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Laudatio

This special volume “Biosystems Engineering” is dedicated to Professor
Dr.-Ing. Dietmar Christian Hempel on the occasion of his 65th birthday, whereby
the different contributions display an excellent reflection of his research during the
past 30 years, bridging engineering and life sciences.

Prof. Hempel, born in Konigsberg, studied Construction and Process Engineer-
ing in Dortmund and Berlin (1963-1971). After his PhD work on “Heterogeneous
catalytic fixed bed reactors” he became the head for “Reaction and Biochemical
Engineering” at the Bayer AG in Leverkusen, where he started to apply chemical
engineering principles to biological systems (1975-1980). This was obviously
stimulating his later research as Professor of Technical Chemistry and Chemical
Engineering at the University of Paderborn (1980-1994) and as Professor and
Director of the Institute of Biochemical Engineering at the Technische Universitit
Braunschweig (1994-2009) where he kept his research interest on biological
systems in technical applications — covering various aspects process engineering
of biological and biochemical processes. As impressive outcome of his career,
Dietmar Christian Hempel authored and co-authored about 300 publications and
supervised 70 PhD students as a “Doktorvater”. From 2001 to 2008 he was head
and speaker of the still successfully continued interdisciplinary DFG-collaborate
research centre SFB 578 “Development of biotechnological processes by integrat-
ing genetic and engineering methods — From gene to product”. This collaborate
research centre displays a landmark in the German biochemical engineering com-
munity and serves as important link between cellular biology and bioprocess
engineering.



Preface

The special volume “Biosystems Engineering” reflects an emerging field of applied
research that aims at a system-level understanding of biological systems toward
their targeted design and improvement. To obtain system-wide insight, interdisci-
plinary approaches are applied, which integrate expertise from biologists, engi-
neers, and computer scientists, who have developed powerful analytical methods,
modelling concepts, and information technologies for this challenging task. With
the increasing need for sustainable production of fuels and chemicals from renew-
able resources, a major focus in this area is on the optimization of biotechnological
production strains and processes. Of specific importance hereby is the consideration
of the microorganism as a part of the bioprocess in its entirety.

In this regard, the different contributions of this volume provide an outstanding
review of novel tools, methods, and concepts in the field of biosystems engineering,
a still young, but yet powerful direction of interdisciplinary research. Part I “Creat-
ing Superior biocatalysts” of this volume highlights how system-wide analysis,
modelling and understanding of gene regulation, metabolic networks, and fluxes
open a new era for rational design and optimization of superior production strains,
one of the key pre-requisites for bio-based production of pharmaceuticals, chemi-
cals, materials, and fuels. This includes the introduction of systems and synthetic
metabolic engineering approaches as well as industrial application examples. Part 1T
“Linking Cellular Networks and Bioprocesses” illustrates concepts and tools which
are based on models and experiments to investigate metabolic networks in correlation
with the cell environment. In addition to the introduction of fundamental strategies
introducing thermodynamic principles as well as different modelling approaches
to metabolic network simulation, different examples directly address the link of
cells and bioreactors providing fascinating and valuable insights into the interaction
between cellular metabolism and process environment.

Braunschweig, Summer 2010 Christoph Wittmann
Rainer Krull
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Morphology of Filamentous Fungi: Linking
Cellular Biology to Process Engineering Using
Aspergillus niger

Dedicated to Prof. Dr.-Ing. Dietmar C. Hempel on the occasion of his 65th birthday.

Rainer Krull, Christiana Cordes, Harald Horn, Ingo Kampen, Arno Kwade,
Thomas R. Neu, and Bernd Nortemann

Abstract In various biotechnological processes, filamentous fungi, e.g. Aspergil-
lus niger, are widely applied for the production of high value-added products due
to their secretion efficiency. There is, however, a tangled relationship between the
morphology of these microorganisms, the transport phenomena and the related
productivity. The morphological characteristics vary between freely dispersed
mycelia and distinct pellets of aggregated biomass. Hence, advantages and disad-
vantages for mycel or pellet cultivation have to be balanced out carefully. Due to
this inadequate understanding of morphogenesis of filamentous microorganisms,
fungal morphology, along with reproducibility of inocula of the same quality, is
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often a bottleneck of productivity in industrial production. To obtain an optimisa-
tion of the production process it is of great importance to gain a better understand-
ing of the molecular and cell biology of these microorganisms as well as the
approaches in biochemical engineering and particle technique, in particular to
characterise the interactions between the growth conditions, cell morphology,
spore—hyphae-interactions and product formation. Advances in particle and image
analysis techniques as well as micromechanical devices and their applications to
fungal cultivations have made available quantitative morphological data on fila-
mentous cells. This chapter provides the ambitious aspects of this line of action,
focussing on the control and characterisation of the morphology, the transport
gradients and the approaches to understand the metabolism of filamentous fungi.
Based on these data, bottlenecks in the morphogenesis of A. niger within the
complex production pathways from gene to product should be identified and this
may improve the production yield.

Keywords Aspergillus niger, Fluid dynamics, Fungal morphology, Mechanical
stress, Systems biotechnology
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List of Abbreviations

AFM Atomic force microscopy

CFD Computational fluid dynamics

CLSM Confocal laser scanning microscopy
(dc/dr)max  Maximum oxygen concentration gradient
dh/dr Gradient of the hyphal fraction / within the outer pellet periphery
GFP Green fluorescent protein

h Hyphal fraction

L. Concentration boundary layer

LES Large eddy simulation

P/V Volumetric power input

PIV Particle image velocimetry

pspd Position-sensitive photo-detector

r Radial coordinate
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RANS Reynolds averaged Navier—Stokes equations
Rep Reynolds number at the pellet

RT-PCR  Reverse transcription polymerase chain reaction
SST Shear stress transport turbulence model

STR Stirred tank reactor

TKE Turbulent kinetic energy

1 Introduction

In biotechnological production processes performed with filamentous fungi the
monitoring and control of morphological development is difficult to obtain due to
the highly complex relation between morphology and productivity [1]. Product
formation by filamentous fungi, like Aspergillus niger, is closely linked to their
morphology. Mycelial growth of this coagulating fungus has procedural disadvan-
tages, for instance a high viscosity of the cultivation broth and therefore a low
nutrient supply due to insufficient mixing. In comparison, cultivation broths with
distinct pellets show Newtonian flow behaviour, but disadvantages related to a
limited nutrient availability within the inner part of the biopellets can occur. Hence,
in every biotechnological process, the optimal morphology varies due to specific
product properties and cannot be generalised. The morphogenesis of A. niger
cultivation can be controlled effectively by adjusting the pH value and the volu-
metric power input; see Fig. 1 [2, 3].

In the early phase of cultivation the aggregation of A. niger conidia is domi-
nantly affected by the pH value, while the morphology of fungal pellets is mainly
influenced by volumetric power input [4]. The comparison of the volumetric power
input caused by agitation and aeration [5] revealed that the aeration has a higher
impact to counteract the aggregation process, which leads to pellets with smaller
diameter and an open structure, and also to a higher pellet concentration. Due to

Fig. 1 Morphological characteristics of A. niger (volumetric power input P/V = 100 W m~), (a)
biopellet at pH 5.5 after cultivation period of 32 h, (b) free dispersed mycelia at pH 3, after 24 h [2]
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higher agitation induced power input denser pellets occur with a compact pellet
surface [3].

Advantages in particle and image analysis techniques as well as in micromecha-
nical devices and their applications to fungal cultivations have made available quanti-
tative morphological data for the investigations of the micro- and macroscopic growth
of filamentous cells. Measurements of the adhesive forces can be realised using
atomic force microscopy (AFM). By this means, information about the morphological
development at the beginning of the cultivation by adhesion forces between spores
of A. niger could be measured. On the other hand, forces and tensions which lead to
a hyphae breakage can be determined. The measurement of the breakage forces have
been carried out using nanoindenter techniques. Thus, it is aimed to gain information
about the cell wall mechanical properties. This is an important issue as the cell wall is
mainly responsible for the resistance of the hyphae to breakage.

Based on intracellular reactions up to physico-chemical and fluid dynamic
phenomena at a macroscopic level, which determine the fungal morphology, the
morphogenesis of mycelial growth and pellet formation via distinct aggregation
steps ought to be completely covered by population balancing and verified by
different particle size analysis techniques.

The implication of product formation, transport and growth characteristics as a
function of environmental conditions (e.g. cultivation conditions such as type and
concentration of carbon source, temperature, pH value, fluid dynamics, transport
processes, shear stress etc.) and, particularly when filamentous fungi are used as
production strains, the integration of cell morphology and protein production pro-
cesses in biopellets results in a comprehensive systems biotechnological approach.
Macroscopic observed growth phenomena as well as growth abnormality and
limitations should be predicted by gene expression data of morphogenesis markers.
Protein synthesis and secretion as well as the gene expression of stress and mor-
phology markers are analysed and quantified by quantitative reverse transcription
polymerase chain reaction (RT-PCR) and enzyme activity tests level, respectively.
Furthermore, investigations have been carried out with an approach in systems
biology taking into account transcription, translation, and metabolic activity in
order to determine and understand the crucial factors which affect the formation
and secretion of high value-added products such as recombinant proteins. The data
obtained from the transcriptome and proteome analyses under defined experimental
conditions during batch or continuous cultivation, together with the information
from the metabolome and metabolic flux analyses (including '*C-labelling experi-
ments), can complement the systems biotechnology studies on A. niger.

2 Microscopic Morphology

Mycelian growth of filamentous fungi can be differentiated into micro- and macro-
scopic morphology. First approaches to describe fungal morphology from micro-
scopic images have been made by Metz and Kossen [6]. Characterisation of fungal



Morphology of Filamentous Fungi 5

Fig. 2 A growing mycelium
of A. niger, comprising
several tips. The total hyphal e hyphae
length is obtained by
summing up the length of
all branches [11]

25 ym

branch

spore

microscopic morphology in the early phase of cultivation can be described by the
average and total hyphal length, which is obtained by the sum of all hyphal lengths
in a mycelium, the number of tips and the branching of individual hyphae [6-8].
A fundamental relationship between tip growth and hyphal branching was the
hyphal growth unit, which was defined as the ratio between the total hyphal length
and the number of hyphal tips [9]. These deterministic processes interfere with
stochastic components, e.g. the locus of branching, which assesses the directions of
branching and growth [10]. All these parameters can be determined by digital
image analysis (Fig. 2). Applied techniques consisted of documentation of morpho-
genesis of single mycelia in growth chambers and image analysis methods [11, 12].

Exponential growth of mycelia in the early phase of cultivation has been
described with the specific hyphal length growth rate taken into account, together
with the facts that the water content and the hyphal density as well as the hyphal
diameter and the growth rate are constant, and no fragmentation occurred. Overall
mycelial growth consists of an increase in length by polarised growth of each tip
and of an increase of the number of tips caused by branching. Total hyphal length
growth is reproduced with a constant tip growth rate of all tips. The branching
process was found to be dependent on hyphal length and has been characterised
with the local average branching constant [13]. Otherwise the growth of the hyphal
length which follows the specific tip growth rate is proportional to the specific
hyphal growth rate. Under these conditions the specific length growth rate can be
calculated from the tip growth rate and the branching constant [14]. For coagulating
filamentous fungi like A. niger, conidia aggregate in the early stage of morphologic
development before germination and hyphal growth take place [4, 15] and subse-
quently influence the development of the pellet-type growth [16]. Grimm et al.
characterised conidial inocula and seeding-cultures to assess the impact of the
aggregation process by direct examination with an in-line particle size analyser
(FBRM D600L, Lasentec, USA) [17]. The number of particles is influenced by
conidial aggregation and particle morphology cannot be described by tip growth
and branching alone. The authors found out that conidial aggregation consists of
two distinct aggregation steps (Fig. 3).

The first step starts immediately after inoculation with conidia and forms
conidial packages. It leads to a decrease of the total particle concentration in
the first hour of cultivation and ends at a dynamic equilibrium. The particle
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Fig. 3 Conidial aggregation of A. niger AB1.13 based on experimental results [17]

concentration remains constant through two inverse reactions: aggregation of con-
idia to conidial packages and disintegration of these packages. This process is
dominantly affected by the pH value. The steady state is then disturbed by the
germination of conidia. Germination and hyphal growth of germ tubes entails an
increase in hyphal surface area, where conidia can attach to and trigger a second
aggregation step. The hyphal growth rate was determined to be the driving force for
this aggregation step [4]. This leads to a sharp decrease in particle concentration
and depends on the pH value as well as on agitation and aeration induced power
input [17, 18].

Lin et al. [19] simulated the aggregation mechanisms of A. niger AB1.13 by
using the application software PARticle SIze eVALution (Computing in Techno-
logy, Germany) and validated the model with kinetic data of Grimm et al. [4, 20].
The derived population model is regarded as a platform for the precise description
of the aggregation and growth processes. The population dynamics of the first
aggregation step is a result of the formation and disappearance by aggregation
and breakage of a class of particle with a certain size. Assumptions that the
probability of collision of all particles is conterminous and breakage of all aggre-
gates is independent of their sizes simplify the model of the first aggregation step.
For simulating the germination, two parameters, the time of the maximal germina-
tion rate and the standard deviation of this, were adopted from published results of
Penicillium chrysogenum [21] because these values could not be estimated for
coagulating filamentous fungi. With the additional definition of the amount of
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conidia per unit area, assuming random conidial attachment to hyphae, all para-
meters for the second aggregation are defined. Improvements are necessary, parti-
cularly regarding the description of the aggregate breakage. In respect of the second
aggregation step, the population model should also consider the metabolism of the
filamentous fungus. Orientation towards certain intracellular molecular markers,
which reflect the activity and vitality of cells, is thus conceivable. It requires a
thorough search and characterisation of the cell activity.

A morphologically structured model for A. niger was proposed by Bizukojc
and Ledakowicz [22]. This model was based on a mathematical modelling
framework formulated by Nielsen and Villadsen [23]. It took into consideration
extracellular components that were detected from the cultivation broth. The
model balances the fungal biomass in different hyphal zones of different physio-
logical and functional states and included the effects of the most important
nutrients and products, i.e. carbon sources, nitrogen source and citric acid.
A direct linear correlation between a less metabolically active and more vacuo-
lated area and the citric acid excretion has been established, confirming that this
particular hyphal zone was responsible for acid excretion. Good agreement was
found between the model and experimental data obtained under various process
conditions. Papagianni [24] suggests the prediction of certain fungal morpholo-
gies in correlation with different environmental conditions and the calculation of
the fractal mycel geometry.

3 Micromechanic Properties of Filamentous Fungi

Filamentous fungi react to several environmental conditions with a change in their
morphology. When taking the aggregation steps into account (compare Fig. 3), it
can be suggested that the change in morphology is dependent on the change in
adhesion forces between spores or towards hyphae. AFM allows these adhesion
forces to be measured directly [25-28]. However, the comparative difficulty in the
handling of biological materials has resulted in such measurements being more
frequently used for the investigation of non-biological systems. Besides the direct
measurements of adhesion forces, other techniques are used for the characterisation
of surface forces from A. niger. Ryoo and Choi derived a hydrophobic surface
behaviour from contact angle measurements [29]. Fujita et al. considered van der
Waals as the main acting forces from shear tests [30]. The influence of the pH value
and the salt concentration can be characterised by zeta potential measurements. It
could be shown, that the isoelectric point of A. niger spores is around pH 2. At
higher pH values, the absolute zeta potential increases. This corresponds to the fact
that the amount of aggregated cells decreases at higher pH values.

There are three types of long-range interactions between particles that are
generally used to describe adhesion forces: van der Waals forces, electrical double
layer forces and steric forces. The surface properties of particles in a suspension — in
this case spores in growth media stirred in a bioreactor — can be described as the
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sum of all single molecular interactions such as non-polar, polar or electrostatic
interactions on the surface of the particle. In addition, hydrophobic and solvation
forces may be important [27, 31]. Biological particles like spores or hyphae show
complex surface assemblies that include proteins, sugars and cell wall components.
Therefore a computational approach that can be used for inorganic particles is not
possible [32]. This makes an experimental approach necessary.

The measurement of adhesion forces with an AFM was developed in the last
10 years to become a standard tool. Nowadays most AFM are able to execute a
force measurement test and to analyse the data statistically. However, there are still
several challenges to be overcome, especially for living cells.

A set-up for the measurement of adhesion forces is shown in Fig. 4 (left). The
heart of an AFM is the cantilever. It works like a small and thin leaf-spring which is
connected to a piezo drive to move the cantilever up and down with nanometer
resolution. Bending of the cantilever is detected by a laser reflection which is
mirrored to a position-sensitive photo-detector (pspd). The correlation between
the bending of the cantilever and the pspd-signal is called sensitivity and has to
be calibrated (see below). The detector signal combined with the spring constant of
the cantilever can be used to calculate the force applied to a spore that has been
fixed at the end of the cantilever.

For the measurement of spore/spore interactions it is also necessary to fix spores
to a substrate (e.g. a wafer slide), which is attached to the xy-desk of the AFM to
move the sample in the x and y directions and align two spores on top of each other.
Then the z-piezo drive moves down and the spores achieve contact. Subsequently,
moving the piezo drive upwards separates the spores. In doing so, the cantilever
bends downwards, the degree being corresponding to the applied force. Adhesion
forces can be calculated from the minimum force of the retraction curve and the
value at the cantilever equilibrium position. At the point where the spores become
separated, the adhesion force can be calculated. Figure 4 (right) shows a typical
force/distance curve between two spores.

2.0+ % * approach
ps pd 15] -4 * retraction
laser !
1.0 3
control unit ';E'-‘ 0.5-
cantilever ‘o 0.0
e adhesion force
o -0.51
spores " =
12 -1.0-
wafer slide 9 ? -15-
\ _20 e . .
. -02 0.0 0.2 04
) z-piezo z scanner position [um]

Fig. 4 Schematic of the assembly for the measurement of adhesion forces (/eft). Force way curve
from the measurement of adhesion forces (right)
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As mentioned above, a spore that is firmly attached on a substrate is necessary
for the measurement. Otherwise the spore will be detached while retracting the
cantilever. A hydrophobic surface has been shown to be suitable such as a glass or
more simple a wafer that has been treated with a hydrophobic silane. The adhesion
of the spores on the modified surface is strong enough for adhesion tests.

To fix a spore at the end of a cantilever, glue can be applied under a microscope
equipped with a micromanipulator. For the handling of biological materials, the
glue has to be chosen to avoid damage to cells by solvents or UV-light (used to set
the glue). Good results could be obtained with glues which can be activated by blue
light and then set in a short time period. In most cases, this method requires that the
cell is removed from its media for a few minutes. An elegant alternative method for
the attachment of bakers yeast was developed by Goétzinger et al. [33]. The authors
immobilised the sugar-binding protein Concanavalin A onto the cantilever and used
it to attach the cell directly from the growth media by binding of the sugar rich cell-
surface.

The next challenge in the measurement of adhesion forces is the determination
of the sensitivity of the system. The sensitivity is the correlation of the cantilever
deflection with the pspd-voltage-signal, and this must be determined for each
experiment. Usually the tip of the cantilever is pressed on a glass slide (as an
infinitely hard surface) and the pspd-signal is recorded. In this case the movement
of the z-piezo drive is equal to the deflection of the cantilever. If a cell is attached
to the cantilever these data will be influenced by the elastic deformation of the
cell. A glass bead immobilised on the glass slide can be pressed with the cantilever
right behind the spore, allowing the sensitivity to be measured accurately. In
addition, the spring constant of the cantilever has to be determined — this can be
done in several ways [34]. One possibility is the thermal noise method which is
described by Hutter and Bechhoefer [35]. These measurements are usually carried
out without the attached spore. The influence of the spore on the spring constant of
the cantilever is assumed to be negligible due its small size in proportion to the
cantilever.

After determination of the constants, the measurement can be performed. This
requires careful handling to achieve the difficult task of aligning the two spores
directly on top of each other. The spores must be exactly aligned, or shear forces
will affect the result. However, looking from above or below, the cantilever blocks
the line of sight. A very sharp-ended cantilever has been shown to be suitable to
overcome this problem. Attaching the spore at the very end of the cantilever, the
position of the spore on the cantilever is determined and the measurements can be
performed. However, many measurements have to be made for the characterisation
of the spore/spore adhesion, and the biological diversity makes a statistical
approach for the interpretation of the data essential.

Adhesion measurements with spores of A. niger towards mica by AFM were
done in water and in air [25, 26]. While the adhesion forces in air were strong (30—
110 nN) the measurements in water showed only 2-25 nN. The measurements of
the adhesion forces between spores and the influence of the pH value and the ionic
strength are currently progressing.
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4 Interaction Between Morphology, Mass Transfer
and Reaction

After the initial phases of aggregation and germination, which have been described
above, the hyphae start to form pellets. Typically filamentous fungi grow exponen-
tially with constant specific growth rate until substrate limitation occurs [36]. The
macroscopic growth of fungi to pellets is generally described with the pellet radius
and the “critical” radius. The “critical” radius indicates the point where diffusion
limitations occur in the outer shell of the pellet. Hyphae which extend into the bulk
phase and deviate the pellet from an ideal-spheric form are characterised as “pellet
hair”. The average length of main hyphae of a free mycelium filament is in the
range of approximately 100400 pm. The radius of pellet can be in the range
between 250 and 2,500 pum, depending on the environmental conditions of cultiva-
tion. Figure 5 gives an indication of the main processes which have to be considered
for a growth model.

One of the first macro-morphologic growth models is the cube-root law based on
observations of Emerson on the growth of Nocardia crassa [38]. The law describ-
ing pellet growth assumes that a substrate penetrates in the outer shell core of the
constant length. The remaining biomass in the inner shells does not participate in
any further reaction. Assuming a homogenous pellet density along the radial
coordinate, the pellet biomass concentration is proportional to the cultivation
time to the power of 3. Most pellet growth can be described in a first approximation
by this cubic root law satisfactorily [39]. Marshall and Alexander [40] and Pirt [41]
have shown this for different fungi and actinomycetes.

1 mass transfer
2 mass transport
3 reaction

250 pm

Fig. 5 Principle sketch of processes within a biopellet. Shown is a confocal laser scanning
microscopy (CLSM) image of a cryomicrotome slice of A. niger AB1.13 [37]
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Nevertheless, it has been shown that fungal pellet density varies over the radial
coordinate [42] and changes with time of cultivation [43, 44]. Pellet morphology,
which is a result of environmental conditions (compare Fig. 10) and pellet age has
an important influence on the effective diffusion coefficient and the penetration
depth of oxygen into the pellet [45-48]. These properties have been studied with
microelectrode measurements. Oxygen concentration profiles have been presented
for pellets of different filamentous fungi [47-52].

For the spatial resolution of pellet structure, biomass distribution confocal laser
scanning microscopy (CLSM) in combination with digital image analysis has been
introduced. Furthermore, a method to quantify the hyphal distributions in pellets by
CLSM has been developed [49]. The CLSM-images have been used to define the
morphological parameter (dh/dr), which is a gradient describing the hyphal fraction
h within the outer pellet periphery (Fig. 6).

Detailed studies of hyphal or biomass distribution along the pellet radius reveal a
huge range of pellet morphologies during cultivation [47]. It can be shown that both
hairy and compact structures in the outer pellet periphery can lead to completely
different oxygen consumption rates. This can still be valid for pellets with identical
mean pellet densities. Table 1 shows results for two pellets with nearly the same
radius and density but different surface morphology characterised by the gradient of
the hyphal fraction s within the outer pellet periphery (dh/dr). Also, the mean
biomass density is comparable; the maximum oxygen gradient differs by a factor
of 2. This is reflected by dh/dr, which seems to be more reliable than the overall
density.

100 -
S
= 75
C
9o
‘g 50
©
S 25-
>
K

0

radial coordinate r [um]

Fig. 6 CLSM-image showing a cryomicrotome slice of a pellet with the gradient of the hyphal
fraction dh/dr [37]
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Table 1 Characteristics of two pellets with comparable radius and biomass density but different
surface morphology (d//dr)

Pellet radius Pellet density Pellet age (dh/dr) (de/dr)max
(um) (kg m™) () (% pm ") (kgm™* m~
Pellet 1 555 53 41 0.95 4+ 0.03 121.9
Pellet 2 490 43 40.5 0.10 + 0.009 66.5

(de/dr)max 1s the maximum oxygen gradient, which is calculated from oxygen profiles [37]
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Fig. 7 Oxygen concentration profiles with concentration boundary layer L. for two different
Reynolds number at the pellet Rep. (Pellet age 34 h, pellet radius 375 pm, (dh/dr) = 0.48% pm™"
pellet density = 64.4 kg m ™) [37]

>

Figure 7 shows two oxygen profiles measured within the same pellet at two
different flow conditions. The used pellet was very compact and it can be assumed
that the surface was nearly rigid. Typically the thickness of the concentration
boundary layer L. is dependent on the flow velocity.

With the indifferent surface structures, which can be manipulated by flow
pressure, the classic concentration boundary theory is no longer valid. The moving
bulk is able to penetrate the filamentous structures and can thereby increase the
mass transport [47]. Furthermore, the flow pressure might compact the filamentous
structure. This will also lead to a higher turnover based on a denser biomass.

5 Effect of Fluid Dynamics on Fungal Growth

A main task of the research in numerical simulation and experimental validation of
the fluid dynamic effects in baffled stirred tank reactors (STRs) are the identifica-
tion and quantification of mechanical stress on filamentous microorganisms.
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Usually, Rushton turbines are used for the dispersion of oxygen and the homo-
genisation of the liquid phase regarding the nutrient supply. Factors that fluid-
dynamically influence the environmental conditions of the cultivation are the
geometry of the reactor, the dissipated energy through stirring and aeration, and
the stirring devices. On the one hand, too slight stirring yields insufficient nutrient
and oxygen supply, on the other hand, intense stirring causes injuries to the cell
wall, cell disruption, and consequently inhibited growth and product formation [11,
52, 53]. The effect of agitation on fungal morphology has been discussed in several
publications [51, 54—61]. The authors have concluded that the total hyphal length of
a fungal mycel decreases with increasing specific power input (Fig. 8).

A possible approach to determine the reasons for the occurrence of this negative
impact of mechanical stress on fungal growth is the numerical prediction of the flow
field in an STR by using computational fluid dynamics (CFD) simulations. This
technique affords modelling and calculation of the mean and turbulent velocity
field, the pressure and the energy terms. When the influence of the fluid dynamic
conditions can be characterised properly, simulations and experimental data from a
well investigated shear sensitive non-biological clay-polymer-floc-system shall
enable one to quantify and to optimise the cultivation conditions of filamentous
fungi regarding mechanical stress [5].

Johansen et al. (1998) [59]
500 / A. awamori
Metz (1976) [62]
400 —
P.chrysogenum
o

€ 300
=
<
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©
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>
<
2 Ayazi Shamlou et al. (1994) [56]
- P.chrysogenum

100 —

batch -
50 T [ I
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specific power input [W/kg]

Fig. 8 Total hyphal length vs specific power input
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It is assumed, that especially small-scaled eddies in the turbulent flow are the
determining factor for mechanical stress on filamentous fungi [16]. The Kolmo-
gorov micro-scale of length is determined by an exponent of the specific power
input of approximately —0.25. The fragmentation of the hyphae results in short,
compact and highly branched filaments for intensive agitation intensities [55, 56,
58, 62]. In STR, it is assumed to occur in a region of high stress close to the
impeller. Changes in morphology have also been observed by the variation of the
impeller type [63].

Hence, turbulence modelling in an STR particularly requires the involvement of
the smallest eddies in hyphal fragmentation. The direct numerical simulation of
turbulent flows requires that all scales are resolved by the computational grid. This
is currently only possible for low Reynolds numbers and simple geometries. In
principle, two strategies remain: large eddy simulation (LES) based on the decom-
position of the flow field into large- and subgrid-scale structures, and Reynolds
averaged Navier—Stokes (RANS) turbulence modelling. For LES the large scales
are directly computed and the influence of the small scales is modelled. Certainly
LES proves to be a well suited technique for the simulation of STR [64, 65]. In the
case that velocity and pressure components are broken down into mean and
fluctuation values, these terms are inserted into Navier—Stokes equations and
time-averaged. As a result, the RANS-equations are obtained. These equations
contain an additional term, called Reynolds stress tensor. As there are new
unknown variables, a turbulence model for closing the equations is needed. There
are several possibilities, e.g. the k-e-turbulence model as a very well investigated
and robust model [66]. However, this model is actually designed for isotropic
turbulence [67-69]. In the k-¢-model the transport equations of the turbulent kinetic
energy (TKE), which represents the normal stress fraction of turbulent stresses and
the isotropic dissipation rate, are employed, which can be closed by empirical data.
The k-w-turbulence model deals with transport equations of the TKE and the
characteristic frequency of dissipative eddies [70]. The benefit takes on good
near-wall treatment. The shear stress transport turbulence modelling merges the
benefits of the k-¢-turbulence model at wall-far areas and the k-w-model at wall-
near domains [71].

Appel et al. [72] achieved results by calculation on an unstructured, tetrahedral
grid. After a grid convergence study the chosen grid for an STR (V = 19.3 L, three-
stage Rushton stirrer) has 1.1 x 10° nodes and 6.2 x 10° tetrahedrons with a
discretisation of 0.5 mm near the impeller baffles and 0.7 mm within the wake.

The experimental validation of the numerical simulation was carried out via
particle image velocimetry (PIV) in a one-phase (liquid) operated STR with equal
dimensions of the bioreactor for cultivation of A. niger. The STR was placed in a
pentagonal, water filled container to avoid distortion of the laser light sheet on
the convex surface of the reactor and to minimise the influence of the air/Perspex
interface [73, 74]. PIV was used to investigate the area around the middle-positioned
stirrer.

Figure 9 shows that the CFD simulation and the PIV measurement are good
regarding consistency of distribution and intensity of TKE. The numeric grid is fine
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Fig. 9 Comparison of simulated data (CFD, grey area scheme) and PIV-data (contour lines):
turbulent kinetic energy (TKE) of a stirrer blade plane, z: axial, x: radial direction of the STR [72]

enough, so the discretisation error is sufficiently small, and a not excessive blur of
the simulated wake flow occurs. Concerning phase angle dependence, the simula-
tion shows two tip vortices at the blade edges [71, 75].

6 Spatial Resolution of Morphology and Biological Function

Averaged morphological characteristics of fungal cultures such as pellet diameter,
average biomass density of the aggregates or population balances based on particle
size distribution are not sufficient to relate morphological shape to the resulting
productivity and understand the underlying mechanisms [53, 76, 77]. Here, the
inner structure of the fungal aggregate has to be taken into account.

As shown, the peripheral region of an aggregate determines the transport and
reaction processes of the available substrates within the pellet and therefore affects
productivity (compare Figs. 6 and 7). Variations in pellet structure occur, for
example, due to different mechanical stress by means of different agitation speeds
during cultivation. Image analysis accomplished by optical light microscopy, as
shown in Fig. 10, demonstrates an increased densification of the peripheral hyphae
at enhanced mechanical load which becomes more pronounced with increasing
cultivation time [45].

As a consequence of this growing transport barrier, a decline of nutrient
availability in the inner part of the aggregate occurs, which results in cell lysis
and hollow pellets under conditions of high agitation speed. Such morphological
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Fig. 10 Optical light microscopic images of pellet slices: different mechanical loading by means
of agitation speed (bar: 200 pm) [45]
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Fig. 11 Confocal laser scanning microscopic (CLSM) images of pellet slices; localisation of GFP-
production at different mechanical loading by means of agitation speed [45]

changes of the inner pellet structure have a drastic influence on production
performance.

The characteristics of recombinant protein formation in fungal aggregates of
different morphological shape can be visualised by employing an A. niger strain
that produces green fluorescent protein (GFP). Figure 11 shows the localisation of
GFP-producing regions in equatorial pellet slices that were analysed with CLSM.
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Obviously, only peripheral regions of the pellets contribute to protein produc-
tion. This seems plausible since the peripheral regions feature a good nutrient
supply and therefore develop good growth and productivity. According to that
result, it seems desirable to generate high cell densities in these peripheral regions,
which can be achieved for the highest mechanical load.

7 Conclusions and Future Perspectives

As shown in this chapter, various studies demonstrate the close link between
operating parameters of the bioprocess, morphology of fungal aggregates and the
spatially different metabolism of individual cells within these structures. Currently
we are far from understanding the underlying metabolic and regulatory mechan-
isms. Newly arising experimental and computational technologies in systems
biology and systems biotechnology, however, now provide a powerful toolbox as
a step towards understanding this surely complex link between biological and
engineering aspects of fungal cultures [78]. Boosted by sequencing of the genome
of A. niger [79], omics technologies such as transcriptomics [80], proteomics [81,
82], metabolomics [83] or fluxomics [84] are available for detailed analysis and
optimisation of A. niger at a systems level.

From early on, experimental research on A. niger was accompanied by strong
efforts in modelling. Based on knowledge from intensive biochemical studies,
condensed stoichiometric models focussing on specific parts of metabolism for
A. niger have been developed and used for metabolite balancing studies [85—-87].
With increasing knowledge, models could be extended to higher complexity and
applied for optimisation of succinate production via flux balance analysis [88] or
investigation of metabolic fluxes in protein producing cells for different carbon
sources [89]. The latter study revealed the interesting finding that the flux through
the pentose phosphate pathway under glucoamylase producing conditions was
significantly higher than under non-producing conditions which might reflect an
increased NADPH demand for production. A first study on metabolic pathway
analysis using elementary flux modes provided a detailed insight into the compart-
mented metabolic network of A. niger [90]. It was shown that capacity, pathway
usage, and relevant genetic targets for optimal fructofuranosidase production are
strongly dependent on the network structure, the available nutrients and the meta-
bolic state of the cell. A milestone in modelling of A. niger displays the recently
created genome scale metabolic model [91]. The complexity of this eukaryotic
microorganism becomes obvious from the fact that the metabolic network com-
prises 1,190 biochemical reactions and 1,045 metabolites in different compartments
of the cell. Beyond being an excellent validated comprehensive bibliography on
A. niger metabolism, the available genome scale model provides a sound basis for
systems biology studies. As an example, combination of transcriptomics with
genomic data provided a better understanding of the complex pH-regulation in
A. niger [92]. Admittedly, all these systems oriented studies so far do not consider a
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spatial resolution of biological function. This appears, however, crucial, especially
for filamentous fungi, known for their complex morphology. The resulting gradients
of carbon source, products and oxygen together with the characteristics of hyphal
growth and metabolic activity mainly at hypheal tips unambiguously point at a
complex spatial distribution of gene expression patterns or metabolic pathway fluxes.
Here, fluorescence based methods applicable to localise specific proteins or the
expression of specific genes as well as new mass spectrometry approaches able to
resolve spatially metabolite profiles within cellular structures will be of great benefit.

At the same time, the link of the biological system to the environment of the
bioreactor demands an extended resolution of its fluid dynamic properties. Here,
measurement and validation of local flow fields in bioreactors is already possible
and can be applied to replace the simple correlation based on the Kolmogorov
micro-scale of length. Findings should couple models of the fungal morphogenesis
in order to determine local mechanical forces which may affect the biomass. For
this purpose, previous simulation methods and data of fluid dynamics within the
bioreactor, should be generated with CFD and verified by experimental fluid
dynamics (e.g. PIV), and ought to be linked to the shear stress of well examined
non-biological clay-polymer-floc-systems. The resulting integral data of the
mechanical forces have to be correlated with local CFD-data to obtain a fluid
dynamic model of shear stress of filamentous microorganisms in STRs. In later
stages, the dynamic processes of growth, aggregation and break-up during
submerged cultivations might be connected by population balancing. In future,
the description of morphology will also have to move from assuming average size
of hyphae, aggregates or pellets to reproduction of tailoring size or radial density
distributions. Methods of population balancing will help to model and characterise
morphologic developments, aiming to connect fluid dynamic dependencies with
intracellular biological reactions and productivity in more comprehensive models
for rational, target-oriented design of cultivation processes with filamentous fungi.
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Multi-Scale Spatio-Temporal Modeling:
Lifelines of Microorganisms in Bioreactors
and Tracking Molecules in Cells

Alexei Lapin, Michael Klann, and Matthias Reuss

Abstract Agent-based models are rigorous tools for simulating the interactions of
individual entities, such as organisms or molecules within cells and assessing their
effects on the dynamic behavior of the system as a whole. In context with biopro-
cess and biosystems engineering there are several interesting and important appli-
cations. This contribution aims at introducing this strategy with the aid of two
examples characterized by striking distinctions in the scale of the individual entities
and the mode of their interactions. In the first example a structured-segregated
model is applied to travel along the lifelines of single cells in the environment of a
three-dimensional turbulent field of a stirred bioreactor. The modeling approach is
based on an Euler-Lagrange formulation of the system. The strategy permits one to
account for the heterogeneity present in real reactors in both the fluid and cellular
phases, respectively. The individual response of the cells to local variations in
the extracellular concentrations is pictured by a dynamically structured model of
the key reactions of the central metabolism. The approach permits analysis of the
lifelines of individual cells in space and time.

