hasSubsystem relation causes performance problems, or 
– if only one side of the aggregation relation is of interest, namely the indica-

tion of the constituting elements of a supersystem. 
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containsDirectly 
The relation containsDirectly is an alternative to the hasDirectSubsystem relation. It 
should be used instead of hasDirectSubsystem  

– if the hasDirectSubsystem relation causes performance problems, or 
– if only one side of the aggregation relation is of interest, namely the indica-

tion of the direct constituents of a supersystem. 

hasAspectSystem 
The relation hasAspectSystem designates the aspect systems of a system. 

hasCharacteristic 
The hasCharacteristic relation constitutes a shorthand notation for the specification 
of a constant property and its value. 

hasDimension 
The relation hasDimension specifies the physical dimension of a physical quantity or a 
unit of measure. 

hasDirectSubsystem 
The relation hasDirectSubsystem refers from a supersystem to its direct subsystem. 

hasProperty 
The relation hasProperty indicates the properties of a system. 

hasSubsystem 
The relation hasSubsystem denotes the relation between a supersystem and its sub-
system. 

hasUnitOfMeasure 
The relation hasUnitOfMeasure establishes the unit of measure of a scalar value. 

hasValue 
The hasValue relation designates the values of a property. 

isBackdropOf 
The isBackdropOf relation states that the value serves as a backdrop for the observa-
tion of some other value. 

isComposedOfSubsystem 
The relation isComposedOfSubsystem indicates the non-sharable, direct subsystem 
of a supersystem. 

isConsideredUnderAspectOf 
The relation isConsideredUnderAspectOf indicates the type of an aspect system by re-
ferring to an instance of the aspect class. 

isConnectedTo 
The relation isConnectedTo represents topological connectivity between systems.  
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isDirectlyConnetedTo 
The relation isDirectlyConnectedTo denotes the direct topological connectedness of 
two systems. 

isDirectlyRelatedTo 
The relation isDirectlyRelatedTo subsumes all kinds of direct inter-system relations. 

isDirectSubsystemOf 
The relation isDirectSubsystemOf links a subsystem to its direct supersystem.  

isExclusivelySubsystemOf 
The relation isExclusivelySubsystemOf links a non-sharable subsystem to its direct 
supersystem. 

isModeledBy 
The relation isModeldBy points from a modeled system to its model.  

isObservedAgainstBackdrop 
The isObservedAgainstBackdrop relation maps a value against a backdrop value. 

isPropertyOf 
The relation isPropertyOf links a property instance to a system instance.  

isRelatedTo 
The relation isRelatedTo subsumes all kinds of inter-system relations. 

isSubsystemOf 
The relation isSubsystemOf refers from a subsystem to its supersystem. 

isValueOf 
The relation isValueOf assigns a value to a property. 

models 
The relation models links a model to the modeled system. 

qualitativeValue 
The relation qualitativeValue specifies the actual value of a qualitative value. 

representsAspectOf 
The relation representsAspectOf links an aspect system to its respective system. 

Attribute Descriptions 

numericalValue 
The attribute numericalValue specifies the number part of a quantitative value. 

value 
The value attribute holds the actual value of a qualitative value. 
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5.2 Network System 

The ontology module network_system introduces a structured representation for 
complex systems, which is applicable in such different domains as biology, 
sociology, and engineering. The common strategy of these disciplines is to 
represent the system as a network. In this context, a network is understood as a 
modular structure that “is determined on hierarchical ordered levels by coupling of 
components and linking elements” (Gilles 1998). Thus, the representation of net-
work systems calls for two different mechanisms: the mereological decomposition 
of systems and the topological ordering of the system components. 
The concepts required for the mereological decomposition of systems are provided 
by the ontology module system, which allows for the structuring of systems into 
subsystems across multiple levels of hierarchy (cf. Sect. 5.1.4). Hence, what re-
mains to be done is to introduce concepts for the topological organization of the 
system components. To this aim, we adopt the design pattern for the representa-
tion of graphs that was defined in the ontology module topology of the Meta Mod-
el (cf. Sect. 4.4). Hence, network system is introduced as a specialization of system 
incorporating mereological as well as topological considerations. According to the 
design pattern, graphs are represented through nodes and connecting arcs, where 
an arc may or may not be directional. Additionally, ports and connection points may 
be used to further specify the connectivity between nodes and arcs. 
Applying this design pattern to the representation of network systems, two special 
types of systems, device and connection, are introduced. Hence, a network system is 
composed of at least one device and one connection as shown in Fig. 5.23. Device 
and connection correspond to the meta classes node and arc, respectively, and are 
defined equivalently. Additionally, a directed connection is established as a subclass 
of connection. 

Fig. 5.23: Connectivity of devices and connections 
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The relation isDirectlyConnectedTo, previously established in the system module (cf. 
Sect. 5.1.5), is utilized to couple a connection with a device. For linking a directed 
connection to a device, the relations enters and leaves are to be used, which are de-
fined analogously to the Meta Model (cf. Fig. 5.24). 
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Fig. 5.24: Hierarchy of topological relations 

So far, we have considered only such connections that are connected to exactly two 
devices. Another special case of connection is the single-edge connection, which is 
directly connected to only a single device. We denote such a class as environment 
connection because it represents the connectivity of a network system with its (not 
explicitly specified) environment (cf. Fig. 5.25). 

Fig. 5.25: Connectivity of environment connection 

Ports and connection points are introduced as special types of system interfaces (Fig. 
5.26). Just like in the Meta Model, ports and connection points represent the inter-
faces of the devices and connections. Their characteristics need to match in order to 
realize a valid coupling (cf. Sect. 4.4.3). 
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Fig. 5.26: Ports and Connection points 

The decomposition of devices and connections, depicted in Fig. 5.27, is governed 
by the following regulations: 

– Devices can only have direct subsystems of type device, connection, or port. 
– Connections can only have direct subsystems of type device, connection, or 

connection point. 
– If a device is decomposed into a number of sub-devices, then these sub-

devices must be connected by connections. Thus, a device needs to be de-
composed into two devices and one intermediate connection, at least. 

Fig. 5.27: Decomposition of devices and connections 

Similarly, if a connection is decomposed into sub-connections, then there must be 
devices in between the sub-connections. Thus, a connection needs to be decomposed 
into two connections and one intermediate device, at least. 
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The aforementioned regulations are derived from the decomposition rules for 
nodes and arcs established in the Meta Model. For details on this issue, refer to 
Sect. 4.4.3. Finally, we define a network system as a system that is composed of 
some devices and connections. 

5.2.1 Usage 

A large number of real-world systems can be modeled as network systems: technic-
al systems (Alberts 1994; Marquardt 1996; Marquardt et al. 2000), physico-
chemical systems (e.g., Marquardt 1992a; Marquardt 1994b, Marquardt 1995; 
Gilles 1998), biological systems (e.g., Mangold et al. 2005), economic systems 
(e.g., Andresen 1999), social systems (e.g., Bunge 1979), and others. Generally, 
the devices are the crucial elements of a network system and hold the major functio-
nality, while the connections represent the linkages between the devices. 
To enhance the understanding for the applicability of network systems, three ex-
amples of describing real-world systems as network systems are discussed subse-
quently: 

– Marquardt (1992a) and Gilles (1998) propose a framework for the devel-
opment of mathematical models for physico-chemical systems, wherein 
devices and connections represent the individual model building blocks. 
Within the modeling framework, only the devices have the capability for 
the accumulation and/or change of extensive physical quantities, such as 
energy, mass, and momentum. The connections, on the other hand, describe 
the fluxes of quantities that are interchanged between the devices; different 
types of fluxes can be modeled this way – of matter (e.g., material flow 
through a pipe), energy (e.g., heat conduction through a wall), momentum 
(e.g., shock wave in a fluid medium). 

– Network systems are particularly suitable for the representation of process 
flowsheets. For example, consider a Block Flow Diagram (BFD), which is 
used to specify the conceptual design of a chemical process: The individual 
process units (unit operations) can be considered as devices, and the ma-
terial and energy streams that are exchanged between the units can be 
represented as connections. Another example is the Piping & Instrumenta-
tion Diagram (P&ID) applied in basic and detail engineering: Here, the ap-
paratuses and machines are modeled as devices, while connections represent 
the pipes (for materials and utilities) and the power supply lines. 

– In the area of control theory, the control components (controller, sensor, 
controlled system,…) can be modeled as devices, while the connections 
represent the signal lines that transmit information between the control 
components (Bayer et al. 2001). 
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5.2.2 Concept Descriptions 

Individual concepts of the module network_system are defined below. 

Class Descriptions 

Connection 
Connections are those elements of a network system that represent the linkages be-
tween the devices. 

Connection point 
A connection point represents the interface through which a connection can be con-
nected to the port of a device. Connection points may have certain attributes that fur-
ther specify the type of connection. Connection points are subsystems of the corres-
ponding connection or directed connection, respectively. 

Device 
Devices are the crucial elements of a network system, holding the major functionali-
ty. 

Directed Connection 
Directed connection is a specialization of connection and represents likewise the con-

Environment Connection 
Environment connection is a specialization of connection and represents a single-edge 
connection to exactly one device. Thus, special connections like system inputs or 
outputs may be represented for not explicitly defined environments.  

Network system 
A network system is a system that is composed of connections and devices.  
Formal definition: A network system is a system that is composed of some connec-
tions and some devices. 

Port 
Ports represents the interfaces through which devices are connected to connections. 
Formal definition: A port may have certain attributes that characterize the type of 
the connection. 

Relation Descriptions 

enters 

necting element between devices. However, the use of directed connection implies a 
directed interconnection.  

The relation enters interconnects an outgoing directed connection to its target device. 
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hasInput 
The relation hasInput connects a device to an incoming directed connection. 

hasOutput 
The relation hasOutput connects a device to an outgoing directed connection. 

isSuccessorOf 
The relation isSuccessorOf identifies all devices and directed connections that are 
successors of the considered one.  

isPredecessorOf 
The relation isPredecessorOf identifies all devices and directed connections that are 
predecessors of the considered one. 

leaves 
The relation leaves connects an outgoing directed connection to its source device. 

sameAs 
The relation denotes a correspondence between a connection and its placeholder in 
a decomposition hierarchy. 

5.3 Technical System 

The ontology module technical_system introduces the class technical system as a 
special type of a system which has been developed through an (engineering) de-
sign process. The criterion to qualify as a technical system is “to be designed in or-
der to fulfill some required function” (Bayer 2003). Thus, the technical system con-
cept may denote all kind of technical artifacts, such as chemical plants, cars, 
computer systems, or infrastructure systems like a sewage water system. But also 
non-technical artifacts like chemical products and even non-physical artifacts, 
such as software programs or mathematical models, can be considered as technical 
systems.  
For a comprehensive description of a technical system, five designated viewpoints 
are of major importance (Bayer 2003): the system requirements, the function of 
the system, its realization, the behavior of the system, and the performance of the 
system. These five viewpoints are explicitly modeled in this ontology module, as 
will be explained in the following sections: In Sects. 5.3.1 to 5.3.4, the precise 
meaning of the respective viewpoints will be clarified. In the subsequent Sect. 
5.3.5, the implementation of these viewpoints as specialized aspect systems (cf. 
Sect. 5.1.7) will be described. Lastly, Sect. 5.3.6 discusses the interrelations be-
tween the different aspect systems. 
Before going into details, it should be mentioned that the concepts provided by 
this module may be used to describe the ‘as-is’ state (i.e., the current status) of a 
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technical system as well as its ‘to-be’ state67 (future state, nominal state). Yet while 
the concepts are usable for both the ‘as-is’ case and the ‘to-be’ case, the two cases 
are not explicitly distinguished within the current version of OntoCAPE. Thus, it 
has to be deduced from context, which of the two cases prevails. 

5.3.1 Function and Requirements 

The ontological representation of function in design is a long-standing research is-
sue. Various definitions of the function concept have been proposed in the litera-
ture; for a review of those, see for example Baxter et al. (1994); Chandrasekaran 
(1994); Bilgic and Rock (1997); Chandrasekaran and Josephson (2000); Szykman 
et al. (2001); and Kitamura and Mizoguchi (2003). 
Here, we adopt the definition of Chandrasekaran and Josephson (2000), who de-
fine function as desired behavior. Thus, function is an abstraction of the actual 

According to Chandrasekaran and Josephson (2000), two interpretations of the 
function concept must be distinguished for a technical system: function seen from 
an environment-centric viewpoint and function seen from a device-centric view-
point (in this context, ‘device’ is used synonymously with technical system). The 
former viewpoint reflects the desired effect that a technical system exerts on its en-
vironment, yet without considering how this effect is to be achieved; the latter 
viewpoint additionally incorporates the principle of function of the technical sys-
tem. 
In OntoCAPE, the class system function represents the device-centric viewpoint, 
while the environment-centric viewpoint is described through the class system re-
quirement; both are subclasses of aspect system. 
The environment-centric viewpoint (system requirements) is more abstract than the 
device-centric viewpoint (system function): System requirements can be stated with-
out knowledge of their technical realization; only the desired effect on the envi-
ronment needs to be specified. The system function, on the other hand, specifies 
how the technical system fulfills the system requirements. Hence, the conceptual de-
sign of the technical system must be specified in terms of the underlying physico-
chemical or technical principles.  
As an example, consider the design of a process unit. The system requirements can 
be stated by describing the effect that the process unit shall exert on the processed 
materials (e.g., to separate dispersed particles from a liquid). Yet to specify the 
system function, one needs to consider the physical or technical principles based on 

                                                           
67 Particularly, the concepts associated with the viewpoints of requirements and function are fre-
quently (but not exclusively) employed to specify the ‘to-be’ state of a technical system, e.g. dur-
ing its design phase. 

behavior (cf. Sect. 5.3.3) insofar as only the desired effects are considered, 
whereas all the unwanted and/or side-effects are ignored. 
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which the desired effect is going to be achieved (e.g., decide whether the separa-
tion is realized by means of sedimentation, centrifugation, or filtration). Thus, 
“moving from an environment-centric functional description towards a device-
centric description calls for partially solving the design problem” (Chandrasekaran 
and Josephson 2000). 
Clearly, the main use for the concepts of system requirements and system function is 
to specify the ‘to-be’ state of a technical system during its design phase. Usually, 
the system requirements are formulated first, specifying the desired effect of the 
technical system on the environment. Later, at the conceptual design stage, the sys-
tem requirements are refined into system functions, particularizing the principle 
based on which the desired effect is to be accomplished.  
In addition to that, the concepts of system requirements and system function may also 
be used to characterize the ‘as-is’ state of a technical system. Note, however, that 
the semantics differ slightly, depending on whether the ‘as-is’ state or the ‘to-be’ 
state of the technical system is to be described: 

– In the ‘to-be’ case, the system requirements and system function specify the 
planned desired behavior of the technical system, as, for example, envi-
sioned in the early phases of the design process.  

– In the ‘as-is’ case, the system requirements and system function provide an 
abstract (i.e., environment-centric or device-centric) description of the ac-
tual desired behavior.  

In other words: the ‘as-is’ case describes the desired behavior that is effectively at-
tainable under optimal conditions. Obviously, this may differ from the planned de-
sired behavior reflected by the ‘to-be’ case. As an example, consider a chemical 
plant that has been designed for a nominal production capacity of 200,000 tons per 
year. After commissioning, however, it turns out that – due to some unforeseen 
problems – the actual production capacity is only 190,000 tons per year, at best. 
The nominal production capacity can be considered as the ‘to-be’ system require-
ments, whereas the actual production capacity can be considered as the ‘as-is’ sys-
tem requirements. 

5.3.2  Realization 

The realization aspect, represented through the class system realization, reflects the 
physical (or virtual) constitution of the technical system. In case of a physical sys-
tem, the system realization describes the system’s physical structure, including its 
geometrical and mechanical properties. For example, the system realization of a 
chemical process would comprise the equipment and machinery required for mate-
rials processing; the system realization of a chemical product would reflect its mo-
lecular structure, crystal morphology, etc. In case of a non-physical system (such 
as a computer program), the system realization reflects the logical or abstract structure 
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of the system; also, it may describe the (physical) implementation of the non-
physical system (e.g., the model equations of a mathematical model or the source 
code of a computer program). Generally, the system realization gives a static de-
scription of the technical system, as opposed to the system behavior (cf. next sec-
tion), which describes its dynamic behavior. Consequently, a system realization has 
mostly constant properties, which are often represented in shorthand notation via 
the hasCharacteristic relation (cf. Sect. 5.1.14). 
A system realization may describe the ‘as-is’ state of the technical system as well as 
its ‘to-be’ state. In the ‘as-is’ case, it is comparable to a technical documentation, 
which reflects the current state of the technical system. By contrast, the ‘to-be’ case 
is comparable to a technical specification, as it is typically created in an engineer-
ing design project to specify the technical system that is to be built. In this context, 
it is important to remember that a system realization holds only information pertain-
ing to the system itself; information that specify how to realize a technical system 
(e.g., assembly instructions or production planning) do not form part of the system 
realization.  
Note that a system realization can be specified on different levels of detail and ab-
straction. For example, the system realization of a chemical plant may be stated on 
the information level of a P&ID (which represents the major equipment items and 
their main dimensions, but no geometrical details) as well as on the more detailed 
information level provided by isometric drawings and 3D models. 

5.3.3 Behavior 

The class system behavior describes how a technical system operates under certain 
conditions. Unlike the previously introduced system requirements and system func-
tion, which consider only the desired behavior, the system behavior also accounts 
for the unwanted behavior and the side-effects. As an example, consider chemical 
reactor, which is described from the viewpoint of system behavior: Such a descrip-
tion would comprise not only the main reaction (i.e. the desired behavior), but also 
include the undesirable side reactions.  
If the technical system is described ‘as-is’, the system behavior reflects the behavior 
that can be actually observed. In the ‘to-be’ case, the system behavior concept 
represents the predicted behavior, which may be estimated on the basis of experi-
ments or mathematical models.  
The system behavior can be described both quantitatively and qualitatively. A quan-
titative description is provided by the values of its properties, which must be distin-
guished by means of a suitable backdrop property, usually a temporal coordinate68 
(cf. Sect. 6.4). This agrees well with the literature on dynamic systems (e.g., 
Föllinger 1982), where the behavior of a system is often defined as the change of 
                                                           
68 Of course, other choices of backdrop properties are also possible. 
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its states over time. According to Bayer et al. (2001), the values of one distinct 
property and their related (temporal) backdrop values can be considered as a state 
variables of the technical system. The state of a technical system is given by the to-
tality of all state variables at one particular point in time. Thus, a state can be con-
sidered as a temporal snapshot of the system behavior, and the system behavior can 
be described by the sequence of its states over time.  
A qualitative description of the system behavior can be obtained by indicating the 
system’s characteristic phenomena. In this context, a phenomenon denotes a typical 
mode of behavior exhibited by the system. The specification of a phenomenon 
implies (1) the existence of certain properties associated with that particular mode 
of behavior, and (2) that the values of these properties follow a designated pattern. 
To give an example: the indication of the physicochemical phenomenon of laminar 
flow (cf. Sect. 8.6.1.6) implies that (1) the properties ‘velocity’ (or ‘mass flow’), ‘vis-
cosity’, and ‘density’ are of relevance for describing the system behavior, and (2) that 
the values of these properties must comply with the laws of laminar flow69. Thus, 
through the specification of the prevailing phenomena, the state of the technical sys-
tem can be qualitatively defined70. 

5.3.4 Performance 

Note that a system performance may evaluate only a particular aspect of the technic-
al system: For example, construction costs measure the economic performance of a 
system realization, operating costs denote the economic performance of a system be-
havior, and a ranking of conceptual design alternatives corresponds to the perfor-
mance evaluation of some system function.  

                                                           
69 Note that the mathematical formulation of the laws of laminar flow can be specified through 
concepts from the partial model mathematical_model (cf. Chap. 9). 

70 Even for the specification of the quantitative behavior, it is advantageous to specify the phe-
nomena first; afterwards, one may query the ontology for a list of relevant properties and phys-
ical laws associated with these phenomena. 

The system performance is concerned with the evaluation and benchmarking of the 
technical system. The concept itself represents a performance measure for the eval-
uation. Different performance measures are possible, depending on the chosen eval-
uation criterion. Typical criteria would be safety, reliability, ecological performance, 
and economic performance; a typical performance measure for the latter would be 
costs. The system performance can represent the predicted performance (‘to-be’ case) 
as well as the performance that is actually measured (‘as-is’ case). 
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5.3.5 Implementation of the Technical System in OntoCAPE 

In OntoCAPE, the viewpoints of system requirements, system function, system beha-
vior, system realization and system performance are modeled as subclasses of aspect 
system. Each aspect system is assigned an instance of the aspect class, which expli-
citly typifies the nature of the respective aspect system: For example, the system 
function is assigned the aspect of function (cf. Fig. 5.28). 

Fig. 5.28: The five major aspects of a technical system 

The relationships between the technical system and its aspect systems are estab-
lished via specializations of the relations hasAspectSystem and representsAspectOf, 
as indicated in Fig. 5.28 and Fig. 5.29. 
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Fig. 5.29: Refinement of the hasAspectSystem relation 

As explained above, the system behavior can be qualitatively described by indicat-
ing the relevant phenomena. This is modeled through the class phenomenon, which 
is assigned to a system behavior via the relation hasPhenomenon (Fig. 5.30).  
The occurrence of a particular phenomenon exerts an influence on certain proper-
ties: For example, if the phenomenon of laminar flow is present, it will influence the 
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properties ‘velocity’ and/or ‘mass flow’; the phenomenon of chemical equilibrium has 
an influence on the concentrations, etc. These kinds of interdependencies can be 
modeled by means of the relation isInfluencedBy, which explicitly designates those 
properties that are influenced by a particular phenomenon.  

Fig. 5.30: Qualitative description of system behavior 

5.3.6 Relations between Aspect Systems 

Manifold relations and dependencies exist between the aspect systems of technical 
system. The type and the number of relations vary, depending on the respective 
application context. For example, the following relationships will arise in the 
course of a design project:  

– In conceptual design, the system requirements are transformed into system 
functions. 

– Later, the system function is detailed into the system realization at the stage of 
basic design. 

– The system realization sets boundary conditions that constrain the possible 
system behavior. 

Depending on the target application, an ontological model of these relations can 
turn very complex. For example, Kitamura and Mizoguchi (2003) present a fairly 
large ontology designated solely for modeling the interrelations between system 
requirements and system functions. According to the authors, this level of detail is 
required to provide adequate support for an intelligent design environment.  
So far, such applications have not been the focus of OntoCAPE; consequently, the 
inter-aspect relations are presently not modeled in detail. Fig. 5.31 presents some 
generic binary relations, which may be used to navigate between aspect systems; 
additional ones may be introduced if required.  
Generally, the inter-aspect relations displayed in Fig. 5.31 are specializations of 
the isRelatedTo relation.  

– System requirements and system function can be linked via the relations fulfills 
and its inverse isAchievedThrough, thus stating that a conceptual design so-
lution fulfills a particular requirement. 
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– The relation realizes and its inverse isRealizedBy indicate that a particular 
system realization is able to implement some system function. 

– The relations constrains and isConstrainedBy denote the restrictions on the 
system behavior, which are imposed by a system realization. 

Fig. 5.31: Exemplary relation applied between aspect systems 

Finally, the relation evaluates refers from a system performance to the aspect system 
the performance of which is measured; its inverse hasPerformanceMeasure points 
from the evaluated aspect system to the performance measure.  

5.3.7 Concept Descriptions 

Individual concepts of the module technical_system are defined below. 
 

Class Descriptions 

Phenomenon 
A phenomenon denotes a typical mode of behavior exhibited by a technical system, 
thus providing a qualitative description of a recurring system behavior. 

System behavior 
The system behavior describes how a technical system operates under certain condi-
tions; this description can be of a qualitative or quantitative nature.  
Formal definition: A system behavior represents the behavioral aspect of a technical 
system.  
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System function 
A system function describes the desired behavior of a technical system from a de-
vice-centric perspective (cf. Chandrasekaran and Josephson 2000). To indicate the 
system function of a technical system, the conceptual design of the technical system 
must be specified in terms of the underlying physicochemical and/or technical 
principles.  
Formal definition: A system function represents the functional aspect of a technical 
system.  

System Performance 
The system performance concept constitutes a performance measure for the evalua-
tion and benchmarking of technical systems. Different performance measures are 
possible, depending on the chosen evaluation criterion. Typical criteria would be 
safety, reliability, ecological performance, and economic performance.  
Formal definition: A system performance represents the performance aspect of a 
technical system.  

System realization 
The system realization represents the physical (or virtual) constitution of the tech-
nical system. In case of a physical system, the system realization describes the sys-
tem’s physical structure, including its geometrical and mechanical properties. In 
case of a non-physical system, the system realization reflects the logical or abstract 
structure of the system; moreover, it may describe the (physical) implementation 
of the non-physical system.  
Formal definition: A system realization represents the realization aspect of a tech-
nical system.  

System requirements 
The system requirements specify the desired behavior of a technical system from an 
environment-centric perspective (cf. Chandrasekaran and Josephson 2000). From 
the perspective of systems requirements, the technical system is viewed as a black 
box: Its structure and the underling physical and technical principles are not con-
sidered; only the effect on the environment is specified.  
Formal definition: The system requirements represent the requirements aspect of a 
technical system.  

Technical system 
A technical system is a system which has been developed in an engineering design 
process. The criterion to qualify as a technical system is “to be designed in order to 
fulfill some required function” (Bayer 2003). Thus, the technical system concept 
may denote all kinds of technical artifacts, such as chemical plants, cars, computer 
systems, or infrastructure systems like a sewage water system. But also non-
technical artifacts like chemical products, and even non-physical artifacts, such as 
software programs or mathematical models, can be considered as technical systems. 



150      Upper Level 

Relation Descriptions 

constrains 
The constrains relation indicates that a system realization imposes constraints on the 
system behavior. 

evaluates 
The relation evaluates refers from a performance measure to the aspect system the 
performance of which is evaluated. 

fulfills 
The fulfills relation states that a system function fulfills a particular system require-
ment. 

hasBehavioralAspect 
The relation points to the behavioral aspect of a technical system.  

hasFunctionalAspect 
The relation points to the functional aspect of a technical system.  

hasPerformanceMeasure 

hasPerformanceAspect 
The relation points to the performance aspect of a technical system.  

hasPhenomenon 
The relation hasPhenomenon assigns a phenomenon to a system behavior. 

hasRealizationAspect 
The relation points to the realization aspect of a technical system.  

hasRequirementsAspect 
The relation points to the requirements aspect of a technical system.  

isInfluencedBy 
The relation isInfluencedBy indicates which properties are influenced by a particular 
phenomenon.  

isAchievedThrough 
The relation isAchievedThrough states that a system requirement can be achieved by 
means of a some system function. 

isConstrainedBy 

 

The relation hasPerformanceMeasure points from an aspect system, the performance 
of which is evaluated, to the performance measure. 

The isConstrainedBy relation states that the system behavior is limited by the con-
straints imposed by the system realization. 
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isRealizedBy 
The relation isRealizedBy states that a system function is implemented by some sys-
tem realization. 

realizes 
The relation realizes states that a system realization implements a particular system 
function. 

representsBehaviorOf 
The relation refers from a system behavior to the overall technical system. 

representsFunctionOf 
The relation refers from a system function to the overall technical system. 

representsPerformanceOf 
The relation refers from a system performance to the overall technical system. 

representsRealizationOf 
The relation refers from a system realization to the overall technical system. 

representsRequirementsOf 
The relation refers from the system requirements to the overall technical system. 

5.4 Coordinate System 

The ontology module coordinate_system is a supplement to the system module. 
Fig. 5.32 gives an overview on the concepts established by coordinate_system. In 
particular, it introduces the concept of a coordinate system, a special type of system 
that provides a frame of reference for the observation of properties owned by other 
systems. 
The properties of a coordinate system are called coordinates. A coordinate is defined 
as a scalar quantity, the values of which (i) serve as a backdrop for some values and 
(ii) cannot be observed against some further backdrop. Hence, as a coordinate can-
not have a backdrop of its own, it constitutes an ‘absolute’ or ‘final’ backdrop for 
the observation of properties; it thus breaks the loop caused by the relativity of the 
backdrop concept (cf. the discussion in Sect. 5.1.10).  
Each coordinate refers to one coordinate system axis, which further qualifies the 
coordinate. For example, a spatial coordinate may refer to the x-axis of a spatial 
coordinate system, thus clarifying its spatial orientation. The coordinate system axis 
itself is not further specified through ontological concepts; consequently, its cha-
racteristics – e.g., its orientation relative to some spatial objects not described by 
OntoCAPE – must be defined outside the ontology.  
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Fig. 5.32: Coordinate system 

5.4.1 Concept Descriptions 

Individual concepts of the module coordinate_system are defined below. 

Class Descriptions 

Coordinate 
A coordinate is a property of a coordinate system. The values of a coordinate provide 
an ‘absolute’ or ‘final’ backdrop for the observation of some properties. 

Coordinate set 
A coordinate set groups some coordinates which logically belong together.  
Formal definition: A coordinate set is a property set that comprises only coordinates.  

Coordinate system 
A coordinate system constitutes a frame of reference for the observation of proper-
ties owned by other systems. A coordinate system is a system that has some coordi-
nates as properties. 

Coordinate system axis 
A coordinate system axis represents an axis of a coordinate system.  

 

 

 

Detailed concept definitions are given below. The usage of the concepts is explained 
in Sect. 6.4 as part of the documentation of ontology module space_and_time  
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Coordinate value 
A coordinate value serves as a backdrop for some values, yet it cannot have a back-
drop of its own.  
Formal definition: A coordinate value is a scalar value which is the value of a coordi-
nate.  

Relation Descriptions 

hasAxis 
The relation hasAxis identifies the coordinate system axes that belong to a particular 
coordinate system.  

hasCoordinate 
The relation hasCoordinate indicates the coordinates of a coordinate system. 

refersToAxis 
By means of the relation refersToAxis, a coordinate can be further specified. For ex-
ample, a spatial coordinate may refer to the x-axis of a spatial coordinate system, 
thus clarifying its spatial orientation.  

5.5 Tensor Quantity 

As explained in Sect. 5.1.11, physical quantities include not only scalars but also 
vectors (e.g., velocity vector) and higher-order tensors (e.g., the dyadic stress ten-
sor). The ontology module tensor_quantity provides the necessary concepts to de-
fine such tensor quantities. 
A tensor quantity is a physical quantity that is assigned a tensor order. A tensor quanti-
ty of order k can be defined by induction: 

– A tensor quantity of order 0 is a scalar quantity. 
– A tensor quantity of rank k is given by an n-tuple, the elements of which are 

again tensor quantities of order (k-1). 

Thus, a tensor quantity of arbitrary order can be recursively decomposed into tensor 
quantities of lower order, ultimately obtaining scalar quantities.  
The above definition is implemented in OWL as follows. The order of the tensor 
quantity is denoted by the attribute hasTensorOrder. For the modeling of the tuple 
structure, we apply the design pattern for an array introduced in the Meta Model 
(cf. Sect. 4.5.3). This leads to the structure displayed on the left-hand side of Fig. 
5.33.  
A tensor quantity has elements of type physical quantity, which may again be tensor 
quantities of a lower order (note that the rank reduction of the tensor elements can-
not be enforced in the OWL language, but must be accomplished manually). The 
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order of the tensor elements is established through the index class: Each tensor 
element is assigned an index with unique integer value (given by the index 
attribute) via the determinesPositionOf relation; the indices refer to the tensor quantity 
via the isOrderedBy relation (cf. Sect. 5.5 for details). 

 

Fig. 5.33: Tensor quantity and tensor value 

The value of a tensor quantity must again be a tensor of the same order as the tensor 
quantity. To this end, the class tensor value is introduced. A tensor value is defined 
analogously to a tensor quantity, as can be seen on the right-hand side of Fig. 5.33. 
Thus, each tensor value can be ultimately decomposed into scalar values. Like all 
physical quantities, a tensor quantity is assigned a physical dimension, which must be 
the same physical dimension as that of its tensor elements71. Thus, unlike the con-
cept of a property set, a tensor quantity comprises only physical quantities of the same 
type. 
Two special types of tensor quantities are exemplarily introduced below: the vector 
quantity and the matrix quantity. 
A vector quantity is a tensor quantity that has a tensor order of 1. It is composed of 
vector elements, subclasses of scalar quantity, which by default refer to an index via 
the hasIndex relation. A vector quantity has vector values, which are defined analo-
gously to vector quantities. A vector value is composed of scalar vector element val-
ues; these are specialized scalar values referring to an index. Fig. 5.34 summarizes 
the above concept definitions. 
A matrix quantity is a tensor quantity of rank 2, the elements of which are vector quan-
tities. As these vectors constitute the columns of the matrix quantity, they are specif-

                                                           
71 Note that this axiom cannot be expressed in the OWL language; consequently, it must be en-
forced by the user. 
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ically designated as column vector quantities, and each column vector quantity is as-
signed a column index. By contrast, the vector elements of the column vector quantity 
are ordered by a row index. 

 

Fig. 5.34: Interrelations between vector quantity, vector element, vector value, and vec-
tor element value  

The definitions of these concepts are summarized by Fig. 5.35; Fig. 5.36 illustrates 
their usage. 

Fig. 5.35: Definition of the matrix quantity concept 

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

2..n1

ScalarQuantityTensorQuantity

Æ hasElement

 isElementOf

PhysicalQuantity

hasTensorOrder
1

hasValue

TensorValue

QuantitativeValue

ScalarValue

2..n1 Æ hasElement

 isElementOf

hasValue

hasTensorOrder1

Index

VectorElement

hasIndex

VectorElementValue

hasIndex

VectorQuantity

VectorValue

isOrderedBy

isOrderedBy

 

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1   determinesPositionOf

Index

1   hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1   determinesPositionOf

1   hasIndex

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1   determinesPositionOf

Index

1   hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1   determinesPositionOf

1   hasIndex

Row
Index

Column
Index

2..n

VectorQuantity

Tensor
Quantity

Æ isOrderedBy

 isIndexOf

Æ isOrderedBy

 isIndexOf

MatrixQuantity

hasElement
1   determinesPositionOf

Index

1   hasIndex

2..n

hasElement

ColumnVector
Quantity

Vector
Element

1   determinesPositionOf

1   hasIndex

 



156      Upper Level 

The value of a matrix quantity is designated as a matrix value (not shown in Fig. 5.35 
for the sake of clarity). Analogously to the above definitions, a matrix value is 
composed of column vector values, again ordered by a column index; the elements of 
the column vector value are vector values, which are ordered by a row index. 

Fig. 5.36: Usage of the matrix quantity concept 

Concluding the above discussion, Fig. 5.37 gives an application example. It shows 
a two-dimensional stress tensor (i.e., matrix quantity), consisting of the scalar quanti-
ties σx, τxy, τyx, and σy, and its associated matrix value. Note that only the second col-
umns of matrix quantity and matrix value are elaborately modeled. For the sake of 
clarity, the respective class names in brackets are omitted. 
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Fig. 5.37: Application example of a matrix quantity and its matrix value 
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The definitions introduced so far conceptualize a tensor as a mere data structure, 
thereby ignoring its geometrical properties. Yet the complete specification of a 
tensor requires a statement of direction or orientation (Gruber and Olsen 1994). 
The tensor orientation can be indicated by assigning a spatial dimension to each 
element of a tensor; concretely, this is realized by referring from a vector element to 
the concept of a coordinate system axis (cf. Sect. 6.4) via the relation hasOrientation. 
Note that a vector element may refer to a cartesian coordinate system axis or a curvili-
near coordinate system axis (cf. definitions in Sect. 6.4). The latter enables the defi-
nition of rotation vectors to represent physical quantities like torque or angular mo-
mentum.  
The reference to a coordinate system axis (cf. Fig. 5.38) is of special importance, 
since we have defined the tensor as the recursive composition of its scalar ele-
ments. Yet while a tensor (as a whole) is independent of any chosen frame of ref-
erence, the decomposition of the tensor into its scalar elements depends on the 
particular choice of the reference frame. Thus, for a complete definition of a ten-
sor in terms of its constituent elements, the respective reference coordinate system 
must be specified. If such specification is omitted, the following will be assumed 
by default: The tensor elements refer to a positive Cartesian coordinate system, 
where the vector element with an index value of 1 refers to the x-axis, and the vector 
element with an index value of 2 refers to the y-axis, etc.  

Fig. 5.38: Specifying the orientation of a tensor by referring to a coordinate system 
axis 

5.5.1 Concept Descriptions 

Individual concepts of the module tensor_quantity are defined below. 

Class Descriptions 

Column index 
A column index denotes the position of a column vector within a matrix.  
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Column vector quantity 
A column vector quantity represents a column vector of a matrix quantity.  
Formal definition: A column vector quantity is a vector quantity that is an element of a 
matrix quantity. 

Column vector value 
A column vector value represents a column vector of a matrix value.  
Formal definition: A column vector value is a vector value that is an element of a ma-
trix value. 

Index 
An index represents the n-ary relation between a tensor, one of its elements, and 
the index attribute that denotes the position of the tensor element. 

Matrix quantity 
A matrix quantity is a second order tensor quantity. 

Matrix value 
A matrix value is a second order tensor value. 

Row index 
A row index denotes the position of a scalar element within a column vector.  

Tensor quantity 
A tensor quantity is a non-scalar physical quantity, such as a velocity vector or a 
stress tensor. 

Tensor value 
A tensor value is non-scalar quantitative value of a tensor quantity. 

Vector element  
Formal definition: A vector element is a scalar quantity that is the element of a vector 
quantity. 

Vector element value 

Vector quantity 
A vector quantity is a first order tensor quantity. 

Vector value 
A vector value is a first order tensor value. 

Relation Descriptions 

determinesPositionOf 
The relation determinesPositionOf refers from an index to the associated tensor ele-
ment. 

Formal definition: A vector element value is a scalar value that is the element of a 
vector value. 
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hasElement 
The relation hasElement identifies the elements of a tensor. 

hasIndex 
The relation hasIndex refers from a tensor element to its index. 

isElementOf 
The relation isElementOf denotes the affiliation of a tensor element to a tensor. 

isIndexOf 
The relation isIndexOf points from an index to the associated tensor. 

isOrderedBy  
The relation isOrderedBy identifies the index of a tensor.  

hasOrientation 
The relation hasOrientation specifies the orientation of a tensor element by referring 
to the corresponding coordinate system axis.  

Attribute Descriptions 

hasTensorOrder 
The attribute denotes the order of a tensor. Scalars are of order 0, vectors of order 
1. 

index 
The attribute indicates the numerical value of an index. 
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6 Supporting Concepts 
 
The partial model supporting_concepts provides fundamental notions, such as 
spatial and temporal coordinate systems, geometrical concepts, mathematical rela-
tions, as well as commonly used physical dimensions and SI-units. The concepts 
defined in this partial model do not belong to the core of the CAPE domain, but 
are merely utilized by the other partial models of OntoCAPE for defining and 
completing domain concepts. For that reason, supporting_concepts is only rudi-
mentarily developed, as it is not the objective of OntoCAPE to conceptualize areas 
that are beyond the scope of the CAPE domain. For example, the partial model 
mathematical_relation does not attempt to establish a full-fledged algebraic 
theory, as does the EngMath ontology (Gruber and Olsen 1994); rather, it provides 
a simple but pragmatic mechanism for the representation of mathematical rela-
tions, which serves the current needs of the other partial models of OntoCAPE. In 
the future, the ontology modules of supporting_concepts could be replaced by 
generic ontologies developed and tested by others in a more systematic manner. 

Fig. 6.1: Overview on partial model supporting_concepts 

As depicted in Fig. 6.1, supporting_concepts comprises five subordinate partial 
models, which are mathematical_relation, physical_dimension, SI_unit, space_ 
and_time, and geometry.  

6.1 Mathematical Relation 

The ontology module mathematical_relation introduces concepts to represent ma-
thematical expressions. However, it is not the objective of this module to describe 
mathematical models. Rather, this module provides auxiliary concepts, which are 
utilized by other ontology modules (e.g., for the definition of units, cf. Sect. 6.3.1). 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_6,  
© Springer-Verlag Berlin Heidelberg 2010 
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Mathematical relations and expressions are represented by means of binary trees72. 
The nodes of the tree represent the operands and the operators, and the structure of 
the tree specifies the order of evaluation. For example, the relation a + b = 2 can 
be represented through the binary tree depicted in Fig. 6.2. 

=

2+

a b

=

2+

a b
 

Fig. 6.2: Tree representation of the equation a + b = 2 

The leaves of the tree represent the operands (here: a, b, 2), the internal nodes 
represents the functional operators (here: +), and the root node denotes either a re-
lational operator (here: =) or another functional operator. 
The ontological representation of binary trees is adopted from the design pattern 
binary tree, as defined in the Meta Model (cf. Sect. 4.5.1): A node may have a left 
child and a right child; special nodes are root node, leaf, and internal node. 

Fig. 6.3: Class diagram of the ontology module mathematical relation 

Additionally, the class node value is introduced, which assigns a node to a mathe-
matical concept (cf. Fig. 6.3). A node value is either an operand or an operator. The 
operand class represents the variables, parameters, or numbers of a mathematical 
expression. An operator is either a relational operator or a functional operator. A rela-
tional operator represents mathematical relations, such as equality or greater than. 
A functional operator denotes mathematical operations, such as addition, exponen-
tiation, or logarithm. Two types of functional operators are distinguished: A binary 

                                                           
72 Currently, it is applied to algebraic expressions only. However, the approach can probabely be 

extended to complex PDE systems. 
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operator, which takes two arguments, and a unary operator, taking only a single 
argument73. 
Depending on the type of node, some restrictions are imposed on the type of its 
node value: 

– A root node has only operators as node values. 
– An internal node has only functional operators as node values. 
– A leaf has only operands as node values. 
– If a unary operator is used, the corresponding node has exactly one child. 

If a binary operator is used, the corresponding node has exactly two children. 
It is not compulsory that the operands of a mathematical expression are 
represented as instances of the class operand; instead, they may be represented as 
values of the attribute nodeValue. An example is presented in Fig. 6.4, which 
shows the OntoCAPE representation of the equation a + b = 2. The variables a 
and b are values of type ‘string’, the number 2 is of type ‘float’ (both ‘string’ and 
‘float’ are built-in XML schema datatypes; cf. Biron et al. 2004). 
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a b
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Fig. 6.4: OntoCAPE representation of a + b = 2; operands are represented through 
attribute values 

Moreover, a shorthand notation may be used to substitute child nodes that apply 
the nodeValue attribute. These nodes must be leaves that have no other function but 
to carry the value of the attribute nodeValue. In this case, they may be replaced by 
the attributes leftChildNodeValue and rightChildNodeValue, which are applied instead 
of the relations hasLeftChild and hasRightChild. Fig. 6.5 shows again the representa-
tion of the equation a + b = 2, this time in shorthand notation. Compared to Fig. 
6.5, the child nodes RHS, FirstSummand, and SecondSummand have been pruned, 
and their respective node values are represented through the attributes leftChildNo-
deValue and rightChildNodeValue. 

                                                           
73 In this case, the corresponding node has only a single child node, which represents the ope-
rand.  
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Fig. 6.5: Shorthand representation of the equation a + b = 2 

6.1.1 Usage 

In the module physical_dimension, the concepts of mathematical_relation are uti-
lized to establish mathematical relations between physical dimensions: (e.g., ve-
locity = length / time). Similarly, in the ontology module SI_unit, mathematical re-
lations can be established between different units (e.g., Newton = kilogram * 
meter / second^2). In these applications, a single operand is frequently involved in 
multiple mathematical expressions. Take for instance the linear equation system 

  a + b = 2 (1) 
  a – b = 0 (2) 

Here, the operand a appears both in equation (1) and in equation (2); the same is 
true for operand b. There are two possible representation patterns for such a situa-
tion: 
Representation pattern 1 is shown in Fig. 6.6. Here, separate nodes (leaves) are 
created for each occurrence of an operand; for instance, the leaf Var1_Eq1 
represents the occurrence of the operand a in equation (1), Var1_Eq2 represents the 
occurrence of a in equation (2). 
Representation pattern 1 is rather straight-forward. However, it may lead to a sig-
nificant overhead, as a new node must be created for each occurrence of an ope-
rand. This can be avoided by representation pattern 2, which is exemplarily pre-
sented in Fig. 6.7. Here, only one node (leaf) is created for each operand; this node 
forms part of multiple trees. For instance, Var1 is a leaf of both the tree that 
represents equation (1) and of the tree that represents equation (2). 
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Fig. 6.6: Representation pattern 1 

Pattern 2 reduces the representation effort, which is a considerable relief when 
modeling large equation systems or nested definition expressions, such as those in 
the ontology module SI_unit. On the other hand, pattern 2 is not as straight-
forward as representation pattern 1. The user must choose which one he/she pre-
fers. 
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Fig. 6.7: Representation pattern 2 
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Note that representation pattern 1 can be enforced by adding the constraint that 
each node must have only a single parent. 

6.1.2 Concept Descriptions 

Individual concepts of the module mathematica_ relations are defined below. The 
labels and definitions of operator instances, e.g. plus, minus etc., have been 
adopted from the Mathematical Markup Language, MathML (Carlisle et al. 2003). 
For their description in OntoCAPE, we refer to Morbach et al. (2008h). 

Class Descriptions 

Binary operator 
A binary operator denotes a binary operation between two expressions. Typical bi-
nary operations are addition, subtraction, multiplication, division, and exponentia-
tion.  

Functional operator 
A functional operator denotes a mathematical function.  
Formal definition: A functional operator is either a unary operator or a binary operator. 

Internal node 
An internal node is a node that has at least one parent and at least one child. The 
child may be represented either as a node or through the attribute leftChildNodeVa-
lue or rightChildNodeValue. 
Formal definition: A node that has a parent node as well as a child node.  

Leaf 
A leaf is a node without any children.  
Formal definition: A node that has neither a child node, nor a leftChildNodeValue, 
nor a rightChildNodeValue. 

Node 
A node is the basic element of a binary tree. It can be linked to up to two child 
nodes.  
Formal definition: A node is either a leaf or a root node or an internal node. 

Node value 
A node value represents a component part of mathematical expression. It can be ei-
ther an operator or an operand.  
Formal definition: A node value is either an operand or an operator.  

Operand 
An operand is one of the inputs of a functional operator. 
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Operator 
operator is either a relational operator or a functional operator.  

Relational operator 
A relational operator denotes a mathematical relation, such as equality or greater 
than, between two expressions. 

Root node 
A root node is the root element of a binary tree. All other nodes are descendents of 
the root node.  
Formal definition: A node without any parent node. 

Unary operator 
A unary operator denotes a mathematical operation which takes a single argument. 
Typical binary operations are squaring, root extraction, or factorial. 

Relation Descriptions 

hasAncestor 
The ancestors of a node are the nodes that precede the current node in the tree (i.e., 
the node’s parent, grandparent, etc.). 

hasChild 
The relation hasChild points to the children of a node; it subsumes the relations 
hasLeftChild and hasRightChild. 

hasDescendent 
The descendents of a node are the nodes that succeed the current node in the tree 
(i.e., the node’s children, grandchildren, etc.). 

hasLeftChild 
The relation hasLeftChild links a parent node to its left child node. 

hasNodeValue 
The relation hasNodeValue links a node value to a node. 

hasParent 
The relation hasParent denotes the parent of a node.  

hasRightChild 
The relation hasRightChild links a parent node to its right child node.  

isLeftChildOf 
The relation isLeftChildOf points from the left child node to its parent node. 

isRightChildOf 
The relation isRightChildOf points from the right child node to its parent node. 

Formal definition: An 



170      Supporting Concepts 

Attribute Descriptions 

leftChildNodeValue 
The attribute leftChildNodeValue can be used as a shorthand to substitute a left child 
node, the node value of which is represented through the attribute nodeValue.  

rightChildNodeValue 
The attribute leftChildNodeValue can be used as a shorthand to substitute a left child 
node, the node value of which is represented through the attribute nodeValue.  

nodeValue 
The attribute nodeValue indicates an operand (usually a number) in a mathematical 
expression.  

6.2 Physical Dimension (Partial Model) 

The partial model physical_dimension comprises two ontology modules (cf. Fig. 
6.8). The main module, physical_dimension, defines a set of base dimensions and 
establishes the proceedings to derive further physical dimensions from these base 
dimensions. It is extended by the ontology module derived_dimensions, which in-
troduces a number of frequently used derived dimensions. 

Fig. 6.8: Overview on partial model physical_dimension 
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The relations between physical dimensions can be described through mathematical 
equations, such as 
  Joule = Newton * meter.  
Multiplication and exponentiation to a real power are the permissible operations 
on physical dimensions. Exploiting this property, the majority of physical dimen-
sions can be mathematically derived from a small set of dimensions that we call 
fundamental or base dimensions by means of multiplication and exponentiation 
operations; physical dimensions that can be defined in terms of the base dimensions 
are called composite or derived dimensions. For example, the derived dimension 
‘velocity’ can be defined as the product of the base dimension ‘length’ and the 
base dimension ‘time’ raised to the power of minus one.  
There is no intrinsic property of a dimension that makes it fundamental (Gruber 
and Olsen 1994); hence, the choice of the base dimensions is a matter of conven-
tion. While the definition of the physical dimension concept in the system module 
still allows for arbitrary conventions (or ‘systems of dimensions’, as they will be 
called hereafter), the physical_dimension module establishes the SI system of di-
mensions, which comprises the base dimensions of length, time, thermodynamic 
temperature, mass, amount of substance, electric current, and luminous intensity 
(BIPM 2006). 
Fig. 6.9 presents the major concepts of the physical_dimension module. The class 
physical dimension, introduced in the ontology module system, is exhaustively parti-
tioned into three subclasses:  

– The class base dimension is defined as the exhaustive enumeration of the 
individuals length, time, thermodynamic_temperature, mass, amount_ 
of_substance, electric_current_strength, and luminous_ intensity. 

– The class supplementary dimensions subsumes further fundamental dimen-
sions that do not form part of the SI system of units and are therefore not 
classified as base dimensions. Currently, the class holds two individuals: 

The concept of a physical dimension has been introduced in the system module. Bas-
ically, it serves as a characteristic that can be associated with, physical quantities, 
and units of measure for the purpose of classification or differentiation. 

amount_of_money characterizes monetary physical quantities and units of 
measure. For the characterization of dimensionless physical quantities, the 
concept of an identity_dimension is introduced. Prominent examples of 
dimensionless physical quantities are dimensionless numbers like the 
Reynolds number, or counting quantities like the partition function in sta-
tistical thermodynamics or the number of trays in a distillation column. 
According to Gruber and Olsen (1994), the identity_dimension represents 
the identity element for multiplication over physical dimensions. That 
means that the product of the identity_dimension and any other physical 
dimension is that other physical dimension. 

6.2.1 Physical Dimension (Ontology Module) 
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– All other physical dimensions are derived dimensions. These can be subdi-
vided by further subclasses that, for example, group physical dimensions 
by fields of science. A possible classification is provided by the ontology 
module derived_dimensions: (cf. Sect. 6.2.2). 

Fig. 6.9: Class diagram of the ontology module physical_dimension 
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concepts defined in ontology module mathematical_relation: A derived dimension 
is defined by a node, which represents the root of a definition tree; the leaves of 

values. To this end, base dimension and supplementary dimension are declared as 
subclasses of operand; that way, their instances may appear as operands in the de-
finition equation. An example is given in Fig. 6.10. 
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74 Implementation advice: Unfortunately, the definition of derived dimensions through the above 
mechanism scales badly with current reasoners. Therefore, such definitions should be omitted in 
order to enhance the reasoning performance, unless they are definitely required by the respective 
application. 

the definition tree have either base dimensions or supplementary dimensions as node 

Fig. 6.10: Definition of the derived dimension ‘velocity’ 
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Velocity is declared as an instance of derived dimension; it is defined by Velocity 
node, which is in turn defined by its two child nodes, Length and Time, which are 
concatenated by the binary operator divide. Length and Time have the base dimen-
sions length and time, respectively, as node values. 

6.2.1.1 Concept Descriptions 

Individual concepts of the module physical_dimension are defined below. For the 
exhaustive enumeration of base dimension individuals, we refer to Morbach et al 
(2008h). Alternatively, Chertov (1997) provides comprehensive definitions of 
such individuals. 

