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Preface

We teach a course on Distribution Logistics at the Faculty of Engineering
and Management at Politecnico di Torino. After an initial teaching experi-
ence based on assembling diverse material from various origins, we reluctantly
accepted the painful idea of writing our own textbook.

Many books have been published on Supply Chain Management and Distri-
bution Logistics, and the list includes some truly excellent ones. Still, we felt
that there was some place for this book. We perceived a sort of dichotomy be-
tween very advanced books aimed at mathematically gifted (possibly Ph.D.)
students, and all-encompassing manuals, which did cover a lot of topics in an
excellent manner, but did not emphasize the quantitative approach in a way
that we consider suitable for Engineering students. Our hope was to write
a book that (i) focuses on a rather narrow set of themes related to Supply
Chain Management; (i) is quantitatively oriented, while still not neglecting
issues that are difficult to quantify; (iii) shows how to build models to make
logistic decisions, but still discusses practical issues and uses real-life examples
to hopefully guide the reader through the hazards of Mathematics, Statistics,
and Optimization.

In what follows, there is extensive use of tools from Probability, Statistics,
and Mathematical Programming. In order to make the book as self-contained
as possible, and to enlarge its potential audience, we included extensive appen-
dices on these topics. Thus, while the book requires some level of mathemati-
cal maturity, it can be used by students (both at graduate and undergraduate
level) in such diverse areas as Engineering. Business Administration, Eco-
nomics, Mathematics and Statistics, and (last but not least) by the potential
users of the proposed methodologies.

We do not want to encourage an uncritical use of algorithms and sophis-
ticated models in place of intuition and common sense. A classical example,
from the Just in Time folklore, is the Japanese attitude towards setup times:
There is little point in building complicated mathematical models to manage
production with setup times, if they can be eliminated by proper improve-
ment of manufacturing. However, there is a steady increase of commercially
available software packages including quantitative-based procedures, and we

Xiji
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think that a good working knowledge of quantitative models and methods is
needed, first of all, to use these tools with care and to be fully aware of their
up- and down-sides. The limitations of mathematical modeling lead many
students to identify theoretical with not practical. On the contrary, as James
Clerk Maxwell (apparently) put it,

There is nothing more practical than a good theory.

There is no contradiction between good theory and good applications, ruling
out those bad “applications,” in which it is hard to see what was applied
exactly. A suitably simplified, but formal representation is valuable in un-
derstanding the nature of problems, in assessing tradeoffs, and in developing
solution approaches or alternative strategies. This is not to say that there is
no danger in relying only on quantitative modeling, or that they guarantee
the success of our endeavors: One can tackle the wrong problem, or solve it on
the basis of unreliable data, or finding a theoretically optimal solution which
cannot be applied, due to some neglected organizational constraint. Still, only
an expert and competent decision maker can find the right balance between
conflicting requirements, possibly adapting the proposed solution to fully ac-
count for unmodeled features of a real-life problem. A strong background in
quantitative modeling allows a practitioner to make the most out of them or,
when the context so dictates, to knowingly avoid the use of an inappropriate
tool.

When tackling any management problem, a practitioner needs a clear view
of the environment in which a firm operates and of its positioning in terms of
strategies and competition levers. All of this conjures up the idea of something
inherently “creative” and definitely in contrast with the “mechanistic” flavor
of quantitative approaches. Again, this is a false myth. It is often said that in
mathematics there can be no opinions, and this is certainly true for low level
algebra. But the way mathematics is applied to tackle a relevant problem does
require a fair share of creativity and ingenuity: We must spot the subset of
relevant variables, the objective to pursue, and the options at hand. All of
this is far from boring routine, and we hope that in writing this book we can
share our enthusiasm for tackling and modeling distribution problems with
the reader.

The book consists of eight chapters:

Chapter 1 is an overview of Supply Chain Management, with the aim of
providing the appropriate context and to draw the line between what is
included in the book and what is not.

Chapter 2 deals with distribution network design problems. With respect
to the following chapters, this one deals with issues at a strategic level,
and it relies more heavily on mathematical programming models.
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Chapter 3 is dedicated to several forecasting models. We include classi-
cal topics in time series forecasting, with some additional emphasis on
initialization and testing issues. We also deal with regression based
modeling, and forecasting demand for new products.

Chapter 4 offers basic background in classical inventory control models as-
suming deterministic demand, such as the Economic Order Quantity
model and some of its variant. With respect to standard literature, we
also emphasize parameter uncertainty issues, multi-item problems, and
mathematical programming models for multi-period problems.

Chapter 5 covers several models for inventory management subject to un-
certain demand, assuming a single facility.

Chapter 6 outlines issues in multiechelon inventory systems. This is a very
difficult topic, requiring considerable background; hence, we have lim-
ited the treatment to some simple cases in order to let the reader ap-
preciate the issues involved.

Chapter 7 covers incentive issues in a supply chain where multiple actors
interact with conflicting views and objectives. This is a relatively un-
usual topic in distribution logistics books, bordering with Industrial
Economics. Unlike other chapters, the models we present here are not
really operational, but aim at shedding some light on basic problems
and concepts that can be used to tackle them.

Chapter 8 is relatively independent from previous ones, as it provides the
reader with the essential background on the operational problem of Ve-
hicle Routing. This problem lends itself to quite sophisticated combina-
torial optimization strategies, but just provide the reader with the basic
knowledge to understand the basic strategies that are used within some
commercially available software packages.

Finally, we have included two relatively extensive appendices on Probability
and Statistics and Mathematical Programming.

As you may see, we do not cover physical distribution logistics and mate-
rials handling. There are other important topics which are omitted, such as
supplier management, and discrete event simulation. Indeed, we did not aim
at writing a comprehensive manual dealing with all of the topics which are re-
lated to Supply Chain Management. There are voluminous handbooks which
have been written with this aim, whereas we wanted to provide students and
practitioners with a solid background on quantitative approaches, in order to
pave the way for their extension and adaptation to real life problems, with all
of their nuances and peculiarities.

We should also mention that, in our teaching. we complement our lecture
notes with the discussion of business cases, mostly from the rich library of
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the Harvard Business School, and software development laboratories. The
interactive nature of these fundamental additional activities does not lend
them to textbook coverage.

Despite the best of our efforts, typos and mistakes are a fact of life when
writing lengthy bocks. We will be grateful to readers who will be kind enough
to share their opinions or criticism, and will point out our mistakes. A list of
errata will be posted and maintained on the following Web page:

http://staff.polito.it/paolo.brandimarte/

Courtesy of Murphy’s law, our Web manager will decide that all of our URLs
have to change a few days after publication of the book. An up-to-date link
will be maintained on the following Wiley Web page:

http://www.wiley.com/mathematics

We also plan to post some supplements on topics that we have omitted in
order to keep the book to a manageable size. Some web sections are already
integrated within the book, and they are characterized by a section numbering
starting with ‘W’ (e.g., web section W.2.5). Overly technical sections are left
as supplements at the end of chapters; they are characterized by a section
numbering starting with ‘S’ (e.g., supplement S.5.8)

As a final remark, although the book is the result of a joint effort, chapters
1, 2, 8, and appendices A and B can be attributed to the first author (PB);
chapters 3, 4, 5, 6, and 7 can be attributed to the second author (GZ).

PAOLO BRANDIMARTE
paoclo.brandimarte@polito.it

GIULIO ZOTTERI!
giulio.zotteri@polito.it

Politecnico di Torino
May 2007



Supply Chain
Management

1.1 WHAT DO WE MEAN BY LOGISTICS?

Logistics has quite a long history, whose origins predate by far the initial at-
tempts to make it “scientific.” Many engineering schools were born because
of the need for building better military fortifications and weapons. Logistics
followed a pattern common to that of many fields in engineering: Military
applications gave an important impulse to its development. While relatively
small armies in the past could sustain themselves also by robbing local pop-
ulations, proper management of supplies was required at later times to sup-
port larger armies in need for ammunition and a significant amount of food.
Napoleon, who is acknowledged with the motto “An army marches on its
stomach.” is considered an innovator in this respect, because (what we now
call) supply chain management afforded his armies a far greater degree of mo-
bility than his rivals. Logistics has played an increasing role in later conflicts,
like the American Civil War (ACW), where transporting supplies and troops
was accomplished by an array of transportation means including supply wag-
ons, rail, ships, and (in the Western Theater) rivers. The role of logistics can
be appreciated by considering how the availability of supplies is of no use if
the supplies cannot be routed to destination, whereas clever organization may
make good enough use of scarce resources. A paradox in Confederate logistics
during ACW was that an economy strong in agriculture and weak in industrial
power, compared to its Union counterpart, succeeded in maintaining a flow
of weapons and ammunitions, whereas troops often starved because of lack of
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food.! Indeed, some military academics are reported to say that “amateurs
study tactics, professionals study logistics.”

Military applications continued to play a prominent role in the develop-
ment of scientific logistics in the 20th century.® The quantitative approach
to management problems is typically associated with Operations Research,
whose origin can be attributed in part to the need of managing the supply
chain across the Atlantic Ocean during World War I1.2 However, we should
not think that the scientific approach to logistics is that recent. For instance,
the well-known Economic Order Quantity (EOQ) formula for inventory man-
agement dates back to the early 20th century, since it was published in 1913%;
furthermore, the manifesto of Taylorism® was published in 1911, but its roots
can be traced back to a rationalization process in manufacturing, which had
been quite active during the 19th century.

Given this long history, we should not be surprised that the term “Logis-
tics” has now a rather wide and often ambiguous meaning. Indeed, several
professional and academic organizations have attempted to draw the line,
pointing out what we should mean by this term. The U.S. Council of Logis-
tics Management proposed the following definition:

Business logistics is the term describing the integration of two or more
activities for the purpose of planning, implementing and controlling the
efficient flow of raw materials, in-process inventory and finished goods
from the point of origin to point of consumption. These activities may
include, but are not limited to customer service, demand forecasting, dis-
tribution communications, inventory control, material handling, order
processing, parts and service support, plant and warehouse site selec-
tion, procurement, packaging, return goods handling, salvage and scrap
disposal, traffic and transportation and warehousing and storage.

The term business logistics emphasizes a separation from other fields, such
as urban transportation, which could be included in a more general notion
of logistics. The definition we have reported is not very recent, as it dates
back to 1979, but it includes both management issues and material handling
issues, which are more physical in nature. This book is only concerned with
management issues, not with physical activities which might be labeled as

1See: R.K. Krick, The Power of the Land, in: A. Sheehan-Dean (editor), Struggle for a
Vast Future: the American Civil War, Osprey Publishing, Oxford, 2006.

2Those of us who are sane enough not to appreciate the grim arts of war too much, may find
some consolation in thinking that the same approaches can be used to route huge amounts
of essential supplies, in a short time span, to areas struck by natural disasters.

3Another element in the birth of Operations Research was queuing theory, initially de-
veloped to model telephone traffic. It is worth remembering that the celebrated simplex
method to solve linear programming problems was developed in 1947 by George Dantzig,
who worked for U.S. Air Force.

4See: F.W. Harris. How many parts to make at once. Factory: the Magazine of Manage-
ment. Vol. 10, 1913, pp. 135-136. Reprinted in Operations Research, 1990, Vol. 38, pp.
947-950.

5F.W. Taylor. The Principles of Scientific Management. Harper & Row, New York, 1911.
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“industrial” logistics. This is certainly not to say that industrial logistics
has a lesser role, or that there is no interconnection between hardware and
managerial issues. Some management activities have no sense if the underlying
physical process is not properly designed and if certain technologies are not
exploited. Our aim is to define a consistent and relatively limited scope,
in order to offer a pedagogical treatment of selected material at a suitably
deep level, rather than offering a superficial handbock covering all possible
topics. As we stress below, solid foundations are essential to any practitioner,
as general principles have to be twisted and adapted to many diverse and
peculiar settings, and a superficial listing of cookbocok recipes is actually of
little use, if not counterproductive in case these recipes are applied improperly.

Apparently, the definition above includes too many things. However, mod-
ern integration trends have given rise to Supply Chain Management (SCM)
as an almost all-encompassing discipline. On the supply side of the chain, in-
creasing emphasis is given to supplier relationships management, purchasing,
and contract design. On the other end of the spectrum. customer relation-
ships management (CRM) is another example of an issue which is gaining
relevance. Information Technology (IT) had a dramatic impact too, thanks
to the rise of Internet, which made electronic commerce, online auctions for
products and services, and the sharing of large databases possible. As far as
information systems are concerned, the introduction of Enterprise Resource
Planning (ERP) systems has made the case for the interconnection with other
functional areas, such as manufacturing.® accounting, etc. And if this does
not look confusing enough, the list of complications could go on and include
other factors:

e The reduced lifespan of products and the need for customization imply
that the supply chain has to be continuously redesigned. Even product
design may interact with logistics. For instance, design for supply chain
management has been successfully applied by Hewlett-Packard.”

o Globalization has introduced a new array of risk factors which impact
SCM, such has exchange rate risk and, at a higher level, political risk.

e The availability of several transportation modes and the concentration
of production into large sites have a deep impact on transportation
management.

6Indeed, in many practical settings, we cannot deal with distribution logistics without
paying due attention to production. From a methodological point of view. many models and
modeling techniques we illustrate in the book are often included in books on manufacturing
management.

7See: H.L. Lee, C. Billington, and B. Carter, 1993, Hewlett-Packard Gains Control of
Inventory and Service through Design for Localization. Interfaces, Vol. 23, pp. 1-11.
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o Revenue and yield management® have a prominent role in the air trans-
portation and in the service industry, but they are likely to see an in-
creased role in distribution too (think of price cuts at the end of the
selling season in many retail chains).

e Environmental issues dictate that we also pay due attention to reverse
logistics.

All of the above, and more, has something to do with Supply Chain Manage-
ment. Trying to cover such a wide spectrum or topics and issues in one book
is a hopeless endeavor, unless one is willing to just compile a list of buzzwords.
We believe that students {and practitioners) should have a firm grasp of basic
principles of distribution logistics. Armed with a solid background, they can
tackle new developments with confidence. Quantitative models and methods
play a fundamental role in developing basic skills, and indeed this book is
more quantitative oriented than others in this area. However, we did not aim
at writing a high-level research survey for Ph.D. students. We only outline
problems and solutions, using both toy examples to build intuition and real
cases when appropriate. Moreover, we should never forget that quantitative
models may be implemented in a computer program, but they are ultimately
applied by people. People have incentives, possibly unwritten ones; this ap-
plies both to single individuals and to organizations. Indeed, distribution
logistics typically crosses borders between organizations, and understanding
incentives and organizational barriers is a prerequisite to successfully apply
any “scientific” solution.

1.1.1 Plan of the chapter

After insisting on what we do not include in the book, we would better explain
what we do include. This chapter lays down the foundations for the next ones,
according to the following plan.

e A distribution network is characterized by a physical arrangement of
facilities, such as warehouses and transit points, on a possibly wide geo-
graphical area. In section 1.2 we illustrate typical structures of distribu-
tion networks. The physical arrangement of facilities does not tell the
whole story, as goods flow in the network by some transportation means
(e.g., trucks or rail). Inventory and transportation management strate-
gies contribute to the definition of a distribution network. Furthermore,
information flows must be described too.

e When designing a distribution network, we should make our decisions
in a way that supports a specific strategy. There is no single “one-

8Revenue and yield management are essentially dynamic pricing policies. They have a
prominent role in the case of goods which cannot be stored, such as seats on an aircraft;
transportation services can also be priced dynamically, as well as perishable items.
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best-way” strategy that works in all possible settings. A strategy is
a compromise between the need of achieving a good competitive posi-
tion, according to a selected profile, and the need of keeping costs low.
Competitive factors, cost drivers, and possible strategies are outlined in
section 1.3.

e A distribution network typically includes locations in which goods are
stocked. Common wisdom maintains that inventories are the source of
a long array of evils and should be kept as low as possible. In fact,
inventories are a source of many relevant costs, but they play specific
roles in achieving a certain competitive position. Hence, they must be
properly managed and we should have their functions very clear in mind.
Section 1.4 illustrates the roles of inventories.

e A recurring theme in this book is uncertainty. Demand uncertainty
is the single most relevant complicating factor in distribution logistics.
Good forecasting procedures may be used to predict future demand,
but they can only reduce rather than eliminate uncertainty. Even if
uncertainty cannot be eliminated, it can be managed. In section 1.5 we
start outlining a few ways to deal with uncertainty.

e Goods move on a distribution network, from factories in which they
are produced, through warehouses and transit points, to retail stores.
Managing transportation is another relevant piece in the overall puz-
zle. Section 1.6 illustrates some basic ways to define a transportation
strategy.

e The flow of goods is what is typically associated to logistics, but the
flow of information is just as important. Any decision procedure is
based on some piece of information, but without information sharing,
certain procedures are simply not feasible. Information sharing may be
difficult in a large firm consisting of several branches, let alone a supply
chain involving different firms. Furthermore, assigning decision rights in
a supply chain involving several actors is not a trivial task. Section 1.7
outlines a few issues related to information, incentives. and decisions.

e The structure of a network is something that should not change too
quickly. since the decision to build a facility may be made considering
a relatively long time horizon, say years. A recent tendency is to lease
warehouses, which contributes to shorten the time span of these deci-
sions.? Nevertheless, moving all the goods from an old warehouse to
a new one is not something we want to do on a monthly basis. On
the contrary, a change in the inventory management strategy can be

9 Another factor which calls for frequent changes in the supply chain is the reduced life-cycle
of products.
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Fig. 1.1 Linear logistic structure.

achieved on a shorter time span, and transportation must be managed
daily. Hence, different decisions may have different time horizons and
pertain to various hierarchical levels. In section 1.8 we introduce strate-
gic, tactical, and operational decisions. These should be regarded as
loose guidelines, since sometimes it is hard to draw the line between the
levels, due to tight interactions between different them.

e There are some recurring expressions in Distribution Logistics, and more
generally in Operations Management, such as make-to-stock, make-to-
order, push, and pull. They have raised quite a bit of controversy,
as sometimes they are used ambiguously. Indeed, they do not really
define specific strategies, but they do define attributes of possibly hybrid
decision strategies. In section 1.9 we illustrate the meaning of these
terms as features of decision strategies.

o Last but not least, to tackle all of the above problems we may take ad-
vantage of models and methods. Quantitative approaches play a promi-
nent role in the book, which is not to say that they should be applied
with a blind faith in their power. Section 1.10 helps in classifying quan-
titative models, including those which are quite useful but are not dealt
with here; the most notable example is discrete event simulation.

1.2 STRUCTURE OF PRODUCTION/DISTRIBUTION NETWORKS

From a physical point of view, a supply chain consists of possibly several stages
where items are produced, transformed, assembled, packaged, and distributed
to consumers. The simplest structure is illustrated in figure 1.1, where we see
a linear arrangement of nodes. Each node in this chain can be more or less
complex. The first node is likely to be a factory, where items are produced;
we deal with this node as a black box, but a manufacturing system would
consist in turn of several machines, laid out according to a certain pattern.
From our distribution point of view, these details are not quite relevant per
se. However, the arrangement of the manufacturing system has a definite
impact on performance measures such as flow time, i.e., the time that an
order takes to go through all of the stages required by its technological cycle.
The manufacturing flow time is clearly relevant from the supply chain point of
view. Thus, we do not investigate the internal structure of the nodes and treat
them as black boxes. However, the performance (cost, lead time, etc.) of each
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Fig. 1.2 Supply chain structure with assemblies.

black box is very relevant to us. The network could be extended to the left,
and include the production of raw materials, but any analysis has to focus on
a portion of the overall chain. Proceeding to the right in the figure, we may
find other stages at which material is transformed; we should pav attention
to the increase in value of the product. which affects the overall economic
performance of the network. After the whole chain of transformations, the
products may flow through other stages, at which material is simply stocked in
a warehouse, until the retail store is reached. Factories may have inventories
too, both inbound and outbound.

Along a linear chain, we may have transformations and transportations of
items. However, assembly of components into end items is a common occur-
vence. When items from different sources are assembled, we get a converging
structure like that illustrated in figure 1.2. Readers with a manufacturing
background could be tempted to interpret the convergent network in the fig-
ure like a bill of materials, i.e., a technological representation of how an end
item is obtained by assembling components and possibly complex subassem-
blies. Actually, what we are representing here is the geographical structure of
the network, where components can be produced in a continent and asseinbled
in another one. In a convergent network, we clearly see the need for proper
synchronization in the material flow: If we miss even one, possibly low-cost
component, we cannot assemble the product we need.

Finally, figure 1.3 illustrates an arborescent (or divergent) network which
is typical of pure distribution. Here node 1 could be a large warehouse lo-
cated near a factory producing an item. nodes 2 and 3 might be regional
warehouses, and the remaining nodes could be retail stores (in a real network,
there would be much more retail stores than depicted). In a pure distribution
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Fig. 1.3 Pure distribution (arborescent) network.

network, the product is always the same.l® However, whenever material is
transferred downstream, we commit it to a certain section of the network.
Such an allocation decision is absent in the previous cases, and it must be
made with care when material availability is scarce. One could wonder why
intermediate stages are needed; after all, they are a cost. We will consider the
roles of intermediate stages in depth in chapter 2. Intermediate nodes might
help the company in exploiting economies of scale in transportation and/or to
reduce the impact of demand uncertainty. We should note that intermediate
nodes can be distribution warehouses, but they can be also simple transit
points with no facility to store inventory; alternative terms for the last case
are “transshipment nodes” or “cross-docking platforms.”

The three structures we have illustrated are just basic prototypes. A real-
life supply chain is a hybrid of all of them, with many variations. For instance,
in the distribution network of figure 1.3, material flows downstream according
to a regular pattern, stage by stage. In practice, some retail stores could be
served directly from node 1. We will see that this depends on the demand

10The lack of physical transformations does not imply that the cost of items does not
change; as an example, consider customs duties we may have to pay when crossing certain
borders.
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volume; when this is large enough, we do not need intermediate nodes to take
advantage of economies of scale in transportation. For example. we might
be in a position to fill a full truck leaving the warehouse to visit a given
store. Another variation, with respect to scholastic cases, is the reverse flow
of materials. In the previous figures, we see material lowing downstream, but
recycling and the need to collect waste call for proper management of reverse
logistics. The inereasing concerns for the environment make such issues more
and more relevant. Finally, we may have flows of materials between peer
nodes. i.e., stages which are located at the same level in the network. These
lateral shipments can be used to reallocate material among stores of large retail
chains in case one is experiencing a stockout and another is overstocked.

A network design problem calls for structuring a possibly large supply
chain, locating facilities, deciding their capacity, and optimizing the trans-
portation of material among them. This is a very difficult task, as we shall
see in chapter 2. Fortunately, we are often interested in the partial redesign
of a network, which makes the task considerably easier. However, the shorter
and shorter life cycle of products calls for the continuous redesign of supply
chains.'!

1.3 COMPETITION FACTORS, COST DRIVERS, AND STRATEGY

When managing a supply chain, the natural aim is providing the customer
with a suitably good service, and doing so at a suitably low cost. By “good
service,” we mean that the customer should get what she wants. when she
wants it, and how she wants it. Other factors could be relevant, such as after-
sales service, but even if we focus on the minimal set of attributes that make
a good service, we see that there is no single dominant strategy: There is no
possibility of being first in class along all possible dimensions, at a reasonable
cost. What we need is a clear view of the dimensions on which we compete,
in order to get priorities straight. In the following sections we illustrate a
few examples of attributes which define competition factors; then we list a
few sources of cost that we must keep under control; finally, we illustrate how
all of the relevant dimensions can be traded off, by prioritizing competition
factors to define a strategy.

1.3.1 Competition factors

Say that you are a customer wishing to buy a certain good. What are the
attributes that are important to you? Probably, most people would point out
quality requirements. Of course, quality of the goods is key factor influencing

HHewlett Packard provides an excellent example of using software tools based on quanti-
tative methods to design supply chains in a dynamic environment; see (2].
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consumers’ choice, but it is itself a complex concept encompassing multiple
dimensions. The quality of a car can be measured through the number of
safety features, the top speed, gas consumption, acceleration, etc. Moreover,
quality can be measured through the target quality (i.e., the quality the prod-
uct should have, according to its design) and conformance quality (i.e., the
ability of the single item to meet the target quality over time). Also, the qual-
ity of the good could be traded off against price, depending on which market
segment we want to address. Moreover, quality is relevant not only in terms
of goods, but also in terms of service. Indeed, there are complementary ser-
vices which may contribute to establish a reputation. Consumers can return
the merchandise they bought to many mail retailers (as well as to brick and
mortar retailers in countries such as the U.S.A.). Other services are more and
more relevant in times of increasing environmental concerns; we have already
mentioned the role of reverse logistics and the possibility of returning packag-
ing materials, used products, etc., which contribute to the positive image of
an environmentally responsible supplier. After-sales services are specifically
important for durable goods whereas installation support is very important
for complex systems such as high-end audio and video systems.

If we think of distribution services per se, fast delivery may be important,
but dependability may be even more. So, waiting for a long Delivery Lead
Time (DLT) may be unpleasing, but a very uncertain and unreliable DLT
may be even more annoying. In fact the possibility of tracking shipments
or to check order status, possibly via Web, is typically offered by couriers,
such as DHL and Fed Ex, by Internet-based sellers, and service centers of
non-durable goods. From the consumer’s point of view, DLT must be zero
for some products: No one would like to wait a few days for a bottle of milk.
However, the DLT for milk is not zero from the point of view of the retail
store or of other actors along the supply chain. Yet, we will see that a zero
DLT may make the management of inventories much easier. On the one hand
a non-zero DLT provides us with some advance information that can help us
improve performance (e.g., reduce inventories or increase service level). On
the other hand, exploiting this information is all but trivial and complicates
modeling substantially.

At the other end of the spectrum, engineered-to-order items have a long
DLT: No one would expect to find a radar system on the shelves. In between
these extreme cases, there is an array of intermediate possibilities. DLT is
linked to the structure of the network, the transportation means adopted, and
the inventory levels and their deployment in the network. If large amounts
of goods are held near the customers (say at the stores), DLT is short; it can
also be reduced if quick but costly transportation services are used. So, we
see that there is a tradeoff between DLT and different types of cost.

Example 1.1 CHL is an Italian retail chain of information technology prod-
ucts. An important feature of its strategy is that it does not maintain inven-
tories at retail stores, which are just used to collect orders and to deliver items
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to customers. This results in a significant reduction in inventory levels, which
is particularly relevant for items characterized by very fast obsolescence and
thus high cost of inventories.

Another relevant competitive weapon is assortment, i.e., the variety of prod-
ucts offered. For a manufacturer, this means offering a large catalogue and the
possibility of customizing an end item according to customers’ wishes. For a
retail store, this means offering a large set of alternative items on its shelves.
In both cases, we see that variety comes at a cost. Also, we can trade off as-
sortment with DLT. If products are customized to order, we need some time
for this operation and customers shall be willing to wait. If you offer a large
assortment with zero DLT, you have to keep a lot of items in inventory. each
one with a possibly low and hardly predictable demand. However, variety
may be an important and valuable asset to attract customers. Indeed, there
may be a positive feedback, when variety increases demand, thereby easing
some of the difficulties associated with low levels of demand.

Another relevant feature of the supply chain is the flexibility, that is the
ability to adapt to changes and exceptional conditions. For example, a flexible
supply chain can fulfill an extremely important order in an exceptionally short
time. We can have different kinds of flexibility according to the variable that
raises the need for a change. We call product flexibility the ability to adapt
the product to customers’ needs. For example, the ability to configure the
product to customer specifications might be crucial for complex products such
as furniture or cars. A company that carries inventories of components and
assembles them to order usually can achieve a great deal of flexibility with
limited resources (provided customers are willing to wait while components
are being assembled). Think of the large number of different sandwiches
one can prepare with just a few basic components! We call flexibility to
product innovations the ability to manage the introduction of a new product.
To achieve this kind of flexibility the company might need to buy flexible
production systems and might want to carry components over, that is use
components and subsystems from previous generations of the product. Such
kind of flexibility is more and more important nowadays given the growing
importance of new products and product novelty. We call delivery flexibility
the ability to adapt deliveries to customers’ needs. For example, the ability to
deliver rush orders or manage luggage of VIP clients with a tight connection
in a hub-airport might be crucial. We call volume flexibility the ability to
increase/decrease production and distribution quantities on a short notice.
This flexibility is expecially valued in markets with a sharply seasonal pattern,
such as Christmas gifts, etc. This flexibility can be gained through both spare
resources (e.g., spare capacity), flexible resources (e.g., temporary workers),
or appropriate planning (e.g.. we might produce/distribute all products with
a predictable demand before the peak of the season so that during the peak
we can use the limited production/distribution capacity to manage just the
uncertain part of demand).
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1.3.2 Cost drivers

Keeping costs under control is a fundamental factor in supply chain compe-
tition. We should state quite clearly that cost minimization per se need not
be a winning strategy; a strategy is a good tradeoff between the objective of
minimizing costs and the objective of maximizing other competitive perfor-
mance metrics such as quality, delivery, service, etc. Keeping this in mind,
we should list the typical cost drivers in supply chain management, in order
to set the stage for decision-making approaches. Before doing so, we should
classify costs according to a couple of dimensions.

e Costs can be linear or nonlinear. Consider an arbitrary activity (e.g.,
how many parts we make or buy), and denote its level by a decision
variable by z. A linear cost function is something like f(z) = cx, where
¢ is a unit cost. More generally, if we have N activities indexed by i, a
linear cost function has the form f(x) = Zf\zl ¢;Z;; note how linearity
implies that costs pertaining to different activities are simply added.
Otherwise, we have to deal with a nonlinear (possibly discontinuous)
cost function. Examples of nonlinear cost functions are f(r) = 2% or
flz1,22) = x129. Consider, for instance, purchasing large amounts of
some component; a discount might be offered if the purchased quantity
is above a given threshold. In such a situation, we have an economy
of scale; diseconomy of scales occur when scaling an activity level up
increases the related cost more than proportionally. Interactions among
activities may also result in a nonlinear total cost function.

In practice, costs are always nonlinear, but sometimes they can be suit-
ably approximated by linear functions, at least for small variations of
the level of activity (say number of units purchased or produced). When
formulating an optimization model (see appendix B), keeping everything
linear is an important concern in order to limit the computational ef-
fort required for solving the model. Even when assuming a linear cost
function is too far from reality. nonlinear costs can be approximated by
piecewise linear functions (see section 2.3) whereas in the general case
they can be fairly different.

We may also recall two important concepts. Consider a generic cost
function ¢(z). The value of the first-order derivative ¢/(z) is called
marginal cost. The marginal cost is constant for a linear cost func-
tion, but not in general. The average cost is ¢(x)/x; we may see that
average and marginal cost are the same for a linear cost function.

e Costs can be fized or variable. In accounting, a cost is fixed if there
is nothing we can do about it in the short term.!'? For instance, the

128¢rictly speaking, accounting professionals use “period” and “product” costs.
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cost of a plant is fixed from the point of view of short-term operations
(consider. e.g., rent, depreciation, or cost of fixed personnel). The direct
production cost is variable, since we can change it through production
decisions on a much shorter time scale. Of course, in the long run all
costs are variable, so the distinction is a matter of time scale. Never-
theless, such fixed costs do not (or at least should not) influence current
decisions; they may contribute a constant term to an objective function
in an optimization problem, but this does not change the optimal solu-
tion. In the short run, these fixed costs are constant, no matter what
the short term decisions are. So in a way they are simply irrelevant
for decisions making processes. Sometimes, the term sunk cost is used
to refer to a cost which has been paid and no future decision has any
influence on it.

In this book, we will use fixed/variable costs with a slightly different
meaning. If a cost function can be expressed by

o(z) = F+exr ifz>0.
~ 10 otherwise,

we refer to F' is the fixed cost. Hence, what we mean by “fixed cost™ is
a cost that does not depend on the value of a decision variable. provided
it is strictly positive,!3 The typical example of fixed cost in this vein is a
fixed ordering cost, i.e., a cost that we pay whenever we order, whatever
amount we order. Clearly, such costs might encourage ordering larger
quantities, resulting in economies of scale.™ Hence, fixed cost in this
sense do influence decisions, unlike fixed costs in the accounting sense
(for the sake of clarity in the remainder of this book we will call these
sunk costs).

Fixed costs may result in piecewise constant cost functions. Consider the
cost of transporting an amount z of some good, and assume that there
is a fixed cost component, that we pay for each truck we use. Depending
on x, we may have to use one truck or two. This induces a discontinuity

1350metimes, the term fixed charge is used to avoid ambiguity.

14 Notice that in Economics the term “economies of scale” has a slightly different meaning,
since they are regarded as a long term phenomenon. When we face economies of scale,
the long term average cost decreases as the production volume (per unit of time, say per
vear) increases. When economists say “it is a long term effect,” they really mean that we
can observe such a reduction in the average cost when we compare different plants (or,
more generally. infrastructures) with different capacities. On the contrary, the effect of the
production volume on the costs of a given plant is a short term effect. As such. economists
do not consider this to be related to economies of scale. In this book we use the term
economies of scale in a broader sense. Therefore, in this book the economies of scale lead
to the reduction of the average unit price and might be due to the dilution of some fixed
costs when the level of activity (say the production volume. the purchase quantity, or any
other relevant level of activity) increases. We disregard the distinction between short term
decisions and long term ones.
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Fig. 1.4 Semivariable costs.

in the cost function, which might include a piecewise constant term.
Sometimes, the term semi-variable cost is used to refer to such a case
(see figure 1.4).

We stress again that we cannot really draw a thick line between the concepts
above: A linear cost function can be a suitable approximation of a nonlinear
one, and a fixed cost may be transformed (at least partially) into a variable one
by suitable arrangements. So, we should just consider the above classifications
as useful guidelines, which are best illustrated by a few examples.

We have seen that a supply chain is, from a physical point of view, a
network of facilities on which goods are stocked and transported. A first set
of costs is associated with building and maintaining facilities. These costs are
sunk when we are operating the network, but they are a result of a decision
when we are designing the network. The cost of a facility is a possibly complex
function of its type, location, and capacity. A pure transit point is typically
less expensive than a distribution warehouse. We need to find a suitable
approximation of the cost associated with building and operating a facility,
and this is certainly not a simple linear function. Some costs are fixed, such
as those linked to the realization of basic infrastructures to get the facility
working; other costs could be represented by a piecewise constant function
depending on capacity, or by general nonlinear functions of the flows going
through that node in the network. Recent trends tend to make some fixed
costs variable, as we may lease warehouse space from a provider of logistic
services; in a highly uncertain and dynamic setting, this may be an advantage.

Transportation costs present a similar structure, resulting from a mix of
fixed and variable costs. When shipping a standard container from a certain
point of the supply chain to another one, part of the cost is fixed and in-
dependent of the content. Transportation rates may be quite intricate, but
again we may find a suitably accurate representation. If we want to compare
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two transportation modes. we are actually interested in figuring the best so-
lution. If errors in the cost evaluation are not too large, they do not reverse
the ranking of alternatives, and we make the correct decision anyway.

More often than not, there is a tradeoff between different cost components.
For instance, transportation cost can be reduced by selecting a close supplier:
however, this need not lead to the lowest overall cost because, when we order
something from a supplier, several factors come into play besides transporta-
tion cost:

e ordering costs,

o the price charged by the supplier, which may also be affected by currency
exchange rates,

¢ inventory holding costs.

Unlike transportation costs, ordering costs are internal costs. in the sense that
they depend on the operations of the buyer firm, whereas transportation cost
may depend on either the supplier, or the buyver, or a service provider. In the
past, each order was associated with a procedure including some phone calls
or fax messages. These costs were largely independent of the amount pur-
chased. This is why we typically consider fixed ordering costs, i.e., associated
with the order itself and not with the amount ordered. Electronic commerce
has eased this burden considerably, but we may also consider receiving. in-
specting. and handling incoming goods as components of the ordering cost.
They can be partially captured by a fixed ordering cost. Sometimes, for the
sake of simplicity, we aggregate all of the fixed cost components. including
transportation, into a fixed ordering cost.

It is not uncommon to compare a geographically close supplier against a
distant one who charges a lower price. The decision cannot be taken with-
out specifying an ordering strategy. which is linked to the inventory control
policy. The price can also depend on the purchased quantity, as quantity
discount opportunities are sometimes offered. Should we take those opportu-
nities? Reducing the purchase cost is certainly attractive. and the possibility
of securing a known price might be too, if we fear an adverse movement in
prices and/or exchange rates. However, ordering more materials also implies
larger inventory holding costs. Inventory holding costs aggregate different
cost components. To begin with, whenever we pay for some goods, and these
stay in a warehouse for a possibly long time, we have an opportunity cost for
the capital tied up in inventories. which we could have invested otherwise.
From a financial point of view, too much capital sitting in inventories is bad
news. More so. if we had to borrow money to purchase materials. Apart from
financial issues, more inventory means more insurance charges. more material
handling (with the possibility of wasting materials), larger expenses to heat
or to refrigerate the warehouse. etc. If the goods are perishable or subject to
obsolescence, we may also face the need of scrapping a significant amount of
material: Cisco Systems was reported to take a staggering inventory write-off



16 SUPPLY CHAIN MANAGEMENT

($2.5 billion). All of these considerations lead to the idea that inventories
should be kept low. Actually, inventory management is all about finding the
right tradeoff; we will introduce the well-known Economic Order Quantity for-
mula in section 1.4, to illustrate the tradeoff between cost of inventories and
benefits of inventories (i.e., value of the functions performed by inventories).

We close this section by considering costs which may be very hard to quan-
tify, i.e., stockout costs. We have a stockout whenever we run out of stock and
we are not able to satisfy demand immediately; this may result in an unsat-
isfied customer or the stopping of downstream production. In the latter case,
the stockout cost may be not too hard to estimate in terms of lost production,
but when dealing with customers at a retail store, how much does an angry
customer cost? To begin with, the loss of image associated with a stockout
is an elusive concept, because it depends on consumer behavior. If we have
a stockout and cannot meet an order from a customer, will she wait or go
somewhere else? Assuming she is impatient, and the second case occurs, do
we lose just this order or the customer altogether? This is very hard to tell;
maybe we will never know, because she will just purchase a substitute item
without telling anyone. As a further complication, the stockout cost can be
linked to the occurrence of the stockout itself, or to the size of the stockout
(e.g., number of customers that could not find the stocked out item). Even if
we cannot quantify a stockout cost, we need to keep close control of the service
level we offer, trading off other costs against this performance measure. We
cover all of these considerations in chapter 5 on inventory management under
uncertain demand.

1.3.3 Strategy

After this cursory look at competition factors and cost drivers in supply chain
management, it should be clear that there is no way to find a single solution
which is optimal from all of the conceivable points of view. In fact, firms
adopt quite different strategies. The supply chain for a technologically mature
product with a low profit margin must be efficient and inexpensive. In the
case of an innovative product, with high margins and maybe a limited life,
the overall strategy will be quite different:

e In the retail sector, the availability of goods on the shelves is essential.
Still, an unsatisfied costumer might have a negligible impact, particu-
larly for goods which have acceptable substitutes. However, a stockout
for a whole product category (say, milk) or for products which are sub-
ject to strong brand loyalty (e.g., Coke in the soft drink industry or
detergents for personal hygiene) may have serious consequences.

o In the “business-to-business” sector, we may have quite different priori-
ties. Just think of managing the stock of spare parts to replace defective
or failed ones in big industrial machining tools. Keeping such machines
idle because of lack of spare parts may be extremely costly; indeed, this
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is a case where stockout costs may be easy to quantify, as there are con-
tracts specifying penalties for lack of service. Quantifying the stockout
cost of spare parts for life-critical equipments at hospitals is impossi-
ble, but we clearly see that in such a case we need to ensure immediate
availability, either by suitable stock levels or. if the cost is too high. by
very fast and expensive transportation.

In order to define a strategy, we must associate priorities to competition fac-
tors and find cost-effective ways to achieve a given performance target, pos-
sibly trading off performance against cost. Firms in different industries will
probably define quite different strategies. It is no surprise that managing
supply chains for high performance laptop computers requires a different ap-
proach than in the case of soap powder. However, even within the same given
industry, we may observe quite different strategies.

Example 1.2 Personal computers are sold using different distribution chan-
nels, appealing to different consumers. Some consumers are guite sophisti-
cated and want a very specific configuration; they are willing to wait relatively
long lead times to get exactly the stuff they want. Others prefer a choice be-
tween a few well-defined alternatives, but fast delivery and cheap prices are
essential to them. For similar reasons, some consumers do not mind ordering
on a web site, whereas other consumers feel much safer buying from more
traditional channels, because they want a personal contact in case of trouble
with the product. In fact, different market segments can be dealt with by
different marketing strategies.'?

Example 1.3 IKEA and MC are two dominant players in the Italian re-
tail furniture business. They are both healthy and fast growing companies.
However, they have fairly different strategies. IKEA basically designed a
self-service environment where customer are asked to select the product they
like. take note of the product code, and collect the selected item(s) at the
warehouse. IKEA custoners tend to transport goods by themselves. IKEA
does not provide transportation services (though a business partner located
near the counters sells transportation services). IKEA customers are even
asked to design their own kitchen through the Internet or at do-it-yourself
PC stands in the stores. Moreover, IKEA has a very wide number of product
categories ranging from beds and chairs, to carpets and forks. However the
range of product designs is rather limited and is dominated by the Swedish
minimalistic design. The MC strategy is quite different. Though the prices
are comparable, MC only sells furniture. In a MC store one cannot find car-
pets, forks, etc. However, in a MC store one can find furniture with very
diverse designs ranging from classic, to modern, ethnic. romantic. etc. So

158ee: V.K. Rangan and M. Bell, Dell Online, Harvard Business School Case No. 9-398-116,
1999,
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the assortment offered by MC is very wide, though in a slightly different way:
MC provides fewer product categories, but more styles than IKEA does. Also,
while IKEA provides little sales assistance and delivery service, MC has a ser-
vice intensive strategy. The vast majority of MC customers is attended by a
salesperson. A salesperson can spend up to one hour designing the kitchen
for a customer that then might simply walk away. Also, 90% of customers ask
for the delivery of goods at their place (the cost of delivery is just 7% of the
overall price). As we can see, the two companies have very different strategies
(in many perspectives they have opposite strategies). However, they both
are fairly successful. How can that be? Actually, the key idea is that the
two companies appeal to two different segments of consumers and have two
different value propositions. IKEA appeals mostly to youngsters (IKEA of-
fers services such as day care for children), who can easily use technologies to
design their own kitchen, can transport and assemble furniture on their own,
and tend to appreciate the minimalistic Scandinavian style. MC tends to ap-
peal to a more mature population that appreciates more traditional furniture
and services such as sales assistance, delivery, and assembly of furniture. [

Perhaps even more surprisingly, the same firm may pursue different operations
strategies in space and/or time. In fact, operations may be diversified by geo-
graphic region, because alternative markets may require different approaches,
depending on customers habits and cultural factors.

Example 1.4 Buying a car follows different patterns on the two sides of the
Atlantic Ocean. In the USA, it is common to purchase a car on the spot,
after having a look at what is available at the retailer. In Europe, it is more
common to order a specific configuration, and possibly wait weeks for the
desired model.

The level of market penetration and/or the potential entry of competitors may
also contribute to the definition of a strategy. Finally, time is also essential,
as a product at the beginning of its life cycle is typically not managed like an
almost obsolete one. For example, a stockout late in the life cycle of a product
is almost a desired outcome.

1.4 THE ROLE OF INVENTORIES

Much of what follows in this book deals with inventories; actually, three chap-
ters (4, 5, and 6) are devoted to this topic. Keeping inventories implies a long
array of costs, including less obvious ones such as an adverse effect on qual-
ity.'® Indeed, given that many management philosophies are based on the

16Quality may be adversely affected because large amount of stocks typically require more
material handling, which may result on accidental damage. High inventory levels also
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idea of zero inventory, should we could consider inventory managernent a sort
of more or less necessary evil?

Example 1.5 An intuitive consideration is that inventory availability has a
positive effect on our ability to satisfy demand. What may be less obvious
is that sometimes it is inventory itself that generates demand; just think of
the allocation of shelf space at a big retail store. Even less obvious. inventory
availability may be used to sense demand. Consider a large book store. Keep-
ing an inventory of all possible titles is clearly out of the question. However,
having some titles covering some discipline may be essential to check if there
is potential demand for that kind of book (see case {11]). Otherwise, lack of
inventory may imply lack of demand, which may be further motivation for
not keeping stock; a perfect vicious circle.!” Also, some companies keep de-
liberately large inventories if some staple products to show their dominance
and as an implicit promise of product availability, which most customers tend
to notice. I

The example above does not imply that we should just increase stock avail-
ability. The message is that inventory has a purpose, and that we should
understand its role and function in order to plan its level at a facility. The
most complex problem is arguably the deployment of stock at the right in-
stallation of a large supply chain; on the one hand, we would like to place
stock near customers, but this may be the worst place in terms of value of
stock, as this is where we have the most added value; furthermore, stock near
customers has been committed to a given retail region, potentially reducing
flexibility in the allocation of goods. Generally, inventory reduction may be
highly beneficial, provided that we eliminate the reasons for keeping it. In
order to understand why we might need some inventory, a good starting point
is the classical EOQ model.

1.4.1 A classical model: Economic order quantity

In this section we outline a sort of archetypal model for inventory management.,
the Economic Order Quantity (EOQ) model. Our purpose is just to illustrate
how fixed ordering costs affect the need for some stock as well as to lay down
some background which will be also used in chapter 2. Hence, the analysis is
rather superficial, and much more detail is given in section 4.2.

Consider a distributor selling a good with a rather regular demand pattern.
Taking it to the limit, we consider a perfectly constant demand over time. Let

imply longer waiting times on the shelves, which have an impact on perishable items. In
manufacturing, high work in process levels are associated with longer flow times; if quality
is checked at the end of the process. defects will be detected later. with a possibly significant
increase in scrapped material.

1TFor a similar issue, related to phase-in/phase-out of products, see example 3.7 on page
100.
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Fig. 1.5 Time evolution of inventory levels in the EOQ model.

d the demand per unit time; the specific time unit is not important, provided
that we are consistent in specifying the remaining data (e.g., if demand in
measured in units/daym the holding cost is unit of value — say euro — per
unit, per day). The demand must be satisfied from stock, and goods are
ordered from a supplier. A natural objective is finding an ordering strategy
that allows the distributor to satisfy demand at minimum cost. Given that
demand is constant, it is also reasonable to assume that the ordered quantity
is always the same. Let @ be the lot size we choose and, without loss of
generality, assume that we start with @ units on hand, as shown in figure 1.5.
We will run out of stock after Q/d time units. Ideally, we would like to get
a new lot of () parts exactly when the inventory level drops to zero, as this
will keep holding cost down. Such a perfect timing is possible if everything is
certain and deterministic; this means not only demand, but also the supplier’s
delivery lead time. If the lead time is denoted by LT, it is easy to see that
we should order @ whenever the inventory levell® drops to a reorder point R
given by the demand over the lead time : R = d - LT. If we repeat this cycle
over and over, the time evolution of the inventory level will be periodic, as
shown in figure 1.5, with cycles repeating every T' = Q/d time units.

Let ¢ be the unit price charged by the supplier for each unit; we assume
that whenever we order @ units from the supplier, we pay her an amount cQ.
In other words, there are no discount opportunities we might take advantage
of by ordering a larger amount. We see that c(Q is a linearly variable cost. In

1811 later chapters we will see that ordering decisions should not be simply based on on-hand
inventory.
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the cost ¢, we could also include a variable component of the transportation
cost. Whenever we order, it is also reasonable to expect that a fixed cost hasg
to be paid. This may be due to a fixed component of the transportation cost;
or it could be a fixed ordering cost due to the need of issuing and tracking
the order. Whatever the case, we denote this fixed ordering cost by A, which
does not depend on . To summarize, whenever we order @, the total cost of
the order is A + ¢Q. This expression suggests the opportunity of not ordering
too often a small amount. We have an economy of scale if we order a larger
amount, because the fixed component is distributed on a larger number of
parts.

However, there are good reasons to keep (7 to a reasonable size. In this very
simplified setting we do not consider the risk of obsolescence or perishability,
nor physical space limitations in the warehouse. But the least we should do
is to consider an inventory holding cost. The simplest reason for dealing with
such a cost is the opportunity cost of capital tied up in inventory. There are
many other factors which come into play here, but let us simply say that if
we keep one part in inventory for a unit period, we face a cost h. Note that
the dimensions of this unit inventory holding cost are money per part, per
unit time. If we assume that this cost depends linearly on inventory, the total
holding cost over some time period is h times the average inventory level.

Example 1.6 We should emphasize that using a linear inventory holding
cost, as we will do in most of the book. can be a rather unsatisfactory approx-
imation. To begin with, if we have discount opportunities, we should consider
an explicit dependence h(Q) ; clearly the total opportunity cost does depend
on the price we pay per item, and this creates some dependence between the
inventory holding cost and the average inventory level, which also depends
on Q. Even if we assume that financial costs are more or less linear, other
factors may have a nonlinear effect. For instance, consider a very perishable
item, whose shelf life is just one day. If we keep inventory levels low, we will
probably sell all of the available stock and no material will be scrapped. But
if we raise inventory, under demand uncertainty, some leftover inventory will
have to be occasionally disposed of. Hence, we see that cost linearity may be
a debatable assumption. Still, all of these considerations point out some in-
centive to keep a low inventory level, maybe within a range such that a linear
approximation is acceptable. Anyway, if demand is assumed deterministic, a
limited shelf life would simply imply an upper bound on @, which is easily
dealt with. Hence, we will stick to linear holding costs in the following. {

We see that we have two contrasting factors to account for in determining the
order quantity ¢J. To spot the best compromise, we should quantify the total
cost per unit time (say, one year) as a function of the decision variable Q. Since
inventory level ranges between 0 and Q according to a linear pattern, we see
that the average inventory level is /2. Hence, the holding cost component
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Fig. 1.6 Inventory holding and fixed cost components in the EOQ model.
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The contribution of the fixed cost component is A times the average number
of orders issued per unit time. Since we have d/Q orders per unit time, this
component is

Cin:h

Ad
C'OI‘ = 6
Taking into account the purchasing cost of yearly demand, Cpy = cd, we have
Ad
CtOt(Q) = Cin -+ Cor + Cpu = h% + ?2_ + cd.

Leaving the last constant component aside, we may draw a qualitative picture
of total cost in figure 1.6. We see that the objective function depends on a
linearly increasing component C;,, and a decreasing component C,, displaying
an economy of scale with respect to Q. The variable purchase cost plays no
role really, as it does not depend on ) under our assumptions (but see example
1.7 below). Now we may find the optimal solution by equating the first-order

derivative of the total cost to zero!?:

. [24Ad
Q=5 (L.1)

19As we point out in appendix B, this first-order condition need not be sufficient for opti-
mality, and we should also check the second-order derivative or, equivalently, show that the
total cost is a convex function of Q. See example B.3 on page 547.
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We have just derived the well-known EOQ (Economic Order Quantity) for-
mula, which is valid only under a rather long list of limiting assumptions;
nevertheless, it provides us with some useful insights. We see that the EOQ
size increases with the fixed cost A and decreases with the inventory holding
cost h. A simple calculation yields the optimal cost value for the optimal lot
size:

Crot(Q*) = V2Ahd + cd. (1.2)

This function shows that the total cost is a concave function of demand d;
in other words, there is an economy of scale with respect to the demand a
facility must face, and we will see in chapter 2 what impact this has on the
design of a logistic network.

Example 1.7 (A remark on relevant vs. trrelevant costs) Expression (1.2)
suggests that, unless discount opportunities are offered, the unit price ¢ we
pay for the stocked item is irrelevant in determining the optimal order size.
Of course, it is very relevant for the bottom line, since it affects profitability,
but we should observe that some costs may be irrelevant when making certain
decisions. Actually, a closer look at the formula would suggest that probably ¢
plays some role in determining h. Indeed, a common way to estimate inventory
holding cost is to assume some opportunity cost of capital, that is a sort of
interest rate i, say 15%, and setting h = ic. Nevertheless, the last term cd
in (1.2) does look constant and irrelevant in determining @*. However, this
holds only when we want to select the order quantity @ for a given supplier.
If we change the problem at stake, things can change substantially. Suppose
that we want to select a supplier and that there are two competitors, whose
characteristics are represented by fixed and variable costs, ¢; and Ay, and
co and As, respectively. When comparing the two suppliers, in terms of the
total cost as expressed in equation (1.2), we cannot overlook the last cost
term. Hence, we see that cost elements and parameters may be irrelevant or
not, fixed or not, and this depends on the decision at stake. Indeed, we can
tell whether some kind of cost is relevant/irrelevant only with respect to a
specific decision. 0

Now suppose we wish to reduce the inventory level and/or the corresponding
cost. A look at (1.1) suggests that unless we wish to reduce demand or we
can reduce inventory holding cost (which increases (J* but reduces the overall
cost), we should reduce the fixed cost A. The fixed cost may depend on the
ordering mechanism, the transportation cost, and possibly the setup cost. The
setup cost is, within a production context, a fixed charge we pay whenever we
start producing an item, independent of how many parts we make.?® Clearly,

29We should note that, in a manufacturing context, setup cost might not be as relevant
as the setup time, which reduces machine availability. When capacity is scarce, we cannot
overlook interactions among products manufactured using a shared set of resources, and
the EOQ model is not well-suited to this task.
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if there is such a fixed charge, it is economical to buy or make a suitably large
number of parts at once, and this is why inventories may be needed.

This reasoning points out a first function of inventories, which is linked to
the need of adapting a relatively continuous and smooth consumption process
to a replenishment mechanism, that on the contrary is very lumpy due to
purchase, production, or distribution lots. The inventory we build because
of this issue is called cycle stock. We cannot reduce cycle stock unless we
reduce fixed charges, which create the need for a relatively large lots. Indeed,
a mainstay of Japanese manufacturing philosophy has been the reduction of
setup costs.

However, there are other reasons to build up inventory.

1. Stock is needed to decouple supply and demand, when one of them is
subject to variability, and the other one is constrained and cannot follow
such variability. In the next subsection we consider how transportation
or capacity constraints generate stocks.

2. Stock is needed to hedge against demand uncertainty. The role of de-
mand uncertainty is dealt with later in section 1.5.

We should also mention that there are many more factors that result in the
creation of inventories. Raw material stock is sometime created in anticipation
of unfavorable market conditions, such as increasing prices or uncertainty in
the supply of a scarce commodity. We call this speculative stock.

Moreover, it is natural to think of stock as something sitting in a warehouse.
However, inventory may be moving, as is the case of in-transit or pipeline
stock. If transportation takes a few hours, in-transit inventory is actually
negligible, but if long-distance transportation by ship is used, we may have
a non-negligible impact. A similar consideration applies to manufacturing
systems: The longer the flow time, the larger the work in process. We should
note that while cycle stock depends on the order size, average in-transit stock
only depends on average demand and the transportation delay, as illustrated
by the following example.

Example 1.8 Consider an Italian firm importing a product from the Far
Fast. The product is transported by ship, which takes one month, and the
demand is constant and equal to 1000 pieces per month. If the firm issues a
replenishment order once per month, each month it will issue an order for 1000
units, just when the previous one is being received. At each time instant, there
is always a ship traveling with 1000 items. If the firm orders once per year,
the order size is 12,000 pieces, and during the month following the order (say.
January), there will be an in-transit stock of 12,000 items; for the remaining
eleven months, in-transit inventory is zero, but its yearly average is still 1,000
anyway. i

Example 1.9 Let us consider a company from the Piedmont region that
produces Barolo wine. Let us assume that the company sells 1,000 liters per
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year. Barolo wine needs to age for at the least three years before it can be sold.
Two of these three yvears need to be spent in oak barrels. Given this demand
and these technological constraints, at any point in time the company has at
the very least 3,000 liters in stock. To cut this inventory investment either
we reduce production volume, or change the technology in order to reduce
the three year LT (i.e., find a way to make Barolo wine age more quickly), or
simply decide to produce a different kind of wine.

1.4.2 Capacity-induced stock

In the EOQ model we consider a constant and perfectly predictable demand.
However, demand need not be constant to be perfectly predictable. In (very
few) lucky cases we may have a time-varying demand which we know, as is
the case if we make to order with a long delivery lead time. Ideally, we should
be able to deliver all of the items just in time, with no need for stocking end
items. As expected, cycle stock might be needed if there are fixed charges in
making or buying the items. However, even if there is no fixed charge, we may
have to resort to stock items in order to better match demand with capacity.

Example 1.10 Consider an item whose demand is strongly affected by sea-
sonality. For instance, say that average demand is 100 per month, but the
actual demand is 200 in spring and summer, and zero in autumn and winter.
If items are produced by the firm, rather than purchased from an outside sup-
plier, there are two extreme choices. It may size its manufacturing capacity
to the maximum demand (200 units per month). In this case, there is no
need for inventory, but capacity utilization is just 50%. At the other extreme,
it could size the capacity to 100 items per month. In this case utilization is
100% but there is a considerable inventory buildup during the low-demand
season. In this case we speak of seasonal stock. 0

In figure 1.7 we illustrate a sample time evolution of seasonal stock when
capacity is held constant and equal to average demand. It may also be the
case that the mismatch is not between constant manufacturing capacity and
time-varying demand, but between time-varying raw material availability and
constant demand; this is the case for many food goods. such as canned toma-
toes and olive oil. Sometimes, one can try to match capacity and demand by
producing items with opposed seasonalities. For instance, winter and summer
clothing can be produced in the same plants. In other cases, transportation
capacity is used as a buffer: Apparently, for half a vear kiwi fruit is imported
from New Zealand to Italy, and vice versa in the other half.?!

In a mathematical programming model illustrated on page 542 of appendix
B, we illustrate how we might plan inventory buildup in order to match de-

211t remains to be seen whether eating kiwi twelve months per year is worth the resulting
pollution.
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Fig. 1.7 Seasonal stock buildup and depletion.

mand and manufacturing capacity. Clearly, issues may compound with each
other: in example B.12 on page 571, we consider a production planning prob-
lem where both capacity limitations and fixed charges call for the creation
of stock. We should emphasize that besides fixed charges in the form of a
fixed cost, we might have fixed consumption of capacity whenever we start
production. If it takes a few hours to set up a machine to make an item type,
we have to make a fairly large lot not to consume the capacity with setup
times. These fairly large lots build up some inventories. This is again a form
of cycle stock, even if the motivation is not strictly economical.

In the example above, we have considered production capacity, but in distri-
bution logistics similar considerations apply to transportation capacity. Cycle
stock may be necessary if transporting small orders is not economical, but in-
ventory might also be required if the number of vehicles is limited and their
capacities need to be fully utilized by full-truckload transportation.

1.5 DEALING WITH UNCERTAINTY

In distribution logistics there are many factors which are significantly affected
by some form of uncertainty. For instance, we should extend the EOQ model
to account for:

e uncertainty in demand, which may vary according to not perfectly pre-
dictable patterns;

o supplier lead time, which is affected both by transportation time and
by possible material shortages.

At a different decision level, when tackling a long-period problem, we may
have to face uncertainty in:
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e prices, both in the sense of prices our suppliers charge and prices we
may ask;

e exchange rates, which are relevant in an international context, on both
the supply and demand side;

e changes in average demand: e.g., demand might simply fade away be-
cause of new emerging technologies.

Uncertain factors may be different in nature, depending on the length of the
time horizon on which decisions must be made. Furthermore, different types
of uncertainty may compound; for instance, demand uncertainty may be the
result of short-term random variations in demand level, or of more systematic
factors such as the success of a product and its market penetration, which
also depends on the behavior of competitors.

In fact, we may consider different concepts of uncertainty. The probabilistic
concept of uncertainty, which may be modeled by random variables following
a given probability distribution, is the most common one. Other paradigms
have been proposed, but we will essentially stick to a more familiar statistical
framework (see chapter b). If we know the relevant probability distribution.
then we just have uncertainty in the realization of random variables. More
often than not, properties of random variables must be inferred from available
data, assuming they are available and reliable. In such a case, we have some
uncertainty as far as the probability distribution itself, or its parameters, are
concerned. Nevertheless., if data are available, we are still in the domain
of probability and statistics and deal with a sort of “objective” uncertainty.
In extreme cases, we deal with a brand new innovative product. and past
information is simply unavailable, or its relevance might be questioned. In
that context, we have to deal with subjective assessments of uncertainty (see
section 3.12).

Whatever the nature of uncertainty, we must come up with some way
to witigate its effects. In the next two sections we consider two examples
illustrating the role of safety stocks and proper product design.

1.5.1 Setting safety stocks

We have illustrated how much we should order according to the EOQ model,
but we should also clarify when we should order (for a more detailed discussion
see section 5.4). If both demand and supplier lead time are constant, it
is easy to see that we should order an amount @ whenever the inventory
level falls below a reorder point R = d - LT corresponding to the demand
during lead time. In doing so, we should consider not only the physical (on
hand) inventory, but also orders that we have already sent but have not been
delivered vet, and backorders. Under deterministic assumptions, items will
be delivered exactly when on-hand inventory reaches the zero level. When
uncertainty is involved in either demand or lead time, or both, it is intuitive
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that we should raise the reorder level (in most situations, for a more detailed
discussion see chapter 5). To do so rationally, we need two ingredients:

1. a description of the uncertainty of demand during lead time;

2. a suitable definition of the quality of service we want to offer our cus-
tomers, in terms of our ability to meet demand immediately from stock.??

The uncertainty of demand during lead time depends on how the two ba-
sic uncertainties, in demand per unit time and in the lead time itself, are
compounded. A typical assumption is that it can be modeled by a random
variable Di., with normal distribution, expected value p;r, and standard
deviation ¢ .23

As far as the service quality is concerned, we will see in chapter 5 that differ-
ent measures can be reasonably defined; we could also set up an optimization
model, provided we may quantify the cost of a stockout. We consider here
the simplest, not necessarily the best, alternative, which is to set a constraint
on the probability of a stockout. This probability, denoted by «, should be
suitably small; correspondingly, we define the quantity 1 — « as our service
level. Typical values of the service level could range between 90% and 99%.
We have a stockout during lead time if demand in that time span exceeds the
reorder point R. The probability of not having a stockout is

P{Dir <R}=1-o.

We immediately see that R is the 1 — a quantile of a normal distribution with
parameters . and o.r.2* As shown in appendix A, calculating the quantile
of an arbitrary normal distribution boils down to finding the corresponding
quantile for a standard normal distribution. Knowing the quantile z;_, for a
standard normal variable, we set

R=pir+ 210001,

The idea is illustrated in figure 1.8: The shaded area, on the right of the
quantile, corresponds to the stockout probability . In the deterministic case,
we simply set B = ppr; doing so when lead time demand is normally dis-
tributed would result in a 50% service level. In order to increase the service
level, we add a safety stock given by 21,01 Clearly, safety stock increases
the overall cost. On the average, we have an additional inventory of z;_,00r

22Tn a make-to-stock system or retail environment, this is the fundamental ability. In a
make-to-order, quoting a reliable lead time may be more relevant, whereas in assembly-
to-order, the customer should be allowed to customize her order in an easy and flexible
way.

23Central limit theorem may justify such an assumption in the case of consumer goods; see
page 470. This hypothesis should be checked by a suitable statistical procedure (see section
A9.1).

24See definition A.9 on page 456.
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Fig. 1.8 Calculating safety stock based on lead-time demand uncertainty.

parts, with respect to the EOQ model; hence, if we set the order quantity
according to the EOQ model?’ and we disregard variable purchasing cost, the
average total cost (1.2) becomes

V2Ahd + hz1_noLr. (1.3)

We should also mention that in this expression we are not considering stockout
costs, which will be essential in chapter 5. Looking at equation (1.3), we see
two sources of cost: cycle and safety stock. Setting a safety stock is. in some
sense, a passive answer to the problem of uncertainty; we simply add some
slack resources to reduce the effects of demand uncertainty. We could try
to be proactive and prepare a set of actions to reduce the need for a large
safety stock. Reducing safety stock, without reducing uncertainty is just not
a good option, unless we want to give up service quality or ignore stockout
costs. This calls for reducing uncertainty in lead time demand. On the one
hand, lead time should be reduced; in a deterministic setting, the lead time
might be irrelevant, because in that case we have just to anticipate the order
timing (yet, it could be relevant in terms of in-transit inventory). In an
uncertain setting, while the average lead time LT does not enter explicitly
equation (1.3), it contributes to increasing opr. We will see in chapter 5 that,
if demands during different time periods are independent random variables,
then o.r increases with the square root of lead time: o.r = ov/LT, where o
is the standard deviation of the demand per unit time. We will also see, in
chapter 6, how demand and lead time uncertainty can be compounded.

25We will see later, in chapter 5, that this need not be the optimal choice. We should
select the two parameters @ and R jointly, and perhaps consider an alternative definition
of service level, taking into account the size of the stockout. and not only its occurrence.
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It is tempting to believe that demand uncertainty is out of our control. and
there is nothing we can do about it. Sometimes, this is true, but in many
cases demand uncertainty is not exogenous. In many cases we can simply
reduce demand variability that creates uncertainty. Demand spikes can be
the result of unanticipated promotional sales; indeed, some large retail chains
have decided to avoid promotional sales altogether, adopting an every-day low
prices (EDLP) policy. In other cases, we may try to improve our forecast-
ing procedures in order to (partially) transform unpredictable variability into
predictable variability. This is basically the purpose of forecasting techniques
described in 3.

In complex systems, many other actions can be attempted to reduce safety
stock costs. In manufacturing systems, we may adopt preventive maintenance
policies in order to reduce the occurrence of random machine breakdowns, and
the related need for inventory buffers. In a multiechelon system, we may try
to hold inventories in central warehouses where demand is more aggregate and
thus more predictable, rather than at retail stores. In the next section, we
illustrate the general idea of risk pooling by exploiting common components
in assembling end items.

1.5.2 A two-stage decision process: Production planning in an
assemble-to-order environment

When computing safety stocks, we do not plan orders in advance: We pre-
scribe the structure of a policy (e.g., @ and R), and we let the system run and
place orders when our policy suggests to do so (e.g., when we hit the reorder
point R). In practice, the parameters are adjusted periodically. Furthermore,
emergency actions are carried out when needed. All of these adjustments are
carried out when additional information is obtained, but this is outside this
formal model. The formal model is, in a sense, single-stage: We make some
decisions and then see what happens. In some other cases, we want to include
in a formal model the adjustments we might make at a later stage. In order
to do so, we must formalize the dynamics of the decision process, whereby de-
cisions are made and/or revised when new information is obtained. This may
lead to very difficult stochastic models. We consider here a simple example
of a two-stage model.

Consider an assemble-to-order (ATO) system. In such a system, we have
to make (or buy) components, which are then assembled into some end item
we sell. It would be nice to do everything after we receive a customer order,
but we cannot afford this luxury if the customer is not willing to wait that
much time. If the customer wants everything immediately, we have to keep a
stock of end items; this may be difficult or impossible when end items come
in a wide variety of configurations or when items cannot be stocked because
of their cost. A compromise solution is feasible when making components
requires a long lead time, but assembly is relatively fast. We can keep a stock
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of components, which are made or bought before we get customer orders. We
assemble only on order, i.e.. after we collect customer demand. Concrete
examples of ATO processes are the automotive industry, at least in Europe,
and the PC industry, where one can order a customized model and select
among a number of feature/options.?

Let us build a simple but instructive model along with a small numerical
example, under the following assumptions:

1. First, we decide how many units of each component we build, subject
to manufacturing capacity constraints. This first decision sets the total
production cost.

2. After receiving customer orders, we use components to assemble finished
goods. The assembly plan in designed to maximize revenues; the cost
term in the profit function is fixed by the previous decision (if we neglect
assembly cost); if components are not enough to meet customer orders,
we lose profit opportunities; if too many components are available, they
are discarded with a possibly considerable loss of money.

The key point, apart from demand uncertainty, is that we have a limited
time window for sales, after which components are no use. This is a limit
assumption, typical of the classical newsvendor model (see section 5.2); in
practice, components might have some salvage value, or they could be used in
later time periods. In this setting, we have to make two decisions in sequence,
in order to optimize profit. Literally, we cannot maximize profit, because it is
a random variable depending on our decisions and on uncertain demand, but
we may maximize its expected value.?”

Since the main complicating factor is demand uncertainty, one possibility is
to disregard it and just use expected values of demand in planning production
of components. Another possibility is representing demand uncertainty by a
set of scenarios. We will pursue both approaches and compare the decisions
we make.

To set up a small toy example, say that we own a (very) small firm, pro-
ducing just three end items (Ai, Ao, Az). which are obtained by assembling
components (c1, ¢a, €3, ¢4, ¢5). The components we use for each end item are
described by a bill of materials, which is flat (just two levels: end items and
components). The bill of materials is given in the left-hand side of table 1.1.
From the bill of materials, we see that there are two common components. ¢;
and ¢y, while the remaining three are specific and characterize each end item.
We assume that three resources (My, My, M) are used for production of com-
ponents. On the right-hand side of the table we also see the bill of resources,

26 A possibly more pleasing example is any pizzeria offering a wide array of pizzas; the pizza
is made on order, but all of the components are prepared in advance.

27 A more sophisticated approach would involve some considerations about risk, which is
not fully captured by the expected value.
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Table 1.1 Bill of materials for the Table 1.2 Bill of resources, cost of
assemble-to-order example components, and available capacity
€1 ¢ €3 €1 Cs My My, M; Cost
A2 1 1 0 1 0 Co 1 2 2 30
A 1 1 0 0 t C3 2 2 0 10
Cyq 1 2 0 10
Cs 3 2 0 10

Cap. 800 700 600

Table 1.3 Demand scenarios, expected value of demand, and selling price of end items

S1 S S3  Exp. Demand Selling Price

Ar 100 50 120 90 80
A, 50 25 60 45 70
As 100 110 60 90 90

i.e., the time required on each resource to manufacture one component. In the
table, we also give the available capacity for each resource type, and the cost
of each component; this cost might include both direct variable production
costs and material costs. We assume that assembly is not a bottleneck, hence
its capacity is disregarded.

Other relevant data concern end items, demand, and the price at which end
items are sold. They are given in table 1.3. Demand uncertainty is modeled
by a set of three scenarios (51, S2, S3). If we have information about past
sales, the three scenarios may result from the discretization of a continuous
probability distribution (of course, more scenarios are needed in a practical
setting to approximate the distribution); alternatively, they could result from
an interview with three experts. Whatever the case, we assume that the three
scenarios are equally likely. i.e., each probability is 1/3.2® We also give the
expected value of demand, which is obtained by averaging the three scenarios
for each end item. The last column displays the price at which end items are
sold.?? Also, note that the selling price is larger than 60, the total component

28WWhen discretizing continuous distributions, we might use different probabilities to get a
better approximation; see. e.g., [4, chapter 10] for an application of Gaussian quadrature. In
the case of forecasts based on subjective judgment by experts, using the same probabilities
means that we consider three equally reliable experts.

291f we do not want to disregard assembly cost, we may substitute selling price by contri-
bution to profit from assembling and selling an item; this defines the second-stage cost, as
it takes selling price and assembly cost into account, but not component costs.
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cost, for all of the three end items, but Az looks more profitable, in a sense,
because its profit margin including component costs is 90 — 60 = 30, whereas
As is the least profitable; of course, this reasoning may be misleading in that
it does not take into account resource consumption.3Y

We may tackle the problem of maximizing expected profit by the Linear
Programming (LP) techniques described in appendix B. To build a simple
model as a starting point, we could disregard uncertainty and deal with one
scenario characterized by average demand. We get the following model:

max —ZC’JCHLZ iy (1.4)

s.t. ZTlmxl<L m=1,2,3, (1.5)
i=1
y; <dj, j=1,2.3, (1.6)
3
Y Gy <mi,  i=1.2.3.45 (1.7)
j=1
Yj s = 0.

Here, subscript i refers to components, subscript j refers to end items, and
subscript m refers to resource types. Input data correspond to those reported
in the tables:

e the component cost C;;
e the selling price P; for each end item;

e the available capacity L,, for each resource type (measured in time
units);

e the resource requirement (processing time) T, for component i on
resource m;

o the number G;; of components ¢ going into an end item j (i.e., the bill
of materials - BOM);

e the expected demand d;, which is assumed certain.

The decision variables are z;, the number of components of type ¢ that we
produce, and y;, the number of end items of type j that are assembled and
sold; to be more precise, we pretend that we will really sell an amount y;,
because we disregard demand uncertainty. The model aims at maximizing
profit, as expressed by the objective function (1.4), subject to capacity con-
straints (1.5). The inequality (1.6) states that we cannot sell more than what

303ee example B.1 on page 537.
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is demanded, whereas (1.7) says that we cannot assemble end items if the
required components are not available. The decision variables are required to
be non-negative. In fact, for the sake of simplicity, we consider a continuous
LP model, which allows for fractional quantities; if we insist on requiring that
produced and assembled quantities are integer, it is easy to incorporate this
requirement (see section B.6).

Solving the model, e.g., by the simplex method (see appendix B), we get
the following solution (rounded to two decimal digits):

x] = 116.67, x5 = 116.67,
x3 = 26.67, zy = 0.00, x5 = 90.00,
Y] = 26.67, y5 = 0.00, ys = 90.00.

In this very small example, we may easily interpret what this solution tries
to accomplish. We assemble the maximum number of end items of type Az,
which is the most profitable one; this requires in turn the production of a
corresponding number of common components ¢; and cg, as well as the specific
component c¢s. Since demand limit is binding for As, there is some capacity
left, which is used to produce a limited amount of the specific component
cs, which is needed to assemble end item A;, plus common components. End
item Ao has the lowest selling price and is disregarded, as well as is its specific
component c4. It should be noted that, in general, one should not take for
granted that the production of the highest profit item should be maximized;
the consumption of available resources should be taken into account as well
(see example B.1 on page 537 for a counterexample).

In this specific case, the solution is quite readable, but it is a bit “extreme.”
An expert planner would immediately see that it is a risky bet on high sales
of the most profitable itemn. The optimal profit, according to this model, is
3233.33, but this is actually misleading. After planning production of com-
ponents, we do not know the value of profit, but only its distribution (if we
accept the validity of the demand scenarios). We cannot maximize optimal
profit; what we can do is maximizing its expected value, and this requires a
more sophisticated model that takes demand scenarios into account:

5 3 3
max - Cui+y 7[> Py |, (1.8)
i=1 s=1 j=1

s.t. ZTimxing, m=1,23, (1.9)
i=1
yi<ds, =123 s=1203, (1.10)

3
ZGijngxi i=1,2,3,4,5, s=1,2,3, (1.11)
j=1

y;,xi > 0.
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The big change in this model, with respect to the expected demand model
[(1.4)-(1.7)], is that demand uncertainty is taken into account explicitly. Here
we consider demand dj for item j in scenario s. Accordingly, the quantity as-
sembled is now represented by scenario-dependent decision variables y;: this
is the amount of end item we assemble and sell, if and when scenario s is real-
ized. Assembly decisions are not taken here and now, when we plan produc-
tion of components, but they are contingent plans. The scenario-independent
variables z; are first-stage variables, whereas variables y; are second-stage
variables. So now we implement the production plan (i.e., first stage deci-
sions z;) and develop a contingency plan for the assembly operations (i.e.,
second stage decisions y; ). Only when demand is realized we choose among
the contingency plans (y},y?,y3).3" We should carefully notice the difference
between a multiperiod model and a multistage model. We illustrate examples
of multiperiod models in appendix B and in chapter 4. In such models, deci-
sions will be implemented in later time periods, but they are all taken now,
based on the currently available information. It is possible to revise such
decisions by solving the model again according to a rolling horizon strategy,
but this is outside the scope of the model itself. In a multistage model, we
do not commit to one specific decision for the later stages; the decision that
will actually be implemented depends on the realization of random variables,
and it will be fixed only when the relevant information will be available in the
future. Next-stage variables may also be used to “adjust” previous decisions,
given current contingencies. This interpretation explains why models such as
the one above are called stochastic programming models with recourse.

Going into details of the model above, the objective function (1.8) consists
of a first-stage (deterministic) term accounting for the cost of components,
along with a second-stage term, which is the expected revenue from selling
end items (not including component cost); the expected value is computed by
summing the revenues under the three possible decisions, times scenario prob-
abilities 7. The capacity constraint (1.9) is unchanged. because it pertains
to first-stage only. The market constraint (1.10) is now scenario-dependent,
as it considers the stochastic demand d3. Finally, constraint (1.11) links the
two stages, stating that assembly is constrained by component availability,
for each end item and each scenario. Solving this model, we get the following
solution:

i =11571,  a}=115.71,

31Notice that this holds only when the three scenarios are actually the only three possible
demand scenarios. In other cases, we can face a very large number of different scenarios
(possibly an infinite number of different scenarios). In this case, the three scenarios are
only meant to model demand uncertainty and make sure that first stage decisions account
for demand uncertainty. The realized demand might differ from all three scenarios. In this
case, once demand is realized we simply have to write a second model for assembly decisions,
where we need to meet the realized demand with a limited quantity of components that
was fixed through the above model.
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x5 =52.86, 1z} =286, «i=62.86,

yi* =52.86,  y3* =000,  yi* =62.86,
y?* =50.00,  y2* =2.86. y3* = 62.86,
Yot =52.86,  y3* =286, 3" =60.00.

The real outcome of the model is the set of the first-stage decision variables
x;. Observing the component production plan, we immediately see a quali-
tative difference with respect to the model disregarding uncertainty: It is less
extreme. We do not produce a large amount of component c5, because we do
not place a risky bet on high sales of As. In fact, scenario three would prove a
disaster for the deterministic solution: In that scenario, sales are lower for As,
but we could not react because we do not have enough specific components for
the other end items. This also implies that many specific components3? would
be thrown away (according to our assumptions concerning the limited time
window for sales and the lack of any salvage value of unused components).
The stochastic model, instead, increases production of specific component ¢z,
which is needed to support assembly and sales of A;; even a small amount of
component ¢y is produced, in order to support the least profitable end item
Az, which helps in using common components when sales are low for other
end items. While there is a big difference in terms of specific components,
we see that as far as common components are concerned, the solutions of the
deterministic and the stochastic solutions are essentially the same. There is
a good reason for this, as common components are a flexible resource, which
can be exploited to support different end items. Moreover, the demand for
common components is the sum of the individual demands for the end items,
and by aggregating demand we often reduce uncertainty. Indeed, this risk
pooling effect is what we try to exploit in assemble-to-order systems. In chap-
ter 6 we will see that the same mechanism is exploited in the management of
distribution networks. However, it is also important to note that when end
item demands are strongly correlated, the risk pooling effect is considerably
reduced. In such a case, we should expect that even the produced quantities
of common components differ in the deterministic and the stochastic model.
Another relevant factor is capacity: If this is so tight that we may sell what-
ever we are able to produce, a simple deterministic model could be a viable
option.

But how do the two solutions compare in terms of profit? The objective
function from the solution of the second model is 2885.71; apparently, the
stochastic solution is worse than the deterministic solution, whose objective
value was 3233.33. But this comparison makes no sense. We are actually
comparing two different situations rather than two different solutions. The
above finding simply proves that we would rather face a certain demand rather
than an uncertain one. The objective function of the first model is neither

32In the more general case even common components could be thrown away.
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the true profit, which is uncertain, nor its expected value. It would be the
optimal profit, if we knew that the average demand scenario is what will
be realized. In the first model [1.4)-(1.7)] we pretend to know the end item
demand, and we get the illusion of higher profits. In order to compare the two
solutions, we should fix the production plans for components suggested by the
two models, and then we should solve a set of second-stage problems, where we
optimize assembly of end items subject to component availability, for different
demand scenarios. More formally, given a set of first-stage variables x} for
components, we should solve the following second-stage (recourse) problem
for each scenario s:

3
R*(x™) max Z Pjys5,
7j=1

w<d, j=123,

3

ZGZ]y;SI:- i:1723354757
=1

y; 20,

where R®(x*) is the optimal revenue we collect under scenario s, given the
first-stage solution x*, and making optimal use of available components to
meet demand. The first-stage solution can come from solving a stochastic or
an expected-value model; whatever the case, its expected revenue is

Z TR (x™).

Expected profit for an arbitrary solution can be obtained by subtracting its
first-stage cost from its second-stage expected revenue.?® To evaluate the
deterministic solution, we should plug it in this model; in case of scenario S1,
the optimal assembly and sales plan is

yi = 26.67, vy = 0.00, y; = 90.00.

and the same holds for S,. The bad news is that if scenario S3 occurs, we are
in trouble, because the high-risk solution does not fit demand verv well. The
optimal assembly and sales plan would be

yi =26.67, ;=000  yi=60.00.

This is a pretty bad scenario with low sales and corresponding low profit.
We must compute revenue for each scenario, multiply it by its probability,

33We are evaluating expected profit in-sample, i.e., by using the same set of scenarios which
are used in the stochastic model; we could use a much larger set of out-of-sample scenarios
to get a more reliable estimate. The point is that solving a large number of small LP
problems may take less CPU time than solving one large stochastic LP model.
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sum everything to get the expected value, and subtract the component cost
from the first stage. Doing so, we may see that the expected profit from
the deterministic solution (2333.33) is much lower than what the objective
function of the deterministic model [(1.4)-(1.7)] predicts (3233.33), based on
one average-case scenario. The percentage improvement of the stochastic
solution with respect to the deterministic one is

2885.71 — 2333.33

~ 23. .
2333.33 3.67%

Clearly, we cannot extrapolate general results from a small toy example.
Indeed, the advantage of using a stochastic model is striking here, because
specific components have a large impact. In a case featuring a lot more com-
ponent commonality, the result would be less impressive. Furthermore, we
have assumed that unused components are scrapped, which need not be the
case. They could have some salvage value, and we could have a multistage
problem so that they can be used in later stages. Nevertheless, the example
is quite instructive in pointing out:

o the difference between decision stages and time periods,

o the role of risk pooling.

In this case, risk pooling is obtained by using common components and by
deferring assembly decisions. To further illustrate the value of deferring de-
cisions in a more specific distribution setting, some fashion retail chains send
only a part of the items to retail stores at the beginning of a season; at a later
stage, after observing sales at each retail store, the residual stock is sent down-
stream. Also in this case, the first decision, i.e., the purchase of items from
suppliers, is often constrained by a budget assigned to each buyer in charge
of a specific market segment. The second decision, inventory allocation, can
be made by a different type of professional called planner.

A last important consideration, which applies to all models we describe in
this book to deal with demand uncertainty, is that we have considered the
maximization of expected profit as a suitable objective. We do not consider
profit variability across scenarios, or what happens in extremely bad scenarios
(the average smoothes out single outcomes). This makes sense if we may
repeat the game over and over (for various items or over multiple periods),
so that what really matters is the average profit in the long run. However, in
the short run we may take too many chances: If a single bad decision cannot
be recovered, because we immediately go out of business, or get fired, a more
careful approach should be taken to fully account for risks. An alternative
view, for economically minded readers, is that considering expected profit
is equivalent to assuming a risk-neutral attitude; risk-averse decision makers
should consider different objective functions.
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1.5.3 Inventory deployment

The previous section serves well to illustrate the role of commonality in order
to reduce the impact of uncertainty. Common components mitigate uncer-
tainty by providing flexibility and by allowing postponement of critical de-
cisions. This is just one instance of the more general risk pooling concepts
which are widely used in distribution logistics. When we consider an arbores-
cent network like the one in figure 1.3, we should decide if and how much
safety stock we should place at each node. We will see in section 2.1.1 that
placing safety stocks upstream may reduce their aggregate level.** On the
other hand, we should be careful to ensure suitable customer service, which
would require locating stock downstream. We see that the inventory deploy-
ment decision is by no way trivial, and as usual there is no ready answer for
all possible circumstances. As the following example shows, creative thinking
may be required in peculiar cases.

Example 1.11 Consider the problem faced by a manufacturer of very ex-
pensive spare parts for some industrial equipment??; the manufacturer itself,
or a firm providing maintenance services in its place, signs a contract requir-
ing immediate replacement of faulty parts, say within a few hours. Where
should spare parts be located, and how many of them are required? The sec-
ond question requires possibly nontrivial probabilistic modeling. As far as the
first question is concerned, allocating one part to each customer would cer-
tainly ensure satisfactory customer service, but it would be extremely costly.
One alternative could be to place some stock at a facility which is more or
less located in a barycentric position with respect to customers. However, if
a customer is far, we should probably arrange for very fast transportation,
maybe by air. With very fast transportation, the exact location of stock may
be irrelevant. Hence, we could even consider placing spare parts at some cus-
tomer location, reserving the right to collect the part for fast shipment to
another customer in need of a spare part. This would save some warehouse
cost, but it requires a shift in the paradigm prescribing that the owrer of
stock is the owner of the location where the inventory is placed. The spare
part changes owner only when it is mounted on a machine. I

The example illustrates a simple case of a more general strategy called Ven-
dor Managed Inventory, which is later illustrated in example 1.12 on page
41. For reasons that will be later explained in chapters 6 and 7. it may be
advantageous to have only one authority in charge of inventory management,
since the interactions of different decision makers having limited information,
and typically misaligned incentives, may generate unwanted spikes in demand;
this phenomenon is known as the bullwhip (or Forrester) effect. In fact. it

3‘fSee section 2.1.1.
358ee (8], page 611.
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is important to keep in mind that managing a complex supply chain is not
just a technical challenge, as human factors and different points of view may
exacerbate difficulties (see chapter 7).

The possibility of postponing inventory allocation decisions and exploiting
risk pooling depends on product design too. The supply chain of HP DeskJet
printers was successfully reorganized by changing the assembly process,3® in
such a way to delay differentiation of products (e.g., according to destination
country). For example, they assemble the printer with instruction manuals,
cables, and plugs at the warehouse, rather than at the production site. This
may result in an increase in the direct product cost, but the analysis must be
carried out on a global level, taking into account the shorter and shorter life
cycle of products, whose obsolescence may be very fast (indeed, this is the case
in consumers’ electronics). While this assembly process might add a few cents
to the direct production cost, customizing products in the central warehouse
might cut inventory investment and obsolescence cost by millions of euros.
Generally, demand forecasting is easier whenever we may aggregate items by
family. Consider clothing, which may differ in model, size, and color. If we
may postpone dyeing items, in order to gain more reliable information about
demand, considerable savings may be obtained. Indeed, a well-known case in
this vein is Benetton, where cutting and dying operations were swapped in
order to ease forecasting.37

1.6 PHYSICAL FLOWS AND TRANSPORTATION

In section 1.2 we have considered a network as a physical arrangement of facil-
ities. An essential feature of any supply chain is the selection of a transporta-
tion strategy and the management of physical flows, inbound and outbound
from any node. Large organizations manage transportation by themselves,
whereas in other cases this activity is outsourced; in general, we should de-
cide between alternatives such as rail, ship, air, or trucks.

Restricting our attention to road transportation, we may arrange point-
to-point transportation or route a vehicle to serve multiple destinations. For
instance, referring to figure 1.3, we may have one vehicle for each link from
node 3 to nodes 6,7, and 8; alternatively, the same vehicle may visit the three
retail stores sequentially. A decision problem that may occur in the first case
is the determination of a suitable transportation frequency; in section 2.1.2
we show that a simplified version of the problem, accounting for fixed and
inventory holding costs, closely resembles the EOQ model. In the second
case, we should find a suitable assignment of customers to vehicles, and a

36 This case study is described, e.g., in [10].
37See S. Signorelli, J.L. Heskett. Benetton (A). Harvard University Business School Case,
1984.
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customer sequence for each vehicle, in order to optimize a given performance
measure; such a problem, known as the Vehicle Routing Problem, is dealt
with in chapter 8.

When operating our own vehicles, we may try to utilize their capacity at
best. according to a full truckload strategy (e.g., see the case [7]). Sometimes,
the need for fast delivery requires less-than-truckload (LTL) transportation.
For instance, fast mail couriers typically cannot easily exploit full transporta-
tion capacity (trucks and aircrafts), and they try to aggregate flows by proper
design of the transportation network. In the LTL case, we may also consider
the use of third-party transportation, leaving to our business partner the task
of aggregating flows in order to better exploit capacity.

1.7 INFORMATION FLOWS AND DECISION RIGHTS

In figures 1.1, 1.2, and 1.3 we have illustrated the flow of goods, but the
information flow is just as important. In principle, information pertaining to
the whole supply chain can be collected and managed by a unique decision
maker. This centralized manager, should be able to come up with globally
optimal decisions. Information Technology (IT) might make all of this a
concrete possibility, but there may be unsurmountable difficulties. To begin
with, an all-encompassing decision model may be way too difficult to solve.
A nastier difficulty is the reliability of information. All large retail stores
use point-of-sale data acquisition, and we should be able to know exactly how
much stock is available and where, for each item. In practice, such information
need not be 100% reliable because of errors, theft, wrong deliveries on the part
of suppliers, misplaced inventory, exceeded shelf-life, damage due to material
handling, etc.

Even leaving the above difficulties aside, there are deeper difficulties with
a fully centralized decision-making architecture:

e Actors in the supply chain may be unwilling to share information.

o Actors in the supply chain may be unwilling to relinquish decision rights
to others.

Example 1.12 The Vendor Managed Inventory (VMI) approach is a
good case to illustrate difficulties in information sharing and allocation of de-
ciston rights. Consider a supplier, who delivers goods to independently owned
retail stores. Point of Sales (POS) information can easily be collected and sent
to the supplier. who could plan inventory accordingly. By the same token,
retailers should send timely information to the supplier in case of planned
promotions: otherwise, unpredicted demand spikes may have both immediate
consequences, such as stockouts, and long term ones, such as loss of customers
to competitors, which further contribute to the difficulty in forecasting de-
mand an planning inventory. In fact, a retailer who receives a reduced amount
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of stock, because of a shortage, may be tempted to order more than needed
during the next replenishment cycles, in anticipation of rationing strategies
on the part of the supplier. But if all of the demanded items are eventually
delivered, a low-demand period will follow because the retailer must get rid
of excessive stock. This contributes to an increase in demand volatility along
the supply chain, as well as to an overall feeling of partner unreliability. These
and other reasons contribute to the generation of the so-called bullwhip ef-
fect, which has been well-known since the 1960s (see section 6.3). One way
to overcome this issue would be to centralize demand information from POSs,
which can be collected by the supplier. While technically possible, this solu-
tion may be thwarted by retailers feeling that the supplier could share this
information with their competitors. An even more radical approach is based
on the idea that the supplier is not only the collector of all information in the
supply chain, but also the only actor in charge of managing stocks. In VMI,
goods are stocked at retail stores, but they are managed by the supplier and
change owner only when goods are placed on the shelves. A very well-known
case in this vein is Barilla,3® a firm that had to work very hard to persuade
retailers to adopt such a policy and give up authority on inventory. I

A general issue raised by VMI is: Assuming that a (maybe partially) cen-
tralized policy reduces the overall costs, who is going to enjoy the benefit?
More generally, if multiple actors (different firms, or separate branches within
the same firm) control different managerial levers along the supply chain, is
there any guarantee that the overall strategy is optimal? There is no easy
and general answer to such very delicate issues. In chapter 7 we clarify the
related issues and outline the design of incentives to improve overall perfor-
mance. Given the complexity of the involved issues, that chapter has more of
a conceptual than operational nature.