The second application of the individual modeling approach deals with dynamic
modeling of signal transduction pathways in individual cells. Usually signal trans-
duction networks are portrayed as being wired together in a spatially defined
manner. Living circuitry, however, is placed in highly malleable internal architec-
ture. Creating a homogenous bag of molecules, a well-mixed system, the dynamic
behavior of which is modeled with a set of ordinary differential equations is
normally not valid. The dynamics of the MAP kinase and a steroid hormone
pathway serve as examples to illustrate how single molecule tracking can be linked
with the stochasticity of biochemical reactions, where diffusion and reaction occur
in a probabilistic manner. The problem of hindered diffusion caused by macromo-
lecular crowding is also taken into account.

M. Reuss (<)), A. Lapin, and M. Klann

Institute of Biochemical Engineering and Center Systems Biology, University of Stuttgart,
Allmandring 31, 70569, Stuttgart, Germany

e-mail: reuss@ibvt.uni-stuttgart.de



24 A. Lapin et al.

Keywords Agent-based modeling, CFD, Stirred tank bioreactor, Glycolysis of
E. coli populations, PTS, Signal transduction, Stochastic differential equations,
Fokker-Planck, Macromolecular crowding, MAPK cascade, Steroid hormone
pathway

Contents
1T INtrodUCHION ... et 24
Modeling the Dynamics of E. coli Populations in the Three-Dimensional
Turbulent Field of a Stirred Tank Bioreactor ................oooiiiiiiiiiiiiiii ... 25
3 Stochastic Simulations of Four-Dimensional-Spatial Temporal
Dynamics of Signal Transduction Processes ............c.ooviiiiiiiiiiiiiiiiiiiniinaee.. 33
3.1 The Multi-Scale Modeling Approach ............c..ooiiiiiiiiiiiiii i 35
3.2 APPLHCALIONS ...ttt ettt et e et 38
4 CONCIUSION .ttt e 42
REfETENCES ...t e 42

1 Introduction

Biochemical engineers are concerned with biosystems and bioprocesses. Tradition-
ally a key focus of their activities has been the mathematical modeling in both
territories. Most current models for bioreactors and biosystems are expressed as
systems of nonlinear differential equations. Despite of the many benefits of such
models, as well as their simplicity, they give us a rather simplified picture of the
reality because of the lack of any structured and segregated details. In both
applications the approach is based on the assumption of well-mixed system and
biomass (unstructured or structured) as well as concentrations reflecting the intra-
cellular states are considered as a continuum. At the same time, a major challenge is
to apply more detailed approaches. Life is segregated into structural and function-
ally discrete entities — individual cells in heterogeneous populations of unicellular
organisms [1] and the large number of molecules within the cells, which are
interconnected in networks additionally characterized by molecular mobility. As
a matter of fact, there is an increasing demand for modeling that captures more of
the relevant complexity than the aforementioned systems of ordinary differential
equations can achieve.

This contribution is aimed to illustrate the framework of individual-based model-
ing, which can capture the contingent nature of local interactions between individual
molecules or cells. The modeling strategy will be applied to two examples with
noticeable differences in scale. The first example addresses the issue of modeling
the dynamics of Escherichia coli populations in the three-dimensional turbulent
field of a stirred tank bioreactor based on a structured-segregated approach. The
approach permits one to account for the heterogeneity present in real reactors in both
the abiotic and biotic phases and thus deals with problems of nonideal mixing.
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The second example focuses on at the discrete event based stochastic simulation
applied to the four-dimensional-spatial temporal dynamics of signal transduction
processes in individual cells. The modeling strategy comprises the random walk of
individual molecules (diffusion) and the stochastic characteristics of the interaction
of the partners of interest.

It must be emphasized that the application of this individual-based modeling
framework is in no way restricted to the examples chosen for this contribution.
There are many more applications with particular relevance to medical applications
of systems biology, such as endocytosis, random walk of molecules in cancer
tumors, lipoprotein kinetics in blood plasma, network of interacting neurons, and
other interesting biological problems.

2 Modeling the Dynamics of E. coli Populations in the
Three-Dimensional Turbulent Field of a Stirred
Tank Bioreactor

The physiological state of unicellular organisms in the highly dynamic environ-
ment of a bioreactor is the result of a complex interplay between the extracellular
environment and the cellular machinery. The functionality of a biosystem for the
purpose of bioproduction processes is therefore determined by the cooperative
action of extracellular stimuli, the intracellular makeup and the dynamic response
of the biological phase. The design of bioreactors in which living cells function
as factories as well as the prediction of suitable operating conditions is further
complicated because of the dynamic variations of the extracellular environment.
Consequently, a quantitative description of these phenomena should rest upon
the two interlinked aspects of structured bioprocess modeling: The first aspect
concerns the complex interaction of the functional units within each cell, includ-
ing the mathematical formulation of intracellular reaction rates and key regu-
latory responses of these networks to environmental changes. The second aspect
involves the structure of the abiotic phases of the bioreactor for analysis of the
impact of spatial and temporal variation in the intensities of mixing and mass
transfer, leading to concentration gradients of various substrates and products.
A modeling framework suited for capturing local variations in both intra- and
extra-cellular concentrations should therefore rest on a link between metabolic
network modeling or computational cell dynamics (CCD [2]) and computational
fluid dynamics (CFD).

Previous attempts addressing this issue have been almost exclusively based
on the Euler-Euler approach in which gas, liquid, and biophase are considered as
a continuum [3-7]. It is only recently that more details have been included in
modeling the dispersed phases. Most important are the class of models based on the
Lagrangian-Euler approach, in which the liquid phase is treated as a continuum
(Euler) and the dispersed phase is tracked with the aid of the Lagrangian represen-
tation. Important examples in the field of chemical engineering include the study of



26 A. Lapin et al.

gas-liquid flow in bubble column reactors [8, 9] and gas—liquid—solid three phase
flow [10, 11].

In the case of bioreactors, however, modeling of the biophase most often
follows the traditional approach, in which the microorganisms are lumped into a
nonsegregated—non structured continuum. However, microorganisms are cellular
in nature, and the continuum description is not rigorously correct. In fact, the
continuum approach leads to a loss of realism if the individual history of the cells
becomes the focus of attention, e.g., when considering cumulative starvation
effects in cells during fed-batch fermentations or stability of plasmid containing
microorganisms for production of recombinant proteins. In some instances, these
problems can be tackled by combining the Euler approach for the fluid phases with
population balance equations (PBEs) [12]. An inherent limitation of the PBE
approach, however, is that the incorporation of a detailed intracellular reaction
network leads to a computationally intractable model already for ideally mixed
systems because a high-dimensional distribution function must be computed [13].
The complementary approach of combining CFD-simulations with population
balances based on metabolically unstructured models of single cells faces similar
practical limitations [12]. To overcome this problem, it is sometimes possible to
resort to hybrid approaches combining multizonal models with CFD calculations,
as reported by Bauer and Eigenberger [14, 15] for the case of gas—liquid bubble
columns. Recently, Bezzo et al. [12] applied this strategy to xanthan gum produc-
tion in stirred tanks. The authors combined an Eulerian description of the fluid
flow with a multizonal model in which the reactor was divided into a limited
number of spatial regions. These were assumed to be well-mixed and homoge-
neous and to be capable of material exchange with adjacent zones. Within each of
these zones, a mass-structured population balance was formulated that was then
combined with an unstructured kinetic model of substrate consumption and
xanthan production.

Alternatively, one can account for the intracellular structure and dynamics of the
cells while neglecting the spatial concentration gradients in the liquid phase. This
corresponds to a Lagrange-type formulation of the equations for the corpuscular
phase in an ideally mixed system [13, 16—18]. This description has the obvious
limitation that bioprocesses are performed in real reactors where spatial variations
in concentration usually cannot be neglected.

Detailed mathematical models capturing the variation in both the extracellular
environment and the metabolism of the segregated biophase promise to aid signifi-
cantly in describing the behavior of cell populations in bioreactors. This requires a
combination of both approaches outlined above. For the first time this interaction
between the intracellular state of the individual cells of the population and the
turbulent flow field in the bioreactor has been tackled by Lapin et al. [19]. The
chosen Euler-Lagrangian representation of the cell-ensemble approach permitted
analysis of the lifeline of individual cells in space and time, as illustrated for the
synchronization of autonomous glycolytic oscillations in yeast cells at the popula-
tion level. With stirring conditions providing an environmental condition close to
ideal mixing it was possible to predict the experimentally observed synchronization
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of the individually autonomous oscillations at the population level. Simulation with
reduced speed of agitation resulted in significant gradients of the extracellular
attractor responsible for the synchronization (acetaldehyde). This leads to a dra-
matic loss of synchrony and eventually to almost complete desynchronization.

The work presented here picks up and summarizes the results of a second
example, dealing with a problem of greater practical relevance, which, however,
is also more complicated. The example, comprehensively worked out and described
by Lapin et al. [20], concerns the population of the bacterium E. coli, which contains
a phosphotransferase system (PTS) for the uptake of sugar.

The impact of extracellular gradients on biomass yield, byproduct formation and
stress response of E. coli has been investigated in a couple of papers by the research
group of Enfors [3, 21-25]. The results from measurement of glucose in a large
scale bioreactor [3] during fed-batch cultures indicated that profound gradients
exist which in turn give the cells an oscillatory pattern. In the case of simpler uptake
systems, such as hexose transporters in yeast, a reasonable modeling approach can
be based upon coupling unstructured kinetics fort he biophase with various models
for mixing within the abiotic phase [3, 6, 26]. In the case of E. coli, however, the
uptake system leads to a situation in which the local uptake rate of glucose not only
depends upon the locally different concentration of glucose in the tank but also
upon the intracellular state which in turn may depend on the individual history of
the cell.

The agent based models presented in [19, 20], which incorporate intracellular
reactions, is based on an Euler-Lagrange simulation. Here, modeling of the extra-
cellular environment is still based on the continuous Euler approach, whereas the
behavior of the biophase is characterized by a discrete cell-ensemble approach
(Lagrange). This allows each single-computational-“cell,” which still represents a
large collective of real cells, to be endowed with its individual intracellular struc-
ture and state. In the modeling and simulation approach, mass transfer and reactions
are assumed not to affect the turbulent flow field.

The three-dimensional turbulent flow for single- and two-phase systems has
been simulated with the commercial software package PHOENICS employing a
modified Chen-Kim k-¢ turbulence model [5, 6, 27]. The population of microorgan-
isms is distributed over the reactor, which is subdivided into finite volumes.

The random movement caused by the turbulent dispersion is superimposed
on the convective flow represented by the velocity field V. In the Lagrangian
approach, the position of a notional particle is governed by the stochastic differential
equation [28]:

%t + At) = ¥(1) + (V + VDr)di + (2DrAr) 28, (1)

where ¥(7 + Ar) is the random position after a time step of Az, ; signifies a Gaussian
random number with a mean value zero and covariance <é,~£j> = 0, and
Dt = f(k, &) stands for the local eddy diffusivity calculated from the CFD simula-
tion as a function of the turbulent kinetic energy k and the turbulent energy
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dissipation rate ¢. Slip can be neglected because the fluid velocity can be shown to
surpass the slip velocity of microbial cells by several orders of magnitude. Momen-
tum transfer between the particles and the fluid phase also does not require explicit
consideration because the suspension can be treated as a quasi-single phase for
particles smaller then the mesh spacing, as shown previously [9].

Thus, it can be assumed that the position of the notional particle predicted from
(1) represents the behavior of the microbial cell along its trajectory in the turbulent
flow field.

Prediction of the intracellular state of a single cell along the trajectory is
performed by incorporating the system of intracellular balance equations into the
model

dinm
dr

= A (Cinm (1), Cex (X, 1)). (@)

Here, Cin,» denotes the vector of intracellular metabolite concentrations in the
individual cell m and Cex is the concentration vector of extracellular compounds
at the position of this cell (¥). A, stands for the stoichiometric matrix of the
metabolic network in cell m, and the term 7, represents its vector of intracellular
reactions rates, which, in general, are nonlinear functions of i, », and Cey.

Inclusion of ¢,y in the intracellular balance equations is required for the descrip-
tion of transport processes across the cell membrane, i.e., substrate uptake and
product excretion. These occur in the cellular reaction rates 77, and are also
considered as a source term, §(sink/source), in the Euler simulation of the extracel-
lular state. Assuming that 7Tof a total of R intracellular reaction rates represent
transport rates across the cell membrane, then the system of extracellular state can
be written as

lT) | (19)6(¥) = div(Drgrad () + 5(0) )
with
_‘ SOVR ZATm’Tm Cm( ) gex(fv t))é()?_ )?m) (4)

m=1

where S (¥) equals the vector of net transport rates of all metabolites across the
cellular membrane of all cells present at position X. This is obtained by multiplying
every addend of the sum over all N¢ cells by Dirac’s delta function, which signifies
whether cell m (with position X)) is present at ¥ or not. The subvector 77, of i,
contains only those T reaction rates accounting for transport across the cell mem-
brane. Ar,, represents the associated submatrix of A, consisting of columns that
correspond to the transport reactions included in 77 ,,. The term preceding the sum
reflects the influence of the total cell volume on the intensity of the exchange: ¢
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Fig. 1 Reduced metabolic
network model for the sugar
uptake system, glycolysis and
pentose phosphate shunt.
Reduction of the original
model [29] is based on the
hierarchy of flux control
coefficients. The numbers
alongside the enzymes depict
the metabolic fluxes related to
glucose uptake rate 100

PEPCxylase Qs
PT19

denotes the ratio of the whole cellular volume NcV,, and the reactor volume Vg,
where V,, corresponds to the volume of a (simulated) single cell. Equation (3)
accounts for convection and turbulent diffusion in the liquid phase and describes the
coupling between the extracellular environment and the intracellular metabolism of
the single cells.

Next we set-up the metabolically structured model, i.e., the system of intra-
cellular balance equations introduced with (2) is substantiated. The selected
biological example involves the sugar uptake system of the bacterium E. coli, a
group translocation (PTS), where transport is associated with the phosphorylation
of glucose to glucose-6-phosphate (G6P). The phosphate is donated by phospho-
enolpyruvate (PEP), which is converted to pyruvate (PYR) (Fig. 1). Thus actual
sugar uptake rate not only depends upon the local extracellular glucose concentra-
tion but also upon the concentrations of intracellular metabolites, which in turn are
governed by the dynamics of the carbon and energy metabolism, essentially
glycolysis and pentose phosphate shunt. The initial point of the model development
is the dynamic model of Chassagnole et al. [29] that deals with the metabolic
network of the central metabolism of E. coli wild-type strain W3110. It comprises
modules for the PTS and the Emden—Meyerhoff—Parnas pathway providing PEP
as well as PYR. The model also considers the pentosephosphate pathway which
is linked to the glycolysis via fructose 6-phosphate (F6P) and glyceraldehyde
3-phosphate (GAP). The original model has been developed based on the measure-
ment of metabolites in a continuous culture that has been perturbed by a glucose
pulse. The model comprises 25 state variables and 30 kinetic rate expressions have
been assigned. This model, of course, is inappropriate for the problem in hand as the
computational effort (q.v. (1)) cannot be handled. It is therefore inevitable to
perform a systematic model reduction to decrease the number of state variables.

A well proven concept for model reduction in metabolic engineering is based on
the time hierarchy of the metabolism. The kernel of this method is a modal analysis,
which considers the eigenvalues and eigenvectors of the Jacobian associated with
the dynamic model [30]. The application of this time scale separation resulted in
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assumptions of quasi steady state conditions for 11 eigenvectors possessing the
highest values of Re(;). The result of this reduction, which shows reasonable
agreement between the dynamic response of the original and reduced model,
yielded, however, a differential-algebraic system. Because the algebraic equations
did not allow an explicit analytical solution it is necessary to resort to an advanced
and efficient solver for differential-algebraic systems. Thus, in context with the
modeling concept developed in this chapter the decreased number of state variables
would be compensated by the increased effort for the numerical solution.

As a promising alternative to the modal analysis we employed a sensitivity
analysis based on the flux control coefficients. These coefficients relate the frac-
tional change of the steady state fluxes to the infinitesimal changes in the total
enzyme concentrations [30]. From the hierarchy of these flux control coefficients-
predicted from the original model — the reactions with the highest values in relation
to the flux control coefficient of the glucose uptake were selected. The resulting
network is depicted in Fig. 1. Because of low flux control coefficients, the reactions
for the phosphoglucoisomerase, the triose phosphate isomerase, the phosphoglyc-
erate kinase, the phosphoglycomutase and the enolase could be neglected. By the
same reasoning the glucose-6-phosphate dehydrogenase was selected as the rate
determining enzyme for the pentose phosphate shunt. It is important to emphasize
that the entire set of kinetic parameters identified from the measured intracellular
metabolites [29] are the same as in the original model. The remaining set of balance
equations, the kinetic rate expressions and the kinetic parameters are listed in
original paper [20].

In context with the modeling task of linking the spatial variations of extracellular
glucose with the dynamics of the individual cells it is important to emphasize that
the system of balance equations for the intracellular state has been reduced to the
feasible number of 5.

The simulations have been performed for a stirred bioreactor with 900 L
operating volume, equipped with three six-bladed Rushton impellers (tank diameter
0.83 m, height 1.76 m, impeller diameter 0.33 m). The speed of agitation is
400 rpm. The number of control volumes is given by 65 x 65 x 128.

The results from the simulation with 150,000 E.coli cells are displayed in Fig. 2.
The combined model predicts distinct gradients in the extracellular glucose con-
centration (Fig. 2a). Glucose concentrations are highest at the top of the tank where
the feed of concentrated glucose solution (concentration 600 kg m ) is introduced.
In the center of the bottom of the tank the glucose concentrations are close to zero,
indicating strong limitations of sugar supply in this particular part of the tank. At
first glance one should worry about serious starvation effects in case E. coli cells
frequently enter this region. The pronounced gradients in the tank reflect the poor
axial pumping and thus mixing capabilities of Rushton turbines.

In Fig. 2b the distribution of the ratio of the concentrations of the two intracel-
lular key metabolites PEP and PYR are shown. The simple kinetic expression for
the uptake of the sugar [20] indicate that this ratio makes a pivotal impact on the
corresponding reaction rate. As evident from Fig. 2b the behavior of the ratio of
PEP to PYR is reversed to the gradient of glucose — high values are observed at the
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GLUCOSE INPUT

Fig. 2 Concentration fields during a fed-batch process in a 900 L bioreactor equipped with three
Rushton turbines. (a) Extracellular glucose, (b) distribution of the ratio of the intracellular
concentration of phosphoenolpyruvate (PEP) and pyruvate (PYR)

top, low values at the bottom of the tank. The predicted results are in agreement with
expectations. Due to the high glucose concentrations at the top of the tank,
the glucose uptake rate is also high. Because the transport is associated with the
phosphorylation, PEP immediately decreases and is converted to PEP. Once the cells
enter the regions with lower glucose concentrations the delayed flux through glycol-
ysis leads to a refill of the pool of PEP and readjustment of the concentration of PEP.

For further interpretation of these simulation results we refer to the experimental
observations of Hewitt et al. [31-33]. These authors have been concerned about
studying the influence of scale of cultivation and, as such, different intensity of
mixing, on the viability of E. coli populations during fed-batch fermentations with
constant feeding rates. For these purposes, multiparameter flow cytometry has
been used. With the introduction of specific fluorescent dyes, valuable quantita-
tive information on cell physiology and particularly viability could be obtained.
The analysis revealed that a temporally varying environment with respect to
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Fig. 3 E. coli viability (measured with flow cytometry) in a lab-scale, a 22 m? scale and in a scale-
down reactor with 1437 s passages through a glucose starvation or glucose excess zone (reprinted
from [32] during fed-batch operation with constant feeding rate)

glucose concentration has a profound effect on the viability of the cells. The
comparison between a 22 m® and a 5 L scale demonstrates distinct differences in
the cell viability (Fig. 3). Obviously the small-scale, well-mixed fermentation gave
the lowest cell viability. The relatively poor mixed conditions in the large scale
fermenter were found to lead to high cell viability. The reasoning regarding the
positive influence of fluctuations in the microenvironment on cell viability were
further supported with corresponding observations in an experimental set-up for
scaled-down simulations. In these scaled-down experiments a small well-mixed
stirred tank reactor (STR) was coupled to a plug flow reactor (PFR) via recycling
flow. Highly concentrated glucose solution was fed into the STR and into the inlet
of the plug flow. This set-up allows the successful simulation of poor mixing in
large scale reactors. The same authors started to discuss possible reasons for these
results in terms of environmental stress associated with the ever-increasing glucose
limitation in the well-mixed case under conditions of constant feeding. It was
furthermore argued that with the large scale and, depending on the residence time
in the PFR also with the scale-down simulations, cells periodically encounter
regions of relatively higher glucose concentrations.

It appears obvious to interpret our own simulation results further in the context
of the aforementioned experimental observations. It appears beneficial to use
the additional information about the distribution of intracellular state variables
(PEP, PYR in Fig. 2b) to sustain the hypotheses regarding the impact of interlinked
regulatory stress response pathways which was put forward by Hewitt et al. [33]. It
is known that under conditions of glucose depletion, rapid increase of the intracel-
lular “second messengers” cAMP and ppGpp is observed. cAMP is involved in the
regulation processes related to the phenomenon of catabolite repression. The signal
is built up by the enzyme adenylate cyclase which in turn is activated by one of the
phosphorylated proteins in the PTS at conditions of sugar depletion and high ratios
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of PEP/PYR. At natural conditions the signal is responsible for regulation phenomena
leading to the expression of alternative sugar sources. The dynamic response of the
PTS under conditions of substrate depletion is also linked to the chemotaxis allowing
the bacteria to swim towards more favorable conditions e.g., higher glucose concen-
trations. In summary this dynamic response leading to the build up of the alarmone
cAMP may be characterized by an offensive response of E.coli because constructive
activities are mobilized to overcome the limitations in the carbon and energy limita-
tions. In contrast to this offensive response the second alarmone ppGpp leads to
regulation phenomena summarized with the term “stringent response,” which in a
more defensive way reduces the energy and carbon demand by downregulating
anabolic activities of the cell [34]. This phenomenon eventually leads to loss of
viability via stress response (starvation). One of the key players in this stress response
is the sigma factor (°). Interestingly, the two alarmones cAMP and ppGpp compete
as transcription factors in the expression of the sigma factor [35].

Based on these molecular details regarding the link between metabolism and its
regulation and the results of the simulations in Fig. 6 it is tempting to speculate on
the following scenario within the large tank. Those cells traveling through the
region of high sugar concentrations at the top of the tank respond with a
corresponding high sugar uptake rate and a drop in the phosphorylation potential
(PEP/PYR). At the same time as the cells are moving towards the bottom of the tank
where they are exposed to extremely low sugar concentration, the ratio of PEP/PYR
is very high. The dynamic response of the PTS system under these conditions
should result in a fast increase of cAMP. Even under conditions of lasting sugar
limitations the peak of cAMP would counteract the stringent response signal of
ppGpp and thus would prevent the stress response. In the case of the small well-
mixed reactor the sugar concentration would always remain at a very low level, the
ppGpp could prevail and eventually pronounced stress response is initiated which
also impacts cell viability by inducing the programmed death of the bacteria [36].

3 Stochastic Simulations of Four-Dimensional-Spatial
Temporal Dynamics of Signal Transduction Processes

Traveling along lifelines of individual cells and populations in bioreactors is only
one but nevertheless an important example of the application of the agent based
or individual modeling in bioprocess and biosystems engineering. The issue of
detailed quantitative modeling of spatiotemporal effects at the scale of individual
cells or multicellular systems comprises a manifold of important problems. Impor-
tant examples comprise chemotaxis and quorum sensing in bacteria, signal transduc-
tion pathways, endocytosis, phagocytosis as well as movement of drug molecules
in complex tissues such as solid tumors, to name a few.

Many cellular signaling events occur in small subcellular volumes and involve
low-abundance molecule species. This context introduces a major difference and
additional complication compared to the bioreactor modeling illustrated above.
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Reactions involving a low number of molecule species occur in a probabilistic
manner. Thus, in addition to the random walk simulating the diffusive motion of the
individual molecules the stochasticity of the reaction has to be taken into account.
As such, the assembly approach presented in the aforementioned example is
extended to a coupled reaction—diffusion process in which the individual agents
change their characteristic properties through interactions.

Spatial aspects of cellular signaling have already been the subject of various
experimental and theoretical investigations [37, 38]. Modeling the interaction of
diffusion and reaction is most often based on the continuum approach, thus inves-
tigating the corresponding system of partial differential equations. The pioneering
work of Kholodenko [38, 39] addressed for the first time the issue of spatially
heterogeneous and time varying cellular signal transduction cascades. They devel-
oped computational models of the mitogenic signaling network to analyze the
complex structure of the spatial distribution of the activated compound ERK. At
a distance larger than several microns from the plasma membrane the phosphoryla-
tion signal is attenuated practically to basal levels, provided that the phosphatase
activity in the cytosol is sufficiently high. These and similar investigations by Howe
[40] are, however, restricted to a macroscopic, deterministic continuum approach,
which neglects the random walk of individual molecules and the stochastic char-
acteristics of the interaction of the partners of interest. These stochastic properties
can only be modeled using Monte-Carlos simulations.

The most important approach for stochastic simulation of coupled chemical
reactions trace back to the famous work of Gillespie [41], solving master equations
which describe the evolution of the so-called grand probability for the number of
molecules of the different species. This equation, however, is only valid for spatially
homogenous mixtures, in other words, ideally well-mixed systems. There are a
couple of attempts to couple diffusion problems to this master equation [42, 43]. A
critical assessment of these approaches, in which the system is divided into small sub-
volumes, demonstrates two important drawbacks. First, the sub-volume is assumed to
be well-mixed and the diffusion processes are restricted to the boundaries of the grids.
Second, the molecules are represented as point particles. Therefore, it is not possible
to reproduce crowded conditions because volume exclusion from both reactive and
nonreactive crowded molecules cannot be represented explicitly.

On the other hand microscopic models including all molecules of a cell as well
as all interactions — leading to a complete molecular dynamics (MD) simulation —
are computationally expensive and therefore unable to cover the dimensions of
a complete cell [44]. Only mesoscopic models are until now able to span all
necessary ranges to model signaling processes with sufficient detail. The underlying
Smoluchowski model for diffusion according to Brownian motion and reactions in
a reaction—diffusion system are implemented by different groups. Particles [45, 46]
or so called agents [47] perform a random walk representing the diffusion process.
Reactions will take place if the distance between reacting species falls below a
predefined reaction-distance. While MCell [46] restricts reactions to fixed posi-
tions, all these models have the drawback that there is no physical property defining
the fixed model-depending reaction-distance.
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The method presented in this chapter aims at studying the interconnected effects
of signal transduction networks by a new multi-scale approach. The probability of
collision and reaction between the interesting species is modeled by the solution of
the Fokker—Planck equation providing the probability that two molecules will
collide and react in the next interval Atz. The trajectories for the random walk of
protein molecules are modeled by stochastic differential equations (Lagrangian
approach). This allows incorporating the effects of macromolecular architecture
of the cells and thus to investigate the hindered diffusion due to crowding caused by
the cytoskeleton. The criterion for change on the model scale is a threshold value
for the distance between the reaction partners. The new modeling approach will be
exemplified for the RAS-MAPK pathway and a steroid hormone pathway.

3.1 The Multi-Scale Modeling Approach

3.1.1 Random Walk of the Molecules

The random walk simulations are based on the numerical solution of the stochastic
differential equation for single molecule tracking:

(1 + di) = (1) + (2Ddr)'/*E )

with the three-dimensional position vector X, the diffusion coefficient D and the
Gaussian random number ¢&; with mean zero and covariance<£i§j> =0

3.1.2 Fokker-Planck Equation

Our interest is to study the coupling of this random walk of molecules with the
probability of collisions with potential reaction partners and eventually the degree
of the diffusion-limited reaction itself. For this purpose the random movements of
both molecules (e.g., phosphorylated protein and phosphatase or steroid and steroid-
receptor) are simulated according to the aforementioned strategy. If paths of interact-
ing proteins come within a distance ¢ of each other, a change in the scale of modeling
is performed by switching to the analytical solution of the Fokker—Planck equation for
the probability density function (p.d.f.) P of diffusive movement given by:

oP
e (Da + Dp)AP (6)

We only need to keep track of the magnitude of the difference of position [48]
and hence one molecule can be considered to be in a fixed position whereas the
second one diffuses through the three-dimensional space. The boundary conditions
for (6) are given by the following considerations: The particles can not overlap: if
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the particles reach the distance r = R4 + Rp ether the reaction will occur (leading to
a flux of the particles into each other) or the particles will be reflected [49]. This
leads to the partially reflecting boundary condition

OP
r—oo: P=0 r=Rs+Rp: (Da +D3)6—:k'P (reaction)
»

with R4, Rp radii of the two molecules, r radial coordinate and X’ surface reaction
constant. The relation with the macroscopic reaction constant for well-mixed
systems can be derived easily:

12 kmacro

B 47'5(RA + RB)D — kmacro

(Dimensionless parameters and variables simplify the calculations: kpacro =
kmacro (Ra +RB)2/D; r=r/(Ra+Rp); t=tD/(Rs +R3)2). Inert obstacles can
be modeled with ¥ = 0 leading to pure reflection.

For the initial condition that the particles are separated by 7{ at r = 0, the initial
p.d.f.is P = 6(F — %), and the analytical solution of (6) reads:

n

P / eI (4 1/2)Pa(cos )R (F)Rw (o)A
=0
0

Lynijn(jvr) - Ljn).)’n(ir)

Ry, =

(7N
\ /szn/ + L2
Ly, = ;“y/rz (i) - kyn(}“)
Liny = 4, (2) = kjiu(2)

Fig. 4 Time development of the probability density function for the possible position of a particle
after time Ar and 2Ar (analytical solution of the Fokker—Planck equation). The initial position is
marked with the small sphere, the large sphere represents the distance R5-+Rg. The function
broadens due to diffusion and the overall probability is reduced by the reaction probability
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where P, is the Legendre polynomial and j, and y, are spherical Bessel functions.
Equation (7) describes the time evolution of the p.d.f. of the relative position of the
molecules. Figure 4 shows a graphical presentation of this solution for two snap-
shots in time.

Eventually the reaction probability has to be estimated. The calculation is based
on the simple fact that the sum of the probabilities that a molecule is still present
within the p.d.f. P and the probability that a molecule disappeared through reaction
must be 1.

Position probability + reaction probability = 1, or

Rp=1- / P(F, l‘)dF
r>Ra+Rp

B K Xo + 21 @®)
Rp = m [erfc (\/—_) —exp(xo + 'E)erfc( N )]

(ro—1)(1+K), 1=(1+K)Ar
1) is then used as an indicator of a

again with dimensionless variables: =
A uniform random number {(0 § <
successful reaction, such that:

(1) if { < Rp ——— reaction (2) if { > Rp ——— noreaction

In the case of (2), the molecule continues moving on according to P(7,t). As
soon as it reaches the critical distance ¢ between the two molecules, it is further
tracking according to (5).

3.1.3 Effect of Macromolecular Crowding

Molecular crowding and the cytoskeleton have to be taken into account to get a
more realistic consideration of the cellular architecture [38]. The cytoskeleton is
simulated by inserting randomly distributed cylinders into the cell. Thus the free
volume is reduced by 30%. To model the interaction with the cytoskeleton cylin-
ders we rejected steps that would end inside a cylinder. The effective diffusion
coefficient is about proportional to the free volume in this case [50]. The effective
concentration of reaction partners is increased because the free volume is reduced,
and thus molecular crowding increases the reaction speed.

3.1.4 Advantages of the Multi-Scale Modeling Approach

By switching to the solution of the Fokker—Planck equation we ensure that the
effect of reactions as well as obstacles is properly considered in the diffusion path of
the diffusing molecules. Fixed reaction distances like in Smoldyn [45] simply cut



38 A. Lapin et al.
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off the Gaussian probability density function for the diffusion steps, ignoring the
unknown positions of the particles between ¢ and ¢ + Az. The probability density
function according to the Fokker—Planck equation is written to a lookup table so
there is only a minor increase in computation time. The comparison under spatial
homogeneous continuum conditions shows excellent agreement (see Fig. 5).

3.2 Applications

3.2.1 Impact of Spatial Separation of Kinases and Phosphatases
on the Output Signal of the MAPK Cascade

The MAPK cascades contain three interconnected cycles of MAPK, a MAPK
kinase (MAPKK) and a MAPKK kinase (MAPKKK). In the most well character-
ized MAPK/Erk cascade, the system consists of ERK, MEK and Raf. Upon
stimulation and Ras activation, the cytosolic Raf is recruited to the cell membrane,
where it binds to and phosphorylates MEK. The phosphorylated MEK drifts into the
cell interior where it phosphorylates ERK. ERK then travels through the cytoplasm
into the nucleus, where it triggers the expression of certain genes. During its
random walk ERK can be attacked by various phosphatases and after successful
reaction would lose its activation state [39].

The example is, first of all, used to examine the reliability of the approach and
the various numerical methods required for the simulations. For this purpose we use
a simulation of the temporal-spatial distribution of 4,000 ERK molecules starting at
time zero from the cell membrane. According to the fluctuation theory the variance
is proportional to 1/4/N, where N is the number of particles. With N = 4,000 one
should expect an agreement between continuum and discrete simulation within
1.6%. For the continuum approach we solve the partial differential equation for
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diffusion and first order reaction (the number of phosphatase molecules is not
changed in the process).

oc(r, 1) 1 0 ,0c(r,1)

—D— = — Ke(r,t
ot 2or o ¢(r,1)
B.C.: «c(r,t)|=r, =0 (Ry is the radius of the nucleus)
Oc(r,t
D cér, ) = $o0(1) (initial flux from the cell membrane)
»

~

C.: ¢(r,t=0)=0
€))

Analytical solution:

) 20 ¢RI sin i R/ (1 Ro)

t
)= 2 D (1= Ro) (A sin () — Racos (4))
. KRZ,,
with Damkohler Number Da = ﬁ

and eigenvalues 4, cos 4, = (1 — Ry) sin 4,

From this solution the flux into the nucleus and the concentration inside the nucleus
can be derived:

dc(r, 1)
or 1=k

CnUCIeUS(t> = 47-CR(2) / (pnucleus(tl)dt/
=0

¢nucleus (t) =D

The result of the comparison (Fig. 5) is more than satisfactory as one cannot see any
difference in the dynamic response between the continuum and stochastic simula-
tion of the problem.

As expected, the differences are much more pronounced if the number of
molecules is decreased.

Figure 6 shows simulation result for a scenario with only 100 ERK molecules.
There are differences between the discrete and continuum simulations and, addi-
tionally, the dynamic response in case of the stochastic simulation differs from run
to run.

For adequate representation of the simulation results, a visualization frame-
work has been implemented [51]. It allows an interactive exploration of the data
from the simulation. Two visualization styles have been developed (see Fig. 7): a
microscopic and a more schematic representation. A virtual microscope creates
images, which look like the results from a confocal fluorescence microscope. With
this representation the simulation can easily be compared with microscope images
from experiments. The schematic visualization is more abstract and visualizes all
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Fig. 7 Visualization of the virtual cell. (a) fluorescence microscope. (b) detailed image showing
the cytoskeleton, nucleus, crowding molecules (violet, green and yellow) and signaling molecules
(orange), including the path of a signaling molecule (red, arrow cones in yellow show the direction
of the path)

simulated components. Crowding and signaling molecules are represented by
spheres with the respective radius, and the filaments of the cytoskeleton are
represented by cylinders. Molecule paths can be highlighted to follow a molecule
of interest.

3.2.2 A Steroid Hormone Pathway: A Case Study of a Bimolecular Reaction

The steroid pathway with its ligand activated steroid hormone receptor (androgen,
androgen-receptor) differs from the membrane anchored receptor-ligand interac-
tions and mobilization of phosphorylated proteins illustrated for the MAP kinase in
that the steroid hormone is able to penetrate the cell membrane and then binds to the
receptor (see Fig. 8). The receptor-ligand complex then travels to and is imported
into the nucleus [52].

From the point of view of kinetics, the important difference is that the problem is
characterized by a real bimolecular reaction A+B=C. It is the nonlinearity of the
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Fig. 8 Steroid hormone
pathway for androgen:
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nucleus (3)
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Fig. 9 Probability distribution for the first passage time of the first androgen—receptor-complex
reaching the nucleus

reaction which should lead to much more pronounced differences between discrete
and continuum simulations.