Class Descriptions 

Base dimension 
Most physical dimensions can be mathematically derived from a small set of dimen-
sions that we call base dimensions. Such a set of base dimensions is chosen by con-
vention. In OntoCAPE, we adopt the base dimensions of the SI system of units 
(BIPM 2006), which are length, time, thermodynamic temperature, mass, amount 
of substance, electric current, and luminous intensity.  
Formal definition: A base dimension is one of the following individuals: 
amount_of_substance, electric_current, length, luminous_intensity, mass, thermo-
dynamic_temperature, or time. 

Derived dimension 
A derived dimension is a physical dimension that can be defined as a product of pow-
ers of the base dimensions. For example, the derived dimension velocity can be de-
fined as the ratio of the base dimensions length and time.  

Supplementary dimension 
This class subsumes fundamental dimensions that do not form part of the SI sys-
tem of units and are therefore not classified under the base dimension class. 

Relation Descriptions 

defines 
The relation defines links a note to a derived dimension, which represents the right 
hand side of a definition equation for the derived dimension. 
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6.2.2 Derived Dimensions 

The ontology module derived_dimensions provides a number of frequently used 
derived dimensions. These predefined derived dimensions (cf. Fig. 6.11) are classified 
into categories which have been suggested by Chertov (1997):  

– The class space and time subsumes those physical dimensions that can be de-
rived from the base dimensions length and time. 

– Periodic phenomena assembles derived dimensions with a periodic character, 
such as frequency or period. 

– Mechanics subsumes derived dimensions that are relevant for the field of me-
chanics. 

– Similarly, the instances of the class thermodynamics are of relevance in the 
area of thermodynamics and transport phenomena. 

– Finally, electricity and magnetism is intended to subsume derived dimensions 
that are connected with the phenomena of electricity or magnetism. 

 

Fig. 6.11: Classification of derived dimensions, according to Chertov (1997) 
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Thermodynamics 
The class thermodynamics subsumes derived dimensions that are of relevance in the 
area of heat transfer and thermodynamics. 

Mechanics 
The class mechanics subsumes derived dimensions that are of relevance for the field 
of mechanics. 

Periodic phenomena 
The class periodic phenomena subsumes derived dimensions with a periodic charac-
ter, such as frequency or period. 

Space and time 
The class space and time subsumes the physical dimensions that can be derived from 
the base dimensions length and time. 

6.3 SI Unit (Partial Model) 

The partial model SI_unit comprises the ontology modules SI_unit and de-
rived_SI_units (cf. Fig. 6.12). The former module introduces the set of base units 
of the SI system, and it establishes a mechanism to derive further units from these. 
The latter module defines a number of frequently used derived SI units by apply-
ing this mechanism. 

Fig. 6.12: Overview on the partial model SI_unit 
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Olsen (1994), a system of units is “a class of units defined by composition from a 

ical dimension and every physical dimension has an associated unit.” 
Some units are designated as fundamental units or base units, meaning that all 
other units can be derived from them.  

moleamount of substance

kelvinthermodynamic temperature

candelaLuminous intensity

ampereelectric current

secondtime

kilogrammass

meterlenght

base unitbase dimension

moleamount of substance

kelvinthermodynamic temperature

candelaLuminous intensity

ampereelectric current

secondtime

kilogrammass

meterlenght

base unitbase dimension

 

Fig. 6.13: The base dimensions and the corresponding base units of the SI system 

There is no intrinsic property that makes a unit fundamental; rather, a system of 
units defines a set of orthogonal base dimensions and assigns a base unit to each 
of them. Fig. 6.13 shows a listing of the base dimensions and the corresponding 
base units of the SI system. 
Fig. 6.14 shows how the SI system of units is implemented in OntoCAPE.  

Fig. 6.14: Overview on the ontology module SI_unit 
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– The class SI base unit subsumes the seven base units of the SI system, 
namely A (ampere), cd (candela), K (kelvin), kg (kilogram), m (meter), mol 
(mole), and s (second).  

– A derived SI unit is a SI unit that can be derived from one or several of the SI 
base units by means of multiplication and exponentiation operations. 
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Fig. 6.15: Definition of the derived SI unit ‘m_per_s’ 

A more complex example, the definition tree for a Newton (N), is shown in Fig. 
6.16. Note that these derivation as shown in Fig. 6.15 and Fig. 6.16 are defined in 
derived_units. 
As explained before, the suggested mechanism for the indication of definition eq-
uations scales badly with current reasoners. Therefore, one should abstain from 
such definitions, unless they are definitely required by the respective application. 

Additionally, the classes SI prefix and SI derived unit are introduced: A SI prefix 
represents a decimal power by which a SI unit is multiplied; that way, one obtains a 
prefixed derived unit, which is a multiple or submultiple of the original unit of meas-
ure. So far, the following 20 prefixes have been approved by the General Confe-
rence on Weights and Measures: yotta, zetta, exa, peta, tera, giga, mega, kilo, hec-
to, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto (cf. BIPM 
2006).The definition equation for a particular derived SI unit can be indicated 
through the same mechanism that has already been used for the definition of de-
rived dimensions (cf. Sect. 6.2.2): A SI derived unit is defined by a node (cf. ontology 
module mathematical_relation, Sect. 6.1), which represents the root of a definition 
tree; the leaves of the definition tree have SI base units or SI prefixes as node values. 
To this end, SI base unit and SI prefix are declared to be subclasses of operand; that 
way, their instances may appear as operands in the definition equation. An exam-
ple is given in Fig. 6.15: The SI derived unit m_per_s is defined by the node Me-
ter_Per_ Second. In turn, Meter_Per_Second is further specified through its two 
child nodes, Meter and Second, which are concatenated by the binary operator di-
vide. Meter and Second have the SI base units m and s, respectively, as node values.  
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6.3.1.1 Concept Descriptions 

Individual concepts of the module SI unit are defined below. For an extensive de-
scription of SI units and SI prefices, we refer to Morbach et al. (2008h). Alternative-
ly, BIPM (2006) provides comprehensive definitions of SI units. 

Class Descriptions 

Prefixed derived unit 
A prefixed derived unit is an SI unit with an SI prefix. Examples are kJ (kilo-joule), 
hPa (hecto-pascal), or mm (milli-meter).  

SI base unit 
The seven base units of the SI system are: ampere, candela, kelvin, kilogram, me-
ter, mole, and second (BIPM 2006).  
Formal definition: An SI base unit is one of the following individuals: A, cd, K, kg, 
m, mol, s. 

SI derived unit 
“Derived units are units which may be expressed in terms of base units by means 
of the mathematical symbols of multiplication and division. Certain derived units 

Fig. 6.16: Definition of the derived SI unit ‘N’ 

Formal definition: A prefixed derived unit defines a node, the left child node of 
which has an SI prefix as a node value. 
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have been given special names and symbols, and these special names and symbols 
may themselves be used in combination with those for base and other derived 
units to express the units of other quantities” (BIPM 2006). 

SI prefix 
An SI prefix can be used to prefix any SI unit to produce a multiple or submultiple 
of the original unit (BIPM 2006). So far, the following 20 prefixes have been ap-
proved by the General Conference on Weights and Measures: yotta, zetta, exa, pe-
ta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, 
atto, zepto, yocto.  
Formal definition: An SI prefix is one of the following individuals: yotta, zetta, exa, 
peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, 
atto, zepto, yocto. 

SI unit 
An SI unit is unit of measure that complies with the SI system of units (cf. BIPM 
2006).  
Formal definition: An SI unit is either an SI base unit or an SI derived unit. 

Relation Descriptions 

defines 

6.3.2 Derived SI Units 

The ontology module derived_SI_units establishes a number of frequently used 
derived SI units and provides the corresponding definition trees. For details, we 
refer to the formal specification of OntoCAPE. 

6.4 Space and Time 

The ontology module space_and_time introduces spatial and temporal coordinate 
systems and provides concepts for the representation of spatial and temporal 
points as well as periods of time. 
The concept of a spatial coordinate system is introduced as a special type of coordi-
nate system (cf. Fig. 6.17). A spatial coordinate system has spatial coordinate system 
axes, which may be either Cartesian or curvilinear coordinate system axes. The ontol-
ogy module provides some predefined axes, like the x-, y-, and z-axis of a Carte-

The relation defines links a node to an SI derived unit, which represents the right 
hand side of a definition equation for the SI derived unit. 
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sian coordinate system. Moreover, a spatial coordinate system has up to three spatial 
coordinates (depending on whether the system is intended for 1D, 2D, or 3D 
space); these are either straight coordinates (representing a distance) or angular coor-
dinates (representing an angle). A spatial point is represented through up to three 
spatial coordinates, again depending on the dimensionality of the considered space. 

Fig. 6.17: Spatial coordinates  

Some special types of spatial coordinate systems are introduced in Fig. 6.18; each 
type is assigned its respective coordinate system axes.  

Fig. 6.18: Types of spatial coordinate systems 
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The spatial coordinate systems are classified from two perspectives: The first pers-
pective differentiates coordinate systems for 2D and 3D space, while the second 
perspective distinguishes curvilinear and Cartesian coordinate systems. 
An application example for a polar coordinate system is given in Fig. 6.19. 
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Fig. 6.19: Application example for a polar coordinate system 

The spatial coordinate systems are explicitly classified along the first dimension, 
i.e., they are categorized as either 2D or 3D spatial coordinate system75. 
As shown in Fig. 6.20, the class temporal coordinate system is defined analogously 
to spatial coordinate system: A temporal coordinate system has one temporal coordinate, 
which refers to a temporal coordinate system axis. The t-axis is defined as the default 
axis of a temporal coordinate system. 
An important temporal coordinate system is the UTC-System. UTC stands for Coor-
dinated Universal Time and denotes an international time standard, which is dis-
seminated by the International Bureau of Weights and Measures (BIPM 2007). 
The temporal coordinate of the UTC-System is named CoordinatedUniversalTime. Its 
coordinate value has the unit UTC, and the numericalValue attribute of the coordinate 
value should be specified in the format of the XML datatype dateTime (Biron and 
Malhotra 2004). 

                                                           
75 Implementation advise: According to the principle of ontology normalization (cf. Chap. 4), the 
affiliation to the second dimension should be indirectly defined via necessary and sufficient con-
ditions. This principle is followed in the case of curvilinear coordinate systems (i.e., the class 
curvilinear coordinate system is defined through necessary and sufficient conditions, such that 
the subclasses of curvilinear coordinate system can be automatically inferred by a reasoner). 
However, it is not appropriate to define the class Cartesian coordinate system through neces-
sary and sufficient conditions, since such a definition would severely deteriorate the reasoner 
performance. Thus, deviating from the principle of ontology normalisation, multiple classifica-
tion is applied here. 
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Fig. 6.20: Temporal coordinates 

A time period is a scalar quantity whose scalar value denotes the temporal duration of 
a period of time. Optionally, the starting time of the time period can be indicated; to 
this end, the scalar value of the time period refers to the value of a temporal coordinate 
via the relation hasStartingTime (cf. Fig. 6.21). 

Fig. 6.21: Representation of a time period with a definite starting time 

An application example is shown in Fig. 6.22. 

[TimePeriod]
BatchHeatingPeriod

[ScalarValue]
DurationOf

FirstHeatingPeriod

hasStartingTime

hasValue

Coordinated
UniversalTime

isValueOf [CoordinateValue]
StartTimeOf

FirstHeatingPeriod

10

min

2007-05-09T07:02

UTC

numericalValue

hasUnit
OfMeasure

numericalValue

hasUnit
OfMeasure

[TimePeriod]
BatchHeatingPeriod

[ScalarValue]
DurationOf

FirstHeatingPeriod

hasStartingTime

hasValue

Coordinated
UniversalTime

isValueOf [CoordinateValue]
StartTimeOf

FirstHeatingPeriod

10

min

2007-05-09T07:02

UTC

numericalValue

hasUnit
OfMeasure

numericalValue

hasUnit
OfMeasure

[TimePeriod]
BatchHeatingPeriod

[ScalarValue]
DurationOf

FirstHeatingPeriod

hasStartingTime

hasValue

Coordinated
UniversalTime

isValueOf [CoordinateValue]
StartTimeOf

FirstHeatingPeriod

10

min

2007-05-09T07:02

UTC

numericalValue

hasUnit
OfMeasure

numericalValue

hasUnit
OfMeasure

 

Fig. 6.22: Application of the concepts time period and temporal coordinate 
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Fig. 6.23: Spatio-temporal coordinate system 

Finally, the concept of a spatio-temporal coordinate system is introduced, which de-
notes a coordinate system that has both spatial and temporal coordinates (Fig. 6.23). 

6.4.1 Concept Descriptions 

Individual concepts of the module space_and_time are defined below. For an ex-
tensive description of the different instances of coordinate system axis, we refer to 
Morbach et al. (2008h).  

Class Descriptions 

2D Cartesian coordinate system 
A 2D Cartesian coordinate system is an orthogonal planar coordinate system that has 
two straight, perpendicular axes: the x-axis (a.k.a. abscissa) and the y-axis (a.k.a. 
ordinate). A 2D Cartesian coordinate system has a positive orientation (i.e., the x-axis 
points right and the y-axis points up). 

3D Cartesian coordinate system  
A 3D Cartesian coordinate system is an orthogonal 3D spatial coordinate system that 
has three straight, perpendicular axes: the x-axis, the y-axis, and the z-axis. A 3D 
Cartesian coordinate system has a positive (right-handed) orientation; that is, the xy-
plane is horizontal, the z-axis points up, and the x-axis and the y-axis form a 
positively oriented 2D Cartesian coordinate system in the xy-plane if observed from 
above the xy-plane. 

3D spatial coordinate system  
A 3D spatial coordinate system is a spatial coordinate system for describing positions 
in 3D space. 

Angular coordinate 
An angular coordinate is an angle that acts as a spatial coordinate. An angular coordi-
nate is a spatial coordinate that has the physical dimension of plane_angle. 
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Cartesian coordinate system axis  
A Cartesian coordinate system axis is an axis of a Cartesian coordinate system. 

Curvilinear coordinate system  
A curvilinear coordinate system is a spatial coordinate system the coordinate surfaces 
of which are curved surfaces (in 3D) or curved lines (in 2D).  
Formal definition: A curvilinear coordinate system is a spatial coordinate system that 
has some curvilinear coordinate system axes. 

Curvilinear coordinate system axis 
A curvilinear coordinate system axis is an axis of a curvilinear coordinate system. 

Cylindrical coordinate system 
A cylindrical coordinate system is an orthogonal 3D spatial coordinate system that has 
cylindrical coordinates (i.e., radius, height, and azimuth angle). It is especially 
suited to describe positions on rotationally symmetrical shapes like cylinders or 
cones. 

Planar coordinate system 
A planar coordinate system is a spatial coordinate system for describing positions lo-
cated on a two-dimensional plane. 

Polar coordinate system 
A polar coordinate system is a planar coordinate system that has polar coordinates 
(i.e., radius and polar angle). It is especially suited for describing positions on a 
circle or ellipse. 

Spatial coordinate 
A spatial coordinate is a coordinate that denotes a spatial position.  
Formal definition: A spatial coordinate is either a straight coordinate or an angular 
coordinate. 

Spatial coordinate system 
A spatial coordinate system is a coordinate system for describing spatial positions. 

Spatial coordinate system axis 
A spatial coordinate system axis is the coordinate system axis of some spatial coordinate 
system. 

Spatio-temporal coordinate system 
A spatio-temporal coordinate system denotes positions in space and time. 

 

Cartesian coordinate system  
A Cartesian coordinate system is a spatial coordinate system, the coordinate surfaces 
of which are planes (in 3D) or straight lines (in 2D).  
Formal definition: A Cartesian coordinate system is a spatial coordinate system that has 
(1) some Cartesian coordinate system axes and (2) only Cartesian coordinate system axes. 
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Spatial point  
A spatial point is a point in space; it is represented through a coordinate set compris-
ing up to 3 spatial coordinates. 

Spherical coordinate system 
A spherical coordinate system is an orthogonal 3D spatial coordinate system that has 
spherical coordinates (i.e., radius, azimuth angle, and zenith angle). It is especially 
suited for describing positions on a sphere or spheroid. 

Straight coordinate 
A straight coordinate is a distance that acts as a spatial coordinate.  
Formal definition: A straight coordinate is a spatial coordinate that has the physical di-
mension of length. 

Temporal coordinate 
A temporal coordinate is a coordinate that denotes a temporal position. 

Temporal coordinate system 
A temporal coordinate system is a coordinate system for describing temporal posi-
tions. 

Temporal coordinate system axis 
A temporal coordinate system axis is the coordinate system axis of some temporal coor-
dinate system. 

Time period 
A time period is a scalar quantity that denotes the temporal duration of a period of 
time. Optionally, the starting time of the time period can be indicated. 

Relation Descriptions 

hasStartingTime 
Indicates the starting time of a time period. 

6.5 Geometry 

The module geometry provides the concepts for describing the shapes and main 
dimensions of simple geometric figures. Two major classes of figures are intro-
duced, which are both defined as subclasses of system: solids and surfaces.  

– A solid (a.k.a. geometric solid or solid geometric figure) is a bounded 
three-dimensional geometric figure in Euclidean space. 

– A surface is a bounded geometric figure in a two-dimensional submanifold 
of three-dimensional Euclidean space.  
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Solids and surfaces may have certain geometric properties. Some of them are scalar 
quantities, such as, diameter, radius, or volume (the latter is only defined for solids, 
cf. Fig. 6.24); others, such as edge length, height, and surface area, may alternatively 
be a scalar quantity or a vector quantity. 

– As a scalar quantity, these quantities simply indicate a size – surface area, for 
instance, indicates either the area of a surface or of (one of) the exterior 
surface(s) of a solid. 

– As a vector quantity, the quantities additionally indicate the orientation of 
the respective line or surface – in case of the surface area, the vector would 
have the same orientation as the surface normal, while the Euclidean norm 
of the vector would equal the area of the surface.  

 

Fig. 6.24: Key concepts of geometry 

There are two further specializations of the surface area concept:  

– Side area, which is only defined for solids, corresponds to one particular ex-
terior surface of a solid. This concept should be applied if the solid has sev-
eral distinguishable exterior surfaces (as e.g., in the case of a cuboid). 

– The total surface area indicates the total area of either a surface or of (all) the 
exterior surface(s) of a solid. A total surface area is always a scalar. 

The relations hasArea, hasLength, and hasVolume are introduced as specializations 
of hasProperty (Fig. 6.25). However, these relations are merely auxiliary constructs 
used as replacements for qualified number restrictions. They will drop out again, 
as soon as qualified number restrictions are made available in OWL. 
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Fig. 6.25: Specializations of hasProperty as workarounds for missing QNR 
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In the following, some special types of solids and surfaces and their geometric 
properties will be introduced. Note that most of the terminology as well as the tex-
tual definitions for these concepts have been adopted from the interactive mathe-
matics dictionaries Mathwords (Simmons 2007) and MathWorld (Weisstein 
2007).  
Disk and rectangle are two special kinds of surfaces, which have the following 
properties: a disk has exactly one length of type diameter or radius, whereas a rec-
tangle has exactly two lengths of type edge length (cf. Fig. 6.26).  

Fig. 6.26: Disk and Rectangle 

Cuboid and sphere are special types of solids, for which the following properties are 
defined (cf. Fig. 6.27):  

– A sphere has exactly one length of type radius or diameter as well as one 
area of type total surface area. 

– A cuboid has exactly three lengths of type edge length as well as three areas 
of type side area. 

Fig. 6.27: Cuboid and sphere 
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specializations of side area are introduced, namely base area and lateral surface area 
(cf. Fig. 6.28). Then it can be stated that a cylinder has exactly two base areas and 
at least one lateral surface area. Moreover, a right circular cylinder, which is a cylinder 
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with circular bases that are aligned one directly above the other, has exactly one 
lateral surface area. 

Fig. 6.28: Types of cylinders 

The last type of solid introduced here is the cone, which is a figure with a single 
base tapering to an apex. If the apex is aligned directly above the center of the 
base, the cone can be classified as a right cone. Furthermore, if the base of a right 
cone takes the form of a circle, it can be classified as a right circular cone, which has 
exactly one lateral surface area (cf. Fig. 6.29). 

Fig. 6.29: Types of cones 
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6.5.1 Usage 

There are two alternative ways to specify the geometry of a system. The first alter-
native is to summarize all the geometric aspects of the system in a separate aspect 
system. To this end, the geometry module provides the relations hasShapeRepresen-
tation and hasSurfaceGeometry, which are specializations of the relation hasAspect-
System. These relations may be used to link a solid or a surface to a system (cf. Fig. 
6.30); a reasoner will then infer that the respective solid or surface is an aspect sys-
tem of the main system.  

Fig. 6.30: Representation alternative 1: The geometric properties are summarized 
in an aspect system 

An example is shown in Fig. 6.31: The shape of the distillation column Column C1 
is represented by the individual Shape of C1. As indicated by the brackets in Fig. 
6.31, Column C1 is an instance of system, while Shape of C1 is an instance of right 
circular cylinder. The two individuals are linked via the relation hasShapeRepresenta-
tion; thus, it can be inferred that Shape of C1 is an aspect system of the main system 
Column C1. 
Shape of C1 is further characterized through its properties and their values. Exem-
plarily shown is its height H_C1, which has a value of 10 m. 
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Fig. 6.31: Application example of representation alternative 1 
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Depending on the application, the above representation alternative may be too 
complicated for practical use. In the following, a more simple alternative is pre-
sented. This alternative can be applied if the shape of the respective system is ob-
vious from the context or a matter of common knowledge – for instance, one may 
safely assume that a distillation column, unless otherwise indicated, has the shape 
of a right circular cylinder. In such a case, the description of the system’s geometry is 
simply a matter of specifying its main dimensions, which can be done by assign-
ing the geometric properties directly to the system. This is exemplarily shown in 
Fig. 6.32, where the height H_C1 is directly assigned to the system Column C1. 
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Fig. 6.32: Application example of representation alternative 2 

As a further simplification, the geometric properties may be replaced by specializa-
tions of the hasCharacteristic relation (cf. Sect. 5.1.14). This approach is taken in 
module plant (cf. Sect. 8.3.1).  
With respect to information sharing, the users certainly favorable to agree on one 
convention (i.e. alternative1 or alternative 2) to avoid misconceptions. 

6.5.2 Concept Descriptions 

Individual concepts of the module geometry are defined below. 

Class Descriptions 

Base area 
The base is the bottom of a solid. If the top is parallel to the bottom (as in a trape-
zoid or prism), both the top and bottom are called bases. The base area is the sur-
face area of (one of) the base(s). 

Cone 
A three-dimensional figure with a single base tapering to an apex. The base can be 
any simple closed curve (Simmons 2007). 
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Cuboid 
A closed box composed of three pairs of rectangular faces placed opposite each 
other and joined at right angles to each other, also known as a rectangular paralle-
lepiped (Weisstein 2007).  

Cylinder 
A solid with parallel congruent bases. The bases can be shaped like any closed 
plane figure (not necessarily a circle) and must be oriented identically (Simmons 
2007). 

Diameter 
The length of a line segment between two points on a circle or sphere which 
passes through the center of the circle or sphere. 

Disk 
A disk is the union of a circle and its interior (Simmons 2007). A circle is given by 
the set of points in a plane that are equidistant from a given point. 

Edge length 
The length of a (straight) edge of a surface or solid. 

Height 
The shortest distance between the base of a geometric figure and its top, whether 
that top is an opposite vertex, an apex, or another base (Simmons 2007). 

Lateral surface area 
The surface area of a single lateral surface of a solid (i.e., any side area that is not a 
base area). 

Radius 
The length of the line segment between the center and a point on a circle or sphere. 

Rectangle 
A rectangle is a box shape on a plane. Formally, a rectangle is a quadrilateral with 
four congruent angles (all 90°) (Simmons 2007). 

Right circular cone 
A right cone with a base that is a circle. 

Right circular cylinder 
A right cylinder with bases that are circles (Simmons 2007). 

Right cone 
A cone that has its apex aligned directly above the center of its base (Simmons 
2007). 

Right cylinder 
A cylinder which has bases aligned one directly above the other (Simmons 2007). 
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Side area 
The area of one particular exterior surface of a solid. This concept should be ap-
plied only if the solid has several distinguishable exterior surfaces. Otherwise (e.g., 
for a sphere) use total surface area. A side area can either be a scalar quantity or a vec-
tor quantity. In case of the latter, the vector is perpendicular to the surface (i.e., it 
has the same orientation as the surface normal), and its Euclidean norm equals the 
area of the surface. 

Sphere  
A solid consisting of all points equidistant from a given point. This point is the 
center of the sphere (Weisstein 2007). 

Solid 
A solid (a.k.a. geometric solid or solid geometric figure) is a collective term for all 
bounded three-dimensional geometric figures. This includes polyhedra, pyramids, 
prisms, cylinders, cones, spheres, ellipsoids, etc. (Simmons 2007). 

Surface 
A surface is a two-dimensional submanifold of three-dimensional Euclidean space. 

Surface area 
The area of a surface or of (one of) the exterior surface(s) of a solid. More precise-
ly, the class alternatively denotes 

– the area of a surface, or 
– the area of a single exterior surface of a solid, or 
– the total area of the exterior surface(s) of a solid. 

A surface area is either a side area or a total surface area. 

Total surface area 
The total area of a surface or of (all) the exterior surface(s) of a solid. 

Volume 
The total amount of space enclosed in a solid (Simmons 2007). 

Relation Descriptions 

hasArea 
Workaround for Qualified Cardinality Restriction (QCR) (cf. Sect. 2.3.4) which is 
a feature of modeling currently not available from OWL. 

hasLength 
Workaround for Qualified Cardinality Restriction (QCR) (cf. Sect. 2.3.4) which is 
a feature of modeling currently not available from OWL. 

hasVolume 
Workaround for Qualified Cardinality Restriction (QCR) (cf. Sect. 2.3.4) which is 
a feature of modeling currently not available from OWL. 
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hasShapeRepresentation 
The relation hasShapeRepresentation points from a system to the solid that 
represents its geometry. 

hasSurfaceGeometry 
The relation hasSurfaceGeometry points from a system to the surface that represents 
its geometry. 

representsShapeOf 
The relation representsShapeOf points from a solid to the system whose geometry 
the solid represents. 

representsSurfaceGeometryOf 
The relation representsSurfaceGeometryOf points from a surface to the system whose 
geometry the surface represents. 
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7 Material 

7.1 Material (Partial model) 

The partial model material provides an abstract description of matter. In this con-

1982). As for the ‘abstract description’, the partial model does not consider all the 
characteristics of matter, but accounts only for those that are independent of the 
shape, size, or amount of a particular occurrence of matter. 
The partial model material originates from the CLiP (cf. Sect. 11.1.2) partial 
model ‘chemical_process_material’, which is described in an article by Yang et 
al. (2003); several passages of this article have been included in the present docu-
mentation (mostly in paraphrased form). In comparison to CLiP, the partial model 
material has a somewhat different structure76, and it is modeled partly differently 
in order to correct certain flaws and logical contradictions of the CLiP model. In 
addition, material incorporates concepts of the ChEBI ontology (EBI 2007; OLS 
2006) to describe matter at the molecular level, which was not enabled by the 
CLiP model. 

Fig. 7.1: Structure of the partial model material 

                                                           
76 In particular, the CLiP partial model ‘mathematical model of phase system’, which forms part 
of the CLiP material model, has been relocated to the OntoCAPE partial model mathematical 
model (cf. Chap. 9). 
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text, “matter” refers to “anything that has mass and occupies space” (Gold et al. 
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Besides the ontology module material, material contains two further partial mod-
els, called substance and phase_system (cf. Fig. 7.1). While substance comprises 
several modules, phase_system consists of a single module. 

Fig. 7.2: Major classes of the partial model material 

Material is the main class of the ontology module material. As shown in Fig. 7.2, 
material is a special type of system. A material can be viewed from two different 
perspectives, which are represented as aspect systems of material: 

– Substance represents the intrinsic characteristics (i.e., the physicochemical 
nature) of a material. 

– Phase system describes the macroscopic thermodynamic behavior of a ma-
terial. 

 
within a certain physical context is modeled as phase system. The values of the phase 
system properties are subject to the respective physical context. Phase system proper-
ties include the thermodynamic state variables and other quantities derived thereof. 
The two aspect systems are represented in separate partial models (i.e., substance 
and phase_system), which subdivide the partial model material. This partition 
facilitates the usage of material in different types of applications: The partial 
model substance can be used in applications where merely the intrinsic characte-
ristics of materials are of interest. Correspondingly, applications that are interested 
in the thermodynamic behavior of materials will use the concepts of the partial 
model phase_system. 

                                                           
77 often called ‘state variables’ in the thermodynamics literature 

The critical concept for substance and phase system is the physical context (which is 
introduced in the ontology module phase_system). This class is defined as a set of 
independent properties77 with known values, which is sufficient to determine other 
properties of interest; temperature, pressure, and molar concentrations are exam-
ples of properties that constitute a physical context. Material without consideration of 
the physical context is modeled as substance. The properties of substance are con-
stants, such as molecular weight or critical properties; their values cannot be al-
tered by mechanical, thermo-physical or chemical processes. In contrast, material 
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Similarly to materials, the concept of a chemical reaction can be divided into a 
context-dependent and context-independent part. Reaction mechanism and reac-
tion stoichiometry are context-independent and thus form part of the partial model 
substance. The context-dependent reaction property, namely reaction equilibrium 
constant, is introduced in the partial model phase_system. 

7.1.1  Relation Between ‘Phase System’ and ‘Material Amount’ 

A phase system is an abstraction of a concrete occurrence of matter. By ‘concrete 
occurrence’, we mean the actual spatiotemporal setting, for example, the manufac-
turing of some material in a chemical plant or its usage as a construction material. 
The concept of a material amount, introduced in the partial model CPS_behavior 
(cf. Sect. 8.6), is complementary to the phase system concept: A material amount 
represents the concrete occurrence of matter in, for example, a chemical plant. To 
better understand the distinction between phase system and material amount, the 
idea of an ‘abstraction of a concrete occurrence of matter’ is further explained in 
the following. 
The “physical prototype” of a phase system is an arbitrary amount of (static or 
flowing) material in an equilibrium state and with a rather simple geometry. A 
phase system may take the form of either a single phase or a multiphase system 
where the constituting single phases are connected through phase interfaces with the 
most plain geometry (i.e., planar surfaces). Thus, the abstraction excludes all ma-
terial characteristics that depend on the shape, size, or amount of a particular oc-
currence of a material. Consequently, extensive properties as well as the distribution 
of intensive properties in space and the distribution of any property in time are not 
associated with a phase system. Rather, they are modeled as properties of material 
amount. Furthermore, a phase system is meant to represent only the physical prop-
erties which are applicable to material in an equilibrium state. Consequently, any 
properties that describe the rates of chemical reaction or transport phenomena or 
the spatial gradients of physical quantities involved in non-equilibrium events, are 
associated not with phase system but rather with material amount. For single phases, 
in particular, only the following properties are considered: (i) intensive thermody-
namic states, and (ii) properties that can be determined solely from (i). For multi-
phase systems, only those properties are taken into account that are (i) solely de-
pendent on the properties of the constituting single phases and (ii) not associated to 
a particular surface geometry other than the most plain one as mentioned above. 
The distinction between a phase system and a material amount has been made not 
only because it is conceptually feasible, but also because it is practically useful. It 
was inspired by the physical properties packages that are commonly used in the 
field of process modeling. These packages handle the computation of such materi-
al properties without reference to amounts and geometry. Due to their indepen-
dence of amount and geometry, the packages have proven to be highly reusable in 
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modeling various kinds of chemical processes. Correspondingly, it is expected that 
the concepts of the partial model material prove reusable for supporting the mod-
eling of different material amounts. 

7.1.2  Material (Ontology Module) 

The only purpose of the ontology module material is to establish the relations be-
tween the concepts in the partial model substance (representing the intrinsic as-
pects of matter) and those in partial model phase_system (describing the thermo-
dynamic behavior of matter). Thus, the module contains only very few concepts, 
which are listed below. 

7.1.2.1 Concept Descriptions 

Individual concepts of the module material are defined below. 

Class Descriptions 

Material 
The class material represents all kinds of matter.  

Relation Descriptions 

intrinsicCharacteristics 
The relation designates the aspect system which represents the intrinsic characteris-
tics of some material. 

thermodynamicBehavior 
The relation designates the aspect system which represents the thermodynamic be-
havior of some material. 

7.2 Substance (Partial Model) 

The partial model substance comprises 4 ontology modules on the Conceptual 
Layer, and (currently) four additional modules on the Application-Oriented Layer 
(cf. Fig. 7.3). The following modules are located on the Conceptual Layer: 
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– Substance is the main ontology module of the substance partial model. It 
provides essential concepts for the description of pure substances and mix-
tures, primarily at the macroscopic scale. 

rization of pure substances at the atomic scale. 
– Polymers supplements molecular_structure by concepts for the description 

of macromolecular structures. 
– Finally, reaction_mechanism allows to represent the mechanism and the 

stoichiometry of chemical reactions. 

Fig. 7.3: Structure of the partial model substance 

The Application-Oriented Layer comprises the following ontology modules: 

– The module chemical_species instantiates concepts from the substance 
module to establish an information base about pure substances. 

– Atoms refines molecular_structure by instance data about the chemical 
elements. 

– Similarly, macromolecules refines polymers by instance data about the mo-
lecular structure of technical polymers. 

– Substance_class categorizes chemical substances into classes with similar 
chemical properties, such as alcohols, esters, etc. 

– Reaction_type describes important types of chemical reactions, like esteri-
fication or hydrohalogenation. 

– The ontology module molecular_structure is concerned with the characte-
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7.2.1  Substance (Ontology Module) 

The ontology module substance originates from the CLiP model ‘substance’ 
(Yang et al. 2003). The major concepts of the substance module are shown in Fig. 
7.4. 

Fig. 7.4: Major concepts of substance 

The key concept, substance, represents “a generalization of matter at or above the 
atomic level” (Yang et al. 2003). As mentioned earlier, substance is an aspect sys-
tem of material and reflects its intrinsic, context-independent characteristics. 
Three subclasses of substance are introduced: Mixture and chemical component both 
describe substances at the macroscopic scale, while molecular entity characterizes 
substances at the atomic scale. 
The class chemical component subsumes the classes chemical species and pseudo 
component. 

– A chemical species represents pure substances at the macroscopic scale. The 
IUPAC Compendium defines chemical species as an “ensemble of chemi-
cally identical molecular entities […]. The term is applied equally to a set of 
chemically identical atomic or molecular structural units in a solid array. 
[…] The term is taken to refer to a set of molecular entities containing iso-
topes in their natural abundance. […] The wording of the definition […] is 
intended to embrace both cases such as graphite, sodium chloride or a sur-
face oxide, where the basic structural units may not be capable of isolated 
existence, as well as those cases where they are.” (McNaught and Wilkin-
son 1997). 

– The class pseudo components is introduced alongside chemical species. A 
pseudo component is an auxiliary concept, which represents the averaged 
properties of a number of chemical species. Pseudo components are often as-
sumed to exist in the context of physical property calculations of complex 
multicomponent mixtures, such as petroleum (Hariu and Sage 1969), fatty 
alcohols (Gutsche 1986), or polymers (Kuma and Gupta 1998). 
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Unlike a pseudo component, a chemical species has a specific chemical composition, 
which can be indicated by means of a chemicalFormula or by referring to the cor-
responding molecular entity. 

Fig. 7.5: Representation of pure substances at the macroscopic and the atomic 
scale 

According to the IUPAC Compendium, a molecular entity denotes “any constitu-
tionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, 
complex, conformer etc., identifiable as a separately distinguishable entity. Mole-
cular entity is used […] as a general term for singular entities, irrespective of their 
nature, while chemical species stands for sets or ensembles of molecular entities” 
(McNaught and Wilkinson 1997). Thus, both molecular entity and chemical species 
describe pure substances – the former at the molecular scale, the latter at the ma-
croscopic scale. The inverse relations hasMolecularStructure and hasMacroscopicAp-
pearance interrelate a chemical species and its corresponding molecular entity; they 
may be used to navigate between the macroscopic and molecular perspectives (cf. 
Fig. 7.5). 
The concept of molecular entities introduced in this module is further elaborated in 
the ontology module molecular_structure. This separation of macroscopic pers-
pective (module substance) and molecular perspective (module molecu-
lar_structure) allows to characterize substances at the desired level of detail: For 
many applications in chemical engineering, the molecular structure of substances 
is not of interest and may therefore be omitted from an ontological description; if, 
on the other hand, the molecular properties are relevant to the application, they 
can be obtained easily by adding the ontology module molecular_structure. 
A mixture is generally a substance that contains two or more chemical components. 
The mixture concept can represent two different things: a loose collection of segre-
gate chemical components, or a compound material formed by several blended 
chemical components. For the latter case, subclasses of mixture can be introduced to 
denote and classify typical mixtures of chemical components, such as alloys, poly-
mer blends, types of crude oil, chocolate, sand, saltwater, or air. The composition 
of a mixture is not fixed, as opposed to the composition of a phase system (cf. Sect. 
7.3). Note that a mixture and its constituting chemical species are not connected via 
the hasSubsystem relation, but via the better scaling contains relation (cf. Sect. 
5.1.3). This measure is taken since mixture and chemical species typically have 
thousands of instances – a data set of this size would cause performance problems 
during reasoning if its members were connected via hasSubsystem. 
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Since substance represents the intrinsic, context-independent characteristics of 
materials, the properties of substances are constants. Some exemplary chemical 
component constants are shown in Fig. 7.6. 
 

Fig. 7.6: Some chemical component constants 

Each substance has at least one substanceID, such as a (trivial or systematic) name 
(cf. Fig. 7.7). A substanceID78 is an unambiguous, but not necessarily a unique 
identifier (i.e., each substanceID represents exactly one substance, but a substance 
can have more than one substanceID). Unique identifiers can be explicitly catego-
rized as uniqueSubstanceIDs. The CAS_RegistryNumber is probably the most well-
known uniqueSubstanceID.  
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Fig. 7.7: Substance identifiers 

A chemicalFormula provides information about the atoms that constitute a particular 
molecular entity. It can only be assigned to molecular entities and chemical species79. 
Different types of chemicalFormulas exist: 

– An empiricalFormula indicates the relative number of each constituting 
chemical elements of a molecular entity. 

– A molecularFormula specifies the (absolute) number of constituting atoms of 
a molecular entity, without indicating how they are linked.  

                                                           
78 In OWL, the substanceIDs are modeled as inverse-functional attributes; uniqueSubstanceIDs 
are additionally characterized as functional. 
79 Conceptually, a chemicalFormula should be solely assigned to molecular entity. For practical 
usage, however, it is advantageous to assign a chemicalFormula directly to a chemical species, 
as many chemical engineering applications ignore the molecular perspective represented by mo-
lecular entity. 
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– A structuralFormula supplies information about the types of bonds and the 
structural arrangement of the atoms of a molecular entity using a linear string 
notation. Different formats for the representation of structural formals exist 
– examples are WLN (Wisswesser Line Notation), SMILES (Simplified Mo-
lecular Input Line Entry Specification), and InChI (IUPAC International 
Chemical Identifier). 
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Fig. 7.8: Chemical formulas 

A structuralFormula is an unambiguous but not unique (Dietz 1995) representations 
of a molecular entity. If the string representations of the structuralFormulas are gener-
ated by means of appropriate canonicalization algorithms, the representation will 
become unique; the canonicalSMILES notation is an example of such a canonical-
StructuralFormula. 
Not every structuralFormula is able to distinguish the different isomers of a molecu-
lar entity. Only a isomericStructuralFormula, like InChI or isomericSMILES, enables 
such a distinction. 
Note that chemicalFormulas cannot be considered as substanceIDs since they are 
ambiguous (e.g., C3H6 could refer to Propene as well as to Cyclopropane). Even 
though a structuralFormula can unambiguously identify a molecular entity, it is ambi-
guous for chemical species (see example in Fig. 7.8) and thus not a substanceID. 
Similarly, a canonicalStructuralFormula is a unique identifier for a molecular entity, 
but not for a chemical species, and can therefore not be considered as a uniqueSubs-
tanceID. 

7.2.1.1 Usage 

Instances of chemical species and molecular entity should preferably have a unique-
SubstanceID to be easily identifiable in a software application. The indication of a 
chemicalFormula is optional for chemical species but mandatory for molecular entities. 
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Fig. 7.9: Two different macroscopic appearances of a molecular entity 

Note that a molecular entity can have different macroscopic appearances – Carbon, 
for instance, can macroscopically take the form of Graphite or that of a Diamond 
(Fig. 7.9). In such a case, the individuals should have different substanceIDs (here 
CAS_RegistryNumbers) to be distinguishable from each other. Generally speaking, 
the different polymorphic forms of a substance can be distinguished by different 
instances of substance. 
More often, however, there is a one-to-one correspondence between a chemical 
species and the corresponding molecular entity. In this case, the same substanceID 
and the same instance identifier may be used for the chemical species and the cor-
responding molecular entity (however, the instance identifiers must have different 
namespace prefixes – cf. Sect. 7.2.5). This is acceptable since, in practice, the dis-
tinction between molecular entities and chemical species is often ignored. Thus, an 
identifier may refer to a molecular entity as well as to the corresponding chemical 
species. 

 

Fig. 7.10: Definition of brass as a subclass of mixture 

mixture class. By contrast, compound materials and typical mixtures are modeled 
as subclasses of mixture. The constituent chemical species can be indicated as part 
of the class definition, but this is not mandatory. Fig. 7.10 shows exemplarily the 
definition of brass; instances of brass would indicate the concrete occurrence of a 
brass material. 

Collections of segregated chemical species are represented as direct instances of the 
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7.2.1.2 Concept Descriptions 

Individual concepts of the module substance are defined below. 

Class Descriptions 

Chemical component 
The class chemical component subsumes chemical species and pseudo components.  
Formal definition: A chemical component is either a pseudo component or a chemical 
species. 

Chemical component constant 
A chemical component constant is a constant property of a chemical component. 

Chemical species 
A chemical species represents pure substances at the macroscopic scale. It consists 
of an “ensemble of chemically identical molecular entities […]. The term is ap-
plied equally to a set of chemically identical atomic or molecular structural units 
in a solid array. […] The term is taken to refer to a set of molecular entities con-
taining isotopes in their natural abundance. […] The wording of the definition […] 
is intended to embrace both cases such as graphite, sodium chloride or a surface 
oxide, where the basic structural units may not be capable of isolated existence, as 
well as those cases where they are.” (McNaught and Wilkinson 1997). 

Critical molar volume 
The critical molar volume is the volume of one mole of a chemical component at the 
critical temperature and critical pressure. 

Critical pressure 
The minimum pressure which would suffice to liquefy a substance at its critical 
temperature. Above the critical pressure, increasing the temperature will not cause a 
fluid to vaporize to give a two-phase system (McNaught and Wilkinson 1997). 

Critical temperature 
The temperature, characteristic of each gas, above which it is not possible to lique-
fy a given gas (McNaught and Wilkinson 1997).  

Mixture 
A mixture is a substance that contains two or more chemical components. The com-
position of a mixture is not fixed, as opposed to the composition of a phase system.  

Molecular entity 
The class molecular entity characterizes substances at the atomic scale. It represents 
“any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, 
radical ion, complex, conformer etc., identifiable as a separately distinguishable 
entity. Molecular entity is used […] as a general term for singular entities, irres-
pective of their nature” (McNaught and Wilkinson 1997). 
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Molecular weight 
The molecular weight of a chemical component is the ratio of the mass of one molecule 
of that substance, relative to the unified atomic mass unit (equal to 1/12 the mass 
of one atom of carbon-12). It is also known as (relative) molar mass or (relative) 
molecular mass. 
If a chemical component consists of different molecules (as it is the case for a poly-
mer), it represents the averaged molecular weight of this component. 

Pseudo component 
A pseudo component is an auxiliary concept, that defines a virtual chemical species 
with the averaged properties of a number of chemical species. Pseudo components 
are often assumed to exist in the context of physical property calculations of com-
plex multicomponent mixtures, such as petroleum (Hariu and Sage 1969), fatty al-
cohols (Gutsche 1986), or polymers (Kuma and Gupta 1998). 

Substance 
Substance represents matter at or above the atomic level. It reflects the intrinsic, 
context-independent characteristics of a material. 

Triple point pressure 
The triple point of a chemical component is given by the temperature and pressure at 
which three phases (gas, liquid, and solid) of that substance coexist in thermody-
namic equilibrium. 

Triple point temperature 
The triple point of a chemical component is given by the temperature and pressure at 
which three phases (gas, liquid, and solid) of that substance coexist in thermody-
namic equilibrium. 

Relation Descriptions 

hasMacroscopicAppearance 
The relation hasMacroscopicAppearance points from a molecular entity (describing a 
pure substance from a molecular perspective) to the corresponding chemical species 
(describing the same substance from a macroscopic perspective). 

hasMolecularStructure  
The relation hasMolecularStructure points from a chemical species (describing a sub-
stance from a macroscopic perspective) to the corresponding molecular entity (de-
scribing the same pure substance from a molecular perspective). 
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Attribute Descriptions 

CAS_RegistryNumber 
A CAS_RegistryNumber is a uniqueSubstanceID issued by the Chemical Abstracts 
Service (CAS) a division of the American Chemical Society. A 
CAS_RegistryNumber can be assigned to chemical species and molecular entities as 
well as to some mixtures. A CAS_RegistryNumber includes up to 9 digits, which are 
separated into 3 groups by hyphens (xxxxxx-xx-x). The first part of the number, 
starting from the left, has up to 6 digits; the second part has 2 digits. The final part 
consists of a single check digit or checksum that makes it easy to determine 
whether a CAS number is valid or not. See CAS (2007) for details. 

canonicalStructuralFormula 
A canonicalStructuralFomula is a structuralFormula that is generated by means of ca-
nonicalization algorithms to obtain a unique representation of a molecular entity. 

canonicalSMILES 
canonicalSMILES is the version of the SMILES specification that applies canonicali-
zation rules to ensure that each chemical species and/or molecular entity has a single, 
unique SMILES representation. 

chemicalFormula 
A chemicalFormula is a substanceID that can only be assigned to chemical species 
and/or molecular entities. It gives information about the atoms that constitute a par-
ticular molecular entity. The attribute chemicalFormula subsumes all types of formu-
las, such as empiricalFormula, molecularFormula, structuralFormula, etc. 

empiricalFormula 
An empiricalFormula is a chemicalFormula that indicates the relative number of each 
constituting chemical element of a molecular entity. 
In an empiricalFormula, the letters representing the chemical elements are listed ac-
cording to the following convention: In organic compounds, C is always cited 
first, H second and then the rest, in alphabetical order. In non-carbon-containing 
compounds, strict alphabetical order is adhered to. 

InChI 
The IUPAC International Chemical Identifier (InChI) is a non-proprietary identifier 
for chemical substances that can be used in printed and electronic data sources 
thus enabling easier linking of diverse data and information compilations (Stein et 
al. 2003). InChI does not require the establishment of a registry system. Unlike the 
CAS Registry System, it does not depend on the existence of a database of unique 
substance records to establish the next number for any new molecular entity being 
assigned an InChI. It uses a set of IUPAC structure conventions, and rules for nor-
malization and canonicalization of the structure representation to establish the 
unique label for a molecular entity. 
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isomericSMILES 
isomericSMILES is the version of the SMILES specification that includes extensions 
to support the specification of isotopes, chirality, and configuration about double 
bonds. 

isomericStructuralFormula 
An isomericStructuralFormula is a structuralFormula that allows to distinguish the dif-
ferent isomers of a molecular entity. 

molecularFormula 
A molecularFormula is a chemicalFormula that specifies the (absolute) number of 
constituting atoms of a molecular entity, without indicating how they are linked.  
In a molecularFormula, the letters representing the chemical elements are listed ac-
cording to the following convention: In organic compounds, C is always cited 
first, H second and then the rest, in alphabetical order. In non-carbon-containing 
compounds, strict alphabetical order is adhered to. 
For polymers and other macromelocules, parentheses are placed around the re-
peating unit. For example, a hydrocarbon molecule that is described as 
CH3(CH2)50CH3, is a molecule with 50 repeating CH2 units. If the number of 
repeating units is unknown or variable, the letter n may be used to indicate this 
(e.g. CH3(CH2)nCH3). 
For ions, the charge on a particular atom may be denoted with a right-hand “+” or 
“-“, e.g., “Na+” or “Cu,2+”. The total charge on a charged molecule or a polya-
tomic ion may also be shown in this way, e.g., “H3O+” or “SO4,2-“. 

Name 
The name attribute holds the various names of a substance. Both trivial and syste-
matic names can be indicated here. 

SMILES 
SMILES (Simplified Molecular Input Line Entry System) is a line notation for un-
ambiguously describing the structure of chemical molecules using ASCII strings 
(Weininger 1988). 

structuralFormula 
A structuralFormula is a chemicalFormula that supplies information about the types of 
bonds and the spatial arrangement of the atoms of a molecular entity using a linear 
string notation. 

substanceID 
A substanceID is an identifier for a substance. The substanceID must be unambi-
guous but not necessarily unique. 

uniqueSubstanceID 
A uniqueSubstanceID is a unique identifier for a substance. The different isomers of 
a substance are not necessarily distinguished by a uniqueSubstanceID. 
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WLN 
The Wiswesser line notation (WLN), also known as Wiswesser line formula, is a 
precise and concise means of expressing structural formulas as character strings. 
The basic idea is to use letter symbols to denote functional groups and numbers to 
express the lengths of chains and the sizes of rings (Smith 1968). 

7.2.2  Molecular Structure 

The ontology module molecular_structure characterizes the molecular structure of 
pure substances. It refines the definition of molecular entity. To this end, the ontolo-
gy module adopts some ontological concepts from the ChEBI80 Ontology (EBI 
2007; OLS 2006), particularly of its sub-ontology Molecular Structure. The ChE-
BI Ontology is a non-proprietary ontology concerned with the classification of 
“small” chemical compounds. It consists of four sub-ontologies; the sub-ontology 
Molecular Structure provides (structural) descriptions of molecular entities and of 
parts thereof, based on the composition and/or the connectivity between the con-
stituting atoms. The terminology and nomenclature of Molecular Structure is 
based on the ‘IUPAC Compendium of Chemical Terminology’ (McNaught and 
Wilkinson 1997), informally known as the ‘Gold Book’. The compendium 
extracts the definitions of terms described in the various IUPAC glossaries and 
other IUPAC nomenclature documents, including ‘Glossary of Terms Used in 
Physical Organic Chemistry’ (Müller 1994), ‘Glossary of Class Names of Organic 
Compounds and Reactive Intermediates Based on Structure’ (Moss et al. 1995), 
and ‘Basic Terminology of Stereochemistry’ (Moss 1996). 
The class ion is introduced as a first refinement of molecular entity. An ion is defined 
as a molecular entity that has an ionic charge (cf. Fig. 7.11). Ions that have a positive 
ionic charge are classified as cations, those with a negative ionic charge are classified 
as anions. 

Fig. 7.11: Representation of ions 
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Fig. 7.12 presents a further refinement of the class molecular entity; the refinement 
is based on two different criteria: 

– The differentiation monoatomic vs. polyatomic entity considers the number of 
atoms a molecular entity consists of. For example, the Na+ ion is a monoa-
tomic entity, while the N2 molecule is a polyatomic entity.  

– The differentiation homoatomic vs. heteroatomic molecular entity considers the 
number of elements a molecular entity consists of. The N2 molecule, for 
instance, is a homoatomic molecular entity, as it consists of a single element. 

Fig. 7.12: Subclasses of molecular entity 

Consequently, each monoatomic entity is a homoatomic molecular entity, and each he-
teroatomic molecular entity is a polyatomic entity. 
Monoatomic ion and polyatomic ion (and their respective subclasses) are defined ana-
logously to ion. 