1.8 TIME HORIZONS AND HIERARCHICAL LEVELS

In distribution logistics we have to tackle quite different problems in terms of
time horizon, involved uncertainty, and impact of the decisions we make. De-
signing a new network of warehouse facilities, to be operated during the next
few years, and organizing vehicle routes for the delivery of the next day are
clearly two extreme examples of problems pertaining to different hierarchical
levels.

o At the highest hierarchical we have strategic problems. The time hori-
zon may be years or months. The longer the time horizon, the higher
the level of uncertainty, which calls for suitable forecasting procedures

383ee J.H. Hammond. Barilla SpA (A). Harvard University Business School Case, 1994.
Alternatively, the case is described in [13].
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Fig. 1.9 Graphical illustration of the location problem in example 1.13.

and scenario analysis. Decisions made at the strategic level, such as
warehouse capacity, will play the role of constraints at lower levels in
the hierarchy.

e At an intermediate level we have tactical problems. Here, resource
availability is usually fixed, but the time horizon (say, weeks) is long
enough to require some form of forecasting. An example of tactical
problem is the selection of an inventory management policy; changing
such a decision is definitely easier than redesigning the structure of a
distribution network.

e At an operational level, we have day-to-day decisions, where uncer-
tainty is negligible, and we have to react to incoming information in a
very short time span.

It is worth noting that the division between the three levels is not sharp at
all. Third-party providers of logistic services allow us to enlarge warehouse
space without building any new facility, and this makes the boundary between
strategic and tactical problems less clear.

Furthermore, the hierarchical levels are interdependent. Of course higher-
level decisions constrain lower-level management, but the link is two-way.
Hierarchical decomposition is needed to tackle otherwise intractable problems,
but when making a strategic decision we must somehow anticipate the effects
on the tactical and operational levels. This must be done by some model
simplification, resulting in a sort of “anticipation” function. We will see a few
examples in the next chapter, but the next example illustrates how different
decisions cannot always be taken disregarding their interactions.

Example 1.13 Consider a network consisting of three retail stores, located
on the vertices of an equilateral triangle, as illustrated in figure 1.9. The
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position of nodes 1, 2, and 3 is given, and we should locate a distribution
node (or a production plant) in such a way that the total transportation cost
from the distribution to the retail stores is minimized. Assuming that the
demand on the three retail stores is the same, an intuitive solution would be
placing the distribution center in the barycenter of the triangle (node 0 in
the figure; the resulting vehicle routes are drawn as dotted lines). However,
this depends on the transportation mode. If demand is large with respect to
vehicle capacities and we transport point-to-point, this solution is reasonable.
However, if demand is low and distances are not too large, it could be much
better to visit nodes 1, 2, and 3 in sequence with the same vehicle. In such
a case, we could place the required node at the same location of any retail
point on the perimeter and, in case it saves us some money, we can consider to
place it in one of the three vertexes of the triangle (stores). Of course, a real-
life problem should also account for fixed cost components in transportation,
environmental issues, item perishability, etc.

We close this section by stressing again the fundamental difference between
time periods and decision stages (see section 1.5.2). In a long-term decisions,
we may prepare plans which are implemented in successive time periods. This
may result in dynamic problems. If the decisions are made here-and-now and
are not changed later, we to have a multiperiod decision problem, but it is a
single-stage one. We typically reserve the term “multistage” for problems in
which future decisions are adapted as a function of additional information we
gather and of the progressive resolution of uncertainty.

1.9 DECISION APPROACHES

Supply chain management strategies may differ according to priorities in ob-
jectives, information availability, and strategy of the firm (see section 1.3).
There is wide array of possibilities, and confusion is sometimes added by
ambiguous use of buzzwords, such as push vs. pull systems. Indeed, the
manufacturing literature has largely contributed to this state of the matter,
because of the confusion among different hierarchical levels, such as demand
management (also known as master production schedule in a production en-
vironment) and shop-floor control.
The following classification criterion is suggested in [13, chapter 5]:

In a push-based supply chain ... production decisions are based on long-

term forecasts. (...) In a pull-based supply chain ... production is

demand driven .... rather than..forecast {(driven).
We may also substitute “purchasing” or “distribution” for “production,” to
make the definition more general. So the difference between a push and a pull
strategy is the following:

e In a pull system, purchasing, production, or distribution orders are
based on the consumption of a good in the downstream operation. For
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example, in a manufacturing environment, the production of a com-
ponent might be triggered by the consumption of that component at
an assembly plant. In a distribution environment, the distribution of a
case-pack of canned tomatoes is triggered by the consumption of canned
tomatoes at the stores. These policies are somehow based on minimum
inventory levels and once they are reached the upstream stages start
purchasing, producing or distributing the products.

e In a push system, purchasing, production, or distribution are based on
a plan, which is based on a forecast of a future demand. For example,
in a production environment we might decide to produce a component
because our assembly plan for next week foresees the need for such a
part. Also, in a distribution environment we might distribute a large
quantity of a given product, because we foresee a peak in demand due
to a promotion.

To be fair we shall say that somehow pull strategies are based on some sort
of forecast as well. Indeed, while materials consumption triggers purchase,
production, or distribution orders, these are governed by parameters that are
based on some sort of forecast.

Example 1.14 Now, let us consider a simple EOQ-based policy, where a
replenishment order is issued when we reach the reorder point. Is this a pull
policy? From a certain point of view, it certainly is: We issue an order when
inventory is pulled. However, some forecasting procedure is arguably used in
setting the policy parameters, which depend on the expected value of demand
and its standard deviation. We see that even a simple pull approach is based
on a mix of demand forecast and materials consumption. The parameters are
based on some sort of forecast, while the replenishment orders are triggered
by actual demand and materials’ consumption.

Example 1.15 Kanban production control can give us another good exam-
ple of a pull system. Kanbans are a means to control production at the shop
floor level; they were invented in Japan and made famous by Toyota. Kan-
bans are basically a permission to start the production. These “permissions”
to produce are released only when the components are actually consumed.
So they are a very effective means to control the inventory level. If we only
have permissions for 100 units (say we have 100 kanbans and each gives the
permission to produce one unit), we never have more than 100 units of the
component at stake. When a unit of the component is consumed in the assem-
bly operation, we release the permission to produce one unit. On the other
hand the manufacturing stage attaches one kanban to each unit manufactured.
Therefore. while the consumption of the component releases “permissions” to
produce, production consumes them. This process makes sure that the inven-
tories of components do not get out of control, since the manufacturing stage
can produce one unit if and only if one unit has been consumed. This makes
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the kanban production control the gold-standard for pull systems. However,
one could wonder why we decided to have 100 kanbans rather than just 507
On the other hand, one might wonder whether 100 kanbans are enough? Ac-
tually, these decisions may be made by simple rules of thumb, simulation
models, or even complex algorithms that lie outside the scope of this book
that focuses on logistics. However, one can intuitively understand that the
number of kanbans depends on the rate of consumption of the components,
which in turn depends on the expected future demand for the finished good.
Another relevant factor is uncertainty, which provides us with an incentive to
raise the number of kanbans in order to add some safety stock. I

Quite often, “pull” is associated with a good and efficient policy, whereas
“push” is associated with obsolete practice. Actually, in some contexts the
pull strategy might perform very poorly whereas the push strategy might be
very effective.

Also, there is nothing like a pure strategy, as real-life approaches are typ-
ically hybrid mixtures, and these terms should be associated to features of a
solution approach, rather than to a specific choice. So the key issue is not
choosing between one strategy and the other. We rather have to find the right
blend at the various levels, as the two examples below show.

Example 1.16 For example, in many supply chains, we develop long-medium
term plans to allocate resources, plan shifts, give suppliers advance notice of
expected changes in demand, etc. For example, a company might sign a con-
tract for the supply of 10,000 cans of Coke a month, based on the expected
demand over the next 3 months. Nevertheless, the actual delivery-orders
might be driven by the actual consumption of Coke at the stores; for exam-
ple, stores might reorder a pallet of Coke when the inventory level of Coke
drops below a given threshold. So we have a long term push strategy, whereby
we commit to the overall quantity based on some sort of forecast of future
demand. On the other hand, the short term replenishment process is driven
by the consumption of Coke at the stores and thus can be considered to be
pull. As we can see, push and pull are features of the solution rather than
contrasting alternatives. 0

Example 1.17 In a production environment we might have a master pro-
duction schedule (that is the plan for production of the finished good) where
we plan the production quantities over time, according to current inventory
levels, future demand (either a demand forecast or firm orders or a mix of the
two), setup costs, etc. This is actually a plan at the finished good level. So one
would be led to think that companies that use the Master Production Sched-
ule use a push strategy. Actually, at the shop floor level the replenishment of
components to be assembled might be driven by their consumption and thus
might fall under the “pull umbrella.” The assembly of finished products is
based on a schedule, whereas (some) components are produced and replen-
ished as they are consumed by assembly operations. This example too shows
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that the push and the pull logics can coexist and very often are used by the
same company. a

A second recurring theme in operations is the Make-to-Stock/Make-to-
Order dilemma. First we should realize that Make-to-Order is not a syn-
onym of pull system and Make-to-Stock is not a synonym of push system.
An example will, hopefully, make the point clear.

Example 1.18 Let us go back to the car industry (see example 1.4). Both
in the USA and in Europe the replenishment and production of components is
based on a pull strategy, at the least in the short run as the kanban production
control has become a sort of standard in this industry. Nevertheless, in the
USA most cars are made to stock, while in Europe they are made to order.
This clearly shows that push or pull can be associated with either Make-to-
Stock or Make-to-Order.

When one thinks carefully about it, the issue is actually fairly simple.
The flow of components to the assembly line can be based on a pull or a
push strategy, but the fact is that both strategies simply disregard whether
a specific customer (say Mr. Brandimarte) is waiting for the blue car, with
leather seats, and air conditioning, or the car is simply ordered by a retailer (or
a comimnercial unit) that hopes to sell it sooner or later to a generic consumer.

Also, Make-to-Stock and Make-to-Order are not actually contrasting alter-
natives, but they should rather be considered as features of a strategy, and
can be combined to design a reasonable solution. For example, in most good
restaurants dishes are prepared to order, while raw materials are purchased to
stock. Things are fairly easy for standard raw materials with a long shelf life
such as flour or potatoes. Things are more tricky for very specific and short
shelf life products such as mullets (a specific kind of fish that is used for very
specific recipes). They are bought if and when we expect that on the same
day (or the next day) a customer will ask for a very specific recipe.

Moreover, the assemble-to-order example of section 1.5.2 suggests the pos-
sibility of integrating different strategies. Components may be produced (or
purchased) based on forecasts, whereas final assembly is made only when a
customer order is received. As we pointed out, this is a necessary arrange-
ment when the delivery lead time accepted by the customer is smaller than
the overall lead time for producing the end item, but it is impossible to stock
end items, because of their cost or their variety. We see that there is an order
decoupling point3® which separates subsystems governed by different policies.
Finally, it is also worth noting that quite different approaches may be adopted
within the same firm, depending on specific items (in terms of value, perisha-
bility, etc.) and customers.

39Sometimes, the term “push-pull boundary” is used in manufacturing.
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Example 1.19 Consider for example a manufacturer of top-end watches.
The basic models (maybe still worth a few thousand euros) are available at
the stores. On the contrary, unique items such as top grand-complication
items (that is items with an extremely complex mechanical movement that
can account for lunar phases etc.) are made to customer order as demand is
so sparse that it makes no sense to carry them over. Also these extremely
expensive items are only bought by collectors that seem to enjoy the time
they have to wait, as it testifies the product is really hard to make and is
specifically made for them. I

1.10 QUANTITATIVE MODELS AND METHODS

In this book we use quantitative models and methods extensively. Applying
a quantitative approach means setting up a mathematical model and solving
it by some appropriate method. The quantitative feature could be associated
to some “scientific” or “objective” virtue, but this is a somewhat reductionist
approach. As the saying goes, there is no such a thing like an exact model:
All models are wrong, but some are useful. This is why modeling has been
defined as the art of selectively simplifying reality. Choosing the right degree
of simplification is indeed an art, which is subject to often contrasting views
depending on personal taste and opinion. Since building and solving a model
is done with some purpose in mind, different stakeholders may have quite
different ideas about the right modeling approach. Whatever the case, there
are many reasons making simplification necessary:

o Computational tractability: As we point out in appendix B, some op-
timization models may be hard to solve, and we must give up some
modeling detail and/or resort to suboptimal solution methods.

e Uncertainty: In principle, we may use the machinery of probability the-
ory and statistics (see appendix A) to represent uncertainty, but some-
times lack of data, or difficulty in the model, prevents an exact repre-
sentation. We should also keep in mind that not all of the uncertainties
can be formalized within the framework of probability theory.

e Complex dynamics may prevent elegant analytical modeling.

o There are often conflicting points of view, which cannot be analyzed
objectively on a purely quantitative basis.

There are two wide classes of quantitative models:

1. Prescriptive models. Typical examples are optimization models, which
are formulated with the aim of getting a decision directly. In principle,
decision-making could be automated by gathering data, instantiating a
mathematical programming model, and solving it by one of the many
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commercial solvers. In practice, prescriptive models should just be used
as a decision support tool.

2. Descriptive models. Unlike prescriptive models, modeling tools within
this class do not aim at generating a decision. They just try to capture
relationships between variables, shedding some light on key features of
the problem at hand, which is then used by the decision maker.

While we will illustrate many quantitative models, we should emphasize that
useful descriptive models may also be qualitative; their role is rationalizing a
business process and reaching a common understanding, which is not to be
taken for granted in large organizations or in contexts involving several firms
with different views and incentives.

The descriptive models we consider in this book are mainly aimed at pre-
dicting something. Prominent examples that we will consider are time-series-
based forecasting and regression models (see chapter 3). We might also con-
sider performance evaluation models. The idea is predicting the performance
of a real system, for a certain configuration and for a given setting of some
parameters governing decision rules. To make this point a bit more concrete,
let us denote by f(0;w) a performance measure depending on a set of decision
variables 8, which are under our control, and a set of random variables, which
are beyond our control; the dependence on random events is expressed by w.
A performance evaluation model aims at estimating the expected value of the
selected performance measure:

H(6) = E,[f(6:w)].
Performance evaluation models may further split into two subclasses:
1. Analytical models.
2. Simulation models.

Analytical models typically require some simplification. We will see some ex-
amples in chapter 5 when deriving approximations of expected cost as a func-
tion of inventory management policies under uncertainty. Analytical models
in this domain may require some simplifying assumptions; for instance, we
will assume that backordering is possible, i.e., customers are patient. But if
customers are not necessarily willing to wait, demand can be lost. making
modeling harder. Simulation models, on the contrary, are extremely flexible
and powerful, at least in principle: however, they require much effort in data
gathering, and maybe in solution time. and require a working knowledge of
general-purpose programming languages or more specific simulation environ-
ments. While in other engineering-related problems we need continuous-time
simulation models, in supply chain modeling we need discrete-event simula-
tion models. By “discrete-event” we mean that the system state changes in
correspondence with specific events: For instance, the inventory level changes
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abruptly when a supplier delivers an order, or when a customer asks for some
material. Uncertainties are modeled by pseudo-random number generators,
i.e., algorithms able to emulate random phenomena, such as customer demand.
The simulation program includes event management and decision rules which
allow us to emulate the time evolution of quantities of interest and to esti-
mate required performance measures given the set of parameters 8. There
are graphical description languages, which may make the modeling task easy
in simple cases, as they require assembling and linking standard blocks with
a graphical editor; still, nontrivial thinking may be required to fit a complex
system within the bounds of the selected simulation environment.

Because of these reasons, we do not deal with simulation modeling in the
book, but we want to point out that, as usual, we should not draw a very
thick line separating prescriptive and descriptive models. For instance, many
revenue management and dynamic pricing strategies use regression modeling
(e.g., to capture the link between price and demand), as well as modern op-
timization software tools. Furthermore, modern simulation environments are
integrated with optimization solvers able to manage simulation experiments
in order to automatically search for the best setting of parameters with re-
spect to a specified cost or profit function. Since there is randomness in any
supply chain, we actually want to optimize (say, maximize) the ezpected value
of some performance measure:

max H(6) = EJ[f(8;w)],

where © is the feasible set for the controlled parameters 8. The expected
value is, when random variables are continuously distributed, a possibly high-
dimensional integral. Then, we must resort to some sampling mechanism,
yielding an approximation H(8) = E,[f(8;w)]. For simple systems, we may
get an analytical approximation, which is suitable for optimization by mathe-
matical programming, as we have seen in the stochastic optimization example
of section 1.5.2. When simulation is needed, we have to resort to different
optimization approaches. Typically, commercial software relies on some form
of evolutionary computing able to deal both with noisy estimates of the per-
formance measure and with usually nonconvex optimization problems.

1.11 FOR FURTHER READING

e In this book we will deal with problems which lie at the boundary be-
tween distribution logistics and production planning. An excellent book

on manufacturing systems, including production planning and control,
is [8].

o An excellent text covering supply chain management with a wider scope
(and, necessarily, sometimes a more shallow level) is [5]. Among other
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things, the reader will find there some treatment of revenue management
and electronic commerce. For a text very rich in references to practical
cases. see also [13].

o We deal with distribution logistics from an operations management per-
spective, but we should keep in mind that this dimension must be linked
to a financial perspective; models integrating the two sides of the coin
are illustrated in [12].

o We have pointed out that there is no best supply chain management
approach: the strategy must be adapted to the specific firm and market
at hand, a point which is very well illustrated in [6].

e Readers interested in discrete-event simulation will find [9] very com-
prehensive and readable.

¢ A tutorial introduction to stochastic programming models in manufac-
turing can be found in [1]. For a comprehensive introduction to both
models and solution methods, see, e.g., [3].
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Network Design and
Transportation

In chapter 1 we have seen that logistic networks can be shaped according to
several patterns; defining the structure of the network is a strategic task with
a significant impact on the overall cost of the supply chain, and it results in
constraints on its day-to-day operations. The main problem we deal with in
this chapter is indeed the design of logistic networks. Actually, we should
speak of network design problems, as there are many shades and nuances of
this problem. In principle, designing a logistic network requires locating and
sizing production plants, distribution centers, and retail stores. In practice,
we typically face a subset of those decisions, since some part of the network is
given. To begin with, we rarely design a network from scratch; we may have to
redesign an existing network in order to adapt it to changing demand patterns
or changing prices of inputs. Hence, we may have to relocate some facilities,
to expand their capacities, or to locate a few new ones. Furthermore, (i) when
locating plants or large distribution centers, retail store locations are taken as
given: on the contrary, (ii) in retail management we often have to locate retail
stores, i.e., the last nodes in the network (e.g., see [5]). The relevant criteria
and constraints are quite different in the two problems. When locating retail
stores, an important role is played by the logistic range, i.e., the maximum
distance a potential customer is willing to travel to purchase a given item;
hence, distance may drive sales rather than just contributing a cost term
to the objective function. When locating a distribution center, the distance
between the center and the retail stores is typically just an element to evaluate
the total transportation cost. Moreover, in many location problems we take
demand at final destination nodes as exogenously given. On the contrary,
when locating retail stores, demand is a result of our decisions.

53
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The design of a logistic network is typically considered a long-term, strate-
gic problem. Indeed, building a large and expensive facility is certainly not
a day-to-day decision. Nevertheless, recent trends, whereby third parties
may offer logistic services, tend to make the problem a bit more tactical and
shorter-term. Obviously, building a plant and renting shelf space for the next
four months are different decisions. In the latter case, we are changing the
nature of costs from fixed ones to (relatively) variable ones. Flexibility is a
requirement dictated by the faster and faster introduction of new products
and ever changing market conditions, which may call for the almost continu-
ous redesign of the supply chain. In any case, even if we are making strategic
decisions, we need to represent their consequences on tactical decisions, such
as transportation optimization. We need a sort of “anticipation function” in
order to estimate the costs of tactical decisions that we will make next, subject
to constraints enforced by strategic decisions; this estimate need not be overly
precise. In strategic models, we cannot take detailed issues, such as opera-
tional vehicle routing, into account; such decisions are the subject of chapter
8; by the same token, the optimal loading of a single vehicle is of no concern
at this level. Still, a suitably aggregate representation of transportation flows
and their costs is needed when designing a network.

An interesting feature of logistic networks is the presence of intermediate
nodes, such as distribution warehouses or transit points, between production
plants and retail stores. Since such facilities represent a cost, there must be
some good reason to introduce them. We discuss their functions in section
2.1. In particular, we point out their potential role in reducing the impact
of demand uncertainty in section 2.1.1, whereas in section 2.1.2 we consider
their role in optimizing transportation and in managing assortment.

Section 2.2 deals with classical linear programming models to optimize
transportation flows on a network, to locate facilities, and to choose their ca-
pacities. To keep computational effort limited, these models are static rather
than dynamic, and we should wonder if such models are able to capture the
interaction of flow routing and inventory management decisions. We cannot
and should not mix detailed descriptions of both strategic and operational
decisions in the same model; however, a suitable approximate model may be
obtained by considering nonlinear cost functions. Then, to avoid the burden of
solving a large nonlinear mixed-integer programming model, we may approx-
imate nonlinear costs by piecewise-linear functions, as described in section
2.3. Since some model formulations may be tough to solve, a huge amount
of literature has been produced, based on heuristic approaches to ease the
computational burden or to make the solution process a bit more intuitive.
We will not consider this literature, for which we point out a few references at
the end of the chapter; by the same token, we refrain from describing complex
models accounting for some additional issues. Indeed, the astonishing progress
in both hardware and optimization software libraries has paved the way to
the solution of large scale models. We believe that the main limitations of
the modeling framework we describe here are not computational but, instead,
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lie in their limited ability to cope with demand uncertainty, as well as in the
potential difficulty in understanding why we have obtained a certain optimal
solution. Indeed, we should consider the models below as one tool within
a complex decision support architecture: their role is to propose solutions,
which could be modified in order to comply with some further requirements
and should be thoroughly checked by detailed simulation.

The chapter is complemented by two web sections. Section W.2.4 deals
with continuous-space location models. In fact, the previous sections assume
that we have already identified sites for potential facilities, and we must make
a choice between a discrete set of alternatives; in other cases, we would like
to find ideal positions of facilities, in continuous space. This may be useful
in the process of building alternatives. Section W.2.5 illustrates peculiarities
of retail store location problems, compared with plant and distribution center
location models. This topic is usually covered in books on marketing rather
than in books on logistics. We believe it is actually a borderline issue as it
defines the “last mile” (i.e., the last echelon) of the supply chain for consumer
goods.

2.1 THE ROLE OF INTERMEDIATE NODES IN A DISTRIBUTION
NETWORK

In section 1.2 we have considered the basic structures of logistic networks. In
particular, figure 1.3 on page 8 illustrates a prototypical arborescent network;
the network in the figure is an example of a distribution network consisting
of three levels:

1. a first level, where production plants are located;
2. an intermediate distribution level;
3. athird level, where goods are finally routed to satisfy customer demand.

In practice, the network may be much more complex and it may feature more
than three levels, but the basic question is: Since goods are not transformed at
the intermediate nodes, why are they needed? Indeed, intermediate facilities
are a cost, both for the structure itself and for the inventory they might
carry. You may hear consultants stating that distribution nodes should be
avoided. Indeed, in many industries/companies there is a need to rationalize
the distribution network, and this may require the elimination of intermediate
levels or the aggregation of distribution centers to cover a wider area.! Still,
there may be good reasons to include intermediate levels, and we should
understand them; if anything, removing a facility calls for the elimination

In Ttaly, inefficiencies in distribution networks consisting of too many levels are often
mentioned as a cause of higher prices of many goods, with respect to other countries.
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of the reasons for its existence; i.e., the services it provides to the rest of the
network. Furthermore, we should carefully consider the tradeoff between their
cost and their benefit. In the next sections we illustrate simplistic models
with the aim of pointing out what intermediate distribution centers try to
accomplish. In the first case, we consider the impact of intermediate nodes
on demand uncertainty; in the second case, we show how intermediate nodes
can help manage product variety and transportation.

2.1.1 The risk pooling effect: reducing the uncertainty level

In section 1.5.1 we have introduced the concept of safety stock and we have
obtained an expression for the total cost per unit time, in the case of a (Q. R)
policy, with an economic order quantity @, a reorder point R, and a stockout
probability a:

TC = V2AhRd + hzy_q0, (2.1)

where ¢ is the standard deviation of lead time demand, which is assumed
to be normally distributed. We remind the reader that we have taken for
granted the possibility of determining @ and R separately; as we shall see
in chapter 5, this is actually an approximation. Anyway, this expression is
useful to point out a factor that may make the inclusion of an intermediate
distribution warehouse useful.

Let us consider a network with n retail stores, which could carry their own
inventory. For each retail store ¢ = 1....,n, let d; be the expected value of
lead time demand and o; its standard deviation. For the sake of simplicity,
we also assume that the demands are independent random variables. Now we
may use equation (2.1) to compare the cost we have when all of the inventory is
allocated to the retail stores against the case in which inventory is centralized,
i.e., it is kept at a central warehouse serving the retail stores.

If inventory is fully distributed to the retail stores, there is no central
warehouse and the total cost is the sum of n terms, one per retail store:

10y = (mz @) + (h Za> |

Note that in the expression above, as well as in the following, we do not
consider stockout costs; we include such penalties in chapter 5. If we keep
inventory at the central warehouse, this will see an aggregate demand with

expected value
mn
d=Y d;
i=1

and standard deviation
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Actually, these two relationships require some care and a few assumptions.
To begin with, the second one is based on independence among the random
demands. Furthermore, it is certainly true that the aggregate demand per unit
time is the sum of the individual demands, but in computing safety stocks
we must consider the demand during lead time. The lead times seen from
the warehouse and from each retail store need not be the same, while here
we are assuming that it takes the same amount of time to deliver directly to
the stores, or through a distribution center. Also, demands could be subject
to different uncertainties. The relationships are correct if the lead times are
deterministic and the same for all of the network nodes. Under all of these
assumptions, the overall cost is

TCe = V2ARVd+ h2y o6
In order to compare the two total costs, we may see that the following in-

equalities hold:

(2.2)

(2.3)

To see why these inequalities hold, we may observe that a® + b* < (a + b)?,
for non-negative values of a and b; this can be generalized to the sum of n
terms. As we have pointed out, these inequalities need not be very accurate
in a realistic case, but they do suggest that centralization of inventories could
vield some advantage.

On the one hand. inequality (2.2) suggests a possible economy of scale,
essentially due to the concavity of the square root function which is involved in
the EOQ cost also in the deterministic case. We can also provide an economic
reading of this finding. A company enjoys economies of scale when it orders at
a central warehouse rather than at n stores. Ordering at the central warehouse
can cut the transportation cost and reduce cycle inventories.

Concept 2.1 A central distribution center aggregates demand and thus en-
ables the company to enjoy economies of scale in transportation and order
processing.

On the other hand, inequality (2.3) suggests that the uncertainty in the
aggregate demand can be lower than the sum of uncertainties of the individual
demands, and this results in a reduction of the safety stock. Here we see
another example of the risk pooling effect, which we have already met in
section 1.5.2. In other words, demand at the central warehouse is more stable
than demand at single stores. Indeed, high demand at one store can be
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counterbalanced by low demand at another store. Thus we need less safety
stocks when we carry inventories in the central warehouse rather than at
stores.

Concept 2.2 A central distribution center aggregates demand. Aggregate de-
mand tends to be more stable, thus reducing the need for safety stocks.

We see that centralization of inventories may be beneficial, but we cannot
really draw a general conclusion, because our analysis is way too simplistic.
The risk pooling effect may be reduced if there is a strong positive correlation
among demands at different retail stores. To see this, let us consider the sum
of two random variables Dy and Dy, with standard deviations oy and o9,
respectively, and correlation coefficient? p:

G145 = \/Var(D; + D2) = \/a% + 0% + 2p0102 < 01 + 02,

where the inequality stems from the condition p < 1. If the two random vari-
ables are independent, then p = 0 and the previous analysis applies; if there
is negative correlation, uncertainty is actually reduced. But if p is large (close
to 1), then the inequality tends to an equality and there is little reduction in
uncertainty. We may have such a positive correlation when demand volume
depends on the success of a product, assuming this is homogeneous across the
retail stores, or when it depends on general economic conditions.

Other very important points we have missed are transportation costs and
the delivery lead time as seen from the customer. If we have inventory avail-
able at the retail stores, we may serve the customer immediately. Our analysis
implicitly assumes that the customer will wait if we can guarantee that stock
is available at the central warehouse. This may be true for certain products,
but not always; there is wide spectrum of consumption goods for which lack
of stock on the shelves simply kills demand.

To summarize, inequalities (2.2) and (2.3) cannot be used to conclude that
it is always optimal to centralize stocks. However, they point out a potential
tradeoff between the overall amount of safety stock, which is an argument
for centralization, and the quality of customer service, which is an argument
against centralization. It can well be the case that the optimal solution is a
compromise between these extremes, depending on the product type (in terms
of customer behavior and competition) and on the transportation times from
warehouse to retail stores. A detailed analysis can be carried out, but it may
be remarkably complex; we will consider such issues in chapter 6, which is
dedicated to multiechelon inventory management.

?See section A.6.2 in appendix A.
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2.1.2  The role of distribution centers and transit points in
transportation optimization

In the previous example, we have seen that distribution centers may be help-
ful in mitigating the effects of uncertainty, but they can also be helpful in
exploiting economies of scale. In this section we disregard uncertainty, but we
illustrate the last point in a somewhat more realistic setting. where different
item types are transported on a simple network. Consider the network in
figure 2.1, consisting of two production plants and five retail stores. In the
two plants, items A and B are produced, respectively; both item types are
sold at the retail stores. We may look at the network of figure 2.1 as the
superimposition of two independent arborescent structures, featuring direct
shipment from factories to retail stores. A possible alternative is depicted
in figure 2.2, which features an intermediate distribution center. Note that
we are not considering uncertainty here, and the intermediate transshipment
point is not necessarily meant to be a warehouse. In order to compare the two
alternatives and to get a feeling for what might make the second one interest-
ing, we will use a very simplified example, where both demand at retail stores
and production rates at factories are constant over time. In our analysis, some
inventory builds up at the intermediate node; but in a more practical setting,
shipments may be synchronized in order to operate the distribution center
as a pure cross-docking point, where items are received, fanned out, and are
immediately shipped to destination.

Let us analyze direct shipment first. We have a point-to-point transporta-
tion over ten links, consisting of a pair (factory, retail store). How should
we manage each transportation link? If we assume that demand is constant
over time, and that the production rate is perfectly synchronized with this
demand rate, what we need to find is an optimal transportation frequency, by
formulating and solving a model which is quite similar to the economic order
quantity.® To see this point clearly, let us focus our attention on one link, say
the transportation from factory A to retail store 1. We assume that trans-
portation cost has a fixed and a linearly variable component. which could
be an approximation of an economy of scale. The fixed-charge component
induces a transportation batch, i.e., a quantity which is transported with a
fixed period (or frequency). The quantity should also take vehicle capacity
into account, but for the sake of simplicity we disregard such an issue, assum-
ing that vehicles are large enough. In figure 2.3 we see how inventory levels
at the two nodes change over time. Note that the figure is drawn under the
assumption that the network consists only of these two nodes; inventory levels
in factory A are also affected by shipments to other retail stores. The figure
suggests that the relevant decision variable is the time T, elapsing between

SWhat we present here is a rough-cut analysis, inspired by [4, chapter 1], where a larger-
scale problem is discussed more exhaustively.
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Fig. 2.2 Distribution network with an intermediate distribution center.
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Fig. 2.3 Inventory levels at the factory and the retail store, assuming uniform pro-
duction and demand rates.

two shipments, i.e., the transportation period or equivalently the frequency
1/T,. Ts is the time needed to transport items between the two nodes, which
we consider deterministic and given; during this time interval, items on the
vehicle are inventory in transit. Just like the EOQ case, the relevant data
are the inventory holding cost h and the fixed transportation charge A. The
variable transportation cost does not play any role, if it is linear, because all of
the required items will be transported sooner or later; hence, the contribution
of variable costs to the overall cost per unit time is constant with respect to
the decision variable at stake.

We can write an expression of the total cost per unit time, which is similar
to the EOQ objective function; the most notable difference is that the decision
variable is a time period rather than a quantity. but if demand is constant,
they actually boil down to the same decision. If we denote the demand rate
by d, which is the same as the production rate according to our hypotheses,
at each shipment the transported quantity is @ = T.d. If vehicle capacity is
not an issue, we also see that we have 1/7. shipments per unit time; hence
the fixed charge contribution per unit time is A/T.. Now we must quantify
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the inventory holding cost. We should note that in this case we hold inven-
tory in three stages: at the factory (there is an inventory buildup before each
shipment), in transit, and at the retail store. We should figure out the in-
ventory holding cost for the average piece, which waits somewhere between
production and consumption. Consider the first piece produced at the factory
after a shipment. It will wait in the outbound inventory for a time interval of
length T,; the last piece produced before the next shipment will not wait at
all, because as soon it is available, the vehicle is ready for shipment. Hence,
the average waiting time at the factory is T../2. The same occurs at the retail
store, where inventory behaves just like in the EOQ model. The first unit
sold right after the lot @ is received spends zero seconds in the retail stores,
whereas the last unit of the lot @ spends T, units of time in the store. The
average unit spends T,/2 units of time in the stores. This means that overall
the average unit spends T, units of time in inventories.

We should also consider that there is inventory in transit waiting for a time
interval T;. Hence, the total waiting time is 7, + 75 on the average, for each
of the d pieces which are consumed per unit time. Therefore, the total cost
per unit time is

TCO(T,) = % + hd(T, + T.). (2.4)

(o]

Minimizing the objective function with respect to 7., we get

T =1/ —, (2.5)

and the shipped quantity should be

Q = drr = /4, (2.6)

4Notice that here we implicitly made an assumption on the inventory build-up at the
production plants. Indeed, the logic behind figure 2.3 is that the inventories for each and
every store accumulate progressively. In other words, at any point in time each plant devotes
a fraction of the capacity to each store (the fraction is proportional to the demand for the
item at the store) and the inventories for the 5 stores build up in parallel. Figure 2.3 shows
that there is a continuous production of inventories for the specific store at stake. However,
there is a second, more efficient policy. One could allocate the production capacity in a
slightly different way. We could produce at full speed for one store, prepare the distribution
lot for the store, and then switch to the next store. In this case the inventory build-up for
a given store is all but constant. The maximum inventory level at the production site is
still @ but this quantity builds up over a shorter period of time, just before the goods are
shipped. In this case, inventories at the central warehouse (and going to a specific store)
are displayed in figure 2.4.

When we compare figure 2.4 with figure 2.3 we can see that the inventory level at the
production site decreases because inventories are kept at zero for a fairly long period of time
(on the average 80% of the cycle time T.). So in our discussion we are cutting some corners;
that is, we assume the company has a rather ineffective policy at the central warehouse.
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Fig. 2.4 Inventory levels at the factory assuming uniform production (and sequential
allocation of capacity to stores); see footnote 4.

This is essentially the same as the EOQ formula, but for a missing 2 factor;
this factor is missing because we are considering inventory holding at two
locations rather than one. Also, the total cost for the optimal solution is
similar to the EOQ case:

TC(T?) = 2v/Ahd + hdT.. (2.7)

As expected, the transportation lag T does not influence the optimal solu-
tion. Indeed, no matter what our policy is, all units spend Ty time on a
truck (more generally, on some kind of transportation means). Nevertheless,
T may be important when comparing different means of transportation with
significantly different transportation lead times (e.g., ships vs. air freight).
The same holds for variable transportation costs. In passing, we should also
note that we are writing an objective function, while disregarding potentially
thorny issues we face when two (or more) firms are involved; if we optimize
the overall costs, who should reap the benefits? Actually, we do not need two
separate firms to face this kind of difficulty; even two organizations within
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Table 2.1 Coordinates of the facilities of a sample network

A B D 1 2 3 4 5

xz 100 100 300 200 400 600 300 700
y 300 700 400 400 200 100 300 300

the same firm may face conflicting incentives. We will get back to these issues
in chapter 7 but, for the time being, let us assume that we live in a very
idealized world where everyone is willing to improve the general welfare. Now
we have analyzed a single link, and we should wonder how we can exploit this
knowledge to compare the network with direct shipment against the network
with the intermediate distribution center. In order to get a rough cut evalu-
ation, we assume that the overall network cost can be estimated by summing
the cost expression (2.7) over all of the links. This is not really correct, as
we should pay close attention to the synchronization of transportation from
a factory to the distribution center and from the distribution center to retail
stores. This synchronization has an effect on the inventory at the distribution
center, but we defer such issues to chapter 6.

Let us now tackle a small numerical case. We introduce subscript 1 = A, B
to denote production plants and the related items, and j = 1,2,3,4,5 to
denote the retail stores; the distribution center is denoted by D. The coor-
dinates of each location are given in table 2.1, with respect to some arbi-
trary point of reference; they can be thought of as miles or kilometers; we
use these coordinates to evaluate distances and to quantify transportation
costs. Transportation costs in practice depend on several factors, in a pos-
sibly complicated way. For our toy example, let us assume that there is a
fixed transportation charge depending on distance traveled, and not on vol-
ume or weight; we have a cost ¢ per unit distance (mile or kilometer), and
the transportation cost is obtained by multiplying this factor times distance
traveled. In a flat region, we may assume that the real road distance between
two points is not too different from the Euclidean distance. This is actually
an underestimate of the real distance, and we should take natural obstacles,
such as mountains and lakes, into account; in practice, distances may be ob-
tained by querying geographic information systems. To summarize, we may
use the coordinates given in table 2.1 to compute fixed transportation charges
A;i; between the plants and the retail stores, A;,p between the plants and the
distribution center, and Ap; between the center and the retail stores. Using
plain Fuclidean distance yields

Ay = Q\/(i’fi — ;)% + (Ui — y;)*

The remaining data we need to carry out the rough-cut analysis are, for each
item 4, its cost ¢; and its demand d;; per unit time at each retail store j; these
data are given in table 2.3. The product cost ¢;, multiplied by an interest rate
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Table 2.2 Transportation costs for the network of figure 2.2

D 1 2 3 4 5

A 22361 141.42 316.23 538.52 200.00 600.00
B 360.56 316.23 583.10 781.02 447.21 721.11
D — 100.00  223.61 42426 100.00 412.31

Table 2.3 Product cost and demand per unit time at each retail store

Ttem Cost dy  dizg  dis  dis dis

A 100 1000 500 2000 300 2000
B 200 500 230 1300 120 1200

Table 2.4 Times between shipments and total cost per unit time on each link

1 2 3 4 5

0.0752  0.1591 0.1038 0.1633 0.1095
0.1125  0.2252 0.1096 0.2730 0.1096

A
B
A 3760.60 3976.35 10378.02 2449.49 10954.45
B 5623.41 5179.03 14250.14 3276.15 13155.47

r, vields the unit inventory holding cost h; for each item. If distances are short
enough, the in-transit inventory holding cost is negligible. Let us carry out
the calculations under the hypothesis that ¢ = 1 and r = 25%. The resulting
costs are reported in table 2.2. Applying equations (2.5) and (2.7), for each
link (4,7) in the network, we obtain the optimal periods between shipments
and the total costs per unit time reported in table 2.4, Summing over all of
the ten links, we get an estimated total cost per unit time of 73003.12.

Let us now analyze the network with the distribution center D. The problem
is much more complex here. because the time evolution of the inventory levels,
depicted in figure 2.3, need not apply to the new situation. To begin with,
the inventory manager at the distribution center will see an aggregate demand
for each item: this demand also depends, in a possibly intricate way, on the
transportation pattern from distribution center to retail stores. Furthermore,
we have the additional issue of the synchronization between inbound and
outbound transportation from the distribution center, in terms of both timing
and quantity. In practice, cross-docking transit points are operated in such a
way that no inventory is held there. To keep the toy example simple, we will
not optimize the overall transportation pattern, but we will estimate the total
cost by applying equation (2.7) again to each link in the network. Even such
a rough-cut estimate can be useful in showing if there is a definite advantage
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of one solution over the other one. Let us consider first the two links from
plants to distribution centers. On these links, the two items travel separately
and each plant “sees” an aggregate demand

di = Zdz‘j.
J

The time between shipments and the total cost on each link (i, D) are

A
T = ,/ﬁ . TCH =2y Aipdih,.

Carrying out the calculations, we get
Tip =0.0393, T{p =0.0464, TCip =11388.24, TCip = 15542.58,

yielding a total cost of 26930.82. Now we should add the cost related to the
five links from the distribution center to the retail stores. Here we have the
additional complication that items are shipped together. We may aggregate
the two items together into a “virtual” product, which is the bundle of the two
items.® A bundle is a virtual product that consists of a combination of items.
Think of the bundle as a package containing some units of item A and some
units of item B.® But how can we define such a bundle? Under deterministic
conditions the mix of demand is fixed and so the mix of supply shall be fixed
as well. So we can define these bundles (i.e., composite sets of products) and
plan them rather than the finished products.

But how do we define the bundle? What is the demand for the bundle?
On a closer look, we may see that the units we use to express the bundle are
irrelevant; we have just to be consistent. For example, if at a retail store the
demand per unit time is 300 for item A and 100 for item B, we may consider a
bundle consisting of 300 pieces of A and 100 pieces of B, or a bundle consisting
of 3 pieces of A and 1 piece of B, or finally a bundle consisting of 0.75 pieces
of A and 0.25 pieces of B (as well as any other combination with a 3 to 1
ratio for products A and B). In the first case, demand for the bundle will be
1 unit per period, it will be 100 units per period in the second case, while it
will be 400 units per period in the third case. Notice that the definition of the
bundle implies a given level of demand and vice versa a level of demand for
the bundle implies a definition of the bundle. Say we want to set the demand
for the bundle to 10 units (per period). This means that we shall define the
bundle in such a way that it consists of 30 units of A and 10 units of B. The
inventory holding cost will be adjusted accordingly.

Once, the bundle is defined, what is the holding cost for the bundle? In the
first case, holding one unit of the bundle means holding 300 units of A and 100

5We will use bundles again in section 4.6.1.
6Notice that we need not really assemble such packages. We simply refer to these bundles,
sets, or packages as the unit we plan for.
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units of B, so the holding cost for the bundle is h =300 -hs+100 hg. In the
latter case holding one unit of the bundle means holding 0.75 units of A and
0.25 units of B, so the holding cost for the bundle is h=075-hs—0.25 hp

Now let us try to be more general. Say that we define the bundle in such
a way that the bundle demand (per unit time) at retail store j is

d; =,

where « is an arbitrary (positive) number. Then the number of units of item
i contained in this bundle is
1 ds
Nij = — 2 s
a )y di;

and the inventory holding cost for the bundle is

Zhu\w B Z h «Q Zk dk]

Now we may see that « is actually irrelevant, because in the formulas giving
the optimal period and the total cost for each link from the distribution center
D to retail store j,

the value of o gets canceled when multiplying Jj and fzj This is actually a
rather obvious finding as the solution cannot possibly depend on an arbitrary
parameter.

In order to carry out the calculations, we may assume

CZj = Zdij.

In other words we assume that the number of bundle is equal to the total
number of units over all products. But we must be careful and realize that
this does not imply that we are summing demand for different items, which
makes no sense. Each unit of the bundle consists of a percentage w;; of each

item 7 where
Z Zk dkj

In the example above, we are simply assuming a demand for the bundle of 400
units per period and a bundle consisting of 0.75 units of A and 0.25 units of
B. With this choice of bundle demand, the inventory holding cost for bundle
j is a weighted combination of holding costs for single items

FLJ‘ = Zhiwij,
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Table 2.5 Demand, weights of single items in the bundle, inventory holding cost,
optimal ordering period, and total cost per unit time for each bundle j and the corre-
sponding link (D, j)

store(4) 1 2 3 4 5

d~j 1500 730 3300 420 3200
WA; 0.6667  0.6849 0.6061 0.7143 0.6250
WBj 0.3333  0.3151 0.3939 0.2857 0.3750
iLj 33.3333 32.8767 34.8485 32.1429 34.3750
1p; 0.0447  0.0965 0.0607 0.0861 0.0612

TCh; 4472.14 4633.17 13970.02 2323.79 13469.10

The resulting calculations are displayed in table 2.5. We see that the total
cost of the second set of links is 38868.21; adding the cost of the first set of
links (26930.82) we get an overall cost of 65799.04, to be compared against
the cost of the solution with direct shipments (73003.12). According to the
model, the percentage saving from the introduction of the distribution center
is 9.87%.

We stress again that we have considered a toy model with a lot of debatable
approximations, but the results suggest that the introduction of a distribution
center may have some merits. The saving we have estimated might not be
enough to justify the introduction of the distribution center, because we have
not considered the cost of building and running it. To get a better idea
of the effect of an intermediate distribution center, we may apply the same
modeling approach to a network with more retail stores. Using data similar to
those we have just used, generating retail store coordinates on a square where
both edges are 1000 space units long, and placing the distribution center in
the barycentre of retail stores, we get the following results: With 100 retail
stores, the percentage saving is about 30%; if we add a third plant with a
third product, the saving is 40%. The important message to get from this
example is why a distribution center may reduce transportation and holding
costs: The distribution center may improve the frequency of transportation
from production to the retail stores. With a point to point transportation, in
order to exploit economies of scale optimally, we may be forced to transport
large amounts of goods, possibly exceeding warehousing capacities. If we mix
different products at a distribution center, where we manage assortment, we
are able to adapt transportation patterns on the two sets of links.

Concept 2.3 A distribution center can consolidate flows of various goods,
so that these share some fized ordering and transportation costs. Thus, each
single product is delivered in smaller quantities and more frequently. In other
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words the distribution center can create joint economies of scale since fized
costs are spread over a variety of products.

Example 2.1 A somewhat paradoxical consequence of introducing a transit
point is that goods travel longer distances than with direct shipment. This
is particularly striking in the case of next-day shipments by logistic operators
such as DHL or FedEx. Even considering a relatively limited region, such as
one country, organizing a direct shipment network is out of the question. We
have to introduce a hub to ensure economies of scale. FedEx, in its early days,
had just one in Memphis: Hence, a parcel shipped from Oregon to California
had to travel a long way.” In a large country, such as the USA, having multiple
hubs may make sense; in a smaller country, such as Italy, this would be hardly
justified. I

It is now important to close the section by listing all of the limitations of
our exercise.

e We have considered one distribution center, in a given position. We
have not considered the optimal location of single or multiple distri-
bution centers, nor the problem of allocating retail stores to different
distribution centers. We need optimization models to accomplish these
tasks.

o In practice, we often see hybrid strategies. Retail stores with high sale
volumes may justify direct shipments, whereas others need an interme-
diate point to exploit economies of scale in transportation.

o We have adopted a simplistic model of transportation costs and we have
not accounted for vehicle capacities. Both may depend on the specific
transportation link. It may also happen that different transportation
means are used: In intermodal centers, we may have inbound trans-
portation by rail or sea and have outbound transportation by trucks.

e The transportation period we get from the model above may not be
practical, because it may take any value. From an organizational point of
view, one might prefer a more meaningful and regular pattern. Imagine
the difficulty in arranging a shipment every 3.57 days.

e We did not consider the costs of holding in-transit inventory. These
costs may penalize the increased distance traveled when intermediate
centers are used. We travel longer distances and goods spend more time
traveling; thus the inventory holding costs increase. Actually, when

"See R.O. Mason, J.L. McKenney, W. Carlson, and D. Copeland. Absolutely, Positively
Operations Research: The Federal Express Story. Interfaces, 27:17-36, 1997.
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using transportation by truck, the traveling time is rather short and in-
transit inventory cost may be neglected. However, when transporting
perishable goods, time may be a very important issue.

e A similar consideration applies to variable transportation costs. If we
approximate transportation costs by one fixed component and one vari-
able component that varies linearly with the quantity transported, the
latter does not affect the optimal transportation frequency. But if we
are comparing different transportation patterns, variable costs may be
relevant (think of different routes, one going through the distribution
center and another one going straight into the stores)

e We have taken for granted that the distribution center had its own ware-
house (without accurately modeling its dynamics). In fact, by carefully
synchronizing shipments to and from a distribution center, we may avoid
any inventory holding there; in this case, the distribution center works
as a pure cross-docking point (i.e., a transit point). This means that
the transit point does not reduce safety stocks by risk pooling; however,
this does not imply that such a transit point has no role in dealing with
uncertainty. As we will see in chapter 6, when transportation times are
relevant, a transit point may help us in delaying the allocation of goods
to specific final destinations; delaying the commitment of goods helps in
reducing the impact of demand uncertainty. Another relevant consid-
eration is that in the case of pure cross-docking, the facility is smaller
and cheaper to build and manage (and we may also deal with highly
perishable goods efficiently).

¢ Finally, we have neglected issues related to the increased material han-
dling due to intermediate centers. Additional unloading/loading activi-
ties have a cost, and they may also increase the loss of material because
of accidental damage.

All of these considerations illustrate adequately the extreme complexity of
network design, which calls for the development of suitable models to take
relatively strategic decisions. These models have to be reasonably simplified,
yet we must anticipate the effect of strategic decisions on the costs associated
to tactical and operational management. All we can hope to do is to ap-
proximate these costs; hence, optimization models have the role of generating
a restricted set of candidate solutions, which must be fully evaluated by an
accurate simulation model. It should be emphasized that a simulation model
per se need not be an effective or efficient way to generate solutions. This is
why in this chapter we deal with optimization models. We should also men-
tion that heuristic solution approaches have been developed over the years.
We refer the reader to [3] and to our web supplements.
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2.2 LOCATION AND FLOW OPTIMIZATION MODELS

In this section with deal with a subclass of linear programming models, pos-
sibly mixed-integer ones, linked to classical network optimization problems;
they include plant location and optimal flow models. Plant location is rele-
vant at a strategic level, whereas flow optimization is of a more tactical or
operational nature, but it occurs as a subcomponent of strategic models. In-
deed, when locating plants we should account for the impact of the logistic
infrastructure on the transportation cost. Hence, in illustrating models, we
will not move from strategic down to tactical levels; rather, we will present
models in increasing order of complexity. The simplest model is the classical
transportation problem, and we will proceed to more realistic modeling frame-
works including demand uncertainty and nonlinear costs. Our aim is not to
propose a general, all-encompassing model, since there is no such thing. We
want to present building blocks that can be assembled when needed; the focus
is on modeling frameworks, and not on solution methods. We take for granted
that a good commercial solver is available, to solve the models by standard
methods such as simplex or branch and bound algorithms (see appendix B).
This need not be the case, as some really large-scale models may require spe-
cific solution methods; however, we feel that algorithmic finesse is beyond
the scope of the book: furthermore, the astonishing progress in optimization
software is pushing the intractability frontier further and further.

All of the models below are based on the mathematical concept of a net-
work, which is essentially a graph with some additional information. A graph
consists of two components: nodes and arcs (see. e.g., figure 2.5). Nodes are,
in our case, facilities along a supply chain; arcs, connecting nodes, represent
the flow of goods along a certain transportation link. Formally, an arc is just
a pair of nodes. Not every pair of nodes is directly connected by an arc; to
reach a destination node starting from a source node, we may need to traverse
several arcs, modeling a sequence of transportation activities. Arcs may be
directed (oriented) or not; formally this depends on the type of node pair,
which can be ordered or not. The arc orientation is associated with the sense
of an arrow, and it represents the direction of goods flowing along the arc.
A directed graph consists of nodes and oriented arcs. In this chapter. goods
flow along a specific direction; hence, we will deal with directed graphs. We
will meet undirected graphs in chapter 8 on vehicle routing, but we may also
think of an undirected arc as a pair of directed ones.®> We have a network
when elements of the graph are associated with additional information related
to costs or constraints. For instance, we may give the maximum amount of
flow that can go through a node per unit time, i.e., the material handling

8Strictly speaking, in an undirected graph we should speak of vertices, rather than nodes,
and edges, rather than arcs; we will use terms rather loosely.
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Fig. 2.5 A graph corresponding to a transportation problem.

capacity of a transit point, or the cost associated to an arc, representing unit
transportation costs.

2.2.1 The transportation problem

The classical transportation problem is actually a very simplified view of a
real-life transportation problem. It is a linear programming model dealing
with a two-level network, on which a single type of good flows. We have two
disjoint sets of nodes: the set S of source nodes and the set D of destination
nodes. Referring to figure 2.5, wehave S = {A, B,C}and D = {1, 2, 3,4, 5,6}.
Examples of (directed) arcs are (A, 1) and (C, 4); theére is no (B, 6) arc. Also,
when there is no arc connecting two sources or two destinations; we say that
the graph is bipartite. Destination nodes represent retail stores, which are
characterized by a demand d; (j € D), which may be given per unit time or
over a time span of interest. Source nodes might represent production plants,
with a given limited capacity R; (i € §), measured over the same time span
as demand. For each source—destination pair, i.e., for each arc, we have a unit
transportation cost c;;. This is considered as a variable linear cost; clearly,
this is just a very rough-cut approximation of a real-life transportation cost.
The problem consists of finding the minimum-cost set of flows, over all of the
links (¢, ), such that demand is met and plant capacities are not exceeded.
To represent the transportation problem as a mathematical programming
model, we have to find suitable decision variables first. In this case, it is fairly
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evident that we need one decision variable for each link (i, j); let z;; be the
flow on each arc. We will assume that the only requirement on flows is that
they be non-negative; we do not require that they be integers, which makes
sense if we consider large flows, so that possible issues with a continuous
approximation are of no concern.’ The resulting linear programming model
is

min Z Z CijTijs (2.8)

€S jED

st. Y wy=d; VjeD, (2.9)
€S
>z <R Vi€, (2.10)
JED
Tij Z 0.

The objective function (2.8} is a sum over all the pairs of nodes, and it amounts
to the total transportation cost. The expression above assumes that there is
an arc for any source—destination pair, which need not be the case. We could
think of associating a suitably high cost ¢;; to nonexistent arcs, so that they
are never used. A possibly more elegant solution is to represent explicitly the
arcs in the network by a set A/, and writing the doublesum as 37, 1. \- ci;zi;.
The constraint (2.9) makes sure that demand is met at each destination node,
by summing inflows from plants. The capacity constraint, limiting outflows
from any source, is represented by (2.10). Notice the reversal of roles between
subscripts ¢ and j in constraints (2.9) and (2.10).

This model is extremely simplistic and it just provides us with a starting
point for further modeling. To begin with, it is a static model ignoring time
patterns in demand (demand variability). In principle, it is easy to extend
the model to a multiperiod one; we need to introduce a time-varying demand
d;: and inventory variables at nodes, along the lines of section B.1. By the
same token, we could consider diversified production costs across the plants,
different items or families, and a more realistic transportation cost structure,
possibly including fixed charges and economies of scale. Pursuing this line, we
may come up with an integrated production—distribution model. Obviously,
the computational requirements would grow, but this need not be the main
difficulty of such an exercise; additional critical points are the following:

9In fact, if all problem data in the transportation problem are integers, it can be shown
that there is no need to use branch and bound methods to get an integer solution. The
simplex algorithm will always yield an integer solution because of the structure of the
problem. Actually, this structure is so peculiar that we may use more specialized and
efficient algorithms. We refer the reader to the available literature on model solving, which
is not too relevant for our purposes. Anyway, good commercial solvers are able to spot
network structures in linear programming models and to exploit them properly.
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1. Any model taking dynamic demand patterns into account may be flawed
if demand is highly uncertain. The longer the time horizon, the higher
demand uncertainty. We could build scenario-based optimization mod-
els where demand uncertainty is suitably modeled. We have seen how
this can be accomplished in the two-stage case in section 1.5.2, but the
solution effort grows very quickly for the multistage case. Nevertheless,
scenario-based models have been proposed for strategic level decisions;
we will illustrate an example in section 2.2.3.

2. Another fundamental limitation is that transportation costs are assumed
linear, which rules out economies of scale. In a strategic or tactical
model, it may be difficult to account too accurately for transportation
costs that also depend on operational decisions; however, we may ap-
proximate such costs by a nonlinear function, which in turn can be
approximated by a piecewise linear function, as we illustrate in section
2.3, with a corresponding increase in the computational effort.

2.2.2 The minimum cost flow problem

In the classical transportation problem we have a two-layer network. If we
generalize the network to an arbitrary structure, we obtain the minimum cost
flow problem. In the classical version of the problem, we have one source
node, which has to send a given flow, and a destination node, where the flow
must ultimately be routed; our task is to find a minimum cost transportation
plan. Since source and destination nodes need not be connected directly,
we must use intermediate transshipment points. A complicating factor is
represented by arc capacities, which limit the amount of flow we may transport
on each link. The optimal flow might be split over multiple routes. This may
actually be the case in telecommunication networks, but it is uncommon in
distribution logistics. With respect to the basic network flow problem, we have
other complicating factors, such as multiple destinations and sources, different
commodities, nodes’ capacities expressing limitation of transshipment nodes,
etc. For the sake of simplicity, we will consider a three-layer network, of the
type we have already seen in figure 1.3. Actually, arbitrary flow structures can
be modeled. As in the transportation model, we denote source and destination
nodes by S and D, respectively, and denote by C the set of intermediate
transshipment nodes. We consider multiple items, whose set is denoted by L.
Production plants, i.e., flow sources, need not be able to produce the whole
spectrum of products; furthermore, capacities and production costs may vary
across source nodes. We will also consider transportation capacities, e.g.,
linked to either volume or weight.

Given the increased complexity of this model, we proceed step by step.
As we have already pointed out, a good starting point is figuring out which
decision variables we need. In network flow problems, we always need to
represent the amount of goods shipped along each link, with reference to
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some unit of time. Let us denote by x;z; the amount of product type [ € L,
produced on plant i € S and shipped to distribution center k € C: similarly,
we denote by yxj;; the amount of product [ shipped from distribution center &
to destination node j € D. To be precise, we should define variables z;5; only
for items [ which can be produced in plant i; by the same token, we should
only define both variables for arcs which are included in the network. To ease
the notation. we refrain from doing so, but we could easily add the required
subsets.

Now we should write the constraints that must be enforced on flows. We
start from downstream nodes and then move upstream. To begin with, we
want to meet the demand for any destination node:

Y wgi=dy WL VjeD.
keC

where d;; is the demand for item { at destination j.

We also have limited transportation capacities on each link, in terms of
volume or weight. We have to aggregate different items according to these
dimensions. For the sake of simplicity, we consider only volume, and we let v;
be the unit volume of item [ and let Vi, and Wy, be the maximum volumes
per unit of time which can be shipped on arcs (i. k) and (k. j), respectively.
Then we may express capacity constraints on each arc:

Y vz <Vie VieSVkeC,
leT

S wki < Wiy VREC.Yj€D.
leT

If some links are not really available, we may think of setting their capacities
to zero. We also assoclate unit transportation costs ¢;; and gx;. which are
related to the volume shipped on each link.

Then we also have to formalize constraints on activities at transshipment
nodes. A typical constraint we need for multihop flow routing is the conser-
vation of flows. The amount of goods flowing into a node must be equal to
the amount flowing out of that node:

Dzi= ykjy VkhkeCVWIEL
i€S jeD

We should also consider the material handling capacity of distribution centers.
If Hy the maximum amount of volume that can be handled at node k per unit
time, we have to enforce the inequality

ZZU;IiMSHk vk e C.
€S lel

Finally, we must express capacity constraints on each production plant. To
this aim, we need resource requirements for each item. There may be several
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relevant resources, but if there is a clear bottleneck, e.g., labor, we may collect
the unit resource requirements r; to produce one unit of item ! on plant i,
along with the resource availability R; on that plant. Note that, because of
possibly different technologies, we allow for plant-dependent resource require-
ments; for the same reason, we allow for different unit production costs p;;.
The following production capacity constraint must be written for each plant:

ZZMN]MZ < R; Vi e S.

keC lel

Note that we are summing over both item types and distribution centers as
we consider the overall workload of the plant, regardless of what the item is
and where it is shipped to. In fact, we have not used production variables,
because they are directly disaggregated into shipments to distribution centers.
In a multiperiod model, where inventories are introduced, we would need to
make production variables explicit.

Wrapping it up, and including the objective of minimizing the total cost,
production plus transportation both to the warehouses and the stores, we
obtain the following linear programming model:

min Z Z Z(piz + Cikr) Tk + Z Z Z kiU Yk 1

leT i€8 kel leZ keC jeD
s.t. Z Zrigmikl < R; Vies,

keC leT

Zvl:cikl <Vie VieS, Vkel,

leZ

szykjl <Wy; VkeC VjeD,

leT

Swm=Y mp  VkeC Ve,
€S jE€D

ZZW%‘MSH}C vk eC,

€S leT

S wu=dy VeI VjeD,

kec

Tikl, Yrji = 0.

For the sake of brevity, we will not repeat the cautionary remarks we made
for the basic transportation problem.
2.2.3 The plant location problem

In the two models above we have taken the network structure as given. Hence,
the decisions we had to make were tactical or operational, and just linked to
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flow routing. However, at a more strategic level, we have to make decisions
concerning:

o the location (or relocation) of production plants;

e the sizing (or the expansion) of production capacities;

e the capacity and location planning for distribution centers;
e the allocation of retail stores to distribution centers.

As far as the last point is concerned, we may consider a purely exogenous
demand, which we have to satisfy, say, at minimum cost. However, there are
problems, such as the choice of the location for retail stores, in which the
demand is a result of our decisions.

What we describe here is a straightforward extension of the transporta-
tion problem, whereby source nodes are just potential locations of plants. We
should decide where (in the set of predefined options) a plant must be opened,
taking into account the related costs. Such decisions (and the related vari-
ables) are logical (i.e., binary) in nature: Either we open a plant. or we do
not. This is a typical setting in which binary decision variables are used:

_ { 1 if source node i is opened,
Yi = .
0 otherwise.

When opening a plant, the related costs include a fixed component. linked to
the binary decision variables y;. Finding a good solution calls for trading off
the cost of opening a plant against transportation costs. Even if we consider
only a fixed charge for opening a plant, we must be careful in making it
comparable with transportation costs (basically we turn a one-time-only cost
into a kind of per-unit-of-time fee, say a monthly fee). If demand is given per
unit time, and we measure transportation cost on the same basis. we must
somehow amortize opening costs to make all of them comparable. If we do
this, we end up with a fixed charge for operating plant ¢, which we denote by
fi- The classical plant location model, where one item type is considered, has
the following form:

min Z fiye + Z Z Cij %5, (2.11)

ies i€S JED
s.t. Zmij =d; vj e D,
ieS
Zl‘ij < Riy; Vie S, (2.12)
JjED

zi; >0, s € {0, 1}.

Comparing this model against the transportation problem, we see two basic
differences:
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1. There is an additional term in the objective function (2.11), which is
typical of models including fixed charges.

2. The capacity constraint (2.12) does not include a given capacity, but a
capacity depending on our strategic decisions. If a plant is not opened
(y; = 0), there can be no flow going out of the corresponding node.
This way of linking continuous decision variables, in our case the flows,
to binary variables is quite common.®

Since the model includes binary decision variables, it must be solved by mixed-
integer programming methods such as branch and bound. Leaving solution
issues aside, it is important to realize that the main difference between the
two sets of decision variables is not due to integrality requirements. One set
of variables is related to strategic decisions, which are not easy to change on
a short time scale. Another set of variables is related to tactical decisions:
Transportation decisions, should the demand pattern change, can be adapted
on a short notice, subject to plant capacity constraints. The role of the flow
variables x;; is to “anticipate” in a strategic model the effects of tactical deci-
sions which will be made later; in the model below, they define an anticipation
function in the form of a linear transportation cost.!! .

This difference in the nature of decision variables gets clearer if we extend
the model to account for demand uncertainty. To do so, we may exploit the
same concepts we introduced in section 1.5.2, where we illustrated a two-stage
stochastic programming model for optimization under uncertainty. Like we
did there, we represent demand uncertainty by a set of scenarios, indexed
by s and associated with a probability 7°. Let dj be the demand at retail
store j under scenario s; for the moment, let us assume that demand must
be satisfied anyway. The decision of opening a plant is a first-stage decision,
which must be taken here and now; production and transportation decisions
will be taken later, once demand is known. Hence, we have a set of second-
stage decision variables z7;, which are contingent on the realization of scenario
s. The minimization of the total plant cost plus the expected transportation
cost is obtained by solving the following model:

min Y fii+ Y 7DD eyl |

i€S s ieS jED
st. Y aj=d Vs VjeD,
i€S

108ee also the lot-sizing model (B.15) on page 573.

11 An anticipation function actually anticipates the effects of the decisions at stake in the
model on future performance. In this case, the function anticipates the effects of location
decisions on future transportation costs. We could say that the model encompasses design
variables y; and control variables x;; that are used to capture the effect of design variables
on future costs. Also, arguably a more accurate anticipation function should be nonlinear.
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Z Tfj < Ry Vs, Vi e S,
jeD
CEfj >0,y € {01}

We see that capacity constraints link the first-stage variables y; with the
second-stage variables z7;, which must adapt to contingent demand d3, subject
to available capacity. So, first stage decision variables generate the capacity
that we then use in the second stage to meet demand. Solving this model could
yield a very costly solution, if extreme but unlikely high-demand scenarios are
included, since we would be forced to buy a lot of capacity just in case that
odd scenario comes true. Hence, we could also consider a more “elastic”
formulation allowing for the possibility of leaving some demand unsatisfied
(at least in some high-demand scenarios). Let z; > 0 be the amount of unmet
demand at node j under scenario s; these decision variables are included in the
objective function multiplied by a penalty coefficient 3;, yielding the elastic

model formulation:

min Zfiyi-?-Zﬂ'S ZZcijxfj +Z7rs Zﬁjzj

ics s i€S jeD s JED
s.t. mej + 2] = dj Vs, Vj € D,

€S

Z $fj < R;y; Vs, Vi€ S,

JjED

x5, 2 20, y; € {0, 1}

The penalty coefficient 3; could be quantified by taking the relative impor-
tance of different markets into account; alternatively, it could be related to
the cost of meeting demand by resorting to external suppliers.

It is important to really understand the meaning of the model above. The
second-stage cost term is just an anticipation function: Transportation plans
will be determined by possibly complex strategies, and in a real setting we
could have inventories at destination nodes. The meaning of the model above
is the minimization of the long-run average cost, assuming that similar de-
mands are observed over multiple periods (in modeling terms, independent
experiments are repeated taking independent and identically distributed de-
mand samples). If we anticipate possible trends in demand and we foresee
significant changes on top of random fluctuations (say we expect demand to
increase), we need to build a multiperiod model that accounts for demand
variability, with considerable complications. An advantage of a multistage
formulation would be the ability of including the redesign of the network. In
real life, we typically have to redesign the network by closing facilities, build-
ing brand new ones, or expanding the capacity of existing facilities. The next
model shows, in a deterministic setting, how this could be accomplished.
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Fig. 2.6 Capacity expansion and relocation in a distribution network.

Concept 2.4 When we design a model to set the infrastructure of a supply
chain and locate warehouses, we shall anticipate the effects of such structural
decisions on the ongoing operational performance. In other words, when we
make strategic decisions we shall anticipate their effect on operational perfor-
mance.

2.2.4 Putting it all together

In this section we discuss a model which summarizes modeling elements we
have introduced before.!? For the sake of simplicity, we deal with one item
type and disregard uncertainty; yet, the model is a good example of how we
can improve an existing network to adapt it to changing demand patterns. The
network illustrated in figure 2.6 consists of two production plants, A and B,
of given capacity, which can manufacture a product which must be ultimately
be shipped to six final destinations. The product is shipped through three
distribution centers, «, 5, and ~, with some current capacity level. The
problem calls for the redesign of the network, pursuing the following options:

1. We could expand the capacity of distribution center , which is drawn
as a shaded area to point out this opportunity.

2. We could build a new center §, which is drawn using a dashed line,
endowing it with a relatively low capacity.

'2The example described here is a simplified version of a similar model considered in [9].
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3. We could build center §, with a relatively high capacity.

Also, the transportation links going into and out of center ¢ are dashed to
point out that they are potential transportation links. For organizational
or budget constraints, if we open the new center §, we must close (at least)
one between centers o and 3. In other words, we do not want to use more
than three centers. Center v might be expanded, but we do not consider it
a candidate for dismissal. Every decision has a given cost, or a benefit, as
is the case of the savings associated with closing centers o or 3; all of these
quantities are expressed on a per unit of time basis (i.e., are amortized), in
order to make them compatible with transportation costs and flows per unit
time. The capacity of all transportation links is assumed unbounded; it is
node capacity that constrains goods flow.

To write the model, we will use subscripts ¢ = A, B for production plants,
k = o, 3.7, 6 for distribution centers, and j =1, 2,...,6 for retail stores. The
available data, which may be referred to time units when necessary, are:

o demand per unit time d; at retail stores;

e unit transportation costs c;x and gi;, between the different network
layers;

e the current handling capacity T} for the three active distribution centers
k=a 37

e the possible capacity expansion U, for center v, along with its cost per
unit time g-;

e the two possible capacity levels, high and low, U} e U}, for the potential
center 4, along with the related fixed charges ¢} and ¢}:

e the saving ry for the potential closure of centers £k = «, 3.

e production capacity R;, per unit time, at the production plants, which
we assume have the same technology, hence the same unit production
costs;

The decision variables are the material flows per unit time, z;z and yx;, on
the two sets of links. along with the logical variables:

1 if the capacity of center ~ is expanded,

W~ = .
0 otherwise;

R 1 if center k = «, 3 is kept open,

kT 0 otherwise;

if we open center § with low capacity,

otherwise;

1 if we open center § with high capacity,

otherwise.

)
o

1
O =

o}
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We obtain a model which is a hybrid between the minimum cost flow problem
of section 2.2.2 and the plant location model of section 2.2.3:

min g w., + gssh +qsh - Z re(l — zx)

ke{a,B}
D i+ DD grilkg (2.13)
ik kg
s.t. Zykj =d; V], (2.14)
k
= ws  k (2.15)
i J
ZIik < Trezi, k=a,pB, (2.16)
> @i < T, + Uywy, (2.17)
> mis < Ulss + Upsh, (2.18)
%
L, ch
86 + 85 S 1, (219)
Zo + 23 + sf; + sg‘ <2, (2.20)
> zx <R Vi (2.21)
%

I R
Wn, S5, S35 20y 28 € {0, 1},
Tik, Ykj = 0.

The objective function (2.13) consists of two terms: The first one is linked to
capacity modifications; the second one (an anticipation function) is linked to
transportation costs. The only point worth noting is the negative sign of the
term associated with decisions pertaining to centers o and 3: It is a saving,
and the binary variables are complemented to one, because we have a saving if
we do not keep the center open. Notice that implicitly we consider the current
situation where o, 8 and v are currently open as our base-case scenario.
Obviously, any other base case scenario would work as well (we suggest the
reader to restate the model with other base cases). The constraint (2.14)
says that demand must be satisfied. The flow equilibrium on distribution
centers is expressed by (2.15). Constraint (2.16) says that it is possible to
have transshipment through centers « and (8 only if they are kept open, in
which case total flow is limited by handling capacity. The constraint (2.17)
is also a node capacity constraint, but in this case we include a potential
expansion of capacity. The capacity of center § can take one of three values:
zero, low, or high, depending on our decisions; constraint (2.18) takes care
of this. We should note that capacity in v cannot be the sum of low and
high capacity, because the related decision variables are mutually exclusive,
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courtesy of constraint (2.19). Finally, inequality (2.20) has the effect that at
most two centers among «, 3, and 4 are active in the new network, whereas
(2.21) is the capacity constraint on production plants.

2.3 MODELS INVOLVING NONLINEAR COSTS

The careful reader has certainly noticed something strange in the last model
we have considered: Why didn’t we consider the possibility of shipping goods
directly from a factory to a retail store? Extending the model by the inclusion
of a new set of decision variables, say z;;, to model the direct flow from
factory i to retail store j would be rather trivial; we just have to adjust
constraints on outflows from factories and on inflows to retail stores. The
real issue is that this linear model is not able to capture economies of scale.
Since the objective function includes linearly variable transportation costs,
if it is convenient to ship a large amount directly rather than through the
distribution center, this will also be the case for a small amount. What we
observe in practice is that direct shipments are used only for large demand
volumes at destination. The reason, as we have hinted at in section 2.1.2, is
that we must achieve economies of scale in transportation. We should better
represent costs, which are actually nonlinear. In fact, equation (2.7) on page
63, despite its limitations, suggests that the cost associated to a transportation
link is not only a nonlinear function of flow, which in this case is essentially
given by demand d per unit time; this function is also concave, because it
includes the square root of d.!* Concave cost functions model economies of
scale. The total cost function of the Economic Order Quantity model offers a
similar suggestion.

The actual cost associated with transportation flows on a link, with inven-
tory holding, and with material handling at a facility is a complicated function
depending on dynamic system behavior. At the network design level, we must
settle for a suitable approximation by some anticipation function, aggregating
costs on a relatively long-term horizon; then we may validate the solution we
have obtained by simulating operational decisions. One possible approach is
to postulate some functional form, like

C=a V3,

where C' is the cost per unit time, V is the flow volume, and o and 3 are
coefficients we should estimate. For values of 3 such as 0.5 or 0.8, this cost
function is concave. One possible way of finding suitable values for the coef-
ficients in the assumed functional form is by analyzing approximate models.
An interesting alternative is carrying out simulation experiments and then

138ee section B.3 for the definition of convex and concave functions.
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fitting a functional form against experimental results, e.g., by least-squares
methods (see section A.10.6).14

Introducing a nonlinear cost function in a network optimization model may
significantly change the nature of the model, the nature of the solution, and
the computational effort to get this solution by solving the model:

1. In general, nonlinear programming models are harder to solve than their
linear counterparts, and this may limit the size of the model we can
afford to tackle.

2. Location models involve binary decision variables; solving a nonlinear
mixed-integer model may be difficult.

3. Recent research has spawned a host of efficient algorithms for general
convex optimization, and solvers have been introduced for nonlinear
mixed-integer programming. Regrettably, minimizing a concave func-
tion is not a convex problem. For a model with a nonconvex objective,
even solving a continuous relaxation within a branch and bound strategy
(see section B.6.1) may be difficult because of potential local optima.
We should use possibly demanding global optimization methods.

Even if we refrain from dwelling too deeply in algorithmic details, we imme-
diately see that solving a suitably accurate network optimization model may
be a time-consuming task. Network design is not a real-time decision-making
task and that possibly significant savings are involved by proper analysis;
hence, much CPU time can be afforded, but if we want to play with alterna-
tive scenarios to get a robust solution, we should try to keep computational
requirements as low as possible.

One way out of this difficulty is approximating a nonlinear cost function
by a piecewise-linear function, like those illustrated in figure 2.7. Given a
function f(z), we can define a set of “knots” z(¥ which separate intervals
over which the function is approximated by a linear piece. Determining how
many linear pieces are needed and how knots should be placed requires some
skill and experience, but we see that we may boil down a possibly complex
model to a linear programming model. The nature of the function dictates
if this may be solved as a continuous linear programming model or if mixed-
integer modeling is necessary. We have the first case when the function we
approximate is convex, so that its approximation may be convex too. For
instance, let us consider a function like

oz, 0<z <z,
fl@y=¢ c2(z— a:m) + ez, 2V <z < 2@,
sz —2) + ¢ (:v(2> — W) + ¢z, @ <z <2®

4 The approach of using a simulation model to build an approximate analytical model is
called meta-modeling.
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Fig. 2.7 Piecewise approximations of nonlinear functions f(z): (a) convex, (b) con-
cave, {c) neither convex nor concave.

modeling a cost depending on the level x of some activity. If ¢; < ¢z < ¢3, like
the case of figure 2.7a, then marginal costs are increasing; in other words we
have a diseconomy of scale, which is represented by a convex cost function.
If, on the contrary, ¢; > ¢o > c3, marginal costs are decreasing and we have
a concave function displaying economies of scale, as depicted in figure 2.7b.
In our applications, this is the case most likely to occur, but in principle we
might have the case of a generic function, like in figure 2.7c.

If the piecewise linear function is convex, its minimization is easily recast
as a continuous linear program which can be efficiently solved. We have
to transform the function f(z)} into the sum of linear terms, depending on
auxiliary variables, say y1, y2. and y;3 if the function consists of three pieces:

flx) = ciy1 + cayo + c3y3.
=y +Yy2+ Y3,
O S Y1 S ';];(1),

0<ys < (Im _ $<1>> _
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Fig. 2.8 Modeling a nonconvex piecewise linear function.

0<ys < (ﬂc(s) - 56(2)) :

In practice, each variable y; is associated with an interval, and the original
variable is expressed as the sum of auxiliary variables. In order for this ap-
proximation to work properly, auxiliary variables should be “activated” in the
correct order. First we use y;, and we should activate further variables only
if z > 1) in other words, each “subinterval” must be saturated before using
the next one. But since in the convex case we have ¢1 < ¢y, y2 will be positive
in the optimal solution only if y; reaches its upper bound (. We will not
use o in place of y;, unless strictly necessary, because yy is more expensive
to use. By the same token, ys is activated only if both y; and y, reach their
upper bounds.

This reasoning applies for the minimization of a convex function, or the
maximization of a concave one. But if we are minimizing a concave function,
due to decreasing marginal costs, the solution algorithm would find it advan-
tageous to use variable ys first, because it is the cheapest one. Of course this
is no surprise, because we cannot expect to recast a nonconvex problem into
a convex one. However, we may trade one nonconvexity for another one, by
transforming the model into a mixed-integer linear programming model. The
trick is associating a binary decision variable with each interval, making sure
that only one interval is used. To see the idea, let us refer to figure 2.8, in
which the piecewise linear approximation is encoded by a set of points of co-
ordinates (x;,y:), where y; = f(z;). ¢ = 0,1,2,3. Each point on the segment
from (z;,y;) to (%11, ¥:+1) can be expressed as a convex combination'® of

15 A convex combination of an arbitrary number points in R” is just a linear combination of
those points, such that weights are non-negative and their sum is 1. Given a set of points
S, the set of all of the possible convex combinations of them is called the convezr hull of S.
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those two extreme points:

r = Azr;+ (11— XNziq1,
Ayi + (1= A)yit

where 0 < XA < 1. Now, let us see what happens if we form a convex combi-
nation of all four points:

3
T = Z/\ZIL‘Z
i=0
3
y= Z)\z‘yn
=0
3
inzl A >0

What we get is not really the piecewise linear function, but rather the convex
hull of the four knots, which is depicted as the shaded area in figure 2.8.
Nevertheless, we are close to our aim. We should find a way to enforce the
use of only pairs of adjacent points in forming the convex combinations. In
other words, only pairs of adjacent coefficients A; can be positive. For instance,
if Ay and A\ are allowed to take positive values, whereas As and Ag are stuck
at zero, we get the first line segment; if only A1 and Ao are free, we get the
second one, and so on. To accomplish this, we may introduce a set of three
binary variables, s;, 7 = 1,2, 3, one for each segment (i — 1,7), and link these
variables to the weights A; by the following constraints:

>~ AO < S1,
<AL <81+ 82
= AZ S 82+$37
OS A3 < 53,
3
Zsi =1, 8§; € {0,1}.
i=1

This may look like a rather involved trick, but many software packages for
mathematical programming ease the burden of introducing binary decision
variables by just requiring the knots of the approximation, and automating the
generation of auxiliary variables. However, it is important to realize what’s
happening behind the scenes; when we approximate a nonconvex function
in a minimization problem, we introduce binary decision variables, and the
resulting model may be hard to solve. We must be careful in striking a suitable
compromise between accuracy of the approximation and the computational
effort for solving the resulting model.
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While we are discussing modeling by binary variables, we should also men-
tion another typical modeling trick. To motivate it, suppose that we are
considering the use of some transportation link, which should not be used if
flow traveling on it is below a certain minimal threshold. Note that we are
not saying that a certain activity level z must lie in the range [L, U], where
L and U are lower and upper bounds, respectively. Doing so would enforce
a strictly positive value of z; however, what we want to express is that if =
is positive, then it must stay within that interval. More formally, the feasible
region for z is {0} U [L, U]. Since this set is not convex,'® we cannot just re-
sort to continuous linear programming. Yet, we may express the requirement
within the mixed-integer linear programming framework, by introducing a bi-
nary decision variable s, set to 1 if the service is activated (z > 0), and set to
0 otherwise. Our aim is easily accomplished by the following constraints:

z > Ls, z < Us.

We see that if s =0, then z = 0; if s = 1, then z € [L,U].

W.2.4 CONTINUOUS-SPACE LOCATION MODELS

In the last section, we considered a location—routing model in which potential
sites for distribution centers have already been selected. Continuous-space
location models are relevant when we want to generate alternatives. In the
web section we describe “minsum” models, in which the aim is to minimize
the sum of the distances between the new facility and, say, the retail centers;
alternatively, we might wish to minimize the maximum distance, which leads
to “minmax” models. By solving such a model, a new facility might well be
located in the middle of a lake; nevertheless, the solution is useful in order to
spot a neighborhood which could be searched for real location opportunities.

W.2.5 RETAIL-STORE LOCATION MODELS

In this chapter we have considered models in which demand was given ex-
ogenously. However, consider a consumer who has to travel a long distance
to get to a retail store we want to build. If she is offered alternatives, she is
not likely to become our most loyal customer. Indeed, an important concept
in retailing is the logistical range, i.e., the maximum distance a customer is
willing to travel. This depends on many factors, including the type of product
and the level of competition, but it is easy to see that demand is endogenously
generated by our choice of retail store location. In the web section we outline
a few models which are suited to this task.

*61n general, the union of convex sets need not be convex.
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FOR FURTHER READING

Background references which are relevant to this chapter are [1] and [2].

The analysis outlined in section 2.1.2 is a simplified version of what
is proposed in [4], to which we refer the reader for more details and
further justification. In practice, organizational constraints may dictate
that transportation frequencies are restricted to discrete values; a model
to cope with this case is described in [8].

The example described in section 2.2.4 is a simplified version of a similar
model considered in [9].

In [7] the reader may find approaches to reflect uncertainties, safety
stocks, and alternative transportation modes within a static modeling
framework.

The reader interested in further information on location models can have
alook, e.g., at [6], while [5] is useful to those working in the retail sector.

Commiercially available optimization solvers and languages are described,
e.g.,in http://www.ilog.com and http://www.ampl.com

To have an idea of what software is commercially available for the logis-
tic network design, we suggest visiting http://www.slimcorp.com and
http://wwu.bestroutes.com
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Forecasting

3.1 INTRODUCTION

Before we discuss how to forecast, we shall wonder whether we should do so
and why. Over the last few years many managers and academics have been
supporting the drive towards lead time reduction and Make to Order (MTO).
A basic truth about forecasts is that they turn out to be wrong. Hence, some
managerial theories suggest that you would better not forecast; and actually,
if a company is quick enough, it does not need forecasting. But what does
“quick enough” mean? And is lead time reduction free?

Certainly, cutting lead times is a fruitful endeavor (e.g., see [12]). How-
ever, reality is a little bit more complex than these theories suggest. First,
while these theories contrast Make to Order and Make to Stock (MTS) sup-
ply chains. almost all supply chains are partially driven by customers’ orders
(think about the assembly of a car that, at the least in Europe. is almost
always custom-built) and partially driven by demand forecasts {think of com-
ponents or raw materials purchases).

Example 3.1 Dell computers is today one of the largest PC manufactur-
ers in the world and is considered to be the champion of Make to Order
supply chains. Dell assembles PCs to customers’ order. However, not the
whole Dell supply chain is order-driven. Components’ inventories are set ac-
cording to demand forecasts. Thus, a more appropriate description of the
Dell supply chain is: Distribution and production are order-driven (MTO)
while components are made to stock (MTS). This is a significant advantage
over other competitors, as Dell carries inventories where consumption is more

91
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predictable (component level) rather than where it is less predictable (single
product configuration/single store). This redesign of the supply chain makes
Dell a very efficient manufacturer and a very successful competitor in the
tough PC business.

Also, Dell provides a very interesting answer to the question, what is “quick
enough?” Dell significantly reduced the production lead time and can deliver
in 23 days. Is that enough? The answer is that for PCs it is enough for most
customers that do not need the computer they bought immediately. However,
it is not enough for all users. Think of a situation where you lost your PC and
need to make an important presentation tomorrow. Dell is not your favorite
supplier. Also, this depends on the product a company is selling. While 2-3
days is fair enough for most customers for a PC, it is definitely too long if we
are speaking about drugs for acute diseases (for further information on these
examples see [17] and [18]). 0

Moreover, many companies forecast demand implicitly. For example, in the
grocery business many companies state that they do not generate any forecast
(especially at the store/item level). However, when one digs into the planning
systems, he/she can see that one key input to the purchase/delivery plan
is a demand forecast, though it is often fairly rudimentary. For example,
at a couple of grocery retailers in Italy, the target inventory level for the
next week depends on the demand during the previous week. Thus, these
companies implicitly assume a stationary demand and use the so-called “nalve
approach”; that is, demand forecast for the next period (read “week” in the
example) is equal to the demand in the previous one.

Generally speaking, when the Delivery Lead Time that customers want is
shorter than purchasing, production, and distribution lead time, one needs
to perform some sort of forecast to execute some activities before customers’
orders are collected.

Example 3.2 In most retail outlets customers expect to collect immediately
the goods they are looking for. This means that most retail companies shall
somehow forecast demand to plan inventories for the finished products carried
at each single store.

However, for some product categories the situation is rather different. For
food products such as pizza, we might not need to carry all possible product
variants, as customers might be willing to wait while their pizza is being
cooked. Does this mean that all operations in a pizza restaurant are made to
order? Actually, in Italy the average customer is just willing to wait while the
raw materials are “assembled” and cooked. Most customers are not willing
to wait while the cook looks for and buys the topping(s) they have ordered.
Thus, even in a simple pizza restaurant we need to forecast the consumption of
raw materials to purchase them in advance (pre-position raw materials). Quite
interestingly in this case too we can see that different customers have different
needs. While in traditional pizza restaurants pizzas are Made to Order, in
fast-food and most US pizza restaurants the basic cheese pizza is cooked and
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then toppings are added according to customers’ orders, as customers are not
much willing to wait. In this case, customers are willing to give up a bit of
product quality to reduce Delivery Lead Time (DLT). For them, 15 minutes
is just not “quick enough.”

Forecasting needs to cover and guide the portion of the supply chain oper-
ations that cannot be driven by customers’ orders (see the order decoupling
point concept in chapter 1). Let us consider a specific activity I, and let us
use 7 as the index for activities performed by the supply chain starting from
the delivery to customers (we number activities starting from downstream
and move upstream). If the lead time of all downstream activities Zle LT,
is greater than the DLT, then activity ¢ cannot be driven by orders and we
shall perform some sort of forecast to plan it.

Concept 3.1 Forecasting is required when customers are not willing to wait
long enough for all activities (purchasing, production, and distribution) in
the supply chain to be performed based on firm customers’ orders. So, the
relevance of forecasting also depends on the strategy of the firm. In particular,
it is very relevant for companies that rely on quick delivery and high service
levels to gain a competitive advantage.

Before we get into the details of algorithms to generate a forecast and measure
forecasting errors, in section 3.2 we investigate what we mean by forecasting
and how to choose a forecasting technique; in particular, we describe a fore-
casting process in section 3.2.1. Then, in section 3.3 we analyze how to mea-
sure forecast quality by means of accuracy and bias metrics. The remainder of
the chapter discusses forecasting techniques. Section 3.4 classifies forecasting
techniques. Sections 3.5-3.10 discuss several techniques starting from simple
ones such as moving average to slightly more complex ones such as simple
linear regression and exponential smoothing with trend and seasonality. In
section W.3.11 we describe an example of how multiple linear regression (see
section W.A.11) can be used in forecasting. Finally, forecasting techniques
for new products are covered in 3.12-3.13.

3.2 THE VARIABLE TO BE PREDICTED

Before we move on to the forecasting techniques (*how should we forecast?”)
we shall introduce some parameters that help us define the variable we want
to forecast (“what should we forecast?”).! We need to define this concept
carefully in order to set the forecasting problem properly.

1Often we just say that we want to forecast demand; as we shall see, this answer is just
way too broad and fuzzy. In the remainder of this chapter we will refer to demand as the
variable we want to forecast. This is just an example, as one might want to forecast other
variables. We use demand instead of “variable we want to forecast” for the sake of clarity.
However, the concepts we investigate apply to the more general problem of forecasting.
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The time bucket First, to properly set the forecasting problem we shall choose
the fime bucket, that is, the unit of time. The time bucket is a quantum of
time, that is, a minimum amount of time we use for our analysis of demand.
When we choose months as the time bucket, we never look at demand at
the week, day, or hour level.? We basically choose to look at time as a set
of months. Clearly, forecasting demand at the day level can be harder than
forecasting it at the week or month level. So the forecasting problem is not
properly set until we define the time bucket.

Example 3.3 A retailing company in Italy has historically recorded demand
and delivery data during periods consisting of ten days. The logic behind this
choice is that tens of days is a convenient metric to split monthly data.’
However, such a logic has significant drawbacks for a retailer. In retailing,
sales peak on Saturday and Sunday (in case stores are open). For this specific
company, sales on Saturday and Sunday are more than twice the sales of
the average weekday. A time bucket of 10 (or 11 days) is a poor choice, as
demand data become very bumpy. Indeed, when we have only one weekend in
ten days, demand is relatively low, while when we have two weekends in ten
days, demand is substantially higher (on the average, by roughly 20%). Once
the problem was identified, the company switched to weekly time buckets for
all operational processes, from inventory planning, to sales force and delivery
scheduling. The monthly data are used only for sales reporting and budgeting
purposes and tens of days are no longer used.