It is not possible to derive an analytical solution for the continuum in case of a
bimolecular reaction so we solved (10) with the bimolecular reaction term
Kci(r,t)ca(r, t) numerically. In the stochastic simulation the first passage time of
the androgen—receptor-complex was recorded in 1,008 trials with 500 androgen
molecules initially located at the cell membrane and 500 receptors randomly
distributed in the cell. The statistical analysis reveals that 55% of the complexes
reach the nucleus earlier than the sample mean of 3.08 s with a standard error of
0.04 s (see Fig. 9). In the continuum approach the first particle arrives 4% later
(3.20 s); already 57% of the trials arrived within that time. This shows, that local
density fluctuations have an effect on the average reaction of bimolecular reactions
(and this example has not even been optimized for a maximum nonlinearity effect;
it was designed to reflect natural conditions).
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4 Conclusion

The basic idea central to the agent based or individual modeling approach presented
in this chapter are entities as objects (cells or molecules) traveling along paths
which are computed from stochastic differential equations. In the case of the
bioreactor model the random walk of individual cells is calculated from CFD-
simulations, in which turbulent dispersion is superimposed to the three-dimensional
convective movement in the turbulent flow field. The example presented deals with
the impact of sugar transport into bacterial cells containing a PTS. The method
allows the population behavior to be described at the outcome of the interaction
between the intracellular state of its individual cells and the turbulent flow field in
the bioreactor. The chosen Euler-Lagrange representation of the cell-ensemble
approach permits analysis of the lifelines of individual cells in space and time.
The approach presented integrates CFD with a segregated description of a cell
population in a stirred tank thereby accounting for a detailed intracellular structure
of the single cells. The biological example tackled with this approach is of great
practical relevance. The simulation results point to serious differences in the
dynamics of the intracellular states at different scale of operation with significant
impact on the viability of the cells.

The second application of this approach is the random walk of molecules in
individual cells. The two examples chosen comprise the MAP kinase and a hor-
monal stimulation. In contrast to the first example, in which the communication
between the objects is moderated by the extracellular environment, thus neglecting
a direct interaction, the signal transduction examples involve a direct molecular
interaction via biochemical reactions. To overcome the problem of a step size
dependent influence upon the collision frequency of molecules the reaction proba-
bility is estimated from the theoretical solution of the Fokker—Planck equation. This
switch in the model approach is a special kind of multi-scale modeling character-
ized by the transition from the physical into the probabilistic space.
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Impact of Profiling Technologies in
the Understanding of Recombinant
Protein Production

Chandran Vijayendran and Erwin Flaschel

Abstract Since expression profiling methods have been available in a high
throughput fashion, the implication of these technologies in the field of biotech-
nology has increased dramatically. Microarray technology is one such unique and
efficient methodology for simultaneous exploration of expression levels of numer-
ous genes. Likewise, two-dimensional gel electrophoresis or multidimensional
liquid chromatography coupled with mass spectrometry are extensively utilised
for studying expression levels of numerous proteins. In the field of biotechnology
these highly parallel analytical methods have paved the way to study and under-
stand various biological phenomena depending on expression patterns. The next
phenomenological level is represented by the metabolome and the (metabolic)
fluxome. However, this chapter reviews gene and protein profiling and their impact
on understanding recombinant protein production. We focus on the computational
methods utilised for the analyses of data obtained from these profiling technologies
as well as prominent results focusing on recombinant protein expression with
Escherichia coli. Owing to the knowledge accumulated with respect to cellular
signals triggered during recombinant protein production, this field is on the way to
design strategies for developing improved processes. Both gene and protein
profiling have exhibited a handful of functional categories to concentrate on in
order to identify target genes and proteins, respectively, involved in the signalling
network with major impact on recombinant protein production.
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1 Introduction

In the field of biology and biotechnology, vital questions are answered by focusing
on information obtained from all functional levels of the cell represented by the
transcriptome, the proteome and the metabolome while analysing genes, proteins
and metabolites, respectively. The metabolome, however, often gives only valuable
information if rates of individual reaction steps can be assessed leading to the
fluxome. For studies of protein expression, gene activities (transcriptomics) and
protein abundances (proteomics) are most frequently analysed. Therefore, this
review focuses on these two major profiling technologies.

Gene expression analysis as a high throughput methodology is commonly based
on microarrays [1] — apart from serial analysis of gene expression (SAGE) [2]. The
set of all mRNA species from a given cell population in a certain environment is
referred to as the transcriptome. Microarray experiments commonly quantify the
transcriptome of a sample in comparison with a reference sample, thus providing a
functional measure of relative gene expression. In general, mRNA from a given
culture is used to generate a labelled sample. Together with a differently labelled
reference mRNA sample both are hybridised (complementary base paring) together
onto a large number of DNA sequences immobilised on a solid support in an
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ordered array. The arrays are read by detecting the spot intensities with respect to
both labels, normally represented by fluorescent stains. As a result, microarray
experiments accelerate the process of identifying genes of many entire genomes
which are up- or down-regulated under certain cultivation conditions.

The field of proteomics has emerged in parallel as a rapidly advancing technology-
driven field [3-5]. Mass spectrometry of protein-derived peptides in combination with
separation tools such as two-dimensional gel electrophoresis or multidimensional
liquid chromatography are commonly utilised as major methods for protein profiling
analyses [6].

One of the major contributions of global expression profiling in the field of
biotechnology consists in the identification of vital genes responsible for recombi-
nant protein production [7-9]. This review will briefly focus on the computational
methods available to handle the data generated for these profiling analyses prior to
discussing the findings and the impact of these profiling technologies in the field of
recombinant protein production. More specifically, it will focus on the application of
microarray technology for mRNA profiling and two-dimensional gel electrophoresis
for protein profiling for a better understanding of recombinant protein production in
the field of biotechnology.

2 Experimental Procedures

In this chapter a short introduction into the main wet-lab experimental methodol-
ogies of profiling will be given.

2.1 Microarray-Based Gene Expression Profiling

The most commonly used microarray platforms can be classified into two groups,
complementary DNA- (cDNA-) and oligonucleotide-microarrays. Arrays of cDNA
are based on the first microarray technique which has been developed [1]. These are
produced by the robotic application of cDNA or genomic clones onto a glass
surface in an arrayed format. Oligonucleotide arrays consist of short 20-25mers
synthesised in situ, either by photolithography (high-density oligonucleotide arrays,
achieved through step by step attachment of a single nucleotide using a series of
photolithographic masks) or by ink-jet technology. cDNA arrays are hybridised
with equal amounts of two samples each labelled with a different fluorophor (CY3
and CY5). The use of different fluorescent dyes allows RNAs from two different
populations to be mixed and hybridised to the same array. Usually high-density
oligonucleotide microarrays yield a single fluorescence intensity measurement for
each spot on the array, whereas cDNA microarrays produce a ratio between two
signals being measured concurrently for each spot. Being scanned for two different
wavelengths, the intensity of the same spot in both the channels is compared.
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This results in a measurement of the ratio of RNA levels for each element
represented on the microarray. Before obtaining microarray measurements for a
particular set of experiments or platforms, the reported measurements have to be
normalised because of inequalities in the construction or detection of the two
fluorescent libraries, background noise, and systematic biases in the measurements
[10]. Apart from normalisation, data transformation [11] and data filtering [12] are
major pre-processing steps involved before analysis or classification. Detailed
approaches for microarray data analysis are reviewed elsewhere [13, 14]. To date,
computational analyses of RNA-expression data sets have centred on two
approaches, namely supervised and unsupervised ones. Algorithms used for class
prediction [15] (to identify a list of candidates which assist to accurately predict new
samples to their appropriate class from the expression pattern) within the data set fall
into the category of supervised, whereas algorithms handling data sets for class
discovery [15] (to identify different classes among multiple and biologically
homogeneous samples) are assigned to the category of unsupervised classification
methods.

2.2 Protein Expression Profiling Based on Two-Dimensional
Gel Electrophoresis

Two-dimensional electrophoresis is a powerful and widely used method for the
analysis of protein pools extracted from biological samples. This technique sepa-
rates proteins according to two separate properties in two steps called the first
(isoelectric focusing) and the second dimension (SDS-PAGE). In the first dimen-
sion the proteins are separated according to their isoelectric points and in the second
dimension according to their molecular mass. Following the visualisation of the
two-dimensional gels, the protein spots are excised from the gels to undergo tryptic
digestion. The digested protein samples are analysed by mass spectrometry for
annotating the peptide mass fingerprints against relevant databases. Gels which are
scanned and digitised are subjected to image smoothing, spot detection, spot
quantification, image alignment, spot matching, spot annotation, and molecular
mass as well as pl calculation by various image analysis software. For each protein
spot, the annotated information along with the peak area and normalised quantity
values are obtained for further statistical analyses.

3 Evaluation of Profiling Experiments

This chapter introduces methods for treating complex data from mRNA and protein
profiling in order to extract meaningful results. These methods may be divided into
two distinct classes according to the classification to be accomplished by means of
supervised or unsupervised strategies.
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3.1 Unsupervised Classification of Expression Profiles

Unsupervised learning is one of the most popular statistical techniques to be applied
in microarray data analysis, and it involves the aggregation of diverse collection of
data into clusters based on different features in a data set. In unsupervised classifi-
cation, algorithms are used to cluster sets of entities (genes/proteins) to reveal
similarities of expression across multiple samples. For example, the exploration
of new physiological behaviour during recombinant protein production may be
obtained by clustering genes based on coexpression. By compiling and clustering
various strain/condition samples at once based on their expression profiles, samples
can be grouped into classes on the basis of the similarity in their expression profiles.
Likewise, by clustering entities among all samples, other elements could be
identified sharing a similar pattern of expression (coexpression).

These unsupervised clustering approaches allow for the identification of forma-
tion and structure of complex data sets without requiring any prior hypotheses and
assumptions to be made. Working methodologies of clustering algorithms and
practical strategies for using clustering algorithms are discussed elsewhere in detail
[16]. Most frequently, used clustering methods in unsupervised learning are hierar-
chical clustering, k-means clustering, self-organising maps and principal compo-
nents analysis (PCA). These clustering methods use dissimilarity measures to create
groups of features with similar patterns. Commonly used dissimilarity measures are
the Euclidean distance, the Pearson correlation coefficient, and the rank correlation
coefficient.

Euclidean distance is based on visual space in which each entity is treated as a
point (vector) in multidimensional space. Each axis is a separate biological sample
and the coordinate on each axis is the amount of, e.g. RNA expression in that
sample. This allows entities to be clustered according to their degree of similarity in
terms of expression ratios [17]. Thus, entities that exhibit similar expression levels
are found in close proximity. An expression vector is then calculated to describe
the position of each entity. Using these expression vectors, distance metrics are
calculated between each pair of entities in the dataset to provide the similarity
among them. Distance metrics are then used for various clustering purposes [17].

In the case of the Pearson correlation coefficient, the measurement between two
entities is treated as a vector of measurements assuming that the measurements of,
e.g. mRNA expression among the samples are normally distributed [18].

3.1.1 Hierarchical Clustering

Hierarchical clustering algorithms classify the clusters of entities (genes/proteins)
with similar patterns of expression. The two most closely related entities in terms of
smallest distance metrics based on expression measurements are grouped into a
single cluster. These calculations proceed iteratively until all the entities have been
clustered. The visual representation of the result is in the form of a dendrogram



50 C. Vijayendran and E. Flaschel

which is represented as a tree and entities as leaves of that tree. Numerous
expression patterns within the data set can be observed quickly without any prior
hypotheses and assumptions and hence this is a popular technique for analysing
global profiling expression data [17].

3.1.2 k-Means Clustering

In k-means clustering, entities are organised in a number of & clusters, in which & is
given in advance by the user. The elements are initially assigned randomly to a
cluster, and then the mean vector for all the elements is computed in each cluster
and subsequently they are each reassigned to a cluster whose centre is closest to the
element. This process is repeated n times from a different initial cluster till the
optimum cluster is found many times. The main parameters that control k-means
clustering are the number of clusters specified by the user and the number of trials to
be performed [17].

3.1.3 Self-Organising Maps

Self-organising maps create clusters of entities in multidimensional space, in which
neighbouring clusters are similar. Each entity is defined by coordinates according to
expression levels. Thus, each sample is considered to have a separate dimension in
space. With the number of clusters provided by the user, the map is arranged in an
arbitrary shape with the centres of each cluster, normally called centroids. The
optimised self-organising map is obtained by iterating the process until no further
centroid movements are detected [17, 19, 20].

3.1.4 Principal Components Analysis

PCA is a technique for multivariate data analysis which reduces the dimensionality
and complexity of the dataset without losing the ability to calculate accurate
distance metrics. It transforms the expression data into a more manageable form
in which a number of clusters may be more easily discriminated. In PCA, the data
vectors are written as a linear sum over principal components. Principal compo-
nents are a set of vectors in multidimensional space that decreasingly capture the
variation seen in the dataset. The number of principal components is equal to the
number of dimensions of the data vectors. Thus, they represent the axes of a
transformed coordinate system, in which the first principal component determines
the basic orientation. The principal components are found by calculating the
eigenvectors of the covariance matrix of the data. The corresponding eigenvalues
determine how much of the variance present in the data is explained by each
principal component. The first principal component captures more variation than
the second, and so on [17, 21].
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3.2 Supervised Classification of Expression Profiles

Supervised learning enables class prediction or discrimination of an independent
test dataset with the help of a training dataset. The training dataset is obtained by
identifying informative entities which exhibit differential expression in a defined
group. New sample datasets can be assigned or related to a group based on a cut-off
value obtained from a training dataset. Supervised learning incorporates the knowl-
edge of class label information from trained datasets. In applying this information
to independent datasets, distinctions of interest can be performed. For instance, a
subset of differentially expressed genes could be selected which can significantly
distinguish between two conditions and build a model based on these candidate
genes to classify that particular condition from other varied conditions. The most
commonly used supervised methods that accurately predict or distinguish a pattern
from the given dataset are the nearest neighbour approach, artificial neural networks
(ANN) [22] and support vector machines (SVM) [23]. In the correlation-based
classification methods, numerous statistical procedures are applied to the expres-
sion profile datasets in order to obtain a discriminatory weight for each element.
Based on this, the entities are ranked and the supervised classifiers are constructed
based on the top ranked entities. ANN- and SVM-based algorithms are capable of
learning complex patterns from expression datasets. Once the dataset is trained, the
parameters of ANN or SVM can provide vital information about the relative
importance of each element in the learning of the classes [22, 23].

4 Profiling Analysis During Recombinant Protein Production

During the last two decades or so, recombinant proteins have become an important
and diverse class of biotechnological products. Bacterial expression systems are
still the most attractive means for their production owing to low cost, high produc-
tivity and versatility. Bacteria grow rapidly and at high-density on inexpensive
substrates. Other advantages are found in their often well-characterised genetics
and the availability of a large number of cloning vectors and mutant strains. Among
the bacterial host strains, the Gram-negative bacterium Escherichia coli is still the
most commonly used organism for recombinant protein production because it is
comparatively well known, its cultivation is established in numerous laboratories
and its genome has been sequenced several times. However, the lack of most of the
post-translational protein modifications, differences in codon usage and the produc-
tion of inactive proteins due to the formation of inclusion bodies offer clear
limitations and significant challenges for the use of such expression systems.
Problems faced during the production of recombinant proteins by means of bacte-
rial systems are due to (1) the presence of multicopy expression vectors, (2) the
over-expression of desired genes leading to metabolic stress, accumulation of
endotoxins, and (3) inclusion body formation or protein misfolding in general.
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From earlier studies it had been reported that several factors such as growth rate,
growth phase, growth method and medium ingredients determine recombinant
protein production. Different genetic and metabolic strategies have been developed
to obtain superior host and vector systems for recombinant protein production.
Among these widely explored strategies the coexpression or knock-out of certain
key genes are found, genes which play a significant role in recovering from
physiological stress. Therefore, heat-shock proteins (HSP) with protease- and/or
chaperone activity are considered as prime candidates for differential expression to
achieve improved yields of recombinant proteins. Recent advancements in gene
expression and proteome analyses have offered a systematic approach for the
identification of various genes and proteins which are either over- or under-
expressed in many physiologically stressful conditions [7, 24-28].

Earlier experiments in the field of microbiology and biotechnology have
exploited the advancement in genomics, allowing many functional genomic-based
studies towards understanding global metabolic changes caused by differences in
genotype and differing cultivation conditions [29-34]. Microarray technology has
been established as the efficient methodology for simultaneous exploration of the
expression levels of numerous genes. Microarray experiments commonly quantify
only the transcriptome of a sample of cells as compared to a reference sample, but
they do not give direct access to the concentration of the individual main players of
the cellular machinery — the proteins. This is the reason why the proteome has to be
known as well.

With respect to proteomics, profiling approaches have been employed to exam-
ine the protein expression level changes under various conditions [5, 33, 35].
Proteomics profiling has largely relied on data from conventional two-dimensional
polyacrylamide gel electrophoresis which is still the major method for global
proteome analysis [6], though it presents quite a number of inconveniences. Never-
theless, this method of analysis can help to identify targets for improving the
expression of recombinant proteins, such as genes to delete from the host cell
chromosome [36] or to co-express with a product [7, 9, 37]. These global profiling
technologies have been utilised extensively for the identification of protein targets
which play a vital role in recombinant protein production. Upon the induction of
recombinant proteins, the products of many genes may show up transcribed from

Table 1 Regulation of genes during recombinant protein production according to the functional
categories to which they belong

Functional category of genes Regulation References

Heat-shock and stringent response Up-regulated [9, 21, 33-37, 44-46]
Phage-related Up-regulated [7, 21, 34, 47]
Elongation factors Down-regulated [9, 50]

Ribosomal protein Down-regulated [7,9, 21, 36, 45, 51, 52]
Amino acid biosynthesis and tRNA-related Down-regulated [8,9, 21, 23, 36]
Transposon-related Up-regulated [21, 34]

Nucleotide biosynthesis Down-regulated [7, 8]

Tricarboxylic acid (TCA) cycle Up-regulated [23, 33, 56]
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genes like those of (1) heat-shock and stringent response, (2) phage-related ones,
(3) elongation factors, (4) ribosomal proteins, (5) amino acid biosynthesis- and
tRNA-related ones, (6) transposon-related ones, (7) nucleotide biosynthesis and (8)
tricarboxylic acid (TCA) cycle. Many of these genes were significantly differen-
tially regulated. Table 1 gathers this information from the literature under review
and shows which functional category is influenced in its regulation pattern and if
this influence is of positive (up-regulated, over-expressed) or negative (down-
regulated, under-expressed) nature. These classes will be discussed in more detail
in the following paragraphs.

4.1 Heat-Shock and Stringent Response Genes

Various profiling studies have identified genes that were sensitive to overproduc-
tion of the recombinant protein. Among these, HSP were significantly over-repre-
sented in most of the studies [9, 26, 38—42]. HSP are a group of proteins whose
expression is induced when a cell undergoes various types of environmental
stresses like heat, cold and oxygen deprivation. A group of HSP are chaperones
that monitor and assist in protein folding in the cell [43], while other HSP are
proteases, which degrade unfolded or damaged proteins [44].

A special case is represented by plasmid-based systems, the expression of which
is induced by a shift to higher temperature, normally because of runaway replica-
tion [45, 46]. Such thermo-inducible systems have been developed in order to
circumvent the addition of large quantities of inducer chemicals (like IPTG) as
required for the induction of classical promoters during large scale protein produc-
tion [46-48]. To examine the differences in the metabolism of the cell during
recombinant protein production at elevated temperatures, a recent study was carried
out to analyse the transcriptional changes during thermal induction only and for the
case in which the inducer IPTG was used in addition [41]. As a result, it was shown
that about 200 genes were differentially expressed. Among these, heat-shock-
related genes and amino acid-tRNA genes were significantly regulated [41].
Since amino acid-tRNA genes play a vital role in protein translation, differential
regulation of these genes can be attributed to the improved recombinant protein
production during thermal induction. Another gene expression profiling study
during recombinant protein production has shown differential expression of heat-
shock genes and decreased expression levels of genes related to transcription,
translation and energy metabolism [26]. In an earlier study it was observed that
heat-shock genes were over-expressed during shake-flask experiments due to
recombinant protein overproduction [42]. Similarly, in a typical proteome profiling
experiment during the overproduction of a serine-rich protein, it was observed that
HSP were over-expressed [9]. Likewise, it was shown in various individual studies
that HSP were over-expressed in parallel with the recombinant proteins [39, 49, 50].
By combining translational and transcriptional levels during the recombinant pro-
tein production, it was shown that there was a drastic increase in 6> transcription
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factor-dependent genes [38]. The sigma factor 32 (%) is required for the normal
expression of heat-shock genes and for the heat-shock response [51]. Target gene
over-expression may induce metabolic stress which is counteracted by reorganisation
of the genetic regulatory network.

4.2 Phage-Related Genes

During proteomic profiling of an antibody fragment-producing recombinant E. coli,
it was observed that the synthesis of the phage-shock protein A (PspA), a stress
protein, strongly correlated with the synthesis of the recombinant product. By
coexpressing PspA, it was shown that the yield of the recombinant product was
improved significantly [7]. Higher PspA expression was also reported for the
production of a recombinant human growth hormone [52]. PspA is a stress protein
and acts as a negative transcriptional regulator of the psp operon [53]. PspA is
known to be induced under a variety of conditions, including filamentous phage
infection, blocked protein secretion, and the addition of proton motive force
uncouplers [54]. While analysing the transcriptome profiles in recombinant protein
producing E. coli during high cell density fed-batch cultivations, it was shown that
numerous phage-related genes were differentially regulated [26]. In an earlier
study, bacteriophage associated genes (ftsH, recA, alpA, uvrB) were found to be
significantly up-regulated after the induction of recombinant proteins [39]. These
results taken together indicate that, during recombinant protein production, various
signalling networks related to phage defence mechanisms are activated, maybe due
to the metabolic burden the additional protein synthesis may impose on the cell.
Nevertheless, various cascade signalling processes occurring during the stress due
to this metabolic burden are still not completely understood.

4.3 Elongation Factor Genes

Proteome profiles of E. coli in response to the overproduction of human leptin
(a serine-rich protein) showed elevated levels of proteins involved in heat-shock,
whereas genes of elongation factors were significantly down-regulated [9]. Previ-
ous reports have shown that during recombinant protein production the levels of
proteins involved in translation and ribosomal subunit components were lowered
[14, 55]. These reports are consistent with the down-regulation of elongation factors
during recombinant protein production, because they are responsible for the protein
translation activity of the cell [9]. These findings show that the overproduction of
recombinant proteins negatively influences the capacity of cellular translation
processes and that one potential reason for this is the down-regulation of elongation
factors.
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4.4 Ribosomal Protein Genes

While examining the gene expression levels during thermal induction of recombinant
proteins, it was shown that 39 ribosome genes were significantly down-regulated [41].
Proteomic analyses in high cell density fermentations showed that the expression
levels of ribosomal proteins were significantly lowered as well [7]. Previous work has
confirmed that the synthesis rates of ribosomal proteins [50, 56] and the associated
rRNA levels [57] were decreased during recombinant protein production. Based on
the variations in proteome profiles in response to the overproduction of human leptin,
it was found that the levels of the 30S ribosomal protein were lowered [9]. In a
complete study of the regulation of all 55 ribosomal protein genes, it was noticed
that rRNA levels were lower in the case of recombinant protein production [26] as
well. Many of the ribosome genes were profoundly down-regulated during various
recombinant protein production processes. This reveals a counteracting situation in
which enhanced transcriptional activity of a target gene leads to lowering of the
concentration of the translationary machinery of the cell.

4.5 Amino Acid Biosynthesis and tRNA-Related Genes

During the production of recombinant proteins in high cell density fed-batch
cultures, it was shown that 17 of the 24 genes encoding aminoacyl-tRNA synthe-
tases — catalysing the addition of amino acids to tRNA — were differentially
regulated and, of these, 14 genes were down-regulated [26]. Likewise, 70 of the
80 tRNA genes were significantly differentially regulated, and 67 of these were
down-regulated during recombinant protein production [26]. Global transcriptome
analyses of recombinant protein production processes have shown differences in
the levels of amino acid-tRNA genes in the case of thermal induction [41]. In this
situation the expression levels of amino acid-tRNA genes were found to be ele-
vated, which might account for improved productivity of the desired protein in this
study [41]. However, the genes encoding aminoacyl-tRNA synthetases were sig-
nificantly down-regulated [41]. Since tRNA play a critical role in the translation of
mRNA to proteins, over-expression of tRNA genes can be attributed to be the cause
for increased productivity of the desired protein in the case of thermal induction.
This feature may counteract other negative effects caused by this particular induc-
tion strategy. Proteome profiling of E. coli in response to the overproduction of
human leptin has shown that some enzymes involved in amino acid biosynthesis
were present at lower concentrations [9]. More specifically, the levels of enzymes
involved in the biosynthesis of the serine family of amino acids were significantly
down-regulated. By coexpression of the cysK (cysteine synthase A) gene, the cell
growth rate and leptin productivity could be improved [9]. During transcriptome
profiling of recombinant E. coli producing human insulin-like growth factor I
fusion protein in high cell density fed-batch culture, it was shown that the expres-
sion of the genes associated with the biosynthesis of nucleotides and amino acids
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were significantly down-regulated [8]. A combined study of transcriptome and
proteome profiling of E. coli during high cell density cultivation revealed that
most of the amino acid biosynthesis genes were down-regulated when the cell
density increased [28], a behaviour which may explain the reduced selectivity of
protein production often observed in the case of high cell density cultivations.

4.6 Transposon-Related Genes

Transcriptome analyses of E. coli have shown that genes associated with transpo-
sons and IS-elements were significantly up-regulated due to recombinant protein
induction during high cell density fed-batch fermentation [26]. Gene expression
analyses were carried out in order to evaluate the stress response to over-expression
of five recombinant proteins [39]. These studies revealed dramatic changes in the
transcription rates of transposon-related genes after induction of recombinant
protein expression. Specifically, the transcript level of IS5 transposase was signifi-
cantly up-regulated [39]. It is known that the activation of insertion elements
indicates an increase in transposition events which should lead to increased genetic
diversity [58]. IS5 transposase is also known to be active in nutritionally deprived,
resting cells [59, 60]. The strategy behind this is that E. coli tries to adapt to stressful
environments by increasing its mutation rate. The increased transcript levels of
IS5 transposase may represent an additional strategy to achieve high mutational
frequencies.

4.7 Nucleotide Biosynthesis Genes

Transcriptome profiling of recombinant E. coli producing a human insulin-like
growth factor I fusion protein during high cell density fed-batch cultivation has
shown that the genes involved in the biosynthetic pathway of nucleotides were
significantly down-regulated [8]. This was confirmed by a proteome analysis of
E. coli producing a recombinant antibody fragment in high cell density fermenta-
tion, since down-regulation of ribosomal as well as nucleotide biosynthesis proteins
was observed [7]. Not only nucleotide biosynthetic proteins involved in the purine
and pyrimidine biosynthesis were found to be down-regulated, but also proteins
associated with the synthesis of nucleoside triphosphates as well as proteins with
regulatory function with respect to these proteins [7].

4.8 Tricarboxylic Acid Cycle Genes

A proteomics analysis of E. coli in high cell density fed-batch fermentation during
over-expression of plasmid-encoded 6-phosphogluconolactonase showed that
proteins participating in the TCA cycle were up-regulated [61]. Another study of
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E. coli during high cell density cultivation, in which the transcriptome was analysed
in addition to the proteome, showed that the expression of the genes involved in the
TCA cycle were up-regulated and that the levels of TCA cycle enzymes were
increased as well about twofold [28]. Further confirmation is available from
analyses of the transcriptional and translational levels of various genes during
recombinant protein production showing that the proteins involved in the TCA
cycle were significantly up-regulated [38]. Since the TCA cycle is of primary
importance for most of the general biosynthetic pathways it can be anticipated
that a high TCA cycle activity would be required for a high synthesis rate of
recombinant proteins.

4.9 Association Network Analysis

By combining the data (gene/protein regulation) generated from various studies
mentioned in this chapter, we generated an association network for these genes
involved in the recombinant protein production and analysed the network (Fig. 1).
It has been demonstrated that functionally related genes are preferentially linked in
coexpression networks [62]. By integrating various other information (fusion
evidence, neighbourhood evidence, co-occurrence evidence, experimental evi-
dence, textmining evidence, database evidence) along with the coexpression data
information from the STRING database [63], we were able to build an association
network for the genes which are differentially regulated during recombinant protein
production (Fig. 1). In many cases there were meaningful relationships between
network substructure, gene function and network association (Fig. 1b—e). This kind
of network analysis provides the possibility to use it as an analytical tool to unravel
the relationships among genes that govern the cellular functions [64], for example,
in the substructure network Fig. 1b, which consists of 14 genes among which ten
genes co-occur with the term “recombinant protein production” in the PubMed
database (node border colour in green). Among these ten genes, six genes (dnak,
dnal, grpE, clpB, htpG and groL) code for proteins which are well-characterised
molecular chaperones known to play a vital role during recombinant protein
production [65, 66]. The substructure network genes are preferentially linked,
clearly denoting their functional similarities. This shows the relevance and potential
of association network analysis. Hence, the genes in these substructure networks
(Fig. 1b—e) are of great importance to understanding the gene regulatory network
during recombinant protein production.

5 Conclusion

Both gene and protein profiling have demonstrated their potential in the identifica-
tion of important molecular genetic targets which could be modified in order to
optimise the industrial-scale production of recombinant proteins. However, it has to
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Fig. 1 (a) The association network of genes known to be differentially expressed during recombinant
protein production. Nodes (genes) are coloured according to their functional category (amino acid
related genes = light green; cellular processes = dark green; energy metabolism = red; nucleotide
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be considered seriously that most of the experiments reporting profiling analyses for
recombinant protein production have been conducted under rather restricted con-
ditions with respect to the media, promoters and plasmids used as well as to the
recombinant proteins expressed. Thus, the actual results accumulated cannot fully
and in general answer the broad range of questions associated with which group of
genes may be directly involved in the signalling network modulating recombinant
protein production. The genes/proteins which are differentially regulated under
such a condition are summarised in Table 2 for up-regulated genes and Table 3
for down-regulated ones. These data are gathered from the literature cited in this
review. In order to give additional information, a column called “Literature count”
has been added to both tables. This column represents the number of publications in
the PubMed database which include the specific gene name and the term “recombi-
nant protein production” — e.g. “groEL AND recombinant protein production” is
searched against the PubMed database. This means that those genes for which there
is a “0” in this column may be novel candidates to look at since their regulation
pattern is significantly altered by expression of a recombinant protein, but there
have been very limited studies of these genes. Genes and proteins belonging to
various functional categories highlighted in this review (heat-shock, stringent
response, phage-related, elongation factors, ribosomal proteins, amino acid biosyn-
thesis, tRNA-related, transposon-related, nucleotide biosynthesis, as well as TCA
cycle genes and proteins) and gathered in Table 1 should be targeted by various
approaches to learn how to design new strategies for improving recombinant
protein production. The whole network and effective relationship between the
above-mentioned functional categories of genes and proteins and their effective
role in recombinant protein production is still far from being completely under-
stood. However the genes which are preferentially linked and densely connected
functionally associated genes in the association network substructure are of great
importance to unravel the gene regulatory network involved during recombinant
protein production (Fig. 1b—e). Technologies like ChIP-on-Chip which combine
chromatin immunoprecipitation (ChIP) with genomic microarray analysis (chip)
can be used to investigate interactions between DNA and target proteins (in vivo)
which are known to be significantly expressed during recombinant protein produc-
tion. By utilising this technology, the binding sites of DNA-binding proteins can
be identified in an efficient manner which may unravel the whole network and

Fig. 1 (continued) related = pink; regulatory related = violet; ribosome related = yellow; transcrip-
tionrelated = cyan; translation related = orange, others = grey). Node size is based on the network
neighbourhood connectivity. Node border colour denotes the presence (green) or absence (blue) of
publications in which the corresponding gene name co-occurs with the term “recombinant protein
production” in the PubMed database. The network edges represent the presence (one or many) of
predicted functional association denoting (1) fusion evidence, (2) neighbourhood evidence, (3) co-
occurrence evidence, (4) experimental evidence, (5) textmining evidence, (6) database evidence and
(7) co-expression evidence from the STRING database [63]. Edge size represents the number of
predicted functional association (thicker edge size represents a higher number of functional associa-
tions) from the STRING database [63] (see above). (b—e) Substructure extracted from STRING
network (a) with MCODE algorithm [82], showing preferentially linked and densely connected
functionally associated genes
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Table 2 Genes which are up-regulated (over-expressed) during recombinant protein production
identified by mRNA or protein profiling. The last column represents the number of publications in
which the corresponding gene name co-occurs with the term “recombinant protein production” in

the PubMed database
Gene B-number Gene name Literature
count
aceF  b0115 Dihydrolipoyllysine-residue acetyltransferase 2
acnB  b0118 Aconitate hydratase 2 0
adiA  b4117 Biodegradative arginine decarboxylase 1
Adk  b0474 Adenylate kinase 0
AhpF  b0606 Alkyl hydroperoxide reductase subunit F 0
AldH b1300 Putative aldehyde dehydrogenase. 3
araE  b2841 Arabinose-proton symporter 0
argF b0273 Ornithine carbamoyltransferase chain F 0
argH  b3960 Argininosuccinate lyase 0
argl b4254 Ornithine carbamoyltransferase chain I 0
argS  bl876 Arginyl-tRNA synthetase 1
Asd b3433 Aspartate-semialdehyde dehydrogenase 8
AsnS  b0930 Asparaginyl-tRNA synthetase 0
b0257 b0257 CP4-6 prophage; partial transposase of insertion element 0
IS91 1A

bl145 bll45 Putative lambdoid prophage e14 repressor protein C2 0
b1362 bl1362 Putative Rz endopeptidase from lambdoid prophage Rac 0
b1374 bl1374 Putative DNA-invertase from lambdoid prophage Rac 0
b1579 bl1579 Putative lambdoid prophage Qin defective integrase 0
b2442 b2442 Putative prophage CPZ-55 integrase 0
b4285 b4285 Transposase insM for insertion sequence element IS600 0
bioC  b0777 Biotin synthesis protein bioC 1
btuB  b3966 Vitamin B12 transporter btuB precursor 0
cadA b4131 Lysine decarboxylase, inducible 3
cadB b4132 Probable cadaverine/lysine antiporter 0
cheA bl1888 Chemotaxis protein cheA 1
citD  b0617 Citrate lyase acyl carrier protein 0
citE  b0616 Citrate lyase beta chain 3
citF b0615 Citrate lyase alpha chain 0
clpB  b2592 Chaperone clpB 9
csgB  bl041 Minor curlin subunit precursor 1
cvpA  b2313 Colicin V production protein 0
cysS  b0526 Cysteinyl-tRNA synthetase 3
DapA b2478 Di hydrodipicolinate synthase 2
dapE  b2472 Succinyl-diaminopimelate desuccinylase 0
deoD b4384 Purine nucleoside phosphorylase deoD-type 0
dinF  b4044 DNA-damage-inducible protein F 0
dsbB  bl185 Disulfide bond formation protein B 4
endA  b2945 Endonuclease-1 precursor 2
exbB  b3006 Biopolymer transport exbB protein 2
Fabl  b1288 Enoyl-[acyl-carrier-protein] reductase [NADH] 2
fadL  b2344 Long-chain fatty acid transport protein precursor 2
Fes b0585 Enterochelin esterase 4
figE  bl076 Flagellar hook protein fIgE 1
fliD bl 924 Flagellar hook-associated protein 2 0
FliY b1920 Cystine-binding periplasmic protein precursor 0

(continued)
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Table 2 (continued)