Fig. 7.13: Representation of ionic charge 
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The charge of an ion is represented by one of the following instances of ionic 
charge: e, 2e, 3e, -e, -2e, or -3e (cf. Fig. 7.13). The individual e represents the value 
of the elementary_charge, a physical constant that denotes the electric charge of a 
single monoatomic ion (1.60217653E-19 C). The other ionic charges are (positive or 
negative) integer multiples of e. 
Fig. 7.14 presents concepts that can be used to describe the constitution of molecu-
lar entities: A molecular entity may contain a molecular group, which denotes either a 
linked collection of atoms or a single atom within a molecular entity. As each molecu-
lar group is a molecular entity, it may again contain some molecular sub-group. A re-
striction is placed on the atom class such that it cannot contain a molecular group. 

Fig. 7.14: Composition of Molecular Entities 

7.2.2.1 Usage 

The module molecular_structure is extended by the ontology modules polymers, 
atoms, and substance_class. The usage of the concepts of molecular_structure is 
explained in the specifications of these modules (cf. Secs. 7.2.3, 7.2.5, and 7.2.7). 
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Individual concepts of the module molecular_structure are defined below. 

Class Descriptions 

Anion 
An anion is a monoatomic or polyatomic species having one or more elementary 
charges of the electron (McNaught and Wilkinson 1997). 
Formal definition: An aninon is an ion that has a negative ionic charge. 
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An atom is the smallest particle still characterizing a chemical element (McNaught 
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Cation 
A cation is a monoatomic or polyatomic species having one or more elementary 
charges of the proton (McNaught and Wilkinson 1997). 
Formal definition: A cation is an ion that has a positive ionic charge. 

Heteroatomic molecular entity 
A heteroatomic molecular entity is a molecular entity consisting of two or more [dis-
tinct] chemical elements (OLS 2006). 

Homoatomic molecular entity 
A homoatomic molecular entity is a molecular entity consisting of one or more atoms of 
the same element (OLS 2006). 

Homoatomic molecule 
A homoatomic molecule is a molecule consisting of atoms of the same element (OLS 
2006). 

Ion 
An ion is an atomic or molecular particle having a net electric charge (McNaught 
and Wilkinson 1997). 
Formal definition: An ion is a molecular entity that has some ionic charge. 

Ionic charge 
Ionic charge is a scalar value that represents the electric charge of an ion, which is ei-
ther a positive ionic charge or a negative ionic charge. 

Molecular group 
A linked collection of atoms or a single atom within a molecular entity. 

Molecule 
A molecule is an electrically neutral entity consisting of more than one atom 
(McNaught and Wilkinson 1997).  

Monoatomic anion 
A monoatomic anion is an anion consisting of a single atom. 
Formal definition: A monoatomic anion is a monoatomic ion that has a negative ionic 
charge. 

Monoatomic cation 
A monoatomic cation is an cation consisting of a single atom. 
Formal definition: A monoatomic cation is a monoatomic entity that has a positive ionic 
charge. 

Monoatomic entity 
A monoatomic entity is a molecular entity consisting of a single atom. 
Formal definition: Monoatomic entity is either an atom or a monoatomic ion. 
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Monoatomic ion 
A monoatomic ion is an ion consisting of a single atom (OLS 2006) 
Formal definition: Monoatomic ion is a monoatomic entity that has an ionic charge. 

Negative ionic charge  
A negative ionic charge is a scalar value that represents the negative electric charge 
of an ion. 

Polyatomic anion 
A polyatomic anion is an anion consisting of more than one atom (OLS 2006). 
Formal definition: A Polyatomic anion is a polyatomic entity that has a negative ionic 
charge. 

Polyatomic cation 
A polyatomic cation is a cation consisting of more than one atom (OLS 2006). 
Formal definition: A polyatomic cation is a polyatomic entity that has a positive ionic 
charge. 

Polyatomic entity 
Any molecular entity consisting of more than one atom is a polyatomic entity (OLS 
2006). 

Polyatomic ion 
A polyatomic ion is an ion consisting of more than one atom (OLS 2006). 
Formal definition: A polyatomic ion is an polyatomic entity that has an ionic charge. 

Positive ionic charge  
A positive ionic charge is a scalar value that represents the positive electric charge of 
an ion. 

Relation Descriptions 

hasCharge 
The relation hasCharge indicates the ionic charge of an ion. 

Attribute Descriptions 

atomicNumber 
The atomicNumber (also known as the proton number) is the number of protons 
found in the nucleus of an atom. 
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7.2.3 Polymers 

The ontology module polymers is concerned with the structural description of ma-
cromolecules. A macromolecule is a molecule of high molecular weight, the structure of 
which essentially comprises the multiple repetition of units derived, actually or 
conceptually, from molecules of low molecular weight (McNaught and Wilkinson 
1997).  

Fig. 7.15: Ontology module polymers 

Industrially, macromolecules are synthesized from monomer molecules which under-
go polymerization (cf. Fig. 7.15). Besides the macromolecules, oligomer molecules 
are often formed as intermediates or by-products of the polymerization reaction. 
Oligomers are molecules of intermediate molecular weight, the structure of which es-
sentially comprises a small plurality of units derived, actually or conceptually, 
from molecules of lower molecular weight (McNaught and Wilkinson 1997). 
The structure of a macromolecule can be described by indicating its building 
blocks, the so-called constitutional units. Three types of constitutional units are distin-
guished: 

– Monomer units are constitutional units resulting from a monomer molecule that 
has been polymerized. 

– Repeating units are the shortest constitutional units that can be found repeated-
ly in a macromolecule. 

– Finally, end-groups are constitutional units that form the extremities of a ma-
cromolecule or oligomer molecule. 
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Monomers are chemical species composed of monomer molecules, and oligomers are 
chemical species composed of oligomer molecules. Similarly, polymers, such as po-
lyethylene or polyamide, are chemical species that are composed of macromolecules. 
Note, however, that a polymer consists of a statistical distribution of different ma-
cromolecules, which vary with respect to chain length, side branches, cross-linkage, 
etc. Thus, an instance of polymer represents one specific configuration of macromo-
lecules. 

7.2.3.1 Usage 

Depending on the application, an instance of macromolecule can represent either 
one specific molecule or a group of molecules of the same type, yet with different 
molecular structures and chain lengths. In the latter case, the chemicalFormula of 
the macromolecule is indicated in a generic form, with a variable number of repeat-
ing units (e.g., CH3-(C2H4)n-CH3 for the polyethylene molecule shown in Fig. 
7.16). 
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Fig. 7.16: Two batches of HDPE with different molecular weights 

Like any chemical species, a polymer has chemical component constants, such as the 
molecular weight. Since each instance of polymer represents one individual configu-
ration of macromolecules, the values of its chemical component constants are valid for 
this specific configuration only. Fig. 7.16 shows exemplarily two different poly-
mers (HDPE_batch_1 and HDPE_batch_2) that have different molecular weights 
(MW_1 and MW_2). Both polymers have the same (generic) molecular structure, 
which is represented by an instance of macromolecule (PolyethyleneMolecule) and 
further characterized through indication of its constituting monomer unit (Ethyle-
neUnit). 
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Please note that polymer materials may also be modeled as mixtures consisting of 
a number of pseudo components in the substance module (cf. Sect. 7.2.1). Howev-
er, this kind of representation is not covered by this ontology module. 

7.2.3.2 Concept Descriptions 

Individual concepts of the module polymers are defined below. 

Class Descriptions 

Constitutional unit 
A constitutional unit is a molecular group that constitutes a characteristic part of a ma-
cromolecule. 

End-group 
An end-group is a constitutional unit that is an extremity of a macromolecule or oligo-
mer molecule (McNaught and Wilkinson 1997). 

Macromolecule 
A molecule of high molecular weight, the structure of which essentially comprises 
the multiple repetition of units derived, actually or conceptually, from molecules of 
low molecular weight (McNaught and Wilkinson 1997). 

Monomer 
A substance composed of monomer molecules (McNaught and Wilkinson 1997). 

Monomer molecule 
A molecule which can undergo polymerization thereby contributing constitutional 
units to the essential structure of a macromolecule (McNaught and Wilkinson 1997). 

Monomer unit 
The largest constitutional unit contributed by a single monomer molecule to the struc-
ture of a macromolecule or oligomer molecule. 
Note: The largest constitutional unit contributed by a single monomer molecule to 
the structure of a macromolecule or oligomer molecule may be described as either 
monomeric, or by monomer used adjectivally. 

Oligomer 
A substance composed of oligomer molecules (McNaught and Wilkinson 1997). 

Oligomer molecule 
A molecule of intermediate molecular weight, the structure of which essentially 
comprises a small plurality of units derived, actually or conceptually, from mole-
cules of lower molecular weight. A molecule is regarded as having an intermediate 
molecular weight if it has properties which do vary significantly with the removal of 
one or a few of the units. (McNaught and Wilkinson 1997). 
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Polymer 
A substance composed of macromolecules (McNaught and Wilkinson 1997). 

Repeating unit 
A repeating unit is the shortest constitutional unit that can be found repeatedly in a 
macromolecule. 

7.2.4  Chemical Species 

The ontology module chemical_species is an application-oriented extension of the 
ontology module substance. It contains several thousand instances of chemical spe-
cies, their substanceIdentifiers, chemicalFormulas and molecular weights. The data 
stems from the NIST Chemistry WebBook (Linstrom and Mallard 2005), a non-
proprietary online database providing physical property data of pure substances. 
The following entries of the NIST Chemistry WebBook are available in the chem-
ical_species module (cf. Fig. 7.17): 

– Species name: used as identifiers81 for the instances of chemical species. 
– Other names (synonyms) for the species: represented as values of the name 

attribute. 
– Chemical formula: represented as values of the attribute molecularFormula. 
– CAS Registry Number (if available): represented as values of 

CAS_RegistryNumber. 
– IUPAC International Chemical Identifier (if available): represented as val-

ues of the InChI attribute. 
– Molecular weight: represented as a scalar value of molecular weight. 

Fig. 7.17: Ontological representation of Oxygen 
                                                           
81 In order to comply with the OWL syntax, certain characters in the species names had to be re-
placed by character symbols. Fig. 7.17 lists the transformation rules that were applied for this 
task. 
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7.2.4.1 Usage 

The ontology module chemical_species contains instance data of about approx-
imately 25,000 chemical species. Most of the current ontology management sys-
tems and reasoners cannot cope with such a large amount of information. For that 
reason, the OWL file chemical_species.owl provides a reduced version of chemi-
cal_species, comprising only ca. 2,000 selected chemical species. The full-fledged 
version of the ontology module is available as the OWL file chemi-
cal_species_all.owl. 

7.2.5  Atoms 

The ontology module atoms is an application-oriented extension of the ontology 
module molecular_structure. It represents the chemical elements as instances of 
the atom class. Each atom refers to the corresponding instance of chemical species 
(represented in the ontology module chemical_species) via the relation hasMacros-
copicAppearance. An example is given in Fig. 7.18. 
The same instance identifiers are used for chemical species and corresponding 
atoms. This is done since, in practice, the distinction between molecular entities and 
chemical species is often neglected. Thus, the name of a compound may refer to the 
respective molecular entity or to the corresponding chemical species (e.g., Aluminum 
may mean a single atom of Al or a macroscopic amount of Al). By means of the 
namespace prefix, the instances can be kept apart (e.g., chemi-
cal_species:Aluminum vs. atoms:Aluminum). 

Fig. 7.18: Ontological representation of the Aluminum atom 

Each atom is characterized by its atomicNumber. Additionally, the InChI and molecu-
larFormula of the atom are indicated (this would not be necessary since the InChI 
and molecularFormula have already been specified in the chemical_species module, 
but for reasons of user convenience the information is duplicated here). 
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7.2.6  Macromolecules 

The ontology module macromolecules provides a few examples (i.e., individuals) 
of macromolecules in order to demonstrate the usage of the module polymers (cf. 
7.2.3). For the description of the respective individuals, please refer to the formal 
specification. 

7.2.7  Substance Class 

The ontology module substance_class is an application-oriented extension of the 
substance partial model; it is concerned with the classification of pure substances 
and molecular entities. Of course, there are different ways to classify substances, 
and each has its individual assets and drawbacks. The substance_class module 
merely suggests one possible approach to substance classification, which may or 
may not be applicable to a particular problem at hand. 
The classification criterion that is applied here is chemical similarity (Schummer 
1998): Molecular entities are categorized into substance classes like alcohols, carbox-
ylic acids, esters, aldehydes, amines, etc. Note that a molecular entity may be assigned 
to multiple substance classes – for example, it may belong to the class of acids as 
well as to the class of aromatics.  
Molecular entities are firstly classified into organic compounds and inorganic com-
pounds (Fig. 7.19). Below, the various substance classes are defined, which may or 
may not have further subclasses of their own. 

Fig. 7.19: Some exemplary substance classes 

Each substance class has one characteristic functional group, as indicated in Fig. 
7.20. A functional group is a molecular group that has “similar chemical properties 
whenever it occurs in different compounds. It defines the characteristic physical 
and chemical properties of families of organic compounds” (McNaught and 
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Wilkinson 1997). Molecular entities that belong to the same substance class contain 
the same functional group. For example, all alcohols contain a HydroxylGroup. 

Fig. 7.20: Functional groups 

Only a limited number of substance classes have been defined, so far. In a later 
version of OntoCAPE, it is planned to integrate further parts of the ChEBI ontolo-
gy (EBI 2007), which gives an extensive classification of molecular entities. 

7.2.7.1 Concept Descriptions 

Individual concept of the module substance_class is defined below. 

Concept Definitions  

Functional group 
“Organic compounds are thought of as consisting of a relatively unreactive 
backbone, for example a chain of hybridized carbon atoms, and one or several 
functional groups. The functional group is an atom, or a group of atoms that 
has similar chemical properties whenever it occurs in different compounds. It 
defines the characteristic physical and chemical properties of families of 
organic compounds” (McNaught and Wilkinson 1997). 
For a description of the individual substance classes, refer to the OWL implemen-
tation of the ontology module substance_class. 

7.2.8  Reaction Mechanism 

The ontology module reaction_mechanism allows the representation of the me-
chanism, i.e., the stoichiometry of chemical reactions, as shown in Fig. 7.21.  
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Fig. 7.21: Ontology module reaction_mechanism 

Chemical reaction is the key concept of this module. In OntoCAPE, a chemical reac-
tion is modeled as a subclass of system (cf. Sect. 5.1) and is regarded generally as a 
mechanism that produces chemical products by consuming some reactants.  
A chemical reaction may be a reaction network or a single reaction. A reaction network 
represents a loose collection of a number of single reactions, usually for indicating 
their co-existence in a specific circumstance. In particular, we consider a collec-
tion of single reactions in a reaction network if we want to explicitly refer to each of 
the single reactions of a more complex reaction mechanism involving many parallel 
and consecutive reactions. A single reaction in turn may be a composite reaction or 
an elementary reaction. An elementary reaction refers to a molecular transformation 
for which no molecular intermediates have been detected or need to be postulated 
for a proper description. In contrast, a composite reaction refers to molecular trans-
formations involving a number of reaction steps and intermediates with a known 
mechanism the details of which are however not of interest on the granularity of 

The reactants and products of the chemical reaction are identified via the relations 
hasReactant and hasProduct, respectively. The reactants and products can be either 
molecular entities or chemical species, depending on whether one wants to describe 
the reaction on the molecular level (conversion of some molecular entities into some 
other molecular entities) or on the macroscopic level (conversion of chemical spe-
cies). The stoichiometry of a single reaction is modeled by means of stoichiometric 
coefficients, each of which indicates the multiplicity of the respective reactant or 
product. The numerical value of a stoichiometric coefficient is specified by the 
attribute stoichiometricValue. 

the reactor hosting the reaction. In other words, composite reactions refer to a net 
reaction of a more complex reaction network which is not described in detail in a 
certain context. If a detailed description is desired in addition, a reaction network 
could be formulated and associated with the composite reaction. Single reactions can 
also be classified into irreversible reactions and reversible reactions. 
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A single reaction is a chemical reaction that has a fixed stoichiometry which does not 
change with reaction conditions or extent of reaction (Levenspiel 1999). The stoi-
chiometry of a reaction network is given and fixed by a stoichiometric matrix. Such 
a matrix can be assembled implicitly from the stoichiometric coefficients of the indi-
vidual (elementary or composite) reactions. Hence, this matrix may be either the 
true one (as it would be the case if there were only elementary reactions) or the 
one which is the result of an aggregation process of some single reactions into a 
composite reaction which is part of a reaction network. In case a reaction network is 
represented by a single reaction only, the apparent stoichiometry corresponding to 
this single reaction may change with the environment in which these reactions oc-
cur. 
The reactants and products of the chemical reaction are identified via the relations 
hasReactant and hasProduct, respectively. The reactants and products can be either 
molecular entities or chemical species, depending on whether one wants to describe 
the reaction on the molecular level (conversion of some molecular entities into some 
other molecular entities) or on the macroscopic level (conversion of chemical spe-
cies). The stoichiometry of a single reaction is modeled by means of stoichiometric 
coefficients, each of which indicates the multiplicity of the respective reactant or 
product. The numerical value of a stoichiometric coefficient is specified by the 
attribute stoichiometricValue. 
The reaction_mechanism module further introduces two constant properties for a 
elementary reaction in connection with the application of the Arrhenius Equation to 
depict the temperature-dependency of the reaction rate. These two properties are 
activation energy and frequency factor. Note that these two concepts are introduced 
only to address the situations where the activity energy is regarded as independent 
of temperature, i.e. where the linear Arrhenius behaviour is exhibited. Chemical 
kinetics of more complex situations will be directly and modelled through proper 
kinetics laws as part of the mathematical models to be covered by Sect 9.6. 
Note that the reaction_mechanism module only captures chemical reaction related 
properties which are independent of the physical context. Properties that change 
with the physical context are introduced later either in the phase_system (cf. Sect. 
7.3.4) or the CPS_behavior (cf. Sect. 8.6.1.7) partial model, depending on 
whether a property is dedicated to equilibrium reactions or not.  

7.2.8.1 Usage 

The usage of the reaction_mechanism module is demonstrated by the following 
example shown in Fig. 7.22: Consider the overall (composite) reaction 
 
 2 H2 + 2 NO Æ N2 + 2 H2O 
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Fig. 7.22: Stoichiometry of the reaction 2 NO Æ N2O2 

The reaction mechanism of the overall reaction is given by the following elementa-
ry reactions: 

 2 NO Æ N2O2 

 H2 + N2O2 Æ N2O + H2O 
 H2 + N2O Æ N2 + H2O 

In Fig. 7.23, the Overall Reaction is decomposed into the three elementary reactions. 
The reactants and products of the reactions are shown, as well. The stoichiometric 
coefficients are not represented for reasons of clarity. 
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Fig. 7.23: The Overall Reaction is composed of three elementary reactions 

7.2.8.2 Concept Descriptions 

Individual concepts of the module reaction_mechanism are defined below. 
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Class Descriptions 

Activation energy 
Activation energy is a constant property as involved in the Arrhenius Equation for 
depicting the temperature-dependency of reaction rates. 

Chemical reaction 
A chemical reaction converts some chemical species (or molecular entities) into some 
other chemical species (or molecular entities). 

Composite reaction  
A composite reaction is a chemical reaction that could in principle be decomposed in-
to several elementary reactions to reflect the known mechanism of a complex mole-
cular transformation with the molecular intermediates. The composite reaction 
does not strive for a mechanistic representation of the molecular transformation 
but only for a coarse description of the net reaction typically from the perspective 
of the chemical reactor hosting the composite reaction. The stoichiometry of a com-
posite reaction may change with its environmental conditions. 

Elementary reaction  
An elementary reaction is a chemical reaction for which no reaction intermediates 
have been detected or need to be postulated in order to describe the chemical reac-
tion on a molecular scale. An elementary reaction is assumed to occur in a single 
step and to pass through a single transition state (McNaught and Wilkinson 1997). 

Frequency factor 
Frequency factor is a constant property as involved in the Arrhenius Equation for de-
picting the temperature-dependency of reaction rates. 

Irreversible reaction 
An irreversible reaction is chemical reaction that converts reactants to products which 
cannot be readily reversed to restore the reactants to its original state. 

Reaction network  
A reaction network refers to a set of chemical reactions that represent a loose collec-
tion of a number of single reactions, usually for indicating their co-existence in a 
specific circumstance. The stoichiometry of a reaction network is given and fixed by 
a stoichiometric matrix which can be assembled from the stoichiometric coefficients 
of the individual elementary reactions or composite reactions. 

Reversible reaction 
A reversible reaction is a chemical reaction that proceeds in both directions at the 
same time, as the product decomposes back into reactants as it is being produced. 

Single reaction  
A single reaction is a chemical reaction that has a fixed stoichiometry which does not 
change with reaction conditions or extent of reaction (Levenspiel 1999). 
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Stoichiometric coefficient  
A stoichiometric coefficient indicates the multiplicity of a chemical species or molecu-
lar entity that participates in a chemical reaction. 

Relation Descriptions 

hasActivationEnergy  
The relation hasActivationEnergy identifies the activation energy of a elementary reac-
tion. 

hasFrequencyFactor  
The relation hasFrequencyFactor identifies the frequency factor of a elementary reac-
tion. 

hasStoichiometricCoefficient  
The relation hasStoichiometricCoefficient identifies the stoichiometric coefficients of a 
chemical reaction. 

hasProduct  
The relation hasProduct denotes the products of a chemical reaction. A product is a 
molecular entity or a chemical species that is formed during a chemical reaction. 

hasReactant  
The relation hasReactant denotes the reactants of a chemical reaction. A reactant is a 
molecular entity or a chemical species that is consumed in the course of a chemical 
reaction. 

indicatesMultiplicityOf  
The relation indicatesMultiplicityOf indicates the multiplicity of the reactants and 
products participating in a chemical reaction. 

Attribute Descriptions 

stoichiometricValue  
The attribute stoichiometricValue specifies the numerical value of a stoichiometric 
coefficient. It is positive for products and negative for reactants. 

7.2.9  Reaction Type 

The reaction_type module is an application-oriented extension of the ontology 
module reaction_mechanism. It describes some important types of chemical reac-
tions, such as esterification or hydrohalogenation. Fig. 7.24 shows exemplarily the de-
finition of the class transesterification: transesterification is a chemical reaction that has 
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an ester and an alcohol as reactants and a different ester and a different alcohol as 
products (the classes ester and alcohol are defined in the ontology module sub-
stance_class). It is a subclass of the more generic esterification reaction, which is 
defined as a reaction that has an ester as a product. 

Fig. 7.24: Definition of the transesterification reaction 

7.2.9.1 Concept Descriptions 

For the individual concepts of the module we refer to the OWL implementation 
due to the high number of concepts. 

7.3 Phase System 

The partial model phase_system describes the macroscopic thermodynamic beha-
vior of material, subject to a certain physical context. Following the conceptualiza-
tion presented in the upper_level of OntoCAPE, the behavioral aspect of a system 
can be characterized quantitatively by properties as well as qualitatively by pheno-
mena. In the case of phase system, which represents the thermodynamic behavior 
of material, one phenomenon, namely thermodynamic equilibrium, constantly ex-
ists according to the definition of phase system. There is no other phenomenon ap-
plicable to phase system. Therefore, there is no practical need to characterize a 
phase system from a phenomenon point of view. Consequently, a phase system is 
only characterized by means of properties. 
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7.3.1  High-Level Concepts 

Phase system is the key concept of this partial model. It subsumes the classes single 
phase and multiphase system (cf. Fig. 7.25). 

– A single phase represents a finite, homogeneous region of matter within 
which the values of its physical quantities are uniformly constant, i.e., they 
do not experience any change in passing from one point in the volume to 
another. 

– A multiphase system is composed of several single phases; a single phase that 
is a subsystem of a multiphase system is characterized as a single phase in 
multiphase system. 

 

Fig. 7.25: Major concepts of partial model phase_system 
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through the class phase interface. A phase interface refers to the single phases via the 
relation isDirectlyConnectedTo. If a phase interface connects two instances of single 
phase in multiphase system, it is a subsystem of the overall multiphase system. More-
over, the connectivity rules stated in the ontology module network_system (cf. 
Sect. 5.2) must be obeyed. 
Finally, the class phase component represents the occurrence of a chemical compo-
nent in a phase system. The relation representsOccurenceOf establishes the relation-
ship between a phase component and the corresponding chemical component. 
The state of aggregation (a.k.a. state of matter) is a characteristic of a single phase 
that describes its physical state (cf. Fig. 7.26). Well-known examples of states of 
aggregation are solids, liquids, and gases. There are other, less familiar states, such 
as plasma or Bose-Einstein condensates. 
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value set; solid, liquid, and gaseous are predefined instances of state of aggregation. 
The solid state can be further characterized by choosing one of the following in-
stances of type of solid instead of solid: SolidSolution, HydrateI, HydrateII, HydrateH, 
or PureSolid (Drewitz et al. 2006). 

 

Fig. 7.26: State of aggregation 

7.3.2 Properties of Phase Systems 

As explained in Sect. 7.1.1, the scope of the properties defined within the partial 
model phase_system is confined to those which equilibrium thermodynamics is 
concerned with (e.g., Modell and Reid 1983); properties within this scope are tra-
ditionally called “physical properties”, including those of stable equilibrium ther-
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thermodynamic state (such as dynamic viscosity82, thermal conductivity, or diffu-
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terial amount instead as defined in the behavior module in Sect. 8.6.1.  
As shown in Fig. 7.27, four distinct types of intensive properties are defined in par-
tial model phase_system: phase system properties, phase interface properties, phase 
component properties, and phase reaction properties. 

                                                           
82 This is restricted to the dynamic viscosity of Newtonian fluids only. For a non-Newtonian flu-
id, this property is dependent of the gradient of velocity, thus going beyond the scope of equili-
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Fig. 7.27: High-level classification of the intensive properties defined in partial 
model phase_system 

Fig. 7.28 gives an overview on the phase system properties currently defined in On-
toCAPE. In accordance with the above discussion, phase system properties include 
(1) thermodynamic state properties such as temperature, pressure, specific volume, den-
sity, etc.; (2) transport phenomena properties such as thermal conductivity, dynamic vis-
cosity, and diffusion coefficient; and (3) specific properties of single phases in multi-
phase systems, such as phase ratios. For detailed descriptions of these individual 
phase system properties, we refer the reader to the concept definition section below. 

Fig. 7.28: Phase system properties 
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face tension (cf. Fig. 7.29).  

Fig. 7.29: Phase interface properties 
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A phase component reflects the behavior of a chemical component within a phase 
system by means of phase component properties, such as activity coefficient, fugacity, or 
partial molar volume. Thus, all properties of individual chemical components that ap-
pear within certain physical contexts are attributed to the phase component class. Fig. 
7.30 shows the phase component properties that have been defined in OntoCAPE so 
far.  

Fig. 7.30: Phase component properties 

Note that phase equilibrium ratio  (a.k.a. K value) is associated with a phase compo-
nent and two single phases involved in a multiphase system. However, it is primarily 
regarded as a property of a phase component in this ontology, because it indicates a 
trait of a phase component in the context of phase equilibrium (e.g. the “lightness” 
in vapor-liquid equilibrium; cf. Smith and Van Ness 1975). Furthermore, this 
property is applicable only to a phase component which is associated with a multi-
phase system. Additionally this property refers to a first and a second single phase 
to articulate the nature of the equilibrium ratio. For details of other phase compo-
nent properties, we refer to the individual concept definitions below. 

Fig. 7.31: Composition of a phase system 
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The concentration of a phase component within a phase system can be represented 
by different concepts (Fig. 7.31): A phase component fraction is a relative concen-
tration, defined as the mass, molar amount, or volume of one phase component di-
vided by the mass, molar amount, or volume of all phase components in that phase 
system. Volume-based concentrations are defined as the mass, molar amount, or vo-
lume of a phase component of a phase system divided by the total volume of that 
phase system. The class phase component concentration subsumes the different con-
centration measures for a phase component. The composition of a phase system is 
described through the composition concept. A composition is a property set that com-
prises the phase component concentrations of all phase components that constitute the 
phase system (cf. Fig. 7.31). 
It is worth noting that, although the composition concept introduced above is gener-
ally applicable to both single phases and multiphase systems, in practice the composi-
tion of a multiphase system is usually depicted only by means of mass fractions or 
mole fractions of the constituting phase components. 

7.3.3 Physical Context 

A phase system is subject to a certain physical context. According to Yang et al. 
(2003), a physical context “stands for a set of phase system properties with known 
values in order to characterize a certain phase system. Different sets of properties 
might be selected here, but in any case the selected properties should be sufficient 
for determining other properties of interest of the phase system.” In OntoCAPE, a 
physical context is modeled as a property set (cf. Fig. 7.32).  
A physical context comprises a minimum set of intensive thermodynamic state va-
riables required to fully characterize a phase system in thermodynamic equilibrium. 
Conventionally, a physical context is described by temperature, pressure, and phase 
component fractions, although other intensive thermodynamic state variables may be 
used alternatively. 

Fig. 7.32: Physical context 
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literature) denotes any intensive property that can be used to characterize the ma-
croscopic thermodynamic state of a phase system (cf. Fig. 7.33). It subsumes the 
classes thermodynamic state property and phase component property. Temperature, 
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pressure, and molar fractions are the most commonly used intensive thermodynamic 
state variables. 

Fig. 7.33: Intensive thermodynamic state properties 

The minimum number of intensive thermodynamic state variables that are required to 
determine the thermodynamic equilibrium state of a phase system is given by the 
Gibbs Phase Rule (e.g., Sandler 1999) and depends on the characteristic of the 
phase system. Moreover, not all intensive thermodynamic state variables are indepen-
dent, as stated by the Gibbs-Duhem Equation (e.g., Sandler 1999). Thus, the com-
bination of intensive thermodynamic state variables appearing in a physical context has 
to be chosen appropriately. In the case of a multiphase system, the physical context 
should be composed of the intensive thermodynamic state variables of the constituting 
single phases; by contrast, using the intensive thermodynamic state variables of the 
composite multiphase system is not recommended for practical use (Sandler 1999). 

7.3.4 Reactions in Phase Systems 

Fig. 7.34: Phase reactions 

The occurance of a chemical reaction (defined in the module reaction_mechanisms; 
cf. Sect. 7.2.8) in a phase system or at a phase interface is represented by the 
hasReaction relation that links the latter two to the former, as shown in Fig. 7.34.  
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Furthermore, the phase_system partial model introduces a specific phase reaction 
property, namely reaction equilibrium constant. A phase system or phase interface may 
have one or more reaction equilibrium constants. Each instance of this property refers 
to a particular reversible reaction which again has been defined in the reac-
tion_mechanism module. 

7.3.5 Concept Descriptions 

Individual concepts of the module phase_system are defined below.  

Class Descriptions 

Activity 
The activity of some phase component is the ratio of the phase component’s fugacity to 
the fugacity in its standard state. 

Activity coefficient 
The activity coefficient of a phase component is the ratio of its fugacity in the actual 
phase system, to its fugacity in an ideal mixture. 

Composition 
Composition represents the composition of a phase system by assembling the con-
centrations of the different phase components that constitute the phase system. 

Density 
The mass of a phase system divided by its volume. It is the reciprocal of specific vo-
lume. 

Diffusion coefficient 
Proportionality constant, relating the flux of amount of some phase component to 
its concentration gradient. 

Dynamic viscosity 
For a laminar flow of a fluid, the ratio of the shear stress to the velocity gradient 
perpendicular to the plane of shear (McNaught and Wilkinson 1997). 

Fugacity 
The fugacity of a phase component. 

Fugacity coefficient 
Ratio of fugacity to the partial pressure of a phase component. 

Intensive property 
An intensive property is a physical quantity, the value of which does not depend on the 
system size or the amount of material in the system. 
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Intensive thermodynamic state variable 
An intensive thermodynamic state variable is an intensive property that characterizes 
the (macroscopic) thermodynamic state of a phase system. 
Formal definition: An intensive thermodynamic state variable is either a thermodynam-
ic state property or a phase component property. 

Mass-based phase ratio 
The ratio of the mass of a single phase in multiphase system divided by the mass of 
the multiphase system. 

Mass fraction 
The mass of a phase component divided by the total mass of all phase components 
of a phase system. 

Molarity 
The molarity (a.k.a. amount concentration) is the molar amount of a phase compo-
nent divided by the volume of the phase system. 

Molar phase ratio 
The ratio of the (molar) amount of substance of a single phase in multiphase system 
to the (molar) amount of substance of the multiphase system. 

Mole fraction 
The number of moles of a phase component divided by the total number of moles 
of all phase components in the phase system. 

Multiphase system 
A multiphase system is a phase system that consists of two or more single phases. 

Partial density 
Mass of a phase component divided by the volume of the phase system. 

Partial molar enthalpy 
The partial derivative of the specific enthalpy with respect to the number of moles 
of one phase component. 

Partial molar quantity 
A partial molar quantity is the partial derivative of the considered molar quantity 
with respect to the number of moles of one phase component. The temperature, 
pressure, and the number of moles of all other phase components are held constant 
when forming the derivative. The class subsumes all kinds of partial molar quanti-
ties, such as partial molar enthalpy and partial molar volume. 

Partial molar volume 
The partial derivative of the specific volume with respect to the number of moles of 
one phase component. 
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Phase component  
A phase component represents the occurrence of a chemical component in a phase 
system. 

Phase component concentration 
Phase component concentration subsumes the different concentration measures for a 
certain phase component within a phase system. 

Phase component fraction 
In general, the ratio of two physical quantities of the same kind, the numerator quan-
tity applying to one particular phase component of a phase system, and the denomi-
nator to the sum of quantities of all phase components of that phase system. More 
concretely, a phase component fraction subsumes the following concentration meas-
ures: mass fraction, volume fraction, and mole fraction. 

Phase component property 
A phase component property is an intensive property that characterizes a phase compo-
nent.  
Formal definition: A phase component property is an intensive property of some phase 
component. 

Phase equilibrium ratio  
A phase equilibrium ratio of a phase component in a multiphase system is a phase com-
ponent property that denotes the ratio of the mole fraction of this phase component in 
one specific single phase to that in another specific single phase; both single phases 
are part of the multiphase system. 

Phase interface  
A phase interface represents the interface between two single phases. 

Phase interface property 
A phase interface property is an intensive property that characterizes the interface be-
tween two single phases. 

Phase ratio 
A phase ratio characterizes the proportion of a single phase in a multiphase system on 
a mass, molar, or volume basis. 
Formal definition: A phase ratio is either a mass-based phase ratio, or a volumetric 
phase ratio, or a molar phase ratio. 

Phase reaction property 
A phase reaction property is an intensive property that is a property of the occurance 
of a chemical reaction in a phase system or at a phase interface. 

Phase system 
A phase system represents the macroscopic thermodynamic behavior of material in 
some physical context.  
Formal definition: A phase system is either a single phase or a multiphase system. 
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Phase system property 
A phase system property is an intensive property that characterizes a phase system. It 
can be described or calculated without reference to the shape, size, or amount of a 
particular occurrence of a material. In the case of calculation, this is consistent 
with the usage of general-purpose physical property packages, where such infor-
mation is not required as the input for the calculation.  
Formal definition: A phase system property is an intensive property of a phase system. 

Physical context 
A physical context of a phase system is a set of intensive thermodynamic state properties 
with known values which are sufficient for determining other properties of interest 
of the phase system. Conventionally, a physical context is described by temperature, 
pressure, and molar fractions, although other intensive thermodynamic state variables, 
such as specific volume, specific enthalpy, specific Gibbs free energy, or volume-based 
concentrations may be used alternatively. 

Pressure 
The (total absolute) pressure of a phase system. 

Reaction equilibrium constant 
According to the IUPAC Compendium (McNaught and Wilkinson 1997), the reac-
tion equilibrium constant is a physical quantity characterizing the chemical equilibrium 
of a chemical reaction. It is defined by an expression of type ∏=

i
i

ixK ν ,  

where iν  is the stoichiometric coefficient of a reactant (negative) or product (positive) 

of the reaction, and ix stands for a physical quantity which can be the equilibrium 

value either of pressure, fugacity, molarity, molar fraction, molality, or activity. De-
pending on the chosen quantity, one obtains one of the following types of reaction 
equilibrium constant: pressure based, fugacity based, concentration based, amount 
fraction based, molality based, relative activity based, or standard equilibrium 
constant, respectively. These different types can be modeled as subclasses of the 
reaction equilibrium constant. 

Single phase 
A single phase is a finite volume of material within which the physical properties 
are uniformly constant, i.e., do not experience any abrupt change in passing from 
one point in the volume to another. 

Single phase in multiphase system 
A single phase that is part of a mulitphase system. 
Formal definition: A single phase which is an exclusive subsystem of a multiphase 
system. 
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Single phase in multiphase system property 
Class used for grouping the properties of a single phase in multiphase system.  
Formal definition: The property of a single phase in multiphase system. 

Specific enthalpy 
Specific enthalpy denotes enthalpy per unit mass (i.e., the enthalpy of a phase system 
divided by its mass). It is defined by the equation h = u + p , where u represents 
the specific internal energy, p the pressure, and v the specific volume of the phase 
system. 

Specific Gibbs free energy 
Specific Gibbs free energy denotes the Gibbs free energy per unit mass (i.e., the 
Gibbs free energy of a phase system divided by its mass). It is defined by the equa-
tion g = u + p*v - T*s, where u represents the specific internal energy, p the Pres-
sure, v the specific volume, T the temperature, and s the specific entropy of the phase 
system. 

Specific volume 
Specific volume is the volume of a phase system divided by its mass. It is the reci-
procal of density. 

State of aggregation 
The state of aggregation (a.k.a. state of matter) describes the physical state of a sin-
gle phase; solid, liquid, and gaseous are predefined instances of state of aggregation. 

Surface tension 
Work required to increase a surface area divided by that area. When two phases 
are studied it is often called interfacial tension (McNaught and Wilkinson 1997). 

Temperature 
The temperature of a phase system. 

Thermal conductivity 
The thermal conductivity λ is the coefficient relating the heat flux q to the tempera-
ture gradient ∇ T: q = -λ∇ T. 

Thermodynamic state property 
A thermodynamic state property is a phase system property that can serve as an inten-
sive thermodynamic state variable (i.e., characterize the thermodynamic state of a 
phase system). 

Transport phenomena property 
A transport phenomena property is a phase system property that subsumes dynamic vis-
cosity, heat conductivity, and diffusion coefficient. 

 

 

 



238      Material 

Type of solid 
Type of solid allows to further characterize the solid state of matter, according to 
the CAPE-OPEN Open Interface Specification “Thermodynamic and Physical 
properties” (Drewitz et al. 2006).  
Formal definition: Type of solid is an enumerated class that can take one of the fol-
lowing instance values: HydrateI, HydrateII, HydrateH, PureSolid, SolidSolution. 

Volume-based concentration 
Volume-based concentration denotes the concentration of a certain phase component 
in a phase system with respect to the volume of the phase system.  
Formal definition: A volume-based concentration can be one of the following: mass-
volume percentage, molarity, or volume-volume percentage. 

Volume fraction 
The volume of a phase component divided by the sum of volumes of all phase com-
ponents of the phase system prior to mixing; for ideal mixtures, this equals to the 
volume-volume percentage. 

Volume-volume percentage 
Volume of a phase component, divided by the total volume of the phase system. For 
ideal mixtures, this is the same as the volume fraction. 

Volumetric phase ratio 
The ratio of the volume of a single phase in multiphase system to the volume of the 
multiphase system. 

Relation Descriptions 

hasReaction 
The relation hasReaction links a chemical reaction to the phase system or phase inter-
face where it takes place. 

refersToReaction 
The relation refersToReaction links a reaction equilibrium constant to a reversible reac-
tion. 

hasStateOfAggregation 
The relation hasStateOfAggregation indicates the state of aggregation of a single 
phase. 

representsOccurrenceOf 
The relation representsOccurenceOf establishes the relationship between a phase 
component and the corresponding chemical component, or between a phase reaction 
and the corresponding chemical reaction. 
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refersToFirstSinglePhase 
The relation refersToFirstSinglePhase indicates the first one of the two single phases 
to which a phase equilibrium ratio of a phase component refers. 

refersToSecondSinglePhase 
The relation refersToSecondSinglePhase indicates the second one of the two single 
phases to which a phase equilibrium ratio of a phase component refers. 
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8 Chemical Process Systems 
 
Chemical_process_system is the key partial model in the ontology which ad-
dresses the body of knowledge of the chemical engineering discipline. However, it 
is not intended to function as a textbook or handbook for this discipline. Primarily, 
this partial model is aimed to present an organization of chemical engineering 
knowledge, by means of positioning, grouping, and linking chemical engineering 
concepts within a number of ontology modules. The descriptions or definitions of 
individual concepts presented in this partial model are all serving this purpose; 
more rigorous and comprehensive explanations of these concepts should not be 
sought in this section or in this ontology, but rather in the specialized textbooks or 
handbooks. 
Furthermore, as part of a particular version of a continuously developed ontology, 
this partial model is intended to provide a rather complete coverage of the high 
level concepts within its intended scope, complemented with the concepts at lower 
levels (i.e. those of greater detail) which are introduced either because they have 
been needed by the existing applications of the OntoCAPE ontology or simply for 
illustrating how the extension to some specific high level concepts can be done. 
Due to the broadness of this discipline and the diversity of applications, it is per-
haps unrealistic for any particular version of the ontology to cover all chemical 
engineering concepts. However, the design of this ontology, particularly the diffe-
rentiation between the Conceptual Layer and the Application-Oriented Layer, will 
allow any extension to be introduced as needed in the future. 

8.1 Chemical Process System (Partial Model) 

The central chemical_process_system partial model represents all those concepts 
that are directly related to materials processing and the corresponding operating 
devices. Hence, it is a representative elaboration of the primitives defined in tech-
nical systems (cf. Sect. 5.3). Overall, it is composed of 7 partial models which are 
located on the Conceptual Layer as well as the Application-Oriented Layer and 
thus it is the largest of all partial models in OntoCAPE. These 7 partial models 
are: CPS_behavior, CPS_function, CPS_peformance, CPS_realization, 
process_units, plant_equipment and process_control_equipment. An overview 
on these partial models including the major ontology modules is given in Fig. 8.1. 
Furthermore, chemical_process_system imports modules from other partial mod-
els such as material or geometry. 
The four partial models CPS_function, CPS_realization, CPS_behavior and 
CPS_performance define the core of the chemical_process_system with respect 
to the Conceptual Layer. 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_8,  
© Springer-Verlag Berlin Heidelberg 2010 
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Fig. 8.1: Overview on the partial model chemical_process_system 

CPS_function represents the desired behavior of a chemical process system (cf. 
Sect. 5.3.1). Thus, it holds the functionality of material processing, describing the 
chemical, physical, or biological procedures as well as the concepts related to in-
formation processing for process automation. Subsequently, CPS_realization re-
flects the physical constitution of the chemical process system (cf. Sect. 5.3.2). 
Accordingly, it comprises the technical realizations through plant equipments and 
the technology to operate the plant (i.e., observation and control). Furthermore, 
CPS_behavior describes how a chemical process system operates under certain 
conditions (cf. Sect. 5.3.3). It consists of (1) the phenominological description of 
the processed material amount and (2) the required connectivity between certain 
states of material amount. Finally, CPS_performance is introduced which may be 
applied for the evaluation and benchmarking of a chemical process system (cf. 
Sect. 5.3.4). Since the understanding of evaluation is very broad, only evaluation 
in the perspective of economics is included exemplarily for the time being. 
The ontology modules that are incorporated within the aforementioned partial 
models may be distinguished with respect to whether they model the physico-
chemical processing part or the operation and control part of a chemical process 
system. Considering the former one, process represents the functional viewpoint 
which describes the intended, ideal behavior (or intended effects resulting from 
the behavior) of the chemical plant in terms of certain changes of the significant 
states of material streams or amounts, which essentially indicates the designated 
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engineering purpose of a plant or a plant item. Plant describes the realization 
viewpoint which depicts the constitution of a chemical plant in terms of plant 
items (mainly pieces of equipment). Furthermore, behavior depicts the behavioral 
viewpoint of a chemical_process_system which mainly characterizes the physico-
chemical phenomena occurring when materials are processed in an equipment. 
However, to characterize the operation and control part, modules process_control 
and process_control_system are introduced. The module process_control presents 
the functional description which basically comprises observation and control de-
vices, and process_control_system represents the realization aspect which is es-
sentially the implementation and installation of devices for control. Equally well 
applicable to both parts is the module economic_performance which covers the 
performance viewpoint mainly with respect to costs and revenue.  
Regarding the Application-Oriented Layer, the two partial models 
process_control_ equipment and plant_equipment constitute specializations of 
the partial model CPS_realization. Specifically, they comprise more detailed in-
formation on apparatuses, machines and instrumentation. Ultimately, the partial 
model process units gives exemplary applications of chemical_process_system, 
e.g. a reactor or a flash_unit. 

8.1.1 Chemical Process System (Ontology Module) 

The module chemical_process_system introduces the class chemical process system 
as a special technical system (cf. Sect. 5.3), which is designed, built, and run in or-
der to produce chemical compound(s) or material product(s) with given specifica-
tions. This definition is in accordance with the systems engineering definition of a 
system given by e.g. Patzak (1982). 
Essentially, chemical process system and process unit are the major classes of this 
module and they are modeled as special types of a technical system. All the infor-
mation about a chemical process system is conveyed via its aspect systems. The as-
pect system is introduced in a way such that it can be used to describe the various 
phases during the lifecycle of a chemical process system starting from design to op-
eration. For the time being, the aspect systems have been developed and elaborated 
mainly for the purposes of design processes e.g. desired function of a processing 
or operating section. Hence, in the following we demonstrate the applicability of 
the aspect systems exemplarily for the design process of a processing part. Note 
that the aspects dealing with the development of the operating system could have 
been applied equally well. Further aspects such as operation, maintenance or the 
like could be easily added. Fig. 8.2 gives a schematic representation on how the 
aspect systems interact in a hypothetical scenario in which the major aspects in the 
lifecycle of a chemical plant are fully elaborated. 
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Fig. 8.2: Exemplary presentation of the aspect system considering the processing 
part of a chemical process system 

According to the principles of decomposition of systems, a chemical process system 
can be composed of a number of process units. Since it is typically not intended to 
specify a complete chemical process system at once, one may rather focus on the 
modeling of a single process unit that builds a part of the overall system. Hence 
each process unit describes a distinct part of the entire chemical process system 
whose aspects may deviate from the one considered overall, e.g. the functional re-
presentation of a reactor differs from the one of the plant as a whole. In the fol-
lowing the respective aspect systems of a process unit are introduced from a design 
process perspective: 

– The class process step represents the desired function (cf. Sect. 8.2.1).  
– The class plant item reflects its physical realization (cf. Sect. 8.3.1).  
– A material amount describes the physicochemical behavior of a chemical 

process system (cf. Sect. 8.6.1). 
– Its (economic) performance is characterized by the concept of economic 

performance (cf. Sect. 8.7.1). 

The graphical representation is given in Fig. 8.3. Note that the classes plant item, 
process step, material amount and economic performance are modeled as subclasses of 
system within their respective modules. However, in the chemical process system 
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module, they are identified as aspect systems of process unit. For reasons of clarity 
the assignment of economic performance (i.e. representsPerformanceOf) is omitted.  

Fig. 8.3: Presentation of the aspect system considerations for process unit 

Applying the same modeling approach as adopted in the technical_system (cf. 
Sect. 5.3) module, special dependencies of interest between the aspect systems are 
predefined within chemical_process_system. Exemplarily, the dependencies be-
tween the functional and realization view in a design process are presented in the 
following. Based on the workflow within the course of a design process, the in-
formation provided in a piping and instrumentation diagram (P&ID) are derived 
from the process flow diagrams (PFD) developed initially. Regarded from the 
perspective of aspect systems, a P&ID corresponds to a realization view of process 
unit whereas information stated in the PFD is considered to be a functional de-
scription. Accordingly, a plant item is said to realize a certain process step as it is 
shown in Fig. 8.4.  
For example, a process unit that is intended to carry out a particular chemical reac-
tion will be given the function of a reaction which will be realized by some reactor 
suitable to yield the desired product. 
In the following sections the concepts stated within the respective partial models 
will be discussed, and their interdependencies considered. To that end, all modules 
already proposed in Fig. 8.1 will be introduced and described in detail. 
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Fig. 8.4: Predefined dependencies between aspect systems 

8.1.1.1 Concept Descriptions 

Individual concepts of the module chemical_process_system are defined below. 

Class Descriptions 

Chemical process system 
The chemical process system is a technical system which is designed, built, and run 
in order to produce chemical product(s). 

Process unit 
Process unit comprises parts of a chemical process system that are considered under 
specific aspects but do not represent the entire chemical process system. 

8.2 CPS Function 

The partial model CPS_function deals with the functional description of the 
chemical_process_system. Basically, it indicates the fundamental engineering 
purpose of a plant or a process control system by describing the intended behavior 
on a conceptual level. The functional description as it is implemented in Onto-
CAPE for the time being covers material processing devices as well as informa-
tion processing devices, which are needed for the operation of a chemical process 
system. 
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The concepts provided enable a process description on a level of detail which is 
equivalent to that of a process flow diagram. In this stage of the process design 

 are usually specified: 

– Process steps which hold certain material processing procedures (e.g. a 
reaction unit or a separation sequence) to acquire the overall process func-
tionality. 

– Process states which indicate the state of a processed material leaving or 

ployed (e.g. either batch or continuous) and product classification (e.g. in-
termediate or waste product). 

– Major operating conditions such as pressures and temperatures and some 
plant item design specifications such as the volume of a process unit. 

– Connections representing the order of process steps and hence the identifi-
cation of upstream and downstream parts of the process. 

– Concepts for process control. 

Subsequently, a comprehensive description of the partial model is provided. The 
partial model itself comprises the modules process, process_control and control-
ler.  

8.2.1  Process 

The module process covers the functional viewpoint of the chemi-
cal_process_system with respect to material processing. It gives a conceptual view 
on the desired process, as it is often applied in an early stage of a design process. 
In the following, all relevant information regarding the decomposition will be 
stated first; subsequently, connectivity issues will be discussed. 

8.2.1.1 High-Level Concepts 

Within a chemical plant, material is processed in order to produce some specified 
product from raw materials. This processing comprises physical, chemical, and 
biological procedures that are performed in a specific order. These procedures can 
be subsumed as process steps (cf. Fig. 8.5).  

lifecycle, the following items

entering a particular process step with respect to the operational mode em-
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Fig. 8.5: Main elements of the ontology module process 

Separation, mixing, and evaporation can be considered as examples for process 
steps. Chemical and biological transformations are described by reactions whereas 
unit operations are elementary process steps where only physical phenomena occur. 
However, unit operations, reactions and other process steps can be combined to 
complex procedures; these are captured by the class aggregated process step that 
must contain two or more process steps. Finally, the chemical process in its entirety 
is one special aggregated process step. 

8.2.1.2 Modeling of Decomposition 

In the following, initially a further classification of unit operations is given and then 
reactions are discussed on a conceptual level. 

Fig. 8.6: Representation of unit operation in process 

While the number of chemical processes is enormous, there are a relatively small 
number of unit operations that can be combined to form many kinds of processes. 
There are several chemical engineering handbooks dealing with unit operations and 
their realization in some equipment (e.g. Green and Perry 1998; McCabe et al 
1993). Also, the data model developed by the pdXi initiative (ISO 10303 1998) 
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contains a class hierarchy of unit operations frequently applied for a classification. 
The TGL 25000 (1974) was a standard of the former German Democratic Repub-
lic and gives an exhaustive description of unit operations, their application, and 
equipment for their implementation. In summary, the categorizations of unit opera-
tions given by the handbooks and the data models can be used to develop an ac-
cordant class hierarchy which result in two alternative classifications of unit opera-
tions: classification schema (1) where the physical state of the processed 
processing materials serves as the organizing principle and classification schema 
(2) where the unit operations are organized according to theoretical chemical engi-
neering considerations. In OntoCAPE the schema (1) is adopted due to reasons of 
clarity and since this classification schema is more relevant in the context of 
process design where unit operations are selected for performing required trans-
formations of chemical products. Further information on the implementation of 
the two classification can be found elsewhere (Bayer et al. 2001).  
Unit operations in OntoCAPE are distinguished according to four major types: com-
bination, enthalpy change, separation and fragmentation (cf. Fig. 8.6). Note that unit 
operation is defined as elementary, such that all complex and composite process 
steps are represented by aggregated process step. For a complete list of specializa-
tions of the four major types, we refer to the formal specification of OntoCAPE. 
A reaction is a process step which is based on chemical, biological or nuclear trans-
formation. It can be elementary or composite. Classification schemas for reactions 
are published in the literature similar to the ones given for unit operations (e.g. 
Shreve 1978; Matthes 1959); in this context, the term unit process is often used to 
capture chemical reactions (Encyclopedia Britannica 2009). We do not adopt 
those structures in OntoCAPE.  
Finally, for the specification of a particular chemical transformation, considered in 
a rather macroscopic perspective of an early design stage, the relation refersTo-
ChemicalReaction is introduced (cf. Fig. 8.7). That way, a reaction may be assigned 
to single or aggregated chemical reactions. For the classification of chemical reac-
tions, we refer to the module reaction_mechanism (cf. Sect. 7.2.8) 

Fig. 8.7: Link to the related reaction_mechanism module class 
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8.2.1.3 Modeling of Connectivity 

The individual process steps can be connected to each other via process states, as it 
is indicated in Fig. 8.8.  
A process state represents the material that enters or leaves a process step. This in-
cludes the interchange between two process steps as well as the feeding and re-
moving of material. 