The forecasting horizon. Second, we shall set the forecasting horizon, that is,
how far into the future we want to foresee demand. For example, given a time
bucket of one week, we shall wonder whether we want to forecast demand
for the next week rather than 52 weeks into the future. In many instances
we have to forecast demand over a variety of forecasting horizons rather than
just one. For example, we might need a demand forecast for each of the next
4 weeks. Thus we might forecast demand over multiple forecasting horizons
rather than a single one.

The forecast frequency. The third relevant parameter is the frequency of fore-
casting updates. For example, let us assume we have to forecast demand for
each of the next 52 weeks. On the one hand, such forecasts can be updated
each and every week; we call such practice rolling forecast. On the other hand,

2Note that one can also try to predict when a given event is going to occur. For example,
one can try to predict when a given customer is going to place his/her next order. In other
words, in this book we try to answer the question: How many units are going to be requested
in a given time bucket? Another question is: In which time bucket is a given event (say an
order) going to occur? The former question is much more common and, generally speaking,
more relevant.

3 Actually, each month is split in three sections: the first ten days of the month, the second
ten days of the month, and the rest of the month.
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we can update the forecast at the end of these 52 weeks (so called fized hori-
zon). In the former case, the company can always foresee 52 weeks into the
future. In the latter case, the company can foresee 52 weeks into the future,
just after the forecast is generated, but the forecasting horizon progressively
decreases down to just a single week. However, in the former case the cost of
forecasting is substantially higher than in the latter one, as 52 different fore-
casts rather than a single one are generated in a year. Also, it makes sense to
update demand forecast only when additional pieces of information are avail-
able. For example, let us consider a retailer that uploads demand information
from each single stores once a month. For retailer like this it does not make
sense to update demand forecasts weekly. Thus the appropriate forecast fre-
quency depends on the cost of the forecasting process, on the availability of
additional information, and on the potential benefits of a fresher (and thus
usually “better”) forecast.

The product. A fourth relevant parameter is the definition of the product or
set of products we refer to. Forecasting demand for a specific model of shoes
in a given size (for example, Clark’s Desert Boots, brown, size 43) is definitely
more complex than forecasting the aggregate demand for all shoes in a given
market.

The market. The last relevant issue is the market or geographical area we
refer to. Forecasting aggregate demand for shoes in Italy is relatively simple,
whereas forecasting it at the single store level can be all but trivial. First, at
the single store level, demand is lower and thus it tends to be (relatively) more
variable (i.e., the coefficientof variation is larger). Also, exogenous factors such
as local weather or even simple road-works can change the demand pattern
significantly.

We have introduced the five dimensions that identify the object of forecasting,
i.e., the variable we want to forecast; but we still have to answer a key question:
What is the right choice for these five dimensions? What is the right set of
products? Should we forecast at item of family level? What is the right time
bucket? Should we forecast at the day or year level?

Forecasting the aggregate demand for a whole country in a year is definitely
simpler than forecasting demand for a single model, in specific color in a
specific size at a given store in week 4 of year 2007. This simplistic analysis
can lead us to believe that we should always try to aggregate demand over
product. time, and locations to reduce the forecasting error. Indeed, as the
object of forecasting is more aggregate, the demand pattern tends to be more
stable. Thus, it is easier to read past history and predict future one. This
view of forecasting overlooks the relationship between the forecasting process
and the decision-making process. The forecasting process is part of a broader
decision-making process. To properly set the parameters of the forecasting
process, we should first understand the decision-making problem(s) we want
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to support through a better forecast. In the specific case of logistics, the
identification of the appropriate variable to forecast depends on the features
of the planning problem(s) we're facing. For example, if we want to plan
deliveries of drugs to a chain of drugstores that are replenished weekly, we
must forecast the weekly demand for each single drug in each single store.

Example 3.4 Often these basic concepts are overlooked by many companies.
Company Gamma, is a market leader in the US office supply retail sector and
operates hundreds of stores. Gamma wants to forecast promotional demand.
Promotions last two weeks. Gamma thought they had found a great forecast-
ing tool, as the forecasting error was apparently just 2%. This would be a
very impressive result by any standard, as a 50% error is rather common for
promotional items. However, this error was measured on the overall turnover
for all promoted items in the whole chain. The metric of accuracy was totally
inconsistent with planning problem the company was facing. Gamma corpo-
ration needs to plan how many units of each item (tens of items are promoted
in any given week) shall be sent to each single store (the chain consists of
hundreds of stores). Thus, the aggregate metric of forecasting performance
has nothing to do with the very detailed decision problem the company is
facing.

Example 3.5 THREE is a company that sells furniture in Italy. Each three
months they place orders to their Asian suppliers. Suppliers deliver in three
months, so the lead time is three months.

THREE has hired a new employee to improve the forecasting and planning
process Table 3.1 shows demand data downloaded from the company’s IT
systems. The employee needs to forecast demand and measure its variability
to properly set safety stocks. One might be tempted to use monthly demand
data. Nevertheless, the company does not need really such a detailed forecast.
The company only needs to forecast demand at the quarter level, as the
frequency of orders (and thus the frequency of deliveries) and the lead time
are three months. So, for any practical purpose the decisions of the company
do not depend on whether the demand for April is high and for May is low
or vice versa. Indeed, the company needs to place an order in early January
for delivery in early April. Such an order shall meet demand for April, May,
and June regardless of the distribution of demand among the three months.
Thus, we actually need the demand during each quarter. In other words, we
should restructure the demand database as table 3.2 shows.

Concept 3.2 The forecasting problem is properly set only when we have set
the time bucket, the forecasting horizon and frequency, and selected the appro-
priate aggregation of products and markets. Also, these choices really depend
on the decision-making process forecasting is supposed to support. Indeed, we
forecast to make better decisions.
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Table 3.1 Forecasting example: demand data
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Month/Year 2000 2001 2002 2003
1 127 111 111 119
2 130 131 132 136
3 134 131 124 136
4 134 137 134 130
3 126 119 111 118
6 103 103 105 119
7 91 96 94 92
8 88 96 98 100
9 90 91 96 99
10 93 84 101 86
11 103 96 95 938
12 115 101 108 108

Table 3.2 Forecasting example: aggregate demand data

Month/Year 2000 2001 2002 2003
First Quarter 391 373 367 391
Second Quarter 363 359 350 367
Third Quarter 269 283 288 291

Fourth Quarter 311 281 304 292
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3.2.1 The forecasting process

When one says “forecasting,” most people tend to think about algorithms.
Indeed, in some instances algorithms can be used to forecast. However, fore-
casting is a process rather than an algorithm or a set of algorithms. Algorithms
are just part of the broader process that consists of various phases presented
in the following sections.

Analysis of decision-making processes. The first step of a forecasting process
is to analyze the decision making process one wants to support. This sets the
basic output of the forecasting process (definition of product, time bucket,
and market demand refers to, and choice of forecasting horizon(s) and fre-
quency of updates). It is actually fairly hard to prescribe how this task shall
be performed. However, we have to realize that any mistake in this initial
phase has substantial consequences. A guiding principle is to look at the in-
formation one needs to make decisions and make sure that the forecasting
process provides it.

If the forecasting process is too detailed, the output is too inaccurate (see
previous section). On the other hand, if the forecasting process is too aggre-
gate the output is generic and hardly helps the decision maker. For example,
consider company Gamma from example 3.4. Probably, aggregate figures on
consumption of paper in the USA are hardly the input that inventory planners
expect in order to decide how many reams of paper should be sent to store
346 tomorrow.

Gathering information. This is the second phase of the forecasting process.
Once the output of the forecasting process is properly defined, we shall in-
vestigate what pieces of information are available to generate it. Forecasting,
like any other statistic, is conditioned upon (i.e., depends on) an information
set. In other words, the quality of the final forecast depends, among other
things, on the quality and quantity of data and information used to generate
such a forecast. Thus finding the right set of information to forecast demand
can be as important or even more important than the selection of the appro-
priate forecasting algorithm. Indeed, even the best algorithm cannot possibly
operate successfully without key pieces of information.

Example 3.6 Figure 3.1 shows the demand pattern of a food product in
a large Italian grocery chain. The graph shows wide variations as demand
jumps from 10 to 240. The root cause of such bumps are trade promotions.
It is rather apparent that the manufacturer of this product cannot possi-
bly forecast demand accurately with no information on trade promotions, no
matter what the forecasting algorithm is. Indeed, there is no clear pattern in
promotions and thus an algorithm cannot predict when they will occur in the
future and forecast their impact on demand. However, the retailer and the
manufacturer agree on the promotions well in advance of their start. Indeed,
both the retailer and the manufacturer enjoy the beneficial increase of demand.
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Thus the retailer asks the manufacturer to cut the wholesale price (i.e., the
price the manufacturer charges the retailer) temporarily. So the manufac-
turing company knows when the promotions are going to occur few a weeks
before they start. The manufacturer needs to make this precious information
available to the forecasters. Unfortunately, those that collect the information
from the retailers typically belong to the sales departments, while the per-
sons in charge of forecasting belong to other departments (e.g.. logistics or
manufacturing), and in many companies information does not flow smoothly
across departmental boundaries. The benefits of such an information can be
appreciated by looking at Figure 3.2. I

The key pieces of information to predict future demand depend on the
specific forecasting problem one faces. Thus we cannot provide an exhaustive
list of variables one might want to consider. However, we can discuss issues
and variables that are often overlooked and do require some careful attention.

Forecasting tries to predict the future behavior of an exogenous variable, in
our case, future demand.* Hence, it is very important to use demand rather
than sales as the input to the forecasting process. Actually, sales depend
on true customer demand (that is a truly exogenous variable one tries to
predict) and on the availability of products (that is a lever for the supply chain
manager). Product availability censors demand. In most situations a company
can only sell the products that are currently available in the warehouse or in
the store. When 30 cans of beer are available in a supermarket, we cannot
sell more than 30 cans. If sales are used to forecast future demand, a low
demand forecast might turn out to be a self-fulfilling prophecy. Low sales
might reduce the forecast, which then leads planners to reduce inventories.
Finally, low inventories might further reduce sales.®

Example 3.7 For example, a leader in the production of dry pasta in Italy
uses time-series models (see section 3.5 in this chapter). When a new kind of
pasta was launched, the company decided to postpone the launch in a given
region because the company wanted to consume inventories of a preexisting
item that the new one was going to cannibalize. The automatic forecasting
and replenishment system immediately started to record zero sales for the new
product in that region, thus predicting no demand and suggesting to ship zero
units of the new kind of pasta. The vicious circle was interrupted only when
the product manager spotted the anomaly in sales, investigated the issue, and
finally discovered what was going on. 1

4Please note that demand is not completely exogenous for a company, since many levers
such as price can influence it. However, in our context we can assume demand to be
exogenous, as logistics and supply chain managers are supposed to meet demand. In other
functions such as marketing and sales, demand is actually the variable that one tries to
control through pricing, promotions, new products, etc.

5Note that this process might be very dangerous in case of products with low margin, as
companies tend to provide low service levels and a relatively large portion of demand can
be lost (see section 5.2).
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Moreover, a stockout of a given product can perturb the sales pattern of other
products since some customers might be willing to substitute the product
they were looking for with a surrogate. In some industries such as business to
business, e-commerce, or catalogue sales, it is relatively easy to capture the
gap between sales and demand as one can keep track of customers orders. In
other instances, like “brick and mortar” retail chains, this is more complex,
as customers do not formally place orders. In this case too, though, one can
use statistics to estimate the potential customer demand out of censored sales
data (among others see [13] and [20]).

Analysis of demand. 'The third phase of the process is the analysis of demand.
In this phase one shall study and identify demand patterns. As we further
discuss in the next sections, all quantitative forecasting techniques make some
assumptions on demand behavior and pattern. Thus one should first analyze
demand to figure out its actual behavior and then look for a forecasting tech-
nique that fits it. For example, we might investigate the demand to check
whether it is stationary, it shows seasonal fluctuations, or it is influenced by
phenomena such as weather conditions, promotions, or fashion. We should
understand first the drivers of demand, and then we can design (or choose)
an appropriate forecasting model that is able to read past demand behavior
and predict the future one.

Selection of forecasting technique and fine tuning of parameters. The fourth
phase of the process consists of (i) the selection of the appropriate forecasting
model and (ii) the fine tuning of its parameters. In simple cases, one can
just select a forecasting model off the shelf, i.e., adopt an existing model as
it fits very well. Commercial software provides several standard forecasting
techniques to choose from.® Very often, though, real-life problems require
more complex or at the least “ad hoc” solutions. This is the reason why one
shall fully understand assumptions, mechanics, and applicability of standard
forecasting techniques. If one does not fully understand the details of standard
techniques, he/she is bound to use them as they are and cannot adapt them
to the unique features of any given demand. Moreover, the effectiveness of
many models depends on the selection of proper values of the parameters.
Usually. forecasters judge the quality of a model or a set of parameters
by looking at their ability to generate small errors. In the next section we
discuss several metrics for forecasting errors. Notice that the selection of a
model (or set of parameters) should be based on its ability to forecast future
demand. Unfortunately, future demand is not known yet. This makes the
selection of the “best” model tricky. Often one looks at what would have
been the performance of the forecasting model (or set of parameters), had it
been used in the past. This is typically the only way out, but we are implicitly

8For a list of software providers see www.forecastingeducation.com.
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assuming that the basic demand pattern will not change: The best model to
predict past demand will still be the best model for future demand as well. In
case we expect a significant change in demand - say we expect a stationary
demand to start growing — this approach might lead us to poor performance.
In these cases, we might want to select a model simply because it logically fits
the demand pattern we expect to observe in the future.

Forecast generation Once the model is selected and parameters are set, we
can start using them to generate demand forecasts. During this phase, data
are processed and forecasts are used to make decisions.

Measuring forecasting errors While we continuously generate demand fore-
casts, we shall keep track of errors. By doing so, one can spot any inconsis-
tency between the model and current demand behavior, which in real contexts
is dynamic and thus requires periodic tunings. Moreover, the quality of fore-
casts is a relevant input for the distribution and production planning process.
As chapters 5 and 6 discuss in detail, uncertainty (as measured by forecasting
error) changes the very nature of decision-making and planning problems. Un-
der uncertain conditions we shall deliberately acknowledge that very different
scenarios might come true. Also, forecasting errors can be used to judge the
quality of a forecasters’ job and, through appropriate incentives, lead him/her
to improve it over time.

Often this phase of the forecasting process is overlooked. The basic logic is
that right or wrong, the story is over once we have observed demand. Many
companies do not record forecasts in their systems. They simply record the
purchase, production, or distribution plans. Some companies think that if
200 units were manufactured and 200 units were sold, the forecast quality was
good. This simplistic vision overlooks a basic difference between a forecast and
a plan. The forecast is the expectation of the future behavior of a variable
which is at least partially exogenous. A plan is the response the company
believes to be optimal in the face of all possible future levels of demand.
Thus the demand forecast and the plans to meet it are logically very different
and should be treated as such. As we discuss in further detail in chapter 5,
producing 100 units while we expect a demand for 100 units can be a very
bad decision, though an apparently reasonable one.

Also, even when forecasts are recorded, they are often overwritten as they
are updated. Thus, only the most recent, and usually most accurate, forecasts
are left in the databases. The following example shall make the concept
clearer.

Example 3.8 Let us assume that a company forecasts demand and plans
inventories with a monthly time bucket. Also, let us assume that the company
forecasts and plans 12 months into the future with a rolling horizon, i.e.,
every month it forecasts demand and plans inventories for each of the next 12
months. At the end of year 2006 the company updates forecasts for January—
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November 2007 and creates a brand new one for the month of December 2007.
The forecast for December is going to be updated in January 2007. February
2007, and so on. Often companies tend to overwrite the original forecast
for December 2007 with more recent ones. Thus in databases we tend to
find forecasts with very short horizons and thus relatively small ervors. This
often leads companies to overestimate their ability to forecast demand and
underestimate the uncertainties they face. For example, consider a company
that wants to forecast the total turnover for a fiscal year and during the year
constantly keeps on updating the forecast to get an accurate figure. By the
end of the year the figure is going to get very accurate by definition. as we are
basically looking back at past sales rather than predicting future ones. 0

3.3 METRICS FOR FORECAST ERRORS

To properly define a metric for forecasting quality, we must first understand
the nature and objectives of the forecasting process. In case of point forecasts,
the relevant performance is the percentage of correct forecasts. For example,
in the case of sport bets, what matters is the number of correct predictions.
The extent to which a forecast was wrong does not actually matter. If you
predict soccer teams I and M will draw. no matter whether M won 3 to 2 or
6 to 0, you still made an error. In general, a point forecast is relevant when
any difference between the forecast and the actual event is equally damaging
(in the case of sport bets, no matter how close to the final outcome your
prediction was, you still lose your money).

In most circumstances, though, we do not use point forecasts. When we
say that we expect a demand of 1,000 units, we really mean that we expect
demand to be around 1,000 units rather than exactly 1,000 units. Thus, we
do not really care about the frequency of perfect forecasts. If demand is a
continuous variable (think of demand for energy or demand for cheese over the
counter at a supermarket), the probability that demand will equal the point
forecast is zero (see appendix A). Hence, we do not care about the frequency
of perfect forecasts, but we should rather capture the differences between our
predictions and actual demand.

Measuring the quality of a forecast for a single product, in a single mar-
ket, for a single time bucket is relatively straightforward, as you only need to
compare actual demand with your forecast. Often one needs more aggregate
figures to judge the performance of a forecasting tool (or a forecaster) over
multiple periods of time, multiple items, or multiple markets. In this book we
investigate in detail the case of a single product in a single market over mul-
tiple time buckets. The final section of this chapter presents some extensions
to the multi-item or multi-market case.

To measure the forecast error, we need to introduce some notation:
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o [} 1 is the forecast generated in period ¢ with an horizon h; thus Fy j is
a prediction of demand at time t + A, where h=1,2,3,...

e Y, is the realization at time ¢ of the variable we try to forecast; in our
examples it is the demand at time ¢.

e ¢; = Y; — F; is the forecast error at time ¢.

Notice that F; is the forecast of demand in period t regardless of when such
forecast was generated. We look back ex post and compare it with demand
at time t to judge its quality. The time at which the forecast was generated
depends on the decision process we have to support, and it is irrelevant if we
are evaluating the forecasting process. On the contrary, F}  is the forecast
generated in time ¢ for time t + h.

Also, notice that in our definition the error is positive when demand is larger
than the forecast (i.e., we under-forecasted), whereas the error is negative
when demand is smaller than the forecast (i.e., we over-forecasted).

3.3.1 The Mean Error

A first metric of “forecasting quality” is the simple average of past errors, that
is, the mean error (ME):

ME = %Zet. (3.1)
t=1

As equation (3.1) clearly shows, with this metric, positive errors counterbal-
ance negative ones. In other words a forecasting method that generates no
error in each of the n periods in our sample and a forecasting method that
generates a +10 units error in 50% of the periods and generates a —10 units
error in 50% of the periods are just as good, from the ME standpoint (see
table 3.3). In fact, ME is just a metric of bias, since it just captures whether
our forecasting process is on the average pessimistic (it tends to under-forecast
and thus ME is positive) or optimistic (it tends to over-forecast and thus ME
is negative).

Therefore, we need to consider other metrics that can capture accuracy,
that is, the ability to generate a forecast that is close to actual demand in
each period. Metrics of accuracy differ from ME (and more generally metrics
of bias) as positive errors do not cancel negative ones; rather, they add up.

3.3.2 Mean Absolute Deviation

A first metric for accuracy is MAD (Mean Absolute Deviation), which basi-
cally uses the absolute error to make sure negative and positive errors add
up:

MAD = % i leal. (3.2)
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Table 3.3 Mean Error a metric for bias

Period 1 2 3 4 5 6 ME
Demand 90 110 110 90 110 90

Forecast 1 100 100 100 100 100 100 0
Forecast 2 90 110 110 90 110 90 0

Table 3.4 Comparison between ME and MAD

Period 1 2 3 4 5 6 ME MAD
Demand 7 13 9 12 8 11

Forecast 1 10 10 10 10 10 10 0

Forecast 2 6 12 8 11 7 10 1 1

The example in table 3.4 tells the difference between ME and MAD. The first
forecast is not biased, as the mean demand equals the mean forecast. On the
contrary, the second series of forecasts is biased. as it is always conservative:
The forecast is always one unit below the demand. ME actually tells us that
the first series of forecasts is unbiased while the second one under-forecasts.
However, the second forecast captures and follows demand fluctuations more
accurately than the first one. Thus, in each single time bucket the second
forecast tends to be closer to demand than the first one. MAD catches such
a difference as it tells that the second forecast is more accurate than the first
one.

Finally, which forecast is the best option? Should we care more about
accuracy or bias?

Actually, we cannot tell whether one forecast is better than the other. One
is better for bias, the other for accuracy. In some contexts bias might matter
more than accuracy and vice versa. However, we may see that correcting
for bias is relatively easier than correcting for inaccuracy. If a forecasting
process is consistently conservative, but it follows demand fluctuations very
closely (see the example in table 3.4), we can improve the forecast by adding
the average bias to the forecast. For example, if a forecaster is conservative
and consistently underestimates demand by 10 units, when he/she generates
a demand forecast of 110 units for next period, we might expect demand to be
around 120 units (110 units + 10 units). In the example above, if the second
forecaster predicts a demand of 12 units for the next period, we might add
one extra unit to it since in the past we have noticed that he/she tends to
under-forecast by one unit. Thus we might expect demand for 13 units. Such
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an adjustment to the forecast improves both bias and accuracy, thus reducing
both the ME and the MAD. On the contrary, there is no obvious solution
to inaccuracy. Say you want to improve the quality of the first forecast in
table 3.4. What would you do? Actually there is no easy fix with regard to
inaccuracy.

Concept 3.3 A good forecast is both accurate and unbiased. Both are very
relevant performance metrics, but while there is a fairly easy fiz for a consis-
tently biased but accurate forecast, there is no such easy fiz for an unbiased
and inaccurate one.

3.3.3 Root Mean Square Error

A second metric for accuracy is Root Mean Square Error (RMSE). This metric
squares errors to sum positive and negative ones.

RMSE is a very commonly used metric, as in statistics squared errors are
often used instead of absolute ones (they result in a differentiable function,
whereas the absolute value function is kinky). Thus, a quadratic error provides
estimates that are more directly linked to the variance and standard deviation
(see appendix A) of the demand distribution. Often we use the forecast that
an algorithm generates as an estimate for the expected level of demand while
we use RMSE as an estimate of standard deviation.

Table 3.5 shows the differences among ME, MAD, and RMSE. Forecast 2
differs from Forecast 3, as errors are more frequent but they tend to be smaller.
This is why RMSE considers Forecast 2 to be more accurate than Forecast 3.
This finding can be generalized by saying that RMSE is a quadratic metric
for error and thus it tends to overweight large errors. So RMSE “prefers”
forecasting algorithms that generate constant errors, rather than algorithms
that are very accurate in some periods but can generate significant errors in
others. MAD is a linear metric for error and thus gives the same weight to
all errors, small or large.

ME, RMSE, and MAD measure the forecast error using the same units of
measurement as demand. For example, if demand is measured in units or kg,
then ME, RMSE, and MAD are measured in units or kg as well. This can be a
drawback: When reading the performance of any forecast, we should carefully
consider the scale that is adopted. If one decides to use kg rather than hg to
measure demand for cheese, ME, MAD, and RMSE drop by a factor of 10.

Moreover, these metrics make the comparison of performances across prod-
ucts very hard. As table 3.6 shows, the metrics presented so far might lead us
to believe that the forecast for item A is more accurate than the forecast for
item B. However, an error of one unit out of an average demand of 10 units
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Table 3.5 Comparison between accuracy metrics: MAD and RMSE

Period 1 2 3 4 5 6 BIAS MAD RMSE

Demand 7 13 9 12 8 11

Forecast 2 6 12 8 11 7 10 1 1 1

Forecast 3 7 10 9 9 8 11 1 1 1.73

Error 2 +1 +1 +1 +1 +1 +1 1 1 1

Error 3 0 +3 0 +3 0 0 1 1 1.73
Table 3.6 Comparison between accuracy metrics: MAD and RMSE

Period 1 2 3 4 5 6 ME MAD RMSE

Demand A 7 13 9 12 8 11

Forecast A 8 12 10 11 7 12 0 1 1

Error A -1 +1 ~1 +1 +1 -1 0 1 1

Demand B 70 130 90 120 &0 110

Forecast B 75 125 95 115 75 115 0 5 5

Error B -5 +5 -5 +5 +5 -3 0 5 5

is “worse” than an error of 5 units out of a demand of 100 units. Thus, often
one wants to look at percentage error metrics.

3.3.4 Mean Percentage Error and Mean Absolute Percentage Error

The drawbacks of metrics such as ME, MAD, and RMSE lead us to introduce
percentage errors that basically try to compare the forecasting error with
demand. The most classic metrics in this vein are Mean Percentage Error
(MPE) and Mean Absolute Percentage Error (MAPE), which measure per-
centage bias and percentage accuracy, respectively. Notice that, as following
equations show, these metrics compare the error in period ¢ with the demand
in the same period:

1 - €¢
MPE = — —, 3.4
133 on

Jex

1 T
MAPE = = . 3.5
- ; v (3.5)
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These metrics are pure numbers and thus do not depend on the scale one uses
to measure demand. Hence, one can easily compare the accuracy and bias
across various product or markets.”

Example 3.9 Some European Fortune 500 companies have adopted differ-
ent percentage errors metrics. They basically divide the error by the forecast
rather than by the demand; hence, they use the metrics below, which are
modified versions of MPE and MAPE:

1 2 €t
MPEM = — — 3.6
- ; T (3.6)
1~ el
MAPEM = — —. 3.7
~ ; 2 (3.7)

This might be a tempting solution but is actually an awful one. Indeed,
this definition of percentage error provides the forecasters (whose reward may
depend on these metrics) with two means to improve their performance:

e First, they can reduce the numerator, that is reduce the forecasting
error.

e Second, they can increase the denominator, that is increase the forecast.

This gives the forecasters an incentive to overstate their forecast. Not surpris-
ingly the companies noticed that the predicted demand was on the average
above the actual one.

These metrics are particularly dangerous in the case of low or highly vari-
able demand. Let us consider the case of a demand that in 1/3 of the cases
is zero, in 1/3 of the cases is one, and in 1/3 of the cases is two. Let us
assume that the forecaster is judged and rewarded on the basis of MAPEM.
Also, let us assume that he/she has no specific idea about what is going to
happen in the next period. So he/she basically faces the long term demand
distribution. He/she has two options. The more reasonable one is to forecast
one unit for all future periods. In this case, in 2/3 of the cases the absolute
error is 1 and in 1/3 of the case it is zero. Given the forecast of one, the
MAPEM is going to be 0.66. The other apparently less reasonable option is
to forecast two units for all future periods. In 1/3 of the cases, demand is
going to be zero and the error is going to be 2. In 1/3 of the cases demand
is going to be one and error is going to be one, and finally in 1/3 of the cases
the forecast is going to be correct. This really means that the MAPEM is just
0.5 (33.33% -2+ 33.33% -1+ 33.33% - 0) /2. As this example clearly shows,

"Note that, in general, we expect products/markets with higher demand to have less vari-
ability. Thus, in general, we also expect that the higher the demand, the lower the percent-
age error, as the forecasting problem is simpler.



METRICS FOR FORECAST ERRORS 109

Table 3.7 Percentage error metrics: MPE and MAPE

Period 1 2 3 4 ) 6
Demand A 7 13 9 12 8 11
Forecast A 8 12 10 11 7 12
Error A -14.3% +7.7% -11.1% +8.3% +12.5% -9.1%
Demand B 70 130 90 120 80 110
Forecast B 75 125 95 115 75 115
Error B -7.1% +3.8% -5.6% +4.2% +6.3% -4.5%

Table 3.8 Comparison between absolute and percentage error metrics

ME MAD MPE MAPE
Forecast A 0 1 -1% 10.5%
Forecast B 0 5 -0.5% 5.3%

these metrics, which are apparently very similar to MPE and MAPE and are
commonly used, provide very odd incentives to overstate the forecast.

We can reconsider the data in table 3.6 and calculate the percentage errors
displayed in table 3.8. Data show that the forecast for demand B is actually
more accurate than for demand A.

The use of MPE and MAPE as performance evaluation measure is sug-
gested in the literature (see, e.g., [13]), but these metrics have several draw-
backs and weaknesses:

e They cannot be adopted when demand during a time bucket can be zero.
Indeed, when demand is zero we cannot compute the percentage error.
In real applications, such a case is relatively frequent. For example,
in the case of retail chains., replenishments are so quick and frequent
that one needs to forecast demand down to the single day or single
week. Also, assortments tend to be very wide and thus many products
have relatively low demand rates. These trends make the likelihood of
a zero demand for a single product, in a single store, in a given day
quite sizeable. Understandably, the extent of this problem depends on
the definition of the demand one wants to forecast: The longer the
time bucket, the larger the market (nation vs. single store). and the
broader the set of product variants (single SKU or product family), the
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Table 3.9 Percentage error metrics in case of variable demand

Period 1 2 3 4 5 6 7 8 9 10
Demand 10 10 10 10 1 10 10 10 10 10
Forecast 1 10 10 10 10 10 10 10 10 10 10
Error 1 0 0 0 0 -9 0 0 0 0 0
Forecast 2 12 12 12 12 1 12 12 12 12 12
Error 2 -2 -2 -2 -2 0 -2 -2 -2 -2 ~2
ME MAD MPE MAPE
Forecast 1 -0.9 0.9 -90% 90%
Forecast 2 ~-1.8 1.8 -18% 18%

higher the expected demand and thus the lower the probability of a zero
demand.

e Even in cases of nonzero demand, these indexes can give really odd re-
sults when demand shows wide variations. Indeed, as the example in
table 3.9 shows, MPE and MAPE tend to overweight errors in low de-
mand periods. In the example, the error of the first forecasting method
in period five is so large (in percentage) that it more than counterbal-
ances the greater accuracy that this method achieves in other periods.

Thus. these metrics cannot possibly be computed when demand is zero, and
when demand varies substantially they might provide misleading insights.
For example, in table 3.9 the first forecast seems to be more accurate and
less biased than the second one, while MPE and MAPE seem to suggest just
the opposite. Thus these metrics might lead us to erroneous conclusions.
Indeed, in most circumstances the cost due to a forecast error of 2 units in
a low demand period is quite similar to the cost of a 2 units error in a high
demand one. Finally, these metrics actually build strange incentive schemes
for the forecasters. If a forecaster is to allocate his/her efforts among different
products or over time, he/she might end up focusing on items in periods of low
demand since a unit of error is more heavily penalized by the error metric.®

3.3.5 ME%, MAD%, RMSE%
The problems discussed in the previous section lead us to design new perfor-

mance metrics that

81n this case, we clearly overlook the fact that the effort required to cut the error by one
unit might be different for different products/periods.
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¢ consider errors in low and high demand periods equally damaging and

e allow us to compare the performance across products and markets with
different mean demand.

Such metrics are ME%, MAD%, and RMSE%.
These performance measures compare the ME, MAD, and RMSE to the
mean demand for the product/market combination:

MEY, = &
Y
MADY = @,
Y
MSE
RMSEY = & ?S

where

These metrics still retain the good features of MPE and MAPE. Indeed, if
we apply them to the data in table 3.6, they suggest that forecast B is more
accurate than forecast A: MAD% and RMSE% are 5% (5/100) for B, while
they are 10% (1/10) for A; MEY% is zero in both cases.

Moreover, they avoid some of the drawbacks of MPE and MAPE as they
can properly judge the quality of the forecasts in table 3.9. MAD% for forecast
18 9.9% (0.9/9.1) while it is 19.8% (1.8/9.1) in case of forecast 2.

These metrics can measure the quality of a forecast and compare it with
the average demand.® However, predicting an extremely variable demand can
be more complex than predicting a very stable one. In other words, a given
forecasting error might be very good in the case of an extremely variable
demand, whereas it might be very poor in the case of a flat one. Thus we
might not want to look at the forecasting error per se, but we might want to
put it in the right perspective and analyze the complexity of the forecasting
task.

9Note that in this case the denominator depends on the sample we choose. Thus, if we
consider the accuracy of the forecast for May 2006 and look at the demand over the first
five months of 2006 or over the last 12 months, we are going to get two different figures.
Therefore, to make sure metrics for accuracy and bias do not change over time, we shall
define sampling policies. For example, a company that generates forecasts at the day level
might want to record accuracy and bias at the month level to properly define the sample
and thus the average demand in each sample.
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Table 3.10 The impact of demand variability on forecasting performance.

Period 1 2 3 4 5 6 ME% MAD% RMSE%

Demand A 10 9 10 11 10 10
Forecast A 9 10 11 10 9 11 0
Error A +1 -1 -1 41 +1 -1 0 10% 10%

Demand B 15 8 5 12 13 7
Forecast B 14 9 7 10 12 8 0
Error B +1 -1 -2 +2 +1 -1 0 13.3% 14.3%

3.3.6 Theil's U statistic

Often, the Theil’s U statistic is used to put the accuracy of a forecast in
perspective. This statistic is defined as

”f(Fm —Yt+1)2
Y
_ t=1
U= n—1 2
(Yt —Yt+1>
1 Y:

We can interpret the U statistic by looking at the numerator terms within the
squared ratios. The term Fii1 — Y;. is the error at time ¢t + 1. ¥; — Y;4q is
the error we would have made, had we adopted a naive forecasting technique
where the forecast for next period t 4+ 1 is equal to the demand in the last
period t (Fy,1 = Y;). Thus, the U statistic compares the error of the method
we have adopted with the error that a simplistic model would generate. In
case our model generates an error that is larger than the error of the naive
one, the U statistic is greater than 1. If, on the contrary, the forecasting model
used is just as accurate as the naive one, the U statistic is equal to 1. Finally,
if the forecasting model adopted is much more accurate than the naive one,
the U statistic is close to 0.

Thus the U statistic gauges the ability of the model adopted to be more
accurate than a naive technique that is somehow considered a point of refer-
ence. In other words, the U statistic does not measure the accuracy of the
forecast, but rather relates the error to the complexity of the forecasting task.

In the example of table 3.10, the U statistic is 1.11 for forecast A and
0.31 for forecast B. Thus the statistic captures the fact that forecast B is less
accurate than forecast A simply because time series B is harder to predict
than time series A. Actually, the U statistic uses the naive method as a point
of reference and tells that forecast A is 11% worse than the naive one, while

t=
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forecast B is 69% better than the nalve one. Although MAD% and RMSE%
suggest that forecast A is more accurate than forecast B, the latter is actually
a more appropriate model than forecast A.

The definition of the U statistic shows that the forecast error at time t +
1 (of both the forecasting model adopted and the naive one) is divided by
the demand at time ¢t. This makes the reading of the statistic less than
intuitive. Thus, we often use the simple ratio between the performance (e.g.,
MAD% and RMSE%) of the forecasting model adopted by the company and
the performance of the naive method (Fi41 = Y3).

Example 3.10 A grocery retail company in northern Europe has a rather
heterodox and interesting view of forecasting accuracy. Basically, this company
theorizes that classic measures of forecasting accuracy are simply not relevant.
Actually, they think that a 2% error is simply not relevant. A forecast error of
2% is basically as good as a perfect forecast, from their standpoint. Their idea
is that a forecast error matters simply because it can increase the costs of the
company. Also, they noticed that the flexibility in the supply chain enables
them to recover, say, a 30% forecast error during promotions. This really
means that any error below 30% has basically no consequence whatsoever.
A 20% error and a 7% error are just as good. So, their measure of forecast
accuracy is the percentage of forecasts that are within 30% of the actual
demand. So a 98% accuracy means that in 98% of the cases demand is within
30% of demand. The idea behind this is to use a metric for accuracy that is a
good proxy for the cost function of the company. The cost of errors below 30%
is limited and is assumed to be zero in the metric developed by this company.
Errors above 30% are expensive for the company. Though understandably a
70% error can be more expensive than a 35% one, the simple metric catches
the fact that they are both expensive. In other words, though the cost function
can be more complex, the metric adopted by the company assumes that it
resembles a step function that is 0 if the (absolute) error is lower than 30%
and is 1 if the error is above this threshold.

Actually this uncommon, though fairly interesting, practice is consistent
with a stream of research that investigates whether costs are somehow related
to any specific metric of forecasting performance. i

3.3.7 Using metrics of forecasting accuracy

The metrics for forecasting accuracy presented in the previous section can be
used for various purposes.

1. First, the metrics can be used to monitor performance over time. Mea-
sures of accuracy are used to gauge demand uncertainty (i.e., our ability
to predict demand) that is a key input to the planning process (see chap-
ters 5 and 6).
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2. The error can be used to set forecasters’ incentives, focus their efforts
over time, and hopefully improve performance.

3. Also, the control of performance over time can be used to judge whether
the forecasting method currently adopted fits the current demand pat-
tern.

In case performance is unsatisfactory, one can (i) change the parameters, (ii)
adapt the technique, or (iii) adopt a completely different forecasting approach.
But how can we judge what is the most appropriate forecasting method or
the most appropriate set of parameters? Obviously, the best method/set of
parameters is the one that generates the best performance. But how can we
estimate the performance that the forecasting process would generate if we
choose to adopt it in the future? Basically, this is a very hard exercise, as we
do not know how demand will behave in the future. We basically have two
options.

A first option is to actually try the forecasting process and measure the
performance it actually generates over a trial period. This approach selects
the forecasting method, based on actual performance. However, it is very
expensive, since several forecasting tools and processes (including human in-
teractions and corrections) must run in parallel for a period of time that
shall be long enough to draw statistically significant conclusions. Also, in the
trial period we might be using data from a forecasting process that actually
generates very poor predictions and thus we might make poor decisions and
experience poor operational performance and high costs.

A second, widely adopted approach is to use past history to test the perfor-
mance that the various alternative methods would have generated had they
been adopted in the past. This selection process makes an implicit assump-
tion. It assumes that the method that would have worked best in the past
will be the best option for the future.1®

Then the question becomes: How can we judge the performance a that
forecasting process would have generated in the past?

To do so, we must use past demand data both to generate a forecast and to
test its quality. When we do such analysis we must be extremely careful and
avoid a frequent conceptual error. No data about any period after ¢ shall be
used to generate the forecast F} ;. In other words, we want to make sure we
appropriately simulate the forecasting process. While we forecast demand in
period t (for period ¢t + h), only information about demand (as well as other
variables) in periods 7 < ¢ is available. In particular, demand in period ¢t + h
shall not be used in any even indirect way to generate Fy p.

Several forecasting methods depend upon some parameters that influence
their behavior and performance. These parameters are set by using a sub-

10 Actually even the first option makes a similar assumption. Indeed, it assumes that the
method that performs better in the near future (trial period) works best in the long term
as well.
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sample of the demand data that we call fit sample. Thus, when one wants
to use past demand data to judge the quality of various forecasting meth-
ods, he/she shall identify a fit sample to set the parameters of the forecasting
models and a second subsample (often called test sample) to judge their
performance.!! The larger the fit sample the better the choice of the parame-
ters of the models and thus their performance. On the other hand. a large fit
sample implies a small test sample (given the limited amount of relevant data
available). Hence, we face a tradeoff between the choice of the appropriate
parameters for each of the competing models and the ability to properly judge
the quality of the forecasts they generate.

Example 3.11 Let us assume that 100 demand observations are available
and we are considering two alternative forecasting algorithms. Also let us
assume that the forecasting horizon is 1.

A first choice is to use 99 demand observations to set the parameters of the
two models and compare them on their ability to predict the demand in the
100th period. In this case, the parameters of the two forecasting models are
set very effectively and thus we compare the two forecasting models at their
full potential. However, we are judging the quality of the two options on their
errors in a single period. Thus, our conclusions have little statistical signifi-
cance and might be wrong. In other words, we might choose the forecasting
method with an higher error simply because it was “lucky” in the one period
we used to compare our two alternatives.

On the other hand, we might be tempted to use very few demand observa-
tions (in the extreme case, just 1) to set the parameters of the two models so
that we can enjoy a fairly large test sample (in the extreme case, 99 periods).
In this case, we compare the performance of the two forecasting methods
over multiple periods, and thus conclusions might seem statistically reliable.
However, in this case the parameters of both methods would be set poorly.
Thus we might choose the method that requires less data to set up the pa-
rameters (often the simpler method) or the method that by pure chance got
better parameters. Clearly, in both cases there is little guarantee that the
best forecasting method is selected.

117t is interesting to notice that more complex models tend to have more parameters and
thus more degrees of freedom. This greater degree of flexibility makes them the perfect
candidate to fit the past demand data. In principle, a model with 100 degrees of freedom
can perfectly fit 100 demand observations. However, this does not necessarily mean that it
will generate better forecasts. Actually, literature (e.g., {1]) shows that often more complex
models have little or no advantage over simpler ones. Indeed, simple models can be crude,
but from a statistical point of view they are actually more solid than complex ones. The
latter, under perfect circumstances and with a lot of information, might perform better
than simple ones, but in real-life situations they tend to perform rather poorly.
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Fig. 3.3 Adoption of various categories of forecasting methods in the Italian mechan-
ical machinery industry.

3.4 A CLASSIFICATION OF FORECASTING METHODS

Forecasting methods can be classified in two broad categories:
e quantitative methods
e qualitative methods

A large portion of this chapter is devoted to quantitative methods, as they
can be properly described through formulas and equations, and this is one of
the key features of this book. This does not mean that, from any practical
standpoint, qualitative methods are less important or less performing than
quantitative ones.'? On the contrary, qualitative methods are widely adopted
as figure 3.3 shows.

In general, we cannot say that one approach works better than the other.
Rather, they have contrasting pros and cons. So there is no one-best-way
but rather one shall choose the right blend of quantitative and qualitative
methods according to the specific forecasting problem one is confronted with.

Qualitative forecasting methods are very flexible, since they do not require
any explicit assumption on the relationship between the pieces of information

1280me articles (e.g., [19]) try to compare the performance of the two groups of forecasting
methods. Often they find that quantitative methods are more accurate than qualitative
ones. However, these research studies fail to account for the different demand patterns they
try to predict. Often qualitative methods are used in more complex situations. Thus they
can generate larger errors either because they face harder forecasting problems or because
they are less accurate.
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that are believed to be relevant and the forecast (i.e., inputs and outputs of
the forecasting process). Basically, they are as flexible as the minds of human
experts. Thus they can fit rather complex situations such as new product
launches and/or long-term forecasts. However, these methods can accurately
predict future demand only if the forecasters are true experts. So these meth-
ods must be expensive (i.e, they have to exploit a lot of very scarce and
precious resources) to be effective (i.e., generate rather accurate forecasts).
Thus these methods can be deployed only when the relevance of the issue at
stake justifies the usage of such precious resources. Furthermore, qualitative
methods can capture changes in the demand pattern, as human beings can
capture a variety of variables, adding new ones as they become relevant. Of-
ten though, experts’ forecasts are inconsistent: Human beings are unable to
provide consistent estimates. This means that the same person facing the
same evidence at different points in time might generate very different fore-
casts. Also, when experts are asked to forecast demand for each single item
in a product family, the single numbers might be very well thought out, but
the overall demand forecast for the product family might immediately sound
unreasonable, let alone accurate.

Often incentives can push experts to overestimate/underestimate demand.
For example, think about the incentive of the sales force to underestimate the
demand in case it is used to set sales targets. On the other hand, think about
the incentive of the sales force to overstate the demand forecast in case the
forecast is used to set inventory targets: The higher the demand forecast, the
higher the inventory level; this in turn implies more available products and
easier sales.

Example 3.12 A large manufacturer of white goods has a 6 weeks rolling
forecast. The total lead time for its products is roughly 3 weeks, so the most
relevant forecasts are +1, +2, and +3 weeks. Other forecasts (+4. +5, and
+6) are basically an advance information for the purchasing department and
suppliers. The company has a team of forecasters that update the system
forecast (i.e., a forecast generated by the company’s IT systems) through
their personal reading of demand trends (so-called “experience”). To drive
their behavior, the company has designed an incentive scheme that rewards
them on forecasting accuracy. The company has decided to reward them just
on the accuracy of the +3 weeks forecast (i.e.. the forecast three weeks into
the future), to make the incentive scheme simple. The forecast for week +3
tends to be more accurate than the forecasts for longer horizons (4, +5
and +6). Quite interestingly, though, forecasts for weeks +2 and +1 are just
as accurate as the +3 weeks forecast. Managers were surprised to see such a
pattern. as they expected the forecasters to collect more information and thus
be more accurate. Actually, this odd result has more to do with incentives
than with information or forecasting. Indeed, the forecasters did exactly what
managers, through the incentive scheme, told them to do: improve accuracy
of the forecast three weeks into the future and disregard any further potential
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improvement of the forecast. Interestingly though, this was not a deliberate
choice. Indeed, the purchase plan is driven by the +3 weeks forecast, but
the assembly and distribution operations are driven by the +1 and +2 weeks
forecast. So a relatively poor short-term forecast (i.e., a forecast that is less
accurate than it could be for weeks +1 and +2) might be quite expensive for
the company.

On the contrary, quantitative methods require an explicit assumption on
the demand behavior (e.g., a seasonal, rather than stable, or linearly increas-
ing demand). This makes them less flexible. If the demand behavior changes,
the forecasting method performs very poorly. Nonetheless, these methods are
more efficient, as a fairly large number of products and markets can be man-
aged with very limited resources. Also, these methods provide very consistent
results since computers will do the same task over and over again and are not
influenced by any kind of incentive scheme. So, however wrong they might be,
one can track their performance, spot their weaknesses, and hopefully correct
them over time.

Example 3.13 A retail company in the furniture business used to adopt
qualitative methods to forecast demand (and plan inventories). When two
forecasters faced with the same demand pattern were asked to predict future
demand, they could provide fairly different forecasts. What is even more
interesting is that the same person would generate different figures on different
days. When the company switched to quantitative methods, it was able to
double the store/items combinations each forecaster could manage. Also,
when four forecasters out of four left the company, the company could still
operate normally, as the four new employees now in charge of forecasting
could leverage on the demand knowledge built into the company’s systems.
We cannot tell what would have happened had the forecast been completely
qualitative. Still, we can argue that it would have been harder to survive the
change.

Broadly speaking, quantitative methods consist of two subfamilies.

¢ Time-series models basically look at the past demand pattern over
time and extrapolate future demand levels. In time-series models, we
only look at demand data over time and thus do not account for variables
that might influence them such as price, weather, competition, distri-
bution, promotions, advertising etc. In these models we only have two
variables, demand and time. Therefore, they are effective only when de-
mand changes depend on time. Demand can be stable, might be growing
over time, and can show periodic fluctuations (weekly, monthly quar-
terly or yearly fluctuations). These models, however, fail to work prop-
erly when other variables play a major role and determine significant
changes in demand. Time-series models are the most widely adopted
quantitative forecasting technique and a wide array of algorithms are
investigated in sections 3.5-3.9.
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¢ Explanatory models try to find a relationship between demand and
some explanatory variables such as price, promotion, time. etc., that
drive it. These models are often called causal models, as most variables
they use might cause changes in demand. We call them explanatory
models, since actually the statistics behind the models hardly provide
any causal relationship. Rather, these models simply observe that when
price goes down, demand goes up, and thus they predict that if in the
future the company will reduce price, demand will go up again. So
our reading of the models is causal, while they simply observe that
low prices go together with high demand. The most basic explanatory
model, simple linear regression, is discussed in sections 3.10 and A.10.

Qualitative and quantitative methods are often presented as alternative solu-
tions. On the contrary, in many contexts they can be integrated to exploit the
respective strengths. A blend of the two approaches can enjoy the flexibility
and reactivity of humans and the consistency of an algorithm. Actually, there
is a growing body of evidence that a combination of quantitative methods and
qualitative ones can outperform both purely quantitative and purely qualita-
tive methods (e.g., see [19]). Quantitative methods can generate a forecast for
a large number of product/market combinations. The quantitative method
might be based on a simple assumption of demand behavior, but still it pro-
vides very consistent forecasts. The outcomes of this first forecasting process
can then be controlled and, eventually, adjusted by human experts to account
for all the variables and phenomena the quantitative systems fails to account
for properly.1?

For example, a number of quantitative methods analyze time series of de-
mand and extrapolate some sort of demand pattern (steady, linear, seasonal
etc.) from past observations. These methods, by their very nature, fail to
capture the effect of variables that change the demand pattern, such as the
launch of competitive products. For example, a quantitative method could
generate a demand forecast of 100 tons for a given kind of fresh filled pasta.
However, an expert might reduce this forecast as a new competing product
is being launched and it might be expected to partially cannibalize the exist-
ing one. Notice that the role of the quantitative method is to (i) provide a
point of reference so that the expert can just focus on the net effect of the
launch of the new product on the demand for the existing one and (ii) take

13Notice that this is one of the basic problems with neural networks. Neural networks are
a forecasting technique that tries to simulate the learning process of human brain. The
good thing about this forecasting technique is that the user is not forced to make any
assumption about the demand pattern. Basically, we let the neural network observe past
data and try to figure out a pattern. One of the flipsides of this model is that under these
circumstances a human being trying to improve the system forecast would not know the
assumptions behind the forecast, and thus he/she would hardly be in a position to properly
modify and improve the forecast to account for other phenomena the system might have
overlooked (e.g., because no quantitative data are available or because some new trend or
relevant variable is emerging).
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off the forecaster’s table all the items that do not require specific attention,
as demand is relatively stable, so that the forecaster can devote as much time
as he/she needs to understand what is going on with products that face un-
usual conditions (that is, conditions that do not fit the assumptions behind
the quantitative model).

Also, the integration between qualitative and quantitative models can be
a sort of weighted average of qualitative and quantitative methods. This, say
parallel. method of integration is actually seldom used though its effectiveness
has been often proven in literature.

Finally, qualitative forecasts can be used as an input to a quantitative
forecast. For example, experts’ opinions can be the independent variables
of a linear regression. Also, market research can be one of the key inputs
to estimate the market potential of a new product. In this case as well, the
quantitative methods can read the signal in experts’ opinions, but at the same
time they can account for any bias they might have. So, they can generate
a consistent forecast as they correct for bias, but they still can be accurate
since they exploit experts’ knowledge.

The bottom line is that one can generate a consistent but still flexible
forecasts by blending the qualitative and quantitative forecast in various ways.

3.5 MOVING AVERAGE

Moving average is the simplest time-series model. In this class of models
we analyze past demand patterns to extrapolate a future forecast. All these
models make an assumption about the pattern of demand: They try to identify
it in past data to project it into the future. Hence, the performance of these
forecasting techniques really depends on whether the underlying assumptions
fit the actual demand pattern. This is why we devote a specific section to
describe the basic assumptions on demand that each model in this class relies
on.

3.5.1 The demand model

A first forecasting model is moving average. The assumption behind this
approach is that demand is steady, as we expect neither major trend (neither
downward nor upward) nor periodic fluctuations (seasonal patterns).

More formally, we assume that demand data are generated by a process
like

}/t = E(dt) -+ €ty (39)

where E(d;) is the expected demand, which is an unknown parameter we want
to estimate, and ¢ is a noise term such that E(e;) = 0. Actually, we do not
expect E{d) to be truly steady but we expect smooth and random fluctuations
of the expected value over time:

E(dt) = E(dt‘l) + €, (310)
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where E(e;) = 0.

Given these assumptions, at any given point in time ¢ the demand forecast
is the same for all future periods (F} 5 does not really depend on k). Indeed,
we assume demand to be statistically stationary and thus have no reason
whatsoever to expect an increase or a decrease in demand. This does not mean
that the forecast cannot be updated. Actually, as more recent observations of
demand are collected. the demand forecast is updated (F;j does depend on
t, but not on h).

3.5.2 The algorithm

The moving average algorithm estimates the level demand (so called baseline
demand) B; for the future as the average of the last & demand observations.

t Y
Bi= > ? (3.11)
i=t—k-+1

We can think of k as a “time window” which we apply to past data to include
only the most recent ones. Also. given the assumptions of this model, we
predict a flat demand for any future period:

Fin=B, VYh (3.12)

3.5.3 Setting the parameter

To use the moving average method, we shall set the parameter k, that is, the
number of demand observations we want to use to generate the forecast. To
select this parameter, we face a tradeoff between:

e The ability of the model to filter noise, that is, to avoid overreactions to
demand observations that are significantly above or below the average.

e The ability of the model to promptly react to changes in demand such
as a sudden increase or decrease in expected demand.

If a large value of k£ is chosen, the moving average method shows a strong
inertia. On the one hand, a single observation significantly above (or below)
the average has little consequence. On the other hand, it takes time for the
model to adapt to any significant change in average demand. So, in this case
the moving average filters noise very effectively, but it adapts to changes in
demand slowly.

On the contrary, if a small value k is chosen, a single demand observation
has a great deal of influence on the future forecast (to an extreme. if k =1
the forecast just equals last demand observation). Thus a small k makes the
moving average very reactive but at the same time very sensitive to noise.
In other words, demand observations significantly above or below the average
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lead to bumps in the demand forecast, which turn into a larger forecasting
error.'4

Figures 3.4-3.7 show the behavior of moving average with various values
of k. The examples consider the moving average with k = 2 and k = 6, and
a forecasting horizon of one period (h = 1).

When we analyze the performance of the moving average with a statistically

stationary demand (figure 3.4 e 3.5) we can see that:

e The moving average with time window 6 (k = 6) requires a longer
initialization;

e The moving average with k£ = 6 is more stable than with k¥ = 2. This
leads to more accurate forecasts, if the expected demand is stable (and
the random part of the demand is not auto-correlated, that is variables
€; in equation (3.9) are independent—see definition A.11). In these
cases, stable forecasts are more effective simply because fluctuations in
forecasts add to the fluctuations in demand and tend to increase the gap
between the two variables, that is, the forecast error.1®

In the case of the demand patterns displayed in figures 3.4 and 3.5, k = 6
guarantees more accuracy than k& = 2 (RMSE is 7.67 and 10.11, respectively,
while MAD is 6.96 and 8.26, respectively).'®

Figures 3.6 and 3.7 show how the moving average reacts to an odd demand
observation that significantly differs from the mean. The figures show that
the reaction to the anomaly is definitely larger in the case of k¥ = 2 than in
the case of £ = 6. However, the effect of the odd observation lasts longer in
the case of £ = 6. Indeed, in the case of k = 2 the anomaly in period 15
quickly exits the sample we consider to generate the new forecast. This really
means that if k = 2 the effects of the outlier are not larger but simply more
concentrated over a shorter period of time. While the differences in MAD
are negligible (MAD is 38.7 and 37.2 for k = 6 and k = 2 respectively), the
differences in RMSE are sizable (RMSE is 82.6 and 71.8, respectively) since
RMSE penalizes larger errors (see section 3.3).

14We basically add the fluctuations of demand to the fuctuations of forecast in a scenario
where expected demand is stable.

151f the process is truly stationary, there is no reason whatsoever to consider only the last
k demand observations. If demand is truly stationary, we should simply take the average
of all demand observations we have. However, in real-life contexts, this situation is hardly
the rule. So we only consider the last & demand observations, as we believe them to be
the only relevant ones to estimate future demand. Adding an extra observation from the
past adds more information on the one hand, and thus should increase accuracy, but on the
other hand it reduces the quality of our inputs, as the older the data, the least significant
they are to predict future demand.

16 Notice that we only use periods 7 to 30 to measure accuracy so that performance of both
alternatives are measured on the same sample.
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Fig. 3.4 Behavior of moving average: case of k = 2, stationary demand.
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Fig. 3.6 Behavior of moving average: k = 2, demand featuring a pulse.
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Fig. 3.7 Behavior of moving average: k = 6, demand featuring a pulse.

Also, figures 3.6 and 3.7 show that when one uses time-series models, out-
liers cause forecasting errors both when they occur (as they are unpredictable
for time series models) and in successive periods as they bias forecasts.

The previous examples show that, for “large” values of k, the moving av-
erage “filters noise” very well, that is, it effectively tells the average behavior
of demand from random short-term fluctuations. The example of figures 3.8
and 3.9 shows that large values of k entail a poor reactivity of the model, that
is, they limit the ability to adapt to changes in expected demand. In the case
of k = 2 the moving average completely “forgets” the previous behavior of
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Fig. 3.9 Behavior of moving average: k = 6, demand is a step function

demand while in the case of moving average with step 6 (k = 6) the transient
state is much longer and thus the accuracy is worse (MAD is 29.0 and 56.2

while RMSE is 76.7 and 107.1, respectively).

3.5.4 Drawbacks and limitations

The moving average is a rather simple forecasting method that is widely used.
However, it has drawbacks and limitations. This method gives an equal weight
1/k to the last k demand observations, while it totally neglects previous ones.
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Table 3.11 Demand data for vanilla ice cream

period 1 2 3 4 5 6 7 8
Y: 116.36  96.30 109.64 99.92 110.31  99.88 89.07  107.38
period 9 10 11 12 13 14 15 16
Vi 121.21  100.99  89.63 88.43 83.83 95.87  102.17 103.43
period 17 18 19 20 21 22 23 24
Y: 104.55  88.19 98.63  103.58 8795 110.83 103.87 115.57

One could think that it might be more reasonable

e To give more recent observations a greater weight than more remote
ones; for example, one might want to give more weight to observation ¢
than to observation t — 1;

e To give even more remote demand observations a nonzero weight.

Example 3.14 Let us consider a store that sells ice cream on a beach. The
demand for vanilla ice cream over the last 24 days is shown in table 3.11.
Demand is rather stationary with some minor variations.

The lead time is two days and deliveries are daily. This means that the
time bucket is the single day and the forecasting horizon is two days (h = 2)
The manager of the store is trying to predict future demand with the moving
average algorithm. He wonders whether he shall be using moving average
with k =2 or k = 5.

To choose between the two options, we can measure which one would
have performed better in the past, assuming that the option that would have
worked better in the past is going to be the better performer in the future as
well. The moving average with step 5 (k = 5) can generate the first forecast
only in period 5. Our horizon consists of two periods; hence, in order to get a
fair comparison, we are going to compare the accuracy of the two parameters
in periods 7 to 24.

Let us take you through the forecast generated in period 5 for period 7,
i.e., F5,2 = F7:

o If k = 2, the forecast generated in period 5 is the average of demand in
period 4 and in period 5. So, F5 2 = F7y = (99.92 + 100.31)/2 = 105.12.
Given the demand in period 7 Y7 = 89.07, the error is e; = 89.07 —
105.12 = —16.05.

o If k = 5, the forecast generated in period 5 is the average of the demand
in the first 5 periods. So F5 o = Fr = (116.36 + 96.30+ 109.64 +99.92 +
100.31)/5 = 106.51. So the error in period 7 is e7; = 89.07 — 106.51 =
—17.44.
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Table 3.12 Forecast with step 2 (k = 2)

period 7 8 9 10 11 12 13 14 15

Fi 105.12  105.10  94.48 98.23 114.30 111.10 95.31 89.03 86.13

period 16 17 18 19 20 21 22 23 24

Fi 89.85 99.02 102.80 103.99  96.37 93.36 101.06 95.77 99.39
Table 3.13 Error with step 2 (k = 2)

period 7 8 9 10 11 12 13 14 15

et -16.045 2.285 26.735 2.765 -24.665 -22.67 -11.48 6.84 16.04

period 16 17 18 19 20 21 22 23 24

et 13.58 5.53 -14.61  -5.46 7.21 -5.41 9.775 8.105 16.18

Table 3.14 TForecast with step 5 {(k = 5)

period 7 8 9 10 11 12 13 14 15

Fy 106.51 103.21 101.76 101.31 105.57 103.71 101.66 101.53 96.82

period 16 17 18 19 20 21 22 23 24

£ 91.75 91.99 94.75 97.97 98.84 99.37 99.66 96.56  97.82
Table 3.15 Error with step 5 (k = 5)

period 7 8 9 10 11 12 13 14 15

et -17.44 4.17 19.45 -0.32 -15.94 -15.28 -17.83 -5.66 5.35

period 16 17 18 19 20 21 22 23 24

et 11.68 12.56  -6.56 0.56 4.74 -11.42 11.17 7.31 17.75

We can repeat this process for t = 8, ..., 24 and obtain tables 3.12 and 3.13,
which show the forecasts and errors, respectively, in the case of £ = 2, and
tables 3.14 and 3.15 that show the forecasts and errors, respectively, in the
case of k = 5.

Finally, with the error data we can compute accuracy metrics. For example,
the RMSE is 13.95 for k£ = 2 and 11.90 for k£ = 5. Thus we draw the conclusion
that we would rather select k = 5.

3.6 SIMPLE EXPONENTIAL SMOOTHING

3.6.1 The demand model

The drawbacks discussed in the previous section suggest replacing the moving
average with the simple exponential smoothing method. This method assumes
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the very same demand behavior and pattern as the moving average, that is, a
stochastic but stationary demand or a demand with very smooth changes in
the expected demand.!”

3.6.2 The algorithm

In the simple exponential smoothing technique, the current level of demand
is estimated through a weighted average of the last demand observation Y;
and the previous estimate of the demand level B;..;. This method increases
the previous estimate B;_; when actual demand Y; is greater than we had
estimated, while it reduces the previous estimate B;_; when demand Y; turns
out to be lower than we thought:!8

Bt=C¥Y;+(l—O[)Bt_1, 0§a§1 (313)

Also, given the assumption of a stationary demand over time, the forecast
generated at a given point in time t is the same for all forecasting horizons h:

Ft,h = Bt Vh

Notice that, just like in the case of moving average, we keep on updating the
estimate of the demand level B;. So F;j really depends on t but does not
depend on h. Given equations (3.13) and (3.6.2), we can also write

Ft,h =qaY; + (1 — a)Ft—l,ha 0<ax<l1 Yh. (314)

In this forecasting model, « is a parameter between 0 and 1 that determines
the reactivity (i.e., promptness) of the model. Indeed, as o changes we change
the weight of the most recent demand observation Y; and of the previous
expectation of demand B;_1. If v is 1, the smoothing algorithm behaves just
like a moving average with a unit time window (k = 1) and thus reacts very
promptly to any change in demand.

If v is set to zero, then the previous estimate B;_; is not affected by the last
demand observation Y; and thus B; = B;.1. This clearly makes the forecast-
ing technique extremely stable. Also, noise has no influence whatsoever on
future forecasts. However, this brings the forecasting technique to a standstill
and the model cannot adapt to any change in demand.

17 As we already discussed, for a truly stationary process the best estimate of the expected
demand is the simple mean of all observations. If this was the case, taking only the last
k observations would not make sense. Also, it would not make sense to give more recent
observations a greater weight. If demand is really stationary, all observations are equally
relevant and thus have the same weight.

18Notice that we assume that we update our forecast at each period. If the forecast is
reviewed less frequently (say every j periods), we simply take the weighted average of the
average of the last j demand observations and the level of demand at time t — j.
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Fig. 3.11 Behavior of exponential smoothing: o = 0.1, stationary demand.

The parameter « plays a role that is very similar to the role of k in the
moving average technique. Figures 3.10-3.15 show that the pattern we get
with a low « resembles the one we get with a large k and vice versa. Figures
with @ = 0.1 show a rather inertial behavior, but also a great ability to
filter noise, just like in the case of k = 6 for the moving average. Figures
with a = 0.5 resemble the ones with & = 2. as both techniques show a good
reactivity, but a poor ability to filter noise.
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We can elaborate on equations (3.13) and (3.14) to derive two formulations
that provide interesting insights. A first reformulation is

Ft,h = Bt = aYt -+ (1 - O[)Bt_1 = Bt-l + CY(Y; — Bt—l) Yh. (315)

In other words, the new forecast generated at time t is equal to the previous
one generated at time t—1 (Fy_1 , = By—1) plus a term smoothed through the
parameter «, which can be interpreted as the error we made while attempting
to forecast demand Y; at time t — 1. Indeed, as the formula holds for all h we
can set i = 1 and read the smoothed factor as Y: — F;_1 ;. Thus exponential
smoothing can be interpreted as a method that tends to correct the error by
reducing the forecast when errors are positive and by increasing it when errors
are negative.

We can provide a second reading by exploiting the recursiveness of equation
(3.13):

By 1 =aYi 1+ (1 —a)B;_a.

By substituting in equation (3.13), we obtain

B = aVita(l-a)Y;; +{(1— a)QBt_g

oY, +a(l—a)Yi1 +a(l—a)?Y, o+ (1 —a)®B;_3

= aYi+a(l-a)i1+a(l-a)?Yo+a(l—a)®Yiz+(1-a)'Biy

This formulation shows that exponential smoothing gives past demands a
weight that decreases with the time elapsed since the demand observation.
The weight of the demand observation at time ¢ — 4 is a decreasing function
of 7. Figure 3.16 shows the pattern of these weights with various levels of a.

For low a the weight of observation Y; is very similar to the weight of
observation Y;_1, and so on. On the contrary, for high values of o the weight
of observation Y;_; is significantly lower than for the latest observation Y;.

Also, we can use the properties of geometric series to show that the sum
of all weights is just 1, as one would intuitively expect.'® This property also
suggests that all demand observations prior to ¢ — 20 have an overall weight
that is equal to 1 minus the sum of weights of all demands from period ¢ — 20
to t. Figure 3.16 shows that in case of a very small «, the weight of the
“remote past” is fairly relevant (see “other periods” in the figure).

3.6.3 Setting the parameter

The above analysis suggests that high values of a enjoy reactivity, that is the
ability to promptly react to changes in average demand, whereas low values
of « filter noise very effectively. This is why in real-life situations the choice

191n case we sum the weights of an infinite number of demand observations.
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Fig. 3.16 Weights of the demand observations with various levels of a.

of @ (and more generally all smoothing parameters that are presented in this
chapter) should be dynamically adapted to the changes in demand. We shall
increase «, as demand is going through a period of changes, while we shall
reduce it when we expect demand to be rather stable and we only observe
random fluctuations around the mean demand.

To support the choice of the appropriate level of a, we can use the tracking
signal (T'Sy):

TS, = a’;—t +(1-a)TS—1, 0<a' <1
t

The tracking signal is basically a smoothed average of most recent errors.
The logic behind this tool is that if expected demand is relatively stable, the
demand forecast is unbiased, however inaccurate it might be. Thus, errors
are positive in some periods and negative in other periods: They tend to
cancel out and the tracking signal tends to be close to zero. On the contrary,
if demand starts growing (or decreasing), exponential smoothing generates
conservative (optimistic) forecasts and errors tend to be positive (negative).
Thus errors tend to add up rather than cancel out, and the tracking signal
(T'S;) significantly differs from zero.

TSy signals the tendency of demand to increase (decrease} as it significantly
differs from zero. So it can be used to decide when to choose large values of
o (tracking signal differs from zero) and when to choose small ones (tracking
signal close to zero).

The choice of the appropriate values of a {and more generally the pa-
rameters of the smoothing algorithms) is a key lever to control and improve
the forecasting process. So, in general, it requires some managerial attention.
Most software (and even Excel, if managed properly) can automatically search
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for optimal values of « that can then be used for a while. In the case of a very
large numbers of time series (e.g., cheap products sold in various markets)
the continuous control of a lot of parameters can be fairly expensive and not
worth the effort. This is why one might consider the so-called self-adaptive
methods that self-select the parameters according to the demand patterns.

In general, in a self-adaptive method, the value of a depends on the tracking
signal, that measures the rate of change of demand. A possible choice is to
set o = a - |TS|, that is o changes proportionally to the absolute value of
T'S:. The parameter a is often set to 1.

3.6.4 Initialization

Equation (3.15) highlights one of the key issues for this forecasting algorithm:
It is recursive and generates a new estimate of the expected demand in period
t with a previous expectation from period ¢t — 1. However, this method needs
a starting point, i.e., an estimate to start from. We call this the initialization
of the smoothing algorithm, that is, the generation of the first estimate Bjy.

Before we get into the details of how one can initialize the forecast, we
notice that this can be a fairly important issue. Indeed, we can show that the
initial estimate B;_; can have a significant impact on the forecast we generate
at current time t. Let us assume we have a set of I demand observations,
Yicr+1, ..., Y:. It is easy to show that the initial estimate (that refers to
period t — I, that is the period before the start of our sample) is updated I
times and thus has a weight of (1 —a)? (this means that a percentage (1 —a)!
of the current estimate B, depends on the initial one B;_y). Thus for high
values of o and low values of I, the initialization plays a key role, as a large
portion of the current estimate B; depends on the initial one (By). When «
is low (thus, the estimate remains stable over time) and the initial estimate
is updated a limited number of times I, the initial estimate B;_; can be the
single most relevant “ingredient” of the final estimate B; and of the forecast
for future demands. Oddly, it can be even more important than the last
demand observation (see figure 3.16, case of o = 0.05).

There are several approaches to set B,_r:

1. A first option is to start with a zero estimate (B;—_; = 0). This makes
the initial estimate biased. In case of low values of o and I, this makes
the current estimate B; and future forecasts F} p significantly biased as
well (see figure 3.17).

2. A second option is to set By_; = Y;_y11, that is, we set the first estimate
of demand level equal to the first demand observation. Apparently this
is unfair cheating. It seems we are using demand in period ¢t — I + 1
to predict the demand itself, since by setting h = 1 we have By_; =
Fi_rn = Fi-11 = Yi_141, that is we are guaranteed not to make any
error in the first forecast. In other words, we are violating the basic
principle of non-anticipation. However, we must keep in mind that we
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Fig. 3.17 Case of initial forecast equal to 0 with various levels of a.

are using a fit sample (see section 3.3.7); that is, we are using demand
data to initialize the forecasting process. We shall simply be careful and
fair when we judge the performance of our forecasting method. When
we measure the performance of our method, we shall use a test sample
that does not contain any data we have used to initialize the exponential
smoothing technique.

Using demand Y;_j41 to set the initial estimate of the baseline demand
B;_y is totally acceptable. We must be careful not to use it to judge the
quality of our forecast. Therefore, when we use this approach the first
demand observation Y;_y11 cannot be used to measure the accuracy and
bias of our forecasting process. To put it in a different way, we use the
initial value to initialize the estimate of demand but we do not use it to
forecast.

This second approach provides an initial estimmate B;_; that is not bla-
tantly biased like in the former case. Nevertheless, it might significantly
differ from the average demand since it is based on a single demand
observation that might be affected by noise (see figure 3.18).

A third approach is designed to partially fix the problems we have just
highlighted. We can use the average of the first I periods to initialize
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the estimate of demand level?C:

t—IT+1

1y

Bt_[ = Z —l—
i=t—I+1

In this case, the initialization is based on [ periods rather than a single
one. Thus it can capture more accurately the long run average demand
(see figure 3.19). However, this approach too has a side effect: We
cannot use [ periods to judge the quality of the forecasting process. For
these periods the demand forecast depends on (i.e., exploits the informa-
tion about) the demand itself (the forecast depends on the initialization
that in turn depends on the demand during the first [ periods).

This is actually a minor problem, when one just wants to generate a
demand forecast in current period t. However, when one wants to in-

20Notice that we use [ periods but still initialize at period t—1I, that is we initialize as far back

into the past as possible. Indeed, one could be tempted to set By_j,; = E;tlj}-u Y;/l, or
even worse B = :;tlj1l+1 Y;/l. Actually, the initialization procedure is just a violation

of the basic mechanics of this forecasting process that is based on progressive updates of
previous estimates of demand. The more the initialization is set far into the past, the more
time the exponential smoothing has to actually update demand and to limit the effect of the

initialization. On the contrary, if we set By_j4; = f;tjfll+1 Y;/l, we increase the weight
of the initialization by a factor 1/af. Finally, if we set By = Z:;gj}+1 Y;/!l. Basically,

the first forecast Fy , = B: is not based on any sort of exponential moving average, but
rather on a simple average of demand observations that might not even be recent. Thus,
we would simply be using a different forecasting method rather than the one we believe is
appropriate for our forecasting problem.
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Fig. 3.19 Case of initialization equal to the average of the first 10 periods with various
levels of a.

vestigate the performance of various methods (or various sets of param-
eters) to select the best one, we have to set aside a “test sample” to
measure the forecasting errors. Thus we face a tradeoff between (i) the
quality of the initialization and (ii) our ability to judge what is the best
forecasting method (or the best set of parameters).

Figures 3.17-3.19 show the behavior of the smoothing algorithm under the
three initialization policies. Figure 3.17 shows that setting the initial forecast
to zero leads to a biased forecast during the first periods. The duration of this
transient state depends on a: The higher the value of a, the more quickly the
initial forecast loses weight and the forecast reaches steady state values.

Figure 3.18 shows that, in the second case, initialization is no longer biased,
but it can be fairly inaccurate, as it is based on a single demand observation.
So, also this method for initialization can generate fairly inaccurate forecasts
for the first few periods, especially in the case of low a.

Figure 3.19 shows that the third choice usually guarantees a better initial-
ization. This is particularly important in the case of low «. However, we
also notice that we can measure the accuracy of the forecasting algorithm
from period 11 onward, as the first 10 observations were used to initialize the
forecasting algorithm. In the second case, instead, one can start measuring
accuracy in the second period.?! Hence, the third option tends to provide
a better initialization, but it “consumes” a lot of data and we might be left

21Notice that we shall be expecting larger errors in the early periods as the forecasting
technique is basically drawing conclusions on very small samples. So in an odd way even the
second option might be misleading, as it might lead us to prefer the option with lower data
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with a small test sample. So, in an odd way the error might be smaller but
we have a limited ability to properly quantify it.

3.6.5 Drawbacks and limitations

Both forecasting methods presented so far are designed to manage a rather
simple demand pattern, that is, a basically stable demand with random fluctu-
ations. These simple methods are effective to the extent that their underlying
assumptions hold. For example, when demand is expected to grow or vary
according to season, these forecasting methods are inaccurate. The next three
sections present forecasting techniques that are suited for these more complex
and nonstationary demand scenarios.

3.7 EXPONENTIAL SMOOTHING WITH TREND

3.7.1 The demand model

Trend can be interpreted as the consistent change (growth or decrease) of
expected demand over time. Demand growth (decrease) can be either:

e Linear, that is, we observe a constant increase; e.g., demand increases
by 20 units per period, or

e Exponential, that is, a constant percentage change; e.g., demand grows
by +20% per period.

In this book we discuss in full depth the linear trend model, while exponential
trend is just presented briefly. The logic of, drawbacks of, limitations of,
and comments about the linear trend model apply, mutatis mutandis, to the
exponential trend model as well.

3.7.2 The algorithm

The exponential smoothing with trend algorithm uses two parameters, as the
demand model is more complex. The two parameters are:

e By, the baseline demand (or level of demand) in period ¢;

e Ti, the trend of demand in period ¢; demand is growing when T3 is
positive and is decreasing when T; is negative.

The demand model is nonstationary and thus the forecast depends on the
forecasting horizon. For example, if we expect a growth of 10 units per month,

requirements, which more quickly “forgets” an erroneous initialization, or simply performs
better by pure chance.
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demand for the next month is lower than the forecast for the following months.
In particular, given the linear trend assumption, we obtain:

Fup =B, + hT:. (3.16)

In other words, the demand forecast for period t + h equals the baseline level
in period ¢ plus h times the growth we expect in a single period.

This method uses the exponential smoothing logic to update the two pa-
rameters B; and T;. As to the baseline level B;, we use the last demand
observation to update previous estimates, just like in the case of simple ex-
ponential smoothing. However, in this case we cannot just average the last
demand observation Y; with the last estimate of the baseline demand B;_;,
as they are actually hardly comparable numbers. In an odd way, they are
apples and oranges. Indeed, we are facing a nonstationary process and thus
the baseline at time t — 1 and the demand at time ¢ are not directly com-
parable figures. Actually, demand at time ¢ can be compared with the most
recent forecast of demand at time ¢, that is, the one generated at time t — 1
(Fi—11 = Bi—1 +1-T;—1). Thus we can take a weighted average between
actual demand and our latest expectation about it. Basically, we increase our
expectations if demand has exceeded them and reduce them in case demand
was lower then we thought:

Bt :C¥E+(1 '—Oé)(Bt_l—f-Tt_l), OSO(S 1. (317)

As to the trend factor, we shall update the last period’s estimate with the
latest observation of the demand growth (decrease). We can measure the last
growth of demand through B; — B;..1 and thus update the trend factor as
follows:

Ty = 8(Bt — By—1) + (1 = 8)(Ti-1), 0<p <, (3.18)

where 3 is a second smoothing factor that is used to update the trend param-
cter.

3.7.3 Setting the parameters

This forecasting method uses two parameters a and 3 so that we can differ-
entiate the speeds at which estimates B; and T} are updated. The effects of a
high rather than low value of 3 resemble those of o. However, the trend factor
T; depends on « as well as on 3. If o is low, then the difference B; — By_1 is
basically equal to T;_; and the trend factor changes very slowly.??

22Notice that one could also update the trend through the difference between the last two
demand observations.

Ty =8(Yy -~ Yi_1) + (1= 8)(Ti-1), 0<3<1 (3.19)
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3.7.4 Initialization

In the case of exponential smoothing with trend, we have to initialize two
parameters. Thus, a reasonable initialization requires at the least two demand
observations to be in a position to judge whether demand is increasing rather
than decreasing over time. Assuming that we choose to initialize the algorithm
with this minimal information set, we can take the difference between two
successive periods to estimate the demand trend??:

Ih=Y,-1.

As we have already discussed in the case of simple exponential smoothing,
this procedure apparently violates the principle of nonanticipation, since Ty
incorporates demands from periods ¢ = 1 and ¢t = 2. In fact, we are just
using a fit sample to initialize the smoothing algorithm. The same concept
applies to all smoothing algorithms and initialization policies presented in the
remainder of this chapter and we are not going to get back to it.

As to the initialization of the baseline demand at time 0, we shall properly
exploit the demands of periods 1 and 2. Given the nonstationary demand
process, demand Y; and Y5 cannot be directly used to estimate the baseline
level of demand at time 0. To use demand in ¢ = 1 to estimate the baseline at
time 0, we should remove the demand trend from it. To properly use demand
observation from period t = 2, we subtract the trend twice:

(Y1 —1-Tp) + (Y2 =2 Tp)

By = 5 .

These initial values depend on the specific demand realizations (draws) of
the first two periods. Thus this approach can lead to significantly wrong esti-
mates. For example, the initial demand trend T might be negative even when
demand tends to grow over time. Just like in the case of simple exponential

This is a more nervous statistic than the difference between the two most recent baseline
demands B: — B;..1. Indeed, one can plug equation (3.16) into equation (3.18) and get

Ty =8la-Ye+(1—a) (Be—1+Ty—1) — Be—a] + (1 = 8)(Ty-1), 0<8<1. (3.20)

Hence
Ti=0-a[Ys —Bi—1]+ (1 -8 -a) - Ty-1, 0<B<1. (3.21)

The previous equation shows that the weight of the previous trend Tt is very large in
equation (3.18). For example, in case of @ = 8 = 0.1, 99% of the trend factor at time t
is determined by the previous trend factor T;_;. Basically, we apply both the a and the
B smoothing factors. We first apply the smoothing factor o to estimate B¢, and then we
further smooth this variable through 5. Indeed, while the previous value of trend Ty_; has
a weight of 1 — a3, the most recent demand observation has a weight - 3. In other words,
the most recent demand observation has very little effect on trend, unless the smoothing
parameter(s) is (are) very high.

This is neither good nor bad per se. One should simply account for that, when setting the
smoothing parameter 3; this might be larger in the case of the classic formulation (3.18).
23Notice that we assume to have n demand observations for ¢ = 1,2...... n
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smoothing, this sets a tradeoff between the quality of the initial estimates of
the parameters through a fit sample, and the number of data points that can
be used to judge the quality of the forecasting method in a test sample. In the
interest of brevity we shall not repeat previous comments (see section 3.6.4).

Let us assume that we decide to use [ periods to initialize the two parame-
ters Ty and B;. We can exploit these [ data in various ways. Here we present
the two major ones.

e First, we can use linear regression (see appendix A). In the linear regres-
sion, demand Y is the independent variable while time t is the indepen-
dent one. Here we shall consider linear regression as a tool to interpolate
demand data and identify a linear trend. Thus linear regression sets the
parameters a and b of a straight line y = a +b-¢. These two parameters
can be then used to initialize the baseline and the trend factors at time
0: Bop=a and Ty = b.

e Second, we can use a simpler method that looks at the average demand
levels and the average trend during the first [ periods. We shall first
estimate a trend factor to make demand observations in different periods
comparable. During the first [ periods, we observe [ — 1 differences
between successive demand periods, i.e., [ — 1 observations of demand
trend. Thus the initial trend level Ty is given by the average of these
! — 1 demand increases (or decreases):

!
To — Zizz (ZYZ';Y;—l)
_ Yo-Y1)+Ys-Y)+ -+ (Y1 —Yio)+ (Y1 - Vi)
-1
-1
=1

Notice how the average boils down to the difference of two single values:
This method does not fully exploit all the information available, as we
basically overlook all demand observations from period 2 to period [ —1.
This makes this approach simpler as well as less accurate than linear
regression. One might think that, since we are basically using just two
demand observations to initialize the trend factor Ty, we might just use
the first two observations. Still, when we use [ > 2 demand observations,
the expected difference between Y; and Y; is comparatively large and
thus the estimate 7} is less subject to noise. For example, if one tries
to use this method to predict the weight of a newborn baby, the growth
pattern can be estimated by comparing the weight in two consecutive
days but such an estimate might be affected by various random events
(for example, a stomachache can easily lead us to believe that the baby
is losing weight, while it is actually and obviously growing). On the
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contrary, when you compare the weight over a two-week period, the
estimate of the growth pattern is much more reliable.

Once we have generated an estimate of the trend factor, we can exploit
it to make the | demand observations directly comparable and use them
to initialize the baseline demand Bj.

We can tell the trend from the baseline demand and make all demand
observations comparable so that we can use them to initialize the base-
line By. To do so, we shall subtract from a generic demand observation
Y; the trend that we have observed during the ¢ periods since time 0,

i-T,. So we can initialize the baseline T} as follows?*:

i (Yi—i To)

By = ; .

(3.22)

3.7.5 Drawbacks and limitations

Obviously, this forecasting method is effective to the extent that its assump-
tions hold (just like any quantitative method). On top of this, it has several
drawbacks and limitations. As the forecasting horizon h grows, the model is
more and more sensitive to any error in the estimate of the trend factor T;.
The model assumes that the trend we have observed in the past will last in the
future. Actually, this is not a drawback per se, as all quantitative forecasting
methods make some sort of agsumption of stability of the demand pattern.
However, we shall notice that this assumption can lead to poor performance
at market “turning points.” In such instances the forecasting method projects
a growth (decrease) even when demand is starting to decrease (grow). This
can open a wide gap between the company’s expectations and actual demand.
Also, the longer the forecasting horizon, the greater the problem since any er-
ror in the estimate of T; is multiplied by h in formula (3.16). An example
can clarify the concept. Let us assume that demand used to grow by ¢ units
per period, and that at time t; it takes a downturn and starts decreasing at a
pace of s units per period. In period t; the forecasting method still projects
a growth of g units and thus forecasts a demand F;, » = B;, + h - g for pe-
riod t1 + h. So while the actual growth of demand stops in ¢;, we project an
increase up to period t; 4+ h.25 On the contrary, demand in period t; + h is
h - s units lower than it was in period ¢;. Thus the forecasting error in period
t1 +h is approximately equal to h{s+g). Figures 3.20 and 3.21 show that the

24Notice that the initialization methods suggested in this chapter can also be used to
forecast demand. These methods fall under the umbrella of decomposition methods. These
methods basically derive estimates of the parameters of a demand pattern from a sample
of demand observations and have no update whatsoever.

25This holds regardless of the smoothing factors. But in the case of small smoothing factors
a and 3, we continue to project a growth of demand for a much longer period of time, as
the trend factor remains positive for a fair number of periods after t;.
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Fig. 3.20 Drawbacks of the trend model in case of demand downturn: A = 1.
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Fig. 3.21 Drawbacks of the trend model in case of demand downturn: A = 5.

forecasting error depends on the horizon h. Also, the error clearly depends
on the responsiveness of the model and thus on its parameters, as we have
already discussed in the case of simple exponential smoothing.

Also, using a linear demand model (either linear trend smoothing or linear
regression) can lead us to unreasonable forecasts. For example, when the
trend factor Ty is negative, this method might generate negative forecasts,
especially in the case of long forecasting horizons and a markedly negative
trend factor or low levels of the baseline B;. Such unreasonable output shall
be considered as a clear sign that the model is unfit for the demand at stake
and thus a different forecasting method should be selected. For example,
when the baseline demand B; is 100 units and the trend factor T; is —40
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units, it might be reasonable to expect a decrease in demand for the next
period, down to 60 units. For the following two periods, one might expect a
40% decrease rather than a 40-unit decrease. In other words, we might expect
an exponential rather than linear demand model. In such cases, obviously, a
multiplicative model that leads to an exponential demand pattern might be
a more reasonable choice than the additive (linear) one we have described so
far.

For the sake of completeness we show the formulas of the multiplicative
trend model:

Fin = B(T)",

B: = aYy)+ (1 —-0a)Bi1-Tio1,
B

Tt = ﬁBt +(1—/3)Tt_1.
t—1

3.8 EXPONENTIAL SMOOTHING WITH SEASONALITY

Seasonal fluctuations are a second source of nonstationarity. In several indus-
tries the average demand is neither increasing nor decreasing, but it still faces
significant seasonal fluctuations, according to the time of the year, weather
conditions, or day of the week. For example, think about the food industry
that, in many developed countries, shows a negligible growth as neither the
population nor the per capita consumption is increasing significantly. Still
demand faces sharp fluctuations according to seasons and weather. Consider
products whose consumption depends on weather conditions such as chocolate
or ice creams and of event-related food such as turkey on Thanksgiving day
in the USA and Christmas cakes in many other countries. On top of these
yearly fluctuations we face weekly fluctuations as these products are mostly
bought on Fridays and Saturdays (and on Sundays in countries where stores
tend to be opened 7 days a week, such as the USA).

3.8.1 The demand model

We can model the effect of seasonality both as a percentage or an absolute
variation (either increase or decrease) against average demand. For exam-
ple, when we study demand fluctuations within the week, we can think that
demand for grocery products on Saturdays is 80% above the average daily
demand of 100.000€ per day. Also, we can think that demand on Saturdays
exceeds the average demand by 80.000€. The two models behave differently
in case of wide variation of demand during the year. They can behave rather
differently both in peak- and low-demand weeks. The second model assumes
that on Saturdays we sell 80.000€ more than on the average day of the week,
during each of the 52 weeks of the year. On the contrary, the first model basi-
cally assumes that the demand increase on Saturdays is less than 80.000€ in
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low demand weeks (e.g., the beginning of the vacation period in large cities)
and more than 80.000€ in high-demand periods (e.g., around Christmas).

In this section we discuss in detail the multiplicative model. We only pro-
vide the equations for the additive one. The logic, mechanics, and limitations
of the additive model can be easily derived, mutatis mutandis, from the anal-
ysis of the multiplicative one.

Before we discuss the details of a seasonality model, we have to identify
the periodicity of demand fluctuations we want to analyze. In other words,
we want to identify the most relevant season for our forecasting purposes.

A first option is to study the periodicity of demand fluctuations within each
vear. In case the day is the time bucket, the season lasts 365 periods; in case
the week is the time bucket, the season lasts 52 periods; and if the month is
the time bucket, the season lasts 12 periods. A second option is to investigate
the demand fluctuations within the week (in case of daily time buckets, the
season lasts 7 days).

The choice of the appropriate season can be supported by the analysis of
demand data to check whether they actually show the periodicity we have
assumed. However, the choice shall not be totally data-driven. For example,
in case demand data show a 4-day periodicity, we should look for a reasonable
explanation of this demand behavior. If we cannot logically explain the 4-day
periodicity, it might be simply a spurious statistical result. Thus, demand
might behave differently in the future.

We denote by s the duration of the season we choose to analyze. For
the sake of simplicity, in the remainder of this section we analyze the case
of yearly seasonality with monthly time buckets to illustrate the underlying
logic. However, the formulas do apply to different seasons and time buckets.

3.8.2 The algorithm

The factors of this forecasting method are the average level of demand B;
and the seasonality factors S;. The average demand is a single parameter
that is updated over time. On the contrary, to properly describe the demand
fluctnations in a season, we need to have s different seasonality factors that
are updated over time. In the case of 12 month seasons, we need to have a
seasonality factor for each month of the year.

The demand model behind this forecasting tools is

_Ftﬁ = Bt . SH,h,s, for h S S (323)

more generally, when we consider a forecasting horizon that exceeds the single
“season,”’ we obtain

Fin=B;- S, (3.24)

+h—[B=L 1)

In other words, the forecast generated in period ¢ for period ¢+ A considers (i)
the most recent estimate of the average level of demand B; and (ii) the most
recent estimate of the appropriate seasonality factor. In case at the end of
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December 2006 we want to forecast demand for January 2007, we consider the
estimate of the average level of demand we created in December 2006. As to
seasonality factors, one might be tempted to use the most recent estimate of
seasonality generated in December 2006. However, this is very unreasonable
as the seasonality of January might significantly differ from the seasonality of
December (think of the Christmas effect for most product categories in most
Western countries). Thus, we must use the most recent estimate of seasonality
for the month of January, which was generated in January 2006.

The assumptions of this model lead us to generate the same forecast for
the months of January 2007, 2008, 2009 and so on (if they are generated
at the same point in time, that is with the same information set). These
forecasts share the same average demand B; and the same seasonality factor
Stih—s. Indeed, this forecasting method assumes that the average demand
does not change over time, though we face repetitive fluctuations. However,
the forecasts of demand for January 2007, February 2007, March 2007 and so
on, are (potentially) different, as we use different seasonality factors.