Gene B-number Gene name Literature
count
fruL  b0079 Very hypothetical fruR/shl operon leader peptide 0
fumA bl612 Fumarate hydratase class I, aerobic 1
fumB b4122 Fumarate hydratase class I, anaerobic 1
fumC bl611 Fumarate hydratase class II 0
fxsA  b4140 Protein fxsA 0
GatY b2096 Tagatose-1,6-bisphosphate aldolase gatY 1
glcB  b2976 Malate synthase G 0
GIdA  b3945 Glycerol dehydrogenase 1
gltA b0720 Citrate synthase 6
gppA  b3779 Guanosine-5'-triphosphate,3’-diphosphate pyrophosphatase 0
pt b0238 Xanthine phosphoribosyltransferase 12
groEL  b4143 60 kDa chaperonin 68
groES  b4142 10 kDa chaperonin 44
GrpE  b2614 Protein grpE 21
Gst b1635 Glutathione S-transferase 276
hipA  b1507 Protein hipA 0
hipB  b1508 HTH-type transcriptional regulator hipB 0
His]  b2309 Histidine-binding periplasmic protein precursor 0
hscA  b2526 Chaperone protein hscA 1
hslU  b3931 ATP-dependent hsl protease ATP-binding subunit hslU 0
htgA  b0012 Very hypothetical heat shock protein htgA 0
HtpG  b0473 Chaperone protein htpG 4
htpX bl 829 Probable protease htpX 0
htrC~ b3989 Heat shock protein C 0
htrE b0139 Outer membrane usher protein htrE precursor 0
hyaB  b0973 Hydrogenase-1 large chain 0
hycC b2723 Formate hydrogenlyase subunit 3 0
IbpA b3687 Small heat shock protein ibpA 8
IbpB  b3686 Small heat shock protein ibpB 5
ilvA  b3772 Threonine dehydratase biosynthetic 2
vl b0077 Acetolactate synthase isozyme III large subunit 0
insA  N/A N/A 10
intA  b2622 Prophage CP4-57 integrase 5
intB  b4271 Prophage P4 integrase 0
intC  b2349 Putative prophage CPS-53 integrase 0
intD  b0537 Prophage DLP12 integrase 0
intF  b0281 Putative prophage CP4-6 integrase 0
kgtP  b2587 Alpha-ketoglutarate permease 0
lacY  b0343 Lactose permease 5
lacZ  b0344 Beta-galactosidase 331
lamB  b4036 Maltoporin precursor 37
lit b1139 Bacteriophage T4 late gene expression-blocking protein 3
LpcA b0222 Phosphoheptose isomerase 0
lysA  b2838 Diaminopimelate decarboxylase 1
MdaB b3028 Modulator of drug activity B 0
mdh  b3236 Malate dehydrogenase 7
metC  b3008 Cystathionine beta-lyase 0
modF  b0760 Putative molybdenum transport ATP-binding protein modF 0
mutM  b3635 Formamidopyrimidine-DNA glycosylase 0

(continued)
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Table 2 (continued)

Gene B-number Gene name Literature
count

nagC b0676 N-acetylglucosamine repressor 0
nfrA  b0568 Bacteriophage N4 adsorption protein A precursor 0
nfrB  b0569 Bacteriophage N4 adsorption protein B 1
nhaR  b0020 Transcriptional activator protein nhaR 1
nlp b3188 Sugar fermentation stimulation protein B 0
nmpC  b0553 Outer membrane porin protein nmpC precursor 0
nohA bl1548 Prophage Qin DNA packaging protein NU1 homolog 0
nrd F - b2676 Ribonucleoside-diphosphate reductase 2 beta subunit 0
NusG b3982 Transcription antitermination protein nusG 1
ogrK  b2082 Prophage P2 OGR protein 0
OmpF b0929 Outer membrane protein F precursor 13
OmpR 13405 Transcriptional regulatory protein ompR 7
ompX b0814 Outer membrane protein X precursor 2
OppA bl243 Periplasmic oligopeptide-binding protein precursor 2
pckA  b3403 Phosphoenolpyruvate carboxykinase [ATP] 4
pdxJ  b2564 Pyridoxal phosphate biosynthetic protein pdxJ 1
PepD  b0237 Aminoacyl-histidine dipeptidase 0
pheM bl715 Phenylalanyl-tRNA synthetase operon leader peptide 0
PhoB  b0399 Phosphate regulon transcriptional regulatory protein phoB 0
plsB  b4041 Glycerol-3-phosphate acyltransferase 1
ppdD  b0108 Prepilin peptidase dependent protein D precursor 0
proP  b4l11l Proline/betaine transporter 0
PrsA  b1207 Ribose-phosphate pyrophosphokinase 3
PstS  b3728 Phosphate-binding periplasmic protein precursor 5
ptrB  b1845 Protease 2 0
PurB  bl1131 Adenylosuccinate lyase 0
pyrB  b4245 Aspartate carbamoyltransferase catalytic chain 1
pyrC  bl062 Dihydroorotase 0
pyrl  b4244 Aspartate carbamoyltransferase regulatory chain 1
pyrl  b4246 PyrBI operon leader peptide 0
racC  bl351 Protein racC 0
RbsB  b3751 D-ribose-binding periplasmic protein precursor 0
rhsE  bl456 Protein rhsE 0
Rrf b0172 Ribosome recycling factor 3
sdaC  b2796 Serine transporter 0
sdhA  b0723 Succinate dehydrogenase flavoprotein subunit 2
sdhB  b0724 Succinate dehydrogenase iron-sulfur protein 2
sdhC  b0721 Succinate dehydrogenase cytochrome b556 subunit 0
sdhD  b0722 Succinate dehydrogenase hydrophobic membrane anchor protein 1
sgcR  b4300 Putative sgc region transcriptional regulator 0
sieB bl353 Superinfection exclusion protein B 0
SodB bl1656 Superoxide dismutase [Fe] 2
speC  b2965 Ornithine decarboxylase, constitutive 2
ssb b4059 Single-stranded DNA-binding protein 9
SspA 3229 Stringent starvation protein A 4
t150  b3558 Putative transposase insK for insertion sequence element IS1 50 0
tdcE  b3114 Keto-acid formate acetyltransferase 0
TesB  b0452 Acyl-CoA thioesterase 11 4
tig b0436 Trigger factor 4

(continued)
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Table 2 (continued)

Gene B-number Gene name Literature
count

TpiA b3919 Triosephosphate isomerase

Tpx  bl324 Thiol peroxidase

tra5  N/A N/A

tra5 N/A N/A

treC  b4239 Trehalose-6-phosphate hydrolase

kG b1363 Trk system potassium uptake protein trkG

trs5  N/A N/A

tsx b0411 Nucleoside-specific channel-forming protein tsx precursor

ugpB  b3453 Glycerol-3-phosphate-binding periplasmic protein precursor

uraA  b2497 Uracil permease

Usg b2319 USG-1 protein

uxaC  b3092 Uronate isomerase

yagU b0287 Inner membrane protein yagU

yah B b0316 Putative HTH-type transcriptional regulator yahB

yail  b0374 flagellar protein

YajQ b0426 UPF0234 protein yajQ

ybbD  b0500 Hypothetical protein ybbD

beS b0555 Probable lysozyme from lambdoid prophage DLP12

ybcT  b0556 Putative Rz endopeptidase from lambdoid prophage DLP12

ybcU  b0557 Lipoprotein bor homolog from lambdoid prophage DLP12
precursor

YbdQ b0607 Universal stress protein G

ybeD  b0631 UPF0250 protein ybeD

YcaC b0897 Protein ycaC

YchF b1203 GTP-dependent nucleic acid-binding protein engD

yeiS  b1279 Inner membrane protein yciS

YdjA bl765 Protein ydjA

yejG  b2181 Hypothetical protein yejG

YegfZ b2898 Unknown protein from 2D-page

yhgE  b3402 Hypothetical protein yhgE

Yhgl b3414 Protein gntY

=Nl SHeoleoNoNolololoRoloRoBoReo ol =Na i =

yi2l  N/A N/A

yi22  N/A N/A

yi22  N/A N/A

yi4l  b4278 Transposase insG for insertion sequence element 1S4
yiSA  b3557 Insertion element IS1 50 hypothetical 197 kDa protein
yi91b  b4283 Transposase insN for insertion sequence element IS91 1 B

yiaK  b3575 Hypothetical oxidoreductase yiaK

yidE  b3685 Putative transport protein yidE

yjdE  b4115 Arginine/agmatine antiporter

yjeH b4141 Inner membrane protein yjeH

yleB  b0572 Cation efflux system protein cusC precursor

yojH  b2210 Malate:quinone oxidoreductase

yrfG  b3399 Hypothetical protein yrfG

yrfH  b3400 Heat shock protein 15

yrfl b3401 33 kDa chaperonin

ytfE  b4209 Regulator of cell morphogenesis and NO signaling

[=NoloNoNoNololoNoloNolo o Rolo oo e o oo oo Bo o N
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Table 3 Genes which are down-regulated (under-expressed) during recombinant protein produc-
tion identified by mRNA or protein profiling. The last column represents the number of publica-
tions in which the corresponding gene name co-occurs with the term ‘“recombinant protein
production” in the PubMed database

Gene B-number Gene name Literature
count

alaS b2697 Alanyl-tRNA synthetase 6
argQ b2691 arginine tRNA 2 (duplicate of argV,Y,Z) 0
argU b0536 arginine tRNA 4 7
argV b2694 arginine tRNA 2 (duplicate of argQ,Y,Z) 0
argZ b2692 arginine tRNA 2 (duplicate of argV,Y,Q) 0
artP b0864 Arginine transport ATP-binding protein artP 0
asnU b1986 asparagine tRNA 0
aspS b1866 Aspartyl-tRNA synthetase 2
aspT b3760 aspartate tRNA 1 (duplicate of aspV,U) 0
aspV b0216 aspartate tRNA 1 (duplicate of aspT,U) 0
atpC b3731 ATP synthase epsilon chain 0
atpD b3732 ATP synthase beta chain 1
atpF b3736 ATP synthase B chain 0
clpA b0882 ATP-dependent Clp protease ATP-binding subunit clpA 0
clpP b0437 ATP-dependent Clp protease proteolytic subunit 5
clpX b0438 ATP-dependent Clp protease ATP-binding subunit clpX 1
deoA b4382 Thymidine phosphorylase 0
deoB b4383 Phosphopentomutase 1
dnaJ b0015 Chaperone protein dnalJ 30
dnaK b0014 Chaperone protein dnaK 46
dps b0812 DNA protection during starvation protein 6
edd b1851 Phosphogluconate dehydratase 0
emrR b2684 Transcriptional repressor mprA 1
eno b2779 Enolase 2
fba b2925 Fructose-bisphosphate aldolase class 2 3
fecB b4290 Iron 1
feoA b3408 Ferrous iron transport protein A 0
fmt b3288 Meth ionyl-tRNA formyltransferase 0
ftsJ b3179 Ribosomal RNA large subunit methyltransferase J 0
ftsZ b0095 Cell division protein ftsZ 8
gapA b1779 Glyceraldehyde-3-phosphate dehydrogenase A 3
glpD b3426 Aerobic glycerol-3-phosphate dehydrogenase 2
glpF b3927 Glycerol uptake facilitator protein 3
gltT b3969 glutamate tRNA 2 (duplicate of gItU,V,W) 0
gltU b3757 glutamate tRNA 2 (duplicate of gltT,V,W) 0
gltv b4008 glutamate tRNA 2 (duplicate of gltT,U,W) 0
gltW b2590 glutamate tRNA 2 (duplicate of gItT,U,V) 0
gltX b2400 Glutamyl-tRNA synthetase 0
glyQ b3560 Glycyl-tRNA synthetase alpha chain 0
glyS b3559 Glycyl-tRNA synthetase beta chain 0
hemM b1209 Outer-membrane lipoprotein lolB precursor 0
hfiB b3178 Cell division protein ftsH 1
hfiX b4173 GTP-binding protein hflX 0
hfq b4172 Protein hfq 2
hisS b2514 H istidyl-tRNA synthetase 0
hrpB b0148 ATP-dependent RNA helicase hrpB 0

(continued)
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Table 3 (continued)

Gene B-number Gene name Literature
count

hslV b3932 ATP-dependent protease hslV 0
htrA b0161 Protease do precursor 8
ileS b0026 Isoleucyl-tRNA synthetase 1
leuS b0642 Leucyl-tRNA synthetase 0
leuT b3798 leucine tRNA 1 (duplicate of leuQ,P,V) 0
lon b0439 ATP-dependent protease La 14
IpdA b0116 Dihydrolipoyl dehydrogenase 4
lysS b2890 Lysyl-tRNA synthetase 2
lysU b4129 Lysyl-tRNA synthetase, heat inducible 0
metG b2114 Methionyl-tRNA synthetase 1
metL b3940 Bifunctional aspartokinase/homoserine dehydrogenase 11 0
metW b2815 initiator methionine tRNA-f1 (duplicate of metZ,V) 0
metY b3171 initiator methionine tRNA-f2 0
metZ b2814 initiator methionine tRNA-f1 (duplicate of metW,V) 15
miaA b4171 tRNA delta(2)-isopentenylpyrophosphate transferase 0
mopA b4143 60 kDa chaperonin 25
mopB b4142 10 kDa chaperonin 0
narK b1223 Nitrite extrusion protein 1 0
nohB b0560 Prophage QSR’ DNA packaging protein NU1 homolog 0
nrdB b2235 Ribonucleoside-diphosphate reductase 1 beta subunit 1
nuoC b2286 NADH-quinone oxidoreductase chain C/D 0
ompT b0565 Protease 7 precursor 15
osmY b4376 Osmotically-inducible protein Y precursor 2
pheS bl1714 Phenylalanyl-tRNA synthetase alpha chain 1
pheT b1713 Phenylalanyl-tRNA synthetase beta chain 0
ppiB b0525 Peptidyl-prolyl cis-trans isomerase B 0
PSpA b1304 Phage shock protein A 16
rbsC b3750 Ribose transport system permease protein rbsC 1
recR b0472 Recombination protein recR 0
rfaD b3619 AD P-L-g lycero-D-man no-heptose-6-epi merase 0
rtbD b2040 dTD P-4-dehydrorham nose reductase 1
rhsD b0497 Protein rhsD precursor 0
rplA b3984 508 ribosomal protein L1 4
rplB b3317 508 ribosomal protein L2 0
rplC b3320 508 ribosomal protein L3 2
rplD b3319 50S ribosomal protein L4 1
rplE b3308 50S ribosomal protein L5 0
rplF b3305 50S ribosomal protein L6 2
rplJ b3985 508 ribosomal protein L1 0 2
rplK b3983 50S ribosomal protein L1 1 1
rplL b3986 508 ribosomal protein L7/L.12 1
rpIM b3231 50S ribosomal protein L13 0
rpIN b3310 508 ribosomal protein L14 0
rplO b3301 50S ribosomal protein L15 0
rplP b3313 508 ribosomal protein L16 0
plQ b3294 50S ribosomal protein L1 7 0
rplR b3304 508 ribosomal protein L1 8 0
rplS b2606 50S ribosomal protein L1 9 1
rplT b1716 508 ribosomal protein L20 0

(continued)



66

Table 3 (continued)

C. Vijayendran and E. Flaschel

Gene B-number Gene name Literature
count

rplU b3186 508 ribosomal protein L.21 0
rplV b3315 508 ribosomal protein L22 0
rplW b3318 508 ribosomal protein L.23 0
rplX b3309 508 ribosomal protein L24 0
plY b2185 50S ribosomal protein L25 1
rpmA b3185 508 ribosomal protein L27 0
rpmB b3637 50S ribosomal protein L.28 0
rpmC b3312 508 ribosomal protein L29 1
rpmD b3302 50S ribosomal protein L30 0
rpmE b3936 508 ribosomal protein L31 0
rpmF b1089 50S ribosomal protein L32 0
rpmG b3636 508 ribosomal protein L33 0
rpmH b3703 50S ribosomal protein L34 0
rpml b1717 508 ribosomal protein L35 19
rpmJ b3299 50S ribosomal protein L36 0
rpoA b3295 DNA-directed RNA polymerase alpha chain 1
rpoB b3987 DNA-directed RNA polymerase beta chain 3
rpoC b3988 DNA-directed RNA polymerase beta’ chain 0
rpoD b3067 RNA polymerase sigma factor rpoD 2
rpoE b2573 RNA polymerase sigma-E factor 1
rpoH b3461 RNA polymerase sigma-32 factor 6
rpoN b3202 RNA polymerase sigma-54 factor 5
rpoS b2741 RNA polymerase sigma factor rpoS 12
rpoZ b3649 DNA-directed RNA polymerase omega chain 0
rpsA b0911 30S ribosomal protein S1 4
rpsB b0169 30S ribosomal protein S2 1
rpsC b3314 30S ribosomal protein S3 0
rpsD b3296 30S ribosomal protein S4 0
rpsE b3303 30S ribosomal protein S5 0
rpsF b4200 30S ribosomal protein S6 1
psG b3341 30S ribosomal protein S7 0
rpsH b3306 30S ribosomal protein S8 0
rpsl b3230 30S ribosomal protein S9 0
rpsJ b3321 30S ribosomal protein S10 0
rpsK b3297 30S ribosomal protein S11 0
rpsL b3342 30S ribosomal protein S12 0
rpsM b3298 30S ribosomal protein S13 1
rpsN b3307 30S ribosomal protein S14 0
rpsO b3165 30S ribosomal protein S15 0
rpsP b2609 30S ribosomal protein S16 0
psQ b3311 30S ribosomal protein S17 0
rpsR b4202 30S ribosomal protein S18 0
rpsS b3316 30S ribosomal protein S19 1
rpsU b3065 30S ribosomal protein S21 0
rrfA b3855 5S rRNA 0
rrfB b3971 5S rRNA 0
rrfC b3759 5S rRNA 0
rrfD b3274 5S rRNA 0
rfE b4010 5S rRNA 0

(continued)
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Table 3 (continued)

Gene B-number Gene name Literature
count
rrfF b3272 5S rRNA 0
rfG b2588 5S rRNA 0
rrfH b0205 5S rRNA 0
rrlA b3854 23S rRNA 0
rlC b3758 23S rRNA 0
rlD b3275 23S rRNA 0
rseA b2572 Sigma-E factor negative regulatory protein 0
serS b0893 Seryl-tRNA synthetase 1
speD b0120 S-adenosylmethionine decarboxylase proenzyme 0
talC b3946 Fructose-6-phosphate aldolase 2 1
thrS b1719 Threonyl-tRNA synthetase 0
tnaA b3708 Tryptophanase 6
tnal b3707 Tryptophanase leader peptide 0
upp b2498 Uracil phosphoribosyltransferase 1
ybeY b0659 UPF0054 protein ybeY 0
ybjC b0850 Hypothetical protein ybjC 0
ycaR b0917 Protein ycaR 0
yccA b0970 Inner membrane protein yccA 0
yccV b0966 Hypothetical protein yccV 0
ycfN b1106 Thiamine kinase 0
yeaF b1782 MItA-interacting protein precursor 0
yedU b1967 Chaperone protein hchA 0
yfiD b2579 Autonomous glycyl radical cofactor 0
yhdN b3293 Hypothetical protein yhdN 0
yhiE b3512 Transcriptional regulator gadE 0
yljA b0881 ATP-dependent Clp protease adaptor protein clpS 0
yqjE b3099 Inner membrane protein yqjE 0

effective relationship among the various functional categories mentioned in this
chapter.

Considerable improvement may come from the utilisation of bacteria with
minimal genomes by reducing the complexity and at the same time stabilising the
genotype as accomplished for, e.g. E. coli [67] and Bacillus subtilis [68]. It has also
always to be kept in mind that wildtype organisms have developed to cope with
natural environments, the conditions of which are fundamentally different from
those imposed in industrial cultivation processes. The knock-out of metabolic
burden and superfluous regulatory pathways may lead to a more solid foundation
for the optimisation of biological processes. The strategy of creating organisms
with minimal genomes could pave the way.

Integrating metabolome and especially fluxome data along with proteomics and
transcriptomics is necessary in order to understand the interplay of media composi-
tion and recombinant protein yield. These studies have most often been carried out
under well defined conditions with respect to media composition in order to be able
to close the mass balance for the main elemental sources. Thus, the influence of
single nutrients can be studied on different molecular levels like for transcription
and metabolic fluxes, e.g. [69, 70]. Often, flux analyses are performed without
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combination with other molecular levels since it integrates the outcome of all
lower-level influences, e.g. [71-73]. Such analyses have been applied to study the
impact of recombinant proteins on the metabolism of the producing bacterium
E. coli [74-76] or other microorganisms [77, 78]. However, the metabolic state of
microorganisms is a much better indicator for processes directed to the production
of low molecular mass metabolites instead of recombinant proteins. Problems with
protein expression are diverse and involve the whole cellular machinery. In conse-
quence, primary information is to be expected from data representing the transcrip-
tome and the proteome. Since even this information is often not precise enough,
novel techniques may lead to a more complete picture in the future. Such novel
methods may be found in applying, e.g. novel massively parallel sequencing
techniques to detect mRNA during the process of translation by ribosome profiling
[79]. Thus, the work of the ribosomes would be visible in details which have not
been accessible up to now.

These endeavours embracing classical as well as novel approaches should lead
to a more complete understanding of the molecular phenomena on the cellular level
which can be translated into models describing the behaviour of microorganisms
under different cultivation conditions — finally leading to combining of systems bio
(techno)logy with bioprocess engineering [80], integrating experimental evidence
from transcriptome, proteome and fluxome in order to approximate the real cellular
behaviour. Since recombinant protein expression is thought to represent a heavy
metabolic burden for the synthesising cellular machinery, the metabolic stress is
addressed as a primary variable. Thus, it has to be kept in mind that the specific
growth rate may also be a central variable of influence on protein yield and quality.
This main variable can be controlled to a large extent by means of different process
engineering strategies. It is here where cellular and engineering information will
have to be integrated in order to obtain optimal process performance for recombi-
nant protein production. The complexity of the task is not the only reason that
the whole living nature has to be considered as host systems for the economic
expression of recombinant proteins [81].
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Engineering the Escherichia coli Fermentative
Metabolism

M. Orencio-Trejo, J. Utrilla, M.T. Fernandez-Sandoval,
G. Huerta-Beristain, G. Gosset, and A. Martinez

Abstract Fermentative metabolism constitutes a fundamental cellular capacity
for industrial biocatalysis. Escherichia coli is an important microorganism in
the field of metabolic engineering for its well-known molecular characteristics
and its rapid growth. It can adapt to different growth conditions and is able to
grow in the presence or absence of oxygen. Through the use of metabolic
pathway engineering and bioprocessing techniques, it is possible to explore the
fundamental cellular properties and to exploit its capacity to be applied as
industrial biocatalysts to produce a wide array of chemicals. The objective of
this chapter is to review the metabolic engineering efforts carried out with E. coli
by manipulating the central carbon metabolism and fermentative pathways to
obtain strains that produce metabolites with high titers, such as ethanol, alanine,
lactate and succinate.

Keywords Alanine, Central carbon metabolism, Escherichia coli, Ethanol,
Fermentative metabolism, Glucose, Lactate, Metabolic engineering, Succinate,
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1 Introduction

Metabolic networks in Escherichia coli consist of hundreds of metabolites that
are interconnected through a large number of biochemical and regulatory reac-
tions [1]. In principle, metabolites could flow through various reactions; how-
ever, under some conditions several reactions are not used by the cell [2].
Fermentative metabolism constitutes a fundamental cellular capacity for indus-
trial biocatalysis. Endogenous organic compounds used by cells as terminal
electron acceptors — under oxygen deprivation — are converted into biochemical
products that represent valuable molecules to humanity [3]. E. coli is an impor-
tant microorganism in the field of metabolic engineering for its well-known
molecular characteristics and its rapid growth. It has several alternative pathways
and sophisticated sensing mechanisms for cell growth and survival under fermen-
tative conditions [4].

Growth can be carried out by fermentative processes, in which redox balance is
achieved internally, or by respiratory processes, requiring an exogenous electron
acceptor. Compounds such as fumarate, trimethylamine N-oxide, dimethylsulfox-
ide, nitrite, nitrate, or O, can serve as the acceptor. Reduction of the electron
acceptor is catalyzed by a membrane-associated complex, which results in efflux
of H", thus generating a proton-motive force. This protonic potential enables the
influx of H* across the plasma membrane to drive energy-requiring processes, such
as the synthesis of ATP, the transport of nutrients, or cell motility. Whenever an
exogenous electron acceptor is available, the cell restrains its fermentation process
in favor of respiration, thereby diverting most of the carbon source for biosynthesis.
Not only does the cell favor respiration over fermentation, given a choice of
electron acceptors, it also preferentially uses the compound that has the highest
redox potential [5].

In E. coli, the fermentation of glucose may be regarded as a process in which the
four extra reducing equivalents (or 4H* + 4e™) released, as the metabolic price for
making two ATPs by substrate-level phosphorylation, are disposed of by the further
metabolism of two pyruvate molecules. Glucose is converted to a mixture of
metabolic products consisting primarily of acetate and formate, as well as smaller
amounts of lactate, succinate and ethanol (Fig. 1) [6, 7]. The proportions of the
excreted products depend on the growth conditions, thereby indicating that the cell
possesses considerable flexibility in maintaining its redox and energy balance [7].
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Fig. 1 Carbon central metabolism in wild type E. coli under anaerobic conditions. Rectangles
indicates the main enzymes. Abbreviations: PTS glucose — phosphoenolpyruvate phosphotransfer-
ase system, Pgi phosphoglucose isomerase, Pfk phosphofructokinase, Fba fructose bisphosphate
aldolase, Tpi triose phosphate isomerase, Gapdh glyceraldehyde-3P dehydrogenase, Pgk phospho-
glycerate kinase, PgmA phosphoglycerate mutase, Eno enolase, Pyk pyruvate kinase, Zwf glucose-
6P-1-dehydrogenase, Gnd 6-phosphogluconate dehydrogenase, Rpe ribulose phosphate epimerase,
Rpi ribose-5-phosphate isomerase, Tkt transketolase, Tal transaldolase, Eda 2-keto-3-deoxy-
phosphogluconate aldolase, Edd phosphogluconate dehydratase, Xy/ SP xylulose-5-phosphate,
Ril 5P ribose-5-phosphate, Gly 3P glyceraldehyde-3-phosphate, S 7P sedoheptulose-7-phosphate,
Ery 4P erythrose 4-phosphate, Fru 6P fructose 6-phosphate, KDPG 2-keto-3-deoxy-gluconate-6-
phosphate, Frd fumarate reductase, Pfl pyruvate formate lyase, Mdh malate dehydrogenase, Fum
fumarase, Adh alcohol dehydrogenase, Ldh lactate dehydrogenase, PTA phosphotransacetylase,
Ack acetate kynase

Because the products have different oxidation states, E. coli can modulate its
metabolism to grow on different carbon sources, adjusting the proportion of each
produced compound [8, 9]. The objective of this chapter is to review the metabolic
engineering works carried out using E. coli that have manipulated the central
carbon metabolism and fermentative pathways to obtain strains that produce meta-
bolites with high titers.
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2 Sugar Transport

Culture media in industrial fermentative processes frequently employ sugars that
constitute the main raw material for biomass and product generation. Glucose is the
most utilized raw material in fermentations with E. coli, mostly because it is
relatively inexpensive and is the preferred carbon and energy source for this
microorganism. Glucose is internalized into the cytoplasm by the phosphoenolpyr-
uvate:sugar phosphotransferase system (PTS). This is a protein system that parti-
cipates in the transport and phosphorylation of glucose and other sugars [10, 11]. It
is composed of the soluble and nonsugar-specific protein components Enzyme I
(EI) and the phosphohistidine carrier protein (HPr) (Fig. 2). These proteins relay a
phosphoryl group from phosphoenolpyruvate (PEP) to the sugar-specific enzymes
ITA and IIB. Component IIC (and in some cases IID) is an integral membrane
protein permease that recognizes and transports the sugar molecules, which are
phosphorylated by component IIB. There have been 21 separately identified
enzyme II complexes encoded in the E. coli chromosome, each involved in the
transport of several different sugars [12]. In E. coli, the glucose-specific 11 PTS
complex is composed of the soluble ITA°' enzyme and the integral membrane
permease IICBY™ [13, 14].

Activity of the PTS results in a tight linkage between sugar transport and its
subsequent metabolism due to its dependence on PEP as a phosphate group donor
for sugar internalization. When E. coli grows in minimal medium containing
glucose as the carbon source, PTS consumes 50% of the available PEP [15]. The
PTS therefore plays a major role in determining the PEP/PYR ratio and carbon flux
distribution originating from these metabolic nodes. It can be expected that

Arabinose H*Y Xylose HY

Glucose

PEP— —(ED) ~P
Pyruvate X@ ’ D
ge

Fig. 2 Glucose, arabinose, and xylose transport systems in Escherichia coli. The general energy
coupling proteins and the transporting complex for glucose from the phosphoenolpyruvate:sugar
phosphotransferase system are shown as well as the ATP-dependent and symporters for arabinose
and xylose
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modification of PTS activity should have an important impact on carbon flux
distribution in central metabolism. Mutant strains lacking EI and HPr exhibit a
very limited capacity to transport and phosphorylate glucose and have a very low
specific growth rate (PTS™ Glc™ phenotype) [16]. The reconstitution of PTS-
independent glucose transport in these PTS™ Glc™ mutants has been achieved
using different strategies. Using glucose as the limiting nutrient in a continuous
culture it was possible to isolate, from a PTS™ Glc™ strain, mutants capable of
internalizing glucose at a rate similar to that of a PTS™ strain (PTS™ Glc* pheno-
type) [17]. It was determined that in these mutants, glucose is transported and
phosphorylated by galactose permease (GalP) and glucokinase (Glk), respectively
[17, 18]. Another strategy to augment glucose transport capacity in a PTS™ Glc™
mutant is to increase expression of the genes encoding GalP and Glk [19].

Modification of PTS activity has enabled the improvement of E. coli strains to
produce useful metabolites derived from central metabolism. E. coli strains devel-
oped for the production of succinate have been generated by modifying central
metabolic pathways to redirect carbon flux from the EMP and TCA pathways to the
enzymes isocitrate lyase and succinyl-CoA synthetase, leading to succinate syn-
thesis [20]. It has been determined that inactivation of the gene ptsG, which
encodes the glucose-specific component IICB®', resulted in a 23% increase
in final succinate titer, a 22% higher specific productivity and a 16% increase in
succinate molar yield from glucose when compared to an isogenic ptsG* strain
[21]. The replacement of PTS-dependent activity by GalP and Glk has been shown
to cause a twofold increase in the specific rate of acetate production when com-
pared to a PTS™ strain [19]. These strains were transformed with a plasmid carrying
the pdcz,, and adhB,, genes from Zymomonas mobilis, encoding pyruvate decar-
boxylase and alcohol dehydrogenase II, respectively. These enzymes convert
pyruvate to ethanol [22]. It was determined that the PTS™ Glc* strain displayed a
twofold increase in the specific rate of ethanol production when compared to a
PTS™ strain [19].

3 Central Carbon Metabolism Pathways

3.1 Glycolytic Pathway

For several reasons, glycolysis can be viewed as one of the primordial pathways
established in the evolution of metabolism, and many other carbon and energy
sources metabolically feed into this pathway. First, the phosphorylated intermedi-
ates, the coenzymes and energy carrier molecules (e.g., triosephosphates, NAD/
NADH and ADP/ATP) are also used in numerous other pathways, including those
participating in biosynthesis. Additionally, glucose likely emerged as the sugar of
choice because of its high ring structure stability, which limits potentially deleteri-
ous nonenzymatic glycosylation of proteins [5].
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From glucose, E. coli can obtain the carbon skeletons for every amino acid,
nucleotide, coenzyme, fatty acid, or other metabolic products needed for growth.
Under both aerobic and anaerobic conditions, glycolysis is the sequence of 10
enzymatic reactions that converts glucose into pyruvate (Fig. 1). In this process,
some of the free energy released from glucose is conserved in the form of ATP and
NADH. Glycolysis can be divided into two stages. The first involves four consecu-
tive reactions that finally result in the splitting of the glucose molecule (Cg) into two
phosphoglyceraldehyde (C;) molecules. Two ATP molecules are used per mol of
metabolized glucose, and these donate the phosphoryl groups present in phospho-
glyceraldehyde. The second stage of glycolysis consists of five consecutive reac-
tions that result in the oxidation of phosphoglyceraldehyde to pyruvate. This stage
generates four ATP molecules per mol of metabolized glucose, resulting in a net
yield of two ATP molecules.

It is well known that E. coli controls the synthesis of its respiratory pathway
enzymes in response to aerobic and anaerobic cell growth conditions, and that this
control depends on whether the alternative anaerobic respiratory substrates are
present. In anaerobic respiration, E. coli can produce terminal oxidoreductases
with the alternative electron acceptors, nitrate, dimethyl sulfoxide (DMSO), tri-
methylamine-N-oxide (TMAO), and fumarate. Each enzyme is able to couple
oxidation of NADH to a variety of other electron donors via the cellular quinone
pool. Upon oxygen depletion, synthesis of the anaerobic functioning enzymes
allows the energetically less favorable electron acceptors to be used for respiratory
metabolism in lieu of fermentation. Synthesis of the anaerobic oxidoreductases
enzymes is nitrate dependent; nitrate reductase levels are elevated in the presence of
this preferred electron acceptor, whereas levels of the DMSO/TMAO reductase and
fumarate reductase remain low. When nitrate is depleted from the medium or is
absent, the remaining anaerobic respiratory enzymes accumulate to optimal levels.
In absence of any of these alternative anaerobic electron acceptor substrates, the
cell resorts to a mixed-acid fermentation [23].

Those systems channel electrons from donor to terminal acceptors such that the
overall potential difference is maximized for any given growth condition [24].
The adaptive responses are coordinated by a group of global regulators, which
include the one-component Fnr (fumarate, nitrate reduction) protein and the two-
component Arc (aerobic respiration control) system [5, 23-27].

3.1.1 Transcriptional Regulation of Glycolytic Genes

The preferred nutritional status of glucose for E. coli is shown by the observed
repression and inhibition exerted by this sugar on gene expression and the activities
of enzymes and transporters related to the consumption of other carbon sources
[28]. When comparing transcript levels between growth in complex medium with
and without glucose, it is common to observe minimal changes in the levels of
transcription of glycolytic genes [16, 29, 30]. When they occur, however, they are
usually related to energy and NADH-NAD balance, such as that found in the pfk,
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gapA, and pykF genes [31-33]. There are several regulatory proteins, such as ArcA,
Crp, FruR, Fnr, and Mlc, that modulate the central metabolic gene expression of
E. coli at the transcriptional level [1, 34]. Of these, FruR (or Cra) is a global
regulator that regulates carbon flow through the central metabolic pathways [35]
by controlling the gene expression balance between the glycolytic and gluconeo-
genic genes [36, 37, 4]. It is known that glycolytic genes, such as glk, pfkA, gapA,
pgk, eno, and pykF, are repressed by this protein [38—40]. In addition, g/k transcrip-
tion is induced in response to stress caused by the overexpression of foreign
proteins [32, 41] and in response to PTS deletion [16].

It has been found that the transcriptional regulatory region of gene gapA contains
four promoter sequences, three recognized by the vegetative RNA polymerase
Ec’°, and one recognized by the heat shock RNA polymerase Ec>2. Transcription
of gapA by Ec*? is activated in the logarithmic phase under conditions of starvation
and heat shock, and one of the sequences recognized by Ec’" is subject to catabolite
repression. These differentially regulated promoters allow the synthesis of gapA
transcripts in a wide variety of environmental conditions [42].

3.1.2 Allosteric Regulation of Glycolytic Enzymes

In metabolic pathways, it is common to consider that enzymes catalyzing essen-
tially irreversible reactions are potential sites for control. In glycolysis, the reac-
tions catalyzed by phosphofructokinase (Pfk) and pyruvate kinase (Pyk) are
virtually irreversible. In fact, the reaction catalyzed by Pfk was considered the
key control step in glycolysis. This enzyme is inhibited by PEP and activated
by ADP when either ligand binds to the same allosteric site [43]. Pfk is inhibited
by ATP, but the inhibitory effect is reversed by ADP and other phosphonucleosides
[44, 45]. Another key enzyme in the glycolytic pathway is Pyk. In E. coli, there
are two Pyk isozymes, Pyk-I or Pyk-F and Pyk-II or Pyk-A, which differ in their
kinetic properties [46]. Both isozymes catalyze pyruvate biosynthesis, but under
glycolytic conditions, PykF is the isozyme that displays the highest activity [47].
This isozyme controls the outflow from this pathway and is activated by fructose
1,6-bisphosphate, which enables it to keep pace with the oncoming high flux of
intermediates. ATP allosterically inhibits PykF to reduce flux when the energy
charge is high.

A metabolite that has an important function in allosteric regulation is PEP. It is
the most energetic phosphorylated compound of all molecules involved in glucose
catabolism. It has been demonstrated that changes in PEP concentration have an
effect on glycolytic and TCA cycle flux in E. coli [48, 49]. Several years ago, the
only known regulatory effect of PEP on glycolysis was the inhibition of Pfk [44].
Nevertheless, it was recently published that PEP is an inhibitor of the enzymes of
the initial reactions of glycolysis. It acts as a potent inhibitor of glucokinase in a
competitive manner with respect to ATP, and as a less potent inhibitor of phos-
phoglucoisomerase (Pgi), Pfk and aldolase (Fba) [50].
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Coenzymes NAD and NADH play a central role in catabolism. These nucleo-
tides function as the most important redox carriers involved in metabolism. They
not only serve as electron acceptors in the breakdown of catabolic substrates, they
also provide the cell with the reducing power needed in energy-conserving redox
reactions, such as those that occur in anaerobic and aerobic respiration [51]. The
internal redox state is important in the allosteric regulation of glycolysis. It is
reported that the flow through GAPDH is regulated by the NADH/NAD ratio
[52]. Moreover, NADH is a competitive inhibitor of GAPDH [33].

