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Preface

Discrete-time signal processing has appeared to be one of the major momenta
to the advances of science and engineering over the past several decades be-
cause of the rapid progress of digital and mixed-signal integrated circuits in
processing speed, functionality, and cost effectiveness. In many science and
engineering applications, the signals of interest are distorted by an unknown
physical system (channel) and only a set of discrete-time measurements with
system (channel) induced distortion is available. Because both the source sig-
nals and measurements are basically random in nature, discrete-time statisti-
cal signal processing has played a central role in extracting the source signals
of interest and estimating the system characteristics since the 1980s. When the
system is known or can be accurately estimated at extra cost, estimation of
the source signals via a statistical optimum filter (such as the Wiener filter)
is usually straightforward. A typical example is that in digital communica-
tions; training or pilot signals are often contained regularly or periodically
in transmitted signals to facilitate channel estimation at the receiving end
at the expense of bandwidth. Other than digital communications, such an
arrangement usually cannot apply to other fields such as seismic exploration,
speech analysis, ultrasonic nondestructive evaluation, texture image analysis
and classification, etc. These therefore necessitate exploration of blind equal-
ization and system identification, which have been challenging research areas
for a long time and continue to be so.

Thus far, there have been developed a great many blind equalization
and system identification algorithms, from one-dimensional (1-D) to two-
dimensional (2-D) signals, and from single-input single-output (SISO) to
multiple-input multiple-output (MIMO) systems. Some of them are closely
related but with different perspectives, and may share certain common prop-
erties and characteristics proven from their performance analysis. We have
studied the two problems for more than ten years and felt that a unified treat-
ment of blind equalization and system identification for 1-D and 2-D (real or
complex) signals as well as those for SISO and MIMO (real or complex) sys-
tems, from theory, performance analysis, simulation, to implementation and
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applications, is instrumental in building up sufficient background and learning
state-of-the-art works. This book is devoted to such a unified treatment. It
is designed as a textbook of graduate-level courses in Discrete-time Random
Processes, Statistical Signal Processing, and Blind Equalization and System
Identification. It is also suitable for researchers and practicing professionals
who are working in the areas of digital communications, statistical signal
processing, source separation, speech processing, image processing, seismic
exploration, sonar, radar, and so on.

This book comprises eight chapters. Chapter 1 provides an overview of
blind equalization and system identification. Chapters 2 and 3 review some
requisite background mathematics and statistical signal processing for ease of
grasping the material presented in the following chapters. The reader who is
familiar with the background may skip these two chapters. Chapter 4 intro-
duces the (1-D) SISO blind equalization algorithms as well as some of their
applications, while Chapters 5 and 6 concentrate on the (1-D) MIMO case
and Chapters 7 and 8 on the 2-D (SISO) case. Chapter 4 is thought of as a
prerequisite for ease of understanding Chapters 5 through 8, while Chapters 5
and 6 can be read independently of Chapters 7 and 8, and vice versa. We have
tried our best to make the treatment uniform to all the eight chapters. Some
homework problems and computer assignments are included at the end of each
chapter (Chapters 2 through 8) so that one can fully understand the material
of each chapter through these exercises. The solution manual of homework
problems can be obtained by contacting the publisher.

We would like to thank Yu-Hang Lin for his assistance in portraying many
figures in Chapters 2 through 4 and his endeavors to optimize the book editing
as well as drawings, and Chun-Hsien Peng for providing some computer code
for use in some of simulation examples. We also thank Dr Wing-Kin Ma for
his valuable comments and suggestions, and Tsung-Han Chan and some of
the graduate students of the first author for their proofreading of this book.
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Introduction

Equalization or deconvolution is essentially a signal processing procedure to
restore a set of source signals which were distorted by an unknown linear (or
nonlinear) system, whereas system identification is a signal processing pro-
cedure to identify and estimate the unknown linear (or nonlinear) system.
The two problems arise in a variety of engineering and science areas such
as digital communications, speech signal processing, image signal processing,
biomedical signal processing, seismic exploration, ultrasonic nondestructive
evaluation, underwater acoustics, radio astronomy, sonar, radar, and so on.
As the source signals are known a priori, the design of system identifica-
tion algorithms will be straightforward and effective. Certainly, the design of
equalization algorithms will also be straightforward and effective when the
system is completely known in advance. When both the source signals and
the system are unknown, the equalization and system identification problems
are far from trivial. Obviously, the two problems are closely related to each
other, and therefore similar design philosophies may frequently apply to the
design of both equalization algorithms and system identification algorithms.
This book will provide an in-depth introduction to the design, analyses, and
applications of equalization algorithms and system identification algorithms
with only a given set of discrete-time measurements.

Problems and Approaches

Signals of interest, denoted as u[n] (a K ×1 vector), may not be measured by
a set of M sensors directly, but measurements (or data), denoted as y[n] (an
M × 1 vector), may be related to u[n] by

y[n] =

∞∑
k=−∞

H[k]u[n − k] + w[n] =

∞∑
k=−∞

H[n − k]u[k] + w[n] (1.1)

as shown in Fig. 1.1, where H[n] (an M × K matrix) is called the signal
distorting system, and w[n] (an M × 1 vector) is the sensor noise plus other
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unknown effects of the physical system. For instance, u[n] includes K users’
symbol sequences and H[n] stands for the channel impulse response matrix
in wireless communications that basically accounts for multiple access inter-
ference and intersymbol interference. The K-input M -output model above
is also referred to as a multiple-input multiple-output (MIMO) convolutional
model or an MIMO linear time-invariant (LTI) system, including special cases
of a single-input multiple-output (SIMO) system for K = 1 and M > 1 and
a single-input single-output (SISO) system for M = K = 1. Two interesting
cases about the MIMO system H[n] are as follows.

• As H[n] = 0 for all n �= 0 (i.e. an instantaneous or memoryless MIMO sys-
tem), measurements y[n] are actually a mixture of multiple sources u[n].
Extracting u[n] from measurements y[n] for this case is the widely known
source separation problem or independent component analysis problem as
all the source signals are independent, which can be found in such appli-
cations as telecommunications, speech and acoustic signal processing, and
biomedical pattern analysis.

• For a two-dimensional (2-D) SISO system, the independent variable n in
measurements y[n] that usually represents the time index, must be replaced
by a 1 × 2 row vector (n1, n2) that represents the spatial index in general.
The corresponding system is referred to as a linear shift-invariant (LSI)
system and has also been popularly used for modeling textures in image
processing.

The equalization problem is to find an optimum K×M equalizer or decon-
volution filter V[n] such that the equalizer outputs (also called the equalized
signals or deconvolved signals)

û[n] =
∞∑

k=−∞
V[k]y[n − k] (1.2)

approximate u[n] well. Approaches to equalization algorithm design can be
divided into two categories. One is the direct approach for which the opti-
mum equalizer is directly obtained by using the data and all the available
prior information without involving estimation of the system H[n]. The other
approach, the indirect approach, generally consists of the following steps: (i)
estimation, if needed, of the system H[n] by means of system identification
algorithms, (ii) estimation, if needed, of other related parameters such as au-
tocorrelations of the data, and (iii) design of an equalizer with the estimated
system and parameters for the retrieval of the source signals. Similarly, ap-
proaches to system identification can also be divided into direct and indirect
approaches, except that equalization is performed prior to system estimation
for the indirect approach.

For the direct approach, the equalizer coefficients are obtained by means
of equalization algorithms, which can be divided into the following three types
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Fig. 1.1 Data model of interest

according to the available amount of training or pilot signals (terms used in
communications).

• Nonblind equalization algorithms. This type of algorithm designs the so-
called nonblind equalizer by fully exploiting prior information about the
system and/or the available training or pilot signals. For example, in digital
communications, the prior information about the source signals is commonly
provided via training or pilot sequences sent from the transmitting end at
the expense of system resources (e.g. bandwidth).

• Blind equalization algorithms. This type of algorithm designs the so-called
blind equalizer with only the data. Training or pilot sequences are therefore
not provided for communication systems, giving the benefit of resource sav-
ings. The equalizer is usually obtained according to some statistical criteria
of the data.

• Semi-blind equalization algorithms. This type of algorithm designs the so-
called semi-blind equalizer as a weighted mixture of the designs of the non-
blind equalization and blind equalization when the amount of training or
pilot source signals is not sufficient for obtaining a non-blind equalizer with
acceptable performance.

Though non-blind equalizers have been widely used in digital communica-
tions, training or pilot signals are usually not available in other science and
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engineering areas. On the other hand, the designed algorithm can be either a
batch processing algorithm that basically processes a batch of data at a time,
or an adaptive algorithm that basically processes one data sample or a small
block of data at a time. The trade-off between them is that the performance of
the former (preferable in most applications other than communications) def-
initely is and can be much superior to the latter, while the latter (especially
preferable in digital communications) is more capable of tracking the system
(channel) when the system (channel) is slowly time varying. Surely, once the
batch processing algorithm is obtained, its adaptive processing counterpart
can also be obtained with some performance loss. This book therefore will
provide only a unified treatment of batch processing algorithms based on the
preceding MIMO signal model, but the adaptive counterparts for slowly time-
varying systems as well as those for nonlinear systems will not be covered in
this book.

Blind equalization, at first thought, seems to be unreachable because both
the source signals u[n] and the system H[n] are unknown. Moreover, some po-
tential ambiguities exist. For instance, measurements y[n] are invariant to the
pair (H[n]U,U−1u[n]) for any nonsingular K×K matrix U. This implies that
there must be some assumptions about the source signals u[n], such as tem-
porally correlated or independent and spatially independent, and Gaussian
or nonGaussian sources, and some conditions about the system H[n], such as
full rank, M ≥ K, a certain parametric form, and nonnegativity for all the
coefficients of the system. These are essential in designing the physical system
for data measuring or sensing so that the unknown source signals u[n] can
be extracted uniquely to some degree from measurements y[n]. Definitely, the
more the source features and system characteristics are taken into account,
the more accurate the extracted source signals in general. In fact, a great
many algorithms have been successful in blind equalization by exploitation of
the properties of the source signals such as their statistical properties, con-
stellation properties, etc. Representatives exploiting the statistical properties
include maximum-likelihood (ML) algorithms, second-order statistics (SOS)
based algorithms, higher-order (≥ 3) statistics (HOS) based algorithms, and
second-order cyclostationary statistics (SOCS) based algorithms. The ML al-
gorithms derive the blind equalizer according to a presumed probability den-
sity function of the data, while the SOS, HOS and SOCS based algorithms
design the blind equalizer using the SOS, HOS and SOCS of the data, re-
spectively, as the names indicate. Among these algorithms, this book will
deal with only the SOS and HOS blind equalization algorithms, with par-
ticular emphasis on an SOS based equalization algorithm, namely the linear
prediction approach, and two HOS based equalization algorithms, namely the
maximum normalized cumulant (MNC) equalization algorithm and the super-
exponential (SE) equalization algorithm.

As for blind system identification, a parametric model for the system of in-
terest is usually used in the design of system identification algorithms because
estimation of the system therefore becomes a parameter estimation problem
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that often leads to mathematically tractable solutions with predictable perfor-
mance. Widely used parametric models include the well-known autoregressive
(AR) model, the moving-average (MA) model and the autoregressive moving-
average (ARMA) model. Nevertheless, the stability issue is always a concern
in system estimation and equalization. Recently, a Fourier series based model
(FSBM), which is a parametric frequency-domain model ensuring stability for
any LTI system, has also been proposed for use in statistical signal process-
ing including blind equalization and system identification. The model for the
equalizer or deconvolution filter considered in this book is either an MA model
or an FSBM model so that the stability issue is avoided.

Historical Perspective

Linear prediction was specifically utilized for engineering applications by Nor-
bert Wiener in the 1940s [1–3]. Since then the linear prediction approach has
been widely used in spectrum analysis, blind deconvolution, blind system iden-
tification, and so forth. Because SOS (autocorrelations or power spectra) of
the data are blind to the phase of the unknown system, it cannot be ap-
plied to equalization of nonminimum-phase systems. On the other hand, since
the mid-1980s, the problem of SISO blind equalization and system identifica-
tion has been tackled using HOS owing to the fact that HOS (cumulants or
polyspectra) contain not only system magnitude information, but also system
phase information.

Regarding HOS based approaches, the inverse filter criteria for equaliza-
tion algorithm are due to Wiggins [4] and Donoho [5] for the real case, and
due to Ulrych and Walker [6] and Shalvi and Weinstein [7] for the complex
case. The application of the inverse filter criteria to deconvolution was orig-
inally for seismic exploration, in which the associated criterion was termed
the minimum entropy deconvolution criterion based on the visual appearance
of the deconvolved signal. However, to reflect the physical meaning of the in-
verse filter criteria, they are collectively renamed the MNC criterion in this
book and are introduced in a unified manner including fundamental theory,
performance analyses, and implementation.

The SE equalization algorithm under the SISO framework was proposed
by Shalvi and Weinstein [8] in the 1990s with application to baud-spaced
equalization in digital communications. Other blind equalization and system
identification algorithms such as polyspectra based algorithms, constant mod-
ulus (CM) algorithm, etc., have been reported in detail in [9–15] and references
therein.

In 1991, Tong, Xu and Kailath [16] proposed the blind identifiability and
equalizability of SIMO LTI systems using only the SOS of system outputs.
Their work led to a number of SOS based SIMO blind system estimation and
equalization algorithms such as the subspace and least-squares (LS) estima-
tion approaches reported in [17–21]. Unfortunately, these approaches cannot
be extended to the MIMO case as the system inputs are temporally white.
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Instead, under the assumption that system inputs are temporally colored with
different power spectra, the identifiability of an MIMO FIR system using SOS
of the system outputs has been proven by Hua and Tugnait [22]; meanwhile,
some SOS based blind system identification and equalization methods have
been reported [23–27].

On the other hand, blind equalization of SIMO systems using HOS was
first investigated by Treichler and Larimore [28] as an extension of the CM
algorithm. Further extensions of the CM algorithm to a general MIMO case
were then reported in [29, 30]. In the meantime, the inverse filter criteria
using third-order and fourth-order cumulants were first extended to the MIMO
case by Tugnait [31] and then generalized by Chi and Chen [32] using all
higher-order cumulants; the SE algorithm was first extended to the MIMO
case by Martone [33] assuming that all the system inputs have the same
cumulant, which was then generalized with the assumption relaxed by Yeung
and Yau [34] and Inouye and Tanabe [35].

Two-dimensional blind deconvolution and system identification have been
intensive research topics and therefore a lot of work has been reported since
1980, such as the 2-D linear prediction approach [36–38], LS solution based
methods [39–41], and ML methods [40,42,43]. Kashyap et al. [39–41] estimate
2-D AR parameters by the LS solution of a set of linear equations formed from
autocorrelations (SOS) of the data. Assuming that the data are Gaussian, ML
estimators have been used to estimate AR parameters [40, 42] and ARMA
parameters [43]. In light of the fact that SOS are blind to the system phase,
only the magnitude information of 2-D LSI systems can be extracted by the
above SOS based approaches.

The drawback (blind to the system phase) inherent in SOS has motivated
the research of HOS based 2-D blind equalization and system identification
algorithms over the last decade. Estimation of AR parameters by the LS
solution of a set of linear equations formed from higher-order cumulants of
the data have been reported [44,45]. Hall and Giannakis [46] proposed two 2-D
inverse filter criteria for estimating AR parameters. As the AR parameters are
obtained, the MA parameters are estimated either by a closed-form solution
[45, 46] or by cumulant matching [46] using cumulants of the residual signal
obtained by removing the AR part from the data. Other methods for jointly
estimating AR and MA parameters are also reported, such as an inverse filter
criteria based method [47] and a polyspectral matching method [48]. The
estimated AR parameters have been used for texture synthesis [46–48] and
classification [46]. Recently, Chen et al. [49] identified the 2-D system through
estimation of the amplitude and phase parameters of 2-D FSBM and then the
estimated amplitude parameters were used for texture image classification.

Both blind equalization and system identification have continued to be
active research areas, and their rapid advances can be verified by new theory,
analysis, computational complexity reduction, efficient real-time implementa-
tion, and more successful applications. Whatever is covered, this book cannot
be comprehensive but merely provides the reader with a unified introduc-
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tion to the concepts, philosophies and performance analyses of some blind
equalization and system identification algorithms that we believe are essen-
tial, effective and efficient so that the reader can save a lot of time learning
the necessary background and can proceed to the advanced research and de-
velopment in these areas.

Book Organization

This book is organized as follows. Chapter 2 briefly reviews some mathemat-
ical background needed in this book, including linear algebra, mathematical
analysis, optimization theory, and the well-known LS method. Through this
review, most notation to be used in the subsequent chapters is introduced.
In addition to the application to blind equalization and system identifica-
tion, optimization theory, which is developed in terms of the complex-valued
framework, is also applicable in other areas.

Chapter 3 deals with several fundamental topics of statistical signal
processing, including discrete-time signals and systems, random variables, ran-
dom processes, and estimation theory.

Chapter 4 introduces some widely used SISO blind equalization algo-
rithms, including the linear prediction approach, the MNC equalization al-
gorithm and the SE equalization algorithm, along with their analyses and
improvements. In algorithm improvements, a hybrid framework of MNC and
SE equalization algorithms, referred to as the hybrid MNC equalization algo-
rithm, is thought of as one of the best blind equalization algorithms based on
performance, convergence speed and computational load. This chapter also
includes some simulation examples for testing these algorithms, as well as the
application of these algorithms to seismic exploration, speech signal process-
ing and baud-spaced equalization in digital communications. The material
in this chapter covers almost all the essential concepts and design philoso-
phies of blind equalization or deconvolution algorithms in terms of the SISO
framework, and thus continues to be the foundation of blind equalization and
system identification for both the MIMO and 2-D cases.

Chapter 5 introduces some widely used MIMO blind equalization algo-
rithms based on either SOS or HOS of MIMO system outputs. A subspace
approach and a linear prediction approach using SOS are introduced for the
SIMO case, and a matrix pencil method is introduced for the MIMO case.
For HOS based approaches, the MNC and SE equalization algorithms are in-
troduced for an MIMO system with temporally independently and identically
distributed inputs followed by their properties and relations, which lead to
an improved MNC equalization algorithm, namely the MIMO hybrid MNC
equalization algorithm. By making use of the MIMO hybrid MNC equaliza-
tion algorithm and a greatest common divisor (GCD) computation algorithm,
an equalization-GCD equalization algorithm is introduced for an MIMO sys-
tem with temporally colored inputs. All the SIMO and MIMO blind equal-
ization algorithms introduced are tested through simulation for performance
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evaluation and comparison, and verification of their analytical properties and
relations.

Chapter 6 introduces some applications of the MIMO hybrid MNC equal-
ization algorithm in the areas of signal processing and digital communications.
In particular, for the SIMO case it introduces straightforward applications of
fractionally spaced equalization and blind maximum ratio combining, as well
as advanced applications in blind system identification (BSI) and multiple
time delay estimation. On the other hand, applications of the MIMO hybrid
MNC equalization algorithm for the MIMO case include blind beamforming
for source separation and multiuser detection in wireless communications. In
each of the applications introduced, a discrete-time SIMO or MIMO system
model must be established prior to use of the MIMO hybrid MNC equalization
algorithm, in addition to certain constraints, structures, and considerations
on the system or the equalizer.

Chapter 7 begins with a review of 2-D deterministic signals, systems and
linear random processes (random fields), and then provides an introduction to
some 2-D deconvolution algorithms that, we believe, are effective in such ap-
plications as image restoration, image model identification, texture synthesis,
texture image classification, and so forth. The 2-D deconvolution algorithms
introduced include the 2-D linear prediction approach, 2-D MNC and SE de-
convolution algorithms, and 2-D hybrid MNC deconvolution algorithm. Some
simulation results are also provided to demonstrate the performance of these
2-D deconvolution algorithms.

Chapter 8 introduces a 2-D BSI algorithm, which is an iterative fast Fourier
transform based nonparametric algorithm using the 2-D hybrid MNC decon-
volution algorithm. Application of this 2-D BSI algorithm to texture synthesis
is also introduced. This chapter also introduces a 2-D FSBM based parametric
BSI algorithm that includes an amplitude estimator using SOS and two phase
estimators using HOS, with application to texture image classification.
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2

Mathematical Background

In this chapter, we briefly review some mathematical background needed in
this book, including linear algebra, mathematical analysis, and optimization
theory. Through this review, most notation to be used in subsequent chapters
is introduced. We then present the well-known least-squares method as an
application of linear algebra and optimization theory.

2.1 Linear Algebra

We start with a review of vectors, vector spaces and matrices, and then intro-
duce two powerful tools for matrix decomposition, namely eigendecomposition
and singular value decomposition. The usefulness of matrix decomposition will
become evident in the remaining parts of this book.

2.1.1 Vectors and Vector Spaces

Vectors

In this book, vectors are denoted by bold lowercase letters. For example, we
denote an N × 1 vector

x =

⎛⎜⎜⎜⎜⎜⎝
x1

x2

...

xN

⎞⎟⎟⎟⎟⎟⎠ = (x1, x2, ..., xN )T

where xn is a real or complex scalar representing the nth entry (component)
of x and the superscript ‘T ’ represents vector transposition. The complex-
conjugate transposition, or Hermitian, of x is given by
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xH = (xT )∗ = (x∗
1, x

∗
2, ..., x

∗
N )

where the superscript ‘H’ denotes the Hermitian operator and the superscript
‘∗’ complex conjugation.

Let x = (x1, x2, ..., xN )T and y = (y1, y2, ..., yN )T be two N × 1 vectors.
The inner product of x and y is defined as

〈x,y〉 =

N∑
n=1

xny∗
n = yHx, (2.1)

which is also referred to as the Euclidean inner product of x and y. The length,
or norm, of the vector x is defined as

‖x‖ =

(
N∑

n=1

|xn|2
)1/2

=
√

xHx, (2.2)

which is also referred to as the Euclidean norm of x. Other types of norms will
be defined later and, for convenience, we will always use the definition (2.2)
for the norm of x unless specified otherwise. A vector whose norm equals unity
is called a unit vector. Furthermore, the geometrical relationship between two
vectors x and y is given as follows: [1, p. 15]

cosφ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|〈x,y〉|
‖x‖ · ‖y‖ =

|yHx|
‖x‖ · ‖y‖, 0 ≤ φ ≤ π/2 (complex)

〈x,y〉
‖x‖ · ‖y‖ =

yT x

‖x‖ · ‖y‖, 0 ≤ φ ≤ π (real)

(2.3)

where φ is the angle between x and y. As depicted in Fig. 2.1, the relationship
can be interpreted by viewing the inner product 〈x,y/‖y‖〉 as the projection
of x onto the unit vector y/‖y‖. With the geometrical interpretation, x and
y are said to be orthogonal if xHy = yHx = 0. Furthermore, if x and y are
orthogonal and have the unit norm, then they are said to be orthonormal.

The geometrical relationship given by (2.3) is closely related to the follow-
ing Cauchy–Schwartz inequality or Schwartz inequality.1

Theorem 2.1 (Cauchy–Schwartz Inequality). Let x = (x1, x2, ..., xN )T

and y = (y1, y2, ..., yN)T be real or complex nonzero vectors. Then

|yHx| ≤ ‖x‖ · ‖y‖ (2.4)

and the equality holds if and only if x = αy where α �= 0 is an arbitrary real
or complex scalar.

The Cauchy–Schwartz inequality further leads to the following inequality:

1 The Russians also refer to the Cauchy–Schwartz inequality as the Cauchy–
Schwartz–Buniakowsky inequality [2].
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Fig. 2.1 The geometrical relationship between two vectors x and y

Theorem 2.2 (Triangle Inequality). Let x = (x1, x2, ..., xN )T and y =
(y1, y2, ..., yN )T be real or complex nonzero vectors. Then

‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.5)

The proofs of the two theorems are left as exercises (Problems 2.1 and 2.2).

Vector Spaces

A vector space is a non-empty set of elements along with several rules for the
operations of addition and scalar multiplication of elements. The elements
can be vectors, sequences, functions, etc., and are also referred to as vectors
without confusion. Let V denote a vector space and the vectors (elements) in
V be also denoted by bold lowercase letters. Then for each pair of vectors x
and y in V there is a unique vector x+y in V (the operation of addition) and
for each scalar α there is a unique vector αx in V (the operation of scalar mul-
tiplication). Furthermore, the operations of addition and scalar multiplication
must satisfy the following axioms [3–5].

(VS1) For all x, y ∈ V , x + y = y + x.
(VS2) For all x, y, z ∈ V , (x + y) + z = x + (y + z).
(VS3) For all x ∈ V , there exists a zero vector 0 ∈ V such that x + 0 = x.
(VS4) For each x ∈ V , there exists a vector y ∈ V such that x + y = 0.
(VS5) For all x, y ∈ V and for every scalar α, α(x + y) = αx + αy.
(VS6) For all x ∈ V and for all scalars α and β, (α + β)x = αx + βx.
(VS7) For all x ∈ V and for all scalars α and β, (αβ)x = α(βx).
(VS8) For all x ∈ V , there exists a scalar 1 such that 1 · x = x.

A subset of a vector space V , denoted by W , is called a subspace of V if W itself
is a vector space under the operations of addition and scalar multiplication
defined on V . An example is as follows.



16 2 Mathematical Background

Example 2.3
Under the operations of componentwise addition and scalar multiplication,
the set of all real vectors x = (x1, x2, ..., xN )T (whose entries are real) forms
a real vector space, commonly denoted by RN . In addition, the set of all real
x whose nth entry is zero (i.e. xn = 0) is an example of a subspace of RN .

�

A vector space V is called an inner product space if it has a legitimate
inner product 〈x,y〉 defined for all x, y ∈ V . Note that an inner product is
said to be legitimate if it satisfies the following axioms [3, 5].

(IPS1) For all x, y ∈ V and for every scalar α, 〈αx,y〉 = α〈x,y〉.
(IPS2) For all x, y, z ∈ V , 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
(IPS3) For all x ∈ V , 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0.
(IPS4) For all x, y ∈ V , 〈x,y〉 = (〈y,x〉)∗.
Similarly, a vector space V is called a normed vector space if it has a legitimate
norm ‖x‖ defined for all x ∈ V . A norm is said to be legitimate if it satisfies
the following axioms [3, 5].

(NVS1) For all x ∈ V and for every scalar α, ‖αx‖ = |α| · ‖x‖.
(NVS2) For all x, y ∈ V , ‖x + y‖ ≤ ‖x‖ + ‖y‖.
(NVS3) For all x ∈ V , ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

It is important to note [5, pp. 14–15] that a legitimate inner product for a
vector space V always induces a legitimate norm for V via the relation

‖x‖ =
√
〈x,x〉 for all x ∈ V.

Such a norm is referred to as an induced norm. An example is as follows.

Example 2.4 (Euclidean Space)
It can be easily shown that for the real vector space RN (see Example 2.3),
the Euclidean inner product defined as (2.1) is legitimate and induces the
Euclidean norm defined as (2.2). Accordingly, RN along with the Euclidean
inner product is an inner product space, while RN along with the Euclidean
norm is a normed vector space. The former is known as the Euclidean space [4].

�

Let q1, q2, ..., qN be the vectors in a vector space V . Then they are said
to span the subspace W if W consists of all linear combinations of q1, q2, ...,
qN . Specifically, every vector w in W can be expressed as

w = α1q1 + α2q2 + · · · + αNqN

where αk are scalars. For vectors q1, q2, ..., qN in V , one can determine their
linear interdependence via the following equation:

c1q1 + c2q2 + · · · + cNqN = 0
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where ck are scalars and 0 is a zero vector defined by (VS3). If this equation
holds true only when c1 = c2 = · · · = cN = 0, then q1, q2, ..., qN are said
to be linearly independent; otherwise, they are linearly dependent. If q1, q2,
..., qN are linearly independent and span the vector space V , they are called
a basis for V . A vector space V is said to be finite-dimensional if the number
of linearly independent vectors in its basis is finite; otherwise, it is said to be
infinite-dimensional.

A set S in an inner product space V is called an orthogonal set if every pair
of vectors qk, qm ∈ S is orthogonal, i.e. 〈qk,qm〉 = 0 for k �= m. Furthermore,
if every vector qk ∈ S has the unit norm, i.e. ‖qk‖ = 1, then the orthogonal
set S is said to be orthonormal. In other words, an orthonormal set does not
contain the zero vector 0. A basis for an inner product space V is said to be
an orthonormal basis if it is an orthonormal set. For example, the set

{η1 = (1, 0, 0, ..., 0)T , η2 = (0, 1, 0, ..., 0)T , ..., ηN = (0, 0, ..., 0, 1)T} (2.6)

is an orthonormal basis, referred to as the standard basis, for the Euclidean
space RN (see Example 2.4) where ηk denotes a unit vector whose kth entry
equals unity and the remaining entries equal zero. Note that any basis can
be transformed into an orthonormal basis via the process of Gram–Schmidt
orthogonalization [1–3, 5].

2.1.2 Matrices

In this book, matrices are denoted by bold uppercase letters. For example,

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aM1 aM2 · · · aMK

⎞⎟⎟⎟⎟⎟⎠ (2.7)

denotes an M × K matrix whose (m, k)th entry (component) is amk, a real
or complex scalar. We also use the shorthand representation

[A]m,k = amk

to specify the matrix A. The transposition of A is

[AT ]m,k = [A]k,m = akm (2.8)

and (AT )T = A where the superscript ‘T ’ stands for matrix transposition.
The complex-conjugate transposition, or Hermitian, of A is

[AH ]m,k = [A∗]k,m = a∗
km (2.9)
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and (AH)H = A where the superscript ‘H’ stands for the Hermitian operation.
The matrix A is said to be square if M = K. It is further said to be symmetric
if AT = A for A real, and Hermitian if AH = A for A complex. Note
that AH = AT as A is real. For matrices A and B, (AB)T = BTAT ,
(AB)H = BHAH , (A + B)T = AT + BT , and (A + B)H = AH + BH .

Let us further represent the M × K matrix A given in (2.7) by

A = (a1,a2, ...,aK) =

⎛⎜⎜⎜⎜⎜⎝
bT

1

bT
2

...

bT
M

⎞⎟⎟⎟⎟⎟⎠
where ak = (a1k, a2k, ..., aMk)T , k = 1, 2, ..., K, are called the column vectors
of A and bT

m = (am1, am2, ..., amK), m = 1, 2, ..., M , the row vectors of A.
The subspace spanned by the column vectors is called the column space of
A, while the subspace spanned by the row vectors is called the row space of
A. The number of linearly independent column vectors of A is equal to the
number of linearly independent row vectors of A, that is defined as the rank
of A, denoted by rank{A}. Note that rank{A} = rank{AH} ≤ min{M, K}
and rank{AHA} = rank{AAH} = rank{A}. When rank{A} = min{M, K},
the matrix A is said to be of full rank; otherwise, it is rank deficient.

The inverse of an M×M square matrix A is also an M×M square matrix,
denoted by A−1, which satisfies

AA−1 = A−1A = I (2.10)

where

I =

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ (2.11)

is the M × M identity matrix. If A is of full rank, then A−1 exists and A is
said to be invertible or nonsingular. On the other hand, if A is rank deficient,
then it does not have an inverse and is accordingly said to be noninvertible or
singular. For nonsingular matrices A and B, (AT )−1 = (A−1)T , (AH)−1 =
(A−1)H , and (AB)−1 = B−1A−1.

Consider an M×M square matrix A with [A]m,k = amk. The determinant
of A is commonly denoted by det{A} or |A|. For M = 1, the matrix A reduces
to a scalar a11 and its determinant is defined as det{a11} = a11. For M ≥ 2,
the determinant det{A} can be defined in terms of the determinants of the
associated (M − 1) × (M − 1) matrices as follows:
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det{A} =

M∑
m=1

(−1)m+k · amk · det{Amk} for any k ∈ {1, 2.., M}

=
M∑

k=1

(−1)m+k · amk · det{Amk} for any m ∈ {1, 2.., M} (2.12)

where Amk is an (M − 1)× (M − 1) matrix obtained by deleting the mth row
and kth column of A. For example, if M = 2, det{A} is given by

det

{(
a11 a12

a21 a22

)}
= (−1)1+1 · a11 · det{a22} + (−1)2+1 · a21 · det{a12}

= a11a22 − a21a12.

Note that det{AT } = det{A}, det{AH} = [det{A}]∗, and det{αA} =
αM · det{A} for a scalar α. For square matrices A and B, det{AB} =
det{A}det{B}. If A is nonsingular, then det{A} �= 0 and det{A−1} =
1/det{A}. On the other hand, the trace of A, denoted by tr{A}, is defined as

tr{A} =

M∑
m=1

amm, (2.13)

i.e. the sum of the diagonal elements of A. As M = 1, the matrix A reduces
to a scalar a11 and its trace tr{a11} = a11. If A is an M × K matrix and B
is a K × M matrix, then tr{AB} = tr{BA}. As a special case, for column
vectors x and y, the trace tr{xyH} = tr{yHx} = yHx.

Let A be an M × M Hermitian matrix and x be an M × 1 vector, then
the quadratic function

Q(x) � xHAx (2.14)

is called the Hermitian form of A. The Hermitian matrix A is said to be
positive semidefinite or nonnegative definite if Q(x) ≥ 0 for all x �= 0, and is
said to be positive definite if Q(x) > 0 for all x �= 0. In the same fashion, A
is negative semidefinite or nonpositive definite if Q(x) ≤ 0 for all x �= 0, and
negative definite if Q(x) < 0 for all x �= 0.

An eigenvector of an M ×M square matrix A is an M ×1 nonzero vector,
denoted by q, which satisfies

Aq = λq (2.15)

where λ is a scalar.2 The scalar λ is an eigenvalue of A corresponding to
the eigenvector q. One can see from (2.15) that for any nonzero constant α,

2 More precisely, the vector q is a right eigenvector of A if Aq = λq, and a left
eigenvector of A if qHA = λqH . In this book, “eigenvector” implies “right eigen-
vector” [6].
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A(αq) = λ(αq). This implies that any scaled version of q is also an eigen-
vector of A corresponding to the same eigenvalue λ. Eigenvectors which are
orthogonal (i.e. qH

mqn = 0 for eigenvectors qm and qn) and have the unit
norm are referred to as orthonormal eigenvectors.

Special Forms of Matrices

A complex square matrix U is called a unitary matrix if it satisfies

UUH = UHU = I, (2.16)

i.e. UH = U−1 and |det{U}| = 1. Similarly, a real square matrix V is called
an orthogonal matrix if it satisfies

VVT = VTV = I, (2.17)

i.e. VT = V−1 and det{V} = 1. Obviously, the identity matrix I is an or-
thogonal matrix.

A diagonal matrix is an M × M square matrix defined as

D = diag{d1, d2, ..., dM} =

⎛⎜⎜⎜⎜⎜⎝
d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dM

⎞⎟⎟⎟⎟⎟⎠ . (2.18)

If the diagonal matrix D is nonsingular, i.e. det{D} = d1d2 · · · dM �= 0, then
its inverse

D−1 = diag

{
1

d1
,

1

d2
, ...,

1

dM

}
. (2.19)

An upper triangular matrix is an M × M square matrix defined as

U =

⎛⎜⎜⎜⎜⎜⎝
u11 u12 · · · u1M

0 u22 · · · u2M

...
...

. . .
...

0 0 · · · uMM

⎞⎟⎟⎟⎟⎟⎠ , (2.20)

and a lower triangular matrix defined as

L =

⎛⎜⎜⎜⎜⎜⎝
l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

lM1 lM2 · · · lMM

⎞⎟⎟⎟⎟⎟⎠ . (2.21)
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From (2.12), it follows that det{U} = u11u22 · · ·uMM and det{L} = l11l22
· · · lMM .

A Toeplitz matrix is an M × M square matrix defined as

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0 r1 · · · rM−2 rM−1

r−1 r0
. . . rM−2

...
. . .

. . .
. . .

...

r−M+2
. . . r0 r1

r−M+1 r−M+2 · · · r−1 r0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.22)

i.e. the entries on each of the diagonals are equal. Note that a Toeplitz matrix
can be completely specified by its first column and first row.

A matrix A is called a 2 × 2 partitioned matrix if it can be expressed as

A =

(
A11 A12

A21 A22

)
(2.23)

where A11, A12, A21, and A22 are the submatrices of A. Manipulations of
the submatrices for partitioned matrices are similar to those of the entries for
general matrices. In particular, the Hermitian of A can be written as

AH =

(
AH

11 AH
21

AH
12 AH

22

)
. (2.24)

Furthermore, if B is also a 2 × 2 partitioned matrix given by

B =

(
B11 B12

B21 B22

)
,

then

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
(2.25)

where B11, B12, B21, and B22 are the submatrices with suitable sizes for the
submatrix multiplications in AB.

Matrix Formulas and Properties

The following theorem provides a useful formula for the derivation of matrix
inverse [7, 8].
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Theorem 2.5 (Matrix Inversion Lemma). Let R be a nonsingular M×M
matrix given by

R = A + BCD (2.26)

where A is a nonsingular M × M matrix, B is an M × K matrix, C is a
nonsingular K × K matrix, and D is a K × M matrix. Then the inverse of
R can be expressed as

R−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (2.27)

A special case of the matrix inversion lemma is given as follows [7].3

Corollary 2.6 (Woodbury’s Identity). Let R be a nonsingular M × M
matrix given by

R = A + αuuH (2.28)

where A is a nonsingular M × M matrix, u is an M × 1 vector, and α is a
scalar. Then the inverse of R can be expressed as

R−1 = A−1 − αA−1uuHA−1

1 + αuHA−1u
. (2.29)

The proof of Theorem 2.5 is left as an exercise (Problem 2.3), while Corollary
2.6 can be proved simply by substituting B = u, C = α and D = uH into
(2.27).

Moreover, two theorems regarding partitioned matrices are stated as fol-
lows [7, p. 572], [9, pp. 166–168], and the proofs are left as exercises (Problems
2.4 and 2.5).

Theorem 2.7. Let A be a square matrix given as the partitioned form of
(2.23). Then the determinant of A can be expressed as

det{A} = det{A11} · det{A22 − A21A
−1
11 A12} (2.30)

provided that A11 is a nonsingular square matrix, or equivalently

det{A} = det{A22} · det{A11 − A12A
−1
22 A21} (2.31)

provided that A22 is a nonsingular square matrix.

Theorem 2.8. Let A be a nonsingular square matrix given as the partitioned
form of (2.23) where A11 and A22 are also nonsingular square matrices. Then
the inverse of A can be expressed as

3 For ease of later use, we give a slightly generalized statement of Woodbury’s
identity by including a scalar α. As α = 1, it reduces to the normal statement of
Woodbury’s identity.
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A−1 =

(
B11 B12

B21 B22

)
(2.32)

where

B11 = (A11 − A12A
−1
22 A21)

−1

B12 = −(A11 − A12A
−1
22 A21)

−1A12A
−1
22

B21 = −(A22 − A21A
−1
11 A12)

−1A21A
−1
11

B22 = (A22 − A21A
−1
11 A12)

−1.

In the following, we summarize several matrix properties and leave the
proofs as exercises (Problems 2.6, 2.7 and 2.8).

Property 2.9. A positive definite matrix is nonsingular.

Property 2.10. The eigenvalues of a Hermitian matrix are all real.

Property 2.11. The eigenvalues of a positive definite (positive semidefinite)
matrix are all real positive (nonnegative).

Property 2.12. The inverse of a positive definite matrix is also positive def-
inite.

Property 2.13. For any matrix A, both AHA and AAH are positive semi-
definite.

Property 2.14. The eigenvectors of a Hermitian matrix corresponding to
distinct eigenvalues are orthogonal.

Although Property 2.14 is for the case of distinct eigenvalues, one can always
find a complete set of orthogonal eigenvectors, or equivalently, orthonormal
eigenvectors for any Hermitian matrix, no matter whether its eigenvalues are
distinct or not [2, p. 297].

As a consequence, if A is a positive definite matrix, then its inverse A−1

exists (by Property 2.9) and is also positive definite (by Property 2.12). Fur-
thermore, the eigenvalues of both matrices A and A−1 are all real positive
(by Property 2.11).

2.1.3 Matrix Decomposition

Among the available tools of matrix decomposition, two representatives, eigen-
decomposition and singular value decomposition (SVD), to be presented are
of importance in the area of statistical signal processing. In particular, the
eigendecomposition is useful in developing subspace based algorithms, while
the SVD is powerful in solving least-squares problems as well as in determin-
ing the numerical rank of a real or complex matrix in the presence of roundoff
errors (due to finite precision of computing machines).
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Eigendecomposition

According to the foregoing discussion (the paragraph following Property 2.14),
we can always find a complete set of M orthonormal eigenvectors for an M×M
Hermitian matrix A. As such, let u1, u2, ..., uM be the M orthonormal
eigenvectors of A corresponding to the eigenvalues λ1, λ2, ..., λM . Then, by
definition,

A(u1,u2, ...,uM ) = (λ1u1, λ2u2, ..., λMuM )

or

AU = UΛ (2.33)

where Λ = diag{λ1, λ2, ..., λM} is an M × M diagonal matrix and U = (u1,
u2, ..., uM ) is an M ×M unitary matrix since u1, u2, ..., uM are orthonormal.
From (2.33), it follows that

A = UΛUH =

M∑
m=1

λmumuH
m. (2.34)

Equation (2.34) is called the eigendecomposition or the spectral decomposition
of A. Moreover, when A is nonsingular, (2.34) leads to

A−1 = U−HΛ−1U−1 = UΛ−1UH =

M∑
m=1

1

λm
umuH

m. (2.35)

Singular Value Decomposition

The SVD is stated in the following theorem and, for clarity, is illustrated in
Fig. 2.2. The theorem is called the SVD theorem, or the Autonne–Eckart–
Young theorem in recognition of the originators [10].4

Theorem 2.15 (SVD Theorem). Let A be an M ×K real or complex ma-
trix with rank{A} = r. Then there exist an M × M unitary matrix

U = (u1,u2, ...,uM ) (2.36)

and a K × K unitary matrix

V = (v1,v2, ...,vK) (2.37)

such that the matrix A can be decomposed as

4 The SVD was established for real square matrices by Beltrami and Jordan in
the 1870s, for complex square matrices by Autonne in 1902, and for general
rectangular matrices by Eckart and Young in 1939 [10].
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A = UΣVH =
r∑

m=1

λmumvH
m (2.38)

where ui are M × 1 vectors, vi are K × 1 vectors, and

Σ =

(
Λ 0

0 0

)
(2.39)

is an M ×K matrix. The matrix Λ = diag{λ1, λ2, ..., λr} is an r× r diagonal
matrix where λi are real and λ1 ≥ λ2 ≥ · · · ≥ λr > 0.
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Fig. 2.2 Illustration of the SVD for an M × K matrix A with M > K > r =
rank{A} where Λ = diag{λ1, λ2, ..., λr}

As shown in Appendix 2A, the SVD theorem can be proved by either of the
two approaches, Approach I and Approach II, where Approach I starts from
the matrix AHA and Approach II from the matrix AAH . Some important
results regarding both approaches are summarized as follows.

• Results from Approach I. The nonnegative real numbers λ1, λ2, ..., λK are
identical to the positive square roots of the eigenvalues of the K×K matrix
AHA and the column vectors v1, v2, ..., vK of V are the corresponding
orthonormal eigenvectors. The positive real numbers λ1, λ2, ..., λr, together
with λr+1 = · · · = λK = 0 (since rank{A} = r), are called the singular
values of A, while the vectors v1, v2, ..., vK are called the right singular
vectors of A. With λm and vm computed from AHA, the column vectors
u1, u2, ..., ur in U are accordingly determined via (see (2.204))

(u1,u2, ...,ur) =

(
Av1

λ1
,
Av2

λ2
, ...,

Avr

λr

)
, (2.40)

while the remaining column vectors ur+1, ur+2, ..., uM (allowing some
choices) are chosen such that U is unitary. The vectors u1, u2, ..., uM are
called the left singular vectors of A.
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• Results from Approach II. The singular values λ1, λ2, ..., λM of A are
identical to the positive square roots of the eigenvalues of the M×M matrix
AAH and the left singular vectors u1, u2, ..., uM are the corresponding
orthonormal eigenvectors. With λm and um computed from AAH , the right
singular vectors v1, v2, ..., vr are accordingly determined via (see (2.213))

(v1,v2, ...,vr) =

(
AHu1

λ1
,
AHu2

λ2
, ...,

AHur

λr

)
, (2.41)

while the remaining right singular vectors vr+1,vr+2, ...,vK are chosen such
that V is unitary.

As a result, a matrix may have numerous forms of SVD [11, p. 309]. Moreover,
following the above-mentioned results, one can compute (by hand) the SVD
of an M ×K matrix A through the eigenvalues and orthonormal eigenvectors
of AHA or AAH , although it is generally not suggested for finite-precision
computation [10]. It is also important to note that the number of nonzero
singular values determines the rank of A, revealing that the SVD provides a
basis for practically determining the numerical rank of a matrix.

A special case of the SVD theorem is as follows.

Corollary 2.16 (Special Case of the SVD Theorem). Let A be an M ×
M Hermitian matrix with rank{A} = r and A is nonnegative definite. Then
the matrix A can be decomposed as

A = UΣUH =

r∑
m=1

λmumuH
m (2.42)

where Σ = diag{λ1, ..., λr, λr+1, ..., λM} is an M × M diagonal matrix and
U = (u1,u2, ...,uM ) is an M × M unitary matrix. The singular values λ1 ≥
· · · ≥ λr > λr+1 = · · · = λM = 0 are the eigenvalues of A and the singular
vectors u1, u2, ..., uM are the corresponding orthonormal eigenvectors.

The proof is left as an exercise (Problem 2.10). Comparing (2.42) with (2.34)
reveals that for a Hermitian matrix A, the SVD of A is equivalent to the
eigendecomposition of A.

2.2 Mathematical Analysis

This section briefly reviews the fundamentals of mathematical analysis, includ-
ing sequences, series, Hilbert spaces, vector spaces of sequences and functions,
and pays attention to the topic of Fourier series. Some of these topics need
the background of functions, provided in Appendix 2B.
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2.2.1 Sequences

A sequence is regarded as a list of real or complex numbers in a definite order:

am, am+1, ..., an−1, an

where ak, k = m, m + 1, ..., n, are called the terms of the sequence. The
sequence is denoted by {ak}n

k=m or, briefly, {ak}. One should not confuse a
sequence {ak}n

k=m with a set {ak, k = m, m + 1, ..., n}; the order of ak is
meaningless for the latter. Moreover, a sequence {ak} is said to be an infinite
sequence if it has infinitely many terms. A natural concern about a one-sided
infinite sequence, {ak}∞k=1, is whether it converges or not, that is the topic to
be dealt with next.

Sequences of Numbers

A real or complex sequence {ak}∞k=1 is said to converge to a real or complex
number a if

lim
k→∞

ak = a, (2.43)

i.e. for every real number ε > 0 there exists an integer N such that

|ak − a| < ε for all k ≥ N (2.44)

where N is, in general, dependent on ε. If {ak} does not converge, it is called
a divergent sequence [12]. A sequence {ak} is said to be bounded if |ak| ≤ A
for all k where A is a positive constant. A real sequence {ak}∞k=1 is said to
be increasing (decreasing) or, briefly, monotonic if ak ≤ ak+1 (ak ≥ ak+1) for
all k, and is said to be strictly increasing (strictly decreasing) if ak < ak+1

(ak > ak+1) for all k. A theorem regarding monotonic sequences is as follows
[13, p. 61].

Theorem 2.17. If {ak}∞k=1 is a monotonic and bounded real sequence, then
{ak}∞k=1 converges.

The proof is left as an exercise (Problem 2.11).
From a sequence {ak}∞k=1, one can obtain another sequence, denoted by

{σn}∞n=1, composed of the arithmetic mean

σn =
a1 + a2 + · · · + an

n
. (2.45)

The arithmetic mean σn is also referred to as the nth Cesàro mean of the
sequence {an} [14]. A related theorem is stated as follows [15, p. 138].

Theorem 2.18. If a real or complex sequence {ak}∞k=1 is bounded and con-
verges to a real or complex number a, then the sequence of arithmetic mean
{σn}∞n=1 also converges to the number a where σn is defined as (2.45).
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The proof, again, is left as an exercise (Problem 2.12). When the sequence of
arithmetic means {σn} converges to a, we say that the original sequence {ak}
is Cesàro summable to a. Since the average operation in (2.45) may smooth
out occasional fluctuations in {ak}, it is expected that {σn}, in general, tends
to converge even if {ak} is divergent. An example is given as follows.

Example 2.19
Consider that ak = (−1)k. The sequence {ak}∞k=1 is bounded by 1, but it
diverges since ak = 1 for k even and ak = −1 for k odd. On the other hand,
the arithmetic mean σn = 0 for n even and σn = −1/n for n odd. This
indicates that limn→∞ σn = 0, namely, {ak} is Cesàro summable to zero.

�

Sequences of Functions

Now consider a sequence of real or complex functions, {ak(x)}∞k=1. Since ak(x)
is a function of x, the convergence of {ak(x)}∞k=1 may further depend on the
value of x.

The sequence {ak(x)}∞k=1 is said to converge pointwise to a real or complex
function a(x) on an interval [xL, xU] if

lim
k→∞

ak(x) = a(x) for every point x ∈ [xL, xU], (2.46)

i.e. for every real number ε > 0 and every point x ∈ [xL, xU] there exists an
integer N such that

|ak(x) − a(x)| < ε for all k ≥ N (2.47)

where N may depend on ε and x. When the integer N is independent of x,
{ak(x)}∞k=1 is said to converge uniformly to a(x) on the interval [xL, xU]. In
other words, a uniformly convergent sequence {ak(x)} exhibits similar local
behaviors of convergence for all x ∈ [xL, xU], as illustrated in Fig. 2.3.

Lx Ux
x

( )a x

( )a x ε−

( )a x ε+

( )ka x

Fig. 2.3 A uniformly convergent sequence {ak(x)}∞k=1 on an interval [xL, xU]
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It is important to emphasize that even if every ak(x) is a continuous func-
tion, a pointwise convergent sequence {ak(x)}∞k=1 may still converge to a dis-
continuous function a(x). The following example demonstrates this fact [13, p.
320], [16, p. 171].

Example 2.20
As shown in Fig. 2.4, the sequence {xk}∞k=1 converges pointwise to the function
a(x) on [0, 1] where

a(x) =

{
0, 0 ≤ x < 1,

1, x = 1.

That is, a(x) has a discontinuity at x = 1, although every function xk is
continuous on [0, 1].

�

x

( )a x

kx

2x

x

0 1

Fig. 2.4 Pointwise convergence of the sequence {xk}∞k=1 to a discontinuous func-
tion a(x) on [0, 1]

Unlike pointwise convergence, uniform convergence ensures continuity, as
the following theorem states [16, p. 174].

Theorem 2.21. If the sequence {ak(x)}∞k=1 converges uniformly to a function
a(x) on an interval [xL, xU] where every ak(x) is continuous on [xL, xU], then
the function a(x) must be continuous on [xL, xU].

We leave the proof as an exercise (Problem 2.13). Theorem 2.21 implies that
if every ak(x) is continuous but a(x) is discontinuous, then it is not possible
for the sequence {ak(x)} to converge uniformly to a(x).
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Example 2.22
Consider, again, the pointwise convergent sequence {xk}∞k=1 in Example 2.20.
According to Theorem 2.21, it is clear that {xk}∞k=1 is not uniformly conver-
gent on [0, 1] since a(x) has a discontinuity at x = 1.

�

2.2.2 Series

Closely related to a real or complex sequence {ak}n
k=m, a series is defined as∑n

k=m ak. The series
∑∞

k=1 ak is called a one-sided infinite sequence with the
nth partial sum defined as

sn =

n∑
k=1

ak, (2.48)

while the series
∑∞

k=−∞ ak is called a two-sided infinite sequence with the nth
partial sum defined as

sn =
n∑

k=−n

ak. (2.49)

Without loss of generality, we will only deal with the convergence of one-sided
infinite series for brevity.

Series of Numbers

A series
∑∞

k=1 ak is said to be convergent if the sequence of its partial sums,
{sn}∞n=1, converges to

s �

∞∑
k=1

ak, (2.50)

i.e. limn→∞ sn = s where s is called the sum or value of the series. From
(2.48) and (2.50), it follows that if

∑∞
k=1 ak is convergent, then the following

condition always holds:

lim
n→∞ an = lim

n→∞(sn − sn−1) = s − s = 0. (2.51)

Moreover, a series
∑∞

k=1 ak is said to be absolutely convergent if the series∑∞
k=1 |ak| is convergent.
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Tests for Divergence and Convergence

In using a series
∑∞

k=1 ak, it is important to know whether
∑∞

k=1 ak converges
or diverges. The condition given by (2.51) suggests a test as follows.

Theorem 2.23 (Divergence Test). Suppose
∑∞

k=1 ak is a real or complex
series to be tested. If the condition given by (2.51) is not satisfied, then the
series

∑∞
k=1 ak is divergent.

Since the condition given by (2.51) is only necessary, but not sufficient, for
convergence, it cannot be used for convergence testing. An example using the
divergence test is as follows.

Example 2.24 (Geometric Series)
The partial sum of the geometric series

∑∞
k=1 αrk can be expressed as

sn =

n∑
k=1

αrk = αr
1 − rn

1 − r
.

If |r| < 1, then the geometric series converges with

lim
n→∞ sn =

αr

1 − r
.

On the other hand, if |r| ≥ 1, then limn→∞ αrn �= 0 which does not satisfy
the condition given by (2.51), and thus the geometric series diverges.

�

The following test is useful for testing the convergence of a real series.

Theorem 2.25 (Integral Test). Suppose
∑∞

k=1 ak is a real series to be
tested where ak ≥ 0 for all k. Find a continuous, positive, and decreasing
function f(x) on [1,∞) such that f(k) = ak.

• If
∫∞
1 f(x)dx is finite, then the series

∑∞
k=1 ak is convergent.

• If
∫∞
1

f(x)dx is infinite, then the series
∑∞

k=1 ak is divergent.

The proof is left as an exercise (Problem 2.14). An example using the integral
test is as follows.

Example 2.26
To test the convergence of the real series

∑∞
k=1 1/k2, let f(x) = 1/x2. It is clear

that f(x) is continuous, positive, and decreasing on [1,∞) and f(k) = 1/k2.
By the integral test,

∫∞
1

f(x)dx = 1 implies that
∑∞

k=1 1/k2 converges.
�
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Series of Functions

Now consider a series
∑∞

k=1 ak(x) whose nth partial sum is given by

sn(x) =

n∑
k=1

ak(x) (2.52)

where ak(x) is a real or complex function of a real independent variable x. The
series

∑∞
k=1 ak(x) is said to converge pointwise to a real or complex function

s(x) if the sequence of its partial sums, {sn(x)}∞n=1, converges pointwise to
s(x), and is said to converge uniformly to s(x) if the sequence {sn(x)}∞n=1

converges uniformly to s(x).
According to the above-mentioned definitions, the convergence theory for

sequences of functions can similarly apply to series of functions. In partic-
ular, uniform convergence of series also implies pointwise convergence of se-
ries, but the converse may not be true. Moreover, a pointwise convergent se-
ries

∑∞
k=1 ak(x) may converge to a discontinuous function s(x), even if every

function ak(x) is continuous. And the following theorem directly follows from
Theorem 2.21.

Theorem 2.27. If the series
∑∞

k=1 ak(x) converges uniformly to a function
s(x) on an interval [xL, xU] where every ak(x) is continuous on [xL, xU], then
the function s(x) is also continuous on [xL, xU].

As a remark, let us emphasize that there is no connection between uniform
convergence and absolute convergence [4, p. 765].

Test for Uniform Convergence

The following test is most commonly used for testing the uniform convergence
of series.

Theorem 2.28 (Weierstrass M-Test). Suppose
∑∞

k=1 ak(x) is a real or
complex series to be tested on an interval [xL, xU]. If there exists a convergent
series

∑∞
k=1 Mk such that each term Mk ≥ |ak(x)| for all x ∈ [xL, xU], then

the series
∑∞

k=1 ak(x) is uniformly and absolutely convergent on [xL, xU].

Since the proof is lengthy and can be found, for instance, in [13], it is omitted
here. An example using the Weierstrass M-test is provided as follows.

Example 2.29
Suppose

∑∞
k=1 ejkx/k2 is the series to be tested on [−π, π). Because

∣∣ejkx/k2
∣∣ ≤

1/k2 for all x ∈ [−π, π) and
∑∞

k=1 1/k2 converges (see Example 2.26), by the
Weierstrass M-test, the series

∑∞
k=1 ejkx/k2 is uniformly and absolutely con-

vergent on [−π, π).
�
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2.2.3 Hilbert Spaces, Sequence Spaces and Function Spaces

Hilbert Spaces

Consider a sequence of real or complex vectors, denoted by {an}∞n=1, in a
normed vector space V . The sequence {an}∞n=1 is said to converge in the norm
or, briefly, converge to a real or complex vector a ∈ V if

lim
n→∞ ‖a− an‖ = 0. (2.53)

Convergence in the norm is also often referred to as convergence in the mean.
A sequence {an}∞n=1 in V is called a Cauchy sequence if for every real number
ε > 0 there exists an integer N such that

‖an − am‖ < ε for all n > m ≥ N. (2.54)

Regarding Cauchy sequences, we have the following related theorem, whose
proof is left as an exercise (Problem 2.15).

Theorem 2.30. Every convergent sequence in a norm vector space V is a
Cauchy sequence.

The converse of Theorem 2.30, however, may be true for some norm vector
spaces. If every Cauchy sequence in a norm vector space V converges to a
vector in V , then the normed vector space V is said to be complete. A complete
normed vector space is also referred to as a Banach space [17].

Definition 2.31 (Hilbert Space). A vector space V along with a legitimate
norm and a legitimate inner product is said to be a Hilbert space if the normed
vector space (i.e. V along with the legitimate norm) is complete and the inner
product can induce the norm.

As an example, the vector space RN (see Example 2.3) along with the
Euclidean norm and the Euclidean inner product is an N -dimensional Hilbert
space [5,14,18], which we also refer to as the N -dimensional Euclidean space
RN for convenience.

Sequence Spaces

Consider a real or complex sequence {an}∞n=1 which is bounded and satisfies( ∞∑
n=1

|an|p
)1/p

< ∞, for 1 ≤ p < ∞. (2.55)

Let V be the set composed of all such sequences. Then, under the operations
of componentwise addition and scalar multiplication of sequences, the set V
can easily be shown to be a vector space (satisfying the axioms (VS1) through
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(VS8)). The vector space V is a sequence space, commonly referred to as the
	p space or, briefly, 	p [5, 13, 17, 18].

For notational simplicity, let a = (a1, a2, ..., an, ...)T denote a vector cor-
responding to {an}∞n=1 ∈ 	p. The inner product of sequences {an}∞n=1 and
{bn}∞n=1 ∈ 	p is defined as

〈a,b〉 =

∞∑
n=1

anb∗n, (2.56)

while the 	p norm of {an}∞n=1 ∈ 	p is defined as

‖a‖p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( ∞∑

n=1

|an|p
)1/p

, for 1 ≤ p < ∞

sup
n=1,2,...

{|an|} , for p = ∞
(2.57)

where the notation ‘sup’ stands for the least upper bound or the supremum
of a set of real numbers.5 From (2.56) and (2.57), it follows that only the
	2 norm (i.e. p = 2) can be induced from (2.56). Furthermore, the 	2 space
along with the inner product defined as (2.56) and the 	2 norm is known as
an infinite-dimensional Hilbert space [14, p. 75]. As such, in what follows, the
	2 space always refers to this Hilbert space for convenience.

Moreover, for ease of later use, we restate the Cauchy–Schwartz inequality
in terms of two-sided sequences as follows.

Theorem 2.32 (Cauchy–Schwartz Inequality). Suppose {an}∞n=−∞ and
{bn}∞n=−∞ are real or complex nonzero sequences with

∑∞
n=−∞ |an|2 < ∞ and∑∞

n=−∞ |bn|2 < ∞. Then∣∣∣∣∣
∞∑

n=−∞
anb∗n

∣∣∣∣∣ ≤
( ∞∑

n=−∞
|an|2

)1/2 ( ∞∑
n=−∞

|bn|2
)1/2

(2.58)

and the equality holds if and only if an = αbn for all n where α �= 0 is an
arbitrary real or complex scalar.

Also with regard to two-sided sequences, the following inequality is useful in
development of blind equalization algorithms [19, 20].

Theorem 2.33. Suppose {an}∞n=−∞ is a real or complex nonzero sequence
with

∑∞
n=−∞ |an|s < ∞ where s is an integer and 1 ≤ s < ∞. Then

5 One should not confuse “supremum” with “maximum.” A set which is bounded
above has a supremum, but may not have a maximum (the largest element of the
set) [12, p. 16]. For instance, the set {1 − (1/n), n = 1 ∼ ∞} has a supremum
equal to one, but does not have any maximum.
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n=−∞

|an|l
)1/l

≤
( ∞∑

n=−∞
|an|s

)1/s

(2.59)

and the equality holds if and only if an has only one nonzero term where l is
an integer and l > s.

See Appendix 2C for the proof.

Function Spaces

Consider a real or complex functions f(x) which is bounded and satisfies(∫ xU

xL

|f(x)|pdx

)1/p

, for 1 ≤ p < ∞. (2.60)

Then the set of all such functions forms a function space (a vector space) under
the operations of pointwise addition and scalar multiplication of functions.
The function space is commonly referred to as the Lp[xL, xU] space or, briefly,
Lp[xL, xU] [5, 13, 17, 18].

Define the inner product of functions f(x) and g(x) ∈ Lp[xL, xU] as

〈f, g〉 =

∫ xU

xL

f(x)g(x)∗dx (2.61)

and the Lp norm of f(x) ∈ Lp[xL, xU] as

‖f‖p =

(∫ xU

xL

|f(x)|pdx

)1/p

, for 1 ≤ p < ∞. (2.62)

Only the L2 norm (p = 2) can be induced from (2.61). More importantly,
due to the operation of integration in (2.62), ‖f‖2 = 0 merely implies that
f(x) = 0 almost everywhere on [xL, xU], that is, f(x) may not be identically
zero on a set of points on which the integration is “negligible.” 6 From this,
it follows that the inner product defined as (2.61) does not satisfy the axiom
(IPS3) and the L2 norm does not satisfy the axiom (NVS3). To get around
this difficulty, we adopt the following convention: ‖f‖2 = 0 implies that f(x)
is a zero function, i.e. f(x) = 0 for all x ∈ [xL, xU]. With this convention,
the L2[xL, xU] space along with the inner product defined as (2.61) and the
L2 norm is also known as an infinite-dimensional Hilbert space [18, p. 193].
In what follows, the L2[xL, xU] space always refers to this Hilbert space for
convenience.

Moreover, the Cauchy–Schwartz inequality described in Theorem 2.1 is
applicable to the L2[xL, xU] space, that is restated here in terms of functions
with the above convention.
6 The set of points on which integration is “negligible” is called a set of measure

zero [13,14].
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Theorem 2.34 (Cauchy–Schwartz Inequality). Suppose f(x) and g(x)
are real or complex nonzero functions on [xL, xU] with

∫ xU

xL
|f(x)|2dx < ∞

and
∫ xU

xL
|g(x)|2dx < ∞. Then∣∣∣∣∫ xU

xL

f(x)g(x)∗dx

∣∣∣∣ ≤ {∫ xU

xL

|f(x)|2dx

}1/2 {∫ xU

xL

|g(x)|2dx

}1/2

(2.63)

and the equality holds if and only if f(x) = αg(x) for all x ∈ [xL, xU] where
α �= 0 is an arbitrary real or complex scalar.

Approximations in Function Spaces

Let us emphasize that any function in L2[xL, xU] is actually viewed as a
vector in the vector space. As such, convergence for a sequence of functions
in L2[xL, xU] means convergence in the norm for a sequence of vectors, that
is closely related to the problem of minimum mean-square-error (MMSE)
approximation in L2[xL, xU] as revealed below.

Let {φ1(x), φ2(x), ..., φn(x)} be a set of real or complex orthogonal func-
tions in L2[xL, xU] where∫ xU

xL

φk(x)φ∗
m(x)dx =

{
Eφ, k = m,

0, k �= m.
(2.64)

Given a real or complex function f(x) ∈ L2[xL, xU], let us consider the prob-
lem of approximating the nth partial sum

sn(x) =

n∑
k=−n

θkφk(x) (2.65)

to the function f(x) in the MMSE sense, i.e. finding the optimal parameters
θ−n, θ−n+1, ..., θn such that the following mean-square-error (MSE) is mini-
mum:

JMSE(θk) =

∫ xU

xL

|f(x) − sn(x)|2 dx. (2.66)

By substituting (2.65) into (2.66) and using (2.64), we obtain
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JMSE(θk) =

∫ xU

xL

|f(x)|2dx + Eφ

n∑
k=−n

|θk|2

−
n∑

k=−n

[
θ∗k

∫ xU

xL

f(x)φ∗
k(x)dx + θk

∫ xU

xL

f∗(x)φk(x)dx

]

=

∫ xU

xL

|f(x)|2dx + Eφ

n∑
k=−n

∣∣∣∣∣θk − 1

Eφ

∫ xU

xL

f(x)φ∗
k(x)dx

∣∣∣∣∣
2

− Eφ

n∑
k=−n

∣∣∣∣∣ 1

Eφ

∫ xU

xL

f(x)φ∗
k(x)dx

∣∣∣∣∣
2

.

This implies that the optimal θk, denoted by θ̂k, is given by

θ̂k =
1

Eφ

∫ xU

xL

f(x)φ∗
k(x)dx for k = −n,−n + 1, ..., n, (2.67)

and the corresponding minimum value of JMSE(θk) is given by

min{JMSE(θk)} =

∫ xU

xL

|f(x)|2dx − Eφ

n∑
k=−n

|θ̂k|2. (2.68)

Since (2.68) holds for any n and JMSE(θk) ≥ 0 (see (2.66)), letting n → ∞
leads to the following inequality.

Theorem 2.35 (Bessel’s Inequality). Suppose {φ1(x), φ2(x), ..., φn(x)} is
a set of real or complex orthogonal functions in L2[xL, xU]. If f(x) is a real
or complex function in L2[xL, xU], then optimal approximation of the series∑∞

k=−∞ θkφk(x) to f(x) in the MMSE sense gives

∞∑
k=−∞

|θ̂k|2 ≤ 1

Eφ

∫ xU

xL

|f(x)|2dx < ∞ (2.69)

where θ̂k is the optimal θk and Eφ =
∫ xU

xL
|φk(x)|2dx.

From (2.66) and (2.62), it follows that when the sequence of functions
{sn(x)}∞n=1 converges in the norm to f(x) ∈ L2[xL, xU],

lim
n→∞ ‖f − sn‖2 = lim

n→∞

√
JMSE(θ̂k) = 0. (2.70)

Correspondingly, Bessel’s inequality (2.69) becomes the equality

∞∑
k=−∞

|θ̂k|2 =
1

Eφ

∫ xU

xL

|f(x)|2dx, (2.71)

which is known as Parseval’s equality or Parseval’s relation. Owing to (2.70),
convergence in the norm for the L2[xL, xU] space is also referred to as conver-
gence in the mean-square (MS) sense.
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2.2.4 Fourier Series

Fourier series are of great importance in developing the theory of mathemat-
ical analysis, and have widespread applications in the areas of science and
engineering such as signal representation and analysis in signal processing.

Consider that f(x) is a periodic function with period 2π. When f(x) is
real, the Fourier series of f(x) is given by

f(x) =
a0

2
+

∞∑
k=1

(ak cos kx + bk sin kx) (2.72)

where ak and bk are given by

ak =
1

π

∫ π

−π

f(x) cos(kx)dx, k = 0, 1, 2, ... (2.73)

bk =
1

π

∫ π

−π

f(x) sin(kx)dx, k = 1, 2, ... (2.74)

The real numbers ak and bk are called the Fourier coefficients of f(x). Note
that {1, coskx, sin kx, k = 1 ∼ ∞} is a set of orthogonal functions satisfying
(2.64) (Eφ = π). From (2.73) and (2.74), one can see that if f(x) is odd, then
ak = 0 for all k; whereas if f(x) is even, bk = 0 for all k. On the other hand,
when f(x) is complex, the Fourier series of f(x) is given by

f(x) =

∞∑
k=−∞

ckejkx (2.75)

where ck, a Fourier coefficient of f(x), is a complex number given by

ck =
1

2π

∫ π

−π

f(x)e−jkxdx. (2.76)

Note that {ejkx, k = −∞ ∼ ∞} is also a set of orthogonal functions satisfying
(2.64) (Eφ = 2π).

Next, let us discuss the existence of Fourier series. In particular, we are
concerned with the sufficient conditions under which the Fourier series given
by (2.75) converges.

Local Behavior of Convergence

With the nth partial sum defined as

sn(x) =
n∑

k=−n

ckejkx, (2.77)

the convergence problem of the Fourier series given by (2.75) is the same as
that of the sequence {sn(x)}∞n=1.
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Pointwise Convergence

It was believed, for a long time, that if the periodic function f(x) is continuous,
then the Fourier series would converge to f(x) for all x ∈ [−π, π) (i.e. pointwise
convergence). Actually, there do exist continuous periodic functions whose
Fourier series diverge at a given point or even everywhere; see [14, pp. 83–
87] for an example of such functions. This implies that pointwise convergence
requires some additional conditions on f(x) as follows [18].

Theorem 2.36 (Pointwise Convergence Theorem). Suppose f(x) is a
real or complex periodic function of period 2π. Then, under the conditions
that (i) f(x) is piecewise continuous on [−π, π) and (ii) the derivative f ′(x)
is piecewise continuous on [−π, π), the Fourier series of f(x) given by (2.75)
is pointwise convergent and

lim
n→∞ sn(x) =

f(x−) + f(x+)

2
for all x ∈ [−π, π) (2.78)

where sn(x) is the corresponding nth partial sum given by (2.77), and f(x−)
and f(x+) are the left-hand limit and the right-hand limit of f(x), respectively.

See Appendix 2B for a review of terminologies of functions and see Appendix
2D for the proof of this theorem. From this theorem and (2.219), it follows that
the Fourier series converges to f(x) at the points of continuity and converges
to [f(x−)+f(x+)]/2 at the points of discontinuity. Note that Theorem 2.36 is
only a special case of the Dirichlet Theorem, for which the required conditions
are known as the Dirichlet conditions [21, 22].7

Uniform Convergence

By using the Weierstrass M-test, we have the following theorem for uniform
and absolute convergence of the Fourier series (Problem 2.17).

Theorem 2.37. Suppose {ck}∞k=−∞ is any absolutely summable sequence, i.e.∑∞
k=−∞ |ck| < ∞. Then the Fourier series

∑∞
k=−∞ ckejkx converges uni-

formly and absolutely to a continuous function of x on [−π, π).

Moreover, by using the Weierstrass M-test and the pointwise convergence
theorem with more restrictive conditions on f(x), we have another theorem
regarding the uniform and absolute convergence [18, pp. 216–218].

Theorem 2.38. Suppose f(x) is a real or complex periodic function of period
2π. Then, under the conditions that (i) f(x) is continuous on [−π, π) and (ii)
the derivative f ′(x) is piecewise continuous on [−π, π), the Fourier series of
f(x) given by (2.75) converges uniformly and absolutely to f(x) on [−π, π).

See Appendix 2E for the proof.

7 The Dirichlet theorem due to P. L. Dirichlet (1829) was the first substantial
progress on the convergence problem of Fourier series [13].
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Global Behavior of Convergence

The Fourier series given by (2.75) is said to converge in the mean-square (MS)
sense to f(x) if

lim
n→∞

∫ π

−π

|f(x) − sn(x)|2 dx = 0 (2.79)

where sn(x) is the nth partial sum given by (2.77). Accordingly, with MS
convergence, we can only get an overall picture about the convergence behavior
over the entire interval. It reveals nothing about the detailed behavior of
convergence at any point.

Recall that if f(x) is in the L2[−π, π) space, then MS convergence is equiv-
alent to convergence in the norm. Correspondingly, Parseval’s relation

∞∑
n=−∞

|ck|2 =
1

2π

∫ π

−π

|f(x)|2dx < ∞ (2.80)

holds and thus the sequence {ck}∞k=−∞ is square summable. The converse is
stated in the following theorem (Problem 2.18).

Theorem 2.39. Suppose {ck}∞k=−∞ is any square summable sequence, i.e.∑∞
k=−∞ |ck|2 < ∞. Then the Fourier series

∑∞
k=−∞ ckejkx converges in the

MS sense to a function in the L2[−π, π) space.

Furthermore, a more generalized theorem regarding the MS convergence
is provided as follows. The proof is beyond the scope of this book; the reader
can find it in [13, pp. 411–414] for the real case and [14, pp. 76–80] for the
complex case.

Theorem 2.40. Suppose f(x) is a real or complex periodic function of period
2π. If the function f(x) is bounded and integrable on [−π, π), then the Fourier
series of f(x) given by (2.75) converges in the MS sense to f(x) on [−π, π).

Compared with local convergence (pointwise convergence and uniform conver-
gence), global convergence (MS convergence) requires even weaker conditions
on the function f(x) or the sequence {ck}∞k=−∞ and so the existence of Fourier
series is almost not an issue in practice.

Fourier Series of Generalized Functions

In some cases, we may need to deal with functions which are outside the
ordinary scope of function theory. An important class of such functions is
the one of generalized functions introduced by G. Temple (1953) [23]. Among
this class, a representative is the so-called impulse or Dirac delta function,
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commonly denoted by δ(x).8 It is mathematically defined by the following
relations {

δ(x) = 0 for x �= 0,∫∞
−∞ δ(x)dx = 1,

(2.81)

and possesses the following sifting property:∫ ∞

−∞
δ(x − τ)f(x)dx = f(τ). (2.82)

Strictly speaking, a periodic function like

f(x) =

∞∑
m=−∞

2πδ(x + 2πm) (2.83)

does not have a Fourier series. But, using (2.76) and (2.82), we can still math-
ematically define the Fourier series of f(x) as

f(x) =

∞∑
k=−∞

ejkx (i.e. ck = 1 for all k) (2.84)

and make use of this in many applications. In other words, the theory of
Fourier series should be broadened for more extensive applications. The ex-
tended theory of Fourier series is, however, beyond the scope of this book;
refer to [23, 24] for the details.

2.3 Optimization Theory

Consider that J(θ) is a real function of the L × 1 vector

θ = (θ1, θ2, ..., θL)T (2.85)

where θ1, θ2, ..., θL are real or complex unknown parameters to be determined.
An optimization problem is to find (search for) a solution for θ which min-
imizes or maximizes the function J(θ), referred to as the objective function.
There are basically two types of optimization problems, constrained optimiza-
tion problems and unconstrained optimization problems [12, 25, 26]. As the
names indicate, the former type is subject to some constraints (e.g. equal-
ity constraints and inequality constraints), whereas the latter type does not
involve any constraint. In the scope of the book, we are interested in un-
constrained optimization problems, which along with the related theory are
introduced in this section.

8 The notation ‘δ(x)’ for Dirac delta function was first used by G. Kirchhoff, and
then introduced into quantum mechanics by Dirac (1927) [23].



42 2 Mathematical Background

2.3.1 Vector Derivatives

As we will see, finding the solutions to the minima or maxima of the objective
function J(θ) often involves manipulations of the following first derivative
(with respect to θ∗)

∂f(θ)

∂θ∗ =

(
∂f(θ)

∂θ∗1
,
∂f(θ)

∂θ∗2
, ...,

∂f(θ)

∂θ∗L

)T

(2.86)

where f(θ) is an arbitrary real or complex function of θ and ∂f(θ)/∂θ∗k is the
first partial derivative of f(θ) with respect to the conjugate parameter θ∗k.9

However, the first derivative ∂f(θ)/∂θ∗, or equivalently the operator

∂

∂θ∗ =

(
∂

∂θ∗1
,

∂

∂θ∗2
, ...,

∂

∂θ∗L

)T

, (2.87)

depends on whether θ is real or complex, as discussed below.

Derivatives with Respect to a Real Vector

When θ is real, applying the operator ∂/∂θ∗ to θT yields

∂θT

∂θ∗ =
∂θT

∂θ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂θ1

∂θ1

∂θ2

∂θ1
· · · ∂θL

∂θ1
∂θ1

∂θ2

∂θ2

∂θ2
· · · ∂θL

∂θ2
...

...
. . .

...

∂θ1

∂θL

∂θ2

∂θL
· · · ∂θL

∂θL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= I, (2.88)

which is useful to the derivation of ∂f(θ)/∂θ. In particular, if f(θ) = bT θ =
θT b where the vector b is independent of θ, then

∂f(θ)

∂θ
=

(
∂θT

∂θ

)
b = Ib = b. (2.89)

Moreover, if f(θ) = θT b(θ) where the vector b(θ) = Aθ, then

∂f(θ)

∂θ
=

(
∂θT

∂θ

)
b(θ) +

∂bT (θ)

∂θ
θ =

(
∂θT

∂θ

)
Aθ +

(
∂θT

∂θ

)
AT θ

= IAθ + IAT θ = (A + AT )θ, (2.90)

which reduces to ∂f(θ)/∂θ = 2Aθ when A is symmetric.

9 Although utilization of ∂f(θ)/θ∗ and that of ∂f(θ)/θ both lead to the same
solutions for the optimization problems, Brandwood [27] has pointed out that
the former gives rise to a slightly neater expression and thus is more convenient.
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Derivatives with Respect to a Complex Vector

Now consider the case that θ = (θ1, θ2, ..., θL)T is complex, i.e.

θk = xk + jyk, k = 1, 2, ..., L, (2.91)

where xk = Re{θk} is the real part of θk and yk = Im{θk} is the imaginary
part of θk. Naturally, one can derive ∂f(θ)/∂θ∗k in terms of xk and yk. Al-
ternatively, direct derivation of ∂f(θ)/∂θ∗k (without involving xk and yk) is
more appealing, but special care should be taken for the following reason. In
conventional complex-variable theory, if f(θ) cannot be expressed in terms of
only θk (i.e. it also consists of θ∗k), then it is nowhere differentiable by θk and
we say that f(θ) is not analytic [28]. The analytic problem, however, can be
resolved by simply treating f(θ) ≡ f(θ, θ∗) as a function of 2L independent
variables θ1, θ2, ..., θL, θ∗1 , θ∗2 , ..., θ

∗
L [27]; see the following illustration.

Example 2.41
Consider the function f(θ) = θ∗ where θ = x + jy, and x and y are real.
According to the conventional complex-variable theory, the first derivative of
f(θ) with respect to θ is given by [28]

df(θ)

dθ
= lim

Δθ→0

f(θ + Δθ) − f(θ)

Δθ
= lim

Δθ→0

Δθ∗

Δθ
.

As illustrated in Fig. 2.5, if Δθ approaches zero along the real axis, i.e. Δθ =
Δx → 0, then df(θ)/dθ = 1. If Δθ approaches zero along the imaginary axis,
i.e. Δθ = jΔy → 0, then df(θ)/dθ = −1. As a result, there is no way to assign
a unique value to df(θ)/dθ, and thus f(θ) is not differentiable. On the other
hand, by treating f(θ) ≡ f(θ, θ∗) as a function of independent variables θ and
θ∗, we obtain ∂f(θ, θ∗)/∂θ = 0 and ∂f(θ, θ∗)/∂θ∗ = 1. That is, f(θ, θ∗) is
differentiable with respect to θ and θ∗ independently.

�

With the treatment of independent variables θk and θ∗k, we now proceed
to derive the partial derivative ∂f(θ)/∂θ∗k. From (2.91), it follows that

xk =
1

2
(θk + θ∗k) and yk =

1

2j
(θk − θ∗k). (2.92)

Differentiating xk and yk given by (2.92) with respect to θk and θ∗k yields

∂xk

∂θk
=

1

2
,

∂xk

∂θ∗k
=

1

2
,

∂yk

∂θk
=

1

2j
, and

∂yk

∂θ∗k
= − 1

2j
. (2.93)

This, together with the chain rule [29], leads to

∂f(θ)

∂θk
=

∂f(θ)

∂xk

∂xk

∂θk
+

∂f(θ)

∂yk

∂yk

∂θk
=

1

2

{
∂f(θ)

∂xk
− j

∂f(θ)

∂yk

}
(2.94)
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Fig. 2.5 Illustration of Δθ approaching zero along the real and imaginary axes

and

∂f(θ)

∂θ∗k
=

∂f(θ)

∂xk

∂xk

∂θ∗k
+

∂f(θ)

∂yk

∂yk

∂θ∗k
=

1

2

{
∂f(θ)

∂xk
+ j

∂f(θ)

∂yk

}
. (2.95)

From (2.91), (2.94) and (2.95), it is clear that

∂θ∗k
∂θk

=
∂θk

∂θ∗k
= 0 and

∂θk

∂θk
=

∂θ∗k
∂θ∗k

= 1. (2.96)

By (2.96), we have

∂θH

∂θ∗ = I and
∂θT

∂θ∗ = 0, (2.97)

which, again, are useful to the derivation of ∂f(θ)/∂θ∗. In particular, if f(θ) =
bHθ where b is independent of θ, then ∂f(θ)/θ∗ = 0, and if f(θ) = θHb,
then

∂f(θ)

∂θ∗ =

(
∂θH

∂θ∗

)
b = b. (2.98)

If f(θ) = θHAθ, then

∂f(θ)

∂θ∗ =

(
∂θH

∂θ∗

)
Aθ +

(
∂θT

∂θ∗

)(
θHA

)T

= Aθ (by (2.97)). (2.99)

Table 2.1 summarizes the vector derivatives for both real and complex cases.
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Table 2.1 Summary of vector derivatives

Real Case Complex Case

∂θ
T

∂θ
= I

∂θ
H

∂θ
∗

= I and
∂θ

T

∂θ
∗

= 0

f(θ) θT b bT θ θT Aθ f(θ) θHb bHθ θHAθ

∂f(θ)

∂θ
b b (A + AT )θ

∂f(θ)

∂θ
∗

b 0 Aθ

2.3.2 Necessary and Sufficient Conditions for Solutions

From the foregoing discussions, we note that when the unknown parameter
vector θ = (θ1, θ2, ..., θL)T is complex, it is also more convenient to treat the
real objective function J(θ) ≡ J(θ, θ∗) as a function of independent variables
θk and θ∗k. As such, for notational convenience, let us reformulate the above-
mentioned optimization problem into the equivalent problem of minimizing
or maximizing the real objective function J(ϑ) where ϑ is the real or complex
unknown parameter vector defined as{

ϑ = (ϑ1, ϑ2, ..., ϑL)T = θ for real θ,

ϑ = (ϑ1, ϑ2, ..., ϑ2L)T = (θT , θH)T for complex θ.
(2.100)

Several terminologies regarding J(ϑ) are introduced as follows.
The objective function J(ϑ) is said to have a local minimum or a relative

minimum at the solution point ϑ̂ if there exists a real number ε > 0 such that

J(ϑ̂) ≤ J(ϑ) for all ϑ satisfying ‖ϑ − ϑ̂‖ < ε. (2.101)

The objective function J(ϑ) is said to have a global minimum or an absolute

minimum at the solution point ϑ̂ if

J(ϑ̂) ≤ J(ϑ) for all ϑ. (2.102)

Similarly, the objective function J(ϑ) is said to have a local maximum or a

relative maximum at the solution point ϑ̂ if there exists a real number ε > 0
such that

J(ϑ̂) ≥ J(ϑ) for all ϑ satisfying ‖ϑ − ϑ̂‖ < ε, (2.103)

and have a global maximum or an absolute maximum at the solution point ϑ̂

if

J(ϑ̂) ≥ J(ϑ) for all ϑ. (2.104)
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Fig. 2.6 Illustration of the solution points for the problem of minimizing J(ϑ)
where ϑ is real

In other words, a global minimum (maximum) of J(ϑ) is also a local minimum
(maximum) of J(ϑ). Figure 2.6 gives an illustration of these definitions.

Define the gradient vector, or simply the gradient, as10

∇J(ϑ) =
∂J(ϑ)

∂ϑ∗ (2.105)

(the physical meaning will be discussed later), where

∂J(ϑ)

∂ϑ∗ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂J(θ)

∂θ
for real θ,⎛⎝[∂J(θ)

∂θ∗

]T

,

[
∂J(θ)

∂θ

]T
⎞⎠T

for complex θ.

(2.106)

A necessary condition for the local extrema (local minima or maxima) of J(ϑ)
is as follows [26, p. 73].

Theorem 2.42 (Necessary Condition). If the objective function J(ϑ) has

an extremum at ϑ = ϑ̂ and if its first derivative ∂J(ϑ)/∂ϑ∗ exists at ϑ = ϑ̂,
then its gradient

10 The gradient ∇J(ϑ) defined as (2.105) is the same as that defined in [8, p. 894]
except for a scale factor.
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∇J(ϑ̂) � ∇J(ϑ)
∣∣∣
ϑ = ϑ̂

= 0. (2.107)

The proof is left as an exercise (Problem 2.19). When ϑ̂ satisfies (2.107), it is

said to be a stationary point of J(ϑ). Furthermore, a stationary point ϑ̂ is said
to be a saddle point of J(ϑ) if it corresponds to a local minimum of J(ϑ) with
respect to one direction on the hypersurface of J(ϑ) and a local maximum of
J(ϑ) with respect to another direction [12, 26, 30]. In other words, a saddle
point of J(ϑ) corresponds to an unstable equilibrium of J(ϑ), and thus it will
typically not be obtained by optimization methods.

Example 2.43 (Saddle Point)
Consider the objective function J(ϑ) = J(ϑ1, ϑ2) = −ϑ2

1 + ϑ2
2 where ϑ =

(ϑ1, ϑ2)
T , and ϑ1 and ϑ2 are real. Taking the first derivative of J(ϑ) with

respect to ϑ∗ (= ϑ)

∂J(ϑ)

∂ϑ
=

(
∂J(ϑ)/∂ϑ1

∂J(ϑ)/∂ϑ2

)
=

(
−2ϑ1

2ϑ2

)

and setting the result to zero, we obtain the stationary point ϑ̂ = (ϑ̂1, ϑ̂2)
T =

(0, 0)T . Figure 2.7 depicts the objective function J(ϑ1, ϑ2) and the station-

ary point (ϑ̂1, ϑ̂2) = (0, 0). One can see from this figure that the function

J(ϑ1, ϑ̂2) = J(ϑ1, 0) = −ϑ2
1 has a local maximum at ϑ1 = ϑ̂1 = 0, and the

function J(ϑ̂1, ϑ2) = J(0, ϑ2) = ϑ2
2 has a local minimum at ϑ2 = ϑ̂2 = 0. This

reveals that the stationary point (ϑ̂1, ϑ̂2) = (0, 0) is a saddle point.
�

Let us emphasize that a stationary point may correspond to a local mini-
mum point, a local maximum point, a saddle point, or a point of some other
exotic category [12, pp. 217, 218]. Some categories of stationary points may
be recognized by inspecting the Hermitian matrix

J2(ϑ) �
∂

∂ϑ

[
∂J(ϑ)

∂ϑ

]T

=
∂

∂θ

[
∂J(θ)

∂θ

]T

(2.108)

for real θ, or the Hermitian matrix

J2(ϑ) �
∂

∂ϑ∗

[
∂J(ϑ)

∂ϑ∗

]H

=

⎛⎜⎜⎜⎜⎜⎝
∂

∂θ∗

[
∂J(θ)

∂θ∗

]H
∂

∂θ∗

[
∂J(θ)

∂θ

]H

∂

∂θ

[
∂J(θ)

∂θ∗

]H
∂

∂θ

[
∂J(θ)

∂θ

]H

⎞⎟⎟⎟⎟⎟⎠ (2.109)

for complex θ, where the matrix J2(ϑ) is referred to as the Hessian matrix
of J(ϑ). In particular, the local minimum points and local maximum points
can be recognized by virtue of the Hessian matrix, as stated in the following
theorem.
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Fig. 2.7 Illustration of saddle point

Theorem 2.44 (Sufficient Conditions). Suppose ϑ̂ is a stationary point
of the objective function J(ϑ). If the Hessian matrix

J2(ϑ̂) � J2(ϑ)
∣∣∣
ϑ = ϑ̂

(2.110)

is positive definite (negative definite), then ϑ̂ corresponds to a local minimum
(a local maximum) of J(ϑ).

This theorem can be proved by virtue of the following Taylor series for J(ϑ)

at ϑ = ϑ̂: (refer to [26, p. 71] for the real case)

J(ϑ) = J(ϑ̂) + (ϑ − ϑ̂)H∇J(ϑ̂) +
1

2
(ϑ − ϑ̂)HJ2(ϑ̂)(ϑ − ϑ̂) + · · · (2.111)

We leave the proof of this theorem as an exercise (Problem 2.20).

2.3.3 Gradient-Type Optimization Methods

There are numerous types of optimization techniques available for solving
the unconstrained optimization problem, among which we are interested in
gradient-type methods for their efficiency as well as their wide scope of appli-
cations. Without loss of generality, we will introduce gradient-type methods
in terms of the minimization problem of J(ϑ) because maximization of J(ϑ)
is equivalent to minimization of −J(ϑ).
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Iterative Procedure of Gradient-Type Methods

Let ϑ̂ denote a (local) minimum point of J(ϑ). Gradient-type methods are,

in general, based on the following iterative procedure for searching for ϑ̂.

(S1) Set the iteration number i = 0.

(S2) Choose an appropriate initial condition ϑ[0] for ϑ̂ and an appropriate
initial search direction d[0].

(S3) Generate a new approximation to ϑ̂ via

ϑ[i+1] = ϑ[i] − μ[i]d[i] (2.112)

where μ[i] > 0 is the step size which should be determined appropriately
to make sure of the movement along the direction of a (local) minimum
of J(ϑ).

(S4) Check the convergence of the procedure. If the procedure has not yet
converged, then go to Step (S5); otherwise, obtain a (local) minimum

point as ϑ̂ = ϑ[i+1] and stop the procedure.
(S5) Find a new search direction d[i+1] which points towards a (local) mini-

mum of J(ϑ) in general.
(S6) Update the iteration number i by (i + 1) and go to Step (S3).

This procedure is also depicted in Fig. 2.8 for clarity.
In Step (S3) of the iterative procedure, determination of the step size

μ[i] can be formulated into the problem of finding the parameter μ which
minimizes the objective function f(μ) � J(ϑ[i] − μd[i]) (by (2.112)). Accord-
ingly, this problem can be solved by using the class of one-dimensional (1-D)
minimization methods such as the 1-D Newton method (also known as the
Newton–Raphson method), the 1-D quasi-Newton method, and so on [26]. Al-
ternatively, the step size μ[i] can be simply chosen as the value of μ0/2k for a
preassigned positive real number μ0 and a certain (positive or negative) inte-

ger k such that J(ϑ[i] − (μ0/2k)d[i]) < J(ϑ[i]). In Step (S4), the convergence
criterion ∣∣∣∣∣J(ϑ[i]) − J(ϑ[i+1])

J(ϑ[i])

∣∣∣∣∣ ≤ ζ (2.113)

can be used for testing the convergence of the iterative procedure where ζ is a
small positive constant. Of course, other types of convergence criteria can also
be applied. In Step (S5), the way of finding a new search direction d[i+1] de-
termines substantially the efficiency of gradient-type methods and thus leads
to the main differences between the existing gradient-type methods. As indi-
cated by the name “gradient-type method,” the update of d[i+1] involves the
gradient ∇J(ϑ[i+1]) and in some cases the Hessian matrix J2(ϑ

[i+1]). Note
that the gradient-type methods that require only the gradient are referred
to as first-order methods, while those requiring both the gradient and the
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Fig. 2.8 Flow chart for the iterative procedure of gradient-type methods

Hessian matrix are referred to as second-order methods. As a final remark, all
gradient-type methods are only guaranteed to find local minimum solutions
due to the local property of the gradient nature.

Overview of Existing Gradient-Type Methods

Among the existing gradient-type methods for minimization of J(ϑ), the sim-
plest is the so-called steepest descent method, which belongs to the category of
first-order methods and is extremely important from a theoretical viewpoint.
Convergence of the steepest descent method is more or less insensitive to the



2.3 Optimization Theory 51

initial condition ϑ[0], but the convergence rate is excessively slow in the vicin-
ity of minimum solution points [31, p. 91], thereby limiting its application
scope. On the other hand, a well-known second-order method, the Newton
method, exhibits a rather fast convergence rate in the vicinity of minimum
solution points. The Newton method, however, requires the initial condition
ϑ[0] to be sufficiently close to any one of the minimum solution points for con-
vergence, and also requires the inverse Hessian matrix J−1

2 (ϑ), whose compu-
tational complexity is in general quite high. To overcome the initial-condition
problem of the Newton method, the Marquardt method, a combination of the
steepest descent method and the Newton method, tries to share the merits
of both methods. It performs as the steepest descent method at first and
then performs as the Newton method when a minimum solution point is ap-
proached. Obviously, like the Newton method, the Marquardt method is a
second-order method and also suffers from the problem of high computational
complexity.

The motivation for reducing the computational complexity of Newton
method further leads to the family of quasi-Newton methods. The idea behind
quasi-Newton methods is to approximate either the Hessian matrix J2(ϑ) or
its inverse J−1

2 (ϑ) in terms of the gradient ∇J(ϑ). Clearly, quasi-Newton
methods also belong to the category of first-order methods. A representa-
tive which approximates J2(ϑ) iteratively is the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method, while a representative which approximates J−1

2 (ϑ)
iteratively is the Davidon–Fletcher–Powell (DFP) method. Known as the best
quasi-Newton method, the BFGS method performs initially as the steepest
descent method and then (after a number of iterations) performs as the New-
ton method. Our experience of computer simulation shows that the BFGS
method is very efficient and numerically stable, and thus has been used for
the simulation examples in this book. Next, let us give the detailed descrip-
tions of some selected gradient-type methods, namely, the steepest descent
method, the Newton method and the BFGS method.

Steepest Descent Method

At iteration i, the steepest descent method11 updates the parameter vector ϑ

via

ϑ[i+1] = ϑ[i] − μ[i]∇J(ϑ[i]), (2.114)

i.e. the search direction d[i] = ∇J(ϑ[i]) (see (2.112)). The operation of (2.114)
and the physical meaning of the gradient ∇J(ϑ) are interpreted as follows.

Let ϑ + Δϑ be a neighboring point of ϑ and ΔJ(ϑ) = J(ϑ + Δϑ)− J(ϑ)
be the change in J(ϑ) due to Δϑ. Then, by (2.111), we have

11 The steepest descent method is also called the Cauchy method in recognition of
the originator A. L. Cauchy (1847) [26].
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ΔJ(ϑ) = (Δϑ)H
∇J(ϑ) as Δϑ → 0 (2.115)

where we have ignored the second-order and other higher-order (≥ 3) terms.
From (2.115) and the Cauchy–Schwartz inequality (Theorem 2.1), it follows
that

|ΔJ(ϑ)| ≤ ‖Δϑ‖ · ‖∇J(ϑ)‖ as Δϑ → 0 (2.116)

and the equality holds only when Δϑ = α∇J(ϑ) where α is a real or complex
scalar. This reveals that the change rate of J(ϑ) defined as

lim
Δϑ→0

|ΔJ(ϑ)|
‖Δϑ‖ (2.117)

is upper bounded by ‖∇J(ϑ)‖, and that the gradient ∇J(ϑ) represents the
direction giving the maximum change rate of J(ϑ). Moreover, when Δϑ =
−μ∇J(ϑ) for any real positive scalar μ, (2.115) reduces to

ΔJ(ϑ) = −μ‖∇J(ϑ)‖2 ≤ 0 (2.118)

and thus

J(ϑ − μ∇J(ϑ)) = J(ϑ + Δϑ) = J(ϑ) + ΔJ(ϑ) ≤ J(ϑ), (2.119)

which accounts for the operation of the update equation (2.114).
As a consequence of the preceding discussions, we come up with the fol-

lowing theorem to explain the physical meaning of the gradient ∇J(ϑ).

Theorem 2.45. The negative of the gradient, −∇J(ϑ), represents the direc-
tion giving the maximum change rate in reducing J(ϑ), i.e. the direction of
steepest descent.

Although the steepest descent method takes advantage of the gradient, the
direction of steepest descent is only a local property (since Δϑ → 0) and
thereby may vary from point to point. In fact, the steepest descent method
quite often “zigzags” toward a local minimum, thereby requiring more and
more steps of a smaller and smaller size when the minimum is approached [31,
p. 91]. As such, it usually takes an enormous number of iterations to obtain
an accurate solution.

Regarding the implementation of the update equation (2.114), it follows,
from (2.105) and (2.106), that the update equation can be written as

θ[i+1] = θ[i] − μ[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.120)

for real θ, and
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(
θ[i+1]

θ∗[i+1]

)
=

(
θ[i]

θ∗[i]

)
− μ[i] ·

⎛⎜⎜⎝
∂J(θ)

∂θ∗

∂J(θ)

∂θ

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
θ = θ[i]

(2.121)

for complex θ. One can easily see, from (2.121), that the update equation

for θ[i+1] is equivalent to that for θ∗[i+1] since μ[i] is real, and thus only the
former is actually needed. Table 2.2 summarizes the steepest descent method.

Table 2.2 Steepest descent method

Update Equation

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − μ[i]
∇J(ϑ[i])

where μ[i] > 0 is the step size and ∇J(ϑ[i]) is the gradient
at ϑ = ϑ[i].

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − μ[i] ·
∂J(θ)

∂θ
θ = θ[i]

.

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − μ[i] ·
∂J(θ)

∂θ∗

θ = θ[i]

.

Newton Method

Suppose that ϑ0 is a guess for the parameter vector ϑ and the Hessian ma-
trix J2(ϑ0) is nonsingular. Replacing ϑ̂ in (2.111) by ϑ0 and taking the first
derivative of (2.111) with respect to ϑ∗ yields

∂J(ϑ)

∂ϑ∗ = ∇J(ϑ0) + αJ2(ϑ0)(ϑ − ϑ0) (2.122)

where all the higher-order terms (order ≥ 3) have been ignored and
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α =

{
1 for real θ,

1/2 for complex θ.
(2.123)

Setting (2.122) to zero, we obtain

ϑ = ϑ0 −
1

α
J−1

2 (ϑ0)∇J(ϑ0), (2.124)

which reveals that ϑ can be obtained from ϑ0. However, since the higher-order
terms that we have ignored may induce some errors in (2.124), it is suggested
that (2.124) be used iteratively as follows: [26, pp. 389–391]

ϑ[i+1] = ϑ[i] − μ[i]J−1
2 (ϑ[i])∇J(ϑ[i]) (2.125)

where ϑ[i] denotes the parameter vector ϑ obtained at iteration i and μ[i] > 0
is the step size included to avoid divergence. As a result, the search direction
for the Newton method is d[i] = J−1

2 (ϑ[i])∇J(ϑ[i]).

To further analyze the Newton method, let ϑ[i] = ϑ, ϑ[i+1] = ϑ+Δϑ and
μ[i] = μ in (2.125). Then we have

Δϑ = −μJ−1
2 (ϑ)∇J(ϑ), μ > 0. (2.126)

Once again, by using (2.111), we have

J(ϑ + Δϑ) = J(ϑ) + (Δϑ)H
∇J(ϑ) +

1

2
(Δϑ)H J2(ϑ)Δϑ + · · · (2.127)

where the higher-order (≥ 3) terms can be neglected as Δϑ → 0; this, in turn,
requires that the step size μ be sufficiently small according to (2.126). From
(2.126) and (2.127), it follows that the change ΔJ(ϑ) � J(ϑ + Δϑ) − J(ϑ)
can be written as

ΔJ(ϑ) = −μ(1 − μ

2
) [∇J(ϑ)]

H
J−1

2 (ϑ)∇J(ϑ) as Δϑ → 0. (2.128)

Accordingly, if J2(ϑ) is positive definite and μ < 2, then the change ΔJ(ϑ) ≤
0 and

J(ϑ[i+1]) = J(ϑ + Δϑ) = J(ϑ) + ΔJ(ϑ) ≤ J(ϑ) = J(ϑ[i]). (2.129)

That is, the search direction always points towards a (local) minimum of J(ϑ)
when the Hessian matrix J2(ϑ) is positive definite, or equivalently J−1

2 (ϑ) is
positive definite (by Property 2.12), and the step size μ is chosen small enough.
However, due to utilization of only the lower-order terms of the Taylor series
in the derivation, the Newton method requires the initial condition ϑ[0] to be
sufficiently close to the solution point. Moreover, it is generally difficult and
sometimes almost impossible to compute J2(ϑ) as well as J−1

2 (ϑ).
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Regarding the implementation of the update equation (2.125), we note,
from (2.105) and (2.106), that for real θ the update equation is given by

θ[i+1] = θ[i] − μ[i]J−1
2 (θ[i]) · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.130)

where J2(θ
[i]) ≡ J2(ϑ

[i]), and for complex θ it is given by

(
θ[i+1]

θ∗[i+1]

)
=

(
θ[i]

θ∗[i]

)
− μ[i]

(
A[i] B[i](
B[i]

)∗ (
A[i]

)∗
)−1

·

⎛⎜⎜⎝
∂J(θ)

∂θ∗

∂J(θ)

∂θ

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
θ = θ[i]

(2.131)

where

A[i] =
(
A[i]

)H

=
∂

∂θ∗

[
∂J(θ)

∂θ∗

]H
∣∣∣∣∣∣
θ = θ[i]

, (2.132)

B[i] =
(
B[i]

)T

=
∂

∂θ∗

[
∂J(θ)

∂θ

]H
∣∣∣∣∣∣
θ = θ[i]

. (2.133)

Similar to the complex case of the steepest descent method, by (2.131),
(2.132), (2.133) and Theorem 2.8, one can show that only the following update
equation is needed for complex θ:

θ[i+1] = θ[i] − μ[i]C[i]

{
∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

− D[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
(2.134)

where

C[i] =

{
A[i] − B[i]

[(
A[i]

)∗]−1 (
B[i]

)∗}−1

, (2.135)

D[i] = B[i]
[(

A[i]
)∗]−1

. (2.136)

Furthermore, one can simplify the update equation (2.134) by forcing
B[i] = 0 for all iterations, and obtain the following “approximate” update
equation for complex θ:

θ[i+1] = θ[i] − μ[i]
(
A[i]

)−1

· ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

. (2.137)

We refer to the Newton method based on (2.137) as the approximate Newton
method. Note that for the approximate Newton method, if the matrix A[i] is
positive definite, then the corresponding Hessian matrix approximated as



56 2 Mathematical Background

J2(ϑ
[i]) ≈

(
A[i] 0

0
(
A[i]

)∗
)

(2.138)

is positive definite, too. Accordingly, the above-mentioned interpretation for
the operation of Newton method (see explanation of (2.129)) also applies to
the approximate Newton method. Table 2.3 summarizes the Newton method
and the approximate Newton method. Note that the approximate Newton
method exists only for the complex case.

Table 2.3 Newton and approximate Newton methods

Update Equation for the Newton Method

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − μ[i]J−1
2 (ϑ[i])∇J(ϑ[i])

where μ[i] > 0 is the step size, ∇J(ϑ[i]) is the gradient at ϑ = ϑ[i],
and J2(ϑ

[i]) is the Hessian matrix at ϑ = ϑ[i].

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − μ[i] · J−1
2 (θ[i]) ·

∂J(θ)

∂θ
θ = θ[i]

where J2(θ
[i]) = J2(ϑ

[i]).

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − μ[i]C[i] ∂J(θ)

∂θ∗

θ = θ[i]

− D[i] ·
∂J(θ)

∂θ
θ = θ[i]

where C[i] and D[i] are given by (2.135) and (2.136), respectively.

Update Equation for the Approximate Newton Method

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − μ[i] A[i]
−1

·
∂J(θ)

∂θ∗

θ = θ[i]

where A[i] is given by (2.132).
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Broyden–Fletcher–Goldfarb–Shanno Method

Recall that the idea behind the BFGS method is to approximate the inverse
Hessian matrix J−1

2 (ϑ[i]) in (2.125) by virtue of the gradient ∇J(ϑ[i]). Let
Q[i] be a Hermitian matrix, which will be obtained as an approximation to
J−1

2 (ϑ[i]). Then, from (2.125), it follows that the update equation for the
BFGS method is given by

ϑ[i+1] = ϑ[i] − μ[i]Q[i]∇J(ϑ[i]), (2.139)

i.e. the search direction d[i] = Q[i]∇J(ϑ[i]). Next, let us present how to update
Q[i+1] from Q[i], as well as how to choose an appropriate initial condition for
Q[0].

Update Equation for Q[i+1]

Let P[i] =
(
Q[i]

)−1
, that is, P[i] (a Hermitian matrix) is an approximation to

J2(ϑ
[i]). We will first derive the update equation for P[i+1] and then convert

it to the one for Q[i+1]. By substituting ϑ = ϑ[i] and ϑ0 = ϑ[i+1] into (2.122),
we obtain

si+1 = αJ2(ϑ
[i+1])ri+1 (2.140)

where α is given by (2.123) and

ri+1 = ϑ[i+1] − ϑ[i], (2.141)

si+1 = ∇J(ϑ[i+1]) − ∇J(ϑ[i]). (2.142)

It follows that P[i+1] should also satisfy (2.140) as follows:

si+1 = αP[i+1]ri+1. (2.143)

We note, from (2.100), (2.106), (2.141) and (2.142), that ri+1 and si+1 are
both L × 1 vectors for real θ and (2L) × 1 vectors for complex θ. Also note,
from (2.108) and (2.109), that P[i+1] is an L × L symmetric matrix for real
θ and a (2L) × (2L) Hermitian matrix for complex θ. Therefore, the number
of unknowns (to be determined) in P[i+1] is more than the number of linear
equations in (2.143), meaning that the solution satisfying (2.143) is not unique.