To make this forecasting method work, we shall now understand how to
estimate the average demand B; and the seasonality factors S;. In this case,
demand is a nonstationary process and thus we cannot estimate the aver-
age demand through the sum of demand observations from different periods.
What would happen if we update the estimate of demand for ice cream in June,
July, and August? This would lead us to overestimate the average demand
we should expect in the average month of the year B; and we would project
a high demand for ice cream into fall and winter. We might be quite wrong,
since the high demand for ice cream might simply depend on the season, and
it might vanish in autumn and winter. To update the previous estimate of
the average demand B;_1, we have to understand whether the latest demand
observation is higher or lower than we expected. So when we want to update
the previous estimate of the average demand B;_; with the June observation,
we shall account for the seasonality of the specific month. Even if demand is
higher than in the average month, we might not draw the conclusion that we
shall increase By, as the relatively high demand for ice cream might somehow
be expected.

In other words, we shall remove sources of nonstationarity from the latest
demand observation Y; so that it can be directly compared to the previous
estimate of average demand B;_1:

B =« Y + (1 - a)B;_q, 0<a<l. (3.25)
St——s

Notice that if we assume seasonality to be additive rather than multiplica-
tive we simply remove nonstationarity in a different manner. We subtract
the seasonal increase (decrease) rather than divide by the seasonality factor.
Moreover, we notice that we divide the latest demand observation Y; by a
seasonality factor Sy_g, which is one season old. At this point in time, S;_,
is the latest estimate of the relevant seasonality factor.
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Once we have settled the estimate of average demand, we shall update
the estimate of the seasonality factor. In our example, we shall estimate the
seasonality factor for December 2006. The seasonality factor tries to capture
whether the expected demand in a specific month (December) is above or
below the average. If we expect the demand in December to be above the
average monthly demand in the year, the seasonality factor is above 1; in case
we expect the demand in December to be below the monthly average demand
the seasonality factor is below 1. If the seasonality factor is 2, we expect the
demand in December to be twice the average monthly demand. To update
previous estimates we shall compare the last demand observation Y; with
the latest estimate of the average demand B;. The ratio between these two
variables tells us whether demand during the last month was above or below
the monthly average. Then, we can use this ratio to update the last relevant
seasonality factor; in our example we can update the seasonality factor for
the month of December with the last estimate from December 2005. On the
contrary, it does not make sense to use the demand observed in December
2006 to update the seasonality factor we have just estimated for November
2006 as these are totally incomparable figures. Thus, we can estimate the
seasonality factor as follows:

= 'ygtt + (1 = ~)St—s, 0<y <1, (3.26)
where ~ is a smoothing parameter. In case the previous relevant seasonality
factor was 1.5 and the demand observed in the last month was twice the
average monthly demand B; we shall increase our estimate of the seasonality
factor and draw the conclusion that next December we might be expecting
a demand that is between 1.5 and 2 times the average monthly demand,
depending on the smoothing factor ~.

3.8.3 Setting the parameters

Like in previous cases, parameters « and + determine the speed at which the
parameters B; and S; are updated. Hence, these parameters influence the
ability to filter noise and react promptly to changes in demand.

We notice that while the average demand B; is updated each and every
period, the seasonality factors are updated only once in a season (in our
example, once every 12 months), that is, every s periods. So, if we want the
seasonality factor to be as reactive as the average demand, we might want to
choose a relatively large value of ~.

3.8.4 Initialization

This forecasting method too is recursive and thus must be initialized to be
properly used. We have to initialize s seasonality factors S; and one average
demand Bgy. This could lead us to believe that we need at least s + 1 demand
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observations. However, we only need s data points. The seasonality factors
capture the difference between the demand in each specific month and the
average month of the year. Thus, on the average they shall be equal to 1.
This adds an extra constraint to our problem. Thus to initialize (and use)
this method, at least s demand observations are required. With less than
s demand observations (in our example 12 months) we cannot estimate the
average demand in a season and thus we cannot estimate a single seasonality
factor. Initializing demand is rather trivial when we only have s demand
observations. By is simply equal to the average of the s (12 in the example)
demand observations, and the s seasonality factors are equal to the ratio
between demand in the related period (month) and the average demand Bjy:

BO — Zf:l }/:‘
s s
Y;

Sj_s = 'E(‘)‘

for i=1l....s

Just like in the previous cases, when we initialize with the very minimum set of
data, errors might be considerable. In this specific case, each seasonality factor
basically depends on a single demand draw that may be substantially different
from its expected value (especially in the case of small time buckets and quite
variable demand). Thus, in case more data are available, it is advisable to use
more than s data points. We have already discussed the tradeoff we face when
we choose the number [ of periods that we use to initialize demand in section
3.6.4. If [ is a multiple of s, we use “whole seasons.” In this case, the simple
average of the [ observations is a good estimate for the average demand, as this
metric is not influenced by seasonality since we take the average of demand
over [/s seasons (years in the example). We can initialize the seasonality for
a given month, say January, by comparing the average demand for all months
of January in the fit sample to the initial average monthly demand By:

l
BO — Zi:l Y;
I :
1/s—1 Y,
Si_s = w for ji=1,...s

In the slightly more complex case where we do not consider whole seasons
and thus [ is not a multiple of s, we still compare the average demand in
January to the average demand By. The only minor issue is that in our
fit sample we might have 3 months of January (say 2004, 2005, and 2006)
and just 2 months of December (say 2004 and 2005). A simple average of
all demand observations would not be a reasonable estimate for the initial
monthly demand By, as it is influenced by the seasonality of January (which
is overrepresented in the fit sample). Thus, we might want to compute first
the average demand in each of the 12 months (average demand in January,
February, March, etc.) and then take the average of these 12 (in general s)
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Table 3.16 Demand data for a sport newspaper {data in thousands)

weekday week 1 week 2 week 3 week 4 week 5
Tuesday 46 57 23 36 29
Wednesday 37 43 24 35 34
Thursday 19 35 34 43 38
Friday 50 50 60 50 52
Saturday 66 79 92 63 72
Sunday 95 81 81 110 91
Monday 121 114 123 116 113

figures. In this way, the estimate of average demand does not depend on the
seasonality, as each month has an equivalent weight. The reader might want
to try to translate the above concepts into formulas.

Example 3.15 Let us consider a large newsstand in Italy. Among other
newspapers the newsstand sells sport newspapers. The dominant player in
this business is the newspaper called Gazzetta. The newsvendor keeps track
of demand (including any lost sales) and wants to forecast demand. The
newsvendor places orders for copies of tomorrow’s newspaper at the end of
the working day. So, the forecasting horizon is one day. Now we are at the end
of week 5 (Monday night) and he/she needs to plan orders for next Tuesday.
So he/she need to generate a demand forecast. Table 3.16 shows data on
the last 5 weeks of demand. Data show a clear seasonal pattern, as demand
increases on Saturdays, Sundays, and Mondays, right before or after major
sport events.

Also, given the nature of the product the time bucket is a single day since
we need to plan inventories on each single day: Inventories leftover (unsold
copies) on Tuesdays will not sell on Wednesdays. The newsvendor wants
to have a distributional information about the future demand. Indeed, this
distribution of demand is going to be used when setting the inventory levels
(this is done later in example 5.10 on page 255). A point forecast is just not
enough.

So the newsvendor wants to apply exponential smoothing with seasonality
model to these data. We identify the 35 data points with ¢t = 1 to t = 35
(t = 1 is Tuesday, week one; t = 35 is Monday, week five). The first decision
is to set the fit sample and the test sample: In order to have a distributional
information, we shall measure the forecasting error and thus should set aside
a test sample. Let us assume that we want to have a test sample consisting of
two weeks, thus we can use the first three weeks to fit the forecasting method
to the data.

The first operation is the initialization of parameters. The initial estimate
of baseline demand By is the simple average of the first three weeks of de-
mand (first 21 days). Since we take whole weeks (i.e., “whole seasons”) the
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Table 3.17 Initial seasonality factors

weekday parameter initial value
Tuesday B_g 0.6632
Wednesday B_; 0.5474
Thursday B_4 0.4632
Friday B_3 0.8421
Saturday B_, 1.2474
Sunday B_; 1.3526
Monday By 1.8842

seasonality of demand has no impact on the baseline demand

21 Y,
z : t

t=1

Notice that the initial estimate of the baseline demand refers to time 0. Once
again one could be tempted to set Bp; = 63.33 but this would mean that
the forecast for period 22 is actually not based on any sort of exponential
smoothing and thus should not be used to capture forecasting error of such a
method, demand distribution, and uncertainty. With this figure we can now
initialize the seasonality factors for the seven days of the week. Let us start
with the initial seasonality factor for Tuesdays. We simply take the average
(42) of demand in the three Tuesdays in out fit sample (46, 57, 23 units) and
divide it by the baseline demand By = 63.33. Thus the initial seasonality
factor for Tuesdays is 42/63.33 = 0.6631. The question then becomes: Which
period does this seasonality factor refer to? The first Tuesday in our sample is
period 1. Actually, initial factors precede the fit sample, and the first Tuesday
before our fit sample was period t = 1 — 7 = —6. So the initial seasonality
factor for Tuesdays is B_g = 0.6631 [see equation (3.27), with j=1]. Similarly,
we can derive initial seasonality factors for the seven days of the week, as table
3.17 shows.

Once we have initialized the parameters we can let the smoothing algorithm
update them. Let us assume that o = 0.1 and v = 0.2. Let us walk you
through the calculation for the first update. The updated baseline demand
after we have observed period 1 is [see equation (3.25), where t = 1 and s = 7|

46

B, =0.1-
1= 0.1 5ot

+(1-0.1)-63.33 = 63.93. (3.28)

Similarly, we can update the seasonality factor for Tuesdays through equation
(3.26), where t =1l and s = T:

46

S =02 ——
63.93

+(1-0.2)-0.6631 = 67.44. (3.29)
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Table 3.18 Baseline estimate B, (data in thousands)

weekday week 1 week 2 week 3 week 4 week 5
Tuesday 63.94 64.27 61.66 62.83 63.19
Wednesday 64.30 65.62 59.68 63.04 63.14
Thursday 61.97 67.16 61.27 65.87 64.32
Friday 61.71 66.43 62.47 65.18 64.14
Saturday 60.83 66.29 63.82 63.68 63.71
Sunday 61.77 65.49 63.40 65.50 63.79
Monday 62.02 64.95 63.64 65.12 63.48

Table 3.19 Estimates of the seasonality factors S;

weekday week 1 week 2 week 3 week 4 week b
Tuesday 0.6744 0.7169 0.6481 0.6331 0.5983
Wednesday 0.5530 0.5734 0.5392 0.5424 0.5416
Thursday 0.4318 0.4497 0.4707 0.5072 0.5239
Friday 0.8357 0.8191 0.8474 0.8313 0.8272
Saturday 1.2149 1.2103 1.2565 1.2031 1.1885
Sunday 1.3897 1.3591 1.3428 1.4101 1.4134
Monday 1.8976 1.8691 1.8818 1.8617 1.8454

We can proceed with t = 2, ..... 35 to update the parameters B and S. Tables
3.18 and 3.19 show how the estimates are updated over time.

Had we been interested in a point forecast for period 36 (i.e., next Tuesday),
we simply would have used the last estimate of demand baseline Bss = 63.48
and the relevant seasonality factor Spe = 0.5983. Using equation (3.23), we

obtain the point forecast for the next Tuesday (period 36) as
F36 = F351 = 63.48 - 0.5983 = 37.98. (3.30)

However, the newsvendor wants to have some distributional information about
the demand on Tuesdays; thus, we have to investigate the expected forecast
error. The smoothing algorithm suggests that we shall expect a demand for
37.98 units. However, so far we have no information about the confidence on
that number. Actually, given we have set aside two weeks (week 4 and week
5) to test the performance of this forecasting method, we can investigate the
forecasting error in these two weeks and reasonably assume that the expected
error [E (Y3 — F36)] equals the average past error.2® To capture the error in
the test period, we shall generate the forecasts over the test period (Fy, t =

26Notice that, in this case, we assume that the expected error does not depend on the day
of the week, even if different days have different demand expectations. In other words,
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Table 3.20 TForecast Fy = Fy-1,1 (data in thousands)

weekday week 4 week 5
Tuesday 41.25 41.23
Wednesday 33.25 34.08
Thursday 28.09 31.97
Friday 51.92 54.76
Saturday 78.49 78.42
Sunday 85.70 89.80
Monday 119.31 121.95

22, ...,35). To generate the forecast for period 22, we shall use the most recent
parameters. We use the baseline at time ¢t = 21 and the seasonality factor of
period t = 15, as equation (3.23) shows

Fy1 1= Fay = By - 515 = 63.64 - 0.6481 = 41.25. (3.31)

Similarly, we compute the forecast for the remaining observations in the test
sample (see table 3.20). Notice that while the parameters are estimated for
the whole set of 35 observations, we only generate a forecast for the test
sample, as using data from the fit sample to compare the forecast with the
actual demand would not make sense.

Finally, we can compute the error we would have made in each of the 14
days in the test sample, had we adopted this algorithm in the past. For
example, the error in period 22, is

€99 = Y22 - F22 =41.25 — 36 = 5.25. (332)

By the same token, we can derive the errors for periods t = 23, ..., 35, as shown
in table 3.21.

With these errors, we can compute our usual performance metrics. For
example, the RMSE is 10.05. It really means that, if our assumption of a
statistically stationary error holds, we shall expect a mean squared difference
between our forecast for period 36 (Fis = Fis,1 = 37.98) and demand Y36 to
be 10.05% (bias is negligible and here we assume ME to be zero). In other
words the demand in period 36 has an expectation of 37.98 thousand units and
a standard deviation of 37.98 thousand units. In example 5.10 on page 255,
we show how this distributional information can be used to make inventory
decisions and how demand forecasting and inventory planning problems are
strictly related.

we assume that a stable random noise overlaps the weekly fluctuations of demand. With
a test sample longer than two weeks, we could test the assumption empirically. In this
toy-example, data were generated according to this assumption, which is implicitly made.
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Table 3.21 Errors e; = Y; — F; (data in thousands)

weekday week 4 week 5
Tuesday 5.25 12.23
Wednesday -1.75 0.08
Thursday -14.91 -6.03
Friday 1.92 2.76
Saturday 15.49 6.42
Sunday -24.30 -1.20
Monday 3.31 8.95

Also, our example can show the difference between demand variability and
uncertainty. The standard deviation of the 35 demand observations is 34.48,
whereas RMSE is just 10.05 units. While the standard deviation measures the
variability of demand, RMSE captures our inability to forecast demand, that
is, to predict demand fluctuations. In other words, in our example, demand is
very variable, but some part of these fluctuations are predictable and due to
weekly seasonality. Thus the forecasting error, that is uncertainty. is smaller
than variability. I

3.8.5 Drawbacks and limitations

This forecasting merhod uses a wide range of factors and thus it requires a
fairly large information set to operate properly. However, when we use a long
past history to calibrate the model, we might end up using fairly old demand
observations (e.g., 5 or 10 years old) that might have little to do with the
current demand pattern.

Clearly, the larger the value of s, the more parameters we have to estimate
and the less the information is available to estimate each single parameter.
So the adoption of this method with a small time bucket and long seasons
can be dangerous and lead to poor performance. Actually, some researchers
found that the nalve approach (F; ;1 = Y;) might outperform the smoothing
algorithm with seasonality for this reason (see [4]): A simple and very reactive
method (with a short forecasting horizon) can adjust to changes in seasonality
better than a complex one that might fail to estimate seasonality properly.

Example 3.16 Let us consider a company that uses a daily time bucket
and wants to analyze demand fluctuations within a year. The company needs
to estimate 365 different seasonality factors. Had the company adopted a
monthly time bucket, we would have estimated only 12 parameters instead.
Estimating daily seasonality factors might be counterproductive even if de-
mand shows sharp seasonal fluctuations. In fact our estimate of seasonality
might be so inaccurate that the seasonality factors increase rather than reduce
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the forecasting errors. Let us consider a company trying to forecast demand
for ice cream with daily time buckets. In case April 6 was rainy the last two
years, while next April 6 is going to be sunny, the forecast will turn out to be
quite wrong as it will underestimate demand substantially. Indeed, we would
estimate a low seasonality for April 6, and this would lead to a very low de-
mand forecast for the next April 6. However, if next year April 6 is sunny (a
more than reasonable chance in Italy), then error is going to be substantial.

Some correctives have been designed to improve the performance of the
seasonal exponential smoothing. First, in many instances, demand is driven
by weather conditions rather than the season per se (think about food prod-
ucts, apparel goods, and white goods). So one might want to investigate the
relationship between weather (e.g., temperature and inches of rain) and de-
mand (often through regression methods). This approach has a substantial
advantage: We do not consider seasonality on April the 6 as totally different
and independent from April 5, 4, 3 etc., and 7, 8, 9, etc. Hence, when we
try to forecast demand for the next April 6, we exploit a much broader in-
formation set than in the case of traditional models (for an example of this
approach to seasonality, see [2]).

Furthermore, one can feed the classic exponential model with seasonality
with a smoothed demand, so that single events like rain on April 6 do not
influence the seasonality factors as much. One option is to replace Y; in
formulas (3.25) and (3.26) with the average of periods from ¢t — 3 to ¢+ 3. In
this case, the seasonality of April 6 does not depend on the specific weather
conditions of April 6, but rather on the average condition of the week of April
6. This clearly improves the estimates of the seasonality factors and thus
reduces forecasting errors.

3.9 SMOOTHING WITH SEASONALITY AND TREND

3.9.1 The demand model

The last two sections have presented separate models to deal with demand
trend and seasonality, respectively. In this section we present a forecasting
model that combines these two features and thus can forecast a seasonal de-
mand with trend. We assume that demand tends to grow (or decrease) in the
long run, and we assume this trend to be linear. On top of this long-term
trend, we observe seasonal fluctuations, that we assume to be multiplicative.

3.9.2 The algorithm

Given the above assumptions about demand, the forecasting model is:

Foyn =(Be+h Tt) - Spshes [(h=1)/s+1]- (3.33)
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In other words, we take the baseline level of demand at time ¢ (i.e., B;) and
the increase (decrease) we expect during the forecasting horizon h (i.e., hT}).
B + hT; is the level of demand we would expect in period ¢+ A if there was no
seasonality or the seasonality factor of that period was 1. Thus, to generate an
accurate forecast, we shall account for the seasonality of period t + h, which is
a multiplicative factor that tells us whether we shall expect demand in period
t + h to lie above or below the general trend line (see figure 3.22). The term
St4h-s.[(h—1)/s+1) boils down to S;yp—s if the forecast horizon h is not larger
than s; the notation |x| means that we round = down to the nearest integer
number.

Like in previous cases. the second step is to design a procedure to update the
s+2 parameters with the most recent demand observations. As to the baseline
B;, we shall simply combine the trend and the seasonal model properly. We
shall de-seasonalize the last demand observation and add the last estimate of
the trend factor T;_1 to the previous baseline demand B;_1:

Y,
Bi=a——+(1-a)(Bi-1+Ti1), 0<a<l. (3.34)

Dt—s

As to the trend and seasonality factors we can adopt the equations we have
designed in the last two sections:

T, = (3(By—Bi-1)+(1-5)(Ti1), 0<8<;

Y,
S, Nt (1 =S, 0<~ <L
B;

3.9.3 Initialization

This is another recursive forecasting method and thus it need to be initialized.
In this case we need at the very least s+ 1 periods. Indeed, we shall calculate
s + 2 parameters, and we have one constraint on the s seasonality indexes:
Their average must be 1. An alternative explanation is that to estimate the
trend we must compare periods with the same seasonality. If in December
demand for cakes is above the demand in January, we can hardly tell whether
this is due to seasonality or trend. In our example of seasonality within
the year and monthly time buckets, we need at the very least 13 demand
observations to tell seasonality from trend.

If only this minimum information set is available, we can initialize the trend
and seasonality factors as follows. We first estimate the trend factor

Yoo -1
8

To = (3.35)
by taking the difference between the only two demand observations that are
comparable, as far as seasonality is concerned.

This initialization, though often used, suffers from a significant problem:
T, is affected by seasonality. Both demand observations Y7 and Y1, depend



156 FORECASTING

on a (multiplicative) seasonality index?” and thus their difference depends on
the seasonality index as well. Understandably, in case the seasonality index
of these two periods is close to 1, this is a minor issue and has no practical
effects. On the contrary, in case the seasonality index is significantly above or
below 1, it is a major concern and it is more appropriate to use at the least
25 demand observations, i.e., two whole seasons. In this way, we can estimate
s differences between pairs of demands that share the same seasonality index
(in our example, 12 pairs of months from successive years, e.g., January 2005
and January 2006, February 2005 and February 2006, and so on). In this
case each single difference is affected by seasonality; however, the average of
the s differences is actually affected by the average seasonality that is 1: By
taking s differences, we cancel out the effect of seasonality. So in this case we
initialize the trend factor as follows:

8

1 &K Yem =Y 1
Tp = = ; — = ;(m Y) (3.36)
We can now use the above estimate of trend Tj to tell the effect of trend from
seasonality and thus estimate both the s seasonality factors and the baseline
demand Bg.

To estimate the multiplicative seasonality factors, we shall compare the
actual demand observations with the ones we would have expected, had there
been no seasonality (i.e., with the ones we would have expected had there
been a seasonality index equal to 1). To do so, in figure 3.22 we shall compare
the actual demand observation Y; with the corresponding point on the line
Y = By +1T; -t. If points are above the line, the seasonality is greater than 1.
If points are below the line, seasonality is lower than 1.

So we need to estimate By to estimate the seasonality indexes. To do so, we
need to make the demand observations in different time buckets comparable;
therefore, we need to remove the trend from these observations by subtracting
the expected growth t - Ty from demand observation Y;.

If we initialize parameters with whole seasons (e.g., two seasons), Y; —t - T
is affected by seasonality; however, in the sample such seasonality cancels out
as we consider whole seasons. Thus the estimate of the initial baseline demand

is

22‘:1 (Y; —iTp)

e R
If s + 1 demand observations are used to initialize the parameters, we should
be a bit more careful. Indeed, periods 1 and s+ 1 are overrepresented in the
sample, and this might lead to a bias. For example, if we consider the January
2004 to January 2005 period, the month of January would be overrepresented
in our sample (there are two months of January and just one February, one

B = (3.37)

27Note that this problem does not exist in the case of additive seasonality, as we take the
difference between the two observations.
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Fig. 3.22 The initialization processin case of exponential smoothing with seasonality
and trend.

March, and so on). So if the product is in high demand during winter, we
happen to overestirnate demand, while if the product is mostly bought in
summer, we tend to underestimate baseline demand.

To solve this problem, we first compute the average demand in each of
the s (12) periods {months) in a season (year). Then we take the average
demand across periods to get a baseline demand estimate with no trend and
no seasonality:

Bo = (Yo —(s+1D)T0)+ WM =To)] 2+ 530, (Vi — iTO)_ (3.38)

S

Finally, we shall compute the seasonality indexes. We compare the actual
observation Y; with the one we would have observed, had there been no sea-
sonality (and no randomness in demand) By + ¢t - T;. For instance, if we use
whole seasons (e.g., two seasons) to initialize the forecasting method, we have

l/s—1
EE:: }9¥+ks
S = (Bo + (j + ks)Tp) X 130
js = Z/S—l seeny S ( : )

Notice that we are not dealing with all of the possible options and thus our
analysis is not exhaustive. The extension to other cases is left as an exercise
for the reader.
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Finally, this model shares the limits and drawbacks of the exponential
smoothing with trend or seasonality. Also, the selection of the parameters
shall follow the same process.

3.10 SIMPLE LINEAR REGRESSION

The forecasting models we have analyzed so far are widely adopted. However,
in these models demand is just a function of time. On the contrary, in many
real-life situations demand might depend on a variety of variables including
advertising expenditures, weather, price, number of stores carrying the item,
state of the economy, etc. A forecasting model that tries to capture these
effects can be fairly complex for several reasons.

o First, demand might depend on many variables. For example, in grocery
supermarkets, demand might depend on traffic (number of customers
visiting the store), weather, the price of the item, promotions of the
item at stake and/or substitute ones, religious events such as Easter
or Christmas, and sport events such as the Soccer World Cup or the
Olympic Games.

e Second, the relationships between the independent (i.e., explanatory)
variables and demand can be complex and nonlinear. Let us assume
that we have cut price by 50% and gained a 100-unit increase in demand.
If we cut price by 100% and give the product away for free, we definitely
should not expect a 200-unit lift.

Though the problem can be fairly complex in real life situations, in this section
we address a relatively trivial situation where demand depends on a single
independent variable. In other words, we illustrate the application of simple
linear regression (see section A.10). The more general case of multivariate
regression, i.e., situations where we explain and forecast demand through
more than one independent variable, is dealt with in the web sections W.A.11
and W.3.11.

In section A.10 we describe in full detail the assumptions and properties of
simple linear regression. This statistical method estimates, through empirical
data, the linear relationship between a variable X we call independent and a
variable Y we assume to depend on the first one. In our case, demand is the
dependent variable.

As such, linear regression is just a tool to investigate the relationship be-
tween two variables. Thus it might be used to analyze the relationship between
two variables, say demand for ice cream and temperature, demand for cars
and Gross Domestic Product (GDP), and demand for fashion products and
advertising. Once such a relationship is estimated, we can use it to forecast
future demand, if we know the future values of the independent variable (or
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they can be predicted accurately). Indeed, a “perfect analysis” of the rela-
tionship between the demand for cars and the GDP does not help to forecast
the demand for cars if we have no idea about the future of the economy. In
the remainder of this section we assume the future values of X to be known
with certainty (e.g., think about the prices the company sets). In the final
part of the section we briefly discuss the consequences of uncertainty on the
future value(s) of X (e.g., when estimates about the future GDP are available,
though they are affected by some sort of error).

We assume that demand observations are drawn from a random linear
process:

Vi =+ 0z + € (3.40)

where:

e i is the index that identifies the i-th observation of demand and of the
variable that influences it;

e ¢ and 3 are unknown parameters that influence the demand process;
these parameters have to be estimated;

e ¢; is a normally distributed random variable with a expected value zero
and standard deviation o, (additional assumptions concerning statistical
independence are pointed out in section A.10).

Also, we assume to have an estimate of the relationship between Y and z,
Y =a+bx. (3.41)

Section A.10 shows how this relationship can be estimated, based on past
observations of Y and xz. The point forecast of ¥ (e.g., demand for cars)
corresponding to z = xg is

Yo = a + bag. (3.42)

It is easy to show that Y5 is an unbiased prediction?® of the future level of
demand, since estimates a and b are unbiased. However, as discussed in the
first section of this chapter, a point forecast is often meaningless, especially
in the case of continuous variables such as Y; (e is continuous and thus Y is
continuous as well).

So we should not only look at the expected level of future demand, we
should also investigate the standard deviation of the estimate, that is, the

28Note that in section A.10 we are mainly concerned with the estimate of unknown numbers
a and 3. The demand Yj, corresponding to a value zg of the independent variable is
a random variable that we are trying to predict. This is conceptually different and, for
instance, we should talk about prediction intervals rather than confidence intervals. In this
chapter we are a bit sloppy at times. For the sake of simplicity, we use the term “standard
error of estimate” when referring to See(Y(), which is conceptually not quite correct.



160 FORECASTING

square root of the expected squared difference between the forecast Yy and
the actual demand Yj:

Yo—Yo=a+fzo+e —(a+brg)=(a—a)+ (3-b)zo+e. (3.43)

On the one hand, this can be interpreted as the forecasting error we shall
expect. On the other hand, we can read the output of the forecasting process
as a distribution of demand rather than a point forecast. The mean of the
distribution is % and the standard deviation is

See(Yp) = 4 /E {(YO _ ifoﬂ .

In section A.10 we show that

R O e
Seep, = E [(ﬂ — b)ﬂ = UE————Z[ (iz — 5)2.

Similarly, one can show that See(Yp) is given by

2 —\2
g o — T
\/03+——6*+0'2M
n I

ae\/1+l+M. (3.44)
n

See (Yp)

Il

We can read equation (3.44) and make sense of it. First, as n tends to infinity,
the second and third terms under square root tend to zero (respectively, n
and the number of terms in the summation grow), while the first one remains
unchanged. Unlike the case of the estimates a and b of the parameters o and
8, the prediction error does not go to zero, as n tends to infinity. Actually,
as n tends to infinity the forecasting error tends to o..

Indeed, with an infinite number n of past observations we can perfectly
estimate the relationship between Y and x, so we face no error in the estimates
of o and 3. However, this is just not enough to generate an error-free forecast.
Indeed, a perfect estimate of the parameters leads to a perfect estimate of the
expected level (a + Bzg) of the demand Yp, that is, the nonstochastic part of
the demand process. However, the random part of the process g still creates
random fluctuations we cannot predict. Thus, it leads to forecasting errors,
as figure 3.23 shows. By now the first term in equation (3.44) shall be clear,
and we can devote our attention to the second and third one. They show
the impact of errors of estimate of a and b. To clearly tell the contribution
of these errors we shall assume that €y is zero. In other words, we assume
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Fig. 3.23 The forecasting error due to the variability of the demand process.

that the random noise is zero and the new demand observation lies on the
line Y = o + Bz. Therefore, any error is due to the wrong estimate of the
parameters, rather than to the randomness of the demand process.

The second term ¢?/n is just the variance of the n draws of ¢ we have
studied to estimate the regression line y = a + bxz. When the n observations
tend to lie above the ideal line Y = « + 8z (i.e., when the average of the n
draws of ¢ is greater, or lower, than zero), the estimated regression line tends
to lie above (below) the ideal one. Thus the estimate a tends to be larger
than the actual parameter . The error in the estimate of o leads to an error
of estimate of Yy (see figure 3.24).2°

Finally, the last term in equation (3.44) can be interpreted as the impact of
errors of estimate of 3 on the accuracy of the demand forecast V,. To isolate
this effect, we set to zero the sources of errors we have discussed so far. More
formally we assume that:

e > " € =0, ie., we assume that the average of the n random draws is
zero and thus the estimated line lies neither above nor below the ideal
line;

29Notice that this is not the only source of error in the estimate of . Indeed, even when
the average noise » ;- ; € is zero, we might still face an error of estimate of a. Indeed, in
this case the draws are on the average neither above nor below the ideal line YV = a + 3.
This means that the estimated line lies neither above nor below the ideal one. Still the
estimate b of the slope might be wrong and (in case of T # 0) this can lead to errors in the
estimate of & (see section A.10). So one might more properly say that the first term shows
the impact of errors in the vertical position of the estimated regression line. rather than
errors of estimate of a per se.
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Fig. 3.24 Forecasting error due to a wrong estimate of .

e ¢g = 0, i.e., we assume that demand Yj is exactly on the ideal line
Y =a+ (.

The third term in equation {3.44) can be interpreted as the error of esti-
mate of 3 [see equation (3.44)] times (x¢ — T). Why does the forecast accuracy
depend on See;, and on the distance between zg and T? The definition of a
shows that the estimated line goes through the barycenter of the demand
observations (z;Y). Also, since we assume that » ., ¢; = 0, the ideal line
Y = o + Pz intersects the estimated one in the barycenter of demand obser-
vations. Thus the errors in the estimate of the slope (Seep) generate no effect
on the inaccuracy of demand when zy = Z. On the contrary, the error in the
estimate of the slope generates large errors when zp is far from the point 7
where the two lines intersect (see figure 3.25).

Concept 3.4 The error of estimate is due to the randommness of demand
process, and the errors in the estimate of the intercept (a vs. «) and slope (b
vs. B) of the regression line.

Equation (3.44) shows the standard forecast error and thus enables us to build
confidence intervals of demand Y. The analysis above shows that the standard
error of estimate reaches a minimum when zg = Z, since T is the barycenter
of past observations and thus is the single point we have more information
about. This relative abundance of information reduces the forecasting error.

Hence, the width of the prediction interval is affected by the distance be-
tween the barycenter of past observations Z and the point xg for which we
want to forecast demand. Figure 3.26 shows the confidence intervals (with
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confidence level 90%) for various xo. This figure shows that they are wider
for xg significantly to the left or to the right of Z.

The above findings hold only under the tight assumptions of the regression
model (see section A.10). When we study real-life data the assumptions are
typically not fully met. For example, the relationship between x and ¥ might
be linear only within a given range of z. Outside this range it might be
nonlinear, and thus we should expect biased forecasts and far larger errors
than the linear regression model predicts.

Finally, we investigate the effect of less-than-perfect information on Xg.3%
For example, consider a model where the demand for a given kind of food
depends on the temperature. If we want to use this model for forecasting pur-
poses, we should know the future temperature. However, the future tempera-
ture is uncertain and it is known, at best, in terms of probability distribution
(or confidence intervals). Hence, when we use temperature to estimate future
demand, we have an additional source of uncertainty. Geometrically, a par-
tial information on Xy means that we do not know exactly where, on the X
axis, we shall read the relationship between Y and X. Hence, the confidence
interval on Y is a sort of an area on the (X,Y) plane rather than a simple
segment, as we face uncertainty on both X and Y. We do not know the right
point on the X axis, and still for a given point on the z axis we only have
distributional information on Yj.

30Notice that in this case we use X instead of zg, as we do not know the future level of X
and thus it can be interpreted as a random variable rather than a number.
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3.10.1 Setting up data for regression

As we discuss in section A.10, linear regression relies on a rather wide range
of assumptions on the demand process (more generally, a random process).
Often, demand data hardly meet these assumptions and thus cannot be used
for linear regression.

Example 3.17 When we want to investigate the relationship between tem-
perature and demand of a food product or demand elasticity, i.e., the increase
in demand due to promotions and/or price cuts, we might not be able to use
straight demand data, as they might be affected by a significant seasonality
that might lead to erroneous conclusions.

Let us consider a retail company that, during the weekends, cuts by 20%
the price of a product that on the average sells 100 units/day. When we look
at demand and price data we might be led to ascribe the whole increase in
demand to price elasticity. On the contrary it is, at the least partially, due to
weekly fluctuations that make demand increase on Saturdays and Sundays. So
we might overestimate the price sensitivity of demand as we attribute both
the seasonal fluctuation and the increase due to the price cut to the price
elasticity of demand. For a more detailed discussion we refer to {7]. a

This is why we might want to “clean” the data before we apply linear regres-
sion to make them fit with the assumptions of the model and make sure the
analysis is reliable. In the case of example 3.17 above, we should first remove
the seasonality of demand from the dataset and then analyze price sensitivity
to understand the relationship between price and demand. A second option
is to use multiple regression that tries to estimate both effects at once.

W.3.11 FORECASTING MODELS BASED ON MULTIPLE
REGRESSION

In the previous section, we have shown that sometimes linear regression mod-
els cannot fully capture the mechanism generating demand for a product.

Here we build on the theory of linear multiple regression. outlined in sec-
tion W.A.11, by illustrating how this tool can be exploited to build more
realistic forecasting models. Quite often, categorical variables are used to ac-
count for qualitative features, and this paves the way for quite sophisticated
models. However tempting this may sound, we should always keep in mind
that the adoption of overly sophisticated models may be counterproductive
in practice. The more parameters we have to estimate, the more uncertainty
we introduce. Hence, we should stick to a “principle of parsimony.” and keep
model complexity to a reasonable size.
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3.12 FORECASTING DEMAND FOR NEW PRODUCTS

So far we have discussed forecasting methods that basically try to predict
demand for a given product with a fairly long demand history either by ex-
trapolating future demand from the time series or by reading the linear rela-
tionship with a variable (say price) that drives its behavior. Unfortunately,
for new products we do not enjoy a long past history and thus we shall resort
to other forecasting tools. We can resort to qualitative methods that leverage
on the knowledge of experts; on the other hand, we can analyze other sources
of relevant information on demand for new products and design forecasting
techniques to properly exploit them.

3.12.1 The Delphi method and the committee process

The word Delphi refers to the sacred oracle in ancient Greece. Forecasts and
advice from Gods were sought through intermediaries at this oracle. Leaders
and generals in ancient Greece used to look for the advice and predictions of
the Delphi oracle before any major war or political initiative.

Even today companies face very uncertain future events, and at times they
do not enjoy any factual information or data, so they have to resort to some
sort of oracle. Today’s oracles are experts that over time have collected in-
formation about the future event we try to forecast and have developed an
implicit interpretative model that puts them in a position to predict the fu-
ture. Examples from today’s world are fashion experts and designers trying
to predict new fashion trends.

The Delphi method was originally designed for long-term technological fore-
casting; however, it can be used to forecast demand before the launch of a
new product. In these circumstances no actual demand data are available and
companies have to resort to a more qualitative process (see figure 3.3).

Probably, the most common qualitative forecasting process is the committee
process, where a group of presumably expert panelists engage a discussion on
the new product, its features, its positioning, pricing, etc. In this process
the committee as a whole reaches an agreement on the future expected level
of demand for a given product (more generally a given future event, in the
remainder of the paragraph we use the specific case of a new product but
statements apply, mutatis mutandis, to the more general case of a generic
qualitative forecast).

This process clearly permits a high bandwidth communication among the
experts and favors the exchange of information and the discussion on the
implicit models of demand the various experts have. However, this process
permits a social interaction that might have significant side effects.

In many social situations, individuals tend to be influenced by others and
this might imply a loss of potentially relevant information. This is even more
dangerous within the specific social system of a company. Indeed, within a
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company, conflicts among organizational units, incentive schemes, and hier-
archy might prevent individuals from eliciting their opinion in a group. One
example might make the point clear. One of the authors was simulating the
committee process with a group of managers from various companies. They
were trying to predict the demand for men’s winter jackets. One member of
the committee started the discussion with a bold statement: “Who's the idiot
that can possibly wear that blue jacket?”3! The personality of this “expert”
was so strong that nobody dared to say a word and the committee finally
“agreed” that the demand for the blue jacket was going to be very low. Quite
interestingly, single experts were also asked to write what their personal ex-
pectation was. It turned out that a shy guy thought that the blue jacket was
going to be the top seller, but he did not dare to defend his opinion in the pub-
lic discussion. Actually, his opinion about the blue jacket was totally lost in
the committee discussion. Similar problems can arise because of hierarchical
relationships among experts rather than because of differences in personality.

Unfortunately, neither seniority nor a bold personality perfectly correlate
with the ability to forecast demand for a new product. This really means that
the committee process can lead to a loss of potentially relevant information.

Also, in a committee process we might face the “dictatorship of the major-
ity,” meaning that in many instances the majority of the group might disre-
gard heterodox opinions and simply ignore them. This can be very dangerous
in a very uncertain situation, where even odd scenarios might come true. As
we have discussed, social interaction within the group can lead to the loss of
potentially valuable information.

The Delphi method was actually designed to control interaction among
experts. The original Delphi method is administered through questionnaires
sent by mail. Clearly, nowadays it can be administered via e-mail. Experts
can even sit in the same building or room.

Basically, the idea behind this method is that the interaction among pan-
elists should be limited and formalized to avoid social interaction that might
lead to loss of information. So in the basic Delphi method, panelist interact
only through the administrator of the Delphi process. The steps of the process
are the following:

e Building the panel of experts
e Development and test of the first round Delphi questionnaire

e Transmission of the first questionnaires to the panelists

Analysis of the first round of responses

Preparation of the second round questionnaires

31'What made the situation really fun is that one of the authors was using the jacket during
that winter!
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e Transmission of the second round questionnaires to the panelists

e Analysis of the second round responses (Steps 5 to 7 are reiterated as
long as desired or necessary to achieve stability in the results)

e Preparation of a report by the analysis team to present the conclusions
of the exercise

Quite interestingly, the panelists are asked the same questions (e.g., how many
units is the new product going to sell during the season?) multiple times.
The logic behind this reiterated process is that iterations are the means of
communication among panelists. After each round of the questionnaire, the
responses are analyzed and the panelists are given a summary of the responses
(e.g., the mean response, the standard deviation, and where he/she is in the
distribution).

The idea behind this multiple interactions is to tell noise from signal. Let
us consider a panelist that provided a response off the average. In other
words, his/her opinion differs from the average one quite substantially. Once
the first round is completed, the panelist is provided with the distribution of
the responses and he/she figures out that other experts do not share his/her
vision of the future. During the second round he/she basically has two options.
The first is to stick to his/her opinion, while the second is to account for the
other experts’ opinions and revert to the mean. Actually, experts that do
have a strong point on the demand for the new product tend to stick to their
initial forecast. On the contrary, those that have no clear idea on the new
product tend to revert to the average opinion of other experts. For these
panelists, indeed, the average opinion of the other experts is a very relevant
piece of additional information that lead them to significantly update their
initial forecast. Such iterations of the process distinguish noise from signal as
we retain grounded opinions off the average while we tend to discard those
that are off by pure chance.

Concept 3.5 The Delphi method relies on experts’ knowledge to forecast, and
it is designed to control social interaction in such a way that the signal about
genuinely different opinions is kept, while random noise (i.e., lack of infor-
mation and/or knowledge) is removed from the data.

Another fairly important feature of the Delphi method is that it can cap-
ture the disagreement among experts. Indeed, while the committee process
generates a single number, in the Delphi method each expert generates one
number (actually a series of forecast, but the final outcome of the process is
one forecast per expert). Thus in the latter case we can compute the dis-
agreement among experts. This is actually a fairly important feature of the
process, as several studies (e.g., see [6] and [8]) show that the disagreement
among experts correlate with the degree of uncertainty. Such empirical stud-
ies basically confirm intuition. When a future event (think of a sport event)
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is basically certain, true experts can hardly have substantially different opin-
ions, whereas when it is truly uncertain, each of them might have a different
perspective. In other words, when experts tend to agree, they also tend to be
right, whereas when they tend to disagree, their errors tend to increase. This
is actually a very important feature of this process, as measures of uncertainty
are needed to make several decisions, including sequencing of products in pro-
duction planning (see [11]), sourcing decisions (see [9]), inventory planning
(see chapter 4), etc.

Concept 3.6 The disagreement among experts is a good proxy for demand
uncertainty. When exzperts tend to agree, their error is relatively low and we
face a low uncertainty. Vice versa, when they tend to disagree, very different
demand scenarios might come true and we face a fairly uncertain demand.

Basically, one can estimate the uncertainty the company is currently facing
by looking at two information sets. First, we can use past predictions of the
panel of experts to investigate the relationship between experts’ disagreement
and uncertainty as measured by the forecast error (difference between experts’
forecast and actual demand). For example, in [6] and [11] authors suggest that
the expected forecast error is twice the disagreement among experts. We can
leverage on these relationships to gauge demand uncertainty for a product.
We just need to measure the disagreement among experts and then read on
the estimated relationship the expected error this entails.

Also, this method can provide us with relevant information to judge the real
ability of the presumed experts to forecast demand. In the committee process
the whole team generates a single number and thus it is hardly possible to
judge to contribution of each member. On the contrary, in the Delphi method
we can track the performance of single panelists and give different experts
different weights or even remove some of them from the panel. Given the
degree of uncertainty involved in this forecasting process, we shall not jump
to the conclusion that a person is not good at forecasting demand for new
products simply because one forecast was substantially wrong. Basically we
are trying to estimate the average error one expert makes. This process is
affected by substantial variability and we need a fairly large sample of forecasts
to judge the true quality of the expert (i.e., the unknown parameter).

Drawbacks and limitations Just like all forecasting methods, Delphi has sev-
eral drawbacks and limitations. First, the outcome of a Delphi forecasting
process is nothing but the opinion of experts. Thus the results of this exercise
are just as good as the experts and the information we provided them with
(e.g., price, product description, advertising campaigns and budget, etc.) [14].
Thus the process needs high-quality intellectual capital to operate properly.
Also, the process is rather long and time-consuming. This means that it does
not fit emergency situations where a prompt answer is required. Moreover,
it can be deployed only when the relevance of the decision at stake justifies
the effort. For example, one might want to use a process like this for new
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Fig. 3.28 Measuring uncertainty through disagreement among experts: source [6].

products, but it can hardly work for monthly forecasts of a wide range of
existing ones.

Moreover, this process suffers from all weaknesses of qualitative methods.
First it depends on clarity of the question(s) posed to the experts and of the
objectives of the exercise (see [5]). For example, one should clarify the time
frame that demand refers to (are we forecasting demand for 12 months or
until current year’s end?) and marketing levers (How many stores are going
to carry the item? What price are we going to charge? And so on). A
lack of clarity on the objectives and boundary conditions can lead to a very
poor problem setting. This not only reduces the ability of experts to forecast
demand but also reduces their commitment and interest in the process.

Experts, as well as managers of the whole process, might be biased by their
objectives. For example, if one uses the forecast to set sales targets, the sales
managers might be tempted to understate their expectations. On the other
hand, if the forecast drives production and thus product availability, a sales
manager might be tempted to overstate its forecasts. So one shall make very
clear the purpose of the Delphi process and what data are going to be used for.
Moreover, one might want to point out that experts are going to be judged
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on their forecasting accuracy to focus their attention on accuracy rather than
on the potential effects of their opinions.

3.12.2 Lancaster model: forecasting new products through product
features

The Delphi method relies solely on experts’ opinion and it can be used to fore-
cast demand for new products. However, even before the product is launched,
one can use more structured models to predict sales.

A trivial possibility is to identify a “related” item and assume the new
one is going to sell at a similar rate. It is rather interesting to discuss what
the word “similar” really means. Often, this has two meanings. First, the
existing one can be discontinued and a new one (actually a new version of
the same product or a product in the same market segment) is going to take
its place. A second meaning of the word “similar” is that the new product
shares several features with the existing ones. For example, they might have
a similar price, the same color, a similar design, etc.

Actually, one can try to generalize this rather trivial process and forecast
the demand for a new product on the basis of its features.

The basic logic of this model is that customers are not interested in new
products per se but rather in the features of the new product. For example, a
customer might be looking for a red t-shirt, size large, rather than for a specific
SKU. Clearly, this model of demand does not fit items that are somehow
unique to the customers. For example, customers might want to buy the
“Da Vinci code” book and not be interested in any other book on Da Vinci
or the Opus Dei, or authored by Dan Brown. The average customer is just
interested in that specific SKU. In other instances, customers might just look
for a combination of features. For example, a customer might want to buy a
package of spaghetti, Barilla brand, in a 1-kg package, and might be willing to
switch to another brand or to another package size according to availability or
price. Zara, a leading fashion retailer based in Spain, extensively analyzes the
product features that happen to be most popular to design new products and
adjust its assortment during the selling season. Basically, the retailer identifies
the most popular color patterns, shapes, and accessories (e.g., buttons vs.
zippers) and generates all possible combinations of the most successful product
features to generate products with a very reasonable chance of success (see
9)-

So, to the extent that the model can be applied (i.e., products are not
unique but rather can be described as set of features), one can try to predict
the demand for a new product by looking at whether its features are popular
in the current product assortment.

One way to estimate the popularity of these features is to use multiple linear
regression. In this model the dependent variable are sales of the product and
the independent variables are product features.
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When one uses this model with statistics packages or even general-purpose
software such as Excel, one should pay careful attention to the nature of the
variables. These are often categorical variables. In other words, shape 1 and
shape 2 are as different as shape 1 and shape 15. They are simply different
options.

Other variables can be added to this model to account for seasonality and
even experts’ opinion simply by adding these variables as predictors in the
linear regression.

3.12.3 The early sales model

Once the product is on the market, we can observe sales and judge the market
potential for the product through its early sales. In the specific case of seasonal
products (and more generally for products with a preset life cycle) such as
fashion apparel, one could try to estimate demand up to season-end through
the early sales. For example, one could try to forecast the season demand for
a sandal based on sales in the month of March.

To do so, one has to estimate the relationship between the demand in the
month of March and the demand for the total season. One can study the
relationship between these two variables in the past to check whether actually
demand in March is a good predictor of total season sales and, if this is the
case, estimate the relationship. Notice that the underlying assumption is
that the distribution of sales within the season next year will behave like it
has behaved in past years. Thus, this process acknowledges that different
products succeed to different degrees. Yet, it still somehow assumes that the
future resembles the past. In particular it assumes that pattern of sales of any
item within the season (in a product category) is the same year after year.3?

Concept 3.7 When season after season sales keep the same pattern over
time, early sales are a good predictor of total season’s sales.

To judge the merits of this approach, one can draw the so-called “percent-
age done” curves. In other words, we can use demand data from past seasons
and measure the percentage of total season sales accumulated by a given point
in time in the season.

More formally, let Y; ; be the demand for item ¢ at time ¢ within the season,
T the duration of the selling season, C;; the cumulative demand for item ¢
at time ¢, and P, ; the percentage of total season’s sales of item i occurred by

32Notice that this concept is closely related to the seasonality model presented in section
3.8. However, there are two differences. First and foremost, in this case the product has
less than one year or season of history, thus we cannot use the past demand to estimate
the fluctuations of future demand. Therefore, we basically resort to related products to
estimate how demand varies within the season. Also, in this case we do not look at sales
in each time bucket (say one week), but rather at the sales up to a given point in time ¢.
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Table 3.22 Demand data for a set of seasonal products

Time Product 1  Product 2 Product 3 Product 4
1 206 127 488 192
2 291 193 674 289
3 565 296 925 334
4 841 482 1017 394
5 826 469 861 370
6 590 273 607 238
7 514 242 541 224
8 514 269 610 214
9 482 194 497 156
10 452 194 427 157
11 529 186 461 160
12 483 190 472 173
13 465 187 482 166
14 461 214 532 188
15 466 228 528 192
16 568 210 526 206
17 427 191 464 141
18 394 154 408 166
19 400 189 444 163
20 347 134 357 131
21 314 122 354 121
22 294 109 328 101
23 304 112 347 119
24 286 97 327 103
25 233 85 287 91
26 199 101 262 84
27 216 105 235 84
28 229 112 263 108
29 221 102 259 91
30 176 96 200 93
31 143 73 202 86
32 146 64 212 70
33 127 73 203 65
34 137 81 216 76
35 117 76 212 72

Demand in the season 12963 6030 15228 5618
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Table 3.23 Percentage done of season demand curves

Time Product 1 Product 2 Product 3 Product 4
1 2% 2% 3% 3%
2 4% 5% 8% 9%
3 8% 10% 14% 15%
4 15% 18% 20% 22%
5 21% 26% 26% 28%
6 26% 31% 30% 32%
7 30% 35% 34% 36%
8 34% 39% 38% 40%
9 37% 42% 41% 43%
10 41% 45% 44% 46%
11 45% 49% 47% 49%
12 49% 52% 50% 52%
13 52% 55% 53% 55%
14 56% 58% 56% 58%
15 59% 62% 60% 61%
16 64% 66% 63% 65%
17 67% 69% 66% 68%
18 70% 1% 69% 70%
19 73% 74% 72% 73%
20 76% 7% 74% 76%
21 78% 9% 7% 78%
22 80% 80% 9% 80%
23 83% 82% 81% 82%
24 85% 84% 83% 84%
25 87% 85% 85% 85%
26 88% 87% 87% 87%
27 90% 89% 88% 88%
28 92% 91% 90% 90%
29 93% 92% 92% 92%
30 95% 94% 93% 93%
31 96% 95% 94% 95%
32 97% 96% 96% 96%
33 98% 97% 97% 97%
34 99% 99% 99% 99%

35 100% 100% 100% 100%
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Fig. 3.29 Predicting season’s sales with the early sales: percentage done curves.

time t:
t
Civ=> Yir (3.45)
T=1
Ci s
P, ==t 3.46
N Ci,T ( )

In this case, time t is the time elapsed since the beginning of the selling season.
So the second week of the selling season of year ‘05 and ’06 both refer to ¢ = 2.

If the graph of percentage done shows that products in the past had a
rather similar behavior as in figure 3.29, then we know how demand behaves
within the season. Actually, we are not interested in sales on a specific day
or in a specific week. We just notice that by time t we tend to sell a given
percentage of the total season sales.33

In this case, a more trivial approach is to estimate the average distribution
of sales as the average of the percentage done curves of all N products sold
in past season(s).

1 1L ¢

- it

Pt:NE PM:NE Cit (3.47)
i=1 i=1 '

33Notice that the products we analyze shall be related to the products we want to forecast
during next season. For example, they should belong to the same product category in order
to share the same demand pattern during the selling season.
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We can then use this percentage done curve to estimate total season sales for
the new product 7 as

N

Cie
C; ==L, 3.48
3,7 2 ( )

This procedure is often adopted though it is rather crude, as we assume that
E(W) = E(W/X) - E(X), which in general is not true and holds only if
the two variables are independent. If this process is followed, we tend to
measure the accuracy of this prediction as the standard deviation of P; ; (i.e.,
the percentage of total season sales occurred by time ¢ for various products),
which again is an oversimplification as the real uncertainty depends on the
standard deviation of 1/P; ;.

A more appropriate description of the process is to investigate the rela-
tionship between the two variables through a regression. We can use past
seasons’ data to estimate the relationship between the sales up to time ¢, C; ¢,
and total season sales, C; r. In particular, if we assume that the relationship
is proportional, we can investigate the following relationship:

Ci,TZOé%-‘B'Cz‘_’t-FE.

Once we have estimated the parameters a and 3 through a and b, we can use
them to estimate total season sales for product j as follows:

CA'J"T =a+b- Cj,t
Linear regression provides us with more information on the distribution of
errors and enables us to estimate errors and thus uncertainty [see equation
(3.44)].

If the curves of various products show rather different behaviors over time,
we might want to investigate the drivers of such differences. First, products
might have inherently different demand patterns. For example, sandals and
shoes that are part of a spring—summer collection might show different behav-
iors and we might want to tell one from the other by drawing two separate
percentage done curves for the two clusters of products. Also, the actual
selling pattern of products might be influenced by actions and decisions of
the company. For example, demand might be influenced by the number of
stores carrying the item, the current price and the availability of the product
variants. All these variables might distort sales and thus open a gap between
the natural demand pattern and the actual sales pattern we observe. For
example, two products might have a relatively similar demand pattern over
time, but one might take off at a later stage simply because it is delivered to
stores at a later stage. Also, one product can take off at a given point in time
simply because its price was significantly reduced.?* Finally, sales might dip

34This is a very relevant issue in those countries where retailers can freely reduce price at
any point in time. In other more regulated countries, such as Italy, the retailers can reduce
prices only during the off-price season (e.g., January 10-February 15).
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at a given point in time simply because stores are running out of the product.
This means that either the product actually stocks-out or that inventories are
so low that sales are reduced.

Example 3.18 Indeed, for some products the inventory level drives sales.
This theme is widely investigated for fast moving goods such as grocery. In-
terestingly, similar findings hold in the case of slow moving goods. In the
case of shoes, a US company has estimated that when less than ten pairs
of a given shoe (style-color combination) are available, sales start declining.
Indeed, with less than ten units the size distribution is broken and store man-
agers start pulling back the product and even salespersons might not suggest
the product to a consumer simply because he/she does not know whether
the right size is available. The salesperson might prefer to suggest another
product not to disappoint the consumer and embarrass him /herself.

3.13 THE BASS MODEL

The Bass model is a classic tool for the analysis of new product introduction
from the marketing field [3]. The model is designed to forecast the adoption
pattern of new durable products. It is a so called diffusion model. In other
words, the model tries to forecast the adoption pattern of a new product.
In particular, the model is aimed at durable products: For such products,
multiple purchases of the same item are unlikely, so the model assumes that
each potential adopter buys only one unit. In other words, given the number m
of potential adopters the number of units sold over the lifetime of the product
is by definition m. So rather than forecasting the size of a market, the model
analyses how demand varies over time. The demand for the new product at
time ¢ is Y%, and it corresponds to the growth in the number of actual adopters
during period t. In other words, the demand Y} is the difference between the
adopters at time t, N;, and the adopters at time ¢ — 1, N;_1:

}/t - Nt - 17\/}_1. (349)

Furthermore, the model assumes that there are two basic adoption processes.
On the one hand, some potential customers, called innovators adopt the new
product at a given rate p simply because they come to appreciate its features.
On the other hand, other potential users, called imitators, simply imitate
current users. This second demand generation process actually depends on
the number of current adopters that can be imitated, as well as the number
of current nonadopters that can imitate them. This is the so-called “word of
mouth” or “contagion” effect, and a parameter denoted by ¢ accounts for it.

Hence. the probability that a potential adopter actually adopts the product

in current period ¢ is
Ni_1

pr=p+gq- (3.50)
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Fig. 3.30 Bass model: probability of adoption p: with no imitation (g = 0). Case of
p = 0.05.

Hence, the probability that a potential user adopts the product at time ¢
depends on the rate of innovative adoption plus the rate of imitation times
the percentage of current adopters. Basically, there are two probabilities of
adoption and the second one is fully deployed only when the number of actual
adopters reaches its maximum level m: p+q is the probability of adoption of
the “last customer.”

This probability of adoption is multiplied by the number of potential new
customers that have not adopted the product, so far:

Y(t)=p; - (m— Neoy) = G+qja;>(m—NgQ. (3.51)

In this model the shape of demand over time depends on the two parameters
p and g. While parameter p tells the initial degree of adoption, the parameter
g tells whether the product all of a sudden becomes very popular because of
imitation and so demand reaches a peak.

The combination of these two parameters fits very different patterns of
adoption. In the case of ¢ = 0 there is no imitation and thus the percentage
of customers that adopt the product is steady (see figure 3.30). This means
that the adoption pattern follows a logarithmic curve (see figure 3.31) and
the demand is decreasing as we have a constant probability of adoption but
a decreasing number of potential adopters.

When we change the imitation parameter to ¢ = 0.1, adoption pattern
and demand change substantially. In this case, the probability of adoption
increases with time (see figure 3.33) and the demand shows a peak in period 6
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Fig. 3.31 Bass model: adoption pattern with no imitation (¢ = 0). Case of p = 0.05.
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Fig. 3.32 Bass model: demand pattern with no imitation (g = 0). Case of p = 0.05
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Fig. 3.33 Bass model: probability of adoption. Case of p = 0.005 and ¢ = 0.1.
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Fig. 3.34 Bass model: adoption pattern. Case of p = 0.005 and ¢ = 0.1.



THE BASS MODEL

adopters
1000 XW
900
800 + ‘/;
700 } f‘,
600 /

500 ;

400 /

time

300

200 4 j

100 f
17

Fig. 3.35 Bass model: demand pattern. Case of p = 0.005 and ¢ = 0.1.
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Fig. 3.36 Bass model: probability of adoption. Case of p = 0.001 and ¢ = 0.1.
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Fig. 3.37 Bass model: adoption pattern. Case of p = 0.001 and ¢ = 0.1.
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Fig. 3.38 Bass model: demand pattern. Case of p = 0.001 and ¢ = 0.1.
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(see figure 3.35). Previous periods have a lower probability of adoption while
following ones have a relatively low number of potential adopters left. The
number of adopters shows a similar pattern (see figure 3.34).

However, when we reduce p to 0.001 things change substantially. Like in
the previous case, the probability of adoption changes over time. Interest-
ingly, the pattern of adoption is very different from the previous case. In this
case the product fever due to imitation starts at a later stage. Indeed, the
imitation effect plays a significant role only once the innovators have built a
significant base of users that current nonadopters can imitate. The buildup
of this minimum number of users depends on the speed of the adoption by
innovators, p. In case it is slow (i.e., there’s a low probability of adoption p), it
takes more time to build the critical mass of adopters that can be imitated by
nonadopters (see figure 3.36). This change in p; has an effect on the number
of current adopters that shows a classic S shape (see figure 3.34). Demand
starts very slowly as only innovators adopt the product in the early stages. As
a fair base of adopters is established, the imitation effect starts playing a role
and demand increases. Finally, demand decreases as the number of adopters
reaches the maximurn level m and we run out of new potential adopters (see
figure 3.38).

SInce the demand patterns can be so different according to the parameters p
and ¢, we should figure out how to estimate the parameters properly. A wrong
estimation of the parameters might lead us to believe that future demand will
look like figure 3.32 while it might resemble figure 3.35.

The Bass model is a centerpiece in the literature on new products and
several procedures to estimate parameters have been suggested, but they are
beyond the scope of this book. Here we report the estimation process sug-
gested by Bass in his 1969 article.

We first restate the model as

}wn:(p+qﬁﬁf>-0n—N%ﬂ

=mn+m—mNL1-%-Niy

By setting
a=p-m, (3.52)
b=gq-p, (3.53)
c=-1 (3.54)
m

we can then restate the problem as follows:

Y(t)=a+b-Nio1 +c- NE,. (3.55)
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Equation (3.55) can be used with any statistical package to estimate pa-
rameters a, b, and ¢ through multiple regression.33
Once these estimates are available, we can derive estimates of m, p, and ¢
through equations (3.52) to (3.54). We know that p = £, Also, ¢ = —c - m.
Substituting in (3.53) we have
a

b= —c-m—- = .
crm——, (3.56)

that can be restated as a quadratic equation
a+bm+em? =0, (3.57)

Hence,

—b+ Vb2 — 4ac

2¢
—c-m,
a

m

<
t

Once we have investigated how the model can be estimated, we should
discuss how these estimates can be used. Actually, this really depends on
where the product is in its life cycle. Before the product (or new technology)
is launched, these estimates cannot be possibly derived from product’s demand
data. What one can do in these cases is to build estimates for the various
parameters, based on various sources of information:

o The potential market size m can be estimated through analysis of prod-
uct performance, price, etc., to estimate the number of customers that
might potentially buy the product (for further discussion see [10] and

[16]).

e The innovation and diffusion parameters p and ¢ can be derived from
past introduction patterns of comparable products. The assumption
behind this approach is that the pattern of adoption of a new product
depends (mainly) on the products category it belongs to (see 3.12.2).
There might be significant differences among products, but still we lack
the data to judge the current product and thus resort to the most reliable
piece of information we have, that is, the category it belongs to.

35Notice that we are using a, b, and ¢ as both estimates and parameters. Indeed, the model
does not provide any formulation of demand as a stochastic process. Also, here we estimate
a, b, and ¢, and then we obtain estimates of m, p, and q. However, the best estimate of a
function of parameters a, b, and ¢ might not be the function of the best estimate of those
parameters. In other words, this is a robust empirical solution that happens to work, but
it is not grounded in solid statistics.



REFERENCES 185

At a later stage, as the product starts selling and more demand data on
the specific product is available, we can estimate parameters for the specific
product as shown in equation (3.55). Notice that the usage of product-specific
estimates rather than category-related ones depends on the availability of
data. Once we have three data points, we are in a position to estimate the
three parameters of the Bass model m, p, and ¢. However, they might be
8o poor that it might still be worth using the past estimates based on the
category.

3.13.1 Limitations and drawbacks

The Bass model is one of the best-known models for new product demand
forecasting. A wide literature has applied, discussed, and improved the model.

A major stream of research has highlighted that the diffusion depends on
the marketing levers of the company. For instance, the adoption pattern might
depend on the pricing policies. Actually, if the price is reduced at a given point
in time, the demand is likely to increase. Also, competitive variables might
be a second source of variations in the adoption pattern. For instance, the
adoption of the model can be influenced by the launch of competitor products
or their price over time.
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Inventory Management

with Deterministic
Demand

4.1 INTRODUCTION

Managing distribution logistics effectively requires coordination of both in-
formation and material flows in the supply chain to gain efficiency, that is
minimize costs, and efficacy, that is meet demand.

In chapter 1 we have discussed the various functions of inventories and
showed that they can be deployed at various stages of the supply chain from
raw materials, to components, to finished goods both at central distribution
centers, at local warehouses, and at single retail stores. This short overview
shows that inventory management is a rather broad and complex topic. Thus,
we need a framework to identify single problems, tell the differences among
them and design specific solutions. The first step is to identify the variables
along which the various inventory problems differ, i.e., dimensions of the prob-
lems’ space. Such variables are going to be used to classify both problems and
solutions presented in the following:

e nature of inventories and of the supply chain;
e nature of demand;
e available information set;

e set of objectives the solution tries to achieve (e.g., which metric is used
to measure inventory efficiency? And how do we measure customer
service?).

187



188 INVENTORY MANAGEMENT WITH DETERMINISTIC DEMAND

Nature of inventories and of the supply chain. To properly set the inventory
management problem, we need to identify the supply chain we refer to. For
example, inventory management policies designed for a single warehouse of-
ten perform poorly in a multiechelon supply chain where the purchase quan-
tity might depend on inventory levels and demand both upstream and down-
stream. Also, as we have seen in chapter 1, multiechelon supply chains can
be linear, converging, or diverging; each structure may have its peculiarities.

Supply chains with deterministic lead times (LT) differ from supply chains
with stochastic ones. In the latter case, indeed, there is no tight relationship
between purchase/production plans and deliveries to the warehouse, and this
makes planning harder. Moreover, we must choose the set of products we in-
tend to manage. Indeed, a single item supply chain is relatively easy to model
and manage. Understandably, in supply chains where interactions among
products are weak (e.g., they are neither substitute nor complements, they do
not share production equipments, transportation means, or warehouse space)
we can pretend that the various inventory problems are independent. On the
contrary, modeling and managing multi-item supply chains where products
are complements, share limited production or transportation capacity, etc., is
more complex.

Another relevant feature of the product is the ratio between the product life
cycle and the purchasing LT. Such a ratio tells whether the planning problem
is static (i.e., decisions are taken at one point in time) rather than dynamic
(decisions are taken at multiple points in time). For example, in the case of
products with a very short life cycle and a relatively long production lead
time, such as newspapers, we can decide how much inventory to carry only
before we start selling. Such problems are static, as only one decision is made
and

o the decision is not going to be updated at a later stage;

e the current decision has no effect whatsoever on the future ones as prod-
ucts expire.

Example 4.1 In the case of newspapers, the number of copies is set the
night before the product starts selling; moreover, any units left unsold at the
end of the day expire, as they become yesterday’s news. Furthermore, any
units left unsold today do not reduce the requirement of copies of tomorrow’s
newspaper. Thus, we make a single decision on the number of copies we want
to print at one single point in time. Hence, the newsvendor problem is static.

A related, though different classification variable catches whether we are mak-
ing just one purchase decision rather than multiple decisions. In other words,
we can face both single-period and multiple-period ones. To tell the difference
between these two variables let us consider the following examples (see also
chapter 1).
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Example 4.2 Let us consider the case of a European retailing chain that
sells fashion apparel products. In this business the assortment changes com-
pletely each and every season. Also, let us assume that the retailer purchases
products from Asia so that LT are too long to readjust the assortment and
the quantities based on early season sales (see section 3.12.3). So, say that
the retailer places orders for the fall/winter collection only once a year. This
makes the problem static, meaning that all decisions are taken at one point
in time with one information set (i.e., the problem is single-stage). Neverthe-
less, the retailer might decide to receive goods at various points in time. For
example, the retailer might decide to receive some goods in early August and
some additional quantities in early October, in order to reduce the inventory
investment in August and September. This makes the problem multiperiod.
Indeed, the decisions are taken for various periods of time. The inventories
received in August are designed to meet demand during the first portion of
the season, while goods received in October are designed to meet demand
during the last portion of the season (see section 5.2.1). So this example
shows a case of static and multiperiod problem that contrasts with the case of
the newsvendor that is a static and single-period problem. The next example
finally shows a case of dynamic and multiperiod problem. I

Example 4.3 Some products have such a long life cycle that it can be con-
sidered to be infinite. For example, some standard packaged goods such as
dry pasta or frozen beans often have a rather long shelf life and thus goods left
over at the end of one day are carried to the next day. Also, these products
remain unchanged cover time and thus we can have multiple deliveries over
time. This makes the inventory planning problem a multiperiod one. Also,
the delivery quantities are not the same forever. For example, a planner might
decide production or purchase quantities for dry pasta once a week. These
decisions are updated as more information becomes available. So, we plan
inventories for multiple periods rather than for a single one. Also, we make
decisions at various points in time with different information sets. This makes
the problem dynamic as well. I

In the next two chapters we only consider single-period problems and those
multiperiod problems where the life cycle (and shelf life) of the product is so
long that we can ignore the end-of-life-cycle (and end-of-shelf-life) issues and
costs (we only briefly discuss a two-period problem in section 5.2.1). The
following example illustrates a kind of multiperiod problem where end-of-
life/end-of-shelf-life issues must be dealt with.

Example 4.4 The case of fresh food in supermarkets is actually an inter-
mediate problem where we face both the complexity of end of life, that is
typical of the single-period problems, and the complexity of multiple periods.
So. it is an intermediate problem that sums the complexities and hurdles of
both extreme situations. These products often have roughly one month of
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shelf-life. For example, yogurt expires in roughly three weeks after the pro-
duction is completed. So, during the product shelf life we can replenish the
store multiple times. On the other hand, the product shelf life is quite limited
and we cannot rule out the risk that the product expires on the shelf (or that
the shelf life left is so short that customers do not buy it anymore). These
intermediate problems are much more complex to model since, like in the case
of multiperiod problems, we need to model the impact of decisions at time ¢
on the initial condition at time ¢ + 1, but we also have to model the age of
products in the supply chain and the probability that they expire.

Nature of demand. The nature of demand is a crucial issue, as meeting de-
mand is the problem the firm tries to address through an appropriate inventory
management policy.

Two important features of demand are the degree of certainty/uncertainty
and the degree of variability. These two basic concepts are often erroneously
considered synonyms (see [10]). Nevertheless, we shall separate them and
clearly tell the difference between them. As the following examples show,
demand can be very variable and certain, or stable and uncertain.

Example 4.5 The production of machineries industry faces sharp fluctua-
tions of demand that depend on the economic outlook, as it might or might
not lead firms to make investments in additional capacity or replace old ma-
chineries. In this industry, plus or minus 50% year-to-year variations are
rather common and make demand very variable. However, such products are
Engineered To Order (ETO). In other words, each single machine is designed
or, at least, partially customized according to industrial customers’ needs.
Thus, production cannot be possibly completed before the customer order is
received and the product is fully designed and engineered. Purchasing de-
partments in this industry face a variable demand over time; however, when
they place an order for a component, they often know customer demand. As
we just said, demand variability is objective, while uncertainty is subjective
and refers to an information set available to the forecaster: The purchasing
planner in the machinery industry typically knows demand very well when
he/she places purchase orders; on the contrary, when the management of the
same company prepares next year’s budget, typically it faces a significant un-
certainty about next year’s orders and turnover. Hence, the same demand is
certain for the purchasing planner while the management perceives a great
deal of uncertainty as it plans over a much longer horizon (at the least one
year) and does not enjoy a very relevant piece of information, i.e., customer
orders (usually the order portfolio covers just a few months).

Example 4.6 In the car industry, most Original Equipment Manufacturers
(OEMs) choose one (single sourcing) or two suppliers (parallel sourcing) for
a specific component (e.g., a speedometer) for a specific model (e.g., FIAT
Punto). OEMs do their best to keep the utilization rate of the very expensive
production lines steady; thus, also the demand for components is relatively
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flat (at least for those that are common to all product variants). However,
for suppliers, demand might be very uncertain for several reasons. First,
while designing a car with an expected demand of 100 units per day, several
suppliers bid for the supply of speedometer. Thus, each of them faces a
significant uncertainty: Demand could be either 0 (if a competitor is selected)
or around 100 units per day (if the supplier itself is chosen). Once a supplier
wins the bid, it still faces some additional uncertainty as the new car might
be more or less successful than we initially expected. Thus, according to the
level of sales, the OEM might use one, two, or even more production lines
to agssemble the car. As we can see, the demand for car components is likely
to be fairly flat over time, but it is very uncertain before the new model is
launched and, even more so, before the supplier is selected. I

The wvariability of demand (and, more in general, of a process) is easy
to capture through statistics such as standard deviation or the coefficient
of variation when, as it is often the case, an adimensional metric is more
appropriate. These statistics capture the variation of demand over time as
they compare single observations (draws) of demand to their average.

On the contrary, the concept of certainty/uncertainty is more complex and
subtle, as it refers to an information set available to the forecaster that tries to
predict demand with a given forecasting horizon. Demand certainty/uncertainty
depends on the extent to which the forecaster can predict the future level of
demand with a given horizon and thus is subjective, meaning that it depends
on the subject that is forecasting. For example, the future level of price of the
shares of a given company might be very uncertain for many analysts before
quarterly results are released but, at the same time, it might be relatively
easy to predict for the CEO of the company that might already know them
(at least roughly).

Demand can be either continuous or discrete. In some instances demand
is basically a continuous process where small (infinitesimal) orders are con-
tinuously collected. For example. think about the sales pattern of Coke cans
in any large chain of grocery stores. In theory the demand for cans of Coke
is discrete, as one cannot buy 0.7853 units. However, aggregate demand is so
large that this discreteness is somehow irrelevant for our planning problems.
In other instances, demand is discrete as single customer orders are large as
compared to the average demand. In this case the number of orders per unit
of time is very small and thus orders are not received continuously. For ex-
ample, consider the case of large machineries where each order is a separate
project and several salespersons might follow a single customer.

The first case is easier to model than the latter, as we can model the
demand pattern rather than each single order. The latter demand pattern is
also called lumpy demand, as orders occur only sporadically in large lumps.

In the rest of this chapter and in the bulk of chapter 5 we assume demand
to be a continuous process for the sake of simplicity and because this type of
demand covers a large share of real-life problems. In chapter 6, we discuss how
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lot sizing policies can turn a continuous final consumer demand in a rather
discrete demand upstream in the supply chain. We refer the reader to a more
specific literature on discrete lumpy demand (e.g., see [9], [11], [8]).

Finally, to capture the nature of demand we shall look at Delivery Lead
Times (DLT) customers expect or desire, i.e., the speed that customers re-
quire. If customers expect a zero DLT, the company knows customer orders
only when they are delivered. Brick and mortar grocery stores are a typical
example of this situation: Customers literally walk into the store and take
what they need on the spot. In other instances, customers place their orders
before their desired delivery date. For example, in the car industry customers
(in Europe and only partially in the USA) place their order for a custom built
car a few weeks in advance of the required delivery date. Also, the same hap-
pens with e-grocery stores, where customers might place orders a few days in
advance of the requested delivery date. If DLT larger than zero, companies
can take advantage of this advance notice of customers’ need and plan their
inventories accordingly.

Example 4.7 The comparison between various cases from the retail indus-
try can shed some light on the meaning and effects of customers’ DLT. As
consumers, we expect zero DLT at fast food restaurants, while we are will-
ing to wait for our fresh fish to be cooked for 40 minutes or so in a top-end
restaurant. Thus, in the first case the retailer carries finished goods (e.g.,
burgers) and keeps a relatively limited assortment, whereas top-end restau-
rants only carry raw materials and produce a very wide range of finished
products (dishes) to customers’ order. Also, customers’ expectations might
depend on the product category. In most furniture stores (with the remark-
able exception of IKEA) most customers place their orders a few weeks before
the requested delivery date. This enables retailers to plan their inventories
accordingly and make sure goods are delivered to the warehouse just a few
days before they are shipped to consumers. 0

In case of strictly positive Delivery Lead Time, the order portfolio can give
us a very relevant piece of information that can be used to make proper plans.
However, for the sake of simplicity in this book we assume DLT to be zero.

Set of information available As we already mentioned, inventory problems dif-
fer in the degree of demand uncertainty. This is just a specific case of a broader
concept: More generally, the applicability of various inventory management
methods depends on the availability of various pieces of information.

Example 4.8 Some grocery supermarkets adopt automatic replenishment
for some of their products, whereas others rely on employees that walk the
store, look at current inventory levels, and place orders. The choice between
one solution and the other depends on several issues. One of them is the
ability of information systems to reliably capture current inventory levels on
hand in the store (just think about what happens when a customer buys one
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vanilla and one banana yogurt and, given the identical prices, the vanilla one
is scanned twice; or when products are damaged or stolen).

To fully appreciate the impact of this problems, let us assume that the op-
timal inventory level is 100 units. If the information system does not capture
the current inventory level accurately, it cannot place an optimal replenish-
ment order that raises inventories to 100 units. Several grocery retail chains
think that an automated and centralized replenishment system might reduce
labor costs, cut inventory investment, and improve product availability and
customer service. However, they still use a manual process, as they know that
employees can have a much clearer picture on current inventory levels than
an automatic and centralized information system can. Other companies have
decided not to surrender to inventory data inaccuracy (errors in inventory
records). These companies spend time, money, and efforts to reduce such
errors rather than live with them and adopt manual ordering. For example
such companies audit their inventories more frequently or adopt more fancy
techniques such as the so-called zero balance walk. In other words, these com-
panies noticed that it is very easy to count zero units on the shelf and tell
the system the products that are currently out of stock. This practice enables
them to capture actual stockouts; also, they can check the inventory level of
many products (on the average, 8% of the items in a grocery store are out of
stock; see [2]) with a very limited effort.

Even these companies, though, adopt automatic replenishment only for
long shelf life products. For fresh products. the central information system
might know the quantity available in the store, but it cannot possibly capture
other relevant pieces of information. For example, the system does not know
the expiration dates of the 10 units of yogurt left on the shelf; also, the system
ignores whether fruits and vegetables on the shelves are good-looking or are
getting rotten. a

In classic inventory models we assume to know the current inventory level.
Only recently the issue of inventory data accuracy has been investigated em-
pirically (see [4], [5], [6]) and theoretically (see [3]). Given the scope of this
book, we assume that the decision maker knows current inventory levels per-
fectly.

Among other pieces of information, in inventory theory we study whether
the information on inventory levels is available continuously (continuous re-
view) rather than sporadically (periodic review). In other words, we tell the
cases where we can monitor inventories continuously from the cases where
we can know inventory levels only with a given periodicity. Indeed, in peri-
odic review systems we shall acknowledge that in the time between reviews,
inventories are out of control and fluctuate freely according to demand.

In the past, periodic review systems were often used because continuous
ones were way too expensive. Today, the cost of such systems has gone down
substantially. Thus, an information system that can track inventory level in
real time is no longer an issue in most developed countries. However, the
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availability of such an system is just one of the requirements for the adop-
tion of continuous review planning systems. For example, in many companies,
purchase orders proposed by the computerized system must be approved (and
at times modified) by planners and time and resource constraints might force
the planners to look at purchase plans only once a month. In this case, the
Information Technology infrastructure supports continuous review but the
company is forced to use a periodic review system, as any piece of informa-
tion released between two purchase plans would not be used to make better
decisions and thus would be totally ineffective: The company works as if the
real-time information was not available.!

Objectives Finally, to properly set the inventory problem, we should identify
the objectives the company is trying to achieve. Such objectives are hetero-
geneous. However, we often try to translate them into costs to make the
objective function scalar rather than vectorial. If and when this is a viable
option, the objective function can be optimized.? In this chapter, we fully
explore the flipsides of this approach. Also, cases where several objectives
cannot be turned into a scalar objective function are investigated.

Finally, to fully identify an inventory management system, we have to
specify the objectives the company (or organization) is trying to achieve. As
we just discussed, such objectives can be fairly heterogeneous. However, we
often try to turn them into a single cost function so that we can deal with a
scalar rather than a vector and optimize it. We do so by associating each single
objective with a unit cost. For example, we turn the service objective into a
cost by stating that a single stockout is worth a given monetary amount. In
the next chapter, we discuss the issues this approach raises and we investigate
cases where we cannot turn several objectives into a single cost function.

The most common cost categories are:

e Purchase costs, i.e., the amount of money required to buy the goods.

o Ordering costs, i.e., the costs associated to an order or a lot. Such costs
can be setup costs in a production environment where the warehouse is
supplied by the company’s production plant, but they can also be fixed
transportation costs the customer pays for (or the supplier charges for);
also, they can be administrative costs of order processing, receipt, and
inspection of inbound materials.

INotice that in current information systems we have so-called alerts. These tools call for
the attention of the planner under “critical” conditions. This really means that the decision
maker can plan the product once each month, but on the other hand the system can call for
his/her attention when inventories run high/low, demand has any odd behavior, and so on.
This really means that the decision makers have a blend of the two processes. They review
decisions periodically, but at the same time the computerized system controls inventories
and demand continuously and calls for decision-makers’ attention when it is needed.

2See section B.7 on multiobjective optimization.
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o Inventory costs. i.e., the cost for warehouse space occupancy, financial
cost of holding money in inventories, loss of value of goods carried both
because they might perish (think of fresh goods that lose weight and can
rot) or they might lose value because of technological innovation (think
of the value of older PC when a newer one is launched) or fashion (think
about the value of a garment at the beginning of the selling season and
after the end of it).

o Costs of lack of service to customers; one of the functions of inventories
is to enable the company to meet demand with short Delivery Lead
Times. Poor inventory management can lead to fairly low service levels.
Obviously, customer service can be defined in several ways that entail
very different cost functions. For example, in the case of drugs for spring
allergies the lack of a product might not be too serious; on the contrary,
the lack of B~ blood in a hospital might be a very dangerous situation.

In this chapter, we start with the simplest problem:
o single warehouse (single echelon);
e infinite life cycle and thus multiperiod problem;

e stationary and continuous demand (later extended to variable but per-
fectly predictable demand);

e known (deterministic) lead times, demand, and inventory levels;
¢ the objective is to minimize the sum of inventories and ordering costs.

The above system is deterministic and thus we do not need to tell the contin-
uous review case from the periodic review one. Once we know the status of
the system at any point in time tq, we can derive the status of the system at
any other point in time ¢.

Section 4.2 deals with the simple case of a single product with zero Lead
Time, and section 4.3 discusses the robustness of the model. The following
sections extend the model in several directions. Section 4.4 describes the case
of deterministic but nonzero lead times; section 4.5 deals with the so-called
finite production rate case, that is, when the products in a lot are not delivered
all at once, but are rather delivered progressively. Section 4.6 discusses the
multi-item case, and nonlinear costs are investigated in section 4.7. Finally,
in section 4.8 we illustrate a few examples of how variable but known demand
can be managed by deterministic optimization models.

4.2 ECONOMIC ORDER QUANTITY

If demand is constant, the model that supports decisions is the so called
Economic Order Quantity (EOQ). In the simplistic conditions of the model
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(deterministic, constant, continuous and known demand and zero lead times)
we can completely fulfill demand and therefore the cost related to lack of
service is zero. Indeed, in this case we only need to order any amount of goods
when we run out of the product. The goods are replenished immediately and
thus all customers are served.

Moreover, the basic model described in this section assumes no quantity
discounts. Under these assumptions, the purchase cost is not a relevant per-
formance measure, since in the long run the quantity purchased depends on
the demand rate rather than on the purchasing policy. The purchasing cost
per unit time is just equal to the demand rate times the unit purchase cost.

Under these circumstances the only relevant costs are:

o Ordering costs Cor; in the basic model we agssume that ordering cost are
a fixed cost the company incurs each single time an order is placed; thus
the total ordering cost is equal to the number of orders placed times
the fixed cost of each single order. In other words, we assume that the
ordering cost is a linear function of the number of orders placed.

e Inventory costs Cj,; inventory costs too are a linear function of the aver-
age inventory level; we assume that other variables such as the maximum
inventory level are irrelevant, while in real-life applications they might
matter (think of the size of the warehouse that depends on the maximum
inventory level rather than on the average one).

Given the above setting, we clearly face a tradeoff: A purchasing policy that
entails frequent purchases of a few units at a time leads to relatively low
average inventory level, but incurs the fixed purchasing cost very frequently.
On the contrary, buying large quantities infrequently causes an increase in
the average inventory level but reduces the number of orders and saves on
ordering costs.

Let us introduce some notations to describe this tradeoff more precisely:

e d is the demand rate, i.e., the number of units or quantity of demand
per unit of time (e.g., units/month or kg/year);

o A is the fixed ordering cost in units of value per lot (e.g., € or $ per
lot);

e }/ is the inventory holding cost in units of value per unit of product held
in inventory, per unit of time (e.g., € per unit per month). Sometimes,
this cost is stated as a percentage of the unit purchasing cost u; hence,
we have h = h% - u, where

— u is the unit purchasing cost;

— h% is the percentage holding cost of a unit of value for a unit of
time; we may note that this quantity plays the role of an interest
rate for the money tied up in inventories;
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e () is the order quantity. i.e., the amount that is purchased when inven-
tory drops to zero;

e T isthe time between two consecutive orders, i.e., the periodicity of the
ordering process, that we also call the order cycle.

We note that in this simplistic case the decision maker can only play with
one decision variable. Once the purchase quantity (lot) @ has been set, the
purchase frequency 7T is fixed as well. Vice versa, once the frequency T is set,
quantity ¢ is fixed as well.

Example 4.9 Counsider a company with a demand for 100 units/month.
This company can order once a month. In this case, the company orders 100
units at a time. Also, the company can order 600 units twice a year. Finally,
the company can order 1200 units once a year. This example shows that the
choice of the order quantity implies the order frequency and vice versa.

Given a demand rate d, the order quantity @ is consumed in @/d periods
(e.g., months) and therefore an order is placed each T = Q/d periods.

Finding the economic order quantity calls for the definition of an objective
function expressing the total cost, over a given time period, as a function
of the decision variable Q. Before we try to write the objective function,
we should understand the dynamics of the inventory system. Any stockout
is avoided by placing orders exactly when inventories are depleted. Also, it
would not make sense to place orders before the inventory level reaches zero,
as we would just increase inventory holding costs and at the same time would
be ordering sooner rather than later (that is, we would anticipate the ordering
cost). Right after the order is placed, the purchase quantity @ is delivered to
the warehouse (as LT is zero) and the inventory level [ immediately reaches
(). Such inventory buildup is progressively consumed at the constant demand
rate d. The inventory level displays a typical saw-tooth pattern (figure 4.1)
and fluctuates between the minimum level zero and the maximum level Q.

Once the dynamics of the system is clear, we can write the total cost
function, which consists of two terms:

Ctor = Cor + Cjp

The ordering cost depends on the fixed ordering cost (fixed cost for a lot) 4
and on the number of orders placed in a period (unit of time). The latter
variable is equal to the demand in a period divided by the lot size Q. Indeed,
in the long run, demand equals the purchased quantity that in turn equals
the number of lots times the order size Q.

Example 4.10 For example, let us assume that a company sells 1000 units
per month. In the long run, a company that sells 1000 units per month must
buy 1000 units per month. We do not mean that the company buys exactly
1000 each and every month. In some months, the ordering policy might lead
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Fig. 4.1 Inventory dynamics in the EOQ system for LT = 0.

the company to buy slightly more than 1000 units while in other months the
company might buy slightly less than 1000 units. But on the average a com-
pany that sells 1000 units per month buys 1000 units per month. Purchases
in excess of 1000 units per month would lead to a progressive increase in in-
ventories. On the contrary, if the company purchases less than 1000 units per
month, sooner or later it is going to run out of inventories and a stockout is
going to occur. A company that purchases 1000 units can purchase 10 lots
of 100 units per month, 2.5 lots (i.e., some months 2 orders, other months 3
orders) of 400 units per month, and so on. Thus, in general the number of
lots (in a period) is equal to demand (in a period) divided by the lot size Q.

Hence,

d 1
Cor=A-—=A.-—.
or 0 T
As to inventory holding costs, we can refer to figure 4.1 to understand that
the average inventory level is Q/2, as inventories fluctuate linearly between 0
and Q. Thus, the inventory holding cost term is

Q
Cin:h"z‘

and total cost is p 0
CtotzA'a-{-h'E.

Figure 4.2 shows the total cost as a function of the order quantity Q. Taking

(4.1)
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Fig. 4.2 Total cost per unit time as a function of the order quantity @.

the first-order derivative with respect to @, we can prove that the optimal
value of @) is
2Ad

Q=21 (42)

and thus the optimal purchasing frequency is

24
T =/ = 4.3
o (4.3)

We can read the mathematical results economically. Equation (4.2) shows
that:

e As the fixed ordering cost A increases, we shall increase the lot size @
to incur the high cost A less frequently.

e As the demand rate d increases, we shall buy larger lots Q; indeed, with
a higher demand we use up @ items more quickly and thus order more
frequently, with a corresponding increase in the total ordering cost; this
makes ordering costs more crucial and a larger @ helps keeping them
under control.

e As the holding cost h increases, the company is less and less willing
to carry inventories and thus cuts the lot size ) to reduce the average
inventory level Q/2.
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We can evaluate the minimum total cost by substituting Q* for @Q in equation
(4.1):

) d *
Ciot = Crot(@)=A — 1h. &

Q* 2
2Ad
VL S S
2Ad 2
“h
_ JAdh  [Adh
2 2

V24dh. (4.4)

The above equation show that minimum cost is reached where the ordering
cost equals the inventory holding cost (see also figure 4.2).

To apply the above EOQ model, we must learn how to quantify the pa-
rameters of the model. Estimating the demand per unit time d is a fairly easy
task, provided we have adequate information about past demand data.? On
the contrary, measuring A and h is not that easy.

Ordering costs The ordering cost A includes all costs that linearly depend
on the number of lots the company manufactures or orders. As we will see
in our further discussion, some costs might depend on the number of lots in
some contexts while in others they might not. We are not in a position to
tell what shall be included in a generic situation. Here we just list the major
costs that might be included and provide the reader with guiding principles
that can help him/her to figure out whether in his/her specific context they
shall or shall not be included.

o Administrative costs. Administrative costs might depend on the number
of lots purchased. As the number of orders increases, the number of
invoices, proofs of delivery, etc., can increase and thus the number of
employees and related costs might increase as well. Having said that, the
estimate of A is often biased as all administrative costs are allocated to
A, while some of them should not be considered as they do not depend
on the number of orders placed (a very common practice is to divide
the total administrative cost by the number of orders). For example,
the cost of administrative software is not proportional to the number of
orders; it is actually very likely to remain the same, no matter whether
we place 100 or 150 orders. Moreover, some costs depend on the number

3We should always keep in mind that information systems typically record sales, and not
demand. If stockouts do not occur too frequently, we may consider recorded sales as a proxy
for demand.
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of orders but not linearly (think of the cost of labor). Using a term from
Economics, we call them semivariable costs, since they are not variable
costs strictu sensu, as they are flat within a given rage (of orders in
this case), but they increase outside this range. For example, consider a
company with two administrative persons that manage 100 orders per
month; also let us assume that the company needs to raise the number of
orders to 101. It is very likely not to incur any additional labor cost; also,
the company definitely does not pay for 2.02 employees. On the contrary,
if the company needs to manage 150 orders, an additional employee is
hired rising the number of administrative persons to 3. The additional
cost is the gross cost of the employee plus any related cost such as a PC,
software licenses, ete. Finally, does the cost of administrative employees
drop if the number of orders drops from 100 to 507 Well, it depends. In
case the “spare” employee can be fired or used productively elsewhere
in the company, the reduction in the number of orders can turn into
a reduction of administrative costs. Otherwise, cutting the number of
orders has no real economic benefit (think of highly regulated labor
markets such as Italy and France). More generally, costs are subject
to hysterests: that is, an increase in output (number of orders) followed
by an equal decrease in output might not take the costs back to initial
stage, as it is often much easier to increase costs (headcounts in this
case) than cut them.