 

Fig. 8.8: Class diagram representing the topological relations in process 

To define a process state, one must specify the amount of the material as well as its 
thermodynamic state (i.e., composition, temperature, pressure). For this purpose, a 
process state can be linked to a generalized amount (cf. Sect. 8.6.1) via the relation 
refersToGeneralizedAmount, as shown in Fig. 8.9.  

Fig. 8.9: Link to the related behavior module class 
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Depending on the mode of operation (i.e., batch, semi-batch, or continuous), a ge-
neralized amount may represent either a material flow (if it is a continuous process), 
or a material hold-up (if it is a batch process). 
An assembly of interconnected process steps and process states forms a directed 
graph; consequently, the rules by which they can be connected are equivalent to 
those defined in the module network_system on the Upper Layer (cf. Sect. 5.2). 
Particularly, a process step may have various hasInput and hasOutput relations to a 
process state (e.g., a reactor that has multiple feeds). A process state, by contrast, 
must enter and/or leave at most one process step.  

Fig. 8.10: Representation of the process state specialization 

Note that the interconnected process steps and process states can be interpreted as a 
modified representation of a state-task network. A state-task network is a directed 
bipartite graph with states as its arcs and tasks as its nodes (Miller et al. 1997; 
Sargent 1998). In our representation, the process steps are considered as tasks, 
whereas the process states represent the states.  
According to the state-task approach, chemical processes can be described on a 
very detailed level, independently of their mode of operation  (i.e., batch, semi-
batch, or continuous). Nevertheless, it may be of interest to specify the mode of 
operation with which a process state is associated: In a batch process, the process 
state represents the status of the process at a certain time; this is referred to as a 
batch process state. In a continuous process, the process state can be associated with 
a process stream at a certain location (cf. Fig. 8.9). 
The process states might not only be classified in terms of mode of operation but 
also in terms of the value chain a process achieves. Therefore, the specialization as 
represented in Fig. 8.10 is proposed. 
Note that the represented process state may be the result of intended or unintended 
effects in terms of physicochemical phenomena. The intended effects, correspond-
ing to the functional viewpoint on the process, are realized by means of the process 
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steps. However, unintended effects due to non-ideal behavior are not considered 
here but within the module behavior (cf. Sect. 8.6.1).  

8.2.1.4 Properties of Process 

Both process steps and process states may have a number of properties, which uni-
quely define the design conditions of a process step or the effective operating con-
ditions of a process state. Essentially, the predefined patterns for property represen-

Fig. 8.11: Exemplary description of process step properties  

Secondly, further specifications such as key chemical component conversion ratio, 
flash vapor ratio or a pressure difference are introduced exemplarily as shown in Fig. 
8.11. Consecutively, the properties may be assigned to the process steps using ei-
ther the hasProperty relation or specializations83 thereof as depicted in Fig. 8.12. 

Fig. 8.12: Exemplary property assignment to process step 

                                                           
83 These specializations are merely auxiliary constructs used as replacements for qualified cardi-
nality restrictions (cf. Sect. 2.3.4). They may be discarded, as soon as qualified number restric-
tions are made available in OWL. 
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The properties of a process state can only be expressed through the generalized 
amount it refers to, as described in Sect. 8.6.1. 

8.2.1.5 Application Example 

Finally, an application example is discussed, dealing with the decomposition and 
connectivity of a process flow diagram. In Fig. 8.13 a simple flow diagram is giv-
en, showing the main aggregated process step (Process) and two major process 
states (Feed, Product). The Process is decomposed into two process steps (Reac-
tion, Separation) linked by intermediate process states (Recycle, Intermediate). 
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Fig. 8.13: Application example: Decomposition of process flow diagram 

The OntoCAPE representation of the process flow diagram is presented in Fig. 
8.14.  
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Fig. 8.14: Hierarchical decomposition of a process flow diagram 
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Both levels of hierarchy are modeled (the classes corresponding to the individuals 
are given in brackets). As usual, the topological relations are confined to the same 
decomposition level. Note that Feed 1 and Feed 2 denote the same process state on 
different breakdown levels84. Its separate occurrences at these levels are linked by 
the relation sameAs (cf. Sect. 5.2). The same is true for Product 1 and Product 2.  

8.2.1.6 Concept Descriptions 

Individual concepts of the module process are defined below. 

Class Descriptions 

Aggregated process step 
An aggregated process step is a process step which consists of a number of process 
steps in a certain sequence. 

Batch process state 
A batch process state represents a specific process state which is attained during a 
batch mode of operation. 

Byproduct 
A byproduct is an end product whose production is unavoidable while a core product 
is produced. 

Combination 
Combination refers to these unit operations which combine different materials into 
one. 

Core product 
A core product is the main (or an intended) end product. 

Coproduct 
A coproduct is an end product whose production is unintended. 

Distillation 
Distillation is a unit operation for the separation of chemical substances based on dif-
ferences in their volatilities in a boiling liquid mixture. For the realization of the 
unit operation often a distillation column is applied. 

Enthalpy change 
Enthalpy change is a unit operation which changes the enthalpy of the material being 
processed, which may materialize as the change in temperature, pressure, and/or 
state of aggregation. 

                                                           
84 This is due to the unique name assumption required by OWL. 
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End product 
An end product is a valuable output product that is not further processed. 

Extraction 
Extraction is a unit operation which separates a substance from a mixture by prefe-
rentially dissolving that substance in a suitable solvent. By this process a soluble 
compound is usually separated from an insoluble compound. 

Feed 
Feed is the supply of material to a certain process step. 

Flashing 
Flashing or flash evaporation is the partial vaporization that occurs when a satu-
rated liquid stream undergoes a reduction in pressure by passing through a throt-
tling device. This process is one of the simplest unit operations which is usually rea-
lized in a vessel. 

Flash vapor ratio 
Flash vapor ratio is the ratio between the vapor and the liquid phase in a flash, 
which is considered as a significant property for flash design. 

Fragmentation 
Fragmentation refers to unit operations to breakup or split a material for further 
processing to an unknown ratio, shape or structure like the crushing of solid mate-
rials. 

Intermediate product 
A compound which is produced in the course of a chemical synthesis, which is not 
itself the final product, but is used in further process steps which produce the end 
product. 

Key chemical component conversion ratio 
Key chemical component conversion ratio indicates the conversion ratio of the main 
product produced in a reaction process step. 

Mixing 
Mixing is a unit operation which, as a special type of combination, results in a mixture 
required for further processing. It is usually accomplished by means of stirrer. 

Non-reusable waste product 
A non-reusable waste product is a waste product that cannot be integrated in a process 
anymore and therefore has to be disposed. 

Mode of operation 
The mode of operation distinguishes between the two common modes of continuous 
and batch operation. Mode of operation is an enumeration of its instances batch, 
semi-batch, and continuous. 
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Output product 
An output product is a material that has been processed by a certain process step and 
may be either further processed or sold or disposed. 

Phase change 
Phase change refers to the change in the nature of a phase as a result of some var-
iation in externally imposed conditions, such as temperature, pressure, activity of a 
component or a magnetic, electric or stress field (McNaught and Wilkinson 1997). 

Pressure change 
Pressure change is a unit operation which changes the pressure of the material being 
processed. Typical examples are pumping, compression, and expansion. 

Pressure difference 
Pressure difference is a process step property which indicates the difference in the 
pressure of the material when it is processed by the process step pressure change. 

Process 
Process is an aggregated process step representing the entire function of the chemi-
cal process system considered. 

Process state 
A process state represents the collectivity of properties of a certain material amount 
which is produced in the associated process step. 

Process step 
A process step is a certain material processing procedure. 

Process step property 
A process step property is a property of a process step. 

Process stream 
A process stream represents a process state in a process operated in a continuous 
mode of operation. 

Raw material 
Raw material denotes the process state of material that enters a process step to be 
processed there. 

Reaction 
A reaction is a process step in which some material is converted to some other ma-
terial through chemical, biochemical or nuclear reactions.  

Reusable waste product 
A reusable waste product is a waste product that can be reused and hence be inte-
grated in the chemical synthesis for production again. 
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Separation 
Separation refers to all unit operations which obtain a subset of mixture components 
at a specified amount by the application of physical or chemical pocesses.  

Temperature change 
Temperature change is a unit operation which transports the heat content of one ma-
terial to another to result in a change in the temperature of the material being 
processed. It is applied for heating or cooling purposes. 

Unit operation 
A unit operation is a basic step in a process. Examples of unit operation are mixing, 
separation, enthalpy change, etc. 

Waste product 
A waste product is an output product that has no market value. 

Relation Descriptions 

hasFlashVaporRatio 
The relation hasFlashVaporRatio indicates the liquid-vapor ratio of a particular mix-
ture at a certain state within a vessel. 

hasOperationMode 
The relation hasOperationMode indicates by which operation mode a particular 
process state is achieved. 

hasPressureDifference 
The relation hasPressureDifference indicates the intended difference between two 
pressure states. 

refersToGeneralizedAmount 
The relation refersToGeneralizedAmount establishes a connection between a process 
state and a generalized amount in order to be able to describe extensive as well as 
intensive properties, e.g. relevant material quantities. 

refersToChemicalReaction 
The relation refersToChemicalReaction established a connection between a reaction, 
and a chemical reaction considered in a rather macroscopic perspective of an early 
design stage. 

8.2.2 Process Control 

The module process_control deals with the architecture, mechanisms and algo-
rithms for controlling the outputs of a specific process. In particular, the concepts 
for representing the architecture of a control system are centered on a control loop. 
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In the following, we will first introduce the principles of decomposition applied in 
this module and then connectivity issues are discussed.  

Since function blocks are typically described by mathematical model, such a con-
nection is given by the relation refersToMathematicalModel. Furthermore, function 
block can be specialized to sensor functions and actuator functions (Polke 1994). The 
sensor function comprises the entire function of recording, relaying, and writing out 
process quantities within other control components. The actuator function transforms 
the output of the controller (controller output variable) into the input of the con-
trolled system (manipulated variable), which is the actual variable that is changed 
within the process step in order to reach the intended conditions.  

Fig. 8.15: Major elements of the module process_control 

The architecture of a control loop is characteristic and is designed under considera-
tion of the control objective as well as the particular process by connecting the dif-
ferent kinds of control components. However, frequently applied control loop archi-
tectures are summarized as control loop architecture value types including four basic 
types of control loops as shown in Fig. 8.16: open_loop_control, feed_ for-
ward_control, state_feedback_control and output_feedback_control. Furthermore 
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sensor function and actuator function. Besides function blocks, comparing elements, re-
versing points and branching points are needed to describe the function of the infor-
mation processing which is performed within the chemical process system. 
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complex_control_loops are considered which can contain two or more of the basic 
ones (e.g. cascade control or pre-control (Schuler 1999)).  

Fig. 8.16: Representation of control loop architecture value type 
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8.17). Further, static and dynamic function blocks can be distinguished (not shown 
in Fig. 8.17). Furthermore, linear function blocks types have a distinct transfer func-
tion, which can be used to characterize them (Unbehauen 1989). Another charac-
teristic property of linear function blocks is their abstract behavior, i.e. the way they 
react on a change in their input variable. The indication of the response characte-
ristics of a function block is indicated by the relation hasResponseCharacteristics.  

Fig. 8.17: Representation of system value types in the module process_control 
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theory (e.g. Unbehauen 1989). Some authors give classifications of function blocks 
that can also be integrated here (see for example Föllinger 1992). 
Again, the topological relations applied in process_control obey the principles 
given by the partial model network_system (cf. Sect. 5.2 and cf. Fig. 8.18). 
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Fig. 8.18: Illustration of the topological relations in the module process_control 
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Control loop architecture VT 
Control loop architecture value type comprises the different types of control loop 
structures. Control loop type is an enumeration of its instances open_loop_control, 
feed_forward_control, state_feedback_control, output_feedback_control and com-
plex_control_loop. 

Controller 
Controller represents the different types of controller. 

Function block 
A function block describes the function between input variables and output variables 

Linear function block type 
A linear function block type represents the desired behavior which may be described 
by linear functions. It typically has a distinct transfer function, which can be used 
to characterize them. 

Linearity VT 
Linearity is an enumeration of its instances linear and non-linear. 

Nonlinear function block type 
A nonlinear function block type represents the desired behavior which may be de-
scribed by nonlinear functions.  

Response characteristics VT 
Response characteristics VT describes the several characteristics how a controlled 
system may react on a manipulation. 

Reversing element 
Reversing element describes the functionality of lead. 

Sensor function 
The sensor function comprises the entire function of recording, relaying, and docu-
menting process quantities within other control components. 

Relation Descriptions 

hasControlLoopArchitecture 
The relation hasControlLoopArchitecture refers from a function block to its control 
loop architecture value type. 

hasLinearity 
The relation hasLinearity refers from a function block to its linearity value type. 

hasResponseCharacteristics 
The relation hasResponseCharacteristics refers from a linear function block type to its 
response characteristics value type. 
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8.2.3 Controller 

The two preceding ontology modules provide fundamental principles for a func-
tional description of a chemical process system. However, it is intended to present 
the major component of a control loop, namely the controller, in a more detailed way. 
Further specializations for different applications are possible. A graphical repre-
sentation of some specialized controller types is given in Fig. 8.19. 
The PID controller is the one that is most commonly used in industrial practice. 
Adaptive controllers are another special type of controllers. Furthermore, some more 
advanced controllers exist like knowledge-based controllers (e.g. fuzzy controller), or 
model-based controllers. Very important types of the latter are predictive controllers 
(Schuler 1999); examples are the MPC (model predictive controller), the IMC (inter-
nal model controller), and the Smith predictor. 

Fig. 8.19: Class diagram representing specialization of controller 

For the description of the individual concepts of the module controller, we refer to 
Wiesner et al. (2008a). 

8.3 CPS Realization 

The partial model CPS_realization holds the aspect of realization and therefore 
the concepts required to specify the physical structure of a chemical plant. It al-
lows describing the individual pieces of process equipment, including their fittings 
and fixtures, the connectivity of the equipment through piping systems as well as the 
control components required for the implementation of process automation sys-
tems. The concepts provided by CPS_realization enable plant descriptions on dif-
ferent levels of details to support various phases in the lifecycle ranging from ba-
sic design (a.k.a basic engineering) to detail design (a.k.a detail engineering). For 
the time being, the elaboration of CPS_realization mainly focuses on the follow-
ing items: 
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– apparatuses and machines with respect to their type, construction materials, 
capacity, and main dimensions, 

– the related fixtures and fittings;  
– major design specifications such as maximum pressure or temperature; 
– key instrumentation items (valves, sensors, control hardware…);  
– piping networks and power and signal lines85. 

Geometrical details of the equipment and the 3D layout of the plant are further im-
portant information of a constitutional description of a chemical plant. However, 
these tasks have been considered with less priority compared to the specifications 
stated before and are correspondingly less elaborated. Thus, a plant description 
that is based on concepts from the partial model CPS_realization has approx-
imately the information content of a piping and instrumentation (P&ID) diagram.  
Subsequently, a comprehensive description of the partial model is provided. The 
partial model itself comprises the modules plant and process control system.  

8.3.1  Plant 

Within the module plant, all elements of a plant are subsumed as plant items. There 
are three major subclasses of plant item (cf. Fig. 8.20): equipment, transport channel 
and instrumentation. In the following, the relevant constitution of the plant and the 
plant items involved are discussed first. The topological connectivity between plant 
items is explained thereafter. 

Fig. 8.20: Class diagram of mereological considerations of the module plant 

                                                           
85 Power and signal lines are not considered in OntoCAPE for the time being. 
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8.3.1.1 Modeling of Decomposition 

Equipment is a plant item that is capable of independently realizing one or more 
process steps (cf. Sect. 8.2.1). It represents all sorts of apparatuses and machines 
required for the production of a desired material. Transport channel is introduced as 
a general means to represent any transport of material in chemical plants. Instru-
mentation is required for automation purposes. Within the scope of this module, the 
on-site instruments for measurement and control are addressed. Additionally, fix-
tures are considered as a subclass of plant items. The existence of all kinds of fix-
tures enables the detailed representation of plant items, which even allows a de-
scription of unique or special equipment. The hierarchical organization of a 
chemical plant is decomposed in two levels of detail (cf. Fig. 8.21).  

Fig. 8.21: Representation of the composition of unit and plant 

Firstly, units are introduced, which comprise equipment and the required piping and 
instrumentation which in conjunction represent a production unit. A distillation sys-
tem including the piping connecting the apparatuses and the sensors and controllers 
for automation is an example of such a unit. Secondly, a plant is the collection of 
specific units required for the production of the desired product. 
Obviously, a plant item may consist of one or more other plant items, which moti-
vates the need of decomposition.  
Piece of equipment and group of equipment can be distinguished as two different sub-
classes of equipment. A piece of equipment is an elementary part of plant, though 
elementary as a subclass of equipment, it can be further composed of some fixtures. 
An example for a piece of equipment is a tubular reactor that contains the fixtures 
shell and tubes. Two types of piece of equipment are distinguished fully consistent 
with (TGL 25000 1974): (1) apparatus, which consists mainly of non-moving parts 
and whose main purpose is the transformation of material properties with respect 
to their intensive state variables and other characteristic attributes; (2) machine, 
which is often used to transform energy (e.g., pump) or to transfer energy into 
some material to achieve some physical effects (e.g., centrifuge). A group of equip-
ment is a collection of pieces of equipment. For example, a distillation column with its 
reboiler and head condenser is considered as a group of equipment. 
Piping is a specialization of transport channel and thus introduced to address any 
transport of material between two plant items which is often realized through pipes. 
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In particular, fluids are transported by means of piping. However, also solids need 
to be transported between equipment. Depending on the particulate characteristics 
of the solid, a fluid may be used as a carrier, which again facilitates transport in 

A pipe represents the elementary unit of piping and can be composed of pipe seg-
ments and instruments. Again, pipe segments may have additional properties, e.g. 
the degree of insulation or the material of construction. However, piping network 
represents a collection of pipes and pipe fittings. Forking of a connection to feed 
several reactors from one tank is an example of a piping network.  

Fig. 8.22: Illustration of the piping network 

Finally, for instrumentation the two subclasses instrument and instrument loop are in-
troduced. The instrumentation fittings between the several instruments are not yet 
covered by this module. A further distinction between actuator and sensor units is 
presented in adjacent modules. Examples for instruments are valves which are used 
to control the flows of fluids, and temperature sensors for measurement. An instru-
ment loop consists only of instrumentation, more precisely of at least one sensor 
and one actuator. An instrument loop is applied as a whole to some equipment, e.g. it 

tem (cf. Sect. 5.1.6), the classes piece of equipment and group of equipment corres-
pond to subsystem and supersystem. Similarly, the class pipe and piping network are 
classified as subsystem and supersystem. Two extensions to the relations already 
defined for system are provided. The relations hasConnector and hasFixture are in-
troduced as specializations of the isComposedOf relation and analogously the in-

                                                           
86 Note that any non-piping channel is not explicitly covered by OntoCAPE for the time being. 

pipes. In case the solids’ state of matter do not allow transportation in pipes, a con-
veyor is introduced as an exemplar for the transport of all other solids and mate-
rials86. Piping network, pipe, pipe segments and pipe fittings can be distinguished as 
four different subclasses of piping (cf. Fig. 8.22).  

might be used for temperature control of a column. According to the model of sys-
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verse relations isConnectorOf and isFixtureOf are specializations of isExclusivelyPar-
tOf.  

8.3.1.2 Modeling of Connectivity 

In the system module, system interface is introduced primarily to allow for a consis-
tent and realistic representation of connectivity between systems. Since plant item is 
a specialization of system and hence piece of equipment, pipe and instrument are sub-
systems, suitable interfaces have to be introduced. These interfaces and the result-
ing connectivity within the scope of the module plant is addressed next. The 
corresponging class diagram is represented in Fig. 8.23. 
The three subclasses of system interface introduced to address connectivity are noz-
zle, pipe segment end and instrumentation connection. This way, all sorts of conceiva-
ble connections between piece of equipment, piping network and loop can be created 
with these topological concepts. However, nozzle can only be connected to either 
pipe segment ends or instrumentation connection to build a valid connection. In turn 
pipe segment ends and instrumentation connection might be linked to oneself. 
A piece of equipment and a group of equipment may have as many nozzles as required 
to fulfill the function. By definition, a pipe always consists of two pipe ends to be 
connected to equipment, piping or instrumentation. However, a piping network might 
have more than two pipe segment ends for connectivity resulting from the forking 
of pipes. An instrument may have either one or two instrumentation connections de-
pending on the installation condition. As an example, a temperature sensor fitted 
to a nozzle needs only one instrumentation connection, whilst a valve usually is fixed 
between two pipe segment ends. 

Fig. 8.23: Class diagram of topological considerations of the module plant  
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8.3.1.3 Properties of Plant 

The characteristic properties of a plant item are modeled according to the patterns 
governed by system properties. Therefore, a plant item uses the relation hasProperty 
to refer to the corresponding property which in turn refers to the correct value. Es-
sentially, two basic types of plant item properties are introduced, design property 
and construction property. Design properties can be considered as extended process 
step properties (cf. Sect. 8.2.1) basically including process specification such as 

Some properties can be considered to be constant within the life cycle of a plant 
item. Also others may not only describe a particular feature of a single plant item 
but could be assigned to a wide range of plant items. These kinds of properties are 
allocated to plant items by the relation hasCharacteristics (cf. Sect. 5.1.14) which is 
directly linked to either an enumeration of values or a qualitative value. An example is 
the characteristic of geometry, e.g. a column hasCharacteristics cylindrical or a pipe 
which is designed according to a specific piping class. 

8.3.1.4 Application Example 

Subsequently, a simple example is presented to demonstrate the application of the 
aforementioned classes. The example is shown in Fig. 8.24. The feed to a reactor 
is stored in a tank, both pieces of equipment are connected through a pipeline. The 
pipeline consists of two segments and a valve for operational reasons and can 
therefore be represented on a more detailed level. 
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Fig. 8.24: Application example to illustrate the plant ontology 

Fig. 8.25 shows the representation of the unit applying the classes of the ontology 
module plant to illustrate the basic connectivity of the elements. A coarse-grained 
description may simply distinguish between the tank and the reactor and the con-
necting feed. If, however, the detailed representation of instruments is of impor-

maximal and minimal pressure and some equipment specifications like the type of 
building material of a vessel. Construction properties constitute a further enrichment 
in terms of technical specifications and include very detailed information required 
for the actual building of a plant item. An example of construction properties may 
be the maximal allowable pressure or the thickness of the wall of a vessel or a 
machine.  
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tance, one may choose a more fine-grained description where the piping network is 
decomposed into pipe segments and the in-between instrument (e.g. valve). 
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Fig. 8.25: Representation of the application example according to plant 

Additionally, the use of system interfaces may be demonstrated for this example. 
The resulting representation (with the reactor excluded for simplicity) is shown in 
Fig. 8.26. It is illustrated how the piece of equipment, i.e. tank, is connected via a 
nozzle, i.e. tank nozzle 1, to a pipe segment end, i.e. PSE feed 1 tank, of the adjacent 
piping network; the pipe segment end is furthermore connected to the instrument con-
nection and so on. 
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Fig. 8.26: Representation of system interface connections. 

8.3.1.5 Concept Descriptions 

Individual concepts of the module plant are defined below. 
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Class Descriptions 

Apparatus 
An apparatus is a piece of equipment which mainly consists of non-moving parts and 
provides space for materials to be processed.  

Construction property 
A construction property constitutes a further enrichment in terms of technical speci-
fication of the design data and includes very detailed information required for the 
actual building of a plant item. 

Design property 
A design property is an extended process step property basically including process 
data such as maximal and minimal bounds of design properties and some con-
struction considerations. 

Equipment 
Equipment is a plant item that is capable of independently realizing one or more 
process steps. 

Fixture 
A fixture is a plant item that is part of equipment and therefore not capable of inde-
pendently realizing a process step. The function of a plant item depends on the re-
quired fixtures. 

Group of equipment 
A group of equipment comprises a number of pieces of equipment which realizes a 
process step. 

Instrument 
An instrument is a device used to measure or control one or more properties of a sys-
tem. 

Instrument loop 
An instrument loop is a set of instruments which are arranged to regulate one or more 
variables of a certain controlled system. 

Instrumentation 
Instrumentation is about measuring and control and subsumes instrument and instru-
ment loop. 

Machine 
A machine is any mechanical or electrical device that transmits or converts energy 
to perform a task. 

Nozzle 
A nozzle represents the interface through which a plant item can be connected to 
another plant item or to the environment of a plant. 
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Piece of equipment 
A piece of equipment is an elementary unit in the sense that it does not include other 
equipment or pipes or instrumentation. 

Pipe 
A pipe can be used to connect one plant item to another plant item or to the environ-
ment of a plant. 

Pipe fittings 
Fittings are used in piping networks to connect straight pipe sections, to adapt to dif-
ferent sizes or shapes or to realize forking of piping. 

Pipe segment 
A pipe segment is the elementary part of piping. A pipe may be assembled of a 
number of pipe segments.  

Pipe segment end 
A pipe segment end is an on- or off-page connector to another pipe, piece of equip-
ment or instrument. 

Piping 
A piping is a plant item which is used for fluid transport. It may connect equipment 
or/and instruments. 

Piping network 
A piping network is a collection of connected pipes and pipe fittings used to connect 
multiple pieces of equipment. 

Plant 
A plant aggregates at least two units to realize a whole process. 

Plant item 
A plant item is an object which exists, in a material form, in a chemical process sys-
tem for realizing one or more process steps. 

Plant item property 
A plant item property represents all properties that are particularly important for the 
description and specification of plant items. 

Unit 
A unit is a collection of associated equipment modules, instrumentation modules and 
transport channels in which one or more major process steps can be conducted. It 
represents one section of the overall plant. 

Relation Descriptions 

hasCapacity 
The relation hasCapacity indicates an equipment’s capacity. 
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hasConnector 
The relation hasConnector refers from a piece of equipment or a pipe segment or an 
instrument to the corresponding plant item interface. 

hasConstructionMaterial 
The relation hasConstructionMaterial refers to the material chosen for the construc-
tion of plant items. 

hasEfficiency 
The relation hasEfficiency indicates a machine’s efficiency. 

hasFixture 
The relation hasFixture refers from equipment to the corresponding fixture. 

hasHeight 
The relation hasHeight refers to the height of equipment. 

hasInsideDiameter 
The relation hasInsideDiameter indicates the inside diameter of a piece of equipment. 

hasOutsideDiameter 
The relation hasOutsideDiameter indicates an equipment’s outside diameter. 

hasPowerOutput 
The relation hasPowerOutput indicates a machine’s magnitude of power output. 

isFixtureOf 
The relation isFixtureOf refers from a fixture to the corresponding equipment. 

isConnectorOf 
The relation isConnectorOf refers from a plant item interface to the corresponding 
piece of equipment or pipe segment or instrument. 

8.3.2  Process Control System 

The module process_control_system describes the realization of the part of the 
chemical_process_system which is introduced for control purposes. Hence a 
process control system, which belongs to a specific plant, incorporates the imple-
mentation of the functionality represented by process control.  
The major elements of this partial model are shown in Fig. 8.27. In a general 
sense, the process control system comprises all devices such as measuring instruments 
(i.e. sensors, measuring instruments, analyzers), controlling instruments (actuator 
systems such as control valves or switches), and human-process communication de-
vices (process operator stations, displays and control panels). Consequently, these 
latter classes are summarized by the class process control device. Moreover, the rea-
lization of action lines linking process control devices is represented by information 
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processing devices. Further information about information processing devices (e.g. re-
lated to system and field busses, stored-program controller systems, process and 
logging stations) and about human-process communication devices can be found in 
the literature (e.g. Polke 1994; Früh 2000). 
All instruments are introduced during the design of plants. A measuring instrument or 
a controlling instrument belongs to both, plant and process control system. They are 
devices with two types of system interfaces, which are connected to plant items to be 
part of a plant and to information processing devices to be part of a process control sys-
tem (Wilhelm 1996). 
A process control system consists mainly of information processing devices and 
process control devices, with the latter including particularly human-process commu-
nication devices. There are different structures of process control systems depending 
on the linkage of the different devices and their respective implementation (not 
shown in Fig. 8.27): decentralized stored controller systems, integrated decentra-
lized process monitoring and control systems, and intelligent central systems with 
“unintelligent” peripherals87. According to Wilhelm (1996), it is necessary to 
model the process control system explicitly in order to support the needs of control 
and software engineers, who are responsible for the configuration and mainten-
ance of the system.  

Fig. 8.27: Process_control_system and its relation to plant 

The connectivity considerations in process_control_system may be realized by the 
principles provided by the ontology module network_system as illustrated in Fig. 
8.28. 

                                                           
87 Note that these structures are beyond the level of detail of the representation given in the mod-
ule process_control (Sect. 8.2.2) for the time being. 
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Fig. 8.28: Topological considerations applied in process_control_system88 

8.3.2.1 Concept Descriptions 

Individual concepts of the module process_control_system are defined below. 

Class Descriptions 

Controlling instrument 
Controlling instrument represents all instruments that have a control function in a plant 
or a process control system. 

Human-process communication device 
Human-process communication device represents the hardware devices that imple-
ment the human-machine interface in process control systems. 

Information processing device 
Information processing device represents the hardware devices for information 
processing in process control systems. 

Measuring instrument 
Measuring instrument represents all instruments that have a measurement function in 
a plant or a process control system. 

Process control device 
Process control device subsumes all the devices in process control systems. 

                                                           
88 Currently, only the connection to the plant item is modeled in more detail. However, the ex-
tension to interfaces of information processing devices might be done analogously without diffi-
culty. 
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8.4 Plant Equipment 

The realization of a chemical process system is extensively covered by the preced-
ing modules on a conceptual level. However, additional insight may be gained 
from the perspectives of specific applications. Hence, the partial model 
plant_equipment covers exemplary specifications of frequently applied equip-
ment. In particular, the classes fixtures, apparatus and machines introduced pre-
viously are now taken as a basis for a further specification to be presented in the 
modules fixture, apparatus and machine. 

8.4.1  Fixture 

The fixture module introduces some exemplary specializations of the class fixture 
defined in the plant module. Some frequently applied fixtures are listed in Fig. 
8.29.  
Note that this list is not intended to be exhaustive but rather constitutes a starting 
point for further completion. As an example stirrer and jacket are typically installed 
in vessels to form specialized equipment such as continuous stirred tank reactors 
or heated tanks. For the description of shell and tube heat exchangers the combina-
tion of shells and tubes are required. Furthermore, trays are an important integral 
part of tray columns. Some applications examples of are presented in Sect. 8.4.2. 

 

Fig. 8.29: Representation of the specializations of fixture 

Often, properties of fictures are supposed to be specified for a more detailed de-
scription. These properties are linked with a fixture by special relations. Some ex-
amples include the heated length of a tube, or the hole diameter and the tray area 
of a tray (cf. Fig. 8.30). 
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Fig. 8.30: Exemplary assignment of relevant properties of fixtures 

For the description of the individual concepts of the module fixture, we refer to 
Wiesner et al. (2008a). 

8.4.2 Apparatus 

Basically, the module apparatus identifies some exemplary specializations of appa-
ratus. In Fig. 8.31 some sample subclasses of apparatus are given. 
This taxonomy has been based on DIN standards given for equipment of chemical 
plants (Graßmuck et al. 1994). Most of the presented apparatuses meet their par-
ticular function by means of the installation of an appropriate fixture. Apparatuses 
in OntoCAPE can be composed of either a simple apparatus and fixtures or a num-
ber of fixtures. As an example a stirred tank is a vessel with an embedded stirrer whe-
reas a shell tube apparatus consists of a shell and a tube bundle. 

Fig. 8.31: Representation of the association between apparatus and fixture 

The representation of multiple occurring fixtures of the same type in one apparatus 
is realized by means of the pattern provided by multiset defined in the meta ontolo-
gy (cf. Sect. 4.5.2). A tray column can be considered as an example for such an ap-
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paratus incorporating multiple trays. Fig. 8.32 illustrates an assignment of the trays 
to the corresponding tray column by means of the multiset directives. 

Fig. 8.32: Representation of assigning multiplicity in apparatus 

For the description of the individual concepts of the module apparatus, we refer to 
Wiesner et al. (2008a). 

8.4.3 Machine 

Currently, the module machine comprises only one exemplary class namely pump. 
However, the module can be extended readily in the future to introduce other spe-
cific types of machines. 
For the description of the individual concepts of the module machine, we refer to 
Wiesner et al. (2008a). 

8.5 Process Control Equipment 

In the area of process control engineering, some approaches on data models exist 
(see for example Polke (1994); Lauber (1996)). More recent activities initiated by 
consortiums like prolist (2009) or eClass (2009) have resulted in very detailed data 
models for the description of technical specifications of process control equipment 
as it is required for the procurement of such devices. However, in contrast to these 
very detailed models, this module intends to provide a conceptual description such 
that an easy integration of detailed models in the context of an entire chemical 
process system is attainable. Hence, detailed models such as prolist or eClass 
can be integrated as specializations into the model structure introduced in 
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process_control_system89. In the following, we will briefly show how such an ex-
tension could be achieved using the class hierarchies for measuring instrument and 
controlling instrument given by Lauber (1996) and Polke (1994). A specialization 
with respect to some exemplarily chosen devices is demonstrated in this partial 
model in analogy to plant_equipment. 

8.5.1  Measuring Instrument 

Measuring instruments can be distinguished according to the type of process variable 
they detect. In Fig. 8.33 the major measuring instruments are given: L-sensors (lev-
el); P-sensors (pressure); F-sensors (flow rate), T-sensors (temperature), Q-sensors 
(some quality, like concentration, or conductivity). Note that this hierarchy is not 
intended to be complete.  

Fig. 8.33: Class diagram for some measuring device 

For the different types of measuring devices further classifications can be given. 
This is shown in Fig. 8.34 for different T-sensors: Pt100, expansion T-sensor, bimetal 
T-sensor, Seger cone, quartz crystal T-sensor, thermocouple and pyrometer are different 
types of measuring devices for measuring temperatures.  

Fig. 8.34: Class diagram for some further specialization of T-Sensor 
                                                           
89 Concepts about the integration of product data models have been reported by e.g. Bayer et al. 
(2000). 
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Furthermore, measuring devices can be distinguished according to their application 
and design features (e.g. online/offline, product property/process property, range, 
and manufacturer). This can be done by the introduction of corresponding 
attributes (not shown in Fig. 8.34). 
For the description of the individual concepts of the module measur-
ing_instrument, we refer to Wiesner et al. (2008a). 

8.5.2 Controlling Instrument 

Controlling instruments are first classified according to their mode of operation: 
The classification distinguishes whether a controlling instrument works mechani-
cally or electrically. Hence, the classes mechanical controlling instrument and electrical 
controlling instrument are introduced (cf. Fig. 8.35).  

Fig. 8.35: Class diagram for some controlling instrument 

Mechanical controlling instruments can be classified further into control valves, screw 
conveyors, ball cocks, and shutoff valves, which can be used to control material 
streams. Relays, transistors, and different types of thyristors can be used to control 
electrical current. Similar to the measuring instruments, controlling instruments can al-
so be characterized by application and design features.  
For the description of the individual concepts of the module control-
ling_instrument, we refer to Wiesner et al. (2008a). 

8.6 CPS Behavior 

The preceding sections have focused on the function and the realization aspects of 
the chemical process system. The third major aspect to be considered is the behavior 
of a chemical process system. This aspect is represented in the partial model 
CPS_behavior. Currently, this partial model comprises only the module behavior.  
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In general, the behavior of any system may be described by means of mathematical 
models. This, however, is not the task of this partial model, but of the partial mod-
el mathematical_model (cf. Sect. 9.1). Instead, the description of behavior, as 
given here, is based on a phenomenological perspective. That is, this module 
mainly defines the chemical engineering concepts for directly representing physi-
cochemical phenomena, which enable a qualitative description of the system behavior 
(cf. Sect. 5.3.3). In addition, system behavior can be quantitatively described by the 

tion). To this end, appropriate properties will be introduced. By linking these prop-
erties to the corresponding physicochemical phenomena, a relation between the qua-
litative and the quantitative description can be established (cf. Fig. 5.30 in Sect. 
5.3.5). 
The description of material behavior, as it is considered in OntoCAPE, includes all 
material characteristics that depend on the shape, size, or amount of a particular 
occurrence of a material. Consequently, extensive properties90 as well as the distri-
bution of intensive properties in space and the distribution of any physical quantity in 
time are associated with material behavior. Such properties essentially describe 
the behavior of material demonstrated in a concrete spatio-temporal setting, such 
as being processed in a manufacturing process or acting as a construction material. 
Those data are usually considered as properties of the respective application or 
usage of the material (e.g., as properties of a chemical process), but not as proper-
ties of the material itself (a more detailed discussion of this issue can be found in 
Sect. 7.1.1). 
It should be noted that, for the time being, the partial model CPS_behavior is 
confined to describing the physical behavior of processed matter. While this ad-
dresses the most important aspect of chemical system behavior, it neglects certain 
other aspects, such as the behavior of the control system. 

8.6.1 Behavior 

The ontology module behavior is based on the data model VEDA (Marquardt 
1992b; 1995) and classical textbooks about reaction kinetics and transport pheno-
mena (e.g. Bird et al. 2001; Wesselingh and Krishna 2000; Smith 1981; Froment 
and Bischoff 1990). 
This section is structured as follows: First, the high-level concepts are defined, and 
their mereological (de)composition is discussed. Next, the topological considera-
tions are depicted. Subsequently, the phenomenon-related concepts are introduced.  

                                                           
90 An extensive property is a property that depends on the system size or the amount of material 
in the system. 

explicit indication of property-value pairs (i.e., by means of a data-based descrip-
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8.6.1.1 High-Level Concepts 

The module behavior holds two major classes: material amount and material amount 
connection (cf. Fig. 8.36). 
A material amount is an aspect system that represents the occurrence of matter in a 
concrete spatiotemporal setting – a typical example of a material amount would be 
the liquid holdup in a vessel. The properties of a material amount include all material 
characteristics that depend on the shape, size, or amount of a particular occurrence 
of a material, such as weight, volume, enthalpy, and so on. Consequently, exten-
sive properties as well as the distribution of intensive properties in space and time are 
attributable to material amount. Material amount thus differs from a phase system, 
which does not cover any geometry-dependent and amount-dependent property-
Consequently, material amount refers to a chunk of material in a process context in 
contrast to a phase system which takes a perspective independent of a particular 
process context (cf. Sect. 7.1.1). 

Fig. 8.36: Specializations of generalized amount 

On the other hand, the fundamental characteristics of a material – e.g., its compo-
sition, molecular structure, or thermodynamic state – are not considered to be 
properties of a material amount. For their specification, a generalized amount refers to 
the corresponding material (Sect. 7.1). 
A material amount connection represents a connection between two material amounts 
to refer to the transfer of matter and/or energy. Typical examples of material 
amount connection include a pipe that transports a fluid between two vessels or a 
wall between a hot and a cold reservoir that enables the transfer of heat energy by 
heat conduction.  
For practical purposes, the class generalized amount is introduced as a superclass of 
material amount and material amount connection. It simply represents a generalization 
of material amount and material amount connection. 
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8.6.1.2 Aggregation and Decomposition 

For the decomposition of material amount (connections), all patterns defined for the 
decomposition of systems are applicable (cf. Sect. 5.1.3). Thus, a material amount 
can be composed of other (connected) material amounts. Also, a material amount 
connection can be composed of other material amount connections mediated by ma-
terial amount(s). 
By convention, a material amount connection at the lowest level of decomposition 
(i.e., a material amount connection that qualifies as an elementary system, cf. Sect 
5.1.4) is supposed to have a negligible volume and hence may not display a hold-
up for extensive quantities (Marquardt 1992b; 1995). This is best illustrated by the 
example of a pipe connecting two process units: If the amount of material en-
closed in the pipe is not considered to be relevant in the respective modeling con-
text, the pipe is treated as an elementary material amount connection. If, on the other 
hand, the volume of material is significant for the problem at hand (e.g., because 
the flow delay or the spatial variation of the fluid properties along the pipe needs 
to be taken into account), the pipe must be treated as a composite material amount 
connection, as shown in Fig. 8.37. It is composed of a material amount representing 
the matter in the tube, and two adjacent material amount connections. 

[MaterialAmountConnection]
Pipe content

[M.A.Connection]
Tube joint A

[MaterialAmount]
Tube content

[M.A.Connection]
Tube joint B

 

Fig. 8.37: Decomposition example for material amount connection 

8.6.1.3 Representation of Granular and Dispersed Materials 

The material amount may also be described, specialized, and categorized according 
to its dispersion state (cf. Fig. 8.38). Note that the concept of phase system (cf. 
Sect. 7.3) does not suggest anything about the dispersion state of material. In other 
words, it does not affect the properties of a phase system whether the material con-
sidered occupies an extended continuous region or whether it is dispersed. Instead, 
the concept of dispersion state is associated with material amount. 
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Fig. 8.38: Specialization categorization for material amount 

To that end, in addition to a homogeneous material amount, two types of heterogene-
ous material amounts are distinguished: the quasi-homogeneous material amount and 
the particulate material amount. 
The term ‘quasi-homogeneous’ refers to a heterogeneous material amount with the 
dispersed material amount assumed to be conceptually “dissolved” in the continuous 
material amount. Transfer resistances are neglected, and the dispersed material 
amount is treated exactly like any other chemical substance of the continuous ma-
terial amount. The physical quantities (cf. Sect. 5.1.11) are suitably chosen averages 
of those of the continuous and the dispersed material amounts. As a prototype one 
may think of a simple abstraction of the contents of a three-phase slurry reactor, 
where the gaseous reactant and the solid catalyst are treated as “dissolved” in the 
continuous liquid phase. 
Furthermore, two relations are introduced, as stated subsequently: 

– A continuous material amount surrounds one or more dispersed material 
amounts. For example, consider the case of a slurry bubble-column reactor 
(e.g., Smith 1981): Gas bubbles (dispersed material amount gas) pass through 
a liquid (the continuous material amount), in which a number of catalyst par-
ticles (dispersed material amount solid) are suspended. 

– A dispersed material amount isDispersedIn one ore more continuous material 
amounts. Take the example of a trickle-bed reactor (cf. Smith 1981), in 
which a catalyst particle (the dispersed material amount) might be covered 
partially by liquid (continuous material amount number one) and partially by 
gas (continuous material amount number two). 

Note that, though not shown in Fig. 8.38 for the sake of simplicity, dispersed ma-
terial amount, continuous material amount and particle population are also subclasses of 
material amount.  
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In contrast to quasi-homogeneous material amount, a particulate material amount refers 
to a heterogeneous system, where the dispersed material is described by a particle 
population. Such bulk material consists of a (possibly uncounted) number of single 
particles, which – in their entirety – can be characterized by means of property dis-
tributions and population balances (Ramkrishna 1985). The term ‘particle’ does 
not exclusively refer to solid particles, but includes vapor bubbles and liquid drop-
lets, as well. In fact, a heterogeneous material amounts may consist of any combina-
tion of solid particles, liquid droplets, and/or vapor bubbles.  
As an example for a particulate material amount, one can consider some crystalline 
particles that precipitate from a solution. Then the solution can be represented as a 
continuous material amount, and the crystalline particles can be described as a particle 
population characterized by a particle size distribution.  
In most cases, it would probably not be of interest to describe all the individual 
single particles in a particle population. Instead, the particles are represented by means 
of a representative single particle with a few carefully selected properties that is part 
of a particle population. The relation hasRepresentativeParticle is introduced to for-
malize this concept. Usually geometric properties (e.g., characteristic size or vo-
lume) or other extensive properties (e.g., mass) or intensive thermodynamic properties 
(e.g., temperature or concentration) are selected. 
For the specification of a particulate material amount, it is also of interest how a cer-
tain characteristic varies across the individual single particles. To this end, the class 
fractional amount is introduced. A fractional amount quantifies the amount of particles 
that show a certain characteristic. By means of the fractional amount, it can be said 
that a certain single particle represents a fraction of e.g. 50 % of all particles of the 
particle population. As an example, a distribution of single particles according to their 
volume is given. 

Fig. 8.39: Representation of a particle distribution of particle population 
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Fig. 8.39 illustrates, the assignment of a fractional amount to a single particle. Note 
that the particle population amount is considered to be a specialization of a multiset, 
and the fractional amount is derived from multiplicity (cf. Sect. 4.5.2). 

8.6.1.4 Types of Material Amount Connection 

There are three distinctive subclasses of material amount connection, namely valve 
connection, film connection, and heat radiation connection (cf. Fig. 8.40)91. With re-
spect to mass transfer, convection and diffusion are the two major mechanisms to 
be considered. For heat transfer, in addition to heat convection and conduction 
corresponding to the stated mass transport mechanisms, heat radiation has to be 
taken into account, as well. Hence, the class heat radiation connection is introduced. 

Fig. 8.40: Mereological considerations for material amount connection 

The transport through film connections is dominated by conduction and diffusion 
processes, whereas valve connections represent the transport dominated by convec-
tion. A film represents a boundary layer occurring either in a solid or in a fluid 
phase; accordingly, the classes fluid film and solid film are introduced. Frequently, 
two or even three films are adjacent to each other at fluid-fluid or fluid-solid-fluid 
interfaces; this is accounted for by the classes two-film connection and three-film con-
nection. Film connections include heat and mass transfer, such as the simultaneous 
heat and multi-component mass transfer at a liquid-vapor interface (e.g. Krishna 
and Taylor 1993).  
The three types of valve connections displayed in Fig. 8.40 distinguish three differ-
ent types of convective mass transport. For ease of modeling, three different states 
of permeability are assumed, namely permeable, impermeable and semi-permeable. 
                                                           
91 The taxonomy shown is based on the work of Marquardt (1996) which itself relies on the con-
ceptualization of Haase (1990). 
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In terms of connectivity, the states of impermeable and permeable represent the 
cases where either no material transport occurs at all or the entire material is 
transported. As an example, a pipeline which conveys all species in a mixture may 
be described by a permeable valve, whereas an impermeable valve typifies a solid 
wall that blocks any mass transfer. In case of a semi-permeable valve, e.g. a selec-
tive porous membrane, only some species in the mixture may pass. These selected 
permeable components may be identified and further specified by referring to a 
substance via the relation hasPermeableChemicalComponent. Valve connections and 
film connections are always permeable for heat. 
In order to further clarify the above concepts, let us consider the wall of a tube in a 
shell and tube heat exchanger. If the heat capacity of the wall is negligible, the 
connection between the shell and tube side can be modeled as a three-film connec-
tion, which accounts for the heat transfer across the tube wall and the fluid boun-
dary layers on both sides. On the other hand, if the heat capacity of the wall is sig-
nificant in a certain modeling context, the connection between shell and tube side 
must be represented by a composite material amount connection The tube wall is 
then viewed as a homogeneous material amount, whereas the boundary layers on ei-
ther side of the wall are treated as material amount connections of type fluid film. 

8.6.1.5 Connectivity 

In the following an overview on the concepts used for interconnecting material 
amounts and material amount connections is given (cf. Fig. 8.41). Again the prin-
ciples defined in network system (cf. Sect. 5.2) are applicable. Thus, the material 
amount corresponds to a device, whereas material amount connection represents the 
function of connection. To represent a process more precisely, a directed connection 
may be introduced to explicitly indicate the direction of any exchange between 
two material amounts. Furthermore, ports and connection points may be introduced in 
order to better characterize the location (and possibly geometry) of the points for 
connection. 

Fig. 8.41: Modeling of connectivity 
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Typically, the geometry of the material amount is abstracted by means of a simple 
geometrical shape, which can be represented through the concept of solid (cf. 
module geometry, Sect. 6.5, as well as Fig. 8.41). Additionally, the concept of a 
surface (cf. Sect. 6.5) may be used to denote the area of a port which may be asso-
ciated with a specific material amount connection. In OntoCAPE, currently only 
simple geometries are defined (cf. Sect. 6.5); extensions covering complex geome-
tric shapes would be required to model the geometric details of a material amount in 
an equipment of irregular geometry. 
Moreover, a detailed account of a port of a material amount can be important in the 
case of a distributed parameter system. For example, the spatial distribution of nu-
trients in a non-ideally mixed, fed-batch fermenter can be sensitive to the concrete 
location of the feed point within the vessel. Furthermore, if the opening of the 
feeding pipe to the fermenter cannot be treated as a singular point, a detailed cha-
racterization of the feed zone, including the shape and the size of the opening, has 
to be taken into account. This essentially requires a characterization of the posi-
tioning of the relevant geometric objects (these are, in this example, the geome-
tries of the material amount in the fermenter and the port corresponding to the feed 
pipe opening) within a particular spatial coordinate system. In principle, this could 
be achieved by specifying the orientation (via an appropriate vector quantity; cf. 
Sect. 6.5) and the location (via the coordinates of a characteristic point, e.g. the 
center of a sphere) of each geometric object involved, all against the same spatial 
coordinate system. 

8.6.1.6 Phenomenological Description 

As mentioned above, the behavior module describes a phenomenon-based pers-
pective of behavior; the occurrence of the phenomena, in turn, influences the prop-
erties of a certain material amount or material amount connection. The idea is illu-
strated in Fig. 8.42. 
The change of material properties due to the time-variant influence of a particular 
phenomenon is of special interest within the scope of behavior. This module is de-
rived based on the ontological concept of system behavior previously defined in 
technical system. A material amount may undergo a certain material amount phenome-
non and may be characterized by a physical quantity, which in turn may be influ-
enced by material amount phenomena. The same pattern is applicable to material 
amount connection, resulting in a hasPhenomenon relation to material amount connec-
tion phenomenon. Clearly, from an engineering point of view, one is primarily in-
terested in the changes of the physical quantities which describe a certain process 
instead of the underlying phenomenon. Hence, one may navigate from a particular 
material amount (connection) phenomenon to the corresponding physical quantities via 
the relation isInfluencedBy. 
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Fig. 8.42: Overview on the assignment of phenomenon and properties in behavior 

A further specialization of the material amount (connection) phenomena is of interest 
since the concrete effect on the material amount may vary significantly depending 
on the nature of the particular phenomenon at hand92. Basically, all phenomena con-
sidered in behavior may be subsumed as physicochemical phenomena. Moreover, as 
already introduced earlier, a further classification into material amount phenomena 
and material amount connection phenomena is established. A graphical representation 
is given in Fig. 8.43. 

Fig. 8.43: Representation of the specialization of phenomena employed in behavior 

First, we consider the classification of the phenomena that can occur within a ma-
terial amount (cf. Fig. 8.44-Fig. 8.45).  
On the highest level, as represented in Fig. 8.44, there are (i) phenomena asso-
ciated with chemical reactions (chemical reaction phenomenon), (ii) accumulation of 
extensive properties (accumulation) as well as (iii) flow patterns, which essentially 
give indications about convective transport phenomena. 