The general formula for updating P[i+1] iteratively can be written as

P[i+1] = P[i] + ΔP[i] (2.144)

where, in theory, the matrix ΔP[i] can have rank as high as L for real θ and
2L for complex θ, but rank 1 or rank 2 are more suitable in practice. By
adopting the rank 2 update ΔP[i] = c1z1z

H
1 + c2z2z

H
2 (see [26, p. 398] for the

real case), we have
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P[i+1] = P[i] + c1z1z
H
1 + c2z2z

H
2 (2.145)

where c1 and c2 are real or complex constants, and z1 and z2 are real or
complex vectors to be determined. Substituting (2.145) into (2.143) yields

si+1 = αP[i]ri+1 + αc1(z
H
1 ri+1)z1 + αc2(z

H
2 ri+1)z2. (2.146)

Equation (2.146) can be satisfied by choosing

αc1(z
H
1 ri+1)z1 = si+1 and c2(z

H
2 ri+1)z2 = −P[i]ri+1, (2.147)

which further leads to the following choice:

z1 = si+1 (2.148)

z2 = P[i]ri+1 (2.149)

c1 =
1

αzH
1 ri+1

=
1

αsH
i+1ri+1

(2.150)

c2 = − 1

zH
2 ri+1

= − 1

(P[i]ri+1)Hri+1
. (2.151)

Substituting (2.148) through (2.151) into (2.145) gives rise to the following
update equation for P[i+1]:

P[i+1] = P[i] +
si+1s

H
i+1

αsH
i+1ri+1

− (P[i]ri+1)(P
[i]ri+1)

H

(P[i]ri+1)Hri+1
, (2.152)

which is called the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula (refer
to [26] for the real case).

To convert the update equation (2.152) into the one for Q[i+1], let us
re-express (2.152) as

P[i+1] = R − (P[i]ri+1)(P
[i]ri+1)

H

(P[i]ri+1)Hri+1
(2.153)

where

R = P[i] +
si+1s

H
i+1

αsH
i+1ri+1

. (2.154)

Applying Woodbury’s identity (Corollary 2.6) to (2.153) and (2.154) yields

Q[i+1] = R−1 +
R−1(P[i]ri+1)(P

[i]ri+1)
HR−1

(P[i]ri+1)Hri+1 − (P[i]ri+1)HR−1(P[i]ri+1)
(2.155)

and
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R−1 = Q[i] − Q[i]si+1s
H
i+1Q

[i]

αsH
i+1ri+1 + sH

i+1Q
[i]si+1

, (2.156)

respectively. By substituting (2.156) into (2.155) and after some algebraic
manipulations, we obtain

Q[i+1] = Q[i] +
1

rH
i+1si+1

{
(α + βi) ri+1r

H
i+1 − ri+1s

H
i+1Q

[i] − Q[i]si+1r
H
i+1

}
(2.157)

where

βi =
sH
i+1Q

[i]si+1

sH
i+1ri+1

(2.158)

is a real number. In the derivation of (2.157), we have used the facts that P[i] =
(P[i])H and that rH

i+1si+1 = sH
i+1ri+1 is real (by (2.141), (2.142), (2.100), and

(2.106)).
As a consequence, the BFGS method employs the update equation (2.139)

for ϑ[i+1] along with the update equation (2.157) for Q[i+1] to obtain the
(local) minimum solution ϑ without involving any second partial derivatives
of J(ϑ).

Suggestion for the Initial Condition Q[0]

Since J−1
2 (ϑ[i+1]) is required to be positive definite in the Newton method,

the Hermitian matrix Q[i+1], as an approximation to J−1
2 (ϑ[i+1]), should also

maintain the positive definite property. The following theorem reveals the
conditions for maintaining the positive definite property of Q[i+1] (refer to [32]
for the real case).

Theorem 2.46. If the matrix Q[i] is positive definite and the step size μ[i] > 0
used in (2.139) is optimum, then the matrix Q[i+1] generated from (2.157) is
also positive definite where ri+1 and si+1 defined as (2.141) and (2.142) are
both nonzero vectors before convergence.

See Appendix 2F for the proof. Theorem 2.46 suggests that Q[0] be chosen as
a positive definite matrix, in addition to utilization of an appropriate step size
μ[i]. Usually, Q[0] = I is used. As such, the BFGS method performs initially as
the steepest descent method because (2.139) reduces to (2.114) when Q[i] = I.
After a number of iterations, it performs as the Newton method because Q[i+1]

then appears as a good approximation to J−1
2 (ϑ[i+1]). On the other hand,

numerical experience indicates that the BFGS method is less influenced by
the error in determining μ[i] [26, p. 406]. Nevertheless, in case the positive
definite property of Q[i+1] is violated due to this error, one may periodically
reset Q[i+1] via Q[i+1] = I. The corresponding BFGS method then reverts to
the steepest descent method at iteration (i + 1), but this time it has a much

better initial condition ϑ[i+1].
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Implementation of the BFGS Method

For the case of real θ, the update equation (2.139) can be written as

θ[i+1] = θ[i] − μ[i]Q[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.159)

and the update equation (2.157) for Q[i+1] reduces to

Q[i+1] = Q[i] +
(1 + βi) ri+1r

T
i+1 − ri+1s

T
i+1Q

[i] − Q[i]si+1r
T
i+1

rT
i+1si+1

(2.160)

(since α = 1) where the initial condition Q[0] = I is suggested and

βi =
sT
i+1Q

[i]si+1

sT
i+1ri+1

, (2.161)

ri+1 = θ[i+1] − θ[i], (2.162)

si+1 =

{
∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i+1]

}
−
{

∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
. (2.163)

On the other hand, for the case of complex θ, the vectors ri+1 and si+1

defined as (2.141) and (2.142) can be written as

ri+1 =
(
r̃T

i+1, r̃
H
i+1

)T
and si+1 =

(
s̃T
i+1, s̃

H
i+1

)T
(2.164)

where

r̃i+1 = θ[i+1] − θ[i], (2.165)

s̃i+1 =

{
∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i+1]

}
−
{

∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

}
. (2.166)

By (2.152), (2.164) and Theorem 2.8, one can show that if the initial condition
Q[0] = I is used, then the matrix Q[i] obtained from the update equation
(2.157) will have the following form:

Q[i] =

⎛⎝ Q
[i]
A Q

[i]
B(

Q
[i]
B

)∗ (
Q

[i]
A

)∗

⎞⎠ (2.167)

where Q
[i]
A =

(
Q

[i]
A

)H

and Q
[i]
B =

(
Q

[i]
B

)T

since Q[i] is Hermitian. From

(2.139), (2.157), (2.164) and (2.167), it follows that we need only the following

update equation for complex θ[i+1]:
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θ[i+1] = θ[i] − μ[i]

{
Q

[i]
A · ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

+ Q
[i]
B · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
(2.168)

and the following update equations for Q
[i+1]
A and Q

[i+1]
B :

Q
[i+1]
A = Q

[i]
A +

1

2Re
{
r̃H

i+1s̃i+1

}{(α + βi) r̃i+1r̃
H
i+1 − r̃i+1s̃

H
i+1Q

[i]
A

− Q
[i]
A s̃i+1r̃

H
i+1 − r̃i+1s̃

T
i+1

(
Q

[i]
B

)∗
− Q

[i]
B s̃∗i+1r̃

H
i+1

}
, (2.169)

Q
[i+1]
B = Q

[i]
B +

1

2Re
{
r̃H

i+1s̃i+1

}{(α + βi) r̃i+1r̃
T
i+1 − r̃i+1s̃

T
i+1

(
Q

[i]
A

)∗

− Q
[i]
A s̃i+1r̃

T
i+1 − r̃i+1s̃

H
i+1Q

[i]
B − Q

[i]
B s̃∗i+1r̃

T
i+1

}
(2.170)

where Q
[0]
A = I, Q

[0]
B = 0, and

βi =
Re

{
s̃H
i+1Q

[i]
A s̃i+1 + s̃H

i+1Q
[i]
B s̃∗i+1

}
Re

{
s̃H
i+1r̃i+1

} . (2.171)

Furthermore, one can simplify the above update equations by forcing

Q
[i]
B = 0 for all iterations. The corresponding update equation for complex

θ[i+1] is given by

θ[i+1] = θ[i] − μ[i]Q
[i]
A · ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

(2.172)

and the corresponding update equation for Q
[i+1]
A is given by

Q
[i+1]
A = Q

[i]
A +

1

2Re
{
r̃H

i+1s̃i+1

}{(α + βi) r̃i+1r̃
H
i+1

−r̃i+1s̃
H
i+1Q

[i]
A − Q

[i]
A s̃i+1r̃

H
i+1

}
(2.173)

where Q
[0]
A = I and

βi =
Re

{
s̃H
i+1Q

[i]
A s̃i+1

}
Re

{
s̃H
i+1r̃i+1

} . (2.174)

Similarly, we refer to the BFGS method that is based on (2.172), (2.173) and
(2.174) as the approximate BFGS method. As a result of the aforementioned
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discussions, the approximate BFGS method also maintains the positive def-
inite property of the corresponding Q[i], provided that the step size μ[i] is
chosen appropriately. Table 2.4 summarizes the BFGS method and the ap-
proximate BFGS method where the latter is only for the complex case.

2.4 Least-Squares Method

Many science and engineering problems require solving the following set of M
linear equations in K unknowns:

Aθ = b (2.175)

where A is an M × K matrix, b = (b1, b2, ..., bM )T is an M × 1 vector, and
θ = (θ1, θ2, ..., θK)T is a K × 1 vector of unknown parameters to be solved.
Let A = (a1,a2, ...,aK) where ak, k = 1, 2, ..., K, are the column vectors of
A. Then the set of linear equations (2.175) can be written as

b =

K∑
k=1

θkak. (2.176)

Usually, (2.175) has no exact solution because b is not ordinarily located in
the column space of A [6, p. 221], i.e. b cannot be expressed as a linear
combination of ak, k = 1, 2, ..., K, for any θ (see (2.176)). The column space
of A is often referred to as the range space of A, whose dimension is equal to
rank{A}. On the other hand, when b = 0 (i.e. Aθ = 0), the corresponding
set of solutions spans another subspace, referred to as the null space of A.
The dimension of the nullspace of A, called the nullity of A, is equal to
K − rank{A}.

In practical applications, however, an approximate solution to (2.175) is
still desired. Hence, let us change the original problem into the following
approximation problem:

Aθ = b− ε (2.177)

where

ε = b− Aθ = b −
K∑

k=1

θkak (2.178)

is the M ×1 vector of approximation errors (equation errors). For the approx-
imation problem, a widely used approach is to find θ such that

b̂ = Aθ =
K∑

k=1

θkak (2.179)
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Table 2.4 BFGS and approximate BFGS methods

Update Equation for the BFGS Method

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − μ[i]Q[i]
∇J(ϑ[i])

and update the Hermitian matrix Q[i] via (2.157) where μ[i] > 0 is
the step size, ∇J(ϑ[i]) is the gradient at ϑ = ϑ[i], and Q[0] = I is
suggested. In the update equation (2.157), the parameters α and βi

are given by (2.123) and (2.158), respectively, and the vectors ri+1

and si+1 are given by (2.141) and (2.142), respectively.

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − μ[i]Q[i] ·
∂J(θ)

∂θ
θ = θ[i]

and update the symmetric matrix Q[i] via (2.160), in which βi, ri+1

and si+1 are given by (2.161), (2.162) and (2.163), respectively.

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − μ[i] Q
[i]
A ·

∂J(θ)

∂θ∗

θ = θ[i]

+ Q
[i]
B ·

∂J(θ)

∂θ
θ = θ[i]

and update the Hermitian matrix Q
[i]
A and the matrix Q

[i]
B via (2.169)

and (2.170), in which Q
[0]
A = I, Q

[0]
B = 0, and βi, ri+1 and si+1 are

given by (2.171), (2.165) and (2.166), respectively.

Update Equation for the Approximate BFGS Method

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − μ[i]Q
[i]
A ·

∂J(θ)

∂θ∗

θ = θ[i]

and update the matrix Q
[i]
A via (2.173), in which Q

[0]
A = I and βi,

ri+1 and si+1 are given by (2.174), (2.165) and (2.166), respectively.
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approximates b in the sense of minimizing the objective function

JLS(θ) = ‖ε‖2 =

M∑
m=1

|εm|2 (2.180)

where εm is the mth entry of ε. The problem of minimizing the sum of squared
errors given by (2.180) is called the least-squares (LS) problem and the corre-
sponding solution is called the least-squares (LS) solution.

2.4.1 Full-Rank Overdetermined Least-Squares Problem

Consider that M ≥ K and A is of full rank, i.e. rank{A} = K. The LS
solution is derived as follows. Taking the first derivative of JLS(θ) given by
(2.180) with respect to θ∗ and setting the result to zero yields

∂JLS(θ)

∂θ∗ = −AH (b − Aθ) = −AHε = 0, (2.181)

which gives rise to

AHAθ = AHb. (2.182)

From (2.181), it follows that

aH
k ε = 0 for k = 1, 2, ..., K. (2.183)

That is, the error vector ε is orthogonal to the column vectors ak, thereby
leading to the name “normal equations” for the set of equations (2.182) [2]. As
illustrated in Fig. 2.9 (by (2.178) and (2.179)), ε has the minimum norm only
when it is orthogonal (perpendicular) to the range space of A (the plane). This
observation indicates that the solution obtained from (2.182) corresponds to
the global minimum of JLS(θ).

Since A is of full rank, AHA is a nonsingular K × K matrix and thus
there is only a unique solution to (2.182) as follows:

θ̂LS = (AHA)−1AHb (2.184)

where θ̂LS represents the LS solution for θ. Substituting (2.184) into (2.179)
gives

b̂ = PAb (2.185)

where

PA = A(AHA)−1AH (2.186)

is an M × M matrix. From Fig. 2.9, one can observe that b̂ corresponds to
the projection of b onto the range space of A. For this reason, PA is called
the projection matrix of A. It has the following properties.
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Fig. 2.9 Geometrical explanation of the LS method for K = 2

• Idempotent property: PAPA = PA.
• Hermitian property: PH

A = PA.

The idempotent property implies that PAb̂ = b̂, i.e. the projection of b̂ onto
the range space is still b̂. This can also be observed from Fig. 2.9 where b̂ is
already in the range space. When M = K, (2.184) reduces to

θ̂LS = A−1b (2.187)

and the corresponding PA = I. That is, there is no need for any projection
because b is already in the range space for this case.

2.4.2 Generic Least-Squares Problem

Now consider the general case that M can be less than K and rank{A} =
r ≤ min{M, K}, i.e. A can be rank deficient. The SVD of A is given by

A = UΣVH = U

(
Λ 0

0 0

)
VH (2.188)

where U = (u1,u2, ...,uM ) and V = (v1,v2, ...,vK) are M × M and K × K
unitary matrices, respectively, and Λ = diag{λ1, λ2, ..., λr}. The vectors uk

and vk are the left and right singular vectors of A, respectively, and λ1, λ2,
..., λr are the real positive singular values. By (2.178), (2.180) and (2.188),

JLS(θ) = ‖b− Aθ‖2 = ‖UH(b − Aθ)‖2

= ‖UHb − UHAVVHθ‖2 = ‖UHb − Σθ̃‖2 (2.189)

where

θ̃ = (θ̃1, θ̃2, ..., θ̃K)T � VHθ. (2.190)
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Equation (2.189) can be further expressed as follows:

JLS(θ) =

r∑
k=1

|uH
k b − λkθ̃k|2 +

M∑
k=r+1

|uH
k b|2. (2.191)

Clearly, the minimum value

min{JLS(θ)} =

M∑
k=r+1

|uH
k b|2

is attained when the first r entries of θ̃ satisfy

θ̃k =
uH

k b

λk
for k = 1, 2, ..., r, (2.192)

regardless of what the remaining entries θ̃k, k = r + 1, r + 2, ..., K, are. This
indicates that there are infinitely many solutions to the generic LS problem.

Among these solutions, the LS solution θ̂LS is always chosen as the one
with the minimum norm. It is therefore also referred to as the minimum-norm
solution. Because ‖θ̃‖2 = θHVVHθ = ‖θ‖2, the minimum-norm solution θ̂LS

corresponds to letting θ̃k = 0 for k = r + 1, r + 2, ..., K. This, together with
(2.190) and (2.192), therefore gives

θ̂LS = Vθ̃ =

K∑
k=1

vk θ̃k =

r∑
k=1

vk

(
uH

k b

λk

)
. (2.193)

The solution given by (2.193) is also equivalent to the form

θ̂LS = A+b (2.194)

where

A+ =

r∑
k=1

1

λk
vku

H
k = VΣ+UH (2.195)

is a K × M matrix in which

Σ+ =

(
Λ−1 0

0 0

)
(2.196)

is also a K × M matrix. The matrix A+ is called the Moore–Penrose gener-
alized inverse or the pseudoinverse of A. By substituting (2.194) into (2.179),

we also obtain b̂ as given by (2.185) with the generic form of projection matrix

PA = AA+. (2.197)
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Table 2.5 gives a summary of the LS method. When A is of full rank and
M ≥ K (i.e. the full-rank overdetermined LS problem), the pseudoinverse
A+ = (AHA)−1AH (Problem 2.21), and thus the LS solution given by (2.194)
reduces to the one given by (2.184). Nevertheless, if computational complexity
is not of major concern, it is preferred to use (2.194) to obtain the LS solution
due to the better numerical properties of SVD. On the other hand, for the
case of A having a special structure such as the Toeplitz structure, it may be
better to use other algorithms that take advantage of the special structure to
solve the LS problem.

Table 2.5 Least-squares (LS) method

Problem Find a K × 1 vector θ to solve the set of linear
equations

Aθ = b

by minimizing the sum of squared errors

JLS(θ) = ‖ε‖2

where A is an M × K matrix with the SVD A =
UΣVH and ε = b − Aθ is the error vector.

Generic solution The (minimum-norm) LS solution

θLS = A+b

where A+ is the pseudoinverse of A given by

A+ = VΣ+UH =
r

k=1

1

λk
vku

H
k .

Special cases (i) M ≥ K and rank{A} = K:

θLS = (AHA)−1AHb

(ii) M = K and rank{A} = K:

θLS = A−1b

2.5 Summary

We have reviewed the definitions of vectors, vector spaces, matrices, and some
special forms of matrices. Several useful formulas and properties of matrices as
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well as matrix decomposition including eigendecomposition and the SVD were
described. The SVD was then applied to the derivation of a minimum-norm
solution to the generic LS problem. Regarding the mathematical analysis, we
have dealt with the convergence of sequences and series including the Fourier
series, as well as sequence and function spaces. As for the optimization the-
ory, we have introduced the necessary and sufficient conditions for solutions,
carefully dealt with the first derivative of the objective function with respect
to a complex vector, and provided an overview of gradient-type optimization
methods. Three popular gradient-type methods were introduced in terms of a
complex-valued framework since they are often applied to blind equalization
problems. Vector differentiation was then applied to find the solution to the
full-rank overdetermined LS problem.

Appendix 2A

Proof of Theorem 2.15

The theorem can be proved by either of the following two approaches.

Approach I: Derivation from the Matrix AHA

According to Properties 2.13 and 2.11, the eigenvalues of the K × K matrix
AHA are all real nonnegative. Therefore, let λ1, λ2, ..., λK be nonnegative
real numbers, and λ2

1, λ2
2, ..., λ2

K be the eigenvalues of AHA. Furthermore,
let these eigenvalues be arranged in the following order:

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
r > 0

and

λ2
r+1 = λ2

r+2 = · · · = λ2
K = 0 (2.198)

where the second equation follows from the fact that rank{AHA} = rank{A}
= r. Let v1, v2, ..., vK be the orthonormal eigenvectors of AHA corresponding
to the eigenvalues λ2

1, λ2
2, ..., λ2

K , respectively. That is,

AHAvi = λ2
i vi, i = 1, 2, ..., K (2.199)

and

vH
i vj =

{
1, for i = j,

0, for i �= j.
(2.200)

Let V = (V1 V2) be a K × K matrix where V1 = (v1,v2, ...,vr) is a K × r
matrix and V2 = (vr+1,vr+2, ...,vK) is a K × (K − r) matrix. Then, from
(2.200), it follows that
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VHV =

(
VH

1

VH
2

)
(V1 V2) =

(
VH

1 V1 VH
1 V2

VH
2 V1 VH

2 V2

)
= I,

i.e. V is a unitary matrix. By (2.198) and (2.199), we have

AHAV2 = (AHAvr+1,A
HAvr+2, ...,A

HAvK)

= (λ2
r+1vr+1, λ

2
r+2vr+2, ..., λ

2
KvK) = 0,

implying that

(AV2)
H(AV2) = VH

2 (AHAV2) = 0

or

AV2 = 0. (2.201)

In the same way, by (2.199), we have

AHAV1 = (λ2
1v1, λ

2
2v2, ..., λ

2
rvr) = V1Λ

2 (2.202)

where Λ2 = diag{λ2
1, λ

2
2, ..., λ

2
r}. Equation (2.202) gives rise to

VH
1 AHAV1 = VH

1 V1Λ
2 = Λ2,

implying that

(AV1Λ
−1)H(AV1Λ

−1) = Λ−1(VH
1 AHAV1)Λ

−1 = I (2.203)

where we have used the fact that Λ−H = Λ−1 since the λi are real. Let the
M × r matrix AV1Λ

−1 = U1, i.e.

U1 = (u1,u2, ...,ur) =

(
Av1

λ1
,
Av2

λ2
, ...,

Avr

λr

)
. (2.204)

From (2.203), we obtain UH
1 U1 = I which gives

UH
1 (AV1Λ

−1) = I

or

AV1 = U1Λ. (2.205)

Choose an M × (M − r) matrix U2 = (ur+1,ur+2, ...,uM ) such that U =
(U1 U2) is an M × M unitary matrix, i.e. UH

2 U2 = I, UH
2 U1 = 0, and

UH
1 U2 = 0. Then



70 2 Mathematical Background

UHAV =

(
UH

1

UH
2

)
A(V1 V2) =

(
UH

1 AV1 UH
1 AV2

UH
2 AV1 UH

2 AV2

)

=

(
UH

1 U1Λ 0

UH
2 U1Λ 0

)
(by (2.201) and (2.205))

=

(
Λ 0

0 0

)
= Σ. (2.206)

This, together with the fact that both U and V are unitary, therefore proves
the theorem.

Approach II: Derivation from the Matrix AAH

According to Properties 2.13 and 2.11, the eigenvalues of the M × M matrix
AAH are all real nonnegative. Therefore, let λ1, λ2, ..., λM be nonnegative
real numbers, and λ2

1, λ2
2, ..., λ2

M be the eigenvalues of AAH . Furthermore,
let these eigenvalues be arranged in the following order:

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
r > 0

and

λ2
r+1 = λ2

r+2 = · · · = λ2
M = 0. (2.207)

Let u1, u2, ..., uM be the orthonormal eigenvectors of AAH corresponding
to the eigenvalues λ2

1, λ2
2, ..., λ2

M , respectively. That is,

AAHui = λ2
i ui, i = 1, 2, ..., M (2.208)

and

uH
i uj =

{
1, for i = j,

0, for i �= j.
(2.209)

Let U = (U1 U2) be an M × M matrix where U1 = (u1,u2, ...,ur) is an
M ×r matrix and U2 = (ur+1,ur+2, ...,uM ) is an M × (M −r) matrix. Then,
from (2.209), it follows that

UHU =

(
UH

1

UH
2

)
(U1 U2) =

(
UH

1 U1 UH
1 U2

UH
2 U1 UH

2 U2

)
= I,

i.e. U is a unitary matrix. By (2.207) and (2.208), we have

AAHU2 = (λ2
r+1ur+1, λ

2
r+2ur+2, ..., λ

2
MuM ) = 0,
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implying that

(UH
2 A)(UH

2 A)H = UH
2 (AAHU2) = 0

or

UH
2 A = 0. (2.210)

In the same way, by (2.208), we have

AAHU1 = (λ2
1u1, λ

2
2u2, ..., λ

2
rur) = U1Λ

2 (2.211)

or

UH
1 AAHU1 = UH

1 U1Λ
2 = Λ2,

implying that

(AHU1Λ
−1)H(AHU1Λ

−1) = Λ−1(UH
1 AAHU1)Λ

−1 = I. (2.212)

Let the K × r matrix AHU1Λ
−1 = V1, i.e.

V1 = (v1,v2, ...,vr) =

(
AHu1

λ1
,
AHu2

λ2
, ...,

AHur

λr

)
. (2.213)

From (2.212), we obtain VH
1 V1 = I, which gives

(AHU1Λ
−1)HV1 = I

or

UH
1 A = ΛVH

1 . (2.214)

Choose a K×(K−r) matrix V2 = (vr+1,vr+2, ...,vK) such that V = (V1 V2)
is a K×K unitary matrix, i.e. VH

2 V2 = I, VH
2 V1 = 0, and VH

1 V2 = 0. Then

UHAV =

(
UH

1

UH
2

)
A(V1 V2) =

(
UH

1 AV1 UH
1 AV2

UH
2 AV1 UH

2 AV2

)

=

(
ΛVH

1 V1 ΛVH
1 V2

0 0

)
(by (2.210) and (2.214))

=

(
Λ 0

0 0

)
= Σ. (2.215)

This, together with the fact that both U and V are unitary, proves this
theorem, too.

Q.E.D.
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Appendix 2B

Some Terminologies of Functions

A function written as y = f(x) is a rule that assigns to each element x in a
set A one and only one element y in a set B. The set A is called the domain of
f(x), while the set B is called the range of f(x). The symbol x representing an
arbitrary element in A is called an independent variable. Some terminologies
for f(x) defined on an interval [xL, xU] (the domain of f(x)) are as follows.

• A function f(x) is said to be even (odd) if f(−x) = f(x) (f(−x) = −f(x))
for all x ∈ [xL, xU].

• A function f(x) is said to be periodic with period T if f(x + kT ) = f(x) for
all x ∈ [xL, xU] and any nonzero integer k.

• A function f(x) is said to be bounded if |f(x)| ≤ M for all x ∈ [xL, xU]
where M is a positive constant.

• A function f(x) is said to be increasing (decreasing) or, briefly, monotonic
if f(x0) ≤ f(x1) (f(x0) ≥ f(x1)) for all x0, x1 ∈ [xL, xU] and x0 < x1.

• A function f(x) is said to be strictly increasing (strictly decreasing) if
f(x0) < f(x1) (f(x0) > f(x1)) for all x0, x1 ∈ [xL, xU] and x0 < x1.

Continuity of Functions

A function f(x) is said to be continuous at a point x0 if limx→x0 f(x) = f(x0),
i.e. for every real number ε > 0 there exists a real number Δx > 0 such that

|f(x) − f(x0)| < ε whenever 0 < |x − x0| < Δx (2.216)

where Δx is, in general, dependent on ε and x0. Furthermore, define the left-
hand limit of f(x) at a point x0 as

f(x−
0 ) = lim

x→x−

0

f(x) = lim
x→x0
x<x0

f(x) (2.217)

and the right-hand limit of f(x) at x0 as

f(x+
0 ) = lim

x→x+
0

f(x) = lim
x→x0
x>x0

f(x). (2.218)

Then f(x) is continuous at x0 if and only if [29, 33]

f(x−
0 ) = f(x+

0 ) = f(x0). (2.219)

On the other hand, a function f(x) is said to be discontinuous at a point x0

if it fails to be continuous at x0.
A function f(x) is said to be continuous on an open interval (xL, xU) if

it is continuous at every point x ∈ (xL, xU). A function f(x) is said to be
continuous on a closed interval [xL, xU] if it is continuous on (xL, xU) and,
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meanwhile, f(x+
L ) = f(xL) and f(x−

U) = f(xU). Furthermore, as illustrated
in Fig. 2.10, a function f(x) is said to be piecewise continuous on an interval
[xL, xU] if there are at most a finite number of points xL = x1 < x2 < · · · <
xn = xU such that (i) f(x) is continuous on each subinterval (xk, xk+1) for
k = 1, 2, ..., n − 1 and (ii) both f(x−

k ) and f(x+
k ) exist for k = 1, 2, ..., n

[13, 18, 34]. In a word, a piecewise continuous function has a finite number of
finite discontinuities. Moreover, a continuous function is merely a special case
of a piecewise continuous function.

1x 2x 3x 4x 1nx − nx=
Lx

=

U
x

x

( )f x

Fig. 2.10 A piecewise continuous function f(x) on an interval [xL, xU]

Continuity of Derivatives

The derivative of a function f(x) at a point x0 is defined as

f ′(x0) =
df(x)

dx

∣∣∣∣∣
x=x0

= lim
Δx→0

f(x0 + Δx) − f(x0)

Δx
(2.220)

provided that the limit exists. Define the left-hand derivative of f(x) at x0 as

f ′(x−
0 ) = lim

Δx→0−

f(x0 + Δx) − f(x−
0 )

Δx
(2.221)

and the right-hand derivative of f(x) at x0 as

f ′(x+
0 ) = lim

Δx→0+

f(x0 + Δx) − f(x+
0 )

Δx
. (2.222)

Then the derivative f ′(x) is said to be piecewise continuous on an interval
[xL, xU] if f(x) is piecewise continuous on [xL, xU] and, meanwhile, there are
at most a finite number of points xL = x1 < x2 < · · · < xn = xU such
that (i) f ′(x) exists and is continuous on each subinterval (xk, xk+1) for k =
1, 2, ..., n − 1 and (ii) both f ′(x−

k ) and f ′(x+
k ) exist for k = 1, 2, ..., n [13, 18].

Note that if f ′(x) exists at a point x0, then f(x) is continuous at x0.
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Appendix 2C

Proof of Theorem 2.33

From the assumption that
∑∞

n=−∞ |an|s < ∞, it follows that |an| is bounded
above. Let β = max{|an|, n = −N ∼ N}. Since max{|an|/β, n = −N ∼ N} =
1 and l > s ≥ 1, one can easily infer that

1 ≤
N∑

n=−N

(
|an|
β

)l

≤
N∑

n=−N

(
|an|
β

)s

, (2.223)

which further leads to⎧⎨⎩
N∑

n=−N

(
|an|
β

)l
⎫⎬⎭

1/l

≤
{

N∑
n=−N

(
|an|
β

)s}1/s

. (2.224)

Canceling the common term β on both sides of (2.224) yields{
N∑

n=−N

|an|l
}1/l

≤
{

N∑
n=−N

|an|s
}1/s

. (2.225)

Since (2.225) holds for any N and
{∑∞

n=−∞ |an|s
}1/s

< ∞, letting N → ∞
therefore gives (2.59). Thus, what remains to prove is the equality condition
of (2.59).

Suppose that there are M terms of the sequence {an} corresponding to
|an| = β, and that |an| < β for n ∈ Ω where Ω is a set of indices. It can be seen
that the equality of (2.59) requires the equality of (2.223) and the equality of
(2.224) for N → ∞. From the equality of (2.223) for N → ∞, we have

M +
∑
n∈Ω

(
|an|
β

)l

= M +
∑
n∈Ω

(
|an|
β

)s

,

implying that |an| = 0 for n ∈ Ω. From this result and the equality of (2.224)
for N → ∞, we have

M1/l = M1/s,

implying that M = 1. This therefore completes the proof.
Q.E.D.
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Appendix 2D

Proof of Theorem 2.36

Since sn(x) is periodic with period 2π, substituting (2.76) into (2.77) yields

sn(x) =
1

2π

∫ π

−π

f(x − t)Dn(t)dt =
1

2π

∫ π

−π

f(x + t)Dn(t)dt

= gn(x) + g̃n(x) (2.226)

where

Dn(t) =
n∑

k=−n

ejkt =
sin [(2n + 1)t/2]

sin(t/2)
(2.227)

is the so-called nth Dirichlet kernel [14] and

gn(x) =
1

2π

∫ π

0

f(x + t)Dn(t)dt, (2.228)

g̃n(x) =
1

2π

∫ 0

−π

f(x + t)Dn(t)dt. (2.229)

By expressing Dn(t) = 1 + 2
∑n

k=1 cos kt, we obtain the integrations

1

2π

∫ π

0

Dn(t)dt =
1

2
and

1

2π

∫ 0

−π

Dn(t)dt =
1

2
. (2.230)

Further express gn(x) given by (2.228) as

gn(x) =
1

2π

∫ π

0

f(x+)Dn(t)dt +
1

2π

∫ π

0

[f(x + t) − f(x+)]Dn(t)dt

which, together with (2.227) and (2.230), gives

gn(x) − f(x+)

2
=

1

2π

∫ π

−π

h(t) sin
(2n + 1)t

2
dt

=
1

2π

∫ π

−π

h1(t) sin(nt)dt +
1

2π

∫ π

−π

h2(t) cos(nt)dt (2.231)

where

h(t) =

⎧⎪⎨⎪⎩
f(x + t) − f(x+)

sin(t/2)
, 0 ≤ t < π,

0, −π ≤ t < 0,

and h1(t) = h(t) cos(t/2), h2(t) = h(t) sin(t/2). By definition, the left-hand
limit h(0−) = limt→0− h(t) = 0, and the right-hand limit
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h(0+) = lim
t→0+

h(t) = lim
t→0+

[
f(x + t) − f(x+)

t

]
·
[

t

sin(t/2)

]
= 2f ′(x+)

exists since f ′(x+) exists. From this and the condition that f(x) is piecewise
continuous on [−π, π), it follows that h(t) is piecewise continuous on [−π, π)
and, thus, square integrable on [−π, π). In other words, h(t) is in L2[−π, π)
and so are h1(t) and h2(t). Accordingly, the two terms in the second line of
(2.231) are identical to zero as n → ∞ (by Problem 2.16) and therefore

lim
n→∞ gn(x) =

f(x+)

2
. (2.232)

In a similar way, by expressing g̃n(x) given by (2.229) as

g̃n(x) =
1

2π

∫ 0

−π

f(x−)Dn(t)dt +
1

2π

∫ 0

−π

[f(x + t) − f(x−)]Dn(t)dt

and with the condition that f ′(x−) exists and f(x) is piecewise continuous on
[−π, π), we also have

lim
n→∞ g̃n(x) =

f(x−)

2
. (2.233)

Equation (2.78) then follows from (2.226), (2.232) and (2.233).
Q.E.D.

Appendix 2E

Proof of Theorem 2.38

Since f ′(x) is piecewise continuous on [−π, π), it is integrable on [−π, π) and
has the Fourier series

f ′(x) ∼
∞∑

k=−∞
c̃kejkx

where

c̃0 =
1

2π

∫ π

−π

f ′(x)dx =
f(π) − f(−π)

2π
= 0, (2.234)

c̃k =
1

2π

∫ π

−π

f ′(x)e−jkxdx =
f(x)e−jkx

2π

∣∣∣∣∣
π

−π

+
jk

2π

∫ π

−π

f(x)e−jkxdx

= jkck, for |k| = 1 ∼ ∞. (2.235)

By (2.235) and the Cauchy–Schwartz inequality (Theorem 2.32), we have
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n∑
k=−n

|ck| = |c0| +
n∑

k=−n,k �=0

|k|−1 · |c̃k|

≤ |c0| +
⎧⎨⎩

n∑
k=−n,k �=0

|k|−2

⎫⎬⎭
1/2 ⎧⎨⎩

n∑
k=−n,k �=0

|c̃k|2
⎫⎬⎭

1/2

= |c0| +
√

2

{
n∑

k=1

k−2

}1/2 { n∑
k=1

(|c̃k|2 + |c̃−k|2
)}1/2

. (2.236)

As shown in Example 2.26, the series
∑∞

k=1 k−2 converges, indicating that

∞∑
k=1

k−2 < ∞. (2.237)

Moreover, since f ′(x) is piecewise continuous on [−π, π), it is square integrable
on [−π, π) and therefore is in L2[−π, π). Accordingly, by Bessel’s inequality
(2.69) and (2.234),

∞∑
k=−∞,k �=0

|c̃k|2 ≤ 1

2π

∫ π

−π

|f ′(x)|2 dx < ∞. (2.238)

As a consequence of (2.236), (2.237) and (2.238),
∑∞

k=−∞ |ck| < ∞ and, by
Theorem 2.37, the Fourier series given by (2.75) is uniformly and absolutely
convergent on [−π, π). From this and by the pointwise convergence theorem,
it then follows that the Fourier series given by (2.75) converges uniformly and
absolutely to f(x) since f(x) is continuous on [−π, π).

Q.E.D.

Appendix 2F

Proof of Theorem 2.46

According to Property 2.12, the proof is equivalent to showing that P[i+1] is
positive definite under the conditions that (i) both P[i] and Q[i] are positive
definite, (ii) ri+1 �= 0, (iii) si+1 �= 0, and (iv) μ[i] is optimum for iteration i.

By (2.152), we can express the Hermitian form of P[i+1] as follows:

xHP[i+1]x = xHP[i]x +

∣∣sH
i+1x

∣∣2
αsH

i+1ri+1
−

∣∣rH
i+1P

[i]x
∣∣2

rH
i+1P

[i]ri+1

=

(
xHP[i]x

) (
rH

i+1P
[i]ri+1

)− ∣∣rH
i+1P

[i]x
∣∣2

rH
i+1P

[i]ri+1
+

∣∣sH
i+1x

∣∣2
αsH

i+1ri+1
(2.239)

for any x �= 0. Let the SVD of the Hermitian matrix P[i] be written as
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P[i] =

L∑
k=1

λkuku
H
k (see (2.42)) (2.240)

where

L̃ =

{
L for real θ,

2L for complex θ
(2.241)

and uk is the orthonormal eigenvector of P[i] associated with the eigenvalue
λk. Since P[i] is positive definite, all the eigenvalues λk are (real) positive.
Then, by the Cauchy–Schwartz inequality (Theorem 2.1), we have

∣∣∣rH
i+1P

[i]x
∣∣∣2 =

∣∣∣∣∣∣
L∑

k=1

(√
λkr

H
i+1uk

)(√
λku

H
k x

)∣∣∣∣∣∣
2

≤
⎧⎨⎩

L∑
k=1

λk

∣∣rH
i+1uk

∣∣2⎫⎬⎭
⎧⎨⎩

L∑
k=1

λk

∣∣uH
k x

∣∣2⎫⎬⎭
=

⎧⎨⎩
L∑

k=1

λkr
H
i+1uku

H
k ri+1

⎫⎬⎭
⎧⎨⎩

L∑
k=1

λkx
Huku

H
k x

⎫⎬⎭
=
(
rH

i+1P
[i]ri+1

)(
xHP[i]x

)
. (2.242)

From (2.239), (2.242), and the fact that rH
i+1P

[i]ri+1 > 0 (since P[i] is positive
definite and ri+1 �= 0), it follows that

xHP[i+1]x ≥
∣∣sH

i+1x
∣∣2

αsH
i+1ri+1

for any x �= 0 (2.243)

and the equality holds only when x = c · ri+1 for any nonzero scalar c.
On the other hand, since

ϑ[i+1] = ϑ[i] − μ[i]d[i] (2.244)

where d[i] = Q[i]∇J(ϑ[i]), the necessary condition for the optimum μ[i] can

be derived by minimizing the objective function f(μ[i]) � J(ϑ[i] − μ[i]d[i]).
More specifically, by using the chain rule, we obtain

df(μ[i])

dμ[i]
=

[
∂J(ϑ)

∂ϑ

]H
∣∣∣∣∣∣
ϑ=ϑ[i+1]

· dϑ[i+1]

dμ[i]
= −

[
∇J(ϑ[i+1])

]H

d[i] = 0.

(2.245)

This result, together with (2.141), (2.142) and (2.244), therefore leads to
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sH
i+1ri+1 = μ[i]

[
∇J(ϑ[i])

]H

d[i]

= μ[i]
[
∇J(ϑ[i])

]H

Q[i]∇J(ϑ[i]) > 0 (2.246)

since μ[i] > 0, Q[i] is positive definite and ∇J(ϑ[i]) �= 0 before convergence.
As a consequence of (2.243) and (2.246),

xHP[i+1]x ≥
∣∣sH

i+1x
∣∣2

αsH
i+1ri+1

≥ 0 for any x �= 0. (2.247)

The first equality of (2.247) holds only when x = c · ri+1 for any c �= 0, while
the second equality of (2.247) holds only when sH

i+1x = 0. In other words,

for any x �= 0, xHP[i+1]x = 0 happens only when sH
i+1(c · ri+1) = 0, that

contradicts (2.246). As a result, the Hermitian form xHP[i+1]x > 0 for any
x �= 0 and accordingly P[i+1] is positive definite.

Q.E.D.

Problems

2.1. Prove Theorem 2.1.

2.2. Prove Theorem 2.2. (Hint: Use the Cauchy–Schwartz inequality.)

2.3. Prove Theorem 2.5.

2.4. Prove Theorem 2.7. (Hint: Express A as a multiplication of a lower
triangular matrix and an upper triangular matrix.)

2.5. Prove Theorem 2.8.

2.6. Prove Properties 2.9 to 2.12.

2.7. Prove Property 2.13.

2.8. Prove Property 2.14. (Hint: Use Property 2.10.)

2.9. (a) Find the eigenvalues and the normalized eigenvectors of the ma-
trix

A =

(
3 1

1 3

)
.

(b) Use part (a) to find the eigendecomposition of the matrix A.

2.10. Prove Corollary 2.16.
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2.11. Prove Theorem 2.17.

2.12. Prove Theorem 2.18.

2.13. Prove Theorem 2.21.

2.14. Prove Theorem 2.25.

2.15. Prove Theorem 2.30.

2.16. Suppose {φn(x), n = −∞ ∼ ∞} is a set of real or complex orthog-
onal functions in L2[xL, xU]. Show that if f(x) is a real or complex
function in L2[xL, xU], then

lim
|n|→∞

∫ xU

xL

f(x)φ∗
n(x)dx = 0.

(Hint: Use Bessel’s inequality.)

2.17. Prove Theorem 2.37. (Hint: Use the Weierstrass M-test and Theo-
rem 2.27.)

2.18. Prove Theorem 2.39. (Hint: Use Theorem 2.30 to show that the
sequence {∑n

k=−n ckejkx}∞n=1 is a Cauchy sequence in L2[−π, π).)

2.19. Prove Theorem 2.42.

2.20. Prove Theorem 2.44.

2.21. Show that if A is a full-rank M × K matrix and M ≥ K, then its
pseudoinverse A+ = (AHA)−1AH .

2.22. Find the LS solution to the set of linear equations Aθ = b where

A =

⎛⎜⎜⎜⎜⎝
1 2

2 −1

5 2

3 −4

⎞⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎝
2

−1

1

3

⎞⎟⎟⎟⎟⎠ .

2.23. Consider the set of linear equations Aθ = b where

A =

⎛⎜⎜⎜⎜⎝
0.6 −1.6 0

0.8 1.2 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠ and b =

⎛⎜⎜⎜⎜⎝
−0.5

2

0

0

⎞⎟⎟⎟⎟⎠ .

(a) Find the SVD of A.
(b) Find the LS solution for θ.
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Computer Assignments

2.1. Suppose f(x) is a periodic function of period 2π and

f(x) =

{
1, |x| ≤ π/2,

0, π/2 < |x| ≤ π.

(a) Let sn(x) denote the nth partial sum of the Fourier series
of f(x). Find the Fourier series of f(x) and the partial sum
limn→∞ sn(x).

(b) Plot the partial sums s1(x), s3(x) and s23(x), and specify what
phenomenon you observe.
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3

Fundamentals of Statistical Signal Processing

This chapter deals with several fundamental topics of statistical signal process-
ing, including discrete-time signals and systems, random variables, random
processes, and estimation theory.

3.1 Discrete-Time Signals and Systems

We start by reviewing the fundamentals of 1-D SISO discrete-time signals
and systems including the definitions, notation, time-domain and transform-
domain characterization along with some useful transformation tools. The
treatment of 1-D MIMO signals and systems and that of 2-D SISO signals
and systems are left to Parts III and IV, respectively.

3.1.1 Time-Domain Characterization

Discrete-Time Signals

A discrete-time signal, denoted by x[n], is a real or complex function de-
fined only on discrete-time points n = 0,±1,±2, ..., and thus is commonly
represented as a sequence of real or complex numbers. In practice, a discrete-
time signal x[n] is often derived from periodically sampling a corresponding
continuous-time signal, denoted by x(t), which is a function defined along a
continuum of time. Specifically, the discrete-time signal x[n] is obtained via

x[n] = x(t = nT ), n = 0,±1,±2, ... (3.1)

where T is called the sampling period. Accordingly, the discrete-time index n is
also referred to as the sample number of x[n]. A representative of discrete-time
signals is the unit sample sequence defined as
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δ[n] =

{
1, n = 0,

0, n �= 0.
(3.2)

It is also referred to as the (discrete-time) impulse, the Kronecker delta func-
tion, or the delta function. One can see that the Kronecker delta function δ[n]
is well defined. It does not suffer from the mathematical complications as the
Dirac delta function δ(t) (see (2.81) and (2.82)).

Discrete-Time Systems

A discrete-time system, also referred to as a discrete-time filter, is a system
whose input and output are both discrete-time signals. The response of a
discrete-time system to the impulse δ[n] is called the impulse response of the
system. A discrete-time system is said to be linear time-invariant (LTI) or
linear shift-invariant (LSI) if it is completely characterized by its impulse
response. Specifically, let x[n] and y[n] be, respectively, the input and output
of a discrete-time LTI system whose impulse response is denoted by h[n].
Then, for any input x[n], the output y[n] is completely determined by the
discrete-time convolutional model

y[n] = h[n] � x[n] =

∞∑
k=−∞

h[k]x[n − k] (3.3)

where the notation ‘�’ represents linear convolution or briefly convolution.
Similarly, a discrete-time LTI system h[n] defined by (3.3) may be derived from
a corresponding continuous-time LTI system, h(t), defined by the continuous-
time convolutional model

y(t) = h(t) � x(t) =

∫ ∞

−∞
h(τ)x(t − τ)dτ (3.4)

where x(t) and y(t) are the input and output of h(t), respectively.
Moreover, let x[n] and y[n] be the input and output of an LTI system h[n],

respectively, and h1[n] and h2[n] are two other LTI systems. As depicted in
Fig. 3.1, if h[n] = h1[n] � h2[n], then

y[n] = (h1[n] � h2[n]) � x[n] = h1[n] � (h2[n] � x[n]) = h2[n] � (h1[n] � x[n])

since the convolution operation is associative and commutative. On the other
hand, as depicted in Fig. 3.2, if h[n] = h1[n] + h2[n], then

y[n] = (h1[n] + h2[n]) � x[n] = h1[n] � x[n] + h2[n] � x[n]

since the convolution operation is distributive.
Several terminologies for LTI systems are described as follows.



3.1 Discrete-Time Signals and Systems 85

� ���		������


1 2[ ] [ ] [ ]h n h n h n= � [ ]y n

2 [ ]h n 1 [ ]h n

[ ]h n

[ ]x n

[ ]x n [ ]y n

1 [ ]h n

[ ]h n

[ ]x n [ ]y n2 [ ]h n

Fig. 3.1 Equivalence between an overall system h[n] and cascaded connections of
two systems h1[n] and h2[n]

2 [ ]h n

1 [ ]h n

[ ]h n

+

� ���		������


1 2[ ] [ ] [ ]= +h n h n h n
[ ]y n[ ]x n

[ ]x n [ ]y n

Fig. 3.2 Equivalence between an overall system h[n] and a parallel connection of
two systems h1[n] and h2[n]

Definition 3.1. An LTI system h[n] is said to be stable in the bounded-input
bounded-output (BIBO) sense or, briefly, stable if for every bounded input its
output is also bounded. Otherwise, the system h[n] is said to be unstable.

According to this definition, for any bounded input |x[n]| ≤ Bx < ∞, the
output of h[n] is bounded by

|y[n]| =

∣∣∣∣∣
∞∑

k=−∞
h[k]x[n − k]

∣∣∣∣∣ ≤
∞∑

k=−∞
|h[k]| · |x[n − k]| ≤ Bx

∞∑
k=−∞

|h[k]|.
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This implies that if

∞∑
n=−∞

|h[n]| < ∞, (3.5)

i.e. h[n] is absolutely summable, then the system h[n] is stable. In fact, as
reported in [1, pp. 30, 31], the stability condition given by (3.5) is not only
sufficient but also necessary.

Definition 3.2. An LTI system h[n] is said to be causal if its output y[n0]
depends only on its input x[n] for n ≤ n0. Otherwise, the system h[n] is said
to be noncausal.

Since y[n0] =
∑

k h[k]x[n0 − k], the causality condition implies that h[k] = 0
for n0 − k > n0 or, equivalently, h[k] = 0 for k < 0. On the other hand,
if h[k] = 0 for k ≥ 0, then the noncausal system h[n] is further said to be
anticausal [2].

Definition 3.3. An LTI system hI[n] is called the inverse system of an LTI
system h[n] if

h[n] � hI[n] = hI[n] � h[n] = δ[n]. (3.6)

As we will see, some blind equalization algorithms are developed to estimate
the inverse system hI[n] in some statistical sense.

An LTI system h[n] is said to be a finite-duration impulse response (FIR)
system if h[n] = 0 outside the range L1 ≤ n ≤ L2 where L1 and L2 are
integers. As L1 = 0, h[n] is a causal FIR system; whereas as L2 = −1,
h[n] is an anticausal FIR system. Any FIR system is always stable since,
obviously, its impulse response is absolutely summable. On the other hand,
an LTI system h[n] is said to be an infinite-duration impulse response (IIR)
system if L1 = −∞ or L2 = ∞, or both. However, IIR systems may be
unstable.

3.1.2 Transformation Tools

z-Transform

The z-transform of a discrete-time signal x[n] is defined as

X(z) = Z{x[n]} =
∞∑

n=−∞
x[n]z−n (3.7)

where Z{·} stands for z-transform and z is a complex variable. From (3.7), it
follows that
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|X(z)| ≤
∞∑

n=−∞
|x[n]| · |z|−n, (3.8)

which implies that the convergence of the series
∑∞

n=−∞ x[n]z−n depends on
|z|. In other words, as illustrated in Fig. 3.3, the region of convergence (ROC)
for the existence of X(z) is typically a ring (the shaded region) on the complex
z-plane where z = rejω . If the ROC of X(z) includes the unit circle, then X(z)
exists at |z| = |ejω| = 1.
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Fig. 3.3 A typical region of convergence

Table 3.1 lists some useful properties of the z-transform where the ROC
should be determined accordingly. The proofs of these properties can be found,
for example, in [1, pp. 119–126].

Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of a discrete-time signal x[n] is
defined as

X(ω) = F{x[n]} =
∞∑

n=−∞
x[n]e−jωn (3.9)

where F{·} denotes the DTFT operator. One can see that X(ω) is a
continuous-time periodic function with period 2π. Furthermore, from (3.9)
and (2.75), it follows that one can think of the DTFT as a Fourier series. As
such, according to (2.76), the inverse DTFT of X(ω) is given by

x[n] = F
−1{X(ω)} =

1

2π

∫ π

−π

X(ω)ejωndω (3.10)
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Table 3.1 Properties of z-transform

Discrete-time Signal z-Transform

x[n] X(z) = Z{x[n]}

y[n] Y (z) = Z{y[n]}

x[−n] X(1/z)

x∗[n] X∗(z∗)

Real x[n] X(z) = X∗(z∗)

x[n] = x∗[−n] X(z) = X∗(1/z∗)

x[n − n0] X(z)z−n0

x[n]zn
0 X(z/z0)

ax[n] + by[n] aX(z) + bY (z)

x[n] 	 y[n] X(z)Y (z)

where F
−1{·} denotes the inverse DTFT operator. The convergence analy-

sis of Fourier series presented in Section 2.2.4 also applies to the DTFT. In
particular, if x[n] is absolutely summable, then its DTFT

∑∞
n=−∞ x[n]e−jωn

converges uniformly and absolutely to a continuous function of ω on [−π, π).
If x[n] is square summable, then

∑∞
n=−∞ x[n]e−jωn converges in the MS sense

to a function in the L2[−π, π) space. If x[n] = 1 for all n, then its DTFT

X(ω) =

∞∑
m=−∞

2πδ(ω + 2πm) (3.11)

where δ(ω) is the Dirac delta function of ω. Moreover, comparing (3.9) with
(3.7), one can see that X(ω) corresponds to X(z) evaluated at z = ejω . This
implies that if the ROC of X(z) includes the unit circle, then X(ω) = X(z =
ejω) exists.

Table 3.2 lists some useful properties of the DTFT, for which the proofs
can be found in [1, pp. 55–62]. Note, from this table, that

X(ω) ⊗ Y (ω) �
1

2π

∫ π

−π

X(θ)Y (ω − θ)dθ (3.12)

is called the periodic convolution of X(ω) and Y (ω) since both X(ω) and Y (ω)
are periodic with period 2π. The notation ‘⊗’ represents periodic convolution.
Parseval’s relation given by (2.80) is restated for the DTFT as follows:

∞∑
n=−∞

|x[n]|2 =
1

2π

∫ π

−π

|X(ω)|2dω. (3.13)
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Table 3.2 Properties of DTFT

Discrete-time Signal Discrete-time Fourier Transform

x[n] X(ω) = F{x[n]}

y[n] Y (ω) = F{y[n]}

x[−n] X(−ω)

x∗[n] X∗(−ω)

Real x[n] X(ω) = X∗(−ω)

x[n] = x∗[−n] Real X(ω)

x[n − n0] X(ω)e−jωn0

x[n]ejω0n X(ω − ω0)

ax[n] + by[n] aX(ω) + bY (ω)

x[n] 	 y[n] X(ω)Y (ω)

x[n]y[n] X(ω) ⊗ Y (ω)

Discrete Fourier Transform

While the DTFT and inverse DTFT are powerful in theoretical analyses and
algorithm developments, they are not easily computed by means of digital
computations due to the nature of continuous radian frequency ω. For this
problem, let us assume that x[n], n = 0, 1, ..., N − 1, is a finite-duration
sequence of length N . The DTFT of x[n], X(ω), can be computed for ω =
2πk/N , k = 0, 1, ..., N−1, via the following discrete Fourier transform (DFT):

X [k] = DFT{x[n]} =

N−1∑
n=0

x[n]e−j2πkn/N

=

N−1∑
n=0

x[n]W kn
N , 0 ≤ k ≤ N − 1 (3.14)

where DFT{·} denotes the DFT operator and WN = e−j2π/N is called the
twiddle factor. Clearly, X [k] always exists. The inverse DFT of the finite-
duration sequence X [k], k = 0, 1, ..., N − 1, is given by

x[n] = IDFT{X [k]} =
1

N

N−1∑
k=0

X [k]ej2πkn/N

=
1

N

N−1∑
k=0

X [k]W−kn
N , 0 ≤ n ≤ N − 1 (3.15)

where IDFT{·} denotes the inverse DFT operator.
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Table 3.3 lists some useful properties of the DFT, for which the proofs can
be found in [1, pp. 546–551]. Note, from this table, that the notation ‘((n))N ’
represents ‘(n modulo N)’ and the notation ‘�’ represents the operation of
circular convolution defined as

x[n] � y[n] =

N−1∑
m=0

x[m]y[((n − m))N ], 0 ≤ n ≤ N − 1. (3.16)

One can see, from (3.14) and (3.15), that computation of the DFT as well as
that of the IDFT requires numbers of complex multiplications and complex
additions in the order of N2. This indicates that the computational complexity
of the DFT and IDFT is extraordinarily large when N is large. In practice,
many fast algorithms are available for efficiently computing the DFT and
IDFT [1, 3]. They are collectively called fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT) algorithms, respectively. The basic idea
behind the FFT and IFFT is to take advantage of the following two properties
of the twiddle factor WN .

• Complex conjugate symmetry: W−kn
N =

(
W kn

N

)∗
.

• Periodicity: W
k(n+N)
N = W

(k+N)n
N = W kn

N .

As a consequence, the FFT (IFFT) requires numbers of complex multiplica-
tions and complex additions in the order of N log2 N .

Table 3.3 Properties of DFT

Discrete-time Signal Discrete Fourier Transform

x[n] X[k] = DFT{x[n]}

y[n] Y [k] = DFT{y[n]}

x[((−n))N ] X[((−k))N ]

x∗[n] X∗[((−k))N ]

Real x[n] X[k] = X∗[((−k))N ]

x[n] = x∗[((−n))N ] Real X[k]

x[((n − n0))N ] x[k]e−j2πkn0/N

x[n]ej2πk0n/N X[((k − k0))N ]

ax[n] + by[n] aX[k] + bY [k]

x[n] � y[n] X[k]Y [k]

x[n]y[n]
1

N
X[k] � Y [k]

By means of the FFT and IFFT, the linear convolution of two finite-
duration sequences can be computed more efficiently via their circular convo-
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lution. Specifically, let the sequence x1[n] = 0 outside the range 0 ≤ n ≤ L−1,
and the sequence x2[n] = 0 outside the range 0 ≤ n ≤ P − 1. Then the linear
convolution

yL[n] = x1[n] � x2[n] (3.17)

can be computed via the following procedure.

(S1) Use an N -point FFT algorithm to compute the N -point DFTs of the
sequences x1[n] and x2[n], denoted by X1[k] and X2[k].

(S2) Compute YC[k] = X1[k] · X2[k] for 0 ≤ k ≤ N − 1.
(S3) Use an N -point IFFT algorithm to compute the N -point IDFT of YC[k],

denoted by yC[n].
(S4) Obtain the sequence ŷL[n] = yC[n] for 0 ≤ n ≤ N − 1.

Next, let us derive the condition for this procedure such that ŷL[n] = yL[n].
Since YL(ω) = X1(ω) · X2(ω) (by taking the DTFT of (3.17)), we can treat
YC[k] in (S2) as a sequence obtained from sampling YL(ω) at ω = 2πk/N ,
k = 0, 1, ..., N − 1. Correspondingly, the time-domain sequence is given by

yC[n] = x1[n] � x2[n] =

{∑∞
m=−∞ yL[n + mN ], 0 ≤ n ≤ N − 1,

0, otherwise.

As illustrated in Fig. 3.4, if the FFT (IFFT) size N is greater than or equal to
the length of yL[n], i.e. N ≥ L + P − 1, then yC[n] = yL[n] for 0 ≤ n ≤ N − 1;
otherwise, yC[n] is an aliased version of yL[n]. As a result, the condition N ≥
L + P − 1 ensures that ŷL[n] = yL[n].

3.1.3 Transform-Domain Characterization

Frequency Responses

From the foregoing discussions, we note that if an LTI system h[n] is stable,
i.e. h[n] is absolutely summable, then its DTFT F{h[n]} is guaranteed to
exist and converge uniformly and absolutely to a continuous function of ω
on [−π, π). The DTFT F{h[n]}, denoted by H(ω), is called the frequency
response of h[n]. Since H(ω) is complex, it can be expressed in polar form as

H(ω) = |H(ω)| · ej�H(ω) (3.18)

where |H(ω)|, the magnitude of H(ω), is called the magnitude response of
h[n] and �H(ω), the phase of H(ω), is called the phase response of h[n]. The
phase �H(ω) is also usually denoted by arg[H(ω)].

An LTI system h[n] is said to be linear phase if its phase response

arg[H(ω)] = αω + β (3.19)
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Fig. 3.4 Illustration of the equivalence between linear and circular convolution.
(a) The sequence yL[n] with length L + P − 1 = 4, (b) the sequence yC[n] = yL[n]
for N = 4 = L + P − 1, and (c) yC[n] �= yL[n] for N = 3 < L + P − 1



3.1 Discrete-Time Signals and Systems 93

where α and β are real constants.1 Furthermore, if α = 0 and β = kπ for
any integer k (i.e. H(ω) = |H(ω)| or −|H(ω)|), the system h[n] is called a
zero-phase system, and correspondingly h[n] = h∗[−n] since H(ω) is real.

Autoregressive Moving-Average Models

For an LTI system h[n], its z-transform, denoted by H(z), is called the system
function or the transfer function of h[n], that is often modeled as a parametric
rational function:

H(z) =
B(z)

A(z)
=

∑q
k=0 bkz−k∑p
k=0 akz−k

=
b0

a0
·
∏q

k=1(1 − dkz−1)∏p
k=1(1 − ckz−1)

(3.20)

where ak, bk, ck, and dk are real or complex constants. The model given by
(3.20) for H(z) is called an autoregressive moving-average (ARMA) model or
an ARMA(p, q) model. It reduces to an autoregressive (AR) model or an AR(p)
model when B(z) = b0 (i.e. q = 0), and reduces to a moving-average (MA)
model or an MA(q) model when A(z) = a0 (i.e. p = 0). Moreover, one can see,
from (3.20), that H(z) = 0 when z = dk (a root of B(z)), which is therefore
referred to as a zero of the system. On the other hand, z = ck (a root of A(z))
is referred to as a pole of the system since H(z = ck) = ∞. This implies that
the ROC of any stable system H(z) should not contain any pole. Accordingly,
if h[n] is a right-sided sequence, the ROC should be outside the outermost
pole of the system; whereas if h[n] is a left-sided sequence, the ROC should
be inside the innermost pole of the system [1, p. 105]. Problem 3.1 gives an
example illuminating this fact.

From the above discussion, a causal stable LTI system h[n] requires that
the ROC of H(z) be outside the outermost pole of the system. Furthermore,
we have learnt that for stable h[n], its frequency response H(ω) = H(z =
ejω) exists (since h[n] is absolutely summable) and thereby the ROC of H(z)
includes the unit circle. As a consequence, a causal stable LTI system h[n]
requires that all the poles of the system be inside the unit circle. Moreover,
let hI[n] denote the inverse system of h[n]. Then it has the transfer function

HI(z) =
1

H(z)
(3.21)

(by (3.6)), revealing that the zeros of H(z) are the poles of HI(z). Accordingly,
the requirement for both h[n] and hI[n] being causal stable is that all the poles
and zeros of the system h[n] be inside the unit circle. Such a system is called a
minimum-phase system; the reason for the name will be clear later on. On the
other hand, an LTI system which is not a minimum-phase system is called

1 More precisely, an LTI system h[n] with phase response given by (3.19) is called a
generalized linear phase system and reduces to a linear phase system as β = 0 [1].
The distinction, however, is immaterial to the purpose of this book.
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a nonminimum-phase system, while the one having all its poles and zeros
outside the unit circle is called a maximum-phase system. As a remark, stable
inverse systems may not exist and many LTI systems in practical applications
are nonminimum-phase systems.

An LTI system h[n] is said to be an allpass system if its magnitude response
|H(ω)| = c where c is a constant. A real allpass system may be modeled as
the following ARMA(p, p) filter:

HAP(z) =
z−pA(z−1)

A(z)
=

a0z
−p + a1z

−p+1 + · · · + ap

a0 + a1z−1 + · · · + apz−p
(3.22)

where ak is a real constant. It can easily be seen, from (3.22), that if a is a pole
of HAP(z), then 1/a must be a zero of HAP(z). When A(z) is a minimum-phase
system, i.e. all the roots of A(z) are inside the unit circle, HAP(z) is a causal
stable allpass filter; when A(z) is a maximum-phase system, i.e. all the roots
of A(z) are outside the unit circle, HAP(z) is an anticausal stable allpass filter.
Note that HAP(z) cannot have zeros on the unit circle; otherwise, it becomes
unstable. Furthermore, when HAP(z) is causal (anticausal) stable, its inverse
system 1/HAP(z), also an ARMA allpass filter, is anticausal (causal) stable.
Moreover, any real causal allpass system HAP(z) possesses the following phase
response property: [1, p. 278]

arg[HAP(ω)] ≤ 0 for 0 ≤ ω < π. (3.23)

From (3.20), it follows that any nonminimum-phase rational system func-
tion H(z) can be expressed as a minimum-phase-allpass (MP-AP) decompo-
sition given by

H(z) = HMP(z) · HAP(z), (3.24)

and thus − arg[H(ω)] = − arg[HMP(ω)]−arg[HAP(ω)]. Since − arg[HAP(ω)] ≥
0 for any real causal allpass system HAP(z), the real minimum-phase system
HMP(z) exhibits the minimum-phase lag among all the systems having the
magnitude response |H(ω)|. This thereby leads to the name minimum-phase
system or, precisely, minimum-phase-lag system for HMP(z).

Fourier Series Based Models

Suppose h[n] is an LTI system with frequency response H(ω). Since both
ln |H(ω)| and �H(ω) are periodic with period 2π, they can be approximated
by the Fourier series. In particular, by assuming that h[n] is real and h[0] = 1
for simplicity, H(ω) can be approximated by a parametric Fourier series based
model (FSBM) written as the magnitude–phase (MG-PS) decomposition

H(ω) = HMG(ω) · HPS(ω) (3.25)
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where

HMG(ω) = |H(ω)| = exp

{
p∑

i=1

αi cos(iω)

}
(3.26)

HPS(ω) = ej�H(ω) = exp

{
j

q∑
i=1

βi sin(iω)

}
(3.27)

in which αi and βi are real.2 The FSBM ensures that H(ω) = H∗(−ω) since
h[n] is real, and is specifically referred to as an FSBM(p, q). The system mag-
nitude and phase are characterized by the magnitude parameters αi and phase
parameters βi, respectively, for the FSBM, whereas they are simultaneously
characterized by the poles and zeros for the ARMA model. When αi = 0 for
i = 1, 2, ..., p, the FSBM is an allpass system; when βi = 0 for i = 1, 2, ..., q,
the FSBM is a zero-phase system.

By (3.25), (3.26) and (3.27), we have the following inverse DTFT:

h̃[n] � F
−1{lnH(ω)} =

⎧⎪⎪⎨⎪⎪⎩
1
2 (αn − βn), 1 ≤ n ≤ max{p, q},
1
2 (α−n + β−n), −max{p, q} ≤ n ≤ −1,

0, otherwise,

(3.28)

which is known as the complex cepstrum of h[n]. Note that h̃[n] = 0 for n < 0
(n > 0) if and only if h[n] is minimum phase (maximum phase) [9, pp. 781–
782]. Accordingly, we obtain the following result.

Fact 3.4. The FSBM given by (3.25), (3.26) and (3.27) is a minimum-phase
(maximum-phase) system if p = q and βi = −αi (βi = αi) for i = 1, 2, ..., p.

In light of this fact, the FSBM(p, q) can also be written as the minimum-phase
allpass (MP-AP) decomposition

H(ω) = HMP(ω) · HAP(ω) (3.29)

where

HMP(ω) = exp

{
p∑

i=1

αie
−jωi

}
(3.30)

HAP(ω) = exp

{
j

max{p,q}∑
i=1

(αi + βi) sin(iω)

}
(3.31)

in which αi = 0 for i > p and βi = 0 for i > q.
From (3.25), (3.26) and (3.27) or from (3.29), (3.30) and (3.31), it follows

that both H(ω) and dH(ω)/dω are continuous functions on [−π, π) for finite

2 Dianat and Raghuveer [4] proposed an MG-PS FSBM for reconstruction of the
magnitude and phase responses of 1-D and 2-D signals, that was then generalized
by Chi et al. [5–8] with more applications to statistical signal processing.
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p and q. Hence, by Theorem 2.38, the DTFT
∑∞

n=−∞ h[n]e−jωn converges
uniformly to H(ω) on [−π, π) and it also converges absolutely, i.e.

∞∑
n=−∞

∣∣h[n]e−jωn
∣∣ =

∞∑
n=−∞

|h[n]| < ∞.

Note that this may not hold true for infinite p or infinite q or both, as exem-
plified in Example 2.20. As a consequence, the FSBM(p, q) of finite p and q
always corresponds to a stable LTI system no matter whether it is causal or
noncausal. This brings some benefits to utilization of the FSBM. For exam-
ple, in system identification, phase-estimation algorithms based on the FSBM
with all αi = 0 (i.e. an allpass model) are generally simpler than those based
on the ARMA allpass model because the stability issue never exists for the
former with finite q [5].

As a remark, the FSBM(p, q) for real h[n] can be extended to the case of
complex h[n]; see [7] for the details.

3.2 Random Variables

This section briefly reviews real and complex random variables including their
statistical characterization, moments and cumulants, and summarizes some
probability distributions that are useful to statistical signal processing.

3.2.1 Statistical Characterization

Real Random Variables

In an experiment involving randomness, a single indecomposable outcome is
called a sample point and the set of all possible sample points is called a
sample space, whose subset is called an event. A real random variable is a
rule (a function) to assign every outcome of an experiment to a real number.3

Specifically, as illustrated in Fig. 3.5, a real random variable x defined on a
sample space S is a function which assigns each sample point si ∈ S a real
number αi = x(si). The function x(·) is deterministic, but the sample point
si and, accordingly, the real number αi are random in nature, i.e. they cannot
be specified exactly before conducting the experiment.

Example 3.5
In a single trial of tossing a die, the sample space S = {1, 2, 3, 4, 5, 6}. The
event of occurrence of even integers is the set {2, 4, 6}, and the event of oc-
currence of odd integers is the set {1, 3, 5}. A random variable x � 0.1si

is a function which maps each sample point si ∈ S into a real number
αi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

�
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Fig. 3.5 Illustration of a real random variable x

Let Pr{A} denote the probability of an event A where 0 ≤ Pr{A} ≤ 1.
A real random variable x can be characterized statistically by the cumulative
distribution function defined as

Fx(α) = Pr{x ≤ α} (3.32)

where α is a real number, Fx(−∞) = 0, and Fx(∞) = 1. The function Fx(α)
is also commonly referred to as the distribution function or, briefly, the distri-
bution of x. Alternatively, the real random variable x can also be characterized
statistically by the probability density function (pdf) defined as

fx(α) =
d

dα
Fx(α) (3.33)

or, equivalently,

Fx(u) =

∫ u

−∞
fx(α)dα (3.34)

where
∫∞
−∞ fx(α)dα = Fx(∞) = 1, and fx(α) ≥ 0 since Fx(α) is a nonde-

creasing function of α.

3 The terminology “random variable” is a misnomer since it actually represents a
function of sample points, not a variable [10].
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For combined experiments or repeated trials of a single experiment, we
may need to deal with multiple random variables. Consider that x1, x2, ...,
xk are k real random variables. The vector x = (x1, x2, ..., xk)T is referred
to as a real random vector since its entries are real random variables. The
(multivariate) distribution function of x is defined as the joint distribution
function of x1, x2, ..., xk given by

Fx(α) ≡ Fx1,x2,...,xk
(α1, α2, ..., αk) = Pr{x1 ≤ α1, x2 ≤ α2, ..., xk ≤ αk}

where αi are real numbers and α = (α1, α2, ..., αk)T . Similarly, the (multi-
variate) pdf of x is defined as the joint pdf of x1, x2, ..., xk given by

fx(α) ≡ fx1,x2,...,xk
(α1, α2, ..., αk) =

∂kFx1,x2,...,xk
(α1, α2, ..., αk)

∂α1∂α2 · · · ∂αk
.

Note that fx(α) ≥ 0 since Fx(α) is a nondecreasing function, Fx(α) = 1
as α1 = · · · = αk = ∞, and Fx(α) = 0 as αl = −∞ for l ∈ {1, 2, ..., k}.
Because (joint) pdfs represent the same information as the corresponding
(joint) distribution functions, we will hereafter deal with random variables in
terms of only (joint) pdfs for brevity. Moreover, for notational convenience,
we will use the notation f(x) for fx(α) whenever there is no ambiguity.

From the pdf f(x), one can obtain the so-called marginal pdf of xl:

f(xl) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x)dx1 · · · dxl−1dxl+1 · · ·dxk. (3.35)

The pdf of xl conditioned on xm = αm is defined as the conditional pdf

f(xl|xm = αm) ≡ f(xl|xm) =
f(xl, xm)

f(xm)
, (3.36)

provided that f(xm) > 0. The conditional pdf, together with the marginal
pdf, leads to Bayes’ rule [11]

f(xl|xm) =
f(xm|xl)f(xl)

f(xm)
=

f(xm|xl)f(xl)∫∞
−∞ f(xm|xl)f(xl)dxl

, (3.37)

provided that f(xl) > 0 and f(xm) > 0.

Definition 3.6. Two real random variables xl and xm are said to be statisti-
cally independent if their joint pdf satisfies

f(xl, xm) = f(xl)f(xm). (3.38)

Equation (3.38) is equivalent to f(xl|xm) = f(xl), revealing that the statistical
characteristics of xl are not affected by any value of xm.



3.2 Random Variables 99

Complex Random Variables

A complex random variable x = xR+jxI is defined in terms of two real random
variables xR and xI. Specifically, its pdf f(x) is specified in terms of the joint
pdf of xR and xI as

f(x) = f(xR, xI). (3.39)

More generally, let x1, x2, ..., xk be k complex random variables where xl,R =
Re{xl} and xl,I = Im{xl} are real random variables. The pdf of the vector
x = (x1, x2, ..., xk)T , known as a complex random vector, is specified in terms
of the joint pdf of the 2k real random variables xl,R and xl,I as

f(x) = f(x1,R, x2,R, ..., xk,R, x1,I, x2,I, ..., xk,I). (3.40)

The pdf of xl conditioned on xm is defined as

f(xl|xm) =
f(xl,R, xl,I, xm,R, xm,I)

f(xm,R, xm,I)
=

f(xl, xm)

f(xm)
, (3.41)

provided that f(xm) > 0. This implies that Bayes’ rule and the condition of
statistical independence are applicable to the case of complex random vari-
ables without any change.

3.2.2 Moments

Statistical Averages

Let x be a real or complex random variable with pdf f(x), and g(x) be an
arbitrary deterministic function of x. Then the statistical average or expected
value of g(x) is defined as

E{g(x)} =

∫ ∞

−∞
g(x)f(x)dx (3.42)

where E{·} denotes the expectation operator.4 Equation (3.42) is known as the
fundamental theorem of expectation [10]. As a special case of (3.42), if x is of
discrete type, namely, it takes a value αm with probability Pr{x = αm} = pm,
then its pdf

f(x) =
∑
m

pmδ(x − αm), (3.43)

4 More precisely, for a complex random variable x = xR + jxI the expectation

E{g(x)} =
∞

−∞

∞

−∞

g(x)f(x)dxRdxI.
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and substituting (3.43) into (3.42) produces

E{g(x)} =
∑
m

pmg(αm). (3.44)

As an extension of (3.42), let x = (x1, x2, ..., xk)T be a real or complex
random vector with pdf f(x), and let g(x) be any deterministic function of
x. Then the expected value of g(x) is defined as

E{g(x)} =

∫
∞

−∞

g(x)f(x)dx

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, ..., xk)f(x1, ..., xk)dx1dx2 · · · dxk (3.45)

where we have used the shorthand notations ‘ ∞

−∞
’ and ‘dx’ to stand for

‘
∫∞
−∞ · · · ∫∞

−∞’ and ‘dx1dx2 · · · dxk,’ respectively. The following two theorems
immediately follow from (3.45).

Theorem 3.7 (Complex Conjugation). Let g(x) be a deterministic func-
tion of a real or complex random vector x. Then

E{g∗(x)} = [E {g(x)}]∗ . (3.46)

Theorem 3.8 (Linearity). Let gm(x) be a deterministic function of a real
or complex random vector x. Then

E

{∑
m

amgm(x)

}
=
∑
m

amE{gm(x)} (3.47)

where am is an arbitrary real or complex constant.

Consider that x and y are two real or complex random variables, and
g(x, y) is a deterministic function of x and y. Given that x = α where α is a
constant, the function g(x, y) = g(α, y) depends only on the random variable
y, and the corresponding expectation, called the conditional expectation, is
defined as

E{g(x, y)|x} =

∫ ∞

−∞
g(x, y)f(y|x)dy. (3.48)

With the help of the conditional expectation, one may compute E{g(x, y)}
more easily by virtue of the following equation.

E{g(x, y)} =

∫ ∞

−∞

[∫ ∞

−∞
g(x, y)f(y|x)dy

]
f(x)dx (by (3.36))

= Ex

{
Ey|x{g(x, y)|x}} (by (3.48) and (3.42)) (3.49)

where in the second line the subscripts are added for clarity.
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Moments of Random Variables

Let x1, x2, ..., xk be real or complex random variables, and x = (x1, x2, ..., xk)T .
Then the kth-order (joint) moment of x1, x2, ..., xk is defined as

E{x1x2 · · ·xk} =

∫
∞

−∞

x1x2 · · ·xk · f(x)dx. (3.50)

For a random variable x, letting k = 1 and x1 = x in (3.50) gives the first-
order moment E{x}, which is called the mean of x. Letting k = 2, x1 = x and
x2 = x∗ in (3.50) gives the second-order moment E{|x|2}, which is referred to
as the mean-square value of x. For random variables x and y, letting k = 2,
x1 = x and x2 = y∗ in (3.50) gives the second-order joint moment E{xy∗},
which is called the correlation of x and y.

Similar to (3.50), the kth-order (joint) central moment of x1, x2, ..., xk is
defined as

E {(x1 − m1)(x2 − m2) · · · (xk − mk)} =

∫
∞

−∞

k∏
i=1

(xi − mi) · f(x)dx (3.51)

where mi is the mean of xi. Equation (3.51) reduces to (3.50) as x1, x2, ...,
xk are zero-mean. For a random variable x with mean mx, letting k = 1 and
x1 = x in (3.51) gives the first-order central moment E{x−mx} = 0. Letting
k = 2, x1 = x and x2 = x∗ in (3.51) gives the second-order central moment

σ2
x � E{|x − mx|2} = E{|x|2} − |mx|2, (3.52)

which is called the variance of x. The positive square root of σ2
x is called the

standard deviation of x, that is commonly used as a measure of the dispersion
of x. For random variables x and y with mean values mx and my, respectively,
letting k = 2, x1 = x and x2 = y∗ in (3.51) gives the second-order joint central
moment

cxy � E{(x − mx)(y − my)
∗} = E{xy∗} − mxm∗

y, (3.53)

which is called the covariance of x and y.
Related to the covariance cxy, a statistical version of the Cauchy–Schwartz

inequality is provided as follows (Problem 3.2).

Theorem 3.9 (Cauchy–Schwartz Inequality). Let x and y be real or com-
plex random variables with E{|x|2} > 0 and E{|y|2} > 0. Then

|E{xy∗}| ≤ (
E{|x|2})1/2 · (E{|y|2})1/2

(3.54)

and the equality holds if and only if x = αy where α �= 0 is an arbitrary real
or complex constant.
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Viewing (x−mx) and (y−my) as two zero-mean random variables and using
(3.54), we obtain

|cxy| ≤ σx · σy . (3.55)

Definition 3.10. As a measure of the interdependence between x and y, the
normalized covariance defined as

ρxy �
cxy

σx · σy
(3.56)

is called the correlation coefficient of x and y where 0 ≤ |ρxy| ≤ 1.

Note that |ρxy| = 1 when x − mx = α(y − my) for any nonzero constant α.

Definition 3.11. The random variables x and y are said to be uncorrelated
if ρxy = 0 or, by (3.53),

E{xy∗} = E{x}E{y∗}. (3.57)

From (3.38), it follows that if x and y are statistically independent, then
they are surely uncorrelated. The converse, however, is not necessarily true.
Moreover, the random variables x and y are said to be orthogonal if

E{xy∗} = 0, (3.58)

which can be interpreted by viewing x and y as two vectors with inner product
defined as E{xy∗}; see [11, p. 154] for further details.

Moments of Random Vectors

Let x = (x1, x2, ..., xk)T where x1, x2, ..., xk are real or complex random
variables. The moments of the random vector x can be defined in terms of the
joint moments of x1, x2, ..., xk. In particular, the mean of x is defined as

mx � E{x} = (E{x1}, E{x2}, ..., E{xk})T
. (3.59)

The correlation matrix of x is defined as

Rx � E{xxH} =

⎛⎜⎜⎜⎜⎜⎝
E{|x1|2} E{x1x

∗
2} · · · E{x1x

∗
k}

E{x2x
∗
1} E{|x2|2} · · · E{x2x

∗
k}

...
...

. . .
...

E{xkx∗
1} E{xkx∗

2} · · · E{|xk|2}

⎞⎟⎟⎟⎟⎟⎠ (3.60)

and the covariance matrix of x is defined as

Cx � E{(x − mx)(x − mx)H} = Rx − mxm
H
x . (3.61)

One can see that both Rx and Cx are Hermitian.
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Characteristic Functions

Let x1, x2, ..., xk be k real random variables and x = (x1, x2, ..., xk)T . Then
the (joint) characteristic function of x1, x2, ..., xk is defined as

Φ(ω1, ω2, ..., ωk) ≡ Φ(ω) = E
{
exp

(
jωT x

)}
(3.62)

where ω1, ω2, ..., ωk are real variables and ω = (ω1, ω2, ..., ωk)T . From (3.62),
it follows that

∂kΦ(ω1, ω2, ..., ωk)

∂ω1∂ω2 · · · ∂ωk
= (j)kE

{
x1x2 · · ·xk · exp

(
jωTx

)}
,

which further leads to

E{x1x2 · · ·xk} = (−j)k ∂kΦ(ω1, ω2, ..., ωk)

∂ω1∂ω2 · · ·∂ωk

∣∣∣∣∣
ω=0

. (3.63)

This indicates that the kth-order (joint) moment of real random variables x1,
x2, ..., xk can also be defined in terms of their (joint) characteristic function
Φ(ω). Accordingly, Φ(ω) is also referred to as the moment generating function
of x1, x2, ..., xk [12].

Similar to (3.62), if xl = xl,R + jxl,I, l = 1, 2, ..., k, are complex random
variables, then their (joint) characteristic function is defined as

Φ(ω1,R, ..., ωk,R, ω1,I, ..., ωk,I) = E

{
exp

(
j

k∑
l=1

ωl,Rxl,R + ωl,Ixl,I

)}
(3.64)

where ωl,R and ωl,I are real variables. Let x = (x1, x2, ..., xk)T and ω =
(ω1, ω2, ..., ωk)T where ωl = ωl,R + jωl,I. Then (3.64) is equivalent to

Φ(ω) = E
{
exp

[
jRe(ωHx)

]}
= E

{
exp

[
j

2

(
ωHx + ωT x∗)]} , (3.65)

which can be viewed as the (joint) characteristic function of two independent
sets of random variables {x1, x2, ..., xk} and {x∗

1, x∗
2, ..., x∗

k} [13]. Accordingly,
by treating {ω1, ω2, ..., ωk} and {ω∗

1 , ω∗
2 , ..., ω∗

k} as two independent sets of
variables and taking the kth partial derivative of (3.65), one can obtain the
kth-order (joint) moment

E{x1 · · ·xlx
∗
l+1 · · ·x∗

k} = (−2j)k ∂kΦ(ω1, ω2, ..., ωk)

∂ω∗
1 · · · ∂ω∗

l ∂ωl+1 · · · ∂ωk

∣∣∣∣∣
ω=0

. (3.66)
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3.2.3 Cumulants

Definitions of Cumulants

Consider two statistically independent real random variables x and y whose
characteristic functions are denoted by Φx(ω) and Φy(ω), respectively, where
the subscripts are added for clarity. From (3.38) and (3.62), it follows that
the characteristic function of the random variable (x + y) is given by

Φx+y(ω) = Φx(ω) · Φy(ω).

By defining

Ψx(ω) = lnΦx(ω) = lnE {exp (jωx)}
which is known as the second characteristic function of x, we obtain the second
characteristic function of (x + y) as

Ψx+y(ω) = Ψx(ω) + Ψy(ω).

That is, the second characteristic function of the sum (x+y) is simply the sum
of the respective second characteristic functions of x and y. For this reason,
the second characteristic function is also called the cumulative function [14].

Similar to (3.63) and (3.66) for defining a set of statistical quantities —
moments, taking the partial derivatives of the cumulative functions also leads
to another set of statistical quantities, called cumulants.5 To be more specific
and more general, let x1, x2, ..., xk be k real or complex random variables.
Then their kth-order (joint) cumulant is defined as

cum{x1, x2, ..., xk} = (−j)k ∂kΨ(ω1, ω2, ..., ωk)

∂ω1∂ω2 · · · ∂ωk

∣∣∣∣∣
ω=0

(3.67)

for the real case and

cum{x1, ..., xl, x
∗
l+1, ..., x

∗
k} = (−2j)k ∂kΨ(ω1, ω2, ..., ωk)

∂ω∗
1 · · · ∂ω∗

l ∂ωl+1 · · · ∂ωk

∣∣∣∣∣
ω=0

(3.68)

for the complex case where ω = (ω1, ω2, ..., ωk)T ,

Ψ(ω1, ω2, ..., ωk) ≡ Ψ(ω) = lnΦ(ω) = lnE
{
exp

[
jRe(ωHx)

]}
(3.69)

is the (joint) second characteristic function of x1, x2, ..., xk, and x = (x1,
x2, ..., xk)T . Accordingly, Ψ(ω) is also referred to as the cumulant generating
function of x1, x2, ..., xk [12].

5 Originated from the cumulative function, the word “cumulant” is due to E. A.
Cornish and R. A. Fisher (1937) [14], while its earlier names “semi-variant” and
“half-invariant” were introduced by T. N. Thiele (1889) [12].
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From (3.63) and (3.66) to (3.69), one may notice that cumulants seem to
relate to moments. Indeed, the kth-order cumulant of real or complex random
variables x1, x2, ..., xk can be expressed in terms of the moments of x1, x2,
..., xk of orders up to k. In particular, for k = 1, the first-order cumulant

cum{x1} = E{x1}. (3.70)

Furthermore, if x1, x2, x3, and x4 are zero-mean, real or complex random
variables, then

cum{x1, x2} = E{x1x2}, (3.71)

cum{x1, x2, x3} = E{x1x2x3}, (3.72)

cum{x1, x2, x3, x4} = E{x1x2x3x4} − E{x1x2}E{x3x4}
− E{x1x3}E{x2x4} − E{x1x4}E{x2x3}. (3.73)

And if x1, x2, x3, and x4 are nonzero-mean random variables, then one can
replace xi in the right-hand sides of the formulas (3.71) to (3.73) by (xi −
E{xi}) [15]. As a remark, the fundamental difference between cumulants and
(central) moments appears as cumulant order ≥ 4.

The generic form of the relationship between cumulants and moments is
shown in Appendix 3A. From this relationship and Theorem 3.7, one can
derive the following theorem (Problem 3.3).

Theorem 3.12 (Complex Conjugation). For real or complex random vari-
ables x1, x2, ..., xk, the kth-order cumulant

cum{x∗
1, ..., x

∗
l , xl+1, ..., xk} =

(
cum{x1, ..., xl, x

∗
l+1, ..., x

∗
k}
)∗

. (3.74)

Let the (p + q)th-order cumulant of a real or complex random variable x be
denoted by

Cp,q{x} = cum{x : p, x∗ : q} (3.75)

where

cum{.., x : l, ...} � cum{..., x, x, ..., x︸ ︷︷ ︸
l terms

, ...}. (3.76)

Then, by Theorem 3.12, Cp,q{x} = (Cq,p{x})∗. Moreover, when x is com-
plex, its (p + q)th-order cumulant has more than one definition, depend-
ing on the choice of (p, q). For example, there are three possible definitions
for the second-order cumulant of x, namely, C2,0{x}, C0,2{x} and C1,1{x}
where C0,2{x} = (C2,0{x})∗. The third-order cumulant of x has four pos-
sible definitions, namely, C3,0{x} = (C0,3{x})∗ and C2,1{x} = (C1,2{x})∗,
while the fourth-order cumulant of x has five possible definitions, namely,
C4,0{x} = (C0,4{x})∗, C3,1{x} = (C1,3{x})∗, and C2,2{x}.
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Although the notation in (3.75) is unified for both real and complex cases,
it is sometimes more convenient and specific to represent the (p + q)th-order
cumulant of a real random variable x as

Cp+q{x} = cum{x : p + q}. (3.77)

Unlike the complex case, the (p + q)th-order cumulant of real x has only one
definition.

Properties of Cumulants

In the following, we list some fundamental properties of cumulants with the
proofs left as an exercise (Problem 3.4) [15–19] .

Property 3.13. Cumulants are symmetric in their arguments. Namely, for
real or complex random variables x1, x2, ..., xk, the kth-order cumulant

cum{xl1 , xl2 , ..., xlk} = cum{x1, x2, ..., xk} (3.78)

where the sequence {l1, l2, ..., lk} is a permutation of the sequence {1, 2, ..., k}.
Property 3.14. For real or complex random variables x1, x2, ..., xk, the
kth-order cumulant

cum{α1x1, α2x2, ..., αkxk} = α1α2 · · ·αk · cum{x1, x2, ..., xk} (3.79)

where α1, α2, ..., αk are real or complex constants.

Property 3.15. If x1, x2, ..., xk are real or complex random variables and
α is a real or complex constant, then the kth-order cumulant

cum{x1 + α, x2, ..., xk} = cum{x1, x2, ..., xk} for k ≥ 2. (3.80)

Property 3.16. Cumulants are additive in their arguments. Namely, if x1,
x2, ..., xk and y are real or complex random variables, then the kth-order
cumulant

cum{x1 + y, x2, ..., xk} = cum{x1, x2, ..., xk} + cum{y, x2, ..., xk}, (3.81)

no matter whether x1 and y are statistically independent or not.

Property 3.17. If the set of real or complex random variables {x1, x2, ...,
xk} are statistically independent of another set of real or complex random
variables {y1, y2, ..., yk}, then the kth-order cumulant

cum{x1 + y1, x2 + y2, ..., xk + yk}
= cum{x1, x2, ..., xk} + cum{y1, y2, ..., yk}. (3.82)
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Property 3.18. If a subset of real or complex random variables {x1, x2, ...,
xk} are statistically independent of the rest, then the kth-order cumulant

cum{x1, x2, ..., xk} = 0. (3.83)

Let us emphasize that higher-order (≥ 3) moments, in general, do not
possess the counterparts of Properties 3.15 through 3.18 [18, pp. 12–14]. On
the other hand, according to the above-mentioned properties, one can treat
“cumulant” as an operator, just like treating “expectation” as an operator [19].
Thus, it is preferred to work with higher-order cumulants, whenever needed,
instead of higher-order moments.

Physical Meanings of Cumulants

To explain the physical meanings of cumulants, consider that x is a real ran-
dom variable with mean mx and variance σ2

x, and assume that its pdf f(x) is
unimodal, i.e. f(x) has only one peak. Note that many distributions encoun-
tered in practice are unimodal [20, p. 29]. Obviously, the first-order cumulant
C1{x} = E{x} = mx (see (3.70)) indicates the central location of f(x), while
the second-order cumulant C2{x} = E{(x − mx)2} = σ2

x (see (3.71)) indi-
cates the spread of f(x) about the central location mx. As detailed below,
the third-order cumulant C3{x} and the fourth-order cumulant C4{x} give a
sketch about the shape of f(x).

By (3.72), the third-order cumulant C3{x} = E{(x−mx)3}, which is called
the skewness of x [18, 19]. Invariant to any real scale factor, the normalized
skewness or the normalized third-order cumulant

γ3{x} �
C3{x}
(σ2

x)3/2
=

E{(x − mx)3}
[E{(x − mx)2}]3/2

(3.84)

can be used as a dimensionless measure of the skewness or symmetry of f(x)
about the central location mx. From (3.42), it follows that γ3{x} = 0 if f(x)
is symmetric about mx (see Fig. 3.6a) since (x−mx)3 is antisymmetric about
mx. On the other hand, a positive value of γ3{x} is usually found when f(x)
is skewed to the right or positively skewed [20–22]. As illustrated in Fig. 3.6b,
one can find a region Ω2 such that∫

x∈Ω2

(x − mx)3f(x)dx = −
∫

x∈Ω1

(x − mx)3f(x)dx,

which leads to

C3{x} =

∫
x∈Ω1∪Ω2∪Ω3

(x − mx)3f(x)dx =

∫
x∈Ω3

(x − mx)3f(x)dx > 0

and thus γ3{x} > 0. Based on a similar reasoning, a negative value of γ3{x}
usually happens when f(x) is skewed to the left or negatively skewed (see Fig.
3.6c).
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Fig. 3.6 The pdfs for normalized skewness (a) γ3{x} = 0 (f(x) symmetric), (b)
γ3{x} > 0 (f(x) skewed to the right), and (c) γ3{x} < 0 (f(x) skewed to the left)

By (3.73), the fourth-order cumulant

C4{x} = E{(x − mx)4} − 3
[
E{(x − mx)2}]2 , (3.85)

which is called the kurtosis of x [18,19]. Invariant to any real scale factor, the
normalized kurtosis or the normalized fourth-order cumulant 6

γ4{x} �
C4{x}
(σ2

x)2
=

E{(x − mx)4}
[E{(x − mx)2}]2 − 3 (3.86)

can be used as a dimensionless measure of the relative peakedness or flatness
of f(x), compared with a reference pdf. The reference pdf typically adopted
is the well-known Gaussian pdf (to be introduced later) whose normalized

6 K. Pearson (1905) introduced the term “kurtosis,” and proposed the moment ratio
E{(x−mx)4}/σ4

x as a measure of the relative kurtosis or peakedness of f(x) [12],
that has been widely adopted in statistics [20–23]. This book, however, follows
the convention of higher-order statistical signal processing reported in [18,19].
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kurtosis is known to be zero. As depicted in Fig. 3.7, if γ4{x} > 0, the pdf
f(x) is said to be more peaked than the Gaussian pdf; whereas if γ4{x} < 0,
f(x) is said to be less peaked or flatter than the Gaussian pdf [20–22].
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Fig. 3.7 The pdfs for different values of normalized kurtosis γ4{x}

As for the case of complex random variable x with mean mx and variance
σ2

x, the kurtosis of x is defined as the fourth-order cumulant

C2,2{x} = E
{|x − mx|4

}− 2
(
E{|x − mx|2}

)2 − ∣∣E {
(x − mx)2

}∣∣2 (3.87)

and the normalized kurtosis or the normalized fourth-order cumulant

γ2,2{x} �
C2,2{x}
(σ2

x)2
=

E
{|x − mx|4

}− ∣∣E {
(x − mx)2

}∣∣2
(E {|x − mx|2})2

− 2. (3.88)

Note that there is no corresponding definition for skewness. More generally,
the normalized (p + q)th-order cumulant 7

γp,q{x} �
Cp,q{x}

(σ2
x)(p+q)/2

, (3.89)

whose physical meaning for cumulant order (p + q) ≥ 3 is not yet clear.

3.2.4 Some Useful Distributions

Distribution of random variables can be divided into two categories, Gaussian
distribution and non-Gaussian distribution. Gaussian distribution is suitable

7 For the real case, the normalized cumulants of orders greater than two are called
the gamma coefficients or the g-statistics in statistics [12].
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for modeling such physical phenomena as noise sources and can be handled
mathematically, thereby leading to its widespread applications in almost all
fields of science and engineering. On the other hand, non-Gaussian distribution
includes uniform distribution, Laplace distribution, exponential distribution,
Bernoulli distribution, etc. It represents the probabilistic characteristics of
most signals in such applications as digital communications, speech processing,
seismic exploration, image processing, biomedical signal processing, radar,
sonar, astronomy, oceanography, plasma physics, and so on.

Gaussian Distribution

Real Gaussian Random Variables

A real random variable x is said to be Gaussian or normal if its pdf is given
by (see Fig. 3.8)

f(x) =
1√

2πσ2
x

exp

{
− (x − mx)2

2σ2
x

}
, −∞ < x < ∞ (3.90)

where mx and σ2
x are the mean and variance of x, respectively. It is said to

be standard Gaussian or standard normal if mx = 0 and σ2
x = 1.

xm
x

� x � x

2

1

2�� x

1/ 2

22�� x

e −

( )f x

Fig. 3.8 The pdf of a real Gaussian random variable x

More generally, a real random vector x = (x1, x2, ..., xN )T is said to be
Gaussian or, equivalently, the set of real random variables x1, x2, ..., xN is
said to be jointly Gaussian if for any nonzero vector a = (a1, a2, ..., aN )T the
random variable

aT x = a1x1 + a2x2 + · · · + aNxN

is Gaussian [11, 24]. According to this definition, it can be shown (Problem
3.6) that if x is real Gaussian, then its pdf is given by
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f(x) =
1

(2π)
N
2 · |Cx| 12

exp

{
−1

2
(x − mx)TC−1

x (x − mx)

}
(3.91)

where mx is the mean of x and Cx is the covariance matrix of x that has
to be positive definite. One can see that the Gaussian pdf f(x) is completely
determined by mx and Cx, and thereby is commonly denoted by N (mx,Cx).

Complex Gaussian Random Variables

Consider a complex random vector

x = (x1, x2, ..., xN )T = xR + jxI

where xR = Re{x} = (x1,R, x2,R, ..., xN,R)T and xI = Im{x} = (x1,I, x2,I, ...,
xN,I)

T . The complex random vector x is said to be Gaussian or normal if the
2N real random variables x1,R, x2,R, ..., xN,R, x1,I, x2,I, ..., xN,I are jointly
Gaussian. A further result is given as follows [11, 25] (Problem 3.7).

Theorem 3.19 (Goodman’s Theorem). If x is a complex Gaussian ran-
dom vector which satisfies the condition8

E{(x− mx)(x − mx)T } = 0, (3.92)

then its pdf is given by

f(x) =
1

πN · |Cx| exp
{−(x − mx)HC−1

x (x − mx)
}

(3.93)

where mx is the mean of x and Cx is the covariance matrix of x.

Let us emphasize that the condition (3.92) also frequently holds for complex
random vectors in such applications as digital communications and radar.
Accordingly, we assume the condition (3.92) is always satisfied for simplicity.

As a special case of Theorem 3.19, the pdf of a complex Gaussian random
variable x is given by

f(x) =
1

πσ2
x

exp

{
−|x − mx|2

σ2
x

}
(3.94)

where mx and σ2
x are the mean and variance of x.

8 Complex Gaussian random vectors which satisfy the condition (3.92) are also
called circularly Gaussian random vectors [13].
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Properties of Gaussian Random Variables

Some useful properties of Gaussian random variables are given as follows
(Problem 3.8).

Property 3.20. Linear transformations of real or complex jointly Gaussian
random variables are also jointly Gaussian.

Property 3.21. If real or complex jointly Gaussian random variables are
uncorrelated, then they are statistically independent.

Property 3.22. If real or complex random variables x1, x2, ..., xk are jointly
Gaussian, then their kth-order cumulant

cum{x1, x2, ..., xk} = 0 for k ≥ 3. (3.95)

Property 3.23. If real or complex random variables x1, x2, x3, and x4 are
zero-mean and jointly Gaussian, then the fourth-order moment

E{x1x2x3x4} = E{x1x2}E{x3x4} + E{x1x3}E{x2x4}
+ E{x1x4}E{x2x3}. (3.96)

As a summary, Table 3.4 lists some statistical parameters of Gaussian
random variable.

Uniform Distribution

A real random variable x is said to be uniformly distributed or, briefly, uniform
in the interval [α, β] if its pdf is given by (see Fig. 3.9)

f(x) =

⎧⎪⎨⎪⎩
1

β − α
, α ≤ x ≤ β,

0, otherwise.

(3.97)

Table 3.5 lists some statistical parameters of the uniform random variable x.
From this table, one can see that γ3{x} = 0 since f(x) is symmetric about
the central location mx, while γ4{x} < 0 since uniform pdf is obviously much
flatter than Gaussian pdf.

Laplace Distribution

A real random variable x is said to be Laplace if its pdf is given by

f(x) =
1

2β
exp

{
−|x − mx|

β

}
, −∞ < x < ∞ (3.98)
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Table 3.4 Summary of Gaussian distribution

Statistical Parameters of Real Gaussian Random Variable x

pdf f(x) =
1

2πσ2
x

exp −
(x − mx)2

2σ2
x

, −∞ < x < ∞

Mean mx

Variance σ2
x

kth-order cumulant Ck {x} = 0, k ≥ 3

Normalized skewness γ3{x} = 0

Normalized kurtosis γ4{x} = 0

Statistical Parameters of Complex Gaussian Random Variable x

pdf f(x) =
1

πσ2
x

exp −
|x − mx|

2

σ2
x

, −∞ < x < ∞

Mean mx

Variance σ2
x

(p+ q)th-order cumulant Cp,q {x} = 0, p + q ≥ 3

Normalized kurtosis γ2,2{x} = 0

† For complex random variable x = xR + jxI, the notation ‘−∞ < x < ∞’ represents

‘−∞ < xR < ∞ and −∞ < xI < ∞.’

*
x

( )f x

+

1

+ *−

Fig. 3.9 The pdf of a uniform random variable x
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Table 3.5 Summary of uniform distribution

Statistical Parameters of Uniform Random Variable x

pdf f(x) =

1

β − α
, α ≤ β

0, otherwise

Mean mx = (β − α)/2

Variance σ2
x = (β − α)2/12

Skewness C3{x} = 0

Kurtosis C4{x} = −(β − α)4/120

Normalized Skewness γ3{x} = 0

Normalized Kurtosis γ4{x} = −6/5

where mx is the mean of x and the parameter β > 0. Figure 3.10 depicts
the pdf f(x) and Table 3.6 lists some statistical parameters of the Laplace
random variable x. From this table, one can see that γ3{x} = 0 since f(x)
is symmetric about mx, while γ4{x} > 0, indicating that the Laplace pdf is
more peaked than the Gaussian pdf. To realize this latter fact, we observe
that both Laplace and Gaussian pdfs exhibit double-sided exponential decay,
and their decay rate can be compared by simply examining the two values

D1 �
f(x = mx + σx)

f(x = mx)
and D2 �

f(x = mx + 2σx)

f(x = mx)

since most of the energy of f(x) is located in the interval [−2σx, 2σx] for both

pdfs. From (3.98) and (3.90), it follows that D1 = e−
√

2 and D2 = e−2
√

2 for
Laplace pdf, while D1 = e−1/2 and D2 = e−2 for Gaussian pdf. This reveals
that the Laplace pdf decays more quickly on [−2σx, 2σx] than the Gaussian
pdf, thereby supporting the above-mentioned fact.

Exponential Distribution

A real random variable x is said to be exponential if its pdf is given by

f(x) =

⎧⎪⎨⎪⎩
1

σx
exp

{
− (x − α)

σx

}
, α ≤ x < ∞,

0, otherwise

(3.99)

where σx > 0 is the standard deviation of x. Figure 3.11 depicts the pdf f(x)
and Table 3.7 lists some statistical parameters of the exponential random
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Fig. 3.10 The pdf of a Laplace random variable x

Table 3.6 Summary of Laplace distribution

Statistical Parameters of Laplace Random Variable x

pdf f(x) =
1

2β
exp −

|x − mx|

β
, −∞ < x < ∞, β > 0

Mean mx

Variance σ2
x = 2β2

Skewness C3{x} = 0

Kurtosis C4{x} = 12β4

Normalized skewness γ3{x} = 0

Normalized kurtosis γ4{x} = 3

variable x. From this table, one can see that γ3{x} > 0 since f(x) is skewed to
the right (see Fig. 3.11), while γ4{x} > 0 for the same reason as explained for
the Laplace pdf. Furthermore, because the exponential pdf (one-sided curve)
is more peaked than the Laplace pdf (double-sided curve), the normalized
kurtosis of the former (γ4{x} = 6) is, as expected, greater than that of the
latter (γ4{x} = 3).

Bernoulli Distribution

A real random variable x is said to be Bernoulli if it is of discrete type with
the following probability assignment [24]



116 3 Fundamentals of Statistical Signal Processing

x
*

� x

1

� x

( )f x

1

�x

e −

Fig. 3.11 The pdf of an exponential random variable x

Table 3.7 Summary of exponential distribution

Statistical Parameters of Exponential Random Variable x

pdf f(x) =

1

σx
exp −

(x − α)

σx
, α ≤ x < ∞, σx > 0

0, otherwise

Mean mx = α + σx

Variance σ2
x

Skewness C3{x} = 2σ3
x

Kurtosis C4{x} = 6σ4
x

Normalized skewness γ3{x} = 2

Normalized kurtosis γ4{x} = 6

Pr{x} =

⎧⎪⎪⎨⎪⎪⎩
p, x = α,

1 − p, x = β,

0, otherwise

(3.100)

or, equivalently, the pdf

f(x) = pδ(x − α) + (1 − p)δ(x − β), −∞ < x < ∞ (3.101)
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Fig. 3.12 The pdf of a Bernoulli random variable x

where 0 ≤ p ≤ 1.9 Figure 3.12 depicts the pdf f(x) and Table 3.8 lists some
statistical parameters of the Bernoulli random variable x.

Table 3.8 Summary of Bernoulli distribution

Statistical Parameters of Bernoulli Random Variable x

pdf f(x) = pδ(x − α) + (1 − p)δ(x − β),

−∞ < x < ∞, 0 ≤ p ≤ 1

Mean mx = p(α − β) + β

Variance σ2
x = p(1 − p)(α − β)2

Skewness C3{x} = p(1 − p)(1 − 2p)(α − β)3

Kurtosis C4{x} = p(1 − p)(1 − 6p + 6p2)(α − β)4

Normalized skewness γ3{x} =
1 − 2p

p(1 − p)

Normalized kurtosis γ4{x} =
1 − 6p + 6p2

p(1 − p)

From Table 3.8, we have the following observations regarding γ3{x}.
• If p = 1/2, then γ3{x} = 0, i.e. f(x) is symmetric about mx.
• If p > 1/2, then γ3{x} < 0, i.e. f(x) is skewed to the left.
• If p < 1/2, then γ3{x} > 0, i.e. f(x) is skewed to the right.