However, the current trend toward outsourcing of administrative ac-
tivities and/or more flexible contracts to absorb workload peaks make
administrative costs more and more variable. Thus, administrative costs
may depend on the number of lots, but such relationship is often nonlin-
ear. This makes the EOQ model a linear approximation of a nonlinear
cost.

Transportation costs. This is a second cost component that can depend
on the number of lots. Indeed, moving goods from production {(or an
upstream warehouse) frequently and in small batches might increase
transportation costs. However, these costs too might not depend linearly
on the number of orders. A linear relationship between number of orders
and transportation costs implies that the cost of a single delivery does
not depend on the quantity transported. Such an assumption clearly
does not hold. at least for large variations in the quantity transported.
In the case of a private fleet of trucks, if the quantity increases above the
capacity of a given truck, the company can either use a larger (and thus
more expensive) truck or increase the number of trips. Both options
increase transportation costs. Also, in the case of a private fleet, costs
like insurance and depreciation of trucks are fixed, at least in the short
run, and therefore they should not be included in A.

In the case of a third-party fleet the problem is even more complex. In
the case of “point-to-point” transportation (i.e., a direct trip from source
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to destination), the cost might not depend on the quantity transported;
in such a case, if the truck capacity is not saturated, one more order may
cost practically nothing (to a first approximation). On the contrary, in
the case where goods from several sources and moving toward several
destinations share the same truck (think of FedEx, DHL, national postal
services, etc.) the cost typically depends on the volume or weight of
goods transported. Indeed, the weight and volume of the goods can set
some relevant constraints to the routing problem (see chapter 8) and
this makes planning the trips harder and potentially less efficient.*

Thus, in the EOQ model we consider transportation costs to be a linear
function of the number of orders, but we shall be aware that this is an
approximation that can be crude at times.

Receiving, inspection, and handling costs. When an order is received
at a warehouse, personnel needs to perform a series of time consuming
activities. Documentation shall be checked and recorded in the infor-
mation system, quality shall be controlled, and finally goods should be
placed on shelves. The duration of some of these activities does not
depend on the number of units delivered but rather on the number of
orders. For example, handling a pallet with 10 or 12 units takes exactly
the same amount of time (provided that 12 units fit on a single pallet).
However, if the number of units increases above the maximum capacity
of a pallet, the workload and thus the cost increases as well.

What has been said about administrative costs applies to these costs as
well: They are often semivariable and subject to hysteresis. Moreover,
many companies outsource warehousing activities, and this turns these
costs into truly variable ones.

Setup cost. In case a warehouse is supplied by a production process,
setup costs of production machines contribute to the ordering cost A.
Also in this case, the specific condition of the company should be care-
fully considered when one tries to measure setup costs. Setting up a
machine creates direct costs that clearly depend on the number of setups
(think of the need to use washing material, or the scrapped production
at the beginning and at the end of each lot in continuous production
processes such as food). These direct costs shall always be accounted
for.

Other costs might/might not be included in the ordering cost A. Cost of
workers setting up the machines and downtime (i.e., lack of production

4The problem is getting more and more complex, as companies are trying to match supply
and demand at times with online auctions. For example, transportation might be much
more expensive from China to Italy than vice versa. Such pricing policies known as revenue
management at times can lead to odd pricing strategies. For example, consider air-fares:
Just to give one example, at times a round trip can be less expensive than a one-way ticket.
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while setting up the machines) are often considered to be part of setup
cost. As to personnel we shall use the same caveat we have discussed in
the case of administrative costs: Can we really save the money? Can
we really use the worker effectively in case we do not use him/her to set
up the machine? As to downtime, its cost really depends on operational
condition of the firm:

— if production capacity is saturated (fully utilized) a single setup
prevents the company from producing other goods and serving
other customers; thus in this case a setup creates opportunity costs;

— in the case of spare capacity, on the contrary, the setup does not
have any significant flipside and might be basically cost-free. Also,
setup costs shall only be considered when the plant supplying the
warehouse produces on a lot-for-lot logic. That is when the deliv-
ery lot equals the production lot and thus one additional delivery
entails an additional setup.

Inventory holding cost. The EOQ model assumes an infinite product life cycle.
No product has a infinite life cycle, so strictu sensu we cannot apply the EOQ
model to any real-life problem. However, the model can be applied when
the end of the product life cycle is so far into the future that costs of goods
leftover at the end of the life cycle are irrelevant for our problem. Under
this assumption, inventory costs are just the cost of holding inventories in the
warehouses. Still, measuring h appropriately is not trivial, as several variables
contribute to it.

e Financial costs. The investment in inventories increases the working
capital and the need for financial resources to run the company. Thus,
inventories imply not only more need for capital, but also a larger finan-
cial cost of capital.® Still, what is the right measure of the financial cost
of capital for a company? Is it the average cost of debt? Is it the cost of
equity? If so, what is the cost of equity capital? For a thorough discus-
sion we refer to any textbook on accounting systems and finance (e.g.,
[7]), while here we just provide the basic ideas. The cost of capital re-
ally depends on the current financial conditions of the specific company.
Consider a company with spare cash invested in short-term bonds. Any
increase in the inventory investment reduces the spare cash, the invest-
ment in bonds, and their interests. In this case the percentage cost of
capital A% is equal to the interest one gains on short-term bonds. Note
that these are opportunity costs (the investment prevents the company
from making money, rather than creating an actual cost) but this is just

5The larger the working capital the larger the need for capital and the higher the risk of
insolvency. This means that money lenders ask for a higher return on their capital as a
reward for the higher risk.
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irrelevant for a cold-blooded, rational decision maker. However, the cost
can be much higher. Let us consider a company with financial problems
that has very large debts. Under these circumstances, debt might be
fairly expensive. An extra investment in inventories might require extra
cash that in turn requires an additional (i.e., marginal) debt with some
additional (marginal) costs. In this case, the cost of inventories can be
higher than in the former case as borrowing rates are usually higher
than lending rates.

Clearly, in real contexts an extra screw might not increase the cost
of debt at all. More generally, very small changes in the inventory
investment for a specific SKU might not require any additional debt (or
might not reduce the investment in short term bonds). However, we just
aim at figuring out the average financial cost of an extra (i.e., marginal)
investment of one Euro in inventories.

Also, one might wonder what happens if the contract with suppliers sets
three or four month terms of payment. Does that change the holding
cost, as the company can hold goods for four months without any real
financial exposure? The answer is no, it does not matter. The key idea
is that no matter what the payment conditions are, any increase in the
average inventory level increases the financial exposure of the company
and thus the need for working capital. Terms of payment can really
make a difference for the overall financial exposure of the company.
For example, a company that used to pay suppliers one month after
goods were received and then moves to three months might improve the
financial exposure substantially and might cut A% (see note 4.2 on page
203). However, given the terms of payment, if inventories increase by
1€, the working capital increases by 1€ and its cost goes up by h%
€, no matter what the terms of payment are. Thus, a larger purchase
quantity @ implies an increase in inventories and thus an incremental
holding cost. Indeed, a change in terms of payment basically changes
the in-transit stock (see chapter 1), i.e., basically changes the point
in time (and in the supply chain) from which the company financially
holds inventories. As we have learned in chapter 1, companies hold both
in-transit stock and cycle stock. The former is influenced by terms of
payment and is not a function of order quantity @ (1.8). If LT is shorter
than terms of payment the net in-transit stock can be negative. On the
contrary, cycle stock depends on the order quantity @, it can only be
positive, and it is not a function of terms of payment.

Example 4.11 Let us consider a European company that imports
goods from East Asia. It takes roughly one month to transport goods
from East Asia to Europe. Let us assume that bills are paid two months
after goods are shipped. Also, the demand for product A (let us assume
this is the only one product for the sake of simplicity) is 1200 units/year.
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The cost is 1€/unit and the holding cost h% is 10%. The company is
considering two policies:

~— order 100 units once a month;

— order 400 units every four months.

In the first case, 100 units are shipped on January 1, delivered on Febru-
ary 1, and paid on March 1. Goods delivered on February 1 are sold
during the month of February. Thus, the financial exposure of the com-
pany fluctuates between 0 on February 1 and —100 on February 28.
This pattern is the repeated for February shipments, March shipments
and so on (see figures 4.3 and 4.4).

In the second case, 400 units are shipped on January 1, delivered on
February 1 and paid on March 1. Goods delivered on February 1 are
sold in February, March, April and May. Thus, the financial exposure of
the company changes as follows. It starts at 0 on February 1, when goods
start being sold before they are paid. It reaches —100 on February 28,
then on March 1 400€ are paid and it reaches 300. Then it progressively
decreases to 0 on May 31 (see figures 4.5 and 4.6).

The two patterns above can actually be interpreted as the overlap be-
tween a positive cycle inventory and negative in-transit inventories. In
the first case, cycle inventories vary between 0 and 100; when we add
a negative working capital of —100 units as goods are paid one month
after they are delivered, we get the pattern described in figure 4.4. In
the latter case we can interpret figure 4.6 as the overlap between cycle
inventories varving from 0 to 400 with a negative in-transit inventory
level of 100 units (see figure 4.5).

e Warehousing costs. The investment in inventories requires not only cap-
ital but also warehouses where goods can be stored. When the company
owns its warehouses, these costs are semivariable and subject to hys-
teresis: Until spare space is available in the current warehouse(s), the
cost does not vary significantly.® However, if we run out of space in the
warehouse, we have to either build (or buy) a new one or just rent addi-
tional space. Variable costs such as insurance premia or the energy cost
for refrigerated goods should be added on top of these variable costs.
As discussed for ordering costs, things change substantially if the com-
pany outsources warehousing since costs might be “more linear,” ie.,
cost might vary linearly with the average inventory level. For example,
a contract with the third-party logistic provider might set a cost per
pallet per month.

6In some very specific instances such as refrigerated warehouses, the cost of running the
warehouse might depend on the amount of goods carried, as the amount of energy required
to keep temperature constant might depend on the mass kept in the warehouse.
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o Loss of value of inventories. Holding inventories in a warehouse can
reduce the value of the goods carried. For example, in the case of furni-
ture, handling goods in the warehouse might damage them and reduce
their value substantially. In other instances, such as fresh fruit and
vegetables, products might lose weight or rot.

4.3 ROBUSTNESS OF EOQ MODEL

In the previous section we showed that measuring parameters of the EOQ is
not a trivial task. Forecasting d and estimating A and A is all but trivial,
hence we should check whether the model is robust. In other words, we have
to understand whether the decisions the model suggests are reasonable even
when the input data are not 100% exact, but they are affected by some error.
By “reasonable” in this context we mean that decisions lead to a performance
(cost in our case) that is nearly optimal. This is the reason why we measure
the robustness of the model by the deviation from optimal cost.

Just to show an example, we try to understand what happens if the ordering
cost A is not estimated properly. Let us assume that the error in the estimate
of A is A. The company would believe the cost A to be A + A and the
EOQ model would suggest to choose a quantity @1 = /2 (4 + A)d/h, rather
than optimal quantity Q* = 1/2Ad/h. One could be tempted to measure the
robustness of the EOQ model as the difference between Q; and Q*. Tempting
though this might sound, we are not really interested in this metric. Indeed,
it would capture whether our decision @) is close to the optimal decision @*,
whereas we are more interested in whether our decision leads to nearly optimal
costs. Thus, we shall measure the difference in total cost.

The suboptimal quantity @1 leads to a higher cost than the optimal one
Ciot = Ctot (Q*) = V2Adh. The cost we get by setting @ = @ is

d Q1
C = A-—+h-
tot (@1) o, Ty
2-(A+A)-d
= A d +h h
2-(A+A)-d 2
h
dh A
= — A+ A
(7 + VA7)
If we compare the above cost with the optimal one C{;, we can measure the

percentage increase in cost due to the error A in the estimate of A:

Geran_VE (T +VA75) S

Clot V2Adh
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As equation (4.5) shows, a 10% error in the estimate of A increases the cost
only by 0.1%. This finding sheds a new light on the estimation problems
discussed in section 4.2. Parameters of the EOQ model might be hard to
estimate. But even sizable errors lead to small increases in cost.

Similar analyses can be performed on the effects of errors in the estimate
of h and d, and similar results can be obtained.

A related but distinct case is the one where not all values of @ € R+ are a
viable option as there are some constraints. For example, many products are
distributed to retailers in casepacks (apparel products, packaged goods, etc.)
that cannot be broken and are called minimum order size or minimum lot. In
other instances, minimum lots are set for marketing purposes rather than for
logistic ones.

Moreover, it is often convenient to set the ordering frequency in such a way
that warehouse operations can be easily managed. For example, it is very
easy to receive goods from a given supplier once a day or once a week. On the
contrary, receiving each 1.7 days is much more complex as the time of delivery
would keep on changing. The EOQ model does not consider any constraint
on the solution Q. Hence, the solution @™ is very likely not to be viable. We
can deal with this problem in two ways. First we can re-define the problem.
The second and more convenient solution is to choose the feasible solution ¢
which is closest to the optimal one Q*.

Concept 4.1 When inputs to the model are uncertain or not precise, we
should perform some sort of sensitivity analysis. In sensitivity analysis we
want to capture the quality of the solution in terms of extra cost (loss of po-
tential profit) we might face. In other words, we are interested in performance.
We are not really interested in whether the solution we suggest is actually close
to the optimal one.

The cost of this solution Cyot (Qy) is higher than the unconstrained minimum
Ciot (@*), that could be reached if Q* was a viable option, i.e., if there was no
constraint on the solution. However, the increase in cost Cyot (@) —Ctot (@)
is often fairly small. We can compute the percentage increase in costs by
comparing the cost of Q5 with Cfyy:

hQ;  Ad
Ciot (@) _ 2 Qy
Crot (@) V2Adh
Qs | h® A2 g2
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Equation (4.6) shows that rounding the optimal solution @* to the closest
feasible solution increases the total cost marginally. For example, in the case
the nearest feasible solution is 20% larger than the optimal solution Q*, the
cost increases only by 1.67%. Therefore, we can take the solution of the EOQ
and round it to the nearest” feasible solution with a very limited increase in
costs.

Example 4.12 Company B produces canned soups and sells them in 12-
units casepacks. One of the customers is a large hypermarket that gets di-
rect deliveries from the supplier. The ordering cost for the hypermarket is
10€ which covers administrative costs, handling costs, and quality checks.
Demand is 100 units/week. A single can of soup costs 1€ to the hyper-
market. Cost of inventories is 0.4% per week and covers financial cost and
variable warehousing costs. Given the above inputs, the optimal solution is
@Q* = 707.1 unit. However, we cannot buy 0.1 units, and even purchasing 707
pieces at a time is not a viable option. The two options we have are 696 and
708 units. Given these two options, we clearly choose to purchase lots of 708
units. The delivery of case packs of 12 units increases the cost by less than
0.01%. This increase is very likely to be offset by savings in handling costs at
the warehouse.

The EOQ model can be extended in several ways by changing the most unre-
alistic assumptions of the basic EOQ model. Such extensions are the subject
of sections 4.4-4.7.

4.4 CASE OF LT > 0: THE (Q, R) MODEL

The first easy extension of the EOQ model is the case of nonzero and deter-
ministic LT. In such a case, we cannot wait until we run out of inventories to
order, as the order quantity @ is not readily available. On the contrary, we
should order LT units of time before we run out of stock. Given the demand
rate d, we shall place an order when the inventory level reaches the so-called
reorder point, also known as reorder level R = LT - d. In other words, we
order when we have just enough inventory to meet demand during the LT.
The system works this way: Each time inventory reaches the level R, an order
of @ units is placed. @ units are then delivered LT periods after the order is
placed.

In such a system we have two decision levers, i.e., variables we can control:
@ and R. However, the pattern of inventories over time behaves just like in

7As equation (4.6) shows, the right metric for distance is Qf/Q™ + Q*/Qy, which is a
geometric distance. In fact, two quite different decisions, such as increasing the optimal
quantity by a factor of 2 (plus 100%) or decreasing it by a factor of 2 (-50%), result in the
same increase in cost of 25%. On the contrary, increasing the optimal quantity by 50%
raises the total cost by only 8.3%.
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Fig. 4.7 Inventory pattern in the EOQ model, case of LT > 0.

the case of the EOQ model (see figure 4.7). Hence, nonzero lead times have
no influence on the choice of Q. Indeed, just like in the basic EOQ model,
@ units are delivered exactly when inventory reaches the zero level, and an
order is placed every @/d time units. Thus, the optimal quantity is the EOQ
in this case as well. Notice that the two control levers are set independently:
Q" sets the optimal purchase quantity to minimize the sum of inventory and
ordering costs, whereas R picks the right timing for ordering so that Q* is
delivered exactly when it is needed.

This rather simple case forces us to introduce a new variable: the inventory
position. If a warehouse manager checks the inventories a few seconds after
an order is placed, he/she would be tempted to place a second order, as
inventories on hand might look low since they are below the reorder point
R. This would be very dangerous, since we might keep on ordering ) units
several times. Such a series of orders might then be delivered over a short
period of time, leading to a skyrocketing increase in inventories. But how can
we avoid such problems?

In inventory management we should not only look at current inventory
level physically in the warehouse, called inventory on hand. We must consider
physical inventory in the warehouse plus the outstanding orders, i.e., all orders
that have been placed but have not been delivered vet.® We call this new

81In the next chapters we will investigate the stochastic case. In this more complex setting,
we might experience a stockout and thus customer orders might be backlogged. As we will
see, in such a case the inventory position is equal to inventory on hand plus outstanding
orders sent to the supplier(s) minus unmet orders from the customer(s). The case of DLT >
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variable inventory position (IP). This is the variable we should be looking at
when we ponder whether we should or should not be placing an order.

When we look at the above example, we can see that the inventory position
IP can easily solve the problem. Orders are placed when and only when IP
reaches the reorder level R. Therefore, right after the order for @ units is
placed, a warehouse manager is not even tempted to place a second purchase
order. Indeed, the inventory position increases to R + @ immediately after
the order for @ units is placed (even if these units have not been delivered
yet).

Concept 4.2 In inventory management and planning the current on-hand
inventory might be o misleading figure. We would rather carefully consider
the inventory position, that accounts for inventory on hand as well as for
incoming orders and customer backorders (if any), in order to give us a more
dynamic picture of our current inventory level.

Just like in the basic EOQ model, inventory on hand fluctuates between
0 and @ units (with an average of @/2 units), while the inventory position
varies between R and R + ) units, with an average of R + @/2. In the
case of relatively short LT (LT < Q/d) the inventory position differs from
inventory on hand when the order is placed, as it jumps from R to R+Q, while
inventory on hand remains unchanged at R. Only when the order quantity
Q) is delivered, the inventory position equals inventory on hand as there are
no more outstanding orders, i.e., we no longer wait for the supplier to deliver
an order (see figure 4.8). On the contrary, in the case of relatively long
LT (LT > Q/d), the warehouse is always waiting for at least one order to be
delivered, and thus the inventory position is always greater than the inventory
on hand, by definition.

4.5 CASE OF FINITE REPLENISHMENT RATE

So far we have discussed cases where the quantity ordered is delivered in a
lump of @ units. This is generally true when the warehouse receives goods
from an upstream warehouse. On the contrary, when the warehouse is served
by a production plant, goods might be progressively delivered as they are
produced. This happens when each single unit is delivered to the warehouse
as production is completed. This changes the dynamics of inventories in the
warehouse, so the cost function and the optimal quantity @* change as well.

The finite replenishment rate r is the number of units delivered per unit
of time. Obviously, r shall be greater than d. When d is greater than (or
equal to) r, the production rate is not sufficient (or barely sufficient) to meet

0 sets similar problems, as there is a series of orders placed by the customers that have not
been met yet.
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Fig. 4.8 On-hand inventory and inventory position, case of LT < Q/d.

demand, thus we keep on producing continuously. In this case, the order
quantity problem is not properly set. In the remainder of this section we
assume r to be greater than d.

When the inventory level reaches zero, it does not immediately increase
by @ units. It increases progressively at a rate »r — d. The r — d growth
rate is the result of an inflow of r units of product per unit of time and
an outflow of d units of product per unit of time. This process goes on
until all @ units of the production lot are delivered. It takes Q/r periods to
complete the production lot @ with a production rate . Thus, when the lot
is completed, the inventory level has reached (r — d) Q/r units. This quantity
can be rewritten as Q) —d-Q/r; in other words, this means that the maximum
inventory level is equal to the production lot @ minus the demand (d) that
has occurred while the lot was being delivered (over a period of time @/r).
Once the production is over, inventory starts decreasing at a rate d. The
inventory level reaches its maximum when the production lot @ is completed.
Therefore, inventory increases linearly between 0 and (r —d)@Q/r at a r — d
rate and then it decreases linearly between (r —d)Q/r and 0 at a d rate, as

figure 4.9 shows.
(r—d)Q
T

Hence, the average inventory level is and the total cost function is
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Fig. 4.9 Inventories pattern in case of finite rate of delivery.

by taking the derivative with respect to @ we can show that

.« [2Ad 7
U=V T (48)

We shall now read the formula to understand it. The finite production rate
EOQ suggests that when production rate r equals demand rate d the produc-
tion lot @ is infinite; that is, we shall continuously produce to meet demand.
Also, when r is barely greater than d, the production lot tends to be very
large, as inventories build up very slowly in the warehouse (at a r — d rate).
Finally, as r — +oc, equation (4.8) tends to look like the EOQ formula, which
can be considered just a specific case of this more general one.

4.6 MULTI-ITEM EOQ

So far we have investigated single-item problems. However, very often we can
find several items in a warehouse. This makes modeling the problem harder.

One might want to model the multi-item problem as a series of independent
single-item problems. This is an easy way out, but it comes at a cost. When we
use this approach, we basically treat a single warehouse with several products
as a series of independent warehouses, each with a single product. Companies
actually build a single warehouse to leverage on joint economies of scale; that
is, to take advantage of the savings one can gain by managing several products
under one roof. Hence, looking at a multi-item problem as a series of single-
item ones might be a simplistic rather than a simple solution to a complex
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problem. Indeed, this might miss some crucial feature of the problem and
lead to a poor or unfeasible solution.

Example 4.13 Let us consider a warehouse with two products o and 3
sourced from a single supplier. Demand for product « is 100 units/month
while demand for product 3 is 300 units/month. Placing an order costs 800€,
no matter whether one or two products are ordered. The cost is fairly high
as the supplier is located in China and transportation costs are significant.
Holding one unit of & for a month costs 1€, while holding one unit of 3 for
a month costs 16/27 €.

If we optimize order quantities for the two products separately, we get the
following optimal quantities: Q}, = 400 and Q% = 900. Once order quantities
are defined, we can try to overlap orders to gain some savings. The best
option is the following: order a on 4", 8t and 12" month, and order 3 on
the 3, 6*1, 9 and 12*® month. This order plan implies 6 orders per year,
that is 0.5 orders per month.

Thus, the monthly cost is

orders € €
C = 5 - 800 -2 it
tot month orders unit - month 00 units
+16/27 —— . 450 units

unit - month
= 866.6<€/month.

Intuition suggests that this is very likely not to be the best option, as potential
synergies between the two products are not fully exploited since often we do
not take advantage of shared ordering costs. For example, if we order product
3 once every 4 months. the total cost is

orders € €
= 0.25 - 80 -2 it
Ctot month order unit - month 00 units
116/27 — . 600 units

unit - month
= 755.55€/month.

This solution is clearly crude, and it is likely not to be optimal; yet, it proves
that optimizing the order quantity for single items might not be a good idea.
The next subsections show how we can find optimal solutions to multi-item
problems.

4.6.1 The case of shared ordering costs

Example 4.13 above shows that setting EOQ for each single item indepen-
dently might be sub-optimal as it might not fully exploit the potential advan-
tages of a joint and coordinated policy. We first investigate the case of shared
ordering costs. where the cost of an order A depends neither on the number
of product types ordered nor on their quantities, just like in example 4.13.
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To apply the results of single-item EOQ to the multi-item case, we shall
first identify the mix of products. In the deterministic case, such a mix is
easy to set, since deliveries to the warehouse and inventories at the warehouse
have exactly the same mix as demand. Thus, we define a bundle of products
with the right mix of items. For example, if demand for Coke is twice the
demand for Sprite, when planning joint deliveries we can refer to a “virtual”
composite product consisting of 2 Cokes and 1 Sprite. Note that for our
purposes, a bundle (i.e., virtual composite product) of 4 Cokes and 2 Sprites
would work just as well.®

Example 4.14 In example 4.13, the ratio between the demands of product
« and 8 is 1:3. Therefore, we can define a bundle consisting of 1 unit of «
and 3 units of 8. Demand for this bundle of products is 100 units per month.
Holding one bundle for 1 month means holding 1 unit of « and 3 units of 3;
hence the holding cost of one bundle is 1 4+ 3 -16/27 = 25/9. The ordering
cost is 800 €, as it is a fixed cost that does not depend on quantity.

Thus, we can apply the EOQ model to the bundle of products and find
that the optimal purchase quantity for the bundle is Q* = 240 units, which
really means setting the purchase quantities of the two products to @}, = 240
and Q% = 720. This choice implies a cost of 666.6 €, which is well below the

two costs found in example 4.13. a

It is inferesting to notice that the joint optimal quantity for two (or more)
products is lower than the optimal quantity for single products. Let us com-
pare two different scenarios.

1. In the first scenario. products share a common cost A, as the company
places one single order with multiple products and receives just one de-
livery. Therefore, reducing the order frequency by one order per month,
will only save A Euro, but it will increase the inventory levels and thus
holding costs of both products.

2. In the second scenario, each single product requires a separate order and
a separate delivery and thus products do not share a common fixed cost
A. Here, reducing the ordering frequency of, say, item « saves ordering
cost A, but it increases inventories and holding cost of item « only.

We see that in the first case we have a stronger incentive to increase order
frequency and thus order smaller quantities. An extra order makes us save
inventory investment and holding costs on several products, rather than a

9Note that this holds true when we have no constraint on the units or case-packs, that is
when demand and deliveries have no lower bound on actual units and can be considered as
continuous variables for all practical purposes. For example, demand for fast moving goods
like Coke can actually be considered continuous even if it is produced and distributed in
units. On the contrary, retail demand for jewels can hardly be modeled as a continuous
variable.
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single one. Another way to see this problem is that when two or more products
are delivered together and a bundle is defined, the holding costs add up while
the shared ordering cost remains unchanged. Thus, pulling together various
products (e.g., buying them from the same supplier or receiving them from
the same warehouse) leaves the numerator of the EOQ formula unchanged
(in particular A) while it increases the denominator (in particular h), thus
reducing optimal purchase quantities.

This result takes us back to a basic concept discussed in section 2.1.2. Joint
deliveries of multiple products reduce inventory investments as the ordering
frequency can be increased. That is why many grocery stores and retail stores
of large chains (such as Wal-Mart) receive the bulk of their deliveries from
a central distribution center rather than from suppliers. These chains rather
hold goods in a central warehouse and then deliver to stores very frequently
with trucks filled with goods from several suppliers rather than get direct (and
sparse) deliveries from suppliers with a relatively limited assortment. The
savings on inventory costs are well worth the cost of a distribution center.

4.6.2 The multi-item case with a constraint on ordering capacity

In section 4.2 we showed that the ordering cost often depends on the degree of
utilization of administrative resources and warehouse personnel. For example,
if the utilization of employees involved in ordering and receiving materials is
low and they can neither be fired nor be utilized in any other way, the cost of
an order A can be very close to zero.

In many instances, to choose the appropriate fixed cost A, the company
needs to figure out an ordering policy to exploit limited resources. In the
example just discussed, the EOQ problem is one where the limited ordering
capacity shall be allocated to all items in the company’s assortment. Similarly,
the company might have a limited ability to receive goods in the warehouse or
a limited transportation capacity, as the number of trucks in the company’s
fleet is fixed. In our further analysis we assume that products are ordered
from separate suppliers and are delivered separately. Thus we assume that
they do not share ordering costs.

If this is the case, the company aims at minimizing the inventory holding
cost, subject to a constraint on the total number of orders placed with a proper
allocation of the limited capacity to each single product. In other words, the
company tries to keep inventories under control subject to a constraint on the
overall number of orders.

This is a nonlinear optimization problem that can be written as follows:

min

1
= h: Q.
PLEE

N
s.t. Z

1M

- <F (4.9)

ol
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where:
e i is the item index,
e N is the total number of item types,

e d; is the demand per unit of time for product i,

h; is the cost of holding one unit of product 7 for one unit of time,

@; is the purchase quantity for item 4,

F is the ordering capacity per unit of time, i.e., the maximum number
of orders that can be placed in a unit of time.

We notice that as the total number of placed orders increases, the purchase
quantity of each single item ¢ decreases and so does the overall inventory
holding cost. Therefore, we know that the ordering capacity constraint is
active in the optimal solution. Hence, we can replace the inequality constraint
with an equality one in equation (4.9).

To solve this problem, we can resort to the method of Lagrangian multi-
pliers . First, we write the Lagranglan function:*°

LQu. Qi Zh Qﬁ—A(Z——F) (4.10)

In principle, we should add a non-negativity constraint on decision variables
@Q:. We assume a so-called interior optimum, which means that no non-
negativity constraint is active and the optimal solution is such that @} > 0.
Also, this condition is required for the constraint (4.9) to make sense. Then,
we enforce first-order optimality conditions by computing derivatives with
respect to the N variables @); and A.

0L(Q1,...Q4,...QN ) hy  A-dy .
50, = 35 f =0 Vi,
OL(Q1,...Q4,...QN, N al di
oA ; i
=1
thus
Qr = ——Dh,di Vi, (4.11)

(4.12)

@I

108ee section B.4. In case of equality constraint, how the constraint is added to the objective
function and the sign of the Lagrangian multiplier are irrelevant. However, the sign we have
adopted helps us to read the results economically and would work in case of an inequality
constraint as well.
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When we look at these optimality conditions, we notice that equation (4.11)
resembles the EOQ formula. The only minor difference is that the ordering
cost A is substituted by the optimal Lagrangian multiplier. To understand
the formula we shall resort to the economic meaning of Lagrangian multipliers
discussed in section B.4.2 (shadow prices).

From the discussion in section B.4.2, we know that the multiplier tells us the
extent to which a (marginal) increase in the ordering frequency can decrease
the inventory holding cost of a product. The shadow price interpretation of
the Lagrangian multipliers guides us in the design of a procedure to identify
the optimal solution. Indeed, optimality conditions (4.11) and (4.12) are a
system of nonlinear equations. In general, such a system can only be solved
numerically, even though in specific cases like this one, a closed form solution
is easy to find.!! Even if this is an easy case, we prefer to suggest an iterative
algorithm to find the optimal value of the multiplier. One reason is that
the procedure can be applied in a more general setting, when an analytical
solution cannot be find (see the multi-item newsvendor problem in section
5.2.1). Another reason is that the approach lends itself to a nice economic
interpretation.

From equation (4.11), we see that the multiplier plays the role of an ordering
cost, which is consistent with its shadow price interpretation. If the value of
A is too small (i.e., smaller than the optimal one), we order small quantities
@ too frequently, and the total number of orders exceeds capacity. If A
is too large, on the contrary, capacity is not fully utilized and inventories
are excessive, leading to suboptimal solution. We should look for the right
ordering cost, which results in the full utilization of our ordering capacity.

1. Choose an initial value for .

2. Use this value of A to calculate the N quantities Q.

oo

LTSN %1; > F, increase .

[N

CIf le 5—} < F, decrease A.

1By plugging expression (4.11) for Q7 into (4.12), we see that

N

—_—— N

N
d; — [di b 1 fdihi  ~

=F = =F = = / = VA
—— //QAdi ;V 2x F 3

|

i=1

Hence,

L (L aR
_ - AL
/\_F2<;\ 2 ) ’

which can be plugged back into equation (4.11) to find the optimal order quantities.
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5. If the current solution satisfies the constraint, at least within a given
tolerance, stop; otherwise go back to step 2.12

This search procedure can be interpreted as demand/offer mechanism by
which we aim at finding the right ordering cost: If the resource is too cheap, it
is over-utilized, and we must increase its cost; if it is too expensive, we should
lower its cost in order to achieve full utilization.

A common finding is that ordering (or setup) costs are often overstated,
leading to an unnecessarily large amount of stock. Indeed, a fixed ordering
cost A is used in the EOQ formula, even when from an economical standpoint
the orders imply no marginal cost, as resources are fixed. The EOQ approach
may be justified as a simplification of the above procedure, when we apply
a fixed cost A to provide an incentive to “properly” use the limited ordering
capacity. Finally, even in this case we might face estimation problems. Above
all, we should keep in mind that in the long run F is a decision variable as
well, and we might wonder what is the appropriate ordering capacity for our
company.

4.7 CASE OF NONLINEAR COSTS

The basic EOQ model assumes that cost parameters h = h% - u and A do not
depend on quantity Q. Thus purchasing costs are assumed to be proportional
to the total quantity purchased {which in the long run equals demand). Also,
the EOQ model assumes that ordering costs are proportional to the number
of orders placed (i.e., the number of lots). In many real contexts these as-
sumptions hardly hold, as cost parameters depend on the purchase quantity
Q. Very often, suppliers are willing to offer discounts to customers that place
large orders (quantity discounts). Also, some of the costs included in A might
depend on . Transportation costs might depend on @, as this cost can be
semivariable; when the quantity Q exceeds the capacity of a small truck, a
larger and more expensive truck is required.

Let us consider a company that places orders for a single product and
pays for direct deliveries (i.e., there is no interaction with other products and
the product purchased from the supplier can fully use the capacity of means
of transportation). Also, we assume that the company can choose among
three means of transportation, say 1, 2, and 3, with capacity constraints

12A simple but effective search algorithm is bisection. It is often used to solve scalar
nonlinear equations with a single unknown variable. We identify two values of A\, A~ and
AT, that lead to overutilization and underutilization of the ordering capacity F, respectively.
We know that the optimal value of A lies in the (A~, A*) range. We consider the midpoint of
the interval, Ay, = (A~ +A7)/2, and we check whether it leads to over- or underutilization of
capacity. We continue our search accordingly, by setting A~ = A™ or AL = Am, respectively.
‘We see that the interval bracketing the solution is always bisected. The process is repeated
until the range (A~,AT) is “small enough.”
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Q1. @2 > @1, and infinite, respectively. Using the three different means of
transportation implies three different ordering costs A1 < As < As.

In this case, we cannot choose of the best order quantity by enforcing a first-
order optimality condition like in the basic EOQ model, as the cost function
need not be differentiable (nor continuous) for all @ € R. Nevertheless, solving
the problem is rather simple. The overall cost function consists of pieces of
convex functions (see figure 4.10), and we can take advantage of this property
while searching for the optimal solution. To start our analysis, we can draw
the cost functions for the three means of transportation (see figure 4.10).
Figure 4.10 shows that as A increases, the cost function is shifted upward and
the optimal quantity increases. Economically, this means that as the fixed
cost increases, the overall cost and the economic order quantity increase as
well.

We might be tempted to choose the first means of transportation, as it keeps
the ordering costs to a minimum. This view neglects the capacity constraints.
Although the cost function 1 is lower than others. we might not be able to
purchase the optimal quantity @7, as it might be greater than the maximum
capacity ¢1. In other words, the optimal quantity QF might not fit on the
relatively small means of transportation 1 that cuts ordering costs down to
A

If this is the case, we can leverage on the convexity of the cost function 1
to identify the best viable solution. The cost function 1 is decreasing up to
@7, thus the optimal viable solution is Q1, i.e., the maximum quantity that
can be transported on the first means of transportation.

As to the second means of transportation, we assume that the optimal
quantity 5 is lower than the maximum capacity Q2. Notice that under these
assumptions the third means of transportation is basically not even an option.
Indeed, we know that the cost function of the second means of transportation
is lower than the cost function of the third one. Also, the second means of
transportation can operate at the optimal level @3. Thus, no matter what
quantity (J3 we want to carry, the cost of the third means of transportation
is higher than the cost of the second means of transportation.

Hence. the solutions we shall consider are:

e means of transportation 1, quantity Q1;

e means of transportation 2, quantity Q3;

within this set of options we shall pick the one with the lowest cost. In the
example of figures 4.10 and 4.11, the best option is to use the second means
of transportation and order Q5 units at a time.

More generally, we exploit the convexity of constituent cost functions to
solve these problems.'® We can identify the optimal quantity for each interval
and then compare the various local optima to tell the global optimum.

13 To be more precise, the convexity of each single piece of the overall cost is just exploited
to guarantee that the optimum of each piece is either the point of stationarity, or an extreme
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Fig. 4.10 Cost functions for various fixed ordering costs A.

Fig. 411 Overall cost function.
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A similar procedure can be used in the case of quantity discounts, i.e, when
the unit cost of the product u depends on the purchase quantity Q. In this
case, a third cost should be added to the cost function (on top of ordering and
inventories costs): the purchasing cost. Indeed, larger lots might reduce the
total purchase cost, as quantity discounts might cut the average unit cost.

We can distinguish two different kinds of discount!*:

e qll-unit discount: the discount applies to the whole quantity purchased;

e marginal unit discount: the discount applies only to the marginal quan-
tity. i.e., on the quantity that exceeds a given minimum threshold.

For example, some suppliers might offer a 20% discount when customers pur-
chase more than 100 units. Other suppliers might offer a 20% discount on
units in excess of 100.13

In the former case the cost function might be discontinuous, as reaching the
minimum quantity required to gain a given discount (say @;) might actually
reduce the overall purchase cost and, as a consequence, holding cost. In other
words, oddly, the last unit required to qualify for the discount might have a
negative marginal cost: Purchasing @1 units costs less than ordering Q; — 1
units.

Example 4.15 Alpha is a retail company that sells product a. This prod-
uct is purchased from company Beta. Demand for a is 1,000 units a week.
Company Beta has a rather complex pricing policy. For orders below 10,000
units, it charges 4€ per unit; for orders larger than or equal to 10,000 and
less than 50,000 units it charges 3.75€ per unit; and finally it charges 3.5€
per unit for orders of at least 50,000 units. Placing an order costs 500€. The
holding cost for one week is 1% of the unit cost.!® Company Alpha wants to
properly set the purchase quantity from Beta. The price discount is tempting,
but managers are wondering whether they should be buying very large lots of
50,000 units.

point of the pertaining interval; then we select the minimum over all of the sub-intervals. If
we had to minimize a piecewise-concave function (of a single variable), we would use much
the same strategy; the only difference would be that the minimum of a concave function
would always be one of the two extreme points of each interval.

14 Notice that in this section we only investigate cases where the unit cost u depends on the
purchase quantity . Some of the reasons why a company might give such discounts are
going to be investigated in chapter 7. Furthermore, in that chapter other kinds of discount
are going to be investigated. For example, a company might reward customers for the
overall amount of revenue they generate, rather than for the size of each single order. In
our current framework these pricing policies would be basically irrelevant. as we consider d
to be an exogenous variable that logistic managers just try to forecast.

15This is basically the logic of taxation on personal income in most Western countries.
18Notice that assuming a holding cost given by a fixed percentage of the purchase costs
implicitly means that we assume that most holding cost are financial in nature. However,
other costs such as warehousing do not depend on the unit cost of the item, but they depend
on its physical features such as volume instead.
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Fig. 4.12 Overall cost function.

If the unit cost is 4€ per unit, the EOQ formula suggests buying

v/2-500- 1,000/ (4 - 1%) = 5,000 units.

This quantity implies monthly holding and ordering costs for

V2Adh = /2 -500-1,000- (4 1%) = 200€/month.

In this case, these are not the only relevant costs. The purchasing cost (cost
of goods) is not fixed as the unit cost u depends on @ (see figure 4.12). Thus
the relevant total cost consists on ordering, inventory, and purchasing costs
and it is 200€/month + 1, 000 unit/month - 4 €/unit = 4, 200€/month.

In case we want to pay just 3.75€/unit, the EOQ formula suggests to
buy /2-500-1,000/(3.75-1%) = 5,164 units. Unfortunately, this is not
consistent with the pricing policy of the supplier Beta. To enjoy the price
reduction, we must order at least 10,000 units. This would imply an overall
ordering cost of

500 €/order - 1, 000 units/month
10, 000 units/order

= 50 €/month,
and an overall holding cost of

1
3 -3.75€/unit - 1%/month - 10, 000 units = 187.5€/month.

The sum of ordering and holding costs is in this case (237.5€), higher than
in the former one (200€), since the purchased quantity is far larger than
the unconstrained optimal one. However, purchasing costs make up for the
increase in holding costs. They drop by 250€, down to 3750€. Notice that if
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company Alpha buys 9,999 units it pays 3,996€, whereas the cost of 10,000
units is 3,750€. Basically, the 10, 000® unit has a negative price of —246€,
so buying one additional unit makes saves money. The overall cost drops to
3,987.5€/month, making this alternative more attractive than the first one.

This initial result might lead us to believe that buying large quantities
makes us save money. Let us check whether we can save any more money
by cutting the price down to 3.5€/unit. In this case the EOQ formula would
suggest to purchase 5,345 units, well below the minimum quantity required
to enjoy such a low price. Thus, we need to purchase 50,000 units; given the
convexity of the cost function and the requirement to get the discount, this is
the best viable option we have. In this case, the ordering cost drops to

500 €/order - 1,000 units/month
50, 000 units/order

= 10€/month.

Also, purchasing cost drops to 3,500€/month. However, these savings are
more than offset by the increase in holding cost that reaches

1
7 3.5 €/unit - 1%/month - 50, 000 units = 875 €/month,

leading to a total cost of 4,385€/month, making this low unit-cost alternative
the least attractive for company Alpha. I

Concept 4.3 A lower purchase cost often implies a higher fized ordering cost
(e.g., because we import from low cost countries). We must carefully manage
the trade off between the variable purchase cost and the fized ordering one.

The case of discounts on marginal quantities is solved by a similar approach,
which takes into account a few differences:

e The overall purchase cost, as a function of the order quantity, is a contin-
uous piecewise-linear function, with kinky points corresponding to price
breaks; because of discounts, the slope of the linear pieces is decreasing
with respect to order quantity.

e The unit holding cost should be evaluated by taking the average unit
purchase cost into account.

e The total cost function is continuous as well, even though not differen-
tiable for all Q € R.

4.8 THE CASE OF VARIABLE DEMAND WITH KNOWN
VARIABILITY

So far, we have studied cases of deterministic and constant demand. In the
next chapter we discuss the case of uncertain demand. that is unpredictable
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variability. In this section we illustrate some examples of variable though pre-
dictable demand. The objective is to show how modeling by mixed-integer
linear programming, introduced in section B.6.2, can be used in complex con-
texts. All of these models assume that the planning horizon can be split in
periods, also known as time buckets. Time buckets are quanta of time: For
example, if the time bucket is the single week, we never look at single days or
single hours.

The simplest problem is basically a generalization of the EOQ problem
to the case of deterministically variable demand. We have a product whose
demand in time bucket ¢ is d;, for t = 1,...,7. The objective is to meet
demand at the minimum cost. We denote by A the unit holding cost and by
A the fixed ordering cost, just like in the case of the EOQ model:

T
min Z h[t + ACSt

s.t. It = It_l —+ Ty — dt Vt,
Tt < ]\/ftét Vt.
Ii,xe 20, 6, € {0,1},

where z; is the quantity ordered (and immediately delivered, assuming a zero
lead time) during time bucket t, I; is the inventory level at the end of the
time bucket ¢, and &; is a binary (i.e., Boolean or 0/1) variable that is set to
1, if we order during t. When we order in time bucket ¢, we also pay a fixed
cost A.

This model is a simplified version of the lot sizing model proposed in section
B.6.2, since in this case we have no capacity constraints that create some sort
of interaction among products. The constant M, is the typical big-M that we
use to link continuous variables to binary ones to model fixed costs. We know
we do not buy more goods than we need to meet current and future demands,
so we can set:

This is a mixed-integer linear programming (MILP) model, and apparently
branch and bound methods are required to solve it. Actually, it can be solved
very efficiently by exploiting the properties of the optimal solution. This
analysis, though, is beyond the scope of this book.”

17We can show that the optimal solution is such that I¥ , -z} =0, that is we order only
when the warehouse is empty. Thus the optimal solution is such that z} = H'T : dx- The
optimal lot size satisfies the needs of the current period and of a given number T of future
periods. The issue is actually finding this number of periods r. The problem can be boiled
down to finding the shortest-path on a graph. For example, see [1] for a brief but readable
description.
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In more complex situations, we actually have to resort to branch and bound
methods. The first case we show deals with suppliers’ selection.

Example 4.16 Let us consider the case of N products, indexed by i =
1,....N. The demand over the next T time buckets is known to be d;;.
Products are bought from various suppliers. The suppliers’ index is j =
1,...,J. Each supplier can sell a subset Z; C {1,2,...,N} of products.
For each product 7 we have a set of alternative suppliers J; € {1.2,...,J}.
Suppliers charge prices ¢;; that might be different for different products ¢ and
different suppliers j. We sell product ¢ at a price p;. However, the least
expensive supplier for each product might not be the optimal solution. We
assume that, like in example 4.13, there is a fixed cost component A; we incur
each time we send an order to a supplier j, no matter what and how much we
order. We can think of A; as a fixed cost for transportation, which depends
on the geographical distance from the supplier. If an Italian firm sources from
a Chinese supplier, probably the unit cost is low, but the distance increases
the fixed cost A; so that only large batches make economic sense. Also, we
consider another fixed cost a;;, which we have to pay when ordering product
¢ from supplier j. This fixed cost is smaller than A;. and it can model costs
for lot inspection to control both quality and quantity of the product. These
costs might depend on the supplier: For example, a certified supplier might
reduce these costs, since we might not need to check each and every lot.'®
Products can be stored in the warehouse for a holding cost h;.1?

Let us assume that the initial inventory level I is given, and that we
want to reach a target inventory level H; at the end of the planning horizon
consisting of T' time buckets (otherwise the model shows a “border” effect and
leaves all inventories empty at the end of the planning horizon). The objective
is to maximize profit, assuming that customers are not willing to wait, and
thus demand cannot be backlogged.). First, we define decision variables:

e 1;;; > 0 is the guantity of product ¢ we purchase from supplier j during
t, assuming immediate delivery and defining the variables only for ¢ € Z;;

e 0;; € {0,1} is a binary variable that tells us whether during ¢ we place
an order to supplier j;

o 7t € {0,1} is a binary variable that tells whether during ¢ we order a
product 7 from supplier j;

181n manufacturing, we face similar issues when we have product families. In this case we
might incur a relatively large cost when we switch between product families, and a minor
setup cost/time when we switch among products within the product family.

19 Actually, the holding cost might depend on the supplier. For the sake of simplicity we
neglect the issue, as it is sometimes done in accounting practice. In case we want to model
this appropriately, we shall introduce different inventory variables for products sourced from
different suppliers.
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e [;; > 0 is the inventory level of product i at the end of time bucket ¢;
e z;; > 0 is the quantity of i sold in period t.

To link binary variables and continuous ones, we need a “big-M” for each
product in each single period, which gives us the maximum quantity it makes
sense to purchase.?® It is the sum of present plus future demands for the item
plus the desired ending inventory:

T
My = dir + H.
=t

The resulting model is

N T N T
max DiZiy — Z Z hidy

i=1 t=1 i=1 t=1

N T N T J T

D IDIDIED DD DD BLILED DY P LT
i=1j€J; t=1 i=1 jeT; t=1 J=1 t=1
s.t. Lip=1 1+ Z Tijt — Zit Vi, t,
Ji€ET:

Tije < Mirysje Vi, i, 7 € Ji
Yijt < dj¢ vt,j,1 €1, (4.13)
zig <dy Vi, t,
Tije, Ligy 220 > 0, O51,vi5e € {0, 1} (4.14)

Just like in the example B.13 from page 573, formulation (4.13) is computa-
tionally more efficient than the equivalent one:

Yo SIT G Vg

i€T;

where | Z; | is the cardinality of the set, that is, the number of different
products the supplier j can supply.

The model we just discussed might look complex. Actually, through ap-
propriate reformulation and state-of-the-art software solvers, near-optimal so-
lutions can be found. Indeed, in real applications the key hurdles are the un-
certainty on demand data d;;, ill-defined customer priorities, etc., rather than
CPU time. However, the strength of this modeling approach is flexibility. Let
us consider a slight variation of the problem.

20Gee example B.12 on page 571.
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Example 4.17 In example 4.16 we assumed that the company tries to max-
imize profit, but it need not meet all demand necessarily. Now, let us assume
that the company wants to fully meet demand. In this case, the objective is
to minimize costs since revenues are a constant. Also, we can remove decision
variable z;; that models the number of units we want to sell.

Let us assume that the fixed cost A; depends on the transportation cost
from the supplier j. Also, let us assume that we can use different trucks
to transport goods from supplier j, just like in section 4.7. For the sake of
simplicity, let us assume that we only have two kinds of truck, a small one and
a large one. The volume and weight capacities of the small truck are denoted
by Cy and Cyw, respectively (measured, say, in cubic meters and tons). We
call v; and w; the unit volume and weight of product i. Let us assume that
the large truck is large enough to transport any amount of goods we might
reasonably wish. The cost depends on the kind of truck and on the distance
traveled. Thus we have fixed cost Aé” for the small truck and A§2> for the
large truck. For this model we can use the same notations we have introduced
for the previous one, but we must separate decision variables in two groups
corresponding to the two kinds of trucks. We introduce two groups of binary
variables 5<1) and 5(2) for the small and large trucks respectively. Similarly,

1
we have two sets of variables :c( 2 e :Cuf Using the same notation as above,

we can write the model below:2!

N T N T
min Zzhiht +Z Z Zcijxijt

i=1 t=1 i=1je; t=1
N T J T J T
1 (1
D IDIDIILED PSP HED BB I
i=1j€; t=1 j=1t=1 j=1t=1
s.t. Ly=I; 1+ Z Tije — Zit Vi, t,
jeT;
Iir=H; Vi,
Tije < Muvige vt i,j € Ji,
g =al) +all)  vhige d,

Yijt < 5-1) 5(-2) vt,j,1 € I,
Z Ui 2]t S C 5(1) Vtajv

i€1;

waﬁjzgc 5 Vi, 7,

i€y

2INotice that the constraint 6< ) + 6<2> < 1 is actually redundant. Indeed, in the case the
large truck is used, there is no reason whatsoever to use the small truck as well. It just

adds extra fixed costs and thus the model self selects a solution Where6;t> + 05? <1
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Notice that there is no guarantee that there is at least a feasible solution to
this model. In the case of tight constraints on capacity, we might not be in a
position to fully meet demand. In this case we would need a model with slack
variables like in example B.2 from page 546. I

We conclude this chapter by reminding the reader that we can use linear
approximations of nonlinear concave functions to model quantity discounts,
as we have shown in section 2.3.
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Inventory Control: The
Stochastic Case

5.1 INTRODUCTION

The vast majority of distribution systems do not enjoy the benefits of cer-
tainty. They face several sources of uncertainty:

e Demand uncertainty: In many supply chains, at least a subset of deci-
sions have to be made before customers place their orders, i.e., with a
partial knowledge of future demand.

o Uncertainty on delivery quantities: Suppliers might not deliver the quan-
tity we have ordered, either because they face production problems (e.g.,
strikes or machine breakdowns) or because a portion of the delivery
quantity does not fully meet minimum quality standards.

e Uncertainty on suppliers’ delivery lead time: Suppliers can be late be-
cause of production problems, transportation problems, or simply be-
cause their capacity is overbooked.

e Uncertainty on current tnventory level in a warehouse: this is due to
wrong tracking of inflows and outflows (e.g., think of shrinkage in a
supermarket).

Though all sources of uncertainty could be modeled in our analysis, we focus
on demand uncertainty, which is the most classic and often the main source of
uncertainty in supply chains. So, unless we specifically mention other sources
of uncertainty, in the remainder of this chapter we focus on just one source
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of uncertainty. As to uncertain lead times, we refer to [5] and [10]. As to
uncertain delivery quantities, see [9]. As to uncertainty on current inventory
levels, we refer to [3], [6], [7], and [8].

Different kinds of uncertainty To better understand the concept of uncer-
tainty, we should appreciate the various shades of this rather broad concept.

1. Uncertainty on draws of the random variable. We can assume we know
the probability distribution from which the single demand observations
are drawn. For example, the demand can follow a normal distribution
with known mean and standard distribution (e.g., a weekly demand with
a normal distribution, a mean of 100 units, and standard deviation of 10
units). Under these conditions, the future level of demand is uncertain
but it is known at least in terms of probability distribution. With this
knowledge we can compute the probability that demand will fall in a
given range or will be below a given threshold. In this case, managing
inventories is like betting at the casino. We know the odds in advance.
A good inventory manager, like the bank in a casino, knows that in
the long run he/she is going to win, though the outcome of each single
decision might be very uncertain.

2. Uncertainty on the parameters of the uncertain variable. Under more
critical conditions we might know the shape of the demand distribution,
but we might have an imperfect knowledge of its parameters. In this
case we do not even know the probability distribution of demand from
which we draw demand observations. This case is more complex than
the previous one, as we cannot attribute a probability (or probability
density) to each of the possible levels of demand. This actually resembles
bets on sport events. Soccer matches have only three possible outcomes.
Thus the probability distribution is trinomial. However, the probability
that F.C. Inter is going to beat A.C. Milan is not known in advance of
the event.

Nevertheless, when we know the probability distribution of the unknown
parameters, the problem boils down to the previous case. We can re-
sort to the envelopment of the demand distribution. In other words,
we attribute a probability (density in the case of continuous variables)
f(z|p) conditional on the vector of parameters p. Also, we assume to
have a probability distribution g(p) for all possible vectors p (see [1] for
an example of how this problem can be tackled).

In this case, the probability density of z can be estimated as the integral
over all possible values of p of the conditional probability f(z|p)

rw= [ slp) gtp)-ap (5.1)

— 0
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Hence, even when the parameters of the distributions are unknown, if
we know their distribution we can derive the probability distribution of
demand and the problem boils down to the previous, simpler case.

Example 5.1 Let us consider a situation where we have two dices.
One dice has 6 faces, while the other one has 10 faces. We randomly
generate a draw by the following process. The random variable of in-
terest is the dice-roll. First we randomly select one of the two dices
and then roll it. When we start the process, we really do not know the
probability that we will draw number 2. If the first dice is selected the
probability of that event is 1/6, if the second dice is selected the prob-
ability of that event is 1/10. So, we know the probability that we draw
a 2 conditioned on the number of faces of the dice. Also, we know the
probability that we will select a dice with 6 faces (1/2) rather than the
dice with 10 faces (1/2). Using the theorem of total probabilities (see
section A.2), we can calculate the unconditional probability that we will
draw a 2, based on the two conditional probabilities. These are 1/6 in
the 50% of the cases where the first dice is selected, and 1/10 in the 50%
of the cases where the second dice is selected. This means that the (a
priori) unconditional probability is 1/2-1/6 +1/2-1/10 = 2/15. The
same result obviously holds for 1, 3, 4, 5. and 6. On the contrary, things
are different in the case of 7, 8, 9. and 10. In these cases, the proba-
bility is zero when the first dice is selected and thus the unconditional
probability is 1/20. Notice that obviously the sum of all probabilities isD
still 1.

3. Uncertainty on the shape of the demand distribution. In this case we
cannot attribute any probability distribution to demand (e.g.. we do not
know whether it is normal, lognormal, uniform, gamma, etc.). Thus we
do not even know the parameters that control the distribution (e.g., u
and o for the normal distribution a and b for the gamma distribution)
and, in case, what their distribution is.

Concept 5.1 In a logistic system there are different sources of uncertainty
(demand, delivery quantities and lead times, current inventory levels) as well
as different kinds of uncertainty, ranging from uncertainty on the value of
each single demand draw, to the uncertainty on the parameters of the demand
distribution and, finally, on the shape of the demand distribution.

In this book we analyze only the first case; that is, we assume to have
a demand distribution and face uncertainty on each single future draw of
demand, but we assume to know its parameters [though we include the cases
where we know the probability distribution of the parameters, see equation
(5.1)].

Finally, we shall remind the reader that probability can be interpreted both
as a frequency of occurrence or as a subjective estimate. The second is more
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relevant when no objective data are available to estimate probabilities. This
is very typical of brand new products with no past history whatsoever (see
section 3.12).

Effects of uncertainty. Uncertainty, has several consequences for supply chains.
First, an uncertain demand can lead to stockouts that in deterministic con-
ditions can be easily avoided (though actually limited capacity can lead to
stockouts).

Example 5.2 Let us consider the demand for fresh bread in a bakery shop
and let us assume that it is normally distributed with an average of 100 kg
and a standard deviation of 10 kg. In this case, manufacturing 100 kg of
bread (i.e., the expected demand) entails a 50% chance of stockout. The
demand distribution is symmetric and thus the probability that demand is
above its expected value is 50% (in symmetric distributions the mean is also
the median). The baker can reduce the probability of stockout with an extra
investment in inventories. However, this increases the cost of inventories.
Also, under the normal distribution assumption, this probability is never zero
(though from a practical standpoint it might be virtually zero for all relevant
managerial purposes).

Thus, in order to model and manage inventories under uncertainty, we
should understand what happens when we experience a stockout, i.e., what
happens when we run out of inventories. In real contexts, stockouts can have
various and heterogeneous effects that often are hard to capture and measure.

Example 5.3 In grocery stores a customer can substitute a stocked-out
product with a substitute, postpone the purchase, leave the store to visit
another one, and maybe never come back, if the new store meets his/her
needs. Also, some recent papers (e.g., see [2]) have highlighted that the re-
action to a stockout really depends on the frequency of stockouts. Somehow
customers seem to forgive sporadic errors. However, they interpret frequent
stockout as an advance notice of future stockouts and adapt their buying
behavior accordingly.

However, inventory management models typically do not investigate this
rich array of possible situations and just analyze the two extreme scenarios.

o Lost sales assumption. In the “lost sales” case we assume that unmet de-
mand is completely lost and thus the customer goes to another supplier
and does not accept a delayed delivery.

o Backorder assumption. In the “backorder” case, unmet demand is back-
ordered to the next period; so in this case we assume that customers
are willing to wait. We call backorder or backlog the demand not met in
previous periods we still have to fulfill.
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These alternative assumptions basically tell us the mechanics of a stockout,
that is, they tell us what happens to the inventory system when we run out
of goods. In the first case, customer just walk away from us. In the second
case, customers are patient and basically enter a waiting line.

In most models we assume demand to be stationary and we assume it does
not depend on the service level we provide. However, in real-life situations,
low service levels (frequent stockouts) can reduce demand, at least in the long
run.

The cost of a stockout In uncertain conditions we can face a stockout, and
this makes the cost of a stockout a relevant cost.

The cost of a stockout depends on customers’ reactions. In example 5.3, if
the customer is willing to substitute the stocked-out product with a substitute
with an equal (or even higher) margin, the cost of a stockout might be small
or even negative. On the contrary, if the customer faced with a stockout
leaves the store and never comes back, the cost is substantial (we call this
cost “customer lifetime value™).

Once again, inventory models simplify this wide range of possible situations
and classify them in two categories:

o Cost depends on the occurrence of a stockout. We can model the cost
of a stockout in several different ways. A first option is to assume that
the cost of a stockout depends on the number of stockouts, and thus
assume that the occurrence of the stockout is the cost driver. In other
words, we can assume that the lack of service is a problem per se, small
or large that it might be.

o Cost depends on the size of the stockout. A second, more frequent as-
sumption is that the cost of a stockout depends on its size. In other
words, the stockout of Barilla pasta number 5 in the 500-g package can
be both a minor or a major issue. In case we stocked out at 8 p.m. on
a Monday night and we failed to meet demand for 10 more units, then
the stockout is a minor problem. In case we stocked out at 9 a.m. on
a Saturday morning and we had to turn away demand for hundreds of
units, the cost of the stockout is substantial. Notice that in the former
case (cost depends on occurrence of stockout) we would have considered
these two fairly different situations to be equal. Indeed, in both cases a
stockout has occurred.

While the previous classification tells the mechanics of the inventory sys-
tem, this classification tell us the economics of the inventory system. In other
words this classification tells us what is the economic effect of a stock out.
Does it depend on the occurrence of a stock out or on its size?

At first sight, the first option might look odd. However, in many situations
it can depict real life quite effectively. Both the former and the latter cost
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functions are simplified and stylized models. While in some contexts the latter
fits better, in other contexts the former performs better.

Example 5.4 In continuous production systems such as steel plants, start-
ing the production process involves significant setups. Thus, in these cases,
we do not care about the duration of the stockout of raw materials or en-
ergy.! Rather, the occurrence of a stockout is per se a problem that generates
additional costs. In recent years Italy, Central Europe and the USA have
experienced significant blackouts. The interruption of electrical energy was
the cause of significant costs to restart power plants, the distribution network,
and other industrial plants. In this case, a lack of supply caused a problem, no
matter what its duration was. On the contrary, in the case of grocery stores
the duration of the stockout, the number of upset customers, and the size of
the product shortage are very relevant pieces of information to tell the cost
of the stockout. 0

Parameters of the cost function. Once we have chosen appropriate stockout
cost function, we shall set its parameters. Thus in both cases we shall answer
one of the basic, but still among the hardest questions in the field of operations
management:

What is the cost of a stockout?

All researchers agree that this is a tough question to answer. In this book we
do not even try to generate a complete set of rules or variables to gauge the
cost of a stockout. We simply provide a list of variables one might want to
carefully consider when he/she tries to capture the cost of a stockout.

o Cost depends on the occurrence of a stockout. In this case we write the
cost function as the (expected) number of stockouts, times the cost of a
single stockout p, that is, the penalty cost of a single stockout.? We shall
capture the effect of a stockout on customer goodwill and any additional
contractual penalty cost.

1This is actually a first, rough cut approximation, as the duration of the stockout might
matter as well, but still this simplification captures the problem effectively as the occurrence
of the stockout matters more than its duration.

2Notice that we are implicitly assuming that the decision maker is risk neutral, as we are
simply looking at the expected number of stockout and neglect the variance (or standard
deviation) in the number of stockouts. We are going to make such an assumption in all
stochastic models presented in this book. This is a very reasonable assumption, as these
are operational level decisions that are going to be repeated multiple times over a fairly
large number of products. Under these circumstances, risk-averse decision makers might
care about the uncertainty on overall performance of the logistic system (e.g., aggregate
profit from multiple products). However, they are very likely to be risk neutral at the item
level, since the large number of decisions taken on single items in each single unit of time
(say week) guarantees that even risky decisions at the single item level are not risky from
the standpoint of the overall collection of items.
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e Cost depends on the size of the stockout. In case the cost depends on the
size of the stockout, we shall capture the demand that we were not able
to fulfill immediately. Also, we shall estimate the cost of not fulfilling
one unit of demand for the company: We call this parameter p,, that
is, the penalty cost for each unit of demand not fulfilled immediately (in
the backorder case, demand is fulfilled at a later stage, whereas in the
case of lost sales demand will never be fulfilled and is lost).

In both cases, various costs are relevant:

o Loss of customer goodwill or loss of image. Stockouts have obvious
short-term effects; however, very often the long-term ones can be even
more important, though harder to capture. For example, frequent stock-
outs can lead current customers to switch to a different supplier. These
costs are crucial but hard to measure; indeed, it is very hard to figure
out the reason why a customer has defected our company. Once again
the grocery retail chain is telling. A customer that has decided to stop
shopping at a given supermarket because he/she cannot find the prod-
uct he/she was looking simply leaves the store. He/she does not tell
the managers what he/she was looking for and what led him/her to the
decision to switch to another retailer. The estimate of the customer
lifetime value is an attempt to capture how much the customer good-
will is worth. This concept captures how much a customer is worth.
Nevertheless, it still leaves two questions unanswered. First, what is the
probability that a stockout turns into a lost customer? Second, does the
upset customer influence the behavior of other potential users? In other
words, can a stockout experienced by customer A influence the buying
behavior of customer B? Marketing research suggests that in some in-
dustries where customers have rather infrequent purchases, this “word
of mouth” effect can be substantial. Retail companies often can hardly
estimate such cost but try to retain customers in two ways:

e On the one hand they use marketing levers such as promotions or
advertising, to increase store loyalty, that is, they try to induce
customers to first select the store and only at a second stage, once
they are in the store, choose the product within the assortment
offered by the store.?

3While retailers try to increase store loyalty, manufacturers try to increase brand loyalty. In
other words, they try to push consumers in the opposite direction: they push consumers to
first select the products and then select a retailer that carries it. Both actions try to reduce
the side effect of a stockout. Indeed, the retailer tries to convince the customer that in case
a product is stocked out or no longer available he/she should select another one from the
store assortment rather than walk away from the store. Manufacturers try to convince the
consumer that the product is very unique and he/she should move to another store rather
than switch to another brand.
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e Also, retailers often identify sets of “must-have products,” i.e.,
products that often customers consider to be absolutely necessary.
For these products, companies offer a very high service level since
a stockout might cause large damages and lead to the loss of sev-
eral customers. Coke, Nutella, and personal hygiene products are
examples of three items with very high brand loyalty. For these
products a stockout is very likely to turn into a lost sale or, even
worse, a lost customer. In other cases, the consumer might not
care about the single product, but it might care a lot about the
availability of a product category. In other words, the customer
might be very willing to switch among brands in the product cate-
gory to the extent that at least one option is viable. For example, a
customer might be very willing to switch to a different brand of low
fat milk. However, the customer might leave the store to move to
another retailer in case no low fat milk is available or, even worse,
no milk at all is available. The customer and his/her family want
to have milk for breakfast and might be willing to visit another
store to get it.

e Penalties. Final consumers tend to sanction bad vendors that experience
a stockout with a reduction in purchases. Most industrial customers use
contractual penalties, as well. In other words, industrial customers tend
to let the vendors pay for the cost their lack of service creates, even when
such costs are incurred at the customer’s site. The contract makes the
estimate of the cost of a stockout (p or p, ) rather simple, though it might
overlook substantial issues such as customer goodwill (a customer might
get paid for the lack of service but might still be upset).

Other variables are relevant only when the cost of the stockout depends on
its size.

o Lost sales. If customers (or a portion of them) decide not to buy the
item when it is not available (lost sales), a stockout causes, at the very
least, a loss of margin.* In other words, had stock been available, it
would have increased revenue by the unit price of the item. However,
this additional unit would have added extra variable costs. Thus the
net effect is the additional margin, that is, the difference between unit
price and variable costs.

This is what economists call an opportunity cost. In other words it is
not a actual cost with a negative (outgoing) cash flow. It is actually
a lost opportunity to make money and have a positive (incoming) cash

4By “margin” we mean the difference between the marginal price, (which in linear, i.e.
standard, contracts equals the unit price) and the marginal cost, that is, the variable unit
cost.
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flow. These are not actual costs for the company and generate no nega-
tive cash flow. This is why these costs are often overlooked, though for
a rational decision maker there is no factual difference between oppor-
tunity costs and actual ones. Indeed, for a rational decision maker there
is no difference between an actual cost and the missed opportunity to
generate revenues and margins. Also, we shall keep in mind that the
cost of lost sales should account for the margin gained through a sur-
rogate product, in case customers (or a subset of them) are willing to
substitute.

e Complementary products. Often we tend to measure the cost of a stock-
out through the margins of the stocked-out product. In some instances,
however, a customer that cannot find one item might take the whole
shopping basket to an alternative supplier. In this case the cost of the
stockout can be substantial as it might include the loss of margin on a
rather large set of products.

Example 5.5 Let us consider a consumer that wants to prepare a bar-
becue for the weekend. In case charcoal is stocked-out in a supermarket,
the customer is very likely to leave the store right away. Indeed, it would
not make sense to purchase meat for the grill, which is useless without
the charcoal. However, estimating these complex effects in a real-life
context is all but trivial. Omne should estimate demand of meat as a
function of the charcoal inventories. This is not impossible to do per se.
What makes it very hard are several other variables that can influence
demand for meat, such as season, weather, average price, news on food
heath (e.g., foot and mouth disease), and so on. Thus, telling the net ef-
fect of the availability of charcoal from others is not an easy task. What
makes the problem even more complex is the fact that the impact of the
availability of one item might depend on the availability of other items.
Let us assume that a supermarket carries two kinds of charcoal (A and
B). The average consumer is very likely to substitute charcoal A with
B. in case A is stocked out. If B is available, the cost of the stockout
for A is actually negligible. On the contrary, if B is stocked out as well,
the cost of the stockout is substantial, as we lose margins on charcoal
and complementary products such as meat.

Often companies cannot perform such a complex analysis and just study
so-called shopping baskets. that is, they investigate which products tend
to be sold together, both to estimate the cost of a stockout and to design
an appropriate store layout.5

5A classic example of shopping basket analysis shows that in-depth data analysis can pro-
vide counterintuitive and interesting insights in customer behavior (as well as supply chain
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Metrics for service level. In chapter 1, we mentioned that there are several
kinds of services including tracking information, dependability of deliveries,
and so on. In this chapter we focus on product availability that is a relevant
metric for service and is the one most directly impacted by forecasting and
inventory management policies.

So we shall define metrics to measure the availability of products to cap-
ture the service we are getting from our suppliers and are delivering to our
customers.

We start from the single product /single warehouse case in a static environ-
ment (stationary demand distribution, and stable inventories) to clearly show
the logic behind the service level metrics. The concepts we discuss in this
rather simple case still hold in more complex situations, though they shall be
properly adapted. In this rather simplistic context we can design two metrics
of service level that mirror the two possible costs of the stockout.

o Type I Service Level. When the cost driver is the occurrence of a stock-
out, rather than its size, the frequency of a stockout in a given time
frame (e.g., frequency of a stockout within a week) might be a relevant
metric of service level. For example one might want to control how of-
ten a production line is stopped because the plant runs out of a given
component. This is a purely ex post metric of service. To gauge service
level ez ante we calculate the probability of a stockout within a given
time-frame (say a week). For example, let us assume that demand for
a newspaper at a newsstand follows a probability distribution f(x). If
the newsvendor purchases N units of the newspaper, he can offer his
customers a type I service level (SL;) equal to

N
SL =Y () (5.2)
z=0

in case of discrete distributions, and

N
SLzz/O flz)de (5.3)

in case of continuous distributions whose support is R™.

Type 1 service level captures the probability of a stockout in a given time
frame. Thus, comparing the type I service levels of different companies
might not make sense as it might be measured over different time frames.
For example, an publisher of newspapers might have a 95% probability
of completely meeting demand (i.e., avoid any stockout) in a day. A

behavior). These analyses showed that customers who buy diapers also tend to buy beers.
Indeed, parents of newborn kids tend not to go out at night and tend to drink beer at their
place rather than at trendy pubs.
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second publisher might have a 90% probability of meeting the demand
for weekly magazines. This does not mean that the former publisher
is better than the latter at managing the supply chain. To properly
compare service levels, we should refer service levels to the same given
time frame. For example, if we assume that the first publisher provides
the market with the same 95% service level throughout the week, the
probability that he/she does not incur a single stockout during the week
is (0.95)7 = 69.8%. Thus in any given week we are more likely to observe
a stockout of newspapers than of magazines.

o Type II service level. When the size of the stockout is a relevant mat-
ter, we shall design a second metric for service levels that compares the
demand actually met with the overall potential demand. So to express
such a metric we need to be able to measure the demand that was not
immediately met. In some contexts, such as industrial customers or cat-
alogues, it is relatively easy to do so as customers tell the company what
they want. In other industries, such as brick-and-mortar retailing, the
customer who cannot find the item he/she is looking for leaves the store
and is very likely not to leave any information about the item(s) he/she
would have purchased had it (they) been available (no information is left
in the IT systems and very often no information is given to the sales-
personnel in self-service environments such as most supermarkets). In
this case too, we have to estimate the service level ex ante rather than
just measure it ex post.

The expected type 11 service level is:

N +oc +o0
g fl@)+ > N-fl@) El]-> (z-N) fl2)
=0 z=N+1 N+1
SLi; = ~ = 2]
Y a flx)
=0

in the case of discrete demand distribution;

N +00 +oc
/:cf(z) dz +/ Nf(z)de Elz|- / (x — N) flz)dx
SL]] — J0 N — N .

Foe Elx] '
/ zf(z)dx o

0
(5.5)
in the case of a continuous demand distribution with support R™.

Clearly. these definitions show that these two metrics are very different and
mean very different things. Type I service level measures a probability (of not
stocking out), whereas type II service level is a ratio between the demand we
expect to serve and the demand we expect to face. So while type I service
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Table 5.1 Differences between type I e type II service levels

Period 1 2 3 4 5 6 7 8 9 10
Demand 1 1 1 1 1 11 1 1 1 1
stockout 0 0 0 0 0 1 0 0 0 0
Demand met 1 1 1 1 1 2 1 1 1 1

level measures the percentage of periods during which we expect no stockouts,
the second is a percentage of demand that we expect to meet.

Concept 5.2 There are several different metrics for service level and we shall
carefully investigate the definition of any service level metric to understand
what it means and whether it can be compared across companies, business
units, regions, or products. In particular the type I service level measures the
probability of a stockout over a given period of time, while type II service level
measures the percentage of demand met from stock.

Also, these definitions gave us a chance to show how we can “translate”
equations from the continuous to the discrete case and vice versa. In most
of the remainder of this book we use continuous variables. The reader can
derive the equations for the case of discrete distributions easily. In the few
instances where we use discrete distributions, we explicitly warn the reader.

Example 5.6 To show that the two metrics are very different, we consider
a newsstand that faces the demand distribution for a newspaper in table 5.1.
The newsvendor has decided to carry two copies of the newspaper.

The newsvendor stocks-out only one day out of ten. So the type I service
level is 90%. However, the type II service level, that is the percentage of
demand met, is significantly lower. The newsvendor was able to meet demand
for 11 units out of 20. Thus the type IT service level is just 55%. 0

This simple example shows that the two definitions are very different and
thus jumping to the conclusion that a company that offers a 70% service level
is worse than a company that offers a 90% service level might be misleading.
We must fully understand the metrics used and their meaning to properly
compare them.

o The multiperiod case with backorders. In the multiperiod case with back-
order, customers are willing to wait for products that are temporarily
stocked-out. In this case, one might want to add metrics for late de-
liveries. We can leverage on tools and concepts from queueing theory.
Also, backordered customers might change the distribution of inventory
consumption in the next period and complicate the estimate of type II
service level.
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o The multiproduct multilocation case. Many chains consists of several
stores and warehouses that carry thousands of items. One might want
to have aggregate measures of service level. For example, in a super-
market chain one might want to know the service level of the yogurt
sections. In these cases one can use weighted averages of service levels
for the item/location combinations. Obviously one can design various
averages. For example, one might consider the stockout of any item
equally important. This means that the stockout of cans of Coke is just
as important as the stockout of spicy soy sauce (which, in the average
supermarket, hardly sells a fraction of what Coke can sell). On the
contrary, if the average accounts for number of units sold, turnover, or
margins, the picture looks fairly different. In the case of industrial firms
(i.e., firms that sell products and services to other firms), one has to de-
cide whether the service level is measured for each order rather than for
each line.® In the former case, one might consider the order completed
only when all units of all lines are delivered. So. in general, measuring
service level for orders rather than for lines is a more conservative mea-
sure of service level. So the multiproduct and/or multilocation problems
adds new complexity to the concept of service level. In these cases we
shall be even more careful when we want to compare across companies,
business units, etc., as numbers might be hardly comparable.

The remainder of the chapter discusses inventory management problems
and techniques. We start from the simple case (section 5.2) involving a single
product and single period, and then we move to dynamic problems that are
introduced in section 5.3. We discuss (@), R) policies in section 5.4; section
5.5 introduces periodic review policies, which are discussed in sections 5.6 and
5.7.

5.2 THE NEWSVENDOR PROBLEM

With respect to the classification of inventory problems introduced in section
4.1, the newsvendor problem is:

e single-product, single-period and thus static, single-echelon;
e demand is uncertain, though we know its distribution;

e the objective is to minimize the (expected) cost of inventories and ser-
vice; in each period we have to place one order, as inventories left over

8Industrial firms place formal orders that consist of various lines. The order typically comes
form a single customer and requires a single delivery at a single point in time. The customer
might want several different items to be delivered at once. Each single line refers to a single
item and states how many units (of the item) the customer wants to receive.
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in the previous period cannot be used any longer (think of newspapers
left over yesterday); this makes the ordering costs constant and thus
irrelevant.

This problem is called the newsvendor problem, as it resembles the problem
a newsvendor faces each and every morning, when he/she needs to decide
how many copies of a newspaper he/she wants to purchase from the publisher
or distributor. In this case, ordering costs do not depend on the purchase
quantity and thus are an irrelevant variable in the model. The vendor shall
balance two contrasting objectives. He/she wants to fully meet customers’
demand, take all the opportunities to sell the product, and minimize cost of
service. On the other hand, buying too many units of the newspaper might
leave some units left over (i.e., unsold) at the end of the day.
Formally, we can define two costs:

o Clost of the stockout. In the remainder of this section we consider the
unit cost of the stock out to basically consist of the loss margin (thus we
ignore for the sake of simplicity other issues such as customer goodwill
or the possibility that a customer switches to a substitute product; our
results, though, hold in the more general case). So in the remainder of
this section the unit stockout penalty p, is identified with the margin m
that the newsvendor can gain by selling one unit of the newspaper, sold
at a price p to the consumer and bought at a cost u from the distributor
or the publisher.

o Cost of excess inventories that is the units left over at the end of the
day. The cost is ¢ equal to the difference between the purchase cost
u and the salvage value v of the newspaper at night (i.e., the residual
value of the product at night, that is, the amount of money we can get
back from the publisher, the distributor, or the value of scrap paper).”
Notice that, in this case, we do not consider the stock holding cost {that
is, the cost of inventories in the EOQ model), since goods are held for a
very short period of time and the holding cost is negligible, as compared
to the cost of stockouts and of excess inventories.

70ddly, in most countries the publishers and distributors give the newsvendors full credit
for the units left unsold at the end of the day. In other words, u = v. As we will see later in
this section, this situation seems to suggest that overstocking creates no additional costs.
So the newsvendor might be tempted to order very large quantities as excess inventories
are not expensive to them. Nevertheless experience tells us the this is not the case, since
often newsvendor run out of newspapers by day-end. So there is an apparent gap between
what the newsvendor model seems to suggest and the actual behavior of real newsvendors.
Are newsvendors stupid or is the model not working properly? Actually, neither hypothesis
is true. Indeed, there are other costs associated to very large purchase orders. First,
newsvendors have limited space in the newsstand and thus excess inventories might mess
up the operations of the store (see section 5.2.1). Also, there are some administrative costs
associated to receiving and returning the copies left unsold. For example, at the end of
the day the newsvendor needs to count the units left unsold and packs them, so that the
distributor’s truck can pick them up the next morning.
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Table 5.2 Probability distribution

Units(x) 1 2 3 4 5 6 7 8 9
Probability p(x) 01 01 01 01 02 01 01 01 01

When one faces demand uncertainty, he/she might be tempted to treat the
problem “as if” it were deterministic; that is, he/she might be tempted to
neglect demand randomness. A simple example can show that this is actually
not a good idea.

Example 5.7 A newsvendor faces an uncertain and discrete demand that
follows the distribution in table 5.2. He/she sells the newspaper for 1€, buys
it at 80 cents, and can give it back to the publisher for 75 cents, in case some
units are left over at the end of the day.

A first option is to buy 5 units, as the expected demand is 5 units. Also, 5
units is the single most likely demand scenario (mode of the distribution). The
newsvendor does not know his/her profit 7(Q) in advance, since it depends
on the random demand. However, he/she can compute the expected profit
E [7(5)] of this policy:

9 4
Efr(3)]=> 5 1:pa)+> [&-1+(5-2) 0.75] p(x) —5-0.8 = 0.75 €.

z=>5 z=1

When demand is equal to or larger than inventories (5 units), we sell 5 units
and the revenue is 5 units-1€/unit = 5€. If the demand is lower than inven-
tories (5 units), sales equal demand. The cost of this policy is the purchase
cost of the 5 units, that is, 4 € This apparently sensible policy turns out to
be all but optimal.

To begin with, we can investigate the marginal profit of the 6th unit, that
is the additional amount of money the newsvendor would make if he/she
purchased 6 units instead of 5. The 6th unit has a certain cost of 0.8€ and
an uncertain revenue. It is 1€ if it is sold, while it is 0.75€ when it is left
over at the end of the day. The 6th unit is going to be sold if demand is at
the least 6 units. Thus the probability selling it to the final consumer at 1€
is 40%, that is P{X > 6}. Hence, the probability that it will be sent back to
the publisher for 0.75€ is 60%.

Hence, revenue is uncertain, but we can compute the expected marginal
revenue of the 6th unit that is 1€-0.4+0.75€-0.6 = 0.85€. In other words, if
the vendor decides to carry the 6th unit on top of the first 5 units, revenue is
expected to increase by 0.85€. Given the marginal cost of 0.8€, the marginal
profit is then 0.05€. The vendor can increase the profit by 0.05€ simply by
buying an extra unit. This means that the vendor shall expect a profit of
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0.8€ if he/she buys 6 units:

9 5
E(r(6)=>Y 6-1-pa)+ > [x-1+(6-2)-0.75] p(x) —6-0.8 = 0.8€.
r=6

r=1 D

More generally we can easily show that the objective function is concave, as
the expected marginal return is decreasing with respect to the stocking quan-
tity @ (as the quantity increases, the probability that demand will be high
enough to sell the Qth unit decreases, and thus marginal revenues decrease)
while the marginal cost is constant. Hence, also units 1-5 have a positive
marginal profit. Thus the apparently reasonable decision to buy 5 units is
suboptimal. One could be tempted to draw the conclusion that when de-
mand is uncertain, we shall always carry extra inventories, i.e., carry more
inventories than we expect to sell. This is actually a wrong conclusion. The
solution depends on the economic parameters of the problem. In some cases
we over-stock, while in other cases we understock.

Example 5.8 Let us assume that the publisher in example 5.7 decides that
for some reason he does not collect unsold copies for 0.75€ and, thus, the
salvage value of unsold copies drops to zero. In this case, the marginal revenues
from the 6th unit would drop to 1€ - 40% + 0€ - 60% = 0.4€, making the
marginal profit negative (—0.4€) and the 6th unit unprofitable.

Also, the marginal profit of the 5th unit would be negative as well (—0.2€).
So we would buy less than 5 units, and would increase the risk of stockouts
(we would experience a stockout when demand equals or exceeds 5 units).

Concept 5.3 Uncertainty changes the fundamentals of the decision-making
problem. Thus, choices that are optimal under deterministic conditions turn
out to be fairly inappropriate for uncertain ones.

This example challenges one of the so-called “golden rules” of logistics: We
shall have a 100% service level. This very simple example shows that a 100%
service level can be counterproductive for some companies. The costs of such
an high service level might exceed the potential benefits.

As we have seen in the newsvendor example, the optimal inventory and the
optimal service level depend on the economics of the company, that is, costs
and margins. Increasing the service level without changing the economics is
an error that can have consequences.

Concept 5.4 A 100% service level is not always a recipe for success. The
choice of the optimal service and inventory level depends on the economics of
the company.

Once these basic concepts are set, we can move on to the next stage and
create a more rigorous model to answer the question, How many copies of
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the newspaper should the newsvendor buy from the publisher? We can deal
with this question in two different ways, though obviously they lead to the
same answer. A first approach uses economic theory and investigates marginal
revenue and marginal cost. A second approach leverages on mathematics and
optimization, and it stems from the profit function and its differentiability.

An economic approach to newsvendor problem. We can interpret the newsven-
dor problem as a simple economic problem where the newsvendor is just an
economic agent who tries to maximize its profits. To do so, the newsvendor in-
vests in inventories when they are expected to generate profit, whereas he/she
stops investing when the reward for such an investment is negative. In the
previous section we have shown that the marginal return of the investment
in inventories is decreasing. In other words, the expected profit for the first
unit is higher than the expected profit from the second unit, which in turn
is higher that the expected profit from the third unit and so on. Indeed, the
probability of selling unit @ + 1 decreases as @ increases. On the contrary,
the purchase cost is a linear function of @ and the marginal cost of unsold
inventories increases (the probability that the item is unsold at the end of the
day increases). Thus, the profit function is concave.

This implies that in the case of continuous demand distributions, a local
maximum of profit function is a global maximum as well. In the case of dis-
crete demand distributions we just need to solve the problem in the continuum
and then choose between the two nearest integer solutions (floor and roof of
the continuous solution). In the remainder of this section we only deal with
the continuous distribution problem, as we have shown that discrete problems
can be easily solved through a continuous relaxation.

To find the optimal solution in the continuous case, we shall just equal
marginal returns and marginal costs. In the newsvendor model this means
that the newsvendor keeps on buying additional copies of the newspaper to
the point where the marginal return he expects from the additional copy is
larger than (or equal to) the additional cost he expects to face. Notice that
in the model we assume the decision maker to be risk neutral. At a first sight
this might look like a fairly odd assumption, as most decision makers are risk
adverse. However, if the decision maker repeats the decision each and every
morning and maybe he/she makes the decision on several newspapers (more
generally when the decision is repeated multiple times and the impact of each
decision is very limited®), even a risk-adverse decision maker tends to behave
like a risk-neutral one.

8This means the we shall not include decisions that, in the case of bad luck, can lead to
immediate bankruptcy or, in general, irreversible problems.
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Now we just need to turn these concepts into math. We can write the
marginal expected profit from the Qth unit as:

9B (r (@)

50 =m-P{X 2Q}-c - P{X<Q}; (5.6)

where:
o 7' (Q) is the expected marginal profit from the Qth unit;

e P{X > @} is the probability that demand X is larger than or equal to
inventory level Q.

We do not know the marginal (i.e., additional) profit we gain through the Qth
unit, but we know that we have a probability P {X > Q} of selling it and if
we sell it we gain a margin m. On the contrary, if we cannot sell the Qth unit
we face a cost ¢ and this scenario has a probability P{X < @}, since in all
scenarios where demand is lower than @, the Qth unit is left unsold.

Now we can restate equation (5.6) as

E (7 (Q))
0Q

where F (Q) = P {X < Q} is the cumulative distribution function of random
demand; also note that, in the continuous case, P{X < Q} = P{X < Q}.
Then we set the marginal profit to zero to find the maximum; it is easy to
show that for continuous demand distributions we have

=m-(1-F(Q))-c F(Q), (5.7)

F(Q") = — (5.8)

m+c

A mathematical approach to the Newsvendor Problem We can also write the
expected profit function and calculate its derivatives to find the maximum.
The expected profit function is

Q +oc Q
Elr(@)]=m- (/ zf(z)dr + Qf(x)dx> —c'/ (Q@—x)f(z)dz.
0 Q 0

In other words, the expected profit is equal to the margin we expect to enjoy
minus the costs of inventories we expected to face. Expected margins are equal
to the unit margin times the expected number of units sold, i.e., demand z,
when this is lower than the quantity on hand@, and @ in all other cases. Cost
of unsold inventories is related to the difference between inventories Q and
sales: We only have (@ — z) units left over when demand (z) is lower than
inventories (@).

Now we have to take the first-order derivative of the profit function with
respect to @ to maximize it. To do so, we use Leibniz’s rule, which is used to
differentiate integrals.
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GQh(Q@) GQ.a(Q))

A\ £

dx dx

Fig. 5.1 Graphical illustration of Leibiniz’s rule.

Technical note (Leibniz’s rule). Consider a function ¢ (@, z) of two vari-
ables, and let us define a function of @ through the integral:

h2(Q)

c@=[ 4@
h1(Q)

Notice that G(-) does not depend on x, which is used as an integration vari-

able. In many applications we need the derivative of G(Q) and Leibniz's rule

suggests how to find it. Under suitable technical assumptions, Leibniz’s rule

says that

255 9(Q, ) da

{(Q)
0Q
h2(@)
:/ 99(Q2) 14 (.12 (Q)) - 1y (Q) — 9(Qu by (Q)) - H, (Q)
m 9@

The intuition behind Leibniz’s rule is that the integral can vary either
because the upper endpoint of the integration interval is shifted, or because
the lower endpoint is shifted (there is a minus in the formula because if the
lower endpoint increases, the overall value of the integral moves in the opposite
direction if g is positive) or, finally, as the function ¢ (@, ) is changed. This
point is illustrated in figure 5.1. 0
We can use Leibniz's rule to compute the derivative of the expected profit
function with respect to @:

9E (7 (Q))
oQ
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+oo Q
m~<Q~f(Q) / f@)de Q. (—1)~f(Q)>—c~/o f (@) da

m- /+00 a:—c/ flx

m(l—-—F(Q))—c - F(Q

I

Il

We can use the above equation to obtain (5.8).
Also, we can show that this a maximum by checking the second-order
derivative:

8% (E(r(Q)))
02Q
Thus, no matter what approach we follow, we still find the same conditions
for optimality and thus the optimal quantity @*.

= -m-f(@ —c f(Q)<0 VQ.

Once we have derived the optimal condition (5.8), we shall reflect upon the
process we have followed.

o We have made no explicit assumption on the demand distribution to
derive equation (5.8); hence, (ruling out pathological cases) the results
are essentially distribution-free.

e The solution thus suggests that the optimal quantity Q* depends on two
basic ingredients:

— First, the optimal solution depends on the economics of the item/firm
we are planning for, that is the margin m and the cost of excess
inventories ¢

— Second, the demand cumulative distribution F (z).° This fairly
simple model clearly shows that there is no such thing as one
“right” level of inventories that fits all companies. Often com-
panies and managers tend to ask point blank: We have k units
in stock (often inventories are measured as number of months of
supply); is this the right level of inventories? Do we have too much
inventories? Or maybe too little? Is it more or less than the com-
petitors? The rather simple newsvendor model is telling us that
we cannot possibly answer that question without a proper analysis
of the economics of the company.

9When demand is discrete (in our case, it is expressed by integer numbers), there might
not be any value z that satisfies equation (5.9). However, given the convexity of the cost
function (concavity of the profit one), we shall only consider the solutions 1 and zg = z1+1
that are the two solutions where F(z) is just lower than and just greater than —Z—. More

m+c
formally, z; = maxz, s.t. F(z) < mLﬂ,_c, and z2 = minz, s.t. F(z) > m”_:_c.
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e Also, we notice that equation (5.8) suggests the service level that the
newsvendor should provide. Indeed, F (Q) is the probability that de-
mand is met completely; thus, it is the type I service level we shall expect
if we carry @ units. So the newsvendor model suggests an optimal type
I service level as a function of the economics of the company and of the
item.