                                                           
92 Within the scope of OntoCAPE 2.0 the description and classification provided for phenomena 
is kept at a very generic level; the essential directives are presented to allow for a further elabora-
tion as required. 
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Fig. 8.44: Representation of some material amount phenomena 

Furthermore, there are (iv) particle phenomena, (v) molecular transport phenomena, 
and (vi) physical equilibrium phenomena (cf. Fig. 8.45). 
With regard to (vi), it should be noted that, although the behavior module does not 
intend to describe the intensive, equilibrium properties of material (cf. Sect. 7.1.1), 
this does not exclude the possibility to consider that a material amount reaches equi-
librium state at some point in time – it is simply one of the possible states in the 
behavior of that material amount. 

Fig. 8.45: Representation of some material amount phenomena 
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Additionally, the major individuals for a further refinement of the material amount 
phenomenon are introduced in Fig. 8.44 and Fig. 8.45 as well. Note that the pro-
posed individuals are not considered to be exhaustive such that an adequate adap-
tation and expansion is recommended. 
It is possible that more than one of the aforementioned phenomena occur in a cer-
tain material amount – either simultaneously or sequentially. However, some of the 
aforementioned phenomena are mutually exclusive; thus, to guarantee feasibility, 
these phenomena must not be modeled concurrently. To this end, four axiomatic 
classes are introduced to ensure a consistent use of these features. These classes 
are ideally mixed material amount, material amount with molecular transport phenomenon, 
material amount in phase equilibrium, and material amount with spatially distributed inten-
sive property.  

– An ideally mixed material amount is defined as a material amount in which the 
phenomenon of ideally_mixed prevails.  

– A material amount with molecular transport phenomenon is defined as a material 
amount in which some kind of molecular transport phenomenon occurs. 

– A material amount in phase equilibrium is defined as a material amount that is 
governed by the phenomenon of phase_equilibrium. 

– A material amount with spatially distributed intensive property has some intensive 
properties that are distributed on a certain spatial domain. 

As an ideally mixed material amount has spatially uniform properties, it cannot have 
any properties that indicate a distribution over a spatial domain; nor must it be as-
sociated with molecular transport phenomena, which require such a spatial distribu-
tion. Therefore, the class ideally mixed material amount is declared to be disjoint 
from the classes material amount with spatially distributed intensive property and material 
amount with molecular transport phenomenon. 
Similarly, a material amount in phase equilibrium must neither have properties nor 
phenomena indicating a spatial distribution or some kind of molecular transport. 
Therefore, the class material amount in phase equilibrium is declared to be disjoint 
from the classes material amount with spatially distributed intensive property and material 
amount with molecular transport phenomenon. 
The definition of material amount connection phenomena has been influenced by the 
thermodynamics of irreversible processes (e.g., Haase 1990). According to this 
theory, the flux of any extensive quantity (like mass, heat, etc.) is caused by one or 
more generalized forces, which are determined by the differences of some physical 
quantity in the adjacent material amount (such as pressure or temperature). In addi-
tion, surface reactions, surface diffusion, and other surface phenomena may occur 
in the material amount connection.  
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Fig. 8.46: Representation of material amount connection phenomena 

8.6.1.7 Properties of Material Amount 

Following the presentation of the material amount (connection) phenomena, the high-
level classes of the resulting properties are introduced. The main focus here is on 
the description of geometry- and amount-specific properties of materials.  
There are six major groups of physical quantities93 to be distinguished for a beha-
vioral description within this context (Marquardt 1996; Bogusch 2001). This com-
prises (i) generalized fluxes; (ii) extensive properties; (iii) geometry-dependent inten-
sive properties94; (iv) phenomenological coefficients; (v) the spatial gradients of some 
intensive thermodynamic state variables, which are subsumed by the class state varia-
ble gradients; and finally (vi) spatial velocity gradients.  

                                                           
93 Note that a more fine-grained perspective of the properties might be necessary for particular 
applications and that further specialization is recommended in such cases. 

94 Examples of geometry-dependent intensive properties would be the rates of adsorption and 
reaction that occur on a solid surface with specific porosity, or the growth rate of a face of a crys-
tal that possesses a specific shape. 

Fig. 8.46 shows the classification of material amount connection phenomena as pro-
vided by OntoCAPE. Surface phenomenon is distinguished from interface molecular 
transport phenomenon. For the former, two specializations are introduced, namely 
adsorption phenomenon and surface reaction phenomenon. Again, some exemplary 
individuals are introduced to represent common phenomena. 
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Fig. 8.47: Overview on material amount related physical quantities 

transport), (ii) the transport across a phase boundary (exchange), (iii) the sources 
and sinks caused by chemical reaction or some external potential field (source), 
and finally (iv) the time-dependent holdup of material amount in a system (holdup 
variation). Consequently, any properties that describe the rates of chemical reaction 
or transport phenomena or the spatial/temporal accumulation of physical quanti-
ties are specializations of generalized fluxes. Some examples are shown in Fig. 8.48 
such as convective transport rate or conductive transport rate for (i), convective ex-
change or radiation exchange for (ii), and reaction rate for (iii). 

 

Fig. 8.48: Generalized fluxes  

Phenomenological coefficients are distinguished into (i) inter-phase transport coefficient, 
(ii) dynamic viscosity of non-Newtonian fluids, and (iii) reaction rate coefficients (cf. Fig. 
8.49). The second class is included in this partial model rather than the material 
partial model, because it addresses the non-equilibrium nature of non-Newtonian 
fluids. Some typical refinements of the above classes are introduced, such as mass 

Generalized fluxes (cf. Fig. 8.47) include (i) the transport within a phase (intra-phase 
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transfer coefficient, heat transfer resistance for (i). Note that, not shown in Fig. 8.48 or 
Fig. 8.49, rate of reaction and reaction rate coefficient refer to single reaction (defined 
in the reaction_mechanism module; cf. Sect. 7.2.8) to denote which chemical 
reaction these two properties describe in a particular circumstance. 

Fig. 8.49: Phenomenological coefficients 

Finally, the class convective transport rate may be further refined (cf. Fig. 8.50). To 
that end, the classes (i) convective mass flowrate, (ii) convective energy flowrate, (iii) 
convective momentum flowrate, (iv) convective mass flux, (v) convective energy flux, and 
(vi) convective momentum flux are introduced. 

Fig. 8.50: Convective transport  

8.6.1.8 Application Examples 

In the following, two application examples are discussed: The first example illu-
strates the construction of a complex behavior model from material amounts and 
material amount connections of different types. The second focuses on the interrela-
tions between the modules behavior and phase_system. To keep the examples easy 
to understand, it was decided to separate the two topics, although the modeling 
can certainly be combined if required.  
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The first example assumes a chemical reactor holding a liquid product, with a 
deactivated catalyst distributed in the liquid product. For catalyst reactivation, a 
separation of the catalyst from the liquid by means of filtration is assumed. For the 
sake of simplicity, this filtration is assumed to take place in the same reactor 
which holds the reaction product, such that reaction product denotes the entire ma-
terial amount considered in the chemical reactor. The resulting pure catalyst 
stream is fed through a pipe to the reactivation process step. The catalyst reactiva-
tion is then achieved in a fluidized bed reactor. The fluidized bed itself consists of 
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Fig. 8.51: Example 1: Catalyst reactivation after a reaction 

The representation corresponding to the principles defined in behavior yields the 
diagram shown in Fig. 8.52. First of all, the reaction product is represented as an 
instance of particulate material amount, the fluidized bed as an instance of quasi-
homogeneous material amount, and the catalyst stream (representing the flow 
through the pipe) is depicted as an instance of valve connection. The connectivity 
on this level of abstraction is realized by means of a subclass of directed connec-
tions indicating the proper sequence of process steps. 
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Fig. 8.52: Example 1: Representation in OntoCAPE 

Fig. 8.53 displays an extension of the application example: It demonstrates how to 
further characterize a material amount by concepts from the material partial model. 
In this particular case, we demonstrate how the catalyst is identified as a chemical 
species of type silver oxide via the relation refersToMaterial. 

the dispersed catalyst in a gaseous medium. Fig. 8.51 gives an overview on the as-
sumed process. 
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Fig. 8.53: Example 1: The catalyst is further characterized as a chemical species of 
type silver oxide 

The second example considers the behavior in a jacket-cooled CSTR (cf. Fig. 
8.54). Two instances of material amount are introduced, namely the reactor content 
representing the material inside the reactor vessel, and the jacket content 
representing the material inside the jacket. The reactor content again consists of 
two homogeneous material amounts - the liquid content and the vapor content.  

Fig. 8.54:Example 2: Material behavior in a jacket-cooled CSTR 
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The connections between (i) the liquid content and the vapor content and (ii) the 
reactor content and the jacket content are realized by means of film connections of 
type three film connection. The heat transfer between jacket and vessel may be de-
scribed by the phenomenon of interface_heat_conduction, i.e. heat is led from the 
vessel to the jacket.  
In the following we focus on the representation of the reactor content description. 
However, material amount phenomena and properties in the jacket may be described 
analogously in the way the reactor content is modeled.  

The state of aggregation of the liquid content and the vapor content can be speci-
fied by using concepts from the partial model material (cf. Fig. 8.55) : First, a re-
lation to the abstract material is established; second, the materials are characterized 
as two single phases of the liquid and the gaseous state of aggregation. 

Fig. 8.55: Example 2: Interrelations between concepts from behavior and 
phase_system  

The connections to the (not yet specified) environment of the reactor content (two 
input valve connections and one output valve connection) and the jacket content (one 
input and output valve connection, not displayed in Fig. 8.56) are realized by means 
of the environment connection (Sect. 5.2), which also may be characterized by 

The liquid content and the vapor content are assumed to be in phase equilibrium; this 
is modeled by linking the two individuals to the material amount phenomenon of 
phase_equilibrium. Moreover, it is assumed that a non-equilibrium_chemical_reaction 
phenomenon occurs in the liquid content; namely the chemical reaction A + B Æ C. 
Thus, both the liquid content and the vapor content involve a mixture of chemical 
components A, B, and C (cf. Fig. 8.57). Note that a detailed representation of the 
chemical reaction is not shown in Fig. 8.57. However for an application example of 
chemical reaction modeling, we refer to Sect. 7.2.8.1. 
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means of phenomena. In particular, each valve connection is associated with the 
phenomenon of interface mass convection (cf. Fig. 8.56). 

Fig. 8.56: Example 2: Environment connection for reactor content 

Finally, the assignment of physical quantities influenced by particular phenomena 
occurring in the reactor content is illustrated in Fig. 8.57. In particular, the mass 
hold-up of the liquid compound is exemplarily described. For the liquid reactor 
content, mass accumulation and energy accumulation phenomena are considered. 
This implies the time-varying values of some of its properties. 

Fig. 8.57: Example 2: Phenomena occurring in reactor content 
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Class Descriptions 

Accumulation 
Accumulation is a material amount phenomenon which denotes the accumulation of a 
certain extensive quantity of the material amount considered. 

Adsorption phenomenon 
An adsorption phenomenon is an increase in the concentration of a dissolved sub-
stance at the interface of a solid and a liquid phase due to the operation of surface 
forces. Adsorption can also occur at the interface of a solid and a gaseous phase 
(McNaught and Wilkinson 1997). 

Chemical reaction phenomenon 
A chemical reaction phenomenon is a material amount phenomenon in which some 
components are converted into some other components by molecular transforma-
tion. 

Conductive transport rate 
A conductive transport rate is the transfer of heat by direct contact of particles of 
matter within a phase per unit time. 

Continuous material amount 
A continuous material amount in a heterogeneous material amount is the material amount 
in which the disperse phase is distributed, corresponding to the solvent in a true 
solution. 

Convective energy flow rate 
A convective energy flow rate is the energy of a material which passes through a giv-
en surface per unit time. 

Convective energy flux 
A convective energy flux is defined as the amount of energy that passes through an 
interface per unit area and unit time. 

Convective exchange  
A convective exchange in the most general terms refers to the movement of mole-
cules across the boundary of fluid phases which is the sum of advective and diffu-
sive transport.  

Convective mass flow rate 
A convective mass flow rate is the mass of a material which passes through a given 
surface per unit time. 

Convective mass flux 
A convective mass flux is defined as the amount of mass that passes through an in-
terface per unit area and unit time. 
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Convective momentum flow rate 
A convective momentum flow rate is the momentum which passes through a given 
surface per unit time. 

Convective momentum flux 
A convective momentum flux is defined as the momentum that passes through an in-
terface per unit area and unit time. 

Convective transport rate  
A convective transport rate in the most general terms refers to the movement of mo-
lecules within fluid phases which is the sum of advective and diffusive transport.  

Dispersed material amount 
A dispersed material amount is the discontinuous portion of a heterogeneous system, 
corresponding to the solute in a true solution. The dispersed material amount is as-
sumed to be "dissolved" in the continuous material amount.  

Dynamic viscosity of non-Newtonian fluid 
Dynamic viscosity of non-Newtonian fluid is a property of non-Newtonian fluids which 
relates shear stress to shear rate. For a non-Newtonian fluid, this property is not a 
constant and can be dependent on shear rate or even time. 

Energy hold-up 
Energy hold-up refers to the accumulation of the overall energy in a material amount. 

Exchange 
An exchange represents the transport of matter or energy across a phase boundary. 

Extensive property 
An extensive property of a system depends on system size or on the amount of ma-
terial in the system. 

Film connection 
A film connection is a material amount connection dominated by an interface molecular 
transport phenomenon. It is used to describe molecular transport across the phase in-
terface between two contiguous material amounts or molecular transport through 
some media with negligible capacity which separates two material amounts (e.g. a 
membrane between two fluids).  

Flow pattern 
A flow pattern is a material amount phenomenon which refers to the flow condition of 
a material amount. 

Fluid film  
A fluid film represents a boundary layer occurring in a fluid phase which allows for 
conductive or diffusive transport. 
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Fractional amount 
A fractional amount represents the percentage of single particles possessing some 
common characteristics. 

Generalized amount  
A generalized amount represents a generalization of material amount and material 
amount connection, as it could be required for the definition of quantity-related 
properties at a stage of the functional description. 

Generalized fluxes 
Generalized fluxes include the variation of holdup caused by the transport in a phase 
or across a phase boundary as well as sources of an extensive property caused by 
chemical reaction or some external potential field. 

Heat radiation connection 
A heat radiation connection is a material amount connection whose dominating pheno-
menon is heat radiation. 

Heat transfer resistance 
A heat transfer resistance is described by the ratio between the temperature differ-
ence and the average heat flow across the interface. 

Heterogeneous material amount  
A heterogeneous material amount is a composite material amount that involves ma-
terial amounts with different dispersion states due to phases or particle size. 

Hold-up variation  
Hold-up variation refers to the accumulation of extensive properties over time and is 
influenced by accumulation phenomena. 

Homogeneous material amount  
A homogeneous material amount represents a material amount with a continuous, sin-
gle phase which is not part of another more complex material amount. 

Ideally mixed material amount 
An ideally mixed material amount may neither possess an intensive material amount 
property that indicates a distribution over a spatial domain nor might it provide 
properties for molecular transport phenomenon. 

Impermeable valve 
An impermeable valve refers to a convective mass transport where no material 
transport occurs at all due to a given local condition, e.g. a blockage in a pipeline. 

Interface heat transport phenomenon 
An interface heat transport phenomenon is the transfer of thermal energy or simply 
heat from a hotter material amount to a cooler material amount driven by the tem-
perature difference. 
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Interface mass transport phenomenon 
An interface mass transport phenomenon is any mechanisms by which particles or 
quantities move from one material amounts to another.  

Interface transport phenomenon 
Interface transport phenomenon subsumes transport phenomena that occur at the in-
terface between two connected material amounts. 

Inter phase transport coefficient 
An inter phase transport coefficient is any physical quantity that is forced by an interface 
transport phenomenon. 

Intraphase transport 
Intraphase transport considers all variants of heat and mass transfer that can occur 
with a particular phase. 

Mass hold-up 
Mass hold-up refers to the accumulation of the overall mass covered in a material 
amount. 

Mass transfer coefficient 
A mass transfer coefficient is a constant that relates the mass transfer rate to the 
product of mass transfer area and an appropriate driving force such as the concen-
tration gradient (Seader and Henley 1998). 

Material amount 
A material amount characterizes the time-variant behavior of a chunk of material. 

Material amount connection 
A material amount connection is a connection that connects two material amounts or 
connects one material amount and one environment connection. 

Material amount connection phenomenon 
A material amount connection phenomenon is a physicochemical phenomenon which 
occurs at a material amount connection. 

Material amount in phase equilibrium  
A material amount in phase equilibrium must neither have properties indicating mole-
cular transport nor spatial distribution. 

Material amount phenomenon 
A material amount phenomenon is a physicochemical phenomenon which occurs in a 
material amount. 

Molecular transport phenomenon 
A molecular transport phenomenon is a material amount phenomenon in which physical 
quantities such as mass, energy, and momentum are transported among different 
locations through molecular motion in the material amount. 
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Material amount with molecular transport phenomenon 
A material amount with molecular transport phenomenon may not possess properties of 
a ideally mixed material amount. 

Material amount with spatially distributed intensive properties 
A material amount with spatially distributed intensive properties may not have any prop-
erties indicating an ideal mixing. 

Particle phenomenon 
A particle phenomenon is a material amount phenomenon which occurs with one or 
more particles. 

Particle population 
A particle population consists of a (possibly uncounted) number of single particles, 
which are all present in the same state of aggregation and – in their entirety – can 
be characterized by means of distribution curves or population balances (Ram-
krishna 1985). 

Particulate material amount  
A particulate material amount represents the dispersed material amount in a hetero-
geneous system which is composed of single particles which typically hold uneven 
characteristics. 

Permeability 
Permeability denotes a set of chemical components which are permeable in a film 
connection or a valve connection. 

Permeable valve 
A permeable valve represents convective transport of mass, where all material 
compounds, energy, and momentum are transported. 

Phase equilibrium phenomenon 
A phase equilibrium phenomenon is a material amount phenomenon that denotes a cer-
tain equality of properties within the material amount considered, which does not 
involve chemical reactions. 

Phenomenological coefficient 
A phenomenological coefficient summarizes various coefficients employed to charac-
terize fluxes. 

Physicochemical phenomenon 
A physicochemical phenomena is a phenomenon that can be described by physics or 
chemistry. 

Quasi-homogeneous material amount  
A quasi-homogeneous material amount assumes at least two parts, a dispersed material 
amount and a continuous material amount, where one is dispersed in the other. It is 
characterized by average physical quantities of both parts. 
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Radiation exchange  
A radiation exchange is defined as the emission of heat by one body which travels 
through a medium or through space and which is ultimately absorbed by another 
body. 

Rate of reaction 
The rate of reaction of a general phase reaction aA + bB + … Æ pP + qQ + … is de-
fined as 

[ ] [ ] [ ] [ ]
tqtptbta

r
d
Qd1

d
Pd1

d
Bd1

d
Ad1 ==−=−= , 

where symbols placed inside square brackets denote the concentrations of the spe-
cies involved in the reaction. Thus, the rate of reaction is defined as the change in 
concentration per unit time. Different measures of concentration may be chosen, 
such as phase component fraction and volume-based concentrations. When a catalyst is 
used, the reaction rate may also be stated on a catalyst weight (mol g• 1 s• 1) or 
surface area (mol m• 2 s• 1) basis. 

Reaction rate coefficient  
A reaction rate coefficient of any reaction is a constant that relates the reaction rate 
to the concentration-dependent term in the reaction rate expression. This constant 
is thus independent of concentration and time (McNaught and Wilkinson 1997). 

Semi-permeable valve 
A semi-permeable valve represents convective transport of mass in which only some 
selective species in a mixture are transported in addition to energy and momen-
tum. 

Single film connection 
A single film connection represents diffusive transport processes across a single 
boundary layer, e.g. fluid or solid.  

Single particle 
A single particle is a material amount which can be modeled by means of population 
balances. It is usually of a small size. 

Solid film  
A solid film represents a boundary layer occurring in a solid phase which allows for 
diffusive transport. 

Source 
A source is caused by chemical reaction or some external potential field within a 
material amount. 

State variable gradient 
A state variable gradient is the spatial gradient of an intensive thermodynamic state va-
riable. 
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Surface phenomenon 
A surface phenomenon is a material amount connection phenomenon that occurs on a 
surface. 

Surface reaction phenomenon 
A surface reaction phenomenon is a surface phenomenon that denotes a chemical 
reaction which takes place on a surface. 

Three film connection 
A three film connection represents diffusive transport processes across a boundary 
layer in which three films are adjacent to each other, e.g. fluid-solid-fluid.  

Two film connection 
A two film connection represents diffusive transport processes across a boundary 
layer in which two films are adjacent to each other, e.g. fluid-fluid.  

Valve connection 
A valve connection refers to convective mass transport which is governed by differ-
ent states of permeability. 

Velocity gradient 
A velocity gradient is the partial derivatives of velocity with respect to the spatial 
coordinates. 

Relation Descriptions 

hasFraction 
The relation hasFraction indicates the fractional amount a representative particle may 
have in a distributed material amount. 

hasPermeableChemicalComponent 
The relation hasPermeableChemicalComponent indicates which chemical component 
may pass or diffuse through a certain material amount connection. 

hasPermeability 
The relation hasPermeability indicates whether or not a material amount connection 
has a selectivity for certain chemical components. 

hasRepresentativeParticle 
The relation hasRepresentativeParticle assigns a particular representative particle to a 
distributed material amount to represent the common features of the particles in this 
amount. 

indicatesFraction 
The relation indicatesFraction refers a certain fraction to the corresponding member. 

 

 



304      Chemical Process Systems 

isDispersedIn 
The relation isDispersedIn indicates that a dispersed material amount is partly or total-
ly dispersed in a continuous material amount.  

refersToParticlePopulation 
The relation refersToParticlePopulation indicates which particle population a particular 
fractional amount refers to. 

refersToMaterial 
The relation refersToMaterial indicates which material a material amount or a material 
amount connection refers to. 

surrounds 
The relation surrounds describes that a continuous material amount surrounds a dis-
persed material amount. 

8.7 CPS Performance 

The performance of a chemical process system may be assessed from different pers-
pectives such as costs, environmental impact (e.g. product life cycle analysis), 
safety and many more. However, the current version of OntoCAPE only considers 
the economic performance during the design tasks, although other performance indi-
cators (e.g. sustainability) in different lifecycle phases (e.g. operation) may be ela-
borated when required. The concepts provided in this section are related to cost es-
timation. Cost estimations are understood to form the basis for company 
management to decide if (further) capital should be invested in a project. The par-
tial model proposed refers to engineering economics concepts compiled by the 
textbook of Peters and Timmerhaus (1991). This partial model is by far the least 
extensive one among those established in chemical_process_system. 

8.7.1  Economic Performance 

This section deals with the concepts for analyzing costs and profits, which are typ-
ically used to (i) predict whether capital should be invested in a particular project 
and (ii) to check the actual financial results typically be done by an accountant. 
Hence the major classes introduced are the costs and earnings which have to be 
considered for a thorough analysis of the economic performance of a chemical 
process system. 
The overall costs of a chemical process system comprise the costs related to 
processing and control systems as well as general costs that cannot be related di-
rectly to one particular aspect system or their elements. General costs include, for 
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example, the expenditure for research and development and that for sales. This 
module considers primarily costs that are related to the chemical process system in 
general. However, product costs are also introduced for the sake of generality 
whereas all costs pertaining to labor are not considered. Costs are incurred in all 
lifecycle phases: the design of the chemical process system, the building and com-
missioning of the plant, the operation and maintenance, and finally the decommis-
sioning. Thus, the different costs are usually not categorized primarily according 
to the different subsystems of a chemical process system they can be associated to, 
but rather according to their type – that is, whether they are related to the capital 
investment or to the manufacturing process, maintenance or financial services. At 
a secondary level, however, the different costs can be linked to the subsystems 
where these costs arise. The following description of the costs is taken from (Bay-
er et al. 2001). 

8.7.1.1 High-Level Concepts 

Costs are considered as a property of the chemical process system performance. There-
fore, economic performance is introduced as a subclass of system (cf. Fig. 8.58). 
The costs of a chemical process system include all expenses that are related to the 
design, construction, and maintenance of the chemical process system, and the pro-
duction and sales of the end products. 

Fig. 8.58: Assignment of chemical process performance 

Generally, the emerging costs may consist of several specific costs related to a 
special function or realization of the chemical process system. These specific costs 
may represent either individual costs, which are generated by a certain task, or ac-
cumulated costs, which constitute the sum of several individual costs (cf. Fig. 8.59). 
Hence, accumulated costs are only summed up from specific costs that emerge on 
the next lower level of the cost hierarchy. As an example: the total CPS costs 
represents the sum of the costs of the total capital investment and the production costs. 
Therefore, the relation addsUp as a specialization of hasDirectPart is introduced. As 
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an example, total CPS costs is introduced which adds up the total capital investment 
and production costs in Fig. 8.59. Note that the introduced relation addsUp is used 
exclusively to relate costs. 

Fig. 8.59: Representation of costs  

Earnings refer to the total amount of capital received as a result of the sales of 
goods (and also services). The earnings obtained from the sales of goods depend 
on the value of the products and their amount. Here, product earnings and virtual in-
termediate earnings are distinguished (cf. Fig. 8.60).  

Fig. 8.60: Representation of costs  

Product earnings are the earnings that can be obtained from the sales of the end 
products processed in a chemical process system. The virtual intermediate earnings are 
used to characterize the value of a feed or an intermediate product within the 
process. These earnings could be assessed by the assumed sale of those products at 
the market. Usually no such sale is attempted, since the earnings that can be ob-
tained from the sale of the end product produced from the intermediates is much 
higher. 

8.7.1.2 Modeling of Decomposition 
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A comprehensive introduction and categorization of costs related to chemical 
process systems is given by Peters and Timmerhaus (1991). Following their ca-
tegorization, different types of costs are exemplarily introduced, as shown in 
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Fig. 8.61: Representation of the specific costs involved in total CPS costs 

Fig. 8.61 gives an overview on the specific costs that are considered for the eco-
nomic performance. The total capital investment and the production costs are shown to-
gether as parts of the total CPS costs. They are in fact both part of the total CPS 
costs, but there is one fundamental difference between them: while the capital in-
vestment needs to be supplied prior to production in order to design and build a 
chemical process system, the production costs are incurred during production over 
a long period of time. The earnings are also obtained during production period. 
These different periods or timeframes need to be taken into consideration in eco-
nomic evaluations. 

Fig. 8.62: Exemplary extension of individual costs for manufacturing fixed capital in-
vestment 

The left most branch of Fig. 8.61 apparently refers to the design perspective only. 
Fig. 8.62 details a specific type of costs related to CPS_realization.  
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Fig. 8.61-Fig. 8.63. For a comprehensive overview we refer to Bayer et al. 
(2001). A detailed description of these costs is provided below.  
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The right branch in Fig. 8.61 refers to the costs incurred during production. These 
costs may be applied for a rather rough cost estimation at the design stage, e.g. 
covering raw material costs or catalyst and solvent costs, but they may also be used 
for the evaluation of the operating cost during the later stages of the plant lifecycle 
(cf. Fig. 8.63).  

Fig. 8.63: Exemplary extension of individual costs for direct manufacturing costs 

In the following, both branches of the classes related to costs and the earnings are 
investigated in more detail, demonstrating the dependencies to the other partial 
modules of chemical_process_system. 

8.7.1.3 Dependencies between the Aspect Systems for Economic 
Performance Evaluation 

The different costs, expenses, and earnings introduced in the previous section are 
related to the chemical process system, its (sub-)systems, and the processed materi-
al. These relations and dependencies can be modeled by refining the dependency 
relation between the aspect systems of chemical process system. 
The total costs and the overall earnings can directly be associated to the chemical 
process system itself (cf. Fig. 8.64).  

Fig. 8.64: Relation between economic performance and chemical process system 

Furthermore, the following associations between the different cost items and the 
parts of the aspects systems of the chemical process system can be identified: earn-
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ings are related to the end products of the chemical process; manufacturing costs refer 
to processed chemical products, (i.e. end products (cf. Fig. 8.10)) to the functional 
aspects of the chemical process system (i.e. process steps (Sect. 8.2.1) and to control 
(Sect. 8.2.2)); investment costs, especially purchase costs, are related to the reali-
zation of the chemical process system (i.e. the plant (Sect. 8.3.1) and the process con-
trol system (Sect. 8.3.2)). The most important of these associations will be identi-
fied and discussed in the following. 
The main purpose of a chemical process system is the production of some specific 
chemical compounds from raw materials. The different chemical compounds in-
volved in this production process are important cost factors. The purchase of the 
raw materials and the sale of the end products are related to major cost items within 

tained from the sales of the end products; the virtual intermediate earnings can be re-
lated to feeds and intermediate products whose values they represent; the raw material 
costs are the expenses needed for purchasing the raw materials. Further important 
feeds are auxiliary materials like catalysts and solvents; their purchase costs are 
represented by the catalysts and solvents costs. 

Fig. 8.65: Relation between economic performance and chemical process system: 
material costs. 

The direct manufacturing costs can be further related to the functional description of 
the chemical process system (cf. Fig. 8.66). This overall function is implemented 
by the processing part (i.e. process step) and the operating part (i.e. control loop). 
These different functions cause different costs. The utility costs and the maintenance 
and repair costs are induced by the process step. Characteristic properties of a 
process step like design temperature and design pressure influence the utility costs 
tremendously; the maintenance and repair costs depend among other things on the 
processing and auxiliary materials used and on the operating conditions of the 
process step. The maintenance and repair costs also depend on the chosen control 
strategy (i.e. control loop).  

the lifecycle of a chemical process system (Fig. 8.65): the product earnings are ob-
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Fig. 8.66: Relation between economic performance and chemical process system: 
direct manufacturing costs 

As shown in Fig. 8.67, the purchase costs for systems realization refer to the chemi-
cal process realization. The single items of the purchase costs for systems realiza-
tion can be related to the single plant items. Pipe costs correlate with the pipe; 
equipment costs, like cost for purchasing apparatuses or machines are related to the 
respective equipment; and, instrumentation costs refer to the instrumentation as well 
as the process control system. The design of the apparatuses and the machines also 
influences the maintenance and repair costs. 

  

Fig. 8.67: Relation between economic performance and plant 

8.7.1.4 Concept Descriptions 

Individual concepts of the module economic_performance are defined below. For 
an exhaustive description of all involved concepts, we refer to Wiesner et al. 
(2008a). 
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Class Descriptions 

Accumulated costs  
Accumulated costs is the sum of a number of specific costs, which itself may be in-
dividual costs or accumulated costs, occurring in a chemical process system.  

Catalyst and solvent costs  
Catalyst and solvent costs are direct manufacturing costs which are related to the par-
ticular catalysts and solvents used in the manufacturing process. 

Costs  
Costs describe all kinds of costs that may arise with respect to the economic evalu-
ation of a chemical process system. 

Costs for buildings 
Costs for buildings incur during the construction of all buildings in a plant. 

Costs for land 
Costs for land cover the real-estate costs price and the yard improvement costs. 

Costs for systems realization 
Costs for systems realization are costs directly associated with the processing subsys-
tem and the operating subsystem. 

Direct manufacturing costs  
Direct manufacturing costs include expenses directly associated with manufacturing. 
Besides, it may also involve secretarial work directly related to the manufacturing 
process, laboratory charges and patents. 

Earnings  
The earnings refer to the total amount of capital received as a result of the sales of 
goods and services.  

Economic performance 
Economic performance evaluates the performance of a chemical process system from 
an economic perspective. 

Equipment costs 
Equipment costs are costs incurred by the purchase of equipment. 

Fixed capital investment 
Fixed capital investment is the capital that is permanently invested in the manufac-
turing facilities. 

General expenses 
General expenses include, for example, general research and development expenses 
or the costs for a sales office within a company, where the products of more than 
one chemical process system are brought to the market. 
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Indirect manufacturing costs  
Indirect manufacturing costs include plant overhead costs and fixed charges. 

Individual costs  
Individual costs represents costs that are not added up from any other costs.  

Installation costs for systems realization 
Installation costs for systems realization include, for example, the costs for labor, plat-
forms, and construction. 

Instrumentation costs 
Instrumentation costs are the costs related to the process control system. 

Maintenance and repair costs  
Maintenance and repair costs are related to maintenance and repair work on produc-
tion facilities. 

Manufacturing costs  
Manufacturing costs are expenses that are directly connected with the manufactur-
ing. 

Manufacturing fixed capital investment  
Manufacturing fixed capital investment represents the capital necessary for the in-
stalled process equipment with all auxiliaries that are needed for complete process 
operation (Peters and Timmerhaus 1991). 

Non-manufacturing fixed capital investment  
Non-manufacturing fixed capital investment represents fixed capital required for con-
struction overhead and for all plant components that are not directly related to 
process operation (Peters and Timmerhaus 1991). 

Operating labor costs  
Operating labor costs are related to work force in production, including related taxes 
and benefits. 

Operating supervision costs  
Operating supervision costs are related to systems and procedures supervising the 
manufacturing process. 

Pipe costs 
Pipe costs are the costs related to the installation of piping network in the plant. 

Product earnings  
The product earnings are the earnings that can be obtained from the sales of the end 
products of the processing system. 

Production costs 
Production costs cover the costs for operating the chemical process system and sell-
ing the core products. 
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Purchase costs for systems realization 
Purchase costs for systems realization are the costs related to the acquisition of the 
chemical process system. 

Raw material costs  
Raw material costs are related to the purchase of raw material including freight and 
transportation. This type of costs is among the major costs in the chemical process 
industry and its ratio to total plant cost varies considerably for different types of 
chemical process systems. 

Service facility costs 
Service facility costs are the costs related to utilities (power, cooling water, etc.), 
waste disposal, fire protection, and other services. 

Total CPS costs 
Total CPS costs of a chemical process system include all costs that are related to de-
sign, construction, and maintenance of the chemical process system, as well as the 
production and sales of the end products. 

Total capital investment 
Total capital investment is the sum of fixed capital investment and working capital. 

Utility costs  
Utility costs are related to the operaton of the plant. It typically includes costs for 
electricity, process steam, refrigerants, compressed air, cooling water, heated wa-
ter, hot oil, etc. 

Virtual intermediate earnings  
The virtual intermediate earnings are used to characterize the value feed or an inter-
mediate product within the process. 

Working capital 
Working capital is the capital needed for operating a plant. 

Relation Descriptions 

addsUp 
The relation addsUp indicates that specific costs belong to particular accumulated 
costs. 

8.8 Process Units 

Summarizing the content of the previous sections, a chemical process system can be 
conveniently described according to the aspects: function, realization, behavior and 



314      Chemical Process Systems 

performance95. For each of the four aspects, generic concepts have been provided 
such that arbitrary kinds of process units can be represented using those concepts. 
However, the evolution of the discipline of chemical engineering has resulted in a 
number of “typical” process units. Frequently the term “unit operations” is used 
synonymously. However, here we adopt the term “process units” instead of “unit 
operations”, since the latter is often (though implicitly) intended to refer to the 
functional aspect of a chemical process system, in the same manner as in Onto-
CAPE.  
As already introduced in Sect. 8.1.1, a process unit is a partial chemical process sys-
tem, reflected through its aspects of function, realization, behavior and perfor-
mance. Particular constraints are imposed on the process unit and on its aspects in 
order to distinguish the process unit from others. 
In this section a number of process units of well-established types will be exempla-
rily defined (see Fig. 8.68 below). Naturally, for each type of process units, there 
can be a class hierarchy according to the classification employed in chemical en-
gineering practice. For each individual class, a large amount of information may 
be provided if a rather complete description is to be attempted for each aspect (i.e. 
function, behavior or realization). Due to the limited level of detail provided by the 
current version of OntoCAPE, these partial models have actually been developed 
only for serving the following two purposes instead of rendering a rather complete 
ontology: (i) demonstrating how process units can be defined on the basis of the 
concepts of generic chemical process system, and (ii) providing the concepts neces-
sary for those particular projects in which OntoCAPE has yet been applied (cf. 
Chap. 12). 
For the time being, six classes are introduced representing the very basic process 
units most frequently employed. These process units include mixing unit, splitting unit, 
flash unit, chemical reactor, heat transfer unit and distillation system, as shown in Fig. 
8.68.  

Fig. 8.68: Overview on exemplary modules contained in process unit 
                                                           
95 The aspect of operation is clearly missing in the list. This however, will be included in future 
versions of OntoCAPE to be able to describe all phase of a plant’s lifecycle. 
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Among these classes, heat transfer unit has been the one worked out in the greatest 
level of detail. It will thus serve as an example in this chapter to represent the spe-
cification of a particular process unit. However, as stated before, extensions to 
other classes and the introduction of new classes may be undertaken on demand at 
a later stage. 

8.8.1 Heat Transfer Unit 

This module basically defines process units which perform heat transfer. A general 
heat transfer unit is defined next. It is essentially a process unit which has the func-
tion of enthalpy change and is realized in an apparatus. Its behavioral aspect com-
prises two (or more) heat transfer material amounts connected via heat transfer con-
nection(s). A graphical representation is given in Fig. 8.69. 

Fig. 8.69: Overview on the interactions of heat transfer unit with other modules 

8.8.1.1 High-Level Concepts 

In chemical engineering practice different types of heat transfer units are employed 
for the particular tasks at hand. Therefore, some exemplarily specializations in 
terms of realization and function are introduced subsequently. With respect to 
functionality, the most frequently applied heat transfer units are heat exchangers for 
a temperature change and condensers and reboilers for a phase change (cf. Fig. 8.70)  
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Fig. 8.70: Exemplary specializations of a heat transfer unit  

Additionally, a further specialization in terms of realization may be undertaken. 
According to the apparatuses stated previously, heat exchangers are frequently 
built as shell tube apparatuses. Hence, the class shell tube heat exchanger including 
the corresponding class of shell tube heat exchange behavior is introduced (cf. Fig. 
8.71).  

Fig. 8.71: Exemplary specialization of heat exchanger  

8.8.1.2 Modeling of Decomposition 

For a realistic description of a heat transfer unit a further elaboration of the heat 
transfer unit behavior is addressed subsequently (cf. Fig. 8.72). To start with, the be-
havior may be described by a hot side material amount and a cold side material 
amount, which are both specializations of heat transfer material amount. The latter 
class is introduced primarily for the users’ convenience. If a user wants to assign 
some property or phenomena which are relevant to the hot side material amount as 
well as the cold side material amount simultaneously, only the superclass heat transfer 
material amount has to be used to cover the assignments. Moreover, heat transfer 
connection is introduced as a specialization of film connection for linking the afore-
mentioned material amount classes. Finally, heat leak and heat loss are established as 
connections to the (not explicitly defined) environment which may act as a heat 
source or a heat sink. 
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Fig. 8.72: Exemplary elaboration of heat transfer unit behavior  

For the elaboration of shell tube heat exchange behavior only a few specializations 
are further considered and displayed in Fig. 8.73.  

Fig. 8.73: Description of a shell tube heat exchange behavior 

To start with, the general shell or tube material amount class is introduced as a spe-
cialization of heat exchange material amount. Again, this class may be used for cov-
ering properties or phenomena assignments which refer to the subclasses. Tube 
side material amount and shell side material amount are introduced to represent either 
the cold or the hot side of the heat exchanger. Next, the specialization comprises a 
shell tube heat connection for describing the particular phenomena occurring at the 
connection between the tube and the shell side material amount. Finally, heat loss 
and heat leak are considered in the way they are already defined. 
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8.8.1.3 Modeling of Connectivity 

The connectivity of the concepts introduced so far builds on the primitives defined 
in behavior (Sect. 8.6.1). The simplest, non-specific connection between the 
classes, e.g. the case where only two heat transfer material amounts without a dis-
tinct heat transfer direction have to be modeled, is shown in Fig. 8.74. 

 

Fig. 8.74: Connectivity of heat transfer material amount 

8.8.1.4 Properties of Heat Transfer Unit 

Some exemplary properties for heat transfer connection are introduced (cf. Fig. 
8.75). Clearly, some of the physical properties defined in behavior may be used for 
the description, such as e.g. heat transfer coefficient, conductive transport or heat trans-
fer resistance.  

Fig. 8.75: Exemplarily relations for heat transfer connection 

These properties may be further specialized if required. Furthermore, geometrical 
considerations may be important to describe the interface to the heat transfer ma-
terial amount. Thus a heat transfer surface may be depicted if any non-trivial geome-
try has to be considered. Therefore the relation hasSurfaceGeometry is introduced. 
For an exhaustive description of all concepts involved in the module 
process_units, we refer to Wiesner et al. (2008a). 
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9 Mathematical Models 
 
The partial model mathematical_model is concerned with the description of ma-
thematical models. Fig. 9.1 gives an overview of the ontology modules of ma-
thematical_model and their interrelations. The main module, mathemati-
cal_model  (cf. Sect. 9.1), introduces the basic concepts for mathematical 

Fig. 9.1: Overview on partial model mathematical_model 

The process_model module is extended on the Application-Oriented Layer: The 
ontology module laws (cf. Sect. 9.6) establishes models for a number of physical 
laws that are common in the context of chemical engineering (e.g., the law of 

duced and described in behavior (Sect. 8.6.1). Property_models (cf. Sect. 9.7) 
provides correlations for designated physical quantities, such as vapor pressure cor-
relations or activity coefficient models. Finally, the module process_unit_model 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_9,  
© Springer-Verlag Berlin Heidelberg 2010 

modeling, including model variables as well as items pertaining to sub-models and 
their connections. CapeML (von Wedel 2002) was taken as an important source. 
The ontology module equation_system (cf. Sect. 9.2) further specifies the charac-
teristics of the model equations that constitute a mathematical model. Based on 
these characteristics, an appropriate numerical solver can be selected, which is the 
concern of the ontology module numerical_solution_strategy (cf. Sect. 9.3). The 
modules process_model (cf. Sect. 9.5) and cost_model (cf. Sect. 9.4) describe two 
particular types of mathematical models: process models model the behavior of 
process units (cf. Sect. 8.8) and materials (cf. Sect. 7.1), while cost models predict 
the costs (cf. Sect. 8.7.1) of chemical process systems.  

energy conservation). Thus, laws may be associated with the phenomena intro-
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(cf. Sect. 9.8) establishes customary mathematical models for process units, such 
as ideal reactor models or tray-by-tray models for distillation columns. 

9.1 Mathematical Model (Ontology module) 

9.1.1 High-Level Concepts 

Fig. 9.2: Mathematical model, model quantity, and model quantity specification 

A mathematical model has a number of properties, the most important of which are 
model quantities. As indicated in Fig. 9.2, a model quantity is a subclass of physical 
quantity that is linked to the model via the relation hasVariable (a specialization of 
hasProperty, cf. upper right corner of Fig. 9.2). Like any physical quantity, a model 
quantity has a particular physical dimension and can be either a scalar quantity (cf. 
Sect. 5.1.11) or a tensor quantity (cf. Sect. 5.5). The value of a model quantity is 
represented by the class model quantity specification; each model quantity has exactly 
one model quantity specification. 

A model quantity can be one of the following types: a constant, a parameter, a state 
variable, or an input variable, depending on the intended specification of its value: 
Constants and parameters constitute the fixed set of specified variables. Input va-
riables represent time or spatially dependent inputs, which have to be specified for 
dynamic and/or spatially distributed systems. Finally, state variables constitute the 
fixed set of unknown variables, which have to be computed by the model. The 
model quantity specification indicates the numericalValue (cf. Sect. 5.1.11) of the 
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A mathematical model is a special type of model (cf. Sect. 5.1.6), which uses 
mathematical expressions to describe the behavior of the modeled system, for 
example by means of simulation. 
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Fig. 9.3: Assignment of particular model quantity specifications to model quantites 

Fig. 9.4: Correspondence between a model quantity and a physical quantity of the 
modeled object 

9.1.2 Modeling of Decomposition 

Like any system, a mathematical model can be decomposed into subsystems, which 
are called submodels. The submodel models the same system as its superordinate 
mathematical model. Consequently, there is no need to specify the models relation 
between submodel and system explicitly. However, such a relation may be indi-
cated if the submodel models a designated subsystem of the overall system. 

model quantities. Unlike constants, parameters and input variables may have dif-
ferent model quantity specifications in different simulation runs. If the model 
quantity is of type parameter or state variable, the model quantity specification may 
indicate their upper limit and lower limit (cf. Fig. 9.3).  

A system which is the target of a models relation is classified as a modeled object. 
The correspondences between a model quantity and a physical quantity of the modeled 
object can be explicitly represented by means of the relation corresponds-ToQuantity 
(cf. Fig. 9.4). 
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9.1.3 Modeling of Connectivity 

The different submodels of a mathematical model are coupled via their model quanti-
ties as explained in the following. 

Fig. 9.5: Variables, ports, couplings 

Fig. 9.6 shows exemplarily the definition of a mathematical model M, which consist 
of two submodels, M1 and M2. M1 has the model quantities a, b, and c, while M2 has 
the model quantities x, y, and z. Model M1 owns the model port P1, which comprises 
the quantities b and c. Similarly, the model port P2 of model M2 comprises the 

                                                           

At first, the concept of a model port is introduced. A model port is a special type of 
property set, which comprises model quantities that can participate in a connection 
with another model. Thus, a model port has the function to identify and to bundle 
the “public” variables of a mathematical model.  
Next, the concept of a coupling is established. A coupling is a property of the overall 
mathematical model, which defines a connection between two of its submodels by 
linking their respective model ports96. The coupling implicitly defines equality con-
straints between the model quantities in the two model ports and must be treated as 
such (e.g., during a degrees-of-freedom analysis of a complex model). It may be 
used to connect mathematical models both ‘horizontally’ (i.e., on the same level of 
decomposition) and ‘vertically’ (i.e., across levels of decomposition).  
The order of the model quantities within a model port can be specified by a port index, 
as shown in Fig. 9.5. The port index is used to identify corresponding model quanti-
ties in a coupling: Two model quantities of different model ports are coupled if and 
only if their port indices have the same indexValues. The specification of a port index 
may be omitted if the correspondence between model quantities is evident from the 
context (e.g., if each of the coupled model ports comprises only a single model quan-
tity, or if corresponding model quantities can be uniquely identified through their 
physical dimension.) 

96 Please note that this way of modeling does not contradict the principles stated in net-
work_system (cf. Sect. 5.2) since model port and model quantity are subclasses of property and are 
not considered as subsystems. 
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quantities y and z. P1 and P2 are coupled via the coupling C, which is a property of 
the overall model M. The corresponding quantities of the coupling are identified via 
their port indices: b and y have the same indexValue and are thus linked by an equal-
ity constraint. The same holds true for quantities c and z. 
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Fig. 9.6: Exemplary decomposition of model M into submodels M1 and M2 

9.1.4 Usage 

The ontology module mathematical_model provides only the basic concepts for 
the description of mathematical models. For practical applications, further con-
cepts may be required, which would typically be supplied by additional ontology 
modules located on the Application-Oriented Layer. Some possible extensions of 
the mathematical_model module are discussed next.  
One possible extension would be the introduction of concepts suitable for 
representing model equations. Such an extension could be realized easily by reus-
ing the concepts of the mathematical_relation module (cf. Sect. 6.1). However, 
such an extension is not required in practice, since specialized representation for-
mats for mathematical equations are available, such as MathML (Ion and Miner 
1999), CapeML (von Wedel 2002), or CellML (Lloyd et al. 2004). 
Another possible extension would be the definition of different types (i.e., sub-
classes) of model ports. A particular model port type could, for example, prescribe 
the number of model quantities comprised in a model port, their types (i.e., constant, 
parameter, input variable or state variable), their physical dimensions, etc. Moreover, a 
model port type could be further characterized through attributes (e.g., assigning a 
direction to a model port, thus turning it into either an inlet port or an outlet port). 
That way, standardized model interfaces can be defined – for instance, one may 
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define a standard energy port, which contains a single scalar model quantity with the 
physical dimension of an energy flow and must furthermore be tagged as an inlet or 
outlet port. Such standardization facilitates checking the feasibility of a coupling: A 
coupling of two mathematical models will be feasible if their model ports (a) are of the 
same type (e.g., energy port) and (b) have matching attributes (e.g., an inlet port can 
only be coupled to an outlet port). 
In practice, a mathematical model often consists of several interconnected submodels 
of the same type – for example, the model of a distillation column contains several 
models of distillation column trays. An application-oriented extension of mathe-
matical_model could apply the loop design pattern introduced in the Meta Model 
(Sect. 4.5.5) to define such repetitive model structures. An example is given in 
Fig. 9.7 and Fig. 9.8.  
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Fig. 9.7: Specification of the overall model 

Fig. 9.7 specifies the overall structure of a Column Model. It consists of a Reboiler 
Submodel and a Trays Submodel, which are coupled via a Vapor Coupling (to sim-
plify matters, the liquid phase is not considered in this example). The Trays Sub-
model is defined iteratively (see grey-shaded area in Fig. 9.7). It consists of sever-
al submodels of the same type, which are represented by the individual 
TrayModel_i. Each TrayModel_i has a VaporInletPort_i, which is coupled to the Va-
porOutletPort_i+1 of the next TrayModel_i+1. This connectivity statement is in-
cluded in a ForLoop that counts from 1 to 20, as shown in Fig. 9.8, to define a 
structure of 20 interconnected tray models. The vapor inlet port of the 20th tray 
model corresponds to the previously defined TraysVaporInletPort. 
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Fig. 9.8: Specification of the repetitive submodel structure 

9.1.5 Concept Descriptions 

Individual concepts of the module mathematical_model are defined below. 

Class Descriptions 

Constant 
A constant is a specific model quantity, the model quantity specification of which has a 
constant numericalValue in all simulation runs. 

Coupling 
A coupling connects two model ports of different submodels, thereby defining equali-
ty constraints between model quantities comprised in the two model ports. 

Input variable 
Input variables represent time- or space-depenent inputs, which have to be specified 
for dynamic and/or spatially distributed systems. 

Lower limit 
An lower limit is model quantity specification which defines an lower bound for the 
numericalValue of a model quantity specification. 

Mathematical model 
A mathematical model is a model that uses mathematical language to describe the 
modeled system. 
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Modeled object 
A system that is modeled by means of a model is denoted as a modeled object.  
Formal definition: A modeled object is a system that isModeledBy a model. 

Model port 
A model port is a collection of model quantities that can participate in a connection 
with another mathematical model. Thus, a model port has the function to identify and 
to bundle the “public” variables of a mathematical model. Optionally, a model port 
can be ordered by a port index.  

Model quantity 
A model quantity represents a physical quantity involved in a mathematical model, the 
value of which can be either supplied by the modeler or a computed from an eval-
uation of the mathematical model.  
Formal definition: A model quantity is either a state variable or a parameter or a con-
stant. 

Model quantity specification 
A model quantity specification specifies a model quantity in terms of its numerical val-
ue (or limits of its numerical value) and its unit of measurement.  

Parameter  
A parameter is a specific model quantity (i.e., an input variable), the model quantity 
specification of which may take different numericalValue in different simulation 
runs. 

Port index 
A port index orders the model quantities comprised in a model port by assigning each 
of them an indexValue. In a coupling, model quantities with the same indexValue are 
coupled to each other. 

Submodel 
A mathematical model can be decomposed into submodels.  
Formal definition: A submodel is a direct subsystem of a mathematical model. 

State variable 
State variables constitute the fixed set of unknown variables which have to be com-
puted by the model. 
Its model quantity specification either indicates the upperLimit and lowerLimit of the 
model quantity (before solving the model) or its numericalValue (after solving the 
model).  

Upper limit 
An upper limit is a model quantity specification which defines an upper bound for the 
numericalValue of a model quantity specification.  
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Relation Descriptions 

correspondsToQuantity 
The relation denotes a one-to-one correspondence between a model quantity and a 
physical quantity of the modeled object. 

hasCoupling  
The relation indicates a coupling between two submodels of a mathematical model.  

hasModelPort 
The relation identifies the model port of a mathematical model. 

hasModelVariable 
The relation indicates the model quantities of a mathematical model. 

determinesPositionOf 
The one-to-one relation between a port index and the corresponding model quantity. 

isIndexOf 
The relation isIndexOf points from a port index to the associated model port. 

isOrderedBy 
The relation isOrderedBy points from a model port to its sorting port index. 

Attribute Descriptions 

indexValue 
The attribute indexValue indicates the numerical value of a port index. 