9 The name Bernoulli distribution is due to J. Bernoulli (1713) [12]. In statistics,
the Bernoulli distribution is defined as a “binomial distribution” with pdf f(x) =

n
k=0

n

k
pk(1 − p)n−kδ(x − k).
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The three observations can easily be verified from Fig. 3.12. Moreover, letting
γ4{x} = 0 gives rise to

p =
1

2
− 1

2
√

3
� p1 and p =

1

2
+

1

2
√

3
� p2.

Accordingly, we have the following observations regarding γ4{x}.
• If p = p1 or p2, then γ4{x} = 0, i.e. the degree of peakedness of f(x) is

roughly the same as that of a Gaussian pdf.
• If p1 < p < p2, then γ4{x} < 0, i.e. f(x) is flatter than a Gaussian pdf.
• If 0 ≤ p < p1 or p2 < p ≤ 1, then γ4{x} > 0, i.e. f(x) is more peaked than

a Gaussian pdf.

To help understanding of the latter two observations, let us consider two
extreme cases: (i) p = 1/2 (i.e. p1 < p < p2) and (ii) p = 0 (i.e. p < p1) or
p = 1 (p2 < p). For case (i), f(x) can be viewed as a uniform pdf of discrete
type and thus is flatter than a Gaussian pdf. For case (ii), f(x) reduces to a
Dirac delta function and, obviously, is more peaked than a Gaussian pdf.

Symbol Distributions in Digital Communications

In digital communications, source information to be transmitted is typically
represented by a symbol sequence along with the assumption that each symbol
is drawn from a finite set of symbols (an alphabet) with equal probability. The
finite set of symbols is referred to as a constellation. Three popular constel-
lations as well as their associated statistical parameters are described below
where all the third-order cumulants are equal to zero and all the kurtosis
are negative. Note that distributions with negative kurtosis are called sub-
Gaussian distributions, whereas distributions with positive kurtosis are called
super-Gaussian distributions [26, pp. 16–17].

Pulse Amplitude Modulation (PAM)

For an M -ary PAM (M -PAM) symbol x, its probability assignment

Pr{x} =

{
1/M, x = ±(2m + 1)d for m = 0, 1, ..., (M/2)− 1,

0, otherwise.
(3.102)

Figure 3.13a depicts the constellation diagram for M = 8 and Table 3.9 lists
some statistical parameters of the M -PAM symbol x.
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Phase Shift Keying (PSK)

For an M -ary PSK (M -PSK) symbol x, its probability assignment

Pr{x} =

{
1/M, x = d · exp(j2πm/M) for m = 0, 1, ..., M − 1,

0, otherwise.
(3.103)

Figure 3.13b depicts the constellation diagram for M = 8 and Table 3.9 lists
some statistical parameters of the M -PSK symbol x. Note that 2-PSK is the
same as 2-PAM, and 4-PSK is often referred to as quadrature PSK (QPSK).

Quadrature Amplitude Modulation (QAM)

For simplicity, we consider only the case of M2-ary QAM (M2-QAM) symbol
x = xR + jxI, which can be treated as a combination of two statistically inde-
pendent M -PAM symbols xR and xI. Accordingly, the probability assignment
is given by Pr{x} = Pr{xR} ·Pr{xI} where Pr{xR} and Pr{xI} are defined as
(3.102). Figure 3.13c depicts the constellation diagram of 16-QAM (M = 4)
and Table 3.9 lists some statistical parameters of the M2-QAM symbol x.

3.3 Random Processes

This section reviews the fundamentals of discrete-time random processes with
emphasis on stationary processes and an important class of nonstationary
processes, cyclostationary processes.

3.3.1 Statistical Characterization

A random process or a stochastic process 10 is a rule to assign every outcome
of an experiment a function of time [10, 11]. In particular, for a discrete-time
random process x[n] as illustrated in Fig. 3.14, each sample point s in the
sample space S is assigned a sample function of time n. A sample function
of x[n] is also called a realization of x[n], while a complete collection of all
the sample functions of x[n] is called an ensemble of x[n]. On the other hand,
the value of the random process x[n] at a specific n is a random variable,
implying that x[n] can also be viewed as a sequence of random variables.
As such, a real random process x[n] is completely characterized by the joint
pdf of the random variables x[n1], x[n2], ..., x[nk] for all n1, n2, ..., nk and
any k. As an example, x[n] is said to be a Gaussian process if the random
variables x[n1], x[n2], ..., x[nk] are jointly Gaussian for all n1, n2, ..., nk and
any k. Moreover, two real random processes x[n] and y[n] are completely
characterized by the joint pdf of the random variables x[n1], x[n2], ..., x[nk],

10 The word “stochastic” comes from a Greek word meaning “to guess at” [10].
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Fig. 3.13 Constellation diagram of (a) 8-PAM, (b) 8-PSK and (c) 16-QAM
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Table 3.9 Statistical parameters of PAM/PSK/QAM symbols

M -PAM Symbol x, M = 2, 4, 6, 8, 10, ...

Mean mx = 0

Variance σ2
x = (M2 − 1)d2/3

Kurtosis C4{x} = −2(M4 − 1)d4/15

Normalized kurtosis γ4{x} = −
6(M4 − 1)

5(M2 − 1)2

M -PSK Symbol x, M = 4, 8, 16, ...

Mean mx = 0

Variance σ2
x = d2

Kurtosis C2,2{x} = −d4

Normalized kurtosis γ2,2{x} = −1

M2-QAM Symbol x, M = 2, 4, 8, 16, ...

Mean mx = 0

Variance σ2
x = 2(M2 − 1)d2/3

Kurtosis C2,2{x} = −4(M4 − 1)d4/15

Normalized kurtosis γ2,2{x} = −
3(M4 − 1)

5(M2 − 1)2

† All the other second-, third- and fourth-order cumulants not listed above are
equal to zero.

y[i1], y[i2], ..., y[il], while a complex random process x[n] = xR[n] + jxI[n]
is specified in terms of the joint statistical properties of the real random
processes xR[n] and xI[n]. Accordingly, for random processes x1[n], x2[n], ...,
xk[n], their kth-order (joint) moment function is defined as

E{x1[n1]x2[n2] · · ·xk[nk]}

=

∫ ∞

−∞
· · ·

∫ ∞

−∞
α1 · · ·αkfx1[n1],...,xk[nk](α1, ..., αk)dα1 · · · dαk (3.104)

where the expectation operator E{·} is also referred to as ensemble aver-
age. Their kth-order (joint) cumulant function cum{x1[n1], x2[n2], ..., xk[nk]}
is defined similarly.

Some statistics of a random process x[n] are defined as follows.

• Mean function:

mx[n] = E{x[n]}. (3.105)
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Fig. 3.14 Illustration of a discrete-time random process x[n]

• Autocorrelation function:

rx[n1, n2] = E{x[n1]x
∗[n2]}. (3.106)

• Autocovariance function:

cx[n1, n2] = E{(x[n1] − mx[n1])(x[n2] − mx[n2])
∗}

= rx[n1, n2] − mx[n1](mx[n2])
∗. (3.107)
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Definition 3.24. A random process x[n] is said to be a white process or a
white noise if its mean function equals zero and the random variables x[ni]
and x[nl] are uncorrelated for all ni �= nl.

11

Definition 3.25. A random process x[n] is said to be independently and iden-
tically distributed (i.i.d.) if the random variables x[n1], x[n2], ..., x[nk] are
statistically independent and have the same pdf (or distribution) for all n1,
n2, ..., nk and any k [11].

Obviously, a white process is a special case of zero-mean, i.i.d. random process.
Moreover, two random processes x[n] and y[n] are said to be

• orthogonal if their cross-correlation function

rxy[n1, n2] = E{x[n1]y
∗[n2]} = 0 for all n1, n2, (3.108)

• uncorrelated if their cross-covariance function

cxy[n1, n2] = E{(x[n1] − mx[n1])(y[n2] − my[n2])
∗}

= rxy[n1, n2] − mx[n1](my[n2])
∗ = 0 for all n1, n2, (3.109)

and
• statistically independent if the set of random variables {x[n1], x[n2], ...,

x[nk]} is statistically independent of the set of random variables {y[i1],
y[i2], ..., y[il]} for all n1, n2, ..., nk, i1, i2, ..., il and any k, l.

When mx[n] = my[n] = 0 for all n, cx[n1, n2] = rx[n1, n2] and cxy[n1, n2] =
rxy[n1, n2] for all n1, n2.

In statistical signal processing, the mean function of random processes
is generally not utilized in developing algorithms and thus is often removed
before any further processing. As such, in what follows, we always assume that
the random processes to be dealt with are zero-mean. Hence, we are concerned
with only autocorrelation and cross-correlation functions, collectively called
correlation functions, as well as cumulant functions.

3.3.2 Stationary Processes

A real or complex random process x[n] is said to be strict-sense stationary
(SSS) or, briefly, stationary 12 if its statistical properties are invariant to an
integer time shift of the origin, i.e.

fx[n1],x[n2],...,x[nk](α1, ..., αk) = fx[n1−τ ],x[n2−τ ],...,x[nk−τ ](α1, ..., αk) (3.110)

11 The white process defined here is precisely referred to as a “second-order” white
process in [18, 19, 27], which also give the definitions of “higher-order” white
processes.

12 A discrete-time stationary process does not imply that its continuous-time coun-
terpart is also stationary [28].
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for any integer τ and any order k. Otherwise, it is said to be nonstationary [29].
Furthermore, two random processes x[n] and y[n] are said to be jointly SSS
if all the joint statistical properties of x[n] and y[n] are the same as those of
x[n − τ ] and y[n − τ ] for any integer τ .

A random process x[n] is said to be pth-order stationary if (3.110) holds for
k = p. Substituting (3.110) into (3.35) leads to the fact that if (3.110) holds
for k = p, then it also holds for all k < p. This says that a pth-order stationary
process x[n] is also kth-order stationary for k = 1, 2, ..., p − 1. Obviously, an
SSS process is surely pth-order stationary for any p. From (3.110), it follows
that for a first-order stationary process x[n], its mean function satisfies

mx[n − τ ] =

∫ ∞

−∞
αfx[n−τ ](α)dα =

∫ ∞

−∞
αfx[n](α)dα = mx[n] (3.111)

for all n and any integer τ . That is, the mean function mx[n] is merely a
constant and thus is also referred to as the mean of x[n]. Furthermore, for a
second-order stationary process x[n], its mean satisfies (3.111) and its auto-
correlation function satisfies

rx[n1 − τ, n2 − τ ] =

∫ ∞

−∞

∫ ∞

−∞
α1α

∗
2fx[n1−τ ],x∗[n2−τ ](α1, α2)dα1dα2

=

∫ ∞

−∞

∫ ∞

−∞
α1α

∗
2fx[n1],x∗[n2](α1, α2)dα1dα2

= rx[n1, n2] (3.112)

for all n1, n2 and any integer τ . That is, rx[n1, n2] depends only on the time
difference (n1 − n2) and thus can be represented as

rx[l] = E{x[n]x∗[n − l]}. (3.113)

In a similar way, a necessary condition for a (p+q)th-order stationary process
x[n] is that its (p + q)th-order cumulant function

cum{x[n1], ..., x[np], x
∗[np+1], ..., x

∗[np+q]}

depends only on the time differences (n1 − n2), ..., (n1 − np+q), and thus can
be represented as

Cx
p,q[l1, l2, ..., lp+q−1]

= cum{x[n], x[n − l1], ..., x[n − lp], x
∗[n − lp+1], ..., x

∗[n − lp+q−1]} (3.114)

where Cx
p,q[l1, l2, ..., lp+q−1] is specifically denoted by Cx

p+q[l1, l2, ..., lp+q−1]
when x[n] is real. Note that Cx

1,1[l] = E{x[n]x∗[n − l]} = rx[l].
A random process x[n] is said to be wide-sense stationary (WSS) if it

satisfies (3.111) and (3.112). According to the definition, a pth-order station-
ary process for p ≥ 2 is also WSS; the converse, however, may not be true.
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Note that a WSS Gaussian process is also SSS since its pdf is completely
determined by its mean and autocorrelation function. Moreover, two random
processes x[n] and y[n] are said to be jointly WSS if both x[n] and y[n] are
WSS and their cross-correlation function satisfies

rxy[n1 − τ, n2 − τ ] = rxy[n1, n2] (3.115)

for all n1, n2 and any integer τ . That is, rxy[n1, n2] depends only on the time
difference (n1 − n2) and thus can be represented as

rxy[l] = E{x[n]y∗[n − l]}. (3.116)

Next, let us further deal with the statistics of stationary processes.

Second-Order Statistics (SOS)

Second-order statistics include autocorrelation functions and cross-correlation
functions as well as power spectra and cross-power spectra defined below.

The power spectrum or spectrum of a WSS process x[n] is defined as

Sx(ω) = F{rx[l]} =

∞∑
l=−∞

rx[l]e−jωl (3.117)

where rx[l] is the autocorrelation function of x[n]. This equation is known as
the Wiener–Khintchine relation or the Einstein–Wiener–Khintchine relation
[24]. In other words, rx[l] can be obtained from Sx(ω) as follows:

rx[l] = F
−1{Sx(ω)} =

1

2π

∫ π

−π

Sx(ω)ejωldω. (3.118)

From this equation, it follows that the power of x[n] can be written as

E{|x[n]|2} = rx[0] =
1

2π

∫ π

−π

Sx(ω)dω (3.119)

and thereby Sx(ω) is also called the power spectral density of x[n]. On the
other hand, an alternative definition of Sx(ω) is shown as [30, p. 59]

Sx(ω) = lim
N→∞

E

⎧⎨⎩ 1

2N + 1

∣∣∣∣∣
N∑

n=−N

x[n]e−jωn

∣∣∣∣∣
2
⎫⎬⎭ (3.120)

provided that
∑∞

l=−∞ |rx[l]| < ∞ (Problem 3.11).
Moreover, the cross-power spectrum or cross-spectrum of two jointly WSS

processes x[n] and y[n] is defined as

Sxy(ω) = F{rxy[l]} =
∞∑

l=−∞
rxy[l]e−jωl (3.121)

where rxy[l] is the cross-correlation function of x[n] and y[n].
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Properties of Second-Order Statistics

Suppose x[n] is a WSS process. Its autocorrelation function rx[l] possesses the
following two properties.

Property 3.26 (Hermitian Symmetry). The autocorrelation function rx[l] =
r∗x[−l] for all l.

Property 3.27. The autocorrelation function rx[l] is bounded by |rx[l]| ≤
rx[0] for all l.

Property 3.26 follows directly from the definition, while Property 3.27 can be
obtained by using the Cauchy–Schwartz inequality (Theorem 3.9).

Let x[n] = (x[n], x[n − 1], ..., x[n− L + 1])T be an L × 1 random vector of
x[n]. By Property 3.26, the correlation matrix of x[n] is given by

Rx = E{x[n]xH [n]} =

⎛⎜⎜⎜⎜⎜⎝
rx[0] rx[1] · · · rx[L − 1]

r∗x[1] rx[0] · · · rx[L − 2]
...

...
. . .

...

r∗x[L − 1] r∗x[L − 2] · · · rx[0]

⎞⎟⎟⎟⎟⎟⎠ , (3.122)

which possesses the following properties.

Property 3.28. The correlation matrix Rx is a Hermitian Toeplitz matrix.

Property 3.29. The correlation matrix Rx is a positive semidefinite matrix.

Property 3.28 directly follows from (3.122), while the proof of Property 3.29 is
left as an exercise (Problem 3.12). Let us emphasize that for most applications
the correlation matrix is positive definite (nonsingular) [31, pp. 102, 103].
Moreover, an autocorrelation function rx[l] is said to be positive semidefinite
(definite) if the corresponding correlation matrix Rx defined as (3.122) is
positive semidefinite (definite) for all L.

On the other hand, by assuming that
∑∞

l=−∞ |rx[l]| < ∞, the power spec-
trum Sx(ω) possesses the following two properties.

Property 3.30. The power spectrum Sx(ω) is real.

Property 3.31. The power spectrum Sx(ω) is nonnegative.

Property 3.30 directly follows from Property 3.26, while the proof of Prop-
erty 3.31 is left as an exercise (Problem 3.13(a)). The fact that Rx is posi-
tive definite for most applications implies that Sx(ω) > 0 (Problem 3.13(b)).
Moreover, it is important to note that Properties 3.30 and 3.31 provide the
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necessary and sufficient condition for a sequence that can be treated as a
legitimate autocorrelation function [24, p. 147].

Moreover, suppose x[n] and y[n] are joint WSS processes. Their cross-
correlation function rxy[l] and cross-correlation matrix Rxy = E{x[n]yH [n]}
possess the following properties.

Property 3.32 (Hermitian Symmetry). The cross-correlation function
rxy[l] = r∗yx[−l] for all l.

Property 3.33. The cross-correlation function rxy[l] is bounded by |rxy[l]| ≤
(rx[0] · ry [0])1/2 for all l.

Property 3.34. The cross-correlation matrix Rxy = RH
yx.

Properties 3.32 and 3.34 directly follow from the definitions, while Property
3.33 can be obtained by using the Cauchy–Schwartz inequality (Theorem 3.9).
Furthermore, suppose the cross-power spectrum Sxy(ω) of x[n] and y[n] exists
for all ω. Then Property 3.32 implies the following property.

Property 3.35. The cross-power spectrum Sxy(ω) = S∗
yx(ω).

LTI Systems Driven by WSS Processes

As depicted in Fig. 3.15, consider that x[n] is a random signal generated from
the following convolutional model:

x[n] = h[n] � u[n] =
∞∑

k=−∞
h[k]u[n− k] (3.123)

where u[n] is the source signal (the driving input) and h[n] is an SISO LTI
system. For the signal model, let us make the following assumptions.

(SOS-1) The SISO LTI system h[n] is stable, i.e. h[n] is absolutely summable.
(SOS-2) The source signal u[n] is a WSS white process with variance σ2

u.

Under Assumptions (SOS-1) and (SOS-2), the random signal x[n] given by
(3.123) is called an ARMA process if h[n] is an ARMA system. It reduces
to an AR process and an MA process when h[n] is an AR system and an
MA system, respectively. Moreover, by definition, Assumption (SOS-2) implies
that the autocorrelation function of u[n] is given by

ru[l] = σ2
u · δ[l] (3.124)

and correspondingly the power spectrum of u[n] is given by

Su(ω) = σ2
u for all ω. (3.125)
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Fig. 3.15 Signal model for generating the random signal x[n]

That is, u[n] has a flat power spectrum, thereby leading to the name white
process; otherwise, it is said to be a colored process.

Using (3.123) and (3.124), we obtain the autocorrelation function of x[n]
as follows:

E{x[n1]x
∗[n2]} =

∞∑
k=−∞

∞∑
m=−∞

h[k]h∗[m]ru[−k + n1 − n2 + m]

= σ2
u

∞∑
k=−∞

h[k]h∗[k − (n1 − n2)].

This reveals that E{x[n1]x
∗[n2]} depends only on the time difference (n1−n2)

and thus can be written as

rx[l] = σ2
u

∞∑
k=−∞

h[k]h∗[k − l]. (3.126)

In other words, under (SOS-2), x[n] is also WSS provided that |rx[l]| < ∞ for
all l or, by Property 3.27, rx[0] < ∞. It can be shown that under (SOS-1) and
(SOS-2),

∑∞
l=−∞ |rx[l]| < ∞ (a special case of Problem 3.14) and accordingly

rx[0] < ∞. As a consequence, (SOS-1) and (SOS-2) ensure that x[n] is WSS.
Taking the DTFT of (3.126) gives the power spectrum of x[n] as

Sx(ω) = σ2
u · |H(ω)|2. (3.127)

By Theorem 2.37, the absolute summability of rx[l] implies that the DTFT
of rx[l] converges uniformly and absolutely to a continuous function, namely,
Sx(ω), on [−π, π). In other words, the existence of Sx(ω) for all ω is guaranteed
under (SOS-1) and (SOS-2). Moreover, an important observation from (3.127)
is that the phase information about the system h[n] has been completely lost
in Sx(ω) or equivalently in rx[l], and thus the second-order statistics rx[l]
and Sx(ω) are said to be phase blind. This implies that one cannot use only
second-order statistics to extract or identify a system’s phase.

Example 3.36
Consider the following two cases for the signal model (3.123).
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• Case I: The system H(z) = H1(z) = (1 − az−1)(1 − bz−1) and the corre-
sponding system output x[n] is denoted by x1[n] where a and b are real
numbers, |a| < 1 and |b| < 1.

• Case II: The system H(z) = H2(z) = (1 − az−1)(1 − bz) and the corre-
sponding system output x[n] is denoted by x2[n].

Both systems H1(z) and H2(z) are FIR, thereby satisfying (SOS-1). Moreover,
H1(z) is minimum phase with two zeros at z = a and z = b (both inside the
unit circle), whereas H2(z) is nonminimum phase with two zeros at z = a
(inside the unit circle) and z = 1/b (outside the unit circle). Figures 3.16a,
b plot the magnitude and phase responses of H1(z), respectively, and those
of H2(z) for a = 1/2 and b = 1/4. One can see that H1(z) and H2(z) have
identical magnitude responses but different phase responses.

Suppose u[n] satisfies (SOS-2). Then, using (3.127), we obtain the same
power spectra of x1[n] and x2[n] as follows:

Sx1(ω) = Sx2(ω) = σ2
u(1 + a2 − 2a cosω)(1 + b2 − 2b cosω).

Figure 3.17 plots Sx1(ω) (solid line) and Sx2(ω) (dashed line) for a = 1/2, b =
1/4 and σ2

u = 1 where the solid and dashed lines overlap. These results reveal
that H1(z) and H2(z) cannot be identified with only the power spectrum.

�

Next, let us further consider the noisy signal model shown in Fig. 3.18
where

y[n] = x[n] + w[n] (3.128)

is the noisy signal, w[n] is the additive noise, and x[n] is the noise-free signal
generated from (3.123) with Assumptions (SOS-1) and (SOS-2). For the noisy
signal model, two more assumptions are made as follows.

(SOS-3) The noise w[n] is a zero-mean WSS (white or colored) process.
(SOS-4) The source signal u[n] is statistically independent of the noise w[n].

Assumption (SOS-4) indicates that x[n] given by (3.123) is also statistically
independent of w[n]. From (3.128), (SOS-3) and (SOS-4), it follows that the
autocorrelation function of y[n] is given by

ry[l] = rx[l] + rw[l] (3.129)

and the power spectrum of y[n] is given by

Sy(ω) = Sx(ω) + Sw(ω) (3.130)

where rw[l] and Sw(ω) are the autocorrelation function and power spectrum
of w[n], respectively. Define the signal-to-noise ratio (SNR) associated with
y[n] as
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Fig. 3.16 (a) The magnitude responses and (b) the phase responses of H1(z) and
H2(z) for a = 1/2 and b = 1/4
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Fig. 3.17 The power spectra Sx1(ω) and Sx2(ω)

SNR =
E{|x[n]|2}
E{|w[n]|2}. (3.131)

Then, from (3.129), (3.130) and Property 3.27, we note that in theory, the
situation that ry [l] = rx[l] for all l or, equivalently, Sy(ω) = Sx(ω) for all
ω happens only when the noise power (variance) rw[0] = E{|w[n]|2} = 0,
i.e. SNR = ∞. In practice, however, the SNR is always finite and thus the
performance of most SOS based algorithms is sensitive to additive WSS noise.
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Fig. 3.18 Signal model for generating the noisy signal y[n]



132 3 Fundamentals of Statistical Signal Processing

Higher-Order Statistics (HOS)

Higher-order statistics include (joint) cumulant functions as well as cumulant
spectra and cross-cumulant spectra defined below.

Let x[n] be a (p + q)th-order stationary process and Cx
p,q[l1, l2, ..., lp+q−1]

be the (p + q)th-order cumulant function of x[n]. Then the (p + q)th-order
cumulant spectrum of x[n] is defined as the following (p + q − 1)-dimensional
DTFT of Cx

p,q[l1, l2, ..., lp+q−1]: [16, 18, 19, 32, 33]

Sx
p,q(ω1, ω2, ..., ωp+q−1)

=

∞∑
l1=−∞

· · ·
∞∑

lp+q−1=−∞
Cx

p,q[l1, l2, ..., lp+q−1] exp

{
−j

p+q−1∑
i=1

ωili

}
. (3.132)

The cumulant spectrum is also referred to as the higher-order spectrum or
the polyspectrum, and is specifically called the bispectrum if p + q = 3 and
the trispectrum if p + q = 4.13 Similarly, the (p + q)th-order cross-cumulant
spectrum of two or more (p + q)th-order stationary processes is defined as the
(p+q−1)-dimensional DTFT of the (p+q)th-order joint cumulant function of
these random processes; see [18] for further details. The existence conditions
of cumulant and cross-cumulant spectra are similar to those of 1-D DTFT,
which we have discussed in Section 3.1.2.

Properties of Higher-Order Statistics

From Property 3.13, it follows that the third-order cumulant function of a
stationary process x[n] possesses the following property.

Property 3.37 (Symmetry). For complex x[n] the third-order cumulant
function

Cx
2,1[l1, l2] = Cx

2,1[−l1, l2 − l1]

=
(
Cx

1,2[−l2, l1 − l2]
)∗

=
(
Cx

1,2[l1 − l2,−l2]
)∗

, (3.133)

while for real x[n] the third-order cumulant function

Cx
3 [l1, l2] = Cx

3 [l2, l1] = Cx
3 [−l1, l2 − l1] = Cx

3 [l2 − l1,−l1]

= Cx
3 [−l2, l1 − l2] = Cx

3 [l1 − l2,−l2] (3.134)

where l1 and l2 are arbitrary integers.

According to Property 3.37, Fig. 3.19 plots the symmetry regions of Cx
3 [l1, l2]

for real x[n] [18, 19, 32, 33]. From this figure, we note that knowing Cx
3 [l1, l2]

13 The term “higher-order spectrum” is due to D. R. Brillinger and M. Rosenblatt
(1967), while the terms “polyspectrum,” “bispectrum,” and “trispectrum” are
due to J. W. Tukey (1959) [32,34].
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in any one of the six regions is equivalent to knowing the entire Cx
3 [l1, l2]. In

light of this property, computational complexity for algorithms involving the
entire Cx

3 [l1, l2] can be significantly reduced. Furthermore, also by Property
3.13, one can easily show that Cx

p,q[l1, l2, ..., lp+q−1] for p + q > 3 exhibits
more symmetry regions than Cx

2,1[l1, l2]. It is, however, tedious to specify all
the symmetry properties for p + q > 3, which are therefore omitted here.

1l

2l

2 1l l=

�

�
�

�

�
�

Fig. 3.19 Six symmetry regions of Cx
3 [l1, l2] for real x[n]

On the other hand, suppose the bispectrum Sx
2,1(ω1, ω2) of x[n] exists for

all ω1, ω2. Then the following property directly follows from Property 3.37.

Property 3.38 (Symmetry). For complex x[n] the bispectrum

Sx
2,1(ω1, ω2) = Sx

2,1(−ω1 − ω2, ω2)

=
[
Sx

1,2(ω1 + ω2,−ω1)
]∗

=
[
Sx

1,2(−ω1, ω1 + ω2)
]∗

, (3.135)

while for real x[n] the bispectrum

Sx
3 (ω1, ω2) = [Sx

3 (−ω1,−ω2)]
∗

= Sx
3 (ω2, ω1)

= Sx
3 (−ω1 − ω2, ω2) = Sx

3 (ω2,−ω1 − ω2)

= Sx
3 (−ω1 − ω2, ω1) = Sx

3 (ω1,−ω1 − ω2) (3.136)

where −π ≤ ω1 < π and −π ≤ ω2 < π.

According to Property 3.38, Fig. 3.20 plots the symmetry regions of Sx
3 (ω1, ω2)

for real x[n] [18, 19, 32, 33]. Similarly, knowing Sx
3 (ω1, ω2) in any one of the

twelve regions is equivalent to knowing the entire Sx
3 (ω1, ω2), thereby lead-

ing to significant simplification of bispectrum computation. Furthermore, the
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trispectrum and other higher-order cumulant spectra of x[n] also possess sim-
ilar symmetry properties, which are omitted here for brevity.
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Fig. 3.20 Twelve symmetry regions of Sx
3 (ω1, ω2) for real x[n]

LTI Systems Driven by Stationary Processes

For the noisy signal model shown in Fig. 3.18, algorithms using HOS are
generally based on the following assumptions.

(HOS-1) The SISO LTI system h[n] is stable.
(HOS-2) The source signal u[n] is a zero-mean, i.i.d., stationary non-Gaussian

process with (p + q)th-order cumulant Cp,q{u[n]} �= 0.
(HOS-3) The noise w[n] is a zero-mean WSS (white or colored) Gaussian

process.
(HOS-4) The source signal u[n] is statistically independent of the noise w[n].

Under Assumptions (HOS-1) and (HOS-2), the random signal x[n] given by
(3.123) is called a linear process [35]. Moreover, by Property 3.18, Assumption
(HOS-2) implies that the (p + q)th-order cumulant function of u[n] is given
by [15, 33]

Cu
p,q[l1, l2, ..., lp+q−1] = Cp,q{u[n]} · δ[l1]δ[l2] · · · δ[lp+q−1]. (3.137)

Correspondingly, the (p + q)th-order cumulant spectrum of u[n] is given by
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Su
p,q(ω1, ω2, ..., ωp+q−1) = Cp,q{u[n]} for all ω1, ω2, ..., ωp+q−1, (3.138)

that is, the polyspectrum is flat for all frequencies.
Using (3.123), (3.137) and Properties 3.14 and 3.16, one can express the

(p + q)th-order cumulant function of x[n] as follows:

cum{x[n1], ..., x[np], x
∗[np+1], ..., x

∗[np+q]}

=

∞∑
k1=−∞

· · ·
∞∑

kp+q=−∞
h[k1] · · ·h[kp]h

∗[kp+1] · · ·h∗[kp+q]

· cum{u[n1 − k1], ..., u[np − kp], u
∗[np+1 − kp+1], ..., u

∗[np+q − kp+q]}

= Cp,q{u[n]} ·
∞∑

k1=−∞
h[k1]h[k1 − (n1 − n2)] · · ·h[k1 − (n1 − np)]

· h∗[k1 − (n1 − np+1)] · · ·h∗[k1 − (n1 − np+q)].

This reveals that cum{x[n1], ..., x[np], x
∗[np+1], ..., x

∗[np+q]} depends only on
the time differences (n1 − n2), ..., (n1 − np+q), and thus can be written as

Cx
p,q[l1, l2, ..., lp+q−1] = Cp,q{u[n]} ·

∞∑
k=−∞

h[k]h[k − l1] · · ·h[k − lp−1]

· h∗[k − lp] · · ·h∗[k − lp+q−1]. (3.139)

In other words, under (HOS-2), x[n] satisfies the necessary condition of (p +
q)th-order stationarity provided that |Cx

p,q[l1, l2, ..., lp+q−1]| < ∞ for all l1, l2,
..., lp+q−1. It can be shown [35, p. 302] that under (HOS-1) and (HOS-2),

∞∑
l1=−∞

· · ·
∞∑

lp+q−1=−∞

∣∣Cx
p,q[l1, l2, ..., lp+q−1]

∣∣ < ∞ (3.140)

(Problem 3.14) and accordingly |Cx
p,q[l1, l2, ..., lp+q−1]| < ∞ for all l1, l2, ...,

lp+q−1. In fact, under (HOS-1) and if u[n] is stationary, then x[n] is station-
ary, too [11, p. 309]. As a consequence, (HOS-1) and (HOS-2) ensure that
x[n] is stationary. Moreover, for ease of use in subsequent chapters, a use-
ful formula for generalizing (3.139) is summarized in the following theorem
(Problem 3.15).

Theorem 3.39. Suppose z1[n], z2[n], ..., zp+q[n] are real or complex random
processes modeled as zi[n] = hi[n] � u[n], i = 1, 2, ..., p + q, where u[n] is
a stationary process satisfying Assumption (HOS-2) and hi[n] are arbitrary
stable LTI systems. Then

cum{z1[n − l1], ..., zp[n − lp], z
∗
p+1[n − lp+1], ..., z

∗
p+q[n − lp+q]}

= Cp,q{u[n]} ·
∞∑

k=−∞
h1[k − l1] · · ·hp[k − lp]h

∗
p+1[k − lp+1] · · ·h∗

p+q[k − lp+q]

for cumulant order p + q ≥ 2.



136 3 Fundamentals of Statistical Signal Processing

Taking the (p + q − 1)-dimensional DTFT of (3.139) yields14

Sx
p,q(ω1, ω2, ..., ωp+q−1) = Cp,q{u[n]} ·

∑
k

h[k]

·
p−1∏
i=1

(∑
li

h[k − li]e
−jωili

)
·

p+q−1∏
i=p

(∑
li

h∗[k − li]e
−jωili

)

= Cp,q{u[n]} · H
(

p+q−1∑
i=1

ωi

)
·

p−1∏
i=1

H(−ωi) ·
p+q−1∏

i=p

H∗(ωi). (3.141)

Under (HOS-1) and (HOS-2), the existence and continuity of the cumulant
spectrum Sx

p,q(ω1, ω2, ..., ωp+q−1) follow from Theorem 2.37 and (3.140). Two
important special cases of (3.141) are as follows.

• Bispectrum: (p, q) = (2, 1)

Sx
2,1(ω) = C2,1{u[n]} · H(ω1 + ω2)H(−ω1)H

∗(ω2). (3.142)

• Trispectrum: (p, q) = (2, 2)

Sx
2,2(ω) = C2,2{u[n]} · H(ω1 + ω2 + ω3)H(−ω1)H

∗(ω2)H
∗(ω3). (3.143)

An example regarding the bispectrum is as follows.

Example 3.40
Consider, again, the two cases in Example 3.36 where u[n] is assumed to
satisfy (HOS-2). Using (3.142), we obtain the bispectrum of x1[n], Sx1

3 (ω1, ω2),
displayed in Fig. 3.21 and the bispectrum of x2[n], Sx2

3 (ω1, ω2), displayed
in Fig. 3.22 for a = 1/2, b = 1/4 and C3{u[n]} = 1. One can see that
Sx1

3 (ω1, ω2) and Sx2
3 (ω1, ω2) have identical magnitudes but different phases,

which therefore provides the distinguishability of H1(z) and H2(z).
�

Unlike second-order statistics, higher-order (≥ 3) statistics (cumulant func-
tions or polyspectra) of the non-Gaussian signal x[n] contain not only mag-
nitude information but also phase information about the system h[n]. It is
for this reason that most blind equalization/identification algorithms either
explicitly or implicitly employ higher-order (≥ 3) statistics, provided that the
signals involved are non-Gaussian.

As for the noisy signal y[n] given by (3.128), by (HOS-3), (HOS-4) and
Property 3.17, the (p + q)th-order cumulant function of y[n] is given by

Cy
p,q[l1, l2, ..., lp+q−1] = Cx

p,q[l1, l2, ..., lp+q−1] + Cw
p,q[l1, l2, ..., lp+q−1]

= Cx
p,q[l1, l2, ..., lp+q−1] (3.144)

14 As reported by Mendel [15], a major generation of (3.126) and (3.127) to (3.139)
and (3.141) was established by M. S. Bartlett (1955) and by D. R. Brillinger and
M. Rosenblatt (1967).
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(a)

(b)

Fig. 3.21 (a) The magnitude and (b) the phase of the bispectrum Sx1
3 (ω1, ω2)
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(a)

(b)

Fig. 3.22 (a) The magnitude and (b) the phase of the bispectrum Sx2
3 (ω1, ω2)
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where p + q ≥ 3 and

Cw
p,q[l1, l2, ..., lp+q−1] = 0 for all l1, l2, ..., lp+q−1 (3.145)

regardless of what the SNR is. Correspondingly, the (p+ q)th-order cumulant
spectrum of y[n] is given by

Sy
p,q(ω1, ω2, ..., ωp+q−1) = Sx

p,q(ω1, ω2, ..., ωp+q−1) + Sw
p,q(ω1, ω2, ..., ωp+q−1)

= Sx
p,q(ω1, ω2, ..., ωp+q−1) (3.146)

where p + q ≥ 3 and

Sw
p,q(ω1, ω2, ..., ωp+q−1) = 0 for all ω1, ω2, ..., ωp+q−1. (3.147)

As a consequence of (3.144) and (3.146), the performance of algorithms using
only HOS (order ≥ 3) are insensitive to Gaussian noise no matter whether the
noise is white or colored. Incidently, (3.145) and (3.147) imply that for an ar-
bitrary zero-mean stationary process z[n], the function

∣∣Cz
p,q[l1, l2, ..., lp+q−1]

∣∣
or

∣∣Sz
p,q(ω1, ω2, ..., ωp+q−1)

∣∣ can be used as a measure of how far z[n] de-
viates from a zero-mean WSS Gaussian process having the same SOS as
z[n] [15, 18, 19, 36].

Over the past several decades, HOS have been applied to a wide variety of
science and engineering areas including communications, sonar, radar, speech,
image, geophysics, astronomy, biomedicine, optics, mechanics, and so on. A
comprehensive bibliography by Swami et al. [37] offers a collection of 1423
references regarding HOS in the period 1984–1994, while another bibliography
by Delaney and Walsh [38] also offers a collection of about 280 references in
a similar time period.

3.3.3 Cyclostationary Processes

A real or complex random process x[n] is said to be strict-sense cyclostationary
(SSCS) or, briefly, cyclostationary with period M if its kth-order pdf satisfies

fx[n1],x[n2],...,x[nk](α1, ..., αk) = fx[n1−τM ],x[n2−τM ],...,x[nk−τM ](α1, ..., αk)

for any integer τ and any order k where M is an integer.15 Furthermore, two
random processes x[n] and y[n] are said to be jointly SSCS with period M if
all the joint statistical properties of x[n] and y[n] are the same as those of
x[n − τM ] and y[n − τM ] for any integer τ . Clearly, if M = 1, then SSCS
(jointly SSCS) processes reduce to SSS (jointly SSS) processes.

15 As reported by Gardner and Franks [39], the term “cyclostationary” was intro-
duced by W.R. Bennett (1958), while some other investigators have used the
terms “periodically stationary,” “periodically correlated,” and “periodic nonsta-
tionary.”
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A random process x[n] is said to be wide-sense cyclostationary (WSCS)
with period M if (i) its mean function satisfies

mx[n − τM ] = mx[n] (3.148)

for all n and any integer τ and (ii) its autocorrelation function satisfies

rx[n − τM, n − l − τM ] = rx[n, n − l] (3.149)

for all n, l and any integer τ . That is, the mean and autocorrelation functions
are both periodic in n with period M . Note that an SSCS process with period
M is also WSCS with period M ; the converse, however, may not be true.
Furthermore, two random processes x[n] and y[n] are said to be jointly WSCS
with period M if both x[n] and y[n] are WSCS with period M and their
cross-correlation function satisfies

rxy[n − τM, n − l − τM ] = rxy[n, n − l] (3.150)

for all n, l and any integer τ . That is, rxy[n, n− l] is periodic in n with period
M . Clearly, if M = 1, then WSCS (jointly WSCS) processes reduce to WSS
(jointly WSS) processes.

Moreover, given a WSCS process, the following theorem shows that an
associated WSS process can be derived by applying a random integer shift to
the WSCS process [11, 39–41] (Problem 3.16).

Theorem 3.41. Suppose x[n] is a WSCS process with period M and η is
a random integer uniformly distributed in [0, M − 1], and η is statistically
independent of x[n]. Then the randomly shifted process y[n] = x[n − η] is
WSS with mean

my =
1

M

M−1∑
n=0

mx[n] (3.151)

and autocorrelation function

ry[l] =
1

M

M−1∑
n=0

rx[n, n − l] (3.152)

where mx[n] and rx[n, n − l] are the mean and autocorrelation functions of
x[n], respectively.

Second-Order Cyclostationary Statistics (SOCS)

Suppose x[n] is a WSCS process with period M . Since the autocorrelation
function rx[n, n− l] of x[n] is periodic in n with period M , it can be expanded
as a Fourier series with the αth Fourier coefficient [42, 43]
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r[α]
x [l] =

1

M

M−1∑
n=0

rx[n, n − l]e−j2παn/M , α = 0, 1, ..., M − 1. (3.153)

Note that (3.153) is a discrete-time version of (2.76) by taking the discrete-

time nature of rx[n, n− l] into account. The Fourier coefficient r
[α]
x [l] is known

as the cyclic autocorrelation function of x[n] indexed by the cycle frequency
parameter α [10,40,42]. Moreover, the cyclic spectrum or cyclic spectral density

of x[n] is defined as the DTFT of r
[α]
x [l] (with respect to l) given by

S[α]
x (ω) = F{r[α]

x [l]} =

∞∑
l=−∞

r[α]
x [l]e−jωl, α = 0, 1, ..., M − 1. (3.154)

Note that (3.153) reduces to (3.152) for α = 0, implying that r
[0]
x [l] and

S
[0]
x (ω) correspond, respectively, to the autocorrelation function and the power

spectrum of a WSS process derived from x[n] (see Theorem 3.41). In other

words, like second-order statistics, r
[0]
x [l] and S

[0]
x (ω) are also phase blind.

However, this is generally not true for r
[α]
x [l] and S

[α]
x (ω) for α ≥ 1 (to be

revealed below).
Second-order cyclostationary statistics (SOCS) are of particular impor-

tance in digital communications where cyclostationarity arises from the pe-
riodic formation of digitally modulated signals. The treatment of SOCS for
digitally modulated signals will be given next, but the topic of higher-order
cyclostationary statistics (HOCS) will not be pursued in this book. The reader
can refer to [44, 45] and the references therein for the treatment of HOCS.

Cyclostationarity of Digital Communication Signals

Consider the digital communication system depicted in Fig. 3.23. The symbol
u[k] drawn from a finite set of alphabets is transmitted at time kT where T
is the symbol period, and the continuous-time received signal is given by

y(t) =

∞∑
k=−∞

u[k]h(t − kT ) + w(t) (3.155)

where h(t) is the continuous-time SISO LTI channel accounting for actual
channel response as well as transmitting and receiving filters, and w(t) is
the continuous-time channel noise. The continuous-time received signal y(t)

is then sampled at time t = nT̃ where T̃ = T/M is the sampling period and
M ≥ 2 is an integer referred to as the oversampling factor. Note that 1/T

is called the symbol rate (symbols per second) or the baud rate,16 while 1/T̃

16 The term “baud,” named after E. Baudot (1874) in recognition of his pioneer-
ing work in telegraphy, is the measure of modulation rate, i.e. the number of
transitions per second. Its usage is clarified in [46].
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is called the sampling rate (samples per second). After sampling y(t), the
discrete-time received signal is obtained as

y[n] = y(nT̃ ) =

∞∑
k=−∞

u[k]h([n − kM ]T̃ ) + w(nT̃ ). (3.156)
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Fig. 3.23 A digital communication system

Let h[n] = h(nT̃ ) and w[n] = w(nT̃ ), that is, h[n] and w[n] are the discrete-
time SISO LTI channel and the discrete-time channel noise corresponding to
h(t) and w(t), respectively. Then y[n] can be further expressed as

y[n] = x[n] + w[n] (3.157)

where x[n] is the discrete-time noise-free received signal given by

x[n] =

∞∑
k=−∞

u[k]h[n − kM ]. (3.158)

The input–output relation given by (3.158) is exactly a description of the
multirate system [47] shown in Fig. 3.24 where the expanded signal

uE[n] =

{
u[n/M ], n = 0,±M,±2M, ...,

0, otherwise.
(3.159)

This clearly indicates that u[n] and x[n] operate at different rates.
With regard to the SOCS of y[n], let us make the following assumptions.

(CS-1) The SISO LTI system h[n] is stable.
(CS-2) The symbol sequence u[n] is a WSS white process with variance σ2

u.
(CS-3) The noise w[n] is a zero-mean WSS (white or colored) process.
(CS-4) The symbol sequence u[n] is statistically independent of the noise w[n].

Assumption (CS-2) implies that the autocorrelation function ru[l] of u[n] is
given as (3.124), while Assumption (CS-4) implies that x[n] is statistically
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Fig. 3.24 Explanation of the relation between x[n] and u[n] via a multirate system

independent of w[n]. Using (3.158) and (3.124), one can express the autocor-
relation function of x[n] as follows:

rx[n, n − l] =

∞∑
k=−∞

∞∑
m=−∞

h[n − kM ]h∗[n − l − mM ]ru[k − m]

= σ2
u

∞∑
k=−∞

h[n − kM ]h∗[n − l − kM ]. (3.160)

It then follows that

rx[n − τM, n − l − τM ] = σ2
u

∞∑
k=−∞

h[n − (k + τ)M ]h∗[n − l − (k + τ)M ]

= rx[n, n − l] for all n, l and any integer τ . (3.161)

In other words, under (CS-2), rx[n, n − l] is periodic in n with period M and
thus x[n] is a WSCS process with period M provided that |rx[n, n − l]| < ∞
for all n, l. It can be shown (Problem 3.17) that under (CS-1) and (CS-2),

∞∑
l=−∞

M−1∑
n=0

|rx[n, n − l]| < ∞ (3.162)

and accordingly |rx[n, n − l]| < ∞ for all n, l. As a consequence, (CS-1) and
(CS-2) ensure that x[n] is WSCS.

Substituting (3.160) into (3.153) yields

r[α]
x [l] =

σ2
u

M

∞∑
k=−∞

M−1∑
n=0

h[n − kM ]h∗[n − kM − l]e−j2παn/M

=
σ2

u

M

∞∑
m=−∞

h[m]h∗[m − l]e−j2παm/M (3.163)
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where α = 0, 1, ..., M − 1. Correspondingly, the cyclic spectrum of x[n] is
obtained by taking the DTFT of (3.163) with respect to l as follows: [43, 48]

S[α]
x (ω) =

σ2
u

M

∞∑
m=−∞

h[m]e−j2παm/M ·
∞∑

l=−∞
h∗[m − l]e−jωl

=
σ2

u

M
· H

(
ω +

2πα

M

)
H∗(ω), α = 0, 1, ..., M − 1. (3.164)

Under Assumptions (CS-1) and (CS-2), equations (3.153) and (3.162) lead to

∞∑
l=−∞

∣∣∣r[α]
x [l]

∣∣∣ ≤ 1

M

∞∑
l=−∞

M−1∑
n=0

|rx[n, n − l]| < ∞ (3.165)

and accordingly the existence and continuity of the cyclic spectrum Sα
x (ω)

follow from Theorem 2.37.
Incidentally, equalization of a digital communication system is said to be

fractionally spaced equalization if the sampling period T̃ is less than the symbol
period T (i.e. oversampling), and is said to be baud-spaced equalization if T̃ =
T (i.e. the sampling rate equals the baud rate). From (3.164) and (3.127), one

can easily see that S
[0]
x (ω) = Sx(ω)/M is phase blind, whereas S

[α]
x (ω) (and

accordingly r
[α]
x [l]) for α ≥ 1 contain not only the magnitude but also phase

information about the channel h[n]. This important discovery, due to Tong,
Xu and Kailath [48], therefore opens up the possibility of blind fractionally
spaced equalization and identification using only SOCS under some certain
conditions [40,43,48–55] (to name a few). The channel identifiability with only

S
[α]
x (ω) is illustrated in the following example.

Example 3.42
For the signal model (3.158), the transfer functions H1(z) and H2(z) given
in Example 3.36 are considered for the system h[n], and the symbol sequence
u[n] is assumed to satisfy (CS-2). The noise-free signal x[n] corresponds to
H(z) = H1(z) is denoted by x1[n], while that corresponds to H(z) = H2(z)
is denoted by x2[n]. By using (3.164) with M = 2 and α = 1, we obtain the
cyclic spectrum of x1[n] as

S[1]
x1

(ω) =
σ2

u

2
(1 − a2 − j2a sinω)(1 − b2 − j2b sinω)

and the cyclic spectrum of x2[n] as

S[1]
x2

(ω) =
σ2

u

2
(1 − a2 − j2a sinω)(1 − b2 + j2b sinω).

Figures 3.25a, b display the magnitude and phase of S
[1]
x1 (ω) (solid lines),

respectively, and those of S
[1]
x2 (ω) (dashed lines) for a = 1/2, b = 1/4 and
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σ2
u = 1 where the solid and dashed lines in Fig. 3.25a overlap. The phase

difference in Fig. 3.25b indicates that it is possible to distinguish between
H1(z) and H2(z) with only cyclic spectra.
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Fig. 3.25 (a) The magnitudes and (b) the phases of S
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Returning to the noisy received signal y[n] given by (3.157), by (CS-3) and
(CS-4), one can express the autocorrelation function of y[n] as

ry[n, n − l] = rx[n, n − l] + rw[l] (3.166)

where rw[l] is the autocorrelation function of w[n]. By (3.166) and (3.161),

ry [n − τM, n − l − τM ] = rx[n − τM, n − l − τM ] + rw[l]

= rx[n, n − l] + rw[l] = ry[n, n − l] (3.167)

for all n, l and any integer τ . This means that under (CS-1) through (CS-4),
ry[n, n − l] is also periodic in n with period M and thus y[n] is WSCS with
period M . Note that |ry[n, n− l]| < ∞ for all n, l since |rx[n, n− l]| < ∞ and
|rw[l]| < ∞ for all n, l. Using (3.166), we obtain the cyclic autocorrelation
function of y[n] as

r[α]
y [l] =

1

M

M−1∑
n=0

ry[n, n − l]e−j2παn/M = r[α]
x [l] + rw[l] · δ[α] (3.168)

where α = 0, 1, ..., M − 1. Taking the DTFT of (3.168) with respect to the
index l therefore gives the cyclic spectrum of y[n] as

S[α]
y (ω) = S[α]

x (ω) + Sw(ω) · δ[α] (3.169)

where Sw(ω) is the power spectrum of w[n] and α = 0, 1, ..., M − 1. As a
result of (3.168) and (3.169), the performance of SOCS based algorithms is
insensitive to additive WSS noise for cycle frequency parameter α ≥ 1 no
matter whether the noise is Gaussian or not, whereas it is sensitive to additive
WSS noise for α = 0.

As a summary, blind baud spaced equalization requires utilization of
higher-order statistics with the discrete-time received signal (a stationary
process) assumed to be non-Gaussian. On the other hand, blind fractionally
spaced equalization can be achieved by utilizing only second-order cyclosta-
tionary statistics of the discrete-time received signal (a WSCS process) no
matter whether the signal is non-Gaussian or not. As we will see in Part III,
the SISO multirate channel model for the WSCS received signal given by
(3.157) and (3.158) can be converted into an equivalent SIMO LTI channel
model with jointly WSS channel outputs. As such, second-order statistics of
these jointly WSS received signals are sufficient for the development of SIMO
blind equalization algorithms. Of course, one can also develop SIMO blind
equalization algorithms using higher-order statistics with the discrete-time
received signal assumed to be stationary non-Gaussian. Hence, we will here-
after direct our attention to dealing with only WSS or stationary signals using
second-order and/or higher-order statistics.
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3.4 Estimation Theory

This section deals with the problem of estimating a set of unknown parameters
as well as the associated methods. Basically, these methods can be categorized
into the following three classes.

• Methods for deterministic parameters. The estimation methods are devel-
oped under the assumption that the unknown parameters to be estimated
are deterministic. These methods are sometimes called the classical estima-
tion methods. Two representatives are the maximum-likelihood (ML) esti-
mation method and the method of moments.

• Methods for random parameters. The estimation methods are developed un-
der the assumption that the unknown parameters to be estimated are ran-
dom. These methods are sometimes called the Bayesian estimation methods.
Two representatives are the minimum mean-square-error (MMSE) estima-
tion method and the maximum a posteriori (MAP) method.

• Methods for both deterministic and random parameters. The estimation
methods are developed regardless of whether the unknown parameters to
be estimated are deterministic or random. In other words, they are applica-
ble to both deterministic and random parameters. A representative is the
least-squares (LS) estimation method.

Among the numerous estimation methods, only the ML, MMSE and LS esti-
mation methods as well as the method of moments are to be presented below.
For a complete and excellent exposition of estimation methods, we encourage
the reader to consult [17, 56].

3.4.1 Estimation Problem

Single Parameter

Consider that x[n] is a random process which depends on an unknown pa-
rameter θ. The problem of parameter estimation is to estimate the unknown
parameter θ from a finite set of measurements {x[0], x[1], ..., x[N − 1]} as

θ̂ = φ(x[0], x[1], ..., x[N − 1]) (3.170)

where φ(·) is a deterministic function (transformation) to be determined. Note
that θ is either deterministic or random depending on the type of problem,
while θ̂ is always random since it is a transformation of random variables
x[0], x[1], ..., x[N −1]. The random variable θ̂ is called an estimator of θ, while

a realization of the random variable θ̂ is called an estimate for θ. For notational
convenience, we also use the same notation θ̂ to represent an estimate for θ
without confusion.
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Example 3.43
Suppose we are given a set of measurements {x[0], x[1], ..., x[N−1]} where x[n]
is a stationary process whose mean mx = E{x[n]} is the unknown parameter
to be estimated. We naturally have the following estimator of mx:

m̂x =
1

N

N−1∑
n=0

x[n], (3.171)

i.e. simply replacing the ensemble average E{x[n]} by its time average. The es-
timator m̂x is called the sample-mean estimator of mx, and the corresponding
estimate is called the sample mean for mx.

�

Let us provide a further insight into the problem of parameter estimation
as follows. Let x = (x[0], x[1], ..., x[N − 1])T . When θ is deterministic, x is
related to θ in the way that its pdf denoted by f(x) has a certain form governed
by θ, but x is not a deterministic function of θ since x is a random vector. For
instance, for a zero-mean Gaussian variable x[0] with unknown variance θ, its
pdf f(x[0]) is a Gaussian shape with spread determined by θ. As such, we also

use the notation f(x; θ) for f(x) to emphasize its dependence on θ. Since θ̂ is
a deterministic function of x, it is also statistically dependent on θ but not a
deterministic function of θ. In other words, ∂θ̂/∂θ∗ = 0. On the other hand,
when θ is random, x and θ are related via their joint pdf denoted by f(x, θ)

and, similarly, θ̂ is statistically dependent on θ but not a deterministic function
of θ. Figure 3.26 summarizes the relations, terminologies and notation for the
problem of estimating the single parameter θ.

Multiple Parameters

Now consider that x[n] is a random process which depends on L unknown
parameters θ[0], θ[1], ..., θ[L − 1]. The problem of parameter estimation here
is to estimate the unknown parameter vector θ = (θ[0], θ[1], ..., θ[L−1])T from
a finite set of measurements {x[0], x[1], ..., x[N − 1]} as

θ̂ = φ(x[0], x[1], ..., x[N − 1]) (3.172)

where φ(·) is a vector of L deterministic functions to be determined. The
parameter vector θ is either deterministic or random, while the estimator
θ̂ is always random. A realization of the estimator θ̂ is an estimate for
θ, which is also denoted by θ̂ for notational convenience. Similarly, x =
(x[0], x[1], ..., x[N − 1])T is related to θ via its pdf denoted by f(x) ≡ f(x; θ)
for deterministic θ, while x and θ are related via their joint pdf denoted by
f(x, θ) for random θ. As such, θ̂ is statistically dependent on θ but not a

vector of deterministic functions of θ, i.e. ∂θ̂
H

/∂θ∗ = ∂θ̂
T
/∂θ∗ = 0. Next,

let us define some desirable statistical properties of estimators.
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Fig. 3.26 Summary of the problem of estimating (a) deterministic parameter θ
and (b) random parameter θ



150 3 Fundamentals of Statistical Signal Processing

3.4.2 Properties of Estimators

The statistical properties of estimators to be discussed are divided into
two types: those valid for any data length and those valid for infinite data
length. The latter properties are called the asymptotic properties of estima-
tors. Clearly, the former properties also hold for infinite data length, but the
converse may not be true.

Properties for Any Data Length

Single Parameter

Although an estimator θ̂ of unknown parameter θ can be completely charac-
terized by its pdf f(θ̂), it is generally sufficient and relatively simple to analyze

θ̂ only via the first- and second-order statistics of θ̂.

Definition 3.44. An estimator θ̂ of unknown parameter θ is said to be unbi-
ased if

E{θ̂} = E{θ}; (3.173)

otherwise, it is said to be biased with bias given by

Bias(θ̂) = E{θ − θ̂} = E{θ} − E{θ̂}. (3.174)

Note that when θ is deterministic, (3.173) and (3.174) reduce to E{θ̂} = θ

and Bias(θ̂) = θ − E{θ̂}, respectively.

Definition 3.45. An unbiased estimator θ̂ of unknown parameter θ is said to
be more efficient 17 than another unbiased estimator θ̃ if

Var(θ̂) ≤ Var(θ̃) (3.175)

where Var(z) = E{|z − E{z}|2} denotes the variance of random variable z.

That is, θ̂ makes use of measurements more efficiently than θ̃.
Moreover, let ε = θ − θ̂ denote the estimation error. Obviously, it

is desirable to have an unbiased estimator θ̂ with smallest error variance
Var(ε) = Var(θ̂).

Definition 3.46. Among all unbiased estimators of θ, if the unbiased esti-
mator θ̂ has the minimum variance for all θ, then it is called the minimum-
variance unbiased (MVU) estimator or the uniformly minimum-variance un-
biased (UMVU) estimator.
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Fig. 3.27 Illustration of the error variance for the UMVU estimator θ
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Fig. 3.28 Illustration of the error variance dependent on θ

Note that the terminology “UMVU” is used to emphasize that the condition of
minimum variance holds for all θ, as illustrated in Fig. 3.27. In other words,
the UMVU estimator is more efficient than any other unbiased estimator.
However, as illustrated in Fig. 3.28, the UMVU estimator does not always
exist [56, p. 20].

Given an unbiased estimator θ̂ obtained with some kind of estimation
method, we may wish to know about its efficiency of utilizing data and whether
it is the UMVU estimator or not. One simple approach, if possible to apply,

17 The concept of efficiency is due to R. A. Fisher (1922) [12], for whom a short
biography can be found in [17, pp. 85–86].
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is to test the following well-known lower bound on the variance of θ̂, called
the Cramér–Rao bound (CRB) or the Cramér–Rao lower bound (CRLB).

Theorem 3.47 (CRB for Single Deterministic Parameter). Suppose

x = (x[0], x[1], ..., x[N−1])T is a vector of N measurements. If θ̂ is an unbiased
estimator of unknown deterministic parameter θ based on x, then

Var(θ̂) ≥ F−1(θ) (3.176)

where Var(θ̂) is the variance of θ̂ and

F (θ) = E

⎧⎨⎩
∣∣∣∣∣∂ ln f(x; θ)

∂θ∗

∣∣∣∣∣
2
⎫⎬⎭ (3.177)

is the so-called Fisher’s information in which f(x; θ) is the pdf of x. The
equality of (3.176) holds if and only if

θ̂ − θ = β(θ)
∂ ln f(x; θ)

∂θ∗
(3.178)

where β(θ) is a nonzero function of θ but not a function of x or θ̂.

The proof is given in Appendix 3B where we have used the assumptions that
∂f(x; θ)/∂θ∗ exists and is absolutely integrable. Fisher’s information F (θ) is
an information measure which measures the information contained in f(x; θ).
Intuitively, the more information the pdf f(x; θ) provides, the more accurate

the estimator θ̂ would be and therefore the smaller the variance Var(θ̂) would
be. This is exactly what the CRB (3.176) says. By further assuming that
∂2f(x; θ)/∂θ∂θ∗ exists and is absolutely integrable, we have another form of
F (θ) as follows: (Problem 3.18)

F (θ) = −E

{
∂2 ln f(x; θ)

∂θ∂θ∗

}
. (3.179)

Note that Theorem 3.47 can be applied to the estimators of random θ by
replacing the pdf f(x; θ) with the joint pdf f(x, θ) together with some modi-
fications of the required assumptions; see [57, p. 177] for further details. Also
it can be generalized for biased estimators [24, p. 292].

For an unbiased estimator θ̂, we can compare the variance of θ̂ with the
CRB (if available) so as to know about its efficiency of utilizing data.

Definition 3.48. If θ̂ is an unbiased estimator of θ and attains the CRB given
by (3.176) for all θ, it is an efficient estimator.



3.4 Estimation Theory 153

According to this definition, an efficient estimator is also the UMVU estimator.
As illustrated in Fig. 3.29, the converse may not be true, however. Let us
emphasize that there exist other lower bounds which are tighter than the
CRB. This means that if an unbiased estimator does not attain the CRB, it
still may be the UMVU estimator. Consequently, the CRB provides only a
partial solution to the problem of determining whether an unbiased estimator
is the UMVU estimator or not. Alternatively, this problem can be completely
resolved by means of the so-called completeness-sufficiency approach; see [56]
for the details.
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Fig. 3.29 Illustration of the difference between the CRB and the variance of the

UMVU estimator θ

Multiple Parameters

Next, let us discuss the statistical properties of estimators of multiple para-
meters for any data length.

Definition 3.49. An estimator θ̂ of unknown parameter vector θ = (θ[0],
θ[1], ..., θ[L − 1])T is said to be unbiased if

E{θ̂} = E{θ}; (3.180)

otherwise, it is said to be biased with bias given by

Bias(θ̂) = E{θ − θ̂} = E{θ} − E{θ̂}. (3.181)

For ease of later use, let

C(z) = E
{

(z − E{z}) (z − E{z})H
}

(3.182)

denote the covariance matrix of random vector z, and the notation ‘A > B’
(‘A ≥ B’) be used to represent that (A − B) is positive definite (positive
semidefinite).
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Definition 3.50. An unbiased estimator θ̂ is said to be more efficient than
another unbiased estimator θ̃ if

C(θ̂) ≤ C(θ̃). (3.183)

Definition 3.51. Among all unbiased estimators of θ, the unbiased estimator
θ̂ is said to be the UMVU estimator of θ if Var(θ̂[k]), k = 0, 1, ..., L − 1, are

minimum for all θ where θ̂[k] is the kth entry of θ̂ [56, p. 23].

That is, each estimator θ̂[k] is more efficient than any other unbiased estimator

of θ[k] if θ̂ is the UMVU estimator of θ.
Similarly, the CRB for multiple deterministic parameters is as follows.

Theorem 3.52 (CRB for Multiple Deterministic Parameters). Sup-

pose x = (x[0], x[1], ..., x[N−1])T is a vector of N measurements. If θ̂ is an un-
biased estimator of deterministic parameter vector θ = (θ[0], θ[1], ..., θ[L−1])T

based on x, then

C(θ̂) ≥ F−1(θ) (3.184)

where C(θ̂) is the covariance matrix of θ̂ and

F(θ) = E

⎧⎨⎩
[

∂ ln f(x; θ)

∂θ∗

]
·
[

∂ ln f(x; θ)

∂θ∗

]H
⎫⎬⎭ (3.185)

is Fisher’s information matrix in which f(x; θ) is the pdf of x. The equality
of (3.184) holds if and only if

θ̂ − θ = β(θ) ·F−1(θ)
∂ ln f(x; θ)

∂θ∗ (3.186)

where β(θ) is a nonzero function of θ but not a function of x or θ̂.

The proof is given in Appendix 3C where we have used the assumptions that
∂f(x; θ)/∂θ∗ exists and is absolutely integrable, and F(θ) is nonsingular.
Theorem 3.52 can also be applied to the estimators of random θ by replacing
the pdf f(x; θ) with the joint pdf f(x, θ) together with some modifications of
the required assumptions; see [58, pp. 99, 100] for further details. Moreover,
Theorem 3.52 implies the following corollary (Problem 3.19).

Corollary 3.53. Suppose x = (x[0], x[1], ..., x[N − 1])T is a vector of N mea-

surements. If θ̂ is an unbiased estimator of deterministic parameter vector
θ = (θ[0], θ[1], ..., θ[L − 1])T based on x, then

Var(θ̂[k]) ≥ [
F−1(θ)

]
k,k

for k = 0, 1, ..., L− 1 (3.187)

where θ̂[k] is the kth entry of θ̂ and F(θ) is the Fisher’s information matrix
defined as (3.185).
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By the CRB, we have the following definition of efficiency.

Definition 3.54. If θ̂ is an unbiased estimator of θ and attains the CRB
given by (3.184) for all θ, it is an efficient estimator.

According to this definition, if θ̂ is an efficient estimator, then θ̂[k] attains the

CRB given by (3.187) for all θ[k], and thus θ̂ is the UMVU estimator of θ. As
a result, the CRB for multiple parameters also provides a partial solution to
the problem of determining whether an unbiased estimator θ̂ is the UMVU
estimator or not.

Properties for Infinite Data Length

Not all the properties of estimators hold for any data length N . Some prop-
erties do depend on the data length N . To emphasize this dependence, let
us further denote an estimator θ̂ based on N measurements by θ̂N . In other
words, we have a sequence of infinitely many estimators {θ̂N}∞N=1, for which

only the asymptotic properties of θ̂N are considered here. Since {θ̂N}∞N=1 is
a sequence of random vectors, its convergence needs to be defined in some
statistical sense before the treatment of its asymptotic properties.

Stochastic Convergence

With regard to an infinite sequence of random vectors, four popular definitions
of stochastic convergence are given as follows.

Convergence with Probability One. A random sequence {zn}∞n=1 is said to
converge with probability one (or converge almost everywhere or converge
almost surely) to a random vector z if for each sample point sm in sample
space,

Pr
{

lim
n→∞ zn(sm) = z(sm)

}
= 1 (3.188)

where zn(sm) and z(sm) are, respectively, the values of the random vectors zn

and z corresponding to the sample point sm. We use the shorthand notation

zn
w.p.1−→ z for this case.

Mean-Square (MS) Convergence. A random sequence {zn}∞n=1 is said to con-
verge in the MS sense to a random vector z if

lim
n→∞ E

{‖zn − z‖2
}

= 0, (3.189)

and we write zn
MS−→ z.

Convergence in Probability. A random sequence {zn}∞n=1 is said to converge
in probability to a random vector z if for any real number ε > 0

lim
n→∞Pr {‖zn − z‖ > ε} = 0, (3.190)

and we write zn
p−→ z.
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Convergence in Distribution. A random sequence {zn}∞n=1 with distribution
function Fn(z) is said to converge in distribution (or converge in law) to a
random vector z with distribution function F (z) if

lim
n→∞Fn(z) = F (z) (3.191)

for all continuity points of F (z). The shorthand notation zn
d−→ z is used for

this case.
Convergence in distribution is concerned with only the convergence of a

sequence of distribution functions rather than the convergence of a random
sequence. Obviously, it is the weakest among the four types of stochastic con-
vergence since different random sequences may correspond to the same dis-
tribution function. Moreover, the relation between convergence in probability
and MS convergence can be observed by using Tchebycheff’s inequality [59, p.
205].

Theorem 3.55 (Tchebycheff’s Inequality). Suppose z is an arbitrary ran-
dom vector. Then for any real number ε > 0

Pr {‖z‖ > ε} ≤ E
{‖z‖2

}
ε2

. (3.192)

The proof is left as an exercise (Problem 3.20). Replacing z in (3.192) by
(zn − z) and letting n → ∞ yield

lim
n→∞ Pr {‖zn − z‖ > ε} ≤ lim

n→∞
E
{‖zn − z‖2

}
ε2

. (3.193)

This clearly indicates that MS convergence implies convergence in probability.
In fact, convergence with probability one also implies convergence in proba-
bility; see [59, pp. 380, 381] for the proof. As a summary, Fig. 3.30 clarifies
the relations for the four types of stochastic convergence [11, p. 210].

Asymptotic Properties of Estimators

Definition 3.56. An estimator θ̂N of unknown parameter vector θ based on
a set of N measurements is said to be asymptotically unbiased if

lim
N→∞

E{θ̂N} = E{θ}. (3.194)

Clearly, an unbiased estimator θ̂N is always asymptotically unbiased, while a
biased estimator θ̂N may also be asymptotically unbiased.

Definition 3.57. An estimator θ̂N of unknown parameter vector θ is said

to be weakly consistent if θ̂N
p−→ θ and is said to be strongly consistent if

θ̂N
w.p.1−→ θ.
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Fig. 3.30 Relations for the four types of stochastic convergence

Note that the consistency of θ̂N does not require that θ̂N be unbiased or
asymptotically unbiased. In principle, strong consistency is more desirable
than weak consistency, but, in practice, analysis for the former is generally
much harder than for the latter. For this reason, unless stated otherwise, we
will always refer to consistent estimators in the sense of weak consistency.

From the foregoing discussion of stochastic convergence, it follows that if

θ̂N
MS−→ θ, then θ̂N

p−→ θ and thus θ̂N is consistent. This therefore suggests
the following method to determine whether θ̂N is a consistent estimator or
not. When θ is deterministic, the mean-square-error (MSE)

E

{∥∥∥θ̂N − θ

∥∥∥2
}

= E

{∥∥∥(θ̂N − E{θ̂N}
)

+
(
E{θ̂N} − θ

)∥∥∥2
}

= E

{∥∥∥θ̂N − E{θ̂N}
∥∥∥2
}

+
∥∥∥E{θ̂N} − θ

∥∥∥2

= tr
{
C(θ̂N )

}
+
∥∥∥Bias(θ̂N )

∥∥∥2

(3.195)

where C(θ̂N ) is the covariance matrix of θ̂N and Bias(θ̂N ) is the bias of

θ̂N . From (3.195), it follows that if both Bias(θ̂N ) and tr{C(θ̂N )} approach

zero as N → ∞, then θ̂N
MS−→ θ and thus θ̂N is a consistent estimator of

θ. As a special case of this method, for the single-parameter case, if the bias
Bias(θ̂N ) → 0 and the variance Var(θ̂N ) → 0 as N → ∞, then θ̂N is a

consistent estimator. Once θ̂N is known to be consistent, the following carry-
over property of consistency can then be applied [60, p. 57] or [35, p. 80].

Theorem 3.58 (Slutsky’s Theorem). Suppose θ̂N is a consistent estima-

tor of unknown parameter vector θ. Then φ(θ̂N ) is also a consistent estimator

of φ(θ) where φ(θ̂N ) is an arbitrary continuous function of θ̂N .
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We leave the proof as an exercise (Problem 3.21). Note that Theorem 3.58 is
also applicable in the sense of strong consistency [35, p. 80].

3.4.3 Maximum-Likelihood Estimation

Suppose the parameter vector θ to be estimated is deterministic. Based on a
vector of N measurements x = (x[0], x[1], ..., x[N − 1])T , the ML estimator is
defined as follows:

θ̂ML = argmax
θ

f(x; θ) (3.196)

where f(x; θ) is called the likelihood function. Let us emphasize that when
f(x; θ) is regarded as the likelihood function of θ, we treat θ as a vector
of independent variables and treat x as a vector of fixed quantities; whereas
when f(x; θ) is regarded as the pdf of x, we treat x as a vector of independent
variables and treat θ as a vector of fixed quantities. The basic idea behind
the ML method is explained as follows [24, pp. 280, 281]. Consider the case
of single measurement x[0] with pdf f(x[0]; mx) where mx is the mean of the
random variable x[0]. Figure 3.31 depicts the pdf f(x[0]; mx) for mx = m1

and mx = m2. Given that mx = mi, the probability of observing that x[0] = χ
can be expressed as

Pr{x[0] = χ
∣∣mi} = lim

ε→0

∫ χ+ε

χ−ε

f(x[0]; mi)dx[0]

≈ lim
ε→0

2ε · f(x[0] = χ; mi), i = 1 or 2.

This means that the larger the likelihood function f(x[0] = χ; mi) with respect
to mi, the more likely the event of observing that x[0] = χ happens. This
therefore leads to the generic form of ML estimator as given by (3.196).

��$��$

∝ 1Pr{ [0] @ | }x m=
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Fig. 3.31 Explanation of the ML estimation method
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In many applications, it is more convenient to obtain an ML estimator via

θ̂ML = argmax
θ

{ln f(x; θ)} (3.197)

since the natural logarithm is a monotonic function. The function ln f(x; θ)
is called the log-likelihood function.

Linear Gaussian Model

As a special case of the ML estimation problem, suppose the vector of mea-
surements x is generated from the following linear model:

x = Hθ + w (3.198)

where H is a deterministic nonsingular matrix and w is a complex zero-mean
Gaussian noise with positive definite covariance matrix Cw. The log-likelihood
function is given by

ln f(x; θ) = − ln
(
πN · |Cw|

)− (x − Hθ)HC−1
w (x − Hθ), (3.199)

which gives the gradient

∂ ln f(x; θ)

∂θ∗ = HHC−1
w (x − Hθ) (3.200)

and the Hessian matrix

J2(θ) =
∂

∂θ∗

[
∂ ln f(x; θ)

∂θ∗

]H

= −HHC−1
w H. (3.201)

Since C−1
w is positive definite (by Property 2.12), for any nonzero vector q we

have −qHHHC−1
w Hq = −(Hq)HC−1

w (Hq) < 0, and thus J2(θ) is negative
definite. According to Theorem 2.44, the solution obtained by setting (3.200)
to zero corresponds to the maximum of f(x; θ). As a result, the ML estimator

θ̂ML = (HHC−1
w H)−1HC−1

w x. (3.202)

This indicates that for the linear data model given by (3.198) the ML estimator

θ̂ML is a linear estimator (a linear transformation of x).

Properties of ML Estimators

Recall that any efficient estimator θ̂, if exists, must satisfy (3.186) for all θ.

Accordingly, evaluating (3.186) at θ = θ̂ML yields

θ̂ − θ̂ML = β(θ̂ML) ·F−1(θ̂ML) · ∂ ln f(x; θ)

∂θ∗

∣∣∣∣∣
θ = θ̂ML

.
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This, together with the fact that

∂ ln f(x; θ)

∂θ∗

∣∣∣∣∣
θ = θ̂ML

= 0

is a necessary condition for the maximum of the log-likelihood function
ln f(x; θ), therefore leads to the following property of θ̂ML.

Property 3.59. Any efficient estimator of unknown deterministic parameter
vector θ, if it exists, is identical to the ML estimator θ̂ML.

Another property of θ̂ML is as follows.

Property 3.60. For the linear data model given by (3.198), the ML esti-

mator θ̂ML given by (3.202) is (i) unbiased, (ii) efficient, (iii) UMVU, (iv)
consistent, and (v) Gaussian distributed.

The proof for the consistency of θ̂ML can be found in [61, pp. 553–556], while
the remaining parts of the proof are left as an exercise (Problem 3.23).

3.4.4 Method of Moments

Let θ̂ be an estimator of unknown parameter vector θ based on a vector of
N measurements x = (x[0], x[1], ..., x[N − 1])T . The method of moments for

obtaining θ̂ involves the following two steps.

(S1) Express θ as a transformation of moment functions where the transfor-
mation is assumed to exist.

(S2) Obtain θ̂ by replacing the moment functions in (S1) with their respective
estimators.

Several important examples of utilizing the method of moments are provided
as follows.

Sample Correlations

Consider that the autocorrelation rx[l] is the unknown parameter to be esti-
mated based on the set of N measurements {x[0], x[1], ..., x[N −1]}. Following
Step (S1), we express

rx[l] = E{x[n]x∗[n − l]} (3.203)

and, following Step (S2), we consider the following estimator for rx[l]:
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r̂x[l] =
1

N

nU∑
n=nL

x[n]x∗[n − l] (3.204)

where nL = max{0, l} and nU = min{N−1, N−1+ l}. Note that both nL and
nU are functions of the lag l. Without loss of generality, let us focus on the
case that l ≥ 0, giving nL = l and nU = N − 1. It then follows from (3.204)
that

E {r̂x[l]} =
1

N

N−1∑
n=l

E {x[n]x∗[n − l]} =
N − l

N
rx[l]. (3.205)

As a result, the estimator r̂x[0] is unbiased, whereas r̂x[l] for l > 0 is biased
but asymptotically unbiased for finite l. As such, r̂x[l] is referred to as a biased
sample correlation of x[n]. Furthermore, under certain conditions, r̂x[l] can be
shown to be a consistent estimator [35, pp. 100–104]. Although there exist
unbiased estimators for rx[l], it is still preferred to use the estimator r̂x[l]
given by (3.204) because the resultant autocorrelation matrix is guaranteed
to be positive definite (see Problem 3.24) and thus satisfies Properties 3.28
and 3.29.

For the cross-correlation rxy[l] of WSS processes x[n] and y[n], the corre-
sponding biased sample cross-correlation is given by

r̂xy[l] =
1

N

nU∑
n=nL

x[n]y∗[n − l] (3.206)

where nL = max{0, l} and nU = min{N − 1, N − 1 + l}. Similarly, the biased
sample cross-correlation r̂xy[l] is consistent under certain conditions.

Sample Cumulants

Consider that the (p+q)th-order cumulant Cx
p,q[l1, l2, ..., lp+q−1] of a zero-mean

stationary process x[n] is the unknown parameter to be estimated based on
the set of N measurements {x[0], x[1], ..., x[N − 1]}. From (3.72), it follows
that the biased third-order sample cumulant for Cx

2,1[l1, l2] is given by

Ĉx
2,1[l1, l2] = Ê{x[n]x[n − l1]x

∗[n − l2]}

=
1

N

nU∑
n=nL

x[n]x[n − l1]x
∗[n − l2] (3.207)

where nL = max{0, l1, l2} and nU = min{N − 1, N − 1 + l1, N − 1 + l2}.
Similarly, the biased fourth-order sample cumulant for Cx

2,2[l1, l2, l3] is given
by
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Ĉx
2,2[l1, l2, l3] = Ê{x[n]x[n − l1]x

∗[n − l2]x
∗[n − l3]}

− Ê{x[n]x[n − l1]}Ê{x∗[n − l2]x
∗[n − l3]}

− Ê{x[n]x∗[n − l2]}Ê{x[n − l1]x
∗[n − l3]}

− Ê{x[n]x∗[n − l3]}Ê{x[n − l1]x
∗[n − l2]} (3.208)

where Ê{x1x2} denotes the biased sample correlation of x1 and x2, and

Ê{x[n]x[n − l1]x
∗[n − l2]x

∗[n − l3]}

=
1

N

nU∑
n=nL

x[n]x[n − l1]x
∗[n − l2]x

∗[n − l3] (3.209)

in which nL = max{0, l1, l2, l3} and nU = min{N − 1, N − 1 + l1, N − 1 +
l2, N−1+l3}. Other higher-order cumulants can also be estimated in a similar
fashion.

It has been shown that under certain conditions, the biased third-order
sample cumulant given by (3.207) and the biased fourth-order sample cumu-
lant given by (3.208) are asymptotically unbiased and consistent [35, p. 309].
Moreover, the larger the cumulant order, the higher the variance of the sample
cumulant. This suggests that utilization of lower-order cumulants/polyspectra
is preferable in practice. Fortunately, second-, third- and fourth-order cumu-
lants are generally sufficient for most practical applications, and thus have
been studied extensively for algorithm developments in many fields.

Spectral Estimation

Suppose x[n] is a stationary process whose power spectra or polyspectra are
the unknown parameters to be estimated. Basically, there are two types of
methods for spectral estimation.

• Parametric spectral estimation methods. This type of method generally pro-
ceeds in three steps: (i) selecting a parametric model for x[n], (ii) estimat-
ing the parameters of the selected model from measurements {x[0], x[1],
..., x[N − 1]}, and (iii) obtaining the spectral estimator from the estimated
parameters of the selected model [30, pp. 106, 107]. Some representative
methods of this type are the AR, MA, and ARMA spectral estimation
methods.

• Nonparametric spectral estimation methods. This type of method estimates
the power spectrum of x[n] directly from measurements {x[0], x[1], ...,
x[N − 1]} (without assuming any parametric model). Some representative
methods of this type are the periodogram spectral estimation method and
the Blackman–Tukey spectral estimation method.

Generally speaking, parametric methods can provide accurate estimates when
the presumed parametric model closely matches the true system, but will de-
grade severely when model mismatch occurs. On the other hand, nonpara-
metric methods are robust against a wide variety of data structures because
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no assumption is made regarding data structure. In the following, two meth-
ods for power spectral estimation are described. The reader may consult [30]
and [18] for excellent expositions on power spectral and polyspectral estima-
tion methods, respectively.

Autoregressive Spectral Estimation

Let x[n] be an AR process as shown in Fig. 3.32 where u[n] is the driving
input assumed to be a white WSS process with variance σ2

u, and h[n] is a
causal stable system with transfer function

H(z) =
1

1 + α1z−1 + · · · + αpz−p
. (3.210)

The input–output relation of the AR(p) model H(z) is given by

x[n] + a1x[n − 1] + · · · + apx[n − p] = u[n]. (3.211)

Multiplying (3.211) by x∗[n − l] and then taking expectation yields

rx[l] + a1rx[l − 1] + · · · + aprx[l − p] = E{u[n]x∗[n − l]} (3.212)

where rx[l] is the autocorrelation function of x[n]. Since x[n] = h[n] � u[n],

E{u[n]x∗[n − l]} =

∞∑
k=−∞

h∗[k]ru[l + k] = σ2
u · h∗[−l] (3.213)

where h[l] = 0 for l < 0 (since h[l] is causal) and h[0] = limz→∞ H(z) = 1
(by the initial value theorem). Formulating (3.212) into matrix form for l =
0, 1, ..., p and using (3.213), we obtain⎛⎜⎜⎜⎜⎜⎝

rx[0] rx[−1] · · · rx[−p]

rx[1] rx[0] · · · rx[1 − p]
...

...
. . .

...

rx[p] rx[p − 1] · · · rx[0]

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1

a1

...

ap

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
σ2

u

0
...

0

⎞⎟⎟⎟⎟⎟⎠ , (3.214)

which are called the Yule–Walker equations. Accordingly, the AR coefficient
vector ap = (a1, a2, ..., ap)

T can be estimated by solving the following set of
equations:

R̂x · âp = −r̂x (3.215)

where

R̂x =

⎛⎜⎜⎜⎜⎜⎝
r̂x[0] r̂∗x[1] · · · r̂∗x[p − 1]

r̂x[1] r̂x[0] · · · r̂∗x[p − 2]
...

...
. . .

...

r̂x[p − 1] r̂x[p − 2] · · · r̂x[0]

⎞⎟⎟⎟⎟⎟⎠ (3.216)
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and r̂x = (r̂x[1], r̂x[2], ..., r̂x[p])T in which r̂x[l] is the biased sample autocorre-
lation for rx[l]. Furthermore, from (3.214), the variance σ2

u can be estimated
via

σ̂2
u = r̂x[0] +

p∑
l=1

âlr̂
∗
x[l]. (3.217)
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Fig. 3.32 Model for AR process x[n]

After â1, â2, ..., âp and σ̂2
u are obtained, the power spectrum Sx(ω) can be

estimated based on (3.127). Specifically, the estimator of Sx(ω), referred to as
the AR spectral estimator, is given by

Ŝx(ω) =
σ̂2

u

|1 + â1z−1 + · · · + âpz−p|2. (3.218)

When the AR process x[n] is Gaussian, the AR spectral estimator can be
shown to be a consistent estimator [35, p. 154].

Periodogram Spectral Estimation

By removing the ensemble average in (3.120) and taking the set of N measure-
ments {x[0], x[1], ..., x[N − 1]} into account, we have the following estimator
of power spectrum Sx(ω): [30, p. 65]

Ŝx(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−jωn

∣∣∣∣∣
2

. (3.219)

The estimator is known as the periodogram spectral estimator and the corre-
sponding estimate is known as the periodogram. It has been shown that the
periodogram spectral estimator is an asymptotically unbiased estimator, but
not a consistent estimator [35, pp. 107–109].

3.4.5 Minimum Mean-Square-Error Estimation

Suppose the parameter vector θ to be estimated is random. Based on a vec-
tor of N measurements x = (x[0], x[1], ..., x[N − 1])T , the MMSE estimator,

denoted by θ̂MS, is determined by minimizing the mean-square-error (MSE)
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JMSE(θ̂) = E
{
‖ε‖2

}
= E

{∥∥∥θ − θ̂

∥∥∥2
}

(3.220)

where ε = θ − θ̂ is the vector of estimation error, and θ̂ = θ̂MS as JMSE(θ̂) is
minimum. Further express

JMSE(θ̂) =

∫
∞

−∞

∫
∞

−∞

‖ε‖2 · f(x, θ)dxdθ =

∫
∞

−∞

J̃MSE(θ̂) · f(x)dx (3.221)

where

J̃MSE(θ̂) =

∫
∞

−∞

‖ε‖2 · f(θ
∣∣x)dθ = E

{‖ε‖2
∣∣x} . (3.222)

Since f(x) ≥ 0 for all x, it follows that the minimum of J̃MSE(θ̂) must also

be the minimum of JMSE(θ̂), implying that θ̂MS can be obtained from the

minimum of J̃MSE(θ̂).

Substituting ε = θ − θ̂ into (3.222) yields

J̃MSE(θ̂) = E
{
(θ − θ̂)H(θ − θ̂)

∣∣x}
= E

{‖θ‖2
∣∣x} − θ̂

H · E{θ∣∣x} − E{θH
∣∣x} · θ̂ + ‖θ̂‖2

= E
{‖θ‖2

∣∣x} +
∥∥∥θ̂ − E{θ∣∣x}∥∥∥2

− ∥∥E{θ∣∣x}∥∥2
(3.223)

where, in the second line, we have used the fact that given x, the corresponding
θ̂ is a constant vector. We therefore have the following result [17, pp. 175, 176].

Theorem 3.61 (Fundamental Theorem of Estimation Theory). The

MMSE estimator θ̂MS of unknown random parameter vector θ is the condi-
tional mean given by

θ̂MS = E{θ∣∣x} =

∫
∞

−∞

θ · f(θ
∣∣x)dθ (3.224)

and the corresponding minimum value of MSE is given by

J̃MSE(θ̂MS) = E
{‖θ‖2

∣∣x}− ‖θ̂MS‖2. (3.225)

In general, θ̂MS given by (3.224) is a nonlinear estimator which may not be

obtained easily. As such, in most practical applications, θ̂MS is often confined
to a linear estimator, called a linear MMSE (LMMSE) estimator. A typical
representative of LMMSE estimators is the well-known Wiener filter, which
will be detailed later on.
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Properties of MMSE Estimators

From (3.224), it follows that E{θ̂MS} = E
{
E{θ∣∣x}} = E{θ}. Thus, we have

the following property of θ̂MS.

Property 3.62. The MMSE estimator θ̂MS is unbiased.

This property further leads to

JMSE(θ̂MS) = E

{∥∥∥θ − θ̂MS

∥∥∥2
}

=
∑

k

Var(θ̂MS[k]) (3.226)

where θ̂MS[k] is the kth entry of θ̂MS. We thus have another property of θ̂MS.

Property 3.63. Any UMVU estimator of unknown random parameter vector
θ, if it exists, is identical to the MMSE estimator θ̂MS.

3.4.6 Wiener Filtering

Wiener filtering is nothing but a special case of linear optimum filtering as
depicted in Fig. 3.33. Given a set of N measurements {x[0], x[1], ..., x[N−1]},
the goal of linear optimum filtering is to design an optimum LTI filter v[n] in
some statistical sense such that the filter output

d̂[n] = v[n] � x[n] (3.227)

approximates the desired signal d[n]. This obviously assumes that d[n] is re-
lated to x[n] in some manner as illustrated in Table 3.10. Regarding Wiener
filtering, the optimum LTI filter v[n], called the Wiener filter, is designed by
minimizing the MSE:

JMSE(v[n]) = E{|ε[n]|2} (3.228)

where

ε[n] = d[n] − d̂[n] (3.229)

is the estimation error. Clearly, the Wiener filter v[n] is an LMMSE estimator.

Orthogonality Principle

For simplicity, the Wiener filter v[n] is assumed to be FIR with v[n] = 0 for
n < L1 and n > L2, and its length L = L2 − L1 + 1. The estimation error
given by (3.229) can be expressed as
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Fig. 3.33 Linear optimum filtering

Table 3.10 Typical problems of linear optimum filtering

Problem Measurements Desired Signal

Filtering of signal in noise x[n] = s[n] + w[n] d[n] = s[n]

Prediction of signal in noise x[n] = s[n] + w[n] d[n] = s[n + τ ], τ > 0

Smoothing of signal in noise x[n] = s[n] + w[n] d[n] = s[n − τ ], τ > 0

ε[n] = d[n] −
L2∑

i=L1

v[i]x[n − i] = d[n] − vT x[n] (3.230)

where v = (v[L1], v[L1 + 1], ..., v[L2])
T and x[n] = (x[n − L1], x[n − L1 −

1], ..., x[n − L2])
T . From (3.228) and (3.230), it follows that the gradient

∂JMSE(v[n])

∂v∗ = E

{
ε[n]

∂ε∗[n]

∂v∗

}
= −E{ε[n]x∗[n]} (3.231)

and the Hessian matrix

J2(v[n]) =
∂

∂v∗

[
∂JMSE(v)

∂v∗

]H

= −E

{
∂ε∗[n]

∂v∗ xT [n]

}
= R∗

x (3.232)

where Rx = E{x[n]xH [n]} is the L × L autocorrelation matrix. As a conse-
quence of (3.231), the Wiener filter v[n] satisfies
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E{ε[n]x∗[n]} = 0, (3.233)

that is, the Wiener filter v[n] is designed such that the estimation error ε[n] is
orthogonal to the set of measurements {x[n−L1], x[n−L1−1], ..., x[n−L2]}.
Accordingly, (3.233) is called the orthogonality principle.

Furthermore, (3.232) reveals that the Hessian matrix J2(v[n]) is positive
definite provided that Rx is nonsingular, and thus v[n] obtained from (3.233)
corresponds to the minimum of JMSE(v[n]). Substituting (3.230) into (3.228)
and using (3.233) therefore gives

min{JMSE(v[n])} = E{ε[n]d∗[n]}. (3.234)

Geometrical Interpretation

From (3.227) and (3.233), it follows that

E{ε[n]d̂∗[n]} =

L2∑
k=L1

v∗[k] · E{ε[n]x∗[n − k]} = 0. (3.235)

By viewing random signals and cross-correlations as vectors and inner prod-
ucts, respectively, we have the geometrical interpretation of (3.229) and
(3.235) depicted in Fig. 3.34. The vector representing the estimation error
ε[n] is perpendicular to the vector representing an estimate of the desired sig-

nal, d̂[n], which is a linear combination of measurements x[n−L1], x[n−L1−1],
..., x[n − L2]. This geometry is referred to as the statistician’s Pythagorean
theorem [31]. In the same way, min{JMSE(v[n])} given by (3.234) can be in-
terpreted as the projection of the vector representing the desired signal d[n]
onto the vector representing the estimation error ε[n].
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Fig. 3.34 Geometrical interpretation of Wiener filtering
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Wiener–Hopf Equations

The coefficients of the Wiener filter v[n] can be obtained by solving a set of
linear equations derived from the orthogonality principle. Substituting (3.230)
into (3.233) yields

E{d[n]x∗[n]} = E{vT x[n]x∗[n]} = E{x∗[n]xT [n]}v

or

R∗
xv = rdx (3.236)

where rdx = E{d[n]x∗[n]}. The set of equations (3.236) is called the Wiener–
Hopf equations. Moreover, substituting (3.230) into (3.234) yields

min{JMSE(v[n])} = E{|d[n]|2} − E{d∗[n]xT [n]}v = σ2
d − rH

dxv (3.237)

where σ2
d is the variance of d[n]. Table 3.11 summarizes the Wiener filter v[n].

Table 3.11 Summary of Wiener filter

FIR Wiener Filter v[n]

Problem Given measurements x[n], find the Wiener filter v[n], n =
L1, L1 + 1, ..., L2, to minimize the MSE

JMSE(v[n]) = E{|ε[n]|2}

where ε[n] = d[n] − vT x[n] is the estimation error, d[n]
is the desired signal, v = (v[L1], v[L1 + 1], · · · , v[L2])

T ,
and x[n] = (x[n − L1], x[n − L1 − 1], · · · , x[n − L2])

T .

Orthogonality
principle

E {ε[n]x∗[n]} = 0
min {JMSE(v[n])} = E{ε[n]d∗[n]}

Wiener–Hopf
equations

R∗

xv = rdx

where Rx = E{x[n]xH [n]} and rdx = E{d[n]x∗[n]}.

Minimum of
the MSE

min{JMSE(v[n])} = σ2
d − rH

dxv
where σ2

d = E{|d[n]|2}.

3.4.7 Least-Squares Estimation

Consider the data model shown in Fig. 3.35. The signal s[n] is generated
from a signal model governed by a set of unknown parameters {θ[0], θ[1], ...,
θ[L − 1]}, and x[n] is the measurement of s[n] that may be perturbed by
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Fig. 3.35 Data model for the LS estimation problem

such errors as model mismatch error, measurement noise, etc. The resultant
error due to these perturbations is denoted by ε[n]. With the collection of N
measurements, the data model can be described as

x = s + ε (3.238)

where x = (x[0], x[1], ..., x[N − 1])T , s = (s[0], s[1], ..., s[N − 1])T , and ε =
(ε[0], ε[1], ..., ε[N − 1])T . Based on the data model (3.238), the LS estimation
method18 finds the unknown parameter vector θ = (θ[0], θ[1], ..., θ[L−1])T by
minimizing the sum of squared errors

JLS(θ) =

N−1∑
n=0

|ε[n]|2 = ‖ε‖2. (3.239)

Note that θ can be deterministic or random, and no probabilistic assumption
needs to be made for x. This therefore leads to broad applications of the LS
estimation method.

Linear Signal Model

Consider the following linear signal model:

s = Hθ (3.240)

18 The LS estimation method is due to the study of planetary motions by K. F.
Gauss (1795), for whom a short biography can be found in [17, pp. 28–29].
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where H is an N ×L nonsingular matrix and N ≥ L. With this signal model,
the LS estimation problem is exactly identical to the full-rank overdetermined
LS problem presented in Section 2.4, and thus the LS estimator

θ̂LS = (HHH)−1HHx. (3.241)

From (3.238), (3.240) and (3.241), it follows that

ε = x − Hθ̂LS =
[
I − H(HHH)−1HH

]
x (3.242)

and thereby

min{JLS(θ)} = xH
[
I− H(HHH)−1HH

]
x. (3.243)

As a remark, the above-mentioned results can also be extended to any type
of matrix H by means of the SVD as described in Section 2.4.

Weighted Least-Squares Estimation

When the relative reliability of each entry of x is known, one can improve the
LS estimator by using the following weighted least-squares (WLS) criterion

JWLS(θ) = εHWε (3.244)

where W is an N × N Hermitian, positive definite weighting matrix. Note
that if W = I, then JWLS(θ) reduces to JLS(θ). Let us consider, again, the
linear signal model (3.240). Then the gradient

∂JWLS(θ)

∂θ∗ = HHW(x − Hθ) (3.245)

and the Hessian matrix

J2(θ) =
∂

∂θ∗

[
∂JWLS(θ)

∂θ∗

]H

= HHWH. (3.246)

Since W is positive definite, qHHHWHq = (Hq)HW(Hq) > 0 for any
nonzero vector q and thus J2(θ) is positive definite. By Theorem 2.44, the
solution obtained by setting (3.245) to zero corresponds to the minimum of
JWLS(θ). As a result, the WLS estimator is obtained as

θ̂WLS = (HHWH)−1HHWx. (3.247)

From (3.238), (3.240) and (3.247), it follows that

ε =
[
I− H(HHWH)−1HHW

]
x (3.248)

and accordingly

min{JWLS(θ)} = xH
[
W − WHH(HHWH)−1HHW

]
x. (3.249)
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Properties of WLS Estimators

The following property of the WLS estimator θ̂WLS can be observed from
(3.202) and (3.247) as well as (3.198), (3.238) and (3.240).

Property 3.64. Suppose the error ε is a complex white Gaussian process
with covariance matrix Cε. With the weighting matrix W = C−1

ε , the WLS

estimator θ̂WLS given by (3.247) is identical to the ML estimator θ̂ML given
by (3.202).

This property, together with Property 3.60, implies the following property.

Property 3.65. Suppose the error ε is a complex white Gaussian process
with covariance matrix Cε. With the weighting matrix W = C−1

ε , the WLS

estimator θ̂WLS given by (3.247) is (i) unbiased, (ii) efficient, (iii) UMVU,
(iv) consistent, and (v) Gaussian distributed.

3.5 Summary

We have reviewed the fundamentals of discrete-time signals and systems, in-
cluding the definitions, terminologies, transformation tools, and parametric
models. We then reviewed random variables and random processes, includ-
ing statistical characterization, second-order and higher-order statistics for
both real and complex cases. Finally, estimation theory was introduced that
includes the problem, properties of estimators and several representatives of
estimation methods.

Appendix 3A

Relationship between Cumulants and Moments

Consider, first, that x1, x2, ..., xk are real. From (3.67), it follows that the
second characteristic function Ψ(ω) can be expanded as a Taylor series at
ω = 0 with coefficients expressed in terms of cumulants. On the other hand,
from (3.69) and (3.63), it follows that Ψ(ω) can also be expanded as a Taylor
series at ω = 0 with coefficients expressed in terms of moments. Equating
the two sets of coefficients of the Taylor series therefore leads to the following
generic form of the relationship between cumulants and moments: [15–18]

cum{x1, x2, ..., xk}

=

k∑
l=1

(−1)l−1(l − 1)! · E
{∏

i∈I1

xi

}
E

{∏
i∈I2

xi

}
· · ·E

{∏
i∈Il

xi

}
(3.250)
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where the summation includes all possible partitions I1, I2, ..., Il of the integer
set I = {1, 2, ..., k}, i.e. I1 ∪ I2 ∪ · · · ∪ Il = I. The use of (3.250) is illustrated
in Table 3.12. From this table, we have

cum{x1, x2, x3} =E{x1x2x3} − E{x1}E{x2x3} − E{x2}E{x1x3}
− E{x3}E{x1x2} + 2E{x1}E{x2}E{x3}, (3.251)

which reduces to (3.72) as E{x1} = E{x2} = E{x3} = 0.

Table 3.12 Illustration of Equation (3.250)

Expression of cum{x1, x2, x3} in terms of Moments

l I1 I2 I3 Terms in the summation

1 {1, 2, 3} E {x1x2x3}

2 {1} {2, 3} −E{x1}E{x2x3}

2 {2} {1, 3} −E{x2}E{x1x3}

2 {3} {1, 2} −E{x3}E{x1x2}

3 {1} {2} {3} 2E{x1}E{x2}E{x3}

When x1, x2, ..., xk are complex, the same form of relationship given by
(3.250) can be obtained by treating {ω1, ω2, ..., ωk} and {ω∗

1 , ω∗
2 , ..., ω∗

k} as two
independent sets of variables and following the foregoing derivation with the
Taylor series expanded for Ψ(ω) = Ψ(ω, ω∗) at (ω, ω∗) = (0,0).

Appendix 3B

Proof of Theorem 3.47

Since θ̂ is unbiased,

E{(θ̂ − θ)∗} =

∫
∞

−∞

f(x; θ) · (θ̂ − θ)∗dx = 0. (3.252)

Differentiating (3.252) with respect to θ∗ yields∫
∞

−∞

[
∂f(x; θ)

∂θ∗
(θ̂ − θ)∗ − f(x; θ)

]
dx = 0. (3.253)

Note that in deriving (3.253), we have used the assumption that ∂f(x; θ)/∂θ∗

exists and is absolutely integrable so that the order of differentiation and
integration can be interchanged. Equation (3.253) further leads to
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1 =

∣∣∣∣∣
∫

∞

−∞

∂ ln f(x; θ)

∂θ∗
f(x; θ) · (θ̂ − θ)∗dx

∣∣∣∣∣
2

=

∣∣∣∣∣E
{

∂ ln f(x; θ)

∂θ∗
(θ̂ − θ)∗

}∣∣∣∣∣
2

≤ E

⎧⎨⎩
∣∣∣∣∣∂ ln f(x; θ)

∂θ∗

∣∣∣∣∣
2
⎫⎬⎭ · E

{
|θ̂ − θ|2

}
= F (θ) · Var(θ̂) (3.254)

where the second line is obtained by using Theorem 3.9. Equation (3.254)
therefore gives (3.176).

By Theorem 3.9, the equality of (3.254) holds if and only if (3.178) is satis-

fied where β(θ) is not a function of x or, equivalently, θ̂ since the expectation
operators in (3.254) are with respect to x. This therefore completes the proof.

Q.E.D.

Appendix 3C

Proof of Theorem 3.52

Since θ̂ is unbiased,

E{(θ̂ − θ)H} =

∫
∞

−∞

f(x; θ) · (θ̂ − θ)Hdx = 0. (3.255)

By the assumption that ∂f(x; θ)/∂θ∗ exists and is absolutely integrable, dif-
ferentiating (3.255) with respect to θ∗ yields∫

∞

−∞

[
∂f(x; θ)

∂θ∗ (θ̂ − θ)H − f(x; θ) · I
]

dx = 0

or

I =

∫
∞

−∞

∂ ln f(x; θ)

∂θ∗ f(x; θ) · (θ̂ − θ)Hdx

= E

{
∂ ln f(x; θ)

∂θ∗ (θ̂ − θ)H

}
(3.256)

Let q be any L × 1 nonzero vector and assume that F(θ) is nonsingular.
Then F(θ) is positive definite (by Property 2.13) and therefore F−1(θ) is also
positive definite (by Property 2.12). By (3.256) and the Cauchy–Schwartz
inequality (Theorem 3.9), we obtain
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∣∣qHF−1(θ) · I · q∣∣2 =

∣∣∣∣∣E
{[

qHF−1(θ)
∂ ln f(x; θ)

∂θ∗

]
·
[
(θ̂ − θ)Hq

]}∣∣∣∣∣
2

≤ E

⎧⎨⎩
∣∣∣∣∣qHF−1(θ)

∂ ln f(x; θ)

∂θ∗

∣∣∣∣∣
2
⎫⎬⎭ · E

{∣∣∣(θ̂ − θ)Hq
∣∣∣2}

= qHF−1(θ)q · qHC(θ̂)q, (3.257)

which implies that

qHF−1(θ)q ≤ qHC(θ̂)q (3.258)

since F−1(θ) is positive definite. This therefore completes the proof of (3.184).
By Theorem 3.9, the equality of (3.258) holds if and only if

(θ̂ − θ)Tq∗ − βqHF−1(θ)
∂ ln f(x; θ)

∂θ∗ = 0

or

qH

[
(θ̂ − θ) − βF−1(θ)

∂ ln f(x; θ)

∂θ∗

]
= 0 (3.259)

where β ≡ β(θ) is a nonzero function of θ but not a function of x or, equiv-

alently, θ̂ since the expectation operators in (3.257) are with respect to x.
Clearly, the condition (3.186) is equivalent to (3.259) since q is an arbitrary
nonzero vector.

Q.E.D.

Problems

3.1. Compute the transfer functions and ROCs of the following LTI sys-
tems.
(a) A causal LTI system h1[n] = anu[n] (a right-sided sequence)

where a is a constant and u[n] is the unit step function defined
as

u[n] =

{
1, n ≥ 0,

0, n < 0.

(b) An anticausal LTI system h2[n] = −anu[−n − 1] (a left-sided
sequence) where a is a constant and u[n] is the unit step func-
tion.

3.2. Prove Theorem 3.9.
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3.3. Prove Theorem 3.12.

3.4. Prove Properties 3.13 to 3.18.

3.5. Consider that x is a zero-mean, real Gaussian random variable with
variance σ2

x. Show that the kth-order moment of x is given by

E{xk} =

{
0, k = 1, 3, 5, ...

1 · 3 · 5 · · · (k − 1)σk
x, k = 2, 4, 6, ...

3.6. Show that if x = (x1, x2, ..., xN )T is a real Gaussian vector with
mean mx and covariance matrix Cx (a positive definite matrix),
then its pdf is given by (3.91).

3.7. Prove Theorem 3.19 [24, Problems 2.14 and 2.15].

3.8. Prove Properties 3.20 to 3.23.

3.9. Compute the normalized skewness and normalized kurtosis of the
following distributions.
(a) Uniform distribution given by (3.97).
(b) Laplace distribution given by (3.98).
(c) Exponential distribution given by (3.99).
(d) Bernoulli distribution given by (3.101).

3.10. Compute the normalized kurtosis of an M -PAM symbol, an M -PSK
symbol and an M2-QAM symbol where each symbol is assumed to
be drawn from a set of M symbols with equal probability.

3.11. Let rx[l] be the autocorrelation function of a WSS process x[n] and∑∞
l=−∞ |rx[l]| < ∞.

(a) Show that

lim
L→∞

L−1∑
l=−L+1

(
1 − |l|

L

)
rx[l]e−jωl =

∞∑
l=−∞

rx[l]e−jωl

(b) Show that the power spectrum Sx(ω) of x[n] is given by (3.120).

3.12. Prove Property 3.29.

3.13. Let x[n] be a WSS process with correlation matrix Rx given as
(3.122) and power spectrum Sx(ω).
(a) Prove Property 3.31.
(b) Show that if Rx for L → ∞ is positive definite, then Sx(ω) > 0.
(Hint: Use the result in part (a) of Problem 3.11.)
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3.14. Consider the random signal x[n] given by (3.123). Show that (3.140)
holds under (HOS-1) and (HOS-2).