The next step is to identify the inventory level @Q* that guarantees the
required type I service level. Obviously, Q* depends on the probability dis-
tribution of demand. The quantity @ that leads to a 90% service level in a
newsstand in a small town is definitely insufficient for a newsstand at a New
York City railway station.

We need to identify the demand distribution (and its cumulative function
F'(+)) to properly set the optimal value Q* as follows

*x __ -1 _m
=r (m+c>'

Example 5.9 Let us consider a seller of milk fresh from the cow. This
seller buys fresh milk from the cattlemen in the Alps at 0.5€/liter and sells
it for 1.1€/liter in the city. The product perishes quickly, as it is does not go
through any thermic or chemical process. Also, the seller wants to sell only
very fresh milk to support the high-price policy. Milk left over at the end of
the day is sold to a pig farmer at 0.2€/liter. Demand for milk is a random
and stationary process that follows a normal distribution with an expected
value of 100 units/day and standard deviation of 20 units/day.

The seller has to decide how many liters he wants to buy from the cat-
tlemen. As the reader can easily see, this situation closely resembles the
newsvendor problem: At the end of each single day, all the units are sold
either to the final consumers at a margin m or to the pig farmer at a loss
¢. This makes the problem static since the decisions taken at time ¢ have no
impact whatsoever on successive decisions.

Thus the milk seller just wants to apply the findings of the newsvendor
problem.

In this case, if the product is sold at full price to the end-consumer he
gains a margin m = 1.1€ — 0.5€ = 0.6€, whereas if the product is sold to the
pig-farmer the seller loses ¢ = 0.5€ — 0.2€ = 0.3€.

Hence the seller shall seek a service level

06
T 06+03

(5.9)

LS (Q") = F(Q7) = 66.6%.

Up to this stage we have not used any information on the demand distribu-
tion. Now, to move forward, we need this information to identify the quantity
Q" that leads to the optimal service level (66.6%).

In the case of the normal distribution. we can use the standardized normal
distribution. In the appropriate tables we can find z so that F(Q*) = 0.666.
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F(x)

33.3% probability
‘ 66.6% probability

Fig. 5.2 Solution of the newsvendor problem: F(Q") = 66.6% and normal distribu-
tion.

fx)

33.3% probability
66.6% probability

N

Fig. 5.3 Solution of the newsvendor problem: F(Q) = 66.6% and uniform distribu-
tion.
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Tables suggest that we select z = 0.429. Hence, the seller maximizes expected
profit by purchasing @Q* = 100 + 0.429 - 20 = 108.58 liters of milk per day.

Clearly, in the case of different demand distributions (either different shapes
or different parameters) we would have reached different conclusions (compare
figure 5.2 with figure 5.3).

Example 5.10 Finally, we want to show how demand forecasting and in-
ventory planning can be integrated. We refer back to example 3.15 on page
149. We consider the inventory planning the newsvendor faces for day 36,
that is, next Tuesday. He/she needs to make a decision on how many copies
of the newspaper he/she wants to orders. We know that he/she expects a
demand for 37.98 units with a standard deviation of 10.05. Notice that when
planning inventories we care about the demand uncertainty rather than de-
mand variability. When the newsvendor will be faced with the decision on the
number of units to buy on Sunday, the expected demand will be substantially
higher and thus the quantity will be substantially higher. Nevertheless, when
planning inventories for Tuesday we really care about the expected demand
and the uncertainty in demand for Tuesday and are not interested in the vari-
ability of demand within the week. For the sake of simplicity, let us assume
we can model the demand distribution as a normal distribution (demand is
discrete, but given the large number of units involved the approximation by
a continuous variable is rather reasonable). To find the best decision we have
to investigate the economics of the newsvendor. The newsvendor sells the
newspaper for 1€ and buys it for 0.8€ from the editor. At the end of the
day the newsvendor gets back 0.7€ for each unit left unsold. In this case, the
margin for the newsvendor is 0.2€, while the cost of inventories is 0.1€. We
can use these economic parameters in equation (5.8) to derive the optimal
service level
0.2

T 02401

Finally, we need to use the standard tables for the Normal distribution to find
the optimal quantity Q* that satisfies the above equation. The standard tables
for the normal distribution suggest that the relevant z for a 66.66 service level
is z == 0.429. Thus the optimal quantity is Q = 37.98 +0.43-10.05 = 42.30.D

F(Q") = 66.66%. (5.10)

Concept 5.5 Demand forecasting provides a key input to inventory planning.
Both the expected demand and the demand uncertainty are provided by the
forecasting process.

Once the Newsvendor problem is solved, we can try to read the result
economically. Equation (5.8) suggests that the service level one shall provide
increases as the margin increases. As m increases we have a greater and
greater incentive to buy more units and accept the risk that they might be
left unsold. On the contrary, if the cost of inventories left unsold grows, we
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shall reduce the purchase quantity to limit the probability that this fairly
expensive scenario comes true.

Also, equation (5.8) suggests that when the margin m is larger than the
cost of inventories ¢, we shall achieve a greater than 50% type I service level.
In the opposite case, it is advisable to reach a less than 50% type I service
level.

This simple result shows that it is very unreasonable to assume that all
companies should seek the same service level. In particular, for many compa-
nies a 100% service level can be a very silly strategy.

In the case of symmetric demand distributions, to gain a service level above
50%, we shall select an inventory level above the expected demand (a so-called
overproduce, overbuy, or overstock policy), whereas when the target service
level is lower than 50% we shall deliberately choose an inventory level below
the expected demand (a so-called underproduce, underbuy, or understock
policy).

The newsvendor problem is not just a powerful prescriptive tool, but also
an interesting interpretative tool can help us read economic behaviors that at
first sight might look odd.

Example 5.11 A first application of the newsvendor problem is apparel
products with a high fashion content. We know very well that retailers in this
industry have a fair amount of products left over at the end of the season. In
the Western world the winter selling season peaks at Christmas. Most retailers
at the beginning of each year “discover” that units bought for the previous
Christmas season were excessive and there are left over goods that shall be
liquidated through a sale. What is really surprising is that this happens year
after year and retailers seem not to be able to adjust their purchase quantities
to reduce the amount of goods sold at a discount.

A first simplistic reading of the phenomenon is that apparel retailers are
just optimistic by nature and tend to overestimate demand for almost all
products they sell.

Actually, this has more to do with economic incentives to overstock than
with forecasting. Apparel goods are often manufactured in the Far East and
thus have rather long lead times because of both relatively limited respon-
siveness and long transportation lead time to major Western markets (3 to 4
weeks to transport goods via ship to Europe). These products are sold over
a relatively short period of time (one season at maximum). So many com-
panies only place one order for the whole season to Asian suppliers (though
there is just one advance order we might have multiple deliveries ~ see chap-
ter 4).10 Therefore, the purchase planning for fashion products resembles the

0Notice that to judge whether the company is in a position to place more than one order
and thus adjust purchases to meet demand, we shall compare the time it takes to read early
demand —i.e., the amount of time to collect a statistic on demand that significantly improves
accuracy over forecasts generated before the beginning of the season — and supplier’s lead
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newsvendor problem. Before we start selling, the inventory quantity is set.
Later we try to sell the product at full price and finally we get rid of left over
inventories (excess inventories) just like in the case of the newsvendor. So the
structure of the problem is exactly the same, though products are different,
lead times are different, product life cycle is different and the means to get rid
of excess products are different (returns vs. end-of-season sale}). Companies
in the fashion apparel industry enjoy fairly large margins. Many small stores
have a 100% markup, i.e., when they buy an item for 100€, they sell it for
200€. Cost of inventories is rather limited: Though end-of-season discounts
are significant the cost of inventories is significantly below the margin of 100€.
Thus retailers offer a very high service level. For example, consider a product
purchased for 100€. The retailer adds transportation and handling costs for
additional 20€. The full price is 200€ while the sale price (so-called salvage
value. i.e., the value of the product after the end of the selling season) is 110€.
In this case the optimal service level is

200 — 100 - 20

= 88.9%.
(200 — 100 — 20) + (100 + 20— 110) _ °° I

This means that, for any product with these economics, it is advisable to have
a 88.9% probability of not stocking out, i.e., a 88.9% probability that some
units will be left over at the end of the season and only a small probability
11.1% of selling-out the item before the end of the full-price season (with con-
tinuous distributions the probability that demand perfectly matches supply
is zero). Thus the Newsvendor problem provides a very clear reading of an
apparently odd behavior. 0

Example 5.12 The above example might lead us to believe that in real-life
situations, companies tend to over-stock. A counterexample helps us under-
stand that this is not actually the case. Italians like to eat fresh bread and
thus typically buy fresh bread daily from small bakery shops that bake their
own bread. Bakers typically bake bread once a day (the production process
is very long and they start preparing bread as early as 2 a.m.). So before
the sun rises, the baker makes the production decision a few hours before the
store opens and he/she can start selling. This is exactly what happens to
the newsvendor. All Italian consumers know very well that at a few minutes
before the bakery store closes the vast majority of bakers run out of most
kinds of bread.

A first reading of this behavior is that bakers are pessimistic by nature
and tend to underestimate potential demand. On the contrary. these retailers
know their business very well. They know that a piece of bread sold for 50
cents has a relatively high cost; let us assume a variable cost of 40 cents for

time with the product life cycle. In the case of apparel goods imported from Asia, we often
have a limited ability to react and thus the problem is a static one, though in the case of
multiple deliveries and significant holding costs, it can be a multiperiod problem.
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raw materials and energy. Also, bread unsold at the end of the day has a
very low value. It can either be turned into dry grated bread, frozen at a
significant cost, or sold as food for animals. Let us assume that the salvage
value of a piece of bread is 10 cents. Under our simple assumptions, the baker
shall seek a type I service level of

30-25
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Thus, the baker shall run out of bread three days out of four. Again, the
newsvendor problem helps us make sense of an apparently odd behavior that
is actually economically sound. Notice that here we do not argue that mom
and pop bakers in Italy do their math an optimize the Newsvendor problem.
Actually most of them make no formal calculation to determine the production
quantity. However, they face the same decision each and every day. So,
they experience both stockouts and excess inventories and they immediately
understand that the cost of a stockout is smaller than the cost of excess
inventories. Therefore, given that they repeat the decision over and over
again, they can adjust their stocking policy over time and get the right balance
empirically.!? Unfortunately, not all businesses enjoy this opportunity. Thus,
it would be advisable to understand the newsvendor model and get it right
the first time. "

Example 5.13 In our examples we have compared two different product
categories. Now we want to compare the service level that different companies
offer on a given product category. In most large cities, one can hardly find
fresh fish in a fish shop late in the afternoon. On the contrary, if one enters
the best fish restaurant in town, say at 10 p.m. one is very likely to find
exactly the kind of fish he/she wants. So one might wonder why one cannot
find fresh fish in the afternoon in a shop while in the same town one can find
fish a few hours later in a restaurant.

Again we can find the right solution to this puzzle by looking at margins.
The margins of a good restaurant are usually far higher than those of a shop.
So the restaurant is willing to overbuy so that it can meet the demand from
an occasional customer late at night. On the contrary, the fish shop tends
not to overbuy, as the amount of money it makes does not justify the risk of
having fishes left over at the end of the day.

So, quite interestingly, two stores with the same upstream supply chain
(they are very likely to buy the fish from the same distributors or fisherman)
have very different inventory policies. I

Interestingly, some bakers started to offer discounts between 7 p.m. and closing time to
get rid of the excess inventories and increase the salvage value. This enables these bakers
1o offer a higher service level.
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5.2.1 Extensions of the newsvendor problem

The newsvendor problems can be extended in several different ways. In this
book we consider two extensions:

e Multi-item newsvendor problem

e Two-period newsvendor problem

Multi-item newsvendor problem. The basic newsvendor problem considers only
one product. Notice that a single-item problem can be applied to companies
with many items that are independent (e.g., no complementarity or substi-
tution on the demand side, no supply or budget constraint on the resource
side). In this case a multi-item problem is just the collection of single-item
problems.

On the contrary, when the various items somehow interact. the problem
becomes more complex. Here we only investigate the case of items that share
common resources. These common resources constrain the optimal quantity
of single items. Such constraints can stem from various issues ranging from
space available on the shelves in stores, to limited production capacity, limited
budget for a product category, etc. No matter what is causing the constraint,
we assume we can write it as an upper bound on the total quantity for the [
products:

I

ZQi'WSBZ

=1

where 7; is the amount of the limited common resource consumed by one unit
of item 7, R is the available amount of the common resource, and @; is the
quantity of item i we decide to stock. We want to maximize the profit of
the I products in our assortment. Thus we can restate the profit function as
follows:

I

I
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We are assuming that the profit functions of the I items are independent. In
this case “independent” has nothing to do with statistical independence; we
may write the function in this separable and additive form, since there is no
interaction either on the demand side (e.g., no substitution or complementar-
ity) or on the cost side (no joint economies of scale).

In this case, we can use Lagrangian multipliers to find the optimal solution.
We define the Lagrangian function
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Note that the sign in the Lagrangian function depends on the fact that we are
mazimizing the objective function subject to a budget constraint (see section
B.4.1).

Notice that we have an inequality and that we cannot simply assume that
the constraint is active (i.e., the equality is verified) for the optimal solution
(contrast this situation with the multi-item EOQ problem). Thus, we shall
refer to Kuhn-Tucker conditions (see theorem B.6 on page 558). The multi-
plier is bound to be positive and the complementary slackness condition must
hold as well. This condition simply states that there are two possible cases:

1. The constraint is not active, that is, the common resource is actually
not fully utilized as it is actually abundant; in this case the multiplier
is zero.

2. The multiplier is strictly greater than zero and the constraint is active
and thus it can be treated as an equality constraint.

In the former case the constraint is not active and thus we shall just set A =0
in the condition below. In this case the optimal solution is just the solution of
the single-item unconstrained newsvendor problem, since the only constraint
is basically irrelevant.

In the latter case the optimal conditions are

Oh (@1, Qi -, @A) OE(mi(Q))

0Q: 00y
= mi - (1-F(Q:)) —ci- Fi(Qi) = A1 =0 Vi
oh (Qla"aQ’iv"QI-,)‘) . ! ] ] A
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hence
* ml ")\'7’2
F(Q7) = o—— (5.11)
Z Qi ri =R (5.12)
i=1

Once we have found the solution, it is interesting to read the economic message
the mathematical solution is sending us. Optimality conditions suggest that
if the budget constraint is binding, the resource may have a positive shadow
price A\. Given this shadow price, the margin (profitability) of each product
should account for the opportunity cost of the shared resource. For example,
we should consider the cost of the shelf space used by each unit of the product,
or the cost of the limited production capacity consumed, etc.

Example 5.14 Let us consider a product with a price of 100€, a purchase
cost of 60€, and a salvage value of 40€. Let us assume that the production of
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one unit consumes 1 unit of production capacity that could be otherwise be
employed for 10€. A first option to solve the problem is to use the findings
of the basic single-item newsvendor problem. This suggests that we should
reach a ﬁ = 66.6% service level. However, this approach might lead
us to overuse the limited production capacity that could be effectively used
otherwise as we overlook the value of the limited capacity. So, we can be a
little bit more sophisticated and account for the consumption of the valuable
capacity. If we use one unit of capacity to manufacture one unit of the product,
we might gain a 40€ margin. However, to do so we give up a 10€ margin we
could have gained by using the capacity differently. Hence, if we account for
the capacity consumed, the margin we can hope to gain with one additional
unit is 30€.

Cost of inventories, too, shall account for the opportunity cost of the valu-
able capacity. The cost of inventories is the difference between the purchase
cost (60€) and the salvage cost (40€). Also, we should consider the opportu-
nity cost of capacity. In other words, this product has not only a 60€ direct
cost but also the cost of capacity that could have generated a profit of 10€,
had it been employed differently. So manufacturing a unit that is then left
unsold at the end of the period implies direct costs for 20€ plus 10€ we could
have gained had we used the capacity to manufacture other products. So the
total cost of inventories left unsold is 30€.

So if we restate the solution of the newsvendor problem to account for the
cost of capacity rather than using just the direct margin m,; and direct cost
of inventories ¢;, we end up writing equation (5.11).

In other words we shall provide a 3—03% = 50% type I service level. This is

exactly what equation (5.11) suggests to do: £=1%1 where A = 10 is the unit
10+20

cost of capacity and r; = 1 is the consumption of capacity to manufacture one
unit of the product.

The Lagrangian multipliers’ method uses exactly this logic. However, there
is a significant difference: The Lagrangian multipliers find the optimal value
for A, that is, the opportunity cost of the shared resource. So Lagrangian
multipliers do not require the value of the shared resource as an input. Indeed,
the shadow price of the resource (i.e., the opportunity cost) is endogenous to
the multi-item problem, as it depends on the stocking quantity of the whole set
of products, their consumption of the shared resource, and their margins. For
example, if products are produced in limited quantities, the capacity might
be abundant and basically have a zero value. On the contrary, if products are
in high demand and have large margins, the opportunity cost of capacity is
relatively large.

So far we have just derived optimality conditions. In other words, had we
found the optimal solution, it would satisfy these conditions. Now we want
to design an algorithm to find an optimal solution:

1. X = 0, if the solution satisfies the constraint, then stop; otherwise pro-
ceed.
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2. If the current solution violates the constraint, increase the opportunity
cost of capacity A; otherwise, reduce it (while still keeping it positive).

3. Calculate optimal quantities Q; with equation (5.11).

4. If the constraint is satisfied with a given tolerance, stop; otherwise goto
2.

This solution process identifies an optimal solution simply because it checks
first whether the unconstrained optimal solution is feasible and we can imme-
diately stop. If this is not the case, we try to identify a price A for the shared
resource in such a way that it can be fully utilized (100% utilization rate) and
efficiently allocated among the I products. A too-low opportunity cost A leads
to an excessive utilization of the shared resource and thus we shall increase
it. On the contrary, a too-high opportunity cost A leads us to underutilize
capacity. Thus it is convenient to use capacity utilization to capture whether
A is too high or too low.

Finally, it is interesting to discuss the special case of products that share
the same margins m;, cost of inventories ¢;, and consumption of the common
resource ;. In this case, the optimal solution is to give all products exactly
the same service level. Once again math suggests a solution with a clear
economic message: If we have two identical products and a limited capacity
to manufacture or purchase them, why should we provide a higher service
level for one rather than the other? A higher type I service level means that
we have a lower probability of selling the last (marginal) unit and a higher
probability (just equal to the service level) of not selling the last unit. A simple
re-allocation of capacity from the higher service level product to the lower
service level one increases the chances of selling the last unit manufactured.
Clearly, this increases the expected profit.

Also, notice that the same reasoning applies to the case where margins m;,
inventory costs ¢; and consumption of the shared resource r;, though not equal
across products, are proportional. Indeed, if product 1 has 50% of the margins
and of the inventory costs of product 2 (m; = 0.5- mg and ¢; = 0.5 ¢3) and
it also consumes 50% less of the shared resource (r1 = 0.5-73), then basically
one unit of item 1 is equivalent to 0.5 units of item 2. So, also in this case we
should provide the same type I service level for all products.’?

12Notice that in the case of discrete demand we might not be in a position to reach exactly
the same service level on all products. One possible way out is to allocate the limited
capacity to the product that has the largest expected profit. A description of a greedy
heuristic might be

e C=R

e @; =0 Vi

e O;=1 Vi

e Dountil ]_,0; =0
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Table 5.3 Data for multi-item newsvendor problem

Product A B C D E
Selling price 100 130 170 80 80
Purchase cost 60 70 80 50 50
Salvage value 40 50 60 45 45
Expected demand 1000 500 500 1500 2000
Standard deviation 250 300 350 100 350

Table 5.4 Unconstrained solution to the multi-item newsvendor problem

Product A B C D E

Optimal service level 0.667 0.75 0.818 0.857 0.857
Optimal quantity 1108 702 818 1607 2374
Optimal purchase cost 66480 49140 65440 80350 118700

Example 5.15 Let us consider a buyer in the fashion business. The com-
pany has long lead times, so the buyer only buys once in the season. The
buyer manages a section of the company’s assortment, say women’s parkas.
In the assortment we have five products. Table 5.3 shows selling price, pur-
chase cost, and salvage value for the five products in the assortment. Table
5.3 also shows expected demand for the season and its standard deviation.
Let us assume that the buyer has a limited budget and can only purchase
products for 330K<€.

With the data in table 5.3 we can derive the optimal and unconstrained
purchase plan that is described in table 5.4,

e Find
[(1_F<Q1+1>)‘m1_F(Qi+1)'ci]

i3

Jj = argmax; { ,8.8.0; = 1} ;

o If (1-F(Q;+1)) mj— F(Q; +1) ¢; < 0 then stop
o [fr; > C then O; =0 else

e Q;=Q;+1

e Next

In this process we basically allocate the limited capacity R to all products. O; are Boolean
variables that capture whether we are still allocating the capacity to product i or we stopped
either because no additional unit fits in the limited capacity available or because adding an
extra unit is no longer profitable.
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Table 5.5 Optimal constrained solution to the multi-item newsvendor problem

Product A B C D E
Service level 0.470 0.578 0.675 0.576 0.576
Quantity 981 559 659 1519 2067
Purchase cost 58860 39130 52720 75950 103350
Constr. Optimum 0.89 0.80 0.81 0.94 0.87

Unconstr.Optimum

Table 5.4 provides us with several insights. Interestingly, different products
have different target inventories. First, products D and E have the highest
service level since they have good margins (30€) and a very low risk of ob-
solescence (5€). Though these two products share the same economics and
thus the same service level, the stocking quantity of product E is higher than
the stocking quantity for D since E has both a higher uncertainty (350 vs.
100) and a higher demand expectation (2000 vs. 1500). At the other extreme
of the spectrum, product A has a relatively high cost of inventories (20€ =
60€ — 40€) as compared to the margin (40€ = 100€ —60€). Understand-
ably, product A has the lowest service level and we produce just a few units
more than we expect to sell (108 vs. 304 for E). So we can see that different
products have different stocking quantities according to their economics and
demand distributions. So these results are very consistent with the findings of
the basic newsvendor problem. Unfortunately, this optimal plan is infeasible
because the total purchase cost is 380110€, which is well above our budget
of 330K€. This means that we have an opportunity cost for the budget and
should look for a shadow price to give the planners of the five items an incen-
tive to reduce the stocking quantity. In our problem, the purchase costs of
the items represent the consumption of scarce resources ;. Thus our solution
should tend to reduce the production quantity, ceteris paribus, of those items
with a large purchase cost. The optimal solution is displayed in table 5.5. We
can find the optimal solution below with A* = 0.197. What does this mean?
Basically, we would be willing to invest up to 0.197€ for one additional euro
of budget. So the optimal value A* = 0.197 is not only useful to find the
optimal allocation of the limited budget, it is also a valuable mean to judge
how much we are willing to spend to move (marginally) our constraint. When
we apply this optimum level of A, we can find the optimal solution displayed
in table 5.5.

Now let us try to make sense of this constrained solution. In particular
the analysis of the last line of the table is telling. It is the ratio between the
constrained solution and the unconstrained one. This ratio basically tells us
the extent to which the constrained solution differs from the unconstrained
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one. The closer the ratio is to 1, the more the two solutions are similar, the
closer to O the more the two solutions differ. The first relevant observation is
that we decrease the stocking quantity of all five products to meet the budget.
However., we do not reduce the stocking quantities of all items proportionally.
While we reduce the stocking quantity of item D by roughly 6%. we cut the
inventories of item B by roughly 20%. Why do we do that? Also, the service
level on item A is below 50%, while the service level for item C is still 67.5%
(notice that while in the previous case D and E had a higher service level than
C. in the constrained solution it is just the opposite).

We actually tend to decrease the stocking quantity of products that are
relatively uncertain (compare product E with product D), as we are not willing
to give up a production that is relatively safe; that is, we are quite sure we
are going to sell (the reader might want to reduce the uncertainty, that is
standard deviation, of item D to zero and repeat the above exercise: In this
case the stocking quantity of D is not affected by the budget allocation). Also,
we tend to reduce more significantly the stocking quantity of expensive items
(see the ratio for products B and C), since reducing the stocking quantity for
these two expensive items is a very effective mean to cut the total purchase
cost. If we reduce the stocking quantity by one unit of B and one unit of C we
save as much money (150€) as we save when we reduce the stocking quantity
of D (or E) by three units. A reduction in the stocking quantity of B and C
is 50% more effective than the reduction in the stocking quantity of D or E.
As we can see, the multi-item problem allocates capacity in a rather brilliant
way according to the features of the products.

Two-period newsvendor problem. Up to this stage, we have investigated the
classic Newsvendor problem in a single-period context. In the next sections we
are going to discuss dynamic problems where product life cycle is so long that
we can neglect end-of-life in our planning problem. The two-period newsven-
dor problem is an intermediate situation between these two extremes.

Let us consider a product with uncertain demand and a rather short life
cycle that makes stock holding costs relatively irrelevant, like in the case of the
newsvendor problem. However, unlike in the newsvendor problem, we assume
that we can replenish the product during its life cycle. We assume we can
observe the initial pattern of demand (see section 3.12.3) update and improve
our forecast and then place a second order that is going to be delivered before
the end of the season, as figure 5.4 shows.

So according to the classification of inventory problems proposed in section
4.1 the two-period newsvendor problem is

e single-product, single-echelon, and multistage, that is dynamic;
e demand is uncertain, though we know its distribution;

o the objective is to minimize the cost of inventories and service; for the
sake of simplicity we assume we always place two orders, so we neglect
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second period
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Fig. 5.4 Timeline for the two-stage Newsvendor problem.

the possibility of making just one order at the beginning of the season
to save fixed ordering costs (note that this is a fairly attractive strategy
for products with a relatively low uncertainty whereas it is definitely
not a good option for very uncertain products).

Example 5.16 Some fashion companies can replenish their products during
the season as they can enjoy short enough lead times. For example, in the
case of products for the spring—summer collection, retailers can place two
orders: One to be delivered at the beginning of the selling season. The second
is placed once some sales are observed, but early enough for products to be
delivered by (say) early May (any delivery beyond this deadline would be too
late and the chances of selling the units would be too low).

In these situations we can make two decisions:

e First, we place the initial order that is delivered at the beginning of the
product life cycle.

o Second, we observe initial demand and place a second order that is
delivered before the end of the product life cycle. Hence, the problem
is two-stage, not only two-period.

Given this situation, we call the time interval between the beginning of the
product life cycle and the second delivery first period. We call second period
the time interval between the placement of the second order and the end of
the product life cycle. Figure 5.4 shows that these two periods overlap.

The second order. The decision on the second order resembles the clas-
sic newsvendor problem.!3The optimal quantity shall balance (i) the cost of
stockouts in case demand exceeds inventories and (ii) the cost of inventories
in case goods are left over at the end of the season. The only one difference

13Notice that this holds when the LT is very short or when demand is backordered, in case
of stockouts. In case of long LT and lost sales, we should account for any sales we might
lose before the second delivery.
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between this case and the basic newsvendor problem is that when we make
this decision we might have some inventories on hand (in case we have not
completely sold out the first lot Q). This is actually a marginal difference.
We shall simply subtract the quantity on hand (i.e, the quantity from the first
order not sold as yet) from the optimal quantity. When inventories on hand
exceed the optimal quantity, we simply place no additional order.

Example 5.17 Let us consider a retailer that sells Christmas cakes and
places two orders in a season. The decision on the last delivery is made on
December 1st. On December 1st, 700 cakes are on hand. Given the current
demand trend, we expect a demand for 1000 units by season end. Demand
is normally distributed and has a standard deviation of 200 units. Christmas
cakes cost 1€ and are sold at a full price of 5€. After the end of the season
they are sold for 0.8€.

Given these data, we shall reach a 4_—_%-3 = 95.24% service level, as the
newsvendor problem suggests. To reach that target we need 1000 +2(95.24%)-
200 = 1000 + 1.67 - 200 = 1334 units; 700 of these 1334 unit are already on
hand. Thus, we shall place an order for 634 (1334 — 700) additional units.
Had we had more than 1334 units, we would have chosen to order zero units
or sell some units to another retailer, in case this is a viable option. I

The initial order.'* The first order might resemble the newsvendor problem,
but actually we have a second chance to purchase products and this might
lead us to be slightly more conservative, since we can have a second chance
to increase inventories in case demand happens to be higher than we initially
expected. When we set the initial purchase quantity, we face two risks:

e The risk that inventories are insufficient and a stockout occurs before
the second order is delivered. Thus when we estimate the cost of the
stockout we shall compare the stocking quantity with the demand over
the first period. Indeed, demand after the first period can be met by
the second purchase order delivered in ts.

¢ In this scenario the cost of holding inventories is relatively negligible and
thus we shall focus on the cost of excess inventories at the end on the
season. Thus to capture this cost we shall compare initial inventories to
the demand during the whole life cvcle of the product (¢ — #3).

We identify the variables that refer to the initial period (tg — t;) with
subscript I, while we identify the variables that refer to the whole product

14\We emphasize that the approach we describe here is actually a reasonable solution heuris-
tic. Among other things which could complicate the problem, we are not considering issues
related to correlation between the demand in the two periods; we refer the reader to [4] for
a full treatment.
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life cycle (to — t3) with subscript T'. Thus the cost of inventories and cost of
stockout are:

Qr
Cin=c /O (Qr — @) far (z)da,

+o0
Cso=m ('T_Ql)fdz(x)d:c'
Qr

Notice that the cost of inventories depends on the demand for the whole selling
period, since products lose value only at the end of the “season.” In our
example, we have no fixed costs or minimum order size (these are common
issues in real-life problems) and we have no stock holding costs (which in
real-life problems are actually negligible). This makes the purchase quantity
bought in the initial order as expensive as the quantity purchased in the
second order. However, postponing part of the purchases enables us to observe
early demand. This reduces uncertainty and thus reduces mismatches between
supply and demand.

So what distinguishes this problem from the basic newsvendor problem is
that the two probability distributions refer to different time frames. However,
both can be differentiated with respect to the purchase quantity ;. Using
Leibniz’s rule we can show that

Qr ~+oo
Cor = e [ @=2)fr@idzem [ (2= Qu) fo )iz
0 Q1
Qr +oo
aa%jt = c- A far (x)dx —m - o fa, (x)dz
= ¢ Fg (Qr)—m-[1 - Fg, (Qr)]=0. (5.13)

These are conditions for optimality; before we try to use them to find a
solution, we want to make sense of them and try to understand what they
are saying. Equation (5.13) suggests that an increase in the initial purchase
quantity ()7 increases the cost of inventories in case the last unit Q; is left
unsold at the end of the season (this scenario has a probability Fy,. (@) and
a cost ¢). An increase in @y also reduces the cost of the stockout in the first
period of the season, when demand exceeds inventories (this scenario has a
probability [1 — Fy4, (Qr)] and a cost m), we keep on increasing the stocking
quantity to the point where the expected savings on the cost of lost sales in
the first part of the season are greater or equal to the additional expected
costs for excess inventories at the end of the selling season.

Concept 5.6 When planning short life cycle products with more than one
deliveries the first delivery shall trade-off two risks. On the one hand, we
want to order enough units to meet demand up to the next delivery (even in
scenarios where demand is higher than we expected) . On the other hand, we
want to make sure that the first delivery is not too high, not to leave some
goods left over at the end of the season (even in scenarios where demand is
lower than we had expected).
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We cannot find the optimal quantity @7 in closed form unless we specify
the demand distribution for the demand in the first period and in the whole
season. Once the two demand distributions are identified, we can find the
optimal solution through a search procedure to find the value of @Q; that
satisfies equation (5.13). The search is rather simple. As Q; increases, the
cost of excess inventories ¢ Fy, (@) increases, while the cost of lost sales m -
(1 — Fy,{Qr1)) decreases. Thus the left-hand side of equation (5.13) decreases
in Q[.15

5.3 MULTI-PERIOD PROBLEMS

In the previous sections we have discussed the newsvendor problem (and some
extensions of it). The newsvendor problem is a static (single stage) and single
period problem, as decisions at time ¢ have no influence whatsoever on suc-
cessive periods. Indeed, inventories left over at the end of period ¢ are just
sold at salvage value. In this section we discuss the more common case of
dynamic problems (actually, in the last subsection we have discussed a first
dynamic problem) with multiple periods. In these problems, decisions at time
t have an impact on decisions and performance at time t + 1. All planning
problems where the life cycle exceeds the replenishment lead time (plus the
time required to read demand trends) are dynamic. However, in the following
sections we only investigate those where the life cycle is so long that it can be
considered to be infinite. In these cases, we can neglect the end-of-life-cycle
costs. So we do not investigate situations where either technological innova-
tion or fashion changes make the current product obsolete. Also, we do not
consider situations where the product has a limited shelf life.1®
In sections 5.4-5.7 we discuss problems that are:

e single product, single level, dynamic and multiperiod;

e with uncertain demand, with a known and stationary demand distribu-
tion, deterministic LT;

o where the objective is to minimize stock holding costs, ordering costs
and costs of service.

15 Notice that in this case the optimization problem has been written as a cost minimization
problem, while in the basic newsvendor problem we have maximized profit. Obviously, both
problems can be written either one way or the otaer and the end-result does not change at
all. We have decided to write the two models with different procedures to show different
approaches to modeling. We suggest the reader to try to rewrite the classic newsvendor
problem as a cost minimization problem and rewrite the two-stage newsvendor problem as
a profit maximization problem and check that results do not change. as basic logic suggests.
16Note that all products sooner or later expire, but the issue here is whether the expiration
date entails a relevant cost for our planning problem. For example, canned food can have
a b-year shelf life; in this case the constraint is basically irrelevant from any practical
standpoint, as companies basically never carry it for 5 years.
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Before we discuss the details of these planning problems we need to under-
stand the effects of uncertainty on the planning process. In chapter 4 we have
shown that, in the case of deterministic demand, setting the purchase quan-
tity (order size @) or the ordering period (time T elapsing between orders) is
basically the same. Once we have set the order quantity @, the frequency is
implicitly set (it is equal to the order size @ divided by the demand rate d) and
vice versa. A first significant difference between certain and uncertain con-
ditions is that, under uncertain conditions, purchase quantity and frequency
are no longer deterministically linked. As the following example shows, such
a relationship still exists; however, it is stochastic rather than deterministic.
Indeed, the frequency is still the ratio between the purchase quantity @ and
the demand, but demand is a random variable.

Example 5.18 Let us consider a company with a zero LT. Such a company
could order @ units when inventory level reaches zero, even under uncertain
conditions, but let us assume that the order is issued when inventory reaches
a reorder point R (see figure 5.5, possibly setting R = 0). The frequency of
such orders is not fixed but rather depends on demand. If demand is very high
(i.e., higher than its expected value), quantity @ is sold out in a short period
of time (see the second time between orders in figure 5.5). On the contrary, if
demand is very low (i.e., significantly lower than its expected value), the time
between two successive orders is relatively long (see the third time between
orders in figure 5.5). Going back to example 4.9, if the company orders once a
month, some months it orders more than 100 units (when demand was higher
than expected) while in other months it orders less than 100 units (when
demand was lower than expected). Similarly, if the company places orders for
100 units at a time, sometimes we can wait for more than a month to place
the next order (when demand is lower than expected) while we can have two
orders in a month in case demand exceeds expectations.

Concept 5.7 While facing an uncertain demand, we have no deterministic
relationship between the order quantity and the order frequency. Thus, we
design planning policies that fir one parameter (e.g., the order size) and let
the other fluctuate (e.g., order frequency) according to demand fluctuations.

For example, a company can set the order size to @ = 100 and place an
order once 100 units have been sold. A second option is to order once a
month the quantity that was sold. In other words, one parameter is fixed and
the second one fluctuates according to demand. This is why the inventory
planning methods are called fized quantity and periodic or fixed period.

5.4 FIXED QUANTITY: THE (Q, R) MODEL

A first option in managing inventories is to set a quantity @ that is ordered
each time inventories reach the reorder point R. Obviously, this planning
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Q+R

Fig. 5.5 Time between orders as a function of demand in the case of fixed order size

Q.

method can be adopted if and only if one can continuously control inventories
(and demand is a continuous process with no batches) to make sure we can
place an order exactly when inventories reach the reorder point R. This
scenario is called continuous review. In the past, this was a rather critical
assumption, while today it is relatively easy to control inventories of several
SKUs in several warehouses by the minute through appropriate technology (as
mentioned in section 4.1, technology is just one portion of the equation, as a
company needs to design business processes appropriately and execute them
accurately, in order to make sure that inventory data are collected accurately
and in a timely fashion).

A company shall record all transactions properly, taking into account de-
fective products, stolen products, errors in deliveries from suppliers, etc., to
have reliable information on current inventory levels. While we shall keep
that in mind and acknowledge it is hard job, in this book we assume, like in
the bulk of literature on inventories, that the company can perfectly know the
current inventory level.

Also, before we discuss the details of this inventory model we shall go
back to chapter 4 and recall the relationship between physical inventories and
inventory position. Our decisions (e.g., should I place an order? How many
units should I buy?) are based upon inventory position. On the contrary,
stockouts are generated by a lack of physical inventories.

If we overlook backlog for a second, the two variables are equal when we
have no open order, i.e., we are not waiting for any delivery from the sup-
plier. If we assume that we can have at maximum one open order, when it is
delivered the physical inventories and inventory position coincide {see figure
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5.6). Our assumption holds when LT is lower than the time between orders.
In other cases we can have more than one open order.

Though our results are derived under this simple assumption to build in-
tuition, they hold under more general conditions. So they apply even when
LT is longer than the time between orders and thus we can have more than
one open order at a time.!'” For the sake of simplicity, we normally refer to
the case of LT < f, where there is one outstanding order at the most.

The dynamics of the inventory system. We shall describe and intuitively un-
derstand the dynamics of the inventory system before we get into the details
of parameters optimization.

First, when facing an uncertain demand it might be inappropriate to set
the reorder point R to LT-E(d), that is, the expected demand over the replen-
ishment LT. Indeed, demand uncertainty makes draws that differ from the
expected value rather likely (actually in the case of a continuous distribution,
the probability that demand during the LT equals its expected value is zero).

The physical inventories in the warehouse one second before the order is
delivered is equal to the reorder point minus the demand over the LT. Given
that demand is a random variable, also the physical inventories just before
the delivery of the order are a random variable (it is a parameter R minus
a random variable). So the physical inventory level is as uncertain as the
demand over the lead time is and the two random variables follow the same
demand distribution (in terms of shape and variability, though understandably
they have a different expectation in general).

After the order is placed, the inventories can follow various patterns over
time. In figure 5.6 the top trajectory represents a case where demand over the
lead time was lower than we expected, the intermediate trajectory represents
a case where demand was equal to its expected value, and finally the bottom
line represents a case where demand was higher than we expected. Figure
5.6 shows that when the demand distribution is symmetric, the probability
distribution of physical inventories a few moments before the order is delivered
is symmetric as well. So in 50% of the cases a reorder point R = LT -
E(d) would be insufficient to meet demand over the lead time and we would
experience a stockout,!®

The newsvendor problem has proven that in general it is not advisable
to have a 50% probability of stockout, as this policy is optimal under very
specific conditions. On the contrary, for many companies it is appropriate to
reduce the probability of stockouts, while for others it might be appropriate
to set a service level target below 50%.

17Notice that these findings hold in the even more general case of stochastic LT, if orders
do not cross.

181n the case of discrete distributions we should also account for the probability that demand
is exactly equal to the inventory level so the probability of a stockout might be slightly below
50%.
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Fig. 5.6 Various patterns of inventories during the LT.

In general, the reorder point can differ from LT -E(d). In most cases, we set
a reorder point R > LT -E(d) to increase the service level (type I) above 50%.
The quantity R — LT - E(d) is called safety stock (SS). These inventories are
used only when demand exceeds expectations to meet unexpected demand.
So, in general, the parameters that are optimal in deterministic conditions are
not optimal under uncertain ones.

Concept 5.8 Under uncertain conditions, the reorder point R differs from
the expected demand over the LT. Just like in the case of the newsvendor
problem, the economics of the business suggest us whether we shall carry more
inventories than we expect to sell over the LT (R > LT - E(d)) or vice versa.

Concept 5.9 We call the difference between the reorder level and the expected
demand safety stock, that is inventories we plan to use only when demand
exceeds its expectation SS = R — LT - E(d).

Notice that in our analysis we have neglected the various scenarios of de-
mand before we reach the reorder point R. Actually, demand can show very
different patterns before the reorder point as well as after the reorder point is
reached. The demand pattern before inventory position reaches the reorder
point is not a crucial issue, as it only determines when we reach R and thus
when we place an order. On the contrary, the demand pattern after we reach
R is crucial as we wait for the order quantity @ to be delivered and we hope
not to experience a stockout in the meantime. In other words, we hope that
the inventory level R is going to be large enough to fully meet demand.
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The cost function Once the dynamics of the inventory system are clear, we
can try to write the cost function and derive optimal levels for the control
parameters @ and R. In this situation there are three relevant costs:

e Cost of inventories. The cost of inventories in this case is the holding
cost. Indeed, the infinite life cycle of the product makes other costs
(disposal, loss of value, markdown) irrelevant for our purposes. Given
the logic of the (Q, R) system, the inventory position fluctuates between
the minimum level R and the maximum level R+ and thus the average
inventory position is R + Q/2.1°

While I P is the variable we watch to make decisions, the physical inven-
tories in our warehouse determine our costs. On the one hand, physical
inventories (also known as on-hand inventories) are the inventories we
actually carry in the warehouse and thus we pay for their holding cost.
On the other hand, we incur the cost of the stockout when we run out of
physical inventories. When a customer that expects a zero DLT finds
an empty shelf he/she is upset regardless of incoming orders over the
next few days that make IP > 0.

So we need to investigate the level of physical inventories, which we call
I, to calculate costs. Physical inventories I reach their minimum just
before the delivery of @ units, and they reach their maximum level just
after the delivery. These inventory levels are actually random variables,
as they depend on the demand over the LT. So we cannot tell, ex ante
what their future level will be. However, we can study the distribution
of inventories a few seconds before the delivery of @ units and consider
their expected level R minus the expected demand over the LT.20

19Notice that in general this information about the minimum and maximum level of inven-
tories is not enough to draw the conclusion that the average quantity is the average between
the maximum and the minimum. To draw that conclusion, we have to prove that the in-
ventory level over time is, in a sense, uniformly distributed between the maximum and the
minimum. By “uniformly distributed” we do not really mean that if we observe inventory
level at a specific time instant, we see a uniform distribution; if we take our observation
just after issuing an order, this is certainly not the case. Rather, we mean that over time,
i.e., along a sample path, we see a uniform distribution. To make the idea rigorous, one can
resort to observers arriving at a random time, according to a Poisson process, but we prefer
leaving such complications aside. In our case the proof is rather trivial, as the demand pro-
cess is stationary and thus inventories are consumed equally when the warehouse is almost
full (i.e., when the inventory level is high) and when the warehouse is almost empty (i.e.,
when the inventory level is low). This means that there is no reason whatsoever to presume
that the inventory level stays at a very high level or at a very low level for a long period of
time. Thus all levels of inventories between the maximum and the minimum are basically
equally likely.

2ONotice that what we suggest in the main text is actually an approximation, as any model
actually is. Indeed, physical inventories are bound to be non-negative. So, we should
somehow ignore all cases where demand exceeds inventory level. In these cases, inventories
drop to zero. In other words, the expected inventory level before the quantity @ is delivered
is R— (E(drrldrr < R) - Fa, . (R) + R- (1 — F4; +(R))). In other words, the availability
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Thus, the expected inventories just before the delivery of @ units ordered
at time to (i.e., at the end of the planning cycle) can be reasonably
approximated by

E(I(to+LT")) = R—E(dyr) = R—E(d)- LT.

Now it is easy to show that the expected level of physical inventories
at the beginning of the next cycle (so-called maximum expected level of
inventories), right after the delivery of @ units, is

E(I(to+LT"))=R+Q-E(drr) = R+ Q —E(d) - LT,
and the expected level of average inventories E(I) is
E(I)=R+ Q/2-E(d) LT,

as inventories fluctuate between the maximum level and the minimum
level and are uniformly distributed between these two values.

of inventories censores the demand distribution. Also, the distribution of inventories a few
seconds after the quantity @ is delivered really depends on the customers’ willingness to
wait. If customers do not wait, i.e. under the lost sales assumption, the inventory level after
the delivery is just equal to R—(E(drrldrr < R)-Fy, . (R)+R-(1=Fy, ., (R)))+Q. Indeed,
in this case we have no list of customers waiting for the delivery and thus the quantity Q is
just added to the inventory available before the delivery. On the contrary, in the backorder
case, the inventory position just after the delivery is equal to R + @Q — E(d), as in this case
any demand in excess of the inventory level R is just backordered and thus once the quantity
@ is delivered, the whole demand is fulfilled and inventories are consumed (we deliberately
ignore situations where we still have a list of customers right after the delivery of a lot Q).
Thus as we can see, the approximation we have made in this book works better for the
backorder than for the lost sales case. For example, let us consider the case of a uniform
demand distribution U(100,200) over the LT. Also, let us assume that the reorder point R
is 180 and the order quantity @ is 500. Under the lost sales assumption, inventories before
the delivery are going to be 0 with a 20% probability and the remaining 80% of probability
is uniformly distributed between 0 and 80 units. Also, the inventory level just after the
delivery is 500 with a 20% probability and the remaining 80% of probability is uniformly
distributed between 500 and 5380. Thus the expected inventory level at the beginning of
the next cycle is 532 rather than 530. This means that not only our model simplifies the
dynamic of inventories at the end of any planning cycle, but this also has an effect on
inventories in the next cycle. Let us now consider how things change under the backorder
assumption. Under the backorder assumption the inventory distribution before the delivery
remains unchanged. So, even in the backorder case we are cutting some corners. Indeed, we
are overestimating the inventory level and thus the inventory holding cost (e.g., we might
run out of inventories before the end of the cycle). However, the physical inventory level at
the beginning of the next cycleis R+@Q —E(dyr) = 1804500 - 150 = 530. In this case any
demand unsatisfied at the end of the previous cycle is delivered as the lot @ is delivered.
Finally, we shall notice that this approximation is very crude in case of low service levels.
At one extreme, when R is lower than the expected demand. we might draw the conclusion
that the expected level of physical inventories at the end of any planning cycle is negative!
On the contrary when the service level target is high, unmet demand is negligible and thus
our simplification is reasonable, especially in the case of backordered demand. Luckily, most
products with a long life cycle have a fairly high service level, as the cost of inventories is
the cost of holding inventories rather than the loss of value like for high-tech or fashion
products and thus our simplifying assumptions turn out to be reasonable.
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Thus the expected cost of inventories for this policy is

Cin=h-(R+Q/2~E(d) LT).

e The ordering cost. While the inventory level depends on both control
parameters R and @), the ordering cost only depends on the lost size
@ only. The reorder point R tells when to order, while the parameter
Q@ tells how much to order and thus how often we order. The number
of orders in a period is actually a random variable that depends on the
level of demand. However, we can compute the expected number of
orders that is equal to E(d)/@Q. Thus the expected ordering cost is

E(d)

Cor=A-—— 5.14
0 (5.14)

o Cost of lack of service. To describe the cost of lack of service we shall
choose one of the two scenarios according to the driver of the cost func-
tion:

e cost due to the presence of a stockout;

o cost due to the size of the stockout.

The cost of the stockout is different under the two scenarios (difference
in economic consequences of a stock out) and thus the optimal policy can
change accordingly. So the two cases are going to be treated separately.

Cost depends on the occurrence of a stockout. In this case, the cost of the
stockout is equal to the cost of a single stockout, i.e. the cost a company
incurs each time it runs out of the product, times the number of stockouts we
expect to face. In turn, the number of stockouts then depends on two factors:

e the number of chances to experience a stockout, that is the number of
planning cycles, when we wait for the delivery of the @ units of the
product and inventories might fall short of demand,;

e the probability that in each planning cycle the demand actually exceeds
the stocking quantity R and we face a stockout.

Thus, under these assumptions the expected stockout cost is

Cso = D Egd_) : +OodeT (1’)dCC
QR Jr
p B (- R (),

where Fy, . (z) and f4,,(x) are the cumulative and the density function of
demand over the LT.
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Under these assumptions the total cost is

Ctot = Cor + Cin + Cso
_ A~%+h-(R+Q/2—E(d)-LT) (5.15)
- B0 EL ). (5.16)

Cost depends on the size of the stockout. Under this assumption the cost of
the stockout depends on the number of units of demand (in the remainder of
the chapter we call them customers, assuming that a single customer buys a
fixed and small quantity —say one unit— of the product) unmet, because of a
stockout. In this case, to quantify the cost of a stockout, we should measure
the cost p,, of not meeting one unit of demand and the number of units not
immediately delivered to the customers from stock. Once again this latter
variable is equal to the number of planning cycles times the number n{R) of
units of demand we expect not to deliver from stock in each planning cycle.
Clearly, this depends on R: the higher R, the lower the unmet demand. Under
this assumption, we can write the expected stockout cost as

E(d E(d Hoe
Cso:pu'_(“l'n(R):pu'Q'/ (z = R) fapr(z)dz.
Q Q Jr
Thus, under this assumption the total cost function is
Ctot - Co'r + Cin + Cso
= A% +h (R + % - E(d) - LT) +pu%n (R). (5.17)

Solution process Given the total cost function we can try to find a solution
in two ways. The first option is clearly to minimize the total cost and find
an optimal level of the control parameters @@ and R. This approach is clearly
the first best option but requires a reliable estimate of the costs of a stock-
out (p and p,). As we have discussed in this chapter, finding a reasonable
estimate for such cost parameters is actually a real challenge. So many com-
panies rather prefer to set minimum targets for service level and then try to
minimize ordering cost and stock-holding costs (the idea is that the minimum
requirement on service level keeps the cost of the stockout under control).
This approach might look simplistic but it is actually fairly reasonable when
the measures of the cost of a stockout are very unreliable. Indeed, in this
case the manager provides an indirect estimate of the cost of the stockout by
requiring a minimum service level. While setting the minimum service level
the manager implicitly balances the cost of the stockout with the holding
cost (and to a minor extent the ordering cost). The higher the service level
requirement, the higher the implicit estimmate of the stockout cost and vice
versa. So it is just matter of finding the most appropriate and accurate way
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Constraint on

Optimization service level
Cost depends on the
size of the stock-out SEC 5.4.1 SEC 5.4.2
Cost depends on the
occurence of a stock-out SEC5.5.8 SEC 543

Fig. 5.7 Various scenarios for the (Q,R) problem: schema of the section.

to estimate the cost of the stockout. It can be either a direct measure of the
consequences of a stockout (p or p,) or an indirect measure that is a minimum
service level requirement.

As figure 5.7 shows, there are four possible combinations of cost structure
(occurrence vs. size of the stockout) and solution process (optimization vs.
minimum service level requirements). In the next three sections we investigate
three of these four cases, while we address the fourth and more complex
case in supplement S.5.8 at the end of the chapter; the supplement, which is
technically more involved than the rest of the chapter, may be safely skipped.

5.4.1 Optimization of the ((, R) model in case the stockout cost
depends on the size of the stockout

When we have a reliable estimate of the stockout cost p,. we can compute
the derivative of the total cost function (5.17) with respect to the control
parameters @ and R.

0Ciot _A -E(d) + h pu- E(d) -n(R) _ 0
0Q Q* 2 Q? o
OC40t o Pu E(d) ! _
R h+ —0 n'(R) = 0.

To proceed with our problem, we should evaluate n’(R); that is, we have
to understand how the number of customers (units of demand) unsatisfied
changes as a function of the reorder point R. Once again, on the one hand,
we can use rigorous math; on the other hand, we can use our intuition to
support math.
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Increasing the reorder level R by an infinitesimal quantity dR has no effect
whatsoever on the number of unhappy customers (i.e., unmet demand) in all
demand scenarios where the reorder point was already high enough to fully
meet demand over the LT.

On the contrary, increasing the reorder level up to R + dR pays off in all
scenarios where R is not enough to fully meet demand and thus we experience
a stockout. In these cases, dR additional units decrease the number of un-
satisfied customers (i.e., the unmet demand) by dR units. The last step is to
remember that the probability that this second scenario occurs (i.e., the prob-
ability of a stockout) is 1 — Fy, » (R). Thus the dR increase in reorder point
leads to a dR reduction in unmet demand with a probability 1 — Fy, . (R),
that is, the probability that the additional dR units actually turn out to be
really useful. Thus

d(n(R) __dR:(1=Fu, (R)
/ _ _ LT _ _
More formally we use Leibniz’s rule to differentiate n(R) (obviously this pro-

cess leads to exactly the same results)

a/:c (2= R)- faplz)  da

n(R) = R
= —/“ deT<.I':|dl‘+0_O'f(RdLT>
R
= (1 Fy, ().

Thus we can re-write the optimality conditions as

_AE@) b pu.-E@d) n(R)

R
h_pu'w'(l'—FdLT(R»:O; (518>
hence
*\ h- Q* -
Fo, o (R") =1~ b E(d) (5.20)

Before we use these optimality conditions to look for the optimal solution
(Q* and R*), we shall read the economic message they are sending. Equation
(5.19) resembles the Economic Order Quantity. The one difference is that
under uncertain conditions the fixed ordering cost A is replaced by A + p, -
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n(R). In fact, an order cycle implies not only the ordering cost when the
inventory position reaches R, but also the risk of stocking out before the
quantity @ is delivered. While the first is a certain cost, the second one is
an uncertain one. However, we know its expected value is p, - n(R). In other
words, when facing uncertainty (in a (Q, R) system) a company might want to
increase the order size both (i) to avoid very frequent orders (and the related
cost A) and (ii) to reduce the number of orders since each time an order is
placed, the company faces the risk that the demand during the LT exceeds
the reorder point R, a stockout occurs and some customers cannot find the
product they were looking for. Clearly, this further incentive leads companies
to increase @ above the EOQ quantity. Such incentive is stronger and stronger
as the cost of a stockout p, increases and the reorder point R decreases,
leading to an increase in the probability of a stockout. Equation (5.20) is
derived from (5.18) and marginally analyzes the effects of an (infinitesimal)
unit increase in the reorder quantity. This equation basically compares the
cost and the benefits of such an increase in R. Increasing R leads to an
increase in the stocking quantity and thus in the holding cost k [in fact, the
derivative of the holding cost component Cj;, with respect to R is 0Cj, /OR =
h-E(I)/R = h; see equation (5.14)].2! On the benefits side, increasing R
reduces the cost of a stockout by p,, with a probability 1—Fy, .. (R) during each
of the E(d)/Q planning cycles. Thus the second equation basically compares
the marginal stock-holding cost with the marginal reduction in the cost of
stockout, suggesting to increase R until the savings on the stockout cost exceed
the additional holding costs.??

Also, this equation suggests that R shall be reduced, as Q increases (this is
the flipside of equation (5.19)). Indeed, if the purchase quantity Q is relatively
large the planning cycle is relatively long and thus it might not make sense to
carry an extra unit of safety stock (that is R) for a very long planning cycle
to slightly reduce the probability and/or size of a stockout at the end of it.

21Notice that this is a result of our simplifying assumption on the minimum level of inven-
tories (see footnote 20 on page 274). Actually, the additional unit can be sold before the
end of the planning cycle and thus might be held for less that a whole planning cycle. In
particular, if R guarantees a 3 type II service level, we expect the product to be available
on the average during a fraction 8 of the cycle. Thus in the more complete model the term
h is multiplied by 8. Finally, 3 is obviously a function of the control parameters @ and R
as 1 -8 =n(R)/Q.

22Notice that while the marginal cost of inventories is constant (h), the savings on the
stockout cost are decreasing in R, as the probability of a stockout decreases and thus the
additional investment in inventories is more and more likely to be completely ineffective.
Also, notice that the holding cost is equal to h because we assume that the additional unit
of inventories is always carried. As discussed in footnote 20 on page 274, we are cutting
some corners and deliberately ignore the fact that we might run out of inventories and
thus we might not always carry the marginal unit. Again this assumption, however, is
fairly reasonable, given that for most companies and most products it is advisable to reach
a fairly high service level. Thus we seldom sold out, that is we seldom sell the last unit
carried in inventories and almost always carry it until very late in the planning cycle.
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Concept 5.10 Under uncertain conditions the fized cost of an order cycle
includes both the fized ordering cost and the expected cost of a stockout. Thus
the order lots tend to be larger to reduce the number of cycles and thus the
opportunities to stockout.

Once the economic message equations (5.19) and (5.20) are sending is clear,
we use them to look for the optimal solution (Q*, R*).

We shall notice that so far we have made no assumption whatsoever on
the demand distribution, we just used the generic functions Fy, . and n(R).
Obviously, we need to specify the demand distribution to find the optimal
solution. So we just need the basics of statistics to deploy the solution for
various demand distributions, that is, according to the various situations we
might face.

Using equations (5.19) and (5.20) to find the optimal solution is not trivial.
Indeed, in equation (5.19) the optimal order quantity Q* depends on R* , while
in equation (5.19) the optimal reorder point R* depends on @Q*. One way out
of this loop is to iteratively find the solution. For example, we can start with a
reasonable order quantity Qg = FOQ to find a first tentative reorder level Ry
through equation (5.20). This first estimate of the reorder point Ry can then
be used to find a better order quantity 1 and so on. The iterative process
can be stopped when @; = @;—1, where the tolerance depends on the specific
decision at stake.

Example 5.19 Let us consider a product whose cost is 10€, with a LT of
6 months, a holding cost of 20%/year, and a cost of a stockout of 25€ per
unit, as we expect the customer to leave the company in case he/she routinely
cannot find the product he/she looks for.

Also, let us assume that the ordering cost is 50€ and the demand over the
LT is normally distributed with a mean of 500 units and a standard deviation
of 100 units.

In this situation we can start from the EOQ quantity as a first, rough-cut
estimate Qg of the optimal order quantity:

_ J2A-E(d)  /2-50€-200units/y .

We can then use QJp to derive a first, rough-cut estimate of the reorder level
Roi

£ .
2 ———— - 100 units
units -y
F(R)=1- € : units 96%
25 units 200 v
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Now the distribution of demand comes into the picture and starts playing a
role. For some distributions such as the Uniform or the Exponential we can
find R through integrals, while for others such as the normal distribution we
cannot solve the integral in close form and thus we resort to standard tables.
To reach a 96% type I service level we shall choose a level z equal to 1.75. In
other words, the first rough cut decision is to carry 1.75 standard deviations
more than we expect to sell during the LT. Thus we only need to find the
right parameters and refer them to the demand over the LT:

Ry =100+ 1.75- 25 = 144.

Once we have obtained Ry, we want to use it to improve the decision
on lot size through equation (5.19). To do so, we shall derive the quantity
n(R). Once again this function depends on the demand distribution. For
some distributions such as the uniform or the exponential, we can get the
function in close form. For other distributions such as the Normal, we resort
to standard tables.

In the case of normal distribution the estimate of n(R) is based on the
standardized loss function

LG = [ - 2ot

where ¢(t) is the density of the standard normal distribution. We can show
that:
R - E(dr7)

oLT

n(R):ULT'L< >=U‘L(2),

where z = (R—E(drr))/o. The loss function can be found on statistical tables
in most reference books in statistics. We can use such tables to calculate a
new (and improved) order size Q1. In the case of the Normal distribution we
can proceed as follows:

n(Ro) =0 - L(z) =25 L(1.75) = 25 0.0162 = 0.405,

and thus the “new optimal order size” is

2.200 E%l—té - (50@ +25 S 0.405 units)
Q= Z ~ 110 units.

units -y

We can find the optimal solution @* = 111 e R* = 143 with a type I service
level F(R) = 95.73% by simply iterating the above process.

It is rather interesting to notice that the initial solution Qg =EOQ suggests
an order size below the optimal level Q*, as the EOQ model overlooks the
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cost of stockouts in equation (5.19). This is why the initial reorder level is
higher than the optimal one and the initial type I service level (96%) is higher
than the optimal one: The initial order size is relatively small and thus we
face a relatively large number of planning cycles and therefore reduce the risk
of stocking out in each order cycle. a

We shall notice that in the above example the text provides data on expected
demand and standard deviation over the LT. What shall we do when data
refer to a different time horizon?

We can refer to example A.10 of page 464. The example shows that we
simply need to scale demand expectation linearly. For instance, in case we
want to derive the expected demand for a week given the total demand for
the year, we must simply divide the demand expectation for the year by the
number of weeks in a year (52).2% As to the standard deviation, the example
investigates the case of non-autocorrelated demand, that is, demand at time
t is independent from demand in previous an successive periods. Under such
an assumption, the standard deviation can be scaled back with the squared
root rule. For example, the demand for the week is 1/1/52 times the standard
deviation of demand for the year.

Example 5.20 Let us assume that the total year demand for a product is
Normally distributed with an expected value 1000 and standard deviation
250. LT is two months. The optimal reorder point shall cover demand over
the LT. But what is the distribution of demand over the LT? Actually, we do
not know the shape of the distribution, but for the sake of simplicity we can
assume that the distribution at the month level is Normal. We still need to
find the expectation and the standard deviation of demand over a two-month
period. We assume that the year consists of 12 identical months (of roughly
30 days) and assume the demand in each month is independent. Thus we can
show that

E(dr7] = 1000/6 ~ 166.67;  04,, = 250/v/6 ~ 102.06.

We shall notice that the model of demand shows some weaknesses. Indeed,
while the probability of negative values of demand was negligible for the de-
mand distribution for the year, it is sizeable for the demand for 2 months (the
ratio E(d) to o is 4 for the year and 1.63 for the two-month period). This
suggests that while the normal assumption for the demand for the vear might
work fairly well, this model shows some strains for the bimonthly demand.
But we shall also notice that this might not be a crucial issue for inventory
models. We typically consider fairly high service level targets. This means
that what really matters is whether the demand distribution we adopt prop-
erly describes the right tail of the actual demand distribution. If the demand

23We assume a stationary demand and thus assume that all weeks share the same expected
demand. So this finding does not apply directly to the case of significant seasonality.
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distribution we choose fails to properly describe the left tail of the actual
distribution, this tends not to be a problem for our purposes and we still
can consider the model of demand fair enough, as it leads to nearly optimal
decisions.

5.4.2 (Q,R) system: case of constraint on the type l service level

Often companies can hardly estimate the cost of a stockout and thus cannot
write and minimize the total cost function. To keep under control the cost of
stockout (that are still relevant even if we fail to accurately measure them),
companies often set a minimum service level target. In an odd way this is an
indirect estimate of the cost of a stockout, as high service level requirements
imply a “gut feeling” that stockouts are expensive and vice versa. In such a
situation we can resort to two approaches: One is simple and straight, while
the other one is more complex, though better performing and more elegant.

Disjoint choice of @ and R The first option is to split the total cost function
into two disjoint parts.

Ctot = Cor+Cin+Cso

_ 4.E@ R E@d) (7.
= A 0 +h(R+Q/2-EWd)-LT)+ P, 0 /R (z — R) fa,,(z)dx
_ JE@ L,
= A 0 +h-Q/2

Economic Order Quantity

+oc
+h-(R—E(d)-LT)+Pu-E—(@-/ (z — R) fa,(x)dx
Q Jr

Cost constrained by the service level requirement

Hence, a solution to this problem is to set @ = EOQ to minimize the first
part of the objective function, while the service level requirement keeps the
second part of the cost function under control. In this case, we set a constraint
on the type Il service level as the size of the stockout rather than its occurrence
matters. This approach basically makes the choice of @ independent from
R and vice versa. So @ is set as if there were no uncertainty. R is the
only control lever in charge of managing uncertainty and is set to reach the
minimum service level target.

Example 5.21 Going back to example 5.19, we can assume that the com-
pany cannot properly estimate the cost of the stockout p, and thus simply
requires a 95% type II service level. The order size is set according to the
EOQ model @ = EOQ = 100 units.

We now select the reorder point R in such a way that we meet 95% of
demand from stock. In a planning cycle, the average demand is @ and the
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expected unsatisfied demand is n(R). Thus the percentage of unsatisfied
demand in each planning cycle is n(R)/Q. Since we want at the least a 95%
type 1I service level, we set this to 5%. More generally, when we want to
achieve a 7 type II service level, we want to set this ratio to 1 — 3:

1-8= 9%; (5.21)

hence

n(R) = (1-9)-Q
(1 —0.95)- 100 = 5 units,

and thus we can leverage on the properties of the normal distribution and
resort to the standardized normal distribution:

n(R)=5=o0-L{z) =25 L{z). (5.22)
Thus L(z) = 0.2, z = 0.49 and R = 100 + 0.49 - 25 = 112.25. 0

Though simple and straight, this approach is not optimal. Indeed, it fixes
@ first and then uses only R to reach the service level target, while equation
(5.21) shows that to reach a given service level target one can act on Q) as well
as R. Actually, it is easy to show that this approach leads to a suboptimal
() because it overlooks the effect of larger orders on the number of planning
cycles and thus the number of potential stockouts and the unsatisfied demand.

Cost of the stockout implicitly estimated through a minimum service level require-
ment. A second and slightly more sophisticated approach is to optimize the
parameters @ and R jointly to meet the service level target. This approach
tries to elicit the cost of the stockout from the minimum service level require-
ment. When the service level required is relatively high, managers implicitly
believe the stockout to be very expensive; while when they require a low ser-
vice level they implicitly believe that the stockout is not as expensive. So we
can use equation (5.20) to measure the cost of the stockout implicit in the
managers’ requirements:

. hQ _
PR (1= Fap (R)

this estimate can be used to derive the optimal quantity ) by substituting p,
with p, in equation (5.19):

h-Q -n(R
2E(d) - |A+ E(d) -1 - FELT)(R))

h
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that is, a quadratic equation in Q:

h-Q-n(R)
2-E(d)- [A+E(d)-(1—FdLT(R))} _2-AE(d) 2R

h h 1- Fy,,(R)

We can derive the optimal solution (we ignore the negative solution for obvious
reasons):

. n(RY) n(R*) > 2.A4-E(d)
Q'1—Fm<R*>+\/(1—Fm<R*>>+ oo 0%

We now need to simultaneously solve equation (5.23) and the condition on
service level:

Q2= Q

n(R)=Lz)-c=(1-03) Q" (5.24)

Before we use the above equations to find an optimal solution, we shall
notice that the order size is larger than the EOQ, since terms 1—_}%
account for the cost of stockouts at the end of the planning cycle.

Equations (5.23) and (5.24) are not independent and thus we shall solve
them through iterative methods. In this case, too, we can start with a rea-
sonable order size Qo = EOQ to then derive from equation (5.24) a first
rough-cut reorder quantity Rg. We can then derive from equation (5.23) an
improved order quantity 1. Finally, we iterate this process until the solution
converges.

Example 5.22 Going back to example 5.21, we can start from Qg = FOQ =
100. We can use this order size to derive Ry = 100 + 0.49 - 25 = 112.25, as
we have already shown. This solution can be used to calculate an improved
order size Q1

B 5 5 ?2.200-50
@ = TTFpan T (1—-F(0.49)> L

5 5 \% 2.200-50
2 2 Y 116.21,
031 " \/(0.31) * 2 116.21;

n(R) =5%-116.21 =0 - L(z) = 25 - L(=2),

and L(z1) = 0.232, z; = 0.395, and R; = 100+0.395-25 = 109.875. With one
more iteration we get 2 = 116.10; 2o = 0.39 Ry = 100 + 0.39 - 25 = 109.75,
which is basically the steady state solution.

It is rather interesting to compare this solution with example 5.21. In
this case we have a larger order size Q and a smaller reorder point R as both
parameters are used to reach the target service level. As we have said multiple
times, a similar solution process can be used for other demand distributions,
mutatis mutandis. I

thus
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5.4.3 (Q, R) system: case of constraint on type | service level

Section 5.4.2 shows that, at times, penalty costs are hard to estimate and we
resort to constraints on service level (see section 5.4.2).

Ciot = Cop + Cin+ Cso
+oc
_ A.E_g_)+h(R+Q/2—E(d)-LT)+p%/R far(z)dz
E(d)
0 +h-Qf2

Economic Order Quantity

§ +oc
+h-(R-E(d) LT)+p- %/E farn (@) da

Cost constrained by the service level requirement

In this case, too, we can split the cost function in two. The first part is
basically the EOQ problem, while the second part depends on R and includes
costs that can be kept under control through a constraint on service level.
Thus we can set ) according to the EOQ model and set R in such a way that
the minimum service requirement is reached.

Example 5.23 Going back to example 5.19, we can assume that the com-
pany has no reliable estimate of the penalty cost of a stockout p. So the
company requires a 95% type I service level. Just like in previous examples,
Q = EOQ = 100 units. Now we need to set R in such a way that the risk of
a stockout in any planning cycle is 5%, so F'(R) = 0.95. To solve this equa-
tion, we must know the demand distribution, and in this example we assume
a Normal demand distribution. In the table of the standard Normal distri-
bution, we can find z that guarantees a 95% type I service level: z = 1.64.
Hence R =E(drr)+ 20 =E(d)- LT + 2z -0 = 100 + 1.64 - 25 = 141 units.
We can compare this solution with example 5.21. A 95% service level leads
to different reorder points R depending on whether the requirement is on the
type I rather than type II service level. This example shows that a type I
service level requires more inventories than a type II service level (at the least
for a normal distribution and most “well-behaved” demand distributions).??

0

24The type I service level considers a planning cycle where demand exceeds inventories (the
reorder point R) by one unit basically a failure, as it counts as a stockout, full stop. On
the contrary. the type II service level considers it as a fairly good result. Indeed. the type
11 service metric would consider the service level in such a planning cycle to be 1 — 1/Q.
So. in general, the type I service level sets tighter requirements and thus requires more
inventories. The only exception to this general rule are demand distributions with a very
long right tail. For example, when demand is very low (say 1) in most cycles (say 99%) and
is very large (say 901) in others (1%) a very limited amount of inventories can be enough
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This procedure is used very often in practice and in many basic software tools.
However, we shall underline that it is suffers from structural problems. First
the service level is measured as the probability of not stocking out in each
planning cycle. For example, a 95% service level implies that we experience
a stockout in only 5% of the planning cycles. This means that the (expected)
number of stockouts in any given time frame (e.g., a year) depends on the
number of planning cycles, that is, the number of chances to experience a
stockout.

Example 5.24 Let us consider a company with a 95% service level. If on the
average the company only places one order per year, then we have only a 5%
probability of stocking out in a year and we expect to experience a stockout
once each 20 years. On the contrary, if on the average we place an order a
month, the probability of zero stockouts in a year drops to 0.952 = 54% and
we basically face a stockout each 2 years.

5.5 PERIODIC REVIEW: S AND (s, S) POLICIES

Continuous review policies have a significant drawback: Different products
reach the reorder level at different points in time. As section 4.6 suggests, co-
ordinating orders among products might be very appropriate. Placing orders
of various products at the same time can reduce some fixed cost (such as or-
dering or transportation) that the various products can share (joint economies
of scale).

This is the reason why periodic review systems are often used. In periodic
systems we place an order each 7 periods. We assume we can observe the
inventory levels periodically or, at least, we use the information on inventory
levels to make planning decisions periodically.

To understand the mechanics of periodic review systems, we must first
determine the relevant planning horizon to set inventory levels. A first, er-
roneous intuition might suggest that the planning horizon is the LT. So
intuition might suggest that we set inventories according to the demand over
the LT, like in the case of continuous review policies.

Example 5.25 A simple counterexample shows that setting inventories ac-
cording to demand over the LT might be just not enough. Let us consider a
company that orders some products once a year and receives them with a LT
of one week. Setting inventories according to the weekly demand is definitely
insufficient, as the company would run out of the products long before the
end of the year and the next delivery, one year down the road. 0

to cover most planning cycles, but still it serves a small fraction of expected demand. In
our example, R = 2 meets demand in 99% of the cases (type I service level = 99%) but
meets a very small fraction of overall demand (type II service level = 10.1%). However, we
shall notice that these are rather infrequent situations.
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Fig. 5.8 The out-of-control period in periodic systems.

Example 5.26 Let us consider a company that orders stationery products
once each 3 months to a supplier that delivers in a month. Let us focus our
attention on the order the company places in early January. This order is
delivered in early February. The next order will be placed in early April and
will be delivered in early May. Thus the order placed in January (together
with any existing inventories) shall cover demand until the next delivery, that
is, the beginning of May.

More in general, in periodic review systems, inventories shall cover demand
over the LT plus the time 7 between two consecutive orders (that is, also the
time between two consecutive deliveries, given the deterministic lead times).
Indeed, the order placed at time ty is delivered at time ty + LT, and the
successive order is placed at time tg + 7 and is delivered at time tq + 7+ LT
(see figure 5.8). Hence, the order issued at time #o shall cover demand over
LT + 7 periods. Such a period LT + 7 is the so-called Out Of Control period
(OOC period) since, once the order in t = #g is placed, inventories are out of
our control and they depend only on demand fluctuations for LT + 7 periods,
until the quantity ordered in #g + 7 is delivered in ¢tg + 7+LT (notice that in
the supply chain perspective demand is an exogenous variable we just want
to meet, though we shall acknowledge that for the company at large it is a
variable we can at least try to influence, e.g., through marketing efforts).

Concept 5.11 In the case of periodic review systems, inventories shall cover
the out-of-control period. In other words, when we place an order we shall
cover demand up to the delivery of the next order. When orders are placed
with a periodicity T, the order shall increase the inventory position to a point
where it is enough to cover demand over a period T + LT .
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Once we have introduced the core concept, we can define the basic periodic
inventory policies:

e A first policy is .S. Under this policy, each 7 periods we place an order
and the inventory position increases up to S. This is the so-called base
stock policy or order-up-to policy.

o The main drawback of the S policy is that it can lead us to place very
small orders in case the inventory position is barely below the quantity
S. To avoid this problem and make sure orders are “large enough”, we
do not place orders if the inventory position is above s. So, under this
policy called (s, S), each 7 periods we check inventories. If inventory
position is equal to or lower than s, we place an order and take the
inventory position back to S, if the inventory position is greater than
s we do not place any order. This way we make sure that the order
quantity is at the very least S — s.

5.6 THE S POLICY

As usual, before we start modeling the inventory policy and try to set the
parameters, we shall understand the basic dynamics of the policy. The inven-
tory dynamics is described in figure 5.9. Let us consider time ¢y, when we
place an order. At time t; we place an order and immediately increase the
inventory position up to §. Obviously, physical inventories do not increase on
the spot. The quantity ordered, S — IPtO—, is delivered at time tg 4+ LT (in
this instant, inventory position equals physical inventories when LT < 7).

When we are delivered, the physical inventory is a random variable that
depends on demand over the LT. Thus we cannot tell the exact value of
inventories at this point in time. We can just compute its expected value at
time to + LT E (I(to + LT1)) = S — LT - E(d).

This is the highest inventory level we expect to have in our inventory (actu-
ally the maximum possibly conceivable level of physical inventories we might
have is just S, when demand during the LT is zero.). Physical inventories
start decreasing according to the demand, and they keep on going down up
to next delivery at time tg + LT + 7. Obviously, even the inventory level at
this time is a random variable, so we cannot tell its exact value. We can just
compute the distribution and the expected value S — (LT + 7) - E(d) (the
maximum conceivable value is still S, when demand is zero over LT + 7)25.
This inventory level is called safety stock. Indeed, these are inventories one
uses just when demand exceeds its expectation, that is they are designed to

25In this case as well we deliberately ignore the fact that inventories are a non-negative
variable, thus the probability distribution and the expected level of inventories is slightly
different. We refer the reader to footnote 20 on page 274.
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Fig. 5.9 Dynamics of inventories in the case of S policy.

manage demand uncertainty. So physical inventories are expected to fluctu-
ate between S — LT - E(d) and S — (LT + 7) - E(d) in each cycle. So the
quantity ordered on the average is 7- E(d) and average physical inventory is
S— (LT +7/2) - E(d).

Once we have understood the dynamics of the system, we can try to set the
control parameters 7 and S. A first difference between the S and the (Q, R)
policy is that once we have set 7, the ordering cost are deterministically fixed.,
while in the previous case @ had an influence on the expected ordering cost
that still was a random variable that depended on demand.

Like in previous sections we can try to write the total cost function:

e The ordering cost is equal to the fixed ordering cost A divided by the
ordering period 7 that determines how often we incur the fixed cost A:
A
Cor =
T

o The inventory holding cost is equal to the unit holding cost h times the
average inventory level S — (LT + +/2) - E(d):

Cin="h - (S— (LT +7/2) -E(d)).
e Finally, as we have already seen in previous sections, we shall compute

the cost of a stockout. When the cost of the stockout depends on the
size of the stockout, the stockout cost is

+oc
Cso = E{_u_ . /S (‘T - S)deT~LT (lj) dz; (525)
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while when the cost of the stockout depends on the occurrence of the
stockout, the expected cost in a period is

P +oo
Cso==" / farr..(z)dz. (5.26)
s

Interestingly, both in equation (5.25) and in equation (5.26) the relevant
demand distribution refers to demand in the out-of-control period T +
LT.

From the previous equations we can derive the total cost function. In this
section we only investigate the case where the cost of the stockout depends on
the size of the stockout. The concepts and solutions we suggest for this case
apply to the other case as well. We leave the derivation of the second case to
the reader.

Chot = é+h~[5 — (LT +71/2)- E(d)]—#—%-/;OO(J:—S)deHT(a:)da: (5.27)

Optimization problems in the S policy. Now we can take the derivatives of the
total cost function with respect to 7 and S to identify the optimal contro! pa-
rameters. Optimal values of control parameters 7 and S satisfy the equations
below:

0Ci, A h-E(d Dy Foo
a;_t = 7'_2__7(—)_5/ (‘T_S)deT+r(x)dm
+ Pu ) af;oo(m - S)deT+r(x> dx
T or
A RE( pu [T
- - - S ()b
+00 o
+&/ (x—S)f—dLTil(—wzdl’=0; (5.28)
T S 87'
actot = h+ Zi’ti af;x(ll - S)deT+r (37) dr
oS T oS
pu [T
= h+ ? S [-deT-H— (x)] dz
- h— % 1= Fapp . (S)] = 0. (5.29)

While equation (5.29) does not pose significant problems, the last term in
equation (5.28) can be problematic. The first two terms in equation (5.28)
resemble the EOQ problem, as they capture the effect of an increase in 7
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on the ordering cost and on the inventory holding cost. The last two terms
capture the impact of a (marginal) increase in 7 on the stockout cost. In
particular, the term —&% - ;w(aj — S)fayr ., (x)dx shows that as the time
between orders increases, the number of stockouts decreases simply because
the number of cycles and thus the number chances to experience a stockout

decreases. This term does not set specific challenges when we want to find

an optimal solution. The term +2= - ;33 (z— S)%—Lg:’ﬁ dx tells the effect
of 7 on the demand distribution during the out of control period. This is
all but trivial, as both the expected demand and the standard deviation of it
change as 7 changes. Also, as 7 changes, the shape of the demand distribution
might change (though we shall remind you that the sum of normal demand
distributions is still normal and thus in case of normal identically distributed
distribution we can obtain this function) and thus we cannot really write the
function in the general case. Then taking the integral of this derivative might
not be trivial.

One reasonable heuristic. For the above computational problems we often
resort to heuristics. In particular, we hardly can find the optimal value for
7. So we set it to minimize the first two terms in equation (5.28). Then the
ordering frequency is 7 = ,/ Z%’ that is, exactly the ordering frequency
that we achieve when we try to order, on the average, the EOQ (when several
products share the same fixed order A, we can use the process described in
section (4.6.2) and then set the order frequency 7 as the ratio between the
optimal quantity @Q* and the expected demand E(d) for the bundle). 26 In
practice we then round 7 so that it can be managed in a real context: It is
very hard to place an order each 1.7313 weeks. Instead, one orders each week
or once each 2 weeks.

Once we have set 7, S is the only control lever left. The optimal level of §
can be derived from equation (5.29):

pu_h"T
Py

This result might look odd at first sight: Why is the holding cost multiplied
by 72 Is not 7 + LT the relevant time frame to set inventories?

A more careful reading of the equation sheds some light on its meaning. The
manager of the warehouse keeps an additional (marginal) unit of inventories
in the warehouse for the whole cycle 7 between two successive deliveries just
in case it is needed at the end of the cycle to avoid a stockout or at least

FdLT+,— (S*) = (5'30)

26Notice that in this case the mix of products in each single order can change according to
demand. Indeed, if we keep the mix of purchases fixed. any random fluctuation in the mix
of demand turns into fluctuations in the mix of inventories. So while we set the control
parameter 7 according to bundles of products we do not actually buy in bundles with a
preset mix.
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reduce its size. So the holding cost over a whole cycle h - 7 counterbalances
the reduction in the cost of a stockout p,.27 Also, as usual we should notice
that our findings required no assumption on the demand distribution so far.
Now we need to make assumptions on the demand distribution to find the
value of S that satisfies equation (5.30). To solve this equation, we need to
know the cumulative demand d distribution Fy, ., ()

S=F;! <p———“_h'T>.
+7 Dy

A similar reasoning applies to the case of cost of the occurrence of a stock-
out. One we can still set the review period 7 in such a way that we tend to
order the EOQ quantity. But in this case the optimal S is

_ h-r
S = delTJ,T <_p—> .

S policy with a constraint on service level. Also in the case of the S inventory
policy, we might have a hard time estimating the cost of a stockout (p or p,,)
and thus we might implicitly estimate it through constraints on service level.

When the constraint is on the type I service level, we call v the minimum
service level required. In this case, the solution is rather trivial. We should
simply set v in such a way that the probability that demand is lower than §
is v (i.e., the probability of a stockout in a cycle is 1 — ~):

S=F' (7). (5.31)

drryr
Example 5.27 Let us consider a company that places orders to international
suppliers once a month. The suppliers deliver in 3 months. Let us assume that
monthly demand follows a normal distribution with mean 200 and standard
deviation 40 and is not autocorrelated over time. Also, let us assume we have
no reliable estimate of the cost of a stockout and thus require a minimum

type I service level of 98% to limit the number of stockouts. In this case, S
shall be high enough to make sure that inventories are higher than demand

27Notice that again we assume that the inventories are held during the whole cycle, whereas
they might be sold before the end of the cycle and, in this case, they are going to be held
for less than a cycle. So our model makes a simplifying assumption (see footnote 20). Also,
it is interesting to read the relationship between the above equation and the newsvendor
model. In this case the profit we gain when we sell the marginal unit is p,,. However, when
that happens, we still hold the marginal unit for 7. So the actual net marginal profit is
m = py — h- 7. On the contrary, in case we cannot sell the marginal unit in the cycle 7 it
generates a cost ¢ = h - 7. So when we apply the newsvendor formula in the correct way

(i.e., net of holding costs we ignore in the newsvendor problem), we reach the same results
we have derived here.
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over the out-of-control period in 98% of the cases. Thus S is simply equal to
S =4-200+ 2(0.98)v/4 - 40 = 800 4 2.05 - 80 = 964.
Thus S is S = 4200 + 2(0.98)v/4 - 40 = 800 + 2.05 - 80 = 964. [

If the constraint is on the type II service level, we call the minimum ser-
vice level §. In this case the situation is slightly more complex. Given
the constraint, only a 1 — § portion of the demand in a cycle shall be not
met from stock. If the order is placed each 7 periods. the average demand
in a cycle is 7 - E(d). Thus demand we expect not to meet in a cycle is
7-E({d)-(1-0) = n(S) at maximum. If demand happens to be normally
distributed, we have n(S) = L(z) - o-+r7. As the above equation shows (see
the term o,,17), the inventory level S depends on the demand over the whole
out-of-control period LT + 7, though we compare the demand not met to the
total demand in a cycle 7. Also, in this case, a simple example can help us
make sense of this apparently odd concept.

Example 5.28 Let us go back to example 5.27. We just slightly change our
assumptions: We assume that the 98% minimum service level requirement
refers to a type II service level. In other words, 98% of customers shall find in
stock the product they want. This means that only 4 customers a month {or
less) should not find the product they want. Thus we know that the expected
demand unmet before the next delivery (delivery frequency is equal to the
review period of one month, given the dererministic lead times) shall be equal
to 4 units.

Having said this, we shall now find the right level of S to reach that mini-
mum requirement. For example, when we place an order in early January, it is
going to be delivered in early April. The delivery quantity shall cover demand
up to the beginning of May. So the inventory position S shall be large enough
to cover demand up to the beginning of May; that is, it shall cover the out of
control period of four months.?®. Given our assumptions, the mean of the de-
mand over the LT = 4 months is 800 units, while the standard deviation is 80.
Also, we know that demand is normal and the demand we expect not to meet

28Notice that the backorder assumption is crucial. Indeed, if unmet demand gets lost, the
distribution of sales is not exactly equal to the demand over the out-of-control period. Let
us a make an odd, though telling, example. Let us assume that for some reason we are out
of stock and we forgot to place any order over the last three months. So basically in early
January we place an order that is going to be delivered in early April. Up to that time,
the whole demand is going to get lost. So it does not make sense to increase the inventory
position to meet demand over the whole out-of-control period as basically demand is going
to get lost over the first 3 months. In this case we simply set S (and thus the order quantity)
to meet demand during the month of April. More in general, in the lost sales case we set
the ordering quantity to meet demand in a period 7. The demand over the LT still plays a
role, as it influences the inventory level when the order is delivered and thus the total units
available to meet demand in cycle. Finally, notice that the lost sales and the backorder
case are very different in the case of very low service levels, like in the case we have just
discussed in this note. However, they behave rather similarly in the more common case of
a very high service level.
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in any cycle is n(S) = L(z) o1+, = 4. So we shall select z|L(z) = & = 0.05.
In the tables for the normal distribution we can select z = 1.255. Thus,
S = E(dLT+7’)+Z'ULT+T = E(d)'(LT+T)-|-Z-O'LT+T = 800+1.255-80 = 900.4.

I

Example 5.29 We go back to example 3.14 from page 126 to see how we
can integrate the forecasting process with inventory planning. In example 3.14
we have selected the moving average with step 5 (k = 5) as our forecasting
algorithm. Also, while selecting the method we estimated that it yields a
RMSE of 11.90. We basically consider this to be the uncertainty in the demand
estimation. Let us now assume we are in period 24 and want to plan the
deliveries for period 26. Our point forecast (i.e., our predicted demand) is the
average of the last 5 demand observations.

E(d) = Fa4 = (103.58 + 87.95 + 110.83 + 103.87 + 115.57) /5 = 104.36.

As discussed in example 3.14, the LT is 2 days and the delivery frequency is
daily. So we face an out-of-control period of 3 days. Thus we shall set the S
parameter to meet a demand over three days. The expected demand over the
out-of-control period is 3 - 104.36 = 313.08. As to the standard deviation of
demand, as usual we shall make some assumptions on the correlation among
demand observations over the out of control period. If we assume demand
fluctuations to be independent, we can use the square root rule. In this case,
the standard deviation of demand in the out-of-control period is v/3 - 11.9 =
20.61.2°

Now let us assume that we want to achieve a 95% type II service level. This
really means that in each cycle only 5% of demand can be lost. The order cycle
is daily, so we can loose up to 5% of daily demand. Thus n(S) = 5%-104.36 =
5.22 So we shall select z|L(2) = 5222, = 0.0166. In tables for the normal

313.08
distribution we can select z = 1.74. Thus, S = 313.08 +1.74 - 20.61 = 348.94.
I

5.7 THE (s, S) POLICY

The order up to policy S is often used, but it can lead to quite irrational
replenishment decisions, as we might order a very small quantity when inven-
tories are just slightly below the order up to level S. In these cases, one might
prefer not to order to save the fixed ordering cost A and slightly reduce the
service level he/she offers.

29 Actually if one wants to be precise he/she shall measure the error we make with a fore-
casting horizon of one, with a forecasting horizon of two and with a forecasting horizon of
three and then check whether the three errors are correlated. Here we implicitly assume
that the error we make with a 2 days horizon is equal to the error we make with a one day
and a three days horizon.
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This is the reason why the (s, S) policy was designed. Under this policy,
each 7 periods we check the inventory position. If the inventory position is
above s, we do not place any order. Otherwise, we place an order and take
the inventory position up to S. Though this policy can be very effective (the
S policy is just a special case of the (s,.5), so the latter is by definition more
flexible and potentially can perform better), it is actually quite hard to model
for several reasons:

e The number of orders placed in a given time frame is a random variable
that depends on the number of times the inventory position goes below
s at the points in time (tg, tg + 7, tq + 27, %9 + 37 ...) when we check it.

e The expected service level offered in each planning cycle is actually a
random variable; while in some planning cycles we take the inventory
position up to S with an order, in others the starting inventory posi-
tion is below S (though above s) and thus the service level (no matter
whether type I or II) decreases.

e Even calculating the average inventory level is actually all but trivial; we
know that the inventory position reaches S and goes below s. However,
it is hard to estimate the distribution of the inventory position. Indeed,
we do not know whether it depends on demand over LT + 7 (in case
the inventory position goes below s during the first order cycle, that is
the inventory position is below s in g+ 7), or on demand over LT + 27,
LT + 37, etc. (in case this happens in two, three, or more cycles).

For these reasons we often resort to heuristics. The most frequently rec-
ommended is to refer to the (Q, R) model as follows:

e The quantity ordered is the fixed quantity @ in the (Q, R) policy. In
the (s,S) model, on the contrary, the quantity ordered is variable. So
we try to set the parameters in such a way that on the average we
order @ units. One approximation we can make is ¢ = S — s. Such
an approximation basically assumes that when we place an order the
inventory position is exactly s. When 7 is relatively small and thus
we check the inventory position rather frequently, this is a minor issue.
In those cases where the inventory position is actually below s, the gap
between our simplifying assumptions and reality is negligible. When 7 is
substantial and thus we check the inventory position once in a while, the
inventory position might be significantly below s and thus the average
order can be significantly larger than S — s.

Example 5.30 Let us assume

e 7 = 1 month;

e monthly demand is normally distributed with mean 100 and stan-
dard deviation 10;
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e demand shows no autocorrelation;
o § = 250;

e s = 100.