9.2 Equation System 

The ontology module equation_system provides concepts for the description of the 
model equations that constitute a mathematical model. The model equations are not 
explicitly represented, only their equation system characteristics are specified. 
Moreover, the scope of equation system characteristics is confined to those characte-
ristics that are of relevance for selecting an appropriate solver and/or solution 
strategy for the mathematical model (cf. Sect. 9.3). 
A mathematical model can be classified according to different criteria including eq-
uation system type, variables type, model representation form, etc. Following the rec-
ommendations for ontology normalization97 given by Rector (2003), equation sys-
tems are classified along a two axes (cf. Fig. 9.9): (1) using the equation system 
type as a differentiating criterion and (2) referring to the linearity of mathematical 

                                                           
97 More details on this issue can be found in Sect. 4.2. 
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eled as equation system characteristics, which are linked to a mathematical model via 
the relation hasCharacteristic (or one of its specializations, cf. upper left corner of 
Fig. 9.9). Note that some of the equation system characteristics can only be assigned 
to special types of equation systems; for instance, DAE type only applies to differen-
tial algebraic equation systems. 

Fig. 9.9: Equation system characteristics 

While the meaning of most concepts displayed in Fig. 9.9 should be evident from 
their names, the concept of model representation form requires some explanation. A 
mathematical model may appear in two representation forms, which are termed 
open-form and closed-form. 
An open-form model does not provide a solution method to solve its model equa-
tions. A numerical solver needs to be applied to the model to obtain a solution 
solving the simulation. Hence, the open-form model must provide all the informa-
tion required by the external numerical algorithm to solve the model. For example, 
a model representing a set of algebraic equations may provide equation residuals 
and derivatives to a Newton solver. Before an open-form model can be successful-
ly solved, it has to be “squared”, meaning that the number of its unknown va-
riables must be the same as that of its equations. Among all the model quantities of 

to be given values (i.e., they need to be assigned a model quantity specification with a 
definite numericalValue) before the model can be evaluated (cf. Sect. 9.1). The oth-
er variables are state variables. If there are still more state variables than equations 
in a model, it is necessary to assign values to some selected variables (i.e., turn 
them into parameters or input variables). Generally, one can freely choose the set of 

models, as described in Sect. 4.2.1. The other possible criteria are explicitly mod-

an open-form model, those declared as constants, input variables parameters have ,  or 

hasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_Explicitness

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

has
Linearity

hasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_ExplicitnesshasCharacteristic

hasNumericalStiffness

hasVariablesType

hasModelRepresentationForm

hasDAE_Explicitness

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

mathematical_model

Mathematical
Model

EquationSystem
Characteristics

hasCharacteristic

ModelRepresentation
Form

VariablesType

LinearityVT

DAE_Type

NumericalStiffness

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Algebraic
Equation
System

OrdinaryDifferential
AlgebraicSystem

PartialDifferential
AlgebraicSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Differential
Equation
System

OrdinaryDifferential
EquationSystem

PartialDifferential
EquationSystem

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

Algebraic
Equation
System

LinearAlgebraic
SystemType

NonlinearAlgebraic
SystemType

ODE_Type

has
Linearity

 



Equation System      333 

model variables of an open-form model to be specified, as long as the model re-
mains solvable. The values of the remaining variables can be obtained by solving 
the model. 
A closed-form model includes an underlying numerical algorithm, which solves its 
model equations. Thus, it does not require any external solver for obtaining the 

the values of a set of selected unknown variables, the so-called outputs, based on 
the given values of the specified variables. In this process, the algorithm of a 
closed-form model accepts only a fixed set of input variables, and consequently re-
turns a fixed set of output variables. No choice for specifying additional variables 
is available, as in the case of open-form models. Reflected in model quantity types, 
constants and parameters constitute the fixed set of specified variables, while the 
state variables constitute the fixed set of unknown variables (i.e. output variables). 

9.2.1 Usage 

9.2.2 Concept Descriptions 

Individual concepts of the module equation_system are defined below. For an ex-
tensive description of the introduced individuals, we refer to Morbach et al. 
(2008j). 

 

 

values of its unknown variables. The “execution” of the closed-form model yields 

The ontology module equation_system provides the basic concepts for the identi-
fication of mathematical models from a mathematical point of view (e.g., whether 
it is an ODE or DAE) This identification was primarily of concern in the COGents 
project (cf. Sect. 12.1.1), where this module was applied to specify the type of ma-
thematical model to search for in various libraries. 
Typically, mathematical models may be classified either by means of content 
(e.g., a mathematical model for a polyethene reactor) or simply by mathematical 
features, as it is done here. As an example, consider a process engineer who 
searches for a particular mathematical model, which is supposed to be applied for 
the calculations of a reactor. Depending on the software (e.g., he might have only 
a solver for ODEs available), a classification with respect to the characteristics 
(e.g., ODE type) is extremely helpful to identify the suitable mathematical model. 
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Class Descriptions 

Algebraic equation system 
An algebraic equation system is a mathematical model which solely consists of alge-
braic equations.  
Formal definition: An algebraic equation system is either a linear algebraic system or a 
nonlinear algebraic system. 

DAE type  
Characterizes the explicitness of a differential algebraic equation system.  
Formal definition: The class DAE type is an exhaustive enumeration of the individ-
uals fully_implicit and semi-explicit.  

Differential algebraic equation system 
A differential algebraic equation system (DAE system) is a mathematical model that 
comprises both algebraic and differential equations.  
Formal definition: A differential algebraic equation system is either an ordinary differen-
tial algebraic system or a partial differential algebraic system. 

Differential equation system 
A differential equation system is a mathematical model that solely consists of differen-
tial equations.  
Formal definition: A differential equation system is either an ordinary differential equa-
tion system or a partial differential equation system. 

Equation system characteristics 
The equation system characteristics characterize the model equations of a mathemati-
cal model.  

Linear algebraic system type 

Formal definition: A linear algebraic system type is an algebraic system that is charac-
terized as linear. 

Linearity VT 

Formal definition: Linearity is an exhaustive enumeration of the individuals linear 
and nonlinear. 

Model representation form 
A mathematical model may appear in two forms, as indicated by the model represen-
tation form:  
- An open-form model is solved by an external algorithm. One can freely 

choose the inputs and outputs of the open-form model. 

A linear algebraic system type is an algebraic system which contains only linear equa-
tions. 

Linearity VT characterizes the linearity of a mathematical model. 
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- A closed-form model includes an underlying numerical algorithm that solves 
the model equations. The algorithm accepts only a fixed set of input variables, 
and consequently returns only a fixed set of output variables. 

Formal definition: The class model representation form is an exhaustive enumeration 
of the individuals open-form and closed-form. 

 

Nonlinear algebraic system type 
Formal definition: A nonlinear algebraic system type is an algebraic equation system 
that is characterized as nonlinear. 

Numerical stiffness  
In mathematics, stiff equations are equations where certain implicit methods, in 
particular BDF, perform better, usually tremendously better, than explicit ones 
(Hairer and Wanner 1996).  
Formal definition: The class numerical stiffness is an exhaustive enumeration of the 
individuals stiff and nonstiff.  

ODE_type 
Characterizes the explicitness of an ordinary differential equation system, which can 
be given in implicit_formulation or explicit_formulation.  
Formal definition: ODE_types is an exhaustive enumeration of the individuals im-
plicit_formulation and explicit_formulation. 

Ordinary differential algebraic system 
An ordinary differential algebraic system comprises algebraic equations as well as or-
dinary differential equations, but no partial differential equations. 

Ordinary differential equation system 
An ordinary differential equation system (ODE system) is a differential equation system 
which solely consists of ordinary differential equations.  

Partial differential algebraic system 
A partial differential algebraic system is a differential algebraic equation system which 
comprises both partial differential equations and algebraic equations. 

Partial differential equation system 
A partial differential equation system (PDE system) is a differential equation system 
which consists of partial differential equations.  

Variables type 
A variables type indicates whether the model quantities of a mathematical model are all 
continuous, all discrete, or partly continuous and partly discrete. 
Formal definition: The class variables type is an exhaustive enumeration of the in-
dividuals continuous, discrete, and mixed. 
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Relation Descriptions 

hasDAE_Type 
Indicates an equation system characteristic of type DAE type. 

hasLinearity  
Refers from a mathematical model to a linearity value type. 

hasModelRepresentationForm 
Indicates an equation system characteristic of type model representation form. 

hasNumericalStiffness 
Indicates an equation system characteristic of type numerical stiffness. 

hasODE_Type  
Indicates an equation system characteristic of type ODE type. 

hasVariablesType  
Indicates an equation system characteristic of type variables type. 

Attribute Descriptions 

differentialIndex 
The attribute represents the differential index of an ordinary differential algebraic 
equation system, as defined by Gear and Petzold (1984) or of a partial differential 
algebraic system, as defined by Martinson and Barton (2000). 

differentialOrder 
The attribute differentialOrder denotes the order of a differential equation, which is 
defined as the order of the highest derivative of a model quantity appearing in the 
differential equation. 

9.3 Numerical Solution Strategy 

In this ontology module, strategies for solving mathematical models are defined. At 
present, it is confined to numerical solution strategies only. A classification of 

ticular type of mathematical model is explicitly specified. The major concepts are 
shown in Fig. 9.10. A model solution strategy solves a mathematical model; the sub-
classes of model solution strategy represent different types of numerical algorithms, 
which are specifically designed to solve a certain type of mathematical model with 
certain equation system characteristics. To this end, a model solution strategy may ap-
ply some other, specialized model solution strategy. So far, only numerical solution 

numerical solution techniques is given, and the ability of a strategy to solve a par-
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strategies have been considered in OntoCAPE, but symbolic/analytical solution 
methods could be added in an analogous manner. 

Fig. 9.10: Numerical solution strategy. 

Fig. 9.11 shows the refinement of class algebraic model solution strategy. An exem-
plary linear algebraic model solution strategy is Gauss-elimination, an example of a 
nonlinear algebraic model solution strategy is Newton’s method. 

Fig. 9.11: Types of algebraic model solution strategies 

An ODE solution strategy can be further characterized by indicating if the algorithm 
is a one-step_method (e.g., the classical Runge-Kutta methods) or a multi-
step_method (e.g., the Adams-Bashforth methods). Moreover, it can be specified 
whether the algorithm is a solution strategy for explicit ODEs or implicit ODEs (cf. Fig. 
9.12.  
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Fig. 9.12: Further specification of ODE solution strategy 

9.3.1 Concept Descriptions 

Individual concepts of the module numerical_solution_method are defined below. 

Class Descriptions 

Algebraic model solution strategy 
An algebraic model solution strategy is a model solution strategy for solving algebraic 
equation systems. 

DAE solution strategy 
A DAE solution strategy is a model solution strategy for solving differential algebraic eq-
uation systems. Examples are implicit Runge-Kutta, BDF, etc.  

Linear algebraic model solution strategy 
A linear algebraic model solution strategy is a model solution strategy for solving linear 
algebraic systems. An example is Gauss elimination. 

Model solution strategy 
A model solution strategy is a (typically numerical) algorithm that can be used to 
solve mathematical models. 

Nonlinear algebraic model solution strategy 
A nonlinear algebraic model solution strategy is a model solution strategy for solving 
nonlinear algebraic systems. An example is Newton’s method. 

ODE solution strategy 
An ODE solution strategy is a model solution strategy for solving ordinary differential 
equation systems. An example is the Euler method. 

Partial differential algebraic model solution strategy 
A partial differential algebraic model solution strategy is a model solution strategy for 
solving partial differential algebraic systems. An example is a finite element method. 
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Solution strategy for explicit ODEs 
A solution strategy for explicit ODEs is used to solve ordinary differential equation sys-
tems that are given in an explicit_formulation. Examples are explicit Euler, explicit 
Runge-Kutta, etc.  

Solution strategy for implicit ODEs 
A solution strategy for implicit ODEs is used to solve ordinary differential equation sys-
tems that are given in an implicit_formulation. Examples are implicit Euler, implicit 
Runge-Kutta, etc.  

Type of involved steps 
A type of involved step denotes whether an ODE solution strategy is a one-
step_method or a multi-step_method. 
- A one-step_method characterizes an ODE solution strategy that uses informa-

tion of one integration step. Examples are various Runge-Kutta methods. 
- A multi-step_method characterizes an ODE solution strategy that uses informa-

tion of multiple integration steps. Examples are Adams, BDF, etc. 
Formal definition: Exhaustive enumeration of the individuals one-step_method 
and multi-step method. 

Relation Descriptions 

applies 
A model solution strategy may apply some other, specialized model solution strategy 
(e.g., for initialization, solving corrector equation, solution of a subproblem, etc.). 

hasTypeOfInvolvedSteps 
Indicates the type of involved steps of an ODE solution strategy. 

solves 
The relation indicates the type of mathematical model, for the solution of which a 
particular model solution strategy is designated. 

Attribute Descriptions 

handlesDifferentialIndexUpTo 
A DAE solution strategy can only solve differential algebraic equation systems up to a 
certain differentialIndex. This restriction is specified through the attribute handlesDif-
ferentialIndexUpTo. 
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9.4 Cost Model 

The ontology module cost_model establishes some cost models for predicting the 
(investment) costs of chemical plants. A cost model is a special type of economic 
performance model, which models the economic performance of a chemical process 
system.  
At present, the module merely holds a number of models for the estimation of the 
fixed capital investment (cf. Sect. 8.7.1.2); in the future, further types of cost models 
are to be added, and the existing ones are to be specified in detail. Fig. 9.13 gives 
an overview on the cost models defined so far. For an explanation of the individual 
classes, we refer to the concept definitions below.  

Fig. 9.13: Models for estimating the fixed capital investment 

9.4.1 Concept Descriptions 

Individual concepts of the module cost_model are defined below. 
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Class Descriptions 

Capacity FCI model 
Capacity FCI models are based on fixed capital investments of past design projects that 
are similar to the current chemical process system. Besides, some relating factors 

Cost model 
A cost model is a mathematical model to estimate the investment costs of a chemical 
process system. 
Formal definition: A cost model is an economic performance model that has a model 
quantity which corresponds to the quantity of costs. 

Detailed-item FCI model 
A detailed-item FCI model requires careful determination of all individual direct and 
indirect cost items. For such models, extensive data and large amounts of 
engineering time are necessary. Therefore, this type of estimate is almost 
exclusively prepared by contractors bidding on complete and all-inclusive work 
from finished drawings and specifications. 

Differential factorial model 
Within differential factorial models, different factors are used for estimating the costs 
of the fixed capital investment. Examples are modular estimate models, where 
individual modules consisting of a group of similar items are considered 
separately, and their costs are then summarized (Guthrie 1969). 

Economic performance model 
An economic performance model models the economic performance of a chemical 
process system.  
Formal definition: An economic performance model is a mathematical model that 
models some economic performance. 

Factorial FCI model 
Factorial FCI models rely on the fact that the percentages of the different costs 
within the fixed capital investment are similar for different chemical process systems. 
Based on one or several known costs (for example the equipment costs), the fixed 
capital investment is estimated using some factors that are derived from cost 
records, published data, and experience. 

Fixed capital investment model 
Fixed capital investment models (FCI models) are mathematical models that are used to 
estimate the fixed capital investment of a chemical process system. 
Formal definition: A fixed capital investment model is a cost model which has a model 
quantity that correspondsToQuantity of fixed capital investment. 

 

(e.g., the turn-over ratio), exponential power ratios, or more complex relations are 
given. 
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Global factorial model 

Power factor model 
The power factor model relates the fixed capital investment of a new chemical process 
system to the one of similar, previously constructed systems by an exponential 
power ratio (cf. Peters and Timmerhaus 1991). 

Six-tenths rule model 
The six-tenths rule model is a power factor model with x=0.6. 

Step counting model 
Step counting models are based on the assumption that the fixed capital investment can 
be estimated from the number of process steps (depending on the specific 
approach, composite process steps or unit operations and reactions are used), 
multiplied with the costs per process step and some correcting factors. The costs of 
the process steps are estimated from their capacity and some other factors (Vogt 
1996). 

Turnover ratio model 
The turnover ratio model is a fast evaluation method for order-of-magnitude 
estimates. The turnover ratio is defined as the ratio of gross annual sales to fixed 
capital investment. Values of turnover ratios for different types of chemical 
processes are for example given by Schembra (1991) and Vogt (1996). 

Unit-cost estimate model 
Unit-cost estimate models are based on detailed estimates of the main purchase costs 
for system realization (either obtained from quotations or from cost records and 
published data). 

9.5 Process Model 

As an extension to mathematical_model, the ontology module process_model 
enables the definition of specialized mathematical models for the domain of chemi-
cal engineering. Such models, which model either process units (cf. Sect. 8.1.1) or 
materials (cf. Sect. 7.1) or subsystems of these, are called process models (cf. Fig. 
9.14). The modeling principle based on which a process model is developed may also 
be indicated. 

A global factorial model estimates the fixed capital investment by multiplying the basic 
equipment cost by some factor. This factor depends, among other things, on the 
type of chemical process involved, on the required materials of construction, and 
on the location of the chemical process system realization. Examples for global fac-
tors are the ones proposed by (Lang 1947). This model can be extended to calcu-
late the total capital investment.  
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Fig. 9.14: Overview on process_model 

Fig. 9.15: Laws and property models 

A law constitutes the mathematical representation of a scientific law, such as the 
law of energy conservation (cf. Sect. 9.6). Each law can be associated with a physi-
cochemical phenomenon (cf. Sect. 8.6.1.6). The former gives a quantitative, the lat-
ter a qualitative description of a certain physical behavior. The correspondence be-
tween a law and a physicochemical phenomenon can be stated via the relation 
isAssociatedWith, as indicated in Fig. 9.15. Moreover, the model quantities of the law 
correspond to the physical quantities that are influenced by the physicochemical phe-
nomenon, as exemplarily shown in Fig. 9.16. 

A process model may contain other process models, particularly the established laws 
and property models (cf. Fig. 9.15). Neither laws nor property models are self-
contained models, but form part of an overall process model, where they represent 
mathematical correlation between designated model quantities. 
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Fig. 9.16: Exemplary law modeling thermal equilibrium  

A property model represents a mathematical correlation for the computation of one 
designated model quantity, which corresponds to one specific physical quantity. An 
example is given in Fig. 9.17: An activity coefficient model constitutes a correlation 
for the computation of activity coefficients. Consequently, an activity coefficient model 
comprises, among others, a model quantity which corresponds to an activity coeffi-
cient.  

Fig. 9.17: Exemplary property model 

9.5.1 Concept Descriptions 

Individual concepts of the module process_model are defined below. For a de-
scription of the instances of modeling principle, we refer to Morbach et al. (2008j). 
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Class Descriptions 

Law 
A law constitutes the mathematical representation of a scientific law. It usually 
forms part of an overall process model. 

Modeling principle 

- Following the data_driven modeling principle, a process model is derived from 
the values of the properties of a modeled object. Examples of this type of models 
are neural network models. 

- Following the first-principles modeling principle, the process model is based on 
established physical laws and mechanisms. 

- A hybrid modeling principle applies both the first-principles and the data_driven 
approach.  

Formal definition: Modeling principle is defined by an exhaustive enumeration of the 
individuals data_driven, first-principles, and hybrid. 

Process model 
A process model is a mathematical model that models a process unit or material (or 
subsystems of these). 

Property model 
A property model forms part of an overall process model. It represents a mathemati-
cal correlation for the computation of a designated model quantity, which corres-
ponds to a specific physical quantity. Examples are vapor pressure correlations or 
activity coefficient models. 

Relation Descriptions 

hasModelingPrinciple  
Indicates the modeling principle on which a process model is based. 

isAssociatedWith  
The relation denotes a correspondence between a law and a physicochemical pheno-
menon. The former gives a quantitative, the latter a qualitative description of a cer-
tain physical behavior.  

9.6 Laws 

The ontology module laws, located on the Application-Oriented Layer of Onto-
CAPE, introduces a hierarchical collection of laws that are frequently used in 

A modeling principle represents the principle on which the development of process 
model is based. 
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process modeling. The law hierarchy shown was originally presented by Mar-
quardt (1995). A selection of the taxonomy related to physicochemical laws is 
given in Fig. 9.18 - Fig. 9.22. The high-level concepts include balance laws, consti-
tutive laws, and constraints as shown in Fig. 9.18. 

Fig. 9.18: High-level classification of laws 

Fig. 9.19: Specialization of balance laws 

Fig. 9.20: Specialization of constitutive law 

Balance laws generally represent the change of an extensive quantity in process 
models. This typically includes balances for total mass and mass of species in a 
mixture (mass balance law), for momentum (momentum balance law), for total or any 
other kind of energy (energy balance law), and for the particle number in case of a 
particulate system (population balance laws), as depicted in Fig. 9.19. 

However, balance equations do not suffice to describe the behavior related to a 
process model. Thus, constitutive laws have to be added in order to determine the 
process model completely. Three types of constitutive laws may be distinguished 
(compare Sect. 8.6.1.7 and Fig. 9.20), including generalized flux laws, phenomeno-
logical coefficient law, and thermodynamic state function law. Generalized flux laws de-
scribe the contribution to any kind of balance law. These laws are typically com-
posed of a phenomenological coefficient and a driving force determined by some 
thermodynamic state function which are modeled by phenomenological coefficient 
laws and thermodynamic state function laws. 
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Fig. 9.21: Specialization of generalized flux laws 

Fig. 9.22: Specialization of equilibrium constraints 

In Fig. 9.21, the specializations of generalized flux law are presented, including 
some further specializations associated to transport and exchange phenomena. 
These specific laws have to be considered before a concrete process model can be 
generated. 

Finally, constraints describe all kinds of (algebraic) relations between process quan-
tities which – literally or by assumption – have to hold at any time. Typical exam-
ples are volume constraints or equilibrium constraints, which specialize the class con-
straint in Fig. 9.18.  

In Fig. 9.22, equilibrium constraints are specialized into thermal equilibrium, chemical 
equilibrium, and mechanical equilibrium on the one hand, which refer to equal temper-
ature, pressure, or chemical potential in adjacent phases. Phase equilibrium and 
chemical reaction equilibrium are considered on the other hand.  It shows that phase 
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9.7 Property Models 

The ontology module property_models, which is located on the Application-
Oriented Layer of OntoCAPE, provides a hierarchically ordered collection of fre-
quently used property models. As indicated in Fig. 9.23, a property model might be 
one of the following: 

– A chemical kinetics model, which specifies how to calculate the rate coeffi-
cient of a homogenous or heterogeneous reaction. 

– A phase interface transport property model, which provides a correlation for 
computing certain phase interface transport properties. 

– A thermodynamic property model, which indicates the correlation between 
certain intensive thermodynamics state variables (cf. Sect. 7.3.3) and intra-
phase transport properties. 

Fig. 9.23: High-level classification of property models 

The classification of these specialized property models is given in Fig. 9.24 - Fig. 
9.27: 

                                                           
98 For example, a number of alternative formulations exist for chemical equilibrium, such as the 
equality of chemical potentials between two phases and the equality of fugacities between two 
phases. The equality of fugacities can further be written in different forms depending on what 
property models are to be used in conjunction with the law for the chemical equilibrium.   

equilibrium is just an aggregation of  thermal, chemical, and mechanical equili-
brium. Chemical reaction equilibrium refers to a network of chemical reactions resid-
ing in a single phase, where all forward reaction rates equal the backward reaction 
rates. The constraint phase equilibrium can also be formulated in various alternative 
ways which are fully equivalent98. 
Currently, only the hierarchy of laws and the associated physicochemical phenomena 
(cf. Sect. 8.6.1.6) are modeled. In future extensions of this ontology module, one 
may add further definitions and constraints in order to specify a law’s model quanti-
ties and their corresponding physical quantities.  
For an exhaustive description of all concepts used in the module laws, we refer to 
Morbach et al. (2008j). 
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Fig. 9.24: Some phase interface transport property models 

Fig. 9.25: Some chemical kinetics models 

Fig. 9.26: Some thermodynamic property models 

Fig. 9.27: Some intensive thermodynamic state models 
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Exemplarily, the definition of the class density model is shown in Fig. 9.28: A den-
sity model has some model quantities, one of which corresponds to a physical quantity 
of type density. The other property models are defined analogously. 

Fig. 9.28: Definition of the class density model 

For an exhaustive description of all concepts used in the module property_models, 
we refer to Morbach et al. (2008j). 

9.8 Process Unit Models 

The ontology module process_unit_models, located on the application-oriented 
level of OntoCAPE, provides a collection of mathematical models that model the 
behavioral aspect of process units.  
Please note that this module is introduced not for the purpose of providing a full 
account on this topic, but rather for suggesting a principle for defining various 
types of process unit models and illustrating the principle by means of only a few 
examples.  
These exemplary property unit models are classified according to the modeled 
process units (Wiesner et al. 2008a): a chemical reactor model models a chemical reac-
tor behavior, a flash unit model models a flash unit behavior, etc. (cf. Fig. 9.29). 

Fig. 9.29: High-level classification of process unit models 
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Beyond this high-level classification, the ontology module comprises some special 
types of process unit models. Fig. 9.30 exemplarily shows the definition of a CSTR 
model: A CSTR model is a chemical reactor model that models a chemical reactor beha-
vior with the physicochemical phenomenon of phenomenon ideally_mixed. Further-
more, the CSTR model is a first-principles model and incorporates the following 
laws: energy conservation law, mass conservation law, and reaction kinetics law. 

Fig. 9.30: Definition of the class CSTR model 

Currently, the ontology module provides only a few of such specialized process 
unit models. In the future, it is to be extended to offer a substantial library of 
process unit models. As for now, the module merely provides the framework for es-
tablishing such a library. 
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10 Design Principles of OntoCAPE 
 
Concluding the description of OntoCAPE, we will subsequently present the major 
principles according to which the ontology has been designed. Basically, design 
principles are objective criteria for guiding and evaluating the design decisions 
made during ontology development (Gruber 1995). A number of design principles 
for information modeling in general, and ontology engineering in particular, have 
been suggested in the literature (e.g., Gruber 1995; Fox and Grüninger 1998; 
Arpírez et al. 1998; Chandrasekaran et al. 1999; Gómez-Pérez et al. 2004; Rector 
et al. 2004; Smith 2006; and others). Compliance with these acknowledged prin-
ciples is a credible indicator for the quality of an ontology. 
The design of OntoCAPE has been guided by the following major principles: co-
herence, conciseness, intelligibility, adaptability, minimal ontological commit-
ment, and efficiency. These six principles subsume the plethora of recommenda-
tions stated in the literature. In the subsequent sections, these principles will be 
addressed individually: We will define the meaning of each principle, discuss its 
general implication on ontology design, and describe its realization in OntoCAPE.  

10.1  Coherence 

The principle of coherence, in the literature also known as soundness or consis-
tency, stipulates that the ontological definitions (i) are individually sound and (ii) 
do not contradict each other. This principle applies to both the formal and the in-
formal specification of the ontology. 
The coherence of the formal specification can be checked by means of computer 
programs:  

– Ontology editors like Protégé (Stanford 2008) provide functionality for 
syntax checking and sanity testing, through which most of the inadvertent 
inconsistencies can be detected and resolved. A number of such tests have 
been run on OntoCAPE; typical errors found this way are relation proper-
ties that do not match the properties of the relation’s inverse, or local range 
restrictions on a superclass that are narrower than the range restrictions as-
signed to its subclasses.  

– Reasoners like RacerPro (Racer Systems 2007) or FaCT++ (Tsarkov and 
Horrocks 2007) allow for more sophisticated consistency testing: They do 
not only detect inconsistencies between the stated axioms, but also check 
for contradictory conclusions that can be inferred from these axioms. 
However, there are limitations with respect to the size of the ontology: At 
present (as of 2009), neither FaCT++ nor RacerPro are able to test Onto-

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_10,  
© Springer-Verlag Berlin Heidelberg 2010 
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CAPE as a whole99. To enable testing, we had to reduce the problem size 
by splitting OntoCAPE into parts of about half the size of the ontology. 
Subsequently, each part has been individually tested for consistency. By 
creating different overlapping partitions, consistency between the individ-
ual parts could, at least to some extent, be validated. Note that the need to 
partition the ontology does not necessarily contradict the applicability of 
the ontology for real world applications. Typically, only a subset of the on-
tology modules is required for particular tasks. These subsets of modules 
have been tested successfully. 

However, the computerized proof of coherence is only conclusive if a sufficient 
number of the ontological definitions are formally stated as axioms; otherwise, es-
sential information is inaccessible to the reasoner, and consequently the reasoner 
cannot come to a significant conclusion when processing the ontology. Hence, one 
should strive to axiomatize as many ontological definitions as possible100. In this 
respect, three types of axiomatizations are of particular importance and should be 
applied wherever appropriate: 

– Firstly, defined classes are preferred over primitive classes (Gruber 1995; 
Rector et al. 2004) since the latter do not explicitly state the conditions for 
membership, and thus the reasoner lacks vital information for evaluating 
their consistency. 

– Secondly, siblings101 should generally be declared to be mutually disjoint; 
otherwise, the classes are assumed to overlap, which often causes un-
wanted effects and leads to false conclusions (Rector et al. 2004). For the 
same reasons, the instances of a common class should be stated to be mu-
tually distinct.  

– Thirdly, due to the open world assumption made by DL reasoners, defini-
tions must be explicitly “closed off” (Rector et al. 2004) in order to tighten 
their possible interpretations. The definition of a relation is closed off by 
means of local range restrictions; the definition of a class may be closed 
off by declaring the class to be an exhaustive enumeration of its siblings or 
instances (Arpírez et al. 1998; Gómez-Pérez et al. 2004; Rector 2005). 

Compliant with the above recommendations, the ontological terms of OntoCAPE 
are formally defined by more than a thousand102 axioms. As a rule, siblings have 
                                                           
99 Testing was performed on a machine with a 2.66 GHz dual quad-core processor and 8 GB 
CPU memory. When the ontology was processed as a whole, either the computer ran out of 
memory, or the computation was aborted after several hours without any concluding result. 

101 Siblings are the direct subclasses of a common parent class. 

102 Cf. 12.4.1 for some statistical data about the type and number of axioms in OntoCAPE. These 
data clearly show the benefits resulting from the axiomatization. 

100 However, if the ontology is too tightly constrained by axiomatic definitions, it violates the 
principle of minimal ontological commitment (cf. Sect. 10.5). 
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been declared to be mutually disjoint, and the instances of a common class are de-
clared to be different from each other. Closure axioms have been defined wherev-
er appropriate – either in form of local or global range restrictions on relations, or 
by exhaustive decomposition of classes into siblings or instances. The ratio of de-
fined to primitive classes is roughly 2:5, which constitutes a reasonable trade-off 
between the principles of coherence and intelligibility on the one hand, and mi-
nimal ontological commitment on the other (cf. Sects. 10.3 and 10.5).  
Still, there will always be some aspects of an ontology that cannot be formally 
represented – either due to a lack of expressiveness of the modeling language or 
due to efficiency considerations – and thus must be described informally. Accord-
ing to Gruber (1995), “coherence should also apply to the concepts that are de-
fined informally, such as those described in natural language documentation and 
examples. If a sentence that can be inferred from the axioms contradicts a defini-
tion or example given informally, then the ontology is incoherent”. Obviously, in-
coherencies of this type can only be found by manual inspection. A number of 
them were resolved during a peer review of the informal specification of Onto-
CAPE 1.0 (cf. Sect. 11.1.3); further inconsistencies were uncovered when the 
document was revised to create the informal specification for OntoCAPE 2.0. 
Nevertheless, it is highly probable that a number of inconsistencies currently re-
main undetected; they will be revealed eventually through the continuous reuse of 
the ontology in new fields and applications. 

10.2  Conciseness 

The principle of conciseness, a.k.a. minimality or minimization, demands (i) to re-
duce the number of vocabulary terms to the necessary minimum and (ii) to avoid 
redundancy with respect to axiomatic definitions. A concise ontology is easier to 
understand, easier to apply, and easier to maintain; thus, conciseness enhances the 
intelligibility (cf. Sect. 10.3), usability (cf. Sect. 1.3), and adaptability (cf. Sect. 
10.4) of an ontology. 
As for case (ii), it includes both the explicit redundancies between definitions and 
the implicit redundancies that can be inferred from the explicitly stated axioms 
(Gómez-Pérez et al. 2004). Several test criteria have been suggested for detecting 
redundant axioms (e.g., Gómez-Pérez 2001; Seipel and Baumeister 2004). Some 
of them are implemented in ontology editors: For instance, the aforementioned on-
tology editor Protégé checks for class-embedded axioms, which re-implement a 
restriction that has already been defined on a superclass; moreover, it searches for 
cardinality constraints that specify a minimal cardinality of zero. Thanks to the 
testing functionality provided by Protégé, these types of redundancies have been 
eliminated in OntoCAPE 2.0. 
However, the above tests are only capable of detecting the rather obvious cases of 
redundancies. The majority of redundancies in an ontology, particularly those of 
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case (i), are modeling issues, which can only be found by manual inspection. 
Hence, conciseness in the sense of (i) can only be achieved gradually, by conti-
nuous revision and reengineering of the ontology. This matter has been one of the 
major motivations for the development of version 2.0 of OntoCAPE. Accordingly, 
the number of vocabulary terms required to represent certain concepts could be 
significantly reduced, compared to previous versions of the ontology (cf. Sect. 
12.4). For the ontology as a whole, the reduction cannot be quantified since there 
are other, counteracting effects that influence the total number of terms when 
moving from version 1.0 to 2.0 (e.g., the extension of the ontology to new applica-
tion areas). Yet we may give some examples, which demonstrate the progress 
made in selected areas: 
The first example is about the conceptualization of topological connectivity be-
tween connections and devices (cf. Fig. 10.1).  

Fig. 10.1: Conceptualization of connectivity in CLiP, OntoCAPE 1.0, and Onto-
CAPE 2.0 

In CLiP and OntoCAPE 1.0, such connectivity is modeled through three classes 
(port, connection point, coupling) plus three relations103 (hasPort, hasConnectionPoint, 
couples), as shown in the upper part of Fig. 10.1. An evaluation of this conceptua-
lization yielded that the coupling class and the couples relation could be replaced by 
a single relation (isConnectedTo) without any loss of expressivity, thus saving one 
vocabulary term. Another two terms could be saved by realizing that the relations 
hasConnectionPoint and hasPort, respectively, are redundant with the previously de-
fined hasDirectPart relation. Finally, it was recognized that the usage of ports and 

                                                           
103 For sake of simplicity, the inverses of the respective relations are not included in the count. 
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connection points is optional, not mandatory; consequently, in some cases, connec-
tivity may simply be represented by the relation isConnectedTo. 
Fig. 10.2 shows a second example, regarding the representation of the backdrop 
concept (cf. Sect. 5.1.10): When this concept was first introduced in CLiP, it was 

Fig. 10.2: Conceptualization of backdrop in CLiP, OntoCAPE 1.0 and 2.0 

10.3  Intelligibility 

According to the principle of intelligibility (a.k.a. understandability), an ontology 
should be easily understandable to users “who are willing to invest a reasonable 
amount of effort in mastering its documentation” (Smith 2006). This principle ap-
plies to the informal as well as to the formal specification; its significance should 
be obvious, since an incomprehensible ontology is unlikely to find any users. 

represented through a total of four vocabulary terms (two classes plus two rela-
tions) as shown in the upper part of Fig. 10.2. In OntoCAPE 1.0, the conceptuali-
zation of the backdrop was already reduced by one class without loosing expres-
siveness (i.e., the concept of backdrop was only respresented by the relation 
hasBackdrop). Finally, the assignment of values to certain properties was further 

called isObservedAgainstBackdrop, by which the backdrop concept is modeled very 
efficiently.  

condensed in OntoCAPE: Now the respresentation requires only a single relation 
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The intelligibility of an ontology is improved by abiding the principle of concise-
ness, as explained in Sect. 10.2. Also, modularizing the ontology, as described in 
Sect. 3.1.2, facilitates the understanding of the ontology, since the user does not 
need to grasp the entire ontology at once, but gradually by accessing one module 
after another.  
In addition to these measures, the principle of intelligibility of an ontology can be 
further enhanced by following three major (sub-)principles: clarity, homogeneity, 
and thorough documentation. Subsequently, issues pertaining to these sub-
principles will be discussed. 

10.3.1 Clarity 

The first sub-principle to mention is clarity, a.k.a. perspicuity. Clarity means to 
state exact and unambiguous definitions for all ontological terms in order to effec-
tively communicate the intended semantics. The principle of clarity applies to both 
the formal and the informal definition of terms: 

– For the formal definitions, the same recommendations should be followed 
as for achieving coherence (cf. Sect. 10.1): That is, the term definitions 
should be axiomatized to the degree possible, and the use of defined 
classes and tight constraints are particularly advised. As mentioned before, 
OntoCAPE has put these recommendations into practice by means of more 
than a thousand axioms (cf. Sect. 12.4). 

– As for the informal definitions, Smith (2006) formulated a number of rules 
for how to give precise and intelligible term definitions: It is, for example, 
recommended to clearly distinguish between defined and primitive classes, 
to reuse term definitions from recognized sources, or to avoid circular de-
finitions. Even though the rules were not yet published during the devel-
opment of OntoCAPE, the term definitions later proved to largely comply 
with these rules104. 

                                                           
104 The only exception is rule no. 13, which demands to avoid words that invite subjective inter-
pretation, such as ’which may’, ‘indicates’, ‘characterizes’, etc. However, this demand is debat-
able: While we certainly tried to define terms as precisely as possible, words like ‘characterize’ 
and ‘indicates’ have been often used to define relations; this is because it is often the function of 
the relation to indicate or characterize a particular class. Also, the phrase ‘which may’ is often 
used to describe a possible relation between two classes (i.e., a relation with a cardinality of 
0..n). If utilized this way, we do not consider these words to be ambiguous, and thus to be in 
agreement with the above rule. 
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10.3.2 Homogeneity 

Homogeneity is the second sub-principle to be discussed. Essentially, it means to 
follow a consistent, uniform modeling style across the ontology, or, in other 
words, to conceptualize similar things in a similar way. A homogenous style faci-
litates the understanding of new concepts: Users that have already mastered one 
part of the ontology will comprehend the other parts more quickly if they recog-
nize familiar structures and can thus draw on their existing knowledge. As a posi-
tive side effect, the compatibility between the ontology parts is increased, and new 
definitions can be added more easily; consequently, the monotonic extensibility 
(cf. Sect. 10.4) of the ontology is improved (Gómez-Pérez et al. 2004).  
A minimum condition for homogeneity is to apply the same modeling patterns 
(and use the same primitives) for defining sibling terms (cf. Arpírez et al. 1998; 
Gómez-Pérez et al. 2004). The alikeness of siblings can be enforced by defining 
constraints on the parent class or relation, thus restraining the possible definitions 
of sibling terms. This practice is systematically applied throughout OntoCAPE. 
What’s more, the Upper Layer establishes sibling relations and thus enforces 
alikeness even between semantically distant concepts and across different modules 
and partial models: For instance, the classes material, model, and chemical process 
system, which are located in different partial models, are declared to be subclasses 
of the system class. Consequently, they are conceptualized alike, according to the 
constraints defined on the system class – for instance, their respective characteris-
tics are represented via properties and values.  
Over and above, OntoCAPE goes one step further: The Meta Model (cf. Chap. 4) 
even encourages the application of the same design pattern for modeling semanti-
cally dissimilar concepts, if appropriate. For instance, the multiset design pattern is 
used to model such dissimilar concepts as the stoichiometry of a chemical reaction 
or the tray stack of a distillation column.  

10.3.3 Thorough Documentation 

Just like any piece of software, OntoCAPE needs to be thoroughly documented to 
be usable. Typically, software documentation includes the following issues: 
(1) Comments within the source code (i.e., within the formal specification).  
(2) A reference guide (intended for developers who want to realize a software ap-
plication based on OntoCAPE). 
(3) A user manual (intended for practitioners who want to work with a software 
tool based on OntoCAPE). 
As for (1), the textual term definitions given in the informal specification have 
been copied in the formal specification. Thus, each term in the formal specifica-
tion is supplemented by a short description of its intended meaning. Moreover, 
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each OWL file includes a header comment, which (i) shortly summarizes the con-
tents of the respective module, and (ii) lists the classes, relations, and individuals 
from other modules that are referenced or used by the current module. The latter 
allows a fast evaluation of the module’s interdependencies with other modules. 
Also, in case the ontology is modified, it can be easily detected if the module is af-
fected by that change. 
Issues (2) and (3) are addressed by the informal specification, which presents the 
ontology in human-readable form. Generally, its function is to help new users fa-
miliarize themselves with the ontology; in particular, it is intended to explain the 
correct usage of the ontology terms to practitioners and to support application de-
velopers in refining, extending, or changing the ontology to their particular needs. 
The informal specification holds a separate chapter for each partial model. The 
chapters are further structured into sections describing the individual modules. 
Every section provides a comprehensive overview on the respective module, fol-
lowed by a listing of term definitions. An alphabetic term index at the end of each 
chapter allows quickly locating the definition of a particular term. 
A term definition comprises two major parts. It starts off with a lexical description 
of the term. Subsequently, the formal definition of the term (i.e., the set of axioms 
that are stated in the formal specification) is paraphrased in natural language. The 
latter is intended as a sort of “neutral” formal specification105 (i.e., independent of 
a particular modeling language). To give an example, the term ‘model’ is first es-
tablished by the following lexical description: A model is a system that is used to 
enable the understanding of or the command over the original system, or to re-
place the original system. Model system and original system share certain charac-
teristics that are of relevance to the task at hand (Wüsteneck 1963).  
Subsequently, its formal definition is paraphrased as follows: Necessary and suffi-
cient condition: A model is a system that models some other system. Further neces-
sary condition: A model models only systems. 
Note that, in the above example, the formal definition captures only a part of the 
lexical description. This is frequently the case, since, as explained in Sects. 10.1 
and 10.5, not all aspects of a term definition can be formally represented.  
The term definitions are not sufficient to communicate a comprehensive under-
standing of a module. Therefore, the informal specification provides further do-
cumentation of the following kinds: 

– UML-like diagrams provide graphical views on each module. Such dia-
grams depict the interdependencies between the major ontology terms as 
well as their hierarchical ordering.  

– The diagrams are supplemented by explanatory texts, which specify the 
meaning of the entire conceptualization and explicate the underlying mod-

                                                           
105 The availability of a neutral formal specification helps translating the ontology into another 
modeling language. Experience shows that developers often choose to represent the ontology in a 
different formalism, either to benefit from special language features, or because the application 
requires a particular standard (cf. Chap. 4.1). 
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eling rationale. The latter is particularly relevant for developers who con-
sider changing some part of the ontology due to application requirements: 
Understanding the modeling rationale enables them to better assess the 
consequences of such a change.  

– The intended usage of essential concepts has been explicitly stated as an 
additional help for both practitioners and developers: The former are ad-
vised how to utilize the ontology, whereas the latter may learn if the ontol-
ogy is suitable for a particular application. Usage is typically described by 
(i) defining one or two illustrative use cases, and (ii) demonstrating how 
these use cases are realized on the instance level.  

– Last but not least, guidelines have been stated for certain modules, advis-
ing developers how to further extend and refine that part of the ontology.  

10.4  Adaptability 

A reusable ontology is not a static model, but evolves over time according to pre-
vailing conditions and requirements; new tasks and application areas may necessi-
tate extending and customizing the ontology with respect to scope, level of detail 
or granularity, and/or conceptualization (cf. discussion of the interaction problem 
in Chap. 2.6). Thus, an ontology must anticipate the possibility of later changes 
and support their realization. This demand is hereafter referred to as the principle 
of adaptability. It can be broken down into two sub-principles – herein referred to 
as extensibility and customizability – which will be discussed in the following. 

10.4.1 Extensibility 

Given the complexity of a domain like chemical engineering as well as the wide 
range of possible tasks and applications, a domain ontology cannot be expected to 
be complete. Instead, it must be extensible, with respect to scope as well as with 
respect to the level of detail or granularity; the latter is also referred to as mono-
tonic extensibility (a.k.a. extendibility, cf. Gruber and Olsen 1994).  

– Extensibility in scope implies that the ontology allows for the addition of 
entirely new subject areas, which have not been conceptualized so far. The 
open architecture of OntoCAPE invites this type of extensions: New mod-
ules and partial models covering further subject areas can be smoothly 
added on the Conceptual Layer and below, the only condition being that 
their conceptualizations comply with the modeling guidelines established 
by the Upper Layer and the Meta Layer. These guidelines, however, are of 
generic nature and thus do not rule out any topic areas. The practical 
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feasibility of this approach has been demonstrated, for instance, by the later 
addition of the modules process_control and process_control_system, 
which extend the scope of OntoCAPE to the area of process control. 

– Monotonic extensibility means that new ontological terms for special uses 
can be defined based on the existing vocabulary, in a way that does not re-
quire a revision of the existing definitions (Gruber and Olsen 1994). The 
modules located on the Conceptual Layer are explicitly designed for mo-
notonic extension: They provide the “representational machinery” (Gruber 
1995) – i.e., the basic concepts of a topic area – required to construct more 
specialized terms; the specializations are realized within separate modules 
on the subjacent application-near layers. Various modules on the Applica-
tion-Oriented Layer have been built by this procedure; their existence de-
monstrates the practicability of this approach. 

According to Aitken (1998), an indication of the principles and guidelines of on-
tology design facilitates the extension of an ontology tremendously. OntoCAPE 
explicitly states such principles and guidelines – on the one hand in form of the 
Meta Model, on the other hand in form of explanations within the informal speci-
fication (cf. Sect. 10.3.3). The declaration of these design principles and guide-
lines ensures consistency and reduces the likelihood of making ad-hoc extensions. 
This is of particular importance when extensions are carried out by diverse devel-
opers and/or at different times. 
Extensibility is furthermore enhanced through the modular structure of Onto-
CAPE: Typically, an extension is realized by creating a new module, which is 
then embedded in the inclusion hierarchy of OntoCAPE. Within the hierarchy, the 
new module does usually not include all the other modules of the ontology, but 
only a selected few. Consequently, the newly defined terms do not have to be 
compatible with the entire ontology, but only with a subset, thus reducing the like-
lihood of inconsistencies between new and existing ontological definitions.  

10.4.2 Customizability 

Over the lifecycle of OntoCAPE, new application contexts are likely to arise, 
which were not anticipated during ontology development. Since different applica-
tions usually imply different views on the world (Noy and Klein 2004; cf. Sect. 
3.1.2.3), the applications will have individual demands on the ontology and thus 
require different conceptualizations. Therefore, the ontology must be customizable 
– that is, it must be able to flexibly adapt to dissimilar, and possibly contradicting, 
application requirements. 
If some new application requires an individual conceptualization, which is differ-
ent from the one previously specified in the ontology, it will not be necessary to 
produce an entirely new version of OntoCAPE. Instead, new variants of the af-
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fected ontology modules will be developed and integrated into the present ontolo-
gy, as explained in Sect. 3.1.2.3. The introduction of variants is an option whenev-
er different applications need the same scope of knowledge yet represented in a 
different way – that is, at a different level of detail or granularity, or reflecting a 
different usage perspective.  

 

Fig. 10.3: Introduction and subsequent reconciliation of variants 

The use of variants has the advantage that the ontology can quickly be adapted to 
new tasks, regardless of the impact of changes on existing applications. The ob-
vious drawback of this approach is that, with an increasing number of supported 
applications, the number of variants gets unmanageably large, in particular be-
cause the dependent modules (those that are positioned below the variants in the 
inclusion lattice, cf. left side of Fig. 10.3) must be split into variants, as well, since 
they are derived from different conceptualizations. That way, different configura-
tions of the ontology evolve. Configuration management systems such as CVS 
(GNU 2006) can support the handling of the growing number of variants and their 
mutual dependencies. 
At the same time, a reconciliation of the variants should be considered. A simple 
merging of the variants would contradict the idea of customized conceptualiza-
tions for particular applications. As a compromise, a new module base can be in-
troduced, which contains the ontological definitions shared by all variants (cf. 
right side of Fig. 10.3); simultaneously, the variants are reduced to mere exten-
sions of the base module. Module extensions hold only those ontological defini-
tions that distinguish the variants from one another. Subordinate modules – if not 
explicitly dependent on concepts defined in the extensions – can refer to the base 
module only, thus avoiding unnecessary duplication. Reasoners that offer non-
standard inferences – for example determination of the least common subsumer of 
related concepts (Cohen et al. 1992) – can support the reconciliation process 
(Molitor 2000).  
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10.5  Minimal Ontological Commitment 

As explained in Chap. 2.2, committing to an ontology means accepting the defini-
tions in the ontology as an appropriate conceptualization of the application do-
main. The principle of minimal ontological commitment states that “an ontology 
should make as few claims as possible about the world being modeled, allowing 
the parties committed to the ontology freedom to specialize and instantiate the on-
tology as needed” (Gruber 1995). In other words: For sake of reusability, the axi-
omatization of ontological terms should be kept to a minimum in order to allow 
for different extensions and thus fit a large number of application contexts. How-
ever, this conflicts with the previously discussed principles of coherence and intel-
ligibility, which postulate tight axiomatic definitions to constrain the possible in-
terpretation of terms. Borst (1997) summarizes this dilemma as follows: 
“Overcommitment reduces the reusability, but undercommitment reduces the usa-
bility of an ontology”.  
The problem is partially solved by the modular, layered structure of OntoCAPE: It 
allows for a “piecemeal ontological commitment” Borst (1997), meaning that a 
human or software agent may selectively commit to a coherent subset of the on-
tology that fits its respective application context: For example, an agent could 
commit to scalar quantities (which are defined in the module system), but not to 
tensor quantities (which are introduced in the module tensor_quantity); or, it could 
commit to a conceptualization of unit operations (given in the module process), 
but not to a conceptualization of plant equipment (given in the module plant); or, 
it could commit to the principles of general systems theory (which are established 
on the Upper Layer), but not to those of process engineering (established on the 
Conceptual Layer). 