As mentioned earlier, the control of glycolytic flux has been attributed to the
enzymes Ptk and Pyk. Several studies, however, have suggested that flux control
may be broadly distributed among most of the enzymes in the glycolytic pathway.
Recently, it has been proposed that glycolytic flux is controlled by reactions outside
this pathway [53], for instance, fermentative or heterologous routes that can supply
the balance between redox and ATP requirements [32, 54].

3.2 Pentose Phosphate Pathway

The pentose phosphate pathway (PPP), also called the phosphogluconate pathway,
is an alternative route for glucose degradation and consists of two branches. The
oxidative branch converts glucose-6-phosphate to 6-phosphogluconate, with the
formation of NADPH as the reducing equivalent for biosynthesis and ribulose-5-
phosphate as the precursor for nucleic acids. The nonoxidative branch, with fruc-
tose-6-phosphate, glyceraldehyde-3-P, and eritrose-4-P as products, interconnects
the glycolytic and aromatic pathways with PPP (Fig. 3). The PPP provides the cell
with intermediates for the biosynthesis of amino acids, vitamins, nucleotides and
cell wall constituents as the lipopolysaccharide layer.

3.2.1 Enzymes of the Oxidative Branch

The first enzyme of the oxidative branch is glucose-6-phosphate dehydrogenase,
encoded by the zwf gene. This enzyme catalyzes the transfer of a hydride ion to
NADP" from C-1 of glucose-6-phosphate, producing 6-phosphogluconolactone
and NADPH. In E. coli, the reaction is irreversible. The enzyme is specific for
NADP" and is inhibited by NADPH, fatty acids, and CoA. Then, 6-phosphogluco-
nolactone is dehydrated by 6-phosphogluconolactonase. This activity may be the
rate-limiting step of the carbon flow into the PPP when the carbon source limits
growth [55]. 6-Phosphogluconate dehydrogenase catalyzes the oxidative decarbox-
ylation of 6-phosphogluconate, a B-hydroxyacid, to ribulose-5-P and CO,. This
reaction is similar to the one catalyzed by the isocitrate dehydrogenase of tricar-
boxylic cycle acids, allowing the generation of NADPH under fermentative con-
ditions. In addition, in anaerobic cultures, the growth rate is reduced by 11%
and 15% when gluconate or glucose is used, respectively, as the carbon source in
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Fig. 3 The pentose phosphate pathway in Escherichia coli and catabolic pathways for xylose,
ribose, and L-arabinose. Rectangles indicates the main enzymes of the pentose phosphate pathway.
Abbreviations: ADP adenosine diphosphate, AraA arabinose isomerase, AraB arabinokinase,
AraD 1-ribulose-5-phosphate epimerase, AraE arabinose/proton symporter, AraFG arabinose
ABC (ATP Binding Cassette) transporter, ADP adenosine diphosphate, ATP adenosine triphos-
phate, CO; carbon dioxide, Gnd 6-phosphogluconate dehydrogenase, NAD* nicotinamide adenine
dinucleotide oxidized, NADH nicotinamide adenine dinucleotide reduced, NADP* nicotinamide
adenine dinucleotide phosphate oxidized, NADPH nicotinamide adenine dinucleotide phosphate
reduced, Pgl 6-phosphogluconolactonase, PTS phosphoenolpyruvate carbohydrate phosphotrans-
ferase system, RbsAB ribose/proton symporter, RbsK Ribokinase, Rpe p-ribulose-5-phosphate
epimerase, Rpi D-ribose-5-phosphate isomerase, Ta/AB transaldolase, TktAB transketolase, XylA
xylose isomerase, XylB xylulokinase, Xy/E xylose/proton symporter, Xy/FGH xylose ABC trans-
porter, Zwf glucose-6-phosphate dehydrogenase

a 6-phosphogluconate dehydrogenase mutant [56], indicating that carbon flows
through the Entner—Doudoroff and PP pathways.

3.2.2 Enzymes of the Nonoxidative Branch

Ribulose-5-phosphate epimerase (Rpe) catalyzes the conversion of ribulose-5-
phosphate to xylulose-5-phosphate. The rpe gene is part of a large operon that
comprises, among others, genes for the biosynthesis of aromatic amino acids [57].
An E. coli rpe mutant is unable to utilize single pentose sugars, and their growth
rate is severely impaired when cultured in minimal medium containing glycolytic
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carbon sources or gluconate [57]. The ribose-5-phosphate isomerase A is a
ubiquitous enzyme that interconverts ribose-5-phosphate and ribulose-5-phos-
phate [58]. Transketolase (Tkt) transfers two carbon atoms from intermediates
of the PPP, thus rearranging the carbon atoms in the molecules that enter this
pathway. Like other enzymes that transfer two carbon groups, transketolase
requires thiamine pyrophosphate (TPP) as a cofactor. Transaldolase transfers
three carbon groups, and thus it is also involved in the rearrangement of the
carbon skeletons of the PPP intermediates.

3.2.3 Xjylose and Other Pentoses Utilization

The PPP allows E. coli to utilize sugars such as p-xylose, b-ribose, and L-arabinose.
These sugars cannot be catabolized by other routes [59, 60]. E. coli can metabolize
all of these sugars to pyruvic acid under anaerobic conditions, and thereafter to a
mixture of formate, acetate, lactate, succinate, and a small amount of ethanol [8].

Xylose can be transported through two different systems of inducible permeases.
One is a periplasmic protein that represents a high affinity system (Km = 0.3—
3.0 uM) and is driven by ATP. The genes encoding this high affinity ABC trans-
porter are organized in a single operon, xy/FGH. The second is a low affinity system
that is energized by proton motive force. This xylose-proton symport system is
encoded by the xy/E gene, and with xy/A (xylose isomerase) and xy/B (xylulose
kinase) belonging to an operon [31] (Figs. 2 and 3).

L-Arabinose is transported by two inducible systems in E. coli K12. The firstis a
low-affinity permease (Km = 100 pM) encoded by araE [60], and this system is
energized by proton motive force. The second system consists of a high affinity
system (Km = 1-3 pM), which is formed by the araFG operon [61]. The araF
gene encodes a periplasmic binding protein with chemostatic receptor function
[62], and AraF operates at the expense of a high-energy covalent bond. araG
encodes an inner membrane protein [63]. Both transport systems are under the
control of the araC gene product, which is part of the ara regulon [64]. L-Arabinose
is metabolized by a set of enzymes encoded by the araBAD operon, an isomerase
(AraA), which converts arabinose to ribulose; a kinase (AraB), which catalyzes the
conversion of ribulose to ribulose-5-phosphate; and L-ribulose-5-phosphate epim-
erase (AraD), which produces xylose-5-phosphate [60]. The expression of this
operon is regulated by the AraC protein [65]. Individual isomerase, kinase or
epimerase mutants do not growth in complex media when L-arabinose is added.
Most strains of E. coli cannot grow on D-arabinose, but E. coli K12 grows on
L-arabinose and E. coli B/r grows on p-arabinose [60].

The catabolic genes for ribose uptake and catabolism are organized in a single
operon (rbsDACBK ). The expression of the operon is under control of a repressor
encoded by the rbsR gene, which is next to the structural genes and is transcribed
independently. Ribose, rather than ribose-5-phosphate, is the inducer [60]. The first
four genes encode a high affinity ABC transporter and the last encodes a ribokinase.
This enzyme (RbsK) is the only enzyme that allows the metabolism of intracellular
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ribose. When E. coli is grown using xylose, an increased expression of the gene
rbsK has been observed. This is likely due to the presence of an internal promoter
within this operon [31].

3.2.4 Pentose Phosphate Pathway Regulation

Metabolic flow through the pentose phosphate pathway is controlled by the activity
of glucose-6-phosphate dehydrogenase, which is controlled by NADP™ availability.
Additionally, 6-phosphogluconate dehydrogenase is regulated by the cell growth
rate [57]. The pentose phosphate pathway of E. coli involves seven enzymes
(Fig. 3), most of which are repressed by their final products, i.e., glucose-6-
phosphate, fructose-6-phosphate, ribose-5-phosphate, glycerdehyde-3-phosphate,
and ribulose-5-phosphate. Activities of glucose-6-phosphate and 6-phosphogluco-
nate dehydrogenases depend of the energy and redox potential of the cell. These
enzymes are repressed by ATP, NADH, and NADPH. Reports about transcriptional
level regulation of genes from the pentose phosphate pathway indicate that zwf is
induced by SoxS, MarA, and Rob, gnd by GadE, talA-tktB by CreB, and rpiB by
RpiR and LipB [66].

3.3 Entner-Doudoroff Pathway

The Entner—Doudoroff (E-D) pathway is comprised of a series of reactions that
catabolize glucose to pyruvate. This pathway occurs only in prokaryotes. Most
bacteria use glycolysis and the PPP for glucose metabolism; however, there are few
bacteria that substitute glycolysis with the E-D pathway. The distinct feature of this
pathway is that it uses 6-phosphogluconate dehydratase (Edd) and 2-keto-3-deoxy-
6-phosphogluconate aldolase (Eda) to produce pyruvate from glucose. The E-D
pathway has a net yield of 1 mol each of NAD(P)H, glyceraldehide-3-P, and
pyruvate. Further metabolism of glyceraldehide-3-P through the triose phosphate
pathway yields 1 mol each of ATP, pyruvate, and NADH.

The E-D pathway in E. coli is specifically induced by gluconate, allowing its
entry into central glycolytic metabolism. The gluconate metabolism involves glu-
conate transport and phosphorylation, as well as the activity of enzymes of the E-D
pathway: Edd and Eda (Fig. 4). An edd mutant grows on glucose with a rate
identical to that of the wild type, but grows 60—70% slower on gluconate [67]. In
contrast, an eda mutant does not grow on gluconate or on acid sugars (glucoronate
and galactorunate), and grows 25% lower on glucose because 2-keto-3-deoxy-6-
phosphogluconate is accumulated and because this metabolite has a bacteriostatic
effect [68].

There are two systems for gluconate transporter and phosphorylation in E. coli.
The Gntl system is the main system for gluconate transport, which contains
two permeases: one of high affinity (GntT) and the other of low affinity (GntU).
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Fig. 4 Entner—Doudoroff pathway in Escherichia coli and catabolic pathways for gluconate,
glucoronate, galacturonate, idonate, and glucose. Rectangles indicates the main enzymes of the
Entner—Doudoroff pathway. Abbreviations: ADP adenosine diphosphate, ATP adenosine triphos-
phate, CO, carbon dioxide, Eda 2-keto-3-deoxy-6-phosphogluconate aldolase, Edd 6-phospho-
gluconate dehydratase, ExuT hexuronate proton/simporter transporter, Gnd 6-phosphogluconate
dehydrogenase, GntT high affinity gluconate transporter, GntU low affinity gluconate transporter,
GntK gluconokinase I, H,O water, IdnD idonate 5-dehydrogenase, IdnK (GntV) gluconokinase II,
1dnO 5-keto-p-gluconate 5-reductase, IdnT (GntW) idonate/5-ketogluconate/gluconate transporter,
KdgK 2-keto-3-deoxygluconokinase, KdgT 2-dehydro-3-deoxy-p-gluconate transporter, KDPG 2-
keto-3-deoxy-6-phosphogluconate, NAD* nicotinamide adenine dinucleotide oxidized, NADH
nicotinamide adenine dinucleotide reduced, NADP™ nicotinamide adenine dinucleotide phosphate
oxidized, NADPH nicotinamide adenine dinucleotide phosphate reduced, Pg/ 6-phosphoglucono-
lactonase, PPP Pentose Phosphate Pathway, UxaA altronate dehydratase, UxaB altronate oxidore-
ductase, UxaC glucuronate isomerase/p-galacturonate isomerase, UxuA mannonate dehydratase,
UxuB mannonate oxidoreductase, Zwf glucose-6-phosphate dehydrogenase

This system also contains a thermoresistant glucokinase (GntK). The Gntl system is
encoded by gntT and by the gntUK operon [69, 70]. Gluconate acts as the inductor
for genes of the Gntl system and the E-D pathway (edd and eda). Both the Gntl
system and the E-D pathway are negatively regulated by GntR, a repressor protein
[71-73]. The other system is Gntll, a subsidiary system for gluconate transport,
which contains a second high affinity gluconate permease (GntW) and a thermo-
sensitive gluconatokinase (GntV) [69, 71]. The resulting product, 6-phosphogluco-
nate, is further metabolized by two competing enzymes of two alternate pathways.
6-Phosphogluconate is diverted into the oxidative pentose phosphate pathway by
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6-phosphogluconate dehydrogenase or into the E-D pathway via Edd and Eda. The
expression of eda is also subject to negative control by the kdgR product, a regulator
of the glucoronate and galactorunate metabolism, which also inhibits the expres-
sion of the kinase for 2-keto-3-deoxygluconate (KdgK) [74]. The induction of the
dehydratase (edd) is favored under conditions of low oxygen concentration.

4 Engineering Fermentative Pathways

4.1 Engineering Ethanologenic E. coli Strains

4.1.1 First Generation of Metabolic Engineered Ethanologenic Strains

Ethanol is one of the fermentation products generated by E. coli under anaerobic
conditions. The ethanol yield, however, is very low due to the formation of other
fermentation products. Furthermore, the native ethanol pathway is not redox bal-
anced when sugars, like glucose or xylose, are fermented. Only one NADH" is
formed per acetyl-CoA synthesized, but two NADH™ are needed to produce one
ethanol molecule via this pathway [8] (Fig. 5). Thus, the native E. coli ethanol
pathway from acetyl-CoA cannot support homoethanol fermentation due to the
need for two NADH molecules per mol of ethanol produced [75].

Glucose Xylose

"
1 NADH'H AD

Lactate PEP CO,

ldhA /‘ adhA Ethanol

! —

NADH HI}K p  Acetaldehyde — thano
Pyruvate =« / .

NAD
Formate 4—* QiEF Ipd
! NADH'H

Acetyl-CoA »

NADH'H
'pta adhE NAD*
Acetyl-P Acetaldehyde
NADH'H
ADP
ack A adhE
TP
Ethanol

Acetate

Fig. 5 Fermentation pathways in wild type E. coli (solid arrows) and engineered ethanologenic
strains (dashed and dotted arrows). Gene encoding enzymes are indicated by italics, the crossed
out pathways indicate deleted genes to avoid subproducts. PET operon pathway ( pdc, adhA, and
adhB) shown by the dashed arrow and novel ethanol pathway in E. coli without foreign genes
(aceEF-Ipd) is indicated by the dotted arrow
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Great interest has recently emerged for producing fuel ethanol from lignocellu-
losic residues [76, 77]. Lignocellulose (biomass) is a complex substance composed
mainly by cellulose, hemicellulose, lignin, and pectin. For ethanol production from
the sugars presented in some polymers of the lignocellulose, E. coli presents some
advantages over other ethanologenic microorganisms (e.g., Saccharomyces and
Zymomonas), primarily a broad substrate-utilization range, such as hexoses (glu-
cose, mannose, galactose, and fructose), pentoses (xylose and arabinose) and uronic
acids [60]. In addition, E. coli is more resistant to toxic compounds produced during
the diluted acid hydrolysis of hemicellulose (alcohols, organic acids, and alde-
hydes) than other ethanologenic microorganisms [78].

By means of metabolic engineering techniques and metabolic evolution, diverse
E. coli strains have been engineered for ethanol production. The first engineered
E. coli strains were transformed with plasmids carrying the PET operon, containing
the genes of the metabolic pathway for ethanol production from Zymomonas
mobilis. The ethanol Z. mobilis pathway, which includes the genes that encode
pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB), allows the pro-
duction of two ethanol molecules per consumed mol of glucose in a balanced redox
reaction (Fig. 5). These engineered E. coli strains produced ethanol as the main
fermentation product [79-81]; however, plasmid-based recombinants strains are
generally less stable than strains in which the foreign genes have been integrated
into the host chromosome.

One of the first breakthroughs in E. coli metabolic engineering for improving
fermentation performance was the design and construction of the ethanologenic
strain KO11 derived from E. coli W [82, 83]. KO11 was developed by Ingram and
coworkers by integrating the PET operon into the E. coli chromosome under the
control of the pfl promoter along with an antibiotic resistance marker (chloram-
phenicol, Cm). The pfiB locus was chosen because the pfIB gene is expressed at very
high levels during anaerobic growth conditions in E. coli [9, 84], and the expression
of genes contained in the PET operon was increased after several selections for
resistance to high levels of Cm. This strain also has an interruption in the frd locus
to prevent succinate production. Batch fermentation using E. coli KO11 in Luria
Bertani (LB) broth with 100 g/L of glucose produced 54 g/L ethanol and 42 g/L
when 80 g/L of xylose were used. Global volumetric productivity was close to
0.9 g/L h of ethanol and the ethanol yields were greater than 100%, exceeding the
maximum theoretical yield (0.51 g ethanol/g sugar) because of the metabolism of
nutrients from LB broth by KO11 [83].

4.1.2 Sugar Utilization

E. coli KO11 has been tested for batch ethanol production from diverse biomass
residues. Sweet whey (58 g/L sugars) was used without supplements, reaching 38%
of the theoretical ethanol yield. When the sweet whey was supplemented with
yeast extract and a trace metals mixture, the ethanol yield increased to 100% [85].
Using corn fiber hydrolysates (90 g/L sugars) added with LB broth components or
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mixture of sugars (100 g/L), ethanol yields were 80-88%, respectively, and global
volumetric productivities of 0.38 and 0.66 g/L h ethanol were observed, without
xylose being completely consumed [86]. Takahashi and coworkers [87] carried out
the fermentation of sugar cane bagasse hydrolysate (68 g/L sugars) supplemented
with tryptone and yeast extract, reaching an ethanol yield of 92% and a volumetric
productivity of 0.66 g/L/h ethanol. Utilizing Pinus sp. hydrolysate (72 g/L), Bar-
bosa and coworkers [88] produced ethanol with a yield of 85-91% of the theoretical
yield (0.8 g/L/h ethanol). Like these examples, many other diverse agricultural
residue hydrolysates had been fermented by E. coli KO11 for ethanol production
[89, 90].

Another set of ethanologenic strains were developed using the PET operon in
plasmids. These Fermentation Biochemistry Research (FBR) Unit strains are E. coli
K-12 derivatives that carry mutations for lactate dehydrogenase and pyruvate
formate lyase, and hence cannot grow under anaerobic conditions unless these
mutations are complemented, for example, with pLOI297. This plasmid contains
the PET operon under the control of the lac promoter from E. coli and the tetracy-
line and ampicillin resistance genes [79]. With this overexpression, the cells
recovered their capacity to recycle NADH" to grow and produce ethanol as their
primary fermentation product [76]. Strains transformed using FBR strains (FBR3,
FBR4 and FBRS) produce ethanol from glucose, xylose, and arabinose using
complex media, with yields of approximately 91% of the maximum theoretical
yield, selectively maintaining pLOI297 after several transferences in batch cultures
when grown anaerobically [91-93]. The FBR strains have also been used to
produce ethanol from biomass hydrolysates supplemented with LB broth compo-
nents, for example, strain FBR3 fermented corn fiber hydrolysates with sugar
concentrations of 66 g/ and has a volumetric ethanol productivity of 0.71 g/L/h.

4.1.3 Second Generation of Metabolic Engineered Ethanologenic Strains

In all the reports described in the two previous paragraphs, it was necessary to
supplement the culture medium with complex nutrients to achieve complete fer-
mentation. Furthermore, when E. coli KO11 grows in minimal medium, the ethanol
yield is lower than 70% of the theoretical maximum, and the ethanol volumetric
productivity is half that obtained with LB medium [94]. This is a disadvantage,
because complex nutrients are too expensive to be used in fuel ethanol industrial
production [22]. Recently, an ethanologenic strain derived from the C lineage of
E. coli has been reported (strain CCE14) to display a higher ethanol production rate
in mineral medium. This is the result of elevated heterologous expression of the
chromosomally integrated genes encoding Pdc and Adh from Z. mobilis, which
results in an ethanol yield that is 90% of the theoretical maximum [32]. This strain
displays a higher ethanol production rate, lower organic acid production rate and
high glycolytic and ethanologenic fluxes that correlate with the enhanced transcrip-
tion and enzymatic activity levels of Pdc and Adh. A re-engineered strain derived
from E. coli KO11 was designated LY 160. This strain has all the genes encoding
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routes for NAD™ production deleted, and the complete ethanol pathway of
Z. mobilis (pdc, adhA, and adhB) was randomly inserted by transposon mutagene-
sis into its chromosome [95]. After selection in mineral medium supplemented with
xylose, a homoethanologenic strain was isolated with genes that code for the
ethanol pathway integrated within rr/E, a ribosomal gene highly expressed in E.
coli at high and low growth rates. Performance of LY 160 in NBS minimal medium
with 1M betaine [96] and 90 g/L xylose shows that ethanol titer and yield are
similar to that of E. coli KO11 in LB broth. An ethanol yield of 95% of the
theoretical maximum and a volumetric productivity of 0.61 g/L/h ethanol was
reported for LY 160 [95].

Strain E. coli SZ420, derived from E. coli B, was engineered to produce ethanol
from the native pathway [97]. Genes coding for fumarate reductase (frdABCD),
lactate dehydrogenase (ldhA), acetate kinase (ackA), and pyruvate formate lyase
(pfiB) were eliminated. The pfIB promoter was used to drive high anaerobic expres-
sion of the pdh operon (aceEF-Ipd), and aceE, aceF, and Ipd expression increased
24-, 18- and 30-fold, respectively, in reference to the parent strain. In addition,
enzymatic activity of the Pdh complex was 33-fold higher than E. coli B under
anaerobic conditions. Interestingly, the anaerobic Pdh activity of E. coli SZ420 was
64% higher than the aerobic Pdh activity of the parent strain. E. coli SZ420 metabo-
lized glucose or xylose (50 g/L) using LB broth into ethanol (19 g/L) in 192 h.
Nevertheless, it showed a lag phase, and xylose was not totally consumed after 192 h.

A novel ethanologenic strain that lacks heterologous genes was derived from
E. coli K-12, obtained by chemical mutagenesis. This strain, denominated E. coli
SE2378, is able to grow under anaerobic conditions due to a mutation in the
pyruvate dehydrogenase (pdh) operon that activates its transcription under anaero-
bic conditions. The pfiB, adhE, IdhA, and aceF genes have been deleted from the
SE2378 strain. It can produce ethanol from glucose and xylose with a yield of 82%
of the theoretical maximum [75]. Due to the pdh operon mutation, E. coli SE2378
can generate an additional NADH from pyruvate to acetyl-CoA and produce 2 mol
of ethanol per mol of glucose under anaerobic conditions. This strain uses the native
E. coli pathway, reducing acetyl-CoA to acetaldehyde and then to ethanol by
alcohol dehydrogenase (AdhE) (Fig. 5). In LB medium added with glucose (50 g/L),
E. coli SE2378 produced 22 g/L ethanol in 72 h with a maximum specific ethanol
productivity (gp,) of 1.34 g/g cells/h, whereas the g, with 50 g/L xylose was higher
than glucose (2.24 g/g cells/h). SE2378, however, requires acetate and glutamate for
growth in glucose-minimal medium.

4.1.4 Stability of Ethanologenic E. coli Strains

For commercial production of ethanol, batch and continuous culture fermentation
are broadly utilized, the latter producing a greater quantity of ethanol. One disad-
vantage of the continuous culture is the generation of mutant strains during the
culture time [98]. It is clear that, for successful long-term continuous fermentation,
a high degree of stability of the recombinant strain is essential.
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E. coli KO11 has demonstrated to be a good biocatalyst for ethanol production,
with high yields from pentose and hexose sugars and biomass hydrolysates. When
E. coli KO11 and other transformed strains with pLOI297 are transferred several
times in batch culture [99] or cultivated in continuous cultures [100], however, these
strains show instability with regard to ethanol production, resulting in a reduction in
ethanol yield. This occurs in the absence of antibiotics in LB medium or when using
pentoses as carbon sources. When E. coli KO11 grows in LB medium with glucose,
the ethanol yield decreases to around 50% of the theoretical maximum in only 12
generations [99]. Using glucose- or xylose-limited continuous cultures at dilution
rates (D) of 0.14 1/h and 0.07 1/h, respectively, these authors showed that E. coli B
(pLOI297) and E. coli KO11 exhibited a rapid loss of ethanologenicity, with or
without the presence of antibiotics in the feed medium. Even the ethanologenicity
of E. coli KO11 was lost when the concentration of Cm was increased from 40 to
300 mg/L [101]. In another investigation, Dumsday and coworkers [100] evaluated
the ethanologenic stability of E. coli KO11 in batch and continuous culture fermenta-
tions (D = 0.06 1/h). They found that this strain was stable on glucose, mannose,
xylose, and galactose (20 g/L) in batch cultures even in the absence of selective
antibiotics (12 generations approximately). In continuous cultures only on glucose,
the strain was stable. On mannose, xylose, and xylose—glucose mixtures, however,
KOL11 lost its ethanologenic capacity after 10 days. It has been suggested that the
reduction or loss of ethanologenicity of E. coli KO11 in continuous culture is due to
genetic instability [99] and loss of the heterologous ethanologenic genes [101, 102].
On the other hand, using E. coli FBRS, Martin and coworkers [102] carried out a
continuous culture with LB broth containing xylose or glucose (50 g/L) without
antibiotics at dilution rates of 0.045 1/h and 0.075 1/h, respectively. This strain
maintained a stable ethanol yield of 80-85% of the theoretical maximum on both
sugars over 26 days. In a continuous fluidized bed reactor with FBRS5 the plasmid loss
increased in free cells, whereas the amount of immobilized cells did not change. This
strain has the drawback that under aerobic conditions and in the absence of antibiotics
in the medium, the plasmid pLOI297 is lost.

4.1.5 Tolerance of Ethanologenic Strains

Since ethanol is a low-value product, its final concentration in the culture medium
for commercial production must be the highest possible to minimize the cost of
ethanol purification [77]. A higher resistance to ethanol toxicity is therefore a
desired trait in the microorganisms employed for commercial production. It has
been proposed that the main damage site for ethanol in E. coli is the cell membrane,
causing damage to the peptidoglycan assembly in the growing cell wall and the
associations between cross-linking enzymes and the cell membrane. Moreover,
high concentrations of alcohols solubilize lipids and denature proteins, leading to
membrane damage [103]. The toxicity of alcohols is directly related to their chain
length and hydrophobicity, indicating a hydrophobic site of action. It has also been
observed that elevated temperatures reduce ethanol tolerance [103]. An ethanol
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tolerant strain derived from E. coli KO11 was obtained utilizing random mutation
techniques and metabolic evolution. Strain LYO1 was obtained when E. coli KO11
was cultivated in LB medium with 50 g/L glucose in the presence of exogenous
ethanol. After sequential transfers performed while increasing the ethanol concen-
tration (35-50 g/L), the cells were spread on solid medium containing Cm to select
mutants, which retained efficient ethanol production and tolerance. These colonies
were used to inoculate broth with ethanol for continuing selection [104]. After
several transfers, among the selected strains, E. coli LY0O1 showed resistance to
growth inhibition by 45 g/L ethanol. LY01 was able to produce over 60 g/L ethanol
from 140 g/L xylose-LB (72 h, ethanol yield of 85%). This titer is the highest
reported with ethanologenic E. coli. The survival ratio was 50% (CFU) when LYO1
was exposed to 100 g/L ethanol over 0.5 min, whereas E. coli KO11 only survived
less than 10% [104]. Ethanol tolerance in microorganisms correlates with the cell
membrane lipid composition, including increases in the amount of unsaturated fatty
acids (vaccenic acid), shifts in phospholipid composition, and changes in the
phospholipids to protein ratios [105]. These changes, along with some factors
such as the capacity of a strain to produce osmolites like trehalose, increase the
cell’s resistance to ethanol damage [106].

Some toxic molecules are generated during the thermochemical treatments of
biomass: furane derivates, organic acids, aldehyde, alcohols, and aromatic com-
pounds that inhibit the cell growth and ethanol production [106, 107]. It was found
that, in many cases, the degree of toxicity is directly related to hydrophobicity [78].
The combinations of furfural with aromatic aldehydes and ethanol were synergistic
in toxicity for growth, and furfural was the only aldehyde that caused a strong
inhibition of ethanol production. E. coli KO11 and LYO1, however, have a native
ability to transform furfural to the less toxic furfuryl alcohol [108]. LYO1 was more
resistant than KO11 to furfural and 5-HMF, and the toxic effect of aldehydes on
cells did not affect the membrane integrity [78]. Aliphatic acids appear to inhibit
both growth and ethanol production by collapsing ion gradients and increasing the
internal anion concentration [109]. Unlike organic acids and aldehydes, alcohols
damaged the cellular membrane by leakage of magnesium from the cells and
inhibiting the cell growth [103, 110]. The toxicity of hemicellulose hydrolysate
results from a combination of compounds rather than from a single toxic compound
[108]. Despite the multiple toxic effects caused by organic acids, aldehydes and
alcohols on E. coli growth and ethanol production, ethanologenic E. coli strains
have a greater resistance to these toxic effects compared to other ethanologenic
strains, such as S. cereviciae and Z. mobilis [78, 107, 110].

4.2 Metabolic Engineering of E. coli for L.-Alanine Production

L-Alanine is an important amino acid used in the field of food, cosmetic and
pharmaceuticals [111], including its use in pre- and postoperative therapies [112].
L-Alanine is generally produced by enzymatic conversion of L-aspartic acid by
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L-aspartate B-decarboxylase from Pseudomonas dacunhae. This method is very
efficient and uses either immobilized or free cells, reaching conversion yields
greater than 90% [113]. Nevertheless, fumaric acid used to obtain L-aspartic acid
by enzymatic catalysis is a product derived from petroleum [112]. L-Alanine can
also be produced with microorganisms. Corynebacterium tumescens or Arthrobac-
ter sp. uses an L-alanine dehydrogenase (ALD) with the growth and amino acid
production phases clearly separated to produce L-alanine. A p-alanine auxotrophic
E. coli strain uses lactic acid and an amino donor to generate this amino acid [111,
114]. A recombinant strain of Z. mobilis expressing L-alanine dehydrogenase
(alaDh) of Bacillus sphaericus, under thiamine limitation, has also been reported
for L-alanine synthesis [115]. The alanine yields obtained from these microorgan-
isms, however, are low [112].

In E. coli, at least three pathways are involved in the generation of L-alanine.
One is through the enzyme valine-pyruvate aminotransferase (AvtA), utilizing
valine as the amino donor and pyruvate as the amino acceptor [116]. In the latter,
the enzyme cysteine desulfurase (IscS) catalyzes the transfer of sulfur and selenium
from cysteine and selenocysteine to molecules like tRNA and to sulfur and sele-
nium-dependent proteins, thereby generating L-alanine. Nevertheless, this pathway
is not an important contributor to L-alanine synthesis [117]. Finally, the main and
the most direct pathway for L-alanine synthesis is catalyzed by the enzyme gluta-
mate-pyruvate aminotransferase (AlaB), which catalyzes the reversible amination
of pyruvate to L-alanine with glutamate as the amino donor in a NADH dependent
form. Thus, when alanine is produced through this pathway, the yield is improved
by O, limitation [118] (Fig. 6). Furthermore, p-alanine is formed by racemization of
L-alanine catalyzed by two enzymes, Alr and DadX, with anabolic and catabolic
functions, respectively [116, 119].
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Fig. 6 Alanine pathway in wild type E. coli (ala B, solid arrow) and heterologous alanine
dehydrogenase pathway (alaD, dashed arrow). Gene encoding enzymes are showed by italics,
the crossed out pathways indicate deleted genes to avoid subproducts
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4.2.1 Process Development for L-Alanine Production with Engineered
E. coli Strains

Some L-alanine production strains have been engineered by cloning the alaD gene
from Arthrobacter sp. or Bacillus sphaericus with diverse results. A decade ago, an
E. coli strain was modified for DL-alanine production by cloning the gene coding
for ALD from Arthrobacter sp. HAP1 under control of lac promoter in a plasmid.
The titer reached was 8.1 g/L of DL-alanine in mineral medium (30 g/L glucose)
using shake flasks under oxygen-limited conditions [111]. Lee and coworkers [120]
developed an E. coli strain containing the alaD gene from B. sphaericus cloned into
the vector pTrc99A. This strain also had mutations in aceF and IdhA genes to
prevent acetyl-CoA and lactate formation from pyruvate. Using a two-phase pro-
cess, first an aerobic phase (20% dissolved oxygen) and then a limited oxygen phase
with complex medium and glucose-NH4Cl feeding, these authors obtained an
L-alanine yield based on glucose consumed of 0.69 g/g (maximum theoretical
yield for alanine is 0.989 g/g glucose). A maximum volumetric rate of L-alanine
production of 1.54 g/L/h was reported. Further work for improving culture condi-
tions, i.e., the addition of glucose-NH4CI pulses during the production stage,
resulted in a maximum volumetric rate of 2.0 g/L/h alanine. This yielded 32 g/L
of L-alanine in 27 h. The overall yield on glucose was 0.63 g/g. Nevertheless, the
addition of IPTG and antibiotics to the cultures makes this process impractical for
commercial L-alanine production.

In another two-phase process, Smith and coworkers [121] produced DL-ala-
nine from glucose in an E. coli mutant strain that over-expressed the alaD
gene from B. sphaericus in plasmid pTrc99A (Fig. 6) and has deleted the genes
coding for enzymes that compete for pyruvate to form products like formate
(pfiB), phosphoenolpyruvate (pps), acetate (poxB), lactate (IdhA), and acetyl-
CoA (aceEF) [120]. The process consisted of cell growth under aerobic condi-
tions using 20 g/L glucose in complex medium with antibiotics, followed by
anaerobic conditions with the addition of glucose. This strategy allowed the
production of 34 g/L. DL-alanine in 13 h with a DL-alanine yield on glucose of
0.86 g/g and an overall volumetric productivity of 2.1 g/L/h in batch mode. To
avoid excessive acetate formation during the aerobic phase, the same strain was
cultured under fed-batch mode at ¢ = 0.15 1/h and then switched to a nongrowing
anaerobic phase. During the anaerobic phase, 88 g/L of DL-alanine was produced
at a high volumetric rate (4.0 g/L/h) and with a DL-alanine yield of 100% of the
theoretical maximum.

An H*-ATPase- and lactate dehydrogenase defective E. coli mutant expressing
the alanine dehydrogenase gene (adh) from Bacillus stearothermophilus has also
been used for DL-alanine production [122]. The mutation in the H*-ATPase-
operon increased the glycolytic flux, which stimulated pyruvate production [123].
The strain produced 20 g/L DL-alanine from 50 g/L glucose after 24 h of fermenta-
tion using complex medium with antibiotics under aerobic conditions. The DL-
alanine yield on glucose was only 0.41 g/g due to the great amount of pyruvate that
was produced (16 g/L), which indicates a limiting step is the conversion of pyruvate
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to DL-alanine that is likely due to the aerobic conditions utilized during fermenta-
tion or favored by the high glycolytic flux of this strain.

Finally, the largest L-alanine concentration produced by E. coli has been reported
by Zhang and coworkers [112], who utilized a derivative strain of E. coli W, called
XZ132, to produce L-alanine. Strain XZ132 had deletions in the frd, pfiB, adhE,
ackA, mgsA, and dadX genes to prevent the production of succinate, formate,
ethanol, acetate, lactate, and the conversion of L-alanine to p-alanine, respectively.
In XZ132, the native /dhA gene of E. coli was replaced by the alaD gene, which
codes for alanine dehydrogenase of Geobacillus stearothermophilus XL-65-6
(Fig. 6). The strain construction included driving alaD transcription from the native
ldhA promoter for anaerobic L-alanine production. A metabolically engineered
strain was evolved by serial transfers in mineral medium, with increasing glucose
concentrations until XZ132 was selected. Strain XZ132 produces L-alanine with
99.5% of chiral purity as the main product during batch fermentation (48 h),
reaching concentrations of 114 g/L from 120 g/L glucose in mineral medium
[112]. These authors reported an L-alanine yield of 0.95 g/g glucose and a volumet-
ric rate of 2.37 g/L/h. Xylose (50 g/L) was used for fermentation in the same
mineral medium with XZ132. Results show that this strain produced 43 g/L of L-
alanine with 99.5% of chiral purity within 72 h with an L-alanine yield of 0.85 g/g
xylose. The work carried out with strain E. coli XZ132 has demonstrated that the
generation of new strains for L-alanine production at high concentrations from
glucose is possible without the use of plasmids, rich media or two-phase cultures
(acrobic and anaerobic).