Finally we assume, for the sake of simplicity, that an order is placed at
time £ = 0 and the inventory position reaches 250. At time t = 1, after
one month, the inventory position is a random variable, that is, Normally
distributed with mean 150 (250-100) and standard deviation 10. This
really means that the probability that at time ¢ = 1 inventories are below
s = 100 is actually negligible (the expected value of inventories is 3¢
above the threshold s). The next month, at time t = 2 the probability
distribution of the inventory position is a normally distributed random
variable with mean 50 (250 —2-100) and standard deviation 14.3 (10-+/2)
and we have an almost 100% probability of placing an order. So the
order is very likely to be placed at time ¢ = 2 and though its size is
actually a random variable, the expected value is actually § = 250
minus the expected level of the inventory position at time 2 (50 units).
So, though S — s = 150 units, the expected order size is 200 = 250 — 50.
This large difference is due to the relatively low frequency of inventory
control. As the frequency of control increases and the time between
inventory controls 7 reaches 0, the periodic review system is more and
more similar to the continuous review ones and thus the approximation
to the (@, R) policy is more and more effective.

o The threshold s plays a role that resembles the reorder point R in the
(Q, R) policy, so we can set s at the same level we would have selected
for R in a continuous review system: The key idea is to make the (s, S)
mimic the (Q,R) system. In this case too, the question is how good
the approximation is. For this control parameter as well, the issue is
whether the order is placed exactly when the inventory position is s or
is significantly below it. In this case, too, the larger the value of 7, the
more the approximation is crude.

To solve the problems of this simple heuristic we can, (i) increase the fre-
quency of periodic controls (reduce 7), (ii) perform more sophisticated statis-
tical analysis to capture the actual inventory position when we place an order,
(iii) resort to simulation to check the performance that various levels of the
control parameters (7, s, and S) can generate, or finally, resort to dynamic
programming. All options lay outside the scope of this introductory book.
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5.5.8 OPTIMIZATION OF THE (Q,R) MODEL WHEN THE COST
OF A STOCKOUT DEPENDS ON THE OCCURRENCE OF A
STOCKOUT

We can try to jointly optimize the two parameters ¢ and R also when the
cost of a stockout depends on the occurrence of a stockout. We can follow
a process that resembles 5.4.1. We write the total cost function (5.16) and
compute its derivatives with respect to ¢ and R:

0C4, A E(d h ‘E(d) [T
I g RO
R e
8Ctot _ D E(d) -
9R = h- 0 farz (R) =0
and derive conditions for optimality:
o - ,\/2E<d) Arp 0= Fan (R))] (5.32)
fo (R} = 9 -k (5.33)

p-E(d)

In this case, too, the optimal lot size @ suggests that the cost of a cycle
is greater than the ordering cost A, since in each cycle we run the risk of
stocking-out. The one difference is that in this case the cost of the stockout
in a cycle depends on a probability (1 — Fy4,,(z)) rather than the expected
level of unfulfilled demand n(R). Also, the condition for optimality resembles
equation (5.20) since the marginal cost of inventories h is compared to the
reduction in the stockout cost p- f4, - (R) in each of the E(d)/Q planning cycles.
While in the case of (5.20), F(R) is a growing function of R, f4,,(R) is not
a monotonous function of R (at the least not for all density functions). On
the contrary, for all symmetric demand distributions, if there is one solution
to equation (5.33) there must be at the least another one.

Example 5.31 For example let us consider a normal demand distribution
with mean of 100 units and a standard deviation of 20 units. We can reach a
fa.o(R) = 0.015 both for R = 85 and R = 115 (see figure 5.10). I

Intuitively, while one of the solutions is a maximum, the other is a minimum
of the cost function. Indeed, in a symmetric demand distribution, the marginal
savings from a marginal increase in inventories dR is p- f4, . (R) - dR for each
planning cycle. For R below the expected level of demand, we face increasing
returns for our investment in inventories since in this range fq,,.(R) is a
growing function of R. This rules out all points below the mean as potential
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Fig. 5.10 Condition for optimality on the reorder point R.

candidates for optimality (more in general this rules out all points between a
minimum and a maximum and below the first maximum). Indeed, the second
derivative is
BQCtot _ _p . E(d) f’(R)
R Q

Thus where the density function is growing (f/'(R) > 0) we have stationarity
points that are either maximums or saddle points of the cost function. Once
again, economic intuition and math perfectly match.

Example 5.32 Let us go back to example 5.31. Let us assume the g5th
unit generates a reduction in the cost of stockouts that justifies the extra
holding cost h. Then all units 86 to 135 are worth the inventory investment.
Indeed, they share the same cost of inventories h but generate an even greater
reduction in the cost of the stockout (since the probability density is greater

than in the case of the 85t unit). a

This cost structure suggests that in the case of symmetric demand distri-
butions (and more in general in the case of demand distributions with a mode
greater than zero) the cost function has a local minimum in R = 0 that shall
always be considered as a potential candidate. It shall then be compared with
those points to the right of the mode(s) (in the case of symmetric distribu-
tions with one mode, it is also the mean) that satisfy equation (5.33). When
R = 0 is the optimal solution, the company deliberately decides to experience
a stockout in each and every planning cycle. This raises the cost of a planning
cycle to A + p and leads the company to increase the order quantity Q up to

w _ ./ 2E(d)-(A+p)
o -]
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Also, there is no guarantee that the density function is such that at least
one point satisfies equation {Q* =4/ M;}A_ﬂ’_)} Indeed, if demand is very

uncertain (and thus the demand distribution is very flat) the marginal gain
from a marginal increase in inventories might be very low and it might not
justify the investment in inventories.

Even from the standpoint of the solution process, the situation is all but
trivial. As discussed in section 5.4.1, equations (5.32)—(5.33) can only be used
through iterative methods, as they are not independent. However, in this
case we might want to start our search procedure from the maximum of the
density functions. In other words, we set Ry equal to the mode of the demand
distribution. We start our search from the single point with the largest return
on the inventory investment. This first rough-cut estimate of R is then used
in equation (5.32) to get a first rough-cut estimate of @*, Qg. We can then
use this estimate Q¢ to get a better estimate R; of R*, and so on.
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Managing Inventories in

Multiechelon Supply
Chains

6.1 INTRODUCTION

In the two previous chapters we have studied inventory management for a
single warehouse. However, most distribution (as well as manufacturing) sys-
tems consist of more than one echelon. This makes the problem more complex
and makes modeling harder. Indeed, in a multiechelon system the optimal in-
ventory policy depends on both inventories and inventory policies of all other
warehouses in the system, both upstream and downstream.

Example 6.1 In the food industry a typical supply chain has several eche-
lons. Upstream, manufacturers tend to centralize production in a relatively
small number of plants to enjoy economies of scale that in this industry (like
most process industries) are quite sizeable. In Europe, a single plant can
serve the whole continent (for high-value products such as yogurt and fresh
pasta) or a whole country (one exception is that of low value per kg prod-
ucts such as drinking water whose market tends to be fairly local). These
large plants feed warehouses for finished products within the plant. These
warehouses feed distribution warehouses where products coming from vari-
ous plants of the same manufacturer are held. These distribution warehouses
feed the central distribution centers (CDC) of the retail chains. The man-
ufacturer’s distribution warehouses guarantee frequent and quick deliveries
to the retailers that cannot be achieved from the central, and thus on the
average far. production plants. Also, local distribution centers decouple pro-
duction lots from distribution quantities. Production needs fairly large lots
of a relatively limited assortment (for any given plant) to run smoothly while

303
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customers want frequent deliveries of a variety of products. Local warehouses
make these apparently noncompatible ends meet.

The retailers’ CDC finally deliver to the single stores (at times through
a network of independent agents or distributors). Finally, in a broader per-
spective the supply chain ends with the inventories in the refrigerators and
cupboards of the final consumers. This might look like an irrelevant issue
since the amount of inventories in each house is very small. However, the
number of these small warehouses called houses and apartments is enormous.
For example, to understand the demand pattern for some basic and price-
sensitive fast-moving consumer goods the time between promotions is a key
variable. For example, in the now classic case of diapers, the final consumer’s
consumption is actually very stable and predictable. Many parents willing
to keep the cost of these fairly expensive items tend to buy in large quanti-
ties during promotions. So, when one wants to understand whether the next
promotion is going to be successful, one should consider not only the dis-
count offered, but also the time since the last promotion (for the same item
and/or for the product category in case customers are willing to switch among
brands). This variable catches the inventory level at the consumers’ place and
thus their willingness to buy a large quantity. Indeed, in this case the price
reduction does not increase the aggregate consumption (families with no chil-
dren hardly buy diapers because they are cheap) but rather pushes consumers
to concentrate purchases over time and at a single retailer. I

Moreover, multiechelon distribution system might involve more than one
organization. For example, in a distribution chain we might have a producer
of raw materials, a manufacturer of the finished product, wholesalers, and
retailers. Each of these players has his/her own economic objectives that
might not fully overlap with those of other members of the supply chain. So
when we study multiechelon supply chains, we shall not only look for the
optimal plan but we should also wonder what are the objectives each of the
players is trying to reach and ask ourselves whether they are compatible or
conflicting.

In other words, to fully understand and optimize a supply chain, we shall
merge the perspectives of an economist and the perspective of an engineer.’.

Basically a classic engineer tries to find the best possible algorithm to find
optimal solutions to nontrivial problems. The perspective of the engineer is
that managers of a supply chain are not bright enough to run their supply
chain so they need some support from algorithms and computers to design
better plans. So in the engineers’ mind, men and women are very willing to
implement optimal solutions, if somebody suggests such optimal solution to
them.

1Professor A. Raman of the Harvard Graduate School of Business originally developed this
telling example.
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The classic perspective of an economist is actually quite the opposite.
Economists believe that men and women are extremely brilliant “economic
beasts.” For example, economists assurne that people immediately change
their willingness to spend or borrow money according to the interest rates.
Unfortunately, economists acknowledge that these economic beasts are rather
selfish and are only interested in their welfare rather than in the performance
of the whole supply chain. This is the reason why for an economist an opti-
mal plan might be quite likely not to be ever implemented for a very simple
reason: It might not be good for one (or more) of the players in the supply
chain that might have the power to call the plan off.

This really means that to manage a multiechelon supply chain with several
decision makers and organizations, we shall definitely design optimal plans
(i.e., be good “engineers”) but at the same time we have to design a network
of contracts, incentives, and ways to share the benefits of the plan that makes
sure the plan actually is implemented and can improve actual performance
(i.e., be a good “economist”).

Concept 6.1 In multiechelon supply chains we shall (i) design rules and al-
gorithms to identify good solutions to rather complex problems, and (ii) design
contracts or incentives in such a way that all relevant players are willing to
implement these solutions and push in the same direction.

The next chapter analyzes the relevance of conflicting objectives and in-
centives in a distribution chain. In this chapter we assume that managers of
the warehouses in the system belong to one single organization or at the very
least that the various organizations have agreed on a system of incentives to
share the benefits of an optimal solution that makes them all very willing to
minimize the total cost of the supply chain.?

Example 6.2 The case of large grocery retail chains can be insightful. When
a product stocks out, the average customer is very likely to switch to a substi-
tute product. For example, when the consumer was looking for a specific kind
of chips, he/she might switch to a different brand, to the private label, or to
another snack. That is why the stockout might create a limited damage to the
retailer (at least in the short run) that is still very likely to sell some sort of
snack. On the contrary, in the manufacturer’s perspective this is a loss of mar-
gin and turnover. What makes things worse, is that this stimulates consumers

2Notice that we deliberately use the term organization rather than firm. Indeed, often
working for the same firm is just not enough for people to share the same objectives. For
example, in a large multinational manufacturer of white goods the managers of some Euro-
pean subsidiaries are not willing to share demand and inventory data with the managers of
the central logistic center for spare parts, as they fear that these pieces of information might
be used against them. Such lack of information definitely worsens the overall performance
of the company, but some European subsidiaries still think this situation is in their best
interest. These subsidiaries behave like independent organizational units.
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to try substitute products that they might like. This creates a misalignment
between the objectives of the manufacturers and retailers. While producers
have all kinds of incentives to reduce the frequency of stock-outs, retailers
pay for holding the inventories in the stores and in their warehouses. Quite
interestingly, some recent studies on stock-outs in grocery retailing show that,
on the average, 8% of the products in a supermarket are stocked out. Retail-
ers seem to be OK with such an apparently bad performance (given the high
traffic and relatively high volumes of these stores) while most manufacturers
fell off the chair and believe this to be an unacceptable performance.

Multiechelon systems can be very diverse and thus can set a wide variety
of problems and issues.
A first variable we can use to classify them is the structure of the distri-

bution system. In chapter 1 we have shown that a multiechelon system can
be:

e [inear, if each warehouse receives goods from a single supplier and ships
goods to at most a single warehouse;

o distributive, divergent or arborescent, if each warehouse receives goods
from at most a single warehouse but can ship to more than a single
warehouse:;

e assembly or convergent, if each warehouse delivers to at most a single
warehouse but can receive goods from various warehouses.;

Obviously, these are the basic structures, while in the more general case
each single warehouse can both ship to and receive from many other ware-
houses.

In the case of linear, arborescent, or convergent systems we can define the
number of echelons in the system. In the remainder of this chapter we number
the echelons from downstream. So the first echelon of the supply chain serves
the final customer. Warehouses that serve the first echelon are in the second
echelon, and so on (for an example of this numbering of the echelons see figure
6.1). In this chapter we only investigate supply chains with 2 echelons since
the complexity of the model increases significantly as the number of echelons
grows. However, the analysis of this relatively simple problems gives us a
chance to shed some light on some concepts that apply to the more general
case of supply chains with 2 or more echelons.

Example 6.3 Going back to example 6.1, the distribution chain for a given
grocery product is arborescent, since a single production plant serves several
local warehouses; each of them serves several retailers’ central distribution
centers that, in turn, serve several stores. If we consider the consumers to lay
outside of the boundaries of the supply chain (to some extent the definition
of what lays outside and what lays inside the supply chain is arbitrary), we
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3 Third Echelon

Second Echelon

T

1.1 1.2 1.3 14

First ECchelon

Fig. 6.1 Example of a three echelon supply chain.

can identify 4 echelons in the chain. In this case, stores are the first echelons,
and warehouses at the production plants are the fourth echelon.

Our definition of the echelons depends on the flow of materials among
warehouses. Often, though, echelons are also different in nature. For example,
the first echelon often consists of stores that differ from other warehouses in
several ways. First, consumers enter these warehouses while they do not visit
other warehouses. This also means that safetv measures are tighter in this
echelon than in others. Also, this specific kind of warehouses looks really
different, as they are designed to raise the interest of the consumer. In the
second level we have a warehouse that differs from other echelons because
inventories held come from a variety of brands and manufacturers. Also,
inventories held there are (typically) on the retailers” balance sheet.

When we define the echelons of a supply chain through the characteristics
of the warehouses (say stores vs. non-stores) we can define horizontal trans-
shipments: that is, shipments among warehouses that belong to the same
echelon.?

Example 6.4 In retailing, in luxury business, and in the apparel /footwear
business in particular, horizontal shipments among stores in a single city or

3Indeed, if we define echelons through the flows of goods and two stores exchange goods we
must simply draw the conclusion that the structure is neither linear, nor arborescent, nor
convergent and we cannot define the echelons. If store A ships to store B. B should be in
the first echelon and A in the second, though this contrasts with the fact that A also sells
to the final consumer. Things get even worse if A also receives goods from B. Is A a client
or a supplier to store B? Neither A nor B can be said to belong to echelon 1 or 2. They are
an odd mix and our numbering of echelons simply fails.
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area is a common practice. Retailers use this mean to meet customers’ re-
quests for products/colors/sizes momentarily out of stock.

However, in this chapter we only consider models that do not allow hori-
zontal shipments for several reasons.

o First, in several cases, horizontal shipments are not used for organiza-
tional issues related to the incentives of the store managers and sales-
persons. For example, the store manager might not want to send some
of his/her units of the hottest product to the manager of another store
that might be competing with him/her for bonuses. Also, some retail
chains (e.g., Zara) discourage this practice to commit the manager of
each store to selling the products he/she carries and to carefully select
from the company’s assortment the products that fit the local market.

¢ Second, for many products with a low value per unit of volume or weight,
moving goods from one store to another might not make economic sense
since the cost of point to point transportation* might significantly ex-
ceed its benefits. This is why in grocery retailing we basically have no
shipment among stores.

e Finally, horizontal shipments make modeling harder both because it is
hard to tell what is the demand for a given node of the network (demand
might come both from downstream and from other warehouses in the
same echelon) and because LT becomes stochastic and bimodal, as the
goods might be delivered from upstream warehouses (typically with a
longer LT) or from warehouses in the same echelon (typically with a
shorter LT).

In this chapter, section 6.2 shows that we can manage a distribution network
both with (i) local and detailed information (so called installation-stock) and
(ii) with a global and aggregate information (so-called echelon stock). Section
6.2 also discusses pros and cons of these two options. Section 6.3 introduces
the rather broad theme of coordination in a supply chain showing the main
causes of lack of coordination. their root causes, and some possible remedies.
Section 6.4 shows a first inventory problem with a two-echelon linear system
with certain demand. Section 6.5 shows how to plan inventories when facing
demand uncertainty in a two-echelon supply chain consisting of 7 warehouses
in the first tier and one transit point that feeds them. This model suggests
a heuristic and discusses the role and functions of transit points; that is,
warehouses where inventories merely transit for a few hours. Finally, section
6.6 analyzes the more complex case where warehouses in the first echelon are

4As we will discuss in chapter 8, point-to-point transportation (in our case, store-to-store)
contrasts with hub-and-spoke transportation where one of the nodes of the network works
as a connecting point, just like in the case of air transport, to consolidate traffic and gain
economies of scale.
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supplied by a warehouse that carries products. This section also shows that,
in multiechelon systems, demand uncertainty generates some uncertainty on
lead times.

6.2 MANAGING MULTIECHELON CHAINS: INSTALLATION VS.
ECHELON STOCK

In a multiechelon distribution system the optimal inventory level in a ware-
house might in general depend on inventories and demand in all other nodes
of the network. However, accounting for shese pieces of information requires
a lot of real-time information on the current inventory level and demand in
each warehouse.? Often such information is not complete and is not available
quickly enough, and reliably enough. So we try to design inventory policies
that can lead to good global performance though they make decisions based
on local information. Often decision makers at one warehouse only have in-
formation on their own warehouse and simply have no information on the
inventory levels upstream and downstream. Installation Stock measures the
inventory position of a given warehouse through local-only information. Un-
der the Installation Stock logic, the inventory position of a given warehouse
(or installation) is just inventories on hand plus incoming orders minus cus-
tomer backorders. As the reader can immediately realize, this logic neglects
information on inventories and orders in other nodes of the distribution net-
work.

This approach contrasts with the more complex Echelon Stock logic. This
logic measures the Echelon Inventory Position as the sum of the inventory
positions in the warehouse plus all the inventory positions in the downstream
warehouses. So this logic requires global information to work properly. The
Echelon Inventory Position is greater than (or equal to) the Installation Stock
Inventor Position. Also, the Echelon Stock gives a broader perspective on the
current inventory level in the distribution chain. For example, this second
logic might show that a second-tier warehouse, with no inventories on hand
and no incoming orders, might still not need to place any order to suppliers,
simply because the stores this warehouse delivers to are overstocked. So in
the near future this warehouse might simply not need any inventories.

Example 6.5 Let us consider the distribution chain in figure 6.1. Let us
assume that the Installation Stock Inventory Position for each warehouse is
that shown in table 6.1. As we can see, the Echelon Inventory Positions are
greater than (or equal to) the Installation ones. The Inventory Position of
the two logics is obviously the same for warehouses in the first echelon, since
there is no downstream warehouse.

5This section was inspired by [1].
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Table 6.1 Inventory Position, Installation Stock, and Echelon Stock

Warehouse 1.1 1.2 13 14 2 3
Installation Stock Inventory Position 20 20 20 20 20 0
Echelon Stock Inventory Position 20 20 20 20 100 100
LT 1 1 1 1 1 1
Demand 5 5] 5) 5 - -

Also, the Echelon Stock Inventory Position for the warehouse in the second
echelon is equal to its Installation Stock Inventory Position plus the sum of the
inventory positions of all warehouses in the first echelon. Finally, the Echelon
Stock Inventory Position of the warehouse in the third echelon (warehouse
3) is equal to the Echelon Stock Inventory Position of warehouse 2 since the
Installation Stock of warehouse 3 is zero.

A planner in warehouse 3 needs to decide how many units he/she wants
to order. If he/she looks at the problem with an Installation Stock logic,
he/she would be tempted to place an order since the inventory position is
zero (the size of the order depends on the specific policy the manager adopts,
purchasing LT, distribution LT, and demand). On the contrary, if we look
at the problem with the Echelon Stock logic, the distribution system looks
fairly well stocked (Echelon Stock Inventory Position is 100 units). At the
very least with an Echelon Stock logic, we wonder whether we should be
ordering at all. This decision still depends on the specific inventory policy
the manager adopts, purchasing LT, distribution LT, and demand. But still
while the Installation Stock logic seems to suggest that we obviously shall
place an order, the Echelon Stock logic might not suggest to place an order.
For example, let us assume that demand at each store is deterministic and
equals 5 units per period, we adopt a continuous review period, and all LTs
are 1 period (purchasing LT to warehouse 3, distribution LT from warehouse 3
to warehouse 2, and distribution LT from warehouse 2 to the stores in the first
echelon). In this case, in the distribution system we have enough inventories
for 5 periods (100/(4 - 5)), while the out-of-control period (which is the sum
of all lead times) is just 3 periods. Thus the inventory level in the system is
more than enough and we decide not to place any order. I

Example 6.5 shows that the two logics are basically different eyeglasses that
give us a very different reading of the current situation in the supply chain.
This really means that the two logics can lead to very different decisions. Ex-
ample 6.5 also shows the fundamental advantage of the Echelon Stock policy:
Decisions are based on a global perspective on the current status of the whole
supply chain rather than on local information on the local warehouse.
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Table 6.2 Inventory Position, Installation, and Echelon Stock, in example 6.6

Warehouse 1.1 1.2 1.3 14 2 3

Installation Stock Inventory Position — 80 0 0 0 20 0
Echelon Stock Inventory Position 80 0 0 0 100 100

Concept 6.2 The Echelon Stock logic looks at the inventory level in the
downstream supply chain. and thus decisions can be based on a global in-
formation.

Example 6.5 might lead us to believe that Echelon Stock can always outper-
form Installation Stock. Example 6.6 complements example 6.5 and shows
the fundamental weakness of this logic.

Example 6.6 Let us consider the supply chain structure in example 6.5.
Let us now assume that inventory levels are those displayed in table 6.2. Just
like in the previous case the Echelon Stock logic seems to suggest that there is
no need to place a purchase order for warehouse 3. However, a more detailed
analysis shows that stores 1.2, 1.3, and 1.4 immediately need 5 units per period
to fulfill their demand and thus (in case we cannot transfer products from store
1.1) we shall deliver 15 units per period irom warehouse 2. So inventories in
warehouse 2 are just enough for one period. So clearly warehouse 3 needs to
place an order so that inventories required to meet demand in stores 1.2/1.4
can enter the distribution system as soon as possible,

Example 6.6 shows rather apparently the fundamental weakness of the
Echelon Stock logic. Tt sums the Inventory Positions of all warehouses that
lay downstream of the warehouse we are planning for. So. for the Echelon
Stock logic, excess inventories in one location can counterbalance a lack of
inventories in another location. In the long run., excess inventories in one
warehouse reduce the need for inventories, so all goods entering the supply
chain can be devoted to the warehouses currently lacking inventories. In the
long run, any unbalance in the distribution of inventories can be smoothed and
inventory levels can be rebalanced. However, in the short run we can rebalance
inventories only if we can move some goods from the overstocked warehouse(s)
to the under-stocked warehouse(s) through horizontal shipments. Otherwise,
the warehouse(s) lacking inventories generates a requirement for inventories
that is not counterbalanced by excess inventories in other installations. This
major issue can only be tackled if the excess inventories are actually moved
horizontally to the store that needs them or if the planning method only
considers the minimum between actual inventory level and the optimal one.
In this second case, we basically ignore any excess inventories in one part of



312 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS

G- @

Fig. 6.2 Linear distribution chain with N echelons.

the supply chain so that it cannot counterbalance any lack of inventories in
other parts of the supply chain.

Concept 6.3 The Echelon Stock logic looks at the aggregate inventory level in
the downstream supply chain and thus does not properly capture any unbalance
in the distribution of inventories within the supply chain.

6.2.1 Features of Installation and Echelon Stock logics

We investigate a linear distribution chain with N echelons to further under-
stand the features of the Installation and Echelon Stock logics. Also we assume
that the inventory policy that each of these warehouses adopts is a (Q, R) con-
tinuous review system (see figure 6.2). We investigate how the (Q, R) policy
works under the Installation Stock and the Echelon Stock logics.

We introduce some notations to model and study the Echelon Stock and
the Installation Stock logic.

o (Q, is the lot size for the nth stage of the supply chain. We assume that
the two logics share the same order size, as there is no reason why we
would order a larger quantity under one of the two logics.

e [P!, is the Inventory Position in the nth tier of the supply chain with
the Installation Stock logic.
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e [P?, is the Inventory Position in the nth tier of the supply chain with
the Echelon Stock logic.

e R! is the reorder level in the nth tier of the supply chain with the
Installation Stock logic.

o RS is the reorder level in the nth tier of the supply chain with the
Echelon Stock logic.

Also. we make the following assumptions:

e We assume the lot size at stage n is a integer multiple of lot size at stage
n — 1, that is,

Qn:j'anla JGZT:{1.2.3}

This assumption is actually very reasonable since the upstream ware-
house n receives orders of minimum size @, _1 and thus it seems reason-
able that warehouse n places orders that are multiples of “quantums of
demand” Qn—1.

e Also, let us assume that initial conditions are such that

R: < IP! < RL +Q.,,
R: < IPf o < RS + Q.

In other words, we assume that the initial inventory position lays in the
long-run min-max range. In other words, these assumptions make sure
we have no initial transient state. Notice that if these assumptions do
not hold, we simply have to wait until we place the first order for each
warehouse in the chain to make sure the transient state is over and our
assumptions hold;

o Finally let us assume that when a customer places an order, the supplier
immediately receives it (LT for the information flow is zero, so the LT
only consists of time required to handle and transport goods). Under
these assumptions, when the customer in stage n places an order, his/her
inventory position (both Installation and Echelon) grows immediately.
but at the same time the Installation Inventory Position of the supplier
decreases by the same amount.

Property 1: Installation Stock (Q, R) policy is nested. An inventory policy is
nested if, when a warehouse in echelon n places an order, also warehouses at
echelons 1 to n — 1 served (directly or indirectly) by the warehouse in echelon
n are placing an order as well.

6Actually in case of arborescent supply chains at the least one warehouse for each down-
stream echelon orders at the same point in time.
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Fig. 6.3 A divergent or distribution supply chain.

Example 6.7 In the supply chain in figure 6.3, if the manager chooses a
nested inventory policy, when warehouse 2.1 places an order, at least one of
the warehouses 1.1, 1.2 and 1.3 orders as well. However, other warehouses
(e.g., 3,2.2, 1.4, 1.5 and so on) do not necessarily order at the same point in
time, as they are not served by warehouse 2.1. I

Under the Installation Stock logic in a linear supply chain, the inventory
position at the warehouse n decreases (and thus can reach the reorder point
RY) if and only if warehouse n — 1 places an order. Thus a necessary though
not sufficient condition for warehouse n to cross the reorder point and place an
order is that warehouse n — 1 places an order. Obviously, for this to happen,
warehouse n — 2 must place an order, and so on, until we reach the warehouse
in the first echelon.

On the contrary, the Echelon Stock logic is not bound to be nested. In-
deed, when warehouse n — 1 places an order to the warehouse n, the inventory
position of the latter warehouse remains unchanged. The reduction in the
inventory position at warehouse n is counterbalanced by the increase in the
inventory position at warehouse n — 1. So orders from direct customers drive
replenishments under the Installation Stock logic, whereas they do not drive
replenishments under the Echelon Stock logic (they are actually irrelevant fir
the Inventory Position). So what drives orders in the Echelon Stock logic?
The only event that reduces the Echelon Stock Inventory Position is final
demand; that is, the exit of inventories from the supply chain. Orders and de-
liveries within the (downstream) supply chain do not matter from an Echelon
Stock perspective. So in general, warehouse n can reach the Echelon Stock
reorder point even when warehouse n — 1 is not ordering. This, obviously,
does not mean that the Echelon Stock policy cannot be nested, if parameters
are selected properly. It simply means that it can also be nonnested, while
the Installation stock policy is bound to be nested.
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Concept 6.4 While under the Installation Stock logic orders are driven by
the internal demand, under the Echelon stock they are driven by final (exter-
nal) demand.

In our following analysis we assume that the reorder levels are such that
IP! , — Ri is an integer multiple of Q,,_1. so that we exactly reach the reorder
level R, (orders from the customer n—1 as well as deliveries from the supplier
n-+1 are multiple of this quantum of demand). Any reorder level R’ +y with
0 <y <@, creates exactly the same pattern of orders. The one difference
is that in this latter case the order is placed when the inventory position is y
units below the reorder point rather than equal to the reorder point. So in any
way the minimum inventory position is R}, and we can make this assumption
for the sake of clarity without any loss of generality.

Example 6.8 Let us consider a warehouse that receives weekly orders for
10 units at a time and places orders for 40 units at a time. Also, let us assume
that the initial inventory position is 20 units. If we set the reorder point to
10 units, then we place an order in week 1. The inventory position increases
by 40 units, reaching 50 units at time 1. Then it drops by 10 units each week,
so that a second order is placed at time 5. Following the same logic, we can
draw the conclusion that orders are placed at time 1, 5, 9, 13, 17, and so on.
Now let us check what happens if we set the reorder point to 13 (or any level
greater than 10 and lower than 20). The inventory position drops from 20 to
10 at time 1. So it crosses the reorder point and an order is placed exactly at
time 1. So at time 1 the inventory position increases up to 50. Then again it
drops by 10 units at time, 2., 3, 4, and finally at time 5 it drops from 20 to
10 units, crossing the reorder point. So even when we set the reorder point
to 13 units, we place orders in periods 1, 5, 9, 13, 17, and so on. As we can
see, setting the reorder point to 10 or 13 (as well as any other value between
10 and 20) is basically the same. 0

Property 2: An Installation Stock policy can be replaced by an appropriate Echelon
Stock policy that creates the same pattern of orders. The Installation logic is
nested and thus we know that if warehouse n is placing an order at time ?g,
then all warehouses 1 to 72 — 1 are doing the same. So at time 7. that is, just
after all orders have been placed, the Installation Stock inventory position of
the generic warehouse k with 1 < k <n is R}; + Q). With this inforination we
can compute the Echelon inventory position at warehouse n at time t0+ that
is the sum of the Installation inventory position of all warehouses from 1 to

n:
n

IP; = (R +Qx). (6.1)

k=1
If the Echelon Stock logic wants to mimic the Installation Stock one, then it
needs to order the same quantities at the same points in time. To make sure
that the Echelon Stock logic orders the same quantities the Installation Stock
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logic orders, we just need to use the same lot size. To make sure that the
Echelon Stock logic orders at the same points in time the Installation Stock
logic orders, we shall make sure that it reaches the echelon reorder point R
at time ¢ty and thus that the inventory position at time tg is just equal to
IPs’tg =R® + Q,." Also, from equation (6.1), we know the Echelon Stock at
this point in time. So we just need to make sure that

n

IP o = R+ Qn =) (R +Qu); (6.2)
k=1
hence
‘ n—1 .
R, = Rj, + Y (R + Qx)- (6.3)
k=1

So an appropriate selection of a parameters can make sure that the Echelon
Stock logic leads to order the same quantities the Installation Stock logic
orders at the same points in time the Installation Stock logic orders them. So
the Echelon Stock can mimic the Installation Stock logic (in a linear system).

Property 3: A nested Echelon Stock policy can be replaced by an appropriate
Installation Stock one. Not all Echelon Stock policies are nested, but those
that are nested can always be replaced by an appropriate Installation Stock
policy. Indeed, non-nested Echelon Stock policy cannot be possibly imitated
by Installation Stock policies. In non-nested policies, warehouse n can place
an order even when warehouse n — 1 does not place an order. This cannot
possibly happen under Installation Stock policies simply because they are
nested.

But now let us turn our attention to nested policies and let us try to select
the parameters of an Installation Stock policy in such a way that it can mimic
a nested Echelon Stock one. Let us start with the first warehouse. In the case
of the first warehouse we just need to make sure that R{ = R$. Indeed. in
the case of the first warehouse there is no downstream inventories to add and
thus the two logics are basically the same thing.

As to other warehouses, the generic warehouse n orders at time ¢g when
the Echelon inventory position reaches the reorder point RS and immediately
bounces back to IP;t; = R¢ + @Q,. Since the Echelon Stock policy is nested,
we know the same equation holds forall1 < k < n (IP]:'I+ = R{ + Qi) and
in particular for n — 1. h

This means that when we look at the distribution system from an Instal-
lation Stock perspective, the inventory position of warehouse n just after the

7 Actually, to write this equation, we shall make an additional assumption. We shall assume
that final demand is a continuous process or IP; o — RY is an integer multiple of Q, 1 to
make sure that the echelon policy reaches exactly the reorder level at time tg.
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order is placed in tg is

P, =IP « —IP; | o =R, +Qn— (B +Qna).  (64)
that is, the inventory position of warehouse n minus the sum of all downstream
inventory positions.

Now to make sure that the Installation Stock logic places orders exactly
when the Echelon logic places them, we just need to select an Installation
Stock reorder point such that the inventory position right after the order is
placed in ty is equal to (6.4). Hence we just need to set

P} g = IPf o~ TP o = Rt Qu = (Roy 4 Qno) = Ro + Qo

n,ty
thus the Installation reorder point
R;‘z =Ry - (RZ—J + Qn—l) . (6.5)

makes sure that the Installation Stock policy perfectly mimics the nested
Echelon Stock one.

Properties 2 and 3 show that the Installation policy with a continuous fi-
nal demand and a linear supply chain structure is basically a special case of
the Echelon logic. However, when the two logics lead to the same decisions
(how much and when to order) and thus to the same performance, we defi-
nitely prefer the Installation Stock logic since it only requires local information
while the Echelon logic requires each warehouse to have prompt and precise
information on the inventory position in all n — 1 downstream warehouses.

Example 6.9 Let us consider a linear distribution network with 3 echelons,
where lot sizes are 2, 4, and & units, respectively, for warehouses 1, 2, and 3.
Also, let us assume that the replenishment LT is 1 period for all three ware-
houses and the Installation reorder points are 2 units for all three warehouses
(Ri = 2, Yk). We assume the initial inventory levels are 4, 6, and 10 units,
respectively. and final consumer demand is one unit per period.

e Warehouse 1 orders two units at time 2, 4, 6, 8, etc. (see figure 6.4).

e The Installation Stock Inventory Position in warehouse 2 drops to 4
units at time ¢ = 2. Then it further drops to 2 units at time ¢ = 4.
So at time t = 4 we reach the reorder point and we immediately place
an order for 4 units that take the inventory position back to 6. Given
the demand pattern, the warehouse reorders in periods 4, 8, 12, 16, etc.
(see figure 6.3).

e The inventory position in the third warehouse drops to 6 units at time
4, then to 2 units at time 8 when it reaches the reorder point, and we
place an order for 8 units, and the inventory position is taken back to
10 units (see figure 6.6).
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Fig. 6.4 Installation Inventory Position in the first warehouse.

1249 IP)]

Fig. 6.5 Installation Inventory Position in the second warehouse.
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Fig. 6.6 Installation Inventory Pcsition in the third warehouse.

Let us now check how the Echelons Stock logic can re-create the same
ordering pattern. Lot sizes in this case too are 2, 4, and 8 units for warehouses
1. 2, and 3 respectively. The initial inventory position is 4, 10 (= 6 +4), and
20 (= 10+6+4). The Echelon reorder point for the first warehouse equals the
Installation reorder point, as there is no downstream inventory in the case of
the first echelon so the Echelon and Installation Stock are basically the same:

€ __ [

=4 = 4

As to the second warehouse, we would like this warehouse to place an order
in period 4. Equation (6.3) suggests that we set the Echelon reorder point
for the second warehouse to R§ = Rj + R{ + Q1 = 2+2+2 = 6. Actually,
we know that only final demand decreases the Echelon inventory position. In
this case demand is continuous, constant, and equal to one-unit-per-period
(see figure 6.7). Thus, the initial Echelon inventory position drops at a one
unit per period rate and reaches the reorder point R§ = 6 right at time ¢ = 4,
just like in the case of Installation Stock logic. Obviously, once the inventory
position reaches the reorder point, we place an order for 4 units and the
Echelon inventory position bounces back to 10 units. We can follow a similar
logic to draw the conclusion that the Echelon Stock logic, too {with R§ = 6),
leads us to place orders for 4 units at times 4, 8, 12, 16, etc. (see 6.8).

Finally, we can use equation (6.3) again to set the reorder point for ware-
house 3: RS = R+ R+ R{ + Q2+ Q1 =2+2+2+4+2 =12. The initial
Echelon inventory position is 20 units. In this case, too, the final demand is
the one variable that reduces the inventory position at a one-unit-per-period
rate. So the inventory position reaches the reorder point only at time ¢ = 8,
when an order for 8 units is placed and the inventory position is taken back
to 20 units. The Echelon Stock logic (with R§ = 12) leads us to order at time
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Fig. 6.7 Echelon inventory position in the first warehouse.
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Fig. 6.8 Echelon inventory position in the second warehouse.

8, 16, 24, etc. (see 6.9). We were able to design an Echelon stock (@, R) that
mimics an Installation stock (@, R) policy. I

So far we have underlined the similarities between the two logics. Let us
now focus on the differences.

The Echelon policy can create non nested patterns of orders that in some
instances might be superior to the nested ones, as example 6.10 shows.

Example 6.10 Let us consider a two-echelon distribution system with de-
terministic, continuous, and constant demand for one unit per period and
a delivery LT of two periods and one period for the first and second ware-
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Fig. 6.9 Echelen inventory position in the third warehouse.

house, respectively. Also, let us assume that the lot size is 5 units for the first
warehouse and 10 units for the second warehouse.

Given our assumptions, the first warehouse shall place an order when only
two units are left as they are needed to cover demand over the replenishment
LT (see chapter 4). The case of the second warehouse is slightly different, as
we shall order one period in advance of the actual shipment to warehouse 1.
For example, if initial Installation inventories are 7 and 5 units respectively,
warehouse 1 orders 5 units at time ¢ = 5, 10, 15, 20, etc. (see figure 6.10). So
the 5 units initially in warehouse 2 are shipped to warehouse 1 at time ¢ = 3.
Warehouse 2 will get ready to ship 5 more units at time ¢ = 10. So warehouse
2 should not order up to time t = 9. If we order 10 units at time t = 9 they
are delivered at time ¢t = 10 when 5 of them are also forwarded to warehouse
1. Thus the optimal policy we have just designed is actually non-nested since
warehouse 2 orders at time ¢ = 9 when warehouse 1 does not place any order
(see figure 6.11). So no Installation policy (no matter which parameters we
select) can generate an optimal pattern of orders, as all Installation Stock
policies are nested and the optimal solution is not nested.

On the contrary, we can find the parameters of an Echelon Stock policy to
place orders at time t = 5, 10, 15, etc. in the first warehouse, and ¢t = 9, 19,
29, etc. in the second warehouse.

The initial Echelon inventory position is obviously 7 for the first warehouse
and 12 (IP§, = 7+ 5 = 12) for the second one. The Echelon inventory
position decreases by one unit per period in both warehouses {both inventory
positions are driven by the final demand). The right reorder quantity for
the first warehouse is obviously R = 2 (see comments above). In the case
of the second warehouse, we know we want to place an order at time ¢ = 9
and we know that at that time the Echelon inventory position has reached 3
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Fig. 6.11 On hand inventory and inventory position in the second warehouse.
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Fig. 6.12 Echelon Inventory Position for the second warehouse with RS = 3.

(UP§y=1IP5,;—9-d=12~-9-1=3). So we just need to set the Echelon
reorder point of the second warehouse to 3 (RS). Also, notice that this result
is fairly logical: the system suggests that we reorder when in the distribution
system consisting of 2 warehouses, only 3 units are left. These 3 units are
actually needed to cover demand over the total LT of three periods; that is,
the time it takes to move products from the external supplier to warehouse 2
{one period) and from warehouse 2 to warehouse 1 (two periods).

Finally, the Echelon Stock logic has another significant advantage: man-
agers of the upstream warehouses can immediately observe any increase (or
decrease) in demand. Indeed, an increase in demand immediately reduces the
Echelon inventory position of all warehouses.

Concept 6.5 The Echelon Stock logic is more flexible as it can generate both
nested and non-nested policies. Also, the Echelon stock logic can immediately
spot any change in final demand, since final demand has a direct impact on
the Echelon stock inventory position.

In an Installation Stock system, if inventories in the lower echelons of the
supply chain can initially absorb the increase in demand, then managers of
upstream echelons hardly notice the change. Managers of upstreamn echelons
notice the change only when the orders coming from downstream warehouses
increase. So the whole supply chain might figure out that demand has changed
quite slowly. The tighter informative requirements of the Echelon Stock logic
also mean that this logic tends to give decision makers in the upstream portion
of the supply chain real-time information. Also, while the Echelon Stock
logic provides decision makers with first-hand information on current demand,
in the Installation Stock logic the information on final demand only comes
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through orders from downstream warehouses. This information can be both
delayed and distorted by the ordering policies (see next section for a deeper
analysis of this phenomenon) of downstream warehouses.

Concept 6.6 In the Installation Stock policy the information on any change
in final consumer demand is delayed and possibly made noisy by the stocking
decisions of the downstream warehouses.

In summary, in the case of linear (and convergent) distribution systems, the
Echelon Stock logic is more flexible than the Installation Stock logic and thus
can offer better performance. However, in the case of divergent distribution
chains the benefits of (i) a broader perspective on the inventory level of the
whole chain, (ii) better information on final demand, and (iii) a more flexible
ordering system are counterbalanced by the inability to capture and manage
unbalances in the distribution of the inventories among warehouses in the
same echelon (see example 6.6).

6.3 COORDINATION IN THE SUPPLY CHAIN: THE BULLWHIP
EFFECT

One of the major issues in multiechelon supply chains is the coordination
of decisions among planners of the various warehouses (for a more general
discussion of coordination among decision makers, see next chapter).

As we have just discussed, one approach to coordination is to simplify the
planning problem and manage each single warehouse as if it were independent.
This simplistic approach is often used when various warehouses in the supply
chain belong to different companies or different organizations. However, even
within a company or institution different parts of the organization might have
partially contrasting objectives or lack of coordination.

A first apparent effect of such a simplistic solution is that each decision
maker looks for locally optimal solutions and practices that, however, might
turn into global inefficiencies.

A second, even more pervasive effect is the so-called Bullwhip effect also
known as the Forrester effect (Forrester is an MIT professor that first investi-
gated the effect through Industrial Dynamics). The bullwhip effect produces
an increase in demand variability as we move upstream in the supply chain.
This effect makes the demand for components more variable than the demand
for the finished product at the retail stores or at the distributors.

Classic examples of this phenomenon are Pampers diapers and Barilla
pasta. For both products, end-consumer consumption is quite flat {there is
no sharp seasonality nor sharp trend, at least in most developed countries), as
both products meet basic physiological needs. This relatively flat consump-
tion drives purchases at the retail stores. However, these purchases show some
fluctuations due to trade promotions, i.e., price promotions at retail stores.
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Fig. 6.13 Pattern of orders at various stages of the supply chain in the Beer Game.

Such promotions tend to shift demand among brands, as many consumers are
willing to switch from one brand to the other, and over time since many con-
sumers forward-buy their best-preferred brands during promotions (at least
for durable goods). Such variability induced by promotions is even wider up-
stream. Orders from the retailer to the manufacturer and finally orders from
the manufacturer’s warehouse to the production plant are even more variable.

This phenomenon is described and studied through the Beer Game, which
was designed in the 1960 at the MIT to re-create in a simple simulation the
dynamics that create unpredictable demand variability, which creates uncer-
tainty in supply chains (see [4]). Figure 6.13 shows the typical pattern of
orders in a supply chain with four players: the retailer, the distributor, the
wholesaler, and the manufacturer.

Demand variability in the upstream portion of the supply chain creates sev-
eral inefficiencies. First, in any inventory policy an increase in unpredictable
variability (i.e., uncertainty) requires an increase in safety stocks (or, more
in general, in slacks such as spare capacity) required to gain a given service
level.

In the remainder of this section we identify the root causes of this phe-
nomenon and suggest some actions to remove them or mitigate their effects.

Lot sizing and planning. In lower echelons of the distribution chains, orders
are small. For example, an average family buys a few kilograms of pasta per
week (at least in Italy). Various families make purchase decisions rather in-
dependently, and the sum of all their orders tends to be a relatively stable
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random variable. However, in the upper echelons of the supply chain, single
stores, grocery chains, distributors, and manufacturers have quite sizable in-
centives to buy in large quantities. For example, a (Q, R) policy suggests that
we buy in large quantities to reduce the ordering costs.

Correlation among orders coming from different players in the same echelon
of the supply chain (say, correlation among consumers or correlation in orders
coming from various stores) can further increase variability. For example,
consumers tend to spend more on grocery products right after salaries are
paid. In Italy most companies pay the salary either at the end of the month
or at the beginning of the following month. So we have the so-called “effect
of the fourth week”; that is, many consumers run out of money toward the
end of the month and postpone some purchases until the beginning of the
following month.® Also, retailers, distributors or manufacturers might have
some sort of incentive to reduce their inventories or increase their turnover
toward the end of the quarter, thus creating an anomaly in the collection of
orders.

Example 6.11 In the distribution of grocery products to small retail stores
(so-called “mom and pop” stores), salespersons have some incentives to reach
quarterly sales targets that often push them to collect as many orders as
they can toward the end of the quarter, thus creating an anomalous peak in
demand toward the end of the quarter. On the other hand, some salespersons
that have already reached their target tend not to collect orders in the last
few days of the quarter (actually some of them tend to collect the orders but
do not key them into the system). The idea is that sales targets for future
quarters are often based upon sales in past quarters; thus the higher the sales
in the past, the higher the targets for the future. Also, if they keep some
orders for the next quarter, they can have a jump start and thus are more
likely to meet the sales target for the next quarter.

Example 6.12 A distributor of electronic components in Italy stops order-
ing and shipping products towards the end of the year (they basically do not
place orders in November and December and do not ship goods in December)
because of odd incentives. This company is the national distributor for a
major Danish producer of components. The distributor has signed a contract
with the manufacturer with a significant bonus based on sell-in targets. In
other words, the distributor gets a bonus if it orders more than a minimal
monetary amount per year. The sell-in target for 2007 is based upon sales for
2006. So this creates an incentive not to place orders toward the end of the
vear (in case, like in recent years, they have already ordered enough to meet
the current year’s sales target).

8Notice that this effect is particularly strong in time of recession or limited economic growth
and for grocery products, whereas it is far less sensible for other product categories such as
luxury products bought by customers with no major financial constraints.
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Also. this privately held company postpones many deliveries to the begin-
ning of the following year to postpone turnover and taxes.

Other companies in this business might have a similar behavior, thus gen-
erating odd end-of-year effects. Finally. we shall notice that other companies
have similar behaviors for opposite reasons. Some public companies try to
postpone purchases at the end of the year to reduce the inventories and thus
the working capital so that they look leaner and thus can get more favorable
evaluations from the market.

We can address this issue in several ways.

1. Reduce the fized ordering cost. As we have already discussed in chapter

4, fixed ordering costs give an incentive to buy in large quantities. Thus
reducing fixed costs reduces the optimal lot size. So automation of
all order-related activities such as planning, quality inspections, and
administrative activities (e.g., one can substitute traditional tools such
a fax machines and data entry with business to business online orders)
can reduce the fixed ordering fees end reduce the lot sizes.

. Consolidate transportation. Part of the fixed ordering costs comes from
transportation. Some manufacturers give customers that place orders
for full truckloads some additional discounts, since transportation of full
trucks is more efficient. The flipside of this policy is that it tends to cre-
ate large and infrequent orders that contribute to demand variability
and uncertainty. A solution to this tradeoff between transportation effi-
ciency and demand variability is to consolidate in a single truck various
products from various suppliers (as we have discussed in chapter 2) or
deliveries to several customers (see chapter 8). In the first case, the cus-
tomer might consolidate the transportation and collect the goods from
various suppliers. On the contrary, in the latter case the third party
provider of transportation services can consolidate transports to fully
load the truck.

. Reduce correlation among order potterns of various customers. To re-
duce demand variability, we shall make sure that customers place orders
at different points in time. So we shall reduce any incentive to place or-
ders at specific points in time. Obviously, it is relatively easy to reduce
the salespersons incentives to collect orders at the end of the year. On
the contrary, it is relatively hard to work on financial problems of many
families that postpone purchases at the end of the month. Service in-
dustries with high fixed costs and a relatively inflexible capacity such as
telecom and electric energy have designed specific tariffs to make sure
that demand fluctuations are smoothed out. Even in more traditional
services, we have similar patterns with some furniture retailers reducing
prices during low demand periods. Notice that furniture is not subject
to sudden changes in fashion, so these initiatives do not aim at selling
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goods left over; instead they aim at increasing demand in low demand
periods (such as the end of December, oddly) to cover fixed costs such
as personnel, energy, and real estate.

4. Increase homogeneity in customer and order sizes. Finally to reduce
demand variability we shall have a large number of independent sources
of demand; that is, a fairly large number of customers served from a
single warehouse. There are several ways to reach this objective. Ob-
viously, one can increase the number of customers, but this has little
to do with logistics, though we have to acknowledge that this simplifies
supply chain management. Moving to more supply-chain-related issues,
one can reduce the number of warehouses in each echelon of the supply
chain to make sure that the number of “customers” served by each ware-
house increases and variations in the ordering patterns smooth out. One
important prerequisite for this to happen is that all customers have a
comparable size, otherwise any variability in the orders of one customer
can hardly be counterbalanced by orders from any other customer (met-
rics for market concentration such Herfindal’s or Gini’s indexes in the
economics literature can be very effective for this purpose; e.g., see [2]).

Forecasting 1In a multiechelon supply chain the instability of forecast can con-
tribute to increase variability in the upstream stages of the supply chain. Let
us consider a situation where each decision maker only “sees” orders from di-
rect customers with no information whatsoever on the final consumer demand
(see the Installation Stock policy). In these circumstances, orders from direct
customers is the one and only relevant piece of information to make a demand
forecast. This can create significant distortions in the flow of information in
the chain. Indeed, as we have learned in the previous chapters, planners place
orders to optimize their inventories. So they are basically inventory decisions
of the customer that, nevertheless they are interpreted as demand signals by
the supplier, simply because he/she has no other information on demand. Let
us try to understand what goes on in a supply chain and let us try to under-
stand how information on final demand gets distorted as it is transmitted in
the chain. Let us assume that final demand increases by Ad. Such an increase
can lead the retailer to increase orders by far more than Ad. He/she increases
orders for the following reasons:

1. He/she Replenishes inventories that went down more than he/she ex-
pected.

2. The recent increase in demand leads him/her to increase the demand
forecast and target inventory levels.

3. The recent unpredicted increase in demand might lead him/her to up-
date the estimate of demand uncertainty and thus the need for safety
stocks (if, as it is often the case, the economics of the business suggest
him/her to overstock).
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Notice that in these contexts the retailer makes locally rational decisions
{as we have seen, there are several good reasons to increase orders more than
demand has increased) that the distributor can read as a signal on final con-
sumer demand. Obviously, a similar process goes on between the distributors
and manufacturers and between manufacturers and suppliers of raw materials.

Also, often forecasters (or the tools they use) tend to read a temporary
increase in demand as a permanent trend. So, while the increase in demand
Ad can be temporary or a one-time-only increase, forecasting tools might
interpret that as a sign of a constant trend. So the forecasting method can
(at one extreme) project a growth of Ad units per period. Such a reading
of the demand signal would further increase the order size and would lead
upstream decision makers, in their turn, to overstate demand.

Such an excess demand at the end of the day turns into inventory holding
costs. Indeed, when each player overstates the orders he/she receives, we can
easily get into a situation where the upstream portion of the supply chain
(say manufacturers) produces far more than final consumers require. In these
circumstances, inventories build up rather quickly.

Let us now check what we can do to reduce the impact of demand fore-
casting on the Bullwhip effect:

1. Share information on final consumer demand. First, all players in
the supply chain can receive information on the final consumer de-
mand. This way we decouple information flows and inventory deci-
sions. Though new technologies are making such exchange of informa-
tion cheaper and cheaper, very often signing contracts for the exchange
of information might be hard. Indeed, downstream players (e.g., re-
tailers) own the information and they shall release it to the upstream
players. Unfortunately, such an information directly only solves the
problems of the upstream players that are confronted with the high
variability created by the Bullwhip effect. In the long run, a more sta-
ble demand can make production more effective and lead to a reduction
in price, but the link is very weak and the retailer might wonder who
is going to take advantage of the increase in efficiency. Is this going to
increase the manufacturer’s profits? Is it leading to a reduction in whole-
sale price that competing retailers are going to enjoy as well? Costs and
risks of such exchanges of consumer data are very clear and often ben-
efits for the retailers are too unclear. So, a key to the success of these
initiatives is a clear plan to share the benefits they certainly create. For
example, some retailers get paid for the information, others receive a
better service and so on. Also, such an exchange of information raises
some confidentiality issues. For example, a manufacturer might use the
data he/she received from a retailer to prove to another retailer that a
new product is in high demand in a given area. Clearly, this is a secret
the retailer would like to preserve.
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A further step beyond the simple exchange of information is to share
forecasts in such a way that various players in the supply chain make
their decisions independently, but at the very least they share the same
vision of what the future will bring. These practices are often called
Collaborative Forecasting (also known as CPFR, that is Collaborative
Planning Forecasting and Replenishment). With these practices the re-
tailer can leverage on some information the producer only has, such as
advertising campaigns, while the producer can leverage on some infor-
mation that the retailer only has, like promotions of competing products
or planned retail price during the promotion (a 50% price reduction is
much more effective than a 20% one). Indeed, a retailer that plans a
promotion for fresh filled pasta of brand A might suggest the manufac-
turer of brand B that he/she expects a short-term reduction in sales
volume.

. Vendor Managed Inventory (VMI). An alternative solution to sharing

consumer demand data or forecasts is to give a single decision maker the
decision rights on all echelons in the supply chain. In particular, we call
this practice Vendor Managed Inventory in case the supplier controls
inventories at the distributor’s or retailer’s warehouses. These practices
obviously make sure that all decisions in the supply chain are based on
a single and consistent forecast. However, we shall also notice that these
agreements might face a couple of problems.

First, they might be subject to incentive problems (see next chapter for
a deeper discussion on incentives problems). In all inventory models for
uncertain demand we have analyzed so far, the optimal quantity depends
on the inventory (holding) cost and the cost of the stockout. However,
the cost of a stockout might be substantial for the manufacturer while
it might be negligible for the retailer since margins are often different
and many consumers are very willing to substitute stocked out items in
many categories of grocery product. So the manufacturer has a greater
incentive to reduce stockouts than the retailer has. This partially ex-
plains why decision rights are allocated to the manufacturer rather than
to the retailer. Also, this partially explains why the manufacturers in-
crease the service level and make sure that retailers’ warehouses have
a very high service level (99%+ service level is not uncommon at the
warehouses under VMI) but then the retail stores fail to turn this into
a high service level on the shelves, simply because it is not as impor-
tant for them. To make sure that these systems work we need to make
sure that all inventory-related costs are on the shoulders of the decision
maker. For example, when a manufacturer manages the distributor’s
inventories through VMI, he/she shall be held accountable for the in-
ventory investment he/she generates; otherwise the manufacturer might
have an insane incentive to increase inventories up to unreasonable levels
simply because they are free for him/her. A second major concern ac-
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tually regards information. When we move decision rights in the chain,
we also want to make sure that the one decision maker has all rele-
vant pieces of information (as well as skills and systems) to make the
best possible decision. So. as we move decision rights in the chain we
shall also make sure that relevant pieces of information are moved to
the right point in a timely fashion. The next chapter discusses in some
more detail economic reasons why it might make sense to adopt VML

3. Reduction in LT. Long LTs lengthen the forecasting horizon. Hence:

e Long LTs increase the uncertainty in a single time bucket. because
a forecast for the near future tends to be more accurate than a
forecast for the far future.

o Long LTs increase the out of control period that safety stocks shall
cover (think of (@, R) or S systems). So a reduction in LTs reduces
the forecasting horizon and thus the need to invest in safety stocks.

Pricing policies. Price promotions can create demand variability upstream.
Trade promotions perturb the consumers’ purchasing process. For nonperish-
able products such as canned food or dry pasta, consumers tend to forward
buy (and to some extent increase the consumption of these products). Also,
such price promotions generate further disturbances within the supply chain.
Indeed, during trade promotions, producers reduce the wholesale price since
an increase in demand benefits both the producer and the retailer and thus
both contribute to the reduction of the final consumer price. However, such a
temporary price reduction prompts the retailer to forward buy to stock inven-
tories at a relatively low price and sell them at a full price once the promotion
is over. By doing so, the distributor further increases the peak in demand
caused by the trade promotion.

A rather radical solution to this cause of the Bullwhip effect is the Fvery-
Day-Low-Price (EDLP) policy. Some retailers keep a constant and relatively
low price for all of their assortment rather than periodically (usually promo-
tions last a couple of weeks) reduce the selling price of some items. The price
these retailers charge is lower than the standard price other retailers charge in
off-promotion periods, though it is higher than the promotional price. While
price promotions try to drive traffic into the store by advertising some items
with a very low price for a limited period of time,® the EDLP policy tries to
attract customers by promising a low ticket for the average shopping basket.
The key idea is that a more stable demand is easier to manage, and such ease
of management can increase efficiency and reduce costs. So basically EDLP
rewards customers for the stability of their purchases with a lower price (of an

9S0ome discount retailers in Italy have started to offer deep discounts on a couple of items
at a time (say an electric drill and a specific kind of sneakers) for one day only to drive
traffic on specific low demand days.
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average shopping basket, though other retailers might have a lower price of an
item on promotion). The best-known case of EDLP is Wal-Mart, today the
largest retailer in the world. These strategies do not always work. For exam-
ple, in Italy, Barilla tried such strategies with the help of some US managers
and reduced both price promotions and gadgets. However, they discovered
that EDLP works only for products and purchases that are planned rationally
like dry pasta. On the contrary, this strategy does not work for impulse pur-
chases such as cakes and snacks for kids. For these products, motivations are
hardly rational and have a lot to do with the fun content and emotions such
as the feeling that we give our children the “best” food available.'Y

Allocation of capacity Customers actually place orders to control the quantity
the supplier delivers them. So in some instances they overstate their needs to
get a higher priority and thus a better service. Indeed, in case the supplier does
not have enough goods to meet the demand from all customers, the supplier
very often allocates the limited amount of goods (or the limited capacity
to manufacture/distribute them) proportionally to the orders that customers
have placed.

Such a policy might look reasonable since it allocates more inventories
or capacity to the customers that requested more goods and thus are more
relevant and/or need more products. But this allocation policy creates an
insane incentive to overstate demand in periods of high demand (and prod-
uct scarcity), thus contributing to the Bullwhip effect. For this to happen,
customers (say retailers) must realize that the supplier (say manufacturer) is
running short of inventories. Once this vicious circle starts, it is really hard
to stop it. It is basically a self-fulfilling prophecy. When customers expect
a stockout. they overstate their orders to get a larger share of the limited
inventories (capacity). But this actually creates a stockout.

This practice can distort final consumer demand since customers use orders
to signal they want a large share of the limited quantity available rather than
to signal the optimal quantity, let alone final consumer demand. Sooner or
later, the supplier recovers from the stockout. often after investing in extra
capacity for a demand that is actually not there. Once the crisis is over,
the supplier can actually deliver the whole quantity customers have ordered.
All of a sudden deliveries are excessive since the customer has overstated
orders presuming that the supplier could not deliver the whole quantity. So
either the customer cancels excessive orders and the supplier is left with excess
inventories (or spare capacity), or the customer accepts the deliveries and
his/her inventories go through the roof. So to reduce the inventory level the

10Notice that on page 327 we suggest the use of pricing strategies. However, the objective

and the net effect in that case is just the opposite of standard price promotions. In that
case we change price over time to flatten demand, whereas price promotions in the grocery
business boost demand variability.
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supplier stops ordering for a while and after a peak in demand we have zero
orders for a while (see figure 6.13).11
We can manage allocation problems in several ways:

1. Choose different allocation criteria such as past sales or sell-out. A first
option we might have is to destroy the incentive to overstate orders to
get a larger share of the limited capacity. For example, one can use
past sales or sell-out (that is, units or dollars sold to the final consumer
or the customer’s customer). These variables still give larger customers
higher priority but do not distort their ordering policies.

2. Cancelation policies and less flexibility in order changes. Often cus-
tomers can modify orders even shortly before they are delivered. From
a marketing and sales perspective, such practice persuades customers to
place orders with more confidence and disposes them to select suppliers
that offer this sort of flexibility. However, this greater willingness to
place orders shall be contrasted with their informative content, that is,
with the information we can extract for planning purposes. If a cus-
tomer knows that he/she can reserve inventories or capacity for free by
placing an order, the customer has all kinds of incentives to place an
order that exceeds his/her actual need by far. So the supplier can hardly
understand what actual future demand is going to look like. So one shall
always carefully consider the tradeoff between the flexibility we give to
our clients and the ability to promptly collect reliable information on
future demand.

Finally, we can dramatically reduce the Bullwhip effect by removing some
of the echelons in the supply chain. Such an alternative shall be actually
quite carefully considered as we shall ponder, What are the functions each
warehouse is performing, and who else in the supply chain can perform them
in case we remove the warehouse? One example of how effective such a decision
can be is Dell computers, today one of the largest manufacturers of computers
in the world. Dell sells directly through the Internet and catalogues to avoid
the expensive inventory buildup in the distribution chain (in this business,
goods lose value very quickly, so the holding cost is substantial). At each single
store the demand for each single product variant is relatively low and thus
demand at the item/store level tends to be fairly variable, unsold inventories
tend to be high and thus the holding/obsolescence cost is substantial.

The success of Dell inspired many companies to follow suit in other indus-
tries such as furniture or grocery. But many of them simply failed. Indeed,

A related problem regards the penalties for lack of service. Many suppliers agree to pay
the customer for lack of service. So if orders are not fulfilled, the supplier must pay a given
fee. This again gives the retailer an insane incentive to overstate the orders in peak times,
as he/she can basically get a discount for large orders that can cause a stockout.
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they tried to remove the so-called middle-man, that is, the intermediary be-
tween the consumer and the producer. But the success of these initiatives
depends on several issues, among which:

o The value of the product that shall make the delivery at the customer’s
place economically sound (i.e., not too high as compared to the cost of
the good) and quick enough;

o Touch and feel content of the product that shall be bought without try-
ing, touching, and feeling it; certainly a PC can be easily described (to
a person that knows the basic variables that describe a PC) through an
Internet screen with some pictures and a list of technical features while
a piece of furniture can hardly be fully described through a computer
screen even to the most expert person (even companies in the business
only buy goods once they see a sample);

o Variety of the assortment at various levels of the supply chain. When we
remove one echelon of the supply chain, we save the inventories held in
that echelon. Clearly, the greater the variety of items held in that eche-
lon, the greater the savings. The case of Dell really tells a long story on
this variable. Though Dell is considered to be a make-to-order manufac-
turer with no inventories, it actually carries (and/or lets suppliers carry)
inventories. The one big difference is that other manufacturers carry (or
used to carry) finished goods in the distribution chain while Dell carries
components in the central warehouses that feed the production plant.
So what is the advantage? The number of different components is rela-
tively small, while the number of finished products one can generate by
combining these components is basically infinite. Dell carries inventories
only at the production plant while other manufacturers carry (or let the
retailers carry) inventories in many locations. While Dell needs to plan
actually a few item/location combinations with a relatively high and sta-
ble demand, most competitors need to plan thousands of item/location
combinations with relatively low and variable demand.

Also, the case of online furniture retailing is telling. Often traditional
furniture retailers do not carry large quantities of inventories. Prod-
ucts are often displayed in the store in a specific style/material/color
combination, while the material/color variants (and in some cases slight
variations in design such handles) are only presented through samples
or catalogues. Products purchased by the consumer are then made to
order. So taking the retailers out of the supply chain saves very lit-
tle inventories and does not reduce the Bullwhip effect. Obviously, we
can save on retailers’ margins, but we shall check what their functions
are. They guarantee a very efficient primary transportation to the re-
tailer’s warehouse. They manage the secondary transportation to the
consumer’s place. Retailers make this secondary transportation much
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more efficient, as they often transport goods coming from various sup-
pliers. Retailers often repair small damages (such as scratches on leather
sofas) that have occurred during the transportation and handling. This
latter function is crucial in a business where products are rather frail,
and it is hard to pack them effectively. They often make sure the prod-
uct is repaired before the customers can see it and thus make sure that
customers are 100% satisfied while they actually receive a product that
has been repaired. Hence selling furniture directly through the Internet
is just not as effective as selling PCs on the Internet.*?.

6.4 A LINEAR DISTRIBUTION CHAIN WITH TWO ECHELONS
AND CERTAIN DEMAND: THE TWO-STAGE ECONOMIC
ORDER QUANTITY

So far in our analysis of a multiechelon supply chain, we have considered lot
sizes as a given. We now wonder how to set the lot sizes, and we consider a
fairly simple supply chain consisting of two echelons and one warehouse per
echelon. We assume that demand is deterministic, continuous, and constant,
like in the case of the EOQ model. Also. we assume that the unit price is
constant (no price discounts), and thus the only relevant costs for our purposes
are ordering and holding costs for the two warehouses. To model our problem,
we introduce the following notations:

e A; and A, are the fixed ordering costs in the downstream and upstream
warehouse, respectively;

e h; and Ao are the unit inventory holding cost in the downstream and
upstream warehouse respectively; we assume hy > hg, as, in general,
downstream warehouses are smaller and closer to the final consumer
(thus usually in areas with higher costs of real estate) and the down-
stream warehouse stocks inventories with more value added (e.g., trans-
portation or bulk lots have been broken down in the upper echelons).
Anyway, in case hy > hy, clearly the optimal policy is to keep inven-
tories only in the downstream warehouse where they are both cheaper
and closer to the final consumer (and thus can offer a better service).

Moreover, we assume, without any loss of generality, that L'Ts are zero. As
we have shown in the case of a single warehouse (see section 4.4), the only
difference between zero LTs and nonzero LTs is that in the latter case we need
to place an order before inventories drop to zero. But the actual holding cost

1218} and [6] provide an extensive analysis of the root causes of the bullwhip effect and this
section is partially based on these references. For more quantitative models on the bullwhip
effect see, for example, [7] and [3]
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Fig. 6.14 Structure of the two-echelon linear supply chain.

and ordering costs (as well as the optimal lot sizes) do not change, and thus
our results can be applied in the case of nonzero LTs too. Our assumption just
simplifies the model, since the inventory position equals inventories physically
on hand.

We first write the cost functions for the two warehouses separately, so that
we can compare two scenarios:

o In the first scenario the cost functions of the two warehouses are opti-
mized separately.

¢ In the second scenario the cost functions of the two warehouse are op-
timized jointly.

The cost function of the first (downstream) warehouse Cyot,1 is exactly the
cost function we have developed for the EOQ model:

d
Ctot,l =A;- @ +hi - % (66)
Clearly, in this case the optimal order quantity is
2A.d
Q1= hl . (6.7)
1

For the second (upstream) warehouse, things are slightly more complex.
We cannot use the EOQ model, since in this case demand is not continuous
but rather consists of lots of size @;.

Just like in section 6.2, we assume that Q2 = jQa, j € ZT; that is, we
assume that the lot size of the upstream warehouse is an integer multiple of
the lot size for the downstream warehouse.
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Fig. 6.15 Inventory position and inventories on hand in the first warehouse.

To build some intuition on the inventory dynamics in the second warehouse,
we refer to example 6.13.

Example 6.13 Let us consider a product whose demand is 10 units per
period, o = 300, and @Q; = 100. If we assume that initial inventories are
100 and 200 units, respectively, the first warehouse places orders at time ¢t =
10, 20, 30 and so on (see figure 6.15). Warehouse 2 runs out of inventories
at time ¢ = 20 but there is a need for additional inventories only at time 30,
when warehouse 2 orders and receives 300 units. 100 of which immediately go
to warehouse 1 (see figure 6.16). So inventories in the upstream warehouse
do not fluctuate between 0 and 300 unit but vary between 0 and Qp — Q1 =
300 — 100 = 200 with an average of 100 units (rather than 150).

More in general, the upstream warehouse places an order to receive the
quantity Q2 when it needs to ship a quantity @, to the first warehouse. So
inventories vary between 0 and Q2 —@; = (j—1)@;. The inventory level in the
second warehouse remains constant at each level 0-Q1,1-Q1,...,(j ~1)-Q;

for ¢)1/d periods. Thus the average inventory level is (i:—zl—)-Q—l
As a consequence, the cost function for the second warehouse is

d j—1
5 + hQ . —‘—U )Q1 .
J- G 2
This cost function is convex in j. So the manager of the second warchouse can
relax the problem and find a solution in RT so that a (generally) non-integer

solution is found as follows:
. 1 2
=22 (6.9)
o ha

Ciot,z = Az -

(6.8)
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Fig. 6.16 Inventory position and inventories on hand in the second warehouse.

Once we have found this optimal solution (that in general is not integer
and thus not feasible), we shall just consider the two closest integers and
check which one minimizes the cost function. Indeed, we can leverage on the
convexity of the cost function to rule out any other integer solution.

Example 6.14 Let us consider an European company that imports goods
from the Far East and has a bonded warehouse where goods can be held before
import duties are paid. The fixed cost of ordering to the Asian supplier (A4;) is
8.000€. Once duties are paid and goods clear customs, they are shipped to the
warehouse nearby the city of Turin. A delivery from the bonded warehouse to
the warehouse nearby Turin costs roughly 2.000€ (A;). This cost covers both
administrative costs and transportation. Monthly demand for the product is
8000 pes. Holding one unit in the bonded warehouse for a month costs 4€,
while holding it in the warehouse nearby Turin costs 5€ because of the greater
capital investment due to import duties.
The manager of the first warehouse buys in lots of size

54, d  [2-2000-800
le\/ . =\/ = 800 pes,
o 5

and thus the total cost of the first warehouse is

Ciot1 = +/241dhy =+/2-2000€ - 800 pcs/month - 5€/(pcs - month)
= 4000€/month.
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Given this decision of the manager of the first warehouse, the manager of the
second warehouse sets the parameter j through equation (6.9):

<k

J ~ 2.24.

1 J2Axd 1 2 - 8000€ - 800 pcs/month
O V hy 800 pes 4€/(pcs - month)

So the two candidate integer values are 2 and 3. We can identify the best
solution through equation (6.8):

800 1-800

= 4 = th,

Ciot,2(2) 80002 ~00 T 5 5600€/month.,
800 2800

Ctot,2(3> = 8000m +4- —2—“ = 5866€/month

Thus, the solution is Q1 = 800 and @2 = 2 - 800 = 1600, and total cost is
9600€/month. 0

Now we can check that minimizing the two cost functions separately leads to
suboptimal results. We write the cost function for the whole supply chain and
find the optimal solution:

- d Q d (- 1@
Ciot = A1'a+h1'7+A2'j.Ql+h2'—2‘—
= (Al + %) % + (h1+ (j — Yha) % (6.10)

The cost function resembles the EOQ problem where ordering and holding
costs are:

A = A1+—.
= h1+<j—1>h2.

Each j orders from warehouse 1, warehouse 2 places 1 order. Thus each
ordering cycle in warehouse 1 costs A; but it also implies an indirect cost
that is a fraction 1/j of the ordering cost Ay of the second warehouse. As to
holding costs, the average inventory level in the first warehouse is Q1 /2, while
the average inventory level in the second warehouse is (j — 1)@Q1/2, that is,
J — 1 times higher. This means that for each unit held in the first warehouse
we hold j —1 units in the second warehouse, and thus increasing the inventory
level of the first warehouse by one unit causes an increase of j — 1 units in the
second warehouse. So we do not need any further math and simply resort to
the EOQ model to derive the optimal quantity Q3%:

. 2(A1+A2/])d ]
Q= DENTE (6.11)
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We can take the derivative of equation (6.10) with respect to j:

Cwot _ _As-d +Q1'hz

0j Q1 5° 2

hence, rearranging terms and substituting the generic quantity @; with the
optimal quantity Q3:

it _ 1 [ A-d b QF
0j Q1 7 2

1 {_Ag d 2h2(A1+A2/j)§i} o

= 0.

QL 7 2Mlu+(G-Dh
hence
—Ay - [+ (j — Dha] + jha (A1 + A2/j)
=—As-hi+ Ay hy +j%hyA; = 0.
Hence,

o Az (h1— ho)
e e eyt (6.12)

Before we proceed and try to implement the solution, we want to restate the
problem with an Echelon stock logic. From an echelon stock standpoint we
consider units in the first warehouse to be in the second warehouse as well.
Thus the Echelon stock holding cost e; for the first warehouse is just the
incremental holding cost; that is, the difference between the cost of holding
one unit in the first warehouse minus the cost of holding one unit in the second
warehouse (h1 — ho). Indeed, units that are physically in the first warehouse
already pay a holding cost hz, since they are part of the echelon stock of the
second warehouse (though they are physically in the first warehouse). This
variable has a clear economic reading. It is the incremental cost of holding
one unit in the downstream warehouse (2) rather than in the upstream one

(1):
er = hi—hy,
€y = h2.

We can restate the cost functions with echelon holding costs as follows:

d
tot1 = Ar- @ +e1 %1—7
e d .]Ql
A P

where the average echelon inventory level for the second warehouse is j- @1/2.
Indeed, the Echelon Stock logic implies that the inventory level is not affected
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by the transfer of ;1 units to the first warehouse. Also, inventories are only
influenced by the final demand and vary linearly between 0 and Q2 = j- Q1.
Hence the total cost is

A d )
Cty=Cpy +Chyn = (A1 + —?) et
J @1 2

We can use the EOQ model to derive the optimal lot size for the first echelon:

(6.13)

and for the total cost when the optimal lot Q7 is selected:

A
Ctot = \/2d <A1 + —JE> (e1 +j - ea). (6.14)

In this case too, the total cost function is convex in j and thus we can relax
the problem, find the optimal j in R™, and finally check which of the two
closest integers minimize the total cost. The cost function reaches its mini-
mum where the function under the square root reaches its minimum. Thus
the unconstrained optimal solution j is

v |Ase
= (6.15)

Equation (6.15) is just a reformulated version of equation (6.12) (this must be
the case given that it is still the same problem) where we use Echelon holding
costs (e1 and eg) instead of Installation holding costs (hy and ha). Moreover,
here the result is derived more elegantly. The final step is to round j* and
check whether the floor of j* rather than the ceiling of 7* are the best integer
solution.

Example 6.15 Going back to example 6.14, we now check whether the min-
imization of total costs for the whole chain suggests a different and more effi-
cient solution. If we minimize total costs, we can choose j through equation

(6.15):
. [8000-(5-4)
=V 002 b

thus the lot size for the two echelons is basically the same and is equal to

2- 800 (2000 + Solﬂ)
= = = 1 . S
Q1 =Q2 111.4 788.9 pcs
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for a total cost of 8944.3€/month, well below the cost of 9600€/month for
the digjoint optimization.

We shall notice, though, that this solution involves higher costs for the first
warehouse. Indeed, if we choose a lot size Q1 = 1788.9 pcs, the cost for the
first warehouse reaches 2000 - 800/1788.9 4+ 5 - 1788.9/2 = 5366.6€/month,
definitely more than the 4000€/month for the disjoint optimization. In this
latter case the cost for the first warehouse is higher since when we look for
a solution we account for the effects that the lot sizing decisions of the first
warehouse generates on the second one. This increase in the costs of the first
warehouse raises some issues on how the saving of a joint optimization should
be split, in case the two warehouses belong to different organizations.

Concept 6.7 Integrated management of a supply chain increases the effi-
ciency of the whole supply chain. However, this does not automatically turn
into a benefit for each and every player in the chain. This is why we often
shall carefully consider the incentives and potential gains for each player when
we suggest a greater degree of integration (see chapter 7).

6.5 ARBORESCENT CHAIN WITH TWO ECHELONS: TRANSIT
POINT WITH UNCERTAIN DEMAND

As we have discussed in the second chapter, one of the key roles of distribution
warehouses (also known as distribution centers) is to consolidate traffic and
increase the efficiency (e.g., through a greater utilization of cargo space or the
usage of larger trucks) of transportation from points of production to points of
consumption. In addition, in distribution warehouses we can prepare assorted
deliveries with tens of different products for a single store (or local warehouse)
and increase the delivery frequency of each single product while still keeping
the cost of transportation under control.

Distribution warehouses also play other functions. For example, they hold
inventories that can be immediately delivered where demand is higher than
we initially expected. Also they manage to deal with very large purchase
quantities, since any inventories exceeding the immediate need of the lower
echelons can be stored in the warehouse for a while.

However, some warehouses are designed not to perform these other func-
tions and only perform the first one. They are designed to receive large
quantities (say a full truck or a container) of a given product (or a limited
assortment). We call the transportation of goods from the production site
to the distribution center primary transportation. These warehouses immedi-
ately use these deliveries to feed smaller trucks (typically with a broader as-
sortment since we load them with goods coming from various suppliers) that
then deliver the products to stores and customers. We call this secondary
transportation.
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Example 6.16 For example, the Carrefour group, like most other grocery
chains, uses transit points for fresh food, while it uses traditional warehouses
for packaged goods. In the transit point for fresh food, they receive goods in
the late afternoon full trucks from their suppliers. They might receive a full
truck of vegetables, one full truck of fresh fish, one full truck of meat, and so
on. In a few hours these products are mixed and ready for delivery to stores.
Each store receives only one delivery of a single truck that carries vegetables,
fresh fish, meat, and so on.

These nodes of the network are called transit points, transshipment points
or cross-docking centers. In these centers, inventories are not stocked and
thus usually there are no shelves. However, the large lots received are broken
down into smaller quantities that are then used to prepare a mixed cargo for
secondary transportation. The term transit point really means that goods
only transit in the warehouse.

In this section we discuss how one can manage a transit point and show
how a transit point can help us manage demand uncertainty. We investigate
the case of a single product and thus we cannot fully capture the savings on
transportation costs due to consolidation of a mix of products. As to savings
on transportation, we refer to chapter 2.

For the sake of simplicity we investigate a two echelons supply chain where
the transit point serves I stores (local warehouses). Each store has a stochastic
demand with expected value m; and standard deviation ;. We call LT5 the
delivery lead time to the transit point, and we call LT} the delivery lead
time from the transit point to the stores. Finally, we assume a review period
7 for the transit point and a S Echelon Stock inventory policy (notice that
the transit point has basically no inventories and thus the Installation Stock
policy would hardly make sense).

Under these assumptions we first describe how the system works and then
try to build a model of it and prescribe how to run it. The first question
we need to answer is, What is the out-of-control-period for the transit point?
And what is the out-of-control-period for the local stores?

Let us consider an order placed by the transit point at time tg. This order is
delivered to the transit point at time tg+ LT5. At the transit point the goods
are allocated to single stores where they are delivered at time to + LT2 + LT
(see figure 6.17).

In a system like this one, it does not make sense to set the inventory levels
at the stores, as all goods received by the transit point must be immediately
shipped to the stores. So the real question becomes how we allocate the goods
we have just received to the stores.

To manage this supply chain we have to make two decisions.

e First, we have to choose the inventory policy for the transit point, in
this specific case we have to select the appropriate level of the Echelon
Stock order up to level S.
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First order is
delivered at the
tfransit point
First order . . ‘
is placed . F.II'ST order is
© R delivered at the
) LT, LT, stores  Second order is
e delivered at the
T Second order LT, LT, fransit point

is placed

Second order s
delivered at the
transit point

Fig. 6.17 Timeline of the inventory planning problem in case of a two-echelon supply
chain with a transit point.

o Second, we have to define a policy to allocate to stores the inventories
we receive at the transit point.

Selecting the Echelon Stock order up to level S. As to the first problem, we
shall first understand what demand inventories need to cover and thus what
demand we shall use to set the order up to point S. The order we place in tg
is delivered at the stores at time tg + LT5 + LT;. The following order placed
at time tg + 7 is then delivered at the stores at time ¢y + 7+ LT5 + LT1. So
inventories ordered in time tg shall cover demand up to the next delivery in
time to + 7 + LTo 4+ LT, and thus shall cover the whole out-of-control period
T+ LT, + LT;.

The question then becomes, What is the relevant demand over the out
of control period? The problem is all but trivial. While the expected value
is obviously (r + LT, + LTh) - Zle m;, understanding what is the relevant
standard deviation is a more complex issue. We shall understand whether
inventories shall (i) cover demand uncertainty for each single store or (ii)
cover it at the chain level. In other words, we shall understand whether we
want to (i) take the sum of all I standard deviations rather than (ii) take the
standard deviation of the sum of all 7 demands (see chapter 2).

To answer this question, we shall carefully study the flow of goods in the
chain and understand:

e When and where a unit of inventories can be used at all stores (is fungible
for all stores) and thus can cover demand fluctuation wherever they
happen;

e When and where, on the contrary, inventories can only be used to meet
demand in a given store and thus can cover demand fluctuations at that
store only.



ARBORESCENT CHAIN: TRANSIT POINT WITH UNCERTAIN DEMAND 345

Goods ordered at time ty are allocated to a specific store only when they
are received in the transit point at time ty + LT5. Up to this point in time,
goods can be used to rebalance inventories among the stores as we can allocate
more units to stores that have experienced a peak in demand. Up to tg+ LT3
we really do not care about the distribution of demand among the I stores but
rather are interested in the overall demand for the network of I stores. Indeed,
when one of the I stores faces an unpredicted peak in demand while another
store experienced a period of low demand, the two variations compensate and
cancel out. We simply allocate more inventories to the former store and less
inventories to the latter. What might cause some concerns is a demand above
the initial expectations for the whole chain of I stores. In this case we cannot
allocate more inventories to one store and less to another. All stores (say)
need more than we expected and the incoming order is just not enough.

At time tg+L7T5, inventories are allocated to each single store; and from this
point in time, up to tg+ 7+ LT% + LT} each single store has a limited and fixed
quantity of goods to meet demand. During this time interval (tg + LTo, to +
T+ LT5 + LTy) an increase in demand at one store cannot be possibly be
counterbalanced by a decrease at another store since excess inventories in the
latter cannot be used to meet demand in the former (if horizontal shipments
are not allowed, like in all our models).

Hence, the order up to level S shall cover demand for the whole chain over
a period LT and shall cover demand from each single store over a period
LTy + 7.

Let us now introduce some notations. We call ¢ the standard deviation of
demand for the whole chain. When demands are independent across stores,
we have

We call & the sum of standard deviations, that is, the sum of demand uncer-
tainties for each single store:

1
o= E ;.

i=1

So the relevant demand distribution to set the order-up-to-level S is a
random variable with expected value

I
T+ LT +LT)- Y m,
i=1
and, if we assume demand is not correlated over time, with a standard devi-
ation

VLT, 02+ (LT, +7)62.
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Once we have identified the demand distribution, we can set the order-up-to-

level S using the heuristics we have designed in 5.6. In this case too,!3
h-
1-F(§) =T, (6.16)
Pu

where p,, is the penalty cost for stockouts.!*

Example 6.17 Let us consider a company with a review period 7 of one
week, a delivery lead time to the central transit point L7 of 2 weeks, and a
lead time of 1 week to transfer goods from the transit point to the 9 stores
LT; of 1 week. Each of the 9 stores has a normally distributed demand with
expected demand 100 and standard deviation 25. We also assume that the
margin of the product is 1€ and the holding cost for 1 week is 0.1€.

In this case, the demand we use to set the order-up-to-level has an expected
value equal to the out-of-control period (7 + LTy + LT1) times the sum of
expected demands for the I stores Zle E(d;), ie, (1+2+1)-9-100 = 3600.

If we assume that stores are independent and there is no autocorrelation,
the standard deviation of demand is

VIT; 0? + (LT, +7)5° = \/2 (9-252) + (1+1)(9-25)° = 335.41.

We look at the economics of the company to choose the optimal type I service
level through formula (6.16):

1-F(S) = === =0.1;

130ther authors suggest to set S in such a way that F(S) = # This solution traces
back to the newsvendor problem. The above solution and the one we suggest make basically
different assumptions on the holding cost. We assume that we incur the full (see note 20
on page 274) stock holding cost even if the marginal unit is sold before the end of the
planning cycle. Other authors assume (implicitly or explicitly) that the company incurs
the holding cost only if the product is left unsold at the end of the planning cycle. In this
situation the inventory problem resembles the newsvendor one. More formally, under our
simplifying assumptions the expected marginal return is (1 — F(S)) - m and the marginal
cost of inventories is deterministic (h - 7). In the alternative model the holding cost is
stochastic and has an expected value F(S)-h- 7. Obviously the truth lies in between these
two extremes. We hold inventories for the whole cycle and thus pay the full holding cost
h - 7 when we do not sell the marginal unit, while we carry the item for a portion of the
planning cycle when we sell it by the end of the cycle (see note 20 on page 274). Clearly, one
approximation might work better than the other according to the service level we provide.
The higher the service level the more frequently the marginal unit is carried for the whole
planning cycle; and even when it is sold, it gets sold towards the end of the planning cycle
and thus our assumption works better.

4 Notice that the transit point “per se” does not guarantee that we can postpone the
allocation of inventories among stores up to time tg + 7. Some US retail chains use transit
points to consolidate transports of products imported from Asia but make firm decision on
inventory allocation when they place the purchase order. This way they lose flexibility but
gain efficiency. The expensive handling operations can be performed in Asia rather than in
the USA with substantial savings. So the usage of the transit point to postpone decisions
on allocation of inventories rather than the transit point per se guarantees a reduction in
the inventories required to gain a given service level target.
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thus F(S) = 0.9, and if the probability distribution is normal we can use
tables for the standardized normal distribution and choose z = 1.28 and thus
set S to S = 3600+ 1.28 - 335.41 = 4029.32.

Notice that if we allocate the inventories to stores when we place the order
in ¢y (say, we import in pre-set boxes of goods tagged to the final destination).
rather than when we receive the goods (say in tg + LT3), the inventories
required to gain a 90% increase. Indeed, in this case each store is basically
independent and we shall set the inventory level for each store and simply add
up the requirements for each store. So, each store sets an order-up-to-level
S; to cover demand over the out-of-control period of 4 weeks. So each store i
needs and order-up-to-level S; = (1+2+1)- 100+ 1.28v/4 - 252 = 464, for a
total of 4176 (9 - 464) units for the network of 9 stores.

The transit point creates efficiency, since inventories shall only cover the
uncertainty on the aggregate demand for the network of I sores and thus a
peak of demand in a store can be counterbalanced by a low demand in another
store. We simply allocate more inventories to the former store and less to the
latter one. On the contrary, once products are allocated to single stores, a
peak in demand at one store is not counter-balanced by a low demand at
another store, as each single store can only rely on the inventories that have
been allotted to it. I

Concept 6.8 In a supply chain with a transit point, we can postpone deci-
sions on the allocation of inventories to stores. Thus we can set inventory
levels according to the aggregate demand and, thanks to risk pooling, reduce
the uncertainty and thus reduce the need for safety stocks.

Allocation of inventories to stores We have set the Echelon Stock inventory
target for the transit point, but we still have one open question: How do we
allocate goods among the stores?

Before we get into the details of how to allocate inventories, we shall un-
derstand what is the relevant demand distribution.

Figure 6.17 shows that the order placed in time 7q is allocated to stores at
time tg + LT5, it reaches the store at time tg + LT, + LT, and the successive
order is delivered to stores at time to + 7+ LT5 + LT;. Inventories we allocate
to stores at time tg + LT5 shall cover demand up to to + 7+ LTy -+ LTy and
thus they shall cover the out of control period LT} + 7.

To solve the allocation problem, we refer to section 5.4.1 and assume that
the size of the stockout, rather than its occurrence, matters. The same logic
we have developed in that case applies to this case. as we face an allocation
of a limited amount of common resources {in this case. inventories delivered
to the transit point).

If we assume that all stores share similar costs of stockout (say margins) and
holding costs (this assumption is very reasonable in many retail chains), we
shall allocate the incoming order in such a way that all stores share the same
type I service level. Unit @ + 1 is sold with a probability 1 — F(Q). If store 1
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has a higher service level than store 2, then we have 1 — F1(Q1) < 1 — F»(Q2)
and thus we would rather allocate a marginal unit of inventories to store 2
{with a lower service level) than to store 1 (with a high service level).

So, we just want to use the allocation process suggested in section 5.2.1 for
the multi-item newsvendor problem. In this case we allocate inventories of
one item to stores, rather than a common resource to various products, but
still the logic is the same.

The budget, i.e., the total amount of common resources, we must allocate
is the overall inventories level k in the downstream supply chain (on hand plus
any goods in transit, i.e., the sum of inventory positions for all stores) plus
inventories entering the transit point, while r; = 1;Vi. Shipments to store
1 are equal to the optimal inventory level for store ¢ minus initial inventory
position for the store.

If expected demand in a store drops sharply while others experience a sig-
nificant increase in demand and horizontal shipments are not allowed, the
optimal allocation might turn out to be unfeasible. Some stores might indeed
have already more inventories than they should have under the optimal al-
location and if horizontal shipments are not allowed, we cannot reduce the
inventory position immediately but simply have to wait for demand to pro-
gressively consume inventories. This means that some of the inventories that
other stores would need are stuck in the store with excess inventories. This re-
ally means that the whole allocation plan is unfeasible and shall be reviewed,
as example 6.18 shows.

Example 6.18 Let us assume store 1 has 1000 units, while the other 2
stores in the chain only have 100 units on hand. Let us assume that the 3
stores face a similar demand distribution and the same economics. Also let
us assume there is no in transit inventory between the transit point and the
stores. Finally, the transit point is receiving 600 units and shall allocate them
to the stores.