3.15. Prove Theorem 3.39.

3.16. Prove Theorem 3.41.

3.17. Consider the random signal x[n] given by (3.158). Show that (3.162)
holds under (CS-1) and (CS-2).

3.18. Derive (3.179) under the assumption that both ∂f(x; θ)/∂θ∗ and
∂2f(x; θ)/∂θ∂θ∗ exist and are absolutely integrable.

3.19. Prove Corollary 3.53.

3.20. Prove Theorem 3.55.

3.21. Prove Theorem 3.58.

3.22. Suppose x[n] is a stationary process with mean mx, variance σ2
x and

autocovariance function cx[l] = E{(x[n]−mx)(x[n− l]−mx)∗}. The
sample-mean estimator for mx is given by

m̂x =
1

N

N−1∑
n=0

x[n].

(a) Show that m̂x is unbiased.
(b) Show that m̂x is the UMVU estimator of mx under the assump-

tion that x[n] is complex white Gaussian.
(c) Show that m̂x is a consistent estimator under the assumption

that
∑∞

l=−∞ |cx[l]| < ∞.

3.23. Show that based on the linear data model given by (3.198), the ML

estimator θ̂ML given by (3.202) is unbiased, efficient, UMVU, and
Gaussian distributed.

3.24. Show that the autocorrelation matrix formed by the estimator r̂x[l]
given by (3.204) is positive definite.

3.25. Suppose that both x = (x[0], x[1], ..., x[N − 1])T and θ = (θ[0], θ[1],
..., θ[L − 1])T are Gaussian with pdfs N (mx,Cx) and N (mθ,Cθ),
respectively, and that x and θ are jointly Gaussian. Show that the
conditional pdf

f(θ
∣∣x) =

1

πL · |Cθ|x| · exp
{
−(θ − mθ|x)HC−1

θ|x(θ − mθ|x)
}
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where the conditional mean

mθ|x = E{θ∣∣x} = mθ + CθxC
−1
x (x − mx)

and the conditional covariance matrix

Cθ|x = Cθ − CθxC
−1
x Cxθ

in which Cθx = E{(θ−mθ)(x−mx)H} and Cxθ = E{(x−mx)(θ−
mθ)

H}.

3.26. Time Delay Estimation
Consider the following two sets of measurements

x1[n] = s[n] + w1[n]

x2[n] = s[n − τ ] + w2[n]

where s[n] is the signal, w1[n] and w2[n] are the noise sources, and τ
is the time delay to be estimated. Assume that s[n], w1[n] and w2[n]
are white WSS processes with variances σ2

s , σ2
w1

and σ2
w2

, respec-
tively, and they are uncorrelated with each other. Based on x1[n]
and x2[n], use a second-order causal FIR Wiener filter to obtain an
estimate of the time delay τ for the case of the true τ = 1.

Computer Assignments

3.1. Power Spectral Estimation
Consider that x[n] = h[n] � u[n] where h[n] is a minimum-phase
AR(2) system whose transfer function is given by

H(z) =
1

1 − 0.9z−1 + 0.2z−2

and u[n] is a zero-mean, i.i.d., exponentially distributed stationary
process with variance σ2

u = 1. Generate thirty independent sets of
data {x[0], x[1], ..., x[511]}.
(a) Write a computer program to implement the AR spectral esti-

mation method and obtain thirty AR spectral estimates with
the thirty sets of data. Plot the thirty AR spectral estimates
and their average, and explain what you observe.

(b) Write a computer program to implement the periodogram spec-
tral estimation method and obtain thirty periodograms with
the thirty sets of data. Plot the thirty periodograms and their
average, and explain what you observe.
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3.2. System Identification
As depicted in Fig. 3.36, consider the problem of identifying an LTI
system h[n] by means of the Wiener filter v[n] with the sets of input
and output measurements

x[n] = u[n] + w1[n], n = 0, 1, ..., N − 1,

d[n] = h[n] � u[n] + w2[n], n = 0, 1, ..., N − 1

where u[n] is the driving input of h[n], and w1[n] and w2[n] are the
sources of measurement noise. Assume that (i) the transfer function
of h[n] is given by

H(z) = h[0] + h[1]z−1 + h[2]z−2 = 1 − 1.8z−1 + 0.4z−2,

(ii) u(n) is a zero-mean, exponentially distributed, i.i.d. stationary
process with variance σ2

u = 1, skewness C3{u[n]} = 2 and kurtosis
C4{u[n]} = 6, (iii) w1(n) and w2(n) are uncorrelated, zero-mean
WSS Gaussian processes, and (iv) u[n] is statistically independent
of w1[n] and w2[n]. Write a computer program to implement the
system identification method, and perform thirty independent runs
to obtain thirty estimates ĥ[n] for N = 4000 and SNR = 40, 10, 5
and 0 dB where the SNR for x[n] is the same as that for d[n]. Show

the mean ± one standard deviation of the thirty ĥ[n] obtained.
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Fig. 3.36 Block diagram of system identification using Wiener filtering
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4

SISO Blind Equalization Algorithms

In this chapter, we introduce some widely used SISO blind equalization al-
gorithms, including an SOS based approach, namely a linear prediction ap-
proach, and two HOS based approaches, namely the maximum normalized
cumulant equalization algorithm and the super-exponential equalization algo-
rithm. We also present some simulation examples for testing these algorithms,
as well as the applications of these algorithms to seismic exploration, speech
signal processing and baud-spaced equalization in digital communications.

4.1 Linear Equalization

We start with an introduction to the problem of SISO blind equalization along
with some performance indices, and then review two fundamental equalization
criteria, namely peak distortion criterion and MMSE equalization criterion,
which are often used to design nonblind equalizers.

4.1.1 Blind Equalization Problem

Problem Statement

Suppose that u[n] is the source signal of interest and is distorted by an SISO
LTI system h[n] via the following data model: (see Fig. 4.1)

y[n] = x[n] + w[n] (4.1)

where

x[n] = h[n] � u[n] =

∞∑
k=−∞

h[k]u[n− k] (4.2)

is the noise-free signal and w[n] is the additive noise accounting for measure-
ment noise as well as physical effects not explained by x[n]. From (4.1) and
(4.2), it follows that
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y[n] = h[0]u[n] +
∞∑

k=−∞, k �=0

h[k]u[n− k]

︸ ︷︷ ︸
ISI term

+w[n]. (4.3)

From (4.3), one can see that the desired sample (or symbol) u[n], scaled by
h[0], in the first term is not only corrupted by the noise w[n] but also interfered
with by other samples (or symbols) in the second term. This latter effect is
called intersymbol interference (ISI).
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Fig. 4.1 Data model for SISO blind equalization

Blind equalization, also known as blind deconvolution, of the SISO LTI
system h[n] is a signal processing procedure to restore the source signal u[n]
with only the data y[n] generated from (4.1) and (4.2). This problem arises in
a variety of engineering and science areas such as seismic exploration, digital
communications, speech signal processing, ultrasonic nondestructive evalua-
tion, underwater acoustics, radio astronomy, and so on.

Blind Linear Equalization

To further explain the problem of SISO blind equalization, let us consider the
direct blind equalization approach as shown in Fig. 4.2. Its goal is to design an
SISO LTI filter, denoted by v[n], using some presumed features of u[n] such
that the output of v[n] given by

e[n] = v[n] � y[n] =
∞∑

k=−∞
v[k]y[n − k] (4.4)

approximates u[n] as well as possible. The filter v[n] is called the deconvolution
filter or the equalizer, or the blind equalizer to emphasize the use of the blind
approach, while its output e[n] is called the deconvolved signal or the equalized
signal. In practice, the equalizer v[n] is commonly assumed to be an FIR filter
with v[n] = 0 outside a preassigned domain of support L1 ≤ n ≤ L2 where
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L1 and L2 are integers. As L1 = −∞ and L2 = ∞, the equalizer v[n] is said
to be doubly infinite.
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Fig. 4.2 Block diagram of SISO linear equalization

Define the signal-to-noise ratio (SNR) associated with the data y[n] as

SNR ≡ SNR{y[n]} =
E{|x[n]|2}
E{|w[n]|2} (4.5)

where we have made use of the typical assumption that u[n] and w[n] are
uncorrelated random processes. When SNR = ∞, i.e. the noise-free case,
the goal of the direct blind equalization approach reduces to designing the
equalizer v[n] such that the equalized signal

e[n] = αu[n − τ ] (4.6)

where α is a real or complex constant and τ is an integer. Note that without
further information about u[n] or h[n], the scale factor α and the time delay
τ in (4.6) cannot be identified for the following reason. Let ũ[n] = αu[n − τ ]

be another source signal and h̃[n] = α−1h[n + τ ] another system. Then

h̃[n] � ũ[n] =

∞∑
k=−∞

h[k + τ ]u[n − τ − k] =

∞∑
k=−∞

h[k]u[n− k] = x[n],

indicating that both pairs (u[n], h[n]) and (ũ[n], h̃[n]) result in the same noise-
free signal x[n]. Accordingly, provision of information about x[n] (or y[n]) only
is not sufficient to distinguish between them.

The equalized signal e[n] given by (4.4) can be further expressed as

e[n] = eS[n] + eN[n] (4.7)

where

eN[n] = v[n] � w[n] (by (4.1)) (4.8)
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corresponds to the noise component in e[n] and

eS[n] = v[n] � x[n] = g[n] � u[n] (by (4.1) and (4.2)) (4.9)

is the corresponding signal component in which

g[n] = v[n] � h[n] (4.10)

is the overall system after equalization. From (4.7), (4.8) and (4.9), it follows
that unlike the noise-free case, the goal of the direct blind equalization ap-
proach for finite SNR is to design the equalizer v[n] such that the signal com-
ponent eS[n] approximates the source signal u[n] as well as possible (except
for an unknown scale factor and an unknown time delay) while maintaining
minimum enhancement of the noise component eN[n].

On the other hand, as mentioned in Chapter 1, one can also resort to the
indirect blind equalization approach to restore the source u[n] from the data
y[n]. Its steps are as follows: (i) estimation of h[n] by means of a blind system
identification (BSI) algorithm, (ii) estimation, if needed, of other parameters
such as the autocorrelation function of y[n], and (iii) design of a nonblind
equalizer with these estimated parameters for the retrieval of u[n] (the goal
of blind equalization).

Performance Indices

From (4.7) and (4.9), it follows that for SNR = ∞ the equalized signal

e[n] = g[τ ]u[n − τ ] +

∞∑
k=−∞, k �=τ

g[k]u[n − k]︸ ︷︷ ︸
Residual ISI term

. (4.11)

If the overall system

g[n] = αδ[n − τ ] (4.12)

where α is a constant and τ is an integer, then the residual ISI term in (4.11)
disappears and e[n] = αu[n−τ ] which is exactly the objective for the noise-free
case (see (4.6)). This fact suggests that g[n] can serve to indicate the amount
of residual ISI after equalization, thereby leading to the following commonly
used performance index for the designed equalizer v[n]: [1, p. 124]

ISI{g[n]} = ISI{αg[n− τ ]} =

∑∞
n=−∞ |g[n]|2 − max

{|g[n]|2}
max {|g[n]|2} (4.13)

where α is any nonzero constant and τ is any integer. It is easy to see that
ISI{g[n]} = 0 if and only if g[n] = αδ[n − τ ] for all α �= 0 and all τ . This
implies that the smaller the value of ISI{g[n]}, the closer the overall system
g[n] approaches a delta function.
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On the other hand, to evaluate the degree of noise enhancement for the
case of finite SNR, we may compare the SNR after equalization, defined as

SNR{e[n]} =
E{|eS[n]|2}
E{|eN[n]|2} (see (4.7)), (4.14)

with the SNR before equalization, i.e. SNR{y[n]} defined as (4.5). Alterna-
tively, it may be more convenient to use the following performance index:

ρ{v[n]} �
SNR{e[n]}
SNR{y[n]}, (4.15)

which we refer to as the SNR improvement-or-degradation ratio. Note that
ρ{v[n]} > 1 means SNR improvement after equalization, whereas ρ{v[n]} < 1
means SNR degradation after equalization.

4.1.2 Peak Distortion and MMSE Equalization Criteria

Peak Distortion Criterion

Referring to (4.11), we note that the magnitude of the residual ISI term∣∣∣∣∣∣
∞∑

k=−∞, k �=τ

g[k]u[n− k]

∣∣∣∣∣∣ ≤ max{|u[n]|} ·
∞∑

k=−∞, k �=τ

|g[k]| (4.16)

for any integer τ . This suggests that the worst-case residual ISI (the right-
hand side of (4.16)) in the equalized signal can be reduced by finding the
equalizer v[n] which minimizes the following peak distortion criterion:1 [3]

JPD(v[n]) =

∞∑
n=−∞, n �=τ

|g[n]| (4.17)

where τ is an integer. Note that the choice of τ may significantly affect the
minimum value of JPD(v[n]) when v[n] is a finite-length equalizer.

From (4.17), it can be observed that min{JPD(v[n])} = 0 if and only if g[n]
satisfies (4.12). This indicates that the equalizer v[n] is designed to “force”
ISI{g[n]} to zero. It is therefore called the zero-forcing (ZF) equalizer, and is
denoted by vZF[n] for clarity. Accordingly, the frequency response of gZF[n]
(= vZF[n] � h[n]) is given by

GZF(ω) = VZF(ω)H(ω) = αe−jωτ . (4.18)

Let hI[n] denote the inverse system of h[n]. Then (4.18) leads to

1 Some varieties of peak distortion criterion along with their comparison can be
found in [2].
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VZF(ω) =
αe−jωτ

H(ω)
= αe−jωτHI(ω), (4.19)

provided that (i) vZF[n] is doubly infinite and (ii) hI[n] is stable (i.e. H(z)
has no zeros on the unit circle). In other words, vZF[n] is equivalent to hI[n]
except for a scale factor and a time delay.

MMSE Equalization Criterion

Consider the Wiener filter v[n] shown in Fig. 4.3 that minimizes the MSE

JMSE(v[n]) = E
{
|αu[n − τ ] − e[n]|2

}
(4.20)

for a nonzero constant α and an integer τ where the scaled and delayed source
signal αu[n− τ ] is regarded as the desired signal and the equalized signal e[n]
as an estimate of the desired signal. Note that the doubly infinite Wiener
filter v[n] for all α �= 0 and τ turns out to be the same except for a scale
factor, whereas, like the ZF equalizer, the choice of τ may significantly affect
the minimum value of JMSE(v[n]) when the length of v[n] is finite. Owing to
minimization of the MSE given by (4.20), the Wiener filter v[n] is called an
LMMSE equalizer, and is denoted by vMS[n] for clarity.

Without loss of generality, let us consider only the case that α = 1 and
τ = 0, and further make the following assumptions for MMSE equalization.

(WF-1) The SISO LTI system h[n] is stable.
(WF-2) The source signal u[n] is a WSS white process with variance σ2

u.
(WF-3) The noise w[n] is a WSS white process with variance σ2

w.
(WF-4) The source signal u[n] is statistically independent of the noise w[n].

Under Assumptions (WF-1) through (WF-4) and the condition that vMS[n]
is doubly infinite, it can be shown by the orthogonality principle that the
frequency response of vMS[n] is given by (see Problem 4.1)

VMS(ω) =
σ2

u · H∗(ω)

σ2
u · |H(ω)|2 + σ2

w

, − π ≤ ω < π (4.21)

and the corresponding overall system is given by

GMS(ω) = VMS(ω) · H(ω) =
σ2

u · |H(ω)|2
σ2

u · |H(ω)|2 + σ2
w

. (4.22)

Moreover, some properties of the LMMSE equalizer vMS[n] are summarized
as follows.2

2 For the real case, the LMMSE equalizer vMS[n] is identical to a (steady-state)
minimum-variance deconvolution (MVD) filter reported in [4–6], and thus also
shares the properties of the MVD filter [7,8].
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Property 4.1. The larger the SNR or the wider the bandwidth of the system
h[n], the closer the overall system gMS[n] (= vMS[n] � h[n]) is to δ[n].

Property 4.2. The LMMSE equalizer vMS[n] reduces to a ZF equalizer vZF[n]
when h[n] is an allpass system.

Property 4.3. The LMMSE equalizer vMS[n] is a perfect phase equalizer, i.e.
arg[VMS(ω)] = − arg[H(ω)].

Property 4.4. The overall system gMS[n] is a legitimate autocorrelation func-
tion with (i) gMS[n] = g∗MS[−n] and (ii) gMS[0] > |gMS[n]| for all n �= 0.

Property 4.1 follows from (4.22) and Properties 4.2 and 4.3 can be observed
directly from (4.21), while the proof of Property 4.4 is left as an exercise
(Problem 4.2). Note that Property 4.2 is nothing but a special case of Property
4.1. Moreover, unlike the ZF equalizer, the LMMSE equalizer is always stable
no matter whether H(z) has zeros on the unit circle or not (see (4.21)).
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Fig. 4.3 Block diagram of SISO MMSE equalization

SNR Analysis for ZF and MMSE Equalization

Next, let us analyze the SNR improvement or degradation for both ZF and
MMSE equalization under Assumptions (WF-1) through (WF-4). From (4.8)
and (4.19), it follows that after ZF equalization, the power spectrum of the
noise component eN[n] is given by

SeN(ω) =
σ2

w

|H(ω)|2. (4.23)
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This implies that after ZF equalization, the noise spectrum will be enhanced
for those frequencies at which |H(ω)| is low. A further result is given as follows.

Theorem 4.5. Under Assumptions (WF-1) through (WF-4) and the condition
of finite SNR, the SNR improvement-or-degradation ratio ρ{vZF[n]} ≤ 1 and
the equality holds only when the system h[n] is an allpass system.

The proof is left as an exercise (Problem 4.3). This theorem states that if
h[n] is not an allpass system, then the ZF equalizer always results in SNR
degradation after equalization, although it can completely eliminate the ISI
induced by h[n].

As for MMSE equalization, let us further express VMS(ω) given by (4.21)
as follows:

VMS(ω) = VZF(ω)VNR(ω) (4.24)

where VZF(ω) = 1/H(ω) is a ZF equalizer and

VNR(ω) =
σ2

u · |H(ω)|2
σ2

u · |H(ω)|2 + σ2
w

, − π ≤ ω < π. (4.25)

The block diagram of MMSE equalization shown in Fig. 4.3 is therefore de-
picted as Fig. 4.4. Note that the filter vNR[n] is referred to as a noise-reduction
filter, which is actually a Wiener filter as stated in the following theorem
(Problem 4.4).

Theorem 4.6. Under Assumptions (WF-1) through (WF-4), the Wiener filter
which minimizes the MSE E{|x[n] − x̂[n]|2} is given by (4.25) where x̂[n] =
vNR[n] � y[n] is an estimate of the desired signal x[n].

We therefore come up with the conclusion that the LMMSE equalizer performs
not only ISI reduction but also noise reduction when the SNR is finite. This
also coincides with the following result.

Theorem 4.7. Under Assumptions (WF-1) through (WF-4) and the condi-
tion of finite SNR, the SNR improvement-or-degradation ratio ρ{vMS[n]} ≥
ρ{vZF[n]} and the equality holds only when the system h[n] is an allpass sys-
tem.

The proof can be found in [9]. This theorem states that if h[n] is not an allpass
system, then the SNR in the equalized signal obtained by vMS[n] is always
higher than that obtained by vZF[n] for finite SNR.

4.2 SOS Based Blind Equalization Approach: Linear

Prediction

To pave the way for the treatment of SOS based blind equalization, we start by
reviewing the fundamentals of linear prediction, including forward and back-
ward linear prediction error (LPE) filters, the well-known Levinson–Durbin
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Fig. 4.4 MMSE equalization interpreted as noise reduction followed by ZF equal-
ization

recursion for efficiently computing the coefficients of LPE filters, and the lat-
tice structure of LPE filters. Then we focus on the topic of SISO blind equal-
ization using LPE filters.

4.2.1 Forward and Backward Linear Prediction

Forward Linear Prediction

Suppose that we are given a finite set of samples (data) {y[0], y[1], ..., y[N −
1]} which were drawn from a zero-mean WSS process with positive definite
autocorrelation matrix. As illustrated in Fig. 4.5a, (one-step) forward linear
prediction is a signal processing procedure to estimate the “present” sample
y[n] by linearly combining the L “past” samples y[n−1], y[n−2], ..., y[n−L]
for n = L, L + 1, ..., N − 1. Although the so-called “present” sample y[n] is
already available (known), through this prediction procedure, we can obtain
the parameters of interest that characterize y[n]. The goal can be simply
achieved by means of Wiener filtering. Specifically, as shown in Fig. 4.5b, let
ã1, ã2, ..., ãL be the L coefficients of an (L − 1)th-order FIR Wiener filter to
be designed such that the filter output

ŷL[n] �

L∑
k=1

ãky[n − k] (4.26)

approximates the desired sample y[n] in the MMSE sense. This Wiener filter
is called a forward linear predictor and the corresponding estimation error

ef
L[n] � y[n] − ŷL[n] (4.27)



192 4 SISO Blind Equalization Algorithms

is called a forward prediction error. Substituting (4.26) into (4.27) yields

ef
L[n] =

L∑
k=0

aL[k]y[n − k] = aL[n] � y[n] (4.28)

where

aL[n] =

⎧⎪⎪⎨⎪⎪⎩
1, n = 0,

−ãn, n = 1, 2, ..., L,

0, otherwise

(4.29)

is called an Lth-order forward linear prediction error (LPE) filter.
According to the orthogonality principle, the coefficients ã1, ã2, ..., ãL can

be obtained by solving the following Wiener–Hopf equations:⎛⎜⎜⎜⎜⎜⎝
ry[0] r∗y [1] · · · r∗y [L − 1]

ry[1] ry[0] · · · r∗y [L − 2]
...

...
. . .

...

ry[L − 1] ry[L − 2] · · · ry[0]

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ã1

ã2

...

ãL

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ry[1]

ry[2]
...

ry [L]

⎞⎟⎟⎟⎟⎟⎠ (4.30)

and the minimum value of E{|y[n] − ŷL[n]|2} is given by

σ2
L � E{∣∣ef

L[n]
∣∣2} = ry [0] −

L∑
k=1

ãkr∗y [k] =

L∑
k=0

aL[k]r∗y [k]. (4.31)

Combining (4.29), (4.30) and (4.31) forms⎛⎜⎜⎜⎜⎜⎜⎜⎝

ry[0] r∗y [1] r∗y [2] · · · r∗y [L]

ry[1] ry[0] r∗y [1] · · · r∗y [L − 1]

ry[2] ry[1] ry[0] · · · r∗y [L − 2]
...

...
...

. . .
...

ry[L] ry[L − 1] ry[L − 2] · · · ry[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

aL[1]

aL[2]
...

aL[L]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ2
L

0

0
...

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.32)

which is called the normal equations or the augmented Wiener–Hopf equations
associated with the Lth-order forward LPE filter aL[n].

Backward Linear Prediction

Similar to the forward linear prediction, (one-step) backward linear prediction,
conceptually illustrated in Fig. 4.6a, is a signal processing procedure to esti-
mate the sample y[n − L] by linearly combining the L samples y[n], y[n− 1],
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Fig. 4.5 (a) Conceptual illustration of the forward prediction and (b) tap-delay-
line structure of an Lth-order forward LPE filter

..., y[n−L+1]. As shown in Fig. 4.6b, let b̃0, b̃1, ..., b̃L−1 be the L coefficients
of an (L − 1)th-order FIR Wiener filter to be designed such that the filter
output

ŷL[n − L] =

L−1∑
k=0

b̃ky[n − k] (4.33)

approximates the desired sample y[n − L] in the MMSE sense. This Wiener
filter is called a backward linear predictor and the corresponding estimation
error

eb
L[n] = y[n − L] − ŷL[n − L] (4.34)
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is called a backward prediction error. Substituting (4.33) into (4.34) yields

eb
L[n] =

L∑
k=0

bL[k]y[n − k] = bL[n] � y[n] (4.35)

where

bL[n] =

⎧⎪⎪⎨⎪⎪⎩
−b̃n, n = 0, 1, ..., L− 1,

1, n = L,

0, otherwise

(4.36)

is called an Lth-order backward LPE filter.
Similar to (4.32), the set of normal equations associated with the Lth-order

backward LPE filter bL[n] is given by⎛⎜⎜⎜⎜⎜⎜⎜⎝

ry [0] r∗y[1] · · · r∗y [L − 1] r∗y [L]

ry [1] ry[0] · · · r∗y [L − 2] r∗y [L − 1]
...

...
. . .

...
...

ry [L − 1] ry[L − 2] · · · ry[0] r∗y [1]

ry[L] ry[L − 1] · · · ry[1] ry[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

bL[0]

bL[1]
...

bL[L − 1]

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

σ2
L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.37)

where

σ2
L � E{∣∣eb

L[n]
∣∣2} =

L∑
k=0

bL[k]ry [L − k] (4.38)

is the minimum value of E{|y[n−L]− ŷL[n−L]|2}. Note that we have used the
same notation ‘σ2

L’ to stand for both the variance of the forward prediction

error ef
L[n] and that of the backward prediction error eb

L[n] because they are
identical, as explained below.

Relation between Forward and Backward LPE Filters

Reversing the equation order in (4.37) and taking complex conjugation yields⎛⎜⎜⎜⎜⎜⎜⎜⎝

ry[0] r∗y [1] · · · r∗y [L − 1] r∗y [L]

ry[1] ry[0] · · · r∗y [L − 2] r∗y [L − 1]
...

...
. . .

...
...

ry[L − 1] ry[L − 2] · · · ry[0] r∗y [1]

ry[L] ry[L − 1] · · · ry[1] ry[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

b∗L[L − 1]
...

b∗L[1]

b∗L[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

σ2
L

0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Fig. 4.6 (a) Conceptual illustration of the backward prediction and (b) tap-delay-
line structure of an Lth-order backward LPE filter

Comparing this equation with (4.32) therefore gives the relation

bL[n] = a∗
L[L − n] for n = 0, 1, ..., L, (4.39)

which further verifies that the variance of ef
L[n] is identical to that of eb

L[n].
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4.2.2 Levinson–Durbin Recursion

For the Lth-order forward and backward LPE filters aL[n] and bL[n], the
following functions are provided by the Levinson–Durbin recursion.3

• Conversion from correlations to filter or reflection coefficients. It is known
that solving the set of normal equations (4.32) and (4.37) by means of stan-
dard matrix-inversion methods such as the Gaussian elimination method
requires the amount of multiplications and divisions proportional to L3 [12].
Alternatively, the Levinson–Durbin recursion takes advantage of the Her-
mitian Toeplitz structure to efficiently solve (4.32) and (4.37) in an order-
recursive manner. Accordingly, it requires not only fewer multiplications
and divisions (proportional to L2), but also less memory for data stor-
age [10, 11, 13]. Moreover, as a by-product, it produces the so-called reflec-
tion coefficients whose importance will become evident in Section 4.2.3.

• Conversion from reflection coefficients to filter coefficients. A special case
of the Levinson–Durbin recursion, the step-up recursion, can be used to
convert a set of reflection coefficients into a set of filter coefficients associated
with the LPE filters.

• Conversion from filter coefficients to reflection coefficients. Another form
of the Levinson-Durbin recursion, the step-down recursion, can be used to
convert a set of filter coefficients into a set of reflection coefficients associated
with the LPE filters.

Let us start by presenting the generic form of Levinson–Durbin recursion.

Generic Form of Levinson–Durbin Recursion

According to (4.32), the normal equations associated with an lth-order for-
ward LPE filter al[n] are given as follows:

Rlal =

(
σ2

l

0l

)
(4.40)

where 0l is an l × 1 zero vector,

al = (1, al[1], al[2], ..., al[l])
T , (4.41)

and

3 N. Levinson (1947) first proposed the so-called Levinson recursion to solve the
Wiener–Hopf equations, which was then modified by J. Durbin (1960) to solve
the normal equations — hence the name Levinson–Durbin recursion [10,11].
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Rl =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ry[0] r∗y [1] · · · r∗y [l − 1] r∗y [l]

ry[1] ry[0] · · · r∗y [l − 2] r∗y [l − 1]
...

...
. . .

...
...

ry[l − 1] ry[l − 2] · · · ry [0] r∗y [1]

ry [l] ry[l − 1] · · · ry [1] ry [0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(
Rl−1 r̃∗l−1

r̃T
l−1 ry [0]

)
(4.42)

in which r̃l−1 = (ry [l], ry[l − 1], ..., ry[1])T and R0 = ry [0]. From (4.40) and
(4.42), it follows that

Rl

(
al−1

0

)
=

⎛⎜⎜⎝
σ2

l−1

0l−1

Δl−1

⎞⎟⎟⎠ (4.43)

where

Δl−1 = r̃T
l−1al−1 = ry [l] +

l−1∑
k=1

ry [l − k]al−1[k]. (4.44)

Similarly, according to (4.37), the normal equations associated with an
lth-order backward LPE filter bl[n] are as follows:

Rlbl =

(
0l−1

σ2
l

)
(4.45)

where

bl = (bl[0], bl[1], ..., bl[l − 1], 1)T (4.46)

and

Rl =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ry[0] r∗y [1] · · · r∗y [l − 1] r∗y [l]

ry[1] ry [0] · · · r∗y [l − 2] r∗y [l − 1]
...

...
. . .

...
...

ry[l − 1] ry [l − 2] · · · ry[0] r∗y [1]

ry [l] ry [l − 1] · · · ry[1] ry [0]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(
ry[0] rH

l−1

rl−1 Rl−1

)
(4.47)

in which rl−1 = (ry[1], ry[2], ..., ry[l])T . From (4.45) and (4.47), it follows that

Rl

(
0

bl−1

)
=

⎛⎜⎜⎝
Δ′

l−1

0l−1

σ2
l−1

⎞⎟⎟⎠ (4.48)
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where

Δ′
l−1 = rH

l−1bl−1 =

l−2∑
k=0

r∗y [k + 1]bl−1[k] + r∗y [l]

= Δ∗
l−1 (see Problem 4.5). (4.49)

By (4.43) and (4.48), we have

Rl

{(
al−1

0

)
+ κl

(
0

bl−1

)}
=

⎛⎜⎜⎝
σ2

l−1

0l−1

Δl−1

⎞⎟⎟⎠+ κl

⎛⎜⎜⎝
Δ′

l−1

0l−1

σ2
l−1

⎞⎟⎟⎠ (4.50)

where κl is a real or complex constant. From (4.40) and (4.50), it follows that
if κl is chosen such that⎛⎜⎜⎝

σ2
l−1

0l−1

Δl−1

⎞⎟⎟⎠+ κl

⎛⎜⎜⎝
Δ′

l−1

0l−1

σ2
l−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
σ2

l

0l−1

0

⎞⎟⎟⎠
or, equivalently, ⎧⎨⎩σ2

l−1 + κlΔ
′
l−1 = σ2

l ,

Δl−1 + κlσ
2
l−1 = 0,

(4.51)

then

al =

(
al−1

0

)
+ κl

(
0

bl−1

)
(4.52)

because the solution to (4.40) is unique (Rl is positive definite). In the same
manner, by (4.43) and (4.48), we have

Rl

{(
0

bl−1

)
+ κ′

l

(
al−1

0

)}
=

⎛⎜⎜⎝
Δ′

l−1

0l−1

σ2
l−1

⎞⎟⎟⎠+ κ′
l

⎛⎜⎜⎝
σ2

l−1

0l−1

Δl−1

⎞⎟⎟⎠ (4.53)

where κ′
l is a real or complex constant. From (4.45) and (4.53), it follows that

if κ′
l is chosen such that⎛⎜⎜⎝

Δ′
l−1

0l−1

σ2
l−1

⎞⎟⎟⎠+ κ′
l

⎛⎜⎜⎝
σ2

l−1

0l−1

Δl−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0

0l−1

σ2
l

⎞⎟⎟⎠
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or, equivalently, ⎧⎨⎩Δ′
l−1 + κ′

lσ
2
l−1 = 0,

σ2
l−1 + κ′

lΔl−1 = σ2
l ,

(4.54)

then

bl =

(
0

bl−1

)
+ κ′

l

(
al−1

0

)
. (4.55)

For the forward LPE filter al[n], (4.39) and (4.52) lead to

al[n] = al−1[n] + κlbl−1[n − 1]

=

⎧⎪⎪⎨⎪⎪⎩
al−1[n] + κla

∗
l−1[l − n], for n = 0, 1, ..., l − 1,

κl, for n = l,

0, otherwise

(4.56)

where a0[n] = δ[n] (see (4.29)). Furthermore, by the second line of (4.51),

κl = −Δl−1

σ2
l−1

for l = 1, 2, ..., L (4.57)

and, by the first line of (4.51) and the second line of (4.49),

σ2
l = σ2

l−1 + κlΔ
∗
l−1 = σ2

l−1 + κl(−κlσ
2
l−1)

∗ (by (4.57))

= σ2
l−1(1 − |κl|2) (4.58)

where σ2
0 = ry [0] (see (4.31)) and Δ0 = ry[1] (by (4.44)). The parameters κ1,

κ2, ..., κL given by (4.57) are called the reflection coefficients because of their
analogy to the reflection coefficients in transmission line models or acoustic
tube models. By the orthogonality principle, κl can be further shown to be

κl = −
E
{
ef

l−1[n]
(
eb

l−1[n − 1]
)∗}√

E

{∣∣∣ef
l−1[n]

∣∣∣2} · E
{∣∣eb

l−1[n − 1]
∣∣2} (4.59)

(Problem 4.6), which is the negative of the correlation coefficient of ef
l−1[n]

and eb
l−1[n − 1] (see Definition 3.10).4 From (4.59) and (3.54), it follows that

|κl| ≤ 1 for l = 1, 2, ..., L, (4.60)

4 In the statistics literature, the reflection coefficients κ1, κ2, ..., κL are referred to
as the partial correlation (PARCOR) coefficients [14].
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which, together with (4.58), implies that

σ2
0 ≥ σ2

1 ≥ · · · ≥ σ2
L ≥ 0, (4.61)

i.e. the prediction-error variance would normally decrease as the filter order
L increases. Also note, from (4.58), that if σ2

l−1 > 0 and κl = 1, then σ2
l = 0,

implying that the WSS process y[n] is perfectly predictable. Table 4.1 sum-
marizes Levinson–Durbin recursion in terms of the forward LPE filter.

Table 4.1 Levinson–Durbin recursion

Problem Convert {ry [0], ry[1], ..., ry[L]} into {aL[1], aL[2], ..., aL[L], σ2
L} or

{κ1, κ2, ..., κL, σ2
L}.

Initial
conditions

Set a0[n] = δ[n] and σ2
0 = ry[0].

For filter order l = 1, 2, ..., L, compute

(i) Δl−1 = ry[l] + l−1
k=1 ry[l − k]al−1[k]

(ii) κl = −
Δl−1

σ2
l−1

(iii) al[n] =

al−1[n] + κla
∗

l−1[l − n], for n = 0, 1, ..., l − 1,

κl, for n = l,

0, otherwise

(iv) σ2
l = σ2

l−1(1 − |κl|
2)

An example illustrating the Levinson–Durbin recursion is as follows.

Example 4.8
Given the correlations ry [0] = 4 and ry[1] = ry [2] = 1, let us use the Levinson–
Durbin recursion to compute the coefficients of the second-order forward LPE
filter a2[n], the reflection coefficients κ1 and κ2, and the prediction-error vari-
ance σ2

2 . According to Table 4.1, we have the following steps.

1. Initial conditions: a0[0] = 1 and σ2
0 = ry[0] = 4.

2. For filter order l = 1, compute
(i) Δ0 = ry[1] = 1.
(ii) κ1 = −Δ0/σ2

0 = −0.25.
(iii) a1[0] = 1 and a1[1] = κ1 = −0.25.
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(iv) σ2
1 = σ2

0(1 − |κ1|2) = 3.75.
3. For filter order l = 2, compute

(i) Δ1 = ry[2] + ry[1]a1[1] = 0.75.
(ii) κ2 = −Δ1/σ2

1 = −0.2.
(iii) a2[0] = 1, a2[1] = a1[1] + κ2a

∗
1[1] = −0.2, and a2[2] = κ2 = −0.2.

(iv) σ2
2 = σ2

1(1 − |κ2|2) = 3.6.

One can see that |κ1| < 1, |κ2| < 1, and σ2
0 > σ2

1 > σ2
2 > 0 for this case.

�

As for the backward LPE filter bl[n], (4.39) and (4.55) lead to

bl[n] = a∗
l [l − n] = bl−1[n − 1] + κ∗

l al−1[n]

=

⎧⎪⎪⎨⎪⎪⎩
κ∗

l , for n = 0,

a∗
l−1[l − n] + κ∗

l al−1[n], for n = 1, 2, ..., l − 1,

0, otherwise

(4.62)

where we have used the fact that κ′
l = κ∗

l (by (4.54), the second line of
(4.49), and (4.57)). Description of Levinson–Durbin recursion in terms of the
backward LPE filter is quite similar to that in Table 4.1 and thus is omitted
here.

Step-Up Recursion

The problem considered here is to convert a set of reflection coefficients {κ1,
κ2, ..., κL} into a set of filter coefficients {aL[1], aL[2], ..., aL[L]} associated
with the Lth-order forward LPE filter aL[n] by virtue of the generic form of
the Levinson–Durbin recursion. More specifically, this problem is resolved by
using the so-called step-up recursion [13], as shown in Table 4.2. Apparently,
the step-up recursion is nothing but a degeneration of the Levinson–Durbin
recursion.

Step-Down Recursion

Now consider the reverse problem that converts a set of filter coefficients
{aL[1], aL[2], ..., aL[L]} into a set of reflection coefficients {κ1, κ2, ..., κL} by
virtue of the generic form of the Levinson–Durbin recursion. This problem is
resolved by using the so-called step-down recursion 5 [13] derived as follows.
From (4.56) and (4.62), it follows that(

al[n]

a∗
l [l − n]

)
=

(
1 κl

κ∗
l 1

)(
al−1[n]

a∗
l−1[l − n]

)
. (4.63)

5 In some literature, the step-down recursion is referred to as the inverse Levinson–
Durbin recursion, the reverse-order Levinson recursion or the backward Levinson
recursion [10,11].
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Table 4.2 Step-up recursion

Problem Convert κ1, κ2, ..., κL, σ2
L into aL[1], aL[2], ..., aL[L], σ2

L .

Initial
condition

Set a0[n] = δ[n].

For filter order l = 1, 2, ..., L, compute

al[n] =

al−1[n] + κla
∗

l−1[l − n], for n = 0, 1, ..., l − 1,

κl, for n = l,

0, otherwise

By assuming |κl| < 1 for all l, we obtain

al−1[n] =
al[n] − κla

∗
l [l − n]

1 − |κl|2 for n = 0, 1, ..., l − 1. (4.64)

This therefore gives the step-down recursion shown in Table 4.3.

Table 4.3 Step-down recursion

Problem Convert aL[1], aL[2], ..., aL[L], σ2
L into κ1, κ2, ..., κL, σ2

L .

For filter order l = L, L − 1, ..., 1, compute

(i) κl = al[l]

(ii) al−1[n] =

al[n] − κla
∗

l [l − n]

1 − |κl|
2

, for n = 0, 1, ..., l − 1,

0, otherwise

Figure 4.7 clarifies the use of the generic form of Levinson–Durbin recur-
sion, the step-up recursion and the step-down recursion.

4.2.3 Lattice Linear Prediction Error Filters

For the lth-order forward and backward LPE filters al[n] and bl[n], the asso-

ciated forward prediction error ef
l [n] given by (4.28) and backward prediction
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Fig. 4.7 Use of the Levinson–Durbin recursion

error eb
l [n] given by (4.35) can be further expressed as follows:⎧⎨⎩ ef

l [n] = aT
l yl[n],

eb
l [n] = bT

l yl[n]
(4.65)

where al and bl have been defined by (4.41) and (4.46), respectively, and
yl[n] = (y[n], y[n− 1], ..., y[n − l])T . By (4.52), (4.65) and the fact that

yl[n] =

(
yl−1[n]

y[n − l]

)
=

(
y[n]

yl−1[n − 1]

)
, (4.66)

we obtain

ef
l [n] =

(
aT

l−1 0
)( yl−1[n]

y[n − l]

)
+ κl

(
0 bT

l−1

)( y[n]

yl−1[n − 1]

)
= ef

l−1[n] + κl · eb
l−1[n − 1]. (4.67)

Similarly, by (4.55), (4.65) and (4.66), we obtain

eb
l [n] =

(
0 bT

l−1

)( y[n]

yl−1[n − 1]

)
+ κ∗

l

(
aT

l−1 0
)( yl−1[n]

y[n − l]

)
= eb

l−1[n − 1] + κ∗
l · ef

l−1[n]. (4.68)

As depicted in Fig. 4.8a, (4.67) and (4.68) form a stage (an elementary unit)
of the so-called lattice LPE filter. Figure 4.8b depicts the cascaded connection
of L stages for an Lth-order lattice LPE filter where ef

0 [n] = eb
0[n] = y[n]
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since a0[n] = b0[n] = δ[n] (see (4.28) and (4.35)). Obviously, the name lattice
LPE filter comes from this lattice structure. Moreover, from Fig. 4.8b, one
can see that both the forward and backward prediction errors are generated
simultaneously, and that the lattice LPE filter has a modular structure which
lends itself to IC implementation.
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Fig. 4.8 (a) The lth stage and (b) block diagram of an Lth-order lattice LPE
filter

Note that the tap-delay-line structure of the LPE filter is characterized by
the filter coefficients, while the lattice structure of the LPE filter is charac-
terized by the reflection coefficients, which can be efficiently estimated from
data by means of the widely used Burg algorithm, to be described next.

Burg Algorithm

Suppose we are given a finite set of data {y[0], y[1], ..., y[N −1]}. For an Lth-
order LPE filter, the Burg algorithm estimates the reflection coefficients κ1,
κ2, ..., κL directly from the data set in a stage-recursive (an order-recursive)
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manner. At stage l, the reflection coefficient κl is determined by minimizing
the following objective function:

J
[l]
Burg(κl) =

N−1∑
n=l

{∣∣∣ef
l [n]

∣∣∣2 +
∣∣eb

l [n]
∣∣2} . (4.69)

From (4.67), (4.68) and (4.69), it follows that

∂J
[l]
Burg(κl)

∂κ∗
l

=

N−1∑
n=l

{
ef

l [n]
(
eb

l−1[n − 1]
)∗

+ ef
l−1[n]

(
eb

l [n]
)∗}

. (4.70)

Substituting (4.67) and (4.68) into (4.70) yields

∂J
[l]
Burg(κl)

∂κ∗
l

= κl

N−1∑
n=l

{∣∣∣ef
l−1[n]

∣∣∣2 +
∣∣eb

l−1[n − 1]
∣∣2}

+ 2

N−1∑
n=l

ef
l−1[n]

(
eb

l−1[n − 1]
)∗

.

Clearly, setting this result equal to zero gives the optimal estimator of κl

associated with the minimum of J
[l]
Burg(κl) as follows:

κ̂l =

− 2

N−1∑
n=l

ef
l−1[n]

(
eb

l−1[n − 1]
)∗

N−1∑
n=l

{∣∣∣ef
l−1[n]

∣∣∣2 +
∣∣eb

l−1[n − 1]
∣∣2}. (4.71)

The estimator κ̂l can be shown to satisfy |κ̂l| ≤ 1 (see [13, p. 317]), which is
consistent with the theoretical bound given by (4.60). Table 4.4 summarizes
the Burg algorithm.

As a remark, if our interest is to obtain the filter coefficients of the Lth-
order forward LPE filter aL[n], we may, first, use the Burg algorithm to esti-
mate the reflection coefficients κ1, κ2, ..., κL from the set of data {y[0], y[1], ...,
y[N − 1]} and then convert these reflection coefficients into filter coefficients
aL[1], aL[2], ..., aL[L] by means of step-up recursion where aL[0] = 1.

4.2.4 Linear Predictive Deconvolution

Having introduced the fundamentals of linear prediction, we now turn our
attention to SISO blind equalization using LPE filters, referred to as linear
predictive deconvolution or linear predictive equalization. Consider the finite
set of data {y[0], y[1], ..., y[N − 1]} generated from the data model given by
(4.1) and (4.2) with the following assumptions.
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Table 4.4 Burg algorithm

Problem Obtain the reflection coefficients κ1, κ2, ..., κL from a
set of data {y[0], y[1], ..., y[N − 1]}.

Initial
conditions

Set ef
0 [n] = eb

0[n] = y[n] for n = 0, 1, ..., N − 1.

For stage l = 1, 2, ..., L, compute

(i) κl =

− 2
N−1

n=l

ef
l−1[n](eb

l−1[n − 1])∗

N−1

n=l

|ef
l−1[n]|2 + |eb

l−1[n − 1]|2

(ii)
ef

l [n] = ef
l−1[n] + κl · e

b
l−1[n − 1]

eb
l [n] = eb

l−1[n − 1] + κ∗

l · ef
l−1[n]

(A4-1) The SISO LTI system h[n] is stable.

(A4-2) The source signal u[n] is a WSS white process with variance σ2
u.

(A4-3) The noise w[n] is a zero-mean WSS (white or colored) process.

(A4-4) The source signal u[n] is statistically independent of the noise w[n].

Here, linear predictive deconvolution simply refers to use of an Lth-order for-
ward LPE filter aL[n] as the blind equalizer whose coefficients are obtained
from the data y[n], n = 0, 1, ..., N − 1. The corresponding forward prediction

error ef
L[n] is the equalized signal, referred to as the predictive deconvolved

signal or the predictive equalized signal.
Let AL(z) denote the transfer function of aL[n]. For the noise-free case

(SNR = ∞), the following property holds true when the transfer function of
the LTI system h[n] is given by

H(z) =
1

1 + α1z−1 + · · · + αpz−p
, (4.72)

i.e. the noise-free signal x[n] is an AR process.

Property 4.9. If the system H(z) is an AR(p) model given by (4.72), then
the Lth-order forward LPE filter AL(z) = 1/H(z) and
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aL[n] =

⎧⎪⎪⎨⎪⎪⎩
1, for n = 0,

αn, for n = 1, 2, ..., p,

0, otherwise

(4.73)

for L ≥ p and SNR = ∞. Correspondingly, the predictive deconvolved signal
ef

L[n] = u[n].

This property follows directly from comparison between the normal equations
given by (4.32) and the associated Yule–Walker equations as given by (3.214).
In other words, for the noise-free case, the forward LPE filter aL[n] of sufficient
order is exactly a ZF equalizer. In addition, Property 4.9 reveals that the
forward LPE filter can also be used to provide the parameters of the AR
spectral estimator (see (3.218)).

More generally, consider the case of finite SNR. According to Section 3.3.2,
under Assumptions (A4-1) through (A4-4), y[n] is a zero-mean WSS process
and its power spectrum

Sy(ω) = σ2
u |H(ω)|2 + Sw(ω) (4.74)

is a continuous function of ω on [−π, π) where Sw(ω) is the power spectrum
of w[n]. Note that any WSS process with continuous power spectrum may
be represented as the output of a minimum-phase system driven by a WSS
white noise [15]; such a representation is called the canonical innovations
representation. Accordingly, we have the canonical innovations representation
of the WSS process y[n] as follows: (see Fig. 4.9)

y[n] = h̃[n] � ũ[n] (4.75)

where h̃[n] is a minimum-phase system with h̃[0] = 1 and ũ[n] is a WSS white
process with variance [15, p. 64]

σ2
u = exp

{
1

2π

∫ π

−π

lnSy(ω)dω

}
. (4.76)

By definition, samples of the white process ũ[n] at different instants of time
are uncorrelated with each other, meaning that each sample of ũ[n] brings
“new information” or “innovations.” For this reason, ũ[n] is also called an
innovations process. Since any minimum-phase system can be approximated
as an AR model of sufficient order, the canonical innovations representation
(4.75) and Property 4.9 imply that as L → ∞, AL(z) = 1/H̃(z) and ef

L[n] =
ũ[n]. Accordingly, we have the following property.

Property 4.10 (Whitening Property). With sufficient filter order, the
Lth-order forward LPE filter aL[n] is a whitening filter and the predictive

deconvolved signal ef
L[n] is a white process for any SNR.
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Moreover, for any SNR the power spectrum Sy(ω) can be estimated via the
following relation:

Sy(ω) = σ2
u ·

∣∣∣H̃(ω)
∣∣∣2 =

σ2
u

|AL(ω)|2 (4.77)

for sufficiently large L where, as mentioned above, AL(ω) can be estimated
by means of the Burg algorithm.
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Fig. 4.9 Canonical innovations representation of the data y[n]

A further property which also holds true for any SNR is as follows.

Property 4.11 (Minimum-Phase Property). The Lth-order forward LPE
filter aL[n] is minimum phase if and only if the associated reflection coeffi-
cients κ1, κ2, ..., κL satisfy the condition that |κl| < 1 for all l.

The proof can be found in the literature, e.g. [10, pp. 441–444] or [11, pp. 265–
267]. Property 4.11, together with Property 4.9, implies that when SNR = ∞
and the system h[n] is minimum phase, the forward LPE filter aL[n], which it-
self is also minimum phase, is sufficient for blind equalization of h[n]. However,
when SNR = ∞ and

H(z) = HMP(z) · HAP(z)

where HMP(z) is a minimum-phase system and HAP(z) is an allpass system,
the Lth-order forward LPE filter AL(z) is identical to 1/HMP(z) except for a
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scale factor, provided that L is sufficiently large and |κl| < 1 for all l. In other
words, the predictive deconvolved signal

ef
L[n] = aL[n] � h[n] � u[n] � hAP[n] � u[n] (SNR = ∞)

is an amplitude equalized signal where hAP[n] is the impulse response of the all-
pass system HAP(z). As a consequence, when the system h[n] is nonminimum
phase, the (allpass) phase distortion will remain in the predictive deconvolved
signal even for the noise-free case.

On the other hand, some properties regarding the Lth-order backward
LPE filter bL[n] are, in turn, described as follows. The transfer function of the
backward LPE filter bL[n] can be expressed as

BL(z) =
∞∑

n=−∞
bL[n]z−n =

∞∑
n=−∞

a∗
L[L − n]z−n (by (4.39))

= z−L
∞∑

n=−∞
a∗

L[n]zn = z−L · A∗
L(1/z∗), (4.78)

which, together with Property 4.11, leads to the following property.

Property 4.12 (Maximum-Phase Property). The Lth-order backward
LPE filter bL[n] is maximum phase if and only if the associated reflection
coefficients κ1, κ2, ..., κL satisfy the condition that |κl| < 1 for all l.

Moreover, the following property can be proved by virtue of the orthogonality
principle (Problem 4.7).

Property 4.13 (Orthogonality Property). The backward prediction error
eb

l [n] is uncorrelated with eb
m[n] for m �= l, i.e.

E
{

eb
l [n]

(
eb

m[n]
)∗}

=

{
σ2

l , for m = l,

0, otherwise
(4.79)

where σ2
l is the variance of eb

l [n].

LPE filters have been found useful in such applications as linear predic-
tive deconvolution, power spectral estimation, linear predictive coding, and
so forth. They also serve as amplitude equalizers (whitening filters) or pre-
processing filters for other blind equalization algorithms, that will be detailed
in the next section.

4.3 HOS Based Blind Equalization Approaches

Since the mid-1980s, the problem of SISO blind equalization has been tackled
using HOS owing to the fact that HOS contains not only system magnitude
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information, but also system phase information (see Section 3.3.2). As men-
tioned in Section 4.1, we can divide HOS based blind equalization approaches
into direct and indirect approaches. We will focus only on the direct approach
with detailed treatment of two widely used HOS based algorithms, namely the
maximum normalized cumulant (MNC) equalization algorithm and the super-
exponential (SE) equalization algorithm. Other types of direct approach and
indirect approach have been well reported in the literature; see [1, 16–21] (to
name a few) and references therein.

According to the properties of HOS, the MNC and SE equalization algo-
rithms are based on the following assumptions for the data y[n] given by (4.1)
and (4.2).

(A4-5) The SISO LTI system h[n] is stable and its inverse system hI[n] is
also stable.6

(A4-6) The source signal u[n] is a zero-mean, i.i.d., stationary non-Gaussian
process with (p + q)th-order cumulant Cp,q{u[n]} �= 0.

(A4-7) The noise w[n] is a zero-mean, white or colored, WSS Gaussian
process with autocorrelation function rw[l].

(A4-8) The source signal u[n] is statistically independent of the noise w[n].

Referring to Fig. 4.2, let us consider that the equalizer v[n] to be designed is
an FIR filter with v[n] = 0 outside the domain of support L1 ≤ n ≤ L2 where
L1 and L2 are the preassigned integers. Let

v = (v[L1], v[L1 + 1], ..., v[L2])
T

(4.80)

be an L × 1 parameter vector formed of the unknown equalizer coefficients
where L = L2 −L1 + 1 is the equalizer length. Then the equalized signal e[n]
given by (4.4) can be expressed in vector form as

e[n] = vT y[n] (4.81)

where

y[n] = (y[n − L1], y[n − L1 − 1], ..., y[n − L2])
T

(4.82)

is an L× 1 vector formed of the data y[n]. Next, let us present the MNC and
SE equalization algorithms along with their analyses and improvements.

6 We include the assumption of stable inverse system hI[n] here for simplicity;
relaxation of this assumption can be found in [22].
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4.3.1 Maximum Normalized Cumulant Equalization Algorithm

MNC Equalization Criterion

For the MNC equalization algorithm, the equalizer v[n] is designed by maxi-
mizing the following objective function:7 [21, 23–34]

Jp,q(v[n]) = |γp,q{e[n]}| =
|Cp,q{e[n]}|
(σ2

e)
(p+q)/2

(4.83)

where p and q are nonnegative integers, p + q ≥ 3, and γp,q{e[n]} is the nor-
malized (p + q)th-order cumulant of e[n]. For ease of subsequent descriptions,
let us refer to the criterion of maximizing Jp,q(v[n]) as the MNC equalization
criterion, the associated equalization as MNC equalization, and the associated
equalizer v[n] as an MNC equalizer, which is further denoted by vMNC[n] for
clarity. When y[n] is real (i.e. the real case), there is only one form of Jp,q(v[n])
corresponding to each particular value of (p + q), irrespective of the possible
combinations of p and q. As such, we also denote Jp,q(v[n]) by Jp+q(v[n]) for
the real case. On the other hand, when y[n] is complex, Jp,q(v[n]) = Jq,p(v[n])
by Theorem 3.12.

Under Assumptions (A4-5) through (A4-8) and by Theorem 3.39, the (p+
q)th-order cumulant Cp,q{e[n]} in the numerator of Jp,q(v[n]) can be expressed
as

Cp,q{e[n]} = Cp,q{u[n]} ·
∞∑

k=∞
(g[k])p(g∗[k])q for p + q ≥ 3. (4.84)

Furthermore, the variance σ2
e in the denominator of Jp,q(v[n]) can be shown

to be

σ2
e = σ2

u

∞∑
k=∞

|g[k]|2 +

∞∑
k=−∞

∞∑
i=−∞

v[k]v∗[i]r∗w[k − i]. (4.85)

Substituting (4.84) and (4.85) into (4.83) yields

Jp,q(v[n]) =
J

(∞)
p,q (v[n]){

1 +

∑∞
k=−∞

∑∞
i=−∞ v[k]v∗[i]r∗w[k − i]

σ2
u

∑∞
k=∞ |g[k]|2

}(p+q)/2
(4.86)

where

J (∞)
p,q (v[n]) = |γp,q{u[n]}| · |∑∞

k=∞(g[k])p(g∗[k])q|
{∑∞

k=∞ |g[k]|2}(p+q)/2
, (4.87)

7 The criterion of maximizing Jp,q(v[n]) for blind equalization was due to Wiggins
[23] and Donoho [24] for the real case, and due to Ulrych and Walker [25] and
Shalvi and Weinstein [26] for the complex case.
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which is identical to Jp,q(v[n]) as SNR = ∞. From (4.86) and (4.87), it follows

that J
(∞)
p,q (v[n]) = J

(∞)
p,q (αv[n − τ ]) and Jp,q(v[n]) = Jp,q(αv[n − τ ]) for any

nonzero constant α and any integer τ .
MNC equalization for the case of high SNR is supported by the following

theorem.

Theorem 4.14 (Equalization Capability). Under Assumptions (A4-5) and
(A4-6) and as L1 → −∞ and L2 → ∞, the objective function

Jp,q(v[n]) = J (∞)
p,q (v[n]) ≤ |γp,q{u[n]}| for SNR = ∞ (4.88)

where p + q ≥ 3. The equality of (4.88) holds if and only if

vMNC[n] = αhI[n − τ ] (4.89)

where α �= 0 is a real or complex constant and τ is an integer.

Proof: By Theorem 2.33, we have∣∣∣∣∣
∞∑

k=∞
(g[k])p(g∗[k])q

∣∣∣∣∣ ≤
∞∑

k=∞
|g[k]|p+q ≤

{ ∞∑
k=∞

|g[k]|2
}(p+q)/2

. (4.90)

Equation (4.88) then follows from (4.87) and (4.90). Furthermore, by Theorem
2.33, the equality of (4.90) holds if and only if g[k] is a delta function, that is
equivalent to (4.89) under Assumption (A4-5) and as L1 → −∞ and L2 → ∞.

Q.E.D.

Theorem 4.14 states that as SNR = ∞, the MNC equalizer vMNC[n] is equiv-
alent to the inverse system (inverse filter) hI[n], except for a scale factor and
a time delay. For this reason, the MNC criterion is often referred to as the
inverse filter criterion [27, 29, 31, 32].

MNC Equalization Algorithm

It is easy to see, from (4.86) and (4.87), that Jp,q(v[n]) ≡ Jp,q(v) is a highly
nonlinear function of the parameter vector v, indicating that derivation of
closed-form solution for the optimum v is formidable. Therefore, we resort to
gradient-type optimization methods to develop the MNC equalization algo-
rithm for finding the (local) maximum of Jp,q(v) and the relevant parameter
vector v for the MNC equalizer vMNC[n].

Table 4.5 summarizes the generic steps of the MNC equalization algorithm.
In Step (S3), we include a normalization operation for d[i] (i.e. d[i]/‖d[i]‖) to
confine the amount of update due to d[i] to a limited range. This, in turn,
reduces the search range, [μ0/20, μ0/2K ], for finding the optimum step size
μ[i] for each iteration. Moreover, we also include a normalization operation
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Table 4.5 MNC equalization algorithm

Parameter
setting

Choose a cumulant order (p + q) ≥ 3, an equalizer length L =
L2−L1 +1 > 1, an initial parameter vector v[0] �= 0, a positive
real number μ0 and a positive integer K for the step-size search
range [μ0/2

0, μ0/2
K ], and a convergence tolerance ζ > 0.

Steps (S1) Set the iteration number i = 0.

(S2) Compute the equalized signal e[0][n] = (v[0])T y[n] and obtain
the corresponding search direction d[0] according to a certain
gradient-type method.

(S3) Generate a new approximation to the parameter vector v via

v
[i+1] = v[i] + μ[i] ·

d[i]

d[i]

v[i+1] =
v

[i+1]

v[i+1]

where an integer k ∈ [0, K] is determined so that μ[i] = μ0/2
k

is the maximum step size leading to Jp,q(v
[i+1]) > Jp,q(v

[i]).

(S4) If

Jp,q(v
[i+1]) − Jp,q(v

[i])

Jp,q(v[i])
≥ ζ,

then go to Step (S5); otherwise, obtain a (local) maximum
solution v = v[i+1] for the MNC equalizer vMNC[n].

(S5) Compute the equalized signal e[i+1][n] = (v[i+1])T y[n] and ob-
tain the corresponding search direction d[i+1].

(S6) Update the iteration number i by (i + 1) and go to Step (S3).

for v[i+1] (i.e. ṽ
[i+1]/‖ṽ[i+1]‖ in Step (S3)) to rule out the possibility of ob-

taining the trivial solution v = 0. Note that the normalization operation for
v[i+1] causes no negative effect in obtaining the optimum solution because
of the fact that Jp,q(v[n]) is invariant to any scaled version of v[n]. In Steps
(S2) and (S5), the search direction d[i] can be obtained by using the update
equations of gradient-type optimization methods, that have been summarized
in Table 2.2 for the steepest descent method, Table 2.3 for the Newton and
approximate Newton methods, and Table 2.4 for the BFGS and approximate
BFGS methods. No matter what gradient-type optimization method we use,
computation of the first derivative ∂Jp,q(v)/∂v∗ is inevitable, that is therefore
derived as follows. From (4.83), we have (see Problem 4.8)
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∂Jp,q(v)

∂v∗ =
Jp,q(v)

2

{
1

Cp,q{e[n]} ·
∂Cp,q{e[n]}

∂v∗

+
1

Cq,p{e[n]} ·
∂Cq,p{e[n]}

∂v∗ − p + q

σ2
e

· ∂σ2
e

∂v∗

}
(4.91)

in which ∂Cp,q{e[n]}/∂v∗, ∂Cq,p{e[n]}/∂v∗ and ∂σ2
e/∂v∗ (= ∂C1,1{e[n]}/∂v∗)

can be derived using the following lemma (see also Problem 4.8).

Lemma 4.15. For the equalized signal e[n] given by (4.81),

∂Cp,q{e[n]}
∂v∗[k]

=

{
q · cum{e[n] : p, e∗[n] : q − 1, y∗[n − k]}, q ≥ 1

0, q = 0
(4.92)

where p + q ≥ 2.

Applying Lemma 4.15 to (4.91) yields

∂Jp,q(v)

∂v∗ =
Jp,q(v)

2

{
q · cum{e[n] : p, e∗[n] : q − 1, y∗[n]}

Cp,q{e[n]}

+
p · cum{e[n] : q, e∗[n] : p − 1, y∗[n]}

Cq,p{e[n]} − p + q

σ2
e

· E{e[n]y∗[n]}
}

(4.93)

where

cum{e[n] : p, e∗[n] : q − 1, y∗[n]}

=

⎛⎜⎜⎜⎜⎜⎝
cum{e[n] : p, e∗[n] : q − 1, y∗[n − L1]}
cum{e[n] : p, e∗[n] : q − 1, y∗[n − L1 + 1]}

...

cum{e[n] : p, e∗[n] : q − 1, y∗[n − L2]}

⎞⎟⎟⎟⎟⎟⎠ . (4.94)

As described in Section 3.4.4, in practice, we need to replace all the correla-
tions and cumulants in (4.93) by their respective sample correlations and sam-
ple cumulants, which are estimated from a finite set of data {y[0], y[1], ..., y[N−
1]}. Note that the larger the cumulant order, the larger the variance of the
sample cumulant. Accordingly, we usually consider p + q = 3 or 4 for Jp,q(v).

4.3.2 Super-Exponential Equalization Algorithm

The SE equalization algorithm, proposed by Shalvi and Weinstein [35], is
an iterative algorithm for finding the blind equalizer v[n]. It originated from
finding a set of update equations for g[n] in the overall-system domain, that
was then converted into the one for v[n] in the equalizer domain. For ease of
subsequent sections, we refer to the associated equalization as SE equalization
and the associated equalizer v[n] as an SE equalizer, which is further denoted
by vSE[n] for clarity.
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Algorithm in Overall-System Domain

At iteration i, the overall system g[n] is updated via⎧⎨⎩ g̃[i+1][n] = (g[i][n])p(g[i][n]∗)q−1

g[i+1][n] = g̃[i+1][n]/
∥∥g̃[i+1]

∥∥ (4.95)

where both p and (q − 1) are nonnegative integers, p + q ≥ 3, and

g̃
[i+1] =

(
..., g̃[i+1][−1], g̃[i+1][0], g̃[i+1][1], ...

)T

. (4.96)

It then follows that∣∣∣∣∣ g[i+1][n]

g[i+1][m]

∣∣∣∣∣ =

∣∣∣∣∣ g[i][n]

g[i][m]

∣∣∣∣∣
p+q−1

= · · · =

∣∣∣∣∣ g[0][n]

g[0][m]

∣∣∣∣∣
(p+q−1)i+1

, (4.97)

from which some observations are made as follows. Since p+ q ≥ 3, the coeffi-
cients of g[i+1][n] with smaller amplitudes will decrease more rapidly than the
ones with larger amplitudes. This, in turn, implies that g[i+1][n] approaches
a delta function more closely than g[i][n], or equivalently, ISI{g[i+1][n]} <
ISI{g[i][n]}. Moreover, the larger the value of (p + q), the smaller the value of
ISI{g[i+1][n]}.

To analyze the convergence rate of ISI{g[i+1][n]}, let us assume that∣∣∣g[0][n0]
∣∣∣ ≥ ∣∣∣g[0][n1]

∣∣∣ ≥ ∣∣∣g[0][n2]
∣∣∣ ≥ · · · , (4.98)

which, together with (4.97), implies that∣∣∣g[i+1][n0]
∣∣∣ ≥ ∣∣∣g[i+1][n1]

∣∣∣ ≥ ∣∣∣g[i+1][n2]
∣∣∣ ≥ · · · , (4.99)

where the coefficient g[i+1][n0] is also called the leading coefficient. That is,
all the indices n0, n1, n2, ..., are preserved along iterations. By (4.13), (4.97)
and (4.99), we have

ISI{g[i+1][n]} =
∑

n�=n0

∣∣∣∣∣ g[i+1][n]

g[i+1][n0]

∣∣∣∣∣
2

=
∑

n�=n0

∣∣∣∣∣ g[i][n]

g[i][n0]

∣∣∣∣∣
2(p+q−1)

≤
⎛⎝∑

n�=n0

∣∣∣∣∣ g[i][n]

g[i][n0]

∣∣∣∣∣
2
⎞⎠ ·

∣∣∣∣∣g[i][n1]

g[i][n0]

∣∣∣∣∣
2(p+q−2)

= ISI{g[i][n]} ·
∣∣∣∣∣g[i][n1]

g[i][n0]

∣∣∣∣∣
2(p+q−2)

, (4.100)
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which further gives rise to

ISI{g[i+1][n]} ≤ ISI{g[0][n]} ·
(

i∏
l=0

∣∣∣∣∣g[l][n1]

g[l][n0]

∣∣∣∣∣
)2(p+q−2)

. (4.101)

By (4.97) and (4.101) and after some algebraic manipulations, we obtain

ISI{g[i+1][n]} ≤ ISI{g[0][n]} ·
∣∣∣∣∣g[0][n1]

g[0][n0]

∣∣∣∣∣
2[(p+q−1)i+1−1]

. (4.102)

According to (4.102), if |g[0][n1]|/|g[0][n0]| < 1, that is, the leading coefficient
of g[0][n] is unique, then ISI{g[i+1][n]} decreases to zero at least at a “super-
exponential” (i.e. exponential in the power) rate, thereby leading to the name
super-exponential equalization algorithm. Recall that ISI{g[n]} = 0 implies
g[n] = αδ[n−τ ] where α is a scale factor and τ is a time delay. We accordingly
come up with the following conclusion.

Theorem 4.16 (Equalization Capability). Suppose the initial condition
g[0][n] has a unique leading coefficient. Then, under Assumptions (A4-5) and
(A4-6) and as L1 → −∞ and L2 → ∞, the SE equalizer

vSE[n] = αhI[n − τ ] for SNR = ∞ (4.103)

where α �= 0 is a real or complex constant and τ is an integer.

On the other hand, in theory, if g[0][n] has M (> 1) leading coeffi-
cients, then g[i+1][n] after convergence will become a sequence composed of
M nonzero components, rather than a delta function. In practice, any small
deviations from this type of initial condition g[0][n] are sufficient to ensure the
convergence, however. Next, let us present how to convert the set of update
equations given by (4.95) for g[n] into the one for v[n].

Algorithm in Equalizer Domain

Let ṽ[i+1][n] and v[i+1][n], n = L1, L1 + 1, ..., L2, be the FIR equalizers corre-
sponding to g̃[i+1][n] and g[i+1][n], respectively. It is sensible to design ṽ[i+1][n]
by solving the following set of linear equations

ṽ[i+1][n] � h[n] = g̃[i+1][n], n = ...,−1, 0, 1, ... (4.104)

or, equivalently,

Hṽ
[i+1] = g̃

[i+1] (4.105)



4.3 HOS Based Blind Equalization Approaches 217

where

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

...

h[−L1 − 1] h[−L1 − 2] · · · h[−L2 − 1]

h[−L1] h[−L1 − 1] · · · h[−L2]

h[−L1 + 1] h[−L1] · · · h[−L2 + 1]
...

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.106)

ṽ
[i+1] =

(
ṽ[i+1][L1], ṽ

[i+1][L1 + 1], ..., ṽ[i+1][L2]
)T

, (4.107)

and g̃
[i+1] is given by (4.96). Obviously, solving (4.105) for ṽ

[i+1] can be viewed
as an LS problem and thus, by means of the LS method, we have the following
LS solution:

ṽ
[i+1] = (HHH)−1HH g̃

[i+1] (4.108)

where H is assumed to be of full rank for simplicity. This assumption, of
course, can be relaxed by virtue of the SVD, as described in Section 2.4.

Similarly, we should design v[i+1][n] to satisfy the set of linear equations

Hv[i+1] = g[i+1] (4.109)

where

v[i+1] =
(
v[i+1][L1], v

[i+1][L1 + 1], ..., v[i+1][L2]
)T

, (4.110)

g[i+1] =
(
..., g[i+1][−1], g[i+1][0], g[i+1][1], ...

)T

. (4.111)

By the second line of (4.95), (4.105) and (4.109), we obtain

v[i+1] =
ṽ

[i+1]√(
ṽ

[i+1]
)H

HHHṽ
[i+1]

. (4.112)

Since both H and g̃
[i+1] are not available, the next step is to convert the set of

update equations given by (4.108) and (4.112) into a realizable one in terms
of correlations and cumulants. By (4.96), (4.106), (3.126) and Theorem 3.39,
one can show that (see Problem 4.9)

HHH =
1

σ2
u

R∗
y for SNR = ∞ (4.113)

where Ry = E{y[n]yH [n]} is the correlation matrix of y[n], and that

HH g̃
[i+1] =

1

Cp,q{u[n]}d
[i]
ey for any SNR (4.114)
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where

d[i]
ey =

(
d[i]

ey [L1], d
[i]
ey [L1 + 1], ..., d[i]

ey [L2]
)T

(4.115)

in which

d[i]
ey [k] = cum

{
e[i][n] : p,

(
e[i][n]

)∗
: q − 1, y∗[n − k]

}
(4.116)

and

e[i][n] = v[i][n] � y[n] =
(
v[i]

)T

y[n] (4.117)

is the equalized signal obtained at iteration (i − 1). Substituting (4.113) and
(4.114) into (4.108) and (4.112) gives the set of update equations for the
parameter vector v at iteration i as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṽ
[i+1] =

σ2
u

Cp,q{u[n]} ·
(
R∗

y

)−1
d

[i]
ey

v[i+1] =

√√√√√ σ2
u(

ṽ
[i+1]

)H

R∗
yṽ

[i+1]
· ṽ[i+1]

(4.118)

To apply (4.118), we need (i) the autocorrelation function required by

Ry, (ii) the (p + q)th-order joint cumulant function required by d
[i]
ey , (iii)

the variance σ2
u, and (iv) the (p + q)th-order cumulant Cp,q{u[n]}. Items (i)

and (ii) can be estimated from the finite set of data {y[0], y[1], ..., y[N − 1]},
whereas items (iii) and (iv) need be provided a priori. Moreover, if H is not
of full column rank and SNR = ∞, then Ry is singular because rank{Ry} =
rank{HHH} = rank{H} by (4.113). For this case, one can simply replace the
inverse matrix (R∗

y)−1 in the first line of (4.118) by the pseudoinverse (R∗
y)+

obtained by virtue of the SVD (see Section 2.4).
Recall, from Section 4.1.1, that any scale factor is admissible for blind

equalizers. We therefore can simplify the set of update equations (4.118) as
follows:

v[i+1] =

(
R∗

y

)−1
d

[i]
ey∥∥∥(R∗

y

)−1
d

[i]
ey

∥∥∥, (4.119)

which clearly does not require prior information about σ2
u and Cp,q{u[n]}.

However, due to the lack of prior information about Cp,q{u[n]}, there may
exist a phase ambiguity in v[i+1] obtained at iteration i, or equivalently, a
complex scale factor ejφ between v[i+1] and v[i]. Because of this, we use the
following convergence rule to check the convergence properly:
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min
φ

{∥∥∥v[i+1] − ejφv[i]
∥∥∥2
}

= 2 − 2 ·
∣∣∣∣(v[i+1]

)H

v[i]

∣∣∣∣ < ζ (4.120)

or ∣∣∣∣(v[i+1]
)H

v[i]

∣∣∣∣ > 1 − ζ

2
(4.121)

where ζ is a positive real number preassigned for convergence tolerance. Table
4.6 summarizes the SE equalization algorithm based on (4.119) and (4.121).
Note, from Table 4.6, that the inverse matrix (R∗

y)−1 in Step (S2) needs to
be computed only once. This, together with the convergence analysis given
by (4.102), indicates that the SE equalization algorithm is computationally
efficient with a very fast convergence rate in ISI reduction in most circum-
stances. However, without an explicit objective function (of y[n] or e[n] or
both), the SE equalization algorithm may sometimes diverge or have a slow
convergence rate if the data length N is insufficient, the SNR is low, or the
initial condition v[0] is inappropriate.

Table 4.6 SE equalization algorithm

Parameter
setting

Choose a cumulant order (p + q) ≥ 3, an equalizer length L =
L2 − L1 + 1 > 1, an initial parameter vector v[0] �= 0, and a
convergence tolerance ζ > 0.

Steps (S1) Set the iteration number i = 0.

(S2) Estimate the correlation matrix Ry from the data y[n], n =
0, 1, ..., N − 1, and compute the inverse matrix (R∗

y)−1.

(S3) Compute the equalized signal e[0][n] = (v[0])T y[n] and esti-

mate the vector d
[0]
ey from e[0][n] and y[n], n = 0, 1, ..., N − 1.

(S4) Update the parameter vector v at the ith iteration via

v
[i+1] =

R∗

y
−1

d
[i]
ey

R∗
y

−1
d

[i]
ey

.

(S5) If

v
[i+1]

H

v
[i] ≤ 1 −

ζ

2
,

then go to Step (S6); otherwise, obtain the parameter vector
v = v[i+1] for the SE equalizer vSE[n].

(S6) Compute the equalized signal e[i+1][n] = (v[i+1])T y[n] and es-

timate d
[i+1]
ey from e[i+1][n] and y[n], n = 0, 1, ..., N − 1.

(S7) Update the iteration number i by (i + 1) and go to Step (S4).
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Lattice Implementation

With the aid of a lattice LPE filter, we can implement the SE equalization
algorithm in a lattice structure as depicted in Fig. 4.10.8 The correspond-
ing algorithm is called the lattice super-exponential (lattice SE) equalization
algorithm.
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Fig. 4.10 Block diagram for the lattice SE equalization algorithm where each
stage in the lattice LPE filter is the same as that in Fig. 4.8a

Specifically, we processing the data y[n] by an (L − 1)th-order back-
ward LPE filter which is implemented with the lattice structure of (L − 1)
stages. The resultant backward prediction errors eb

0[n], eb
1[n], ..., eb

L−1[n] are
then processed by a multiple regression filter of length L. To find the coeffi-
cients of the multiple regression filter, denoted by vLSE[n], n = 0, 1, ..., L− 1,
we apply the set of update equations (4.119) as follows. Let

vLSE = (vLSE[0], vLSE[1], ..., vLSE[L − 1])T (4.122)

denote the parameter vector to be found, and let

eb[n] =
(
eb
0[n], eb

1[n], ..., eb
L−1[n]

)T
(4.123)

whose correlation matrix

Rb � E
{
eb[n]eH

b [n]
}

= diag
{
σ2

0 , σ2
1 , ..., σ

2
L−1

}
(4.124)

8 The structure shown in Fig. 4.10 is similar to that of a joint-process estimator [11].
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(by Property 4.13) where σ2
k is the variance of eb

k[n]. Using (4.119) with y[n−k]

replaced by eb
k[n], Ry replaced by Rb and v[i+1] replaced by v

[i+1]
LSE , we have

the set of update equations for finding vLSE at iteration i as follows:

v
[i+1]
LSE = d

[i]
b /

∥∥d[i]
b

∥∥ (4.125)

where

d
[i]
b =

(
d
[i]
b [0], d

[i]
b [1], ..., d

[i]
b [L − 1]

)T

(4.126)

in which

d
[i]
b [k] =

1

σ2
k

· cum
{

e[i][n] : p,
(
e[i][n]

)∗
: q − 1,

(
eb

k[n]
)∗}

(4.127)

and

e[i][n] =

L−1∑
k=0

v
[i]
LSE[k]eb

k[n] =
(
v

[i]
LSE

)T

eb[n] (4.128)

is the equalized signal obtained at iteration (i − 1). After convergence, we

obtain the parameter vector vLSE = v
[i+1]
LSE for the multiple regression filter

vLSE[n]. Table 4.7 gives the detailed steps of the lattice SE equalization algo-
rithm. As a remark, without taking the parameter quantization effects into
account, the lattice SE equalization algorithm has the same performance as
the SE equalization algorithm [9, 36].

4.3.3 Algorithm Analyses

We have shown in Theorems 4.14 and 4.16 that, under the ideal condition
of infinite SNR and doubly infinite equalizer, both the MNC equalization
algorithm and the SE equalization algorithm (with an appropriate initial con-
dition) give rise to the same solution v[n] = αhI[n − τ ], except for a scale
factor and a time delay. Next, we further provide some insights into these
algorithms, including their properties and relations, by considering the condi-
tion of finite SNR.9 Again, for simplicity, we assume that the equalizer v[n] is
doubly infinite so that the analysis can be performed without taking the effect
of finite-length truncation of v[n] into account; for the finite-length effect, one
can refer to [42].

9 Analyses of the performance of the MNC and SE equalization algorithms and
their relations can be found in a number of research works including [9, 37–41],
to name a few.
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Table 4.7 Lattice SE equalization algorithm

Parameter
setting

Choose a cumulant order (p + q) ≥ 3, an equalizer length L >

1, an initial parameter vector v
[0]
LSE �= 0, and a convergence

tolerance ζ > 0.

Steps (S1) Set the iteration number i = 0.

(S2) Process the data y[n], n = 0, 1, ..., N −1, by an (L−1)th-order
lattice LPE filter to obtain the backward prediction error eb

k[n]
and prediction-error variance σ2

k for k = 0, 1, ..., L − 1.

(S3) Compute the equalized signal e[0][n] = (v
[0]
LSE)T eb[n] and esti-

mate the vector d
[0]
b from e[0][n] and eb

k[n]’s, n = 0, 1, ..., N −1.

(S4) Update the parameter vector vLSE at the ith iteration via

v
[i+1]
LSE = d

[i]
b / d

[i]
b .

(S5) If

v
[i+1]
LSE

H

v
[i]
LSE ≤ 1 −

ζ

2
,

then go to Step (S6); otherwise, obtain the parameter vector

vLSE = v
[i+1]
LSE for the multiple regression filter vLSE[n].

(S6) Compute the equalized signal e[i+1][n] = (v
[i+1]
LSE )T eb[n] and

estimate d
[i+1]
b from e[i+1][n] and eb

k[n]’s, n = 0, 1, ..., N − 1.

(S7) Update the iteration number i by (i + 1) and go to Step (S4).

Properties of the MNC Equalizer

Like the LMMSE equalizer vMS[n] (see Property 4.3), the MNC equalizer
vMNC[n] is also a perfect phase equalizer regardless of the value of SNR, as
stated in the following property.

Property 4.17 (Linear Phase Property). The phase response of the MNC
equalizer vMNC[n] is given by

arg[VMNC(ω)] = − arg[H(ω)] + ωτ + ξ, − π ≤ ω < π (4.129)

where τ and ξ are real constants.

See Appendix 4A for the proof. This property states that the MNC equalizer
vMNC[n] completely cancels the phase distortion induced by the system h[n]
(up to a time delay τ and a constant phase shift ξ).

According to Property 4.17, let gZP[n] be a zero-phase system given by

gZP[n] = e−jξ · gMNC[n − τ ]. (4.130)
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Then, similar to gMS[n] (see Property 4.4), the zero-phase system gZP[n] can
be shown to possess the following property.

Property 4.18. The zero-phase overall system gZP[n] defined as (4.130) is a
legitimate autocorrelation function with (i) gZP[n] = g∗ZP[−n] and (ii) gZP[0] >
|gZP[n]| for all n �= 0.

This property reveals some insights into the signal component eS[n] in the
equalized signal (after MNC equalization). In particular, by expressing

eS[n] = ejξ · {gZP[n] � u[n + τ ]} (by (4.9) and (4.130), (4.131)

we observe that if the source signal u[n] consists of widely separated spikes,
then the corresponding eS[n] will be composed of symmetric wavelets (zero-
phase patterns) with amplitudes proportional to |u[n + τ ]|. Meanwhile, the
resolution of eS[n] is determined by the width of the wavelet gZP[n]. As we
will see, these observations are of particular use to interpretation of equalized
signals in seismic exploration.

To analyze SNR improvement or degradation after MNC equalization, we
rewrite Jp,q(v[n]) given by (4.86) as a function of the equalizer v[n] and the
SNR improvement-or-degradation ratio ρ{v[n]} as follows:

Jp,q(v[n]) = J (∞)
p,q (v[n]) · 1[

1 +
1

ρ{v[n]} · SNR

](p+q)/2
. (4.132)

From (4.132), it follows that Jp,q(v[n]) is always smaller than J
(∞)
p,q (v[n]) for

finite SNR since both SNR and ρ{v[n]} are positive real numbers. One can
also observe that the MNC equalizer vMNC[n] associated with Jp,q(v[n]) partly

maximizes J
(∞)
p,q (v[n]) for the ISI reduction (as indicated by Theorem 4.14) and

partly maximizes ρ{v[n]} for noise reduction in the meantime. In other words,
as the LMMSE equalizer vMS[n], the MNC equalizer vMNC[n] also performs
noise reduction besides the ISI reduction. This, in turn, implies that as the
former (see Theorem 4.7), the latter also performs noise reduction better than
the ZF equalizer vZF[n], as exhibited by the following theorem.

Theorem 4.19. Under Assumptions (A4-5) through (A4-8) and the condi-
tion of doubly infinite equalizer, the SNR improvement-or-degradation ratio
ρ{vMNC[n]} ≥ ρ{vZF[n]} for any SNR.

We leave the proof as an exercise (Problem 4.10). Furthermore, a property of
ρ{vMNC[n]} is as follows.

Property 4.20. Under Assumptions (A4-5) through (A4-8) and the condi-
tion of doubly infinite equalizer, the SNR improvement-or-degradation ratio
ρ{vMNC[n]} always increases as the SNR decreases.



224 4 SISO Blind Equalization Algorithms

Refer to [9, 38] for inferences of this property. This property states that the
lower the SNR, the more the MNC equalizer vMNC[n] performs as a noise-
reduction filter.

As for the properties of the SE equalizer vSE[n], due to the lack of an
explicit objective function, the analysis is far more difficult than that for
the MNC equalizer vMNC[n]. Because of this, rather than giving the prop-
erty analysis, we provide an analysis of the relationship between vSE[n] and
vMNC[n], through which one can realize that vSE[n] also shares the properties
of vMNC[n] under certain conditions.

Relationship between MNC and SE Equalizers

Let us, first, establish a connection between the MNC equalizer vMNC[n] and
the LMMSE equalizer vMS[n]. By setting the first derivative ∂Jp,q(v)/∂v∗

given by (4.93) to zero and using Theorem 3.39, all the stationary points of
Jp,q(v[n]) can be shown to satisfy

q · Cp,q{u[n]}
Cp,q{e[n]}

∞∑
n=−∞

g̃p,q[n]h∗[n − k] + p · Cq,p{u[n]}
Cq,p{e[n]}

∞∑
n=−∞

g̃q,p[n]h∗[n − k]

=
p + q

σ2
e

{
σ2

u

∞∑
n=−∞

g[n]h∗[n − k] +

∞∑
n=−∞

v[n]r∗w[n − k]

}
(4.133)

where

g̃p,q[n] � (g[n])
p
(g∗[n])

q−1
. (4.134)

Taking the DTFT of (4.133) with respect to the index k yields

q · Cp,q{u[n]}
Cp,q{e[n]} · G̃p,q(ω)H∗(ω) + p · Cq,p{u[n]}

Cq,p{e[n]} · G̃q,p(ω)H∗(ω)

=
p + q

σ2
e

[
σ2

u |H(ω)|2 + Sw(ω)
]
· V (ω). (4.135)

The following theorem then follows from (4.135) and the condition that
|H(ω)| �= 0 for all ω ∈ [−π, π) (by Assumption (A4-5)).

Theorem 4.21 (Relation between the MNC and LMMSE Equaliz-
ers). Under Assumptions (A4-5) through (A4-8) and the condition of doubly
infinite equalizer, the MNC equalizer vMNC[n] associated with Jp,q(v[n]) is
related to the LMMSE equalizer vMS[n] via

VMNC(ω) =
[
αp,qG̃p,q(ω) + αq,pG̃q,p(ω)

]
· VMS(ω), − π ≤ ω < π (4.136)

where G̃p,q(ω) = F{g̃p,q[n]} is given by (4.134),
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αp,q �
q

p + q
· σ2

e

σ2
u

· Cp,q{u[n]}
Cp,q{e[n]} (4.137)

is a real or complex constant, and

VMS(ω) =
σ2

u · H∗(ω)

σ2
u · |H(ω)|2 + Sw(ω)

(4.138)

is the frequency response of the LMMSE equalizer vMS[n].

Similarly, we establish the connection between the SE equalizer vSE[n] and
the LMMSE equalizer vMS[n] as follows. Since the normalization operation in
the second line of (4.118) is immaterial to this connection, we consider only
the first line of (4.118) for simplicity. After convergence, the SE equalizer
vSE[n] obtained from (4.118) can be established to satisfy

E {e[n]y∗[n − k]} =
σ2

u

Cp,q{u[n]} · cum {e[n] : p, e∗[n] : q − 1, y∗[n − k]} ,

(4.139)

which can be further shown to be

σ2
u

∞∑
n=−∞

g[n]h∗[n − k] +

∞∑
n=−∞

v[n]r∗w[n − k] = σ2
u

∞∑
n=−∞

g̃p,q[n]h∗[n − k]

(4.140)

where g̃p,q[n] is given by (4.134). By taking the DTFT of (4.140) with respect
to the index k and under the condition that |H(ω)| �= 0 for all ω ∈ [−π, π),
we obtain the following theorem.

Theorem 4.22 (Relation between the SE and LMMSE Equalizers).
Under Assumptions (A4-5) through (A4-8) and the condition of doubly infinite
equalizer, the SE equalizer vSE[n] associated with the cumulant-order parame-
ters (p, q) is related to the LMMSE equalizer vMS[n] via

VSE(ω) = G̃p,q(ω)VMS(ω), − π ≤ ω < π (4.141)

where G̃p,q(ω) = F{g̃p,q[n]} is given by (4.134) and VMS(ω) is given by
(4.138).

For clarity, let us further denote the MNC equalizer VMNC(ω) associated

with Jp,q(v[n]) by V
[p,q]
MNC(ω), and the SE equalizer VSE(ω) associated with the

cumulant-order parameters (p, q) by V
[p,q]
SE (ω). Then, as a result of Theorems

4.21 and 4.22, we have the following theorem for the relation between the
MNC and SE equalizers.
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Theorem 4.23 (Relation between the MNC and SE Equalizers). Un-
der Assumptions (A4-5) through (A4-8) and the condition of doubly infinite

equalizer, the MNC equalizer V
[p,q]
MNC(ω) is related to the SE equalizer V

[p,q]
SE (ω)

via

V
[p,q]
MNC(ω) = V

[q,p]
MNC(ω) = αp,qV

[p,q]
SE (ω) + αq,pV

[q,p]
SE (ω), − π ≤ ω < π (4.142)

where αp,q is a real or complex constant given by (4.137).

One can observe, from Theorem 4.22 and (4.134), that as y[n] is real, g̃p,q[n] =

g̃p+q−1[n] = g̃q,p[n] and accordingly V
[p,q]
SE (ω) = V

[q,p]
SE (ω). As a result of this

observation and Theorem 4.23, we have the following corollary.

Corollary 4.24 (Equivalence of the MNC and SE Equalizers). Under
Assumptions (A4-5) through (A4-8) and the condition of doubly infinite equal-

izer, the MNC equalizer V
[p,q]
MNC(ω) is equivalent to the SE equalizer V

[p,q]
SE (ω)

if (i) y[n] is real or (ii) y[n] is complex and p = q.

Let us emphasize that in addition to the optimum solution vMNC[n], all
the other stationary points of Jp,q(v[n]) also possess the relations given by
Theorems 4.21 and 4.23, and the equivalence given by Corollary 4.24.

4.3.4 Algorithm Improvements

We may further improve the convergence rate and the reliability of the MNC
and SE equalization algorithms by means of whitening preprocessing, better
initial condition, and a hybrid framework, as described below.

Whitening Preprocessing

Recall, from Section 4.2.4, that when the data y[n] are processed by the for-
ward LPE filter aM [n] of sufficient order M , the resultant forward prediction
error (the predictive deconvolved signal)

ef
M [n] = aM [n] � y[n] (4.143)

is basically an amplitude equalized signal. This fact is useful to blind equal-
ization, as illustrated in Fig. 4.11. The whitening filter aM [n] simplifies the
task of the blind equalizer v[n] because only the phase distortion, together

with some residual amplitude distortion, in ef
M [n] remains to be compensated

by v[n], thereby speeding up the blind equalization algorithm used.



4.3 HOS Based Blind Equalization Approaches 227

,���

[ ]y n

M�����&������
$��������;<�

$�	����
[ ]Ma n

7	����
�5��	����

[ ]v n

<5��	�����
��!��	

[ ]e n

;������� ��
����� �	 ��

��!��	

[ ]f
Me n

7	����
�5��	��������
�	!�����


A�������!
������������!

Fig. 4.11 Blind equalization with whitening preprocessing

Improved Initial Condition

Required by iterative blind equalization algorithms, the initial condition for
v[n] is usually chosen as v[0][n] = δ[n − LC] for the sake of simplicity where
LC = �(L1 +L2)/2�.10 In some cases, a better initial condition may be needed
to further improve the convergence rate as well as the reliability of the itera-
tive blind equalization algorithm used. Next, let us present a low-complexity
procedure for obtaining a better initial condition [9, 36].

The basic idea is to obtain the initial condition v[0][n] by virtue of
whitening preprocessing along with some simplification of the SE equal-
ization algorithm, as depicted in Fig. 4.12. Specifically, the data y[n] are
preprocessed by an Mth-order forward LPE filter aM [n] where the length

M + 1 < L = L2 −L1 + 1. The resultant predictive deconvolved signal ef
M [n],

as given by (4.143), is then processed by the simplified blind equalizer vS[n],

which has to be an FIR filter with vS[n] = 0 outside the range L1 ≤ n ≤ L̃2

where L̃2 = L2 − M such that the initial condition

v[0][n] = vS[n] � aM [n] (4.144)

to be obtained has the domain of support L1 ≤ n ≤ L2. We obtain the
equalizer vS[n] by simplifying the set of update equations (4.119) as follows.
Let

vS =
(
vS[L1], vS[L1 + 1], ..., vS[L̃2]

)T

(4.145)

denote the parameter vector to be found, and the equalized signal

10 The notation ‘
x�’ represents the largest integer no larger than x.
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e[n] = vS[n] � ef
M [n] = vT

S ef [n] (4.146)

where

ef [n] =
(
ef

M [n − L1], e
f
M [n − L1 − 1], ..., ef

M [n − L̃2]
)T

. (4.147)

By assuming a sufficient order M for aM [n], we can treat ef
M [n] as an ampli-

tude equalized signal and thus obtain the correlation matrix

Rf � E
{
ef [n]eH

f [n]
} ≈ σ2

M · I (4.148)

where σ2
M is the variance of ef

M [n]. Using (4.119) with y[n − k] replaced by

ef
M [n−k], Ry replaced by an identity matrix (according to (4.148)) and v[i+1]

replaced by v
[i+1]
S , we have the simplified SE equalization algorithm for finding

vS at iteration i as follows:

v
[i+1]
S = d

[i]
f /

∥∥d[i]
f

∥∥ (4.149)

where

d
[i]
f = cum

{
e[i][n] : p,

(
e[i][n]

)∗
: q − 1, e∗f [n]

}
(4.150)

and

e[i][n] = v
[i]
S [n] � ef

M [n] =
(
v

[i]
S

)T

ef [n] (4.151)

is the equalized signal obtained at iteration (i − 1).
To further reduce the computational complexity, we perform the set of

update equations (4.149) only once to obtain the parameter vector vS. In

particular, with the initial condition v
[0]
S [n] = δ[n − L̃C] where

L̃C =

⌊
L1 + L̃2

2

⌋
=

⌊
L1 + L2 − M

2

⌋
, (4.152)

we have e[0][n] = v
[0]
S [n] � ef

M [n] = ef
M [n − L̃C], which further leads to

df � d
[0]
f = cum

{
ef

M [n − L̃C] : p,
(
ef

M [n − L̃C]
)∗

: q − 1, e∗f [n]
}

(4.153)

and

vS = v
[1]
S = d

[0]
f /

∥∥d[0]
f

∥∥ = df/
∥∥df

∥∥. (4.154)

As a consequence, we obtain an improved initial condition v[0][n] through
whitening preprocessing followed by one-iteration operation of the simplified
SE equalization algorithm. Table 4.8 summarizes the steps to obtain the im-
proved initial condition v[0][n]. As a remark, if we apply the procedure of
Table 4.8 to the lattice SE equalization algorithm, the forward LPE filter
aM [n] needed by this procedure happens to be a by-product of the (L− 1)th-
order lattice LPE filter needed by the lattice SE equalization algorithm since
M < L−1, thereby saving implementation complexity to obtain the improved
initial condition v[0][n].
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Fig. 4.12 Block diagram for obtaining the improved initial condition v[0][n]

Table 4.8 Steps for improved initial condition

Parameter
setting

Choose a cumulant order (p + q) ≥ 3, an equalizer length L =
L2 − L1 + 1 > 1, and an LPE filter order M < L − 1.

Steps (S1) Preprocess the data y[n], n = 0, 1, ..., N − 1, by an Mth-order
forward LPE filter aM [n] to obtain the predictive deconvolved
signal ef

M [n], and form the vector ef [n] = (ef
M [n−L1], e

f
M [n−

L1 − 1], ..., ef
M [n − L2 + M ])T .

(S2) Estimate the vector df from ef
M [n − LC] and ef [n], n =

0, 1, ..., N − 1, where LC = 
(L1 + L2 − M)/2�.

(S3) Obtain the parameter vector vS = df/ df for the simplified
blind equalizer vS[n].

(S4) Obtain the initial condition v[0][n] = vS[n] 	 aM [n].

Hybrid Framework

Mboup and Regalia [43, 44] have reported that as SNR = ∞ and the data
length N = ∞, the SE equalization algorithm for p = q can be interpreted
as a particular gradient-type optimization method for finding the maximum
of the MNC criterion Jp,p(v[n]), and that the corresponding step size at each
iteration is optimal for convergence speed. This interpretation, plus the equiv-
alence stated in Corollary 4.24, therefore suggests a hybrid framework of MNC
and SE equalization algorithms to obtain the MNC equalizer vMNC[n] in a col-
laborative and complementary manner, especially for the conditions of finite
SNR and finite N [40]. The resultant algorithm, referred to as the hybrid MNC
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equalization algorithm, is summarized in Table 7.4 and illustrated in Fig. 4.13.
Note that we can use the same convergence rule as that in Table 4.5 to check
the convergence of the hybrid MNC equalization algorithm.

Table 4.9 Hybrid MNC equalization algorithm

Procedure to Obtain the MNC Equalizer at Iteration i

(T1) Update the parameter vector v[i+1] via the update equations of the
SE equalization algorithm given by (4.119), and obtain the associ-
ated equalized signal e[i+1][n].

(T2) If Jp,q(v
[i+1]) > Jp,q(v

[i]), then go to the next iteration; otherwise,
update v[i+1] through a gradient-type optimization method such
that Jp,q(v

[i+1]) > Jp,q(v
[i]), and obtain the associated e[i+1][n].
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Fig. 4.13 Signal processing procedure for the hybrid MNC equalization algorithm

It is important to emphasize that according to Corollary 4.24, the hybrid
MNC equalization algorithm is applicable only for the case of real y[n] as well
as the case of complex y[n] and p = q. For these two cases, it follows, from
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(4.93), (4.94), (4.115), (4.116) and (4.117), that the first derivative required
by (T2) of Table 7.4 can be expressed as follows:

∂Jp,q(v)

∂v∗

∣∣∣∣∣
v = v[i]

=
p + q

2
· Jp,q(v

[i]) ·
⎧⎨⎩ d

[i]
ey

Cp,q

{
e[i][n]

}− R∗
y · v[i]

E
{∣∣e[i][n]

∣∣2}
⎫⎬⎭ .

(4.155)

Since both the correlation matrix Ry, which only needs to be computed once

(at the first iteration), and the vector d
[i]
ey needed in (T1) of Table 7.4 are

already available for use in (T2), computation of (4.155) for (T2) is straight-
forward and simple. Moreover, in comparison with the MNC equalization
algorithm, the hybrid MNC equalization algorithm exhibits fast convergence
and significant computational saving by taking advantage of the SE equaliza-
tion algorithm in (T1). Furthermore, it does not suffer from the divergence
problem of the SE equalization algorithm due to the guaranteed convergence
of (T2).

4.4 Simulation Examples for Algorithm Tests

Let us provide some simulation examples to show the efficacy of the linear
prediction approach, the MNC, SE and hybrid MNC equalization algorithms,
as well as their performance improvements (in terms of convergence speed and
amount of ISI reduction) thanks to the whitening preprocessing and improved
initial condition. For convenience, we use the following shorthand notation.

• “LPE” represents the simulation results for predictive deconvolution (equal-
ization).

• “J3” and “J4” represent the simulation results for MNC equalization with
J3(v[n]) and J4(v[n]), respectively.

• “SE3” and “SE4” represent the simulation results for SE equalization with
p + q = 3 and 4, respectively.

• “LPE-J4” represents the simulation results for MNC equalization with
J4(v[n]) and whitening preprocessing.

• “LPE-SE4” represents the simulation results for SE equalization with p +
q = 4 and whitening preprocessing.

• “ΔISI” represents the amount of ISI before equalization minus that after
equalization, i.e. the ISI improvement or degradation.

Note that the larger the value of ΔISI, the better the performance of the blind
equalization algorithm under test. Next, let us turn to the first example.

Example 4.25 (Efficacy of Predictive, MNC and SE Equalization)
In this example, the source signal u[n] was assumed to be a real, zero-mean,
exponentially distributed, i.i.d., stationary sequence with variance σ2

u = 1,
skewness C3{u[n]} = 2 and kurtosis C4{u[n]} = 6. The following two cases
were considered.
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Case A. The system h[n] was a minimum-phase causal FIR filter with coeffi-
cients {1,−0.7, 0.6,−0.4, 0.3, 0.1, 0.05}.

Case B. The system h[n] was a nonminimum-phase ARMA(2,2) filter whose
transfer function is given by

H(z) =
1 − 1.6z−1 + 0.1z−2

1 + 0.1z−1 − 0.12z−2
. (4.156)

The data y[n] were generated using (4.1) and (4.2) for data length N =
4096 and SNR = 20 dB where the noise w[n] was assumed to be real white
Gaussian. For predictive deconvolution, the Burg algorithm was used to obtain
the forward LPE filter of order equal to 24. For MNC and SE equalization,
the MNC equalization algorithm using the approximate BFGS method and
the SE equalization algorithm were used to find the MNC equalizer vMNC[n]
and the SE equalizer vSE[n], respectively, where L1 = 0, L2 = 24, and the
typical initial condition v[0][n] = δ[n−12] were used. Thirty independent runs
were performed for these algorithms.

Table 4.10 shows the averages of the thirty ΔISI’s obtained (in dB) and
the averaged number of iterations spent. Note that the amount of ISI be-
fore equalization is 0.4630 dB for Case A and −3.7536 dB for Case B. One
can see, from Table 4.10, that the linear prediction approach outperforms
the MNC and SE equalization algorithms for Case A (minimum-phase sys-
tem), but failed in equalization for Case B (nonminimum-phase system). On
the other hand, the MNC and SE equalization algorithms work well for both
cases. Moreover, the MNC and SE equalization algorithms using third-order
cumulants exhibit better performance than those using fourth-order cumu-
lants since estimation of third-order cumulants is more accurate than that of
fourth-order cumulants for finite data length. One can also observe that the
convergence rate of the SE equalization algorithm is about three times faster
than that of the MNC equalization algorithm.

�

Table 4.10 Simulation results of Example 4.25

  LPE J3 J4 SE3 SE4 

ΔISI (dB) 22.2788 20.1553 14.2476 20.1473 14.2467
Case A Number of 

iterations  28.1667 30.5333 9.0333 10.9667

ΔISI (dB) −5.1241 17.0450 10.5202 17.0400 10.5229
Case B Number of 

iterations  29.6667 32.0333 8.0000 9.9333 
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Example 4.26 (Efficacy of Whitening Preprocessing)
The simulation conditions used in this example were the same as those in
Example 4.25, except that the system h[n] was a nonminimum-phase causal
FIR filter with coefficients {0.4, 1,−0.7, 0.6, 0.3,−0.4, 0.1}. Algorithms used
for predictive, MNC and SE equalization were also the same as those in Ex-
ample 4.25. To maintain the same equalizer length for blind equalization in
conjunction with whitening preprocessing, we used a forward LPE filter aM [n]
of order M = 7 as the whitening filter followed by the MNC equalizer vMNC[n]
or the SE equalizer vSE[n], both with L1 = 0, L2 = 17, and v[0][n] = δ[n− 8].
Thirty independent runs were performed for all these algorithms. Table 4.11
shows the averages of the thirty ΔISI’s obtained (in dB) and the averaged
number of iterations spent, where the amount of ISI before equalization is
1.0380 dB. It is clear, from Table 4.11, that whitening preprocessing not only
improves the performance of the MNC and SE equalization algorithms with
larger ΔISI, but also speeds up the two algorithms (with fewer iterations
spent).

�

Table 4.11 Simulation results of Example 4.26

 LPE J4 LPE-J4 SE4 LPE-SE4

ΔISI (dB) 7.0929 14.7092 16.2485 14.7111 16.2475
Number of 
iterations  25.0667 15.4667 11.1000 8.6667 

Example 4.27 (Efficacy of Improved Initial Condition)
In this example, the source signal u[n] was assumed to be a 4-QAM symbol
sequence with unity variance and the system h[n] was a nonminimum-phase
ARMA(3,3) filter whose transfer function is given by

H(z) =
1 + 0.1z−1 − 3.2725z−2 + 1.41125z−3

1 − 1.9z−1 + 1.1525z−2 − 0.1625z−3
. (4.157)

Figure 4.14 reveals the efficacy of the improved initial condition v[0][n] =
vS[n] � aM [n] versus that of the typical initial condition v[0][n] = δ[n − LC],
where SNR = 20 dB, L1 = 0, L2 = 20, M = 4, and LC = 10. From this figure,
one can see that the values of ISI{g[0][n]} associated with the improved initial
condition are about 10 dB below those associated with the typical initial
condition. Moreover, the SE equalization algorithm using the improved initial
condition works well for all data lengths N with much faster convergence speed
than that using the typical initial condition, and the latter converges more
slowly for smaller N (1024, 2048 and 4096) and diverges for N = 512. These
results demonstrate that the improved initial condition significantly improves
the convergence speed and reliability of the SE equalization algorithm.

�
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Fig. 4.14 Averages of fifty ISI{g[i][n]}s using the SE equalization algorithm

Example 4.28 (Efficacy of Hybrid MNC Equalization)
In this example, we considered the following two cases for generating the data
y[n].

Case A. The source signal u[n] was a 16-QAM symbol sequence with unity
variance. The system h[n] was a fifth-order causal FIR filter whose
coefficients were assumed to be uniformly distributed over the in-
terval [−0.5, 0.5] and were statistically independent of each other.
Thirty independent runs with thirty independent realizations of h[n]
were performed to generate thirty sets of y[n], n = 0, 1, ..., N − 1, for
N = 10000 and SNR = ∞.

Case B. The source signal u[n] was a 4-QAM symbol sequence with unity
variance and the system h[n] was the same as that in Example 4.27.
Thirty independent runs were performed to generate thirty sets of
y[n], n = 0, 1, ..., N − 1, for N = 2048 and SNR = 15 dB where the
noise w[n] was real white Gaussian.
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For Case A, the MNC equalization algorithm using the steepest descent
method, the one using the approximate BFGS method, and the hybrid MNC
equalization algorithm using the steepest descent method were used to obtain
the MNC equalizer vMNC[nψ] associated with J2,2(vψ[nψ]), where Lψ1 = 0, Lψ2 =
29, and the typical initial condition vψ

[0][nψ] = δψ[nψ − 14] were used. Figure
4.15 reveals the convergence speed of the hybrid MNC equalization algorithm
versus that of the MNC equalization algorithm. Obviously, the former is much
faster than the latter, thanks to utilization of the SE equalization algorithm
in (T1) of Table 7.4. Figure 4.15 also verifies that the convergence speed of the
MNC equalization algorithm using the approximate BFGS method is much
faster than that using the steepest descent method.