10.6  Efficiency 

An ontology (or rather its formal specification) is said to be efficient if it allows 
for efficient reasoning (with respect to computational time and memory require-
ments), and if it scales adequately for large amounts of instance data.  
As a rule, the efficiency depends on the number of formal axioms included in the 
ontology – the more exist, the longer it will take a reasoner to process the ontolo-
gy. Thus, efficiency is enhanced by following the principle of conciseness, since a 
concise ontology usually involves fewer axioms and is thus easier to process than 
a complex one. On the other hand, efficiency conflicts with the principles of cohe-
rence and intelligibility, which call for a high degree of axiomatization. 
Yet the number of axioms is only one of several influencing factors. Other factors 
are the types of axioms used – some axioms are more difficult to process than oth-
ers – as well as their respective combinations. Particularly the latter can prove to 
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be problematic for reasoner performance: If, for instance, two relations are de-
clared to be both mutually inverse and transitive, their instances will scale badly 
with most current reasoners (Rector and Welty 2005). 
Unfortunately, only very few guidelines are available on how to avoid such unfor-
tunate combinations of axioms. Therefore, efficiency improvement is for the most 
part a question of trial and error: As explained by Fox and Grüninger (1998), the 
efficiency of a particular conceptualization can be improved as follows: Firstly, a 
set of appropriate competency questions is defined and formalized (cf. Sect. 4.1). 
Next, the reasoner performance is evaluated against a set of test data by measuring 
the computational time and memory required to answer those queries. If the rea-
soner performance is found to be unsatisfactory, an alternative conceptualization 

The suggested procedure is very time-consuming, since each concept must be 
tested individually. And even if this was accomplished for each concept, the re-
sulting ontology could not be claimed to be efficient, in general; instead, it would 
merely have been optimized towards one particular reasoner. Considering the rap-
id progress currently being made on the field of reasoner algorithms, it is ques-
tionable whether one should spend too much effort on optimizing the efficiency of 
an ontology – after all, what seems inefficient today may prove to be satisfactory 
tomorrow if processed by a different reasoner. Still, for the ontology to be practi-
cally usable, efficiency must be achieved to some degree at least. 
Due to the above considerations, OntoCAPE has not been entirely optimized for 
efficiency; solely the Meta Model has been systematically improved by the above 
described trial-and-error procedure (cf. Chap. 4). The Meta Model was deliberate-
ly chosen because its design patterns are repeatedly applied throughout the ontol-
ogy; consequently, the Meta Model is the part of the ontology where time for effi-
ciency improvement is spent most effectively. 
In the course of improving the efficiency of the Meta Model, we frequently en-
countered a conflict between efficiency and knowledge-encoding requirements. A 
typical example is the conceptualization of the part-whole relationship through the 
relations hasPart and isPartOf: To model the properties of these relations correctly, 
hasPart and isPartOf should be declared to be both transitive and mutually inverse. 
Yet, conversely, the principle of efficiency dictates to give up one of the two rela-
tion properties since, as explained above, reasoners scale badly for this particular 
combination of axioms. As it cannot be known in advance which one of the two 
relation properties is more important for an application, it has been decided to 
represent both of them in the formal specification, thus preferring completeness to 
efficiency. In return, the informal specification points out the conflict and advises 
the user how the conceptualization can be changed towards efficiency, thus allow-
ing the user to adapt the ontology to the respective application requirements. 

must be created, and put to the test. Hence, sound procedures and appropriate tool 
support for testing and systematically improving efficiency would be a highly de-
sirable objective for future research in ontology engineering. 
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10.7  Conclusions 

Numerous recommendations for ontology design are given in the literature. This 
plethora has been condensed to the six major principles, which have guided the 
design of OntoCAPE: coherence, conciseness, intelligibility, adaptability, minimal 
ontological commitment, and efficiency. It has been described how OntoCAPE 
has put these principles into practice and, in the course of this process, significant-
ly gained in quality. Since some of the principles are incompatible, a suitable bal-
ance between the conflicting principles had to be found. The finally realized de-
sign is a reasonable compromise, which supports the two primary objectives of 
usability and reusability. However, it is difficult to quantify the degree of quality 
due to the absence of generally accepted key figures. Thus, we decided to com-
pensate the lack of formal key figures by prototypical software applications. In the 
end, the degree of (re)usability can only be proven by field-testing OntoCAPE in a 
(preferably large) number of different software applications. 
Correspondingly, OntoCAPE has been field-tested in software projects covering 
the application areas of modeling and simulation as well as process design and en-
gineering. Through these tests and the iterated application within these projects, 
the ontology was systematically improved. However, research activities investi-
gating sound procedures for checking the quality of design during development 
and the availability of universal key figures are highly desirable. 
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11 Related Work on Ontologies for Engineering 
Applications 

 
This chapter gives an overview on the information models and ontologies that are 
thematically related to OntoCAPE. It is structured into two major parts: Section 
11.1 reviews the previous work in the research group of the authors; that is, the in-
formation models preceding OntoCAPE are described, and the progress made over 
time is discussed. In Sect. 11.2, the work of other research groups is analyzed and 
compared against OntoCAPE.  

11.1 History of OntoCAPE 

Since the early 1990’s, a consecutive series of information models has been de-
veloped in the authors’ research group. The series includes the information models 
VeDa (Baumeister and Marquardt 1998; Souza and Marquardt 1998a; 1998b; Bo-
gusch and Marquardt 1998; Krobb et al 1998; von Wedel and Marquardt 1999) 
and CLiP (Bayer 2003; Yang et al. 2003; Bayer and Marquardt 2004), and the on-
tology OntoCAPE 1.0 (Yang and Marquardt 2004; Yang et al. 2008). These 
models formalize the domain knowledge and represent the work processes of 
chemical engineering. As for the modeling of domain knowledge, OntoCAPE 2.0 
constitutes - at least for the time being - the final result of this series; the modeling 
of work processes is now addressed by the WPML (Work Process Modeling Lan-
guage) an ontology for work processes developed by Theißen et al. (2008a; 2009), 
which can be combined with OntoCAPE. Fig. 11.1 visualizes the history of model 
development. 
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Fig. 11.1: History of model development 

 
W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_11,  
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In the following, the predecessor models of OntoCAPE 2.0 will be shortly ana-
lyzed with regard to scope, structure, representation language, (re)usability, and 
general quality. A more extensive review can be found elsewhere (Morbach et al. 
2008b). 

11.1.1 VeDa 

The development of VeDa was initiated by Marquardt (1992a; 1992b; 1994a; 
1994b) and Marquardt et al. (1993) to support the mathematical modeling of 
chemical process system. For that reason, VeDa primarily provides concepts for 
the description of mathematical models, of the geometrical and structural proper-
ties of the modeled objects, and – for documentation purposes – of the activities 
and the decisions taken during model building. Selected elements of these concep-
tualizations were later absorbed into OntoCAPE for modeling, e.g., materials, 
physicochemical phenomena, coordinate systems, or mathematical models. Gen-
eral systems theory and network theory were chosen as the basic organizing prin-
ciples for VeDa; later, these principles were adopted by VeDa’s successors CLiP 
and OntoCAPE (cf. Sects. 11.1.2 and 11.1.3). VeDa also initiated the description 
of a system from different viewpoints: A structural and a behavioral view on sys-
tems have been conceptualized. Whereas the structural view focuses on the de-
scription of elements of a (chemical process) system and their couplings, the be-
havioral view considers the process quantities and model equations relating these 
quantities. As for the overall structure, VeDa is horizontally subdivided by three 
abstraction layers; vertically, it is partitioned into five partial models.  
Since no suitable modeling language was available in the early nineties, a frame-
based language  named VDDL was specifically developed for VeDa (cf. Bau-
meister and Marquardt 1998). Combining features from object-oriented modeling 
and description logics, VDDL is a highly expressive modeling language, which 
supports the definition of classes, metaclasses, and instances, as well as different 
types of attributes and relations. Class definitions can include methods and laws: 
In this context, methods represent numerical or symbolical functions that act upon 
the objects; laws restrict the possible instances of classes and attributes by logic 
expressions. A serious drawback of the language is that it lacks an efficient im-
plementation. In fact, the genuine VDDL-version of VeDa only exists on paper, 
and its usability is consequently rather limited. Although some executable subsets 
of the language have been implemented – e.g., in the modeling environment G2 
(Gensym 2008) – these implementations are merely pared-down versions, which 
lack important language features. 
Based on VeDa, several software applications have been developed, namely the 
model repository ROME (von Wedel and Marquardt 2000) and the modeling tools 
ModKit (Bogusch et al. 2001; Bogusch 2001) and ProMoT (Tränkle et al. 1997; 
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Tränkle 2000). Yet due to its narrow scope, VeDa’s reusability is confined to ap-
plications in the area of mathematical modeling. 

11.1.2 CLiP 

In succession to VeDa, the conceptual information model CLiP has been devel-
oped as part of the IMPROVE project (Marquardt and Nagl 2004; Nagl and Mar-
quardt 2008). While VeDa largely focused on mathematical modeling, CLiP is 
primarily concerned with chemical process design. Consequently, its scope covers 
materials and their properties, plant equipment and machinery, the major unit op-
erations, the mathematical models used in the various model-based design activi-
ties, the documents for archiving and exchanging data between designers and 
software tools, and the activities performed during process design. Except for the 
subject of geometric concepts, CLiP comprises all areas covered by VeDa and ex-
tends beyond its scope. Regarding the representation of chemical processes, CLiP 
models not only the structural and behavioral views previously covered by VeDa, 
but also considers the aspects of function and performance. As for work process 
modeling, the area of interest has been shifted from work processes targeting the 
development of mathematical models to work processes targeting chemical 
process design (Jarke and Marquardt 1995; Lohmann and Marquardt 1998). 
Again, systems theory has been chosen as the fundamental modeling principle. In 
comparison to VeDa, however, CLiP takes a more systematic approach by 
representing the underlying systems approach explicitly in a meta model. To this 
end, the meta model defines key concepts like system, property, value, backdrop, etc. 
As before, a system can be described from different viewpoints; unlike before, 
such viewpoints are now explicitly modeled as instances of the aspect class (this 
concept later evolved to the aspect system used in OntoCAPE 2.0, cf. Sect. 5.1.7). 
CLiP is structured by means of layers and partial models. In comparison to VeDa, 
the number of partial models has been significantly increased, resulting in a more 
fine-grained partition of the domain. As for the layers, a distinction is made be-
tween the Meta Meta Class Layer, which holds the meta model defining the system 
concept and its aspects; the Meta Class Layer, which introduces different kinds of 
systems and their specific properties; and the Simple Class Layer, which defines 
concepts related to different tasks in the design process and therefore corresponds 

specific classes.  
Two different modeling languages are utilized for the formal specification of 
CLiP:  

– Both Meta Layers and some parts of the Simple Class Layer are imple-
mented in the logic-based modeling language O-Telos, which forms part of 
the ConceptBase system (Jarke et al. 1995; Bayer and Marquardt 2009). 

roughly to VeDa’s middle layer. Unlike VeDa, CLiP has no layer for application-
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ConceptBase supports meta modeling and provides basic deductive reason-
ing services to assist schema development and maintenance.  

– The concepts on the Simple Class Layer are represented by means of UML 
class diagrams. The principal motivation for the use of the UML was that a 
graphical notation like UML is better suited for the representation and 
management of large and complex product data models than the frame-
based O-Telos language of ConceptBase. On the other hand, the UML is 
less expressive than O-Telos, and it does not support reasoning.  

The two model implementations are not formally integrated; instead, consistency 
is ensured by an overlap of major concepts on the Simple Class Layer. 
CLiP is reusable in different application contexts, such as information manage-
ment (Eggersmann et al. 2003a), information integration (Bayer and Marquardt 
2004), CAD/CAE (Bayer 2003), or mathematical modeling (Hackenberg 2006). 
Yet since CLiP constitutes a conceptual model, it is not directly usable: For each 
application, a specific implementation model must be developed on the basis of 
CLiP. Moreover, CLiP’s usability is further limited on account of the following 
defects: 

– Sometimes, the conceptualizations of topic areas are unnecessarily com-
plex, as exemplified by the samples of CLiP presented in Sect. 10.2.  

– Classes and relations are not given individual definitions; instead, they are 
merely specified by means of UML class diagrams accompanied by some 
explanatory text. Relations are often not even named, such that their func-
tions and semantics remain unclear. As a result, the intended semantics of 
concepts are only vaguely communicated. Also, in some cases, logical in-
consistencies are “hidden” by fuzzy wording. 

– There are a number of systematic errors, such as the repeated mix-up of 
aggregation and composition relations, or the unsystematic use of classes 
and meta-classes. 

11.1.3 OntoCAPE 1.0 

OntoCAPE continues the work of CLiP and VeDa, combining results of both 
models: From CLiP, it largely adopts the terminology and the partial model struc-
ture of the Simple Class Layer. Additionally, it includes various concepts from 
VeDa – particularly for modeling the geometry and the physicochemical behavior 
of chemical plants, which are not sufficiently covered by CLiP. Some additional 
subject areas not considered by the previous models have been newly conceptua-
lized in OntoCAPE – for instance, the issue of numerical solution strategies. Un-
like CLiP and VeDa, OntoCAPE does not cover documents and work processes; 
however, OntoCAPE can be combined with other, specialized ontologies 
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representing documents, work processes, and decision-making procedures, as de-
scribed by Brandt et al. (2008b) and Morbach et al. (2008d). 
The first version of OntoCAPE was developed in the COGents project (Braun-
schweig et al. 2002, 2004; Yang et al. 2008). Within COGents, OntoCAPE 1.0 
served as a shared language for communication between cooperating computer 

The structure of OntoCAPE 1.0 differs notably from that of OntoCAPE 2.0 de-
scribed in Chap. 3: Horizontally, the concepts of OntoCAPE 1.0 are split between 
two layers. The first layer holds the so-called Common Concepts, which are 
shared between different applications. The second layer contains the Application-
Specific Concepts, which are obtained by extending and/or refining the Common 
Concepts towards a particular application. Each layer is subdivided into a number 
of modules, which are grouped into partial models. In total there are 23 modules 
on the Common Concepts layer, plus another six on the Application-Specific Con-
cepts layer. 
OntoCAPE 1.0 has been formally specified in DAML+OIL (Connolly et al. 2001), 
which was the state-of-the-art ontology modeling language at that time. The for-
mal specification has been created by means of the ontology editor OilEd (Bech-
hofer et al. 2001) and verified by the reasoner FaCT (Horrocks 1998). A supple-
mentary informal specification has been created (Yang et al. 2004b), providing 
textual term definitions as well as general information about each module in form 
of UML-like class diagrams and accompanying texts. 
After the completion of the COGents project, the further development of Onto-
CAPE was taken over by the IMPROVE project (Marquardt and Nagl 2004; Nagl 
and Marquardt 2008). As a first step, the formal specification was translated106 in-
to OWL, which had by then replaced DAML+OIL as the standard ontology mod-
eling language. Subsequent to the translation, OntoCAPE was fundamentally re-
vised: 

                                                           
106 This laborious task – as of version 1.0, the ontology contained about 600 classes and 400 rela-
tions represented by 20,000 lines of code – was supported by a specially built converter (Amin 
and Morbach 2008), which handled most of the translation. However, as OWL does not offer 
equivalents for all language elements of DAML+OIL (particularly not for qualified cardinality 
constraints), some parts of the ontology had to be remodeled manually. 

agents, which were concerned with the task of retrieving suitable mathematical 
models for describing chemical process systems from distributed libraries (cf. 
Sect. 12.1). Accordingly, the scope of OntoCAPE 1.0 had its main focus on ma-
thematical modeling and numerical simulation. Yet right from the beginning, On-
toCAPE was designed for later extension to other areas and applications. To this 
end, the ontology was given an open and extensible structure. Moreover, further 
essential topic areas of CAPE, such as process design and engineering, were at 
least basically conceptualized in order to be refined later on. Thus, OntoCAPE 1.0 
established the basic framework for a comprehensive domain ontology. 
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– The ontology was given a refined structure: The Meta Layer, the Upper 
Layer, and the Application-Oriented Layer have been added, and the 
boundaries of the modules and partial models have been redrawn.  

– The software applications created within the IMPROVE project required 
an extension of the ontology. Consequently, 37 new modules have been 
added to the ontology in order to cover new subject areas and to refine the 
coverage of existing areas in detail. Concurrently, it was decided to remove 
five modules from the ontology since their contents were not of general in-
terest but merely relevant for the COGents project (cf. Sect. 12.1 and Sect.  
12.4.2). 

– The contents of the 24 remaining original modules have been conceptua-
lized anew. The remodeling became necessary since, due to the tight sche-
dule of the COGents project, large parts of OntoCAPE 1.0 had to be for-
mulated in an ad-hoc manner. Within the IMPROVE project, these 
conceptualizations have been revisited and improved with respect to the 
design criteria of intelligibility, conciseness, and coherence: A number of 
redundant concepts were deleted, and inconsistencies have been resolved. 
In many cases, long-winded conceptualizations could be replaced by more 
succinct ones, thus improving the intelligibility and conciseness of the on-
tology. By the addition of numerous axioms, the formal term definitions 
have been tightened in order to enhance their intelligibility and validate 

12.4.3. 
– The informal specification has been rewritten and extended to almost three 

times its original length. It now includes much more explanatory text and, 
for the first time, describes the intended usage of concepts as well as the 
underlying design rationales. 

11.2  Work by Other Research Groups 

Since the release of the popular OWL modeling language in 2004, the number of 
publicly available ontologies has grown exponentially: According to Hendler 
(2007), tens of thousands of ontologies have been in use in 2007. While most of 
these ontologies are negligible efforts – test cases, academic exercises, lightweight 
ontologies, or pseudo ontologies – there still remains a considerable number of 
valuable contributions that are, or have the potential to emerge as, long-lasting 
shared ontologies. These ontologies cover all sorts of domains, such as mathemat-
ics (e.g., the EngMath ontology; Gruber and Olsen 1994), engineering (e.g., the 
PhysSys ontology; Borst 1997), chemistry (e.g., the ChEBI ontology; EBI 2008), 
biology (e.g., the Gene Ontology; GO 2007), medicine (e.g., the GALEN ontolo-
gy; Rector et al. 1995;), geoscience (e.g., the GeoNames ontology: GeoNames 

their coherence. For details on these issues, we refer to Sects. 12.4.2 and 
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A few review articles have been published, which give an overview on the major 
ontologies in selected fields like medicine (Bodenreider 2001) or biology 
(Schulze-Kremer 1998; Bard and Rhee 2004), or even across fields (Fridman-Noy 
and Hafner 1997; Chap. 1.1 of Gómez-Pérez et al. 2004). Moreover, the following 
web resources may serve as a starting point for searching a particular ontology: 

– The Protégé Ontology Library (http://protegewiki.stanford.edu/index.php/ 
Protege_Ontology_Library) is a web portal linking to ontology projects 
that use the Protégé ontology editor:  

– Swoogle (http://swoogle.umbc.edu/) is a specialized web search engine for 
discovering semantic web documents and ontologies.  

– SchemaWeb (http://www.schemaweb.info/default.aspx) is a directory of 
schemas and ontologies expressed in the RDFS, OWL, and DAML+OIL 
modeling languages. 

– The DAML Ontology Library (http://www.daml.org/ontologies/) contains 
several hundreds of ontologies represented in the DAML+OIL modeling 
language.  

– The Open Biomedical Ontologies (OBO) repository is a library of publicly 
accessible biomedical ontologies, which are obtainable in different for-
mats. The OBO repository can be accessed via the website of the OBO 
Foundry (http://obofoundry.org/), via the Ontology Lookup Service 
(http://www.ebi.ac.uk/ontology-lookup/), or via a web application called 
BioPortal (http://www.bioontology.org/ncbo/faces/index.xhtml).  

Of the plethora of existing ontologies, we will review only a small portion, namely 
those ontologies that are of particular relevance in the context of this work. An on-
tology is considered to be relevant (a) if it bears close resemblance to OntoCAPE 
with respect to both scope and level of complexity, or (b) if it had a significant in-
fluence on the development of OntoCAPE. As for (a), only the more recent efforts 
are discussed here; a review of the earlier contributions in the area of process en-
gineering can be found elsewhere (Bayer and Marquardt 2003). Moreover, this 
chapter considers only “true” ontologies (i.e., ontologies that have explicitly been 
built for sharing and reuse, cf. Sect. 2.5); pseudo ontologies are not included in 
this review. 

2007), legislation (e.g., the LKIF-Core ontology; Hoekstra et al. 2007), e-commerce 
(e.g., the SNAP ontology; Morgenstern and Riecken 2005), business enterprises 
(e.g., the Enterprise Ontology; Uschold et al. 1998), military (e.g., the JFACC ontol-
ogy; Valente et al. 1999), or surveillance and security (e.g., the BioSTORM ontolo-
gies; Crubézy et al. 2005).  
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11.2.1 EngMath 

EngMath (Gruber and Olsen 1994) is an ontology for engineering mathematics. It 
formally defines fundamental mathematical concepts required for the modeling of 
engineering systems, such as scalar and tensor quantities, mathematical functions, 
physical dimensions, and units. The ontology is intended (i) as an unambiguous 
communication language that is usable by both humans and software agents, and 
(ii) as a conceptual foundation for other, more comprehensive engineering ontolo-
gies. As for (ii), EngMath forms an integral part of the PhysSys ontology (Borst 
1997; cf. Sect. 11.2.3).  
EngMath had an important influence on the modeling of certain upper-level con-
cepts of OntoCAPE: It inspired the conceptualization of physical quantities, physical 
dimensions, units, and (to a lesser degree) tensor quantities. An important difference 
between EngMath and OntoCAPE is that the latter distinguishes between a physi-
cal quantity and its quantitative value(s) (cf. Sect. 5.1.9), whereas the former does not. 
In fact, EngMath does not have an equivalent for the OntoCAPE concept of a 
physical quantity; the homonymous concept in EngMath rather corresponds to the 
OntoCAPE concept of a quantitative value.  

11.2.2 YMIR 

YMIR (Alberts 1994) is a formal ontology that is concerned with the modeling of 
technical systems. Technical systems are described through a systems approach 
based on bond-graph theory (e.g., Karnopp et al. 1990), which models a system as 
a network of interconnected subsystems that interact via flows of energy. Accord-
ing to this approach, complex system models can be synthesized by combining 
and refining generic subsystems, the so-called Generic System Models (GSM). 
The specification of a particular GSM comprises three different aspects, which re-
flect its geometric form, its structure, and its behavior. Moreover, a GSM can be 
associated to certain function(s) and the corresponding “context” in which the sys-
tem is to perform the function, such that the “purpose” of the system can be de-
fined. 
A weakness of YMIR is its bias towards mathematics: The ontological description 
of a technical system is firmly associated with one particular mathematical model; 
there is no possibility to characterize the technical system qualitatively without 
mathematics. This emphasis of mathematics limits the applicability of the ontolo-
gy, since many applications only require a qualitative description of technical sys-
tems. Furthermore, as argued by Borst (1997), the relationship between a technical 
system and its possible mathematical descriptions is n-to-n, in general; YMIR, 
however, presumes a one-to-one relation and thus looses the flexibility of intro-
ducing alternative models for a technical system. 
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Another critical point about YMIR is its lack of extensibility: As pointed out by 
Gruber and Olsen (1994), the ontology lacks a mechanism for introducing new 
physical quantities and dimensions in addition to those that are predefined; also, 
the modeling approach is not extensible towards vectors and tensors. 

11.2.3 PhysSys 

PhysSys (Borst 1997; Borst et al. 1995; Borst et al. 1997) is an ontology for the 
modeling of technical systems. The ontology, which is formally specified in the 
Knowledge Interchange Format, KIF (Genesereth and Fikes 1992), is divided into 
subontologies organized in an inclusion hierarchy. The topmost and most generic 
subontology is the Mereology Ontology, which establishes a mereological theory. 
The Topology Ontology imports this theory and extends it towards a theory of me-
reotopology. Based on these, the Systems Theory Ontology defines notions of 
general systems theory. The subjacent subontologies specify technical systems 
from complementary viewpoints: The Component Ontology describes the struc-
tural aspect of a technical system, whereas the Physical Process Ontology charac-
terizes its physicochemical behavior qualitatively. Additionally, the behavior can 
be quantitatively modeled by using concepts from the EngMath ontology (Gruber 
and Olsen 1994; cf. Sect. 11.2.1), which has been included as an integral part of 
PhysSys. 
The modular architecture of PhysSys has inspired the structural design of Onto-
CAPE: Particularly the consecutive definition of mereology, topology, and sys-
tems theory in separate subontologies has been adopted. Also, selected axiomatic 
definitions from these theories have been transferred to OntoCAPE. On the whole, 
however, the conceptualization of mereology, topology, and systems theory is 
handled quite differently in OntoCAPE: 

– PhysSys is aimed at a complete representation of mereotopology, whereas 
OntoCAPE implements only a reduced theory: Certain mereotopological 
properties, such as the asymmetry of the part-whole relation, have not been 
modeled in OntoCAPE due to the limited expressive power of OWL (cf. 
Sect. 2.3). On the other hand, the reduced theory has the advantage of 
enabling more efficient reasoning than a complex theory. 

– While both ontologies cover the areas of mereotopology and systems 
theory, they place emphasis on different topics: For instance, mereotopolo-
gy, as conceptualized in PhysSys, is particularly suited for modeling the 
overlapping parts of two objects – a topic that is not covered by Onto-
CAPE. Conversely, the mereotopological theory implemented in Onto-
CAPE sets priorities on the representation of graph structures and their hie-
rarchical refinement. Systems Theory in PhysSys particularly emphasizes 
the modeling of system boundaries, which enables the definition of open 
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and closed systems. OntoCAPE rather focuses on the representation of sys-
tem properties and their values, as well as on modeling a system from dif-
ferent viewpoints.  

– 

originally (e.g., Karnopp et al. 1990; see Cellier and Kofman 2006 for an 
application of bond graphs to thermodynamical systems). OntoCAPE, on 
the other hand, rather specializes in the representation of chemical, ther-
modynamical, and fluid mechanical systems. 

11.2.4 MDF 

Batres, Naka, and co-workers developed an ensemble of interrelated ontologies in-
tended for applications in the process engineering domain, which is referred to as 
multi-dimensional formalism, or MDF in short (Batres and Naka 2000; Batres et 
al. 2002). The MDF ontologies are formally specified in the Knowledge Inter-
change Format, KIF (Genesereth and Fikes 1992). The multidimensional informa-
tion model MDOOM (Lu et al. 1997; Batres et al. 1999) served as the conceptual 
framework for the design of the ontologies. 
MDF consists of the following interconnected ontologies: 

– The Plant Structure Ontology, which is comparable to the partial model 
CPS_realization in OntoCAPE, describes the physical structure and the 
spatial layout of chemical plants. The structural description is based on a 
mereotopological theory, which is specified by a number of axiomatic de-
finitions. 

– 

– 

Finally, PhysSys is particularly suited for modeling electronic and mechan-

The Behavior Ontology characterizes the behavior of a particular amount 
of material in a given spatiotemporal setting. It thus has the same function 
as the OntoCAPE partial model CPS_behavior (cf. Sect. 8.6). Just like in 
OntoCAPE, the material behavior may be qualitatively described by the 
indication of the relevant physicochemical phenomena. A further similarity 
is the so-called ‘metamodel’ concept, which is the equivalent to Onto-
CAPE’s process unit (cf. Sect. 8.8). 
Finally, the Management and Operation Ontology provides the vocabulary 
to specify typical tasks in plant operation and control. These topics are not 
covered in an equally detailed fashion in OntoCAPE, but a comparable 

ical systems, which have been the target of by the bond graph approach 

– The Material Ontology describes the thermodynamic behavior of mate-
rials. Like the partial model material in OntoCAPE, the Material Ontology 
covers only those aspects of material behavior that are independent of a 
material’s concrete occurrence in time and space (cf. Sect. 7.1.1). The con-
text-dependent properties of material are handled by the Behavior Ontolo-
gy described next. 
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MDF was developed contemporaneously with CLiP, the predecessor model of On-
toCAPE. Due to the exchange of experience between the two research groups dur-
ing the development process, both models share a number of common features, 
such as the definition of the structural and material-related views on the plant, 
which were later adopted by OntoCAPE107. Furthermore, OntoCAPE adopted 
some basic concepts from the MDF Behavior Ontology for the realization of the 
partial model CPS_behavior. However, when it comes to the details of the im-
plementations, MDF and OntoCAPE have been conceptualized quite differently. 
In addition, there are some noteworthy structural differences, the most notable of 
which is the absence of abstraction layers: MDF does not attempt to separate the 
generic knowledge from the domain knowledge and/or application-specific know-
ledge – mereotopological axioms, for instance, are intertwined with a conceptuali-
zation of plant items. Moreover, there is no upper ontology that would serve as a 
common basis for the four MDF ontologies; consequently, the consistency be-
tween the different ontologies is not formally enforced. Finally, OntoCAPE has a 
higher degree of modularization: For example, the material partial model – unlike 
its equivalent in MDF (the Material Ontology) – is further subdivided into six on-
tology modules on the Conceptual Layer plus five additional ones on the Applica-
tion-Oriented Layer. Judging from these differences, it can be concluded that 
MDF is less reusable than OntoCAPE. 

11.2.5 Plant Ontology and Functional Ontology 

Mizoguchi et al. (2000) and Mizoguchi (2001) have developed a Plant Ontology, 
which describes equipment, materials, and operating activities in chemical plants. 
Combining this ontology with a generic Functional Ontology (Kitamura and Mi-
zoguchi 1999; Mizoguchi 2001; Kitamura and Mizoguchi 2003) enables the func-
tional description of chemical plants. Both ontologies were built in a prototypical 
ontology editor named Hozo (Kozaki et al. 2000) and can be exported to XML, 
Lisp, or text formats.  

– The Plant Ontology is subdivided into a Domain Ontology and a Task On-
tology. The Domain Ontology describes the application domain, in particu-
lar plant equipment, materials, and material properties. The Task Ontology 
(i) represents the plant operations that are performed by the operating per-

                                                           
107 A detailed comparison between CLiP and MDF can be found elsewhere (Bayer and Mar-
quardt 2003). 

functionality can be achieved by combining OntoCAPE with the process 
ontology (Eggersmann et al. 2008) as described by Morbach et al. (2008d). 
Moreover, OntoCAPE is currently extended to cover operational processes 
(cf. Theißen et al. 2008a, Hai et al. 2009) 
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sonnel (monitor, diagnose, operate, etc.), and (ii) defines how the concepts 
of the domain ontology are to be used in order to perform a desired task108. 
The key idea for the organization of both subontologies is the distinction of 
“essential categories” and “view-dependent concepts”, according to which 
all ontological concepts are classified. Roughly speaking, the former cate-
gory denotes entities with unchanging characteristics and/or appearances 
(e.g., chemical substances), while the latter comprises concepts the appear-
ances of which depend on the context. An example of the latter would be 
the role of a chemical substance in a plant – depending on context, a sub-
stance could be fuel, distillate, or end-product. 

– The Functional Ontology enables a comprehensive representation of con-
ceptual design knowledge. Engineering artifacts are described from a 
structural, functional, and behavioral perspective. The ontology allows 
both functional and behavioral decomposition and defines relations be-
tween the decomposed parts. Additionally, it is possible to indicate (i) the 
physicochemical phenomena based on which a certain function can be 
achieved as well as (ii) the manufacturing steps that are required to realize 
the desired function. The Functional Ontology is organized as a framework 
of several interconnected ontologies, which are distributed across several 
layers of abstraction; each layer contains a number of subontologies. 

In principle, any technical artifact can be described through the Functional Ontol-
ogy; however, it is especially appropriate for modeling fluid-processing plants in 
the process and energy engineering domain. According to the authors, the usabili-
ty of the Functional Ontology has been demonstrated by building, amongst others, 
functional models of an oil refinery, a chemical plant, and a power plant. To this 
end, the Functional Ontology has presumably been combined with the Plant On-
tology (however, this issue is not clearly stated in the available publications). 
A point of criticism is that – to our knowledge – the ontologies have not been 
made publicly available. Yet as far as it can be judged from the available sources, 
the respective conceptualizations are rather complicated, particularly those in the 
Functional Ontology. Another problematic issue is that both ontologies have been 
designed for particular applications, possibly without any intention of reusing 
them in different application contexts: The Plant Ontology serves as the know-
ledge base for an intelligent plant operating system, whereas the Functional On-
tology is used within a novel type of design support system. Since other applica-
tions have not been reported, it remains unclear whether the ontologies are 
reusable or must be classified as pseudo ontologies. 

                                                           
108 According to the classification framework established in Chap. 2.6, the Task Ontology would 
rather be categorized as an application (task) ontology. 
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11.2.6 ISO 15926 

ISO 15926 is an evolving international standard that defines information models 
for the integration and the exchange of lifecycle data about chemical plants. The 
standard comprises seven distinct parts; three parts have already been released 
(ISO 2003; 2004; 2007), while the others are still under development (ISO 2005; 
2006). Eventually, the standard will provide information models for the represen-
tation of product data, documents, and activities. These models describe the physi-
cal objects that exist in a process plant (materials, equipment and machinery, con-
trol systems, etc.) as well as the design requirements for and the functional 
specification of these objects. They cover the lifecycle stages of development, 
construction, operation, and maintenance.  
The ISO 15926 is organized in a layered architecture, starting with a generic Data 
Model, which is iteratively extended and refined to a Reference Data Library 
(second layer), Templates (third layer), and Object Information Models (fourth 
layer). Further lower layers allow for user-specific extensions.  
Whether ISO 15926 truly constitutes an ontology is subject to debate. While ISO 
15926 was originally intended as an information model for a shared database or 
data warehouse, its upper layers are now additionally promoted as an ontology. 
Indeed, the semantics of the data model have been formally specified in the 
EXPRESS modeling language (ISO 1994) and are currently re-formulated in 
OWL (cf. Batres et al. 2007; Teijgeler 2007). Yet Smith (2006) lists a number of 
systematic defects of ISO 15926, which cause it to be both unintelligible and in-
coherent and thus make Smith conclude that “we do not have here anything which 
could properly be described as an ontology”. 
A detailed comparison of ISO 15926 and OntoCAPE has been published else-
where (Morbach et al. 2008d). Below the major findings of this evaluation are 
summarized: 

– Due to its intended usage as a model for lifecycle data, ISO 15926 gives a 
fine-grained and highly detailed description of the domain, resulting in a 
very complex model that incorporates a large number of specialized 
classes. A drawback of this approach is that the ISO 15926 is only accessi-
ble to experts who are willing to spend a considerable amount of time to 
get acquainted with it. OntoCAPE, by contrast, has been designed to be as 
simple and intuitive as possible, such that it can be easily understood and 
applied by less experienced practitioners. In consequence of this principle, 
it is sometimes necessary to trade accurateness and precision against usa-
bility, which leads to a coarse- to mid-grained conceptualization of the ap-
plication domain. However, this level of detail has proven to be sufficient 
for many applications, as will be demonstrated in Chap. 12.  

– A further notable difference is the conceptualization of temporal persis-
tence: ISO 15926 advocates the perdurantistic (or 4D) worldview, while 
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OntoCAPE takes an endurantistic (or 3D) perspective109. There are argu-
ments for both sides – a summary of the current philosophical debate on 
this issue is, for example, given by Hawley (2004) and Noonan (2006). In 
the end, the decisive factor must be the applicability of the chosen ap-
proach in the target applications: ISO 15926 is aimed at storage and ex-
change of lifecycle data and thus places a strong emphasis on the represen-
tation of temporal changes, for which the 4D perspective is advantageous. 
By contrast, temporal changes are less relevant for the applications tar-
geted by OntoCAPE, such that we consider the 3D paradigm more practic-
able for our purposes: It has the advantage of being more intuitive, which 
supports our goal of an easily usable ontology. If required, temporal 
changes can be modeled by means of the backdrop concept (cf. Sect. 
5.1.10). 

– Judging from the available sources published so far (Batres et al. 2007; 
Teijgeler 2007), the ISO models will not be realized in OWL DL, but in 
the more expressive sublanguage OWL Full (cf. Smith et al. 2004). OWL 
Full supports such advanced language features as metamodeling (i.e., in-
stantiation across multiple levels) or augmenting the meaning of the pre-
defined language primitives, yet at the cost of loosing scalability and com-
patibility with DL reasoners. This, in combination with the above dis-
cussed general complexity of the ISO, reduces the efficiency (and thus the 
usability) of the ontology. 

11.2.7 Conclusions 

Summarizing, it can be stated that there are currently two major ontologies for the 
domain of CAPE, OntoCAPE and ISO 15926. All other ontologies known to the 
authors are either intended for related but different domains (EngMath, YMIR, 
PhysSys), or they are not truly reusable (MDF, Plant Ontology).  
OntoCAPE and ISO 15926 pursue different design objectives: OntoCAPE is in-
tended as a general-purpose ontology; in order to be reusable, it strives to be both 
concise and generic. ISO 15926, by contrast, primarily aims at applications in the 
area of data management; therefore, it puts emphasis on being detailed and com-
plete, even at the cost of being less reusable. In view of that, the two ontologies 
should not be considered as competing, but as complementary options for a con-
ceptualization of the CAPE domain. 

                                                           
109 Endurantism is a philosophic theory, which assumes that an object exists as a whole at each 
moment of its history. Perdurantism by contrast, perceives an object as a four-dimensional entity 
consisting of a series of temporal parts. 
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At present, ISO 15926 still suffers from a number of defects and has not yet been 
published completely. Thus, it may be claimed OntoCAPE is currently the only 
(re)usable ontology that is available for the CAPE domain. 
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12 Evolutionary Improvement and Validation 
through Applications 

 
In this chapter, some prototypical software applications are presented, which have 
been created by the authors’ colleagues within the research projects COGents and 
IMPROVE. What all prototypes have in common is that their respective imple-
mentations are based on OntoCAPE. While these prototypes are of interest in 
themselves, they are presented here primarily for other reasons: that is, (a) to 
demonstrate the practical usability and reusability of OntoCAPE, and (b) to high-

Sect. 12.1 describes two software prototypes from the field of process modeling. 
Both prototypes have been developed in the context of the COGents project and 
are based on OntoCAPE 1.0. Sect. 12.2 discusses the use of OntoCAPE 2.0 by a 
tool for knowledge management developed in the IMPROVE project. Finally, 
Sect. 12.3 presents an ongoing research project, in which parts of OntoCAPE 2.0 
are tested in a large-scale industrial application. 
For the sake of completeness, it should be mentioned that OntoCAPE is, or was, 
furthermore involved in some other software research projects: 

– Within the IMPROVE project, rule-driven integrator tools have been de-
veloped (Becker et al. 2008a). One particular application of such tools is 
the integration of the process simulator Aspen Plus (AspenTech 2008) and 
the CAE system Comos PT (Innotec 2008). The integration rules for this 
particular case have been derived from the domain knowledge represented 
in OntoCAPE110 (Becker et al. 2008b).  

– Sheremetov et al. (2007) have developed a knowledge-based framework 
that allows interchanging data and integrating different engineering appli-
cations, simulators and tools, thus facilitating the collaboration of piping, 
stress and civil engineers in pipe networks design. The framework includes 
a domain model for piping, which is based on OntoCAPE. 

                                                           
110 In this particular case, OntoCAPE is not used directly, but indirectly as a conceptual domain 
model (cf. Morbach et al 2008a). In the areas of software engineering and database design, a 
conceptual domain model describes the major entities of the domain of interest on a conceptual 
level, independently of some particular application or implementation. Its function is to familiar-
ize with the vocabulary of the domain and to establish a common understanding of its key con-
cepts. 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_12,  
© Springer-Verlag Berlin Heidelberg 2010 

light the gradual improvement of the different versions of OntoCAPE, which have 
been triggered by implementations in different application contexts. Therefore, the 
descriptions of the different prototypes are intentionally kept short; detailed ac-
counts of these have been published elsewhere, as will be indicated by appropriate 
references. Rather, the focus will be on the validation of the ontology through 
practical applications as well as on the feedback for ontology engineering gained 
from these applications. 
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– De Giacomo et al. (2007) employed OntoCAPE as a benchmark ontology 
for the testing and evaluation of reasoning services and tools. 

– A presentation by Morbach and Marquardt (2006) explored the usage of 
OntoCAPE in the area of e-procurement. 

– Theißen et al. (2008a; 2008b) are developing tools for the modeling and 
analysis of design and operational work processes in chemical engineering 
(cf. Sect. 13.4). Generic models for the representation of work processes 
are combined with OntoCAPE in order to represent domain-specific work 
processes. 

While the above listed projects also demonstrate the reusability of OntoCAPE, 
they have influenced the development of OntoCAPE far less than the projects pre-
sented in the following. 

12.1  Process Modeling 

In this section, two software prototypes are presented, which both support the 
composition of process models. The prototypes are based on OntoCAPE 1.0 and 
have been developed in the context of the COGents project. Sect. 12.1.1 describes 
a software that enables the composition of process models from reusable compo-
nents, whereas Sect. 12.1.2 presents an environment for conceptual process mod-
eling. Sect. 12.1.3 summarizes the lessons learned from using OntoCAPE in these 
two modeling applications. 

12.1.1 Component-Based Process Modeling 

The first software prototype to be discussed is a multi-agent framework, which 
supports the retrieval of suitable Process Modeling Components (PMCs) from 
model libraries distributed on the interest. A PMC is a model constituent which is 
(re)usable for a particular process simulation; it may be one of the following: an 
entire process model, a part thereof (such as a unit model or a property data file), 
or a numerical solver. The COGents system supports the user in retrieving appro-
priate PMCs for a given task and in embedding those into the user’s simulation 
environment.  
Within the multi-agent framework, OntoCAPE serves as a communication lan-
guage between the interacting software agents, and between the software agents 
and the human users: Concepts from OntoCAPE are used to formulate a Modeling 
Task Specification (MTS), which is then matched against available PMCs also de-
scribed through OntoCAPE. A typical usage scenario is illustrated in Fig. 12.1. 
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Fig. 12.1: Simplified COGents architecture 

At the outset of the scenario, a user, supported by the Modeling Task Manager, 
composes a MTS by selecting and instantiating appropriate concepts from Onto-
CAPE. The MTS describes the properties of a desired PMC in terms of the follow-
ing: (i) the object to be modeled, which is typically a phase system or the beha-
vioral aspect of a chemical process system (cf. Sects. 7.3 and 8.6.1, respectively); 
(ii) the desired mathematical and numerical properties of the PMC thereby using 
concepts from partial model mathematical_model (cf. Sect. 9.1); and (iii) the 
software features of the PMC, which are required for its integration in the user’s 
software environment111.  
The MTS is then verified by the Modeling Task Manager to assure its compliance 
with the general modeling rules specified in the ontology, thus attempting to dis-
cover any contradictory specifications already in advance: For instance, an axiom 
in partial model CPS_behavior (cf. Sect. 8.6) states that a phase of matter cannot 
simultaneously (a) be ideally mixed and (b) incorporate intra-phase mass diffu-
sion. The Modeling Task Manager, which has a built-in reasoner, will check 
whether that axiom is violated by the MTS. Thus, if an MTS requests a phase 
model with these conflicting properties, a warning will be issued that the specifi-
cation is inconsistent.  
Subsequently, the validated MTS is sent to the Match-Making Agent, which is re-
sponsible for retrieving information about existing PMCs. Such information can 

the contents of the libraries accessible to the COGents system, again by using On-
toCAPE. Matching is then performed by the Match-Making Agent, which tries to 
find one or more PMC that satisfy the requirements stated in the MTS.  

                                                           
111 Note that OntoCAPE 1.0 still included some software-related modules providing the concepts 
required for (iii). As explained in Sect. 11.1.3, these modules were later outsourced to a separate 
software ontology. 

be acquired by communicating with the Library Wrapper Agents, which represent 
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Once a desirable PMC is found, it must be integrated into the user’s simulation 
environment. This task is handled by the Integration Manager. That particular 
agent assembles the individual PMCs (which may stem from different libraries) 
into an executable simulation model and configures it according to the given 
MTS.  
The COGents multi-agent framework has been built upon existing platforms and 
software tools developed by both the CAPE and the ontological engineering 
community. A detailed description of the implementation can be found elsewhere 
(Braunschweig et al. 2004; Yang et al. 2008). The functionality of the prototype 
has been tested by means of three case studies, which typify representative model-

While the multi-agent software is not fully operational and requires further re-
search, particularly on the issue of matchmaking, OntoCAPE has proven itself a 
reliable communication language, which enables the characterization of complex 
PMCs and MTSs. 

12.1.2 Conceptual Process Modeling 

The second application to be described is a prototypical modeling environment, 
which enables the construction of a mathematical model in two successive steps, 
named conceptual modeling and model generation:  

– In the first step, the user constructs a conceptual model – that is, a physical 
or phenomenological (not mathematical) characterization of the object to 
be modeled. The conceptual model defines the essential features of the ma-
thematical model to be developed, such as the boundaries of control vo-
lumes or the modeling scale. Thus, this step is comparable to the formula-
tion of an MTS in the COGents system, although a conceptual model is 
typically more detailed than an MTS.  

– In the second step, the conceptual model is automatically transformed into 
a mathematical model. This task is accomplished by assembling the ma-
thematical model from elementary building blocks, which are selected and 
configured according to the specifications of the conceptual model. 

The modeling environment itself is domain-independent. For conceptual model-
ing, it requires a domain ontology, which functions as a modeling language for the 
respective application domain. In the case of process modeling, OntoCAPE pro-
vides the concepts for describing structural and phenomenological details of 
chemical processes.  

ing tasks in the areas of process design, process synthesis, and process simulation. 
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Fig. 12.2: Conceptual modeling approach 

In a typical application scenario (Fig. 12.2), the Ontology Querying Tool retrieves 
a set of concepts from OntoCAPE that are relevant to the current modeling con-
text. These concepts are then presented to the user through the Graphical User In-
terface (GUI). Working with the GUI, the user composes the conceptual model by 
selecting, instantiating, and connecting relevant concepts. The result can be vali-
dated by means of a reasoner, which checks if the conceptual model violates any 
axioms defined in the ontology. 
The verified conceptual model is passed on to the Model Generation Engine 
(MGE). Its function is to automatically translate the conceptual model into a ma-

While the conceptual model is created, the graphical user interface is aware of the 
contents of the Building Block Library. It is therefore able to restrict the concepts 
available for conceptual modeling to those for which a corresponding building 
block exists. Thus, it can be ensured that the conceptual model is later transforma-
ble into a mathematical model. 

                                                           
112 Modelica (e.g., Tiller 2001) is a free modeling language designed for the mathematical de-
scription of physical systems. 

thematical model, which can then be solved within an existent simulation envi-
ronment. For this task, the MGE relies on a set of elementary model building 
blocks stored in the Building Block Library. Initially, the MGE analyzes the con-
ceptual model in order to identify suitable building blocks, which are then re-
trieved from the Building Block Library. Each building block consists of a short 
Modelica112 statement, typically representing a single model equation. Subse-
quently, the variable names and parameter values within the selected Modelica 
statements are customized according to the specifications of the conceptual model. 
Finally, the individual Modelica statements are combined into an overall model.  
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Like the COGents framework, the modeling environment has been built upon ex-
isting software tools, such as Jena (HP Labs 2007) and ModKit+ (Hackenberg 
2006). A detailed account of the implementation and its merits can be found else-
where (Yang and Marquardt 2004; Yang et al. 2004a). 
There are comparable efforts aiming at an improved computer support for process 
modeling – see for example the publications of Stephanopoulos et al. (1990), 
Preisig (1995), Marquardt (1996), Perkins et al. (1996), Jensen (1998), Bieszczad 
(2000), Linninger (2000), Cameron et al. (2001), and Bogusch et al. (2001). The 
novelty of the approach to process modeling described herein is the following: It 
can be realized by reusing existing domain ontologies and generic tools developed 
by the ontology engineering community, hence eliminating the need for develop-
ing (i) tool-specific modeling languages and (ii) domain-specific modeling tools. 
As for (i), the modeling language (i.e., OntoCAPE) is declaredly reusable in vari-
ous application contexts. As for (ii), the modeling environment can be easily re-
configured to a different application domain, simply by replacing OntoCAPE with 
another domain ontology. Such a domain ontology must merely be consistent with 
the environment’s core ontology113, which establishes some high-level modeling 
concepts such as system, property, phenomenon, law, etc114. The domain concepts are 
then declared as refinements of these high-level concepts. 

12.1.3 Lessons Learned 

For the realization of the above software prototypes, only a few application-
specific modules had to be added to OntoCAPE 1.0. Since this required only mod-
erate effort, it can be stated that the ontology has proven to be usable for applica-
tions in process modeling.  
However, it is worth mentioning that, in both applications, OntoCAPE primarily 
served as a shared vocabulary (cf. Sect. 2.2): in the first case as a communication 
language between human users and computer agents, in the second case as a do-
main-specific modeling language. The other possible usage of OntoCAPE – that 
is, the formal representation of domain knowledge (cf. Sect. 2.2) – could only be 
tested to a small extent. This is due to the fact that, although the above software 
applications involve some knowledge-intensive tasks (e.g., checking an MTS or a 
conceptual model for consistency and completeness), their demands can be met by 

                                                           
113 Note that the core ontology was called ‘meta ontology’ in the original publication (Yang et al. 
2004a), owing to the genericness of its concepts. However, its function is rather that of a core on-
tology, as it has been defined in Chap. 2.6, and is therefore referred to as such. 
114 Most of the terms of the core ontology have been included in OntoCAPE 2.0. However, in the 
core ontology, the terms typically have a more narrow meaning than in OntoCAPE 2.0: For in-
stance, ‘system’ has the connotation of an ‘object to be modeled’ rather than that of a general 
system. 
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a comparably small part of the entire ontology. From most of the modules of the 
ontology, however, the applications do not retrieve any formalized knowledge115. 
Consequently, the ontology’s usability as a knowledge component library could 
only be validated in part. 
In both application cases, the expressiveness of the ontology was adequate for de-
scribing the items addressed in the usage scenarios: That is, the ontological voca-
bulary has proven suitable for the representation of the mathematical and numeri-
cal aspects of process models as well as for representing the modeled objects 
(typically, behavior of a process plant or material). On the other hand, the usability 
of those parts of OntoCAPE that are not covered in the application scenarios (i.e., 
the partial models CPS_function, CPS_realization, and CPS_performance) 
cold not be validated conclusively. 
The reusability of the ontology was not greatly challenged by the applications, as 
both software prototypes are situated in the context of process modeling. Thus, to 
arrive at any definite conclusion about its reusability, the ontology must be tested 
in a completely different application context (such as knowledge management, 
which is discussed in the subsequent section). Yet even the reuse of the ontology 
between these rather similar process modeling applications revealed the need for a 
more adaptable model architecture, in general, and for an upper ontology, in par-
ticular. To that end, on the basis of the core ontology of the prototypical modeling 
environment, the first version of such an upper ontology was created. This upper 
ontology evolved and eventually became the Upper Layer of OntoCAPE 2.0. Ac-

12.2 Knowledge Management in Engineering Design 

12.2.1 Introduction 

After the completion of the COGents project, the development of OntoCAPE was 
taken over by the IMPROVE project. Within IMPROVE, the ontology was exten-
sively restructured, thereby addressing the abovementioned need for a more flexi-
ble architecture and an upper ontology. In parallel, OntoCAPE was reused in a 
software prototype called Process Data Warehouse (PDW), which was developed 
within the IMPROVE project by Jarke and co-workers (e.g., Brandt et al. 2006). 

                                                           
115 Accordingly, large parts of OntoCAPE 1.0 have the character of a lightweight ontology (cf. 
Sect. 12.4) 

cordingly, these software prototypes do not really validate the ontology, but rather 
present a transition stage, which allowed gaining experiences for the further de-
velopment of OntoCAPE. 
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The PDW, which supports knowledge management in engineering design 
processes, will be described in the following. 