4.3 Pathway Engineering for Lactate Production

4.3.1 p-Lactate

L-Lactate is the most used isomer in the food industry, and it has been reported that
it is the most used isomer in the emerging poly lactate (PLA) industry [124].
Homolactic fermentation in E. coli has been achieved by a number of different
approaches. Gupta and Clark [125] reported that adh and pta double mutants
regained the ability to grow anaerobically on hexoses by homolactic fermentation.
E. coli is capable of equilibrating the redox balance when it grows on hexoses or
pentoses by reducing pyruvate to lactate, but it is not able to grow on sorbitol or
gluconate. This shows that is only possible to regenerate the redox potential
generated by sugars but not by sugar alcohols or acid sugars. To enhance lactate
flux, other pyruvate consuming pathways must be eliminated (Fig. 7). The expres-
sion of the focA-pfIB operon is regulated by ArcA and Fnr and it is active under low
or no oxygen conditions. The reaction catalyzed by pyruvate formate lyase (Pfl) is
the major pyruvate-consuming pathway under anaerobic conditions. Thus, most of
the strategies to achieve homolactic fermentation are designed to include elimina-
tion of the Pfl activity. Since it is the major acetyl-CoA formation reaction under
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anaerobic conditions, the pfl knockout strains show a low growth rate and low cell
mass formation, and some of them are unable to grow on glucose under anaerobic
conditions without acetate supplementation [126, 127].

Zhou et al. [126] developed an E. coli W3110 based biocatalysts with pfl and
other deletions from genes that code for fermentative enzymes (Frd and Adh).
Strains SZ40 (focA-pfiB, frdBC) and SZ58 (focA-pfiB, frdBC, adhE) were able to
produce optically pure p-lactate in mineral media with a 98% yield. As previously
mentioned in pfl mutants, however, the cell yield is drastically reduced, leading to a
severe reduction in the volumetric productivity. The cell yield was improved by a
further mutation in the acetate kinase gene (SZ63 strain), likely due to a reduction in
the consumption of acetyl-CoA by the acetate pathway. Volumetric productivity
was improved by an initial aeration phase or by adding 10 mM of acetate.

4.3.2 L-Lactate

Dien and coworkers [128] developed L-lactate producing strains by the heterolo-
gous expression of the lactate dehydrogenase from Streptococcus bovis in
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nonfermenting E. coli strains (Apfl and Aldh). Strains were evaluated for plasmid
maintenance without antibiotic selection, the lactate pathway being the only
NADH reduction reaction. Recombinant strains were able to produce lactic
acid as the major fermentation product, with a 93% yield and productivities up to
2.33 g/L/h using complex medium. Using a p#sG knockout to abolish catabolite
repression, simultaneous consumption of glucose and xylose was achieved in a pfi/
Idh/frd knockout strain (FBR119). The heterologous expression of the /dh of
S. bovis in FBR119 cultures in complex media supplemented with acetate allowed
the lactate yield of 0.77% from 100 g/L of added sugars (50 g/L glucose + 50 g/L
xylose) [129].

E. coli naturally produces the p-lactate isomer through the native lactate dehy-
drogenase (Ldh), an L-lactate producing SZ63 derivative generated by replacing the
native /dhA gene with the chromosomal integration of the L-lactate dehydrogenase
(IdhL) of Pediococcus acidilactici [130]. The resulting strain, SZ79, was able to
produce L-lactate with a high yield but poor productivity. An adaptive evolution
process led to a mutant with a higher growth rate. The SZ85 mutant is capable of
growing faster and converting glucose or xylose with a high yield and productivity.
The IdhL gene was sequenced, and the results showed that mutations arose in the
upstream and coding region of the heterologous IdhL gene [130].

4.3.3 The Importance of the Energetic Yield

The metabolic effect of the knockout of pfl genes under microaerobic conditions
was studied by Zhu and Zhimizu [127]. It was found that pflA~ and pfIB~ strains
produce large amounts of p-lactate. Enzyme activities and intracellular metabolite
concentrations were measured. In the pfi— cells, ATP generation was reduced as a
consequence of the lack of the acetate production pathway. It was shown, however,
that the enzymatic activity of the acetate kinase (Ack) was highly increased. Thus, it
is possible that the Ack-Pta pathway could play a role in producing acetyl-CoA and
therefore consuming ATP. The lower ATP/AMP ratio promotes an increase in
glycolytic flux [131], and since no increase in succinate production was found,
even with a supply of CO,, it was established that the energetic demand is favored
over redox balance. A significantly higher NADH/NAD relationship was found in
pfl” strains. Thus, homolactic fermentation is carried out to equilibrate the redox
balance and to produce energy through glycolysis.

During anaerobic growth, ATP is derived from substrate level phosphorylation.
The acetate forming reaction generates an extra mol of ATP. On xylose, 2 mol of
ATP are used for transport and phosphorylation. Under anaerobic conditions, an
ATP-dependent transport is used. In this case, the net yield of ATP of converting
xylose to pyruvate or lactate is 0.67 mol of ATP/mol of xylose. Due to the low
energy yield, pfl and ack mutants are unable to grow anaerobically on xylose. pfl or
ack mutants, however, are able to grow on arabinose, because arabinose is trans-
ported into the cell by the use of a sugar/proton symporter (araE). Thus, 1 mol of
ATP is conserved, which enables cell growth [132].
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4.3.4 Adaptative Evolution and In Silico Design

Adaptive evolution is a strategy that has been widely used in the past few years to
develop p- or L-lactate producing strains. Adaptive evolution has been useful to
overcome the growth limitations resulting from pfl deletion. Zhou et al. [133]
modified the ethanologenic E. coli strain KO11 for p-lactate production. Knocking
out ethanologenic and cellobiose utilization genes along with focA-pfiB, adhE, and
ackA, followed by a metabolic evolution process in LB medium with 10% glucose,
strain SZ186 was obtained. This SZ186 strain has native sucrose utilization genes,
and no heterologous genes are expressed in it. Further improvement was obtained
by adding 1 mM of betaine. It was found that this osmoprotector increased sugar
and lactate tolerance. Betaine addition also increased cell yield and doubled specific
productivity, thus substantially increasing the volumetric productivity [134]. SZ184
was further improved by another metabolic evolution round in mineral media with
10% glucose, leading to strain SZ194. This strain produces 1 M of p-lactate in 72 h
using mineral salts medium supplemented with 1 mM of betaine in simple batch
culture [135]. Further knocking out of the methylglyoxal synthase gene (msgA) in
SZ194 allowed the elimination of chiral impurities (strain SZ195), and a derivative
strain obtained by adaptive evolution (TG114) produces p-lactate with >99%
optical purity. L-Lactate production strains derived from SZ194 were also obtained
by integration from IdhL of P. acidilactici with an msgA deletion, followed by an
adaptive evolution (strain TG108). The TG114 and TG108 strains are able to
convert 12% glucose to 1.3 mol of p- and L-lactate, respectively, with a maximum
productivity of 2.88 g/L/h and a 98% yield in batch fermentation [96, 136].

In silico design has been used to develop lactic acid producing strains. Fong et al.
[137] used the OptKnock algorithm [138] to identify a multiple gene deletion
combination that couples growth and the production of p-lactic acid. Three different
designs were selected based on this algorithm: pta-adhE, pta-pfk, and the pta-adhE-
pfk-glk knockout strains. The resulting knockout strains were subjected to adaptive
evolution to improve growth rates. In all strains, growth rate increases occurred
over the course of adaptive evolution, and results showed that the obtained pheno-
types were consistent with the computationally determined solution spaces. Experi-
ments were carried out in mineral medium, and the glucose concentration used was
2 g/L. Lactate titers ranged from 0.87 to 1.76 g/L and the secretion rates were
directly coupled to the growth rates.

4.3.5 Dual Culture Strategies to Improve Lactate Productivity

Chang and coworkers [139] reported p- and L-lactic acid production with pta ppc
mutants of E. coli in a two-phase process (aerobic and then anaerobic) using complex
medium. A pta IdhA double mutant harboring the L-/dh gene from Lactobacillus
casei produced optically pure L-lactate as the major fermentation product. Using this
approach, volumetric productivities of 1.04 g/L/h were achieved [139].
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Using an aerobic growth phase to an ODg of 30 that was followed by anaerobic
nongrowth production phase, Zhu and coworkers [140] produced 137 g/L of
D-lactate in defined media using strain ALS947, an aceEF, poxB, pfl, frdABCD
E. coli mutant. Since Pdh and Pfl activities are absent in ALS947, this strain shows
auxotrophy for acetate and isoleucine. Succinate, as by product, was found to be
forming from acetate feed as a product of the glyoxylate shunt of the tricarboxylic
acid cycle. This approach showed the highest volumetric productivity (6.3 g/L/h)
and titer reported so far.

4.4 Recombinant E. coli Engineered for Production of Succinate

4.4.1 Basic Mutations and Dual-Phase Cultures

NZN111 is a nonfermenting strain of E. coli that has pfl and Idh knocked out. A
spontaneous mutant (AFP111) regained the ability to grow under anaerobic condi-
tions due to succinate production. It was found that a mutation that inactivates ptsG
was responsible for the phenotypic change. ptsG inactivation caused PEP to be
available for carboxylation and further succinate conversion, such that NAD" is
regenerated and glucose fermentation can occur [6]. A malic enzyme that is
NADH-dependent was overexpressed from a multicopy plasmid, and the result-
ing strain was able to ferment glucose. Succinate was the major fermentation
product [141].

Plasmid pTrc99A-pyc harboring the pyruvate carboxylase gene from Rhizo-
bium etli was introduced to both the NZN111 and AFP111 strains, after which
they were evaluated under anaerobic and dual-phase growth conditions. Results
showed that AFP111/pTrc99A-pyc was best for succinate production, with a mass
yield of 0.90 g of succinate per gram of glucose-rich media under dual phase
conditions [142]. This strain was further characterized under dual-phase fermen-
tation conditions, and different transition times from aerobic to anaerobic were
evaluated. Results show that transition times have a great effect on succinate yield
and productivity. Using the best transition time, an overall yield of 1.1 g/g, a titer
0f 99.2 g/L, and a productivity of 1.3 g/L/h were achieved in a glucose fed-batch
rich media culture [143]. Due to enhanced anaplerotic activities, when the NZ111
strain was grown aerobically on acetate, it was able to convert glucose to
succinate with a yield of 1.28 mol/mol and a productivity of 1.13 g/L/h in the
anaerobic stage [144].

The E. coli strain AFP184 is a C600 derivative that lacks the genes coding for
Pfl, Ldh, and PTS [145]. This was used to produce succinate in dual-phase fermen-
tations in a medium containing 15 g/L of corn step liquor (CSL). The following
different carbon sources and sugar mixtures were used: glucose, fructose, xylose,
and sucrose. AFP 184 was able to convert all sugars and sugar combinations to
succinate, except for sucrose. Results showed that higher yields were obtained from
glucose (0.88 g/g) in the anaerobic phase, and fructose and xylose showed lower
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yields (0.66 and 0.5 g/g). In the sugar mixtures, no catabolite repression was
detected. The highest succinate titter (40 g/L) and overall productivity (1.27 g/L/h)
were achieved with glucose as a carbon source [146].

4.4.2 Production Under Anaerobic Conditions and Cofactor Studies

Overexpression of PEP carboxylase (Ppc) and PEP carboxykinase were evaluated
by Millard and coworkers [147]. It was found that overexpressing PPC resulted in a
higher succinate production under anaerobic conditions for an E. coli strain that has
no modifications in the fermentative pathways.

Lin and coworkers [148] evaluated the overexpression of pantothenate kinase
(Pank) to increase the acetyl-CoA and CoA pools. Acetyl-CoA is an activator of
Ppc and Pyc. In this work, Pank was overexpressed along with Ppc from Sorghum
vulgare and Pyc from Lactococcus lactis. Results showed that coexpression of Pank
with Ppc and Pank with Pyc increased succinate production compared to the
individual overexpression of Ppc or Pyc. Lin and coworkers [21] evaluated the
individual expression of Ppc and Pyc and coexpression of both enzymes to improve
succinate production in E. coli. This coexpression was also applied to the ldh pfl
double mutant of E. coli. The coexpression of Ppc and Pyc showed a higher
succinate production when compared to the individual expression of each enzyme.
Furthermore, it was found that the elimination of lactate and acetate pathways with
the coexpression of Ppc and Pyc was the most effective strategy to redirect the
carbon flux to succinate (Fig. 8). The effect of different carbon sources, glucose,
xylose, and sorbitol, was evaluated for succinic acid production in different host
strains with Sorgum Ppc overexpression. Xylose showed a better succinate yield
than glucose, which was likely due to a higher PEP availability. Sorbitol, a more
reduced substrate, showed higher succinate production but also showed higher
ethanol production [21].

Strain SBS110MG is a Idh adhE double mutant of E. coli that was evaluated for
succinate production with the expression of a pyruvate carboxylase (Pyc) from
Lactococcus lactis. This strain is able to produce succinate from glucose with a
molar yield of 1.3 mol/mol. The results showed that, by the expression of Pyc,
succinate was the main NAD™ regeneration pathway. Thus, glucose consumption
was improved fourfold [149].

A novel pathway was designed by Sanchez and coworkers [150] using a glyox-
ylate shunt to increase the succinate theoretical yield by reducing NADH require-
ments. Strain SBS550MG was constructed by inactivation of competing pathways
(Idh, adhE, ackA) and isocitrate lyase repressor (ic/R). Simultaneous overexpres-
sion of pyc from L. lactis and an NADH-insensitive citrate synthase (citZ) from B.
subtilis were evaluated. The resulting strain was able to convert glucose into
succinate with a molar yield of 1.6. In a complex medium and with fed-batch
techniques, a succinate titer of about 40 g/L and a productivity of 1.18 g/L/h were
achieved.
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4.4.3 In Silico Design and Adaptative Evolution

Based on metabolic pathway comparison between E. coli and Mannheimia succi-
niciproducens, E. coli strains were engineered for succinate production. Five genes
or operons, ptsG, pykF, sdhA, mqo, and aceBAK, were eliminated. The resulting
strains did not increase succinate production. An in silico metabolic analysis based
on linear programming was used to design a succinate producer. Pyruvate forming
enzymes ptsG, pykF, and pykA were disrupted to generate the W3110GFA strain,
which produces succinate as the major fermentation product in LB-glucose under
anaerobic conditions. Additional deletions were done for the pfl and IdhA genes.
The pfl deletion resulted in a higher succinate molar ratio but in less titer and slower
growth. The /dhA deletion resulted in a strain with marginal growth under anaerobic
conditions [151].

E. coli C derivatives were engineered for succinate and malate production by
deleting central anaerobic genes (adhE, IdhA, and ackA), followed by growth-based
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selection over 2,000 generations. In the resulting strains, succinate and malate
remained as the primary route for NAD™ regeneration. Growth selected mutants
produced higher levels of other organic acids. Further improvements were achieved
by the deletion of the pfiB, poxB, and msgA genes. The best succinate biocatalyst
produced up to 622 mM of succinate, with a molar conversion yield of 1.6 per mole
of glucose metabolized [152]. All FRT sites were removed from the KJ073 strain to
create KJ091 (4ldhA, AadhE, AackA, AfocA-pflB, AmgsA, and ApoxB), which
lacks foreign DNA. The KJ091 strain was further improved by deleting threonine
decarboxylase (tdcD; acetate kinase homologue) and 2-ketobutyrate formate-lyase
(tdcE; pyruvate formate lyase homologue). These deletions reduced the acetate
level by 50% and increased succinate yield (1.3 mol/mol glucose). In addition, by
removing aspartate aminotransferase (aspC) and the NAD™ linked malic enzyme
(sfcA), the succinate molar yield was increased to 1.5, the succinate titer increased
to 700 mM, and the average volumetric productivity increased to 0.9 g/L/h in
simple batch fermentation in mineral media. Residual pyruvate and acetate were
reduced by further deletion of pfa to produce strain KJ134 (AldhA, AadhE, AfocA-
PfIB, AmgsA, ApoxB, AtdcDE, AcitF, AaspC, AsfcA, and Apta-ackA) [153].

5 Conclusions

This chapter shows that basic knowledge of fermentative metabolism, coupled with
metabolic engineering techniques, constitute powerful tools to understand and
explore the fundamental cellular capacity of E. coli and to exploit its capacity to
be applied as an industrial biocatalyst to produce a wide array of commodity
chemicals. It is possible to employ E. coli with a wide array of organic compounds
as terminal electron acceptors for fermentative metabolism, such as hexose sugars
(e.g., glucose, mannose, galactose, fructose, and others), pentoses (e.g., xylose,
arabinose, ribose, xylulose, and others), sugar acids (e.g., glucuronate and galactur-
onate), some uronic acids, and, although not discussed in this chapter, E. coli also
has been engineered for disaccharide catabolism.

Under oxygen-deprived conditions, different substrates are converted into bio-
chemical products that represent valuable molecules to society. A wide variety of
metabolic engineering strategies have been employed to construct homofermenta-
tive strains, displaying high yield and productivity for the target product. With
different degrees of success, high yield, and productivity, homofermentative strains
had been developed, such as those described in this chapter for ethanol, lactate,
alanine, and succinate. These studies provide the basis for the implementation of
appropriate genetic modifications to increase further the product yield, such as
disrupting pathways that compete for metabolite production. This is not restrictive,
however, as E. coli fermentative metabolism can also be engineered to obtain other
potential products with high titers, such as formate, hydrogen, acetate, acetone,
propionate, propanol, propanodiol, butyrate, butanol, bioelectricity, and others.
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Characterization and process development with metabolically engineered strains
have shown that it is possible to obtain homofermentative strains with titters
reaching values above 1 M. Volumetric productivity is a function of cell density.
Some reports, therefore, focus only on the construction of a robust biocatalyst with
high specific productivities to be employed in cultures under anaerobic conditions
or at low cell densities, but channeling most of the carbon to product formation.
Two-stage culture strategies that are based on the development of high quantities of
biomass under aerobic conditions, followed by a switch to anaerobic conditions and
complemented with feed batch cultures, however, have been used to attain higher
increases in volumetric productivity. Furthermore, when strain design by intuitive,
knowledge-based, or synthetic biological methods does not allow for high yield-
productivity strains, adaptive evolution has become a very practical tool for strain
improvement and gives the ability to understand how E. coli adapts and evolves
under different conditions.

Thus far, it has been demonstrated that the enzyme activity of central carbon
metabolism pathways under fermentative conditions are sufficient to contend with
increases in the rates of sugar consumption and product rate formation. Redox
balance remains a key factor, and glycolytic flux is still a complex physiological
parameter that appears widely controlled by ATP demand. It also remains to be seen
how many of the strains developed by the metabolic engineering of fermentative
metabolism and derived processes reach industrial scale as oil reserves decline,
petroleum increases in price, and more eco-friendly technologies are required for
chemical production.
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Modeling Languages for Biochemical Network
Simulation: Reaction vs Equation Based
Approaches

Wolfgang Wiechert, Stephan Noack, and Atya Elsheikh

Abstract Biochemical network modeling and simulation is an essential task in any
systems biology project. The systems biology markup language (SBML) was
established as a standardized model exchange language for mechanistic models.
A specific strength of SBML is that numerous tools for formulating, processing,
simulation and analysis of models are freely available. Interestingly, in the field of
multidisciplinary simulation, the problem of model exchange between different
simulation tools occurred much earlier. Several general modeling languages like
Modelica have been developed in the 1990s. Modelica enables an equation based
modular specification of arbitrary hierarchical differential algebraic equation models.
Moreover, libraries for special application domains can be rapidly developed. This
contribution compares the reaction based approach of SBML with the equation
based approach of Modelica and explains the specific strengths of both tools.
Several biological examples illustrating essential SBML and Modelica concepts
are given. The chosen criteria for tool comparison are flexibility for constraint
specification, different modeling flavors, hierarchical, modular and multidisci-
plinary modeling. Additionally, support for spatially distributed systems, event
handling and network analysis features is discussed. As a major result it is shown
that the choice of the modeling tool has a strong impact on the expressivity of the
specified models but also strongly depends on the requirements of the application
context.
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1 Introduction

1.1 Biochemical Network Modeling

Only 10 years ago the mathematical modeling of cellular processes and, particu-
larly, biochemical network dynamics played a rather subordinate role in biology.
Although such models have been built up for more than half a century (mostly in the
fields of theoretical biology and biophysics) and some simple mathematical
descriptions like, e.g., the Michaelis—Menten or the Monod Model are a common
heritage of biology, the use of mathematical methods to describe and analyze the
behavior of complex intracellular networks was not really accepted at that time. The
original idea of establishing a discipline of theoretical biology was to supply
biology with a theoretical foundation in analogy to physics and chemistry. It was
proposed that biological processes should have a mathematical description like
other phenomena in the world of mechanics, electromagnetism, or chemistry [1].
Unfortunately, all these projects were substantially hampered by the non-availability
of reliable quantitative data and the difficulty to realize a reductionistic approach to
complex cellular systems.

The situation significantly changed about a decade ago when the miniaturization
and automation of standard laboratory procedures led to the development of high
throughput techniques for analyzing the intracellular environment. With the avail-
ability of lots of so-called “omics” data the experimental biologist was faced with a
new kind of problem: mathematical tools and methods are indispensable to develop,
analyze, and explain the complex intracellular interactions mirrored by the
measured data sets and to design informative new experiments. This, finally, gave
rise to the advent of systems biology as a new biological discipline [2, 3]. Being a
systems science, engineering methods play an important role in this emerging field
and, particularly, modeling and simulation became a central concern.

1.2 Standardization for Model Exchange

Dynamic biochemical network modeling is one of the most prominent approaches
to describe the interaction of molecular species in the intracellular environment.
This is done in a so-called mechanistic way by describing the cellular state with
concentrations of those molecular species involved in the investigated processes
and by specifying a reaction kinetic term per reaction as a function of substrate,
product, cofactor, inhibitor, and activator concentrations [4].

The vast majority of biochemical network models that are currently available are
based on the continuum and homogeneity assumptions. This means that:

1. All chemical species involved in the considered processes have such a high copy
number that a continuous concentration value can be used to describe it.
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2. Diffusion processes are very fast compared to chemical reactions so that con-
centrations can be considered to be spatially homogeneous.

As a consequence of these two assumptions, most mathematical models of
biochemical networks built up to date have more or less the same underlying
mathematical structure:

¢=N-v(cs,a), ¢(0)=c¢p €))

with concentration state vector ¢, stoichiometric matrix N, external (possibly time
dependent) concentrations s, and kinetic parameter vector o.

According to (1) the whole system dynamics is governed by the set of balance
equations for the changing metabolite pools together with the enzyme kinetic terms
for all reaction steps. This results in a set of ordinary differential equations. In
steady state investigations this system degenerates to a set of nonlinear algebraic
equations. A simple running example (Fig. 1) clarifies this familiar concept.

Since biochemical network modeling has now become a common and widely
applied methodology, it is not surprising that we are facing a rapidly increasing
number of published models and modeling tools [5]. At the same time the question
arose of how to:

¢ collect different models in a common knowledge repository

¢ make an easy exchange of models between different research groups possible

¢ exchange models between different computational tools for systems analysis,
simulation, parameter estimation, etc.

e combine existing models in order to build up more complex ones

Clearly, these requirements immediately gave rise to a call for standardization.
Based on a general structure (1), it was actually not so difficult to establish a

standard representation for the majority of “mainstream” biochemical network

models. The efforts converged in the specification of the systems biology markup

Balance Equations A Enzyme Kinetics
4
—N. A
¢=N-v(ca) compartment| V) = Ve
with mA1

B Kipz

Y, =V, —_—
27 "max2 Kop2+B D+Kip,

for back

Bf+1 -1 -1 0 VYmax3 p _ Ymax3
B )
N=c| 0 +1 0 0 v = KmB3 Kmp3
D{\0 0 +1 -1 3 148 . D
E\O 0 0 +1 Kngs  Kmps
vy=ks D

Fig. 1 Example of a biochemical network model using enzyme Kkinetic expressions for the
description of metabolic conversions
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language (SBML). The first version of SBML was published in [6] soon followed
by an improved and extended second release [7]. The following sections are based
on SBML 2 which has quickly become a commonly accepted standard throughout
the field of systems biology.

1.3 Universal Modeling Languages

Interestingly, the same standardization problems occurred about 20 years before
in the fields of mechanical, electrical, and process engineering. Quasi stand-
ards for the exchange of electrical network models, e.g., SPICE electrical part
lists [8], were already established in the 1980s and different engineering fields
finally found some more or less standardized ways to communicate their models.
As a common experience it was not really possible to transfer large models
between different research teams using different commercial and/or academic
tools.

With the advent of multidisciplinary engineering fields like mechatronics, med-
ical engineering, environmental engineering or bioprocess engineering, the need for
multidisciplinary modeling and simulation tools being able to cover different
physical domains in one single modeling environment became urgent [9]. At the
same time, object orientation became the dominant paradigm in software engineer-
ing [10]. Object oriented system design aims at modularity, component reusability
and hierarchical architectures. Clearly, these requirements are essential for mathe-
matical modeling as well.

In the 1990s all these activities converged in several efforts to establish stan-
dardized model exchange languages for multidisciplinary modeling from which the
VHDL-AMS [11] and the Modelica [12] initiatives are currently the most promi-
nent ones. A similar academic approach which should also be mentioned here is
ProMoT [13], another is introduced in [14]. With the availability of first commer-
cial multidisciplinary simulation tools based on VHDL-AMS or Modelica, these
two standards are now becoming commonly accepted and widely used in many
technical disciplines. It is not an exaggeration to say that modern multidisciplinary
modeling languages represent the essence of four decades of experience in engi-
neering simulation. From now on the chapter focuses on Modelica, which is in fact
quite similar to VHDL-AMS.

From a simulationist’s viewpoint it is quite interesting to compare a universal
multidisciplinary modeling language with a disciplinary approach like SBML.
From a technical viewpoint this means to compare equation based with reaction
based modeling. This is done in the following sections and as a result several
important differences will be pointed out. It will be shown that the underlying
features of both approaches have direct consequences for the way models are build
up, the tools for model processing that have to be developed, and the future
prospects of the modeling language.
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2 A Brief Overview of SBML

2.1 XML Dialects for Model Specification

SBML is an extended markup language (XML) format [15] and thus supplies a
hierarchical structure for the exchange of biochemical network data. The SBML
standard specifies how a document must be structured, how the different entries
must be named and which data must be included. Although XML is a human
readable text format, it is time-consuming to extract the desired information from
a huge document. For this purpose, different hierarchical browsers for displaying
XML document contents like Xerlin [16] are available. However, for a special
XML format like SBML the user will rarely use a universal XML editor for model
specification but rather will use a domain-specific tool for biochemical network
modeling [17, 18].

The great success of XML as a vehicle to carry any type of information between
heterogeneous computer systems is explained by the availability of numerous
software tools for specifying the structure of XML documents, parsing and extract-
ing information from them, or modifying and transforming the structured data [15].
For this reason XML formats are used today to store configuration files of software
systems, represent formatted texts, tables or graphics, exchange data or to specify
communication protocols. Thus, apart from being “fashionable,” it is not surprising
that XML is now also being used as a state-of-the-art tool for representing
structured mathematical models. Particularly, in the case of SBML, a well sorted
set of software tools for reading, manipulating, and translating XML models as well
as code generation for simulation are available [19].

2.2 SBML Structure

It makes little sense to give an in depth description of SBML in this chapter. To this
end the reader is referred to the official SBML specification documents [20]. In
order to illustrate the basic concepts, the simple example from Fig. 1 will be used.
The different sections of a hierarchically structured SBML description are given as
follows (cf. Fig. 2):

1. The whole system might be spatially structured into different disjoined homo-
geneous compartments. A list of these compartments can be given in the
compartment section.

2. The species section gives a list of all chemical substances involved in the
reaction network (here: A, B, etc.). For each species it must be specified to
which spatial compartment it belongs. Additionally, the biochemical name of a
species and its initial concentration can be supplied.

3. All network reactions are arranged in the reaction section (here: vy, v,, etc.).
Each reaction definition includes a list of all reactants and products as wells as a
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<?xml version="1.0" encoding="UTF-8" standalone="no" 7>
- <sbml xmins="http:/ /www.sbml.org/sbmi/level2/version3" level="2"
metaid="metaid_01" version="3">
- <model id="model_01" metaid="metaid_02" name="SimpleNetwork">
+ <annotation>
+ <listOfCompartmentss
- <listOfSpecies>
<species compartment="compartment_01" id="species_01"
initialAmount="10.0" metaid="metaid_02" name="A" />
<species compartment="compartment_01" id="species_02"
metaid="metaid_03" name="B" />
</listOfSpecies>
- «zlistOfReactions>
- <reaction id="reaction_01" metaid="metaid_04" name="v1" reversible="false">
- <listOfReactants>
<speciesReference name="A" species="species_01" />
</listOfReactants>
- zlistOfProducts>
<speciesReference name="B" species="species_02" />
</listOfProducts>
- <kineticLaw>
+ <math xmins="http://veww.w3.0rg/1998/Math/MathML">
- «listOfParameters>
<parameter id="parameter_01" name="vymax" value="10.0" />
<parameter id="parameter_02" name="km" value="0.05" />
</flistOfParameters>
</kineticLaw>
</reaction>
</listOfReactions>
</model>
</sbml>

Fig. 2 Segment of an SBML file representing a part of the biochemical network shown in Fig. 1

mathematical term for a kinetic model describing the biochemical conversion.
Corresponding kinetic parameters and their values are specified in the parameter
list (here: Viax.1, kma. 1, €tC.).

Given this information, the complete model shown in Fig. 1 can be assembled.
Using an SBML based biochemical network modeling tool like COPASI [18] the
information can be supplied in a much more user friendly form from which the
SBML document is automatically generated.

3 A Brief Overview of Modelica

3.1 Equation Based Simulation Languages

The Modelica language initiative was a result of an increasing desire in the
scientific computing community for supporting multidisciplinary modeling. Since
mathematics is the only language common to all scientific disciplines, Modelica is
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based on the elementary building blocks of algebraic and differential equations. For
this reason Modelica is called an equation based language. Equations can be
assembled into physically meaningful building blocks which, again, can be assem-
bled into large system models. Particularly, Modelica is open to implement special
libraries for any type of physical application domain. Libraries for mechanical
multibody systems, electric circuits, hydraulics, control engineering, thermody-
namics, and many other domains are already available (www.modelica.org). A
European consortium is currently enhancing an already existing large set of free
libraries with other libraries with further application domains [21].

As a consequence of its universal scope, Modelica must be based on domain
neutral concepts which do not already imply any physical application. In the present
case, the chemical reaction steps used in SBML as elementary building blocks are
obviously not domain neutral. In Modelica, physical meaning is generated by
implementing application specific libraries from basic equation blocks.

Essentially, Modelica looks like an object oriented programming language with
the difference that the compiler target is not an executable computer program but an
executable simulation code. Like with program source files, a well structured and
documented Modelica code is human readable, particularly if a special program-
ming editor with syntax highlighting is used (cf. Fig. 3). Moreover, Modelica — like
modern code documentation systems — defines a standardized way to generate

2=vmax2*B/ (kmB2+B) *kiD2/ (D+kiD2) ;
v3=(vmax3£f/kmB3*B-vmax3b/kmD3*D)
/ (1+B/kmB3+D/kmD3) ;
vd=k4*D;

= 'r
end SimpleNetwork;

Fig. 3 Flat implementation of the network shown in Fig. 1 with Modelica. Some repetitive parts
are abbreviated by dots
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HTML-documentation that can be browsed by HTML-browsers or advanced Mod-
elica environments.

Clearly, from the facts mentioned above, there is no previously specified struc-
ture in which a biochemical network model has to be encoded in Modelica. The
general philosophy behind Modelica is that the language itself is the standard
for model exchange. Consequently, the modeler can express his interpretation’s
perspectives and point of views in a Modelica specification. Here, the most
basic representation is a so-called flat code in which all required algebraic and
differential equations are sequentially specified. A straightforward implementation
of the running example may look as shown in Fig. 3. This file already contains all
the necessary information to generate an executable simulation program. Moreover,
the role of identifiers as state variables, external variables, or parameters can be
understood from the context and is recognized by the compiler tool.

3.2 Building Components and Libraries

Although the specification of equation systems by flat models (i.e., lists of equa-
tions) is straightforward, this approach is not really recommendable for the practical
development of large models or even reusable components to be used in other
models. To specify models in a structured way, Modelica supplies powerful
mechanisms for modular and hierarchical modeling. Basically, Modelica is based
on the structural features of object oriented programming languages as far as this
makes sense in the simulation context. For this purpose, equation systems can be
broken down into independent subsets, constituting the components. Every compo-
nent can be connected to other components using a special type of interface object
called a connector.

Once a component has been specified, it can be reused many times in a system
model. Modelica language formalism automatically takes care of the unique iden-
tification of quantities in each sub model of a large model. To this end a familiar
hierarchical “dot notation” is used.

Before the mechanism of assembling independent components to meaningful
system models is explained in detail, the concept of a connector must be clarified.
Essentially, connectors are bidirectional information channels, which identify vari-
ables from one component with those of another. In the running example a
connector carries two variables, a substance concentration and a reaction flux
(Fig. 4). The meaning of the keyword flow will be explained soon.

Once the connector’s definition is provided, it is possible to specify a model
for Michaelis—Menten reactions as shown in Fig. 5. This reaction is connected to its
substrate S and product P by two connectors. The meaning of the two associated
flux variables is the amount of material withdrawn from S on the one hand and
supplied to P on the other. Clearly, these two fluxes are related by the stoichiometry
of the reaction which in this case simply means the identity of both fluxes. In Fig. 5
this identity has a minus sign because the standard convention of Modelica is
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Fig. 4 Implementation and connector cp
meaning of connectors in Real ¢ "M
Modelica. Connecting three

connectors assembles the
equations shown. These

connectors may belong to cp, |E| T CP1-C = CPy.C = CPa.C

flow Real v "Reaction
end cp;

independent components i
(e.g., metabolite, reaction, [2%e Pa. P3.V =

effector)
-~ —
CP3| ¢ c | CP2
v e v
model DynMet model MM 15
cp M "Chemical cp S " ;
Initial ition Real v "I
parameter Eesal c Kinetic parameters
Metabolite concentration parameter Real vmax=10.0;
Real c(start=c_0); parameter Real km=0.05;
equation equation
Balance Kinetic model
der (c)=M.v; v=vmax*S.c/(km+S.c);
M.c=c; S ;
end DynMet; P.v==v;
end MM _15;

Fig. 5 The implementation of Modelica components representing metabolites and reactions as
basic parts of metabolic networks

that positive fluxes are always in the direction from inside to outside of a compo-
nent. Thus, there is an inwards and an outwards flow with a positive and negative
sign, respectively.

Other reaction types can be introduced in a quite similar manner. The imple-
mentation of reactions with many substrates or products is straightforward. Even
when effectors like inhibitors or activators are present, this case can be easily
handled by declaring an effector’s connector with zero flux. This simply means
that effectors influence a reaction rate but do not participate in the reaction itself
(cf. Fig. 6).

Having defined the reaction steps, the component specification for chemical
substance pools is surprisingly simple (cf. Fig. 5). A chemical compound has only a
single connector. It will soon become clear that this connector expresses the result
of the material balance of fluxes around this pool. Knowing this, the change of the
pool size is simply given by the flux variable itself which can have a positive or
negative sign.

The reason why this simple description of pools works is the inherent Modelica
mechanism for connecting components. Essentially, two components are not directly
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parameter

parameter

parameter
equation

Kinetic model

end MM 1S11I;

Fig. 6 Modelica component for modeling an inhibited reaction

connected by one connector but there is a coupling node between all connected
components. It is possible to connect arbitrarily many connectors to a coupling
node as shown in Fig. 4. In the Modelica language, this is simply achieved with the
connect statement. As an example, the complete network specification for the
example of Fig. 1 is shown in Fig. 7. Basically, this is a system parts list together
with a wiring scheme.