For Case B, the SE equalization algorithm with pψ = qψ = 2 was used to
obtain the SE equalizer vSE[nψ], and the hybrid MNC equalization algorithm
was used to obtain the MNC equalizer vMNC[n] associated with J2,2(v[n]),
where L1 = 0, L2 = 20, and v[0][n] = δ[n − 10]. Figures 4.16a, b show thirty
J2,2(vSE[n])s and thirty J2,2(vMNC[n])s, respectively. These two figures demon-
strate the robustness of the hybrid MNC equalization algorithm against the
divergence problem faced by the SE equalization algorithm, thanks to the
explicit objective function Jp,q(v[n]) used in (T2) of Table 7.4.

�
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Fig. 4.15 Averages of thirty J2,2(v[n])s using the MNC equalization algorithm
(the dashed lines) and the hybrid MNC equalization algorithm (the solid line)

4.5 Some Applications

Having elaborated on the principles of SOS and HOS based blind equalization
algorithms, we are now ready to introduce the applications of these algorithms.
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Fig. 4.16 Thirty J2,2(v[n])s using (a) the SE equalization algorithm and (b) the
hybrid MNC equalization algorithm

Our treatment will be confined to the following selected applications: seismic
exploration, speech signal processing, and digital communications.

4.5.1 Seismic Exploration

Seismic exploration is concerned with identification of the earth’s subsurface
structure, and is often used when prospecting for potential reservoirs of pe-
troleum and natural gas. We may divide geophysical techniques for seismic
exploration into two branches: reflection seismology and refraction seismology.
Reflection seismology is a traditional technique used to generate and interpret
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the earth’s reflection profile which contains a certain amount of information
about the earth’s subsurface structure. Thus, reflection seismology has been
widely applied in land and marine surveys. In comparison with reflection seis-
mology, refraction seismology is a rather novel technique, especially in marine
surveying, used to provide an improved reflection profile. However, the rele-
vant technologies have been developed only to a limited extent [45,46]. Hence,
we will focus only on the treatment of reflection seismology.

Reflection Seismology

Generally speaking, reflection seismology involves three stages of seismic sig-
nal processing, namely, seismic data acquisition, processing and interpreta-
tion. Figures 4.17a, b give schematic illustrations of land and marine seismic
data acquisition, respectively. An acoustic source waveform, called a seismic
wavelet or a source signature, is launched at a shot point, and then prop-
agates through the earth’s subsurface. Many types of energy sources have
been employed to generate the seismic wavelet, including dynamite and other
high-energy explosive sources, implosive air guns, electrical sparkers, vibrating
chirp systems, etc. [47]. As the seismic wavelet encounters an interface between
different geological layers, it is reflected and refracted at that interface due to
impedance mismatch. The resultant reflected waves then propagate back to
the earth’s surface and are measured by an array of sensors (geophones for
land survey and hydrophones for marine survey) that is collectively referred
to as a seismometer array. At each sensor output, a set of measured seismic
data is digitally recorded as a seismic trace. A collection of seismic traces are
called a seismogram. By repeating this procedure at many source and sensor
locations, one can produce a 2-D or 3-D image of the earth’s reflection profile.

For modeling the earth’s subsurface, it is traditional to utilize a layered
system model as shown in Fig. 4.18, where h[n] is the seismic wavelet, the
interface between layer i and layer (i + 1) for i = 1, 2, ..., is characterized by
the reflection coefficient κi (a real number) to account for the impendence
mismatch, and τi is the travel time of the seismic wavelet from point A to
point B via the ith layer. In addition, the layered earth system is usually
accompanied by the following two assumptions [48, p. 31].

(A4-9) As the seismic wavelet h[n] (a real sequence) propagates through each
layer of the layered earth system, its waveform remains unchanged.

(A4-10) Each travel time τi can be represented by an integer multiple of the
sampling period.

As a result of Assumptions (A4-9) and (A4-10), we have the convolutional
model for the seismic trace, denoted by y[n], as follows: (see Fig. 4.19)

y[n] =

∞∑
i=1

κih[n − τi] + w[n] = h[n] � u[n] + w[n] (4.158)
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Fig. 4.17 Configurations of (a) land and (b) marine seismic data acquisitions
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where the seismic wavelet h[n] is treated as an LTI system,

u[n] =
∞∑

i=1

κiδ[n − τi] (4.159)

is called the reflectivity sequence, and w[n] is the measurement noise. Note,
from Fig. 4.19, that interpretation of the reflectivity sequence u[n] as the sys-
tem input and of the seismic wavelet h[n] as the LTI system is counterintuitive
from a physical point of view, but the counterintuitive approach is useful from
a mathematical point of view due to the random nature of u[n] [49]. As a re-
mark, more realistic models for y[n] can be constructed in terms of nonlinear
and time-varying characteristics. Nevertheless, the LTI convolutional model
(4.158), which basically holds within a limited area size or time gate for prac-
tical applications of real seismic data, can still be used as an approximation
to a more realistic model.

From Fig. 4.18, we note that the reflectivity sequence u[n], which reflects
the physical properties of the earth’s internal layers, contains certain informa-
tion about the earth’s subsurface structure below the center point C between
point A and point B [50]. Accordingly, the objective here is to remove the ef-
fect of the source wavelet h[n] from the seismic trace y[n] so that an estimate
of the reflectivity sequence u[n] can be obtained. Obviously, this is a decon-
volution problem, specifically referred to as seismic deconvolution. Since the
early 1960s, seismic deconvolution has served as a routine computational data
processing procedure in reflection seismology, and related topics have been an
active field of geophysical research for nearly half a century [49, 51].

Approaches to Seismic Deconvolution

An intuitively direct approach to seismic deconvolution is the so-called deter-
ministic deconvolution, which measures the seismic wavelet directly and then
removes it from the seismic trace through a nonblind deconvolution procedure.
Deterministic deconvolution has proved to be more effective for marine seismic
exploration than land seismic exploration because seismic wavelet measuring
is quite difficult in land environments [52]. In marine environments, the seismic
wavelet can be measured by towing a deep hydrophone in the water, provided
that the water is deep enough for the measurement not to be corrupted by
reflected waves from the sea floor. However, it is still not an easy task to pro-
vide an accurate measurement of seismic wavelet due to the ghost resultant
from the water–air interface (see Fig. 4.17b) and the filter effect of the towed
hydrophone. As a consequence, the seismic wavelet h[n] is usually not exactly
known in practice, and accordingly we have to resort to blind approaches of
seismic deconvolution.

Thus far, there have existed a multitude of blind approaches to seismic de-
convolution, including predictive deconvolution, homomorphic deconvolution,
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Fig. 4.18 Layered earth system

maximum-likelihood deconvolution, maximum or minimum entropy deconvo-
lution, and so on. The volume of reprinted papers edited by Robinson and
Osman [51] has collected a number of excellent papers on these blind ap-
proaches, in addition to the deterministic deconvolution. One can also refer
to Arya and Holden’s paper [52], which gives an overview of predictive de-
convolution, homomorphic deconvolution, Kalman filtering and deterministic
deconvolution for seismic exploration. For brevity, we will deal only with seis-
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mic deconvolution in terms of predictive deconvolution and MNC equalization,
respectively.

Before applying predictive and MNC equalization to seismic deconvolu-
tion, let us first inspect the characteristics of the reflectivity sequence u[n]
as follows. In accordance with the physical properties of the earth’s layered
structure, it has been widely accepted that the reflectivity sequence can be
thought of as a non-Gaussian sparse spike train with random amplitudes. Ac-
cordingly, Kormylo and Mendel [49, 53, 54] proposed a statistical model for
u[n], a Bernoulli–Gaussian (B–G) model given by

u[n] = uB[n] · uG[n] (4.160)

where uG[n] is a real, zero-mean, WSS, white Gaussian process with variance
σ2

G and uB[n] is a Bernoulli sequence with parameter λ, i.e.

Pr {uB[n]} =

{
λ, for uB[n] = 1,

1 − λ, for uB[n] = 0.
(4.161)

Note that the parameter λ should be sufficiently small to account for the
spikiness of u[n]. The B–G sequence u[n] has variance σ2

u = λσ2
G, skewness

C3{u[n]} = 0, and kurtosis C4{u[n]} = 3λ(1 − λ)σ2
G. A further model given

by [55]

u[n] = uLE[n] + uSE[n] (4.162)

is also used sometimes where uLE[n] is a B–G sequence accounting for large
events in u[n], and uSE[n] is a white Gaussian sequence accounting for smaller
background events in u[n].
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In addition, it has been reported [56] that the family of generalized
Gaussian distribution

f(x) =
α

2βΓ (1/α)
exp

{
− |x|α

β

}
, −∞ < x < ∞ (4.163)

is fairly representative of both reflectivity sequences and seismic traces where
α > 0 is the shape parameter, β > 0 is the scale parameter, and Γ(·) is the
gamma function.11 The family of generalized Gaussian distribution covers a
wide range of symmetric distributions. In particular, it reduces to a Laplace
distribution as α = 1, a Gaussian distribution as α = 2, a uniform distribution
as α → ∞, and a delta function as α → 0. The tests of real seismic data
reported in [56] indicate that the shape parameter α typically lies in the
range between 0.4 and 1.5 for the reflectivity sequence u[n] and in the range
between 0.9 and 2.5 for the seismic trace y[n]. This highlights the facts that
u[n] is indeed a non-Gaussian sequence and that y[n] is closer to a Gaussian
process than u[n]. Therefore, it has been widely accepted that u[n] satisfies
both Assumptions (A4-2) and (A4-6).

As a matter of fact, the seismic wavelet h[n] is usually nonminimum phase
[49, p. 9]. Apparently, this poses a serious problem for predictive deconvolution
due to Property 4.11, whereas this has no negative impact on the performance
of MNC equalization. Next, let us present the original ideas behind the MNC
equalization criterion Jp+q(v[n]) in seismic deconvolution.

Minimum Entropy Deconvolution

Since the reflectivity sequence u[n] is a sparse spike train, it is visually clear
that the correct equalizer v[n] will lead to the equalized signal e[n] = v[n]�y[n]
exhibiting a “simpler” appearance than the seismic trace y[n]. Based on this
observation, Wiggins [23, 24] found the following objective function (to be
maximized)

JMED(v[n]) =
E{e4[n]}

(E{e2[n]})2 (4.164)

which provides a visual judgement of “simplicity” (i.e. a performance index).
Because a “simple” appearance, to a certain extent, corresponds to a small
amount of information or entropy, JMED(v[n]) is referred to as a minimum
entropy deconvolution (MED) criterion [24]. After Wiggins’ work, several ex-
tensions and modifications of JMED(v[n]) have been proposed for seismic de-
convolution. Among them, the MNC equalization criterion Jp+q(v[n]) was
proposed by Donoho [24], who also proposed other types of MED criteria by
virtue of the measures of Fisher’s information and Shannon’s information, in
relation to the Wiggins’ MED criterion JMED(v[n]) as follows:

11 The gamma function Γ(k + 1) = k! for k = 0, 1, 2, ...
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J4(v[n]) = |JMED(v[n]) − 3| . (4.165)

Clearly, J4(v[n]) and JMED(v[n]) are equivalent when u[n] has positive kurto-
sis.

It is worth mentioning that although the reflectivity sequence u[n] is gen-
erally regarded as a real sequence, a constant phase shift may need to be
further introduced to u[n] for some cases, depending on the incident angle
of the source wavelet, subsurface topography, etc. To estimate such a com-
plex reflectivity sequence u[n], Ulrych and Walker [25,51] proposed a complex
version of the Wiggins’ MED criterion as follows:

JMED(v[n]) =
E{|e[n]|4}

(E{|e[n]|2})2, (4.166)

which relates to the MNC criterion, J2,2(v[n]), via

J2,2(v[n]) = |JMED(v[n]) − 2| , (4.167)

provided that E{u2[n]} = 0 (the typical case for complex stationary processes).
Accordingly, (4.166) should be recognized as a first proposal for the complex
version of the MNC criterion J2,2(v[n]).

Simulation Example of Seismic Deconvolution

Let us show some simulation results of seismic deconvolution. In the simu-
lation, we generated a B–G sequence with λ = 0.05 and σ2

G = 0.0225 for
the reflectivity sequence u[n], and synthesized the noise-free seismic trace by
convolving u[n] with a nonminimum-phase ARMA(3,3) seismic wavelet h[n]
whose transfer function is given by (4.157). Then the noisy seismic trace y[n]
was obtained by adding a white Gaussian noise sequence w[n] to the syn-
thetic noise-free seismic trace. Figure 4.20a depicts the seismic wavelet h[n],
Fig. 4.20b a segment of the generated reflectivity sequence u[n], and Fig. 4.20c
a segment of the synthetic seismic trace y[n] for SNR = 20 dB.

With the synthetic seismic trace y[n], we used the Burg algorithm to ob-
tain a forward LPE filter, aL[n], of order L equal to 16. We also considered
J4(v[n]) for MNC equalization since the skewness C3{u[n]} = 0 and the kur-
tosis C4{u[n]} ≈ 0.0032 �= 0 for the B–G sequence u[n]. The hybrid MNC
algorithm was employed to find the MNC equalizer vMNC[n], which was as-
sumed to be a 16th-order causal FIR filter. A single run was performed for
data length N = 2048. Figures 4.21a, b display a segment of the equalized
signal (bars) using the LPE filter aL[n] and that using the MNC equalizer
vMNC[n], respectively, for SNR = 20 dB, where scale factors and time delays
were artificially removed. One can see, from Figs. 4.21a, b, that the equalized
signal using vMNC[n] approximates u[n] well, and exhibits a “simpler” appear-
ance than the predictive deconvolved signal since an allpass distortion (due
to nonminimum-phase h[n]) still remains in the latter.
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Fig. 4.20 (a) Seismic wavelet h[n], (b) segment of the reflectivity sequence u[n],
and (c) segment of the synthetic seismic trace y[n] for SNR = 20 dB
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Fig. 4.21 Segment of the equalized signals (bars) using (a) a linear prediction ap-
proach and (b) the MNC equalization algorithm, along with the reflectivity sequence
u[n] (circles) for SNR = 20 dB

To provide further insight into seismic deconvolution, we repeated the
above simulation using only the MNC equalization algorithm for SNR = 0
dB. The simulation results are displayed in Fig. 4.22. One can see, from Fig.
4.22c, that the signal component eS[n] consists of a sequence of pulses, each
apparently being an approximately symmetric wavelet (corresponding to the
zero-phase overall system g[n]) with amplitude proportional to the correspond-
ing u[n]. These observations therefore agree with Property 4.18. Note, from
Figs. 4.22b, c, the two close spikes at n = 64 and 67 are not discernible since
the spacing between them is much narrower than the width of g[n] for this
case (SNR = 0 dB).

4.5.2 Speech Signal Processing

Blind deconvolution of speech data, specifically referred to as speech decon-
volution, is an essential procedure of speech signal processing for a variety of
applications, including speech analysis and synthesis, speech coding, speech
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Fig. 4.22 Segment of (a) the synthetic seismic trace y[n] for SNR = 0 dB, (b) the
equalized signal e[n] (bars) using MNC equalization, and (c) the signal component
eS[n] (bars) of e[n], along with the reflectivity sequence u[n] (circles)
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recognition, and speaker recognition (i.e. speaker verification and identifi-
cation)12 [57–64]. In the following, we will address mathematical models of
speech production on which speech deconvolution algorithms often rely and,
as an illustration, give the treatment of speech analysis and synthesis by means
of predictive deconvolution and MNC equalization.

Speech Production Models

Figure 4.23 depicts a diagram of the simplified human vocal system. During
normal breathing, the vocal cords, or the vocal folds, are held apart, allowing
air to pass through the gap between the two vocal cords; this gap is called the
glottis. As shown in Fig. 4.23, the vocal tract begins at the glottis and ends at
the lips, and the air flow from the lungs serves as a source of energy to excite
the vocal tract. The vocal tract then imposes a number of resonances upon
the excitation to produce a speech sound. The frequencies of the resonances,
called the formant frequencies or simply formants, depend on the shape and
dimension of the vocal tract. Different sets of formants result in different
sounds of speech.

According to the type of excitation, speech sounds can be divided into
several classes, among which two elementary classes are as follows [58,60,63].

• Voiced sounds. Voiced sounds such as the phoneme /a/ in the utterance of
“arm” are produced by forcing air through the glottis where the vocal cords
are adjusted in terms of their tension so that they vibrate in a relaxation
oscillation. This oscillation therefore generates a quasi-periodic pulse train
that excites the vocal tract to produce voiced sounds.

• Unvoiced sounds or fricative sounds. Unvoiced sounds such as the phoneme
/f/ in the utterance of “face” are produced by forming a constriction at some
point within the vocal tract, and forcing air to pass through the constriction
to produce turbulence. This therefore creates a broad-spectrum noise source
that excites the vocal tract to produce unvoiced sounds.

Other classes of speech sounds such as plosive sounds and whispers merely
result from the combinations of voiced source, unvoiced source and silence.

Owing to the different types of excitation and the different sets of for-
mants, the characteristics of a speech signal are obviously time varying. As
such, it is common to partition a speech signal into short segments for ease
of further processing because each short segment can be thought of as a sta-
tionary process with certain fixed characteristics during that segment. This
assumption typically holds true for segments with duration on the order of 30
or 40 ms [65, p. 724]. Note that the short segments are sometimes called the
analysis frames or simply frames, and they often overlap frame to frame.

12 Speaker verification is the process of verifying whether an unknown speaker is
the person as claimed, while speaker identification is the process of associating an
unknown speaker with a member in a population of known speakers [57].
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Fig. 4.23 Schematic diagram of the human vocal system

As a result of the foregoing discussions, it is reasonable to model each
segment of a speech signal either as the output of an LTI system driven by a
quasi-periodic impulse train for voiced speech or as the one driven by a random
white noise for unvoiced speech. The period of the periodic impulse train is
called the pitch period. Figure 4.24 depicts such a speech production model.
One can see, from Fig. 4.24, that in addition to the effect of the vocal tract
characterized by hV[n], the speech production model also includes the effect of
the vocal cords characterized by the glottal pulse model hG[n] and the effect
of the sound radiation at the lips characterized by the radiation model hR[n].
The glottal pulse model hG[n] is of finite duration, while the radiation model
hR[n] will result in high frequency emphasis of the speech signal. Moreover,
the resonances (formants) due to the vocal tract correspond to the poles of
the vocal tract model HV(z), and thus an AR model (an all-pole model) is
a good representation of the vocal-tract effect for voiced speech. However,
both poles and zeros (resonances and anti-resonances) also need be included
in HV(z) when unvoiced speech and nasals are to be considered. On the other
hand, the quasi-periodic impulse train for voiced speech is characterized by
the pitch period, while the probabilistic distribution of the white noise for
unvoiced speech does not appear to be critical.

As shown in Fig. 4.25, it is convenient to combine the glottal pulse, vocal
tract and radiation models to form the speech production system, denoted by



4.5 Some Applications 249

-
��	���
������

!��������

A�����������
!��������


	����	�
��	���

���	

G [ ]h n

;�����������

?�������� ������
������

?���	�������

���	

V [ ]h n

#���������

���	

R [ ]h n

�����&$����
�������
��!��	

[ ]x n

Fig. 4.24 Generic model for voiced and unvoiced speech production; after Rabiner
and Schafer [58]

h[n], as follows:

h[n] =

{
hR[n] � hV[n] � hG[n], for voiced speech,

hR[n] � hV[n], for unvoiced speech.
(4.168)

Accordingly, we have the convolutional model given by (4.1) and (4.2) for one
segment of measured speech data, y[n], where the source signal, u[n], is either
a quasi-periodic impulse train for voiced speech or a white noise for unvoiced
speech.

Speech Analysis and Synthesis

The goal of speech analysis is to estimate the parameters of the speech pro-
duction model such as the energy or gain of each segment, the type of speech
sound (voiced or unvoiced), the pitch period, the speech production system
h[n], the formants, etc. Obviously, speech deconvolution is suited to sepa-
rating h[n] from the source signal u[n]. Correspondingly, speech can also be
synthesized from these estimated parameters by taking the same paramet-
ric representation as that used in speech analysis. Consider, for example, the
parametric representation in Fig. 4.25 for speech synthesis. Given the esti-
mated pitch period, the impulse train generator for voiced sounds produces
an impulse of unity amplitude at the beginning of each pitch period. On the
other hand, due to a great many random effects involved in producing un-
voiced speech, the white noise generated for unvoiced sounds can be assumed
to be a white Gaussian process with unity variance [66]. The estimated gain
is then applied to adjust the energy of the generated impulse train or white
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Fig. 4.25 Convolutional model for noisy speech data

Gaussian noise, that is then convolved by the estimate of h[n] to generate the
synthetic speech signal x[n].

For speech analysis and synthesis, the most widely used approaches to
speech deconvolution are linear predictive deconvolution and homomorphic
speech deconvolution. The treatment of the latter is omitted here; the reader
can find it in many textbooks such as [58]. In theory, the predictive decon-
volved signal obtained by linear predictive deconvolution can be used to esti-
mate the pitch period directly. In practice, however, a somewhat more sophis-
ticated method such as the simple inverse filtering tracking (SIFT) method
is generally used [67]. Furthermore, the formants can be estimated either di-
rectly from the coefficients of the LPE filter or the associated AR spectral
estimate, by virtue of the fact that the poles of the speech production system
H(z) or the peaks in the spectrum of the speech signal basically correspond to
the formants. In addition to linear predictive deconvolution, one can also ap-
ply MNC equalization to speech analysis and synthesis because each segment
of voiced speech can reasonably be assumed to be a non-Gaussian stationary
process with nonzero third-order and fourth-order cumulants; see [66, 68–71]
for the details.

It is important to note that speech analysis and synthesis forms the basis
of speech coding for such applications as speech communications. A represen-
tative of speech coding in speech communications is the so-called linear predic-
tive coding (LPC) [58]. Specifically, the transmitter performs speech analysis
by means of linear predictive deconvolution to obtain a set of estimated para-
meters, that is to be encoded in an efficient manner for reducing the bit rate of
transmitting the encoded parameters. Correspondingly, the receiver decodes
the encoded parameters and performs speech synthesis to generate a synthe-
sized speech that approximates the original speech sent from the transmitter.
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Note that some phase distortion often remains in the synthesized speech since
the speech production system H(z) is in general nonminimum phase. This
phase distortion, however, has virtually no effect on speech perception because
the human ear is fundamentally “phase deaf” [63, pp. 269–270]. Moreover, the
parameters obtained by speech analysis can also serve as a set of features for
speech recognition and speaker recognition. For such applications, SOS based
speech analysis (by means of linear predictive deconvolution) can provide only
the features related to the magnitude of H(z). On the other hand, HOS based
speech analysis such as the one using MNC equalization can provide not only
the features related to the magnitude of H(z) but also those related to the
phase of H(z), thereby leading to improved recognition performance over SOS
based approaches. Examples of HOS based speech analysis for speech recog-
nition can be found in [72–74].

Experimental Example of Speech Deconvolution

Let us present some experimental results for speech deconvolution with real
voiced speech data. In the experiment, a set of real speech data for the sound
/a/ uttered by a man was acquired through a 16-bit A/D converter with
a sampling rate of 8 kHz. The set of measured speech data, shown in Fig.
4.26a, was then processed by a forward LPE filter aL[n] of order L = 24,
and processed by an MNC equalizer vMNC[n] with L1 = 0 and L2 = 24,
where the coefficients of aL[n] were obtained with the Burg algorithm and
those of vMNC[n] obtained with the hybrid MNC equalization algorithm. Fig-
ures 4.26b–d display the predictive deconvolved signal using aL[n], the equal-
ized signal using vMNC[n] associated with J3(v[n]) and that associated with
J4(v[n]), respectively. One can see, from Figs. 4.26b–d, that the equalized sig-
nal using vMNC[n] approximates a pseudo-periodic impulse train much better
than the predictive deconvolved signal since some phase distortion remains in
the latter. This also verifies that the speech production system h[n] may not
be minimum phase.

With any of the equalized signals in Figs. 4.26b–d, the pitch period can
easily be found to be 70 samples (i.e. 8.75 ms) from the two most signifi-
cant impulses. Furthermore, the speech production system h[n] can be es-

timated as Ĥ(z) = 1/AL(z) through the linear predictive deconvolution or

Ĥ(z) = 1/VMNC(z) through the MNC equalization, as shown in Fig. 4.27a.

By convolving the system estimate, ĥ[n], with a periodic impulse train of pe-
riod equal to 70 samples, we obtained the synthesized speeches displayed in
Figs. 4.27b–d, where the synthesized speeches were adjusted to have the same
energy as the original speech signal. One can see, from Fig. 4.27a, that the
system estimate ĥ[n] associated with MNC equalization shows better resem-
blance to one pitch period of the original speech signal than that associated
with linear predictive deconvolution. This, in turn, leads to the result that
the synthesized speech signals associated with the former resemble the orig-



252 4 SISO Blind Equalization Algorithms

inal speech signal better than those associated with the latter, as shown in
Figs. 4.27b–d.

4.5.3 Baud-Spaced Equalization in Digital Communications

Digital communication systems can be divided into wired and wireless com-
munication systems; the former utilize twisted pair, coaxial cable or optical
fiber as the transmission media while the latter utilize air, water or free space
as the transmission media. The fundamental principles for both systems are
essentially similar. Thus, for brevity, we will deal with baud-spaced equaliza-
tion only for wireless communication systems.

Wireless Communication Systems

Figure 4.28 depicts a typical wireless communication system, for which we
assume that the information sequence to be transmitted is already in binary
form. The components in the transmitter are explained as follows [3].

• Source encoder and scrambler. The source encoder, also called the source
compressor, is used to remove the redundancy in the binary information
sequence, thereby reducing the required transmission bandwidth. The com-
pressed sequence may be further scrambled or randomized by the scrambler
to ensure adequate binary transitions and energy dispersion. The scrambler
is therefore also called the randomizer or the energy disperser.

• Channel encoder and interleaver. In a controlled manner, the channel en-
coder imposes some redundancy on the compressed/scrambled sequence to
provide protection capability against the effects of noise and interference
introduced by the transmission channel. The channel encoder is often ac-
companied by the interleaver to improve the protection capability against
bursts of errors due to, for instance, the effect of channel fading.

• Mapper and modulator. The mapper transforms the coded sequence from
the channel encoder into a sequence of PAM, PSK or QAM symbols, called
a symbol sequence. The symbol sequence is real for PAM constellation,
whereas it is complex for PSK and QAM constellations. The modulator
then modulates the amplitude or phase, or both, of the symbol sequence
onto a carrier to generate a (real) spectrally efficient signal waveform.

• Radio-frequency (RF) section and antenna. In the RF section, the center
frequency of the signal waveform generated from the modulator is upcon-
verted by a mixer to the specified frequency. The resultant RF waveform
is then amplified by a power amplifier followed by a bandpass filter to re-
duce the effect of out-of-band radiation introduced by the nonlinearity of
the power amplifier. Finally, the amplified and filtered RF waveform is ra-
diated by the antenna.

As shown in Fig. 4.28, the receiver performs the reverse operations of the
transmitter to recover the original information sequence.
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Fig. 4.26 (a) Segment of measured speech data for the sound /a/, (b) the predic-
tive deconvolved signal, (c) the equalized signal using J3(v[n]), and (d) the equalized
signal using J4(v[n])
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Fig. 4.27 (a) Estimates of the speech production system h[n], and segment of the
synthesized speech signals by using (b) aL[n], (c) vMNC[n] associated with J3(v[n])
and (d) vMNC[n] associated with J4(v[n])
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Fig. 4.28 Block diagram of a typical wireless communication system

Note that the transmission channel introduces not only the effects of noise
and interference, but also the effects of frequency selectivity and time varia-
tion. Among these effects, the channel’s frequency selectivity, which leads to
the ISI in the received signal, is mainly due to limited bandwidth and mul-
tipath propagation of the transmission medium; see Fig. 4.29 for an example
of multipath propagation. Next, let us establish the channel model on which
baud-spaced equalizers are commonly based.

Channel Models

Consider the schematic diagram of a simplified wireless communication system
in Fig. 4.30, which shows only the equivalent blocks for the modulator, RF
section at the transmitting end, channel, RF section at the receiving end, and
part of the demodulator. With linear modulation, the transmitted baseband
signal, s(t), is generated as follows:

s(t) =

∞∑
k=−∞

u[k]hT(t − kT ) (4.169)

where u[k] is the (possibly complex-valued) symbol sequence generated from
the mapper, T is the symbol period, and hT(t) is the transmitting filter; further
discussion on the transmitting filter will be given later. The baseband signal
s(t) is then upconverted to the transmitted bandpass signal, sBP(t), as follows:



256 4 SISO Blind Equalization Algorithms

7�����������
6���	���������

Fig. 4.29 Mobile communication system with multipath propagation

sBP(t) = Re
{

s(t)ej[2πfct+θ(t)]
}

= Re
{
sLP(t)ej2πfct

}
(4.170)

where fc and θ(t) are the nominal carrier frequency and the phase jitter
(fluctuation) of the oscillator at the transmitting end, respectively, and

sLP(t) = s(t)ejθ(t) (4.171)

is the equivalent lowpass signal of sBP(t).
At the receiver, we have the following received bandpass signal:

rBP(t) = hBP(t − ε) � sBP(t) + wBP(t) (4.172)

where hBP(t) is the bandpass channel, wBP(t) is the bandpass noise, and ε
accounts for the propagation delay. In (4.172), we have made use of the as-
sumption that the bandpass channel is an LTI system. After downconversion,
we obtain the received baseband signal, y(t), as follows:

y(t) = A · hR(t) �
{

rBP(t)e−j[2πfct+θ(t)]
}

(4.173)

where A is the gain provided by the automatic gain control (AGC) circuit

for gain adjustment, f̃c and θ̃(t) are the nominal carrier frequency and the
phase jitter of the oscillator at the receiving end, respectively, and hR(t) is the
receiving filter; further discussion on the receiving filter will be given later.



4.5 Some Applications 257

#���� ���
��������
��!��	

BP ( )r t

>
�


���

A

[ 2 M N ( )]j f t tce − +

����		����

#���� ��!�
$�	��� R ( )h t��
�	��

#���� ��
��������
��!��	

( )y t

�	��B
���� ���

,�������&��
�
����� ���

�����������!��	

[ ]y n

OnT +

��
�	�=���!��	�$	��

#��	���!��	�$	��

.����
�����!�
$�	��� T ( )h t

.����
������
���������
��!��	

( )s t

����		����

[ 2 M N ( )]j f t tce +

{ }Re   ⋅

��
��	
��5�����

[ ]u n
.����
������
��������
��!��	

BP ( )s t

7�������
������	

BP ( O )h t −

7��������
�����

BP ( )w t

Fig. 4.30 Schematic diagram of a simplified wireless communication system

To simplify the channel model for y(t), let us make the following reasonable
assumptions.

(A4-11) The local carrier frequency at the receiving end, f̃c, well approxi-
mates the one at the transmitting end, fc.

(A4-12) Both the phase fluctuations θ(t) and θ̃(t) are slowly time varying.

(A4-13) The receiving filter hR(t) is a lowpass filter.

Moreover, let

rBP(t) = Re
{
rLP(t)ej2πfct

}
, (4.174)

wBP(t) = Re
{
wLP(t)ej2πfct

}
, (4.175)

hBP(t) = 2 · Re
{
hLP(t)ej2πfct

}
; (4.176)

that is, rLP(t) is the equivalent lowpass signal of rBP(t), wLP(t) the equivalent
lowpass noise of wBP(t), and hLP(t) the equivalent lowpass channel of hBP(t).
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Substituting (4.174) into (4.173) yields

y(t) =
A

2
· hR(t) �

{
rLP(t)e−j[2π(fc−fc)t+θ(t)] + r∗LP(t)e−j[2π(fc+fc)t+θ(t)]

}
≈ A

2
· hR(t) �

{
rLP(t)e−j[2π(fc−fc)t+θ(t)]

}
(by (A4-13)). (4.177)

On the other hand, from (4.170), (4.171) and (4.172), one can obtain

rLP(t) = hLP(t − ε) �
[
s(t)ejθ(t)

]
+ wLP(t)

≈ ejθ(t) · [hLP(t − ε) � s(t)] + wLP(t) (by (A4-12)). (4.178)

Substituting (4.178) into (4.177) and by Assumptions (A4-11) and (A4-12),
we have

y(t) ≈ A

2
e−jΔθ(t) · [hR(t) � hLP(t − ε) � s(t)] + w(t) (4.179)

where

Δθ(t) � 2π(f̃c − fc)t + θ̃(t) − θ(t) (4.180)

is the (possibly slowly time-varying) residual phase offset which accounts for
the residual frequency offset as well as the phase jitters of the local oscillators,
and

w(t) =
A

2
e−j[2π(fc−fc)t+θ(t)] · [hR(t) � wLP(t)] (4.181)

corresponds to the equivalent baseband noise.
Substituting (4.169) into (4.179) yields

y(t) ≈ e−jΔθ(t) ·
∞∑

k=−∞
u[k]h(t − kT − ε) + w(t) (4.182)

where

h(t) =
A

2
· hR(t) � hLP(t) � hT(t) (4.183)

corresponds to the equivalent baseband channel. As shown in Fig. 4.30, the
clock recovery block is used to provide an estimate of the symbol timing, ε̂,
that is called the timing phase. With this timing phase ε̂, the discrete-time
received baseband signal, y[n], is acquired from y(t) as follows:

y[n] = y(t = nT + ε̂) ≈ e−jΔθn ·
∞∑

k=−∞
u[k]h[n − k] + w[n]

= e−jΔθn · {h[n] � u[n]} + w[n] (4.184)
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where Δθn = Δθ(t = nT + ε̂) is the discrete-time residual phase offset, w[n] =
w(t = nT + ε̂) is the discrete-time baseband noise, and

h[n] = h(t = nT + Δε) (4.185)

is the discrete-time baseband channel in which Δε � ε̂− ε is called the timing
phase error. Figure 4.31 depicts the equivalent discrete-time baseband channel
model given by (4.184). From (4.183) and (4.185), it is clear that the base-
band channel h[n], and therefore the resultant ISI, is determined not only by
the transmitting filter hT(t), the equivalent lowpass channel hLP(t) and the
receiving filter hR(t), but also by the timing phase ε̂.
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Fig. 4.31 Equivalent discrete-time baseband channel model

Having established the equivalent baseband channel model, we now explain
the purposes of the transmitting and receiving filters. Consider the case of no
pulse shaping, i.e. hT(t) = rect(t/T ) where

rect(t) �

⎧⎨⎩1, for −1

2
≤ t ≤ 1

2
,

0, otherwise
(4.186)

is a rectangular function. For this case, the transmitted baseband signal s(t)
consists of rectangular pulses whose bandwidth is actually unlimited. If these
rectangular pulses pass through an ideal lowpass channel (an ideal bandlimited
channel), then the received pulses will spread in time and therefore result in
the ISI effect. It is for this reason that an appropriate pulse-shaping filter
hT(t) is needed to simultaneously reduce the transmitted pulse bandwidth
and the ISI effect. On the other hand, the purpose of the receiving filter hR(t)
is two-fold. First, as stated in Assumption (A4-13), hR(t) should perform as
a lowpass filter so as to filter out the high-frequency term (i.e. the term with
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frequency (f̃c + fc)) in the first line of (4.177) [75, p. 214]. The other purpose
is that hR(t) should perform as a matched filter 13 so as to maximize the SNR
in the received baseband signal y[n] [75, p. 226]. From (4.183), it follows that
the matched filter hR(t) should match the filter hLP(t)�hT(t). Unfortunately,
information about the channel hLP(t) is generally not available to the receiver
before proceeding with channel estimation or equalization. For this reason, a
practical receiver typically replaces hR(t) by a filter matched to hT(t) only,
i.e. hR(t) = hT(T − t).

Based on the preceding discussions about the transmitting and receiving
filters, what we need to consider is the design of the pulse-shaping filter hT(t)
or, equivalently, the pulse

p(t) � hR(t) � hT(t) = hT(T − t) � hT(t) (4.187)

for simultaneously reducing the transmitted pulse bandwidth and the ISI ef-
fect under the condition of ideal bandlimited channel. In addition, a further
consideration in designing p(t) is that the amount of ISI resulting from the
timing phase error Δε is highly dependent upon the pulse shape of p(t). Treat-
ment of this topic can be found in many textbooks on digital communications,
and therefore is omitted here. One of the most popular pulses for p(t) is the
raised cosine pulse, or the cosine roll-off pulse, given by [3, p. 560]

p(t) =
sin(πt/T )

πt/T
· cos(παt/T )

1 − 4α2t2/T 2
(4.188)

where α is called the roll-off factor which ranges between 0 and 1. Other well-
known pulses such as the Gaussian pulse can be found, for example, in [76, pp.
225–234].

Blind Approaches to Baud-Spaced Equalization

Since typical digital communication channels are not minimum phase, SOS
based blind approaches cannot apply to baud-spaced equalization; hence, they
will not be discussed here. On the other hand, HOS based blind approaches,
which are applicable to baud-spaced equalization, can be divided into the
following two classes [11].

• Explicit methods. Explicit methods utilizing HOS explicitly as the name
indicates, include the MNC equalization algorithm, the SE equalization
algorithm, the polyspectra based algorithms [17, 77, 78], etc.

• Implicit methods. Implicit methods utilizing higher-order moments implic-
itly, include the Sato algorithm [79], the constant modulus (CM) equaliza-
tion algorithm [80–82], etc. They are also referred to as Bussgang-type algo-

13 A filter whose impulse response is equal to s(T − t) where s(t) is confined to the
time interval 0 ≤ t ≤ T , is called the matched filter to the signal s(t) [3, p. 237].
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rithms because the equalized signal is approximately a Bussgang process 14

[11, p. 789].

Among these HOS based blind approaches, we will focus on the MNC and
CM equalization algorithms for the following reasons. It is known that the
MNC equalization algorithm is equivalent to the CM equalization algorithm
under certain conditions [39,83], and that the CM equalization algorithm has
been widely applied to alleviating the ISI effect induced in telephone, cable
and radio channels in digital communications [18, 19, 84, 85].

To apply the MNC equalization algorithm to baud-spaced equalization, we
need, first, to inspect the basic assumptions for the symbol sequence u[n] and
the channel h[n]. For uncoded digital communication systems (i.e. no channel
encoder included) with efficient source compression, each symbol in u[n] can
be reasonably assumed to be independently taken from a set of constellation
points with equal probability [3, 75]. Accordingly, as mentioned in Section
3.2.4, u[n] is a non-Gaussian process (satisfying Assumption (A4-6)) whose
(p + q)th-order cumulants Cp,q{u[n]} �= 0 for even (p + q) and Cp,q{u[n]} = 0
for odd (p + q). As a result, it is better to use the MNC equalization algo-
rithm associated with the criterion J2,2(v[n]). On the other hand, for coded
digital communication systems, redundancy (memory) in u[n] is introduced
by the channel encoder in order to detect and/or correct erroneous bits at
the receiving end. Different channel encoding schemes will result in different
impacts on the validity of Assumption (A4-6) [86]. For such systems, Assump-
tion (A4-6) may still be valid with a properly chosen channel encoding scheme
or by adequately interleaving/scrambling the channel encoded sequence. As
for the channel h[n], it can only be treated as a short-term approximation to
the real communication channel, which often exhibits a time-varying nature,
especially for wireless communication systems. So the adaptive counterpart
is more appropriate than the batch processing MNC equalization algorithm
for baud-spaced equalization. The reader can find such an adaptive algorithm
along with its derivation in [26, 30].

From (4.184) and by Assumptions (A4-11) and (A4-12), it follows that the
equalized signal e[n] associated with the MNC equalizer v[n] is given by

e[n] ≈ {v[n] � h[n] � u[n]} · e−jΔθn + {v[n] � w[n]}
= eS[n]e−jΔθn + eN[n] (by (4.9) and (4.8))

or

e[n]ejΔθn ≈ eS[n] + eN[n]ejΔθn (4.189)

where the noise term, eN[n]ejΔθn , is still Gaussian distributed by Assumption
(A4-7). It can be seen that both e[n] and e[n]ejΔθn give rise to the same

14 A stationary process e[n] is said to be a Bussgang process if it satisfies the con-
dition that E{e[n]e[n − k]} = E{e[n]f(e[n − k])} where f(·) is a function of
zero-memory nonlinearity [11, p. 788].
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second-order moment E{|e[n]|2} and fourth-order moment E{|e[n]|4}. As a
result of this observation, the MNC criterion J2,2(v[n]) is invariant to the
residual phase offset Δθn, and so is the MNC equalizer v[n]. This, in turn,
allows the receiver to perform the carrier recovery after the baud-spaced MNC
equalization, as shown in Fig. 4.32, thereby bringing some attractive features
for carrier recovery (e.g. faster acquisition rate); refer to [85] for further details.
Let us emphasize that the detection performance for the receiver equipped
with a baud-spaced equalizer is quite sensitive to the timing phase error Δε,
that will be discussed in more detail in Chapter 6. For this reason, the receiver
requires clock recovery preceding the baud-spaced equalizer.
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Fig. 4.32 Block diagram of the receiver with a baud-spaced MNC equalizer

Next, let us turn our attention to the CM equalization algorithm, which
originated from the goal of finding a cost function that is independent of the
carrier phase and symbol constellation. With this goal, Godard [80] proposed
the so-called Godard-p algorithm for the design of the blind equalizer v[n] by
minimizing the function of pth-order dispersion:

Dp(v[n]) = E
{
(|e[n]|p − Υp)

2
}

(4.190)

where p is a positive integer and

Υp =
E{|u[n]|2p}
E{|u[n]|p} (4.191)

is referred to as constant modulus (CM). The special case, Godard-2 algorithm
(p = 2), was also developed independently by Treichler and Agee [81], that
is exactly the CM equalization algorithm. Note that in most literature, the
CM equalization algorithm is simply called the constant modulus algorithm
(CMA). This name comes from the design philosophy that the equalized signal
e[n] must possess the same CM property as the symbol sequence u[n]. As a
remark, if knowledge about the statistics of u[n] is not available in advance,
the value of Υ2 in (4.190) can be replaced by an arbitrary positive number
with a resultant scalar ambiguity in the equalized signal e[n].
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It should be noted that the CM equalization algorithm requires not only
Assumption (A4-6), but also the condition that the kurtosis C2,2{u[n]} < 0
(i.e. the sub-Gaussian distribution). Moreover, as the MNC criterion, the pth-
order dispersion Dp(v[n]) is also invariant to the residual phase offset Δθn, and
thus the structure shown in Fig. 4.32 applies to baud-spaced CM equalization
as well.

As a final remark, since both the MNC and CM equalization algorithms
rely on the linear structure of the equalizer, their performance may be insuf-
ficient for the cases of high-order constellation (e.g. 256-QAM, 1024-QAM,
etc.). It turns out that nonlinear blind equalizers such as the decision-directed
equalizer or the decision-feedback equalizer are often needed in practical appli-
cations [87]. Generally speaking, compared to linear blind equalizers, nonlinear
blind equalizers can provide better detection performance against the effects
of ISI and noise, only when a good initial condition (e.g. a sufficiently low
amount of ISI) is provided. Hence, practical QAM receivers generally employ
a blind linear equalizer for initial ISI reduction and then switch to nonlinear
equalization for further performance improvement after the convergence of
the blind linear equalizer.

Simulation Example of Baud-Spaced Equalization

Let us show some simulation results of baud-spaced equalization using the
hybrid MNC equalization algorithm with J2,2(v[n]). In the simulation, we
employed the channel model (4.184) to generate the received baseband signal
y[n]. The residual phase offset was assumed to be Δθn = (2πn/100) + (5π/6)
where the LTI channel h[n] was a nonminimum-phase FIR system with three
zeros at z = 0.188 + j0.0075, −0.158 − j0.426 and 6.5 − j6.35 . The symbol
sequence u[n] was assumed to be a QAM signal with unity variance and the
noise sequence w[n] was complex white Gaussian. A single run was performed
to obtain the MNC equalizer vMNC[n] with L1 = 0 and L2 = 15 for the
following two cases.

Case A. 16-QAM constellation, SNR = 20 dB, and data length N = 2048.
Case B. 256-QAM constellation, SNR = 30 dB, and data length N = 2048.

For Case A, Fig. 4.33a displays the constellation diagram of the received
signal y[n] (i.e. Im{y[n]} versus Re{y[n]}), Fig. 4.33b that of the equalized
signal e[n], and Fig. 4.33c that of the equalized signal after phase adjustment,
namely, e[n]ejΔθn . One can observe that the constellation points in Fig. 4.33a
are completely indiscernible, and that several circular patterns exist in Fig.
4.33b since the residual phase-offset term e−jΔθn still remains in the equalized
signal e[n]. In Fig. 4.33c, however, the constellation points are well discernible
due to the perfect phase adjustment (accounting for the operation of carrier
recovery). These results verify the fact that the MNC equalization algorithm
is independent of the residual phase offset. Note that the amount of ISI is
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−7.2268 dB before equalization and −22.4337 dB after the MNC equaliza-
tion for Case A. That is, the MNC equalizer vMNC[n] provides 15.2068 dB
improvement in ISI.

On the other hand, the simulation results of Case B are displayed in Figs.
4.34a–c. Even though the MNC equalizer vMNC[n] has provided around 14
dB ISI improvement for this case, circular patterns as seen in Fig. 4.33b are
almost not visible in Fig. 4.34b, and the constellation points in Fig. 4.34c are
hardly discernible in spite of the clear appearance of a square constellation
pattern. This indicates that utilization of only blind linear equalizer is not
sufficient for this case.

(c)

Fig. 4.33 Simulation results of Case A. Constellation diagram of (a) the received
signal y[n], (b) the equalized signal e[n] and (c) the phase-adjusted equalized signal
e[n]ejΔθn
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(c)

Fig. 4.34 Simulation results of Case B. Constellation diagram of (a) the received
signal y[n], (b) the equalized signal e[n] and (c) the phase-adjusted equalized signal
e[n]ejΔθn

4.6 Summary and Discussion

We have addressed the problem of SISO blind equalization along with two per-
formance indices, namely the ISI and the SNR improvement-or-degradation
ratio, for evaluation of designed blind equalizers, and have introduced some
fundamentals of the well-known ZF and LMMSE equalizers, which are often
used for nonblind equalization. We then introduced the fundamentals of linear
prediction including forward and backward LPE filters along with the lattice
structure and relevant algorithms, namely the Levinson–Durbin recursion and
the Burg algorithm, for efficiently solving for and estimating the filter coeffi-
cients and reflection coefficients. After introducing the fundamentals of linear
prediction, we dealt with SOS based blind equalization by means of forward
LPE filters, that is known as (linear) predictive deconvolution and is capable
of removing the ISI induced by minimum-phase systems only. As for HOS
based blind equalization, we provided a detailed treatment of the MNC and
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SE equalizers including their design criterion/philosophy, equalization capabil-
ity, algorithms, properties, and relations. MNC and SE equalizers are capable
of ISI mitigation for both minimum-phase and nonminimum-phase systems.
Analytic results for the MNC and SE equalization algorithms are not only
instrumental to interpretation of equalized signals (especially for seismic ex-
ploration), but also unveil some insights into their performance and relations
that lead to algorithm improvements. In particular, by virtue of the relation
between the MNC and SE equalizers, we presented the hybrid MNC equal-
ization algorithm which takes advantage of the fast convergence feature of
the SE equalization algorithm to speed up the original MNC algorithm. The
hybrid MNC equalization algorithm is thought of as one of the best blind
equalization algorithms based on performance, convergence speed and com-
putational load. On the other hand, with the aid of LPE filters, we presented
whitening preprocessing and improved initial condition, that are of benefit
to iterative blind equalization algorithms in ISI suppression or convergence
speed or both. Several simulation examples were provided to demonstrate the
efficacy of the predictive, MNC and SE equalization algorithms as well as their
performance improvements thanks to the whitening preprocessing, improved
initial condition and hybrid framework.

With regard to applications of the predictive, MNC and SE equalization
algorithms, we provided a detailed treatment of seismic exploration, speech
signal processing, and baud-spaced equalization in digital communications. In
seismic exploration, with the earth’s layer model under certain practical condi-
tions, each seismic trace can be established as a convolutional model where the
seismic wavelet is treated as an LTI system and the reflectivity sequence as the
source signal input to the LTI system. Due to the random nature of the reflec-
tivity sequence, one can apply HOS based blind equalization approaches only
using fourth-order or other even-order cumulants. Two representatives of blind
seismic deconvolution approaches are the linear prediction approach and the
minimum entropy deconvolution approach; the latter is also the predecessor
of the MNC equalization algorithm. Let us emphasize that although seismic
deconvolution was described via an SISO framework, the SIMO framework is
also constantly considered in practice. In speech signal processing, the speech
production model (a convolutional model) for voiced and unvoiced speeches
was introduced, and speech analysis and synthesis by means of speech decon-
volution was then introduced. Speech analysis and synthesis are essential to
further speech processing applications such as speech coding, speech recogni-
tion and speaker recognition. Utilization of the linear prediction approach is
adequate for speech coding since the phase distortion due to the nonminimum-
phase speech production system has virtually no effect on speech perception.
However, in addition to magnitude information, phase information may also
provide useful features for performance improvements on speech recognition
and speaker recognition, and so HOS based blind equalization approaches can
be applied. In digital communications, we introduced a typical wireless com-
munication system, and established the discrete-time baseband channel model
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based on baud-spaced sampling of the received signal. In addition to consid-
ering the physical channel effect, we also took into account the effects of the
pulse shaping filter, matched filter, carrier frequency offset, phase jitter, and
timing offset. For baud-spaced equalization, the MNC equalization algorithm
as well as the widely used CM equalization algorithm were both introduced in
the batch processing framework although their adaptive counterparts are usu-
ally applied in practice. It is important to note that blind linear equalizers are
generally insufficient for baud-spaced equalization of high-order constellation
systems such as 256-QAM and 1024-QAM systems, making them often used
as the equalizer at the preliminary stage to provide an appropriate condition
(a sufficiently low amount of ISI) for switching to a nonlinear equalization
mode.

The material introduced in this chapter has covered almost all the essen-
tial concepts and design philosophies of blind equalization or deconvolution
algorithms in terms of the SISO framework. In the following chapters, these
continue to be the foundation of blind equalization and system identification
for both the MIMO and 2-D cases.

Appendix 4A

Proof of Property 4.17

By (3.119), (3.127) and (3.130), we have

σ2
e =

1

2π

∫ π

−π

Se(ω)dω =
1

2π

∫ π

−π

[
σ2

u|H(ω)|2 + Sw(ω)
] · |V (ω)|2dω. (4.192)

This reveals that the denominator of Jp,q(v[n]) is dependent on the magnitude
response |V (ω)|, but independent of the phase response arg[V (ω)].

Regarding the numerator of Jp,q(v[n]), let Φ(ω) = arg[G(ω)] = arg[H(ω)]+
arg[V (ω)] and Θ = arg[Cp,q{u[n]}]. By Property 3.17, Property 3.22 and
(3.132), we have

Cp,q{e[n]} = Cp,q{eS[n]} =

(
1

2π

)p+q−1 ∫
π

−π

SeS
p,q(ω1, ω2, ..., ωp+q−1)dω

(4.193)

where we have used the shorthand notation ‘
∫ π

−π
’ and ‘dω’ to stand for

‘
∫ π

−π · · · ∫ π

−π’ and ‘dω1 · · · dωp+q−1,’ respectively. This equation, together with
(3.141), gives rise to
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It is clear that the equality of (4.194) requires

Φ

(
p+q−1∑

i=1

ωi

)
+

p−1∑
i=1

Φ(−ωi) −
p+q−1∑

i=p

Φ(ωi) = ϕ, ∀ωi ∈ [−π, π) (4.195)

where ϕ is a real constant independent of ωi. This requirement is equivalent
to

Φ

⎛⎝−
p−1∑
i=1

(−ωi) +

p+q−1∑
i=p

ωi

⎞⎠ = −
p−1∑
i=1

Φ(−ωi) +

p+q−1∑
i=p

Φ(ωi) + ϕ, (4.196)

implying that the optimum Φ(ω) associated with the maximum of Jp,q(v[n])
is a linear function of ω for ω ∈ [−π, π). Therefore, we have finished the proof
that arg[VMNC(ω)] is given by (4.129) regardless of the value of |VMNC(ω)|.

Q.E.D.

Problems

4.1. Show that under Assumptions (A4-1) through (A4-4), the frequency
response of the doubly infinite LMMSE equalizer vMSE[n] is given
by (4.138).

4.2. Prove Property 4.4.

4.3. Prove Theorem 4.5. (Hint: Use the Cauchy–Schwartz inequality.)

4.4. Prove Theorem 4.6.

4.5. Prove the second line of (4.49).

4.6. Prove (4.59). (Hint: Use the orthogonality principle.)

4.7. Prove Property 4.13. (Hint: Use the orthogonality principle.)

4.8. Derive (4.91) and prove Lemma 4.15.

4.9. Prove (4.113) for SNR = ∞ and (4.114) for any SNR by virtue of
(4.96), (4.106), (3.126) and Theorem 3.39.

4.10. Prove Theorem 4.19.



Problems 269

Computer Assignments

4.1. Consider the same simulation conditions as in Example 4.25, except
that the system H(z) is a nonminimum-phase ARMA(2,2) LTI filter
given by

H(z) =
1 − 2.7z−1 + 0.5z−2

1 + 0.1z−1 − 0.12z−2
. (4.197)

Write a computer program and run the simulation as in Example
4.25 for each of the following equalization algorithms.
(a) The linear prediction approach using the Burg algorithm.
(b) The MNC equalization algorithm using the approximate BFGS

method.
(c) The SE equalization algorithm.
(d) The LSE equalization algorithm.
(e) The hybrid MNC equalization algorithm.

4.2. Consider the same simulation conditions as in Example 4.26, except
that the system H(z) is given by (4.157). Write a computer program
and run the simulation as in Example 4.26 for each of the following
equalization algorithms.
(a) The linear prediction approach using the Burg algorithm.
(b) The MNC equalization algorithm using the approximate BFGS

method.
(c) The SE equalization algorithm.
(d) The MNC equalization algorithm preceded by whitening pre-

processing.
(e) The SE equalization algorithm preceded by whitening pre-

processing.

4.3. Consider the same simulation conditions as in Example 4.27, except
that the system H(z) = H1(z)H2(z) where H1(z) and H2(z) are
causal FIR filters with coefficients {1, 0, −1} and {0.04, −0.05,
0.07, −0.21, −0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07}, respectively. Write
a computer program and run the simulation as in Example 4.27 for
each of the following equalization algorithms.
(a) The SE equalization algorithm using the typical initial condition

v[0][n] = δ[n − LC].
(b) The SE equalization algorithm using the improved initial con-

dition v[0][n] = vS[n] � aM [n].
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5

MIMO Blind Equalization Algorithms

This chapter introduces some widely used fundamental MIMO blind equal-
ization algorithms using either SOS or HOS of MIMO system outputs. A sub-
space approach and a linear prediction approach using SOS are introduced
for the SIMO case, and a matrix pencil method is introduced for the MIMO
case. As to HOS based approaches, the MNC and SE equalization algorithms
are introduced for an MIMO system with temporally i.i.d. inputs followed by
their properties and relations which lead to an improved MNC equalization
algorithm with much faster convergence speed and lower computational load
than the MNC equalization algorithm. Then an equalization-GCD equaliza-
tion algorithm is introduced for an MIMO system with temporally colored
inputs, which makes use of the improved MNC equalization algorithm and
a greatest common divisor computation algorithm. Finally, some simulation
results for the introduced SIMO and MIMO blind equalization algorithms are
presented. The chapter concludes with a summary and discussion.

5.1 MIMO Linear Time-Invariant Systems

Discrete-time SISO LTI systems (channels) have been introduced in Section
3.1. Discrete-time MIMO LTI systems are basically the extension of discrete-
time SISO LTI systems, but some of their basic properties and definitions are
rather different. Moreover, an MIMO LTI system itself is a multi-variable LTI
system for which some of its properties must be considered in the design of
MIMO equalization algorithms. These properties comprise poles/zeros, nor-
mal rank of MIMO LTI systems that are addressed next. For simplicity, an
MIMO system also refers to an MIMO LTI system hereafter.

5.1.1 Definitions and Properties

Consider a K-input M -output discrete-time LTI system defining the relation
between K inputs u1[n], u2[n], ..., uK [n] and M outputs x1[n], x2[n], ..., xM [n].
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Let
u[n] = (u1[n], u2[n], ..., uK [n])T

and
x[n] = (x1[n], x2[n], ..., xM [n])T

be the input and output vectors of this MIMO discrete-time LTI system,
respectively. Then, for any input vector u[n], the output vector x[n] is com-
pletely determined by the discrete-time convolutional model

x[n] = H[n] � u[n] =

∞∑
k=−∞

H[k]u[n − k] (5.1)

where the same notation ‘�’ as for the SISO case represents the operation
of MIMO convolution (linear convolution),1 and H[n] is an M × K matrix
defined as

H[n] =

⎛⎜⎜⎜⎜⎜⎝
h11[n] h12[n] · · · h1K [n]

h21[n] h22[n] · · · h2K [n]
...

...
. . .

...

hM1[n] hM2[n] · · · hMK [n]

⎞⎟⎟⎟⎟⎟⎠ (5.2)

in which the (i, j)th element hij [n] is the impulse response of the SISO system
from the jth input uj[n] to the ith output xi[n].

The M×K matrix sequence H[n] defined by (5.2) is also called the impulse
response of the MIMO LTI system, with the number of rows equal to the
number of system outputs and the number of columns equal to the number
of system inputs. Specifically, let

hj [n] = (h1j [n], h2j [n], ..., hMj [n])T

(an M × 1 vector) be the jth column of H[n], i.e.

H[n] = (h1[n],h2[n], ...,hK [n]) .

Then, the system output vector x[n] given by (5.1) can also be expressed as

x[n] =
K∑

j=1

xj [n] =
K∑

j=1

hj [n] � uj [n] (5.3)

where

xj [n] = hj [n] � uj[n] =

∞∑
k=−∞

hj [k]uj[n − k] (5.4)

1 Note that the convolution operation defined in the MIMO case is associative and
distributive but not commutative because matrix multiplication is not commuta-
tive, i.e. AB �= BA in general.



5.1 MIMO Linear Time-Invariant Systems 277

is the contribution from the jth input uj[n] to the M outputs of x[n]. More-
over, the ith output xi[n] of the system, from (5.1) and (5.2), can be seen to
be

xi[n] =

K∑
j=1

∞∑
k=−∞

hij [k]uj[n − k]

which is also a mapping from all the K system inputs to the output xi[n].
The properties of the MIMO LTI system can be introduced either di-

rectly from the properties of each individual SISO system hij [n] or through
transform-domain analysis of the impulse response H[n]. Some definitions and
properties of this system are presented next.

Definition 5.1 (Causality). An MIMO system H[n] is causal if for every
choice of n0 the output vector sequence x[n] at n = n0 depends only on the
input vector sequence u[n] for n ≤ n0.

A property directly related to the above definition is as follows.

Property 5.2. An MIMO system H[n] is causal if and only if each component
hij [n] of H[n] is causal; otherwise, H[n] is noncausal.

Definition 5.3 (Stability). An MIMO system H[n] is stable in BIBO sense
if any bounded input vector sequence u[n] produces a bounded output vector
sequence x[n].2

A property directly related to the stability of an MIMO system is as follows.

Property 5.4. An MIMO system H[n] is BIBO stable if and only if each
component hij [n] of H[n] is BIBO stable.

Definition 5.5 (FIR). An MIMO system H[n] is FIR if there exist finite
integers nL and nR such that H[n] = 0M×K (M ×K zero matrix) for n < nL

and n > nR.

A property of FIR MIMO systems is as follows.

Property 5.6. An MIMO system H[n] is FIR if and only if each component
hij [n] of H[n] is FIR; otherwise, H[n] is IIR.

2 A vector valued sequence u[n] is bounded if the maximal amplitude or peak

‖u‖∞ = sup
n

‖u[n]‖

is finite, where the symbol ‖u‖∞ denotes the �∞ norm of u[n].
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As in the SISO case, the transform-domain analysis is advisable for illumi-
nating some important properties of an MIMO system such as poles and zeros
related properties. The definitions of the frequency response and the transfer
function of MIMO systems are defined below, respectively, by analogy with
the definitions for SISO systems.

Definition 5.7 (Frequency Response). The frequency response H(ω) of
the MIMO system is defined as the DTFT of the impulse response H[n], i.e.

H(ω) =

∞∑
n=−∞

H[n]e−jωn =

⎛⎜⎜⎜⎜⎜⎝
H11(ω) H12(ω) · · · H1K(ω)

H21(ω) H22(ω) · · · H2K(ω)
...

...
. . .

...

HM1(ω) HM2(ω) · · · HMK(ω)

⎞⎟⎟⎟⎟⎟⎠
where

Hij(ω) =
∞∑

n=−∞
hij [n]e−jωn.

The physical meaning of the frequency response for the MIMO case is pretty
much the same as for the SISO case. Specifically, a K×1 complex multichannel
sinusoidal is defined as

us[n] =

⎛⎜⎜⎜⎜⎜⎝
A1 exp(jω0n + φ1)

A2 exp(jω0n + φ2)
...

AK exp(jω0n + φK)

⎞⎟⎟⎟⎟⎟⎠ = a exp(jω0n) (5.5)

where Ai ≥ 0, ∀i and a = (A1 exp(jφ1), A2 exp(jφ2), ..., AK exp(jφK))T . Each
element of the multichannel sinusoidal us[n] is characterized by a complex
sinusoidal of the same frequency but with different magnitude and phase in
general. If this multichannel sinusoidal us[n] is input to an MIMO LTI system
characterized by the impulse response H[n], the output of this system can be
obtained from (5.1) as

x[n] = H[k] � us[n] =

∞∑
k=−∞

H[k]us[n − k]

=

∞∑
k=−∞

H[k]a exp(jω0(n − k)) =

{ ∞∑
k=−∞

H[k] exp(−jω0k)

}
a exp(jω0n)

= H(ω0)us[n] (by Definition 5.7).

As for the SISO case, the response of an MIMO system to a complex mul-
tichannel sinusoidal is also a complex multichannel sinusoidal of the same
frequency but modified in magnitude and phase by the associated frequency
response of this system.
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Definition 5.8 (Transfer Function). The transfer function H(z) of the
MIMO system is defined as the z-transform of the impulse response H[n], i.e.

H(z) =

∞∑
n=−∞

H[n]z−n =

⎛⎜⎜⎜⎜⎜⎝
H11(z) H12(z) · · · H1K(z)

H21(z) H22(z) · · · H2K(z)
...

...
. . .

...

HM1(z) HM2(z) · · · HMK(z)

⎞⎟⎟⎟⎟⎟⎠
where

Hij(z) =

∞∑
n=−∞

hij [n]z−n.

The normal rank of the transfer function matrix is described as follows.

Definition 5.9 (Normal Rank). The normal rank of H(z), denoted as r,
is defined as the maximum rank of H(z) over all z (including z = 0 and
z = ∞).

It is easy to see that r ≤ min(M, K).3

The definition of poles of a transfer function H(z) given below is similar
to that for SISO systems.

Definition 5.10 (Poles of MIMO Systems). The poles of a transfer func-
tion H(z) are defined as those values of complex variable z for which at least
one component Hij(z) of H(z) becomes infinity.

A property related to poles of an MIMO system is as follows.

Property 5.11. An MIMO system H[n] is stable if and only if it has no poles
on the unit-circle. Thus, any MIMO FIR system is stable.

Unlike the SISO system, the zeros of an MIMO system are defined as the
values of the complex variable z for which H(z) loses rank, as defined as
follows.

Definition 5.12 (Zeros of MIMO Systems). The zeros of an M × K
transfer function H(z) are defined as those values of complex variable z for
which rank(H(z)) < r (the normal rank of H(z)).

The zeros defined above are also called transmission zeros due to the fol-
lowing reasons. Assume that the transfer function H(z) is an M × K ma-
trix with M ≥ K. If H(z) loses rank at z = zo, i.e. rank(H(zo)) < r ≤
3 If r = min(M, K), the matrix function H(z) is said to be full normal rank.
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min(M, K) = K, it can be shown that there exist at least one input vector
uo �= 0 (zero right direction)4, such that

H(zo)uo = 0 (5.6)

implying that the vector uo belongs to the null space of H(zo).
5 Hence, the

transmission from certain inputs is blocked at z = zo, thereby giving rise to
the name “transmission zeros” for the zeros defined above. An example for
illuminating the zeros of a 2 × 2 system is given next.

Example 5.13 (Transmission Zeros)
Consider the following 2 × 2 transfer function

H(z) =

(
(z + 0.5)(z−1 + 0.5) z − 0.2

0 1

)
.

Obviously, the rank of H(z) is equal to unity at z = −0.5. According to
Definition 5.12, z = −0.5 is a zero of H(z). One can easily find a nonzero
vector uo (such as uo = (1, 0)T ) such that

H(z = −0.5)uo = 0. �

It seems to be possible to find zeros of some transfer functions by inspection
as presented in the above example. Note that the zeros of each individual
Hij(z) of the transfer function H(z) may not be the zeros of H(z). If all the
components of a column of H(z) have a common zero, then it is also a zero
of H(z). In general, it is nontrivial to find the zeros of H(z). Fortunately,
given the transfer function H(z) of an MIMO system, the exact locations as
well as the multiplicity of poles and zeros of the system can be effectively
determined through a transformation of H(z) into a pseudo-diagonal form,
called the Smith–McMillan Form [1], which will be introduced later in Section
5.1.2.

With the above definitions of poles and zeros, we can now define the
minimum-phase system for the MIMO case as follows.

Definition 5.14 (Minimum-Phase System). An MIMO system H[n] is
said to be a minimum-phase system if all its poles and (transmission) zeros
are strictly inside the unit circle.

So, a minimum-phase MIMO FIR system possesses the following property.

4 If z = zo is a zero of H(z), there also exist at least one nonzero vector wo (zero
left direction) such that wT

o H(zo) = 0T . The vector wT
o belongs to the null space

generated by the rows of H(zo).
5 The number of linearly independent vectors that satisfy (5.6) depends on the rank

loss of H(zo). This number is known as the geometric multiplicity of the zero.
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Property 5.15. An MIMO FIR system H[n] is minimum-phase if all its
(transmission) zeros lie inside the unit circle.

Finally, for a given M×K transfer function H(z) with M ≥ K, the inverse
system of H(z) is defined as follows.

Definition 5.16 (Inverse System). A K × M LTI system HI[n] is called
the (left) inverse system of the MIMO system H[n] if

HI[n] � H[n] = δ[n]I (5.7)

or equivalently,

HI(ω)H(ω) = I. (5.8)

Some of the existing algorithms for MIMO blind equalization are actually for
the optimum design of the left inverse system HI[n] in some statistical sense.

5.1.2 Smith–McMillan Form

First of all, let us introduce some definitions for polynomials and polynomial
matrices, and some elementary operations through which the Smith–McMillan
form of a transfer function can be achieved systematically.

Definition 5.17 (Monic Polynomial). A polynomial P (z) is said to be
monic if it has the coefficient 1 for the highest power of z.

Definition 5.18 (Coprime Polynomials). Two polynomials are said to be
coprime if they have no common factors, or equivalently no common roots.

Definition 5.19 (Polynomial Matrix). An M ×K matrix P(z) = [Pij(z)]
is a polynomial matrix if Pij(z) is a polynomial in z, for all i = 1, 2, ..., M
and j = 1, 2, ..., K.

Definition 5.20 (Unimodular Matrix). A square polynomial matrix U(z)
is said to be a unimodular matrix if its determinant det(U(z)) is a nonzero
constant (independent of z). So, the inverse of a unimodular matrix is also a
unimodular matrix.

Definition 5.21 (Elementary Operations). An elementary operation on
a polynomial matrix is one of the following three operations:

(EO-1) interchange of two rows (columns);
(EO-2) multiplication of one row (column) by a constant;
(EO-3) addition of one row (column) times a polynomial to another row

(column).



282 5 MIMO Blind Equalization Algorithms

A common property of these elementary operations is that they do not change
the rank of the polynomial matrix on which the operations are performed.
Each of these elementary operations can be represented as a pre- or post-
multiplication of the target polynomial matrix by a suitable elementary matrix
as defined below.

Definition 5.22 (Elementary Matrix). A left (right) elementary matrix is
a matrix such that, when it multiplies from the left (right) a polynomial ma-
trix, then it performs a row (column) elementary operation on the polynomial
matrix. All elementary matrices are unimodular.

Definition 5.23 (Equivalent Matrices). Two polynomial matrices P1(z)
and P2(z) are equivalent matrices, denoted by P1(z) ∼ P2(z), if there exist
a set of left elementary matrices {L1(z),L2(z), ...,LnL

(z)} and a set of right
elementary matrices {R1(z),R2(z), ...,RnR

(z)}, such that

P1(z) = L1(z)L2(z) · · ·LnL
(z)P2(z)R1(z)R2(z) · · ·RnR

(z). (5.9)

Smith Form of Polynomial Matrices

Consider an M × K polynomial matrix P(z). By a suitable choice of the
elementary matrices Li(z) and Rj(z), the polynomial matrix P(z) can be
transformed into an M×K pseudo-diagonal matrix S(z) through a sequence of
elementary operations as stated in Definition 5.23 and the following theorem:

Theorem 5.24 (Smith Form). Let P(z) be an M × K polynomial matrix
of normal rank r. Then P(z) ∼ S(z) where

S(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
E(z) 0M×(K−M)

)
, for M < K,

E(z), for M = K,(
E(z)

0(M−K)×K

)
, for M > K

(5.10)

in which

E(z) = diag(ε1(z), ε2(z), ..., εr(z), 0, 0, ..., 0)

is a min(M, K)×min(M, K) diagonal matrix. Furthermore, εi(z), i = 1, 2, ...,
r, are monic polynomials, and εi(z) is a factor of εi+1(z) (or εi(z)|εi+1(z)),
i.e. εi(z) divides εi+1(z).

See [1] for the proof of Theorem 5.24. The pseudo-diagonal matrix S(z) given
by (5.10) is called the Smith form of P(z).

Instead of finding the polynomials εi(z)’s from P(z) via a sequence of
elementary operations, one can obtain them from the determinant divisors of
P(z):
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D0(z) � 1

Di(z) = greatest common divisor (GCD) for

all i × i sub-determinants (i.e. minors) of P(z), i = 1, 2, ..., r,

where each GCD6 is normalized as a monic polynomial. The polynomials εi(z)
can be shown to be given by [2]:

εi(z) =
Di(z)

Di−1(z)
, i = 1, 2, ..., r.

Smith–McMillan Form of Rational Matrices

Consider an M × K rational matrix G(z) = [Gij(z)]. Let d(z) be the least
common multiple (LCM) of the denominators of all elements Gij(z)’s of G(z).
Then, G(z) can be written as

G(z) =
1

d(z)
P(z) (5.11)

where P(z) is a polynomial matrix.
A straightforward application of Theorem 5.24 to the polynomial matrix

P(z) in (5.11) leads to the following result, which gives a pseudo-diagonal
form for a rational matrix:

Theorem 5.25 (Smith–McMillan Form). Let G(z) = [Gij(z)]M×K be an
M × K matrix of normal rank r, where each Gij(z) is a rational function of
z. Then, G(z) ∼ M(z), where

M(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
E(z) 0M×(K−M)

)
, for M < K,

E(z), for M = K,(
E(z)

0(M−K)×K

)
, for M > K

(5.12)

where

E(z) = diag

(
ε1(z)

ψ1(z)
,
ε2(z)

ψ2(z)
, ...,

εr(z)

ψr(z)
, 0, 0, ..., 0

)
(5.13)

is a min(M, K)×min(M, K) diagonal rational matrix in which {εi(z), ψi(z)}
is a pair of monic and coprime polynomials. Furthermore, εi(z) is a factor of
εi+1(z) and ψi(z) is a factor of ψi−1(z), i.e. εi(z)|εi+1(z) and ψi(z)|ψi−1(z).

6 If a(z) and b(z) are polynomials, the GCD of a(z) and b(z) is the polynomial c(z)
that has the two properties: (i) c(z)|a(z) and c(z)|b(z), and (ii) for any c(z) such
that c(z)|a(z) and c(z)|b(z), then c(z)|c(z).
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The pseudo-diagonal matrix M(z) given by (5.12) is called the Smith–
McMillan form of G(z).

Proof: We first write G(z) as in (5.11). By Theorem 5.24, one can find the
Smith form, i.e. S(z), of P(z) through elementary operations. Thus, we have

G(z) ∼ 1

d(z)
S(z) = M(z),

which leads to the form given by (5.12) and (5.13) after all possible cancella-
tions between εi(z)’s and d(z).

Example 5.26 (Smith–McMillan Form)
To manifest the computations involved in obtaining the Smith–McMillan form
of a transfer function, consider the 3 × 2 transfer function G(z) below:

G(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

(z + 1)(z + 2)

− 1

(z + 1)(z + 2)

z2 + z − 4

(z + 1)(z + 2)

2z2 − z − 8

(z + 1)(z + 2)

z − 2

z + 1

2z − 4

z + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the normal rank of G(z) is r = 2. The Smith–McMillan form of
G(z) can be achieved through the following steps.

Step 1. Determine d(z). The LCM of all denominators in G(z) is

d(z) = (z + 1)(z + 2).

Step 2. Determine P(z).

P(z) = d(z)G(z) =

⎛⎜⎜⎝
1 − 1

z2 + z − 4 2z2 − z − 8

(z − 2)(z + 2) (2z − 4)(z + 2)

⎞⎟⎟⎠ .

Step 3. Find the set of polynomials Di(z). D0(z) = 1,

D1(z) = GCD{1,−1, z2 + z − 4, 2z2 − z − 8, z2 − 4, 2z2 − 8} = 1,

and
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D2(z) = GCD

{∣∣∣∣∣ 1 − 1

z2 + z − 4 2z2 − z − 8

∣∣∣∣∣ ,
∣∣∣∣∣ 1 − 1

z2 − 4 2z2 − 8

∣∣∣∣∣ ,∣∣∣∣∣ z2 + z − 4 2z2 − z − 8

z2 − 4 2z2 − 8

∣∣∣∣∣
}

= GCD {(z + 2)(z − 2), (z + 2)(z − 2), z(z + 2)(z − 2)}
= (z + 2)(z − 2).

Step 4. Compute εi(z) and determine S(z). They are

ε1(z) =
D1(z)

D0(z)
=

1

1
= 1.

ε2(z) =
D2(z)

D1(z)
=

(z + 2)(z − 2)

1
= (z + 2)(z − 2).

The Smith form of P(z) is thus

S(z) =

⎛⎜⎜⎝
1 0

0 (z + 2)(z − 2)

0 0

⎞⎟⎟⎠ .

Step 5. Compute εi(z) and ψi(z), and then determine M(z). The elements
in M(z) are

ε1(z)

ψ1(z)
=

ε1(z)

d(z)
=

1

(z + 1)(z + 2)
.

ε2(z)

ψ2(z)
=

ε2(z)

d(z)
=

(z + 2)(z − 2)

(z + 1)(z + 2)
=

z − 2

z + 1
.

Therefore, the Smith–McMillan form of G(z) is

G(z) ∼ M(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

1

(z + 1)(z + 2)
0

0
z − 2

z + 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

�

Poles and Zeros

Given an M × K transfer function G(z), the poles and zeros of G(z) can be
found from the elements of M(z), which is the Smith–McMillan form of G(z).
The pole polynomial associated with G(z) is defined as
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Ppole(z) =
r∏

i=1

ψi(z) = ψ1(z)ψ2(z) · · ·ψr(z). (5.14)

The roots of Ppole(z) = 0 are the poles of G(z). Let B(z) be a polynomial
either of z or of z−1 and

deg(B(z)) = degree of B(z).

Then deg(Ppole(z)) is known as the McMillan degree, which is also the total
number of poles of the system. Repeated poles can also be identified from
Ppole(z) by inspection.

In the same fashion, the zero polynomial associated with G(z) is defined
as

Pzero(z) =

r∏
i=1

εi(z) = ε1(z)ε2(z) · · · εr(z). (5.15)

The roots of Pzero(z) = 0 are the transmission zeros of the transfer function
G(z). It can be seen, from (5.15), that any transmission zero of the system
must be a factor of at least one of the polynomials εi(z). The normal rank of
both G(z) and M(z) is r. It is obvious from (5.12) that if any εi(z) = 0 for a
certain value z = zo, then the rank of M(z) drops below r for z = zo. Since
the ranks of G(z) and M(z) are the same, the rank of G(z) also drops below
r for z = zo.

Example 5.27 (Poles and Zeros from Smith–McMillan Form)
This example continues Example 5.26. The pole and zero polynomials of G(z)
can be identified by applying (5.14) and (5.15) to M(z) obtained in Example
5.26. As a result, the pole polynomial is given by

Ppole(z) = [(z + 1)(z + 2)](z + 1) = (z + 1)2(z + 2),

so the McMillan degree for this system is three. Two poles are located at the
z = −1 (one in [M(z)]1,1 and the other in [M(z)]2,2), and thus the system is
unstable. The other pole is located at z = −2. Similarly, the zero polynomial
is given by

Pzero(z) = z − 2,

so there is a (transmission) zero located at z = 2. It can easily be checked
that the rank of G(z) drops from 2 to 1 for z = 2.

�

5.2 Linear Equalization

In this section we start with an introduction to the MIMO blind equalization
problem followed by two fundamental and widely-used equalization criteria,
i.e. the peak distortion and MMSE equalization criteria.
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5.2.1 Blind Equalization Problem

Problem Statement

Suppose that u1[n], u2[n], ..., uK [n] are the source signals of interest and
distorted by an M × K system H[n] as shown in Fig. 5.1. The noisy M × 1
output vector y[n] can be expressed as

y[n] = (y1[n], y2[n], ..., yM [n])T = x[n] + w[n] (5.16)

where

x[n] = H[n] � u[n] =

∞∑
i=−∞

H[i]u[n− i] (5.17)

is the noise-free output vector, u[n] = (u1[n], u2[n], ..., uK [n])T consists of the
K system inputs, and w[n] = (w1[n], w2[n], ..., wM [n])T is an M × 1 vector
noise.

In general, the system input vector u[n] and noise vector w[n] are mutually
independent stationary vector random processes, and therefore both the noise-
free output vector x[n] and the noisy output vector y[n] are stationary vector
random processes as well. Then the correlation function and power spectral
matrix of the noisy output vector y[n] are related to those of the noise-free
output vector x[n] as follows:

Ry[l] = E{y[n]yH [n − l]} = Rx[l] + Rw[l]

Sy(ω) = F{Ry[l]} = Sx(ω) + Sw(ω).

The signal quality of the received signal y[n] given by (5.16) can be quantified
by the total SNR defined as

SNR =
E
{||x[n]||2}

E {||w[n]||2} =
tr{Rx[0]}
tr{Rw[0]} . (5.18)

In addition to the additive noise, it can be seen from (5.16) and (5.17),
that the system H[n] simultaneously introduces not only “temporal distortion”
when H[n] �= Aδ[n−τ ] but also “spatial distortion” when H[n] is not diagonal
for all n. In wireless communications, the temporal distortion is called the
intersymbol interference (ISI) and the spatial distortion is called the multiple
access interference (MAI). The blind equalization problem is to extract a
desired system input uk[n] (or multiple system inputs) with a given set of
measurements y[n] without information of the system H[n]. In other words, it
is a problem to eliminate both the ISI (temporal distortion) and MAI (spatial
distortion) for recovery of the desired system input uk[n] (or multiple system
inputs) from the received y[n] without information on H[n].
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Fig. 5.1 The MIMO system model

MIMO Linear Equalization

Let v[n] = (v1[n], v2[n], ..., vM [n])T denote a multiple–input single–output
(MISO) linear equalizer to be designed as shown in Fig. 5.2, that consists of a
bank of linear FIR filters, with v[n] �= 0 for n = L1, L1 + 1, ..., L2 and length
L = L2 − L1 + 1.
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Fig. 5.2 Block diagram of MISO linear equalization

The equalized signal (or extracted system input) e[n] can be expressed as

e[n] = vT [n] � y[n] =

M∑
j=1

vj [n] � yj [n] = eS[n] + eN[n] (5.19)
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where
eN[n] = vT [n] � w[n] (by (5.16)) (5.20)

corresponds to the noise component in e[n] and

eS[n] = vT [n] � H[n] � u[n] (by (5.16))

= gT [n] � u[n] =

K∑
j=1

gj [n] � uj [n] (5.21)

is the corresponding signal component in which

g[n] = (g1[n], g2[n], ..., gK [n])T = HT [n] � v[n] (5.22)

is the overall system after equalization. The signal component eS[n] given by
(5.21) is depicted in Fig. 5.3 in terms of the overall system g[n]. The goal
of MIMO blind equalization is to design an “optimum” equalizer v[n] such
that the signal component eS[n] approximates one input signal u�[n] (up to a
scale factor and a time delay) where 	 ∈ {1, 2, ..., K} is unknown. Note that
the determination of 	 usually needs prior information about the inputs and
the associated subchannel hk[n], depending on the application. Furthermore,
all the K system inputs can be estimated through a multistage successive
cancellation (MSC) procedure [3], which will be introduced in Section 5.4.1
later. Finding the optimum equalizer v[n] is the so-called direct approach for
blind equalization as introduced above. On the other hand, extraction of the
desired system input (or multiple system inputs) from the received y[n] can
also be achieved indirectly by blind system identification (also called blind
channel estimation) and then by utilization of a nonblind equalizer with the
use of the estimated system.

It is also possible to design a K×M blind equalizer V(ω) to extract all the
K inputs simultaneously. Because the system output y[n] is invariant to any
permutation of the system inputs, a “perfect” blind MIMO equalizer V(ω)
should satisfy

V(ω)H(ω) = PAD(ω) (5.23)

where P is a K × K permutation matrix,

A = diag(α1, α2, ..., αK)

is a multiple-scaling matrix and

D(ω) = diag(e−jωτ1 , e−jωτ2 , ..., e−jωτK )

is a multiple-delay matrix.
Evaluation of how an equalized signal e[n] accurately approximates the

associated input αu�[n− τ ] is necessary in the MIMO equalizer design. Next,
Let us introduce two widely used performance indices.
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Fig. 5.3 Equivalent block diagram without noise components in Fig. 5.2

Performance Indices

Assuming that w[n] = 0 and thus eN[n] = 0, one can easily see, from (5.21),
that the better the equalized signal e[n] = eS[n] approximates αu�[n− τ ], the
better the resultant overall system g[n] approximates αδ[n − τ ]η�. The first
commonly used performance index for the designed equalizer is the amount
of ISI which is defined as:

ISI(g[n]) =

∑∞
n=−∞ ‖g[n]‖2 − maxi,n{|gi[n]|2}

maxi,n{|gi[n]|2} ≥ 0. (5.24)

Note that ISI(g[n]) = 0 if and only if g[n] = αδ[n−τ ]η� (for some values of α,
τ , and 	). Therefore, the smaller the value of ISI(g[n]), the closer the overall
system g[n] to αδ[n − τ ]η�.

Another widely used performance index with noise effects taken into ac-
count is “signal-to-interference-plus-noise ratio (SINR)” of the equalized sig-
nal e[n] defined as

SINR(e[n]) =
σ2

u�
· |g�[n0]|2

E
{
|eS[n]|2

}
+ E

{
|eN[n]|2

}
− σ2

u�
· |g�[n0]|2

(5.25)

where σ2
u�

= E
{|u�[n]|2} and |g�[n0]| = maxk,n {|gk[n]|} .

5.2.2 Peak Distortion and MMSE Equalization Criteria

ZF Equalization

An equalizer v[n] designed by minimizing the following peak distortion equal-
ization criterion

JPD(e[n]) = ISI(g[n]) (5.26)
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is called a ZF equalizer vZF[n] due to the fact that the associated ISI(g[n]) = 0
as JPD(e[n]) is minimized and the resultant equalized signal e[n] = α�u�[n−τ�]
(perfect equalization) under the noise-free condition.

Let V
[k]
ZF(ω) be an M × 1 MISO ZF equalizer associated with uk[n]. Then

the K × M MIMO ZF equalizer VZF(ω) is therefore

VT
ZF(ω) =

(
V

[1]
ZF(ω), V

[2]
ZF(ω), ...,V

[K]
ZF (ω)

)
,

which, according to the peak distortion equalization criterion, satisfies

VZF(ω)H(ω) = diag(α1e
−jωτ1 , α2e

−jωτ2 , ..., αKe−jωτK ) (5.27)

or equivalently,

VZF[n] � H[n] = diag(α1δ[n − τ1], α2δ[n − τ2], ..., αKδ[n − τK ]).

It may happen that some of the V
[k]
ZF(ω) are unstable. It has been known

that a stable ZF equalizer for an SISO system exists if the system has no zeros
on the unit circle. For an MIMO system, the condition of full column rank
for H(z) is necessary and sufficient for the existence of a stable ZF equalizer
based on the following theorem:

Theorem 5.28 (Existence of Stable ZF Equalizer). There exists a sta-
ble ZF equalizer for an MIMO system H[n] if and only if the following ZF-
condition (or linear equalizability condition) is satisfied:

(C-ZF) H(z) is of full column rank for all |z| = 1.

See [4, pp. 295,296] for the proof of Theorem 5.28.
Note that the ZF equalizer vZF[n] theoretically needs to be doubly in-

finite for a general H[n]. However, if the H[n] is an FIR system satisfying
(C-ZF) with M > K, then a finite-length equalizer may suffice to achieve ZF
equalization [5].

In practical applications, the SNR given by (5.18) is always finite and
a ZF equalizer may suffer from the noise enhancement problem (see (5.19)
and (5.20)). Therefore, in addition to the suppression of the spatial distortion
(or MAI) and temporal distortion (or ISI), the noise reduction should be
taken into account in the equalizer design. The MMSE equalization criterion,
which serves for these design considerations, is generally preferable to the peak
distortion equalization.

MMSE Equalization

An equalizer v[n] designed by minimizing the following MSE criterion

JMSE(e[n]) = E{|e[n]− uk[n − τk]|2} (5.28)
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where k ∈ {1, 2, ..., K} and τk is an integer, is called an LMMSE equalizer
vMS[n]. It should be noted that the LMMSE equalizer is designed for a spe-
cific delay τk such that e[n] is a good approximation to uk[n − τk], and thus
a different LMMSE equalizer will be obtained for different choices of τ , espe-
cially when the equalizer length is finite.7

Let V
[k]
MS(ω) be an M × 1 MISO LMMSE equalizer associated with uk[n]

and τk = 0. Assume that v
[k]
MS[n], k = 1, 2, ..., K, are doubly infinite. Then,

the K × M LMMSE equalizer VMS(ω) can be obtained by the orthogonality
principle as follows (Problem 5.1):

VT
MS(ω) =

(
V

[1]
MS(ω), V

[2]
MS(ω), ...,V

[K]
MS(ω)

)
=
(
S

T
y (ω)

)−1

· ST
yu(ω) =

(
S

T
y (ω)

)−1

· H∗(ω) · ST
u (ω) (5.29)

where
Syu(ω) = F{Ryu[l]} = F{E{y[n]uH [n − l]}}

is the cross-power spectrum matrix of y[n] and u[n]. According to (5.29), for
finite SNR, the LMMSE equalizer performs ISI as well as MAI suppression
and noise reduction simultaneously.

5.3 SOS Based Blind Equalization Approaches

5.3.1 Blind SIMO Equalization

As with SISO blind equalization, some statistical assumptions about the sys-
tem inputs and some conditions about the unknown system are required by
most algorithms using SOS or HOS. In 1991, Tong, Xu and Kailath [6] pro-
posed the blind identifiability and equalizability of SIMO (K = 1) LTI systems
using only SOS of the system outputs. Their work led to a number of SOS
based SIMO blind system estimation and equalization algorithms as reported
in [7–10] under certain assumptions. One may refer to [11] for an overview of
these techniques as well as the associated assumptions and conditions. These
methods have the attractive characteristic that system estimates can always
be obtained by optimizing a quadratic cost function. As mentioned previously,
these SOS based equalization approaches usually obtain a system estimate fol-
lowed by the use of the associated LMMSE equalizer.

Consider the following SIMO model (M > K = 1):

y[n] = h[n] � u[n] + w[n] =

Lh∑
k=0

h[k]u[n − k] + w[n] (5.30)

7 Practically, the best delay τk with the minimum JMSE(e[n]) is suggested for the
designed finite-length equalizer.
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where h[n] = (h1[n], h2[n], ..., hM [n])T is an M × 1 FIR system of order equal
to Lh, u[n] is a single scalar input and w[n] = (w1[n], w2[n], ..., wM [n])T is an
M × 1 vector noise. The SIMO system can be formed when either multiple
receiving antennas are used, or when oversampling of the system output (as
the baud rate is less than the Nyquist rate, i.e. excess bandwidth exists) is
performed in communication systems. By stacking (Nw + 1) successive obser-
vations, we define the following vectors:

y[n] =
(
yT [n],yT [n − 1], ...,yT [n − Nw]

)T
(5.31)

u[n] = (u[n], u[n− 1], ..., u[n− Lh − Nw])
T

(5.32)

w[n] =
(
wT [n],wT [n − 1], ...,wT [n − Nw]

)T
. (5.33)

It can be obtained, from (5.30), that

y[n] = Ψu[n] + w[n] = x[n] + w[n] (5.34)

where x[n] = Ψu[n] and

Ψ =

⎛⎜⎜⎜⎜⎜⎝
h[0] h[1] · · · h[Lh] 0 · · · 0

0 h[0] h[1] · · · h[Lh]
. . . 0

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 h[0] h[1] · · · h[Lh]

⎞⎟⎟⎟⎟⎟⎠
is an M(Nw + 1) × (Nw + Lh + 1) convolution matrix with block Toeplitz
structure. Moreover, the system output correlation Ry [0] can be seen to be

Ry [0] = Rx[0] + Rw [0] (5.35)

where

Rx[0] = ΨRu[0]ΨH (5.36)

is an M(Nw + 1) × M(Nw + 1) nonnegative definite matrix.

Noise Subspace Approach

Subspace approaches primarily exploit the separability of noise and signal
subspaces for both system estimation and equalization, provided that the
system order is known in advance. Among these approaches, those for SIMO
blind equalization are basically developed under the following assumptions
about the SIMO model y[n] given by (5.30).

(A5-1) The M × 1 LTI system h[n] is BIBO stable.

(A5-2) Channel disparity condition: The M polynomials Hi(z), i = 1, 2, ..., M
of the transfer function H(z) have no common factors (i.e. no com-
mon subchannel zeros).
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(A5-3) The system input u[n] is a stationary zero-mean random process
with Ru[0] being of full rank, i.e. the system input is persistently
exciting.8

(A5-4) The noise vector sequence w[n] is a zero-mean spatially uncorrelated
and temporally white (s.u.t.w.) vector random process with correla-
tion function Rw[l] = σ2

wδ[l]I.

(A5-5) The system input u[n] is statistically independent of the noise w[n].

Accordingly, by Assumption (A5-4), it can easily be seen that

Rw [0] = σ2
wI.

Therefore, the system output covariance given by (5.35) becomes

Ry [0] = Rx[0] + σ2
wI (5.37)

where Rx[0] is defined by (5.36). With the choice of

Nw ≥ Lh,

one can show that all the columns of Ψ are linearly independent if and only
if the transfer function H(z) �= 0 for all z �= 0 [7]. That is, the convolution
matrix Ψ will be of full column rank if and only if Assumption (A5-2) is
satisfied.

Notice that, as Nw ≥ Lh, Ψ is a “tall” matrix with M(Nw + 1) > (Nw +
Lh + 1) and thus Rx[0] given by (5.36) is rank deficient with

rank{Rx[0]} = rank{Ru[0]} = Nw + Lh + 1

under the channel disparity condition. The range space of Rx[0] (which is the
column space of Ψ) is commonly called the signal subspace, while its orthog-
onal complement, i.e. the null space of Rx[0], is called the noise subspace.
Hence, the dimension of the signal subspace is

ds = rank{Ψ} = Nw + Lh + 1

and the dimension of the noise subspace is

dn = M(Nw + 1) − ds = M(Nw + 1) − (Nw + Lh + 1). (5.38)

By eigendecomposition, Ry [0] can be expressed as

Ry [0] = QyΛyQ
H
y (5.39)

8 Obviously, a temporally white input does make Ru[0] full rank. However, it
should be noted that subspace methods do not require u[n] to be temporally
white.



5.3 SOS Based Blind Equalization Approaches 295

where

Qy = (qy,1,qy,2, ...,qy,M(Nw+1)) (5.40)

is a matrix whose columns are the orthonormal eigenvectors of Ry [0] and

Λy = diag(λy,1, λy,2, ..., λy,M(Nw+1)) (5.41)

is a diagonal matrix consisting of the associated nonnegative eigenvalues with
λy,1 ≥ λy,2 ≥ · · · ≥ λy,M(Nw+1) ≥ 0. Let qx,1, qx,2, ..., qx,ds

be the ds

eigenvectors of the nonnegative definite (but rank deficient) matrix Rx[0]
associated with the largest ds eigenvalues λx,1 ≥ λx,2 ≥ · · · ≥ λx,ds

> 0 (and
the other dn eigenvalues equal to zero). Then Rx[0] can be diagonalized as

QH
x Rx[0]Qx = Λx (5.42)

where

Qx = (qx,1,qx,2, ...,qx,ds
,0,0, ...,0) (5.43)

and

Λx = diag(λx,1, λx,2, ..., λx,ds
, 0, 0, ..., 0). (5.44)

From (5.35) and (5.42) through (5.44), it is easy to infer that

qH
x,iRy [0]qx,i = λx,i + σ2

w, i = 1, 2, ..., ds.

Furthermore, Qy given by (5.40) can be partitioned into

Qy = (Qs,Qn) (5.45)

where

Qs = (qy,1,qy,2, ...,qy,ds
) = (qx,1,qx,2, ...,qx,ds

) (5.46)

Qn =
(
qy,ds+1,qy,ds+2, ...,qy,M(Nw+1)

)
(5.47)

and all the eigenvalues of Ry [0] are given by

λy,i =

{
λx,i + σ2

w, i = 1, 2, ..., ds,

σ2
w, i = ds + 1, ds + 2, ..., ds + dn.

Let us emphasize that the range spaces of Qs and Qn are exactly the signal
subspace and the noise subspace, respectively.

By the facts that the signal subspace (the range space of Qs) is orthogonal
to the noise subspace (the range space of Qn) and that Qs, Rx[0] and Ψ have
the same range space (by (5.36) and (5.46)), it can easily be proved that
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QH
n Ψ = 0dn×ds

. (5.48)

At first glance, the above relation provides a set of dn × ds equations which
seem not to be sufficient for solving for the M(Nw + 1)ds unknowns of Ψ
because dn < M(Nw + 1) (by (5.38)). However, the number of unknowns in
Ψ is much smaller than M(Nw +1) ·ds due to its block Toeplitz structure. In
fact, it has been shown that Ψ can be uniquely solved from (5.48) subject to
the constraint that Ψ is a nonzero block Toeplitz matrix [8]. Consequently,
the stacked system impulse-response vector defined as

h =

⎛⎜⎜⎜⎜⎜⎝
h[0]

h[1]
...

h[Lh]

⎞⎟⎟⎟⎟⎟⎠
M(Lh+1)×1

(5.49)

can be uniquely identified (up to a nonzero scale factor) by minimizing a
quadratic cost function stated in the following theorem.

Theorem 5.29. Given the system order Lh, the stacked system impulse-
response vector h given by (5.49) can be uniquely identified (up to a nonzero
scalar ambiguity) by minimizing

JSS(h) = hH

⎛⎝M(Nw+1)∑
i=ds+1

QiQ
H
i

⎞⎠h (5.50)

subject to ‖h‖2 = 1, where

Qi =

⎛⎜⎜⎜⎜⎜⎝
q

(0)
y,i q

(1)
y,i · · · q

(Nw)
y,i 0 · · · 0

0 q
(0)
y,i q

(1)
y,i · · · q

(Nw)
y,i

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 q
(0)
y,i q

(1)
y,i · · · · · · q(Nw)

y,i

⎞⎟⎟⎟⎟⎟⎠
in which the M × 1 vectors q

(j)
y,i , j = 0, 1, ..., Nw are the (Nw + 1) partitions of

qT
y,i =

((
q

(0)
y,i

)T

,
(
q

(1)
y,i

)T

, ...,
(
q

(Nw)
y,i

)T
)

.

The proof of Theorem 5.29 can be found in [8]. By this theorem, the solution
to minimizing JSS(h) given by (5.50) is equivalent to finding the eigenvector
associated with the minimum eigenvalue of the matrix inside the parentheses
on the right-hand side of (5.50). The resultant noise subspace approach is
summarized in Table 5.1. Then the system input u[n] can be estimated by
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û[n] = vT [n] � y[n] (5.51)

where v[n] = vZF[n] (the ZF equalizer) or v[n] = vMS[n] (the LMMSE equal-
izer) given as follows

V ZF(ω) = Ĥ
T

I (ω) =
(
Ĥ

+
(ω)

)T

= Ĥ
∗
(ω)

(
Ĥ

T
(ω)Ĥ

∗
(ω)

)−1

(5.52)

V MS(ω) = σ2
u

(
ST

y (ω)
)−1

· Ĥ∗
(ω) (5.53)

where Sy(ω) can be obtained by taking the Fourier transform of the sample

correlation function R̂y[l].

Table 5.1 Noise subspace approach

Parameters setting Given the system order Lh and the dimension M of the
observation vector y[n], choose Nw ≥ Lh and concatenate
(Nw +1) successive observations into the vector y[n] defined
by (5.31).

EVD Find the dn eigenvectors qy,i, i = ds+1, ds+2, ..., M(Nw +1)
associated with the dn smallest eigenvalues of Ry [0].

System estimation Find the stacked system impulse response vector h defined
by (5.49) by minimizing JSS(h) given by (5.50).

Obtain the system estimate h[n] by partitioning h into sub-
vectors of length equal to M .

Equalization Design a ZF or LMMSE equalizer with the obtained system
estimate h[n], by (5.52) or (5.53), respectively.

In summary, the noise subspace approach, a typical subspace approach,
can also be viewed as a method of moments. Its advantage is the closed-form
solution for system estimation but it has some shortcomings. This approach
requires the system order to be given or estimated correctly in advance, and
its performance is quite sensitive to system order mismatch. Additionally,
this approach tends to fail when the channel disparity condition is nearly
violated [12,13].9 Moreover, it is computationally expensive due to the eigen-
decomposition of the data correlation matrix of large dimension.

9 Recently, the noise subspace method was modified by Ali, Manton and Hua [14]
and was shown to be robust in the presence of common subchannel zeros and
system order overestimation errors by virtue of exploiting the transmitter redun-
dancy through using a trailing zero precoder. Nevertheless, the use of a precoding
procedure limits applications of the modified subspace method.
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Single-Stage Linear Prediction Approach

The fundamental concept of linear prediction approaches for system estima-
tion arises from the observation that as the SIMO system is an FIR sys-
tem, its output can also be modeled as a vector AR process under certain
conditions.10 This important observation allows blind multichannel equaliza-
tion/estimation by linear least-squares estimation with a closed-form solution.
These approaches for SIMO blind equalization are basically developed with
the following assumptions about the SIMO model y[n] given by (5.30).

(A5-6) The M × 1 LTI system h[n] is BIBO stable.

(A5-7) The M polynomials Hi(z), i = 1, 2, ..., M of the transfer function
H(z) have no common factors (i.e. no common subchannel zeros).

(A5-8) The system input u[n] is a stationary zero-mean temporally white
random process with variance σ2

u.

According to the generalized Bezout Identity [15], if the channel disparity
condition is satisfied by h[n], there exists an M × 1 causal FIR filter vBZ[n]
such that

V T
BZ(z)H(z) = 1,

indicating that vBZ[n] is actually a causal FIR ZF equalizer. In other words,
in the absence of noise (w[n] = 0),

u[n] = vT
BZ[n] � y[n] =

LBZ∑
i=0

vT
BZ[i]y[n − i], (5.54)

or equivalently,

vT
BZ[0]y[n] = −

LBZ∑
i=1

vT
BZ[i]y[n − i] + u[n],

which implies that y[n] is also a finite-order vector AR process.
Define the linear prediction error (or innovations process) vector associated

with the finite-order vector AR process y[n] as

ε[n] = VLP[n] � y[n] = y[n] −
Nw+1∑
k=1

VLP[k]y[n − k]

= y[n] − VLPy[n − 1] (5.55)

where VLP[n] is an M ×M finite-length linear prediction filter with VLP[0] =
I, y[n] is defined as (5.31), and

VLP = (VLP[1],VLP[2], ...,VLP[Nw + 1]).

10 This property is related to the generalized Bezout identity.
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Because of the assumption that u[n] is temporally white and because of the
fact that the resultant innovation process ε[n] is also temporally white, it can
be inferred that

ε[n] =

Lh∑
k=0

h[k]u[n − k] − VLPΨu[n − 1]

= h[0]u[n] +

(
Lh∑
k=1

h[k]u[n − k] − VLPΨu[n − 1]

)
= h[0]u[n] (5.56)

implying the term inside the parentheses in (5.56) must equal 0.
The linear prediction filter VLP[n] can be determined by minimizing the

mean square error E{‖ε[n]‖2} where ε[n] is given by (5.55). The orthogonality
principle directly leads to (Problem 5.2)

VLP = E{y[n]yH [n − 1]}R+
y [0]. (5.57)

Therefore, one can obtain the linear prediction filter VLP[n] from the SOS of
y[n] according to (5.57) and then process y[n] by the VLP[n] obtained to get
the linear prediction error vector ε[n] given by (5.55).

From (5.56), the correlation function of ε[n] can be seen to be

Rε[0] = E{ε[n]εH [n]}
= h[0]E{u[n]u∗[n]}hH [0] = σ2

uh[0]hH [0]. (5.58)

By virtue of the fact that h[0]hH [0] is a rank-one matrix, h[0] can be estimated
(up to a scalar ambiguity) as the eigenvector of Rε[0] associated with the

largest eigenvalue. Once an estimate of h[0], denoted as ĥ[0], is obtained, the
system input u[n] can be restored either directly from the innovations process
ε[n] as

û[n] = ĥH [0]ε[n] (by (5.56)) (5.59)

or from the system output vector y[n] as

û[n] =
(
ĥH [0]VLP[n]

)
� y[n] = v̂T

ZF[n] � y[n] (5.60)

up to a constant scale factor. The above approach for estimation of u[n] is
called the “single-stage” linear prediction approach, which is summarized in
Table 5.2. Additionally, with the input estimate û[n] obtained, one can esti-
mate the system using input–output system identification methods such as
the least-squares method.

In summary, the single-stage linear prediction approach does not need
knowledge of the system order and thus is robust against system order overes-
timation error. However, its performance depends critically on the accuracy of
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Table 5.2 Single-stage linear prediction approach

Parameters setting Given the system order Lh and the dimension M of the
observation vector y[n], choose Nw ≥ Lh and concatenate
(Nw +1) successive observations into the vector y[n] defined
by (5.31).

Linear prediction Find the linear prediction filter coefficients VLP using (5.57).
Obtain the linear prediction error vector ε[n] by (5.55).

System estimation Obtain h[0] as the eigenvector of Rε[0] associated with the
largest eigenvalue.

Equalization Obtain the system input estimate u[n] using either (5.59) or
(5.60).

the estimated ĥ[0] (the leading coefficient vector of the SIMO system). How-
ever, ‖h[0]‖ may be much smaller than maxn{‖h[n]‖} and thus the estimate
û[n] given by (5.59) may not be a very accurate estimate of the system in-
put u[n]. To improve the performance degradation due to small ‖h[0]‖, some
other prediction error based approaches have been reported such as the outer
product decomposition algorithm [16] and multi-step linear prediction algo-
rithm [17].

5.3.2 Blind MIMO Equalization

Temporally White Inputs

The SOS based blind equalization algorithms introduced in the previous sub-
section for the SIMO case seem to be extendable to the MIMO case. Unfor-
tunately, when the system inputs are s.u.t.w., this is not possible due to some
inherent ambiguities of the SOS of the MIMO system outputs, even though
some subspace methods can estimate the MIMO system up to an upper trian-
gular unimodular matrix ambiguity. To resolve this ambiguity needs further
information of the system such as the structure of the system, which, however,
may always be unknown in practice. The following example illuminates the
system ambiguities existent in SOS as the system inputs are s.u.t.w.

Example 5.30 (SOS Based MIMO System Estimation)
Consider an MIMO system with s.u.t.w. system input vector u[n] and Su(ω) =
σ2

uI. Then the power spectral matrix of y[n] can be expressed as



5.3 SOS Based Blind Equalization Approaches 301

Sy(ω) = σ2
uH(ω)HH(ω) + Sw(ω)

= σ2
uH(ω)UUHH

H(ω) + Sw(ω)

= σ2
uH̃(ω)H̃

H
(ω) + Sw(ω)

where U is an arbitrary unitary matrix and H̃(ω) = H(ω)U. As the unitary

matrix is a nonpermutation matrix, H(ω) and H̃(ω) are two different MIMO
systems resulting in ambiguities in system estimation using SOS.