12.2.2  Approach 

There is a plethora of software tools addressing engineering knowledge manage-
ment inside manufacturing enterprises. Document management systems such as 
Windream (Windream 2008) or Documentum (EMC2 2008) are widely used in in-
dustrial praxis for the storage, maintenance, and distribution of documents. A step 
further, Product Data Management (PDM) systems provide extended facilities for 
the handling of detailed product information, ranging from design to production 
stage. They are being succeeded by Product Lifecycle Management (PLM) sys-
tems, such as Windchill (PTC 2008), TeamCenter (Siemens PLM Software 2008) 
or CATIA (Dassault Systemes 2008). The aim of these systems is to integrate in-
formation on the manufacturing processes (usually CAM systems) with design da-

Engineering design processes involve highly creative and knowledge-intensive 
tasks that require extensive information exchange and communication among dis-
tributed teams. Knowledge about engineering design processes constitutes one of 
the most valuable assets of a modern enterprise. Normally, this knowledge is only 
known implicitly to the participating designers, relying heavily on the personal ex-
perience and background of each designer. To fully exploit this intellectual capi-
tal, it must be made explicit and shared among designers and across the enterprise.  
Knowledge management (KM) is a scientific discipline that stems from manage-
ment theory and concentrates on the systematic creation, leverage, sharing, and 
reuse of knowledge resources in a company (Awad and Ghaziri 2003). Knowledge 
management approaches are generally divided into personalization approaches 
that focus on human resources and communication, and codification approaches 
that emphasize the collection and organization of knowledge (McMahon et al. 
2004). Here, only the latter approach is considered. In particular, the PDW ad-
dresses the capture and reuse of experience knowledge: This term summarizes all 
the potentially reusable knowledge that emerges over the course of an engineering 
design project.  
In this context, two different types of experience knowledge need to be distin-
guished: On the one hand, there are the products created during the design process 
(e.g., simulation models, design calculations, cost estimates, etc.); these may be 
organized into documents, which act as logical (or virtual) and sometimes as real 
units to enable work distribution or version control. On the other hand, there are 
the (work) processes or activities themselves, in which the products are created, 
used, or manipulated. The prominent concern of any successful KM approach 
must be the integration of product knowledge and (work) process knowledge in a 
coherent framework. 
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ta (CAD systems) on the one hand, and information about Enterprise Resource 
Planning (ERP) processes on the other hand. 
The PDM/PLM systems available today adequately support information exchange 
between developers, especially in the later phases of the engineering lifecycle 
which are characterized by more deterministic116 and well-known processes. How-
ever, they lack essential capabilities for the management and reuse of design 
knowledge (Bilgic and Rock 1997; Gao et al. 2003; Maropoulos 2003).  
A significant shortcoming of existing PDM and PLM systems criticized by many 
authors is their lack of adequate information models for product representation 
(e.g., Szykman et al. 2001). These models would be needed to effectively capture, 
exchange, retrieve, and reuse design knowledge. In particular, formal and well-
structured information models for the conceptual design stage are missing (e.g., 
Bilgic and Rock 1997; Szykman et al. 2001; Gao et al. 2003; Mesihovic et al. 
2004). 
Regarding process support, current PDM systems have largely focused on the 
support of micro-level processes on the administrative level, such as versioning or 
engineering change management (Mesihovic et al. 2004). Some attention is paid 
to project management, however without reaching the capabilities of full-fledged 
project management systems (Bilgic and Rock 1997; Mesihovic et al. 2004). They 
lack the functionality to capture complex work processes and decisions. They are 
particularly inappropriate for conceptual design processes (e.g. Douglas 1988; Bi-
egler et al. 1997), which are highly creative and dynamic processes and thus hard-
ly predictable (Westerberg et al. 1997; Marqardt and Nagl 2004). Any software 
solution has to cope with the continually changing requirements and the many de-
grees of freedom within these processes. Because of their hard-wired usage 
processes and the restricted ability for interoperation, the software tools available 
today are unable to offer appropriate support. 
Moving beyond the established approaches, a novel type of knowledge manage-
ment system has been developed, which has been named the Process Data Ware-
house, or PDW in short. Basically, the PDW supports the mining of experience 
knowledge and its reuse on demand. Its functionality can be summarized as fol-
lows. 
Typically, discrete items of product knowledge are stored in heterogeneous 
sources such as electronic documents and data bases, which are distributed across 
the enterprise. The PDW (i) provides a comprehensive representation of the con-
tents of these sources, thereby correlating the scattered knowledge items and pro-
viding a single point of access to design knowledge. As such a comprehensive re-
presentation cannot be complete (for reasons of scaling, maintainability, 
practicability, etc.), the PDW (ii) supplies mechanisms for easily locating the orig-
inal knowledge sources, where more detailed information can be retrieved. To this 
aim, meta information about the sources (e.g., type, structure, version history, sto-
rage location) is combined with information about their contents. Moreover, the 
                                                           
116 A deterministic work process can be completely planned and/or scheduled in advance. 
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12.2.3 The Core Ontology 

Knowledge representation within the PDW is realized via a set of loosely con-
nected ontologies, which are held together by a central Core Ontology (Brandt et 
al. 2006; 2008b; cf. Sect. 2.6). The Core Ontology introduces top-level concepts 
that describe products and processes, as well as their interrelations and dependen-
cies, independently from any particular domain or application. These fundamental 
concepts are then refined and concretized within the Peripheral Ontologies. Dif-
ferent Peripheral Ontologies can be added to the Core Ontology to flexibly adapt 
the PDW to the requirements of a specific application domain. 
Fig. 12.3 displays a simplified view of the Core Ontology. Four prominent areas 
of conceptualization are arranged around the object as the central concept.  

– The Product Area (top) contains concepts for the description of the type 
and version history of electronic documents and other information re-
sources, as well as their mutual dependencies and their structural decom-
position. The product class denotes all kinds of information elements, such 
as data items or decision representation objects, which are created or mod-

The concept of the PDW has been derived from the concept of Data Warehousing 
(Jarke et al. 2003), where large amounts of structured data (e.g., from sales or ac-
counting) are stored, aggregated, and then presented. For those conventional tools 
and warehouses, fixed schemas are used for data storage. Yet to support design 
and other creative work processes, a dynamic extension of the existing data struc-
tures and the integration of additional, suitable domain models must be supported 
(Jarke et al. 2000). To this end, the PDW uses formal ontologies for the represen-
tation and storage of experience knowledge. Ontologies have two major advantag-
es over conventional data schemas: Firstly, they are highly flexible, enabling mod-
ifications and extensions of the data structures even during project execution and 
thus facilitating the handling of the dynamic design processes. Secondly, they en-
able the computer to interpret and reason with the information stored in the ontol-
ogy. In consequence, advanced support for knowledge management and know-
ledge retrieval can be provided. 

PDW has been integrated with existing tools and data stores to promote easy 
access to the original sources. Last but not least, the PDW (iii) enables the capture 
and archival of process knowledge (i.e., the actual work processes during the de-
sign lifecycle) in order to provide information about the circumstances in which 
the product knowledge has been created. In particular, recording of the decision-  
making procedures allows recalling the design rationale applied at that time. Thus, 
process and product knowledge are captured in an integrated manner. This allows 
the systematic retrieval of experience knowledge that is suitable for a particular 
situation or working context. 
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ified during a work process. Different versions of a product may exist, 
which can be bundled into a version set. Contextually related products can 
be aggregated into a document version. A (logical) document bundles differ-
ent document versions and is thus a specialization of a version set. 

– The Storage Area (right) describes at which location (storage place) inside 
a store a particular version set is stored. Examples of stores are data bases, 
document management systems, and external tools. 

– The Descriptive Area (left) contains basic concepts for describing the con-
tent or the role of product objects on a semantic level. This includes content 

The Process Area (bottom) represents the process objects that manipulate (i.e., 
create, use, or modify) product objects. In particular, it comprises the activities, 
which are performed by users or (software) tools. 

Fig. 12.3: Simplified view of the Core Ontology and some Peripheral Ontologies 

The Core Ontology only contains high-level concepts required to establish, organ-
ize, and integrate the four fundamental Areas. In addition, each Area offers some 
extension points where Peripheral Ontologies for specific application domains or 
other specializations can be added. These ontologies refine the domain indepen-
dent concepts introduced in the Core Ontology. Two exemplary extensions are 
shown in Fig. 12.3 (refinement is indicated by dashed arrows): 

descriptions and categorizations. Unlike categorizations, which simply classify 
product objects according to certain categories, a content description is a 
placeholder for a term (or even a composite expression) from a controlled 
vocabulary that characterizes the contents of the associated product object. 
Thus, the descriptive area provides content-specific meta information for 
the annotation of documents and data stores.  
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– OntoCAPE is the most substantial of these extensions. In the context of 
this application, the concepts of OntoCAPE are used as refinements of the 
content description, thus providing a shared vocabulary for the description of 
product objects and process objects. If product or process objects are to be de-
scribed that do not fall in the domain of CAPE, OntoCAPE can be replaced 
by a different domain ontology (for example, Raddatz et al. 2006, describe 
an application of the PDW in the a sub-domain of rubber production). 

– The ontology Chemical Engineering Documents refines the generic docu-
ment class in the Product Area. It provides a taxonomy of the document 
types that are typically used in chemical process design, such as Process 
and Instrumentation Diagrams, equipment lists, or model files. A detailed 
description of this ontology has been compiled by Morbach et al. (2008c). 
In an analogous manner, alternative taxonomies can be developed by the 
users of the PDW to represent the document types that exist in the users’ 
organization. 

12.2.4 Implementation of the PDW 

The PDW has been implemented on top of an existing ontology framework. For 
reasons of expressiveness, reasoning support, and interoperability, a framework 
supporting the OWL ontology language would have been first choice for the reali-
zation of the PDW. Unfortunately, the OWL-based repositories available at that 
time could not efficiently handle large amounts of instance data and thus were not 
usable for real-world applications. For that reason, it was decided to relinquish 
some of the expressive power of OWL in exchange for improved scalability. The 
KAON system (Oberle et al. 2004), based on which the PDW has been realized, 
therefore constitutes a reasonable compromise: It enables efficient storage and re-
trieval of instance data, at the cost of loosing some of the description-logic capa-
bilities of OWL (cf. Brandt et al. 2008a). Since KAON complies with the same set 
of base standards as OWL (i.e., RDF and RDFS; cf. Brickley and Guha 2004), the 
Peripheral Ontologies, most of which were originally implemented in OWL, could 
be relatively easily transferred in the KAON system.  
Extending the KAON system, the PDW offers specialized functionality for know-
ledge management. In the following, the major issues of the PDW architecture are 
summarized; details about the implementation can be found elsewhere (e.g., 
Brandt et al. 2008a, 2008b; Miatidis et al. 2008): 

– The PDW is integrated with an external document management system, 
which is responsible for supporting document-based storages, offering ver-
sion management and change notification support. The ontology instances 
corresponding to the document, its new version, and its storage place are 
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automatically created or updated within the Product Area and Storage Area 
of the Core Ontology.  

– For particular formats, such as the model files of the simulator Aspen Plus 
(AspenTech 2008), specialized converters have been built, which automat-
ically annotate the documents’ contents through concepts of the Descrip-
tive Area (e.g., Amin and Morbach 2007; cf. Sect. 3.6). 

– External tools that use repositories or databases for storage purposes in-
stead of simple files or documents can also be integrated with the PDW. A 
generic mechanism for integrating such external data sources has been im-
plemented using XML (Bray et al. 2006b) as an exchange format, and 
XSLT (Clark 1999) to transform the intermediate files into a form that 
matches the conceptual representation of the PDW. 

– Furthermore, the PDW is integrated with the PRIME (Process-Integrated 
Modeling Environment) system, a prototypical design environment for 
chemical engineering (Pohl et al. 1999; Jarke et al. 1999; Miatidis and 
Jarke 2005). Within the PRIME system, the actions performed by the de-
signer are (semi-)automatically traced, as well as the products worked 
upon by these actions. The recorded experience knowledge is represented 
through the concepts of the Core Ontology and stored in the PDW. 

– Several specialized user interfaces support the retrieval of the recorded ex-
perience knowledge. A particular knowledge item can be found in two dif-
ferent ways: either indirectly by browsing a graphic representation of the 
ontology instances, or directly via a query interface enabling a semantic 
search. The latter enables a highly systematic retrieval of information: 
First, a query to the PDW is composed from arbitrary concepts (classes, in-
stances, relations, attributes) of the PDW ontologies. Next, the inference 
engine of the PDW processes the query and tries to match it against the 
available knowledge resources, which are again represented by terms of 
the PDW ontologies. Since the semantics of the ontology terms have been 
formally defined, the search engine can interpret the meaning of both 
query and annotations in order to find a semantic match, thus achieving 
better recall and precision than a conventional search based on string com-
parisons. 

Comparable ontology-based repositories for design knowledge are currently being 
developed in other areas than process engineering – e.g., Kopena and Regli (2003) 
or Szykman et al. (2000) in electromechanical engineering. A review of the recent 
developments in this area is given by Szykman et al. (2001). However, these repo-
sitories are limited to the storage of product data and documents and do not record 
the associated work processes and decision-making procedures.  
Some recent research projects try to extend the capabilities of PDM/PLM systems 
towards knowledge management (e.g., Kim et al. 2001; Gao et al. 2003). Yet 
knowledge must be entered manually and explicitly, since the suggested ap-
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proaches lack the recording capabilities of the PDW. Moreover, they assume de-
terministic processes, which is not the case in conceptual process design. 
An ontological architecture for knowledge management, which resembles the 
Core Ontology described herein, has been proposed by Abecker et al. (1998). Yet 
the application of these concepts to engineering domains does not fall into the 
scope of this particular research group. 
In the area of chemical engineering, several prototypical design environments 
have been developed based on ontological models and tools (Bañares-Alcántara 
and Lababidi 1995; Batres et al. 1999; Kitamura and Mizoguchi 2003; Venkatasu-
bramanian et al. 2006; Bañares-Alcántara et al. 2003). Unlike the PDW, these en-
vironments focus on other aspects than the reuse of experience knowledge.  

12.2.5  Lessons Learned 

The applicability of the PDW (and consequently that of OntoCAPE) has been 
demonstrated by means of several use cases (cf. Brandt et al. 2008a), including a 
major application scenario about the conceptual design of a polyamide-6 produc-
tion facility (cf. Eggersmann et al. 2002). By testing the PDW and its ontologies 
against these use cases, OntoCAPE has been progressively refined: 
Initially, an older version of OntoCAPE (named OntoCAPE 1.1) was used within 
the PDW. This ontology was created by firstly translating OntoCAPE 1.0 from 
DAML+OIL into OWL and secondly implementing those changes with respect to 
the model architecture that were considered necessary due to earlier testing of On-
toCAPE 1.0 in the prototypical modeling environment (cf. Sect. 12.1.3). As a re-
sult, the architecture of OntoCAPE 1.1 already largely resembled that of Onto-
CAPE 2.0, yet the individual modules were still conceptualized as those of 
OntoCAPE 1.0. 
Generally speaking, OntoCAPE 1.1 proved to be reusable: The new architecture 
enabled an easy integration with the other PDW ontologies, and the expressivity 
of vocabulary proved sufficient for the annotation of the knowledge resources. 
Some partial models had to be extended – particularly CPS_function and 
CPS_realization; yet this was to be expected since these partial models were not 
really required by the earlier process modeling applications of OntoCAPE 1.0 (cf. 
Sect. 12.1.3) and were therefore only fragmentarily developed. 
At the same time, however, testing revealed that the usability of OntoCAPE 1.1 
was insufficient for the PDW. Basically, it suffered from two major types of de-
fects: 

– It turned out that OntoCAPE 1.1 had serious deficiencies with respect to 
the design criteria of conciseness, coherence, intelligibility, and perfor-
mance. These issues are extensively discussed in Sect. 3.1.2 and Chap. 10 
as well as in Sects. 12.4.2 and 12.4.3. 
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– Most parts of OntoCAPE 1.1 still had the character of a lightweight ontol-
ogy and thus an insufficient level of axiomatization. While this is rather ir-
relevant for the annotation of knowledge resources, per se, it becomes im-
portant when knowledge is to be retrieved by a semantic search: For 

Due to these defects, OntoCAPE was repeatedly revised and thus gradually im-
proved. In the course of this process, the conceptualization of the individual mod-
els was optimized with respect to the design criteria of coherence, conciseness, in-
telligibility, and performance, as described in Chap. 10. Concurrently, the level of 
axiomatization was increased, as documented in Sect. 12.4. These efforts finally 
cumulated in the design of OntoCAPE 2.0, which fulfills all requirements stated 
by the use cases of the PDW. 

12.3  Integration of Design Information 

12.3.1  Introduction 

A shortcoming of all the OntoCAPE-based software prototypes presented so far is 
that they have only been tested in academic use cases of limited scope117. Such use 
cases are sufficient to demonstrate the basic functioning of the software as well as 
the ontology’s fundamental capability for (re)use; yet they cannot guarantee the 
ontology's suitability for real-world applications. 
To address this issue, OntoCAPE is currently being field-tested in a large-scale 
industrial project, which is run in cooperation with partners from the chemical and 
software industries (Morbach and Marquardt 2008). The project objective is the 
development of an ontology-based software prototype for the integration and re-
conciliation of design information. Extensive testing will ensure that both the inte-
gration tool and the ontology comply with the challenging requirements of indus-
trial practice. 
The objective of the integration tool is to support information handling in engi-
neering design projects. In the course of a typical design project, information is 
created by disparate software tools and stored in heterogeneous sources, such as 
technical documents, CAE systems, or simulation files. Eventually, the scattered 
                                                           
117 Note that the PDW has been tested in industrial practice (Raddatz et al. 2006), however not in 
combination with OntoCAPE. 

inferring the semantic equivalence between a query and an annotated 
knowledge resource, the inference engine requires the semantics of the 
query and the annotation terms to be formally defined. This can only be 
achieved if a preferably large number of axioms clarify the meaning of the 
ontology classes and relations. 
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information items need to be merged and consolidated. Unfortunately, the struc-
tural, syntactic, and semantic heterogeneities of the different sources hinder the 
provision of efficient computer support. 
Commercial software systems for the integration and management of process de-
sign data still rely on conventional database technology. Thus, the approaches 
primarily address the integration of structural (schematic) heterogeneities. Most of 
these systems are based on a central data warehouse that can import and redistri-
bute data created by application tools. These systems support navigation and re-
trieval of data and provide some basic data management functions such as version 
management and change management. Typical examples are SmartPlant Founda-
tion (Intergraph 2008) from Intergraph and VNET (AVEVA 2008) from AVEVA. 
However, these off-the-shelf solutions can only process the proprietary data for-
mats of the respective vendors and are thus limited to the data created by the ven-
dors’ application tools, which normally represent only a minor subset of all data 
created in the course of a development project. Extending these tools towards the 
handling of non-proprietary formats is difficult, as one need to modify the source 
code and map onto the internal data models of the tools, both of which are poorly 
documented in most cases. 
Thus, information integration is yet largely performed manually, thereby creating 
a significant overhead for the designers (cf., e.g., Gallaher et al. 2004). 

Although solutions like PlantXML do not directly support information integration, 
they can greatly facilitate that task: By translating the information from the pro-
prietary formats of the disparate application tools and data stores into a uniform 
XML format, they resolve the structural and syntactic heterogeneities of the dif-
ferent information sources. For that reason, it was decided to build the integration 
tool on top of an XML-based solution for data exchange. The abovementioned 
PlantXML has been chosen as the first application case, but the tool is designed in 
such a way that can handle arbitrary XML formats. 

To overcome these deficiencies, XML has recently gained acceptance as a way of 
providing a common syntax for exchanging heterogeneous information. XML is 
increasingly applied for data exchange, ultimately becoming a standard for data 
interchange between software tools (Klein 2002). In the area of chemical engi-
neering, various XML-based solutions for data exchange are currently under de-
velopment or already in use, such as CAEX (Fedai and Drath 2004), XMpLant 
(Noumonon 2008), or PlantXML (Anhäuser et al. 2004). The latter has been es-
tablished by the engineering department of Evonik Degussa to improve the intero-
perability of their application tools. Data exchange is realized via XML files that 
comply with an in-house standard. PlantXML defines specific XML schemata for 
the different phases and functions of a design project: XML-EQP for the design of 
machines and apparatuses, XML-EMR for the design of instruments and control 
systems, XML-RLT for pipe engineering, and XML-SiAr for the design of fittings 
and safety valves. Custom-made converters handle the import and export of the 
XML files to and from the application tools by mediating between the in-house 
standard and the internal data models of the application tools. 
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The use of ontologies and semantic technologies for the integration of distributed 
data is a long-standing research issue; an overview on the more recent contribu-
tions in this field can be found elsewhere (Wache et al. 2001; Paton et al 2000; 
Visser et al. 2000; Crubézy et al. 2005). However, for the time being there are 
very few approaches which emphasize on the domain of engineering. None of 
these approaches aims at the consolidation of large amounts of distributed engi-
neering design data. Thus, to the authors’ knowledge, the software prototype pre-
sented herein is unique in that respect. 

12.3.2  Approach 

As stated before, the software prototype will make use of the information availa-
ble in the PlantXML format. To this end, appropriate converters will extract se-
lected data from the XML files and assemble them in a comprehensive informa-
tion base, which has the function of integrating and consolidating the distributed 
information. For interaction and visualization, a GUI has been developed which is 
particularly adapted to the design engineers’ needs. Finally, the consolidated, pos-
sibly integrated data can be transferred back to the corresponding software tools 
and thus the consolidated data can be directly reintegrated in the standardized 
workflow. The entire information consolidation process is shown in Fig. 12.4. 

From our perspective, the solution to the problem of semantic heterogeneity is to 
formally specify the meaning of terminology of each system; from this, the com-
puter can autonomously infer a translation between the different system termino-
logies. Unfortunately, the semantics assumed by a particular source are rarely 
documented, and there is no explicit representation of a data source’s semantics 
(at least not in the same way as a data schema provides a representation of the data 
structures). Hence, the important link missing at this point is the connection be-
tween the structured information stored in the XML document and the domain 
knowledge, which relates meaning to the stored information within the particular 
context. In other words, a semantic annotation of the XML documents is neces-
sary. To that end, OntoCAPE is perfectly suited as a controlled vocabulary for an-
notation, similarly as it has been used in the PDW (cf. Sect. 12.2.3). 
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Fig. 12.4: Information consolidation process 

This software prototype basically represents a mediation layer, which is placed be-
tween the user and the data sources (Wiesner et al. 2008b). The tool follows the 

Fig. 12.5: 

Fig. 12.5: Schematic representation of the CIB 

so-called hybrid approach (e.g. Paton et al. 2000; Wache et al. 2001), as shown in 
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118 In database engineering, this kind of approach is called “local-as-view” (e.g. Halevy 2001). 

Each information source (i.e., each XML document) is described by a local source 
ontology, which basically replicates the document (its original structure as well as 
its data) in the ontology language of the integration tool. The interactions between 
a source ontology and its corresponding XML document are handled by a bidirec-

The new approach assumes the tool to be layered on top of an existing XML-
based data exchange architecture. According to PlantXML, it is realized in the 
sense of “publish and subscribe” (Britt et al. 2004) for serialization. 
The information processing in the integration prototype is performed in two con-
secutive steps: 

(1) Extraction and preprocessing. In the first step, the relevant information 
is extracted from the XML files and transferred into the integration tool. 
Within the tool, the information stemming from different XML docu-
ments is kept separately and is individually prepared for integration. In 
this context, the term ‘XML document’ denotes a set, the members of 
which are XML files that (i) originate from the same source and (ii) con-

considered as different versions of the same XML document. Preparation 
includes the detection and elimination of outdated and redundant infor-
mation, as well as the resolution of versioning conflicts. Such preprocess-
ing is necessary since there may be several versions of an XML docu-
ment. Typically, no stringent version management exists for these, due to 
the complex workflow of a design project (split of work, concurrent en-
gineering, distributed engineering …). In other words each version may 

tional converter, which mediates between the XML representation and the onto-
logy language of the integration tool. This rather complex procedure is called 
“semantic lifting” and it follows a two step approach: step (1) is to lift the XML 
schema to the level of an ontology: i.e., a skeleton source ontology is created, 
which incorporates only the (structural) information from the schema expressed in 
an ontology language. Step (2) establishes further relations between concepts and 
attributes in order to clarify context information, finally leading to a complete 
source  ontology (cf. Fig. 12.5). 
Via mappings, the entities of the source ontologies are linked to the entities of a 
global domain ontology (OntoCAPE in our case), thus making their semantics 
explicit. Lastly, by means of a graphical user interface (GUI), information que-
ries can be made via the domain ontology, which functions as a global query 
schema118: The user formulates a global query in the terminology of the domain 
ontology. Next, the inference engine transfers the query to the source ontologies 
via the existing mappings. Then, the inference engine retrieves and combines 
matching information from the different source ontologies. Finally, the results are 
retranslated into the terminology of the domain ontology and presented to the 
user. 

form to the same XML Schema (e.g. XML-RLT). Such XML files are 
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(2) Integration and reconciliation. In this step, the hitherto separated in-
formation from different documents is integrated. Integration includes (i) 
the linking of logically correlated information items and (ii) the detection 
of design errors. An example for (i) and (ii) would be the following: Con-
sider two data sets (originating from separate XML documents), where 
the first data set specifies the geometry of a vessel, and the second data 
set specifies the geometry of a pipe. As for (i), the tool would detect that 
the pipe is connected to a nozzle of the vessel, and thus establish a link 
between those two. As for (ii), the tool would then discover that internal 
diameters of pipe and nozzle are not identical; it would thus issue a warn-

– The Information Versioning Ontology119 contains the rules that are required 
for information extraction and preprocessing (step 1). These rules are do-
main-independent; they interact only with the source ontologies.  

– The Information Integration Ontology120 defines the rules for information 
integration and reconciliation (step 2). These rules are domain-specific. 
Their antecedents and consequents are formulated by means of vocabulary 
terms provided by the domain ontology. 

In step 1 (extraction and preprocessing), only the source ontologies and the Infor-
mation Versioning Ontology are involved. Here, the major issue is to resolve the 
versioning conflicts. For this task, the inference engine does not have to under-
stand the contents of the source ontologies in detail; it only needs to know the 
structures of the XML documents as well as the creation dates of their respective 
versions. 
However, in order to perform step 2 (integration and reconciliation), the inference 
engine needs to understand the contents of the source ontologies. To this end, the 
semantics of the information contained in the source ontologies must be formally 

                                                           
119 According to the classification framework introduced Sect. 2.6, the Information Versioning 
Ontology can be classified as a task ontology. 
120 Thus, the Information Integration Ontology can be classified as a domain-task ontology (cf. 
Sect. 2.6). 

include both current information as well as outdated and/or redundant in-
formation. The resulting versioning conflicts need to be resolved before 
integration. 

ing that the design is inconsistent.  

Information processing within the integration tool is controlled by rules (cf. Sect. 
2.3.6), which are executed by a built-in inference engine. Two sets of rules need to 
be distinguished, which are stored in two separate ontologies: 

specified. This is achieved by annotating the elements of the source ontologies 
with concepts from the global domain ontology. That way, the semantics of the in-
formation are made explicit, and the inference engine can now apply the rules of 
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the Information Integration Ontology on the source ontologies. A schematic over-
view of the integration tool is given in Fig. 12.6. 
Once information integration has been completed, one has obtained a consolidated 
comprehensive information base (CCIB) reflecting the current status of the design 
project. The CCIB can then be accessed via the GUI by any member of the project 
team who requires validated and up-to-date design information. Moreover, the 
project manager can extract key figures and performance indicators from the 
CCIB; exemplary key figures would be the accumulated equipment cost or the 
percentage of completed sub-tasks.  

Fig. 12.6: Schematic representation of the integration tool 

12.3.3 Implementation 

The formulation of rules requires a special ontology language: The deductive on-
tology language F-Logic (Kifer et al. 1995) has been chosen for this purpose. De-
duction is particularly useful for merging and consolidating distributed informa-
tion (Maier et al. 2003), and thus it was decided to employ a deductive language 
(and a compatible inference engine) for the software prototype. It allows not only 
the definition of rules for integration and mapping purposes, but also the formula-
tion of queries. Also, the inference mechanism of deduction is especially applica-
ble to partially automating the information integration process. Finally, the deduc-
tive ontology language is more intuitive and less error-prone than conventional 
database languages, especially in complex contexts with many relations between 
the data objects (Maier et al. 2003). 
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Moreover, all converters and the GUI are based on the Java programming lan-
guage, using Eclipse (Eclipse 2009) as development environment. 

12.3.4 Lessons Learned 

12.4 Some Measures of Improvement 

An implementation basis had to be chosen which fulfils the requirements for both 
technologies equally well. Accordingly, the development system OntoStudio (On-
toprise 2009), which has been developed by the project partner ontoprise, serves 
as the implementation basis. Unlike most of the ontology-based systems available 
today, OntoStudio comes with a built-in inference engine that is scalable for large 
data sets; it thus provides an appropriate implementation basis for the integration 
tool. Of course, the downside of using OntoStudio is that the relevant parts of On-
toCAPE had to be translated from OWL into F-Logic. Details about the imple-
mentation have been reported by Wiesner et al. (2008b). 

To date (as of 2009), the core of the implementation has been completed: The on-
tologies of the integration tool have been established and tested against small to 
medium-size quantities of real-world data. Moreover, a new interface has been 
implemented in OntoStudio, which allows the import/export of XML files (for de-

has fulfilled all requirements for industrial use. In the future, the software will be 
further tested with larger amounts of data and more complex integration tasks to 
prove the suitability of the tool as well as the (re)usability of OntoCAPE for appli-
cations in the chemical industry. 

This section presents some measures to compare OntoCAPE 1.0 und 2.0 on a 
quantitative basis, thus accounting for the improvement of the ontology in the 
course of the software projects described in this chapter. We discuss how the data 
can be interpreted with respect to a correct choice of the design principles intro-
duced in Chap. 10. Section 12.4.1 presents the statistical data, which are discussed 
in the subsequent Sect. 12.4.2 and 12.4.3 with respect to the design principles of 
coherence and conciseness. This attempt to quantitatively assess – at least to some 
extent – the degree of quality of an ontology with respect to usability and reusabil-
ity is inevitably incomplete and may be criticized for not meeting its objectives. 
Still, we argue that the following statistical data and subsequent interpretation 
provides a modest first step towards the highly desirable quantitative assessment 
of ontology improvement based on few key figures. 

tails on the implementation see Wiesner et al. 2008b). So far, the integration tool 
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12.4.1 Statistical Data 

In Fig. 12.7 some statistical data about OntoCAPE 1.0 and 2.0 are summarized, 
which have been provided by the Protégé ontology editor. Given are  

– the total number of classes as well as the subset of defined classes; 
– the number of relations;  
– the number of local constraints (cf. Chap. 2.3.4) as well as the subset of lo-

cal range restrictions. 

With respect to the number of local constraints, it should be noted that OntoCAPE 
      

constraints were redundant, such that the genuine number of constraints is 700 
only. 

1) Upper three layers including the Meta Model

368109# o. local range restrictions

210390# o. relations

1041700# o. local constraints

14036# o. defined classes

472576# o. classes

OntoCAPE 2.0 1)OntoCAPE 1.0

368109# o. local range restrictions

210390# o. relations

1041700# o. local constraints

14036# o. defined classes

472576# o. classes

OntoCAPE 2.0 1)OntoCAPE 1.0

 

Fig. 12.7: Statistical data of OntoCAPE  

Do also note that only the application-independent part of OntoCAPE 2.0 is con-
sidered here (i.e., the Meta Layer, the Upper Layer, and the Conceptual Layer). 
The application-dependent extensions are not considered since the different appli-
cations require disparate extensions and thus produce dissimilar statistical data. 
Due to the large differences in scope and conceptualization between OntoCAPE 
1.0 and 2.0, the absolute numbers listed in Fig. 12.7 are not directly comparable. 
More conclusive are the relative numbers presented in Fig. 12.8, which set the 
above numbers in relation to the total number of classes. Given are the class-to-
relation ratio, the local-constraint-to-class ratio, the local-range-restriction-to-
class ratio, and the defined-to-primitive-classes ratio. These relative numbers will 
be revisited and interpreted in the following sections. 

                                                           
121 During the development of OntoCAPE 1.0, the functionality for redundancy testing (cf. Sect. 
10.3) was not yet provided by the existing ontology editors. 

1.0 originally included 746. However, later testing121 revealed that 46 of these 
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Fig. 12.8: Key figures of OntoCAPE  

12.4.2 Improvement in Coherence 

There were a number of incoherencies – i.e., logical inconsistencies and modeling 
errors – in the formal specification of OntoCAPE 1.0, which have later been recti-
fied in OntoCAPE 2.0. Among those were the following: 

– Sanity tests performed with the Protégé ontology editor revealed 13 cases 
of relation property mismatches122. Consistency checking with the reasoner 
RacerPro furthermore discovered four inconsistent class definitions. These 
errors have been corrected in OntoCAPE 2.0 

– The modelers of OntoCAPE 1.0 were obviously not aware of the differ-
ences between a local and a global range restriction: The former is merely 
a constraint that produces an error if violated. The latter, by contrast, im-
plies that any target of the respective relation is automatically inferred to 
be a subclass of the declared range class (cf., e.g., Rector et al. 2004). In 
OntoCAPE 1.0, global range restrictions have often been utilized where 
local range restrictions would have been more appropriate. This has been 
corrected in OntoCAPE 2.0, as can be seen on the basis of the local-range-
restrictions-to-class ratio introduced above: Its value has increased from 
0.19 to 0.79. 

– Similar considerations apply to the usage of global domain restrictions. 
Their erroneous use may even lead to unintended semantics: For example, 
in OntoCAPE 1.0, the class problem statement has been declared as a global 
domain for the relation has_chemical_reaction – this wrongly implies that 
anything which has a chemical reaction is inferred to be a problem state-
ment. Such obvious modeling errors have been rectified in OntoCAPE 2.0. 

Besides the above deficiencies, the coherence of OntoCAPE 1.0 is also impaired 
by the incomplete axiomatization of its term definitions, which prevents proper 

                                                           
122 A relation property mismatch occurs if the properties of some subrelation do 
not match those of the superrelation. 
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testing for consistency (cf. Sect. 10.1). This, amongst others, includes the follow-
ing issues: 

– Hardly any siblings are declared to be mutually disjoint. 
– Similarly, the instances of a common class are not stated to be mutually 

distinct.  
– Very few relation properties (such as functionality or transitivity) are de-

clared. 
– The ontology contains only a small number of defined classes. 
– Last but not least, the term definitions are not properly “closed off” (cf. 

Sect. 10.1), thus not accounting for the open world assumption made by 
DL reasoners.  

Considering these findings, OntoCAPE 1.0 must be classified as a lightweight on-
tology. By contrast, OntoCAPE 2.0 is characterized by a much higher degree of 
axiomatization qualifying it as a heavyweight ontology. The progress made be-
tween the two versions is reflected by the statistical data presented in the previous 
section: 

– The value of the local-constraint-to-class-ratio has increased from 1.22 to 
2.21, which represents an improvement of 80%.  

– The local-range-restrictions-to-class ratio has considerably risen from 
0.19 to 0.78 (i.e., by a factor of 4). This increase reflects the progress made 
on the issue of closure axioms, as local range restrictions are one possible 
means for closing off a term definition (cf. Sect. 10.1).  

– Most notable is the raise of the defined-to-primitive-classes ratio from 0.07 
to 0.41, which constitutes an improvement by a factor of 6.  

As for the declaration of relation properties and disjointness axioms, their numbers 
have been significantly increased, as well. Unfortunately, these numbers are not 
measured by the Protégé ontology editor, such that the increase cannot be quanti-
fied. 

12.4.3 Improvement in Conciseness 

Advancing in conciseness – that is, simplifying the conceptualization without 
loosing expressiveness – has been a design priority for OntoCAPE 2.0. As already 
discussed in Sect. 10.2, the progress made on this issue cannot be quantified easi-
ly. However, the increase of the class-to-relation ratio may serve as an indicator 
for the improvement between the two versions: 
OntoCAPE 1.0 is characterized by a class-to-relation ratio of only 1.48. This ra-
ther low value signifies an unnecessary large number of relations, which principal-
ly arises from two different causes: 
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– Firstly, instead of systematically reusing existing relations, they are rede-
fined multiple times under different names in OntoCAPE 1.0. This is ex-
emplified by the conceptualization presented in Sect. 10.2, Fig. 10.1, 
where the relations hasPort and hasConnection are introduced instead of 
reusing the existing relation hasPart. This not only disagrees with the prin-
ciple of conciseness, but also makes it more difficult for the user to under-
stand and apply the ontology. 

– Secondly, OntoCAPE 1.0 frequently introduces specialized subrelations in 
order to represent semantics that should be represented through specialized 
classes, instead. A typical pattern of this type is presented in Fig. 12.9: In 
OntoCAPE 1.0, specialized system properties are usually represented 
through a specialization of the hasProperty relation referring to the general 
property class. By contrast, OntoCAPE 2.0 uses a specialization of the prop-
erty class, which is referred to via the general hasProperty relation. 

Fig. 12.9: Representation of specialized properties in OntoCAPE 1.0 and 2.0 

By improving on these two issues, OntoCAPE 2.0 has significantly cut down on 
the number of relations. This is reflected by a class-to-relation ratio of 2.25, 
which constitutes an advancement of 50%.  

12.5  References 

Abecker A, Bernardi A, Hinkelmann K, Kühn O, Sintek M (1998) Toward a tech-
nology for organizational memories. IEEE Intell. Syst. 13 (3):40–48. 

The pattern utilized in OntoCAPE 2.0 allows for a higher degree of axiomatiza-
tions as a class can be further defined through axioms while a relation cannot – for 
example, it could be defined what differentiates this particular property from 
another specialized property. Moreover, in our judgment, the 2.0 pattern is more 
intuitive and better captures the intended semantics.  
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13  Conclusions 

13.1 OntoCAPE in a Nutshell  

OntoCAPE is published in form of two complementary parts, a formal specifica-
tion and an informal specification. The formal specification is given by means of 
the modeling language OWL DL. Its current release consists of 62 OWL files 
comprising about 500 classes, 200 relations, and 40,000 individuals in total. The 
ontology terms are formally defined through a large number of axioms. Therefore, 
OntoCAPE can be characterized as a heavy-weight ontology. The informal speci-
fication of OntoCAPE comprises about 500 pages of natural language documenta-
tion. It serves the double purpose of (i) a user manual and (ii) a reference guide, in 
that it (i) explains the ontology and its handling to common users and (ii) supports 
applications developers in refining, extending, or changing the ontology to their 
particular needs. 
OntoCAPE is hierarchically structured by layers, which subdivide the ontology in-
to different levels of abstraction and thus separate general knowledge from know-
ledge about particular domains and even applications. The topmost Meta Layer, is 
the most abstract one. It holds the Meta Model, which guides ontology develop-
ment and enforces design consistency when changing or extending the ontology. 
Next, the Upper Layer of OntoCAPE defines key concepts such as system, physi-
cal quantity, or backdrop, and introduces the principles of general systems theory 
according to which the ontology is organized. On the subjacent Conceptual Layer, 
a conceptual model of the CAPE domain is established, which covers such dif-
ferent areas as unit operations, equipment and machinery, materials and their 

W. Marquardt et al., OntoCAPE, RWTHedition, DOI 10.1007/978-3-642-04655-1_13,  
© Springer-Verlag Berlin Heidelberg 2010 

OntoCAPE constitutes an ontology framework designed for multiple applications 
in the domain of computer-aided process engineering. It comprises a top-level on-
tology, a domain ontology, several application ontologies as well as a generic me-
ta-ontology that provides best-practice design patterns for various modeling prob-
lems. The individual sub-ontologies of OntoCAPE can be easily extended, 
customized, or integrated with other ontologies. 
OntoCAPE has the objectives of being both usable and reusable. These two objec-
tives are in a natural conflict: Usability implies specialization to match the re-
quirements of a particular task, whereas reusability requires generality in order to 
facilitate an application in different contexts. Consequently, it is difficult to simul-
taneously achieve a high degree of usability and reusability at the same time. A 
reasonable compromise can only be reached partially, and it requires considerable 
time and effort since the ontology needs to be iteratively redesigned and tested in 
different applications. Contrary to numerous pseudo ontologies, which are content 
to support only one single application, OntoCAPE nevertheless takes up the chal-
lenge to realize a reasonable trade-off between usability and reusability. 
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thermophysical properties, chemical process behavior, and mathematical modeling. 
The two bottommost layers refine the conceptual model by adding classes and 
relations required for the practical application of the ontology: The Application-
Oriented Layer generically extends the ontology towards certain application areas, 
whereas the Application-Specific Layer provides specialized classes and relations 
for concrete applications. 
Each layer is subdivided into a number of modules. The boundaries of a module 
are chosen such that the module can be designed, adapted, and reused indepen-
dently from the other parts of the ontology to the extent possible. Different va-
riants of an ontology module may evolve, allowing for the coexistence of alterna-
tive knowledge representations of the same or overlapping chunks of knowledge. 
Modules that address closely related topics are grouped into a common partial 
model. Unlike modules, partial models may be nested and may stretch across sev-
eral layers. Their boundaries reflect the “natural” categorization of the domain, 
thus providing a stable frame of orientation for the organization of the modules. 
Overall, the structuring of the ontology into layers, modules, and partial models 
follows two principal objectives, namely to facilitate the ontology’s extensibility 
and long-term maintenance, and to enable its customization and reuse in different 
application contexts. 
With regard to related work, OntoCAPE has incorporated certain aspects from en-
gineering ontologies of related domains. In the chemical engineering domain, On-
toCAPE is unique in the sense that it is currently the only (re)usable ontology 
available to support CAPE software development. 

13.2 Design Rationale 

Numerous recommendations for ontology design are given in the literature. They 
have been condensed to six major principles, which have guided the design of On-
toCAPE: coherence, conciseness, intelligibility, adaptability, minimal ontological 
commitment, and efficiency. It has been demonstrated how OntoCAPE has put 
these principles into practice and, in the course of this process, significantly 
gained in quality. Since some of the principles are incompatible, a suitable balance 
between the conflicting principles had to be found. The finally realized design is a 
reasonable compromise between the two major objectives of usability and reusa-
bility. 
However, it is difficult to quantify the degree of quality due to the absence of gen-
erally accepted key measures assessing an agreed set of quality indicators. Thus, 
we decided to compensate the lack of formal measures by putting OntoCAPE to 
the test in a number of prototypical software applications. Even if formal measures 
for quality indicators were available, the degree of (re)usability can be proven ul-
timately only in an inductive experience-based manner by testing OntoCAPE in a 
(preferably large) number of different software applications. 
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Correspondingly, OntoCAPE has been field-tested in a number of software 
projects covering the chemical process modeling and simulation as well as chemi-
cal process design. Through these tests, and through the iterated application of the 
ontology within these projects, the quality of OntoCAPE has been systematically 
improved. Nevertheless, we consider it highly desirable to investigate suitable 
formal measures and sound procedures for checking the quality of an ontology de-
sign during ontology development prior to its use in a software project. 

13.3 Ontology Evolution by a Continuous Improvement Process 

Compliance with the above design principles is hard to achieve in a top-down 
manner. One reason is the generality, and to some degree also the vagueness, of 
the design principles. There are only few clear-cut and well-understood rules and 
guidelines to implement these design principles in a given ontology design project 
on the concrete level. In other words, we are still lacking validated procedures for 
the translation of the general design principles into concrete design and modeling 
decisions both on the architectural as well as on the elementary level of concepts 
and axioms. A second reason is the inherent complexity of the ontology design 
task and the lack of measurable indicators to assess quality and the degree of re-
quirements fulfillment.  
Consequently, an ontology has to be continuously improved in a systematic 
process. Such a strategy is comparable to the well-known and successfully applied 
Kaizen principle, or continuous improvement process, in management (Imai 
1997). According to the Kaizen principle, reflection of the current business 
process constitutes the foundation for (i) the identification of suboptimal process 
chunks and (ii) the improvement of the business process by a series of incremental 
steps in an evolutionary manner, thus avoiding quantum leaps with an unpredicta-
ble outcome.  

Our research and development work followed such a continuous improvement ap-
proach. The field-testing of earlier versions of OntoCAPE revealed errors, incon-
sistencies and opportunities for improvement. The remediation of the discovered 
flaws eventually led to the creation of OntoCAPE 2.0. As of this version, the on-
tology passed all our tests. On the one hand, our ontology proved to be applicable 
in different contexts, which is an indicator of reusability. On the other hand, the 
effort required for adapting OntoCAPE to a concrete application turned out to be 
moderate, which proves the usability of the ontology. 

Like in business process engineering, we believe that a continuous improvement 
process is inevitable to achieve a good usability-reusability trade-off and thus an 
ontology of high quality. Reflection, as of Kaizen, is implemented in the context 
of ontology engineering by extensive field-testing of the ontology in a (preferably 
large) number of different software applications. These field tests reveal the im-
provement potential which is then gradually and continuously realized.  
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13.4 From Product to Process 

Design processes in the chemical process industries, like those in many other 
businesses, are of a cooperative nature and involve different departments in one or 
more enterprises, typically at geographically distributed sites. They use and pro-
duce a vast amount of information organized in a multitude of documents with 
many interdependencies and overlaps stored in very different electronic formats. 
These documents are often called the products of the work process. 

So far, OntoCAPE has not yet been tested in a real-world industrial application, 
but only in software prototypes and against academic usage scenarios. To close 
this gap, OntoCAPE is currently being put to the test in a software tool for the in-
tegration and consolidation of engineering information, which is used and pro-
duced by an interdisciplinary design team working in different organizational units 
during different tasks of the design lifecycle of a chemical plant. This software 
tool is developed in cooperation with partners from the chemical and the software 
industries. Extensive testing by industrial practitioners will establish whether the 
ontology complies with the requirements of industrial practice. The project is still 
in progress, but judging from our preliminary results, the ontology seems to fulfill 
all the requirements for industrial use. Such field-testing in an industrial context is 
just another and obviously essential phase of a continuous improvement process.  
Yet another phase of ontology evolution requires the application and testing of the 
ontology by people with diverse disciplinary backgrounds and in other types of 
software projects, preferably in fields of application not considered so far. With 
respect to the latter, the areas of e-procurement and e-learning are particularly 
promising since they require well-structured knowledge representations, which are 
consensual not only across disciplinary, but in particular across institutional boun-
daries. 
The history of OntoCAPE exemplarily shows that ontologies are dynamic infor-
mation systems, which evolve and change according to the prevailing experience, 
context and requirements. Ontology evolution is unavoidable. Therefore, it is ex-
pected to continue in the future, in particular due to the following drivers: On the 
one hand, the expected advancement of ontology languages – in combination with 
improved algorithms resulting in reasoners with high performance for large-scale 
ontologies – will enable the use of more rules of more complex nature as well as 
the use of advanced DL constructs in the formal specification, thus allowing to 
further increase the level of axiomatization. On the other hand, the ontology is ex-
pected to change in scope and conceptualization in order to adopt new insights in-
to ontology design, to extend the coverage of domain knowledge and to facilitate 
an increasing number and type of applications. 
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Various software tools are used to support a project team. Some of them are of a 
domain-specific nature (i.e., chemical process simulators, CAD or CAE systems, 
etc.), others are of generic type and thus independent of the requirements of chem-
ical engineering (i.e., word processors, project management systems, etc.). An ef-
ficient support of chemical process design processes requires adequate IT support 
across the lifecycle of the project. Existing software tools for dedicated tasks in 
the project lifecycle have to be enhanced and linked to evolve into a coherent de-
sign support system, which not only offers user-interface, data, and control inte-
gration, but also integrates the distributed, collaborative, and concurrent design 
process carried out by interdisciplinary teams in different organizations.  
To date, no satisfactory solution is available in industry. Therefore, an enormous 
potential exists to increase productivity of design teams, or, to put it more precise-
ly, to reduce cost and to improve quality at the same time. Leveraging such poten-
tial constitutes a tremendous economical opportunity in particular for enterprises 
in high wage countries such as Europe, Japan, the US, and Canada.  

As a first attempt towards the capturing and representation of work processes in 
chemical process design a graphical notation, C3 (Killich et al. 1999; Eggersmann 

Industrial work processes are complex and consequently difficult to plan, docu-
ment, improve, and reuse. A fundamental understanding of these work processes 
is considered to be a prerequisite for their reengineering and for the development 
of effective support systems based on information technology. To date, the focus 
of semantic technologies has been mainly on the representation, integration, and 
retrieval of information about the results of work processes – sometimes called 
products – such as the specification of a chemical plant by means of documents 
like flow sheets and equipment lists in case of design processes. In fact, many 
tasks in a design process require an integrated view on work processes and their 
products. Examples include the monitoring of the progress in a concrete design 
project, the detection of inconsistencies in the design data, or even the uncovering 
of incomplete design tasks. Such an integration of product and process representa-
tion is crucial if we aim at software tools that reach beyond traditional data, con-
trol, and user interface integration, but provide additional functionality to support 
the design process more effectively. 
Considerable research activity has been devoted to the modeling of work 
processes and to the design of supporting software systems, in particular in soft-
ware engineering (e.g. Jacobson et al. 2003; ISO 12207 2008), business process 
(re-)engineering (e.g. Davenport 1993; Hammer and Champy 1993) and to a lesser 
extent in the different engineering sciences (e.g., Hubert and Houten 1999; Ullman 
2002). Ontologies have also been used for the formal representation of and for the 
reasoning on work processes even in an engineering context (cf. Kitamura et al. 
2006; Batres et al. 2000; Fuchino et al. 2005; Eggersmann et al. 2003b). A com-
prehensive review of this literature is obviously beyond the scope of this conclud-
ing chapter. However, we want to point to the research on ontologies for work 
process modeling in our group in this area, because the available and still evolving 
results will be integrated with OntoCAPE in the future.  
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et al. 2008), has been developed in the IMPROVE project (Nagl and Marquardt 
2008). C3 allows a coarse-grained representation of work processes including the 
various actions (i.e., the steps of a complex work process), the actors (i.e., humans 
or software) and their roles in the work process, the information used and pro-
duced during the actions, and the resources required (i.e., software tools, lab 
equipment, etc.). The deliberately simple syntax and semantics of the notation 
support the participative modeling of collaborative work processes, i.e., C3 mod-
els can be created by people involved in a particular work process with little or 
even without any assistance of modeling experts. An iterative procedure for the 
creation of C3 models and the application of these models to improve industrial 
work processes has been established based on best-practices. An overview on the 
modeling procedure and its application to a number of industrial case studies has 
been presented by Theißen et al. (2008b; 2008c).  
While the C3 notation is very useful for participative work process modeling, it 
lacks detail and the degree of formality which is required for an integrated repre-
sentation of processes and products, in particular in the context of information sys-
tem design and construction. Therefore, the development of formal work process 
models using semantic modeling and ontological technologies has been identified 
as a logical next step. Some first results are reported by Eggersmann et al. (2008) 
and Theißen and Marquardt (2008), who present an ontology for work processes 
extending and refining C3 and an ontology for design decisions, respectively. 

13.5 Semantic Technologies in Engineering – Dream or Reality?  

Our research on the use of semantic technologies in chemical engineering has 
clearly revealed the enormous potential of ontology-based information modeling 
and of the reasoning capabilities of current semantic software technologies. A 
properly chosen architecture of the ontology empowers the chemical engineer to 
extend and modify the ontology by means of high-level modeling tools without 
the assistance of ontology experts. The direct access to the domain knowledge 

In an ongoing research project (Theißen et al. 2008a; Hai et al. 2009), we aim at 
an extension of OntoCAPE to also provide capabilities for work process modeling. 
To this end, two steps are required. First, a work process ontology is developed, 
which does not only address the particular needs of design processes, but rather 
covers work processes in more general terms. This work process ontology can be 
integrated into the Upper Layer of OntoCAPE in the future. The second step is the 
refinement of the work process ontology on the Conceptual and Applications Lay-
ers of OntoCAPE to account for the characteristics of different types of work 
processes. The extension of OntoCAPE towards the representation of work 
processes of different types, including not only process design but also product 
design and operational processes, is a further benchmark test for the reusability of 
the core concepts and architecture of the ontology. 
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facilitates maintenance and extension of the information model and the knowledge-
bases. The reasoning capabilities of semantic tools facilitate the checking of the 
logical consistency of the information model and the implemented knowledge. We 
have not only validated the concepts on academic “toy” problems, but have also 
implemented prototypical software systems to demonstrate advanced design sup-
port functionality in an academic environment. We are furthermore validating the 
methodology – OntoCAPE and the underlying semantic technologies – in ongoing 
industrial projects.  

is the key issue for the former. The most important bottleneck at the moment is the 
lack of applications, which demonstrate the capabilities of semantic technologies 
and their advantages compared to the more established software technologies that 
are nowadays used for the design and construction of industrial-strength informa-
tion systems. In addition, there is a lack of detailed application models, which can 
be used for a variety of tasks during the lifecycle of a design project or even of the 
plant itself.  
Due to the immense workload required to come up with useful and comprehensive 
ontologies for chemical engineering applications, it is highly desirable that aca-

There are, however, also some drawbacks. In particular, the development of an ex-
tensible and widely usable ontology is by no means straightforward. Though we 
believe that OntoCAPE constitutes a very good foundation for a generic and wide-
ly usable ontology for chemical engineering applications, we still see a lot of room 
for improvement and for the extension of the ontology. In fact, we believe that an 
ontology is never ready for use. It cannot be complete since it is impossible to 
cover all the concepts in a given domain in a comprehensive manner. Even it 
would be complete in this sense, it would not be readily usable, because there will 
always be the need for adaptations and refinements to match the requirements of 
an envisioned application. In our opinion, this can be compared to libraries of ma-
thematical models provided by all state-of-the-art simulation tools: These libraries 
provide simulation models for many standard devices. The available models can 
be further specialized and parameterized by a user at very little effort. Often, new 
models have to be created, either by deriving them from similar models available 
in the library or by developing them from scratch. Such a library extension may 
serve the purpose of extending the coverage of a certain domain in the library or 
of tailoring the simulation models towards the requirements of a certain model-
based application. Such a library extension can be conveniently achieved only if 
the library is built on a sound theoretical basis.  
Since OntoCAPE is primarily based on the concepts of systems engineering, we 
believe that its application is not restricted to the domain of chemical engineering, 
but it is applicable to other engineering domains, as well. Particularly the generic 
parts with their emphasis on reusability are conceptualized in a way to support 
various engineering domains.  
Furthermore, the semantic technologies, in particular the ontology editors and rea-
soning tools, are still under development. Performance is an issue for the latter, 
while usability by application-domain rather than knowledge-engineering experts 
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demics and industry join forces in order to develop, maintain, and gradually ex-
tend a process engineering ontology for process engineering. The open-source on-
tology OntoCAPE is definitely an excellent starting point for such an undertaking.  
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