3.3 Automatic Code Generation

What does it mean to couple three different connectors (cp) with associated
concentration (c) and flux variables (v) to a single node? The answer depends on
the type of variable given in the connector specification (Fig. 4). If the keyword flow
is missing in a variable specification, the variable is called a potential variable. This
means that the respective variables of all linked connectors are equal (i.e., they
denote the same physical quantity). In our case this means that, at the coupling
node, the identity equations

Cp;.C = CP,.C = CPps.C 2)

are generated. On the other hand, if the keyword flow is present, the variable is
treated as a flow quantity and a Kirchhoff-like material balance is generated:

cp;.v +cp,.v+cps.v=0 3)



120

W. Wiechert et al.

Trp_1S v4(k=0.5)
equation

connect (R.M, v1.S5);

connect (vl.P, B.M);

connect (B.M, v2.8):;

connect (v2.P,
connect (D.M,
connect (B.M,

connect (v3.P, D.
connect (D.M, v4.

>.M);
LI);

.8);:

M) ;

S)i

connect (v4.P, E.M);
end SimpleNetwork;

Fig. 7 The implementation of the complete network of Fig. 1 in Modelica

The resulting flat equation system for the running example, which is generated
from the wiring scheme of the components, is shown in Fig. 8. Obviously, the
Kirchhoff laws introduce exactly the right balance equations for each substance
pool, particularly if the sign convention is applied properly.

The sketched equation generation procedure explains how a fully specified
system model is assembled from its components and wiring scheme. The final result
is a flat model which can also be displayed to the user. In this flat model the Kirchhoff
laws and the identification of potential variables introduce a lot of superfluous
variables. However, model simplification by variable elimination and automatic
formula manipulation is automatically done by advanced Modelica compilers
[22, 23]. In fact, even nonlinear relations are simplified based on state of the art
computer algebraic algorithms. In addition, high-level optimization methods based
on graph algorithms for system decomposition are utilized [9, 24]. However, the
end user is not aware of all these operations running in the background.

This is the basic procedure which enables the Modelica user to specify his
models on a high modular level from which a flat model is automatically generated
in a completely transparent way. Once a library for biochemical network simulation
is implemented, a non-specialist user can simply assemble his models on a high-
level where each component has a domain-specific meaning. It is also possible to
extend the library if necessary. Moreover, available graphical modeling environ-
ments make the library components access easy and support a non-specialist user in
the model building process (cf. Fig. 9).
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Fig. 8 Resulting flat equation system obtained by applying the connector-laws to the components
wiring scheme of Fig. 7. Each component whether a reaction (vy, v», ..., vs) or a metabolite (A, B,
..., E) communicates with the outside world via two interfaces (S)ubstrate and (P)roduct.
Each interface is characterized by two quantities, reaction rate (v), and concentration (c). For
example, vs, describes the concentration of the substance connected to the reaction v; through the
interface S

4 Further Constraints on Biochemical Network Models

In this and the following sections the reaction and equation based approaches to
biochemical network modeling are compared with respect to different criteria. It
will soon become clear that they are not really competitive approaches but rather are
complementary with specific strengths in the one or the other application context.

4.1 Different Types of Constraints in SBML

The standard way to assemble a biochemical network model from substance
balance equations and reaction kinetics is not always sufficient to express any
assumption made on the system or some other conditions which are not directly
related to biochemistry. This makes it necessary to have a mechanism for extending
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Fig. 9 Dymola GUI for building up and simulating system models using self-defined Modelica
libraries

standard network models with additional constraint equations. In the rules section
of an SBML model different kinds of equation constraints are allowed:

1. AlgebraicRule: 0 = f(w)
2. AssignmentRule: x = f(u)
3. RateRule: X = f(w)

Here, x is a variable, f is some arbitrary function returning a numerical result, u
is a vector of variables that does not include x, and w is a vector of variables that
may include x.

Essentially, by introducing the rules section, equation based modeling is intro-
duced into SBML. Although, any additional model feature can be expressed by
using rules, this takes place in an unstructured way.

Some simple examples shall be given to illustrate the occurrence of additional
equation constraints.

1. The first example is thermodynamic equilibrium which might be an assumption
for one reaction step A — B. If thermodynamic equilibrium is considered as a
constraint it is not necessary to specify a reaction rate. Instead, an algebraic
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relation between the concentrations of both pools A and B can be used which is
given by

Vf'A:Vb’B (4)

Here, v¢ and v, denote the forward and backward rate constants, respectively.

2. Another type of constraints is given by conservation laws for conserved moi-
eties. If, for example, the dynamics of the energy metabolites AMP, ADP, ATP
is not explicitly described in the model, a conservation relation might still be
given:

AMP + ATP = 2 ADP 5)

3. In many cases, the intracellular biochemical network is modeled together with
the surrounding environment such as, for example, in bioreactor models. In this
case the bioreactor balances, which cannot be straightforwardly expressed as a
reaction system, must be added to the cell model.

4. In [25] a multiscale model was presented that combines steady state stoichio-
metric equations and overall growth kinetics with a detailed mechanistic
description of a specific pathway. Additionally, to fill in the remaining degrees
of freedom for a unique model solution, some phenomenological relations
between concentrations were added based on the available measurement data.
The resulting model can only be expressed in SBML if most of the equations are
given in the rules section.

4.2 Realizing Constraints in Modelica

Since Modelica is an equation based modeling language, the incorporation of any
type of equations into a model poses no problem at all. Particularly, no additional
concepts have to be introduced to mix differential equations with algebraic equa-
tions. After assembling a model from both types of equations a DAE system
emerges. This is exactly the type of mathematical model structure Modelica is
made for.

Since the 1980s the theory of DAEs has made great progress and both the
similarities and differences to ODEs without purely algebraic parts are well under-
stood [26]. As a consequence several powerful numerical DAE solvers are available
today [27]. From the start, the development of Modelica was based on these
advanced solvers. Particularly, both special cases of pure ODE models or pure
algebraic models (including steady state and quasi steady state systems) are covered.

It is more interesting to see how additional equation constraints can be added to a
model on the level of modular modeling. This is illustrated again with the running
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Fig. 1(? Cf)nstraint based model TE 1S
modeling in Modelica = g
. cp S, P ;s
exemplified by a Real ia
thermodynamic equilibrium A V 3
relation [ KR1NEeTtlC [
parameter
parameter
equation
//The mamic eqguilibrium
kf*S.c=kb*P.c;
S.v=v;
P.v=-v;
end TE_1S;

example. Here, a rapid equilibrium assumption can be represented as a Modelica
reaction step component as shown in Fig. 10. This component can replace any
reaction kinetic component with the same number of substrates and products.
Likewise, a conservation law or other non-local constraints can be added to a
network by a separate component that again is connected to the respective substrate
pools. If cells are modeled together with a bioreactor, this is clearly done by
establishing a component library for bioreactors and coupling it with a cell model
via substrate uptake rate, growth rate, product formation, etc. In such cases the
strength of Modelica to represent multidisciplinary systems becomes obvious.

4.3 Equation Sorting and Consistency Checking

Specifying additional constraints on a given model can render the equation system
inconsistent. There might be an over or under specification which can be detected
by the model assembly algorithm [26, 28]. Even more challenging is the so-called
index problem of DAEs [29, 30]. To illustrate this problem, the example system of
Fig. 1 is used again, but now the Michaelis—Menten term of reaction v, is replaced
by an equilibrium relation between A and B (see (4)):

A = —Vy, B = Vx — V2 — V3, Vx :f(A7B) (6)

Obviously, the equilibrium condition in this model does not directly give the
information about how to solve for the unknown net reaction rate v, of the
corresponding reaction. The missing information can be reconciled from
the original model by the additional equation differentiation. By differentiating
the equilibrium constraint with respect to time a new differential equation is
obtained:

vi-A=w-Bev,=—w/vi-B @)
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This solves the problem, because (7) establishes a direct relation between the
unknown variable v, and the state variables A, B. From the theory of DAEs it is well
known when and how such a procedure works [30]. However, it requires an
automatic manipulation of equation systems by computer algebraic methods. Mod-
elica contains powerful computer algebraic machinery and thus can automatically
diagnose and solve inconsistency and index problems (if possible). Clearly, any
SBML tool dealing with additional rules will need the same algorithms to assist the
user in assembling proper and meaningful models.

S Different Modeling Flavors

5.1 Modeling as a Creative Act

Although standardized system representations have been developed for certain
types of physical domains like multibody systems, electrical circuits, or chemical
reaction networks, there is no unique way of how to model a given real system. In
any case, modeling is also a creative activity in which a real system is interpreted in
terms of mental concepts. Particularly, there might be good reasons for not using a
standard system representation. Examples are given below.

When comparing modeling languages with programming languages, the lan-
guage of chemical reaction equations might be considered as the “assembler
language” of cellular process modeling. This means that the most basic process in
the cellular environment is used as the building block for network modeling, much
like the elementary computational operations of a computer processor are used as
the building blocks to execute any program. Clearly, if homogeneity is assumed,
anything happening in a cell can be expressed on this level. However, the human
user might like to introduce a higher level language that builds up models from
aggregates of simple biologically meaningful components.

As an example, a simple model for the expression of a gene is used here which
can be described on the reaction level as follows:

mRNA = fi.(R) — drna - MRNA, P = ky - mRNA — dp - P )

Here, the mRNA concentration depends on a transcription function f;;(R) with
repressor R and the corresponding protein P is synthesized with a linear law. Both
quantities underlie degradation processes (constants dyrna, dp).

Since this sequence is the same for any gene in the system, the whole process
might be called “gene expression” thus introducing a new concept into the model-
ing framework. Generally, the introduction of a new terminology to describe a
system on a higher level of abstraction is a very common procedure and is
constitutive for the general methodology of conceptual system modeling.

As an example in [31] a highly developed conceptual framework for the model-
ing of biochemical networks has been given which classifies the processes taking
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place in a living cell in terms of control engineering concepts. Thereby a clear
distinction is made between substance storages (with and without genetic informa-
tion) and substance transformers (e.g., enzymatic reactions, degradation, and poly-
merization processes). A further modeling object named signal transformer can be
used for the description of signal transduction and processing.

Obviously, conceptual modeling approaches to cellular systems are not directly
implementable within SBML because the vocabulary of this modeling language is
fixed. This is quite different with Modelica which allows one to introduce arbitrary
new concepts and even to build different types of libraries which conceptualize the
same system in different ways. For example, a component describing gene expres-
sion is shown in Fig. 11.

The clear advantage of conceptual modeling is that Modelica offers ultimate
flexibility for the modeler to express his interpretation of the system structure. On
the other hand, this means that different frameworks will lead to different Modelica
libraries which might be more or less accepted and, in particular, are not compatible
with each other.

5.2 Hierarchical Modular and Object Oriented Modeling

One major concern in systems biology is to obtain a structured representation of
complex biological systems in terms of hierarchically organized components. For

model GE
cp R, P "Chemical ports";

Real mRNA(start=0.1) "mRNA concentration";
al vtr "Transcription rate";

parameter kR=(

parameter [ m=3.0;
parameter | ktl=0.3;
parameter | dmRNA=0.1;
parameter R dP=0.1;

equation
der (mENA) =vtr-dmRNA*mRNA;
der (P.c)=vtl-dP*P.c;
//Kinetic models
vtr=1-R.c*n/ (kR*m+R.c”m) ;
vtl=kt1l*mRNA.c;
E.v=0;

end GE;

Fig. 11 Applying conceptual modeling in Modelica by formulating components of higher abstrac-
tion levels, e.g., gene expression
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example, there are hierarchies of single reactions, pathways and parts in metabo-
lism or genes, operons and regulons in the genetic system. These hierarchies should
be represented in a model by an analogous representation. Again, the SBML
approach — remaining on the assembler level — is very limited to represent such a
hierarchical system structure.

This is quite different with Modelica which, from the start, was designed for the
modeling of engineering systems having a natural modular and hierarchical architec-
ture. As a simple example a series of single reaction steps can be combined to a
pathway by simply assembling them into a submodel (Fig. 12). In this way, any model
can be assembled to larger models which again can be used as building blocks for the
next hierarchical level. This approach has been extensively demonstrated in [32].

It should be noticed that hierarchical modeling was already implemented in
rather early signal flow oriented tools like Simulink. However, signal flow model-
ing is based on the concept of causality: for each component it has to be specified
what the input and output signals are. This already determines a block-wise
sequence of computation. In contrast, Modelica and SBML are non-causal, mean-
ing that the equation system is first completely generated and then numerically
treated as a whole. Essentially, it is the responsibility of the Modelica compiler to
determine the flow of information among system’s variables. For this reason, the
non-causal approach is more powerful but also more demanding than the signal
flow approach [9].

A modern extension to modular and hierarchical modeling is the object oriented
paradigm. Modelica is based on object oriented concepts as far as this makes sense
with an equation based approach. The most characteristic feature of object oriented
systems is certainly class abstraction. Similar models can be generalized to an
abstract model class which is later specialized by implementing the different
details. This gives additional power for conceptual modeling but also for a
structured extension of existing libraries by implementing new submodels derived
from abstract classes and implementing them in a system model.

A
compartment
compartment
Fig. 12 Hierarchical
modeling with Modelica. All
reactions inside the
compartment of the example

network of Fig. 1 are
combined into a submodel
that is connected to the
remaining network parts
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As an example, a reaction step is considered. Without having a concrete law for
the reaction kinetics, an abstract reaction step can first be introduced as shown in
Fig. 13. Here, only the component interface is specified by the connectors, but the
formula for the reaction kinetics is missing. Later on, concrete reaction mechanisms
can be plugged in by class derivation. This is shown in Fig. 13 for a simple mass
action law, a Michaelis—Menten mechanism, and a thermodynamic equilibrium
assumption. By using class derivation, reaction laws can be quickly exchanged in a
model while still keeping the interfacing structure and the connectivity fixed.

5.3 Multidisciplinary Modeling

As mentioned before, in different physical domains modeling has become quite
standardized today. For example, there is nothing to be discussed about how to
formulate the equations of mechanical mass-spring-damper systems by application
of Newton’s law, or how to formulate equations for resistance—capacity—inductivity
electrical networks by using Kirchhoff’s law. This is also the reason why
specialized easy-to-use disciplinary simulation tools are highly developed today.
Biochemical networks are just another such domain. By using SBML one can rely
on a standardized model structure and thus use powerful specially adapted pro-
grams for modeling and simulation.

However, once the borders of a discipline are crossed because another physical
domain enters the system, domain-specific simulation tools run into problems. This
has already been demonstrated above for the SBML rules section. There are many

partial model Reaction
1= H < model MM 1S

parameter Feal kI=0.5; extends Reaction;
equatio equation
end n; end | 1S8;
model MA 1S model TE 15

extends Reaction; extends Reaction;
equation equation

-P.c/k2); PLE;

Fig. 13 The concept of class derivation in Modelica. By specifying an abstract reaction class
different kinetic models can be derived by only supplementing the specific reaction mechanism
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examples where the formalism of standard biochemical network modeling needs to
be extended:

Cellular metabolism is coupled to the dynamics of the surrounding environment.
Several different organisms are interacting.

Electrochemical effects have to be described.

The functioning of a measurement device must be modeled.

b

One frequently chosen way to deal with multidisciplinary problems is simulator
coupling. In this case disciplinary simulators for different domains are driven in
parallel and the interfacing data is exchanged by using application programming
interfaces (APIs). This rather cumbersome procedure requires a lot of manual work,
a good knowledge of the APIs, as well as some understanding of the underlying
numerical algorithms and synchronization procedures. However, once the next
version of a simulator is available, the established simulator coupling might have
to be adapted. It is not surprising that model interfacing und simulator coupling is
currently being discussed in the SBML community.

This problem does not occur with multidisciplinary simulation tools because
they were made for solving exactly this problem. In Modelica it is possible to
integrate models from different physical domains into one multidisciplinary system
model. The only new elements that might have to be introduced are the interfaces
between the domains. These interfaces are usually given by components that
connect to variables of different physical units and describe the translation from
one world to the other. This, for example, holds true for almost any sensor or
actuator device.

6 Spatially Distributed Models

6.1 From DAEs to PDAEs

So far, the restriction was made that all systems are spatially homogenous with the
consequence that each species can be described by one single concentration value.
A first extension to this situation is a multicompartmental system. Spatial transport
processes between different compartments of the system (e.g., between cytosol
and mitochondrium) are then modeled as a pseudo reaction with the conceptual
difference that the transported species remains unchanged while it changes the
compartment.

The situation is quite different when slow diffusion processes occur in the
system leading to continuous concentration gradients. Taking a rigorous approach
this means that any variable becomes dependent on the spatial coordinates. The
DAE system then has to be replaced by partial differential algebraic equation
(PDAE) systems. This is the most general class of continuous time system descrip-
tions that can be handled by standard software tools today.
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Although the Modelica language provides constructs for specifying partial
differential equations (PDEs), the Modelica community is still waiting for a rigid
implementation for simulating PDEs from one of the standard compiler available.
Nevertheless, several attempts for supporting PDE have been performed by several
research groups independently [33-35]. However, if diffusion processes need only
an approximate representation on a rough spatial discretization grid, it is possible to
describe it within the reaction network framework using PDAE:s.

As an example, consider a one-dimensional spatial domain x as illustrated in
Fig. 14. It is discretized with a step size of Ax. If diffusion is slow the substances
described by the concentration variables ¢; can be assumed as homogenously
distributed in each single micro compartment. Diffusion then can be described by
diffusion flows between spatial compartments. These transport processes are
approximately given by Fick’s law as

(Ai —Ai-1)

/ Ax

)

where J is the flux and D the diffusion coefficient. In this way transport can be
interpreted as a reaction rate of an inter-compartmental pseudo reaction step.

Summarizing, any spatially extended reaction diffusion system can be modeled
within the formalism of chemical reaction networks. However, there are two
practical problems:

1. If there are many reacting species, the whole reaction network has to be
duplicated within each single compartment. This means that multiple identifiers
have to be introduced denoting the same substance in different compartments
(cf. Fig. 14).

2. If the spatial discretization step size Ax is changed, the whole equation system
has to be newly generated which makes automatic model generation procedures
mandatory.

In SBML this approach is, in principle, possible but additional tools are required
to generate the spatially distributed model from a given one-compartment network.
Clearly, the generated model would no more be readable for a human reader.

ol P o e P o r? P g
Fig. 14 Discretization of a l l
diffusion process of two 4—: B, 4_—: B; 4—: By 4_—:
reactants along a one-

dimensional spatial domain x
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6.2 Spatially Distributed Systems in Modelica

Interestingly, this is quite different with the Modelica approach because multiple
copies of the same model structure are inherently possible in this language. The
enumeration of multiple copies of the same variables in different compartments is
automatically managed by the system. Moreover, Modelica contains enhanced
language elements to generate dynamically a model structure in dependence of
user specified parameters like step sizes. For example, the diffusion model shown in
Fig. 14 can be easily implemented in Modelica by using a for-loop that automati-
cally establishes the network connectivity as shown in Fig. 15. It should be clear
that it is also possible to implement a copy of a complete reaction network in each
of the compartments without any efforts.

It is well known that PDEs in more than one dimension lead to new problems if
the shape of the underlying domain is not rectangular. Non-rectangular grids and
appropriate numerical discretization schemes must then be used to approximate the
system equations. This leads, for example, to the finite volume or finite element
methods.

When interpreting these two approaches in the right way it becomes apparent
that both methods essentially do the same as the one-dimensional approach shown
above: For any two adjacent volumes a transport flow is defined in terms of the
concentrations in both volumes. However, the corresponding laws look much more
complicated than in the simple one-dimensional example. Nevertheless, the finite
elements and finite volumes methods can be implemented in Modelica in a similar
manner as that demonstrated for the one-dimensional case. The details are pre-
sented in [36] and would exceed the scope of this chapter.

model Diffusion
parameter Integer N=100;
DynMet [N+1] A, B:
MM 1S1P[N] RAB, RA, RB;
equation
for i in 1:N loop
connect (A[i] .M,RAB[1i].
connect (B[i] .M, EUB[W]
connect (A[i] .M, RA
connect (A[i+1].
Fig. 15 The implementation connect (B[1i] .M, FB lJ S) ;
of a diffusion model as an

example for spatially
distributed modeling in
Modelica

connect (B[i+l].M,RB[i].P)
end for;
end Diffusion;
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7 Events

7.1 Events in Continuous Time Systems Simulation

The term “event” denotes a point on the time scale where a discontinuous change
of the system state happens in zero time. Usually it is distinguished between
time events for which the time is known in advance and state events which happen
in dependence of the current state of the system. Clearly, in a continuous world
discrete changes of variables do not really happen. However, the transient processes
might be so fast in comparison to the time constants of the overall system dynamics
that it makes sense to condense them to one single time event. Different examples are:

e switching operations in an experiment as for example switching between two
substrates

e external variables modeled by spline functions (i.e., case distinctions)

e threshold processes modeled by discontinuous kinetic terms

e genetic switches

In practice an event is specified by a Boolean condition as a function of time and
state variables. At the moment this condition becomes true, an action is specified by
a function computing a discontinuous jump in the state space. Afterwards the
differential equation solvers are reinitialized with the changed values. The incor-
poration of events into differential equation solvers is state-of-the-art but is not free
of problems because state events must be automatically and precisely located and
events that happen shortly one after the other must be distinguished [37].

7.2 Events in SBML and Modelica

SBML introduces an optional list of Event objects, that describe the time and form of
explicit instantaneous discontinuous state changes in the model. An Event definition
requires two parts, a Trigger condition and a list of EventAssignment. The Trigger
condition represents a mathematical Boolean expression. If the Trigger evaluates to
true, the Event is fired, and the EventAssignment takes place. The EventAssignment
represents a mathematical expression which a concerned object is assigned to. The
semantics of an Event imposes the non-confliction of EventAssignments, i.e., the
effect of one assignment should not affect the result of another assignment. In
Modelica, this semantics is guaranteed at the syntax level. Such confliction is
detected by the Modelica compiler at static level, i.e., compile time.

In Modelica events are integrated into the modeling language and can be
specified everywhere in a model or its submodels. The when statement is used
within equations, e.g.:

der (M.c) = when (M.c > 0) M.velse 0
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An event occurs when the condition evaluates to true and is handled accordingly
by the DAE solver used by the Modelica Compiler.

8 Systems Analysis

8.1 Sensitivity Analysis

Simulation tools not only perform numerical solutions based on the system equa-
tions but also assist the modeler in systems analysis. Doubtlessly the most important
systems analysis tool is sensitivity analysis. It linearizes a system around a refer-
ence state and, thus, makes any kind of linear method — at least in an approximate
sense — available for systems analysis. For example, sensitivity analysis is required
for parameter fitting, statistical regression analysis, experimental design, and meta-
bolic control theory.

In the context of biochemical network simulation the most wanted sensitivities
are those of the state variables with respect to kinetic parameters and initial values
(dc/da, de/de, cf. (1)) and the linearization around a reference state (d¢/dc).

Implementation of sensitivity analysis can be done in three different ways:

1. The simplest approach is numerical differentiation based on approximation
formulas for the derivatives which use only function evaluations. The best
known approximation of course is the differential quotient or finite difference
approximation

%zc(a—i—Aa)—c(oc) (10)
do Ao

Numerical differentiation is very easy to implement because no internal details
about a simulation tool or a model need be known to use it. The simulator has just to
be started several times. On the other hand, finite differences have several well
known numerical drawbacks among which are low error order and ill condition
with respect to numerical errors. Step size control algorithms and higher order
formulas are available, all of which need higher computing time due to multiple
function evaluations [38].

2. Another approach to compute sensitivities is to use a computer algebra system
that calculates the sensitivity equations explicitly [39]. Basically this generates a
new DAE system from the original one. In the case of biochemical reaction
networks, the derived sensitivity equation system has some structural features in
common with the original biochemical network model. This becomes evident
from the parameter sensitivities of (1):

(0) =0 (11)

% avac+avas+@ e
o dcda ' Fsoa o)’ O
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Obviously, only the reaction velocity derivatives 9v/0a need to be computed by
computer algebra whereas all other ingredients are readily available. However,
once the model is extended with additional constraints the computer algebraic
approach tends to produce extremely lengthy solutions.

3. The state of the art method to compute sensitivities is so called automatic
differentiation (AD) [40]. It has some similarity with the computer algebraic
approach but is substantially more efficient because intermediately computed
results are reused. Essentially, AD directly takes a program written in some
programming language and generates a second program which computes the
required derivatives. AD can be performed at the level of raw C-code [40] or at
the higher level of equation based modeling language [41]. Due to the efficiency
of the AD approach, a special model structure is not needed.

Because Modelica is very similar to a programming language, AD can be
generally implemented for the Modelica language. Particularly, the AD tool
described in [41, 42] generates a derived Modelica model from the original one
for computing the sensitivities. The derived model can then be processed by the
same Modelica compiler used for the original model.

8.2 Network Analysis

In recent years many network based systems analysis methods have been devel-
oped. Among them are graph algorithms for connectivity, path analysis and stoi-
chiometry based algorithms for computing elementary modes or optimal flux
solutions [43]. To carry out these methods, the knowledge of a biochemical network
as represented by the stoichiometric matrix N in (1) is essential.

This is the application domain where the reaction based approach has clear
advantages. Due to the special model structure the network structure can be readily
extracted from an SBML specification. In contrast, a Modelica model must be based
on a previously specified library in order to implement automatic procedures for
network retrieval. However, it should be noticed that any information stored in the
rules section of an SBML model experiences the same problem.

9 Modeling Tools

9.1 Graphical Network Representation

Although raw Modelica code is much easier to read than raw SBML code, both
languages are not really intended for a human reader when large or even huge
models are built up. In this case, graphical tools are needed to represent the models
structure in an intuitively understandable way. Clearly, the most suitable graphical
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representation for SBML models should orient on the chemical reaction network
itself. The different data items are then connected to the nodes and edges of the
network graph. Only the rules and event sections must be handled in a different way
and cannot directly be associated to the network. Available tools for building up
SBML models like CellDesigner [17] already take this approach.

The Modelica language already has an built in structural feature which makes it
possible to generate a graphical representation for any type of system model
automatically. This structure is given by the components and their connections
together with the model hierarchy. For each instance of a model class, a graphical
symbol shown as a box with connecting ports is generated. The user might also
assign an icon with this box. Connectors are shown as lines. If a model is hier-
archically composed from submodels, clicking on the model box will open a new
display that shows the internal architecture. This concept is very familiar from the
popular Simulink simulation tool.

However, it must be pointed out that the standard layout of graphical system
models produced in that way might not be intuitively understandable in a specific
application domain. As an example, looking at the model architecture in Fig. 9, it
stands out that the substance pools are drawn in between the reactions but are
connected to them in a non-intuitive way. This way of course represents the
structure of the underlying mathematical equations but not their interpretation in
their specific application domain.

Moreover, since connectors are usually drawn with horizontal and vertical lines,
a network graph might look fine for an electrical network but not really for a
biochemical network. Clearly these esthetic problems can be solved if special
application specific tools are developed that generate Modelica code based on a
previously fixed library. However, this causes a high implementation effort.

9.2 Availability

The specifications of Modelica and SBML are open source, i.e., everyone is invited
to use them for his tools and model exchange. Moreover, both specifications are
subject to intensive discussion and continuous improvements. On the one hand,
SBML has established a large community in systems biology due to a wide range of
free and commercial SBML-based tools, parsers and editors for model design,
visualization, simulation of discrete and continuous systems and network analysis
on various platforms [19].

On the other hand, due to the complexity of the Modelica language as well as the
wide range of algorithms and concepts on which Modelica is based, there are still
few compilers and programming environments for Modelica available [44]. Cur-
rently, free compiler such as OpenModelica [45] are less efficient compared to
commercial programming environments like Dymola (Dynasim AB), which can
also be used for constructing, simulating, and analyzing large models. Additionally,
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the first steps were taken in implementing a library for modeling biological and
biochemical systems [46].

10 Summary

The arguments given for the two different modeling approaches in the special field
of biochemical network modeling are summarized in Table 1. It becomes obvious
that neither of the two approaches is superior. As long as modeling projects are
restricted to standard network structures, SBML certainly is the most direct way to
reach the goals. If it is to be expected that multidisciplinary and hierarchical aspects
become important, Modelica is the better alternative. Finally, it should be pointed
out that future versions of SBML will incorporate more and more of the features
that are already implemented in the more mature tool Modelica.

Due to the availability of an advanced SBML-Parser like LibSBML [47],
transformation of an SBML model into a Modelica model based on a pre-given
and well-suited biochemical library seems to be a straightforward task, at least for a
basic subset of SBML-constructs. However, by converting Modelica models based
on highly abstraction concepts to SBML models a lot of information may get lost.
The computational biology community can benefit a lot from a tool adopting the
first direction, as already large SBML-repositories exist. These models are then
subject to consistency checking, validation, and visualization using various levels
of abstraction blocks, simulation, and analysis with the help of many assisting tools
for Modelica.

Table 1 Comparison of different features of SBML and Modelica

Feature® SBML Modelica
Standardization + —
Extendability — +
Hierarchical modeling - +
Multidisciplinary modeling — +
Spatially distributed modeling - (+)
Conceptual modeling (+) +
Intuitive graphical user interface + +

Available tools for:
Model compilation +
Network analysis + -
Sensitivity analysis +

+

“Support
+ Yes
(+) Partly
— No
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Impact of Thermodynamic Principles
in Systems Biology

J.J. Heijnen

Abstract It is shown that properties of biological systems which are relevant for
systems biology motivated mathematical modelling are strongly shaped by general
thermodynamic principles such as osmotic limit, Gibbs energy dissipation, near
equilibria and thermodynamic driving force. Each of these aspects will be demon-
strated both theoretically and experimentally.
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1 Introduction

Thermodynamic principles apply to all physical and chemical systems, including
biological systems. In this chapter it will be shown how these principles shape
their properties, especially from a quantitative model based, systems biology, point
of view.

2 Thermodynamic Principles in Mathematical Models
of Biological Systems

The key aspect of a living cell is the formation of new cells, called growth.

Growth requires that a cell produce each of the molecules present in the newly
formed cells. This occurs in a large and complex metabolic (reaction) network. This
network is composed of many reactions, which consume and produce small mole-
cules, called metabolites. Each reaction is catalysed by a specific enzyme, which is
under genetic/environmental control. Prediction of growth requires a mathematical
model of this network for which the fundamental equations are the mass balances of
intracellular metabolites. In vector notation:

dx
E:SV(‘??XJ’)_MXv (D
where X is the vector containing the individual intracellular metabolites X;.

V is the vector of the rates of enzyme catalyse reactions, with v; the rate of
reaction catalysed by enzyme present at an amount ¢;. The rate v; depends on the
amount of enzyme present, e;, on the kinetic effect of metabolites X; involved (e.g.
substrate, product and possible allosteric effectors) and the parameters p (e.g.
ymax = affinities, Hill coefficient etc.). S is the so-called stoichiometric matrix
which represents the structure of the reaction network. Its rows represent the
metabolites, its columns the reactions [44]. The term uX is the so-called dilution
term.

Equation (1) requires information on the dynamic behaviour and values of
metabolite concentrations, on the values of stoichiometric coefficients, on enzyme
levels resulting from genetic regulation and on the shape/algebraic nature of the
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Fig. 1 Impact of thermodynamic principles in systems biology

enzyme kinetic relations, and (1) is the basis of parameter estimation from experi-
mental data and the associated need for model reduction.

In the following sections we will show that thermodynamic principles can be
used to shed light on this information (Fig. 1):

* Metabolite concentration levels (X;) and their control mechanisms

e The stoichiometry of growth (S)

e The genetic regulation of enzyme levels (e;)

¢ Principles of model reduction

e The kinetics of enzyme catalysed reactions based on thermodynamic driving
force

3 The Osmotic Limit Dictates Low Concentrations
of Intracellular Metabolites

Cells have a genome which contains about 5,000 genes. These genes code for about
5,000 proteins, of which about 2,000 are enzymes. Therefore, in a cell, one can
expect about 2,000 different metabolites which are small molecules (e.g. metabo-
lites in central metabolism and in pathways for amino acid, nucleotide, lipid and
carbohydrate/cell wall synthesis). Many of these metabolites are negatively charged
(having phosphate and carboxylate groups) and therefore there are also consider-
able concentrations of counter cations (K, Mg?"). The sum concentration of all
these small molecules is limited by a thermodynamic property called osmotic
pressure [1]. Because cells contain a cell membrane that is water permeable, the
presence of a high intracellular sum concentration of membrane impermeable
anionic/cationic small molecules leads to a water activity inside cells that is lower
than outside. This creates a flow of water into the cell, leading to increase of
intracellular pressure. The water inflow stops when the pressure has reached the
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osmotic pressure. According to van 't Hoff the osmotic pressure is linear in the sum
concentration C of all intracellular metabolites (Posm = CRT). For example, for
C =1 mol/L it follows that Pogy, = 25bar (C = 1 mol/L = 1,000 mol/m?, R
= 8.314 J/mol K, T = 298 K gives Py = 24.8 X 105N/m2 = 25bar). From a
mechanical point of view, this pressure is counteracted by the mechanical strength
of the cell membrane/cell wall, which is obviously bound to physical limits.
Therefore there must exist a maximal sum concentration of small intracellular
molecules. Assuming a limit of 25 bar gives for this maximal sum C ~ 1.0 mol/L,
which gives a sum concentration of organic (anionic) metabolites of order 0.5 mol/L.
Assuming the presence of about 1,000 different metabolites in cells gives, for the
average intracellular metabolite concentration X;, a value of about 1072 mol/L.
Of course, there will be a wide distribution of concentrations, so we can expect
an intracellular concentration range of 10210 1074 mol/L, which is equivalent
to 20-0.20 pmol/g dry biomass. These values are indeed found as shown in
Table 1.

4 Consequences of Low Metabolite Concentrations
from a Systems Biology Point of View

The general property of low intracellular metabolite concentrations has very impor-
tant consequences at system level.

A first consequence is the near absence of spontaneous reactions. Usually the
metabolic network is considered to be totally enzyme catalysed and one assumes
implicitly that non-enzymatic reactions (which occur spontaneously) are absent.
Given the multitude of reactive molecules inside cells, one would expect much
more spontaneous reactions. Such reactions would be disadvantageous because
they are not under genetic control and they cause loss of material. The key to
suppress such reactions, in favour of enzyme catalysed reactions, is to have a
very low metabolite concentration (which kinetically “kills” the rate of a spon-
taneous reaction) in combination with matching high affinities of enzymes. This
is indeed found. So one could state that the osmotic limit enforces high affinity
enzymes.

A second general consequence is the need of active export.

Many biological systems are used in industrial processes (antibiotics, fuels,
amino acids, organic acids etc.). From an economic point of view, one aims at
high (= 1 M) extracellular concentrations of product. This implies that the final
step of product metabolism, export, has to deal with an unfavourable concentration
gradient of about 10> M inside and 1 M outside. Clearly, this requires active
export [6].

Another general aspect of metabolites is a fast, order of seconds, turnover time
(t.o.t.) of each metabolite. The t.0.t. of a metabolite X; is defined as (t.0.t.) x, = X

Vum
with X; the metabolite concentration and Vg, the sum of all production rates of this
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Table 1 Intracellular metabolite concentrations and turnover time in glucose limited aerobic
cultures of several organisms (Saccharomyces cerevisiae from [2], Penicillium chrysogenum
from [3, 4] E. coli from [5])

Metabolites Intracellular level (umol/gDW) Turnover time (s)

P.chrysogenum S. cerevisiae E.coli P.chrysogenum S. cerevisiae E. coli

Central metabolites

G6P 4.64 5.2 1.42 23.3 17 3.6
FoP 0.71 1.4 0.38 5.7 7.3 1.2
T6P 0.55 0.13 47.8 NA
M6P 1.95 0.48 NA
6PG 0.25 0.48 0.10 3.7 4.5 1.1
Mannitol-1P 0.99 NA
G3P 0.13 0.17 57 13.1
FBP 0.9 0.64 0.82 7.2 32 2.5
F2,6bP 0.01 0.35 NA
2PG+3PG 0.59 2.8 1.65 2.3 6.6 2.5
PEP 0.24 2.3 1.61 0.9 5.7 2.7
Pyruvate 0.22 1.1 0.75 0.9 1.7 1.5
a-Ketoglutarate 2.05 0.31 22.1 0.6
Succinate 0.23 4.0 2.65 33 20 8.9
Fumarate 0.65 0.85 0.22 13.0 4.1 0.7
Malate 3.33 7.3 0.94 19.0 30 2.8
Amino acids

Alanine 21.7 32 1.34 269 3,268 76.7
Asparagine 1.5 4.7 0.58 459 1,142 81.7
Aspartate 16.3 21 2.57 717 577 35.0
Glutamate 53.0 170 74.69 658 1,112 229.0
Glutamine 28.7 64 6.14 1,243 2,401 80.0
Glycine 2.1 2.9 1.51 244 247 31.0
Histidine 0.72 6.0 0.15 432 3,141 53.8
Isoleucine 0.33 1.6 0.11 111 140 12.9
Leucine 0.73 1.0 0.36 131 125 27.1
Lysine 1.2 4.1 1.21 356 619 119.7
Methionine 0.14 0.20 0.05 58.8 66 10.5
Phenylalenine  0.19 1.6 0.13 612 430 23.8
Proline 0.95 3.9 0.66 206 925 101.4
Serine 5.7 0.53 453 8.0
Threonine 5.9 4.0 0.47 758 220 29.3
Tryptophan 0.11 0.51 0.02 130 788 11.9
Tyrosine 0.26 1.6 0.18 145 832 443
Valine 2.1 10 0.51 243 490 40.9
Ornithine 4.1 0.49 502 49.1
Adenine nucleotides

ATP 7.39 7.0 5.95 NA 1.4 2.0
ADP 1.03 1.3 2.31 NA 0.25 0.8

AMP 0.27 0.6 0.91 NA 3.1 9.4




144 J.J. Heijnen

metabolite. Because X; is low and V., can be high, one indeed finds t.o.t. of the
order of seconds (Table 1).
These fast t.0.t. have several important consequences:

¢ Considering product formation, where a substrate molecule is processed along a
multistep pathway to the secreted product, it follows that the time between
substrate entrance and product leaving the cell is only of order minutes. Clearly
cell factories follow the just in time principle.

e Considering the metabolite mass balances (1), we can safely neglect:

— The dilution term uX;, which is orders of magnitude smaller than the synthe-
sis term SV.