�

Temporally Colored Inputs

For the case of spatially uncorrelated and temporally colored (s.u.t.c.) inputs
with distinct power spectra, the identifiability of an irreducible (see Assump-
tion (A5-10) below) MIMO FIR system H[n] using SOS of the system out-
put vector y[n] has been proven by Hua and Tugnait [18]. Meanwhile, some
SOS based blind system identification and equalization methods have been
reported, such as Gorokhov and Loubaton’s subspace method [19], Abed-
Meraim and Hua’s minimum noise subspace method [20], the matrix pencil
(MP) method proposed by Ma et al. [21], the blind identification via decor-
relating subchannels (BIVDS) approach proposed by Hua et al. [22], An and
Hua’s blind identification via decorrelating the whole channel (BIVDW) ap-
proach [23], and so forth. All of these SOS based methods require M > K
[19–23]. Moreover, both the BIVDS and BIVDW methods further make the
assumption that the power spectra of the driving inputs are sufficiently di-
verse [22, 23]. This assumption may always be invalid in some practical ap-
plications (such as wireless communications). Therefore, let us introduce only
the MP method in this subsection.

Matrix Pencil Method

The MP method for MIMO blind equalization of s.u.t.c. inputs is developed
basically with the assumption that SNR = ∞ and the following assumptions
about the MIMO model y[n] given by (5.16) and (5.17).

(A5-9) H(z) is an FIR system of length LH + 1 and M > K.
(A5-10) H(z) is irreducible, i.e. H(z) is of full column rank for all z �= 0.

(A5-11) H(z) is column-reduced, i.e. the M × K matrix

(h1[L1],h2[L2], ...,hK [LK ])

is of full column rank where Lk is the degree of the polynomial vector
Hk(z) = Z{hk[n]} (in z−1) defined as

Lk = max
i

deg{Hi,k(z)}.

(Note that LH = maxk{Lk}, the degree of the MIMO system H(z)).
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(A5-12) The channel inputs uk[n], k = 1, 2, ..., K are persistently exciting,
and mutually uncorrelated with distinct nonwhite power spectra.

Let us define the following vectors

ym[n] = (ym[n], ym[n − 1], ..., ym[n − Nw])
T

uk[n] = (uk[n], uk[n − 1], ..., uk[n − LH − Nw])
T

y[n] =
(
yT

1 [n], yT
2 [n], ...,yT

M [n]
)T

u[n] =
(
uT

1 [n], uT
2 [n], ...,uT

K [n]
)T

and the following (Nw + 1) × (LH + Nw + 1) Toeplitz matrix

Ψmk =

⎛⎜⎜⎜⎜⎜⎝
hmk[0] hmk[1] · · · hmk[LH ] 0 · · · 0

0 hmk[0] hmk[1] · · · hmk[LH ]
. . . 0

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 hmk[0] hmk[1] · · · hmk[LH ]

⎞⎟⎟⎟⎟⎟⎠
where Nw is chosen such that M(Nw + 1) ≥ K(LH + Nw + 1).

Under the noise-free assumption and Assumptions (A5-10) and (A5-11)
[24], it can be shown, by (5.16) and Assumption (A5-9), that

y[n] = Ψu[n] (5.61)

where

Ψ =

⎛⎜⎜⎜⎜⎜⎝
Ψ11 Ψ12 · · · Ψ1K

Ψ21 Ψ22 · · · Ψ2K

...
...

. . .
...

ΨM1 ΨM2 · · · ΨMK

⎞⎟⎟⎟⎟⎟⎠ (5.62)

is of full column rank [24]. Moreover, the system output correlation matrix
Ry [l] can be seen to be

Ry [l] = ΨRu[l]ΨH (5.63)

where
Ru[l] = diag{Ru1

[l],Ru2
[l], ...,RuK

[l]}
is a block diagonal matrix (by Assumption (A5-12)).

Consider the generalized eigenvalue problem of solving

Ry [l1]q = λRy [l2]q, l1 �= l2. (5.64)
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By (5.63), the generalized eigenvectors q in (5.64) must satisfy

Ψdiag{Ru1 [l1] − λRu1 [l2], ...,RuK
[l1] − λRuK

[l2]}ΨHq = 0, (5.65)

or equivalently,11

Ruk
[l1]bk = λRuk

[l2]bk, k = 1, 2, ..., K (5.66)

where
(bT

1 ,bT
2 , ...,bT

K)T = ΨHq.

By Assumption (A5-12), matrices Ruk
[l1] and Ruk

[l2] generally form a dis-
tinct pair for each k. Therefore, any of the K sets of generalized eigenvalues of
(5.66) usually include some nonzero distinct generalized eigenvalues which do
not belong to all the other sets, and some other generalized eigenvalues. The
generalized eigenvectors associated with these distinct generalized eigenvalues
can be used for inputs extraction from y[n] based on the following theorem.

Theorem 5.31. Assume that there exist κ nonzero distinct generalized eigen-
values λ1, λ2, ..., λκ of (5.64) with the κ associated generalized eigenvec-
tors q1,q2, ...,qκ, called essential generalized eigenvectors, and that ΨHqi =
(bT

i1,b
T
i2, ...,b

T
iK)T �= 0, i = 1, 2, ..., κ. Then, for each essential generalized

eigenvector qi, bi� �= 0 for one and only one 	 ∈ {1, 2, ..., K}.
The proof of Theorem 5.31 is left as an exercise (Problem 5.3).

First of all, those generalized eigenvectors qj satisfying ΨHqj = 0 can eas-

ily be identified by comparing the value of εj � qH
j Ry [0]qj with a threshold

ξ (a small positive number). If

εj = qH
j Ψ (diag{Ru1 [0],Ru2 [0], ...,RuK

[0]})ΨHqj < ξ, (5.67)

then ΨHqj = 0 is acceptable because Ruk
[0] has full rank by Assumption

(A5-12). These generalized eigenvectors are not useful and will be discarded.
Using an essential generalized eigenvector qi (by Theorem 5.31), one can
obtain a filtered (distorted) version of one input u�[n] as

si[n] = qH
i y[n] = qH

i Ψu[n] = bH
i� u�[n]. (5.68)

Therefore, κ filtered inputs si[n] can be obtained by the κ essential generalized
eigenvectors. A systematic classification method such as the simple hierarchi-
cal dimensionality reduction approach [25] can be utilized to categorize the
κ extracted inputs si[n] into K groups, each associated with a distinct input
uk[n]. After classification, each group can then be formulated as an SIMO
system model with those si[n] in the group as the system outputs. Thus the
existing SIMO blind equalization/identification approaches such as the sub-
space and linear prediction approaches introduced in the previous subsection

11 Matrices of the form A − bC are known as matrix pencils.
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can be employed to obtain an input estimate using all the si[n] of the asso-
ciated group. The above equalization approach constitutes the matrix pencil
approach which is summarized in Table 5.3.

In summary, the matrix pencil approach is a two-stage method in which
stage 1 utilizes a matrix pencil between the two chosen system output correla-
tion matrices at different lags (l1, l2) for extracting filtered inputs,12 whereas
stage 2 employs an SIMO blind equalization/identification approach for es-
timating some inputs from the filtered inputs. It should be noted that the
number of essential generalized eigenvectors for the chosen (l1, l2) is usually
uncertain in stage 1. In other words, some of the K inputs may never be
extracted in stage 1, and therefore a deflation strategy may be adopted to
extract the remaining inputs as reported in [21].

Table 5.3 Matrix pencil approach

Parameters setting Choose l1, l2, a positive number ξ and Nw such that M(Nw+
1) ≥ K(LH + Nw + 1).

Solving for general-
ized eigenvalues

Solve the generalized eigenvalue problem given by (5.64)
for obtaining the κ essential generalized eigenvectors
q1,q2, ..., qκ.

Filtered inputs ex-
traction

Extract the filtered inputs using the essential generalized
eigenvectors qi obtained using (5.68).

Classification Divide the κ filtered inputs into K groups using a systematic
classification method.

Equalization Obtain one input estimate for each group using an SIMO
blind equalization approach.

5.4 HOS Based Blind Equalization Approaches

Blind equalization of MIMO systems using HOS have been investigated ex-
tensively [3, 27–36] since 1990, basically under the following assumptions for
the MIMO system model y[n] given by (5.16) and (5.17):

12 Choi et al. [26] have suggested that the symmetry of the system output correla-
tion matrices can be ensured by forcing Ry [l] = (Ry [l] + RH

y [l])/2 to avoid the
numerical problem in calculating the generalized eigenvectors of pencil matrices.
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(A5-13) The M × K LTI system H[n] is BIBO stable.

(A5-14) M ≥ K, i.e. the number of system outputs is no less than the number
of system inputs.

(A5-15) The system inputs uk[n], k = 1, 2, ..., K, are stationary zero-mean,
nonGaussian mutually independent (or equivalently, spatially inde-
pendent) random processes with variance σ2

uk
= E{|uk[n]|2} and

(p + q)th-order cumulant Cp,q{uk[n]} �= 0, ∀k where p and q are
nonnegative integers and (p + q) ≥ 3.

(A5-16) The noise w[n] is a zero-mean, Gaussian vector random process,
which can be spatially correlated and temporally colored with cor-
relation function Rw[l].

(A5-17) The system input vector u[n] is statistically independent of the noise
vector w[n].

In Section 4.3 we have introduced two typical SISO blind equalization
algorithms, i.e. MNC and SE equalization algorithms, using HOS. Now we
introduce their MIMO counterparts, referred to as MIMO-MNC and MIMO-
SE equalization algorithms, respectively. Let us consider the case that each
of the system inputs is temporally i.i.d. (i.e. spatially independent and tem-
porally independent (s.i.t.i.)) followed by the case that each of the system
inputs can be either temporally i.i.d. or colored (i.e. spatially independent
and temporally colored (s.i.t.c.)).

5.4.1 Temporally IID Inputs

Consider that the MISO linear equalizer v[n] to be designed is an FIR sys-
tem for which v[n] �= 0, n = L1, L1 + 1, ..., L2. Let vm = (vm[L1], vm[L1 +
1], ..., vm[L2])

T , and v = (vT
1 , vT

2 , ...,vT
M )T denote an (ML) × 1 vector con-

sisting of equalizer coefficients where L = L2 −L1 + 1 is the equalizer length.
The equalized signal e[n] given by (5.19), the output of the MISO equalizer
v[n], can be expressed as

e[n] = vT y[n] (5.69)

where y[n] is an (ML) × 1 vector formed of the system output vector y[n]
(see (5.16)) as follows

y[n] =
(
yT

1 [n], yT
2 [n], ...,yT

M [n]
)T

in which

ym[n] = (ym[n − L1], ym[n − L1 − 1], ..., ym[n − L2])
T

.

With Assumptions (A5-14) through (A5-17) and the assumption that sys-
tem inputs are temporally i.i.d., it can be shown, from (5.20), (5.19) and
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(5.22), that the correlation function reN [k] of the Gaussian noise term eN[n]
in (5.19) can be expressed as

reN [k] = E{eN[n]e∗N[n − k]}

=

∞∑
n1=−∞

∞∑
n2=−∞

vT [n1]Rw[k + n2 − n1]v
∗[n2]

=

M∑
l=1

M∑
i=1

[Rw[k]]il � vi[k] � v∗l [−k], (5.70)

and that

σ2
e = E{|e[n]|2} =

K∑
i=1

σ2
ui

( ∞∑
n=−∞

|gi[n]|2
)

+ reN [0] (5.71)

Cp,q{e[n]} =

K∑
i=1

Cp,q{ui[n]}
( ∞∑

n=−∞
gp

i [n](g∗i [n])q

)
, p + q ≥ 3 (5.72)

since Cp,q{eN[n]} = 0 for all p + q ≥ 3.

Maximum Normalized Cumulant Equalization Algorithm

The MNC criterion for blind equalization presented in Section 4.3.1 is applica-
ble to both of SISO and MIMO systems, and is repeated here for convenience.

MNC Criterion: Jp,q(v) = Jp,q(e[n])

=
|Cp,q{e[n]}|

E{|e[n]|2}(p+q)/2
=

|Cp,q{e[n]}|
σ

(p+q)
e

(5.73)

where e[n] = vT y[n] and p and q are nonnegative integers with p+ q ≥ 3. The
MNC criterion for the MIMO system is supported by the following theorem
[3, 37]:

Theorem 5.32 (MIMO-MNC). Suppose that y[n] consists of the outputs
of an MIMO system given by (5.16) satisfying Assumptions (A5-13) through
(A5-17). Further suppose that SNR = ∞ and the MIMO system H[n] satisfies
the ZF-condition (C-ZF) (given in Theorem 5.28). Then as L1 → −∞ and
L2 → ∞, Jp,q(v) with p+q ≥ 3 is maximum if and only if g[n] = αδ[n−τ ]η�,
i.e.

e[n] = αu�[n − τ ] (5.74)

and
max{Jp,q(v)} = Jp,q(u�[n]) = max

k
{Jp,q(uk[n])}, (5.75)

where α �= 0 and τ (integer) are an unknown scale factor and an unknown
time delay, respectively.
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The proof of Theorem 5.32 (through using Theorem 2.33) is left as an exercise
(Problems 5.4). Theorem 5.32 also implies that as the values of Jp,q(uk[n])
are the same for all k, the optimum e[n] can be an estimate of any one of the
K inputs. In addition to the global optimum equalizer presented in Theorem
5.32, among local maxima and minima (stationary points) of Jp,q(v), there
are K stable local maxima as presented in the following theorem.

Theorem 5.33 (Local Maxima of MIMO-MNC). Under the same as-
sumptions made in Theorem 5.32, as L1 → −∞ and L2 → ∞, there are K
stable local maxima for Jp,q(v) each associated with a g[n] = α�δ[n−τ�]η�, 	 ∈
{1, 2, ..., K} and the other local maxima are unstable equilibria for the follow-
ing cases:

(C1) p + q > 2 as y[n] is real.
(C2) p = q ≥ 2 as y[n] is complex.
(C3) p + q > 2, p �= q, σ2

uk
= σ2

u and Cp,q{uk[n]} = γ �= 0, k = 1, 2, ..., K as
y[n] is complex.

Tugnait [3] proves that Theorem 5.33 is true for (p, q) = (2, 1) and (p, q) =
(2, 2) in Case (C1), and for (p, q) = (2, 2) in Case (C2). Chi and Chen [37]
prove the theorem basically following a procedure similar to that given in [3].
The proof of the theorem is algebraically lengthy and omitted here.

Because of the lack of a closed-form solution for the optimum v of the
nonlinear objective function Jp,q(v), the efficient gradient-type BFGS method
given in Table 2.4 can be employed to obtain the optimum v, a local maxi-
mum rather than a global maximum of Jp,q(v). The resultant MIMO-MNC
equalization algorithm which provides the optimum vMNC[n] or vMNC is sum-
marized in Table 5.4.

Table 5.4 MIMO-MNC equalization algorithm

Parameters setting Choose equalizer length L, cumulant order (p, q) and conver-
gence tolerance ζ > 0.

Initial condition Set v[0].

Iteration i = 0, 1, ... Update v[i+1] using the BFGS method summarized in Table
2.4 such that Jp,q(v

[i+1]) > Jp,q(v
[i]).

Convergence check If |Jp,q(v
[i+1])−Jp,q(v

[i])|/Jp,q(v
[i]) ≥ ζ, then go to the next

iteration; otherwise the optimum vMNC = v[i] has been ob-
tained.
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Super-Exponential Equalization Algorithm

The MIMO-SE equalization algorithm reported by Yeung and Yau [30] and
Inouye and Tanebe [31] is a straightforward extension of the corresponding
algorithm for the SISO case presented in Section 4.3.2. At the ith iteration, the
equalizer coefficient vector v for the MIMO case is updated by the following
linear equations: [38] ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṽ
[i+1] = (R∗

y [0])
−1 · d[i]

ey ,

v[i+1] =
ṽ

[i+1]∥∥∥ṽ[i+1]
∥∥∥

(5.76)

where
d

[i]
ey = cum{e[i][n] : p, (e[i][n])∗ : q − 1, y∗[n]} (5.77)

in which p and q are nonnegative integers and p + q ≥ 3, and e[i][n] =
(v[i])T y[n] is the equalized signal obtained at the ith iteration. To avoid pos-
sible numerical problems caused by rank deficiency of Ry [0], it is better to

obtain inverse matrix (Ry [0])
−1

by SVD.
Again, under the same assumptions made in Theorem 5.32, the MIMO-

SE algorithm will converge at the super-exponential rate (i.e. ISI(g[i][n] =
HT [n] � v[i][n]) decreases to zero at a super-exponential rate), and end up
with the equalized signal

e[n] = αu�[n − τ ] (5.78)

where α is a real/complex constant, τ is an integer, and 	 ∈ {1, 2, ..., K}.
Similarly, the convergence rule for the MIMO-SE equalization algorithm can
be chosen as that given by (4.121) used in the SISO-SE equalization algorithm.
The resultant MIMO-SE equalization algorithm for obtaining vSE[n] or vSE

is summarized in Table 5.5.
The computational efficiency of the SISO-SE algorithm mentioned in Sec-

tion 4.3.2 also applies to the MIMO-SE equalization algorithm; namely, the
MIMO-SE equalization algorithm is computationally efficient with faster con-
vergence than the MIMO-MNC equalization algorithm, but may diverge for
finite data length N and finite SNR.

Properties and Relations

For finite SNR and sufficient equalizer length, the MIMO-MNC equalizer and
MIMO-SE equalizer introduced above are closely related as stated in the fol-
lowing property [39]:

Property 5.34. With sufficient equalizer length L, the MIMO-MNC equalizer
vMNC[n] and the MIMO-SE equalizer vSE[n] are basically the same (up to a
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Table 5.5 MIMO-SE equalization algorithm

Parameters setting Choose equalizer length L, cumulant order (p, q) and conver-
gence tolerance ζ > 0.

Inverse matrix cal-
culation

Estimate Ry [0] with sample correlations of y[n]. Obtain
(Ry [0])−1 using SVD.

Initial condition Set v[0].

Iteration i = 0, 1, ... Update v[i+1] by (5.76).

Convergence check If |(v[i+1])Hv[i]| > 1 − ζ/2, then go to the next iteration;
otherwise, vSE = v[i] has been obtained.

scale factor) for p+ q ≥ 3 as y[n] is real and for p = q ≥ 2 as y[n] is complex.

The proof of Property 5.34 is presented in Appendix 5A. This property reveals
that with finite data length, the MIMO-MNC equalizer vMNC[n] and MIMO-
SE equalizer vSE[n] should exhibit similar performance and behavior for p +
q ≥ 3 as y[n] is real and for p = q ≥ 2 as y[n] is complex.

Next, let us introduce two interesting properties of the MIMO-MNC equal-
izer. Define

Dp,q = diag {Cp,q{u1[n]}, Cp,q{u2[n]}, ..., Cp,q{uK [n]}} (5.79)

g̃p,q[n; k] = (gk[n])p(g∗k[n])q−1 (5.80)

G̃p,q(ω) =
(
F{g̃p,q[n; 1]},F{g̃p,q[n; 2]}, ...,F{g̃p,q[n; K]})T

. (5.81)

Note that D1,1 = diag{σ2
u1

, σ2
u2

, ..., σ2
uK

} by (5.79). Under Assumptions (A6-
13) through (A6-17), it can be shown, from (5.29), that the K × M LMMSE
equalizer VMS(ω) can be expressed as

VT
MS(ω) =

[
ST

y (ω)
]−1

· H∗(ω) ·D1,1 (5.82)

where
Sy(ω) = H(ω) · D1,1 · HH(ω) + Sw(ω). (5.83)

The two properties of the MIMO-MNC equalizer for any SNR are as follows
[39]:

Property 5.35. With sufficient equalizer length, the MNC equalizer vMNC[n]
is related to the MIMO LMMSE equalizer VMS(ω) via

V MNC(ω) = VT
MS(ω) ·Q(ω) (5.84)
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where13

Q(ω) = D−1
1,1

{
αp,qDp,qG̃p,q(ω) + αq,pDq,pG̃q,p(ω)

}
(5.85)

in which

αp,q =
q · σ2

e

(p + q) · Cp,q{e[n]} . (5.86)

Property 5.36. As the noise w[n] is spatially uncorrelated (i.e. [Rw[k]]il = 0
for i �= l), each component of the overall system g[n] associated with the
vMNC[n] with sufficient equalizer length is linear phase, i.e.

arg[Gk(ω)] = ωτk + ϕk, − π ≤ ω < π (5.87)

where τk and ϕk are real constants.

The proof of Property 5.35 is given in Appendix 5B, and the proof of Prop-
erty 5.36 is left as an exercise (Problem 5.5). These relations and properties
motivate that the theoretical MIMO-MNC equalizer without a closed-form
solution can be obtained analytically, and that the MIMO-MNC equalization
algorithm can be implemented efficiently (fast convergence speed and guaran-
teed convergence) with the use of the same update equation for the equalizer
used by the MIMO-SE equalization algorithm.

The theoretical solution for vMNC[n] is necessary in the simulation and
algorithm tests during the algorithm design. According to Property 5.35, the
theoretical MIMO-MNC equalizer vMNC[n] can also be efficiently obtained
from the nonblind VMS(ω) given by (5.82) using the following FFT-based
iterative algorithm [39], called Algorithm MNC-LMMSE, where V [k], H [k],

G[k], G̃p,q[k] and VMS[k] denote N -point FFTs of v[n], H[n], g[n], g̃p,q[n]
and vMS[n], respectively.

Algorithm MNC-LMMSE

(S1) Set i = 0. Choose an initial condition v[0][n] for v[n] and a convergence
tolerance ζ > 0.

(S2) Set i = i+1. Compute the N -point DFT V [i−1][k].14 Compute G[i−1][k] =

HT [k]V [i−1][k] by (5.22) and then obtain its N -point inverse DFT
g[i−1][n].

13 As p = q ≥ 2 is considered, Q(ω) given by (5.85) can be simplified as

Q(ω) =
σ2

e

Cp,q{e[n]}
· D−1

1,1Dp,pGp,p(ω) (as p = q ≥ 2).

14 It is never limited by the length of v[n] as long as the DFT length N is chosen
sufficiently large such that aliasing effects on the resultant v[n] are negligible.
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(S3) Compute G̃p,q[k] and G̃q,p[k] using (5.80) and (5.81) with g[n] =
g[i−1][n]. Then compute Q[k] using (5.85).

(S4) Compute Ṽ [k] = VT
MS[k]Q[k] by (5.84) followed by its N -point inverse

DFT ṽ[n]. Then obtain v[i][n] = ṽ[n]/(
∑

n ‖ṽ[n]‖2)1/2. If Jp,q(v
[i][n])

> Jp,q(v
[i−1][n]) (where the theoretical Jp,q(v

[i][n]) is computed by using
(5.73), (5.70), (5.71) and (5.72)), go to (S6).

(S5) Compute ΔV [k] = V [i][k] − V [i−1][k], and update V [i][k] via

V [i][k] = V [i−1][k] + μ · ΔV [k]

where the step size μ is chosen such that Jp,q(v
[i][n]) > Jp,q(v

[i−1][n]).
Then normalize v[i][n] by v[i][n]/(

∑
n ‖v[i][n]‖2)1/2.

(S6) If
∑

n ‖v[i][n]−v[i−1][n]‖2 > ζ, then go to (S2); otherwise, the theoretical
(true) vMNC[n] = v[i][n] is obtained.

Note that the convergence of Algorithm MNC-LMMSE can be guaran-
teed because Jp,q(v

[i][n]) (which is bounded) increases at each iteration, and
(S5) is rarely performed. Let us emphasize that Algorithm MNC-LMMSE is
never an MIMO blind deconvolution algorithm, and that it is merely an it-
erative algorithm that requires the system response H(ω), variances σ2

uk
and

(p + q)th-order cumulants Cp,q{uk[n]} of system inputs and noise correlation
function Rw[k] to compute the true MIMO-MNC equalizer vMNC[n].

MIMO Hybrid MNC Equalization Algorithm

Recall that the MIMO-SE equalization algorithm is more computationally
efficient and faster than the MIMO-MNC equalization algorithm but the for-
mer faces a potential divergence issue for finite SNR and limited data length.
In view of Property 5.34, the MIMO-SE equalization algorithm is actually
searching for the same equalizer as the MIMO-MNC equalization algorithm,
whereas the latter is guaranteed convergent. These facts suggest an iterative
hybrid MNC equalization algorithm as illustrated in Fig. 4.13 for the SISO
case with y[n] being replaced by y[n]. The iterative hybrid MNC equalization
algorithm is summarized below.

MIMO Hybrid MNC Equalization Algorithm:

(S1) Like the MIMO-SE equalization algorithm, obtain v[i+1] by (5.76), and

obtain the associated e[i+1][n] =
(
v[i]

)T
y[n].

(S2) If Jp,q(v
[i+1]) < Jp,q(v

[i]), update v[i+1] through a gradient-type op-
timization method such that Jp,q(v

[i+1]) > Jp,q(v
[i]) and obtain the

associated e[i+1][n].
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(S3) If |Jp,q(v
[i+1]) − Jp,q(v

[i])|/Jp,q(v
[i]) ≥ ζ, then go to the next iteration;

otherwise vMNC = v[i+1] has been obtained.

It is important to emphasize that according to Property 5.34, the hybrid
MNC equalization algorithm is applicable only for the case of real y[n] and
for the case of complex y[n] and p = q. The MIMO hybrid MNC equal-
ization algorithm uses the MIMO SE equalization algorithm in (S1) for fast
convergence (basically with super-exponential rate) which usually happens
in most of iterations before convergence, and a gradient-type optimization
method in (S2) for the guaranteed convergence. Specifically, the first deriv-
ative ∂Jp,q(v)/∂v∗|v=v[i] required by (S2) can be expressed as (4.155) with

Ry and d
[i]
ey being replaced by Ry and d

[i]
ey , respectively.

Estimation of All the System Inputs

One can express the system output vector y[n] given by (5.16) as

y[n] = (h1[n],h2[n], ...,hK [n]) � u[n] + w[n]

=

K∑
k=1

hk[n] � uk[n] + w[n] =

K∑
k=1

xk[n] + w[n] (5.88)

where
xk[n] = hk[n] � uk[n] (5.89)

is the contribution in y[n] from the kth system input. With the system input
estimate û�[n] = e[n], 	 ∈ {1, 2, ..., K} obtained by an MIMO blind equaliza-
tion algorithm such as the MIMO-MNC algorithm, the system h�[n] can be
estimated by the so-called input–output cross-correlation (IOCC) method [3],
as follows:

ĥ�[n] =
E{y[m + n]û∗

� [m]}
E{|û�[m]|2} . (5.90)

Note that û�[n] = αu�[n − τ ] as w[n] = 0 (by Theorem 5.32), implying

ĥ�[n] = h�[n+ τ ]/α by (5.90). Therefore, the contribution in y[n] due to u�[n]
can be estimated as

x̂�[n] = ĥ�[n] � û�[n] (by (5.89))

= h�[n] � u�[n] as w[n] = 0.

Cancelling x̂�[n] from the data y[n] yields

y[n] − x̂�[n] = y[n] − ĥ�[n] � û�[n] (by (5.88))

= y[n] − ĥ�[n] � v̂T [n] � y[n] (5.91)

which corresponds to the outputs of an M × (K−1) system driven by (K−1)
inputs uk[n], k = 1, ..., 	 − 1, 	 + 1, ..., K.
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The widely used multistage successive cancellation (MSC) procedure [3]
for the restoration of all system inputs is shown in Fig. 5.4 and is summarized
as follows.

MSC Procedure:
Given measurements y[n], n = 0, 1, ..., N − 1, obtain the system input esti-
mates û1[n], û2[n], ..., ûK [n] through K stages (usually in a nonsequential
order) that includes the following two steps at each stage.

(S1) Find a system input estimate, denoted as û�[n] (where 	 is unknown),
by any MIMO blind equalization algorithm such as the MIMO hybrid
MNC algorithm, and then obtain the associated system estimate ĥ�[n]
by (5.90).

(S2) Update y[n] by y[n] − ĥ�[n] � û�[n], namely, cancel the contribution of
û�[n] from y[n].
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Fig. 5.4 Signal processing procedure in each stage of the MSC procedure

Estimates of uk[n] with higher received signal power (e.g. strong users in
wireless communication systems) defined as Ek = E{‖xk[n]‖2} are usually
obtained prior to those with lower signal power (e.g. weak users in wireless
communication systems). Assume that the system input u1[n] is of interest
and obtained through the MSC procedure. Then the associated output SINR
defined by (5.25), denoted by SINR1, which is needed for performance evalu-
ation during the algorithm design, is presented next.

Assume that u1[n] is estimated at the lth stage of the MSC procedure
and e[i][n], h[i][n] and v[i][n] are the equalizer output, system estimate and
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optimum equalizer, respectively, obtained at the ith stage for i = 1, ..., l.
Define

T
[l](z) = Z{T[l][n]}

=

⎧⎨⎩ I, l = 1,

T
[l−1](z)

(
I − H [l−1](z) ·

(
V [l−1](z)

)T
)

, l ≥ 2.

Letting Y [l](z) = T
[l](z) ·Y (z) and W [l](z) = T

[l](z) ·W (z), then the equal-
izer output e[l][n] at the lth stage can be shown, from (5.91), to be

e[l][n] =
(
v[l][n]

)T

� y[l][n] =
(
g[l][n]

)T

� u[n] + e
[l]
N [n]

where
(
g[l][n]

)T
=
(
v[l][n]

)T
� T[l][n] � H[n] and e

[l]
N [n] =

(
v[l][n]

)T
� w[l][n].

Therefore, SINR1 can be calculated from

SINR1 =
σ2

u1
·
∣∣∣g[l]

1 [n0]
∣∣∣2

K∑
k=1

σ2
uk

(∑
n

∣∣∣g[l]
k [n]

∣∣∣2)+ E

{∣∣∣e[l]
N [n]

∣∣∣2}− σ2
u1

·
∣∣∣g[l]

1 [n0]
∣∣∣2 (5.92)

where g
[l]
1 [n] is the first component of g[l][n] and

∣∣∣g[l]
1 [n0]

∣∣∣ = maxn

{∣∣∣g[l]
1 [n]

∣∣∣} .

Imperfect cancelation in (S2) of the MSC procedure usually results in
error propagation in the ensuing stages. Therefore, the estimates ûk[n]s ob-
tained at later stages are usually less accurate due to error propagation from
stage to stage. To avoid the error propagation, the estimate ûk[n] of inter-
est must be obtained at the first stage. So far, reliable approaches for the

choice of v
[0]
k [n] that can lead to the equalized signal e[n] = ûk[n] without

going through the MSC procedure are still unknown. Nevertheless, the K sys-
tem inputs can also be obtained simultaneously using a K ×M MIMO linear
equalizer [34, 36, 40, 41] without going through the MSC procedure and thus
avoiding the error propagation effects. However, finding the coefficients of the
MIMO equalizer is, in general, computationally demanding and may prohibit
use in practical applications.

5.4.2 Temporally Colored Inputs

Let us consider the case that the driving inputs of an FIR MIMO system are
s.i.t.c., and introduce an equalization-GCD algorithm for blind equalization
and system identification for this case. This blind equalization algorithm com-
prises the MIMO blind equalization algorithms for s.i.t.i. inputs introduced
in Section 5.4.1, and a GCD computation algorithm, which is introduced first
for the equalization-GCD algorithm without notational confusion.
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GCD Computation

Let F (z) = (F1(z), F2(z), ..., FM (z))T be an M × 1 polynomial vector of z−1

with a GCD B(z) among the M components of F (z), i.e.

F (z) = H(z) · B(z)

where H(z) = (H1(z), H2(z), ..., HM (z))T with no common factor among the
M polynomials Hk(z)’s. Qiu et al. [42] proposed a subspace method (summa-
rized in Appendix 5C) for estimating h[n] and b[n] with the given F (z) (or
equivalently f [n]). Their GCD computation method, which requires the de-
gree of H(z) given in advance, not only provides closed-form solutions for the
estimates of h[n] and b[n] but also is robust against noise (due to quantization
error, observation error, modeling error, etc.) in F (z).

Model Assumptions

In addition to Assumptions (A5-13) through (A5-17) made in Section 5.4 on
the signal model y[n] given by (5.16) and (5.17), let us further make the
following assumptions:

(A5-18) The M × K system H(z) = (H1(z), H2(z), ...,HK(z)) is FIR with
M > 1. No common factor exists among the M components of
Hk(z) = (H1,k(z), H2,k(z), ..., HM,k(z))T , ∀k, and their degrees Lk

are known a priori.

(A5-19) Each of the system inputs uk[n], k ∈ {1, 2, ..., K}, can be modeled
by an MA process as

uk[n] = bk[n] � sk[n] = sk[n] +

Mk∑
i=1

bk[i]sk[n − i] (5.93)

where bk[n], k ∈ {1, 2, ..., K}, is an LTI FIR system of unknown order
Mk ≥ 0 with bk[0] = 1 and Bk(z) = Z{bk[n]} �= 0 for |z| = 1, and
sk[n] are stationary zero-mean s.i.t.i. nonGaussian random processes
with Cp,q{sk[n]} �= 0, ∀k and p + q ≥ 3.

Under Assumption (A5-19), y[n] given by (5.16) and (5.17) can also be
expressed as the following equivalent MIMO model (Fig. 5.5):

y[n] = F[n] � s[n] + w[n] (5.94)

where

F[n] = (f1[n], f2[n], ..., fK [n]) = H[n] � diag{b1[n], b2[n], ..., bK [n]}
= (h1[n] � b1[n],h2[n] � b2[n], ...,hK [n] � bK [n]) (5.95)
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is the combined MIMO system driven by the s.i.t.i. input vector s[n]. It follows
from (5.95), Assumptions (A5-18) and (A5-19) that

F(z) = (F 1(z), F 2(z), ...,F K(z))

= (H1(z)B1(z), H2(z)B2(z), ...,HK(z)BK(z)) = H(z)B(z) (5.96)

where B(z) = diag{B1(z), B2(z), ..., BK(z)}. Note that, from (5.96) and As-
sumption (A5-18), Bk(z) is the GCD of the M components (polynomials) of
F k(z) = Hk(z)Bk(z). Thus, one can estimate the unknown system H(z) by
estimating F(z) (with s.i.t.i. inputs) followed by finding the GCD of the M
components of the estimated F k(z) for all k, leading to the equalization-GCD
MIMO blind system estimation and equalization algorithm to be introduced
next.
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Fig. 5.5 The equivalent MIMO system model

System Estimation and Equalization

The equalization-GCD algorithm is illustrated in Fig. 5.6. From this figure,
one can see that the measurements y[n] given by (5.94) are processed by an
MIMO equalization algorithm giving rise to the equalized signal e[n] as given
by (5.19), which is an estimate of s�[n], 	 ∈ {1, 2, ..., K} rather than u�[n].
As mentioned in Section 5.4.1, the 	th column of F[n] can be accordingly es-
timated using the IOCC system estimation method (see (5.90)). Through K
stages of the MSC procedure, all the estimates of sk[n] and fk[n] can be ob-
tained. Then the unknown system H(z) and ûk[n] can be obtained from F[n]
and sk[n] through a GCD computation. The equalization-GCD algorithm is
further summarized as follows:
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Equalization-GCD Algorithm: (Fig. 5.6)

(S1) Given y[n], n = 0, 1, ..., N , obtain estimates F̂[n] = (f̂1[n], f̂2[n], ..., f̂K [n])
and ŝk[n] through the MSC procedure using the MIMO blind equaliza-

tion algorithm introduced in Section 5.4.1. Truncate each of f̂k[n], k = 1,
2, ..., K using a sliding window of length Tk + 1, with maximum energy
of the truncated f̂k[n] (of order equal to Tk) in the window.

(S2) Obtain b̂k[n] and ĥk[n] from f̂k[n], k = 1, 2, ..., K using the GCD compu-
tation algorithm (proposed by Qiu et al. [42]) introduced above. Then the

ĥk[n] obtained constitute Ĥ[n] (up to a permutation matrix, a multiple-
scaling matrix, and a multiple-delay matrix), and the colored system
inputs uk[n]’s can be estimated as

ûk[n] = b̂k[n] � ŝk[n], k = 1, 2, ..., K.
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Fig. 5.6 Block diagram of the equalization-GCD algorithm

In (S1), Tk, k = 1, 2, ..., K must be chosen such that Tk ≥ (Lk+Mk), which

means that the order Tk of the truncated f̂k[n] must be equal to or larger than
the true order of fk[n] such that the estimation error due to undermodeling can
be avoided. If all the inputs uk[n] are temporally independent (i.e. Bk(z) = 1,
∀k), it can be seen from (5.95) that F[n] = H[n]. For this case, only (S1) is

needed to obtain the system estimate Ĥ[n] without need of knowledge of Lk’s
(the order of hk[n]). On the other hand, it should be noted that if a GCD C(z)
exists among the M components of Hk(z), i.e. Hk(z) = H ′

k(z)C(z), then the

Ĥk(z) and B̂k(z) obtained are estimates of H ′
k(z) (rather than Hk(z)) and

Bk(z)C(z) (rather than Bk(z)), respectively.
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5.5 Algorithm Tests

Example 5.37 (Blind SIMO Equalization Using SOS and HOS Based
Algorithms)
This example presents some simulation results of blind SIMO equalization
for performance tests to the introduced noise subspace, single-stage linear
prediction, MNC, SE and hybrid MNC equalization approaches. A 3×1 MA(3)
system with the transfer function

A(z) =

⎛⎜⎜⎝
0.7426 + 0.7426z−2

0.4456z−1 + 0.7426z−2

0.8911z−2 + 0.5941z−3

⎞⎟⎟⎠
was considered for the following two cases:

Case A. H(z) = A(z) (without common subchannel zeros)
Case B. H(z) = (1 − 0.5z−1) · A(z) (with a common subchannel zero)

The driving input u[n] was assumed to be a zero-mean i.i.d. binary se-
quence of {+1,−1} with equal probability. The real synthetic data y[n]
of length N = 4096 were generated using (5.30) with spatially indepen-
dent and temporally white Gaussian noise w[n], and then processed us-
ing the MIMO blind equalization algorithms under test. The length for the
MIMO blind equalizer v[n] was set to L = 10 and the initial condition
v[0][n] = (1, 1, 1)T δ[n−5] for the MIMO-MNC, MIMO-SE, and MIMO hybrid
MNC algorithms. Additionally, other settings for each of the MIMO equaliza-
tion algorithms are described below:

• Noise subspace approach: Nw = 8, Lh = 3 and 4 for Case A, Lh = 4 and
5 for Case B, and vZF[n] obtained by (5.52) was truncated such that its
length was equal to 10.

• Single-stage linear prediction approach: Nw = 8 and v̂ZF[n] in (5.60) was of
length equal to Nw + 2 = 10 (the length of VLP[n]).

• MNC algorithm using the BFGS method: p = q = 2 and convergence toler-
ance ζ = 2−10.

• SE algorithm: p = q = 2 and convergence tolerance ζ = 2−10.
• Hybrid MNC algorithm: p = q = 2 and convergence tolerance ζ = 2−10.

Thirty independent runs were performed and the averaged SINR of the
equalized signal was used as the performance index. Figure 5.7a shows the
simulation results (Output SINR versus SNR) for Case A associated with the
noise subspace approach with the system order assumed to be 3 (indicated
by ‘NS (order = 3)’), the system order assumed to be 4 (indicated by ‘NS
(order = 4)’), the single-stage linear prediction approach (indicated by ‘LP’),
the MNC algorithm (indicated by ‘MNC’), the SE algorithm (indicated by
‘SE’) and the hybrid MNC algorithm (indicated by ‘hybrid MNC’). It can
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be seen, from this figure, that the noise subspace method with system order
assumed to be 4 (i.e. order over-determined by 1) failed, verifying the fact of
its high sensitivity to system order mismatch. One can also observe that the
noise subspace approach (with true system order), and MNC, SE and hybrid
MNC algorithms perform much better than the single-stage linear prediction
approach.

On the other hand, Fig. 5.7b shows the corresponding results for Case
B where the system considered has a common subchannel zero at z = 0.5
and thus does not satisfy the channel disparity condition (see Assumption
(A5-2)). Again, one can see, from this figure, that the MNC, SE and hybrid
MNC algorithms perform much better than the single-stage linear prediction
approach that apparently works when the channel disparity condition is vio-
lated, whereas the noise subspace method failed in spite of the exact system
order used. Finally, it can be observed, from both Fig. 5.7a, b, that the MNC,
SE, and hybrid MNC equalization algorithms exhibit similar performances.

�

Example 5.38 (Blind MIMO Equalization for s.i.t.i. Inputs Using
HOS Based Algorithms)
This example presents some simulation results of blind MIMO equalization for
performance tests to the introduced MNC, SE and hybrid MNC equalization
algorithms as well as the MSC procedure. A two-input two-output system

H(z) =

⎛⎝H11(z) H12(z)

H21(z) H22(z)

⎞⎠
with

H11(z) = 0.6455− 0.3227z−1 + 0.6455z−2 − 0.3227z−3

H12(z) = 0.6140 + 0.3684z−1

H21(z) = 0.3873z−1 + 0.8391z−2 + 0.3227z−3

H22(z) = −0.2579z−1 − 0.6140z−2 + 0.8842z−3 + 0.4421z−4 + 0.2579z−6

was considered. The two system inputs u1[n] and u2[n] were assumed to be
equally probable binary random sequences of {+1,−1}. The noise vector w[n]
was assumed to be spatially independent and temporally white Gaussian. The
synthetic data y[n] for N = 900 and

SNRk =
E{|yk[n] − wk[n]|2}

E{|wk[n]|2} = SNR = 15 dB, k = 1, 2,

were processed by the equalizer v[n] of length L = 30 (L1 = 0 and L2 = 29)
associated with the MNC algorithm (p = q = 2) using the BFGS method, SE
algorithm (p = q = 2), and hybrid MNC algorithm (p = q = 2), respectively.
The same initial condition v[0][n] = (1, 1)T δ[n − 14] at the first stage and
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Fig. 5.7 Simulation results for SIMO equalization using the noise subspace ap-
proach, single-stage linear prediction approach, and the MNC, SE, and hybrid MNC
algorithms for (a) Case A and (b) Case B in Example 5.37

v[0][n] = (1, 0)T δ[n−14] at the second stage of the MSC procedure, were used
in the simulation of the three algorithms.

Thirty independent realizations of the optimum g1[n] and the associated
thirty ISIs versus iteration number obtained at the first stage of the MSC
procedure (associated with e[n] = û1[n]) are shown in Fig. 5.8a-f using the
three algorithms, respectively. Results for g2[n] obtained at the first stage of
the MSC procedure are omitted here since they are close to zero. Figures 5.8a,
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c, e show g1[n] associated with the MNC, SE and hybrid MNC algorithms,
respectively. Figures 5.8b, d, f show ISIs associated with the MNC, SE and
hybrid MNC algorithms, respectively.

The corresponding results for g2[n] and ISI obtained at the second stage
of the MSC procedure (associated with e[n] = û2[n]) are shown in Fig. 5.9a-f
where the results for g1[n] are not displayed since they are close to zero. Note
that the SE equalization algorithm failed to converge in one (denoted by a
dashed line) of the thirty realizations (see Fig. 5.9d) and the associated g2[n]
was even not a fair approximation to a Kronecker delta function at all (see
Fig. 5.9c).

One can see, from Fig. 5.8 and Fig. 5.9, that the convergence speed for
the SE equalization algorithm is faster than that of the MNC equalization
algorithm implemented with the BFGS method. Furthermore, the MNC, SE,
and hybrid MNC algorithms ended up with similar residual ISI after con-
vergence, while the hybrid MNC algorithm converges much faster than the
MNC algorithm and converges almost as fast as the SE algorithm in all thirty
realizations without any divergence.

In this example, Algorithm MNC-LMMSE was also used to compute the
theoretical MNC equalizer vMNC[n] with N = 64, ζ = 2−10 and initial con-
ditions v[0][n] = (1, 1)T δ[n − 14]. Figure 5.10 shows that the MNC equalizer
vMNC[n] = (v1[n], v2[n])T (Fig. 5.10a, c) obtained by the MNC algorithm
at the first stage of the MSC procedure, and the theoretical vMNC[n] (Fig.
5.10b, d). From Fig. 5.10a-d, one can see that all the vMNC[n] obtained by the
MNC algorithm are close to the theoretical vMNC[n] obtained using Algorithm
MNC-LMMSE, thereby verifying Property 5.35.

�

Example 5.39 (Blind MIMO Equalization for s.i.t.c. Inputs Using
SOS and HOS Based Algorithms)
This example presents some simulation results of blind MIMO equalization for
performance tests to the proposed MP method and equalization-GCD algo-
rithm. In the example, a 3×2 MA(4) system H[n] whose coefficients are given
in Table 5.6 was considered. The driving inputs sk[n] in (5.93) were assumed
to be zero-mean i.i.d. binary sequences of {+1,−1} with equal probability.
The colored inputs uk[n] were generated by filtering sk[n] with FIR systems
Bk(z), k = 1, 2, for which the following two cases were considered:

Case A. B1(z) = B̃(z) = 0.8127 − 0.2438z−1 + 0.5283z−2 and B2(z) =
0.9800 + 0.1985z−2 (i.e. two inputs with distinct power spectra).

Case B. B1(z) = B2(z) = B̃(z) (i.e. two inputs with the same power spec-
trum).

Real synthetic data y[n] of length N = 10000 were generated using (5.16)
with spatially independent and temporally white Gaussian noise w[n], and
then processed using the MP method (l1 = 0, l2 = 1, Nw = 7 and ξ =
10−3) and the equalization-GCD algorithm (p = q = 2, T1 = T2 = 15,
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Fig. 5.8 Thirty g1[n]s and ISIs versus iteration number i at the first stage of the
MSC procedure of Example 5.38. (a) g1[n] and (b) ISI associated with the MNC
algorithm implemented with the BFGS method; (c) g1[n] and (d) ISI associated
with the SE algorithm, and (e) g1[n] and (f) ISI associated with the hybrid MNC
algorithm
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Fig. 5.9 Thirty g2[n]s and ISIs versus iteration number i at the second stage of
the MSC procedure of Example 5.38. (a) g2[n] and (b) ISI associated with the MNC
algorithm implemented with the BFGS method; (c) g2[n] and (d) ISI associated
with the SE algorithm, and (e) g2[n] and (f) ISI associated with the hybrid MNC
algorithm
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Fig. 5.10 Results for the designed MNC equalizer at the first stage of the MSC

procedure and the true equalizer vMNC[n] = (v1[n], v2[n])T of Example 5.38. (a)
Thirty estimates of v1[n] obtained by the MNC algorithm, (b) the theoretical v1[n]
obtained by Algorithm MNC-LMMSE, (c) thirty estimates v2[n] obtained by the
MNC algorithm, and (d) the theoretical v2[n] obtained by Algorithm MNC-LMMSE

Table 5.6 Coefficients of H[n] used in Example 5.39

n 0 1 2 3 4

1,1[ ]h n 0.1436 0.4620 0.0504 –0.0956 –0.2881

1,2 [ ]h n 0.1231 0.2294 –0.1220 –0.4818 –0.0788

2,1[ ]h n –0.0877 0.1576 0.3427 –0.1303 –0.0759

2,2[ ]h n 0.1629 –0.1132 0.1333 0.2085 –0.1077

3,1[ ]h n 0.2631 0.3048 0.4356 0.3576 –0.1372

3,2[ ]h n 0.1717 –0.2292 –0.0327 –0.4628 0.5193
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L = 30 and ζ = 2−10). Fifty independent runs were performed and then
the averaged mean-square error (AMSE) of the obtained 50 estimates û1[n]
and 50 estimates û2[n] after normalization by the same energy of u1[n] was
calculated as the performance index for each simulated SNR.

Figure 5.11a shows the simulation results (AMSE of input estimates versus
SNR) for Case A associated with the MP method and the equalization-GCD
algorithm. The corresponding results for Case B are shown in Fig. 5.11b.
One can observe, from Fig. 5.11a, b, that the equalization-GCD algorithm
performs much better than the MP method, and that the performance of the
MP method is significantly degraded in Case B because the two input power
spectra are exactly the same.
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Fig. 5.11 AMSE of input estimates versus SNR using the MP method and
equalization-GCD algorithm of Example 5.39 for (a) Case A and (b) Case B

5.6 Summary and Discussion

In this chapter, we began with definitions, notations and some essential prop-
erties of MIMO LTI systems. Then the MIMO equalization problem was in-
troduced as well as ZF and MMSE criteria, and each of the associated ZF
and MMSE linear equalizers is expressed by a closed-form formula in terms
of the MIMO system and statistical parameters of the system inputs and the
additive noises at the system outputs.

Two types of blind SIMO equalization approach using SOS were then
introduced, including the noise subspace approach as summarized in Table
5.1 and the single-stage linear prediction approach as summarized in Table
5.2. Then the MP method using SOS for blind MIMO equalization was intro-
duced as summarized in Table 5.3. Though all of these equalization algorithms



326 5 MIMO Blind Equalization Algorithms

are furnished with the associated closed-form formulas, their computational
complexities are quite high due to calculations (e.g. eigenvalue decomposition
and inversion of matrices) of high-dimension correlation matrices involved.
Moreover, some conditions such as the disparity condition, the exact system
order known a priori, and distinct input power spectra are required and these
conditions may not be valid in practical applications such as wireless commu-
nications.

As for the blind MIMO equalization using HOS, the iterative MNC and
SE algorithms were introduced as summarized in Tables 5.4 and 5.5, respec-
tively, for the system inputs being s.i.t.i., followed by their properties and rela-
tions. The former is implemented through using a gradient-type optimization
method with guaranteed convergence. The latter is implemented through a set
of linear equations for updating the equalizer coefficients and its convergence
speed is super-exponentially fast, but it may diverge for limited data length
and finite SNR. According to a property regarding their equivalence (see Prop-
erty 5.34), a combination of these two algorithms was introduced, the hybrid
MNC algorithm, that is as computationally efficient as the SE algorithm in
finding the optimum MNC equalizer with guaranteed convergence. Meanwhile,
based on a property regarding the relation between the MNC equalizer and
LMMSE equalizer (see Property 5.35), Algorithm MNC-LMMSE was intro-
duced to efficiently obtain the theoretical (true) MNC equalizer (which has
no closed-form solution). This algorithm is useful in the simulation stage dur-
ing algorithm design. On the other hand, as for the case of system inputs
being s.i.t.c., the equalization-GCD algorithm for blind MIMO equalization
as shown in Fig. 5.6 was introduced that basically involves estimation of the
equivalent system with s.i.t.i. inputs, i.e. convolution of the unknown system
and the signal model (a diagonal MIMO LTI system), using the hybrid MNC
algorithm, and GCD computation for finding the unknown system.

All the MIMO blind equalization algorithms introduced were tested by
simulation for performance evaluation and comparison and verification of their
analytical properties and relations. Some advanced applications of the hybrid
MNC algorithm will be introduced in Chapter 6. This chapter only provides
a limited introduction to MIMO blind equalization and system identification.
The research on advanced MIMO blind equalization and system identification
algorithms remains central to signal processing and wireless communications.

Appendix 5A

Proof of Property 5.34

In the proof of Property 5.34 below, we need ∂σ2
e/∂v∗ which can easily be

seen to be

∂σ2
e

∂v∗ = E{e[n]y∗[n]} = E{y∗[n]yT [n]v} = R∗
yv. (5.97)
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Maximizing Jp,q(v) given by (5.73) is equivalent to maximizing

J̃p,q(v) = J2
p,q(v) =

|Cp,q{e[n]}|2
|σ2

e |p+q
=

Cp,q{e[n]}Cq,p{e[n]}
|σ2

e |p+q
(5.98)

which implies

∂J̃p,q(v)

∂v∗ = 2 · Jp,q(v) · ∂Jp,q(v)

∂v∗ . (5.99)

Taking partial derivative of J̃p,q(v) given by (5.98) with respect to v∗ yields

∂J̃p,q(v)

∂v∗ = J̃p,q(v) ·
{

1

Cq,p{e[n]} · ∂Cq,p{e[n]}
∂v∗ +

1

Cp,q{e[n]} · ∂Cp,q{e[n]}
∂v∗

−p + q

σ2
e

· ∂σ2
e

∂v∗

}
(5.100)

which together with (5.98) and (5.99) leads to

∂Jp,q(v)

∂v∗ =
Jp,q(v)

2
·
{

1

Cq,p{e[n]} · ∂Cq,p{e[n]}
∂v∗ +

1

Cp,q{e[n]} · ∂Cp,q{e[n]}
∂v∗

−p + q

σ2
e

· ∂σ2
e

∂v∗

}
. (5.101)

Setting ∂Jp,q/∂v∗ given by (5.101) equal to zero and substituting (5.97)
into the resultant equation, we obtain

R∗
yv =

σ2
e

p + q
· p

Cq,p{e[n]} · cum{e[n] : q, e∗[n] : p − 1, y∗[n]}

+
σ2

e

p + q
· q

Cp,q{e[n]} · cum{e[n] : p, e∗[n] : q − 1, y∗[n]}

= αq,p · cum{e[n] : q, e∗[n] : p − 1, y∗[n]}
+ αp,q · cum{e[n] : p, e∗[n] : q − 1, y∗[n]} (5.102)

where αp,q is given by (5.86).
As y[n] is complex, letting p = q in (5.102) yields

R∗
yv = 2 · αp,p · cum{e[n] : p, e∗[n] : p − 1, y∗[n]}

which is equivalent to (5.76) with p = q except for a scale factor. Similarly, as
y[n] is real, one can also obtain from (5.102) that

R∗
yv = (αp,q + αq,p) · cum{e[n] : p + q − 1, y[n]}

=
σ2

e

Cp,q{e[n]} · cum{e[n] : p + q − 1, y[n]}

which is also equivalent to (5.76) except for a scale factor. Thus we have
completed the proof.

Q.E.D.
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Appendix 5B

Proof of Property 5.35

First of all, for ease of use in the proof of Property 5.35 below, let us prove
that cum{e[n] : p, e∗[n] : q − 1, (yi[n− k])∗}, i = 1, 2, ..., M , can be expressed
as (5.103) as follows.

cum{e[n] : p, e∗[n] : q − 1, y∗
i [n − k]}

= cum

{
K∑

l=1

∞∑
k1=−∞

gl[n − k1]ul[k1] : p,

K∑
l=1

∞∑
k1=−∞

g∗l [n − k1]u
∗
l [k1] : q − 1,

K∑
l=1

∞∑
k1=−∞

[H[n − k1 − k]]∗ilu
∗
l [k1]

}
(by (5.19))

=

K∑
l=1

Cp,q{ul[n]}
∞∑

k1=−∞
gp

l [k1](g
∗
l [k1])

q−1[H[k1 − k]]∗il (by (A5-15))

=

K∑
l=1

Cp,q{ul[n]} · (g̃p,q[k; l] � [H[−k]]∗il) , k = L1, L1 + 1, ..., L2 (5.103)

where g̃p,q[k; l] is given by (5.80).
Substituting (5.103) into (5.102), one can obtain

M∑
l=1

L2∑
k=L1

r∗i,l[k − n]vl[k] =

M∑
l=1

rl,i[n] � vl[n]

= αq,p ·
K∑

l=1

Cq,p{ul[n]} · (g̃q,p[n; l] � [H[−n]]∗il)

+ αp,q ·
K∑

l=1

Cp,q{ul[n]} · (g̃p,q[n; l] � [H[−n]]∗il) ,

i = 1, ..., M, n = L1, ..., L2 (5.104)

where ri,l[k] = E[yi[n]y∗
l [n − k]] = r∗l,i[−k]. Letting L1 → −∞, L2 → ∞ and

then taking the discrete-time Fourier transform of both sides of (5.104), one
can obtain

S
T
y (ω)V MNC(ω) = αq,pH

∗(ω)Dq,pG̃q,p(ω)+αp,qH
∗(ω)Dp,qG̃p,q(ω) (5.105)

where Dp,q and G̃p,q(ω) are given by (5.79) and (5.81), respectively. Finally,
from (5.105) and (5.82), we obtain

V MNC(ω) =
[
ST

y (ω)
]−1

· H∗(ω) ·
(
αq,pDq,pG̃q,p(ω) + αp,qDp,qG̃p,q(ω)

)
= VT

MS(ω) ·D−1
1,1 ·

(
αq,pDq,pG̃q,p(ω) + αp,qDp,qG̃p,q(ω)

)
= VT

MS(ω) ·Q(ω)
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where Dp,q and Q(ω) are given by (5.79) and (5.85), respectively. Thus we
have completed the proof.

Q.E.D.

Appendix 5C

A GCD Computation Algorithm

Assume that

Fi(z) =

T∑
n=0

fi[n]z−n, i = 1, 2, ..., M,

Hi(z) =

L∑
n=0

hi[n]z−n, i = 1, 2, ..., M.

Let Fi denote a (T + 1) × (2T + 1) Sylvester matrix formed by {fi[0], fi[1],
..., fi[T ]} which is defined as

Fi =

⎛⎜⎜⎜⎜⎜⎝
fi[0] fi[1] · · · fi[T ] 0 0 · · · 0

0 fi[0] fi[1] · · · fi[T ] 0 · · · 0

. . .
. . .

0 0 · · · 0 fi[0] fi[1] · · · fi[T ]

⎞⎟⎟⎟⎟⎟⎠ ,

and F denote the M(T +1)×(2T +1) generalized Sylvester matrix associated
with F (z) defined as

F =
(
FH

1 ,FH
2 , ...,FH

M

)H
. (5.106)

Let um and vm, m = 1, 2, ..., (T − L) denote the left and right singular
vectors of F

H , respectively, associated with the (T − L) smallest singular
values. Let um,i and vm,i denote the ith entries of um and vm, respectively,
and let r = (T − L + 1) and r′ = (T + L + 1). Define

Ru =

T−L∑
m=1

UH
mUm (5.107)

where

Um =

⎛⎜⎜⎜⎜⎝
um,1 um,2 · · · um,r

um,2 um,3 · · · um,r+1

· · · · · · · · · · · ·
um,r′ um,r′+1 · · · um,2T+1

⎞⎟⎟⎟⎟⎠
is a r′ × r matrix, and define
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Rv =

T−L∑
m=1

VmVH
m (5.108)

where
Vm =

(
VH

m,1,V
H
m,2, ...,V

H
m,M

)H

in which Vm,i is the (L+1)× r′ Sylvester matrix formed by {vm,(i−1)(T+1)+1,
vm,(i−1)(T+1)+2, ..., vm,i(T+1)}.

The GCD computation algorithm reported in [42] for obtaining ĥ[n] and

b̂[n] from f [n] is summarized as follows:

GCD Computation Algorithm

(S1) Form F by (5.106) and perform the singular value decomposition (SVD)
of FH .

(S2) Form Ru and Rv by (5.107) and (5.108), respectively.

(S3) Estimate ĥ =
(
ĥ1[0], ĥ1[1], ..., ĥ1[L], ĥ2[0], ..., ĥ2[L], ..., ĥP [0], ..., ĥM [L]

)T

and b̂ =
(
b̂[0], b̂[1], ..., b̂[T − L]

)T

as the eigenvectors associated with the

minimum eigenvalues of Rv and Ru, respectively. Then the estimate

ĥ[n] =
(
ĥ1[n], ĥ2[n], ..., ĥM [n]

)T

can be obtained from ĥ.

Problems

5.1. Derive the LMMSE equalizer VMS(ω) as given by (5.29).

5.2. Derive the linear prediction filter and the optimum linear prediction
error vector given by (5.57) and (5.56), respectively.

5.3. Prove Theorem 5.31.

5.4. Prove Theorem 5.32.

5.5. Prove Property 5.36.

Computer Assignments

5.1. Write a computer program and perform the same simulation as pre-
sented in Example 5.37 for blind SIMO equalization using each of
the following equalization algorithms:
(a) Noise subspace approach
(b) Single-stage linear prediction approach
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(c) MIMO-MNC equalization algorithm
(d) MIMO-SE equalization algorithm
(e) MIMO hybrid MNC equalization algorithm.

5.2. Write a computer program and perform the same simulation as pre-
sented in Example 5.38 for blind MIMO equalization using each of
the following equalization algorithms:
(a) MIMO-MNC equalization algorithm
(b) MIMO-SE equalization algorithm
(c) MIMO hybrid MNC equalization algorithm.
Illustrate the MNC equalizers obtained at the first stage of the MSC
procedure in Part (a) and compare them with the theoretical MNC
equalizer obtained by Algorithm MNC-LMMSE.

5.3. Write a computer program and perform the same simulation as pre-
sented in Example 5.39 for blind MIMO equalization using each of
the following equalization algorithms:
(a) MP method
(b) Equalization-GCD equalization algorithm.
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6

Applications of MIMO Blind Equalization

Algorithms

This chapter introduces some applications of the MIMO hybrid MNC blind
equalization algorithm presented in Chapter 5 in areas of signal processing
and digital communications according to either the SIMO or MIMO system
model involved in the application of interest.

Straightforward applications for the SIMO case include fractionally spaced
equalization (FSE) and blind maximum ratio combining (BMRC), while ad-
vanced applications in blind system identification (BSI) and multiple time
delay estimation (MTDE) further involve nonlinear relations between the sys-
tem and the MNC equalizer. On the other hand, applications of the MIMO
hybrid MNC blind equalization algorithm for the MIMO case include blind
beamforming for source separation and multiuser detection in wireless com-
munications, and meanwhile other signal processing schemes such as signal
classification are also needed besides channel equalization and system identi-
fication.

6.1 Fractionally Spaced Equalization in Digital

Communications

Consider a digital communication system with a received baseband signal
y(t) modeled by (4.182). For simplicity, let us assume that there is no residual
phase offset (i.e. Δθ(t) = 0) such that y(t) can be modeled as

y(t) =
∞∑

k=−∞
u[k]h(t − kT − ε) + w(t). (6.1)

Conventionally, as introduced in Section 4.5.3, the continuous-time signal
y(t) is converted into a discrete-time signal y[n] = y(t = nT + ε̂) through
baud-rate sampling with sampling instants t = nT + ε̂ followed by discrete-
time signal processing for channel equalization and symbol detection. When
the bandwidth of the continuous-time signal y(t) is wider than 1/(2T ) (i.e.
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excess bandwidth exists), baud-rate sampling will cause aliasing in the signal
spectrum, and the aliasing effects depend on actual sampling instants and
the channel h(t). Typically, a mechanism for adjusting the timing phase (i.e.
symbol timing synchronization) to maximize the SNR of the resultant y[n]
is used for the design of baud-rate sampling based receivers. Nevertheless, a
certain level of aliasing due to excess bandwidth is inevitable even though
poor timing phase can be avoided through proper symbol timing synchroniza-
tion. Consequently, a sampling rate higher than the baud rate has been of
importance in modern receiver design because both the aliasing effects and
the timing phase issue no longer exist. Moreover, as the channel bandwidth
is wider than 1/(2T ), sampling rates higher than 1/T bring channel diversity,
and the discrete-time signal obtained at a multiple of the baud rate can be
equivalently represented by a discrete-time SIMO model. Therefore, an SIMO
blind equalization algorithm can be applied.

Let Ts = T/M denote the sampling interval where M is a positive integer.
Then the discrete-time signal obtained by sampling the received signal y(t)
given by (6.1) can be expressed as

y[n] = y(t = nTs + ε̂) =
∞∑

k=−∞
u[k]h(nTs − kT + Δε) + w(nTs + ε̂) (6.2)

where Δε = ε̂ − ε is the timing phase error. Let

yi[n] = y[nM + i], i = 1, 2, ..., M (6.3)

hi[n] = h(nT + iTs + Δε), i = 1, 2, ..., M (6.4)

wi[n] = w(nT + iTs), i = 1, 2, ..., M. (6.5)

It is easy to see, from (6.2), that

yi[n] =
∞∑

k=−∞
u[k]hi[n − k] + wi[n], i = 1, 2, ..., M,

or equivalently, in vector form

y[n] = (y1[n], y2[n], ..., yM [n])T

= h[n] � u[n] + w[n] =
∞∑

k=−∞
h[n − k]u[k] + w[n] (6.6)

where h[n] = (h1[n], h2[n], ..., hM [n])T and w[n] = (w1[n], w2[n], ..., wM [n])T .
Obviously, in light of (6.6), samples of y(t) with sampling interval equal to
Ts = T/M lead to a diversity of M discrete-time subchannels. Hence an SIMO
blind equalization algorithm can be employed to process y[n] to estimate the
symbol sequence u[n]. However, it should be noted that SOS based approaches
require that all the subchannels hi[n] satisfy the channel disparity condition
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(no common subchannel zeros), which may be violated or nearly violated
whenever the excess bandwidth is small. Therefore, SIMO blind equalization
algorithms using HOS such as the MIMO hybrid MNC algorithm which allows
common subchannel zeros is preferable to SOS based approaches.

Example 6.1 (Effects of Timing Phase Error)
With the received continuous-time signal y(t) given by (6.1) where the noise
w(t) is white Gaussian with power spectral density σ2

w, this example shows
some simulation results of baud spaced equalization (BSE) (i.e. M = 1) and
FSE (i.e. M > 1) using the hybrid MNC equalizers for different values of the
normalized timing phase error Δε/T . Each synthetic symbol sequence u[n]
(with σ2

u = E{|u[n]|2} = 1) was assumed to be a 16-QAM signal of length
equal to N = 4096 and the LTI channel h(t) was assumed to be a truncated
raised cosine pulse given by

h(t) = p(t) · rect
(

t

6T

)
(6.7)

where p(t) and rect(t) are defined by (4.188) and (4.186), respectively, and
the roll-off factor α in p(t) was chosen to be equal to 0.5 in this example. Note
that the domain of support for h(t) is [−3T, 3T ]. The T -spaced discrete-time
channel impulse responses h[n] = h(nT + Δε) and their magnitude responses
|H(ω)| for Δε/T = 0, 0.1, ..., 0.5 are shown in Figs. 6.1a, b, respectively. The
synthetic y[n] was generated according to (6.2) with σ2

w = 0.01 (i.e. SNR= 20
dB for y[n] = y(nT )).

The causal FIR hybrid MNC equalizer of length L was used to process the
synthetic T -spaced signal y[n] for both L = 6 and L = 12 and T/2-spaced
signal y[n] for L = 6. Note that the degree of freedom of the equalizer used in
the BSE for L = 12 is the same as used in the FSE for L = 6 since M = 2. The
resultant averaged output SINRs and ISIs for Δε/T = 0, 0.1, ..., 0.5 calculated
from thirty independent runs are shown in Figs. 6.2a, b, respectively. It can
be seen, from Figs. 6.2a, b, that the performance of the FSE is insensitive to
the timing phase error and superior to that of the BSE for all Δε/T in terms
of averaged output SINR, although the latter itself is also better for L = 12
than for L = 6 as Δε/T > 0.2.

�

Example 6.2 (FSE of Real Digital Communications Data)
This example shows some results of fractionally spaced equalization using the
hybrid MNC equalization algorithm (p = q = 2, L = 15, M = 2) to process
real data taken from the on-line Signal Processing Information Base (SPIB)
for the following two cases:

Modem data: A sequence of received data (about 4.75 seconds of random
data) from V.29, 9600 bps modems are recorded with T/2 sam-
pling at 4800 Hz. The total data length N is equal to 22800
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Fig. 6.1 (a) The T -spaced discrete-time channel impulse responses h[n] = h(nT +
Δε) for Δε/T = 0, 0.1, ..., 0.5 and (b) their magnitude responses |H(ω)|
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Fig. 6.2 Simulation results of Example 6.1 for BSE and FSE using the hybrid
MNC algorithm. (a) Averaged output SINRs and (b) averaged ISIs versus the
timing phase error Δε/T

samples. The carrier has been removed (but some offset perhaps
remains) (taken from http://spib.rice.edu/spib/modem.html).

Cable data: A sequence of received cable channel data are recorded via sam-
pling at twice per symbol. The total data length N is equal
to 65536 samples. The carrier frequency has been down con-
verted close to 0 Hz with some residual offset (taken from
http://spib.rice.edu/spib/cable.html).

For the case of Modem data, Fig. 6.3a shows 4000 samples of the received
data and Fig. 6.3b shows 2000 symbols of the equalized data where a specific
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16-QAM constellation with 8 phases and 4 amplitudes can be observed. On
the other hand, the corresponding results for the case of Cable data are shown
in Fig. 6.4a, b. A 64-QAM constellation can be seen in Fig. 6.4b as well as a
rotation of each symbol due to the residual frequency offset.

�

(a) (b)

Fig. 6.3 Results for the case of Modem data in Example 6.2. (a) The received
T/2 sampled data (4000 samples), and (b) the equalized data (2000 symbols) using
the hybrid MNC algorithm

6.2 Blind Maximum Ratio Combining

Consider a zero-mean colored nonGaussian source signal x[n] modeled as

x[n] = h[n] � u[n] (6.8)

where u[n] is an i.i.d. zero-mean nonGaussian random sequence, and the mea-
surement vector y[n] is given by

y[n] = (y1[n], y2[n], ..., yM [n])T

= a · x[n] + w[n] = H[n] � u[n] + w[n] (6.9)

where a is an M × 1 unknown column vector,

H[n] = ah[n] (6.10)

and w[n] is a zero-mean Gaussian M × 1 vector noise and statistically inde-
pendent of the desired signal x[n]. The data vector y[n] can be thought of



6.2 Blind Maximum Ratio Combining 341

(a) (b)

Fig. 6.4 Results for the case of Cable data in Example 6.2. (a) The received T/2
sampled data (4000 samples), and (b) the equalized data (2000 symbols) using the
hybrid MNC algorithm

as the received signals from M diversities (such as multiple paths or multiple
sensors or antennas).

It is desired to estimate x[n] with maximum SNR through spatial linear
processing of y[n] without the information of H[n]. Let e[n] be the spatial
filter output, i.e.

e[n] = vT y[n] = vT a · x[n] + w[n] (6.11)

where w[n] = vTw[n]. We would like to find the optimum v such that the
SNR associated with e[n] defined as

SNR(v) =
E{|vT a · x[n]|2}

E{|w[n]|2} = σ2
x · vT aaHv∗

vTRw[0]v∗ (6.12)

is maximum.
The MISO equalizer v[n] introduced in Chapter 5 consists of a bank of

linear FIR filters, with v[n] �= 0M for n = L1, L1 + 1, ..., L2 and length L =
L2−L1 +1. As L1 = L2 = 0, the MISO equalizer v[n] of length L = 1 reduces
to a linear combiner v = v[0] (M × 1 column vector). Therefore, the MIMO
hybrid MNC equalization algorithm can be employed to design the optimum
linear combiner v with no need for any information about a. The resultant
MIMO-MNC BMRC method is also supported by the following theorem [1,2].

Theorem 6.3 (BMRC). Suppose that y[n] given by (6.9) satisfies Assump-
tions (A5-13) through (A5-17). The optimum MIMO-MNC linear combiner is
given by



342 6 Applications of MIMO Blind Equalization Algorithms

vMNC =
(R∗

w[0])−1a∗

‖(R∗
w[0])−1a∗‖ = λvMS, λ �= 0 (6.13)

where vMS is the nonblind LMMSE estimator of x[n], and

SNR(vMNC) = SNRmax = σ2
x · aH(Rw[0])−1a. (6.14)

See Appendix 6A for the proof of Theorem 6.3.
Furthermore, the computational efficiency of the MIMO hybrid MNC lin-

ear combiner is supported by the following fact.

Fact 6.4. Any initial condition v[0] with aT v[0] �= 0 leads the MIMO hybrid
MNC equalization algorithm to v[1] = vMNC given by (6.13) at the first iter-
ation.

The proof of Fact 6.4 is given in Appendix 6B.

Example 6.5 (BMRC)
This example shows some simulation results for BMRC with the signals re-
ceived by four sensors (i.e. M = 4) using the MIMO hybrid MNC linear
combiner. The desired signal x[n] was assumed to be a 16-QAM signal, the
unknown column vector a = (1, 0.80902−j0.58779,−0.30902−j0.95106,−1)T

and the noise w[n] was assumed to be spatially independent and temporally
white Gaussian. The synthetic data y[n] for N = 1024 and SNR = 14 dB,
shown in Fig. 6.5a, were processed using the 4×1 hybrid MNC linear combiner.
Figure 6.5b depicts the constellation of the combiner output. Evidently, the
enhanced signal shown in Fig. 6.5b exhibits a substantial SNR improvement
compared with each received signal yi[n] shown in Fig. 6.5a.

�

6.3 SIMO Blind System Identification

Blind identification of SIMO systems deals with the problem of estimating
an M × 1 LTI system, denoted by h[n] = (h1[n], h2[n], ..., hM [n])T , with only
the M × 1 output vector measurements y[n] = (y1[n], y2[n], ..., yM [n])T , n =
0, 1, ..., N − 1, generated from the following convolutional model

y[n] = h[n] � u[n] + w[n] (6.15)

where u[n] is the system input and w[n] is the vector noise. Let us make the
following assumptions for y[n] given by (6.15)

(A6-1) The system input u[n] is a zero-mean, i.i.d., nonGaussian random
process with variance σ2

u.

(A6-2) The SIMO system h[n] is an FIR system with frequency response
H(ω) �= 0 for all −π < ω ≤ π.
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(b)

Fig. 6.5 Results of Example 6.5. The constellations of (a) the data received by
the four sensors, and (b) the combiner output
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(A6-3) The noise w[n] is zero-mean spatially uncorrelated Gaussian and
statistically independent of u[n].

With the noise effects taken into account, an iterative FFT-based SIMO
BSI algorithm [3] is introduced next that exhibits better performance than
the conventional IOCC system estimation method.

6.3.1 MIMO-MNC Equalizer–System Relation

Let M×1 vMNC[n] be the optimum MNC equalizer associated with Jp,p(v[n])
(see (5.73)) where p ≥ 2. Processing the given measurements y[n] by vMNC[n]
yields the equalized signal

e[n] = vT
MNC[n] � y[n] = g[n] � u[n] + eN[n] (6.16)

where eN[n] = vT
MNC[n] � w[n] and

g[n] = vT
MNC[n] � h[n] (6.17)

is the overall system (after equalization). As mentioned in Section 5.4.1, the
unknown SIMO system h[n] can be estimated by the IOCC method as

ĥ[n] =
1

σ2
e

E{y[m + n]e∗[m]} (by (5.90))

=

(
σ2

u

σ2
e

)
h[n] � g∗[−n] +

1

σ2
e

Rw[n] � v∗
MNC[−n] (6.18)

where the second line of (6.18) was obtained by substituting (6.15) and (6.16)
into the first line of (6.18). One can infer, from (6.18), that the performance
degradation of the IOCC method is due to deviation of the overall system g[n]
from a Kronecker delta function and the noise term (the second term on the
right-hand side of (6.18)) for lower SNR.

On the other hand, the system induced phase distortion for finite SNR can
be completely removed by the optimum MNC equalizer vMNC[n] as described
in the following fact, which is also a special case (K = 1, and p = q) of
Property 5.36 (Problem 6.1).

Fact 6.6. The optimum overall system g[n] �= 0 associated with the vMNC[n]
(p = q) for finite SNR is a linear phase system, i.e.

G(ω) = |G(ω)|ej(ωτ+ϕ) (6.19)

where τ and ϕ are an integer and a real constant, respectively.

Moreover, a relation between the system h[n] and the vMNC[n] (p = q) for
any SNR can easily be established from Property 5.35 and is summarized in
the following fact (Problem 6.2):
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Fact 6.7. With sufficient length for vMNC[n], the system H(ω) is related to
vMNC[n] (p = q) for any SNR via

Gp(ω) · H∗(ω) = β · ST
y (ω)V MNC(ω) (6.20)

where Gp(ω) is the DTFT of

gp[n] = gp[n](g∗[n])p−1, (6.21)

and

β =
1

σ2
e

(
Cp,p{e[n]}
Cp,p{u[n]}

)
=

1

σ2
e

∞∑
n=−∞

|g[n]|2p > 0 (6.22)

is a real positive constant.

Note that besides optimum MNC equalizer vMNC[n], all other local optimum
v[n] of Jp,p(v[n]) and the trivial solution v[n] = 0 satisfy (6.20) but they are
not the solutions of interest.

6.3.2 Analysis on System Identification Based on MIMO-MNC
Equalizer–System Relation

It can be observed, from the relation (6.20), that given the MNC equalizer
vMNC[n] and the power spectral matrix Sy(ω), the system h[n] can be esti-
mated by solving (6.20) if the solution for h[n] of the nonlinear equation (6.20)
is unique over the class that the overall system is linear phase (motivated by
Fact 6.6). Meanwhile, noise effects embedded in Sy(ω) and vMNC[n] can also
be taken into account in the estimation of h[n] regardless of the value of SNR.
Prior to presenting the algorithm for obtaining h[n], let us present an analysis
of the solution set of h[n] solved from the nonlinear equation (6.20) with the
following constraint:

(C-SIMO) The overall system g[n] �= 0 is linear phase.

With the relation given by (6.20), the system h[n] can be solved up to a
linear phase ambiguity as revealed in the following property.

Property 6.8. Any SIMO system

H ′(ω) = H(ω) · ej(ωτ+ϕ) (6.23)

for any integer τ and real ϕ satisfies the relation given by (6.20).

The proof of Property 6.8 is left as an exercise (Problem 6.3). Property 6.8
and the constraint (C-SIMO) imply that g[n] can be zero phase. Furthermore,
gp[n] given by (6.21) can also be shown to be zero phase without zeros on the
unit circle as g[n] is zero phase, as stated in the following property.
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Property 6.9. Assume that g[n] �= 0 is zero phase and that

(A6-4) the number of zeros of G(z) on the unit circle is finite.

Then the associated system gp[n] �= 0 given by (6.21) is a positive definite
sequence, i.e. Gp(ω) > 0, for all −π < ω ≤ π.

The proof of Property 6.9 is left as an exercise (Problem 6.4). Next, let us
present the following property regarding the solution set of h[n] from (6.20)
under the constraint (C-SIMO).

Property 6.10. The system H(ω) can be identified up to a linear phase am-
biguity by solving (6.20) provided that g[n] �= 0 is zero phase and satisfies
Assumption (A6-4).

See Appendix 6C for the proof of Property 6.10 in which Property 6.9 and
the Lemma below are needed.

Lemma 6.11. Assume that a > 0, b > 0, c > 0 and m is a positive integer.
If a(am + cm) = b(bm + cm), then a = b.

The proof of Lemma 6.11 is straightforward and thus omitted here.
It can be inferred, by Property 6.10, that the solution of (6.20) under

the constraint (C-SIMO) and Assumption (A6-4) is exactly the true system
H(ω) except for a time delay (due to a linear phase ambiguity) as long as the
true vMNC[n] and Sy(ω) are given. Assumption (A6-4) generally holds true
in practical applications and is never an issue in the design of BSI algorithms.
In general, the system estimate ĥ[n] solved from (6.20) is consistent provided

that an estimate Ŝy(ω) can be obtained using a consistent multichannel power
spectral estimator.

On the other hand, one can see, from (6.21) and (6.17), that the left-hand
side of (6.20) is a highly nonlinear function of h[n], implying that determin-
ing a closed-form solution of (6.20) for h[n] is formidable under the constraint
(C-SIMO). Next, let us introduce an iterative FFT-based nonparametric algo-
rithm for estimating h[n] under the constraint (C-SIMO).

6.3.3 SIMO Blind System Identification Algorithm

Let Gp[k], H [k], Sy[k], and V MNC[k] denote the N -point DFTs of gp[n], h[n],
Ry[n], and vMNC[n], respectively. Let ak and bk be M × 1 vectors defined as

ak = Gp[k]H∗[k], k = 0, 1, ...,N − 1, (6.24)

bk = S
T
y [k]V MNC[k], k = 0, 1, ...,N − 1. (6.25)

Then, according to the relation given by (6.20), one can obtain

a = βb (6.26)
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where a =
(
aT

0 , aT
1 , ...,aT

N−1

)T
, b =

(
bT
0 , bT

1 , ..., bT
N−1

)T

, and β > 0 is given

by (6.22). Let us emphasize that the positive constant β in (6.26) is unknown,
and this implies that either β must be estimated together with the estimation
of h[n] or its role must be virtual during the estimation of h[n]. Consequently,
the equations (6.24), (6.25) and (6.26) reveal that the true system H(ω) is
the one such that the angle between the vector a and the vector b is zero (in
phase). Thus, H[k] at k = 0, 1, ..., N − 1 can be estimated by maximizing

C(H [k]) �
Re{aHb}
||a|| · ||b|| . (6.27)

Note that −1 ≤ C(H[k]) = C(αH[k]) ≤ 1 for any α �= 0 and that C(H[k]) = 1
if and only if (6.26) holds.

However, it is quite involved to obtain the gradient ∂C(H[k])/∂H[k] be-
cause C(H [k]) is a highly nonlinear function of H[k], so gradient based op-
timization methods are not considered for finding the maximum of C(H[k]).
Instead, an iterative FFT-based BSI algorithm [3], which can also be thought
of as a numerical optimization approach, is introduced below for the estima-
tion of h[n]. This algorithm, as shown in Fig. 6.6, includes two steps, one to
obtain the MNC equalizer and estimate the power spectral matrix of y[n] and
the other to obtain the estimate of H[k] by maximizing C(H [k]) given by
(6.27), as described as follows.

SIMO BSI Algorithm (Fig. 6.6)

(T1) Blind Deconvolution and Power Spectral Matrix Estimation.
With finite data y[n], obtain the MNC equalizer vMNC[n] with p = q,
and compute its N -point FFT V MNC[k]. Obtain the power spectral
matrix estimate Sy[k], using a multichannel power spectral estimator.
Form the vector bk via Sy[k] and V MNC[k] according to (6.25).

(T2) System Identification.

(S1) Set the iteration number i = 0 and the initial condition H [0][k].

Obtain G[0][k] = V T
MNC[k]H [0][k] followed by its N -point inverse

FFT g[0][n].

(S2) Update i to i + 1. Compute

g[n] =
1

2

(
g[i−1][n] +

(
g[i−1][−n]

)∗)
(zero-phase) (6.28)

and update g[i−1][n] to g[i−1][n] = g[n]. Then obtain

H [i][k] =
b∗k

G
[i−1]
p [k]

(by (6.24) and (6.26))
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where G
[i−1]
p [k] is the N -point FFT of g

[i−1]
p [n] obtained by (6.21).

Normalize H [i][k] such that
∑

k ‖H [i][k]‖2 = 1.

(S3) Obtain G[i][k] = V T
MNC[k]H [i][k] followed by its N -point inverse

FFT g[i][n]. If C(H [i][k]) > C(H [i−1][k]), go to (S4). Otherwise,

compute ΔH[k] = H [i][k] − H [i−1][k], and update H [i][k] via

H [i][k] = H [i−1][k] + μ · ΔH [k]

where the step size μ is chosen such that C(H [i][k]) > C(H [i−1][k]).

Normalize H [i][k] such that
∑

k ‖H [i][k]‖2 = 1.

(S4) If

C(H [i][k]) − C(H [i−1][k])∣∣∣C(H [i−1][k])
∣∣∣ > ζ

where ζ is a pre-assigned convergence tolerance, then go to (S2);

otherwise, the frequency response estimate Ĥ(ω) = H [i](ω) at
ω = 2πk/N for k = 0, 1, ...,N − 1, and its N -point inverse FFT

ĥ[n] are obtained.
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Fig. 6.6 Block diagram of the SIMO BSI algorithm

In (T1) of the above SIMO BSI algorithm, the MNC equalizer vMNC[n] can
be obtained efficiently using the MIMO hybrid MNC equalization algorithm,
and the AR spectral estimators such as the multichannel Levinson recursion
algorithm [4] summarized in Appendix 6D can be employed to estimate Sy[k].

In (T2) of the above SIMO BSI algorithm, local convergence is guaranteed

because C(H [i][k]) is upper bounded by unity and its value is increased at
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each iteration before convergence. Therefore, the closer to unity the C(Ĥ[k]),
the more accurate the system estimate obtained.

With the estimate of ĥ[n] obtained by (6.18) as the initial condition for

H [0][k] in (S1) of (T2), C(Ĥ[k]) = 1 can usually be obtained after convergence
of (T2). Meanwhile, the associated overall system ĝ[n] is guaranteed zero phase
due to (6.28) in (S2) of (T2). Moreover, in (S3) of (T2), the step size μ = ±1/2l

can be used with a suitable l ∈ {0, 1, ..., K} where K is a preassigned positive

integer, such that C(H [i][k]) > C(H [i−1][k]) at each iteration.
It should be noted that an upper bound of the system order is needed

though the exact system order is not required. The FFT size N should be
chosen to be larger than the upper bound of the order of h[n] such that alias-

ing effects on the resultant ĥ[n] are negligible. Surely the larger the FFT size,
the larger the computational load of the SIMO BSI algorithm, while the es-
timation error of the resultant ĥ[n] is almost the same. If the true system is
an IIR system, a finite-length approximation of h[n] will be obtained by the
above SIMO BSI algorithm.

Example 6.12 (SIMO Blind System Identification)
This example continues Example 5.37, where a 3 × 1 system is considered
for Case A (without common subchannel zeros) and for Case B (with a com-
mon subchannel zero), by further showing some simulation results using the
noise subspace approach, the IOCC method and the SIMO BSI algorithm
introduced above.

Let ĥi[n; r] denote the estimate of the ith subchannel hi[n] (the ith entry
of h[n]) obtained at the rth run with the time delay and the scale factor
between them artificially removed. The normalized mean square error (NMSE)
associated with hi[n] defined as

NMSEi =
1

30
·

30∑
r=1

15∑
n=0

∣∣∣ĥi[n; r] − hi[n]
∣∣∣2

15∑
n=0

|hi[n]|2
(6.29)

was computed for all the subchannels and then averaged to obtain the overall
NMSE (ONMSE)

ONMSE =
1

M

M∑
i=1

NMSEi (6.30)

which was used as the performance index.
Figure 6.7a shows the simulation results (ONMSEs versus SNR) for Case

A associated with the noise subspace approach (indicated by ‘NS’), the IOCC
method (indicated by ‘IOCC’) and the SIMO BSI algorithm (indicated by
‘SIMO BSI’), and Fig. 6.7b shows the corresponding results for Case B. One
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can observe, from Fig. 6.7a, b, that the performance of the SIMO BSI algo-
rithm is uniformly superior to that of the IOCC method, and that the values
of ONMSE reach a minimum (a floor) as SNR increases for each N , which
is smaller for larger data length N . On the other hand, the noise subspace
approach (with the true order) performs much better than both the SIMO
BSI algorithm and the IOCC method for high SNR in Case A, whereas it
failed in Case B due to violation of the channel disparity condition.
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Fig. 6.7 Simulation results of blind SIMO system identification for (a) Case A
and (b) Case B in Example 6.12
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6.4 Multiple Time Delay Estimation

Estimation of time delay(s) between the measurements received by two (or
more) sensors is crucial in many signal processing areas such as direction of
arrival and range estimation in sonar, radar, and geophysics, etc. The conven-
tional methods estimate a single time delay with the associated two sensor
measurements at a time (instead of simultaneous estimation of multiple time
delays) assuming that the two channel gains are in phase. By the fact that the
signal model for the time delay estimation (TDE) problem can be formulated
as an SIMO model and the fact that complete information of all the time
delays is contained in the phase of the SIMO system, an FFT-based TDE
algorithm is introduced next for simultaneous estimation of all time delays
(with respect to a reference sensor) using all the available sensor measure-
ments, not only leading to space diversity gain but also allowing the unknown
channel gains to be independent.

6.4.1 Model Assumptions

Assume that the measurements y[n] = (y1[n], y2[n], ..., yM [n])T are measured
from M (≥ 2) spatially separated sensors that satisfy{

y1[n] = x[n] + w1[n],

yi[n] = x[n] � di[n] + wi[n], i = 2, 3, ..., M
(6.31)

where x[n] is the source signal (could be temporally colored), and di[n], i ∈
{2, 3, ..., M} is an LTI system of frequency response

Di(ω) = Aie
−jωdi (6.32)

where Ai and di, i = 2, 3, ..., M , are (real or complex) gains and real numbers,
respectively, and w[n] = (w1[n], w2[n], ..., wM [n])T is an M × 1 vector noise
whose components can be spatially correlated and temporally colored. Note
that Di(ω) given by (6.32) is called the (scaled) ideal delay system of di samples
delay, even if di is not an integer. Therefore, for notational convenience, let
us rewrite the signal model given by (6.31) as

y[n] = (x[n], A2x[n − d2], ..., AMx[n − dM ])T + w[n], (6.33)

where Aix[n−di] stands for the signal x[n]�di[n]. The goal is to estimate all the
(M − 1) time delays {d2, d3, ..., dM} simultaneously from the measurements
y[n].

For ease of later use, let us define the SNR associated with yi[n] as follows

SNRi =
E{|yi[n] − wi[n]|2}

E{|wi[n]|2} . (6.34)
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It should be noted that SNRi denotes the signal quality of the ith sub-
channel (or sensor) while SNR defined by (5.18) denotes the total signal
quality associated with y[n], and that there exist multiple distributions of
{SNRi, i = 1, 2, ..., M} corresponding to the same SNR.

Let us further assume that the source signal x[n] is stationary colored
nonGaussian and can be modeled as

x[n] =

∞∑
k=−∞

h̃[k]u[n − k] (6.35)

where h̃[n] is a stable LTI system and u[n] is a stationary zero-mean, tem-
porally i.i.d. nonGaussian random sequence. Substituting (6.35) into (6.33)
gives rise to an SIMO system model as given by (6.15) with

h[n] = (h̃[n], A2h̃[n − d2], ..., AM h̃[n − dM ])T , (6.36)

where Aih̃[n−di] stands for h̃[n]�di[n]. Note that all of the M subchannels of

the SIMO system h[n] given by (6.36) have the same zeros as h̃[n]. The time
delays {d2, d3, ..., dM} can be extracted from the SIMO system h[n] which
can be estimated from the measurements y[n] ahead of time using a preferred
blind SIMO system identification method. In light of the specific form of h[n]
given by (6.36) and the fact that the phase information of h[n] is sufficient
for retrieving multiple time delays, the estimation of {d2, d3, ..., dM} can be
quite efficient as illustrated below.

6.4.2 MTDE with Space Diversity Gain

Let vMNC[n] denote the M × 1 optimum MIMO-MNC equalizer with the
measurements y[n] given by (6.15) where h[n] is given by (6.36). The specific
form of h[n] given by (6.36) leads to the phase of H(ω) given by

�{H(ω)} = (�{H̃(ω)}, �{H̃(ω)} + θ2 − ωd2,

...,�{H̃(ω)} + θM − ωdM )T (6.37)

where θi is the phase of Ai. On the other hand, it can easily be seen, from the
relation given by (6.20) (β > 0), that

�{H(ω)} = �{SH
y (ω)V ∗

MNC(ω)} − �{G∗
p(ω)}

=
(
Φ1(ω) − �{G∗

p(ω)}, Φ2(ω) − �{G∗
p(ω)}, ..., ΦM (ω) − �{G∗

p(ω)})T
(6.38)

where
(Φ1(ω), Φ2(ω), ..., ΦM (ω))T � �{SH

y (ω)V ∗
MNC(ω)}. (6.39)

By subtracting �{H̃(ω)} and (Φ1(ω) − �{G∗
p(ω)}) (i.e. the first element

of �{H(ω)}) from each element of �{H(ω)} given by (6.37) and (6.38), re-
spectively, one can obtain
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(0, Φ2(ω)−Φ1(ω), ..., ΦM (ω)−Φ1(ω))T = (0, θ2−ωd2, ..., θM −ωdM )T . (6.40)

Then,

F (ω) �
(
1, ej[Φ2(ω)−Φ1(ω)], ..., ej[ΦM (ω)−Φ1(ω)]

)T

=
(
1, ej(θ2−ωd2), ..., ej(θM−ωdM)

)T

(by (6.40)) (6.41)

and the inverse DTFT of Fi(ω) = ej(θi−ωdi), i ∈ {2, 3, ..., M} is given by

fi[n] = ejθi · sin(π(n − di))

π(n − di)
,

which can be thought of as a sequence obtained by sampling a continuous-time
signal

fi(t) = ejθi · sin(π(t − diT )/T )

π(t − diT )/T

with sampling period T . Note that |fi(t)| ≤ |fi(diT )| = 1, ∀t and thus di can
be estimated by

d̂i =
1

T
arg{max

t
|fi(t)|}.

Instead, di can be estimated within a preferred resolution by sampling fi(t)
at a higher sampling rate as described below.

Consider another sequence bi[n] which is obtained by sampling fi(t) at
sampling interval T/P , i.e. bi[n] = fi(t = nT/P), where P is a positive inte-
ger such that Pdi is an integer. Then, it can be shown that |bi[n]| ≤ |bi[Pdi]| =
|fi(diT )| = 1, ∀n, which implies that di can be estimated by finding the time
index associated with the maximum value of |bi[n]|. Because bi[n] (with sam-
pling period T/P) is actually an interpolated version of fi[n] (with sampling
period T ), the above idea can be implemented efficiently using zero-padded
FFT computation.

Assume that Fi[k] = Fi(ω = 2πk/N ), k = 0, 1, ..., N − 1, have been
obtained by (6.39) and (6.41) for a chosen N . Define

Bi[k] �

⎧⎪⎪⎨⎪⎪⎩
Fi[k], 0 ≤ k ≤ (N/2) − 1,

Fi[k + N −L], L − (N/2) ≤ k ≤ L− 1,

0, otherwise

(6.42)

where L = PN . Then, the L-point inverse DFT of Bi[k], denoted by bi[n], n =
0, 1, ...,L − 1, is exactly the interpolated version of fi[n], n = 0, 1, ...,N − 1.
Then the time delays can be estimated as

d̂i =

{
ni

P , 0 ≤ ni ≤ L/2 − 1,
ni−L
P , L/2 ≤ ni ≤ L− 1

(6.43)
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where
ni = arg {max{|bi[n]|, 0 ≤ n ≤ L− 1}} . (6.44)

Note that (6.43) means that the resolution of the estimated time delays is
T/P rather than T . The larger the P , the better the estimation accuracy of

d̂i, especially for the case of noninteger time delays. The above procedure for
the estimation of multiple dis constitutes the FFT-based MTDE algorithm
which is summarized as follows.

MTDE Algorithm

(S1) With finite data y[n], obtain the optimum MNC equalizer vMNC[n] (p =
q), and compute its N -point FFT V MNC[k]. Obtain the power spectral
matrix Sy[k] using a multichannel power spectral estimator.

(S2) Compute F [k] according to (6.39) and the first line of (6.41), and Bi[k]
given by (6.42). Then, obtain bi[n] (L-point inverse DFT of Bi[k]) for
i = 2, 3, ..., M .

(S3) Estimate {d2, d3, ..., dM} by (6.43) and (6.44).

Unlike conventional TDE methods (which estimate a single time delay with
the two associated sensor measurements at a time), the MTDE algorithm si-
multaneously processes all the measurements received at all the sensors. In
other words, the space diversity of multiple sensors has been exploited by the
MTDE algorithm, implying that its performance is robust to the distribution
of {SNRi, i = 1, 2, ..., M} due to channel fading as long as the overall SNR
stays the same. On the other hand, the MTDE algorithm can also be employed
to estimate each time delay using the associated two sensor measurements as
with conventional TDE methods. In this case, the MTDE algorithm reduces
to a single time delay estimation algorithm, referred to as the “MTDE-1 al-
gorithm” to distinguish it from the MTDE algorithm using all the sensor
measurements. However, the performance of the MTDE-1 algorithm is infe-
rior to that of the MTDE algorithm because of the reduced space diversity
exploited by the former.

Example 6.13 (MTDE)
This example considers the problem of simultaneously estimating two time de-
lays (d2 and d3) of a nonGaussian source signal impinging upon three sensors
(i.e. M = 3) using the MTDE algorithm. For comparison, d2 and d3 are also
separately estimated by the MTDE-1 algorithm as well as Ye and Tugnait’s
integrated bispectrum based time delay estimator (IBBTDE) [5] (summarized
in Appendix 6E) with the associated two sensor measurements used. That is,
for the MTDE-1 algorithm and the IBBTDE, d2 and d3 are also separately
estimated with the data sets {y1[n], y2[n]} and {y1[n], y3[n]}, respectively. Let
us emphasize that the performance of the IBBTDE has been shown to as-
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ymptotically approach the Cramér–Rao bound of a single time delay estimate
using the associated two sensor measurements [5].

The source signal x[n] was assumed to be a zero-mean, i.i.d. one-sided
exponentially distributed random sequence. The noise sequence w1[n] (in the
first sensor) was assumed to be a zero-mean colored Gaussian sequence gen-
erated as the output of the MA(1) system Hw(z) = 1 + 0.8z−1 driven by a
real white Gaussian sequence. The noise sequence w2[n] = w1[n] was perfectly
correlated with w1[n], and the noise sequence w3[n] = γ(w1[n] − w1[n − 6]),
where γ was chosen such that E{|w3[n]|2} = E{|w1[n]|2}, was also correlated
with w1[n], and thus all three sensor noises have the same power. The data
y[n] were synthesized according to (6.33) with the two time delays {d2 = 2.5,
d3 = 11.4} and two gains {A2, A3} given as follows:

Case A: A2 = A3 = 1 (i.e. SNR1 = SNR2 = SNR3)
Case B: A2 = 3 and A3 = −2 (i.e. SNR1 < SNR3 = 4SNR1 < SNR2 =

9SNR1).

The synthetic data y[n] of length N = 4096 were then processed by the
MTDE and MTDE-1 algorithms with the following settings: a 3×1 causal FIR
filter (or a 2 × 1 causal FIR filter) of length L = 10 for the MNC equalizer
vMNC[n] with p = q = 2, an AR multichannel power spectral estimator of
order equal to 12 for power spectral matrix estimation, the FFT size N = 128,
and P = 100. The same values of N and P were also used for the IBBTDE.

The simulation results for Case A and Case B are displayed in Fig. 6.8 and
Fig. 6.9, respectively. These figures show the root-mean-square errors (RMSE)

of the time delay estimates d̂2 and d̂3 associated with the MTDE algorithm,
the MTDE-1 algorithm and the IBBTDE.

From Fig. 6.8, one can see that the MTDE algorithm performs better than
the MTDE-1 algorithm due to the exploitation of more space diversity by the
former. The MTDE algorithm performs much better than the IBBTDE for
lower SNR, whereas the latter performs better than the former for higher SNR.
Furthermore, comparing Fig. 6.8 and Fig. 6.9, one can observe that the perfor-
mances of the MTDE algorithm, the MTDE-1 algorithm and the IBBTDE for
Case B are worse than those for Case A. Nevertheless, the MTDE algorithm
still works well for a wide range of overall SNR for Case B, justifying that
the performance of the MTDE algorithm is less sensitive to the nonuniform
SNRi among sensors because of space diversity gain. On the other hand, the
IBBTDE failed to estimate d3 for Case B because the phase shift of π (since
A1 > 0 and A3 < 0) between the received measurements y1[n] and y3[n] is
never considered in the model in [5], whereas the model given by (6.33) does.

�
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Fig. 6.8 Simulation results of Case A in Example 6.13 for estimating two time

delays of d2 = 2.5 and d3 = 11.4. (a) and (b) Plots of the RMSEs of d2 and d3,
respectively, associated with the MTDE algorithm, the MTDE-1 algorithm and the
IBBTDE
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Fig. 6.9 Simulation results of Case B in Example 6.13 for estimating two time

delays of d2 = 2.5 and d3 = 11.4. (a) and (b) Plots of the RMSEs of d2 and d3,
respectively, associated with the MTDE algorithm, the MTDE-1 algorithm and the
IBBTDE. Note that IBBTDE failed in the estimation of d3, so its RMSEs are not
displayed in (b)
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6.5 Blind Beamforming for Source Separation

Blind source separation under multipath environments is essential in the ar-
eas of array signal processing, wireless communications and biomedical signal
processing. In this section, applications of the MIMO-MNC equalization al-
gorithm to blind beamforming and source separation are introduced.

6.5.1 Model Assumptions

Consider the case of K sources arriving at M sensors in the presence of mul-
tiple paths where the received M × 1 signal vector is modeled as

y[n] =

K∑
k=1

Lk∑
l=1

αk,la(θk,l)uk[n − τk,l] + w[n] (6.45)

in which

uk[n] : signal of source k

a(θk,l) : M × 1 steering vector of the lth path of source k

αk,l : fading factor

τk,l : time delay

w[n] : M × 1 additive noise vector

Lk : number of paths from source k.

Let us make the following assumptions:

(A6-5) uk[n] are stationary zero-mean, s.i.t.i. nonGaussian random processes
with Cp,q{uk[n]} �= 0, for all k.

(A6-6) w[n] is zero-mean Gaussian and statistically independent of uk[n]
for all k.

(A6-7) τk,l �= τk,m for l �= m.

The whiteness assumption (A6-5) for the K source signals is generally
valid in wireless multiuser communications. Assumption (A6-7) includes the
case that as τk,l = τk,m for some l and m, uk[n − τk,l] and uk[n − τk,m]
will merge with the combined steering vector a(θk,l) + a(θk,m) and thus the
resultant number of paths associated with uk[n] becomes Lk − 1.

Let L = L1 + L2 + ... + LK and

uk,l[n] = uk[n − τk,l], l = 1, ..., Lk, k = 1, ..., K

ũ[n] = (ũ1[n], ũ2[n], ..., ũL[n])T

= (u1,1[n], u1,2[n], ..., u1,L1 [n], u2,1[n], u2,2[n], ..., u2,L2[n], ..., uK,LK
[n])T .

The model for y[n] given by (6.45) can also be expressed as
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y[n] = Aũ[n] + w[n] (6.46)

where A is an M × L matrix as follows:

A = (α1,1a(θ1,1), α1,2a(θ1,2), ..., α1,L1a(θ1,L1), α2,1a(θ2,1), α2,2a(θ2,2), ...,

α2,L2a(θ2,L2), ..., αK,LK
a(θK,LK

)). (6.47)

Note that the M × L system given by (6.46) is nothing but a special case of
the MIMO model given by (5.16) with H[n] = Aδ[n] and K = L.

6.5.2 Blind Beamforming

Given y[n] for n = 1, 2, ..., N , the task of beamforming is to extract one of
the L signals uk,l[n] (up to a scale factor) through linear spatial processing of
y[n]. The beamformer output is given by

e[n] = vT y[n] = gT ũ[n] + w̃[n] (6.48)

where g = AT v and w̃[n] = vTw[n]. The MIMO hybrid MNC equalization
algorithm can be employed to design the optimum beamformer v with no
need for any information about A (i.e. the direction-of-arrival information of
the source signals) which is supported by the following theorem [1, 2].

Theorem 6.14 (Beamforming). Suppose that y[n] given by (6.45) satisfies
Assumptions (A6-5), (A6-7), the assumption that the M × L matrix A given
by (6.47) is of full column rank with M ≥ L, and the noise-free assumption.
The optimum MIMO-MNC linear beamformer vMNC by maximizing Jp,q(e[n])
given by (5.73) results in

e[n] = αuk,l[n] (6.49)

where α �= 0 is an unknown scalar, l is an arbitrary integer belonging to
{1, 2, ..., Lk}, and

k = argmax
i

{Jp,q(ui[n])} . (6.50)

The proof of Theorem 6.14 is left as an exercise (Problem 6.5).
Note that Theorem 6.14 refers to the received signal y[n] that is actually a

superposition of K colored source signals from K multipath channels to which
K s.i.t.i. source signals uk[n]’s are input, while all the L source components
uk,l[n] for l = 1, 2, ..., Lk and k = 1, 2, ..., K arrive at the array from different
directions such that A is of full column rank. Specifically, as a(θκ,l) for some
κ are identical for all l, rank{A} reduces to L−Lκ +1 implying that only the
colored signal ũκ[n] =

∑
l ακ,luκ,l[n] (resultant from multipath effects) can

be extracted. Therefore, Theorem 6.14 can be extended as the following fact
(Problem 6.6):

Fact 6.15. Theorem 6.14 is also true if Assumption (A6-5) is replaced with
that among all the mutually independent nonGaussian sources uk[n], some are



6.5 Blind Beamforming for Source Separation 359

temporally colored without multipath (i.e. Lk = 1) and the other sources are
s.i.t.i.

Example 6.16 (Blind Beamforming)
Consider the case of three independent nonGaussian source signals with zero
mean and unity variance arriving at ten sensors (M = 10) as planewaves.
Source 1 (u1[n]) is a 16-QAM signal and the other two sources (u2[n] and
u3[n]) are 4-QAM signals. All the 10 sensors are uniformly separated by half
wavelength under the following multipath channel parameters:

(L1, L2, L3) = (2, 3, 1)

(α1,1, τ1,1, θ1,1) = (1.2, 0,−75◦)
(α1,2, τ1,2, θ1,2) = (0.8, 2, 0◦)
(α2,1, τ2,1, θ2,1) = (1.0, 0,−45◦)
(α2,2, τ2,2, θ2,2) = (0.3, 1, 50◦)
(α2,3, τ2,3, θ2,3) = (0.6, 2, 5◦)
(α3,1, τ3,1, θ3,1) = (1.1, 0, 75◦).

With the noise sequence w[n] assumed to be spatially independent and tem-
porally white Gaussian, the synthetic data y[n] for N = 1024 (number of
snapshots) and SNR = 20 dB were processed using the MIMO-MNC equal-
ization algorithm and all the L = 6 sources were obtained through the MSC
procedure.

Figure 6.10a displays the constellation of the synthetic y1[n] received by
the first sensor. Fig. 6.10b displays the constellations of the extracted six
source signals, each corresponding to one source signal component from one
path. Obviously, all of the six signals uk,l[n] are correctly captured.

In the next subsection, we will introduce a source separation algorithm
including classification of these captured L signals, followed by a proper com-
bination of all the extracted Lk source components associated with the same
source signal uk[n] such that the SNR of the resultant estimate ûk[n] is max-
imum.

�

6.5.3 Multistage Source Separation

With y[n] given by (6.45) for n = 1, 2, ... , N −1, the task of source separation
is to further restore all the source signals uk[n], k = 1, 2, ..., K (up to a scale
factor) with little interference from the L components uk,l[n] extracted by
the MNC beamformer. The multistage source separation (MSS) algorithm
reported in [6] includes the following four signal processing steps at each
stage:
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(b)

Fig. 6.10 The constellations of (a) the synthetic y1[n] received by the first sensor,
and (b) the extracted six signals each corresponding to one source signal component
from one path
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MSS Algorithm

(S1) Source extraction.
Obtain a source signal e[n] using the MIMO-MNC beamformer vMNC.

(S2) Classification.
Compute the normalized cross-correlation ρk[τ ] between e[n] and the
detected source signal ûk[n − τ ] at the previous stage, defined as

ρk[τ ] =
E{e[n]û∗

k[n − τ ]}
σeσuk

, k = 1, 2, ...,K,

where K denotes the number of sources detected before the present stage,
and find

|ρκ[τ̂ ]| = maxk,τ{|ρk[τ ]|}.
If |ρκ[τ̂ ]| > η (a threshold), then classify e[n] as a signal from one path
of the source signal uκ[n], i.e. e[n] can be approximated as

e[n] = auκ[n − τ̂ ] + w[n],

otherwise, ûK+1[n] = e[n] is a newly detected source signal, update K
by K + 1 and then go to (S4).

(S3) BMRC.
Process x1[n] = e[n + τ̂ ] and x2[n] = ûκ[n] to obtain the optimum
estimate ũκ[n] using the BMRC method introduced in Section 6.2, and
then update ûκ[n] by ûκ[n] = ũκ[n].

(S4) Deflation (source cancellation).
Update y[n] by y[n] − y′[n] where

y′[n] =
E{y[n]e∗[n]}
E{|e[n]|2} · e[n]

is the estimated contribution of the extracted source signal e[n] (the
beamformer output) to the array measurement vector y[n].

The signal processing procedure of the MSS Algorithm at each stage is il-
lustrated in Fig. 6.11. Because Lk, k = 1, 2, ..., K, are unknown, the MSS Al-
gorithm ends as the value of Jp,q(e[n]) in (S1) is below a threshold (i.e. all the
source signals have been extracted), and the resultant K is an estimated num-
ber of independent sources as K is unknown. The signal classification together
with the time delay estimation in (S2) is based on the cross-correlation mag-
nitudes between the extracted source component and all the restored source
estimates ûk[n] before the present stage. Notice that (S2) and (S3) are not
needed for the first stage. As a final remark, the computational load is pro-
portional to the total path number L indicating that the MSS Algorithm is
practical for L not too large such as wireless communication channels with
finite (but not too many) multiple paths (due to remote reflections).
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Fig. 6.11 Signal processing procedure of the MSS Algorithm at each stage

Example 6.17 (Blind Source Separation in Multipath)
The same synthetic data y[n] used in Example 6.16 were further processed by
the MSS Algorithm where threshold η = 0.1 in (S2), and the restored signals
are exhibited in Fig. 6.12.

Figure 6.12a displays the constellation of the synthetic y1[n] received by
the first sensor. Figure 6.12b-d depict the constellations of the estimates û1[n],
û2[n] and û3[n], respectively. Notice from these figures that u1[n] and u2[n]
(with multipath diversity) are estimated more accurately than u3[n] (without
multipath diversity). At each stage of the MSS Algorithm, the iterative MIMO
hybrid MNC algorithm spent no more than 7 and 3 iterations in (S1) and (S3),
respectively, in obtaining the results shown in these figures.

�

6.6 Multiuser Detection in Wireless Communications

Blind equalization algorithms [7–15] of MIMO systems have been widely used
for the suppression of MAI and ISI, crucial to the receiver design of multiuser
communication systems. Recently, for code-division multiple-access (CDMA)
systems in the presence of multiple paths, many algorithms for simultaneously
suppressing MAI and removing ISI have been reported [11–13,16]. Tsatsanis
and Giannakis [11] proposed an MMSE decorrelating receiver for asynchro-
nous direct sequence/CDMA (DS/CDMA) systems. Tsatsanis [12] also pro-
posed a near–far resistant minimum-output-energy (MOE) receiver for asyn-
chronous DS/CDMA systems assuming that a path of the desired user is
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(c) (d)

Fig. 6.12 Simulation results of Example 6.17. (a) The constellation of the syn-
thetic data y1[n] received by the first sensor of the 10-element sensor array; (b), (c)
and (d) are constellations of source estimates u1[n], u2[n] and u3[n], respectively,
obtained by the MSS Algorithm

known ahead of time. Then Tsatsanis and Xu [13] further proposed a blind
minimum variance (MV) receiver that is near–far resistant with performance
close to the MMSE decorrelating receiver for high SNR, and estimation of
the multipath channel of the desired user is also included. In this section,
let us address how the MIMO hybrid MNC algorithm can be applied to the
multiuser detection with suppression of both MAI and ISI for asynchronous
DS/CDMA systems.

6.6.1 Model Assumptions and Problem Statement

For a K-user asynchronous DS/CDMA communication system in the pres-
ence of multiple paths, the received baseband continuous-time signal can be
represented as
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y(t) =
K∑

k=1

Mk∑
m=1

∞∑
n=−∞

Ak,muk[n]sk(t − nT − τk,m) + w(t) (6.51)

where

uk[n] : symbol sequence of user k

Ak,m : attenuation factor of the mth path associated with user k

τk,m : propagation delay of the mth path associated with user k

Mk : number of propagation paths from user k

T : symbol period

sk(t) : signature waveform of unity energy associated with user k

w(t) : additive zero-mean Gaussian noise.

Furthermore, the signature waveform sk(t) is given by

sk(t) =
1√
T

P−1∑
n=0

ck[n]p(t − nTc)

where P is the processing gain (or spreading factor), Tc = T/P is the chip pe-
riod, ck[n], n = 0, 1, ...,P−1 is the signature sequence (a binary pseudorandom
sequence of {+1,−1}) of user k, and p(t) is the chip waveform (e.g. rectan-
gular chip pulse of magnitude equal to unity within the interval t ∈ [0, Tc)).
Let

R = {ck[n], k = 1, 2, ..., K, n = 0, 1, ...,P − 1} (6.52)

denote the set of the K active users’ signature sequences. Moreover, let us
make a general assumption that 0 ≤ τk,1 ≤ τk,2 ≤ · · · ≤ τk,Mk

≤ T + τk,1, ∀k,
i.e. the delay spread of all the channels τk,Mk

− τk,1 ≤ T, ∀k and 0 ≤ τ1,1 ≤
τ2,1 ≤ · · · ≤ τK,1 ≤ T .

The objective of the blind multiuser detection is either to estimate the
symbol sequence of the desired user (e.g. u1[n]) or to estimate all the sym-
bol sequences {u1[n], u2[n], ..., uK [n]} with only the received signal y(t). The
continuous-time signal y(t), however, needs to be transformed into an equiv-
alent discrete-time MIMO model first before the use of the MIMO hybrid
MNC algorithm. As will be illustrated below, two discrete-time MIMO mod-
els, denoted as y(1)[n] and y(2)[n], can be formed through signature waveform
matched filtering of y(t), and one, denoted as y(3)[n], through chip waveform
matched filtering of y(t).

6.6.2 Signature Waveform Matched Filtering Based Multiuser
Detection

MIMO Models

Let yk,m[n] be the signature waveform matched filter output associated with
the mth path of the kth user assuming perfect synchronization, and wk,m[n]
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be the noise term in yk,m[n] due to w(t), i.e.

yk,m[n] =

∫ (n+1)T+τk,m

nT+τk,m

y(t)s∗k(t − nT − τk,m)dt,

wk,m[n] =

∫ (n+1)T+τk,m

nT+τk,m

w(t)s∗k(t − nT − τk,m)dt.

It can be easily shown that, for 1 ≤ Mk ≤ Mk,

yk[n] � (yk,1[n], yk,2[n], ..., yk,Mk
[n])T

= Hk[n] � u[n] + wk[n]

=

K∑
i=1

hk;i[n] � ui[n] + wk[n] (6.53)

where u[n] = (u1[n], ..., uK [n])T , wk[n] = (wk,1[n], ..., wk,Mk
[n])T is spatially

correlated and temporally colored Gaussian noise, hk;i[n] is the ith column
of Hk[n] and Hk[n] is an Mk × K FIR system of length five with the (l, i)th
element

hk;l,i[n] � [Hk[n]]li =

{∑Mk

m=1 ρ
(n)
k,i;l,m · Ai,m, n = −2,−1, 0, 1, 2,

0, otherwise
(6.54)

in which

ρ
(n)
k,i;l,m =

∫ T

0

s∗k(t)si(t + nT + τk,l − τi,m)dt. (6.55)

In general, ρ
(n)
k,i;l,m ≈ 0 for i �= k due to low cross-correlation between wave-

forms si(t) and sk(t).

Model I: Concatenation of Matched Filter Output Vectors

By concatenation of yk[n], k = 1, 2, ..., K, each comprising Mk matched filter
outputs as shown in Fig. 6.13, a discrete-time MIMO model (Model I) can be
established as

y(1)[n] =
(
yT

1 [n],yT
2 [n], ...,yT

K [n]
)T

= H(1)[n] � u[n] + w(1)[n] (6.56)

where w(1)[n] =
(
wT

1 [n],wT
2 [n], ...,wT

K [n]
)T

and

H(1)[n] �
(
h

(1)
1 [n],h

(1)
2 [n], ...,h

(1)
K [n]

)
=
(
HT

1 [n] HT
2 [n] · · · HT

K [n]
)T

(6.57)

is an M× K FIR system where

M =

K∑
k=1

Mk
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and

h
(1)
k [n] =

(
(h

(1)
1,k[n])T , (h

(1)
2,k[n])T , ..., (h

(1)
K,k[n])T

)T

=
(
hT

1;k[n],hT
2;k[n], ...,hT

K;k[n]
)T

(6.58)

in which

h
(1)
i,k [n] = hi;k[n] (6.59)

is the ith subvector of h
(1)
k [n] with dimension Mi × 1.
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Fig. 6.13 Model I: Establishment of y(1)[n] from y(t)

Model II: Concatenation of Combiner’s Output Signals

Alternatively, yk[n] given by (6.53) can be expressed as

yk[n] = ak · uk[n] + Ik[n] + wk[n] (6.60)

where Ik[n] is the co-channel interference plus intersymbol interference with
respect to uk[n] and ak = (Ak,1, Ak,2, ..., Ak,Mk

)T . By treating the yk[n] given
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by (6.60) as an approximation to the y[n] given by (6.9) with M = Mk,
a = ak, h[n] = δ[n] and w[n] = Ik[n]+wk[n], the BMRC method introduced
in Section 6.2 can be used to obtain the optimum

ek[n] = vT
k yk[n], k = 1, 2, ..., K (6.61)

such that its output SNR is “maximum” by Theorem 6.3.
By concatenation of ek[n], k = 1, 2, ..., K as shown in Fig. 6.14, the second

discrete-time MIMO model (Model II) can be established as

y(2)[n] = (e1[n], e2[n], ..., eK [n])T = H(2)[n] � u[n] + w(2)[n] (6.62)

where H(2)[n] =
(
h

(2)
1 [n],h

(2)
2 [n], ...,h

(2)
K [n]

)
is a K × K matrix and w(2)[n]

is spatially correlated and temporally colored Gaussian. Note that Model
II can be thought of as a dimension reduced version of Model I, and that
y(2)[n] = y(1)[n] when Mk = 1, ∀k.
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Fig. 6.14 Model II: Establishment of y(2)[n] from y(t)
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Multiuser Detection

User Identification

Assume that the user of interest is user d. One can employ the MIMO hybrid
MNC algorithm to process y(�)[n], 	 ∈ {1, 2}, but the optimum e[n] obtained is
an estimate of ul[n] where l is unknown by Theorems 5.32 and 5.33. Therefore,
a user identification mechanism is needed to ascertain the estimated data
sequence ul[n].

Let h
(�)
i,l [n], 	 = 1, 2, denote the (i, l)th component of H(�)[n]. It can be

shown, from (6.59), (6.54) and (6.55), that

E(1)
l,l =

∑
n

∥∥∥h(1)
l,l [n]

∥∥∥2

� E(1)
i,l =

∑
n

∥∥∥h(1)
i,l [n]

∥∥∥2

, ∀ i �= l, (6.63)

E(2)
l,l =

∑
n

∣∣∣h(2)
l,l [n]

∣∣∣2 � E(2)
i,l =

∑
n

∣∣∣h(2)
i,l [n]

∣∣∣2 , ∀ i �= l, (6.64)

which further imply that, with an estimate of h
(�)
l [n] (see (5.90)), the user

number l can be determined as follows:

l̂ = arg max
1≤i≤K

{
E(�)

i,l

}
. (6.65)

If l̂ = d, then the estimate ûd[n] has been obtained; otherwise one has to go
through the MSC procedure (introduced in Section 5.4.1) until ûd[n] is ob-
tained.

Multistage Multiuser Detection Algorithm

The above signal processing for estimating the signal of interest (assumed
to be ud[n]) constitutes the following blind multistage multiuser detection
(BMMD) algorithm with the parameter 	 = 1 or 	 = 2 indicating the y(�)[n]
used:

BMMD Algorithm-(	)

(S1) Set k = 1 (stage number). If 	 = 2 (with BMRC processing), obtain the
optimum ek[n] = vT

k yk[n], k = 1, 2, ..., K, by processing yk[n] using the
BMRC method as introduced in Section 6.2.

(S2) Process y(�)[n] to obtain the optimum vMNC[n] using the MIMO hybrid

MNC algorithm, and the associated e[n] and ĥ
(�)
l [n] (where l is unknown)

(see (5.90)).

(S3) Update y(�)[n] by y(�)[n] − ĥ
(�)
l [n] � e[n] (see (5.91)).
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(S4) Determine l̂ using (6.65). If l̂ �= d, update k by k + 1 and go to (S2),
otherwise ûd[n] = e[n] has been obtained.

As Mi > 1 for some i, the computational complexity of the BMMD
Algorithm-(	) for 	 = 1 is higher than that for 	 = 2 due to higher model
dimension (M×K) associated with y(1)[n]. However, the performance of the
BMMD Algorithm-(	) is similar for both 	 = 1 and 	 = 2 as demonstrated by
a simulation example below.

In the simulation examples that follow, the power of the received signal
from user k is defined as

E(�)
k = E

{∥∥∥h(�)
k [n] � uk[n]

∥∥∥2
}

. (6.66)

Assume that user k is the desired user, and E(�)
i = E for all i �= k. The near–far

ratio (NFR) is defined as

NFR =
E

E(�)
k

. (6.67)

Example 6.18 (BMMD over Signature Waveform Matched Filter-
ing)
Let us show some simulation results using the BMMD Algorithm-(	) with
y(1)[n] (Model I) and y(2)[n] (Model II) for a five-user (K = 5) asynchronous
DS/CDMA system with three paths for each user (Mk = 3 ∀k). Thirty in-
dependent runs for data length N = 2000 were performed with Gold codes
of length P = 31 for users’ spreading codes ck[n]. The synthetic symbol se-
quences uk[n], k = 1, 2, ..., 5 were generated as equally probable binary random

sequences whose amplitudes were adjusted such that E(1)
k = E , k = 2, ..., 5.

The averaged output SINRs of user 1 (the weak user) associated with
Models I and II are shown in Fig. 6.15. One can observe, from Fig. 6.15, that
the performance of the BMMD Algorithm-(	) is quite close to that of the
nonblind LMMSE equalizer, and better for larger Mk (i.e. more multipath

diversity gain). The similar performance for NFR= E/E(1)
1 equal to 0 dB and

9 dB also implies that the BMMD Algorithm-(	) is near–far resistant.
�

6.6.3 Chip Waveform Matched Filtering Based Multiuser
Detection

MIMO Model

Through chip waveform matched filtering and chip rate sampling of the
continuous-time signal y(t) given by (6.51), the discrete-time signal can be
obtained as
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Fig. 6.15 Averaged output SINR of user 1 for (a) NFR = 0 dB and (b) NFR
= 9 dB, respectively, associated with the nonblind LMMSE equalizer for Mk = 1 ∀k
(dashed lines) and Mk = 3 ∀k (solid lines), the BMMD Algorithm-(1) for Mk = 1
∀k (‘
’) and Mk = 3 ∀k (‘×’), and the BMMD Algorithm-(2) for Mk = 3 ∀k (‘©’)

y[n] = y(t) � p∗(−t)|t=nTc

=

K∑
k=1

∞∑
l=−∞

uk[l]hk[n − lP ] + w[n] =

K∑
k=1

yk[n] + w[n] (6.68)

where

yk[n] =

∞∑
l=−∞

uk[l]hk[n − lP ],

w[n] = w(t) � p∗(−t)|t=nTc
,

and

hk[n] = ck[n] � fk[n] =

P−1∑
i=0

ck[i]fk[n − i] (6.69)

is the “signature waveform” of user k in which fk[n] denotes the discrete-time
multipath channel from user k to the receiver.

Model III: Polyphase Decomposition of Chip Waveform Matched Filter Out-
puts

Through polyphase decomposition of y[n] given by (6.68) with dimension P ,
one can obtain the following MIMO signal model shown in Fig. 6.16:

y(3)[n] = H(3)[n] � u[n] + w(3)[n] (6.70)

where
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y(3)[n] = (y[nP ], y[nP + 1], ..., y[nP + P − 1])T ,

u[n] = (u1[n], u2[n], ..., uK [n])T ,

w(3)[n] = (w[nP ], w[nP + 1], ..., w[nP + P − 1])T ,

and H(3)[n] =
(
h

(3)
1 [n],h

(3)
2 [n], ...,h

(3)
K [n]

)
is a P×K matrix with the (i, k)th

entry equal to

h
(3)
i,k [n] �

[
H(3)[n]

]
ik

= hk[nP + i − 1] (6.71)
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Fig. 6.16 Model III: Establishment of y(3)[n] from y(t)

Multiuser Detection

The MIMO hybrid MNC algorithm introduced in Section 5.4.1 can be em-
ployed to estimate u[n] with y(3)[n] given by (6.70), but a good initial con-
dition for the equalizer v[0] is needed because despreading has not been per-
formed, leading to low SNR in y(3)[n]. Let us first present an initial condition
of v[0] by making use of the channel structure involving users’ spreading se-
quences (see (6.69)).

Initial Condition for MIMO-MNC Criterion

Assume that each multipath channel fk[n] (see (6.69)) is an FIR channel
of order equal to qf < P which occurs in most asynchronous DS/CDMA
channels [13] and user 1 (i.e. u1[n]) is the user of interest.

Let v[n] = (v1[n], v2[n], ..., vP [n])T (P × 1 vector) be an FIR equalizer
with v[n] �= 0 for n = L1, L1 + 1, ..., L2, and define the following notation:

vi = (vi[L1], vi[L1 + 1], ..., vi[L2])
T

v = (vT
1 , vT

2 , ...,vT
P)T

qv = (L2 − L1 + 1) · P − 1

ṽ = (vP [L1], vP−1[L1], ..., v1[L1], ..., vP [L2], vP−1[L2], ..., v1[L2])
T .
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Note that either of ṽ and v includes all the coefficients of the equalizer v[n].
Let

Ck =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ck[P − 1] ck[P − 2] · · · ck[P − (qv + 1)]

ck[P − 2] ck[P − 3] · · · ck[P − (qv + 2)]

.

.

.
.
.
.

.

.

.

ck[P − (qf + 1)] ck[P − (qf + 2)] · · · ck[P − (qf + qv + 1)]

ck[2P − 1] ck[2P − 2] · · · ck[2P − (qv + 1)]

.

.

.
.
.
.

.

.

.

ck[2P − (qf + 1)] ck[2P − (qf + 2)] · · · ck[2P − (qf + qv + 1)]

.

.

.
.
.
.

.

.

.

ck[(L + 1)P − 1] ck[(L + 1)P − 2] · · · ck[(L + 1)P − (qv + 1)]

.

.

.
.
.
.

.

.

.

ck[(L + 1)P − (qf + 1)] ck[(L + 1)P − (qf + 2)] · · · ck[(L + 1)P − (qf + qv + 1)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where L = �(qv +qf )/P� and �x� denotes the largest integer less than or equal
to x. Note that matrix Ck is of full rank if qf < P [12].

Chi et al. [14] reported a set of linear constraints on v[n] as given below

g[n] =
(
H(3)[n]

)T

v[n] = η1 · f1[k0] · δ[n − n0] (6.72)

which, by (6.71) and (6.69), or equivalently

Cṽ = ηn0·(qf+1)+k0+1 (6.73)

where
C = (CT

1 CT
2 · · · CT

K)T . (6.74)

Then the LS solution to (6.73) is given by

ṽLS(n0, k0) = C
+ · ηn0·(qf+1)+k0+1 (6.75)

where C
+ is the pseudoinverse of C. The initial condition ṽ

[0] for MIMO-MNC
criterion Jp,q(v) is suggested as follows:

ṽ
[0] = ṽLS(ñ0, k̃0) (6.76)

where
(ñ0, k̃0) = argmax

(n0,k0)

Jp,q(ṽLS(n0, k0)). (6.77)

Remarkably, the ṽ
[0] given by (6.76) not only minimizes the error squares of

the decorrelating constraint (6.73) (indexed by (n0, k0)) associated with the
desired user (user 1) but also maximizes the associated Jp,q with respect to
(n0, k0) such that a transmission path with “large” path gain associated with
the desired user is detected without the need for any prior multipath infor-
mation concerning the desired user. Consequently, the estimate of interest
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(e[n] = û1[n]) can usually be obtained using the MIMO hybrid MNC algo-

rithm with the use of ṽ
[0] given by (6.76).

User Identification

First of all, let us present two facts on which the UIA to be introduced below
is based. The first fact is regarding the relation between the phase and higher-
order moments of a stable sequence. Let a[n] (i.e.

∑
n |a[n]| < ∞) be a stable

sequence with a certain amplitude spectrum |A(ω)|. Define

λ(a[n]) =

∫ π

−π

|A(ω)| · [φa(ω)]2dω, (6.78)

Λ(a[n]) =

∞∑
n=−∞

|a[n]|2m
, (6.79)

where φa(ω) = arg{A(ω)} with linear phase term removed1 and m ≥ 2. Note
that

Λ(αa[n − τ ]) = |α|2mΛ(a[n]) (6.80)

implying that Λ(a[n]) is invariant for any linear phase change in arg{A(ω)}
as long as |α| = 1. Chien et al. [17] have shown the following fact for real a[n].

Fact 6.19. The smaller λ(a[n]), the larger Λ(a[n]). In other words, Λ(a[n])
is maximum as φa(ω) = 0 for all ω.

Following the same procedure for proving Fact 6.19 as presented in [17],
one can easily show that Fact 6.19 is also true if a[n] is complex (Problem
6.7). Some properties of users’ spreading sequences [7, 8], which are needed
to prove the identification criterion given by (6.83)) below, are given in the
following fact (Problem 6.8):

Fact 6.20. Each spreading sequence ck[n] ∈ R (see (6.52)) is basically a
pseudorandom (approximately allpass) sequence with approximately random
phase and autocorrelation function ck[n] � ck[−n] � Pδ[n] (or |Ck(ω)|2 � P),
and uncorrelated with ci[n] ∈ R for i �= k. Moreover, ci[n] = ck[n] if φci

(ω) =
φck

(ω) (with linear phase term removed) where φci
(ω) = arg{F{ci[n]}}.

Assume that e[n] and ĥ
(3)
k [n] are the estimates of αkuk[n − τk] and

h
(3)
k [n + τk]/αk, respectively, obtained using the MIMO hybrid MNC algo-

rithm, where the user number k is unknown. Let ĥk[n] be the (chip rate)

“signature waveform” estimate associated with ĥ
(3)
k [n], i.e.

ĥk[nP + i − 1] = ĥ
(3)
i,k [n] (by (6.71)).

Therefore,

ĥk[n] � 1

αk
hk[n + τkP ] (6.81)

1 That is, the linear term in the Taylor series expansion of φa(ω) is equal to zero.
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where hk[n] is the true (chip rate) signature waveform for user k (see (6.69)).
Let

ak,i[n] =
ĥk[n]√∑
n

∣∣∣ĥk[n]
∣∣∣2 � ci[−n], ci[n] ∈ R. (6.82)

Then λ(ak,i[n]) (see (6.78)) can be expressed as

λ(ak,i[n]) � 1

αk

√∑
n

∣∣∣ĥk[n]
∣∣∣2 ·

∫ π

−π

|Fk(ω)| · [φfk
(ω) + φck

(ω) − φci
(ω)]2dω

� 1√∑
n |hk[n]|2

· (λ1 + λ2 + λ3) (by (6.69) and (6.81))

where Fk(ω) = F{fk[n]}, φfk
(ω) = arg{Fk(ω)} and

λ1 =

∫ π

−π

|Fk(ω)| · [φck
(ω) − φci

(ω)]2dω,

λ2 =

∫ π

−π

|Fk(ω)| · [φfk
(ω)]2dω,

λ3 = 2

∫ π

−π

|Fk(ω)| · φfk
(ω) · [φck

(ω) − φci
(ω)]dω.

Note that λ2 is a constant (not a function of φci
(ω)) and that |λ3| � λ1 when

φck
(ω) �= φci

(ω) due to approximately random phases φck
(ω) and φci

(ω) by
Fact 6.20. Therefore, λ(ak,i[n]) is minimum and Λ(ak,i[n]) is maximum when
ci[n] = ck[n] by Fact 6.19 that leads to the following UIA:

UIA

(S1) Calculate Λ(ak,i[n]) ∀ ci[n] ∈ R using (6.79) and (6.82).
(S2) Identify e[n] with ûk[n] where the user number associated with the sig-

nature sequence ck[n] is determined by

k̂ = argmax
i

{Λ(ak,i[n]), ∀ ci[n] ∈ R} . (6.83)

Multistage Multiuser Detection Algorithm

The above signal processing for estimating the symbol sequence of interest
(assumed to be u1[n]) constitutes the following BMMD algorithm with the
y(3)[n] used:
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BMMD Algorithm-(3)

(S1) Set k = 1 (stage number).

(S2) Find the optimum vMNC[n] using the MIMO hybrid MNC algorithm

from y(3)[n], n = 0, 1, ..., N − 1, with the initial condition ṽ
[0] given by

(6.76), and the associated e[n], and obtain the associated ĥ
(3)
k [n] using

the IOCC method.

(S3) Update y(3)[n] by y(3)[n] − ĥ
(3)
k [n] � e[n].

(S4) Determine the user number k using the UIA. If k̂ �= 1, update k by k+1
and C (given by (6.74)) as the one with Ck removed and then go to (S2);
otherwise û1[n] = e[n] has been obtained at stage k.

The û1[n] obtained is free from error propagation as k = 1. As the power
of user 1 is sufficient, û1[n] can always be obtained at stage k = 1 due to the

initial condition ṽ
[0] given by (6.76) used in (S2). However, it may happen

that k > 1 as user 1 is a weak user and NFR is high. The smaller the k,
the more accurate the estimate û1[n]. In other words, k also provides some
information for power control, i.e. demand for raising the power of the desired
user for larger k.

Example 6.21 (BMMD over Chip Waveform Matched Filtering)
Let us present some simulation results using the BMMD Algorithm-(3) (as-
sociated with Model III) for a six-user (K = 6) asynchronous DS/CDMA
system with three paths for each user (Mk = 3, ∀k). Thirty independent runs
for data length N = 2500 were performed with Gold codes of length P = 31
for users’ spreading codes. The symbol sequences uk[n], k = 1, 2, ..., 6 were
assumed to be equally probable binary random sequences of {+1,−1}, and

the synthetic signal y(3)[n] was generated with E(3)
k = E , k = 2, 3, ..., 6.

The averaged output SINRs of user 1 are shown in Fig. 6.17. One can
observe, from Fig. 6.17, that the performance of the BMMD Algorithm-(3) is

close to that of the nonblind LMMSE equalizer for NFR= E/E(3)
1 = 0 dB (i.e.

the near–far problem does not exist), but the latter is superior to the former
for NFR = 10 dB (high NFR). The performance degradation of the BMMD
Algorithm-(3) for high NFR (see Fig. 6.17b) results from the error propagation
in the MSC procedure because of more stages in the MSC procedure involved.

�

6.6.4 Multiple Antennas Based Multiuser Detection

Consider a K-user asynchronous DS/CDMA communication system in the
presence of multiple paths where the source signals sent from the K active
users arrive as planewaves at a J-element antenna array. The received base-
band continuous-time J × 1 signal vector y(t) = (y1(t), y2(t), ..., yJ(t))

T can
be expressed as
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Fig. 6.17 Averaged output SINR for user 1 associated with the nonblind LMMSE
equalizer (solid line) and the BMMD Algorithm-(3) (‘©’) for (a) NFR = 0 dB and
(b) NFR = 10 dB, respectively

y(t) =

K∑
k=1

Mk∑
m=1

∞∑
n=−∞

a(θk,m)Ak,muk[n]sk(t − nT − τk,m) + w(t) (6.84)

where θk,m and a(θk,m) = (a1(θk,m), a2(θk,m), ..., aJ(θk,m))T are the direction
of arrival and the J×1 steering vector of the mth path associated with user k,
respectively, w(t) = (w1(t), w2(t), ..., wJ(t))

T is a zero-mean white Gaussian
noise vector, and all the other parameters have been defined in (6.51). A
discrete-time model can be obtained from y(t) as

y(�)[n] =
(
y

(�)
1 [n],y

(�)
2 [n], ...,y

(�)
J

[n]
)T

= H(�)[n] � u[n] + w(�)[n], 	 = 1, 2, 3, (6.85)

where

y
(�)
j [n] = H

(�)
j [n] � u[n] + w

(�)
j [n] (6.86)

is obtained through the same procedure as obtained for the single antenna
(see (6.56), (6.62) and (6.70)), and

H(�)[n] �
(
h

(�)
1 [n],h

(�)
2 [n], ...,h

(�)
K [n]

)
=
(
(H

(�)
1 [n])T , (H

(�)
2 [n])T , ..., (H

(�)
J

[n])T
)T

. (6.87)

When j (≤ J) antennas are used for multiuser detection, a straightforward
algorithm, called the BMMD-BMRC(j) Algorithm, is introduced as depicted
in Fig. 6.18, which comprises j parallel signal processing channels using the
BMMD Algorithm-(	) (with only temporal processing involved) followed by
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appropriate compensation of relative time delays (as presented in Section
6.5.3) and a BMRC procedure (as introduced in Section 6.2) over j antennas
(with only spatial processing involved) to obtain the maximum SNR estimate
of the desired user’s symbol sequence. Note that the BMMD-BMRC(1) Algo-
rithm is exactly the same BMMD Algorithm-(	).
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Fig. 6.18 The BMMD-BMRC(j) Algorithm using j antennas

Example 6.22 (BMMD-BMRC over Signature Waveform Matched
Filtering)
This example continues Example 6.18 with multiple antennas used. The syn-

thetic y
(1)
j [n] (Model I) and y

(2)
j [n] (Model II) were generated for 1 ≤ j ≤

J = 4, and E(1)
k = E , k = 2, ..., 5.

The averaged output SINRs of user 1 (the weak user) are shown in Fig.
6.19 associated with Model II for J = 4 and j = 1, 2 and 4. One can observe,
from Fig. 6.19, that the performance of the BMMD-BMRC(j) algorithm is
close to that of the nonblind LMMSE equalizer, and that the output SINR of
user 1 is higher for larger j (i.e. more antennas or more space diversity).

�



378 6 Applications of MIMO Blind Equalization Algorithms

5 10 15 20 25
10

15

20

25

30

35

40

45

INPUT SNR (dB)

O
U

T
P

U
T

 S
IN

R
 (

dB
)

(a)

5 10 15 20 25
10

15

20

25

30

35

40

45

INPUT SNR (dB)

O
U

T
P

U
T

 S
IN

R
 (

dB
)

(b)

Fig. 6.19 Averaged output SINR of user 1 for (a) NFR = 0 dB and (b) NFR
= 9 dB, respectively, associated with the BMMD-BMRC(j) Algorithm with Model
II used for j = 1 (‘©’), j = 2 (‘×’) and j = 4 (‘
’) antennas, and the nonblind
LMMSE equalizer for single antenna (dotted lines), two antennas (dashed lines) and
four antennas (solid lines), where Mk = 3 ∀k was used for all the results

Example 6.23 (BMMD-BMRC over Chip Waveform Matched Fil-
tering)
This example continues Example 6.21 with multiple antennas used. The syn-

thetic y
(3)
j [n] (Model III) was generated for 1 ≤ j ≤ J = 4, and E(3)

k = E ,
k = 2, ..., 6.

The output SINRs for J = 4 and j = 1, 2 and 4 are shown in Fig. 6.20.
From Fig. 6.20, one can see that the performance of the BMMD-BMRC(j)
Algorithm and the nonblind LMMSE equalizer can be significantly improved
by using more antennas, even though the latter is superior to the former for
high NFR. The performance degradation of the BMMD-BMRC(j) Algorithm
for high NFR (see Fig. 6.20b) results from the error propagation in the MSC
procedure because of more stages involved in the MSC procedure associated
with the BMMD Algorithm-(3). Specifically, the antenna 2 performs signif-
icantly worse than the other three antennas for high NFR, leading to less
contribution to performance improvement, as observed in Fig. 6.20b.

�

6.7 Summary and Discussion

This chapter introduced some applications of the MIMO hybrid MNC equal-
ization algorithm in signal processing and wireless communications. For the
SIMO case, we began with the FSE for digital communications where a set of
real cable data and a set of real modem data were used to validate the efficacy
of this algorithm. The applications of this equalization algorithm to BMRC,
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Fig. 6.20 Averaged output SINR of user 1 for (a) NFR = 0 dB and (b) NFR
= 10 dB, respectively, associated with the BMMD-BMRC(j) Algorithm with Model
III used for j = 1 (‘©’), j = 2 (‘×’) and j = 4 (‘
’) antennas, and the nonblind
LMMSE equalizer for single antenna (dotted lines), two antennas (dashed lines) and
four antennas (solid lines)

BSI and MTDE were then introduced. On the other hand, for the MIMO
case, the applications of this equalization algorithm include blind beamform-
ing for source separation and blind multiuser detection in DS/CDMA wireless
communications. Some simulation examples were provided to justify the good
performance of this equalization algorithm.

In each of the applications presented, a discrete-time SIMO or an MIMO
model must be established before use of the MIMO hybrid MNC equalization
algorithm, in addition to certain constraints, structures, and considerations on
the channel or the equalizer. This implies that proper MIMO model establish-
ment is paramount and crucial to whether the application of this equalization
algorithm is successful, and analytic relations if any are always a boost to
the results obtained using this blind equalization algorithm. Moreover, other
signal processing techniques depending on the specific application may also be
needed in conjunction with the MIMO hybrid MNC equalization algorithm.
The applications of the MIMO hybrid MNC equalization algorithm described
here are not comprehensive, and many other applications in science and en-
gineering involving MIMO blind equalization are continually reported in the
open literature. Certainly, the MIMO hybrid MNC equalization algorithm is
never the unique choice, although it can be an excellent candidate.

Appendix 6A

Proof of Theorem 6.3

Substituting (6.11) into (5.73) and simplifying the resultant equation, one can
obtain
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Jp,q(e[n]) =
|Cp,q{x[n]}|

σ
(p+q)
x

· 1(
1 +

1

SNR(v)

)(p+q)/2

which implies Jp,q(e[n]) is maximum if and only if SNR(v) defined by (6.12)
is maximum. Next, let us find the optimum v by maximizing SNR(v).

The optimum combiner occurs when

∂SNR(v)

∂v
=

σ2
x

(vTRw[0]v∗)2
· [aaHv∗vTRw[0]v∗ − Rw[0]v∗vT aaHv∗]

=
σ2

xaHv∗

(vTRw[0]v∗)2
· [avT Rw[0]v∗ − Rw[0]v∗vT a] = 0

or
(vT a) · Rw[0]v∗ = (vTRw[0]v∗) · a

which leads to the optimum vMNC given by (6.13) with ‖vMNC‖ = 1. Then,
substituting vMNC given by (6.13) into (6.12) gives rise to the maximum
SNR(v) given by (6.14).

It can easily be shown using the orthogonality principle that the LMMSE
estimator which minimizes E{|e[n] − x[n]|2} is given by

vMS =
{
R−1

y E{y[n]x∗[n]}}∗ = σ2
x · (σ2

x · a∗aT + R∗
w[0]

)−1 · a∗. (6.88)

With the use of Woodbury’s identity (see Corollary 2.6), vMS given by (6.88)
can easily be shown to be

vMS =
σ2

x

1 + σ2
x · aT (R∗

w[0])−1a∗ · (R∗
w[0])−1a∗

=
1

λ
· vMNC (by (6.13)),

where

λ =
1 + σ2

x · aT (R∗
w[0])−1a∗

σ2
x · ‖(R∗

w[0])−1a∗‖ . (6.89)

Thus we have completed the proof.

Q.E.D.

Appendix 6B

Proof of Fact 6.4

Let β = aT v[0] �= 0. Then

e[0][n] = (v[0])T y[n] = βx[n] + (v[0])Tw[n]. (6.90)
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At the first iteration of the MIMO hybrid MNC equalization algorithm with
p = q = 2, v[1] is updated by

v[1] =
(R∗

y)−1d
[0]
ey∥∥∥(R∗

y)−1d
[0]
ey

∥∥∥ (by (5.76)) (6.91)

where

d[0]
ey = cum{e[0][n], e[0][n], (e[0][n])∗,y∗[n]}

= |β|2βC2,2{x[n]} · a∗. (by (6.90)) (6.92)

Moreover, it can easily be seen from (6.88), (6.91) and (6.92) that

v[1] = λvMS = vMNC (by Theorem 6.3)

where λ is given by (6.89). Therefore, we have completed the proof.

Q.E.D.

Appendix 6C

Proof of Property 6.10

Let h̃[n] be an arbitrary system satisfying (6.20) and thus we have

Gp(ω)H∗(ω) = G̃p(ω)H̃
∗
(ω) = βS

T
y (ω)V (ω). (6.93)

Without loss of generality, let us assume that both G(ω) and G̃(ω) are zero
phase with positive g[0] and g̃[0], i.e.

g[n] = g∗[−n], with g[0] > 0, (6.94)

g̃[n] = g̃∗[−n], with g̃[0] > 0. (6.95)

It can be obtained, from (6.93), that

H̃(ω) = Γ (ω) · H(ω) (6.96)

where

Γ (ω) =
G∗

p(ω)

G̃∗
p(ω)

=
Gp(ω)

G̃p(ω)
> 0 (by Property 6.9) (6.97)

and that

Gp(ω)V H(ω)H∗(ω) = Gp(ω)G∗(ω) = G̃p(ω)V H(ω)H̃
∗
(ω)

= G̃p(ω)G̃∗(ω) ≥ 0 (by (C-SIMO) and Property 6.9)
(6.98)
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Let s[n] be the inverse Fourier transform of Gp(ω)G∗(ω), i.e.

s[n] = gp[n] � g∗[−n] =
∞∑

l=−∞
|g[l]|mg[l]g∗[l − n] (by (6.21)) (6.99)

where m = 2(p − 1) and p ≥ 2. One can easily infer from (6.98) that

s[n] = s̃[n] (6.100)

where s[n] = gp[n] � g∗[−n] and s̃[n] = g̃p[n] � g̃∗[−n] as given by (6.99).
Let us further assume that g[n] �= 0 for all n ∈ [−L, L] and thus gp[n] �= 0

only for n ∈ [−L, L] by (6.21), and s[n] �= 0 only for n ∈ [−2L, 2L]. Then s[n]
given by (6.99) can be expressed as

s[n] =

L∑
l=−L

|g[l]|mg[l]g∗[l − n], n = −2L,−2L + 1, ..., 2L − 1, 2L, (6.101)

and the equality s[n] = s̃[n] implies that g̃[n] �= 0 and g̃p[n] �= 0 only for
n ∈ [−L, L], and s̃[n] �= 0 only for n ∈ [−2L, 2L]. Furthermore, it can be seen
from (6.101) and (6.100) that

s[2L] = |g[L]|mg2[L] = s̃[2L] = |g̃[L]|mg̃2[L],

which implies
g[L] = g̃[L] or − g̃[L]. (6.102)

Again, by (6.101), simplifying s[2L − 1] = s̃[2L − 1] (by (6.100)) results in

g[L]g[L−1]{|g[L]|m+|g[L−1]|m} = g̃[L]g̃[L−1]{|g̃[L]|m+|g̃[L−1]|m}. (6.103)

It can be shown from (6.102), (6.103) and Lemma 6.11 (with a = |g[L − 1]|,
b = |g̃[L − 1]|, and c = |g[L]| = |g̃[L]|), that

|g[L − 1]| = |g̃[L − 1]|. (6.104)

Moreover, it can be inferred from (6.102), (6.103) and (6.104) that

g̃[L − 1]

g[L − 1]
=

g[L]

g̃[L]
.

By the same fashion, simplifying s[n] = s̃[n] (by (6.100)) for n = 2L− 2, 2L−
3, ..., L, one can also prove, by (6.101) and Lemma 6.11, that

|g[n]| = |g̃[n]|, n = L, L − 1, ..., 1, 0

and
g̃[n]

g[n]
=

g[L]

g̃[L]
, n = L − 1, L − 2, ..., 1, 0,
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which together with (6.102) leads to

g[n] = g̃[n], ∀n ∈ [0, L] (since g[0] > 0 and g̃[0] > 0). (6.105)

Moreover, one can infer from (6.94), (6.95) and (6.105) that

g[n] = g̃[n], ∀n ∈ [−L, L]. (6.106)

It can easily be seen from (6.106) and (6.21) that Gp(ω) = G̃p(ω), which gives
rise to Γ (ω) = 1, ∀ω (by (6.97)). Therefore, one can obtain from (6.96) that

H̃(ω) = H(ω) (6.107)

under the zero-phase assumption for both g[n] and g̃[n]. Furthermore, by

Property 6.8 and (6.107), H ′(ω) = H̃(ω) · ej(ωτ+ϕ) = H(ω) · ej(ωτ+ϕ) is
also a solution of (6.20) under the constraint (C-SIMO). The assumption that
g[n] �= 0 only for n ∈ [−L, L] can be relaxed by allowing L → ∞. However, a
general proof without the assumption that g[n] �= 0 for all n ∈ [−L, L] is still
unknown.

Q.E.D.

Appendix 6D

Multichannel Levinson Recursion Algorithm

Assume that a multivariable process y[n] can be described by a multichannel
AR(Lp) process as

y[n] = −
Lp∑
i=1

A[i]y[n − i] + s[n] (6.108)

where s[n] is a zero-mean white input process with

Rs[l] = Rs[0]δ[l]. (6.109)

Hence the power spectral matrix of y[n] is given by

Sy(ω) = A
−1(ω)Rs[0]

(
A

H(ω)
)−1

(6.110)

where

A(ω) = I +

Lp∑
n=1

A[n]e−jωn. (6.111)

To estimate Sy(ω) using (6.110) requires estimating A[n] and Rs[0]. Let us
define the following notation:
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Af
k [n] : kth order multichannel forward linear predictor

Ab
k[n] : kth order multichannel backward linear predictor

Kf
k : multichannel reflection coefficient matrix associated with Af

k [n]

Kb
k : multichannel reflection coefficient matrix associated with Ab

k[n]

Σf
k : multichannel prediction error power matrix associated with Af

k [n]

Σb
k : multichannel prediction error power matrix associated with Ab

k[n].

The multichannel Levinson recursion algorithm [18], an efficient algorithm to
obtain A[n] and Rs[0] from the correlation matrix Ry[l], is summarized as
follows:

Multichannel Levinson Recursion Algorithm:

(T1) Initialization.
Set

Af
1 [0] = Ab

1[0] = I

Af
1 [1] = Kf

1 = −Ry[1]R−1
y [0]

Ab
1[1] = Kb

1 = −Ry[−1]R−1
y [0]

Σf
1 =

(
I− Kf

1K
b
1

)
Ry[0]

Σb
1 =

(
I− Kb

1K
f
1

)
Ry[0].

(T2) Recursion.
For k = 2, 3, ..., Lp, compute
(S1) Reflection coefficient matrices:

Kf
k = −Δk(Σb

k−1)
−1

Kb
k = −ΔH

k (Σf
k−1)

−1

where

Δk =
k−1∑
i=0

Af
k−1[i]Ry[k − i].

(S2) Predictor coefficient matrices:

Af
k [i] =

{
Af

k−1[i] + Kf
kA

b
k−1[k − i], i = 1, 2, ..., k − 1,

Kf
k, i = k.

Ab
k[i] =

{
Ab

k−1[i] + Kb
kA

f
k−1[k − i], i = 1, 2, ..., k − 1,

Kb
k, i = k.
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(S3) Prediction error power matrices:

Σf
k =

(
I − Kf

kK
b
k

)
Σf

k−1.

Σb
k =

(
I − Kb

kK
f
k

)
Σb

k−1.

Then, A[n] = Af
Lp

[n] and Rs[0] = Σf
Lp

are obtained.

Appendix 6E

Integrated Bispectrum Based Time Delay Estimation

Consider the case of the model given by (6.33) for M = 2 as follows

y[n] = (y1[n], y2[n])
T

= (x[n], x[n − d])
T

+ w[n]. (6.112)

For ease of later use, let Sy1y2(ω) denote the cross-spectrum of y1[n] and y2[n]
and Sy1y2 [k] = Sy1y2(ωk) where ωk = 2πk/N , and αk = S∗

y2
1y2

[k]/S∗
y2
1y1

[k].

The IBBTDE proposed by Ye and Tugnait [5] estimates the time delay d
in (6.112) by minimizing the following cost:

JIBBTDE(d) =

N
2 −1∑
k=1

1

σ2
k

·
∣∣∣Ĥ [k] − e−jωkd

∣∣∣2 (6.113)

where

Ĥ[k] =
∣∣∣Ĥ [k]

∣∣∣ · ejφ[k] =
Sy2

1y2
[k]

Sy2
1y1

[k]
, (6.114)

and

σ2
k =

Sy2
1y2

1
[k]Sy2y2 [k]∣∣∣Sy2
1y1

[k]
∣∣∣2

·
(

1 + |αk|2 ·
Sy2

1y2
1
[k]

Sy2y2 [k]
− 2Re

{
αk · Sy2

1y2
[k]

Sy2y2 [k]

})
. (6.115)

Specifically, instead of minimizing JIBBTDE(d) given by (6.113) via nonlin-
ear iterative optimization for a continuous range of values of d, a closed-form
solution of d can be obtained through the following steps [5]:

(S1) Estimate Sy2
1y2

[k], Sy2
1y1

[k] and σ2
k from the finite data y[n], n = 0, 1,

..., N − 1. Compute φ̂[k] = �{Sy2
1y2

[k]/Sy2
1y1

[k]}.
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(S2) Compute

F [k] =

{
−F̃ [k], k is odd,

F̃ [k], k is even
(6.116)

where

F̃ [k] =

⎧⎪⎨⎪⎩
1

σ2
k

· S
y2
1y2

[k]

S
y2
1y1

[k] , 1 ≤ k ≤ N
2 − 1,

0, N
2 ≤ k ≤ L

(6.117)

in which L = PN and P is a positive integer.
(S3) Find nmin such that

J(n) = −Re{f [n]}, 0 ≤ n ≤ L− 1, (6.118)

is minimum for n = nmin, where f [n] is the inverse L-point DFT of F [k].
Then, compute

d =
nmin − L/2

L . (6.119)

(S4) Obtain the time delay estimate d̂ as

d̂ =

∑N
2 −1

k=1 ωkφ̂′[k]/σ2
k∑N

2 −1

k=1 ω2
k/σ2

k

+ d, (6.120)

where

φ̂′[k] = φ̂[k] − ωkd. (6.121)

The cross-periodogram can be used for the estimation of cross-spectra,
Sy2

1y2
[k] and Sy2

1y1
[k] in (S1), from the given data y[n], n = 0, 1, ..., N − 1.

Divide the given sample sequence of length N into B nonoverlapping segments
each of length N so that N = BN . Let A(i)[k] denote the DFT of the ith
segment {y2

1[n + (i − 1)N ], 0 ≤ n ≤ N − 1}, i ∈ {1, 2, ..., B} given by

A(i)[k] =
N−1∑
n=0

y2
1 [n + (i − 1)N ]e−j2πkn/N , k = 0, 1, ...,N − 1. (6.122)

Similarly, let B(i)[k] denote the DFT of the ith segment {y2[n+(i−1)N ], 0 ≤
n ≤ N −1}, i ∈ {1, 2, ..., B}. Then, the cross-periodogram for the ith segment
of data is given by

Ŝ
(i)

y2
1y2

[k] =
1

N A(i)[k]
(
B(i)[k]

)∗
. (6.123)
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Finally, the estimate Ŝy2
1y2

[k] is given by averaging over B segments as

Ŝy2
1y2

[k] =
1

B

B∑
i=1

Ŝ
(i)

y2
1y2

[k]. (6.124)

On the other hand, the cross-periodogram associated with Sy2
1y1

[k] can be

obtained in the same fashion with y2[n] replaced by y1[n] in computing B(i)[k]
above.

Problems

6.1. Prove Fact 6.6.

6.2. Prove Fact 6.7.

6.3. Prove Property 6.8.

6.4. Prove Property 6.9.

6.5. Prove Theorem 6.14.

6.6. Prove Fact 6.15.

6.7. Prove Fact 6.19 for complex a[n].

6.8. Prove Fact 6.20.

Computer Assignments

6.1. Perform fractionally spaced equalization using the hybrid MIMO-
MNC equalization algorithm with the real data posted on the fol-
lowing on-line Signal Processing Information Base (SPIB) web sites:
(a) Modem data (http://spib.rice.edu/spib/modem.html)
(b) Cable data (http://spib.rice.edu/spib/cable.html)

6.2. Write a computer program to perform the same simulation as pre-
sented in Example 6.5 for BMRC using the hybrid MIMO-MNC
equalization algorithm.

6.3. Write a computer program to perform the same simulation as pre-
sented in Example 6.12 for blind SIMO system identification using
the SIMO BSI algorithm introduced in Section 6.3.3.
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6.4. Write a computer program to perform the same simulation as pre-
sented in Example 6.13 for multiple time delay estimation using the
MTDE algorithm introduced in Section 6.4.2.

6.5. Write a computer program to perform the same simulation as pre-
sented in Example 6.16 for blind beamforming using the MIMO
hybrid MNC equalization algorithm.

6.6. Write a computer program to perform the same simulation as pre-
sented in Example 6.17 for blind source separation using the MSS
Algorithm introduced in Section 6.5.3.

6.7. Write a computer program to perform the same simulation as pre-
sented in Example 6.18 for multiuser detection in DS/CDMA sys-
tems using the BMMD Algorithm-(	) with 	 = 1 and 2 introduced
in Section 6.6.2.

6.8. Write a computer program to perform the same simulation as pre-
sented in Example 6.21 for multiuser detection in DS/CDMA sys-
tems using the BMMD Algorithm-(	) with 	 = 3 introduced in Sec-
tion 6.6.3.

6.9. Write a computer program to perform the same simulation as pre-
sented in Examples 6.22 and 6.23 for blind multiuser detection in
DS/CDMA systems using the BMMD-BMRC Algorithm introduced
in Section 6.6.4.
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7

Two-Dimensional Blind Deconvolution

Algorithms

Two-dimensional (2-D) blind deconvolution processing is essential in 2-D sta-
tistical signal processing areas such as image restoration, image model iden-
tification, texture synthesis, texture image classification, and so forth. This
chapter provides an introduction to some 2-D deconvolution algorithms that
we believe are effective in these applications. This chapter begins with a re-
view of 2-D deterministic signals, systems and linear random processes. Two
well-known 2-D deconvolution criteria, PD criterion and MMSE criterion are
presented followed by the widely used 2-D LPE filtering approach using SOS.
Then 2-D deconvolution algorithms using HOS are introduced, including MNC
and SE algorithms, and their properties and relations to the MMSE algorithm.
Finally, a 2-D hybrid blind deconvolution algorithm based on these properties
and relations is introduced. Applications of these algorithms are left to the
next chapter.

7.1 Two-Dimensional Discrete-Space Signals, Systems

and Random Processes

7.1.1 2-D Deterministic Signals

A 2-D discrete-space signal is discrete in space and will be denoted by a
function whose two arguments are integers. For instance, x[n1, n2] represents
a 2-D signal defined for all integer values of n1 and n2, while x[n1, n2] is not
defined for nonintegers n1 and n2. The notation x[n1, n2] refers to either the
discrete-space function x or the value of the function x at a specific [n1, n2].

Some specific 2-D signals, which are indispensable in 2-D signal processing,
including the 2-D Kronecker delta function, separable signals, periodic signals
and stable signals are defined as follows.
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2-D Kronecker Delta Function

The 2-D Kronecker delta function (or unit sample signal), denoted by δ[n1, n2],
is defined by

δ[n1, n2] =

{
1, n1 = n2 = 0

0, otherwise.
(7.1)

Any sequence x[n1, n2] can be represented by a linear combination of shifted-
versions of δ[n1, n2] as follows:

x[n1, n2] =

∞∑
k1=−∞

∞∑
k2=−∞

x[k1, k2]δ[n1 − k1, n2 − k2]. (7.2)

2-D Separable Signals

A 2-D signal x[n1, n2] is said to be a separable signal if it can be expressed as

x[n1, n2] = a[n1]b[n2] (7.3)

where a[n1] and b[n2] are functions of only n1 and n2, respectively. For in-
stance, the 2-D Kronecker delta function δ[n1, n2] is a separable signal because

δ[n1, n2] = δ[n1]δ[n2] (7.4)

where δ[n] is the 1-D Kronecker delta function.

2-D Periodic Signals

A 2-D signal x[n1, n2] is said to be periodic with a period of N1 × N2 (where
N1 and N2 are nonnegative integers) if x[n1, n2] satisfies

x[n1, n2] = x[n1 + k1N1, n2 + k2N2] for all [n1, n2] (7.5)

where k1 and k2 are both integers. For example, x[n1, n2] = cos[(π/2)n1 +
(π/3)n2] = x[n1 +4k1, n2 +6k2] for any integers k1 and k2 is a periodic signal
with period 4 × 6.

2-D Stable Signals

A 2-D signal x[n1, n2] is said to be stable if it is absolutely summable, i.e.

∞∑
k1=−∞

∞∑
k2=−∞

|x[k1, k2]| < ∞. (7.6)

For instance, any finite-length 2-D signal is stable because it satisfies (7.6).
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7.1.2 2-D Transforms

2-D z-Transform

The 2-D z-transform of a discrete-space signal x[n1, n2] is defined as

X(z1, z2) = Z{x[n1, n2]} =

∞∑
n1=−∞

∞∑
n2=−∞

x[n1, n2]z
−n1
1 z−n2

2 (7.7)

where z1 and z2 are complex variables. From (7.7), it follows that

|X(z1, z2)| ≤
∞∑

n1=−∞

∞∑
n2=−∞

|x[n1, n2]| · |z1|−n1 |z2|−n2 , (7.8)

which implies that the convergence of the series given by (7.7) depends on
|z1| and |z2|. For instance, if x[n1, n2] is a stable signal, the ROC of X(z1, z2)
includes the unit surface (i.e. z1 = ejω1 , z2 = ejω2). The inverse z-transform
x[n1, n2] = Z−1{X(z1, z2)} can be uniquely specified by both X(z1, z2) and
its ROC.

2-D Discrete-Space Fourier Transform

The 2-D discrete-space Fourier transform (DSFT) of a 2-D discrete-space
signal x[n1, n2] is defined as

X(ω1, ω2) = F{x[n1, n2]} =

∞∑
n1=−∞

∞∑
n2=−∞

x[n1, n2]e
−jω1n1e−jω2n2 . (7.9)

It is obvious that X(ω1, ω2) is periodic with period 2π × 2π, i.e. X(ω1, ω2) =
X(ω1+2k1π, ω2+2k2π) for all integers k1 and k2. The 2-D DSFT is also called
the 2-D Fourier Transform (FT) for short. The 2-D inverse DSFT (IDSFT)
of X(ω1, ω2) is nothing but the Fourier series expansion of X(ω1, ω2) given by

x[n1, n2] = F
−1{X(ω1, ω2)}

=
1

(2π)2

∫ π

−π

∫ π

−π

X(ω1, ω2)e
jω1n1ejω2n2dω1dω2. (7.10)

As x[n1, n2] is stable,

N1∑
n1=−N1

N2∑
n2=−N2

x[n1, n2]e
−jω1n1e−jω2n2

converges uniformly and absolutely to X(ω1, ω2) as N1 → ∞ and N2 →
∞, and meanwhile X(ω1, ω2) is continuous. As x[n1, n2] is absolutely square
summable but not stable,
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∫ π

−π

∫ π

−π

∣∣∣∣∣
N1∑

n1=−N1

N2∑
n2=−N2

x[n1, n2]e
−jω1n1e−jω2n2 − X(ω1, ω2)

∣∣∣∣∣
2

dω1dω2 → 0

(7.11)
as N1 → ∞ and N2 → ∞, (i.e. mean-square convergence), and then X(ω1, ω2)
must have discontinuities. On the other hand, it can be inferred that if
X(ω1, ω2) is continuous, then x[n1, n2] is stable, or equivalently absolutely
summable. Moreover, comparing (7.9) with (7.7), one can see that if the ROC
of X(z1, z2) includes the unit surface, then X(ω1, ω2) = X(z1 = ejω1 , z2 =
ejω2) exists.

2-D Discrete Fourier Transform

The DSFT and the IDSFT are very useful in theoretical analyses and al-
gorithm development, but calculations according to (7.9) and (7.10) need
substantial computation power and thus are not very practical since ω1 and
ω2 are continuous variables. Assume that x[n1, n2], n1 = 0, 1, ..., N1 − 1,
n2 = 0, 1, ..., N2 − 1 is a finite-duration sequence of length N1 × N2, its
DSFT X(ω1, ω2) can be computed at the discrete values of radian frequency
(ω1 = 2πk1/N1, ω2 = 2πk2/N2) via the N1 × N2-point DFT defined as

X [k1, k2] = DFT{x[n1, n2]} =

N1−1∑
n1=0

N2−1∑
n2=0

x[n1, n2]W
k1n1

N1
W k2n2

N2
,

0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1, (7.12)

where WN = exp{−j2π/N} is the twiddle factor. The 2-D IDFT of X [k1, k2],
k1 = 0, 1, ..., N1 − 1, k2 = 0, 1, ..., N2 − 1 is given by

x[n1, n2] = IDFT{X [k1, k2]}

=
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X [k1, k2]W
−k1n1

N1
W−k2n2

N2
,

0 ≤ n1 ≤ N1 − 1, 0 ≤ n2 ≤ N2 − 1. (7.13)

As x[n1, n2] is a finite-extent sequence with length N
′

1 × N
′

2 smaller than
or equal to N1 × N2 (N

′

1 ≤ N1 and N
′

2 ≤ N2), X [k1, k2] given by (7.12) can
be used to completely specify x[n1, n2] via the N1 × N2-point IDFT.

One useful property of the 2-D DFT is the circular convolution of two
finite-extent sequences x1[n1, n2] with length N

′

1 × N
′

2 and x2[n1, n2] with
length N

′′

1 ×N
′′

2 . Assuming that N1 ≥ N
′

1, N1 ≥ N
′′

1 and N2 ≥ N
′

2, N2 ≥ N
′′

2 ,
the N1 × N2-point circular convolution of x1[n1, n2] and x2[n1, n2] is defined
by
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x1[n1, n2] � x2[n1, n2]

=

N1−1∑
k1=0

N2−1∑
k2=0

x1[k1, k2]x2[((n1 − k1))N1 , ((n2 − k2))N2 ]. (7.14)

Let X1[k1, k2] and X2[k1, k2] denote the N1 ×N2-point DFT of x1[n1, n2] and
x2[n1, n2], respectively. Then

DFT{x1[n1, n2] � x2[n1, n2]} = X1[k1, k2]X2[k1, k2].

7.1.3 2-D Linear Shift-Invariant Systems

For a 2-D LSI system h[n1, n2], the relation between the input x[n1, n2] and
output y[n1, n2] can be simply expressed as the following 2-D linear convolu-
tion

y[n1, n2] = x[n1, n2] � h[n1, n2]

=

∞∑
k1=−∞

∞∑
k2=−∞

x[k1, k2]h[n1 − k1, n2 − k2]. (7.15)

As in the 1-D case, 2-D convolution also possesses several properties such as
commutativity, associativity and distributivity. For simplicity, the 2-D system
also refers to the 2-D LSI system hereafter.

Let X [k1, k2] and H [k1, k2] denote the N1 × N2-point DFTs of x[n1, n2]
with length N

′

1 × N
′

2 and h[n1, n2] with length N
′′

1 × N
′′

2 , respectively. Then,
y[n1, n2] = x[n1, n2] � h[n1, n2] = x[n1, n2] � h[n1, n2] for 0 ≤ n1 ≤ N1 − 1,
0 ≤ n2 ≤ N2 − 1 (i.e. the linear convolution and the circular convolution are
equivalent) as long as N1 ≥ N

′

1 + N
′′

1 − 1 and N2 ≥ N
′

2 + N
′′

2 − 1.

2-D Stable Systems

For a 2-D system with impulse response h[n1, n2], it is BIBO stable if and
only if h[n1, n2] is absolutely summable, i.e.

∞∑
k1=−∞

∞∑
k2=−∞

|h[k1, k2]| < ∞. (7.16)

Although the above condition (7.16) for system stability is a straightforward
extension of the 1-D case, the stability test for 2-D systems is generally much
more complicated than for 1-D systems and is beyond the scope of this book.

2-D Causal Systems and Special Support Systems

A 1-D causal LTI system with impulse response h[n] zero for n < 0 is preferred
in applications where real-time processing is needed. In contrast to the 1-D
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case, the causality for 2-D systems is based on how “past”, “present” and
“future” are defined in terms of region of support, whereas real-time processing
may not be a major concern in most 2-D signal processing applications.

For a specific space index [k1, k2], the past of [k1, k2] is defined as the set [1]

ΩP[k1, k2] = {[n1, n2]|n1 = k1, n2 < k2; n1 < k1,−∞ < n2 < ∞} (7.17)

and the future of [k1, k2] is defined as the set

ΩF[k1, k2] = {[n1, n2]|n1 = k1, n2 > k2; n1 > k1,−∞ < n2 < ∞} (7.18)

as shown in Fig. 7.1. A 2-D system h[n1, n2] is said to be causal (or one-
sided) when h[n1, n2] = 0 for all [n1, n2] ∈ ΩP[0, 0], or its region of support is
ΩF[0,−1].

1n

2n

1 2[ , ]k k

!��� /���	�

Fig. 7.1 The definition of “present”, “future” and “past” of a specific space index
[k1, k2]

For ease of later use, define the nonsymmetric half plane (NSHP) as

ΩNSHP = ΩF[0,−1], (7.19)

and the truncated NSHP (TNSHP) as [1–4]

ΩTNSHP[p1, p2] = ΩNSHP ∩ {[n1, n2] : n1 ≤ p1, |n2| ≤ p2}. (7.20)

Note that ΩNSHP is also the region of support of a 2-D causal system h[n1, n2].
Define the quarter plane (QP) as

ΩQP = {[n1, n2] : n1 ≥ 0, n2 ≥ 0}, (7.21)
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and the truncated QP (TQP) as [1–4]

ΩTQP[p1, p2] = ΩQP ∩ {[n1, n2] : n1 ≤ p1, n2 ≤ p2}. (7.22)

Figure 7.2 shows an example of the region of support of ΩTNSHP[3, 2] and
ΩTQP[3, 2]. It is easy to see that ΩTQP[3, 2] is a subset of ΩTNSHP[3, 2].

1n

2n

Fig. 7.2 Example of regions of support for ΩTNSHP[3, 2] (shaded region) and
ΩTQP[3, 2] (inside the rectangle)

2-D Minimum-Phase and Nonminimum-Phase Systems

A 2-D system h[n1, n2] is said to be minimum phase if h[n1, n2] is causal (with
region of support ΩNSHP) and stable and its inverse system hINV[n1, n2] is also
casual and stable.

Assume that hMP[n1, n2] is a minimum-phase system and hNMP[n1, n2] is
a nonminimum-phase system. As in the 1-D case, hNMP[n1, n2] can be decom-
posed as

hNMP[n1, n2] = hMP[n1, n2] � hAP[n1, n2] (7.23)

where hAP[n1, n2] is an allpass system with magnitude response |HAP(ω1, ω2)|
equal to a constant. The minimum-energy delay property of a 1-D minimum-
phase system also applies to hMP[n1, n2], that is, [1]∑∑

[i1,i2]∈Ω[p1,p2]

|hMP[i1, i2]|2 ≥
∑∑

[i1,i2]∈Ω[p1,p2]

|hNMP[i1, i2]|2 (7.24)

where Ω[p1, p2] = ΩNSHP ∩ ΩP[p1, p2 + 1].
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2-D Linear Phase Systems

A 2-D LSI system h[n1, n2] is said to be linear phase if its frequency response
H(ω1, ω2) can be expressed as

H(ω1, ω2) = |H(ω1, ω2)|ej(ω1τ1+ω2τ2+ς) (7.25)

where τ1, τ2 and ς are real constants. Furthermore, as (τ1, τ2, ς) = (0, 0, 0)
or (0, 0, π), the resultant system (H(ω1, ω2) = |H(ω1, ω2)| or H(ω1, ω2) =
−|H(ω1, ω2)|) is called a zero-phase system. The impulse response of a zero-
phase system satisfies

h[n1, n2] = h∗[−n1,−n2], ∀n1, n2 (7.26)

since H(ω1, ω2) is real.

2-D Autoregressive Moving-Average (ARMA) Systems

A rational z-transform H(z1, z2) of h[n1, n2] is called an ARMA model if it
can be expressed as

H(z1, z2) =
B(z1, z2)

A(z1, z2)
=

p1∑
n1=−p1

p2∑
n2=−p2

b[n1, n2]z
−n1
1 z−n2

2

p1∑
n1=−p1

p2∑
n2=−p2

a[n1, n2]z
−n1
1 z−n2

2

(7.27)

where p1 and p2 are nonnegative integers and A(z1, z2) and B(z1, z2) are z-
transforms of a[n1, n2] and b[n1, n2], respectively. As B(z1, z2) is a nonzero
constant, H(z1, z2) reduces to an AR model, while it reduces to an MA model
for A(z1, z2) equal to a nonzero constant. The MA model is guaranteed sta-
ble. Stability testing of AR and ARMA models can be conducted by one-
dimensional root-finding of the 2-D polynomial A(z1, z2) [2], which is usually
tedious. An alternative model with stability guaranteed is a frequency-domain
2-D FSBM [5–7], to be introduced next.

2-D Fourier Series Based Model

The 2-D parametric nonminimum-phase FSBM for 2-D stable LSI systems is
nothing but an extension of the 1-D FSBM introduced in Chapter 3. As in
the 1-D FSBM, the 2-D FSBM is guaranteed stable and its complex cepstrum
can be obtained from its amplitude and phase parameters by a closed-form
formula without involving complicated 2-D phase unwrapping and polynomial
rooting.

Assume that h[n1, n2] is a real stable 2-D LSI system with frequency re-
sponse H(ω1, ω2). The 2-D FSBM for H(ω1, ω2) can be expressed by the
following MG-PS decomposition:
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H(ω1, ω2) = H∗(−ω1,−ω2) = HMG(ω1, ω2) · HPS(ω1, ω2) (7.28)

where HMG(ω1, ω2) is a 2-D zero-phase FSBM given by

HMG(ω1, ω2) = exp

⎧⎨⎩ ∑∑
[i1,i2]∈Ω′

TNSHP[p1,p2]

αi1,i2 cos(i1ω1 + i2ω2)

⎫⎬⎭ (7.29)

and HPS(ω1, ω2) is a 2-D allpass FSBM given by

HPS(ω1, ω2) = exp

⎧⎨⎩j
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

βi1,i2 sin(i1ω1 + i2ω2)

⎫⎬⎭ (7.30)

in which

Ω′
TNSHP[p1, p2] = {[n1, n2] ∈ ΩTNSHP[p1, p2], [n1, n2] �= [0, 0]}

= ΩTNSHP[p1, p2] ∩ ΩF[0, 0] (7.31)

is the region of support associated with both the real amplitude parameters
αi1,i2 and real phase parameters βi1,i2 . Similar to its 1-D counterpart, the
2-D FSBM given by (7.28) can also be expressed by MP-AP decomposition
as follows:

H(ω1, ω2) = H∗(−ω1,−ω2) = HMP(ω1, ω2) · HAP(ω1, ω2) (7.32)

where HMP(ω1, ω2) is a 2-D minimum-phase FSBM given by

HMP(ω1, ω2) = exp

⎧⎨⎩ ∑∑
[i1,i2]∈Ω′

TNSHP[p1,p2]

αi1,i2e
−j(i1ω1+i2ω2)

⎫⎬⎭ (7.33)

and HAP(ω1, ω2) is a 2-D allpass FSBM given by

HAP(ω1, ω2) = exp

⎧⎨⎩j
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

(αi1,i2 + βi1,i2) sin(i1ω1 + i2ω2)

⎫⎬⎭ .

(7.34)

It can easily be shown that the region of support of the minimum-phase system
hMP[n1, n2] given by (7.33) is the right half plane (i.e. ΩNSHP) and hMP[0, 0] =
1. This is left as an exercise (Problem 7.1).

The 2-D FSBM given by (7.28) and (7.32) is potentially a better choice
for modeling arbitrary 2-D LSI systems than the 2-D ARMA model in sta-
tistical signal processing applications thanks to its stability and closed-form
formulas for computing its complex cepstrum . The complex cepstrum [8–10]
of h[n1, n2], denoted h[n1, n2], can easily be shown from the MP-AP decom-
position of the 2-D FSBM (see (7.32)) to be
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h[n1, n2] = F
−1{ln{H(ω1, ω2)}} = hMP[n1, n2] + hAP[n1, n2] (7.35)

where

hMP[n1, n2] =

⎧⎨⎩αn1,n2 , [n1, n2] ∈ Ω′
TNSHP[p1, p2]

0, otherwise
(7.36)

and

hAP[n1, n2] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1

2
(αn1,n2 + βn1,n2) , [n1, n2] ∈ Ω′

TNSHP[p1, p2]

1

2
(α−n1,−n2 + β−n1,−n2) , [−n1,−n2] ∈ Ω′

TNSHP[p1, p2]

0, otherwise.

(7.37)
Similarly, the complex cepstrum h[n1, n2] using the MG-PS decomposition of
the 2-D FSBM given by (7.28) can also be expressed as a simple closed-form
formula of αn1,n2 and βn1,n2 (Problem 7.2). As the 2-D LSI system h[n1, n2]
(with frequency response H(ω1, ω2)), however, is not a 2-D FSBM (e.g. a
2-D ARMA model), the larger the chosen values for p1 and p2 of the 2-D
FSBM H(ω1, ω2), the better the approximation H(ω1, ω2) to the true system
H(ω1, ω2).

As a remark, complex cepstra of speech signals with the vocal tract-filter
modeled as a minimum-phase AR model have been widely used in speech
recognition and speaker identification [8–10]. Similarly, the 2-D FSBM model
can also be used for modeling texture images [11], and meanwhile its complex
cepstrum obtained by (7.35) can be used as features for classification of texture
images that will be introduced in Chapter 8.

7.1.4 2-D Stationary Random Processes

Definitions and Notations

Let x[n1, n2] be a 2-D stationary complex random process (or random field).
The mean and variance of x[n1, n2] are respectively defined as

mx = E{x[n1, n2]},
σ2

x = Var(x[n1, n2]) = E{|x[n1, n2] − mx|2} = E{|x[n1, n2]|2} − |mx|2.
The (p+ q)th-order cumulant of x[n1, n2] introduced in Chapter 3 is repeated
here for convenience

Cp,q{x[n1, n2]} = cum{x[n1, n2] : p, x∗[n1, n2] : q} (7.38)

where p and q are nonnegative integers. Note that mx = C1,0{x[n1, n2]} and
σ2

x = C1,1{x[n1, n2]}. For real x[n1, n2], Cp,q{x[n1, n2]} is invariant for all
(p, q) as long as (p + q) is constant, and can be simplified as
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Cp+q{x[n1, n2]} = cum{x[n1, n2] : p, x∗[n1, n2] : q}
= cum{x[n1, n2] : p + q}. (7.39)

The correlation function of x[n1, n2] is defined as

rx[l1, l2] = E{x[n1, n2]x
∗[n1 − l1, n2 − l2]} (7.40)

and its power spectrum Sx(ω1, ω2) = F{rx[l1, l2]}.
For ease of later use, we further define

n = [n1, n2], k = [k1, k2], li = [li1, li2], ω = [ω1, ω2], ωi = [ωi1, ωi2]. (7.41)

Let Cx
p,q(l1, ..., lp+q−1) denote the (p + q)th-order cumulant function of a 2-D

random process x[n] defined as

Cx
p,q(l1, ..., lp+q−1)

= cum{x[n], x[n − l1], ..., x[n − lp−1], x
∗[n − lp], ..., x

∗[n − lp+q−1]}. (7.42)

Its 2(p + q − 1)-dimensional FT, denoted Sx
p,q(ω1, ...,ωp+q−1), is called the

(p + q)th-order polyspectrum of x[n] [12].
As x[n] is i.i.d. with zero-mean, variance σ2

x and nonzero Cp,q{x[n1, n2]},
both its power spectrum and (p + q)th-order polyspectrum are flat and given
by Sx(ω) = σ2

x and Sx
p,q(ω1, ...,ωp+q−1) = Cp,q{x[n1, n2]}, respectively.

2-D Linear Processes

Consider a 2-D stable LSI system h[n] driven by a stationary input x[n]
with power spectrum Sx(ω) as depicted by (7.15). The output y[n] is also a
stationary random process. Then the power spectrum Sy(ω) and the (p+q)th-
order polyspectrum of y[n] [13] are continuous and given by

Sy(ω) = Sx(ω)|H(ω)|2 (7.43)

and

Sy
p,q(ω1, ...,ωp+q−1) = Sx

p,q(ω1, ...,ωp+q−1)

· H
(

p+q−1∑
i=1

ωi

)
·

p−1∏
i=1

H(−ωi) ·
p+q−1∏

i=p

H∗(ωi), (7.44)

respectively.

2-D Sample Correlations and Cumulants

In practice, we are usually given a set of data y[n1, n2], n1 = 0, 1, ..., N1 − 1,
and n2 = 0, 1, ..., N2 − 1 for the estimation of correlations and cumulants
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of y[n1, n2]. Biased sample correlations and cumulants are widely used as es-
timates of correlations and cumulants. For instance, assume that y[n1, n2] is
a 2-D zero-mean stationary random process and then the sample correlation
r̂y[l1, l2], the sample cumulants Ĉ2,1{y[n1, n2]} and Ĉ2,2{y[n1, n2]} can be ob-
tained as follows

r̂y [l1, l2] =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

y[k1, k2]y
∗[k1 − l1, k2 − l2], (by (7.40)) (7.45)

Ĉ2,1{y[n1, n2]} =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

y2[k1, k2]y
∗[k1, k2], (by (3.207)) (7.46)

Ĉ2,2{y[n1, n2]} =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

|y[k1, k2]|4 − 2 · r̂2
y[0, 0]

−
∣∣∣∣∣ 1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

y2[k1, k2]

∣∣∣∣∣
2

. (by (3.208)) (7.47)

As mentioned in Chapter 3, the biased sample correlations and cumulants
are consistent and asymptotically unbiased under certain conditions [12]. In
other words, the consistency property of the biased sample correlations and
cumulants is shared by both 1-D and 2-D stationary linear processes.

7.2 2-D Deconvolution

This section begins with an introduction to the 2-D blind deconvolution prob-
lem followed by two widely used deconvolution criteria, i.e. PD and MMSE
deconvolution criteria.

7.2.1 Blind Deconvolution Problem

Assume that y[n1, n2] is a 2-D discrete-space signal of length N ×N given by

y[n1, n2] = x[n1, n2] + w[n1, n2], n1 = 0, ..., N − 1, n2 = 0, ..., N − 1 (7.48)

where x[n1, n2] is the noise-free output signal of an LSI system h[n1, n2] driven
by an unknown input signal u[n1, n2], i.e.

x[n1, n2] = u[n1, n2] � h[n1, n2]

=

∞∑
k1=−∞

∞∑
k2=−∞

h[k1, k2]u[n1 − k1, n2 − k2] (7.49)

and w[n1, n2] is additive noise. Let us make the following general assumptions
about u[n1, n2], h[n1, n2] and w[n1, n2], respectively.
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(A7-1) The input signal u[n1, n2] is stationary complex, zero-mean, i.i.d.,
nonGaussian with variance σ2

u and nonzero (p+ q)th-order cumulant
Cp,q{u[n1, n2]} for nonnegative integers p and q and (p + q) ≥ 3.

(A7-2) Both h[n1, n2] and its inverse system hINV[n1, n2] are stable LSI sys-
tems.

(A7-3) Noise w[n1, n2] is stationary complex, zero-mean, colored Gaussian
with variance σ2

w and power spectrum Sw(ω1, ω2). Moreover, w[n1, n2]
is statistically independent of u[n1, n2].

The signal model under the above three assumptions is depicted in Fig. 7.3.
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Fig. 7.3 Block diagram for 2-D signal model

Under the Assumptions (A7-1) – (A7-3), the 2-D signal y[n1, n2] can be
shown to be a stationary nonGaussian random process (or random field) with
the following correlation function

ry [l1, l2] = σ2
uh[l1, l2] � h∗[−l1,−l2] + rw[l1, l2] (7.50)

and power spectrum (2-D DSFT of ry[l1, l2])

Sy(ω1, ω2) = Sx(ω1, ω2) + Sw(ω1, ω2) = σ2
u|H(ω1, ω2)|2 + Sw(ω1, ω2). (7.51)

The signal quality of the 2-D signal given by (7.48) can be quantified by SNR
defined as

SNR =
E{|x[n1, n2]|2}
E{|w[n1, n2]|2} =

rx[0, 0]

rw[0, 0]
. (7.52)

2-D Linear Blind Deconvolution

Two-dimensional blind deconvolution is a signal processing procedure for es-
timating the input signal u[n1, n2] up to a scale factor and a space shift only
with the given measurements y[n1, n2] (without training signals). The estima-
tion of u[n1, n2] can be achieved by processing y[n1, n2] with a designed linear
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deconvolution filter v[n1, n2]. Then the deconvolution filter output e[n1, n2]
can be expressed as

e[n1, n2] = v[n1, n2] � y[n1, n2] = eS[n1, n2] + eN[n1, n2] (7.53)

where
eN[n1, n2] = v[n1, n2] � w[n1, n2] (by (7.48)) (7.54)

is the noise component and

eS[n1, n2] = v[n1, n2] � x[n1, n2] = g[n1, n2] � u[n1, n2] (by (7.49)) (7.55)

is the corresponding signal component in which

g[n1, n2] = h[n1, n2] � v[n1, n2] (7.56)

is the overall system after deconvolution. Accordingly, 2-D blind deconvolu-
tion becomes a problem of finding the coefficients of the equalizer v[n1, n2]
such that the signal component eS[n1, n2] well approximates the input signal
u[n1, n2] (up to a scale factor and a space shift) and meanwhile the power
E{|eN[n1, n2]|2} of the noise component eN[n1, n2] can be minimized. As in
the SISO case (see (4.13)), an index for quantifying the approximation of
eS[n1, n2] to the input signal u[n1, n2] is the amount of ISI defined as [14]

ISI{g[n1, n2]} =

∑
n1

∑
n2

|g[n1, n2]|2 − max
[n1,n2]

{|g[n1, n2]|2
}

max
[n1,n2]

{|g[n1, n2]|2
} . (7.57)

Note that ISI{αδ[n1 − τ1, n2 − τ2]} = 0 and that the smaller the value of
ISI{g[n1, n2]}, the better the overall system g[n1, n2] approximates αδ[n1 −
τ1, n2 − τ2].

7.2.2 Peak Distortion and Minimum Mean-Square-Error
Deconvolution Criteria

2-D Peak Distortion Deconvolution

The goal of PD deconvolution criterion is to design a filter v[n1, n2] such that

JPD(v[n1, n2]) = ISI{g[n1, n2]} (7.58)

is minimum. The optimum deconvolution filter, also referred to as 2-D ZF
deconvolution filter, is known as

VZF(ω1, ω2) = α
e−j(ω1τ1+ω2τ2)

H(ω1, ω2)
= αe−j(ω1τ1+ω2τ2)HINV(ω1, ω2) (7.59)
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where α is a nonzero constant, and τ1 and τ2 are integers. Note that
VZF(ω1, ω2) is usually an IIR filter (with infinite region of support) which is
also a 2-D stable LSI filter by Assumption (A7-2), and that JPD(vZF[n1, n2]) =
ISI{αδ[n1 − τ1, n2 − τ2]} = 0.

In practical applications where SNR is finite, the ZF deconvolution filter
may result in significant noise enhancement that causes performance degra-
dation. From (7.53), (7.54) and (7.59), the output of the ZF deconvolution
filter is given by

eZF[n1, n2] = eS[n1, n2] + eN[n1, n2]

= αu[n1 − τ1, n2 − τ2] + vZF[n1, n2] � w[n1, n2] (7.60)

and the signal and noise power spectra are given by SeS
(ω1, ω2) = |α|2σ2

u and

SeN
(ω1, ω2) = |VZF(ω1, ω2)|2Sw(ω1, ω2) =

|α|2Sw(ω1, ω2)

|H(ω1, ω2)|2 , (7.61)

respectively. It can be seen, from (7.61), that SeN
(ω1, ω2) can be very large

as |H(ω1, ω2)| is small for some frequencies (ω1, ω2), consequently leading
to the noise power E{|eN[n1, n2]|2} significantly enhanced. In other words,
the ZF deconvolution filter never takes the noise reduction into account. The
MMSE deconvolution filter, which performs both the ISI suppression and noise
reduction simultaneously, is introduced next.

2-D MMSE Deconvolution

The MMSE deconvolution filter vMS[n1, n2], known as a Wiener filter, is de-
signed by minimizing the following mean-square-error

JMSE(v[n1, n2]) = E{|αu[n1 − τ1, n2 − τ2] − e[n1, n2]|2} (7.62)

where e[n1, n2] is the deconvolution filter output given by (7.53). As vMS[n1, n2]
is noncausal IIR, by the orthogonality principle, the MMSE deconvolution fil-
ter can be easily shown to be

VMS(ω1, ω2) =
ασ2

u · H∗(ω1, ω2)e
−j(ω1τ1+ω2τ2)

Sy(ω1, ω2)

=
ασ2

u · H∗(ω1, ω2)e
−j(ω1τ1+ω2τ2)

Sx(ω1, ω2) + Sw(ω1, ω2)
(7.63)

which is independent of the choices of [τ1, τ2] if the linear phase term is ignored.
On the other hand, as vMS[n1, n2] is confined to an FIR filter, different MMSE
deconvolution filters can be obtained for different choices of [τ1, τ2].

Without loss of generality, let us assume τ1 = τ2 = 0 and α = 1. Then
VMS(ω1, ω2) in (7.63) can be further expressed as
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VMS(ω1, ω2) =
σ2

u · |H(ω1, ω2)|2
Sy(ω1, ω2)

· 1

H(ω1, ω2)

= VNR(ω1, ω2)VZF(ω1, ω2) (7.64)

where

VNR(ω1, ω2) =
σ2

u · |H(ω1, ω2)|2
Sy(ω1, ω2)

=
Sx(ω1, ω2)

Sy(ω1, ω2)
(7.65)

is actually the optimum nosie-reduction filter by minimizing E{|x[n1, n2] −
y[n1, n2]�v[n1, n2]|2}. From (7.64), one can observe that the processing of the
MMSE deconvolution consists of a signal enhancement processing using the
optimum Wiener filter VNR(ω1, ω2) and an ISI suppression processing using
the ZF deconvolution filter in cascade as shown in Fig. 7.4. As a remark, as
SNR = ∞, VNR(ω1, ω2) = 1, it is easy to see that VMS(ω1, ω2) reduces to
VZF(ω1, ω2).

NR 1 2[ , ]v n n ZF 1 2[ , ]v n n

1 2[ , ]e n n1 2[ , ]y n n
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Fig. 7.4 Signal processing of the 2-D MMSE deconvolution

7.3 SOS Based Blind Deconvolution Approach: Linear

Prediction

Two-dimensional linear prediction concerns the prediction of a stationary ran-
dom process y[n1, n2] through a linear combination of its “past” samples.
Assume that v[n1, n2] is an LSI filter with region of support ΩTNSHP[p1, p2]
given by (7.20) and the leading coefficient v[0, 0] = 1. Let v be a vector
containing all the LPE filter coefficients except v[0, 0] (i.e. the coefficients
v[n1, n2], ∀[n1, n2] ∈ Ω′

TNSHP[p1, p2] given by (7.31)) as

v = (vT [0] vT [1] · · · vT [p1])
T (7.66)

in which

v[0] = (v[0, 1], ..., v[0, p2])
T (7.67)

v[i] = (v[i,−p2], v[i,−p2 + 1], ..., v[i, p2])
T , i = 1, ..., p1. (7.68)
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Let ŷ[n1, n2] denote the predicted y[n1, n2] as follows

ŷ[n1, n2] = −
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

v[i1, i2]y[n1 − i1, n2 − i2]

= −vTy[n1, n2] (7.69)

where

y[n1, n2] = (yT
1 [n1, n2], y

T
2 [n1 − 1, n2], ..., y

T
2 [n1 − p1, n2])

T (7.70)

in which

y1[n1, n2] = (y[n1, n2 − 1], y[n1, n2 − 2], ..., y[n1, n2 − p2])
T (7.71)

and

y2[k, n2] = (y[k, n2 + p2], y[k, n2 + p2 − 1], ..., y[k, n2 − p2])
T ,

n1 − p1 ≤ k ≤ n1 − 1. (7.72)

Then the prediction error, denoted by ε[n1, n2], is thus the output of the 2-D
filter v[n1, n2] driven by y[n1, n2], i.e.

ε[n1, n2] = y[n1, n2] − ŷ[n1, n2] = y[n1, n2] + vT y[n1, n2]

=
∑∑

[k1,k2]∈ΩTNSHP[p1,p2]

v[k1, k2]y[n1 − k1, n2 − k2]. (7.73)

The LPE filter vLPE[n1, n2] is also designed by minimizing the following MSE
criterion

JMSE(v[n1, n2]) = E{|ε[n1, n2]|2}. (7.74)

Again, by applying the orthogonality principle, the LPE filter vLPE[n1, n2] can
be shown to satisfy the following linear 2-D normal equations [1, 15]

E{ε[n1, n2]y
∗[n1, n2]} = r + Rv = 0 (7.75)

where
R = E{y∗[n1, n2]y

T [n1, n2]} (7.76)

is a [p2 + (2p2 + 1)p1] × [p2 + (2p2 + 1)p1] correlation matrix and

r = E{y[n1, n2]y
∗[n1, n2]} (7.77)

is a [p2+(2p2+1)p1]×1 correlation vector. By (7.75), the LPE filter coefficients
v can then be obtained by

v = −R−1r (7.78)

where R−1 can be obtained by SVD to avoid numerical problems as R is rank
deficient. On the other hand, for sufficiently large p1 and p2, the optimum LPE
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filter vLPE[n1, n2] has been shown to be minimum phase and meanwhile per-
forms as a whitening filter (which corresponds to an “amplitude equalizer”),
i.e.

|VLPE(ω1, ω2)|2 ∝ 1

Sy(ω1, ω2)
=

1

Sx(ω1, ω2) + Sw(ω1, ω2)
(7.79)

as long as the autocorrelation function ry [k1, k2] is analytic positive definite
[1] for which Sy(z1, z2) is analytic over a set of (z1, z2) with the unit surface

included and meanwhile its value is not equal to zero on the unit surface.
If the region of support of the LPE filter vLPE[n1, n2] is ΩTQP[p1, p2] (see

(7.73)) rather than ΩTNSHP[p1, p2], one can also obtain a set of linear equations
similar to (7.75). The LPE filter vLPE[n1, n2] with a sufficiently large region of
support ΩTQP[p1, p2] also performs as a whitening filter which tries to make
the resultant power spectral density Sε(ω1, ω2) of ε[n1, n2] flat.

The design of the LPE filter with region of support ΩTNSHP[p1, p2] is sum-
marized in Table 7.1. Note that for a given set of finite data y[n1, n2], all the
correlations ry[l1, l2] needed by (7.78) can be replaced by the associated sam-
ple correlations (consistent estimates of ry [l1, l2]) given by (7.45). Therefore,
the designed LPE filter is also a consistent estimate of the true LPE filter by
Slutsky’s Theorem (Theorem 3.58).

Table 7.1 2-D LPE filter design

Parameter
setting

Set the order (p1, p2) of the LPE filter for Ω′

TNSHP[p1, p2] given
by (7.31).

Steps (S1) Form the vector y[n1, n2] given by (7.70) and estimate the
correlation matrix R and correlation vector r

R = E{y∗[n1, n2]y
T [n1, n2]}

r = E{y[n1, n2]y
∗[n1, n2]}

using sample correlations

ry[l1, l2] =
1

N1N2

N1−1

k1=0

N2−1

k2=0

y[k1, k2]y
∗[k1 − l1, k2 − l2].

(S2) Calculate v by
v = −R−1r

and obtain the associated vLPE[n1, n2].
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7.4 HOS Based Blind Deconvolution Approaches

Higher-order statistics have been used for the estimation of 2-D AR or ARMA
models that can be nonminimum phase, asymmetric and noncausal [11,16–20].
As will be introduced in this section, HOS can also be used for 2-D blind
deconvolution.

Let v[n1, n2] be a deconvolution filter with region of support ΩTQP[p1, p2]
to be designed, and v be a vector consisting of the filter coefficients v[n1, n2]
for all [n1, n2] ∈ ΩTQP[p1, p2] as follows

v = (vT [0],vT [1], ...,vT [p1])
T (7.80)

in which

v[i] = (v[i, 0], v[i, 1], ..., v[i, p2])
T , i = 0, 1, ..., p1. (7.81)

By processing the given noisy data y[n1, n2] modeled by (7.48) and (7.49), the
deconvolution filter output e[n1, n2] can be expressed as

e[n1, n2] = v[n1, n2] � y[n1, n2] = vT y[n1, n2] (7.82)

where

y[n1, n2] = (yT [n1, n2], y
T [n1 − 1, n2], ..., y

T [n1 − p1, n2])
T (7.83)

in which

y[k, n2] = (y[k, n2], y[k, n2 − 1], ..., y[k, n2 − p2])
T , n1 − p1 ≤ k ≤ n1. (7.84)

In general, a blind deconvolution algorithm tries to find an optimum v based
on an optimization criterion such that the deconvolved signal e[n1, n2] approx-
imates αu[n1 − τ1, n2 − τ2]. Two deconvolution algorithms using cumulants of
e[n1, n2] and cross-cumulants of e[n1, n2] and y[n1, n2] are introduced next.

7.4.1 2-D Maximum Normalized Cumulant Deconvolution
Algorithm

The MNC criterion presented in Chapter 4 for 1-D blind deconvolution of
SISO systems is also applicable to the 2-D SISO case. For convenience, the
MNC criterion is repeated as follows

Jp,q(v) = Jp,q(e[n1, n2]) = |γp,q{e[n1, n2]}| =
|Cp,q{e[n1, n2]}|

σp+q
e

(7.85)

where p and q are nonnegative integers and (p + q) ≥ 3. When y[n1, n2] is
real, Jp,q(v) are the same for all (p, q) as long as (p + q) is fixed. Therefore,
for simplicity, Jp+q(v) rather than Jp,q(v) is used for the real case.

Similar to the 1-D SISO case, the 2-D MNC blind deconvolution filter
obtained by maximizing Jp,q(v) is a perfect deconvolution filter in the absence
of noise as stated in the following theorem.
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Theorem 7.1 (Deconvolution Capability). Assume that the given y[n1, n2]
can be modeled by (7.48) and (7.49) under the Assumptions (A7-1), (A7-
2) and the assumption of SNR = ∞. Let v[n1, n2] be a 2-D LSI filter
with region of support ΩTQP[∞,∞]. Then Jp,q(v) is maximum if and only
if v[n1, n2] = vMNC[n1, n2] and

e[n1, n2] = vMNC[n1, n2] � y[n1, n2] = αu[n1 − τ1, n2 − τ2] (7.86)

where α �= 0 is a complex scale factor and τ1 and τ2 are unknown integers,
and

max{Jp,q(v)} = Jp,q(u[n1, n2])

= |γp,q{u[n1, n2]}| =
|Cp,q{u[n1, n2]}|

σp+q
u

. (7.87)

The proof of Theorem 7.1 (through using Theorem 2.33) is similar to the proof
of Theorem 4.14 for the 1-D SISO case and is left as an exercise (Problem
7.3).

Similar to the 1-D SISO MNC equalization algorithm introduced in Chap-
ter 4, the iterative approximate BFGS algorithm (introduced in Chapter 2)
can be employed to find a local maximum of Jp,q(v). At the ith iteration, v

is updated by

v[i+1] = v[i] + μ[i]Q[i] ∂Jp,q(v)

∂v∗

∣∣∣∣∣
v=v[i]

(7.88)

where μ[i] is a step size and the matrix Q[i+1] (see (2.160) and (2.173)) is
updated by

Q[i+1] = Q[i] +
1

Re{rH
i+1si+1}

{
(1 + βi) ri+1r

H
i+1 − ri+1s

H
i+1Q

[i] − Q[i]si+1r
H
i+1

− 1 − α

(α + βi) (1 + βi)
Q[i]si+1s

H
i+1Q

[i]

}
(7.89)

in which α = 1 and 1/2 for real and complex y[n1, n2], βi (see (2.161) and
(2.174)) is given by

βi =
Re

{
sH
i+1Q

[i]si+1

}
Re

{
sH
i+1ri+1

} , (7.90)

vectors ri+1 and si+1 are defined by

ri+1 = v[i+1] − v[i] (7.91)

and

si+1 =
∂Jp,q(v)

∂v∗

∣∣∣∣∣
v=v[i+1]

− ∂Jp,q(v)

∂v∗

∣∣∣∣∣
v=v[i]

, (7.92)
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respectively. The step size μ[i] can be chosen as

μ[i] =
μ0

2l
(7.93)

where l ∈ [0, K] is determined such that μ[i] is the maximum step size leading
to Jp,q(v

[i+1]) > Jp,q(v
[i]), in which μ0 and K are a constant and a positive

integer assigned ahead of time, respectively.
The gradient ∂Jp,q(v)/∂v∗ in (7.88), which is the same for both 1-D and

2-D SISO cases, has been shown in Chapter 4 to be

∂Jp,q(v)

∂v∗ =
Jp,q(v)

2
·
{

1

Cq,p{e[n1, n2]} ·
∂Cq,p{e[n1, n2]}

∂v∗

+
1

Cp,q{e[n1, n2]} ·
∂Cp,q{e[n1, n2]}

∂v∗ −p + q

σ2
e

· ∂σ2
e

∂v∗

}
(7.94)

where

∂Cp,q{e[n1, n2]}
∂v∗ = q · cum{e[n1, n2] : p, e∗[n1, n2] : q − 1, y∗[n1, n2]}. (7.95)

For instance,

J2,1(v) =
|C2,1{e[n1, n2]}|

σ3
e

=
|E{|e[n1, n2]|2e[n1, n2]}|

σ3
e

(7.96)

and

∂J2,1(v)

∂v∗ =
J2,1(v)

2
·
{

2E{|e[n1, n2]|2y∗[n1, n2]}
E{|e[n1, n2]|2e∗[n1, n2]}

+
E{e2[n1, n2]y

∗[n1, n2]}
E{|e[n1, n2]|2e[n1, n2]} − 3E{e[n1, n2]y

∗[n1, n2]}
σ2

e

}
. (7.97)

The resultant 2-D MNC deconvolution algorithm is summarized in Ta-
ble 7.2. However, for a given set of data, the (p + q)th-order sample cu-

mulant Ĉp,q{e[n1, n2]} and sample cross-cumulants of e[n1, n2] and y[n1, n2]
must be used to compute Jp,q(v) and ∂Jp,q(v)/∂v∗ needed by the 2-D MNC

deconvolution algorithm. Because Ĉp,q{e[n1, n2]} is a consistent estimate of

Cp,q{e[n1, n2]} as mentioned in Section 7.1.4, Ĵp,q(v) is therefore also a con-
sistent estimate of Jp,q(v) by Slutsky’s Theorem (see Theorem 3.58), implying
that the optimum MNC deconvolution filter v̂MNC[n1, n2] is a consistent esti-
mate of the true optimum vMNC[n1, n2] as well.

Properties of the 2-D MNC Deconvolution Filter

As mentioned in Section 7.2, the MMSE deconvolution filter VMS(ω1, ω2) given
by (7.64), which requires the system h[n1, n2] given ahead of time, is exactly
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Table 7.2 2-D MNC deconvolution algorithm

Parameter
setting

Choose filter order (p1, p2), cumulant order (p, q) for the re-
gion of support ΩTQP[p1, p2], initial conditions v[0] and Q[0],
convergence tolerance ζ > 0, initial step size μ0 and a positive
integer K for the step size search range [μ0/2

0, μ0/2
K ].

Steps (S1) Set the iteration number i = 0.

(S2) Compute the deconvolved signal e[0][n1, n2] = (v[0])T y[n1, n2]
and obtain the corresponding gradient function

∂Jp,q(v)

∂v∗

v=v[0]

using (7.94).

(S3) Update v[i+1] by

v
[i+1] = v

[i] + μ[i]Q[i] ∂Jp,q(v)

∂v∗

v=v[i]

where an integer l ∈ [0, K] is determined such that μ[i] = μ0/2
l

is the maximum step size leading to Jp,q(v
[i+1]) > Jp,q(v

[i]).

(S4) If

Jp,q(v
[i+1]) − Jp,q(v

[i])

Jp,q(v[i])
≥ ζ,

then go to Step (S5); otherwise, obtain a (local) maximum
solution v = v[i+1] for the 2-D MNC deconvolution filter
vMNC[n1, n2].

(S5) Update ri+1, si+1 and Q[i+1] by (7.91), (7.92) and (7.89), re-
spectively.

(S6) Compute the deconvolved signal

e[i+1][n1, n2] = (v[i+1])T · y[n1, n2]

and the gradient function
∂Jp,q(v)

∂v∗

v=v[i+1]

using (7.94).

(S7) Update the iteration number i by (i + 1) and go to Step (S3).

an optimum Wiener filter performing ISI suppression and noise reduction
simultaneously. The optimum blind deconvolution filter vMNC[n1, n2] obtained
by the 2-D MNC deconvolution algorithm relates to VMS(ω1, ω2) in a nonlinear
manner as stated in the following property.

Property 7.2 (Relation of the 2-D MNC and LMMSE Deconvolu-
tion Filters). The optimum MNC deconvolution filter VMNC(ω1, ω2) with
region of support ΩTQP[∞,∞] is related to the 2-D MMSE deconvolution fil-
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ter VMS(ω1, ω2) given by (7.64) via

VMNC(ω1, ω2) =
[
αp,qG̃p,q(ω1, ω2) + αq,pG̃q,p(ω1, ω2)

]
· VMS(ω1, ω2) (7.98)

where G̃p,q(ω1, ω2) is the 2-D DSFT of the 2-D sequence g̃p,q[n1, n2] given by

g̃p,q[n1, n2] = gq[n1, n2](g
∗[n1, n2])

p−1 (7.99)

in which g[n1, n2] = vMNC[n1, n2] � h[n1, n2] is the overall system after decon-
volution (see (7.56)), and αp,q is a nonzero constant given by

αp,q =
q

p + q
· σ2

e

σ2
u

· Cp,q{u[n1, n2]}
Cp,q{e[n1, n2]} . (7.100)

The proof of Property 7.2 for the 2-D SISO case is also similar to that of the
corresponding Theorem 4.21 for the 1-D SISO case, and is left as an exercise
(Problem 7.4).

By Theorem 7.1, the 2-D MNC deconvolution filter is a perfect deconvo-
lution filter (i.e. a 2-D ZF deconvolution filter which is a perfect amplitude
and phase deconvolution filter) as SNR is infinite. However, for finite SNR,
the 2-D MNC deconvolution filter is still a perfect phase deconvolution filter
as stated in the following property.

Property 7.3 (Linear Phase Property of the 2-D MNC Deconvolu-
tion Filter). The phase response arg[VMNC(ω1, ω2)] of the 2-D MNC decon-
volution filter vMNC[n1, n2] with region of support ΩTQP[∞,∞] is related to
the system phase arg[H(ω1, ω2)] by

arg[VMNC(ω1, ω2)] = − arg[H(ω1, ω2)] + ω1τ1 + ω2τ2 + ς (7.101)

where τ1 and τ2 are unknown integers and ς is an unknown real constant. As
y[n1, n2] is real, ς = 0.

The proof of Property 7.3 for the 2-D SISO case is similar to that of the
corresponding Property 4.17 for the 1-D SISO case, and is left as an exercise
(Problem 7.5).

7.4.2 2-D Super-Exponential Deconvolution Algorithm

Two-dimensional SE deconvolution algorithm [21] for SISO systems, that is
a direct 2-D extension of the 1-D SE equalization algorithm for 1-D SISO
systems introduced in Chapter 4, iteratively finds the 2-D deconvolution filter
v[n1, n2] with region of support ΩTQP[p1, p2] by solving the following linear
equations
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1

σ2
u

p1∑
k=0

p2∑
l=0

v[k, l]ry[n1 − k, n2 − l]

=
1

Cp,q{u[n1, n2]} cum{e[m, n] : p, e∗[m, n] : q − 1, y∗[m − n1, n − n2]},

∀[n1, n2] ∈ ΩTQP[p1, p2] (7.102)

where p and q − 1 are nonnegative integers and p + q ≥ 3.
At the ith iteration, by expressing (7.102) alternatively in a matrix form,

the 2-D SE deconvolution algorithm updates the unknown parameter vector
v (with ‖v‖ = 1) via

v[i+1] =
R

−1 · d[i]
ey∥∥∥R−1 · d[i]
ey

∥∥∥ (7.103)

where R is a [(p1 +1)(p2 +1)]× [(p1 +1)(p2 +1)] autocorrelation matrix given
by

R =
(
E{y[n1, n2]y

H [n1, n2]}
)∗

(7.104)

and d
[i]
ey is a (p1 + 1)(p2 + 1) × 1 vector given by

d[i]
ey = cum{e[i][n1, n2] : p, (e[i][n1, n2])

∗ : q − 1, y∗[n1, n2]} (7.105)

where e[i][n1, n2] is the deconvolved signal obtained at the ith iteration, i.e.

e[i][n1, n2] = y[n1, n2] � v[i][n1, n2] = (v[i])T y[n1, n2]. (7.106)

In updating v[i] by (7.103), the SVD is also suggested for computing the
inverse matrix R

−1 to avoid potential numerical problems caused by rank
deficiency of R. The 2-D SE deconvolution filter obtained after convergence
is denoted as vSE[n1, n2]. Note that as y[n1, n2] is real, the vSE[n1, n2] will be
the same for the same value of (p + q).

Similar to the 1-D SISO case, for SNR = ∞ and p1 and p2 sufficiently
large for the region of support ΩTQP[p1, p2], the 2-D SE algorithm, which
is basically developed by forcing the amount of ISI to decrease at a super-
exponential speed, will converge at the super-exponential rate and end up
with the deconvolved signal

e[n1, n2] = vSE[n1, n2] � y[n1, n2] = αu[n1 − τ1, n2 − τ2] (7.107)

where α �= 0 is a complex scale factor and [τ1, τ2] is an unknown space shift.
In other words, the 2-D SE deconvolution filter vSE[n1, n2] is the same as the
2-D ZF deconvolution filter (with zero ISI) for SNR = ∞.