— The dynamic term ;! for time scales larger than minutes (which follows
from t.o.t. of order seconds). This leads to pseudo-steady state.

e This pseudo-steady state property, which is a direct consequence of the low
metabolite levels due to an osmotic limit, is one of the most important network
properties. It allows one to write for the metabolite mass balances:

SV=0 2)

These balance equations are the basis of the well-known stoichiometric analysis
of metabolic networks. We should also realise that, due to the pseudo-steady
state property of the metabolic reaction network, these balances also apply to
dynamic situations which allow one to formulate so-called black box stoichio-
metric/kinetic models which are reliable in a wide range of conditions (see also
“model reduction”).

e A final consequence is the need for control mechanisms on the production/
consumption of each intracellular metabolite. Cells are, in their natural environ-
ment, continuously exposed to perturbations which change the rate of synthesis/
consumption of metabolites. Given the low concentration of a metabolite, such a
perturbation leads to very quick (second time scale) and drastic (up or down)
changes in metabolite concentrations, which propagate through the network
leading to potential damaging system responses. Control of metabolite levels
is needed to limit these effects, and indeed such control mechanisms are widely
found in biological systems and, most interesting, they operate at proper time
scales. Most well known are allosteric feed back inhibition (e.g. in amino acid
synthesis pathways), and allosteric feed forward activation (e.g. in glycolysis)
mechanisms which operate within seconds. This is exactly the time scale
expected from the t.o.t. for metabolite levels. The other mechanisms are slower.
The post translational modification mechanisms (adenylation, (de)phosphata-
tion, ....) take in the order of minutes, consume ATP and interconvert active/
inactive enzyme, but do not change the total enzyme amount. The genetic
mechanisms (induction, repression) take in the order of tens of minutes and
change the amount of enzyme.
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5 Thermodynamic Approach to Obtain Network
Stoichiometry and Fluxes

To obtain the network fluxes (and therewith the stoichiometry of the network)
requires one to solve (2). These balances put linear constraints on the reaction/
uptake/secretion rates. The number of rates in a realistic network is typically several
hundred; however the number of metabolite mass balances in (2) (= constraints) is
also large. A general problem is the ATP-balance which contains uncertain ATP
stoichiometric parameters (P/O ratio, unknown growth related ATP (= K ) and the
unknown growth unrelated ATP (matp). Van Gulik and Heijnen [7] and Van Gulik
et al. [8] have shown how in vivo values for these ATP-parameters can be obtained
using extensive experiments. For many organisms this ATP-information is not
available. This means that the number of equations in (2) is always at least two
lower than the number of rates (underdetermined). This means that solving all rates
needs the specification of at least two experimental rates. Without this experimental
information one cannot predict stoichiometry. Another approach which has
received considerable attention in the past decade, and which aims to predict both
rates and stoichiometry of networks, is constraint based modelling [43]. This
approach uses an optimality criterion (e.g. maximal biomass yield) to obtain a
solution of the underdetermined (2). However, close inspection reveals that this
method still requires the above-mentioned experimentally based information:

e Specification of the uncertain ATP stoichiometric coefficients (P/O, growth
related and unrelated maintenance values). This information is needed to make
stoichiometry predictions!!

¢ Kinetic information, such as an experimentally determined substrate uptake rate
or a maximum O,-uptake rate. This is needed to calculate fluxes and, e.g. u™**.

Together with this experimental information the optimality criterion forces ATP
requiring processes such as futile cycles to zero and therewith one obtains a unique
flux solution and therewith stoichiometry. When the above-mentioned (ATP and
kinetic) experimental information is not available, constraint based modelling does
not lead to a unique flux solution.

Thermodynamics offers an alternative, more widely applicable, approach to
solve the network stoichiometry and fluxes for arbitrary organisms.

5.1 Thermodynamic Approach to Stoichiometry

Thermodynamics allows one, for a given specific growth rate p (under substrate
limited growth in absence of a non-catabolic product, hence only growth), to
calculate all uptake/secretion rates. Herewith, all yields are also available (yield
is ratio of rates). Heijnen and Van Dijken [9] and Heijnen [10] apply this approach
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to any heterotrophic growth system under substrate limited condition. The only
information needed is the nature of carbon source, electron donor, electron accep-
tor, N-source and temperature.

In this method, the ATP-balance in the network equation (2) is replaced by
a Gibbs energy balance on all uptake and secretion rates ¢g;. We can define ¢; as a
biomass specific rate in mol of i/h per Cmol biomass. The quantity 1 Cmol of
biomass (which has the average composition C{H; §O¢ 5Ny ) is the amount (24.6 g
organic dry matter) of biomass which contains 12 g of carbon (= 1 mol C-atom).

Compounds taken up have negative g; values, secreted compounds have positive
g;-values. The Gibbs energy balance follows then as

> GAG) + g6 = 0. (3a)

Here > q,AGf is a negative quantity (second law of thermodynamics) and is the
total biomass specific rate of Gibbs energy of conversion. gg is the Gibbs energy
produced, which follows from (3a). The second law requires gg > 0.

AGf is the Gibbs energy of formation of compound i at standard condition (1 M,
298 K and at pH = 7.0). In principle, one needs to take actual concentrations into
account, but this leads only in special cases to significant changes in gg [10].

The key to the use of (3a) is to obtain a relation for gg. Because cells require
Gibbs energy for growth and maintenance, we can write a Herbert—Pirt type of
relation for g, which expresses that (in absence of non-catabolic product) the cell
needs Gibbs energy for growth and maintenance:

1

46 = Hmax K+ Mg (3b)
Yox

For mg and Y+, correlations have been established [9, 11].
GX

5.1.1 Gibbs Energy for Maintenance

All living systems need to generate Gibbs energy for their maintenance (which
represents all processes where energy is needed for example to repair degradation
and export compounds that entered due to membrane leakage, etc.). Because living
cells have similar membranes and composition, it can be assumed that different
cells require a similar amount of energy expenditure for maintenance. It has indeed
been found that Gibbs energy needed for maintenance is very similar for a large

range of microorganisms and only depends on absolute temperature (7) [11].

kJ Gibbs energy /h
CmolX

69,000 /1 1
—4. ) (LSRR 4
ma = 4.5exp ( R (298 T) > “®

The following correlation has been found for mg (in
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This correlation shows that at 25°C (298 K) 1 Cmol of cells (= 25 g dry matter)
spends, and therefore needs to generate, 4.5 kJ of Gibbs energy per hour to cover the
energy for maintenance. Also there is a steep temperature effect: for each 8°C
temperature increase mg doubles!!

This correlation applies to aerobic/anaerobic systems and arbitrary electron
donors/acceptors. The Gibbs energy is generated from the catabolic reaction, so
the maintenance reaction equals the catabolic reaction. For specific cases, one can
always set up the catabolic reaction for 1 mol donor and obtain the catabolic Gibbs
energy of reaction for 1 mol donor, called AGY!, ), which is negative and is in kJ of
Gibbs energy per 1 mol donor consumed in the catabolic reactjon. It is then clear
that we can write for the substrate (or donor) consumption i (W that
must be catabolised for maintenance:

mg
my = —o . 5)
T AGh

Table 2 shows examples of catabolic reactions consuming 1 mol donor, and
the Gibbs energy of catabolism per mol consumed donor (AGY! ). It is obvious
that AGY), , can be two orders of magnitude different, dependent ‘on the specific
catabolism.

For example, consider Saccharomyces cerevisiae at 30°C. It follows from (4) that

_ 7.1kJ/h

e = CmolX

Under aerobic conditions using glucose as substrate, catabolism AGY! ) =
—2,843.1 kJ per mol glucose. This gives

7.1 mol glucose /h
My = ——————= —0.0025g7/
(—2,843.1) CmolX
Also mg, = 6 x mg = —0.015 mgrlnglz)éh' Under anaerobic conditions the cata-
bolic ethanol forming reaction shows AGY., , = —225.4kJ per mol glucose. This
gives m, = —LLs = —0.0315 "R/ 314 reghanor = 0.063 TAethanol/h
Table 2 Catabolic reactions and their Gibbs energy of reaction, AG®!,
Catabolic reactions and their Gibbs energy AGY, ,(kJ/mol donor)
Donor Catabolic reaction AGY
Glucose CgH 2,06 + 60, — 6HCO;~ + 6H* —2,843.1
Ethanol C2HgO + 30, — 2HCO3 ™ + 2H' + 1H,0 —1,308.9
Glucose CgH206 + 2H,0 — 2C,HgO + 2HCO; ™ + 2H* —225.4
Methanol CH40 + 1.20NO3; ™ + 0.20H* — 0.60N, + HCO3 ™~ + 1.60H,0 —649.4
Iron (2+4) Fe?* +10, — Fe*™ + 1H,0 (pH = 1.85) -33.9

Acetate C,H30,” + H,O — HCO3;~ 4+ CHy4 —31.0
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So, the same organism has widely different mg values due to different catabo-
lism, but still has the same Gibbs energy need for maintenance!!

5.1.2 Gibbs Energy for Growth

1
ax
Yox

This amount has been found to depend only on two factors [9, 10]: first, the nature
of the carbon source for heterotrophic growth and, second, the nature of electron
donor for autotrophic growth.

Regarding the first factor, the nature of the carbon source for heterotrophic
growth, more Gibbs energy is needed when the carbon source has a smaller number
(C) of C-atoms and when its degree of reduction per C-atom () is different from the
degree of reduction of biomass (~ 4.2). The explanation is straightforward that
synthesis of biomass monomer molecules (which contain order 6 carbon atoms with
7 =~ 4) requires more C—C-coupling and redox reactions for C-sources with a
low number of C-atoms and which need reduction or oxidation because y of the
C-source differs from 4.2. These extra reactions lead to a higher Gibbs energy need.
For heterotrophic growth this intuition is quantified in (6a), which is a correlation:

is the amount of Gibbs energy needed to synthesise 1 CmolX (in kJ/CmolX).

Ja = 200+ 18(6 = €)' 4 exp|[3.8 = 71°% x (3.6 + o.4c>] (62)
GX

This correlation shows that to synthesise 1 Cmol biomass one needs between
~ 236 and 1,087 kJ Gibbs energy (dependent on C-source, e.g. 236 for glucose
(y=4,C =06)and 1,087 for CHy (y = 8§, C = 1).

Regarding the second factor, the nature of electron donor for autotrophic
growth, in autotrophic growth CO, is the C-source which must be reduced to
biomass using electrons from the electron donor. The Gibbs energy needed follows
from (6b), which is also a correlation [9]:

@ = 1,000(—RET)= 3,500(+RET). (6b)

The nature of the electron donor determines the absence (—RET) or need
(+RET) of Reverse Electron Transport. For several electron donors (e.g.
NH4+,NO;, ™, Fe?*) the reduction of CO, to biomass is not feasible thermodynami-
cally. Therefore cells spend extra Gibbs energy to make the redox potential of
electrons obtained from the available donor more negative (e.g. in the production of
NADPH from the donor electrons, in a process called RET, NADPH is then used
to reduce CO; to biomass). This extra Gibbs energy is very considerable (compare
in (6b) 3,500 and 1,000). For H, as electron donor, (—RET), this problem does
not exist (sufficient negative redox potential) and the Gibbs energy need is 1,000 kJ/
CmolX (6b).
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Summarising, the Gibbs energy needed to make 1 Cmol biomass ranges, depen-
dent on C-source and electron donor, is between 200 and 3,500 kJ and does not
depend on the type of electron acceptor. When the carbon source, electron donor

and temperature are known, the correlations (4, 6a/6b) give the coefficients Y"‘” and

mg in the Gibbs energy Herbert Pirt relation (3b), which completes the Glbbs
energy balance (3a). This linear relation can be combined with all metabolite
mass balances specified in (2), using the stoichiometric matrix S where the ATP-
balance is also absent (due to unknown P/O, K,, etc.). A constraint of minimal
Gibbs energy dissipation will put futile cycles to zero and parallel pathways are also
resolved. This set of linear balances gives, for any selected u, all rates in the
network (reaction/uptake/secretion)!! With these known rates all yields are
known such as the biomass yield Ygx = i or yield of catabolic products.

This thermodynamic approach has been shown to predict biomass yield with
10-15% error for a wide variety (aerobic/anaerobic/hetero/autotrophic) of micro-
bial systems where Ysy spans a range of near two orders of magnitude [9].

5.2 Thermodynamic Approach for Maximal Growth Rate, p™*

Microorganisms show a very large range (0.001—-1 h™') in g™*-values and it is

relevant to understand why this is so!! A simple approach was proposed [10] which
reproduces most of this range. The concept is that cells during evolution ultimately
become limited in their energy production capacity. Most organisms generate
energy by electron transport phosphorylation. This occurs by electron transport
proteins embedded in membranes. Because membranes are space limited for

protein embedding it is logical to propose that cells have evolved to a maximal
mol electrons /h
CmolX

ature. Also it is known that smaller organisms have higher maximal growth rates,
e.g. E. coli p™ = 2h™ ', Saccharomyces cerevisiae i™* = 0.4 h~' and tissue cell
cultures ™ = 0.04 h™'. This is in line with the smaller surface/volume ratio
(= 6/d, with cell diameter d) which leads to a membrane surface area, hence
maximal electron capacity and p™* which is inverse to the cell diameter and
which is indeed largely observed (e.g. S. cerevisiae has a 5x larger cell diameter
compared to E. coli). This concept has in addition been inspired by the observation
that in E. coli, for different substrates which lead to different 4™, the g5 *-value is
nearly constant [12].
The following correlation was proposed:

—_— 69,000 / 1 1
S 3 eXp |: R (298 T>:| . (73)

electron transport capacity qma"( in )which depends mainly on temper-

This electron capacity determines the maximal production rate of Gibbs energy
by catabolism (gg™):
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Table 3 Estimated p™** values for different microbial catabolic classes at 25°C based on limiting
Gibbs energy production

Catabolic classes AGS;L b yp (mol electron/ umx )
(kJ/mol donor) mol donor)
Aerobic/glucose —2,843.1 24 1.5
Aerobic/acetate —844.2 8 0.70
Anaerobic/(acetate—CH,) -31.0 8 0.015
Aerobic/Fe** oxidation —38.6 1 0.030
Aerobic/nitrification —274.8 6 0.040
~AGYp)
max __ _max ( cat,.D 7b
9 =Y9a — - ( )
D

Here, yp is the number of electrons released in catabolism of 1 mol donor and
AGS;L p 1s the catabolic Gibbs energy per mol donor. This maximal Gibbs energy
sets uM**according to (3b).

Combination of (3b) and (7b), (2) and using the correlations (4), (6a, b) and (7a)
for mg, Y&x*, qo**and the available value for AGS;L p and yp immediately allows
one to calculate u™*-values for any growth system. These values agree reasonably
with known values. Table 3 shows that this simple approach can explain a 100-fold
difference in p™*.

Some final remarks:

e This thermodynamic approach uses only three correlations (4, 6a/6b, 7), is
simple and general and gives maximal g;-rates and stoichiometry.

e Effect of temperature is included (in maintenance and u™*).

e The three correlations are based on a wide range of experimental microbial
growth systems and reflect that similar biochemical pathways are used (unity of
biochemistry). When the predicted 4™ or/and stoichiometry are very different
from experimental values, this indicates unusual anabolic and/or catabolic routes
which might be novel. So this method can act as a filter for unusual behavior of
biological systems.

6 Prediction of Gene Regulation of Enzymes Using Energy
Optimality

Gene regulation seems at first glance highly complicated. For example, enzyme
induction upon exposure to a new catabolic substrate involves many mechanisms
between signal transduction, gene expression and production of enzyme for the new
catabolic pathway. Model based prediction of enzyme induction therefore seems
hopeless. However one could expect that evolution has fine tuned the available
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regulation mechanisms such that growth yield is optimal. This optimality principle
was tested using mixed substrates with Saccharomyces cerevisiae, which was
chemostat (aerobic, substrate limited) cultivated at a dilution rate D = 0.1 h™'.
Different feed mixtures of glucose and ethanol as substrates were applied between
100% glucose and 100% ethanol) [7, 13, 14].

Growth on glucose differs from that on ethanol. On 100% ethanol the cell has:

¢ Fully induced:

— Glyoxylic acid pathway enzymes (isocitrate lyase (ICL) and malate synthase
(MS))

— Gluconeogenic enzymes PEP-carboxykinase (PEPCK) and F16 Bispho-
sphate (F16BP-ase)

e Fully repressed (or inactivated):

— Pyruvate kinase/pyruvate carboxylase (PK/PYC)
— F16 bis P-kinase (PFK)

It is obvious that, under substrate limited condition for mixed substrates, the
induction/repression pattern of these enzymes is determined by the residual
ethanol and glucose concentration, which would be the basis of a complicated
gene regulation mechanism and model to predict the occurrence and concen-
tration of these enzymes as function of the residual ethanol and glucose
concentration.

A different approach, based on energy optimality of gene expression, was
followed. Using a metabolic stoichiometric model endowed with experimentally
obtained stoichiometric values for the ATP-balance (P/O, K, matp), linear pro-
gramming was applied with maximal biomass production (or the equivalent mini-
mal energy consumption) as optimality criterion. It was possible to calculate, for
each glucose/ethanol supply ratio (which is virtually equal to the ratio of their
consumption rates due to the low residual ethanol and glucose concentration) the
optimal rates of all reactions in central metabolism. It was observed that, for the
above inducible enzymes, clear predictions were made on their need as function of
increasing ethanol fraction. This approach predicted:

e The ethanol/glucose feed ratio where a particular enzyme started to be induced
¢ The enzyme amount then increased linear with increasing ethanol fraction

These predictions were qualitatively, but more surprising also quantitatively,
validated using the wild type yeast [13, 14]. Later additional validation was
performed with null-mutants in the above enzymes, leading to a predicted maximal
ethanol uptake rate of each mutant.

This prediction was again quantitatively confirmed [15]. This example clearly
indicates that gene regulation mechanisms might have evolved to provide maximal
biomass yield (giving a competitive edge). This maximal biomass yield is the same
as Gibbs energy optimality because enzyme induction is such that futile cycles are
avoided (e.g. simultaneous activity of FBP-ase/FPK or pyruvate carboxylase/PEP
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carboxy kinase). To the authors knowledge this is one of the earliest and most
successful examples of experimentally demonstrated thermodynamic optimality of
living cells.

7 Thermodynamics Based Model Reduction in System Biology

Mathematical models of biological systems are useful to design processes and/or to
redesign organisms using the rec-DNA tool box. Model reduction is an important
issue, given the complexity of biological systems. Model reduction aspects will be
discussed for two categories of mathematical models.

7.1 Black Box Models for Design of Biotechnological
Processes: From Complexity to Simplicity Due to
Pseudo-Steady State Coupling

We have observed that the thermodynamically based osmotic limit leads to very
low metabolite concentrations in intracellular metabolism. The immediate conse-
quence is that at process time scales larger than about 10 min (as occurs in bath, fed
batch processes) the pseudo-steady state condition for all intracellular metabolites
holds. The consequence of this condition is that all uptake and secretion rates are
directly coupled. This pseudo-steady state coupling can be evaluated by linear
rearranging the metabolite mass balances (2). Usually, in the absence of by-
products, there are only a few (two to three) degrees of freedom, meaning that all
uptake/secretion rates can be written as linear combination of only two to three rates
(usually growth rate, product formation rate, maintenance). A prime example of
such a linear relation is the Herbert—Pirt relation for substrate distribution:

1 1

qs = Yg)lélxu + Yg;;lx dp + my. (8a)

Furthermore, the substrate uptake relation is usually a hyperbolic relation in the
limiting substrate concentration:

C,
=g — . 8b
qs = gy (KS+CS> (8b)

A final relation, which holds generally under single substrate limited condition is
that there is a unique relation between ¢, and u:

dp :fp(fu)~ (8c)
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The three equations (8a, b, ¢) have only one degree of freedom (e.g. Cs or p). All
the other uptake/secretion rates (O,, CO,,NHy+, water, HT heat, etc.) can be
obtained from ¢, ¢t and ¢, and the conservation relations (elements and charge).

This black box approach for kinetic modeling of biological processes is only
possible due to the general biological system property of low intracellular metabo-
lite concentrations, which has its origin in a thermodynamic property (osmotic
limit).

Examples of this black box approach can be widely found. A very nice example
is the model for penicillin production [8, 16] and the model developed for
biological P-removal using mixed cultures in a cyclic process [17]. These black
box models show that highly complex biological systems, comprising thousands of
reactions, can be effectively modeled with a reduced model containing only about
6—12 parameters. These models are the basis of process design. This simple
behavior of complex biological systems (from complexity to simplicity!!) is the
direct result of the metabolite pseudo-steady state property which results from an
osmotic limit!

7.2 Metabolic Reaction Network Models to Redesign
Organisms: Reducing Complexity

Genetic intervention in metabolic reaction networks is possible in many ways by,
e.g. changing enzyme levels, changing enzyme kinetics (e.g. abolish feed back
inhibition), introducing different reactions, etc. The problem is that, following such
interventions, the prediction of changes in secretion or uptake rates is very difficult
due to the complex nature of the network structure and of the highly non-linear
kinetics of the enzymes and gene regulation mechanisms. It is generally recom-
mended that a mathematical model of a metabolic (reaction) network can help to
select rationally genetic engineering targets in the redesign of organisms.

Building such a model is essentially straightforward and based on (1). Usually
matrix S is known with high confidence. Uncertainties in S (e.g. cycles, parallel
reactions, etc.) can be addressed using '*C approaches [18].

A much bigger problem is to obtain kinetic relations for each enzyme, meaning
the function v (e, x, p) in (1) for each enzyme.

Traditionally, in vitro obtained kinetic functions and parameters have been used.
Here two problems arise. First, it was found that in vitro kinetics do not reflect
in vivo kinetics [19]. Second, for many enzymes in vitro kinetics are not available.
The only solution therefore is to perform experiments with whole cells to obtain
in vivo kinetic behavior of all enzymes simultaneously. Here rapid pulse experi-
ments as pioneered by the groups of Reuss [20, 21] and Heijnen [22] offer
advantages, but the challenge is the parameter identifiability problem which calls
for model reduction as shown by Nikerel et al. [23-25].

Model reduction in biological systems has a thermodynamic basis as will be
outlined below.
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7.2.1 Pseudo-Equilibrium Reactions

A first approach for model reduction is to replace a kinetic function by an equilib-
rium relation. This is possible when the enzyme catalysed reaction is so rapid
that the reaction remains very close to equilibrium, even when the reaction rates
increase.

A strong indication of this situation is that the so-called mass action ratio of a
reaction remains nearly constant (independent from flux) and close to the reported
equilibrium constant. Many examples have been found which show this behaviour
in Penicillium chrysogenum [3, 4] and in Saccharomyces cerevisiae [26] such as for
phospho glucose isomerase, enolase, phosphoglycerate mutase, phosphoglucomu-
tase, fumarase.

Recently a near equilibrium reaction (F6P + NADH + H* — mannitol — 1—
P + NAD")was used as a heterologous sensor reaction to obtain the cytosolic
NAD/NADH ratio in Saccharomyces cerevisiae [2], even under dynamic condi-
tions. It was found that the cytosolic NAD/NADH ratio was about 100. In contrast,
a ratio of 4 was obtained by analysing the total amounts of NADH and NAD in
whole yeast cells. The large difference is due to the fact that nearly all NADH is
present in the mitochondria. Even more important is that, using the cell average
NAD/NADH ratio, the AGy of glycolysis between F16BP and (243 PG) was > 0,
which is impossible. Use of the cytosolic value of 100 leads to AGgwhich is slightly
negative, as expected. It can be expected that metabolism shows much more near
equilibrium reactions. However here we need much more accurate data on in vivo
equilibrium constants on a genome wide scale!!

7.2.2 Pseudo-Steady State Lumping

We have seen that many metabolites have low concentration levels (due to an
osmotic upper limit) which leads to very low turnover times (<1 s) of metabolite
pools. This allows, even in pulse experiment at a 300-s time scale, lumping of the
synthesis and consumption reactions of a fast metabolite pool into 1 “lumped
reaction”. This model reduction based on pseudo-steady state lumping leads to
much less parameters and much less parameter identifiability problems (see [23-25]).

7.2.3 Thermodynamic Inspired Kinetics

Replacing kinetics of individual reactions by equilibrium constants (pseudo-equi-
librium) and by lumped kinetics (pseudo-steady state) significantly reduces the
number of required kinetic functions and the number of parameters which need to
be indentified, with no loss of model performance!! (see [24, 25]).

Nevertheless, there remain a significant number of far from equilibrium reac-
tions into and from metabolite pools with slower turnover times for which we need
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to specify a kinetic function. Unfortunately, mechanism based enzyme kinetics
provide highly non-linear rate functions which contain many parameters. Examples
are bi—bi kinetics, Hill functions, etc.

Although the number of parameters has been significantly reduced (near-
equilibrium, pseudo-steady state based reduction) the identification of the remain-
ing parameters still poses enormous problems, due to the non-linear parameter
characteristics. Non-linear parameter estimation algorithms need a decent initial set
of parameter values, which is not available, and in addition they do not guarantee an
optimal result; they often end in a local minimum of the error criterion. Finally,
these identification problems scale very unfavourably with increasing network size
(e.g. genome scale metabolic models contain in the order of 1,000 reactions!!).

A possible solution is the use of proper approximative kinetic functions [27].
Here lin-log kinetics has been developed recently [28], which has its roots in
the concept that the rate of a process is related to the thermodynamic driving
force!! [29].

8 Thermodynamics Inspired Kinetics: Lin-Log Kinetics
8.1 Introduction

Lin-log kinetics is an approximative kinetic format which is a generalisation of the
driving force concept and has been compared recently to other approaches such as
linear, powerlaw, loglin (for review see [27]) and it was concluded that the lin-log
format has significant advantages. Therefore we will focus here on use of lin-log
kinetics.

Consider (Fig. 2) an enzyme e; which is kinetically affected by its substrate
x1 and product x;,, and is also allosterically affected by a metabolite xg. Moreover,
we consider a reference steady state (superscript ©).

Allosteric X
- - effector ~~ "7 78
|
|
Y
e
V‘CIH X7
v e 0 X 0 X5 0 Xg
= ell+€penf—|+€pneln|—|+&geln |—
0 0 0 0 0
J1 € X1 X2 X8

Fig. 2 Lin-log kinetics
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Fig. 3 Comparison between 2
lin-log approximative and
hyperbolic mechanistic
kinetics
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We can compare approximative lin-log kinetics with traditional mechanistic
hyperbolic kinetics and we see (Fig. 3) a very good approximation with respect to
large changes (factor 5 up and down) in metabolite concentration.

Other approximative formats, such as power law as S- or GMA-systems and
loglin, show similar quality of approximation for such changes in metabolite
levels [27].

However metabolic reaction systems not only show large changes in metabolite
concentrations but especially one faces (in the light of metabolic engineering
ambitions) large changes in enzyme levels. For example, one can easily achieve
enzyme concentration changes of factor 10 up or down due to genetic interventions
in gene regulation (promoter libraries) or in gene dosis. Here, lin-log kinetics
shows distinct advantages compared to the other approximative kinetic formats,
as explained before [27]. A final favourable property of lin-log kinetics is that its
parameters (elasticities) are linear in (1) which is significant in the light of parame-
ter identification analysis and parameter estimation algorithms [23-25].

Lin-log kinetics has, after its conception, been successfully applied to kinetic
modelling of metabolic reaction networks using in silico studies but has also been
applied to experimental systems as will be discussed below.

General important aspects of lin-log kinetics are:

e The format is non-linear in metabolite concentrations.

¢ The format has a minimum number of kinetic parameters which helps minimise
the identification problem.

e The parameters (elasticities) are linear in (1) which has significant advantages
with respect to the parameter identifiability and parameter estimation [23-25].

e The elasticity parameters are bounded, e.g. Michaels—Menten kinetics |¢| < 1,
for Hill kinetics |¢| < n (with n subunits in the protein and signs (+ or —) are
known. This constrains the g-estimation problem.
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¢ Lin-log kinetics cannot be applied for datasets where concentrations become
zero [28], [30]. An analogous problem also occurs in powerlaw format where an
inhibitor concentration cannot become zero.

8.2 In Silico Studies with Lin-Log Kinetics

Although Fig. 3 suggests good performance for lin-log kinetics for an individual
reaction, a basic question remains how good does the lin-log approximation work in
networks. This has been studied in several simulation studies. In a first study, where
the lin-log concept was introduced [28], a small branched reaction network, includ-
ing cofactors, was used as a test case. The strongly non-linear kinetic model
was approximated with a lin-log model using the theoretical elasticity parameters.
A rapid perturbation experiment, where metabolite concentrations did change
several fold, was successfully reproduced. Moreover, use of lin-log kinetics leads
to the so-called “design equation”, which allows one to specify new fluxes/metabo-
lite levels and to calculate analytically the required large changes in enzyme levels.
In a follow up study [31] a non-linear model of glycolysis in E. coli was success-
fully approximated using lin-log kinetics and a connected product pathway was
successfully redesigned in silico with respect to the required large changes in
enzyme activities. Even more interesting was a recent study of Smallbone et al.
[32] in which they showed that a lin-log kinetic model of glycolysis in Saccharo-
myces cerevisiae, in which elasticities were assumed equal to their reaction stoi-
chiometric coefficients, gave surprising agreement with the mechanistic Teusink
model!! More recently [30] it was shown that lin-log kinetics could also success-
fully simulate a genetic network with strongly non-linear kinetics. These simulation
results show that lin-log kinetics provide a convenient and satisfying approximation
of mechanistic kinetic functions for small and large models (metabolic, genetic),
provided that metabolite concentrations do not become zero.

Having ascertained that lin-log kinetics provides a decent approximation to non-
linear kinetics of networks, the next important problem is to identify the lin-log
parameters (elasticities) from experimental data. The obvious experimental proto-
col is to perform rapid pulse experiments. The identification of lin-log parameters
(elasticities) from such experiments was studied first in silico. Kresnowati et al. [33]
showed, for a simple linear pathway, that elasticities can easily be obtained by using
the integrated equation (1). The important aspect is that the resulting equations are
linear in elasticities, so that linear regression can be used to obtain the elasticities.
Subsequently a more complex glycolysis model was used for an in silico study of
parameter identification aspects to obtain elasticities from dynamic pulse experi-
ments [23-25]. It was found that, in such rapid pulse experiments, fundamental
identification problems occur due to occurrence of pseudo-steady state metabolite
pools (with turnover time <1 s) in the rapid pulse experiment. The identification
problem could only be resolved by providing additional information (e.g. combined
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steady state and dynamic perturbations. Also, a novel non-linear algorithm for
elasticity parameter estimation was introduced where, due to properties of the lin-
log format, one can obtain a reliable initial estimate of their values using linear
regression of the integrated equation (1).

Finally, a completely different approach to the parameter identifiability problem
in pulse experiments was shown to be possible due to the unique properties of lin-
log kinetics [34]. It was shown that use of lin-log kinetics allows a priori model
reduction by lumping pseudo-steady state pool coupled reactions. The reduced
model reproduced the dynamic pulse experiment (S. cer, anaerobic glycolysis)
accurately and allowed calculation of, e.g. flux control coefficients [34].

An interesting application of a lin-log kinetic model is to identify the function of
so-called silent genes [35, 36] which shows how lin-log kinetic models could be
used to resolve gene-annotation problems.

8.3 Application of Lin-Log Kinetics to Experimental Data

Lin-log kinetics allows a general steady state analytical solution of networks which
gives fluxes as a non-linear function of enzyme activities with flux control co-
efficients C' as parameters [28]. This equation was successfully used to obtain
C’-values from experimental data:

¢ A linear product pathway in Penicillin synthesis using fed batch data on flux
and enzymes in the penicillin pathway [37]

e The lower glycolysis in a reconstituted linear three enzyme pathway [38]

e A branch point for lysine or glutamate synthesis [39]

Estimation of elasticities from experimental data using lin-log format requires
experimental information of fluxes, enzyme levels and metabolite levels. Using an
extensive steady state dataset for lower glycolysis [38] showed that elasticity values
are easily obtained using linear regression. Also lin-log kinetics was used to set-up a
kinetic model for leucine/valine synthesis [40], glycolysis in Lactococcus lactis
[30] and a batch fermentation [41]. In the last two studies it was shown that lin-log
kinetics should not be applied to datasets where metabolite concentrations become
zero (which is obvious). Even more impressive was a recent study [42] in which a
lin-log model was parameterised on a rapid pulse experiment. The model represents
E. coli central metabolism and anabolism to all cell compounds, comprising 126
reactions and 130 metabolites (7 conserved moieties). The presence of allosteric
mechanisms was taken from the MetaCyc database. In total, 921 elasticities were
estimated using evolutionary algorithms and high performance computing. This
work is a first, genome like scale, whole cell dynamic model and shows the power
of the canonical lin-log format approach.

Parameter identification from experiments, however, remains an important
issue. Here recently Nikerel et al. [34] showed the successful application of their
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a priori model reduction approach (made possible due to lin-log format) on anaero-
bic glucose pulse experiments in Saccharomyces cerevisiae.

This short overview shows that the recently introduced lin-log kinetics, inspired
by thermodynamic principles, shows considerable promise in achieving genome
scale kinetic modelling of metabolic networks.

9 Conclusion

Thermodynamic principles do shape the properties of biological systems, with
considerable and highly interesting consequences for their mathematical models
needed in systems biology. Especially noteworthy are the far reaching conse-
quences of the osmotic limit, such as pseudo-steady state, black box kinetics, just
in time, control mechanisms, model reduction etc. Also of future importance is the
principle of energy optimality for modelling of genetic mechanisms and of thermo-
dynamic driving force (lin-log kinetics) for kinetic modelling. Lin-log kinetics
seems to hold considerable promise to obtain realistic genome scale kinetic models
(especially due to the lin-log based possibilities towards model reduction, a priori
identifiability analysis and an initial estimate of the elasticity parameters).

Abbreviations and Symbols

X Intracellular metabolite level 1 mol/g DM

S Stoichiometry matrix

e Enzyme amount per cell mass

p Parameter

u Specific growth rate h!

qi Specific uptake/secretion rate mol (or kJ/h)/CmolX
Posm Osmotic pressure N/m?>

v Rate of intracellular reaction mol i/h/CmolX
AG?I. Standard Gibbs energy of formation kJ/mol

Yeg Maximal yield of biomass on Gibbs energy CmolX/kJ
Yo Maximal yield of biomass on substrate CmolX/molS
Ygx Maximal yield of product on substrate molP/molS
mg Maintenance Gibbs energy requirement kJ/h/CmolX

C Number of C-atoms in carbon source

y Degree of reduction of C-source (per C-atom)

R Gas constant 8.314 J/molK

T Absolute temperature K

AGY Gibbs energy of the catabolic reaction per mol donor kJ/mold

K, Affinity for substrate molS/m3

C, Substrate concentration molS/m>

t.o.t. Turn over time S

J Flux mol/h/C-molX

Elasticity coefficient (ﬁ %) of metabolite j on enzyme i

Maintenance coefficient for i (O,, substrate, ethanol, etc.)

mol of i/h
CmolX
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Subscripts

j Metabolite j
i Reaction i

P Product

S Substrate

X Biomass

G Gibbs energy
o 0,

el Electrons

D Donor

Cat Catabolic
Superscripts

Biochemical standard (pH = 7)
Standard condition (1 mol/L, 1 bar, 298 K) or reference condition, also reference steady state
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