In spite of the normalization ‖v‖ = 1 at each iteration, a complex scale
factor ejφ may still exist between v[i+1] and v[i]. Therefore, similar to the 1-D
SE equalization algorithm, the convergence rule for the 2-D SE deconvolution
algorithm can be chosen as
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∣∣∣ > 1 − ζ/2 (7.108)

where ζ > 0 is a preassigned convergence tolerance.
Again, for a given set of data y[n1, n2], all the cumulants and correlations

needed by the 2-D SE deconvolution algorithm must be replaced by the as-
sociated sample cumulants and correlations which are consistent as presented
in Section 7.1.4. Accordingly, the vSE[n1, n2] obtained is also a consistent es-
timate of the one satisfying (7.102). The 2-D SE deconvolution algorithm is
summarized in Table 7.3. Because no explicit objective function (function of
y[n1, n2] or e[n1, n2] or both) is minimized or maximized by the 2-D SE de-
convolution algorithm, the algorithm may diverge for finite SNR and data
length.

Table 7.3 2-S SE deconvolution algorithm

Parameter
setting

Choose filter order (p1, p2) for the region of support
ΩTQP[p1, p2], cumulant order (p, q), initial condition v[0] and
convergence tolerance ζ > 0.

Steps (S1) Set the iteration number i = 0.

(S2) Estimate the correlation function of y[n1, n2] by (7.45) and
form R by (7.104) and obtain R

−1 by SVD.

(S3) Compute the deconvolved signal e[0][n1, n2] = (v[0])T y[n1, n2]

and estimate the vector d
[0]
ey (see (7.105)) from e[0][n1, n2] and

y[n1, n2],

(S4) Update the parameter vector v at the ith iteration via

v
[i+1] =

R
−1 · d[i]

ey

R−1 · d[i]
ey

.

(S5) If

v
[i+1]

H

v
[i] ≤ 1 −

ζ

2
,

then go to Step (S6); otherwise, obtain the parameter vector
v = v[i+1] for the 2-D SE deconvolution filter vSE[n1, n2].

(S6) Compute the deconvolved signal

e[i+1][n1, n2] = v
[i+1]

T

y[n1, n2]

and estimate d
[i+1]
ey from e[i+1][n1, n2] and y[n1, n2].

(S7) Update the iteration number i by (i + 1) and go to Step (S4).
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Properties of the 2-D SE Deconvolution Filters

The optimum deconvolution filter VSE(ω1, ω2) obtained by the 2-D SE decon-
volution algorithm is also nonlinearly related to VMS(ω1, ω2) as stated in the
following property.

Property 7.4 (Relation of the 2-D SE and LMMSE Deconvolution
Filters). The optimum deconvolution filter VSE(ω1, ω2) with region of support
ΩTQP[∞,∞] is related to VMS(ω1, ω2) given by (7.64) via

VSE(ω1, ω2) = G̃p,q(ω1, ω2)VMS(ω1, ω2)

= G̃p,q(ω1, ω2)
σ2

uH∗(ω1, ω2)

Sy(ω1, ω2)
(7.109)

where G̃p,q(ω1, ω2) is the 2-D DSFT of the 2-D sequence g̃p,q[n1, n2] given by
(7.99) in which g[n1, n2] = vSE[n1, n2] � h[n1, n2].

The proof of Property 7.4 for the 2-D SISO case is also similar to that of the
corresponding Property 4.22 for the 1-D SISO case, and is left as an exercise
(Problem 7.6).

As mentioned above, the 2-D SE deconvolution filter vSE[n1, n2] is a per-
fect deconvolution filter as SNR is infinite (see (7.107)). Besides the relation
between the 2-D SE deconvolution filter and MMSE deconvolution filter for
finite SNR presented in Property 7.4, the linear phase property of the 2-D
MNC deconvolution filter (Property 7.3) is also shared by the 2-D SE de-
convolution filter thanks to their equivalence under certain conditions, to be
introduced next.

7.4.3 Improvements on 2-D MNC Deconvolution Algorithm

For SNR = ∞ and sufficiently large data length N × N , the preceding 2-D
SE deconvolution algorithm is computationally efficient, and meanwhile it is
a fast algorithm thanks to the super-exponential convergence rate. However,
due to lack of an explicit objective function iteratively directing it towards
the optimum vSE[n1, n2], it may diverge for finite SNR and N × N as pre-
sented in Chapter 4. On the other hand, the convergence of the gradient-type
iterative 2-D MNC deconvolution algorithm can be guaranteed thanks to the
objective function Jp,q(v) used, though its convergence speed is slower and its
computational load (for each iteration) larger than the 2-D SE deconvolution
algorithm. Therefore, a combination of the two algorithms to share their ad-
vantages is introduced below, based on a relation between them as stated in
the following property.
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Property 7.5 (Equivalence of the 2-D MNC and SE Deconvolution
Filters). The optimum VMNC(ω1, ω2) with region of support ΩTQP[∞,∞] and
the optimum VSE(ω1, ω2) with the same region of support are the same (up to
a scale factor and space shift) for (i) y[n1, n2] is real and (ii) y[n1, n2] is
complex and p = q.

The proof of Property 7.5 for the 2-D SISO case is similar to that of Corollary
4.24 for the 1-D SISO case and is omitted here.

Hybrid MNC Deconvolution Algorithm

The hybrid algorithm introduced in Chapter 4 for 1-D SISO case is applicable
to the 2-D SISO case due to Property 7.5. For convenience, it is summarized
in the following table.

Table 7.4 2-D hybrid MNC deconvolution algorithm

Procedure for Obtaining the 2-D MNC Deconvolution Filter at Iteration i

(S1) Update the parameter vector v[i+1] via the update equations of the
2-D SE deconvolution algorithm given by (7.103), and obtain the
associated deconvolved signal e[i+1][n1, n2].

(S2) If Jp,q(v
[i+1]) > Jp,q(v

[i]), then go to the next iteration; other-
wise, update v[i+1] through a gradient-type optimization method
such that Jp,q(v

[i+1]) > Jp,q(v
[i]), and obtain the associated

e[i+1][n1, n2].

Specifically, as y[n1, n2] is real and y[n1, n2] is complex for p = q, it can
be shown that

∂Jp,q(v)

∂v∗

∣∣∣∣∣
v=v[i]

=
p + q

2
· Jp,q(v

[i])

·
(

d
[i]
ey

Cp,q{e[i][n1, n2]} −
Rv[i]

E{|e[i][n1, n2]|2}

)
(7.110)

where d
[i]
ey (see (7.105)) has been obtained in (S1) and R (see (7.104)) is the

same at each iteration, indicating simple and straightforward computation for
obtaining ∂Jp,q(v)/∂v∗ in (S2).

According to Property 7.5, the 2-D hybrid MNC deconvolution algorithm
is always applicable to the case of real signals and only applicable to the case
of complex signals if p = q ≥ 2. The 2-D hybrid MNC deconvolution algorithm
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uses the 2-D SE deconvolution algorithm in (S1) for fast convergence (basi-
cally with super-exponential rate) which usually happens in most iterations
before convergence, and a gradient-type algorithm in (S2) for the guaranteed
convergence regardless of data length and SNR. It is worth mentioning that
the deconvolution filter obtained by the 2-D hybrid MNC deconvolution al-
gorithm is the optimum vMNC[n1, n2] because the objective function Jp,q(v)
is used, while the 2-D SE deconvolution algorithm in (S1) plays the role of a
fast algorithm for finding the optimum vMNC[n1, n2].

7.5 Simulation

This section presents some simulation results for performance tests of the 2-
D MNC deconvolution algorithm, 2-D SE deconvolution algorithm and 2-D
hybrid MNC deconvolution algorithm. In the simulation, h[n1, n2] used was a
2-D MA model taken from [5] as follows

x[n1, n2] = u[n1, n2] − 0.8u[n1 − 1, n2] + 0.2u[n1 − 2, n2]

+ 1.8u[n1, n2 − 1] − 1.44u[n1 − 1, n2 − 1] + 0.36u[n1 − 2, n2 − 1]

− 0.5u[n1, n2 − 2] + 0.4u[n1 − 1, n2 − 2] − 0.1u[n1 − 2, n2 − 2]

+ 0.5u[n1, n2 − 3] − 0.4u[n1 − 1, n2 − 3] + 0.1u[n1 − 2, n2 − 3]. (7.111)

The driving input u[n1, n2] was a real zero-mean, exponentially distributed,
i.i.d., random field with variance σ2

u = 1 and J4(u[n1, n2]) = 6, and w[n1, n2]
was real zero-mean white Gaussian. Synthetic 128 × 128 data y[n1, n2] were
generated for both SNR = 5 dB and SNR = 20 dB, and then processed by the
three deconvolution algorithms with region of support ΩTQP[5, 5] for the real
2-D deconvolution filter v[n1, n2] and the initial condition v[0][n1, n2] = δ[n1−
2, n2−2]. Thirty independent runs were performed for performance evaluation
in terms of the amount of ISI and the value of J4(e[n1, n2]) (magnitude of the
normalized kurtosis of the deconvolved signal e[n1, n2]).

Results Obtained by the MNC Deconvolution Algorithm

The 2-D MNC deconvolution algorithm with p + q = 4, Q[0] = I, μ0 = 1 and
K = 10 was employed to process y[n1, n2] to find the optimum vMNC[n1, n2].
Figures 7.5a, b show the objective function J4(v) versus iteration number for
SNR = 5 dB and the associated ISI for the first 20 iterations. Figures 7.5c, d
show the corresponding results for SNR = 20 dB. From Fig. 7.5a, c, one can
observe that all the values of J4(v), which are larger for SNR = 20 dB than
for SNR = 5 dB after convergence, increase with iteration number. Note that
the values of J4(v) = J4(e[n1, n2]) are much smaller than J4(u[n1, n2]) = 6 for
SNR = 5 dB due to low SNR, and that some values of J4(v) = J4(e[n1, n2])
are even larger than J4(u[n1, n2]) = 6 due to insufficient data length. Figures
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7.5b, d show that the values of ISI basically decrease, but not monotonically,
with iteration number, and that the values of ISI for SNR = 20 dB are much
smaller than those for SNR = 5 dB after convergence.

Instead of displaying the 30 independent estimates of the overall system
g[n1, n2] obtained at the 20th iteration in an overlay fashion, Figures 7.5e,
f show the averaged phase response arg[G(ω1, ω2)] (principal values) of the
30 estimates of g[n1, n2] for SNR = 5 dB and 20 dB, respectively. One can
see from these figures that arg[G(ω1, ω2)] approximates a linear function of
(ω1, ω2), thus verifying the linear phase property of G(ω1, ω2) introduced in
Property 7.3, and that the linear phase approximation for SNR = 20 dB (Fig.
7.5f) is better than that (Fig. 7.5e) for SNR = 5 dB.

Results Obtained by the SE Deconvolution Algorithm

The 2-D SE deconvolution algorithm with p + q = 4 was employed to process
y[n1, n2] to find the optimum vSE[n1, n2]. Figures 7.6a, b show the ISI versus
iteration number for SNR = 5 dB and the associated J4(v) for the first 20
iterations. Figures 7.6c, d show the corresponding results for SNR = 20 dB.
From Fig. 7.6a, c, one can see that all the values of ISI, which are much smaller
for SNR = 20 dB than for SNR = 5 dB, decrease rapidly with iteration num-
ber and reach minimum values within five iterations. These results support
the fast convergence of the 2-D SE deconvolution algorithm. Let us empha-
size that the SE deconvolution algorithm for either of 1-D and 2-D cases is
theoretically developed such that the ISI decreases super-exponentially in the
absence of noise. Moreover, it can be seen from Fig. 7.6b, d, that the values
of J4(v), which are much larger for SNR = 20 dB than for SNR = 5 dB after
convergence, also converge rapidly within five iterations.

Figures 7.6e, f show the averaged phase response of arg[G(ω1, ω2)] (prin-
cipal values) of the 30 estimates of g[n1, n2] obtained at the 20th iteration
for SNR = 5 dB and 20 dB, respectively. One can see from these figures that
arg[G(ω1, ω2)] approximates a linear function of (ω1, ω2), thus verifying the
linear phase property of G(ω1, ω2) (by Properties 7.3 and 7.5), and that the
linear phase approximation for SNR = 20 dB (Fig. 7.6f) is better than that
(Fig. 7.6e) for SNR = 5 dB.

Results Obtained by the Hybrid MNC Deconvolution Algorithm

The 2-D hybrid MNC deconvolution algorithm with p + q = 4 was employed
to process y[n1, n2] to find the optimum vMNC[n1, n2]. Figures 7.7a, b show
the objective function J4(v) versus iteration number for SNR = 5 dB and the
associated ISI for the first 20 iterations. Figures 7.7c, d show the corresponding
results for SNR = 20 dB. All the observations associated with Fig. 7.6a–d also
apply to those associated with Fig. 7.7a–d. These results also demonstrate that
vNNC[n1, n2] and vSE[n1, n2] are similar in the simulation. Comparing Fig.
7.7a–d and Fig. 7.5a–d, one can see that the 2-D hybrid MNC deconvolution
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(e) (f)

Fig. 7.5 Simulation results obtained by the 2-D MNC deconvolution algorithm.
(a) and (c) show J4(v) versus iteration number and (b) and (d) show the associated
ISI versus iteration number for SNR = 5 dB and SNR = 20 dB, respectively. (e)
and (f) show the averaged arg[G(ω1, ω2)] for SNR = 5 dB and 20 dB, respectively
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(e) (f)

Fig. 7.6 Simulation results obtained by the 2-D SE deconvolution algorithm. (a)
and (c) show the values of ISI versus iteration number and (b) and (d) show the
associated J4(v) versus iteration number for SNR = 5 dB and SNR = 20 dB,
respectively. (e) and (f) show the averaged arg[G(ω1, ω2)] for SNR = 5 dB and
20 dB, respectively
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(e) (f)

Fig. 7.7 Simulation results obtained by the 2-D hybrid-MNC deconvolution algo-
rithm. (a) and (c) show J4(v) versus iteration number and (b) and (d) show the
associated ISI versus iteration number for SNR = 5 dB and SNR = 20 dB, respec-
tively. (e) and (f) show the averaged arg[G(ω1, ω2)] for SNR = 5 dB and 20 dB,
respectively
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algorithm is computationally much more efficient and faster than the 2-D
MNC deconvolution algorithm for the design of vNNC[n1, n2].

Figures 7.7e, f exhibit the averaged phase response of arg[G(ω1, ω2)] (prin-
cipal values) of the 30 estimates of g[n1, n2] obtained at the 20th iteration for
SNR = 5 dB and 20 dB, respectively. Again, one can see from these figures
that arg[G(ω1, ω2)] approximates a linear function of (ω1, ω2), thus verifying
the linear phase property of G(ω1, ω2) introduced in Property 7.3, and that
the linear phase approximation for SNR = 20 dB (Fig. 7.7f) is better than
that (Fig. 7.7e) for SNR = 5 dB.

7.6 Summary and Discussion

In this chapter, after a review of basic 2-D signals and systems, and 2-D
random processes, the 2-D nonblind deconvolution algorithm design was in-
troduced including the ZF deconvolution filter and the MMSE deconvolution
filter in order to extract the input signal distorted by an unknown 2-D LSI
system (channel). Then we introduced the 2-D LPE filter, a blind deconvolu-
tion filter using SOS, that performs as a minimum-phase whitening filter like
an amplitude equalizer used in communications. Therefore, the phase distor-
tion cannot be suppressed by the LPE filter as the unknown system (channel)
is nonminimum phase.

Two 2-D blind deconvolution algorithms using HOS, the 2-D MNC and SE
deconvolution algorithms, were then introduced. The former is a gradient-type
algorithm with guaranteed convergence that, however, is not very computa-
tionally efficient even though the efficient BFGS optimization algorithm intro-
duced in Chapter 2 has been utilized to find the optimum deconvolution filter
vNNC[n1, n2] associated with the objective function Jp,q(v) given by (7.85).
The latter is a fast and computationally efficient deconvolution algorithm but
it may diverge for finite SNR and limited data. These two 2-D blind deconvo-
lution algorithms have some interesting properties as presented in Section 7.4.
Among these properties, Property 7.5, regarding the equivalence of the MNC
deconvolution filter vNNC[n1, n2] and the SE deconvolution filter vSE[n1, n2]
under some conditions, leads to the 2-D hybrid MNC deconvolution algorithm
that shares all the advantages of the two deconvolution algorithms, including
fast convergence, computational efficiency, and convergence guarantee. Some
simulation results were also presented to demonstrate their performance. Some
advanced applications of the 2-D hybrid MNC deconvolution algorithm will
be discussed in Chapter 8.
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Problems

7.1. Prove that the region of support for the minimum-phase system
hMP[n1, n2] given by (7.33) is the half plane ΩNSHP and hMP[0, 0] = 1.

7.2. Derive the complex cepstrum h[n1, n2] of HMG(ω1, ω2) given by
(7.29) and HPS(ω1, ω2) given by (7.30) in the MG-PS decomposition
(7.28).

7.3. Prove Theorem 7.1.

7.4. Prove Property 7.2.

7.5. Prove Property 7.3.

7.6. Prove Property 7.4.

Computer Assignments

7.1. 2-D Deconvolution Filter Design
Consider that y[n1, n2] = h[n1, n2] � u[n1, n2] + w[n1, n2] where
h[n1, n2] is a separable system whose transfer function is given by

H(z1, z2) = (1 − 0.8z−1
1 ) · (1 − 0.8z−1

2 ),

u[n1, n2] is a zero-mean, i.i.d., exponentially distributed stationary
process with variance σ2

u = 1, normalized skewness γ3{u[n1, n2]} = 2
and normalized kurtosis γ4{u[n1, n2]} = 6 and w[n1, n2] is white
Gaussian noise. Generate thirty independent sets of synthetic data
{y[n1, n2], n1 = 0, ..., 127, n2 = 0, ..., 127}. With the generated syn-
thetic data, we desire to design the 2-D deconvolution filter v[n1, n2]
with the region of support ΩTQP[5, 5] using the presented 2-D de-
convolution filter algorithms with v[0][n1, n2] = δ[n1 − 2, n2 − 2].

(a) With cumulant order p+q = 4, initial step size μ0 = 1, Q[0] = I
and K = 10 for step size search range, write a computer pro-
gram to implement the 2-D MNC deconvolution algorithm. By
performing thirty independent runs, obtain thirty MNC decon-
volution filters vMNC[n1, n2] for SNR = 20 dB and SNR = 5 dB
and exhibit the associated J4(v) and ISI for the first 20 itera-
tions. Explain what you observe from these results.

(b) With cumulant order p + q = 4, write a computer program to
implement the 2-D SE deconvolution algorithm. By performing
thirty independent runs, obtain thirty SE deconvolution filters
vSE[n1, n2] for SNR = 20 dB and SNR = 5 dB and exhibit
the associated ISI and J4(v) for the first 20 iterations. Explain
what you observe from these results.
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(c) With cumulant order p + q = 4, initial step size μ0 = 1 and
K = 10 for step size search range, write a computer program
to implement the 2-D hybrid MNC deconvolution algorithm.
By performing thirty independent runs, obtain thirty hybrid
MNC deconvolution filters vMNC[n1, n2] for SNR = 20 dB and
SNR = 5 dB and exhibit the associated J4(v) and ISI for the
first 20 iterations. Explain what you observe from these results.
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8

Applications of Two-Dimensional Blind

Deconvolution Algorithms

Two-dimensional BSI is needed in 2-D random signal modeling, texture syn-
thesis and classification. In the chapter, a BSI algorithm, which is an iterative
FFT based nonparametric 2-D BSI algorithm using the 2-D hybrid MNC
deconvolution algorithm introduced in Chapter 7, will be introduced with ap-
plication to texture synthesis. With the 2-D FSBM model for 2-D LSI systems
in Chapter 7, the chapter also introduces a 2-D FSBM based parametric BSI
algorithm, that includes an amplitude estimator using SOS and two phase
estimators using HOS, with application to texture image classification.

8.1 Nonparametric Blind System Identification and

Texture Synthesis

Consider that y[n1, n2] is a 2-D real discrete-space signal modeled by

y[n1, n2] = x[n1, n2] + w[n1, n2]

= u[n1, n2] � h[n1, n2] + w[n1, n2], (8.1)

where u[n1, n2], h[n1, n2] and w[n1, n2] satisfy the following assumptions:

(A8-1) u[n1, n2] is a real, zero-mean, stationary, i.i.d., nonGaussian 2-D
random field with variance σ2

u and pth-order (p ≥ 3) cumulant
Cp{u[n1, n2]} �= 0.

(A8-2) Both h[n1, n2] and its inverse system hINV[n1, n2] are real stable 2-D
LSI systems.

(A8-3) w[n1, n2] is a real, zero-mean, stationary (white or colored) Gaussian
2-D random field with variance σ2

w. Moreover, w[n1, n2] is statisti-
cally independent of u[n1, n2].

Note that the above three assumptions are nothing but the Assumptions (A7-
1), (A7-2) and (A7-3) for the case of real y[n1, n2].
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Two-dimensional BSI is a problem of extracting information about the
unknown 2-D LSI system h[n1, n2] using only measurements y[n1, n2]. As in-
troduced in Chapter 7, the 2-D MNC deconvolution filter vMNC[n1, n2] can
be obtained efficiently using the 2-D hybrid MNC algorithm, and the decon-
volution filter vMNC[n1, n2] is related to the unknown system h[n1, n2] in a
nonlinear manner as presented in Property 7.2. This relation is valid for fi-
nite SNR which implies that the unknown system h[n1, n2] can be estimated
accurately from vMNC[n1, n2] and power spectral density Sy(ω1, ω2) for finite
SNR. Next, let us introduce the resultant nonparametric 2-D BSI algorithm
based on this relation.

8.1.1 Nonparametric 2-D BSI

By Property 7.2, one can easily show that for real y[n1, n2], the 2-D MNC
deconvolution filter VMNC(ω1, ω2) by maximizing J2p(v) (see (7.85)) for p ≥ 2,
is related to the unknown system H(ω1, ω2) by

G1(ω1, ω2)H
∗(ω1, ω2) = β · VMNC(ω1, ω2)Sy(ω1, ω2) (8.2)

where G1(ω1, ω2) is the 2-D DSFT of

g1[n1, n2] = g̃p,p[n1, n2] = g2p−1[n1, n2] (8.3)

in which g̃p,p[n1, n2] is given by (7.99),

g[n1, n2] = vMNC[n1, n2] � h[n1, n2], (8.4)

and

β =
1

σ2
e

∞∑
n1=−∞

∞∑
n2=−∞

g2p[n1, n2] > 0. (8.5)

Let us emphasize that the relation given by (8.2) is true for finite SNR.
By Property 7.3, the overall system g[n1, n2] is linear phase, which implies
that g1[n1, n2] is also linear phase. The solution set for the system h[n1, n2]
satisfying the relation given by (8.2) is stated in the following property.

Property 8.1. Any 2-D real system

H ′(ω1, ω2) = αH(ω1, ω2) · ej(ω1τ1+ω2τ2) (8.6)

for any real α �= 0 and integers τ1 and τ2 satisfies the relationship (8.2).

The proof of Property 8.1 is left as an exercise (Problem 8.1). By Properties
8.1 and 7.3, g[n1, n2] can be zero-phase if τ1 and τ2 are properly removed,
leading to the following property for g1[n1, n2].
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Property 8.2. Assume that g[n1, n2] �= 0 is zero-phase and that

(A8-4) the number of zeros of G1(z) = G(z1 = z, z2) where |z2| = 1, and
that of G2(z) = G(z1, z2 = z) where |z1| = 1 are both finite on the
unit circle.

Then the associated system g1[n1, n2] is a positive definite sequence, i.e.
G1(ω1, ω2) > 0, ∀ − π ≤ ω1 < π,−π ≤ ω2 < π.

For the proof of Property 8.2, see Appendix 8A. Next, let us present the
solution set to (8.2) by the following property.

Property 8.3. The system H(ω1, ω2) can be identified up to a linear phase
ambiguity by solving (8.2) provided that g[n1, n2] �= 0 is zero-phase and satis-
fies Assumption (A8-4).

See Appendix 8B for the proof of Property 8.3, which needs Lemma 6.10.
Properties 8.1 and 8.3 indicate that, under the constraint g[n1, n2] �= 0

being zero-phase and the Assumption (A8-4), all the H ′(ω1, ω2) satisfying
(8.6) form a solution set of (8.2). Therefore, a consistent channel estimate

ĥ[n1, n2] for finite SNR can be obtained up to a scale factor and a space shift
by solving (8.2) in which V (ω1, ω2) and Sy(ω1, ω2) are substituted by their
consistent estimates. However, from (8.3) and (8.4), one can see that (8.2)
is a highly nonlinear equation in h[n1, n2] for which closed-form solution of
(8.2) is formidable. Next, let us introduce an iterative FFT based algorithm
for estimating h[n1, n2] under the zero-phase constraint on g[n1, n2].

2-D System-MNC Filter Based BSI Algorithm

A consistent estimate of Sy(ω1, ω2) with measurements y[n1, n2] can be ob-
tained from the LPE filter vLPE[n1, n2] with region of support ΩTNSHP[p1, p2]
introduced in Chapter 7. For sufficiently large p1 and p2, vLPE[n1, n2] per-
forms as a whitening filter or an amplitude equalizer as given by (7.79), which
is repeated as follows:

|VLPE(ω1, ω2)|2 ∝ 1

Sy(ω1, ω2)
. (8.7)

From (8.2) and (8.7), we obtain

G1(ω1, ω2)H
∗(ω1, ω2) = γ · VMNC(ω1, ω2)

|VLPE(ω1, ω2)|2 (8.8)

where γ > 0 is a constant.
Let G1(k1, k2), H [k1, k2], VMNC[k1, k2] and VLPE[k1, k2] denote the L×L-

point DFT of g1[n1, n2], h[n1, n2], vMNC[n1, n2] and vLPE[n1, n2], respectively.
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Let
A[k1, k2] = G1[k1, k2] · H∗[k1, k2] (8.9)

and

B[k1, k2] =
VMNC[k1, k2]

|VLPE[k1, k2]|2. (8.10)

Then, according to the relation between vMNC[n1, n2] and the unknown system
h[n1, n2] given by (8.8), one can obtain

a = γb (8.11)

where
a = (aT

0 , ..., aT
L−1)

T (8.12)

in which ai = (A[i, 0], ..., A[i, L − 1])T , and

b = (bT
0 , ..., bT

L−1)
T (8.13)

in which bi = (B[i, 0], ..., B[i, L − 1])T . Note that the constant γ > 0 in
(8.11) is unknown, and therefore, either it can be estimated together with the
estimation of H(ω1, ω2) or its role ought to be virtual during the estimation of
H(ω1, ω2). Consequently, (8.9), (8.10) and (8.11) imply that the true system
H(ω1, ω2) is the one such that the angle between the two column vectors a

and b is zero. Thus, H [k1, k2] can be estimated by maximizing

C(H) =
Re{aHb}
‖a‖ · ‖b‖ . (8.14)

Note that −1 ≤ C(H) = C(αH) ≤ 1 for any α > 0 and that C(H) = 1 if and
only if (8.11) holds true.

However, it is quite involved to obtain the gradient ∂C(H)/∂H [k1, k2] be-
cause C(H) is a highly nonlinear function of H [k1, k2]. Therefore, gradient
based optimization methods are not considered suitable for finding the maxi-
mum of C(H). Instead, an iterative nonparametric BSI algorithm using FFT,
called the 2-D System-MNC Filter Based BSI Algorithm, is introduced to
obtain an estimate of H [k1, k2] as follows.

2-D System-MNC Filter Based BSI Algorithm

(T1) Blind Deconvolution.

(S1) Obtain the 2-D LPE filter vLPE[n1, n2] with region of support
ΩTNSHP[p1, p2] for a chosen (p1, p2) by (7.78).

(S2) Obtain the vMNC[n1, n2] with region of support ΩTQP[p1, p2] for a
chosen (p1, p2) by the 2-D hybrid MNC algorithm with cumulant
order set to 2p.

(S3) Obtain L×L-point DFTs VMNC[k1, k2] and VLPE[k1, k2] for a cho-
sen L, and then compute B[k1, k2] given by (8.10).
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(T2) System Estimation.

(S1) Set the iteration number i = 0 and the initial values H [0][k1, k2]
for H [k1, k2] and the convergence tolerance ζ > 0.

(S2) Update i by i + 1. Compute

G[i−1][k1, k2] = H [i−1][k1, k2] · V [k1, k2]

and its L × L-point 2-D inverse FFT g[i−1][n1, n2]. Then update
g[i−1][n1, n2] by g[n1, n2], where

g[n1, n2] =
1

2

(
g[i−1][n1, n2] + g[i−1][−n1,−n2]

)
. (by Property 8.3)

(S3) Compute g1[n1, n2] using (8.4) with g[n1, n2] = g[i−1][n1, n2] and
its L × L-point 2-D FFT G1[k1, k2].

(S4) Compute

H [i][k1, k2] =
B∗[k1, k2]

G1[k1, k2]
(8.15)

by (8.8), (8.9) and (8.10) and then normalize H [i][k1, k2] by∑L−1
k1=0

∑L−1
k2=0 |H [i][k1, k2]|2 = 1.

(S5) Obtain G[i][k1, k2] = H [i][k1, k2]·VMNC[k1, k2] followed by its L×L-
point 2-D inverse FFT g[i][n1, n2]. If C(H [i]) > C(H [i−1]), go to
(S6). Otherwise, compute ΔH [k1, k2] = H [i][k1, k2]−H [i−1][k1, k2]
and update H [i][k1, k2] via

H [i][k1, k2] = H [i−1][k1, k2] + μ[i−1]ΔH [k1, k2] (8.16)

where the step size μ[i−1] is chosen such that C(H [i]) > C(H [i−1]).

Then normalize H [i][k1, k2] by
∑L−1

k1=0

∑L−1
k2=0 |H [i][k1, k2]|2 = 1.

(S6) If
C(H [i]) − C(H [i−1])∣∣C(H [i−1])

∣∣ > ζ

then go to (S2); otherwise, the frequency response estimate

Ĥ [k1, k2] = H [i][k1, k2]

and its L × L-point 2-D inverse FFT ĥ[n1, n2] are obtained.

The above 2-D system-MNC filter based BSI algorithm is a frequency-
domain nonparametric system estimation algorithm that obtains an estimate
Ĥ [k1, k2] by processing the given nonGaussian measurements y[n1, n2]. The
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ĥ[n1, n2] obtained is an estimate of h[n1, n2] except for a scale factor and
a space shift by Property 8.1. In (T2), the local convergence is guaranteed
because C(H [i]) is upper bounded by unity and its value is increased at each

iteration before convergence. Therefore, the closer to unity the C(Ĥ), the more
reliable the system estimate obtained.

Note that in (S5) of (T2), the step size μ[i] = ±μ0/2l can be used with
a suitable l ∈ {0, 1, ..., K} where μ0 and K are preassigned constant and
positive integer, respectively, such that C(H [i+1]) > C(H [i]) at each iteration.
It is remarkable that an upper bound of the system order is needed though the
exact system order is not required. The FFT length L × L should be chosen
sufficiently large that aliasing effects on the resultant ĥ[n1, n2] are negligible.
Surely the larger L, the larger the computational load of the 2-D system-
MNC filter based BSI algorithm, while the estimation error of the resultant
ĥ[n1, n2] is almost the same. If the true system is an IIR system, a finite-
length approximation of h[n1, n2] will be obtained by the 2-D system-MNC
filter based BSI algorithm.

Estimation of the MMSE Deconvolution Filter and
Noise-Reduction Filter

With the 2-D LSI system estimate Ĥ(ω1, ω2) and the LPE filter VLPE(ω1, ω2)
obtained by the preceding 2-D system-MNC filter based BSI algorithm, the
MMSE deconvolution filter VMS(ω1, ω2) and the MMSE noise-reduction filter
VNR(ω1, ω2), can be estimated as

V̂MS(ω1, ω2) =
Ĥ∗(ω1, ω2)

Ŝy(ω1, ω2)
(by (7.63)) (8.17a)

= Ĥ∗(ω1, ω2)|VLPE(ω1, ω2)|2 (by (8.7)) (8.17b)

and

V̂NR(ω1, ω2) = V̂MS(ω1, ω2) · Ĥ(ω1, ω2), (by (7.64)) (8.18)

respectively, up to a scale factor and a space shift.

Example 8.4 (Estimation of a 2-D ARMA System)
The driving input signal u[n1, n2] was assumed to be a real zero-mean, expo-
nentially distributed, i.i.d., random field with variance σ2

u = 1. The unknown
2-D LSI system h[n1, n2] used was a 2-D ARMA model with a 3× 3 nonsym-
metric region of support {[n1, n2]| − 1 ≤ n1 ≤ 1,−1 ≤ n2 ≤ 1} taken from [1]
as follows
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x[n1, n2] = 0.004x[n1 + 1, n2 + 1] − 0.0407x[n1 + 1, n2]

+ 0.027x[n1 + 1, n2 − 1] + 0.2497x[n1, n2 + 1] + 0.568x[n1, n2 − 1]

− 0.1037x[n1 − 1, n2 + 1] + 0.3328x[n1 − 1, n2] − 0.1483x[n1 − 1, n2 − 1]

+ u[n1, n2] − 0.5u[n1 + 1, n2] − 0.5u[n1, n2 + 1] − u[n1, n2 − 1]

− u[n1 − 1, n2]. (8.19)

In each of the thirty independent runs performed, a 256 × 256 synthetic
y[n1, n2] was generated for SNR = 5 dB and w[n1, n2] being real lowpass
colored Gaussian noise generated from the output of a 2-D separable filter (1+
0.8z−1

1 ) · (1+0.8z−1
2 ) driven by 2-D white Gaussian noise. Then the synthetic

y[n1, n2] was processed by the proposed 2-D system-MNC filter based BSI
algorithm. In (T1), the parameters p1 = p2 = 5 were used in (S1) and (S2).
The initial condition v[0][n1, n2] = δ[n1 − 2, n2 − 2] was used by the hybrid
MNC algorithm with the cumulant order equal to 2p = 4 in (S2), and FFT
size L× L = 32× 32 was used in (S3). In (T2), H [0][k1, k2] = 1 for all k1 and
k2, μ0 = 1, K = 10 and ζ = 10−5 were used.

Only Ĥ(ω1, ω2) and V̂MS(ω1, ω2) given by (8.17) will be presented because

the MMSE noise-reduction filter estimate V̂NR(ω1, ω2) given by (8.18) is actu-
ally redundant. The true system h[n1, n2], the true vMS[n1, n2], the estimate

ĥ[n1, n2], and the estimate v̂MS[n1, n2] were normalized by unity energy, and

the 2-D space shift between ĥ[n1, n2] and the true h[n1, n2] and that between
v̂MS[n1, n2] and the true vMS[n1, n2] were artificially removed before calcu-

lation of the averages and root mean square (RMS) errors of ĥ[n1, n2] and
v̂MS[n1, n2].

Let ĥi[n1, n2] and v̂MS,i[n1, n2] denote the ĥ[n1, n2] and v̂MS[n1, n2] ob-

tained at the ith run. As performance indices, the averages of ĥ[n1, n2] and
v̂MS[n1, n2], denoted h̄[n1, n2] and v̄MS[n1, n2],

h̄[n1, n2] =
1

30

30∑
i=1

ĥi[n1, n2], (8.20)

v̄MS[n1, n2] =
1

30

30∑
i=1

v̂MS,i[n1, n2], (8.21)

and RMS errors, denoted σ(ĥ[n1, n2]) and σ(v̂MS[n1, n2]),

σ(ĥ[n1, n2]) =

(
1

30

30∑
i=1

(
h[n1, n2] − ĥi[n1, n2]

)2
)1/2

, (8.22)

σ(v̂MS[n1, n2]) =

(
1

30

30∑
i=1

(
vMS[n1, n2] − v̂MS,i[n1, n2]

)2
)1/2

(8.23)

were calculated, respectively, from the thirty independent runs.



434 8 Applications of Two-Dimensional Blind Deconvolution Algorithms

The 2-D system-MNC filter based BSI algorithm required only three iter-
ations in (T2) for the estimation of h[n1, n2] at each run in obtaining all the
results in this example. Figures 8.1a, d show the true h[n1, n2] and vMS[n1, n2],

respectively. Figures 8.1b, c, e, f show h̄[n1, n2], σ(ĥ[n1, n2]), v̄MS[n1, n2] and
σ(v̂MS[n1, n2]), respectively. One can see from these figures that h̄[n1, n2] and
v̄MS[n1, n2] shown in Fig. 8.1b, e are quite close to the true h[n1, n2] and
vMS[n1, n2] shown in Fig. 8.1a, d, respectively, and the associated RMS errors

σ(ĥ[n1, n2]) and σ(v̂MS[n1, n2]) shown in Fig. 8.1c, f are also small. These
simulation results demonstrate that the 2-D system-MNC filter based BSI
algorithm provides estimates of both the unknown 2-D system and MMSE
deconvolution filter that are good approximations to the true ARMA system
and the true MMSE deconvolution filter for low SNR (5 dB), respectively.

�

8.1.2 Texture Synthesis

It has been validated [1–9] that an N × N texture image can be modeled as
a 2-D stationary nonGaussian linear process as follows

x[n1, n2] = u[n1, n2] � h[n1, n2] + mx (8.24)

where x[n1, n2] ≥ 0 due to finite gray levels, u[n1, n2] is zero-mean non-
Gaussian, h[n1, n2] is a stable 2-D LSI system, and mx is the mean of x[n1, n2].
The 2-D system-MNC filter based BSI algorithm introduced above can be ap-
plied to estimate both h[n1, n2] and u[n1, n2] from which synthetic texture im-
ages, denoted as x̂[n1, n2], with the same statistical characteristics as x[n1, n2]
can be obtained. The resultant texture synthesis method (TSM) includes five
steps as follows.

TSM

(S1) Obtain

m̂x =
1

N2

N−1∑
n1=0

N−1∑
n2=0

x[n1, n2] (8.25)

and

y[n1, n2] = x[n1, n2] − m̂x

� u[n1, n2] � h[n1, n2] (8.26)

which is an approximation of the 2-D convolutional model given by (8.1)
for SNR= ∞.

(S2) Obtain the texture image model ĥ[n1, n2] and the 2-D LPE filter
VLPE(ω1, ω2) with region of support ΩTNSHP[p1, p2] by processing y[n1, n2]
using the 2-D system-MNC filter based BSI algorithm with a chosen set
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Fig. 8.1 (a) and (d) show the true h[n1, n2] and vMS[n1, n2], respectively. (b), (e),

(c) and (f) show the averages h̄[n1, n2] and v̄MS[n1, n2] and RMS errors σ(h[n1, n2])
and σ(vMS[n1, n2]), respectively
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of parameters of ΩTQP[p1, p2], cumulant order 2p, FFT size L×L, initial
conditions for vMNC[n1, n2] and H [k1, k2], and convergence tolerance ζ.
Note that (p1, p2) used for ΩTNSHP[p1, p2] can be different from the one
used for ΩTQP[p1, p2].

(S3) Obtain the MMSE deconvolution filter estimate V̂MS(ω1, ω2) using (8.17b)
and then obtain the MMSE estimate of the driving input u[n1, n2] by

ûMS[n1, n2] = y[n1, n2] � v̂MS[n1, n2]. (8.27)

(S4) Generate a random field ũ[n1, n2] that has the same histogram as
ûMS[n1, n2]. Then obtain a zero-mean synthetic texture image by

ỹ[n1, n2] = ũ[n1, n2] � γĥ[n1, n2] (8.28)

where the scale factor γ is chosen such that

E{|ỹ[n1, n2]|2} = E{|y[n1, n2]|2}.

(S5) Obtain the synthetic texture image x̂[n1, n2] by

x̂[n1, n2] = ỹ[n1, n2] + m̂x (8.29)

which has the same mean and variance as x[n1, n2].

The TSM above basically follows the texture synthesis procedure reported
in [1–3,10] except that the MMSE deconvolution filter estimate V̂MS(ω1, ω2)

instead of the ZF deconvolution filter estimate V̂ZF(ω1, ω2) = 1/Ĥ(ω1, ω2) is
used in (S3). The MMSE deconvolution filter estimate is preferable to the ZF
deconvolution filter estimate because the latter may enhance the noise due to
modeling error in practical applications, although they are the same for the
noise-free case [11].

Example 8.5 (Texture Synthesis)
The set of parameters required by the 2-D system-MNC filter based BSI al-
gorithm in (S2) used in the example were as follows. In (T1) of the 2-D
system-MNC filter based BSI algorithm, the parameters p1 = p2 = 5 and
p1 = p2 = 6 were used in (S1) and (S2), respectively. The initial condition
v[0][n1, n2] = δ[n1 − 3, n2 − 3] was used by the 2-D hybrid MNC algorithm
with cumulant order equal to 2p = 4 in (S2), and FFT size L × L = 32 × 32
was used in (S3). In (T2) of the 2-D system-MNC filter based BSI algorithm,
H [0][k1, k2] = 1 for all k1 and k2, μ0 = 1, K = 10 and ζ = 10−5 were used.

Four 128 × 128 texture images, herringbone weave, wood, raffia and sand
taken from USC-SIPI (University of Southern California - Signal and Image
Processing Institute) Image Data Base were used for texture synthesis using
the proposed TSM. The 2-D system-MNC filter based BSI algorithm spent 11,
4, 14 and 3 iterations for system estimation (performed in (T2)) in obtaining

Ĥ(ω1, ω2) associated with herringbone weave, wood, raffia and sand images,
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.2 Experimental results using TSM. (a), (c) and (e) show the original her-
ringbone weave, wood and raffia images, respectively. (b), (d) and (f) show the
synthetic herringbone weave, wood and raffia images, respectively
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(g) (h)

Fig. 8.2 (Continued) (g) and (h) show the original sand image and the
synthetic sand image, respectively

respectively. The experimental results are shown in Fig. 8.2. Figures 8.2a, c,
e, g show the original herringbone weave, wood, raffia and sand images, re-
spectively, and Figs. 8.2b, d, f, h show the synthetic herringbone weave, wood,
raffia and sand images, respectively. From these figures, one can see that the
four synthetic texture images resemble well the four respective original tex-
ture images. These experimental results support the efficacy of the proposed
TSM.

�

8.2 Parametric Blind System Identification and Texture

Image Classification

As reported in [12], this section considers the identification of 2-D real sta-
ble LSI systems through the use of the parametric 2-D FSBM introduced in
Chapter 7 (Section 7.1). The MG-PS decomposition of the FSBM with region
of support Ω′

TNSHP[p1, p2] (see (7.31)) is given by

H(ω1, ω2) = H∗(−ω1,−ω2) = HMG(ω1, ω2) · HPS(ω1, ω2) (8.30)

where

HMG(ω1, ω2) = exp

⎧⎨⎩ ∑∑
[i1,i2]∈Ω′

TNSHP[p1,p2]

αi1,i2 cos(i1ω1 + i2ω2)

⎫⎬⎭ (8.31)

is a 2-D zero-phase FSBM, and

HPS(ω1, ω2) = exp

⎧⎨⎩j
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

βi1,i2 sin(i1ω1 + i2ω2)

⎫⎬⎭ (8.32)
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is a 2-D allpass FSBM. On the other hand, the MP-AP decomposition with
region of support Ω′

TNSHP[p1, p2] is given by

H(ω1, ω2) = H∗(−ω1,−ω2) = HMP(ω1, ω2) · HAP(ω1, ω2) (8.33)

where

HMP(ω1, ω2) = exp

⎧⎨⎩ ∑∑
[i1,i2]∈Ω′

TNSHP[p1,p2]

αi1,i2e
−j(i1ω1+i2ω2)

⎫⎬⎭ (8.34)

is a 2-D minimum-phase FSBM and

HAP(ω1, ω2) = exp

⎧⎨⎩j
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

(αi1,i2 + βi1,i2) sin(i1ω1 + i2ω2)

⎫⎬⎭
(8.35)

is also a 2-D allpass FSBM.
Note that hMP[0, 0] = 1 and the region of support of the 2-D system

hMP[n1, n2] is ΩF[0,−1], whereas Ω′
TNSHP[p1, p2] is the region of support for

the FSBM parameters αi1,i2 and βi1,i2 . Estimation of h[n1, n2] is equivalent
to the estimation of the parameters of αi1,i2 and βi1,i2 .

8.2.1 Parametric 2-D BSI

Suppose that y[n1, n2] is a real stationary random field that can be modeled
as (8.1), where the system input u[n1, n2] and the noise w[n1, n2] satisfy the
Assumptions (A8-1) and (A8-3), respectively, and meanwhile the unknown
system h[n1, n2] satisfies the following assumption

(A8-5) h[n1, n2] is a 2-D real FSBM given by (8.30) or (8.33) with p1 and
p2 known in advance.

With only a given set of measurements y[n1, n2], n1 = 0, 1, ..., N−1, n2 = 0,
1, ..., N − 1, the estimation of the 2-D system h[n1, n2] includes the estima-
tion of amplitude parameters αi1,i2 and that of phase parameters βi1,i2 to be
introduced, respectively, next.

Estimation of Amplitude Parameters

The estimation of the amplitude parameters αi1,i2 , ∀[i1, i2] ∈ Ω′
TNSHP[p1, p2],

is equivalent to the estimation of the minimum-phase FSBM HMP(ω1, ω2)
given by (8.34). The minimum-phase FSBM HMP(ω1, ω2) can be estimated
using SOS based 2-D minimum-phase LPE filter.
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Let vMP[n1, n2] be a 2-D IIR filter with the region of support ΩF[0,−1], and
ε[n1, n2] denote the prediction error by processing y[n1, n2] with vMP[n1, n2]
as follows

ε[n1, n2] = y[n1, n2] � vMP[n1, n2]

=
∑∑

[i1,i2]∈ΩF[0,−1]

vMP[i1, i2]y[n1 − i1, n2 − i2]

= y[n1, n2] +
∑∑

[i1,i2]∈ΩF[0,0]

vMP[i1, i2]y[n1 − i1, n2 − i2] (8.36)

where vMP[0, 0] = 1. The optimum LPE filter vMP[n1, n2] by minimizing the
MSE E{ε2[n1, n2]} is known to be of minimum phase and infinite length
[13, 14]. Therefore, the preceding minimum-phase 2-D FSBM with leading
coefficient equal to unity and the region of support ΩF[0,−1] is suited for the
2-D minimum-phase LPE filter vMP[n1, n2] as follows:

VMP(ω1, ω2) = exp

⎧⎨⎩ ∑∑
[i1,i2]∈Ω′

TNSHP[p1,p2]

ai1,i2e
−j(i1ω1+i2ω2)

⎫⎬⎭ . (8.37)

Let a be a column vector consisting of the LPE filter parameters ai1,i2 , ∀[i1, i2]
∈ Ω′

TNSHP[p1, p2]. The optimum a is the one obtained by minimizing

JMSE(a) = E{ε2[n1, n2]} (8.38)

and supported by the following theorem which is also the 2-D extension of
Theorem 1 reported in [15].

Theorem 8.6. Suppose that y[n1, n2] is a stationary random field given by
(8.1) under the Assumptions (A8-1), (A8-5) and SNR = ∞. Then JMSE(a)
given by (8.38) is minimum if and only if

VMP(ω1, ω2) = 1/HMP(ω1, ω2) (8.39)

i.e. ai1,i2 = −αi1,i2 , ∀[i1, i2] ∈ Ω′
TNSHP[p1, p2] and min{JMSE(a)} = σ2

u.

The proof of Theorem 8.6 is presented in Appendix 8C. Based on Theo-
rem 8.6, the estimation of αi1,i2 can be performed through finding the opti-
mum ai1,i2 , denoted as âi1,i2 , by minimizing JMSE(a). Then α̂i1,i2 = −âi1,i2 ,
∀[i1, i2] ∈ Ω′

TNSHP[p1, p2], i.e.

ĤMP(ω1, ω2) = 1/V̂MP(ω1, ω2). (8.40)

Because JMSE(a) is a highly nonlinear function of a, it is almost impossible
to find a closed-form solution for the optimum a. Again, the iterative BFGS
algorithm can be employed to find the optimum a. At the ith iteration, a is
updated by
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a[i+1] = a[i] − μ[i]Q[i] · ∂JMSE(a)

∂a

∣∣∣∣∣
a=a[i]

(8.41)

where μ[i] is the step size and the real matrix Q[i+1] (see (2.157)) is updated
by

Q[i+1] = Q[i] +
1

rT
i+1si+1

{(
1 +

sT
i+1Q

[i]si+1

rT
i+1si+1

)
ri+1r

T
i+1

− ri+1s
T
i+1Q

[i] − Q[i]si+1r
T
i+1

}
(8.42)

in which vectors ri and si are updated as follows

ri+1 = a[i+1] − a[i] (8.43)

and

si+1 =
∂JMSE(a)

∂a

∣∣∣∣∣
a=a[i+1]

− ∂JMSE(a)

∂a

∣∣∣∣∣
a=a[i]

. (8.44)

The computation of the gradient ∂JMSE(a)/∂a in (8.41) needs the compu-
tation of ∂ε[n1, n2]/∂ai1,i2 that can be easily shown, from (8.36) and (8.37),
to be

∂ε[n1, n2]

∂ai1,i2

= ε[n1 − i1, n2 − i2], [i1, i2] ∈ Ω′
TNSHP[p1, p2]. (8.45)

The proof of (8.45) is left as an exercise (Problem 8.2). By (8.38) and (8.45),
we obtain

∂JMSE(a)

∂ai1,i2

= 2E

{
ε[n1, n2]

∂ε[n1, n2]

∂ai1,i2

}
= 2E{ε[n1, n2]ε[n1 − i1, n2 − i2]}, [i1, i2] ∈ Ω′

TNSHP[p1, p2] (8.46)

which implies that a local minimum JMSE(a) is achieved when

E{ε[n1, n2]ε[n1 − i1, n2 − i2]} = 0, [i1, i2] ∈ Ω′
TNSHP[p1, p2]. (8.47)

Moreover, by (8.33) and (8.39), the optimum prediction error ε[n1, n2] is a
2-D white random field in the absence of noise as follows:

ε[n1, n2] = y[n1, n2] � v̂MP[n1, n2] = u[n1, n2] � hAP[n1, n2]. (8.48)

In other words, v̂MP[n1, n2] is a 2-D whitening filter and ε[n1, n2] is an ampli-
tude equalized signal with a flat power spectral density equal to σ2

ε = σ2
u.
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The above BFGS algorithm for finding the optimum α = −a is referred
to as the Amplitude Parameter Estimation Algorithm (APEA), which is sum-
marized in Table 8.1. In practice, for a given set of data y[n1, n2], the sam-
ple mean-square-error (see (8.38)) and sample correlations of ε[n1, n2] (see
(8.46)) are used to compute JMSE(a) and ∂JMSE(a)/∂ai1,i2 . Because the sam-
ple mean-square-error and sample correlations of ε[n1, n2] are consistent esti-
mates, the α̂ obtained by the APEA is also a consistent estimate by Slutsky’s
Theorem (Theorem 3.58).

As a remark, when the 2-D LSI system h[n1, n2] is a 2-D FSBM with

unknown p1 and p2, the ĤMP(ω1, ω2) obtained is merely an approximation to
HMP(ω1, ω2) if the chosen values for p1 and p2 in (8.37) are smaller than the
true values of p1 and p2. On the other hand, as the 2-D LSI system h[n1, n2] is
not a 2-D FSBM, the larger the chosen values for p1 and p2 in (8.37), the better

the approximation ĤMP(ω1, ω2) to the minimum-phase system associated with
h[n1, n2].

Estimation of Phase Parameters

Estimation of the phase parameters βi1,i2 , [i1, i2] ∈ Ω′
TNSHP[p1, p2], is equiv-

alent to estimation of the 2-D allpass FSBM HPS(ω1, ω2) given by (8.32)
from y[n1, n2], and also equivalent to the estimation of the 2-D allpass FSBM
HAP(ω1, ω2) given by (8.35) from the amplitude equalized signal ε[n1, n2]
given by (8.48). The estimation of both HPS(ω1, ω2) and HAP(ω1, ω2) through
allpass filtering is based on the following theorem.

Theorem 8.7. Suppose that y[n1, n2] is a real stationary random field given
by (8.1) satisfying the Assumptions (A8-1), (A8-3) and (A8-5). Let vAP[n1, n2]
be a 2-D allpass filter with region of support ΩF[−∞,−∞], vAP a vector con-
sisting of all the coefficients of vAP[n1, n2], and

z[n1, n2] = y[n1, n2] � vAP[n1, n2]. (8.49)

Then
Jp(vAP) = |Cp{z[n1, n2]}|, p ≥ 3, (8.50)

is maximum if and only if

arg[VAP(ω1, ω2)] = − arg[H(ω1, ω2)] + τ1ω1 + τ2ω2 (8.51)

where τ1 and τ2 are unknown integers.

Note that Theorem 8.7 is actually a special case of Theorem 7.1 with the
2-D deconvolution filter v[n1, n2] required to be an allpass deconvolution filter
vAP[n1, n2], because Jp(vAP) = Jp(vAP)/σp

z
= Jp(vAP)/σp

y .
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Table 8.1 2-D APEA

Parameter
setting

Choose filter order (p1, p2) for the region of support
Ω′

TNSHP[p1, p2], initial conditions a[0] and Q[0], convergence
tolerance ζ > 0, initial step size μ0 and a positive integer K
for the step size search range [μ0/2

0, μ0/2
K ].

Steps (S1) Set the iteration number i = 0.

(S2) Compute the amplitude equalized signal ε[0][n1, n2] associ-
ated with a[0] and obtain the corresponding gradient function

∂JMSE(a)

∂a
a=a[0]

using (8.36) and (8.46), respectively.

(S3) Update a[i+1] by

a
[i+1] = a

[i] − μ[i]Q[i] ·
∂JMSE(a)

∂a
a=a[i]

where an integer l ∈ [0, K] is determined such that μ[i] = μ0/2
l

is the maximum step size leading to JMSE(a[i+1]) < JMSE(a[i]).

(S4) If

JMSE(a[i+1]) − JMSE(a[i])

JMSE(a[i])
≥ ζ,

then go to Step (S5); otherwise, obtain αi1,i2 = −a
[i+1]
i1,i2

, ∀[i1, i2]
∈ Ω′

TNSHP[p1, p2] and stop.

(S5) Update ri+1, si+1 and Q[i+1] by (8.43), (8.44) and (8.42), re-
spectively.

(S6) Compute the amplitude equalized signal ε[i+1][n1, n2] associ-

ated with a[i+1] and the gradient function
∂JMSE(a)

∂a
a=a[i+1]

using (8.36) and (8.46), respectively.

(S7) Update the iteration number i by (i + 1) and go to Step (S3).

By Theorem 8.7, the phase parameters βi1,i2 of the unknown FSBM
H(ω1, ω2) can be estimated by finding the optimum allpass filter vAP[n1, n2]
also modeled as an FSBM given by

VAP(ω1, ω2) = exp

⎧⎨⎩j
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

γi1,i2 sin(i1ω1 + i2ω2)

⎫⎬⎭ . (8.52)

Let γ be a vector including the allpass filter coefficients γi1,i2 , ∀[i1, i2] ∈
Ω′

TNSHP[p1, p2]. Let
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z1[n1, n2] = ε[n1, n2] � vAP[n1, n2] (8.53)

z2[n1, n2] = y[n1, n2] � vAP[n1, n2] (8.54)

where ε[n1, n2] is the amplitude equalized signal (see (8.48)), y[n1, n2] is given
by (8.1), vAP[n1, n2] is given by (8.52) and

Jp(γ) = Jp(z[n1, n2]) = |Cp{z[n1, n2]}| (8.55)

where p ≥ 3 and z[n1, n2] = z1[n1, n2] or z[n1, n2] = z2[n1, n2]. Then the
following two facts needed for the estimation of βi1,i2 can be shown.

Fact 8.8. For z[n1, n2] = z1[n1, n2], Jp(γ) is maximum if and only if

arg[VAP(ω1, ω2)] = − arg[HAP(ω1, ω2)], (8.56)

i.e.
γi1,i2 = −(αi1,i2 + βi1,i2), ∀[i1, i2] ∈ Ω′

TNSHP[p1, p2]. (8.57)

Fact 8.9. For z[n1, n2] = z2[n1, n2], Jp(γ) is maximum if and only if

arg[VAP(ω1, ω2)] = − arg[HPS(ω1, ω2)], (8.58)

i.e.
γi1,i2 = −βi1,i2 , ∀[i1, i2] ∈ Ω′

TNSHP[p1, p2]. (8.59)

The proof of Fact 8.9 is presented in Appendix 8D and the proof of Fact 8.8
is left as an exercise (Problem 8.3) since their proofs are similar.

Next, we concentrate on how to obtain the optimum γ by maximizing
(8.55) that provides the optimum β, a vector composed of all the phase para-
meters βi1,i2 of the FSBM H(ω1, ω2), by Facts 8.8 and 8.9. Again, the objective
function Jp(γ) is also a highly nonlinear function of γ without a closed-form
solution for the optimum γ. Instead, the iterative BFGS algorithm is consid-
ered for finding the optimum γ.

At the ith iteration, γ is updated by

γ [i+1] = γ[i] + μ[i]Q[i] · ∂Jp(γ)

∂γ

∣∣∣∣∣
γ=γ[i]

(8.60)

where μ[i] is a positive step size and the real matrix Q[i] is updated by (8.42),
in which vectors ri and si are updated as follows

ri+1 = γ [i+1] − γ [i] (8.61)

and
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si+1 =
∂Jp(γ)

∂γ

∣∣∣∣∣
γ=γ[i+1]

− ∂Jp(γ)

∂γ

∣∣∣∣∣∣
γ=γ[i]

. (8.62)

Each component of the gradient ∂Jp(γ)/∂γ needed in (8.60) can be shown to
be

∂Jp(γ)

∂γi1,i2

= sgn(Cp{z[n1, n2]}) ·
∂Cp{z[n1, n2]}

∂γi1,i2

=
p

2
sgn(Cp{z[n1, n2]}) · (cum{z[n1, n2] : p − 1, z[n1 + i1, n2 + i2]}

− cum{z[n1, n2] : p − 1, z[n1 − i1, n2 − i2]}) (8.63)

where sgn(x) denotes the sign of x. The proof of (8.63) is left as an exercise
(Problem 8.4).

The above BFGS algorithm for finding the optimum γ is referred to as the
2-D Phase Estimation Algorithm (PSEA)(k), which is summarized in Table
8.2, where k = 1 or k = 2, denoting that the signal to be processed by
the allpass filter VAP(ω1, ω2) given by (8.52) is the amplitude equalized signal
ε[n1, n2] for k = 1 and the signal y[n1, n2] for k = 2. The amplitude estimation
algorithm APEA and the phase estimation algorithm PSEA(k) introduced
above constitute the 2-D FSBM based BSI algorithm shown in Fig. 8.3, which
is summarized as follows.

2-D FSBM Based BSI Algorithm

(S1) Set the order (p1, p2) of the 2-D FSBM with the region of support
Ω′

TNSHP[p1, p2], convergence tolerance ζ > 0 and a positive integer K for
the step size search range [μ0/20, μ0/2K ] for both APEA and PSEA(k).
Then set the cumulant order p and parameter k (= 1 or 2) needed by
the PSEA(k).

(S2) Amplitude Estimation. Find the optimum α̂ and the amplitude equalized
signal ε[n1, n2] by processing y[n1, n2] using the APEA.

(S3) Phase Estimation. Find the optimum γ̂ using the PSEA(k). If k = 1,

β̂ = −γ̂ − α̂ by (8.57). If k = 2, β̂ = −γ̂ by (8.59).

Notably, the 2-D FSBM based BSI algorithm processes y[n1, n2] to obtain

α̂ (amplitude parameter estimates) followed by β̂ (phase parameter estimates)

for k = 1 (serial processing), and α̂ and β̂ in parallel for k = 2 (parallel
processing) as shown in Fig. 8.3.

Again, for a given set of data y[n1, n2], sample cumulants of z[n1, n2] are
used to compute Jp(γ) (see (8.55)) and ∂Jp(γ)/∂γi1,i2 (see (8.63)). Because
sample cumulants of z[n1, n2] are consistent, and because α̂ obtained using the

APEA is consistent, it can easily be inferred that β̂ obtained using PSEA(k)
is also a consistent estimate by Slutsky’s Theorem (Theorem 3.58).
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Table 8.2 2-D PSEA(k)

Parameter
setting

Choose filter order (p1, p2) for the region of support
Ω′

TNSHP[p1, p2], cumulant order p > 2, initial conditions γ [0]

and Q[0], convergence tolerance ζ > 0, initial step size μ0 and a
positive integer K for the step size search range [μ0/2

0, μ0/2
K ].

(Note that the signal to be processed by the allpass FSBM is
the amplitude equalized signal ε[n1, n2] for k = 1, and the
signal y[n1, n2] for k = 2.)

Steps (S1) Set the iteration number i = 0.

(S2) Compute the phase equalized signal z[0][n1, n2] associated
with γ [0] and obtain the corresponding gradient function

∂Jp(γ)

∂γ
γ=γ [0]

using (8.63).

(S3) Update γ [i+1] by

γ
[i+1] = γ

[i] + μ[i]Q[i] ·
∂Jp(γ)

∂γ
γ=γ [i]

where an integer l ∈ [0, K] is determined such that μ[i] = μ0/2
l

is the maximum step size leading to Jp(γ
[i+1]) > Jp(γ [i]).

(S4) If

Jp(γ
[i+1]) − Jp(γ

[i])

Jp(γ [i])
≥ ζ,

then go to Step (S5); otherwise, obtain γi1,i2 = γ
[i+1]
i1,i2

, ∀[i1, i2]
∈ Ω′

TNSHP[p1, p2] and stop.

(S5) Update ri+1, si+1 and Q[i+1] by (8.61), (8.62) and (8.42), re-
spectively.

(S6) Compute the phase equalized signal z[i+1][n1, n2] associated
with γ [i+1] using (8.53) for k = 1 and (8.54) for k = 2, and the

gradient function
∂Jp(γ)

∂γ
γ=γ[i+1]

using (8.63).

(S7) Update the iteration number i by (i + 1) and go to Step (S3).

When the LSI system h[n1, n2] is not a 2-D FSBM, the unknown linear
phase terms ω1τ1 + ω2τ2 in (8.51) may affect the resultant phase parameter
estimates. As p1 and p2 are chosen sufficiently large, PSEA(2) may well end
up with the optimum

γ̂i1,i2 = −βi1,i2 + di1,i2 , ∀[i1, i2] ∈ Ω′
TNSHP[p1, p2] (8.64)

where di1,i2 are coefficients of the 2-D Fourier series expansion of the linear
function τ1ω1 + τ2ω2 given by (8.100) in Appendix 8D, leading to a 2-D space
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Fig. 8.3 2-D FSBM based BSI algorithm

shift in the resultant estimate ĥ[n1 + τ1, n2 + τ2]. This can also happen when
PSEA(1) is used.

Simulation Examples

Two simulation examples are presented to test the 2-D FSBM based BSI algo-
rithm. In the two examples, the driving input signal u[n1, n2] was a zero-mean,
exponentially distributed, i.i.d., random field with variance σ2

u = 1, normal-
ized skewness γ3 = 2 and normalized kurtosis γ4 = 6 that was convolved with
a 2-D LSI system followed by addition of white Gaussian noise to generate the
synthetic N × N data y[n1, n2]. Then the FSBM based BSI algorithm with
k = 1 and k = 2 were used to process y[n1, n2]. In (S1), μ0 = 1, ζ = 10−8,
K = 10 were chosen for the APEA and PSEA(k) and the cumulant order
p = 3 was chosen for the PSEA(k). In (S2) and (S3), Q[0] = I and the initial

condition a
[0]
i1,i2

= 0, ∀[i1, i2] and γ
[0]
i1,i2

= 0, ∀[i1, i2] were used by the APEA
and PSEA(k), respectively. Thirty independent runs were performed in each
of the two examples.

Example 8.10 (Estimation of a 2-D FSBM)
A 2-D FSBM H(ω1, ω2) given by (8.30) with orders p1 = p2 = 1 and parame-
ters

α0,1 = −0.97 α1,−1 = −0.5 α1,0 = 1.04 α1,1 = 0.52

β0,1 = −0.27 β1,−1 = −0.95 β1,0 = 0.18 β1,1 = −0.92

(with region of support Ω′
TNSHP[1, 1]) was used in this example. Mean and

RMS error (RMSE) of the thirty amplitude and phase parameter estimates
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were calculated. The simulation results for N ×N = 128× 128 and SNR= ∞
are shown in Table 8.3. One can see, from this table, that the mean values of
α̂i1,i2 and β̂i1,i2 are close to the true values of αi1,i2 and βi1,i2 , respectively, and
the associated RMSEs are also small. These simulation results validate that
the introduced 2-D FSBM based BSI algorithm is effective for the estimation
of the 2-D FSBM, and the phase estimation performance for PSEA(1) is
slightly better than for PSEA(2).

Table 8.3 Simulation results (mean and RMSE) of Example 8.10

α β

α APEA β PSEA(1) PSEA(2)

MEAN RMSE MEAN RMSE MEAN RMSE

α0,1 − 0.9696 0.0068 β0,1 − 0.2717 0.0126 − 0.2703 0.0175

α1,−1 − 0.4987 0.0085 β1,−1 −0.9526 0.0103 −0.9496 0.0230

α1,0 1.0394 0.0089 β1,0 0.1784 0.0110 0.1774 0.0356

α1,1 0.5199 0.0101 β1,1 −0.9232 0.0123 −0.9304 0.0231

�

Example 8.11 (Approximation to an MA Model)
In this example, h[n1, n2] used was the same 2-D MA model given by (7.111).

The true system h[n1, n2] and the estimate ĥi[n1, n2] obtained at the ith run

were normalized by unity energy, and the 2-D space shift between ĥi[n1, n2]
and the true h[n1, n2] was artificially removed before calculation of the nor-
malized MSE (NMSE) as follows

NMSE =
1

30

30∑
i=1

15∑
n1=−15

15∑
n2=−15

(
h[n1, n2] − ĥi[n1, n2]

)2

. (8.65)

Table 8.4 shows some simulation results (NMSE) for N × N = 128× 128,
and (p1, p2) = (1, 1), (2, 2), (3, 3) and SNR = 5, 10, 15, 20 dB, respectively.
One can see, from this table, that the NMSEs are small and decrease with
SNR for p1(= p2) ≥ 2, and decrease with p1(= p2) for all SNR. Therefore, one
can also observe that the 2-D FSBM estimates obtained by the 2-D FSBM
based BSI algorithm are good approximations to the true 2-D MA system, as
SNR is high and the order of the FSBM model used is sufficient.

�
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Table 8.4 Simulation results (NMSE) of Example 8.11

PSEA(1) PSEA(2)

SNR (dB)

p1(= p2) 5 10 15 20 5 10 15 20

1 0.0760 0.0610 0.0603 0.0614 0.0750 0.0594 0.0584 0.0593

2 0.0309 0.0122 0.0083 0.0077 0.0306 0.0122 0.0084 0.0078

3 0.0307 0.0097 0.0052 0.0043 0.0303 0.0098 0.0054 0.0047

8.2.2 Texture Image Classification

Complex cepstra of speech signals with the vocal tract-filter modeled as a
minimum-phase AR model have been widely used in speech recognition and
speaker identification [12, 16–18]. Similarly, the application of amplitude pa-
rameters α of the 2-D FSBM to texture image classification [12] is also reason-
able simply because α and the complex cepstrum hMP[n1, n2] given by (7.36)
are the same. However, the phase parameters β of the 2-D FSBM cannot
be used because of unknown 2-D space shift [τ1, τ2] inherent in the estimate

β̂ by PSEA(k). Next, let us present this texture image classification method
reported in [12].

As introduced in Section 8.1.2, a texture image can be modeled as a 2-D
linear nonGaussian processes with nonzero mean (see (8.24)). Suppose that
y[n1, n2] is a texture image with mean removed and modeled as

y[n1, n2] = u[n1, n2] � h[n1, n2] (8.66)

where u[n1, n2] is zero-mean nonGaussian and h[n1, n2] is a 2-D FSBM satis-
fying the Assumption (A8-5). Then the 2-D FSBM amplitude parameters α

and phase parameters β can be obtained by processing y[n1, n2] using the 2-D
FSBM based BSI algorithm (see Fig. 8.3) introduced in Section 8.2.1. With
the obtained α and β, two feature vectors for texture image classification,
denoted by θ1 and θ2, are defined as follows

θ1 =
[
α̂

T , σ2
ε/σ2

x

]T

(8.67)

θ2 =
[
α̂

T , γp{z[n1, n2]}
]T

(8.68)

where ε[n1, n2] is the amplitude equalized signal given by (8.48), γp{z[n1, n2]}
is the normalized pth-order cumulant of the deconvolved signal z[n1, n2]

z[n1, n2] = y[n1, n2] � ĥINV[n1, n2] (8.69)
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where ĥINV[n1, n2] is the inverse system of the system estimate ĥ[n1, n2] char-

acterized by α̂ and β̂. Note that as PSEA(1) is used, z[n1, n2] = z1[n1, n2] is

available once β̂ is obtained (see Fig. 8.3).
A popular criterion for image classification is the Euclidean distance (ED)

criterion (to be minimized)

D(c) = ‖θ − θ(c)‖2 (8.70)

where θ is the feature vector (either θ1 or θ2) to be classified, and θ(c) is the
mean vector of all the training feature vectors θs used for class c.

The leave-one-out strategy [19] was used to perform classification. Suppose
that there are A classes of images with B images in each class available for
classification. To perform classification with the chosen sub-image of a spe-
cific class c, the mean feature vector θ(c) was calculated from the other B− 1
training sub-images of the class c, while for the other A− 1 classes, θ(c) was
calculated from all the B training sub-images of each class. The classification
procedure was repeated for A × B sub-images. The number of misclassifica-
tions out of A×B classification operations is used as the performance index.
Next, let us present some experimental results using the feature vectors θ1

and θ2, respectively.

Example 8.12 (Texture Image Classification)
Twelve 512× 512 texture images shown in Fig. 8.4, taken from the USC-SIPI
Image Data Base, were used for classification, including grass, treebark, straw,
herringbone, wool, leather, water, wood, raffia, brickwall, plastic and sand.
Each image was divided into sixteen 128 × 128 nonoverlapping sub-images
to provide twelve classes of sixteen sub-images each. For each sub-image, the
proposed 2-D FSBM based BSI algorithm is employed to obtain θ1 and θ2

with the following settings. In (S1), p1 = p2 = 3 (for the region of support
Ω′

TNSHP[p1, p2] of the FSBM parameters), μ0 = 1, ζ = 10−8, K = 10 and
either of p = 3 and 4 for the PSEA(k); in (S2) Q[0] = I and the initial

condition a
[0]
i1,i2

= 0, ∀[i1, i2] for the APEA; in (S3), Q[0] = I and the initial

condition γ
[0]
i1,i2

= 0, ∀[i1, i2].
Let A(B) denote B sub-images classified to texture class A over the 16 sub-

image classifications for each of 12 texture classes. The classification results
of A(B) using θ1 are shown in Table 8.5 and those using θ2 for p = 3 and
p = 4 are shown in Table 8.6 (where the PSEA(1) was used) and Table 8.7
(where the PSEA(2) was used).

The minimum ED classifier using θ1 has five misclassifications (Table 8.5).
The one using θ2 associated with PSEA(1) has 4 and 6 misclassifications for
p = 3 and p = 4 (Table 8.6), respectively. The one using θ2 associated with
PSEA(2) has four misclassifications for both of p = 3 and p = 4 (Table
8.7). These experimental results show that the feature vectors θ1 and θ2 are
effective for texture image classification.

�
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Fig. 8.4 Texture images used for classification: (row 1, column 1): grass; (row 1,
column 2): treebark; (row 2, column 1): straw; (row 2, column 2): herringbone; (row
3, column 1): wool; (row 3, column 2): leather
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Fig. 8.4 (Continued) (row 1, column 1): water; (row 1, column 2): wood; (row
2, column 1): raffia; (row 2, column 2): brickwall; (row 3, column 1): plastic; (row
3, column 2): sand
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Table 8.5 Experimental results using feature vector θ1 associated with the APEA
for p1 = p2 = 3

Misclassifications: 5 of 192

Texture Classification results

1. grass 1(16)

2. treebark 2(16)

3. straw 3(13), 1(1), 6(1), 12(1)

4. herringbone 4(16)

5. wool 5(16)

6. leather 6(16)

7. water 7(15), 8(1)

8. wood 8(16)

9. raffia 9(16)

10. brickwall 10(16)

11. plastic 11(15), 1(1)

12. sand 12(16)

Table 8.6 Experimental results using feature vector θ2 associated with the
PSEA(1) for p1 = p2 = 3

Misclassifications: 4 and 6 of 192 for p = 3 and p = 4, respectively

Classification results

Texture p = 3 p = 4

1. grass 1(16) 1(15), 12(1)

2. treebark 2(16) 2(16)

3. straw 3(14), 1(1), 6(1) 3(13), 1(1), 6(1), 12(1)

4. herringbone 4(16) 4(16)

5. wool 5(16) 5(16)

6. leather 6(16) 6(16)

7. water 7(14), 8(1), 10(1) 7(15), 8(1)

8. wood 8(16) 8(16)

9. raffia 9(16) 9(16)

10. brickwall 10(16) 10(16)

11. plastic 11(16) 11(15), 2(1)

12. sand 12(16) 12(16)
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Table 8.7 Experimental results using feature vector θ2 associated with the
PSEA(2) for p1 = p2 = 3

Misclassifications: 4 of 192 for p = 3 and p = 4

Classification results

Texture p = 3 p = 4

1. grass 1(16) 1(16)

2. treebark 2(16) 2(16)

3. straw 3(13), 1(1), 6(1), 12(1) 3(13), 1(1), 6(1), 12(1)

4. herringbone 4(16) 4(16)

5. wool 5(16) 5(16)

6. leather 6(16) 6(16)

7. water 7(15), 8(1) 7(16)

8. wood 8(16) 8(16)

9. raffia 9(16) 9(16)

10. brickwall 10(16) 10(16)

11. plastic 11(16) 11(15), 2(1)

12. sand 12(16) 12(16)

8.3 Summary and Discussion

In this chapter, a 2-D nonparametric system-MNC filter based BSI algorithm
was introduced for estimation of an unknown 2-D LSI system h[n1, n2] with
only a given set of data y[n1, n2] (see (8.1)). This BSI algorithm is based on the
key relation (8.2) between the 2-D MNC deconvolution filter vMNC[n1, n2] in-
troduced in Chapter 7 and the unknown system h[n1, n2], which holds valid for
any SNR, and therefore, its performance is robust against additive Gaussian
noise if the data length is sufficient. Some analytical results show that the
system estimate obtained by this BSI algorithm is identifiable except for a
scale factor and a space shift (see Properties 8.1 and 8.3).

Because texture images can be modeled as 2-D linear nonGaussian random
processes, the texture image model can be estimated by the 2-D system-MNC
filter based BSI algorithm. A TSM making use of the estimated texture image
model and the histogram of the deconvolved signal (an estimate of the model
input) was then introduced. Some simulation results and experimental results
were presented to verify the efficacy of the 2-D system-MNC filter based BSI
algorithm and the TSM, respectively.

A 2-D FSBM based BSI algorithm, which is guaranteed stable and char-
acterized by amplitude parameters α and phase parameters β, was also intro-
duced for the estimation of an unknown 2-D LSI system. This BSI algorithm



Appendix 8A Proof of Property 8.2 455

estimates the FSBM parameters α and β either sequentially or concurrently
(see Fig. 8.3). When the unknown 2-D LSI system is an FSBM of known order,
the FSBM parameter estimates obtained are consistent; when the unknown
2-D LSI system is not an FSBM, the system estimate obtained is an approx-
imation to the unknown system. The FSBM parameters of texture images
obtained by this BSI algorithm, normalized variance and cumulants of the
estimated model input (see (8.67) and (8.68)) are used as feature vectors for
texture image classification. Some simulation results were presented to vali-
date the good performance of the 2-D FSBM based BSI algorithm, and some
experimental results were provided to show its effective application to texture
classification.

The 2-D BSI algorithms and their application to texture image synthesis
and classification introduced in this chapter are not comprehensive. However,
the 2-D MNC deconvolution criterion given by (7.85) is a useful criterion for
2-D deconvolution and system identification, and the parametric 2-D FSBM
model may potentially have other applications because its use is free from
stability concerns.

Appendix 8A

Proof of Property 8.2

Let us use the notations of ω, ωi given by (7.41) and∫ π

−π
x(ω)dω =

∫ π

−π

∫ π

−π

x(ω1, ω2)dω1dω2

for ease of later use in the proof.
Since both v[n1, n2] and h[n1, n2] are stable LSI systems, the overall system

g[n1, n2] is also stable. The zero-phase assumption of g[n1, n2] implies that
G(ω1, ω2) is a continuous function of ω and

G(ω1, ω2) ≥ 0, ∀ − π < ω1 ≤ π, − π < ω2 ≤ π. (8.71)

The DSFT G1(ω1, ω2) of g1[n1, n2] is the (2p−1)-fold 2-D periodic convolution
given by

G1(ω1, ω2) = G(ω1, ω2) ⊗ G(ω1, ω2) ⊗ · · · ⊗ G(ω1, ω2)︸ ︷︷ ︸
(2p−1) terms

=

(
1

2π

)2(2p−1)

·
∫ π

−π
· · ·

∫ π

−π
G(ω1) · · ·G(ω2p−1)

·G
(

ω −
2p−1∑
i=1

ωi

)
dω1 · · · dω2p−1. (8.72)

From (8.72), it is easy to see that G1(ω1, ω2) > 0, ∀(ω1, ω2) due to (8.71) and
Assumption (A8-4).

Q.E.D.
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Appendix 8B

Proof of Property 8.3

Let h̃[n1, n2] be an arbitrary system satisfying (8.2) and thus

G1(ω1, ω2)H
∗(ω1, ω2) = G̃1(ω1, ω2)H̃

∗(ω1, ω2)

= β · VMNC(ω1, ω2)Sy(ω1, ω2) (8.73)

where G̃1(ω1, ω2) is the DSFT of g̃1[n1, n2] given by

g̃1[n1, n2] = g̃2p−1[n1, n2] (8.74)

in which
g̃[n1, n2] = h̃[n1, n2] � vMNC[n1, n2]. (8.75)

Without loss of generality, assume that both G(ω1, ω2) and G̃(ω1, ω2) are
zero-phase with positive g[0, 0] and g̃[0, 0], i.e.

g[n1, n2] = g[−n1,−n2], and g[0, 0] > 0, (8.76)

g̃[n1, n2] = g̃[−n1,−n2], and g̃[0, 0] > 0. (8.77)

It can be obtained, from (8.73), that

H̃(ω1, ω2) = Υ (ω1, ω2)H(ω1, ω2) (8.78)

where

Υ (ω1, ω2) =
G∗

1(ω1, ω2)

G̃∗
1(ω1, ω2)

=
G1(ω1, ω2)

G̃1(ω1, ω2)
> 0, (by Property 8.2) (8.79)

and that

G1(ω1, ω2)H
∗(ω1, ω2)V

∗
MNC(ω1, ω2) = G1(ω1, ω2)G

∗(ω1, ω2)

= G̃1(ω1, ω2)H̃
∗(ω1, ω2)V

∗
MNC(ω1, ω2)

= G̃1(ω1, ω2)G̃
∗(ω1, ω2) ≥ 0 (by Property 8.2). (8.80)

Let s[n1, n2] and s̃[n1, n2] be the inverse DSFT of G1(ω1, ω2)G
∗(ω1, ω2)

and G̃1(ω1, ω2)G̃
∗(ω1, ω2), respectively. That is,

s[n1, n2] = g1[n1, n2] � g[−n1,−n2]

=

∞∑
m1=−∞

∞∑
m2=−∞

g2p−1[m1, m2]g[m1 − n1, m2 − n2] (8.81)
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and

s̃[n1, n2] = g̃1[n1, n2] � g̃[−n1,−n2]

=

∞∑
m1=−∞

∞∑
m2=−∞

g̃2p−1[m1, m2]g̃[m1 − n1, m2 − n2]. (8.82)

One can infer from (8.80) that

s[n1, n2] = s̃[n1, n2]. (8.83)

Let us further assume that g[n1, n2] �= 0 for all [n1, n2] ∈ Ω[K,K] and
g[n1, n2] = 0 for all [n1, n2] /∈ Ω[K,K] where K is a positive integer and

Ω[p1, p2] = {[n1, n2] : −p1 ≤ n1 ≤ p1,−p2 ≤ n2 ≤ p2}, (8.84)

and thus g1[n1, n2] �= 0 only for [n1, n2] ∈ Ω[K,K] by (8.3), and s[n1, n2] �= 0
only for [n1, n2] ∈ Ω[2K, 2K]. Then, s[n1, n2] in (8.81) can be expressed as

s[n1, n2] =

K∑
m1=−K

K∑
m2=−K

g2p−1[m1, m2]g[m1 − n1, m2 − n2],

[n1, n2] ∈ Ω[2K, 2K] (8.85)

and the equality s[n1, n2] = s̃[n1, n2] implies that g[n1, n2] �= 0 and g̃[n1, n2] �=
0 only for [n1, n2] ∈ Ω[K,K]. Furthermore, from (8.83) and (8.85) that

s[2K, 2K] = g2p[K,K]

= s̃[2K, 2K] = g̃2p[K,K] (8.86)

which implies
g[K,K] = g̃[K,K] or − g̃[K,K]. (8.87)

Again, by (8.85) and s[2K, 2K− 1] = s̃[2K, 2K − 1], we have

g[K,K]g[K,K − 1]
(
g2p−2[K,K] + g2p−2[K,K − 1]

)
= g̃[K,K]g̃[K,K − 1]

(
g̃2p−2[K,K] + g̃2p−2[K,K − 1]

)
, (8.88)

which by (8.87), (8.88) and Lemma 6.10 further gives rise to

|g[K,K − 1]| = |g̃[K,K − 1]|. (8.89)

Moreover, one can infer from (8.88) and (8.89) that

g̃[K,K − 1]

g[K,K − 1]
=

g[K,K]

g̃[K,K]
. (8.90)

Similarly, simplifying s[n1, n2] = s̃[n1, n2] for [n1, n2] = [2K, 2K−2], [2K, 2K−
3], ..., [2K, 0], [2K − 1, 2K], [2K − 1, 2K − 1], ..., [2K − 1, 0], ..., [K + 1, 2K],
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[K + 1, 2K − 1], ..., [K + 1, 0], [K, 2K], [K, 2K − 1], ..., [K,K], by (8.85) and
Lemma 6.10, we can end up with

|g[n1, n2]| = |g̃[n1, n2]|, ∀[n1, n2] ∈ ΩTNSHP[K,K] (8.91)

and

g̃[n1, n2]

g[n1, n2]
=

g[K,K]

g̃[K,K]
, ∀[n1, n2] ∈ ΩTNSHP[K,K], [n1, n2] �= [K,K], (8.92)

which together with (8.87) lead to

g[n1, n2] = g̃[n1, n2], ∀[n1, n2] ∈ ΩTNSHP[K,K] (8.93)

since g[0, 0] > 0 and g̃[0, 0] > 0. Moreover, one can infer from (8.76), (8.77)
and (8.93) that

g[n1, n2] = g̃[n1, n2], ∀[n1, n2] ∈ Ω[K,K], (8.94)

which implies that G1(ω1, ω2) = G̃1(ω1, ω2) and thus Υ (ω1, ω2) = 1, ∀(ω1, ω2)
by (8.79). Therefore, we obtain from (8.78) that

H(ω1, ω2) = H̃(ω1, ω2) (8.95)

under the zero-phase assumption for both g[n1, n2] and g̃[n1, n2]. Further-

more, by Property 8.1 and (8.95), H ′(ω1, ω2) = αH̃(ω1, ω2) · ej(ω1τ1+ω2τ2) =
αH(ω1, ω2) · ej(ω1τ1+ω2τ2) is also a solution of (8.2). The assumption that
g̃[n1, n2] �= 0 only for [n1, n2] ∈ Ω[K,K] can be relaxed by allowing K → ∞
for the proof to be true as g[n1, n2] is of infinite length. A general proof with-
out the condition g̃[n1, n2] �= 0 for [n1, n2] ∈ Ω[K,K] is still unknown.

Q.E.D.

Appendix 8C

Proof of Theorem 8.6

In the absence of noise, the power spectrum of ε[n1, n2] can easily be seen to
be

Sε(ω1, ω2) = σ2
u|HMP(ω1, ω2)HAP(ω1, ω2)VMP(ω1, ω2)|2

= σ2
u|G̃(ω1, ω2)|2 (8.96)

where
G̃(ω1, ω2) = HMP(ω1, ω2)VMP(ω1, ω2). (8.97)

Since both HMP(ω1, ω2) and VMP(ω1, ω2) are causal minimum-phase filters
with the same leading coefficient hMP[0, 0] = vMP[0, 0] = 1, the inverse DSFT



Appendix 8D Proof of Fact 8.9 459

g̃[n1, n2] of G̃(ω1, ω2) is also causal minimum phase with leading coefficient
g̃[0, 0] = 1. Therefore,

E{ε2[n1, n2]} = σ2
u

∑∑
[n1,n2]∈ΩTNSHP[∞,∞]

g̃2[n1, n2] ≥ σ2
u (8.98)

where the equality holds only when g̃[n1, n2] = δ[n1, n2] or G̃(ω1, ω2) = 1.

Thus, the optimum minimum-phase LPE filter V̂MP(ω1, ω2) = 1/HMP(ω1, ω2)
by (8.97) and min{E{ε2[n1, n2]}} = σ2

u.
Q.E.D.

Appendix 8D

Proof of Fact 8.9

Since higher-order cumulants of Gaussian processes (due to w[n1, n2] in (8.1))
are equal to zero, the Gaussian noise w[n1, n2] can be ignored in the following
proof. By Theorem 8.7, (8.30) and (8.52), we have

arg{VAP(ω1, ω2)} + arg{HPS(ω1, ω2)}

=
∑∑

[i1,i2]∈Ω′
TNSHP[p1,p2]

(γi1,i2 + βi1,i2) sin(i1ω1 + i2ω2), |ω1| ≤ π, |ω2| ≤ π

= τ1ω1 + τ2ω2, |ω1| ≤ π, |ω2| ≤ π

=
∑∑

[i1,i2]∈Ω′
TNSHP[∞,∞]

di1,i2 sin(i1ω1 + i2ω2), |ω1| ≤ π, |ω2| ≤ π (8.99)

where τ1 and τ2 are integers, and

di1,i2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2τ1

i1
(−1)i1+1, i2 = 0 and i1 > 0

2τ2

i2
(−1)i2+1, i1 = 0 and i2 > 0

0, otherwise

(8.100)

are coefficients of the Fourier series expansion of the linear function τ1ω1 +
τ2ω2. From the second line and the fourth line of (8.99), one can see that

di1,i2 = 0, ∀[i1, i2] ∈ Ω′
TNSHP[∞,∞] but /∈ Ω′

TNSHP[p1, p2], (8.101)

which together with (8.100) leads to τ1 = τ2 = 0, i.e.

di1,i2 = 0, ∀[i1, i2] ∈ Ω′
TNSHP[∞,∞]. (8.102)

Therefore, from (8.99) and (8.102), one can obtain γi1,i2 = −βi1,i2 , ∀[i1, i2] ∈
Ω′

TNSHP[p1, p2] for finite p1 and p2.
Q.E.D.
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Problems

8.1. Prove Property 8.1.

8.2. Prove the gradient
∂ε[n1, n2]

∂ai1,i2

given by (8.45).

8.3. Prove Fact 8.8.

8.4. Prove the gradient
∂Jp(γ)

∂γi1,i2

given by (8.63).

Computer Assignments

8.1. 2-D BSI of an MA System
Consider that y[n1, n2] = h[n1, n2] � u[n1, n2] + w[n1, n2] where
h[n1, n2] is a separable system whose transfer function is given by

H(z1, z2) = (1 − 0.8z−1
1 ) · (1 − 0.8z−1

2 ),

u[n1, n2] is a zero-mean, i.i.d., exponentially distributed station-
ary random process with variance σ2

u = 1, normalized skewness
γ3{u[n1, n2]} = 2 and normalized kurtosis γ4{u[n1, n2]} = 6 and
w[n1, n2] is white Gaussian noise. Generate thirty realizations of
synthetic data {y[n1, n2], n1 = 0, ..., 127, n2 = 0, ..., 127}. With the
generated synthetic data, estimate the 2-D MA system h[n1, n2] us-
ing the two 2-D BSI algorithms presented in this chapter.

(a) Write a computer program to implement the 2-D system-MNC
filter based BSI algorithm and perform simulations with the
following settings. Initial step size μ0 = 1 and integer K = 10
for step size search range in (S2) of (T1) and (S5) of (T2);
convergence tolerance ζ = 10−5 in (S2) of (T1) and (S6) of
(T2); p1 = p2 = 5 in (S1) and (S2) of (T1); Q[0] = I and
the initial condition v[0][n1, n2] = δ[n1 − 2, n2 − 2] for the hy-
brid MNC algorithm with cumulant order set to 2p = 4 in
(S2) of (T1); FFT size L × L = 32 × 32 in (S3) of (T1) and
H [0][k1, k2] = 1 for all k1 and k2 in (T2). Obtain thirty esti-
mates of h[n1, n2] for SNR = 5 dB and SNR = 20 dB, and
exhibit the true system h[n1, n2], the true vMS[n1, n2], the av-
erages h̄[n1, n2] and v̄MS[n1, n2] given by (8.20) and (8.21), and

the RMSEs σ(ĥ[n1, n2]) and σ(v̂MS[n1, n2]) given by (8.22) and
(8.23), respectively. Explain what you observe from these re-
sults.



References 461

(b) Write a computer program to implement the 2-D FSBM based
BSI algorithm and perform simulations with the following set-
tings. Initial step size μ0 = 1; integer K = 10 for step size
search range; convergence tolerance ζ = 10−5; cumulant order
p = 3, k = 1 and 2 in (S1); Q[0] = I and the initial condition

a
[0]
i1,i2

= 0, ∀[i1, i2] in (S2) and Q[0] = I and γ
[0]
i1,i2

= 0, ∀[i1, i2]
in (S3). Obtain thirty estimates of h[n1, n2] for SNR = 5, 10,
15 and 20 dB and p1 = p2 = 1, 2 and 3 for the region of sup-
port Ω′

TNSHP[p1, p2], and exhibit the associated NMSEs given
by (8.65). Explain what you observe from these results.
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�p norm, 34
�p space, 34
z-transform, 86
Lp norm, 35
Lp space, 35

absolutely convergent series, 30
allpass system, 94, 397, 399, 439, 442,

443
amplitude parameter estimation

algorithm (APEA), 439, 442
analysis frame, see frame
anticausal system, 86
augmented Wiener–Hopf equations, see

normal equations
autocorrelation, 408
autocorrelation function, 122, 128, 129,

140, 143, 146, 373, 403
autocorrelation matrix, 414
autocovariance function, 122
automatic gain control (AGC), 256
autoregressive (AR) model, 93, 398
autoregressive (AR) process, 127, 298
autoregressive moving-average (ARMA)

model, 93, 398
autoregressive moving-average (ARMA)

process, 127

backward linear prediction error (LPE)
filter, 194

backward linear predictor, 193
backward prediction error, 194
Banach space, 33
basis, 17

Bayes’ rule, 98, 99
beamforming, 357, 358
Bernoulli distribution, 115
Bernoulli–Gaussian (B–G) model, 241
Bessel’s inequality, 37
binomial distribution, 117
bispectrum, 132, 354
blind equalizer, 3, 404, 409, 412, 423
blind maximum ratio combining

(BMRC), 340, 361, 367, 368, 377
blind source separation, 357, 359
blind system identification (BSI), 342,

346, 347, 438
block Toeplitz matrix, 293, 296
bounded function, 72
bounded sequence, 27

vector, 277
bounded-input bounded-output

(BIBO), 277, 293, 298, 305
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) formula, 58
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) method, 51, 57, 410, 440,
444

Burg algorithm, 204
Bussgang process, 261
Bussgang-type algorithm, 261

canonical innovations representation,
207

Cauchy sequence, 33
Cauchy–Schwartz inequality, 14, 34, 35,

101
causal system, 86, 277, 395
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Cesàro mean, 27
channel disparity, 293
characteristic function, 103
chip waveform, 369
circular convolution, 90, 394
circularly Gaussian random vector, 111
code-division multiple-access (CDMA),

362
column space, 18, 294
complete normed vector space, 33
complex cepstrum, 95, 398–400, 449
conditional expectation, 100
conditional probability density function,

98
constant modulus (CM) equalization

algorithm, 262
constant modulus algorithm (CMA),

see constant modulus (CM)
equalization algorithm

constellation diagram, 118
continuous function, 72
convergence in the mean, 33
convergence in the mean-square (MS)

sense, see MS convergence
convergence in the norm, 33
convergent sequence, 27
convergent series, 30
convolution, see linear convolution
correlation, 101
correlation coefficient, 102

orthogonal, 102
uncorrelated, 102

correlation function, 123
correlation matrix, 102, 384, 407
cosine roll-off pulse, see raised cosine

pulse
covariance, 101
covariance matrix, 102
Cramér–Rao bound (CRB), see

Cramér–Rao lower bound (CRLB)
Cramér–Rao lower bound (CRLB), 152
cross-correlation function, 123, 125, 140
cross-covariance function, 123
cross-cumulant spectrum, 132
cross-power spectrum, 125, 292
cross-spectrum, see cross-power

spectrum
cumulant function, 121, 124, 135, 136,

401

cumulant generating function, see
second characteristic function

cumulant spectrum, 132, 136, 139, 401
cumulative distribution function, see

distribution function
cumulative function, see second

characteristic function
cycle frequency, 141
cyclic autocorrelation function, 141, 146
cyclic spectral density, see cyclic

spectrum
cyclic spectrum, 141, 144, 146
cyclostationary, 139

Davidon–Fletcher–Powell (DFP)
method, 51

delta function, see Kronecker delta
function

derivative, 73
determinant, 18, 281
deterministic deconvolution, 239
diagonal matrix, 20
differentiable, 43
Dirac delta function, 40
Dirichlet theorem, 39
discontinuous function, 72
discrete Fourier transform (DFT), 89,

394
discrete-space fourier transform

(DSFT), 393
discrete-time Fourier transform

(DTFT), 87, 278
distribution function, 97
divergence test, 31
divergent sequence, 27

eigendecomposition, 24, 294
eigenvalue, 19, 296
eigenvector, 19
Einstein–Wiener–Khintchine relation,

125
energy disperser, see scrambler
ensemble, 119
equivalent lowpass signal, 256
Euclidean space, 16, 33
expectation, 99, 100
exponential distribution, 114

fast Fourier transform (FFT), 90, 427
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finite-duration impulse response (FIR)
system, 86, 277

first derivative, 42, 46
first partial derivative, 42
first-order method, 49
formant, 247
formant frequency, see formant
forward linear prediction error (LPE)

filter, 192
forward linear predictor, 191
forward prediction error, 192
Fourier coefficient, 38
Fourier series, 38
Fourier series based model (FSBM), 94,

398, 400, 427, 438, 439, 442, 445,
447, 449, 450, 455

fractionally spaced equalization (FSE),
335

frame, 247

frequency response, 91, 278
fricative sound, see unvoiced sound
full rank, 18
function

domain, 72
range, 72

gamma function, 242
Gaussian distribution, 110, 111

generalized Gaussian distribution, 242
geometric series, 31
global maximum, 45, 307
global minimum, 45
glottis, 247
Godard-p algorithm, 262
Goodman’s theorem, 111
gradient, 46, 52
gradient vector, see gradient

greatest common divisor (GCD), 283,
314, 329

Hermitian form, 19
Hessian matrix, 47
higher-order spectrum, see cumulant

spectrum
higher-order statistics (HOS), 132, 146,

391, 409, 423, 427
hybrid maximum normalized cumulant

(MNC) equalization algorithm,

230, 311, 417–419, 423, 427, 430,
436

identity matrix, 18
image restoration, 391
improved initial condition, 227
impulse response, 84, 276
independently and identically distrib-

uted (i.i.d.), 123, 134, 305, 401,
403, 418, 427, 432, 447

induced norm, 16
infinite-duration impulse response (IIR)

system, 86, 432
inner product, 14, 16
inner product space, 16
innovations process, 207, 298, 299
input-output cross-correlation (IOCC),

312, 344
integral test, 31
interleaver, 252
intersymbol interference (ISI), 184, 287,

290, 362, 404, 412
inverse filter criterion, 212
inverse system, 86, 281, 397, 403, 427

joint distribution function, 98
joint probability density function, 98
joint-process estimator, 220

Kronecker delta function, 84, 392
kurtosis, 108, 109

Laplace distribution, 112
lattice linear prediction error (LPE)

filter, 203
lattice super-exponential (lattice SE)

equalization algorithm, 220
leading coefficient, 215, 300
least common multiple (LCM), 283
left singular vector, 25
left-hand derivative, 73
left-hand limit, 72
Levinson recursion, 196

multichannel, 348, 383, 384
Levinson–Durbin recursion, 196
linear convolution, 84, 90, 276, 395
linear minimum mean-square-error

(LMMSE) equalizer, 188, 292,
309, 405, 406, 412, 416, 432, 436
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linear optimum filtering, 166

linear phase, 310, 345
linear phase system, 91, 344, 398

linear prediction, 298
error, 298, 299

linear predictive coding (LPC), 250
linear predictive deconvolution, 205, 406

linear predictive equalization, see linear
predictive deconvolution

linear process, 134, 401
linear shift-invariant (LSI) system, see

LTI system
linear time-invariant (LTI) system, 84,

275
local maximum, 45, 307

local minimum, 45, 307
lower triangular matrix, 20

magnitude response, 91

magnitude–phase (MG-PS) decomposi-
tion, 94, 398, 438

mapper, 252
marginal probability density function,

98
Marquardt method, 51

matched filter, 260, 365, 370
matrix

Hermitian, 17, 18
invertible, 18

negative definite, 19
negative semidefinite, 19

noninvertible, 18

nonnegative definite, 19
nonpositive definite, 19

nonsingular, 18
positive definite, 19

positive semidefinite, 19
singular, 18

symmetric, 18
matrix pencil, 301

maximum normalized cumulant (MNC)
equalization, 211, 409

maximum normalized cumulant (MNC)
equalization algorithm, 211, 306,
409, 412

maximum normalized cumulant (MNC)
equalization criterion, 211, 306,
409

maximum normalized cumulant (MNC)
equalizer, 211, 308, 409, 412, 413

maximum-phase system, 94
McMillan degree, 286
mean, 101, 102, 400
mean-square (MS) convergence, 40, 394
minimum entropy deconvolution

(MED), 242
minimum mean-square-error (MMSE)

approximation, 36
minimum-phase allpass (MP-AP)

decomposition, 94, 95, 399, 439
minimum-phase system, 93, 94, 280,

397, 439, 449
minimum-phase-lag system, see

minimum-phase system
minimum-variance deconvolution

(MVD) filter, 188
modulator, 252
moment function, 121
moment generating function, see

characteristic function
monotonic function, 72
monotonic sequence, 27
Moore–Penrose generalized inverse, see

pseudoinverse
moving-average (MA) model, 93, 398
moving-average (MA) process, 127
multiple access interference (MAI), 287,

362
multistage successive cancellation

(MSC), 313, 359, 368
multiuser detection, 362

near–far ratio (NFR), 369
Newton method, 51, 53
nonblind equalizer, 3
noncausal system, 86
nonminimum-phase system, 94, 397
norm, 14, 16
normal distribution, see Gaussian

distribution
normal equations, 64, 192, 407
normal rank, 279
normalized cumulant, 109, 449
normalized kurtosis, 112, 114–118, 121
normalized skewness, 112, 114–117
normed vector space, 16
null space, 62, 280, 294
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objective function, 41
orthogonal matrix, 20
orthogonality principle, 166, 292, 299,

380
orthonormal eigenvector, 20, 295

Parseval’s equality, see Parseval’s
relation

Parseval’s relation, 37, 40
partial correlation (PARCOR)

coefficient, 199
partial sum, 30, 38
periodic convolution, 88, 455
periodic signal, 392
persistently exciting, 294, 302
phase estimation algorithm (PSEA),

442, 445
phase response, 91
phase shift keying (PSK), 119
piecewise continuous, 73
pitch period, 248
pointwise convergence, 39
pointwise convergence theorem, 39
pointwise convergent sequence, 28
pointwise convergent series, 32
pole polynomial, 285
polynomial

coprime, 281
monic, 281

polynomial matrix, 281
column-reduced, 301
elementary, 282
equivalent, 282
irreducible, 301
rational, 283
unimodular, 281, 282, 300

polyspectrum, see cumulant spectrum
power spectral density, see power

spectrum
power spectral matrix, 287, 300, 345,

347, 354, 383
power spectrum, 125, 128, 129, 401, 458
probability density function (pdf), 97,

99
unimodal, 107

projection matrix, 64
pseudoinverse, 66
pulse amplitude modulation (PAM),

118

quadrature amplitude modulation
(QAM), 119

quasi-Newton method, 51

raised cosine pulse, 260, 337
random process

orthogonal, 123
sample function, 119
statistically independent, 123
uncorrelated, 123

random variable, 96, 99
event, 96
orthogonal, 102
sample point, 96
sample space, 96
statistically independent, 98, 99, 102
uncorrelated, 102

random vector, 98
randomizer, see scrambler
range space, 62, 295
rank, 18
rank deficiency, 18, 414
receiving filter, 256
reflection coefficient, 196
reflection seismology, 236
reflectivity sequence, 239
refraction seismology, 236
region of convergence (ROC), 87, 393
right singular vector, 25
right-hand derivative, 73
right-hand limit, 72
roll-off factor, 260, 337
row space, 18

saddle point, 47
sampling period, 83, 141
Schwartz inequality, see Cauchy–

Schwartz inequality
scrambler, 252
second characteristic function, 104
second-order cyclostationary statistics

(SOCS), 140, 146
second-order method, 50, 406
second-order statistics (SOS), 125, 406
seismic deconvolution, 239
seismic trace, 237
seismic wavelet, 237
seismogram, 237
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seismometer array, 237

semi-blind equalizer, 3

separable signal, 392

signal-to-interference-plus-noise ratio
(SINR), 290

signal-to-noise ratio (SNR), 129, 287,
341, 351, 403

signature waveform, 364

simplified super-exponential (SE)
equalization algorithm, 228

singular value, 25

singular value decomposition (SVD),
24, 407, 414

skewness, 107

Smith form, 282

Smith–McMillan form, 280, 281, 283

SNR improvement-or-degradation ratio,
187

source compressor, see source encoder

source encoder, 252

source signature, see seismic wavelet

space diversity, 352, 354

spatially independent and temporally
colored (s.i.t.c.), 305

spatially independent and temporally
independent (s.i.t.i.), 305

spatially uncorrelated and temporally
colored (s.u.t.c.), 301

spatially uncorrelated and temporally
white (s.u.t.w.), 294

speaker identification, 247, 400, 449

speaker verification, 247

spectral decomposition, 24

spectrum, see power spectrum

speech analysis and synthesis, 249

speech deconvolution, 245

speech production system, 248

speech recognition, 400, 449

stable system, 85, 277, 395

standard deviation, 101

stationary, 123

stationary point, 47, 307

steepest descent method, 50, 51

step size, 49, 411, 432

step-down recursion, 201

step-up recursion, 201

strict-sense cyclostationary (SSCS), see
cyclostationary

strict-sense stationary (SSS), see
stationary

subspace, 15
noise, 293, 294
signal, 294

super-exponential (SE) equalization,
214, 413

super-exponential (SE) equalization
algorithm, 214, 308, 413, 415

super-exponential (SE) equalizer, 214,
308, 413, 416

symbol sequence, 252, 336
system

pole, 93, 279
zero, 93, 279

system function, 93

Taylor series, 48
texture image classification, 438, 449,

450
texture synthesis, 434, 436
time delay estimation (TDE), 351

multiple time delay estimation
(MTDE), 351, 354

timing phase, 258, 336
timing phase error, 259, 336, 337
Toeplitz matrix, 21, 302
trace, 19
transfer function, 93, 279
transmission zero, 279, 280
transmitting filter, 255
triangle inequality, 15
trispectrum, 132

uniform convergence, 39
uniform distribution, 112
uniformly convergent sequence, 28
uniformly convergent series, 32
unit circle, 87
unit sample sequence, see Kronecker

delta function
unit step function, 175
unit surface, 393, 394
unit vector, 14
unitary matrix, 20, 301
unstable system, 85
unvoiced sound, 247
upper triangular matrix, 20
user identification, 368, 373
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variance, 101, 400
vector

finite-dimensional, 17
infinite-dimensional, 17
linearly dependent, 17
linearly independent, 17
orthogonal, 14
orthonormal, 14

vocal cord, 247
vocal fold, see vocal cord
vocal tract, 247
voiced sound, 247

Weierstrass M-test, 32
white noise, see white process

white process, 123, 127

whitening filter, 207

wide-sense cyclostationary (WSCS), 140

wide-sense stationary (WSS), 124

Wiener filter, 166, 405, 412

Wiener–Hopf equations, 169

Wiener–Khintchine relation, see
Einstein–Wiener–Khintchine
relation

zero polynomial, 286

zero-forcing (ZF) equalizer, 187, 291,
404–406, 413, 414, 436

zero-phase system, 93, 398, 399, 438