Obviously, the optimal solution is to evenly distribute inventories among
the stores: (10004-100+ 100+ 600)/3 = 600 units. However, in the first store
we already have more than 600 units (1000 units) and horizontal shipments
are not allowed, so this solution in unfeasible. Still, it provides us with a
precious piece of information: We shall not ship any goods to store 1. We
just allocate the 600 units the transit point is receiving to stores 2 and 3, so
we take their inventory position to 400 units. The service level for stores 2
and 3 is still significantly below the service level of store 1 (whose inventory
position is 1000 units), but we would need horizontal shipments to improve
our solution. I

If the current inventory position of any store exceeds the optimal inventory
position, we would need to ship a negative quantity (i.e., ship some units
from that store to other stores). If that is not possible, we exclude stores
that should receive a negative shipment from our allocation and reallocate
inventories only among stores that in the previous run had a positive shipment.
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In other words, we rule out stores that quite obviously should not receive any
goods and we allocate incoming goods only among the stores that might need
some inventories.

To illustrate an allocation algorithm, we introduce the following notations:

e Sh; is the shipment to store .

e O, is a dummy variable (0/1) that captures whether we want to ship
any good to store 1.

o V is the total amount of inventories that is entering the transit point
and shall be allocated to stores.

A possible allocation policy is based on Lagrangian multipliers (i.e., oppor-
tunity cost) A of the budget constraint. Notice that in this case we have to
allocate all goods we receive in the warehouse, so the multiplier A can be both
positive and negative. Indeed, in some instances we deliver to the stores more
goods that would be required simply because we need to allocate all goods we
have received.

1. O; = 1,V4, so initially we consider all stores as potential candidates for
the shipment of a portion of the goods we are receiving at the transit
point.

2. A = 0, so initially we assume that inventories have a zero opportunity
cost.

3. The total amount of inventories to allocate is k = Zle IP; - O0; + V.
Notice that we only consider the inventory position of the stores that
we consider to be part of the allocation. Once a store ¢ is removed from
the allocation process (O; = 0) its inventories are removed as well. The
store basically exits the allocation game.

. B E(d) —A-r;
4. Find Q; = FdY,.lLrl-f <W)

5. If current solution is such that Zle Q; < k. increase the opportunity
cost of inventories (capacity) A; otherwise reduce A.

6. If the solution meets (with a given tolerance) the constraint Zi[:l Q:i=k
proceed; otherwise goto 4; this step guarantees that we can find an
optimal allocation among the active stores (O; = 1), but still there is
no guarantee that the solution is feasible.

7. We calculate the shipment for each store, Vi, Sh; = Q; — IP,.

8. IF the shipment is negative, then we draw the conclusion that we shall
not ship any goods to the store that is excluded from the allocation: Vi,
if Sh; < 0, then O; = 0.
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9. Ifin the previous step any store was excluded from the allocation process
taking O; from 1 to 0, goto step 2, otherwise stop.

In the specific case of normal demand distribution and cost of inventories h;
and cost of stockout E{d;) equal for all stores, we want all stores to reach the
same type I service level; thus, all stores shall reach the same quantile in their
respective demand distribution and thus use the same standardized value z.
Hence

S ((LT1 +7)VE(d) + 2 VIT + mi> 0; = k
=1
and thus
k- S O(LTy +7)E(d))
Zle O, LT, + 10 .

where O; = 1 for stores that actually receive some goods from the central
transit point.

(6.17)

Example 6.19 Let us consider a network of 11 stores with a normally dis-
tributed monthly demand. The expected monthly demand is 100 units, while
the standard deviation is 20 units. The inventory position for stores 1-5 is
50 units, the inventory position for stores 6-10 is 100 units, and the inven-
tory position for the 11th store is 200 units. Stores share the same prices,
purchasing costs, and holding costs. The LT to replenish the transit point is
2 months, while the LT to deliver stores from the transit point is 1 month.
Goods are ordered to the suppliers once a month. We are receiving 350 units
at the transit point and we shall allocate them to the 11 stores. The 11 stores
face the same demand distribution, and thus we know that the optimal solu-
tion is to provide them with the same inventory position. So we simply divide
the sum of all inventories in the system or entering the system by 11. Over-
all inventories currently in the downstream portion of the supply chain are
50-5+100-5+2004 350 = 1300, that is 118.18 units per store. Unfortunately
the 11th store already has 200 units and, when horizontal shipments are not
allowed, the solution is unfeasible. This really means that we do not want to
ship any goods to store 11 and thus we allocate the incoming goods to the
first 10 stores only. In this case the overall inventories in the set of stores
we currently consider for allocation is 50 - 5 + 100 - 5 + 350 = 1100. Thus we
want to have 110 units in each of the first 10 stores and we ship 60 (110 — 50)
units in each of the first 5 stores, and ship 10 (110 — 100) for stores 6 to 10.
Notice that the total shipment is 350 units, which is exactly the quantity we
are receiving at the transit point.

Example 6.20 Let us consider a network of 3 stores. Stores have a normally
distributed demand with an expected value of 100, 200, and 100, respectively,
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and standard deviations 20, 20, and 30, respectively. The delivery lead time
to the stores is 2 weeks. The company places orders (and thus receives goods)
every two weeks. Stores share prices, purchase, and holding costs. The inven-
tory position of the 3 stores is currently 60, 100, and 40 units, respectively.
The transit point is receiving 270 units.

When goods are received, the total amount of inventories in the (down-
stream!®) distribution chain is 60 + 100 + 40 + 270 = 470. This amount of
inventories is used to reach a common service level in the 3 stores. We use
equation (6.17) to find the optimal solution:

L 470 — (100 + 200 + 100) _
- 20 + 20 + 30 o

The optimal inventory positions for the 3 stores are 100+1-20 = 120, 20041
20 = 220, and 100+ 1 - 30 = 130 respectively. So we shall ship 120 — 60 = 60.
220 — 100 = 120, and 130 — 40 = 90 units to the three stores respectively.
Once again notice that the total shipment to the three stores is 70 + 120 + 80,
that is exactly the 270 units that are entering the transit point.

6.6 A TWO-ECHELON SUPPLY CHAIN IN CASE OF STOCHASTIC
DEMAND

Let us consider a stochastic extension of the problems addressed in the previ-
ous section. '®We now assume that the warehouse in the second echelon ac-
tually carries inventories and is not just a transit point. Though this problem
resembles the previous one, inventories in the upstream warehouse increase
the complexity of the system and, as a consequence, the complexity of our
model.

Under uncertain conditions, there is no guarantee that when the down-
stream warehouse (echelon 1) places an order, it can be actually fulfilled by
the upstream warehouse (echelon 2). Hence, even if we assume deterministic
lead times for materials handling and transportation, we might still face a
delay in the delivery to the downstream warehouse simply because the central
warehouse might be stocked out. So demand uncertainty creates an uncer-
tainty in delivery lead times.

To show this concept, we analyse a simplistic case where the downstream
warehouses use a one-for-one logic; that is, when they sell one unit. they order
one unit. In other words, they use an S policy with continuous review. Under
this assumption, the demand at the central warehouse is simply the sum of

5 Notice that we do not account for any outstanding order the transit point has already sent
to the supplier. It is part of the inventory position of the transit point but it is irrelevant
for the allocation problem.

16 This section was inspired by [5].
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demands from all stores. Indeed, orders from store i are just equal to demand
at store i. This simplifies our model substantially, as we do not need to model
the ordering policy of the stores.

Finally, we assume that the central warehouse adopts a (@, R) policy and
an Installation Stock logic.

We adopt the following notations:

o [; is the (deterministic) transportation and handling time to deliver to
store i; that is, the Lead Time in case the central warehouse has enough
inventories to immediately fulfill the order coming from store ¢; to build
our intuition we can assume that this is the time required to handle the
goods, load the truck, and deliver. We basically start our clock when
goods are available in the central warehouse for delivery.

e L; is the (stochastic) delivery lead time of an order placed by store 4; it
is the time elapsed from the time the order is placed up to the delivery
of goods at the warehouse: so it includes any waiting time at the central
warehouse in case the product is currently stocked out (this is actually
the random portion of this delivery lead time).

e B(Q,R) is the average backorder in the central warehouse and thus is
the queue (waiting line) an order finds (on the average) at the central
warehouse.!”

e W(Q, R) is the average time the order waits at the central warehouse
because the product is stocked out.

In order to proceed, we need to find a relationship between the average
backorder B(Q@, R) and the waiting time W(Q, R). We shall use Little’s law,
a fundamental equation in queuing theory. It links the average waiting line
A, the average waiting time W, and the throughput 6 (average number of
customers served per unit of time, e.g., hour):

A=06W.

In our case, backorders are basically a waiting line and the throughput is
demand at the central warehouse, that is, the sum of demands from all stores.

Hence, applying Little’s law to our problem, we find that the average wait-
ing time is the ratio between the average Backorder and demand, as it is the

17Notice that the definition of average backorder depends on both R and Q, while the
backorder at the end of the cycle n(R) only depends on the reorder point R. In this case we
try to capture the average number of customers (units ordered) that are waiting for their
order to be fulfilled on the average rather than at the end of the planning cycle (that is,
the point in time where we expect the longest queue). B(Q, R) looks at the average queue
during the whole planning cycle and thus depends on the duration of the cycle as well.
Clearly, @ determines the average duration of the planning cycle.
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average rate of arrival of inventories and, thus, the rate at which customers
are served:

B(Q.R)
W(Q,R) = ——.
On the average , the delivery lead time for orders placed by store 7 is equal to
the deterministic component [; plus the stochastic time we wait at the central
warehouse. So the expected delivery lead time is equal to [; plus the expected
waiting time W(Q, R):

E(L) =1, + W(Q,R). (6.18)

We can use this delivery lead time to store ¢ to set the order up to point
Si. One could be tempted to treat this random delivery lead time as if it
was deterministic and equal to E(L;) =, + W(Q, R). This implicitly means
that we assume that all orders wait W(Q. R) units of time at the central
warehouse, while some orders do not wait at all since the product is available
immediately, and others wait much more than W{(Q.R). We know that a
fraction of orders equal to the type II service level, 3, is immediately fulfilled.
For these orders, the delivery lead time equals [;. On the contrary, orders
that are not fulfilled immediately might wait much more than W(@Q. R). So
the distribution of delivery lead times is definitely complex and can hardly be
modeled properly. In other words, the waiting time is zero with a probability
3 and follows an unknown distribution with a probability 1 — 3. However,
we can build a simplified model of this distribution of waiting times. We
can assume that the waiting times at the central warehouse are zero when
the product is in stock, but are equal to a constant ¢ when the product is
stocked-out. We basically assume that the waiting time follows a binomial
distribution (with one single draw, which is also called Bernoulli distribution
see A.3.1 on page 446). The waiting time is zero with a probability 3 and
equals a constant a with a probability 1 — 3.

Now we need to set the parameter a of this simplified distribution. We can
select a in such a way that the expected value of the binomial distribution
(see figure 6.19) equals the expected value of the actual distribution of waiting
times (see figure 6.18). This process is called moment matching. We basically
replace the actual and complex distribution with a simplified one, but we make
sure that the moments (in this case the first moment, that is, the expected
value) of the simplified distribution match those of the more complex and
realistic one.

So we set a in such a way that

E(L)=L+W(@Q.R)=35-1;+(1—23)-(l; +a):
hence

W(Q.R)

Q= —-

1-73
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Fig. 6.18 Actual distribution of the LT}.
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Fig. 6.19 Simplified distribution of LT}.
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Once we have selected a, we can use it to estimate the variability of the time
stores have to wait for the delivery. Basic statistics tells us that the binomial
distribution with one draw has a standard deviation

Var(Ly) = (1 — 8)a? = im 2(Q. R): (6.19)

o(L) = | 1o W(Q.B)

Concept 6.9 The simplified model shows that stockouts at the central ware-
house increase both the erpectation (6.19) and the standard deviation (6.20)
of delivery lead time to the stores. Indeed, some orders are fulfilled immed:-
ately, while others shall wait at the central warehouse for the product to be
replenished.

hence

This situation poses a new challenge: We have to model uncertain LTs.
Indeed, when we plan inventories at the stores, we do not exactly know what
period of time the inventory should cover and thus we do not know the rele-
vant demand distribution. For example, inventories might cover demand for
two weeks or maybe three weeks. Statistically, this means that the relevant
demand distribution is the sum of an uncertain number of random variables
(demands for each period of time). The following example illustrates this
rather complex concept.

Example 6.21 Let us consider a store that receives goods from a central
warehouse. The central warehouse delivers in one week (with a 70% probabil-
ity) or two weeks (with a 30% probability) according to the availability of the
product. Also we assume that the retailer follows a continuous review policy
so that inventories shall only cover the LT (e.g., he uses a (@, R) policy or
the S policy with continuous review; that is, he orders as soon as a customer
buys one unit). We assume that weekly demand is a normal distribution with
expected value 100 and standard deviation 20. Demand is not correlated over
time.

Under these assumptions the probability distribution of demand is bimodal
(see figure 6.20); that is, demand is drawn from a normal distribution with
expected value 100 and standard deviation 20, with a 70% probability, and
it is drawn from a normal distribution with expected value 200 and standard
deviation v/2 - 20, with a 30% probability.

This means that the expected value of demand during the LT really depends
on the duration of the LT. Nevertheless, we can compute the overall expected
value across the two scenarios of 70%-100+30% - 200 = 130. Now. to calculate
the standard deviation, we shall resort to the law of transport of moments.
Here we derive the final result in full detail for the sake of completeness:



356 MANAGING INVENTORIES IN MULTIECHELON SUPPLY CHAINS
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Fig. 6.20 Bimodal demand distribution of over the LT.
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where
+00 )
0.7 fNnoo,20)(2) (2 —130)° dx
+oc 9
=07 fN(lOO,ZO)('T) [(1‘ - 100) - (100 - 130)} dx
+oc
=0.7 fNo0.20)(%) [(:c —100)% + 2 - 30(x — 100) -+ (100 — 130)2} dx
= 0.7 (20% + 0 + 30%) = 910,
since:

] fj;c Fn(100,20)(2) (2 —100)? dz is by definition the standard deviation of
the demand that follows the distribution N (100, 20);

. ff;f fn(100,20)(2) - 30(x — 100) d is zero because the expected value of
the distribution is 100;
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. ffsz(lOO)QO)(x) - (100 — 130)?dz = (100 — 130)2 = 30? since it is a
constant times the integral of a probability density over its support.

Similarly,

+oc
0.3 Frvia00.vaa0) (@) [(@ = 2002 = 270 - ( — 200) + 70%]” dax

=0.3-(2-20° + 0+ 70%) = 1710,

and thus the variance of demand over the LT is 910 + 1710 = 2620 and
standard deviation is /2620 = 51.2, which is actually far greater than the
variance of demand in a week, as we might face two very different demand
scenarios. 0

We can reach the same result following the same process described in exam-
ple A.14, on page 474. If the duration of the LT and demand are independent
random variables and demand is not autocorrelated, the variance of demand
over the LT is

Var(d,r) = E(LT) - Var(d) + Var(LT) - E(d)?, (6.20)

where E(LT) and E(d) are, respectively, the expected value of the LT and
of demand in the unit of time. The first term models demand uncertainty,
while the second term models LT uncertainty. Equation (6.20) can be applied
whenever LT is uncertain. So equation (6.20) can be applied both (i) when the
uncertainty is an endogenous variable and the manager can control through
the service level 3 of the central warehouse and (ii) when it is an exogenous
variable due to unreliable suppliers or uncertainty in transportation lead times
(say weather or strikes).

Example 6.22 Going back to example 6.21 we can check that equation
(6.20) correctly estimates the variability of demand over an uncertain LT. In-
deed, LT has a binomial distribution and thus its variance is 0.7- (1 -0.7)-1 =
0.21 and its expected value is 1- 0.7+ 2- 0.3 = 1.3 (see appendix A.3.1 on
page sec:exdiscretedistrib. Thus the variability of demand over the LT is

Var(dpr) = 1.3- 202 + 0.21 - 1002 = 2620,
which confirms the above calculations. 0

Once we have obtained the relevant demand distribution we can set the order
up to level for the stores through the heuristics we have designed in section
5.6.
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Incentives in the Supply
Chain

7.1 INTRODUCTION

In the previous chapter we introduced the issue of multiechelon supply chains.
As we have said, there are two major topics in multiechelon supply chains:

e On the one hand, in multiechelon supply chains, planning problems are
quite complex, so we need rather complex planning processes and tools:
this is what we called the engineers’ perspective of the multiechelon
supply chain problem. It is a hard problem and so we need “engineers”
to find a solution that then all the players in the chain will be willing
to implement, simply because it is a “good solution.”

e On the other hand, decision makers in the supply chain might have at
least partially different objectives, so they might not care about a good
solution that minimizes the total cost for the whole chain if it contrasts
with their own objectives. This is a very common case in a supply chain
where different players belong to different companies. In this case, un-
derstandably, the various decision makers consider the profitability (or
value creation) of their company as the primary objective. What is even
more interesting is that these problems arise even among organizational
units of the same given company. Indeed, decision makers might control
a fraction of the overall company. Large companies have rather com-
plex organizational structures with various organizational units. Each
of them is usually controlled on a given set of performance metrics; the
bonus. tenure in the current position, future career, and income of man-
agers usually depend on such metrics. So, the managers of the various

359
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organizational units tend to have different objectives rather than a con-
current interest in the profit of their company (e.g., see footnote 6.1 on
page 305). This is what we called in chapter 6 the economists’ perspec-
tive: people are bright and can find solutions even to rather complex
problems. However, they are selfish and tend to do what is in their best
interest. Economists call these incentive problems. This is basically the
perspective we adopt in this chapter. For the sake of simplicity, in our
models we assume that the objective the various decision makers try to
maximize is the profit of their organization. In other words, we assume
that either organizations are independent and profit maximizing compa-
nies or they are different organizational units within the same company
but each of them is judged on profit.

In the models we present in this chapter we basically ignore inventory plan-
ning or transportation issues. In particular, in all our models the time variable
does not play a role, we basically assume the problem to be static. This really
means that the models presented here are simplistic and are designed to be
thought-provoking and informative rather than to provide tools or solutions.

In the remainder of this chapter we present models that show a variety of
incentives problems; that is, we describe the conflicts among decision makers
on several decisions. These conflicts lead decision makers to make locally
optimal decisions that turn into a suboptimal performance. In section 7.2 we
show the contrast of incentives between a producer and a retailer when setting
the final price of a product. In section 7.3, we investigate how things change
when a single producer provides the product to various retailers. In section
7.4 we discuss the contrast of interest on stocking decisions. In section 7.5 we
finally discuss the incentive to deploy an effort to increase demand through
better product design, additional product features, or better service at the
retail outlet.

In each of these sections we basically compare the performance (profit) of a
fully integrated chain where a single decision maker interested in the profit of
the supply chain makes all decisions with those of a nonintegrated chain where
each decision maker makes his/her own decisions to maximize the profit of
his/her own organization. The one difference between the situations we con-
trast is that in the latter case we only reach local optima. So the vertically
integrated case is bound to lead to superior (or at least equal) performance.
We show that under standard conditions (e.g., standard contracts among the
organizations in the supply chain) the vertically integrated supply chain out-
performs the disintegrated one. This actually does not mean that we suggest
that the vertically integrated solution is always the first best solution. There
are several reasons why a company might want to focus on core activities and
thus resort to partners to distribute or manufacture products. Actually, over
the past decades we have seen a general trend towards outsourcing, and thus
the issue of suppliers’ and distributors’ management has become more and
more relevant. We acknowledge that our models do not fully capture vari-
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\ 4

Fig. 7.1 Demand function.

ables that lead companies to outsource some activities and thus reduce the
degree of vertical integration. In practice, the disintegrated chain (and decen-
tralized decision making) can lead to substantial technical and/or economic
advantages (such as lower cost of labor, specialized know how etc.). In our
models we deliberately ignore these issues to highlight the decision making is-
sues that arise in a vertically disintegrated chain. So we do not suggest using
the models to make a decision on vertical integration. In our perspective the
degree of vertical integration (integrated vs. disintegrated chain) is a given.
Our models are simply meant to show that in the disintegrated chain some
incentive issues arise and shall be accounted for. Also, in each section we show
what are the basic remedies to the problems we highlight. We basically show
that there are counterintuitive solutions that give all players (manufacturers
and retailers in our models) a common interest in the global performance of
the chain. This leads to a global optimum even in a disintegrated chain.

7.2 DECISIONS ON PRICE: DOUBLE MARGINALIZATION

Let us consider a one-product supply chain that consists of two stages. In
the first stage the product is manufactured, while in the second stage it is
sold to consumers at a retail store. We assume that the marginal (variable)
production cost is ¢, while selling the product at the retail store has a zero
marginal unit cost. Also, let us assume that the demand for the product is
deterministic and linear. In particular, we assume that (see figure 7.1)

d=1-p (7.1)
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Fig. 7.2 Structure of the supply chain in the case of vertically integrated organization.

where d is the demand per unit of time and p is the price the final consumer
pays. We also assume that the decision makers perfectly know this demand
curve. Finally, this supply chain is a monopolist. The manufacturing stage
is the only one production plant for the product, and the retailing stage is
the only store selling the product. In other words, in this simple initial model
we do not have any strategic interaction among competing manufacturers or
competing retailers (see next section for the case of competing retailers).

7.2.1 The first best solution: the vertically integrated firm

In the first scenario the two operations (manufacturing and retailing) are
performed by a single company that is vertically integrated (see figure 7.2).
Also, we assume that within this company no incentive problem arises, so
that either there is one decision maker or all decision makers share the same
objective: maximization of the company profits.

In our scenario the company needs to set the price to maximize profit. The
profit function is

7=d-(p—c)—-FC=(1-p)-(p—c)— FC. (7.2)

We look for optimal conditions and thus fixed costs F'C are irrelevant, if
they do not make the optimal profit negative. For the sake of simplicity we
assume F'C = 0. To find the optimal price, we simply take the derivative of
the profit function with respect to p:
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On
— =c-p+1-p=0; (7.3)
Op
hence
. l+ec
== (74)

so by substituting p with p* = 1—"5—0 in (7.1) we can derive the optimal
quantity and by substituting in 7.2 we can derive the optimal profit:!
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In our simplistic model this is the first best solution where the single relevant
decision (final price) is taken with a global perspective on the whole supply
chain. In the next section we discuss how the situation changes as the supply
chain in disintegrated.?

7.2.2 The vertically disintegrated case: independent manufacturer and
retailer

In this section we investigate a slightly different scenario. We assume that
manufacturing and retail distribution are performed by two separate organiza-
tions {e.g., two companies) with separate objectives. Each of the two players
wants to optimize the profit of his/her organization (e.g., his/her company),
and the product is sold to the retailer at a wholesale price p,,, so the cost
function of the retailer is linear.

In this case, we shall describe the decisions the two decision makers face.
Both the retailer and the wholesaler need to set a price. The retailer sets the

In the more general case where manufacturing faces a marginal cost ¢ and the retailer
faces a marginal cost r, the marginal cost for the company becomes ¢ + r and thus the

optimal price is p* = —1%—_‘1 optimal demand is d* = —T—l — (et )
- (C i T‘) 2

and the optimal profit

7™ =
?Notice that to make the model work properly we need to assume that the marginal cost ¢
is lower than one; otherwise this market simply does not exist as the production cost of one
unit is larger than the maximum value of the product for the single consumer that values
the product the most. This entails that ¢ < p < 1. Notice that, as one would expect, the
price is an increasing function of ¢, while the demand as well as the profit is a decreasing
function of c.
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Fig. 7.3 Structure of the supply chain in the case of vertically disintegrated organi-
zations: one manufacturer and one retailer.

final price p, while the manufacturer sets the wholesale price p,,. When setting
the wholesale price the manufacturer shall understand what the reaction of
the retailer will be: The manufacturer shall understand how many units of the
product the retailer is going to purchase at various levels of the wholesale price
pw. To do so, the manufacturer shall anticipate the behavior of the retailer
and understand how he/she reacts to any change in the wholesale price p,,
(economists call this process backward induction, meaning that we shall start
our analysis from the player that makes the decisions at a later stage, since the
player that makes the first decision shall understand the reactions to his/her
moves before he/she can make the optimal decision). So we start our analysis
by investigating the decisions of the retailer to understand how he/she reacts
to any change in the wholesale price p,.

The decisions of the retailer Given our assumptions, the profit function of the
retailer 7, is

m =d-(p—pw) = (1 —p)(p— Puw); (7.5)

so the structure of the profit function resembles (7.1), where ¢ is replaced
by p.. Indeed, the only one difference between the retailer in this case and
the vertically integrated firm in the previous case is that the retailer faces a
marginal cost p,, rather than a marginal cost ¢. This really means that we
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can derive optimal price, quantity, and profit by substituting ¢ with py:

« _ Ll+py
p - 2 °
1 — Pw
d* = 1 —p* =
p 5
77* — (1—1)%)2
r 4 3

the decision (p*) and the profit () of the retailer depend on the wholesale
price (py) the manufacturer charges. Oddly, the manufacturer can “control”
the behavior of the manufacturer through p,,.

The decisions of the manufacturer The manufacturer should set the wholesale
price to maximize his/her profit while keeping in mind that the decisions of the
retailer change according to the price he/she decides to charge. In particular,
the manufacturer should estimate the demand curve. Actually, given that
the final consumers’ demand is deterministic, the retailer buys exactly the
quantity that he/she can sell. So the quantity d* = 1= pu is the demand
curve for the manufacturer. Hence, the profit function of the manufacturer

" = (2522 ) - (7.6)

Once again this function resembles (7.2) where p is replaced by p,, (the factor
1/2 is irrelevant when we look for the optimal price p,,) and thus the optimal
price for the manufacturer is

1+e¢
Y= 7.7
Py = — (7.7)
and the optimal profit for the manufacturer is:
., l—c 1-c¢ (1-¢)2?
M=y = (7.8)

Understandably, the profit of the manufacturer is lower than the profit of the
vertically integrated firm. In the next subsection we investigate whether the
profits the manufacturer fails to make are made by the retailer or, vice versa,
are simply lost.

Performance of the vertically disintegrated chain. At this stage, we can put
together the information about the manufacturer’s pricing policy and the
retailer’s reaction to draw conclusions on the performance of this supply chain
(structure and contracts).

We know that the manufacturer charges pl, = 1—_’2_—6 and the retailer charges

the final consumer a price p* = 1 +2 Y 50 the final consumers’ price is
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b= l+p, 3+c

7 1 (7.9)

Notice that this final consumer price is higher than in the vertically inte-
grated case ((1+c¢)/2) since ¢ < 1. Also, a higher price means that consumers
buy a smaller quantity: They buy (1 — ¢)/4 in this case, while they buy
(1 —¢)/2 in the vertically integrated one.

This is a first relevant finding. The consumers are definitely better off with
a vertically integrated firm, as they buy twice the quantity at a lower price.
This result might look somehow odd. Indeed, in basic courses in economics we
learn that monopolists (like the vertically integrated firm) take advantage of
consumers, while this finding suggests that one monopolist is better than two
firms. Indeed, in the model both companies are monopolist in their respective
position: The model simply suggests that two monopolists are even worse than
a single one. When we see this result we are tempted to draw the conclusion
that consumers are worse off since the industry (in our case the supply chain)
is making more profit (basically, the consumers have to feed two companies
rather than just one). This is actually a zero sum game perspective. As we
shall see, the industry is making less profits as well, so this is a negative sum
game! We have already seen that the manufacturer makes a profit

mr = (—1_8—0)3 (7.10)

Given the price the manufacturer charges, the retailer makes a profit
¥ = (1 _pw)2 — (1 - C)Q
" 4 16

Hence, the total profit 7y, for the supply chain (manufacturer and retailer)
is

(7.11)

(L-pw)® _3(1-0¢)?

Ttot 4 16 ( )
- . . (1—¢)?
which is lower than the profit for the vertically integrated firm —

So the disintegration reduces the profits for the industry, raises final price,
and reduces the quantity bought, reducing the welfare of the consumers.3 So

3 Economists use the expression surplus of the consumer. The meaning of this economic
concept is basically the following. The aggregate demand curve for a given product shows
that different consumers value the product differently. In our example, some consumers
value it 1 and others value it 0. Consumers that buy the product at a given price p are
those that value the product at the very least p. Others simply prefer to keep their money.
Among those that buy the product, some value it more than they paid for it and thus enjoy
a surplus. When a company cannot price discriminate like in our example, the sum of all
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Fig. 7.4 Consumer surplus (see footnote 3 on page 366).

who is better off 7 Basically, no one is better off; this is a second best solution
for all players. Then the question becomes, How is this happening? What is
driving this?

This is the so-called double-marginalization problem. In other words, two
players do a marginal analysis and find optimal prices. The retailer perceives
a variable cost p,, that is higher than the actual variable cost of the chain ¢
and then tends to charge a final price that is higher than the optimal one.
On the other hand, by doing so the retailer reduces the demand for the whole
chain and thus the manufacturer sees a demand that is smaller than it could
potentially be. The two decision makers make locally optimal decisions that,
however, turn into a global disaster for all parties.

Concept 7.1 The presence of intermediaries in o supply chain can lead to
distortion of incentives: In a disintegrated supply chain each player tries to
mazimize its own profit and disregards the effects of his/her decisions on other
players (as well as on the consumer). Such misalignment of incentives can lead
to a relatively high price thot reduces the surplus of the consumer. Also, the
misalignment of incentives reduces the profits of the firms in the supply chain.
So these incentive issues tend to have negative effects both for companies and
consumers.

Also, it is rather interesting to focus on the tradeoff the manufacturer faces.
On the one hand, the manufacturer can easily solve the double marginalization

these surpluses is simply the integral over all consumers that actually bought the item of the
demand curve (actual value of the product for a given consumer) minus the price actually
paid for the item. In the case of a linear demand like in our example, it is the area of the
triangle highlighted in figure 7.4.
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problem by reducing the wholesale price p,, down to ¢. In this case actually
the double marginalization basically disappears. The retailer sees a marginal
cost that is just the marginal cost for the whole supply chain, and as a result
he/she charges an optimal price:

. 14py 1+c¢
= "F = 7.13
2 2 ) ( )

which is actually the optimal price that leads to the maximum profit for the
whole supply chain. So the manufacturer can lead the retailer to choose the
optimal price and maximize the profits for the whole supply chain. However,
there is a major issue: In this case the unit margin for the manufacturer is
zero and thus the profit is just zero. So the manufacturer can make the supply
chain behave optimally at the expenses of his/her own profit, which is actually
a very unlikely scenario.

On the other hand, the manufacturer can maximize the unit margin p,, — ¢
and, at one extreme, set p, = 1. In this case, however, the demand simply
fades away and drops to zero.

The manufacturer would like to (i) take a large share of the total profit of
the chain and (ii) make sure that profits are maximized. Unfortunately, he/she
tries to achieve these contrasting objectives with a single lever — that is, the
wholesale price. While to maximize total profit for the chain the manufacturer
shall keep the wholesale price low to avoid the double marginalization problem,
to take a large share of the total profit the manufacturer shall increase p,, up
to a point where p = p,,, that is, p = p,=1.

So the manufacturer basically cannot have the cake and eat it too. With a
single lever p,,, he/she can either have the cake or eat it. The best solution is
actually a compromise where the price generates a good profit for the chain
but at the same time guarantees that a significant portion of it is gained by
the manufacturer rather than by the retailer.*

4Notice that in the more general case of a production cost ¢ and a distribution cost r, the
retailer sees a marginal cost p,, + r and thus charges a price p* = (H'—péﬁ'—r), so that the
demand from the consumer is d* = 1—_—%1 Then the profit for the manufacturer is

1—pw—r1
Tm = (Pw — C)(—Zw—%
and thus the optimal wholesale price is

« _ldc—r

™2
and the optimal final consumer price is

e_ltputr _34ctr

2 2

Notice that we can rewrite the above final price as

*:3+c+7‘

2 2’

p
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7.2.3 A way out: designing incentive schemes

When one encounters the double-marginalization problem. intuition suggests
that there must be a way out of it, since none is better off in the second
scenario we have investigated.

Actually. there are several ways out. A common feature of all solutions
we are going to discuss is that they re-design incentive schemes. In other
words, we want to redesign the rules of the game so that all players (decision
makers) change their behavior and we can reach an optimal (or at the least
better) solution. The key idea is that the manufacturer and the retailer choose
high prices and end up with relatively low profits simply because they have
an incentive for this suboptimal behavior and if incentives are changed their
objectives and behavior are going to change as well.

Let us now discuss several ways out.

Change the structure of the supply chain The first and obvious solution is
to change the structure of the supply chain and go back to the vertically
integrated case. Clearly this solution solves the problem structurally. In
many industries, many companies are going toward this solution, as they are
opening more and more single-brand stores such as (a) Bulgari, Cartier, etc.,
in luxury and (b) Adidas, Nike, etc., in the sportswear business. However, as
we have discussed in the introduction to this chapter, this is often a hardly
viable solution. Empirical evidence tells us that retailers exist and often they
are not part of a manufacturing company. This is because often retailers
perform functions that our model fails to capture such as:

e product selection; that is they act as agents for the customers and se-
lect products that customers can hardly judge on their own. This is
a typical function performed in some multibrand specialty stores such
as wine bars, where the owner of the wine bar has the technical ability
to judge the product and repetitively purchases from a series of wine
producers and sells to a series of loyal customers. This way he acts as
an intermediary that builds reputation both upstream and downstream
and reduces the incentive of the producers to free ride.

o creation of a wide assortment; in many instances the value of a single
product is limited as compared to the search cost — that is, the cost to
look for, locate, purchase, and transport the product. A classic example
of this phenomenon is grocery. Customers rather pay the retailer to
create a wide assortment and transport products from various suppliers

and compare it with the price of the vertically integrated solution p* = l—‘*’gﬁ = % +

%1. As we can see, the double marginalization has an effect only on the marginal costs of
t

e manufacturer, whereas it has no effect whatsoever on the marginal costs at the retailer.
Indeed, for these latter costs there is no double marginalization, since the retailer “sees”
the actual marginal cost » rather than an overstated wholesale price p,, > ¢.
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than buy single products from single suppliers at a lower cost. Simply
because shopping at many single-brand stores — one selling Palmolive
products, the second selling only P&G products and another one selling
only Barilla products — might be very expensive (in terms of cost of
transport and time consumed). Think of visiting 15 stores during your
weekly shopping trip rather than a single supermarket!

Our model fails to capture such problems, since we have a single product
model. So, in the model, we ignore issues that might make the vertical in-
tegration a hardly viable solution. This really means that there is a need
for a retailer. In principle the retailer could be just a consortium of manu-
facturers. However, one can easily understand how hard it would be for all
consorted manufacturers to control the retailing consortium and make sure
the consortium acts in the best interest of each single producer. Writing a
contract between the consortium and each single manufacturer is basically
impossible. Also, even if we assume a contract was written, controlling it and
enforcing it in a court is actually quite hard and definitely very expensive.
Finally, we should notice that even in those cases where other variables not
included in our simplistic model lead us to choose a vertically disintegrated
supply chain, still the problem of double marginalization stays and we need
to find a solution to this issue. When the solution cannot possibly be struc-
tural, it must be contractual, that is, we shall rewrite the contract between
the manufacturer and the retailer in such a way that they are led to set the
optimal price and can gain optimal results. In other words, when we still have
two decision makers, we would better make sure their incentives lead them in
the right direction, otherwise performance drops.

A second solution is to adopt more complex and subtle contracts between
the supplier and the manufacturer to make sure they act in the best interest
of the supply chain and make sure that the “cake is as big as it can possibly
be.” As we have already discussed, a single lever p,, is just not enough to
achieve two contrasting objectives (unit margins and large quantities sold).
So we need a more complex pricing strategy. This is what economists call
the two-part tariff that is, a pricing strategy with two parts. Basically, these
contracts use two parameters to achieve the two contrasting objectives.

Franchising contracts A first example of these two-part tariffs is the so-called
franchising contract. Under this contract the manufacturer, called franchisor,
sells the retailer, called franchisee, both the goods and the right to sell them.

The franchisor can sell products at marginal cost p,, = ¢ to make sure
that the retailer has the right incentives to set the retail price appropriately
at p = (1 + ¢)/2 and maximizes the profit for the chain ((1 — ¢)?/4). Once
such a profit is generated, the franchisor can use a second parameter in the
contract that is a fixed fee F'; that is, the right to sell the products of the
franchisor. We just need to set F' = (1 — ¢)?/4 — ¢ to move a large portion of
the optimal profit upstream. In real-life applications the fixed fee is actually
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just a mean to split the supply chain profit between the two parties. The
actual split depends obviously on the bargaining power of each party. But in
general we can keep the marginal cost at a minimum to reduce the double
marginalization problem and then use a second lever to move the maximized
profit within the supply chain appropriately.

Quantity discounts Another example of two-part tariffs are quantity discounts.?
Under such a contract the cost of marginal quantities is very low (at one ex-
treme equal to the marginal production cost) to provide the retailer with an
incentive to increase the quantity and reduce the selling price.® On the other
hand. the first units sold can have a fairly high price to move the profits
upstream.

Let us consider a case where the producer asks for a price p,, for the first
Q1 units (with @1 < (1 —¢)/2, that is lower than the optimal quantity for the
vertically integrated supply chain) and then charges only the marginal cost ¢
for any unit on top of this. In this case the profit function of the retailer is”

T = p-d—pu Q1— C(d - Ql)
= (p—c)d— Q1 (pw—20)
( ( p)_Ql'(pw_c)'

The above equation basically resembles equation (7.2) other than for a
basically fixed cost Q1 - (pw — ¢). This really means that when fixed cost are
not excessive,® the retailer simply selects the optimal price p* = (1+¢)/2 and
the optimal quantity d* = (1 — ¢)?/2. This means that the retailer makes a
profit

(1+¢)?

-0 o), (7.14)

Ty =

and the manufacturer can reduce the profit of the retailer and increase its
profit by appropriately selecting ;1 and p,. in such a way that the retailer’s
profit is reduced to a small quantity e:

(1+¢)?

-1 (- ) = (7.15)

T =

51n this context we consider the marginal units price discount while the all units is ineffective
in this scenario.

SNotice that from the incentive standpoint franchising contracts and marginal unit quantity
discounts are basically the same. F + ¢ can be interpreted as the very high cost of the first
unit.

"Notice that this is the profit function for d > @1, to be precise we shall also consider the
option to purchase a quantity below Q1.

8Indeed, the retailer might have the option to exit the market in case of negative profits by
buying zero units.
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Resale price maintenance Finally, another solution is to contractually set the
final price p; that is, sell the product to the retailer if and only if he/she charges
the optimal price. This is the so-called resale price maintenance. Under these
contracts the manufacturer sells to the retailer at a price p,, = 1% and the
contract also forces the retailer to sell at a price p = p,, or a price p < py,.
Finally, an equivalent solution is to contractually set a minimum quantity
q > % This solution is basically equivalent to a large all unit discount.
Notice that in many countries fixing the final price contractually might be
considered illegal (it is a restraint to price competition in the retailing stage
of the supply chain). Manufacturers can only “suggest” a price the retailer
should charge the final consumer. Though the final price cannot be included
in the contract, many manufacturers check the final price of the product and
at times take the decision not to sell the product to the retailers that set a
price that significantly differs from the one they suggest.

So as intuition suggests there are several fixes to the double marginalization
problem.

Concept 7.2 Once we acknowledge that the presence of intermediaries can
raise incentive problems, we can design contractual solutions, such as franchis-
wng contracts, quantity discounts, or fized consumer prices that can re-build
an incentive for all parties to set an optimal price and make sure that the
supply chain gains optimal profits (and increases the consumer surplus). In
a sentence a supply chain can be profitable only if we make sure that every
company on it has reasons to pull in the same direction.?

7.3 DECISION ON PRICE IN A COMPETITIVE ENVIRONMENT

In this section we still discuss the pricing decisions in a supply chain. However,
we make a small change to the model we have investigated. In this section
we assume that in the supply chain there is just one manufacturer of the
homogeneous product and a large number n of retail outlets (see figure 7.5).
We assume zero search cost and homogeneous products. Thus we assume
that consumers select retailers solely on price. In this case too, we compare
the vertically integrated case with the vertically disintegrated one. Obviously,
we do not need to recalculate the optimal policy in the case of the vertically
integrated firm. The company still chooses to charge the same final price

p* = 1—‘5—‘3 in all n stores.

9The last sentence is adapted from [5] that also provides some interesting real life examples
on incentives issues in supply chain management.
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Fig. 7.5 A supply chain with a competitive retailing sector

7.3.1 The vertically disintegrated supply chain; independent
manufacturer and retailer.

On the contrary, we shall investigate the vertically disintegrated chain. In this
case, indeed, the situation changes, since the retail market is competitive. To
understand this supply chain we shall resort to basic economic theory.

Basic economic theory is outside the scope of this book. For example, we
refer to [3] for a more precise analysis of perfect markets. Here we simply re-
call the basic intuition behind the perfect market model. The model assumes
that a large number n of competing firms sells an homogeneous product and
use a homogeneous technology and thus share a common cost structure. Con-
sumers have a perfect information and easy access to all suppliers. So they
select the supplier on price, since it is the one differentiating variable. Under
these assumptions any competing firm that reduces the price below competi-
tors takes all the demand, and any company that increases the price above
competition loses all the demand. Thus all companies charge the same price.
This really means that all companies cut the price to the very minimum to
increase demand, immediately followed by competition.!® At steady state. in
such markets the final price is equal to the marginal cost; that is. companies

10Notice that this is just to build intuition, as economists might challenge this statement.
They might argue that in this model, companies are pure price takers and are not aware
of strategic interaction with their competitors. So they are not aware that competitors will
react to their actions.
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make no profit’*. They cannot reduce the price below the marginal cost,
as they would have a negative profit. But they also cannot increase it, be-
cause they would lose all the demand and would be basically out of business.
Economists say that in such a business the companies are just price takers, as
they have no latitude on price, they simply charge the standard price to the
consumnier.

This downstream competition has several consequences for our supply chain.
Like in the previous case, we shall start the analysis from the final stage of the
supply chain (backward induction). In this case the analysis is really simple.
All retailers charge a price p equal to their marginal cost p,,. So each of the n
retailers gets a portion 1/n of the overall aggregate demand d = 1—p = 1-py,
and makes no profit whatsoever. Thus the profit for the manufacturer is

Tm = (Pw — €)(1 = Dy). (7.16)

We know that this equation resembles equation (7.2) and thus the optimal

wholesale price is
1+¢

Y = _ 1
P 3 (7.17)

Hence also the final price p is optimally set to p* = pf, = l—‘%’—c, and so the

aggregate demand for the industry is d* = (1 —p*) = 1—5——0 and the profit for
the manufacturer (and the whole supply chain as the retailers make no profit)

2

i, = (1) (0" — ) = L5

The results deserve a couple of comments. As the reader has probably
already noticed, in this case even a very simple and linear pricing policy leads
to an optimal price. So when there is a large number of retailers, the vertically
disintegrated supply chain performs just as well as the vertically integrated
firm. What are the economic interpretations of this apparently odd result?

A first, technical reading is that in a perfect market the retailers do not
make any margin and thus though there are two echelons in the supply chain,
one actually does not increase the price. A second, more managerial reading is
that there are two players but actually one is simply a price taker that makes
no actual decision. So in this case, coordination of decisions is rather trivial,
since there is only one actual decision maker.

Concept 7.3 The double marginalization problem depends on the market
structure. If the retatling stage is a competitive market (with no search costs)
then the double marginalization problem simply fades away. More in general,
incentive issues might depend on the structure of the supply chain and of the
markets.

11 Again an economist might argue that companies make no extra-profit, that is the make
no profit on top of those minimal profits that reward the capital investment and the efforts
of the entrepreneur
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7.4 DECISION ON INVENTORIES: THE NEWSVENDOR PROBLEM

In this section we investigate the impact of the supply chain structure on
inventory decisions.’ To isolate this issue from other decisions. we assume
that the final price is fixed (say by law or there’s a standard price in the
market, like for newspapers that in Italy basically share the same common
price). Also, to make inventory decisions relevant we assume that demand is
uncertain.

In this case we shall use three variables. First we have the exogenous
demand y, then we have the production quantity @, and finally we have
sales V. In the previous sections, we had a single variable since we had
assumed a deterministic demand and thus purchase quantity was exactly equal
to demand and sales.

In our model we assume that the expected demand is still 1 —p, but in this
case the demand is variable and is uniformly distributed between 0 and 2 —2p
(f(z) = 1/(2 — 2p)). To keep the problem simple, we assume the product
expires like newspapers, so that we can consider our inventory problem to
be static; that is, the one purchase decision on a single period (day) has no
impact whatsoever the next period (day). In other words we face a multi-
echelon newsvendor problem (see 5.2 for the classic newsvendor problem).
Actually, we have already discussed the issues that arise while setting prices
in a supply chain and thus ignore them in this section by fixing the price p.

7.4.1 The first best solution: the vertically integrated firm

The vertically integrated firm has basically one decision to make: how many
units @ to purchase.

The newsvendor problem suggests balancing the cost of a stockout and the
cost of inventories in such a way that the type I service level is SL = —
where m is the cost of a stockout and ¢ is the cost of excess inventories.

In our simple case the cost of a stockout for the vertically integrated firm
is p— ¢ and the cost of inventories is ¢, as we assume that inventories have no
salvage value. This means that the vertically integrated firm shall provide a
service level S = %. Under our simplistic assumptions the company shall

b

C

stock a percentage ! of the maximum potential demand 2 — 2p. So the
optimal stocking quantity is

«P—cC (
Q" —— (2 - 2p).
p
12Notice that even issues discussed in section 6.4 can fall under this umbrella. While in

this section we present inventory planning issues in a static and uncertain environment, in
section 6.4 we present the same issue in a dynamic and certain environment.
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7.4.2 The vertically disintegrated case: independent manufacturer and
retailer

In this case the retailer purchases copies of the newspaper in the early morning
from the manufacturer and tries to sell them during the day. So, the retailer
makes the stocking decision and runs the inventory risks. This is actually a
very important issue. In our model we assume that decision makers are risk
neutral, so this allocation of risks in the supply chain has no effect, but when
players show different attitudes towards risks, we shall carefully consider the
allocation of risks in the supply chain.

In the vertically disintegrated case, the retailer faces a decision problem
that resembles the one of the vertically integrated company. The one difference
is that the marginal cost of the retailer is p,. So the quantity the retailer
decides to stock is @F = p—_plﬁ‘ (2 — 2p). This quantity is also the demand for
the manufacturer.

Given the stocking decision of the retailer, the profit function for the man-
ufacturer is

_ b= DPuw

T =

(2-2p) - (puw — ). (7.18)

So the manufacturer charges a wholesale price p,, that maximizes his/her
profit:

Omm  2-2p
Opw D

'(p_pw"pw+c>:0a (7'19)

and the optimal wholesale price is

(7.20)

The manufacturer charges a wholesale price that is halfway between the final
consumer price p and the marginal cost. This finding deserves some comments.
Equation (7.18) suggests that once again the wholesale price performs two
functions. On the one hand, the manufacturer would like to increase the
wholesale price to increase the margin p,, —c he/she makes. On the other hand,
the wholesale price performs a second function: It sets the retailer’s incentives
to stock large quantities. So the manufacturer would be tempted to reduce
the wholesale price p,, to increase the stocking quantity Qf = p—% <(2—2p).

Like in the case of decisions on price, the manufacturer tries to achieve
contrasting objectives with a single lever p,,. He/she can set p,, = ¢ and lead
the retailer to stock the optimal quantity but the manufacturer has no margin
and thus makes no profit. On the other hand, the manufacturer can set p, = p
and maximize margins, but in this case the retailer has no incentive to stock
and this reduces demand to zero. The optimal solution mediates between these
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two contrasting objectives and actually is halfway between the two extreme
(and ineffective) solutions we just discussed (p,, = p and p,, = c¢).!?
Given this wholesale price pf,, the retailer stocks a quantity

Qr = T'(Q—Qp)
_p+c
= (2 )
p—c
= (1-p).

In other words, in this situation the stocking quantity is 50% lower than the
optimal one, and the service level is reduced by 50% as well. Clearly, this
is not good news for the consumers that are very likely not to find the item
they want (at the least at the end of the day). Is this more profitable for
the industry? Actually it is not. Indeed, we can show that for the whole
supply chain it would be appropriate to increase the stocking quantity above
the current level @, = 225(1 — p).

We can go back to the intuition behind the basic newsvendor problem
and show that the chain profit increases if we increase the stocking quantity
marginally. The probability of not selling a marginal unit is (p — ¢)/2p while
the probability selling it is (p+¢)/2p. The cost of lost sales is (p— ¢} while the
cost of excess inventories is ¢. So what we gain by increasing the inventory
level marginally is p — ¢ times the probability that we actually sell the addi-
tional marginal quantity. What we lose is the cost of inventories ¢ times the
probability (p — ¢)/2p that we are not going to sell the additional quantity.
Hence, the marginal profit of an increase in inventories is

ptec p—¢c  p-c
5 (p—rc) c= > 0. (7.21)

2p 2
Increasing the stocking quantity increases the profit for the chain and the
solution @Q* is suboptimal. Unfortunately, what is good for the supply chain
is not good for the one decision maker, the retailer.

Like in section 7.2 the vertically disintegrated supply chain leads to sub-
optimal performance. since it provides bad incentives to the playvers. The
manufacturer charges a wholesale price p,, above the marginal cost to gain a
profit. However, such a wholesale price reduces the retailer's margin and thus
reduces the incentive for the retailer to stock. This leads to a reduction in the
retailer’s stocking quantity, in service level for the consumers, and in profits
for the chain. Like in previous cases. this is a bad situation for all plavers.
and intuition suggests there must be a way out.

13 Actually, the optimal wholesale price depends on the demand and cost functions. So the
fact that the optimal solution is halfway between marginal cost and consumer price is just
a pure chance. In general though, it is within this range.
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7.4.3 A way out: designing incentives and reallocating decision rights

As we have seen in section 7.2, a first solution can be vertical integration of
companies. As we already discussed, this solution has several consequences
our simplistic models fail to capture. So we consider the structure of the
supply chain as a given and we try to find other, contractual rather than
structural, solutions.

Like in the case of decisions on prices, we discovered that the manufacturer
is trying to achieve two contrasting objectives (make margins and give the
retailer incentives to stock) with a single lever (the wholesale price py,).

So a first reasonable solution is to adopt two-part tariffs so that both ob-
jectives can be sought.

Franchising contracts. Franchising contracts again can be a very good option.
The key idea is again to sell the product at marginal cost c to give the retailer
the incentive to stock the optimal quantity for the whole chain Q* = %5 (2-
2p). This solution leads to optimal profits for the whole chain. Then a fixed
fee F that the retailer pays to the manufacturer can be used to move profits
upstream. So in this case one lever (the wholesale price p,, = ¢) is used to
give the retailer the incentive to stock the right quantity and a second lever
(the fixed fee F') is used to distribute the profits in the chain.

Buy-back contracts. A second option is to use the wholesale price p,, to make
a profit and use a second lever to give the retailer an incentive to stock the
optimal quantity. The intuition behind these contracts is that we increase
the willingness of the retailer to invest in inventories by decreasing the cost
of excess inventories. So, while in the franchising contract we increase the
willingness to invest by increasing the cost of a stockout (i.e., increasing the
margins) in this case we act on the other economic parameter of the newsven-
dor model: the cost of excess inventories. Under these contracts, basically
the manufacturer offers to buy back the inventories left over at the end of the
day (or selling period more in general). Basically in this case too, the pricing
policy consists of two parameters. The manufacturer sells the newspaper to
the retailer at a wholesale price p,, early in the morning and buys back the
units unsold at the end of the day at a buy-back price p,. Basically, we reduce
the cost of a stockout to p,, — ps. So any pricing policy (pw.ps) such that the
optimal type I service level for the retailer equals the optimal type I service
level for the vertically integrated firm leads to an optimal stocking quantity
Q™ and thus to optimal profits for the chain:

p—c P — Puw _ P~ Dw

P P-pu)+tBw—p) (p—m)

Thus, the buy-back price is a function of the wholesale price p,,:

(pw ) pb)l

P~ Puw
p—cC

by = p—Pp
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_ < p_pur>
p—c

Pw —C

p—c

While an infinite number of pricing strategies (p,.ps) is just as good to fix
the retailer’s incentives to stock, they are very different from the standpoint
of the manufacturer’s profit. Clearly among these couples the manufacturer
wants to choose a couple with a very high p, to increase unit margins and
thus profits.

So the optimal policy for the manufacturer is to charge a price p,, =p — ¢
and a buy back price p, = p- % Such a pricing policy builds the right
incentive to stock and at the same time creates a profit for the manufacturer.
So. quite interestingly, the manufacturer has an incentive to pay for the unsold
goods. Intuition would suggest that the manufacturer would rather not pay
for the unsold inventories at the retailer. Why should one want to pay for
goods that at the end of the day lost most of their value? A deeper analysis
shows that buying the unsold goods is actually in the best interest of the
manufacturer.

Finally, we shall conclude this section with a note on contracts that do not
solve this issue. In section 7.2 we suggested solving the double marginalization
issue by fixing the final price p contractually. We shall acknowledge that this
solution is actually completely ineffective in the case of uncertain demand.
Indeed, in our simple model we assume the price to be fixed, but still the
stocking problem has arisen.

Example 7.1 These contracts are often used in several industries where the
cost of inventories is substantial to give the retailer an incentive to stock
appropriately. A classic example is the electronics business, where products
lose value month by month. In this business, the OEM share the cost of
excess inventories with the retailers and refund a portion of the products’
loss of value. A similar practice is fairly common in the fresh food business.
Large companies such as Nestlé partially refund the cost of expired food to the
retailers. These practices aim at providing the retailers with an appropriate
incentive to stock inventories. Manufacturers could give up some margin to
reach the same objective but they rather buy products back. 0

Revenue sharing contracts. Another partial solution to the double marginal-
ization problem is to adopt profit sharing contracts. In these two-part tariffs
the manufacturer charges a low wholesale price p,. =~ ¢ and get paid a percent-
age of the final revenues. In other words the manufacturer is paid partially
on the sell-out and partially on the sell-in.

These contracts can generate a better incentive for the retailer to stock.
However, they never re-create the whole incentive to stock the optimal guan-
tity, since a portion of the final consumer price (that exceeds the marginal cost
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of the manufacturer) is given to the manufacturer, thus reducing the retailer’s
incentive to stock. However, these contracts have two other beneficial effects

First these contracts distribute the risk among the players in the supply
chain. In these contracts uncertainty on the final demand has an effect on
both parties rather than on just the retailer. So, these contracts can adapt
to the inclination toward risk of the two players. So these contracts can be
an effective mean to re-allocate risks in the supply chain according to the
ability /willingness to accept risk.

Also, demand fluctuations can be partially random, but they might par-
tially be due to actions of both the retailer and the manufacturer. Such efforts
might be hardly contractable, meaning that it might be hard to write a con-
tract that (i) fully describes the efforts of the two parties and (i) can be en-
forced before a court. In these fairly common circumstances, these contracts
give both the manufacturer and the retailer a partial incentive to increase
demand the way they can.'* For example, the retailer might provide more
selling effort, allocate more space in the store, or put the item in the front
window. On the other hand, the manufacturer can spend more on advertising,
add extra features, or add extra contents.

Section 7.5 discusses the issue of efforts in supply chains.

Example 7.2 These contracts are used in the media business. Blockbuster
noticed very frequent stockouts of top movies (premieres) during the week-
ends. Nevertheless, purchasing more copies of the movies was not profitable
for Blockbuster. DVDs have a very low marginal production cost, since the
vast majority of costs are fixed (think of the production cost of the first unit).
Thus Blockbuster has signed a revenue sharing agreement with the movies’
majors to share the revenues of DVD rents. This new contract gives the majors
an incentive to reduce stockouts in order to increase the revenues shared. So
they reduce the wholesale price to increase Blockbuster’s incentive to stock.
As a consequence, this new contract changes the incentives of Blockbuster to
stock DVDs, and it increases the availability of copies for the consumers (even
during times of peak demand such as the first few weekends after the launch of
the DVD); also, the turnover increases in a business where the marginal cost is
basically negligible, thus increasing the profits for the chain. It is interesting
to notice that only technology made this deal a viable option. Indeed, the two
parties need to make sure that total revenues is a certified number so that
revenues can be shared fairly. A third party provider of technology certifies the
revenues and thus makes the total revenues observable to the manufacturer
(they are obviously observable to the retailer) and thus the revenue sharing
contract a viable option. In economics we would say that technology is making
revenues a contractable variable, that is a variable that can be included in a
contract (see also [5]).

14Tn case the wholesale price exceeds the marginal cost of the manufacturer, as it is very
often the case.
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Re-allocation of decision rights. Another, more radical solution is to reallocate
decision rights in the supply chain. In other words, we keep the supply chain
structure and thus we keep the number of players constant. However, the
rights to make decisions are changed. One option in this context is to move
the right to make inventory planning decisions upstream. This is the so-called
Vendor Managed Inventories. Under such contracts the manufacturer holds
the right to make decisions on inventories. A simple reallocation of decision
rights would lead to a scary incentive scheme without a reallocation of the
cost of inventories. Think of what would happen if the manufacturer makes
decisions on retailers’ inventories. The manufacturer would be in a position
to freely increase deliveries and thus turnover at the expenses of the retailer
that might carry unnecessary inventories. Usually these agreements require a
change in the allocation of cost of inventories among players. Often retailers
give the manufacturers a maximum budget for the inventory investment to
make sure they do not over-invest in inventories as they do not pay for the
holding cost. Another solution is to agree that the retailer pays for the sell-out
(units sold to the consumer or delivered from the central distribution center
to the stores) rather than for the sell-in (units delivered to the retailer’'s DC)
so that the manufacturer pays for excess inventories and thus has no insane
incentive to overstock.

These contracts are very popular nowadays, and some companies such as
Procter and Gamble have proven that they can be very effective, if properly
deployed. However. there are several caveats.

First, these contracts work only if the retailer provides the manufacturer
with the information required to make inventory decisions effectively. Some of
these pieces of information are easy to transfer such as sell-out data. Others
are somehow more problematic. For example, information about the promo-
tion of a competing substitute product can be crucial to plan inventories, but
the retailer might not want/should not give the manufacturer this relevant
piece of information. Also, a retailer might have some qualitative information
that the producer lacks, such as roadworks around the store, new openings of
competing stores, etc. On the other hand. the manufacturer might have some
other pieces of private information such as the launch of new products in the
same category of new advertising campaigns.

More in general, when we allocate decision rights in the supply chain, we
shall always wonder who has the right information (and skills) to make better
decisions. Second, we shall wonder who has the right incentives to make ap-
propriate decisions. One example can show some problems these contracts can
have. Retailers often sell products from competing manufacturers. Often con-
sumers are quite willing to switch among brands and substitute stocked-out
products (see [1]). However, such substitution reduces the cost of a stockout
for the retailer, but it does not change (or might even increase) the cost of a
stockout for the manufacturers (see [4]). This really means that the manu-
facturers tend to overinvest in inventories. as they target a service level that
is greater than the optimal one for the whole supply chain. More in general,
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when allocating decision rights, we should carefully study incentives to over-
invest/underinvest in inventories as well as the availability of relevant pieces
of information and skills.

Concept 7.4 In a disintegrated chain the inventory and service levels drop
below the optimal point since the retailer only sees a fraction of the total
margin and thus is less willing to invest in inventories. Franchising, buy-back
and VMI contracts rebuild an incentive to invest in inventories and gain a
better service.

Example 7.3 '® To make the problem simple, let us think about sales of
a newspaper in a small town where this is the only newspaper sold. The
final consumer price for the newspaper is 1€. For newspapers, usually the
marginal production cost is rather low, and in our example we assume that
the marginal production cost ¢ is 0.2€.

Let us assume that demand is uniformly distributed between 0 and 200,
with an expected level of 100 units (f(z) = 1/200).

The first best solution: the vertically integrated firm.

As we have learned in section 5.2 the newsvendor has an 80-cent cost of a
stockout and a 20-cent cost of inventories (we assume that the salvage value
is zero), and thus the optimal type I service level is 80%. Given the uniformly
distributed demand, the optimal stocking quantity Q* is 160 units, as in 80%
of the cases the demand is lower than or equal to 160 units.

Given the demand distribution and the stocking quantity, we can compute
the expected sales E(V):

160 1 200 1
EV) = — 160— d
V) /0 Y200 y+/160 200 Y

1 y2 160
— {L ) +160(200 - 160)
300 [( 2 >O }

= 96.

Expected sales are 96 units, and given the stocking quantity of 160, the ex-
pected inventories left over is 64 (160—96). This means that the total expected
profit for the vertically integrated chain is 96units - 0.80€/unit — 64units -
0.20€/unit = 64€.

The vertically disintegrated chain: independent manufacturer and
retailer

Now let us assume that the manufacturer (editor) figures out that retailing
is just a different business and that he/she is not interested in it or is not
good at it. So the manufacturer (editor) starts selling through a retailer. Let

15 This example is adapted from the Hamptonshire express case (see [4]).
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Fig. 7.6 Demand distribution and optimal stocking quantity.

us assume that the manufacturer charges the retailer a price p,, = 0.8 and
the retailer makes the inventory planning decision before the newspaper starts
selling. Under this contract the retailer has a low cost of stockout (he/she
loses 0.2€ for each unit of demand lost) and a high cost of inventories (he/she
loses 0.8€ for each unit of excess inventories). This really means that the
retailer has all incentives to understock. The optimal target service level for
the retailer is 20% and thus the optimal stocking quantity is just 40 units,
way below the optimal quantity for the chain and far less than the expected
demand (100 units).

With such a low stocking quantity the profit for the manufacturer is very
low:

T = 40 units - (0.8€/unit — 0.2€/unit) = 24€. (7.22)

Let us check the profit for the retailer. Expected sales are

40 200
(V) = 40—
E(V) /0 ydy+/40 OQOOdy

1 <y2>40
— (%] +40(200 - 40)
200 [\ 2/,

= 36
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Given the stocking quantity of 40 units, 4 are left unsold, on the average, and
the expected profit for the retailer is'®

E(n,) = 36 units - (1€/unit — 0.8€/unit) — 4 units - 0.8€/unit = 4€.

The total profit for the chain drops to 28€ (compare it to the 64 units for the
integrated channel). Also consumers have a lower service level (20% instead
of 80%) and experience very frequent stockouts.

Let us check the efficacy of the buy back contracts. Let us assume that
the manufacturer charges 0.992€ and buys the units left unsold at 0.99€. In
this case the retailer’s margin is 0.008€ and the cost of inventories is 0.002€.
Hence the optimal service level for the retailer is 80%(0.008/(0.008+ 0.002)).
Thus the stocking quantity is 160 units and the whole supply chain makes
optimal profits. Also, the manufacturer is the one that makes the bulk of the
profits. The retailer’s expected profit is

E(n,) = 96 units - (1 — 0.992)€/unit + 64 units - (0.992 — 0.99)€/unit = 0.64€,

while the manufacturer sells 160 units at 0.9992 €/unit, 96 are actually sold
and thus entail only the manufacturing cost of 0.2 €/unit, and the remaining
64 entail a buy back cost of 0.99 €/unit on top of the manufacturing cost:

T = 160 units - (0.992 — 0.2)€/unit — 64 units - 0.99€/unit = 63.36€.

Thus the total profit for the supply chain is 64, and it is actually equal to the
profit of the vertically integrated firm.

7.5 DECISION ON EFFORT TO PRODUCE AND SELL THE
PRODUCT

As we briefly discussed in the previous section, demand depends not only
on price but also on other decisions both at the retailing stage and at the
manufacturing stage. As we mentioned on the one hand, one can improve
the store look and size, hire more salespersons, train the salespersons, add
services such as home delivery, and include customization of the products
(e.g., assembling the add-on peripherals of a PC or sizing the sleeves of shirts
to customers). On the other hand, one can make more/better advertising, add
new features to the product, update the design of the product more frequently,
and so on.!7

16Notice that the retailer runs the inventory risk so the retailer’s profit is uncertain, while
the manufacturer’s profit is certain. So in this case we take the expectation, while we had
no expectation in the case of the manufacturer.

17Notice that even the inventory investment can be interpreted as a sort of effort to increase
sales. However, given the focus of this book, we think it is worth investigating the issue of
the inventory investment separately.
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We can call these actions efforts to improve sales at the retailing and man-
ufacturing stage of the supply chain. In our discussion we first focus on the
efforts at the retailing stage and later discuss a situation where we have both
efforts at the manufacturing and retailing stage.

Also, the cost of effort can be both a variable cost or a fixed cost.}® For
example the assistance at the retail store is an effort from the retailer (s,) and
it generates a variable cost, as it is proportional to the number of customers
served. On the contrary the look and size of the store tends to be a fixed cost,
as one does not need to increase the size of the store or the number of lights
as the number of visitors and customers increases.!® Similarly, we can have
both fixed and variable costs of effort at the manufacturing stage. Examples
of fixed costs are advertising campaigns, sponsorships, efforts in the design
stage. Examples of variable costs are new product features and optionals (say
air conditioning in a car or a camera in a cellular phone).

In our initial model we only have promotional effort from the retailing stage.
We can formally build a model on promotional effort at the downstream stage
of the supply chain through the variable s,.. Also let us assume that the cost
e-{s,) is variable rather than fixed. For example, let us assume that this is
the cost of the time the salespersons spend with each customer. The effort
increases demand d(p, s»), which is a function of both final consumer price p
and promotional effort s,.. Finally, let us assume that d(p, s,-) is concave in s,.
as we have decreasing returns of the sales effort. Also, let us assume that the
cost function is linear or convex. So there are diminishing marginal returns
of the effort s, and constant or increasing marginal cost of effort e,.

7.5.1 The first best solution: the vertically integrated firm

Given our assumptions, the profit for the vertically integrated chain is
Tiot = (p — ¢ — er(sy)) - d(p. 57). (7.23)

So we can find the optimal effort for the vertically integrated firm by taking
the derivative of the above equation with respect to s,

Oftot od(p.s-) A
ds. (p_c_er<sr)) s, —€ (5r>d(pa 5:) =0:
therefore
ad(p. s,
(p—c— er(Sr))—%—) = ¢'(s,)d(p. s,).

8Here by variable we mean that the unit cost depends on the effort. but such cost is
incurred for each unit sold. So the cost varies proportionally to demand.

19This holds unless the space in the store is the binding constraint that censors sales, which
is a fairly rare situation.
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The above equation suggests that the vertically integrated firm would in-
crease the promotional effort up to a point where the marginal increase in
demand [9d(p, sr}/30s-] is counterbalanced by the marginal cost of the effort

[e/(3r>d(pa sr)].

7.5.2 The vertically disintegrated case: independent retailer and
manufacturer

Now let us check what happens when the retailer and the manufacturer are
independent organizations that maximize their own profit (and use simple
linear contracts).

The manufacturer charges a wholesale price p,, > ¢ to make some margins
and thus some profits. The drawback of this policy is that the retailer sees
only a portion (p — py) of the total chain margin (p — ¢) and thus has a lower
incentive to promote the item.2° Indeed. the profit function for the retailer is

Tr = (P — Ppuw — er(sr)) ~d(p, $r)s
and thus the optimal solution for the retailer is

(p—pw— GT(ST))(%E?%Z =¢/(s.)d(p, s,).

The above equation suggests that the marginal return for the effort is smaller
for the retailer [(p — pw — €(s-))] than for the vertically integral firm [(p —
¢ — er(s;))], and thus, under the very reasonable assumption of diminishing
returns of the promotional effort, the retailer chooses a level of effort that is
lower than in the vertically integrated case. The side effects of this decision are
lower demand, lower service for the consumers (and thus a reduction of their
welfare), and lower profits for the chain. Why is this all happening? Once
again the decision maker fails to fully capture the benefits of his decisions for
the chain. Basically, the retailer overlooks the beneficial effects of the increase
in demand he/she can cause on the manufacturer profit. He/she only sees a
benefit p — py, — e-(s,) rather than the actual benefit p — ¢ — e, (s,).

A very easy solution to the above problem would be to contractually set
this level of effort deployed by the retailer. Unfortunately, these variables can
hardly be set in a contract. How do you measure the time a salesperson spends
with a consumer? How do you measure the quality of a salesperson? And
even if you write these variables in a contract, it can hardly be enforced in a
court and thus it tends to be ineffective. Incentives are much more effective
means to control efforts.

2ONotice that this resembles the issues we have discussed in the previous section. Indeed,
inventory investment can be interpreted as one of the means to increase sales. We have
discussed it as it is a very relevant issue for the specific focus of this book.
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Example 7.4 One way out of this is to make sure that the manufacturer
pays a portion of the promotional effort in the stores. Large grocery stores
(supermarkets and hypermarkets) tend to be self-service environments with
limited sales service. However, when a new product is launched, some man-
ufacturers pay for salespersons that invites the potential consumers that are
visiting the store to try the product (usually at a launch price lower than the
full price). So, quite interestingly, manufacturers in this business recognize
that retailers make a suboptimal selling effort and thus they supplement the
retailer’s effort with their own personnel.

So far we have investigated a case where the retailer’s effort influences
demand and the cost of effort is variable. Let us now investigate the case
where of the retailer’s effort generates a fixed rather than a variable cost
through an example.

Example 7.5 Let us consider a supply chain where the final consumer de-
mand depends on both the final price p and the promotional effort s, at the
retail store. We assume the demand function to be

d=1-p—++/5 (7.24)

We assume that the marginal cost of production is ¢. Also, we assume that
the promotional effort entails a cost 0.5s, (imagine that the cost is related to
the size and look of the store rather than the time spent assisting each single
customer).

The first best solution: the vertically integrated chain
Given the above assumptions, the profit function for the vertically inte-
grated firm is
7=(1—-p+.s) (p—c)—0.5" 5. (7.25)
Hence we can find the optimal price and promotional effort by taking the
derivative with respect to p and s,.

or
o c—p+1-—p+/s. =0, (7.26)
O _ =9 45_q

ds,  2-/sr

thus

Vsr=p—c
and by substituting in (7.26), p* = 1 and thus \/s% =1 —c.
We can now find the optimal profit by substituting p* and s} in equation
(7.25):
o= (1=-p"+sp) (P —¢c)—05
(1—¢)? —0.5(1—¢)?
0.5(1 — ¢)2.
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The vertically disintegrated case: independent manufacturer and
retailer.

Now let us investigate the case of the vertically disintegrated supply chain.
As we have learned in previous sections we start by analyzing the decisions of
the retailer.

The profit function for the retailer resembles the profit function for the
whole supply chain with one minor difference: the marginal cost is p,, rather
than c.

T =1=-p+5) (p—pu)—0.5" s, (7.27)

Thus the optimal final price and promotional effort for the retailer are p* =1
and /st = 1—p, and demand is d* = 1 —p,,. This is then the demand curve
for the manufacturer that tries to set the wholesale price to generate demand
but at the same time he/she tries to generate margins (p,, — ¢). The profit
function of the manufacturer (which in this example has no promotional effort
and thus no effort-related cost) is

= (1 = pu)(pw — ¢), (7.28)

and the optimal wholesale price for the manufacturer is p}, = —1—%'—0
Now we can go back to the retailer and check how he reacts to this level of
the wholesale price. The retailer charges an optimal price p* = 1, but he/she
makes less effort to sell the product (v/s* = 1—pZ = 1—5—‘2) than the vertically
integrated company does (v/s* = 1 — ¢).

Let us now check the profits of the retailer and the manufacturer by sub-
stituting p”, p;,, and s} in equations (7.27) and (7.28).

T = (1-p+5) (p—pw) —0.5 s,
_ 1—-¢c 1-c¢ —-c 2
T2 2 ' < 2 )
(=97
N 8

Tm = (l—pw)(pw—C)

_ l—c 1-c¢
T2 2
_ (1-¢?

- —

3(1 — 0)2
so the total profit for the whole chain is
Once again we shall now sit back and read the results carefully. As usual,
things get worse with the vertically disintegrated chain. Consumers get a
lower service (in our example they shop in smaller and less fancy stores), the
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profit for the chain is reduced, and the final price remains unchanged. It is
rather interesting to compare these findings with those of section 7.2. In both
cases the profit for the chain drops by 25%. However, in this latter case this
is not due to an inappropriate increase in final consumer price (both in the
vertically integrated and in the vertically disintegrated case the price is 1).2!
but rather to a lower than optimal promotional effort. So quite interestingly
the suboptimal decision variable is different in the two cases, but the basic
dynamics are the same. The party that makes the decision sees only a portion
(p — pw) of the overall margin (p — ¢) and thus makes decisions that are in
his/her best interest but reduce the size of the overall cake. I

7.5.3 A way out: designing incentive schemes.

As usual we have a situation where nobody wins, the consumer gets a worse
service, and the manufacturer and the retailer make relatively less profits.
There must be a way out.

Franchising contracts A solution is to re-create an incentive for the retailer to
deploy an optimal service by giving the retailer all the margins. Again like in
the previous cases we can design a franchising contract where the retailer pays
a variable price p,, = ¢ and a fixed fee F'. The fixed fee distributes the profit
in the chain while the low variable wholesale price re-creates an appropriate
incentive to provide the optimal sales effort. Again, like in previous cases,
these contracts leave all uncertainties on the shoulders of the retailer. So,
these contracts raise major concerns when the retailer is risk adverse (or at
the least more risk adverse than the manufacturer). 22

Example 7.6 Let us now check whether the franchising contracts can solve
the problem we have discussed in example 7.5. Let us assume that the man-
ufacturer charges a wholesale price p,, = ¢. This re-creates the retailer’s
incentive to make an optimal effort, as the retailer’s profit function resembles
equation (7.25). So both the final price and the retailer’s effort are opti-
mal: p = 1 and s, = /1 —c¢. Clearly such a policy makes sure that the
retailer’s profit is just equal to the optimal profit for the whole chain (as we
said, retailer’s profit function is just the whole chain’s profit function in case
pw = ¢). However, the manufacturer’s profit is zero, since the unit margin is
zero (p, —c = 0). So we use the fixed fee I to move (some) profits upstream
by setting F' = 0.5(1 — ¢)? —«.

2INotice that this is a rather obvious result; indeed, all fixed costs have no impact on the
price that is set through a marginal analysis. On the contrary, variable costs of service tend
to have an impact on price.

22Notice that when the manufacturer as well has an ability to influence the demand this
solution completely destroys his/her incentives to work hard to increase demand. So actually
we might want to balance the incentives to increase demand according to the parties’ ability
to influence demand (see next subsection).
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Quantity discounts Another option is to give quantity discounts, that is,
charge a low wholesale price p,, = ¢ only for marginal quantities. The first
few units bought make sure that the manufacturer makes a profit, while the
last few units sold create a marginal incentive for the retailer to deploy an
optimal sales effort (see section 7.2). Notice that the minimum order quan-
tity contract where the manufacturer refuses to sell less than a given minimum
quantity is basically a variant of quantity discounts, where first few units have
a very high price that make the purchase of small quantities economically not
sound.?® Finally, we shall notice that other solutions do not work. Again

fixing the final consumer price contractually does not solve this problem. As
example 7.5 shows, setting the final price in the vertically disintegrated case
is no guarantee of optimal solution. Actually, the key issue is to make sure
that the retailer (more in general, the party that can influence the demand
through its efforts) has the right incentive to work hard to increase demand.
Setting the final price contractually gives no guarantee that this is going to
happen.

Concept 7.5 In a disintegrated chain the promotional effort might be sub-
optimal. The retailer might hire less salespersons and less experienced ones
than in a vertically integrated chain. Stores might be less appealing and the
manufacturer might spend relatively little on, say, advertising. This reduces
both the profits of the industry and the welfare of the consumer. Well designed
contracts can, at the least partially, solve this problem and give all parties an
incentive to deploy a greater sales effort.

7.5.4 The case of efforts both at the upstream and downstream stage

So far we have discussed the case where the retailing stage can increase de-
mand through a promotional (sales) effort. More in general, we can improve
demand both at the retail outlet and at the manufacturing stage (e.g., we can
add new features, improve conformance quality etc.). So we slightly change
our model and introduce a second variable s,, that captures the effort the man-
ufacturer makes to increase demand by adding extra features to the product,
by improving the product quality or through an advertising campaign. In our
example, we assume that the effort at the retail store creates a variable cost
(e.g., think of the sales assistance in a store) e,(sr) while the effort from the
manufacturing organization is a fixed cost (e.g., think of an advertising cam-
paign or an effort to improve the look of the product) e,,(s,,).2* Again we

23Notice that even the franchising contracts can be interpreted as a specific kind of quantity
discounts, where the first unit costs F' 4 p,,, while successive units cost py, to the retailer.
24Notice that the basic issue we raise in this section does not change when we change the
assumption on whether the cost of the effort is variable or fixed. We suggest that the
reader checks how the model changes when the cost of effort at the retail outlet is fixed
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assume that demand function is concave in s, and s,,,. while the cost functions
are linear (or increasing)

The first best solution: the vertically integrated chain In this case the profit
for the whole chain is

Ttot = [p —Cc— er(sr)] : d(p Sr, Sm) — €m (Sm) (729)

We can find the optimal efforts by taking the derivative with respect to s,
and S,,:

ad(p Srs S?n) ’

(e er(ss) 2005 ot (e 57, 53, (7.30)
(p—c—erlsin 2B g () (7.31)

The vertically disintegrated chain: independent manufacturer and retailer Let
us now investigate the case of independent manufacturer and retailer. In this
scenario, the manufacturer makes two decisions: (i) the wholesales price p,,
and (ii) the manufacturer’s effort e,,. The retailer makes two decisions: (i)
the final consumer price p and (ii) the retailer’s effort e,.

In this case, the two parties have the following profit functions:

T = (Pw = ¢} d(p. 87, $m) — em(sm):
T = (p—pw —er(sr)) - d(p. sr. 87,).

Therefore they find the optimal efforts s7 and s, by taking the derivative
with respect to e, and ep,:

on _ ad(p, Sr,an) o N\

8Sr — (p - pu* 67‘(ST‘)> asr er(sr)d(p’ 87‘7 Sm) - 0 (732)
OTm B dd(p, 7. $m) o B
Do (pw =) Bs.. €nlsm) =0 (7.33)

Basically, the profit function of retailer is equal to the profit function of
the previous case. The retailer does not pay for the effort the manufacturer
makes. So like in the previous case the retailer makes a suboptimal effort since
the reward he/she gets is only a portion [p —p,. —e,(8;)] of the chain’s benefit
p— ¢ — e (s:)].2% As we have learned, franchising contracts with p, = ¢

(e.g., store size and look) and the cost of effort at the manufacturing stage is variable (e.g.,
more product features or optionals and thus more variable costs).

25Notice that while the retailer makes a suboptimal effort the manufacturer might make
a less-than-optimal but also a more-than-optimal effort. On the one hand. he ignores a
portion of the marginal revenues since his/her profit depends on the wholesale price rather
than on the final price p. On the other hand, he also ignores part of the marginal cost
er(sr).
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are very effective means to re-create the retailer’s incentive to make an opti-
mal effort. Unfortunately, while this policy maximizes the retailer’s incentive
to promote the item, it completely destroys the manufacturer’s incentive to
make an effort to improve the product or invest in an expensive advertising
campaign [see equation (7.33)]. Actually, in this case there seems to be no
way out. We need a very low wholesale price to give the retailer incentives
to make an effort in the store, and we need a high wholesale price to give
the manufacturer an incentive to invest in advertising and product design.
Clearly, if the demand function is much more sensitive to one of the two ef-
forts (say the manufacturer’s effort) rather than to the other, there is a fairly
easy way out: We can set the wholesale price to give the right incentive to
the decision maker (in our example the manufacturer) that matters the most.
In this case we deliberately ignore one of the two efforts (in our example the
retailer’s effort). So this solution works only to the extent that one of the two
efforts is actually negligible. In the more general case, we need a wholesale
price that is at the same time very high [p,, = p — e.(s})] to give the man-
ufacturer the right incentive [i.e., make sure that equation (7.33) is equal to
equation (7.31)] and very low (p,, = ¢) to give the retailer the right incentive
[i.e., make sure that equation (7.32) is equal to equation (7.30)]. In this case
clearly two-part tariffs do not work. Indeed, in this case the wholesale price
shall perform three functions: (1) it moves profits in the chain, (ii) it sets the
retailer’s incentives to deploy an effort, and (iii) it sets the manufacturer’s
incentives to deploy an effort. And two parameters cannot possibly enable
us to achieve three objectives at once. This apparently unsolvable problem
actually has a solution. We just need to be creative. We just need a third
party that buys from the manufacturer at a marginal price pym =p — €r(s3)
and sells to the retailer at a marginal price p,,» = ¢ (see figure 7.7). To make
ends meet, the third party shall also charge a fixed fee F' to the retailer. So
the third party pays pym -d = [p — e-(s¥)] - d to the manufacturer and is paid
pwr - d = F + ¢-d by the retailer. Finally, the fixed fee F' moves the profits
upstream and makes sure all parties have a nonzero profit (in particular the
retailer’s profit sets an upperbound to F' and the third party’s profit sets an
lower bound to F').%%

26[2] shows that this solution might still face some problems as the manufacturer and the
retailer might take advantage of the intermediary. Indeed, the intermediary’s marginal
profit is negative as his/her margins are negative and this means he/she is basically giving
the other two companies an incentive to increase the quantity above the optimal quantity,
simply because the retailer and the manufacturer get some margin from the consumer and
from the intermediary. Indeed, if the intermediary has a negative margin, the retailer and
the manufacturer are gaining a positive margin as demand increase. This means that at
the optimum quantity, the retailer and the manufacturer are not gaining any margin from
the consumer, but are still gaining some margin from the intermediary. Thus they have an
insane incentive to further increase the quantity.
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Fig. 7.7 Supply chain with a third party providing right incentives for all players.

7.6 CONCLUDING REMARKS

Though this is not a book on economics and incentives®”, in this chapter we

provide some basic information on the issue of incentives in supply chains.
The issue of incentives is very important, as it drives behavior both within
companies and among companies. So, the issues presented in this chapter are
very relevant in all multiechelon supply chains no matter whether they cut
the borders of companies or lie within the boundaries of a compauny.

This chapter does not advocate vertical integration of supply chains. We
acknowledge that there are very good reasons why companies decide to out-
source and/or to split the overall company into independent organizational
units. This chapter simply suggests that this wise decision raises some issues
that deserve some attention. The disintegration of the supply chain implies
that several independent players make their decisions (pricing, inventory, or
effort) independently, to optimize their own profit (or. more in general, per-
formance metrics).

Under these circumstances, using standard linear prices can be fairly inef-
fective, as single players only see a fraction of the benefit of their actions (e.g.,

2TFor a comprehensive book on these topics we refer to [6]
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the retailer sees a unit margin p — p,, rather than an unit margin p — ¢, with
p > puw > ¢). Economists call these externalities, meaning that the decisions
of one player have side effects on other players and he/she fails to account for
that. For example, in our model with promotional effort, the retailer makes
a suboptimal effort because he does not account for the increase in the man-
ufacturer’s profit that the increase in demand creates. In other words, each
player tries to maximize his/her slice of the cake, but by doing so, he/she is
shrinking the cake.

On the contrary, we shall think about the incentives that contracts give to
all players (managers of organizational units of a company rather than owners
and managers of independent companies), since these incentives tend to drive
people’s behavior. As we have seen in all our sections on pricing, inventory
planning, and promotional effort, the behavior of decision makers depends on
the rules of the game. Appropriately designed contracts align incentives and
make sure that all players contribute to making the cake as large as possible.

Also, we shall acknowledge that monetary/formal incentives schemes are
not the only way to drive behavior. In recent weeks in an Italian newspaper,
a manager was suggesting that the “clan” attitude can help the effectiveness
of a company. The idea is that a feeling of belonging to a group of people (in
our case a supply chain) can drive behaviors and make sure that all decisions
are made to maximize the wealth of the group (in our case the profit of the
supply chain). While we do acknowledge the role of these “soft” issues, in this
chapter we only discuss how economic incentives drive behavior.

While in other chapters we provide tools and methods, in this chapter we
present only stylized models that are designed to provide insights, intuitions,
and guidelines rather than tools. This is at least partially due to the fact
that this body of knowledge is relatively recent and thus robust models are
still far from real life applications. Nevertheless, the basic ideas and concepts
that these models provide are proven to be effective, as some of the examples
discussed in the chapter show. A manager needs to adjust and fine-tune these
concepts to his/her specific environment where efforts on both parties, uncer-
tainties, and pricing might all play a role. Finally, the design of incentives
through contracts actually depends on laws that might be country-specific,
though the basic economic rules we have discussed in this chapter are general.
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Vehicle Routing

In this chapter we consider a typically operational problem, i.e., the optimal
planning of routes for a set of vehicles; each vehicle is used for multiple deliv-
eries within its route. Such a problem has a lot of variations and is known as
VRP (Vehicle Routing Problem). In the simplest version of the problem, we
have a set of customers located over some geographic region; each customer
should be delivered a given amount of goods. Each customer is associated
with a point in the region of interest; we know the distances between any pair
of customer locations. Another point of interest is the deposit from which
goods must be transported by a fleet of vehicles with limited capacity: the de-
parture point of these vehicles is the deposit, and we also know the distance
between the deposit and any customer location. We would like to deliver
the required amount to all of the customers at minimum cost; the total cost
function can depend, e.g., on the total miles traveled by the vehicles, on the
total travel time, or on a combination of both. For the sake of simplicity, in
most of the chapter we assume that only mileage is relevant. We are facing a
twofold problem: On the one hand, we must assign a subset of customers to
each vehicle, subject to capacity constraints; on the other one, we should plan
a route for each vehicle, i.e., a sequence of customers, in order to minimize
the traveled distance. Typically, such a problem makes sense over relatively
short distances and time spans. The amount demanded by each customer
is small enough, with respect to vehicles’ capacity, to accommodate multiple
deliveries; otherwise we would resort to a point-to-point transportation mode.

What we have outlined is just the basic VRP, as there are many complica-
tions in practice, in terms of both costs and constraints. Costs can be linked
to both space and time; there can be a fixed cost for using a vehicle; as to

397
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constraints, delivery might be subject to time windows; the vehicle fleet may
be heterogeneous, and capacity can be multidimensional (volume and weight).
Still, even the basic VRP is hard to solve to optimality, unless very sophisti-
cated approaches are used. Hence, we will just describe basic principles that
can be used for the development of heuristics. These principles should be
regarded as building blocks for heuristics aimed at more realistic versions of
VRP. Optimization modeling can also be used, but naive mixed-integer mod-
els have weak continuous relaxations; hence, use of commercial branch and
bound packages is ineffective and ad hoc strategies must be employed, which
are definitely outside of the scope of an introductory book. Still, optimization
models can be used to address parts of a VRP within clever decomposition
strategies (see section 8.3.2).

Since we are interested in distribution, we just deal with deliveries, but the
VRP is formally equivalent to a problem in which we want to collect goods;
a more complicated task pops up when we have a mixed delivery/collection
problem, as is the case with some postal services offering package collection
to subscribers. Yet another related problem deals with fized routing, in which
we have to determine a set of routes which will then be followed regularly.
This is more of a tactical than an operational problem. As an example of a
more strategic issue, we may consider fleet sizing problems.

VRP is a classic among network routing problems. In section 8.1 we give
an introduction to routing problems. If we have one vehicle with infinite ca-
pacity, VRP boils down to the classical Traveling Salesperson Problem (TSP).
Solution methods for TSP can be somehow adapted to deal with VRP; indeed,
TSP is a component of VRP. This is why we devote section 8.2 to illustrate
some basic heuristics for solving TSP. Then we use these heuristics as build-
ing blocks to cope with basic VRP in section 8.3. Finally, in section 8.4 we
illustrate a few complications arising in more realistic versions of VRP.

As a general remark, for the sake of simplicity, in this chapter we assume
deterministic problems; we do not associate any uncertainty with demand, as
we consider short-term operational problems, whereby customers have placed
orders and we must just deliver the required goods. However, demand uncer-
tainty can play a role in more tactical problems such as fixed routing. Demand
uncertainty may play a role even in the short-term; in fact, there are goods
which are not ordered from the warehouse, but it is the driver himself which
receives orders on the spot, when visiting retailers (as a practical example,
consider how fresh milk and butter are delivered to small retail stores). By
the same token, we do not consider uncertainty in the traveling time; in urban
transportation, delivery may be heavily affected by traffic jams or accidents.

8.1 NETWORK ROUTING PROBLEMS: THE TSP

Network routing is a general header for a very wide class of problems. Within
distribution logistics, we typically adopt network routing models to tackle
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service scheduling problem, aimed at finding the optimal use of transportation
resources (e.g., trucks) to deliver some goods to a set of customers located on
a region, which is modeled as a network.!

From section 2.2, we recall that a network is a graph with additional in-
formation. A graph consists of a set of nodes and avcs. In our case, nodes
correspond to locations (retail stores or vehicle deposits). An information
which may be associated with each node corresponding to a customer is the
amount of demand. Formally, arcs are ordered pairs of nodes; they can be
used to represent the possibility of traveling from one node to another one,
and the information associated with the arc can be distance. traveling time, or
cost. We also recall that a graph can be directed or undirected. In a directed
graph, we have oriented arcs, i.e., node pairs are ordered. An oriented arc is
typically represented as an arrow, whereas a line is used when the orientation
is irrelevant. We should also mention that for undirected graphs we should
use the term vertex, rather than node, and edge, rather than arc, since latter
terms are reserved to directed graphs. However, we will use just one pair of
terms to keep it simple.

In vehicle routing problems, arcs are oriented if the distance (or traveling
time, or cost) from node i to node j does not equal the distance from j to i.
This may sound odd, but in a urban transportation problem one-way street
may have that effect. On a geographical scale, if the nodes represent Los
Angeles and Boston, we may argue that the distance is symmetric.? In this
chapter we only deal with symmetric problems for the sake of simplicity.

To make things concrete, let us consider the five points depicted in the left
part of figure 8.1. Think of those points as cities, or points within a city, that
must be visited in order to deliver goods to customers. In the right part of
the figure, we give the coordinates of each point, with respect to an arbitrary
point of reference. The essential information is the distance between nodes.
The real-life distance between two points may be hard to compute, because of
roads, natural obstacles. etc.; if we assume that the plain Euclidean distance
is a good proxy for distance, we get the distance matrix illustrated in the
right part of figure 8.2 (distances have been rounded to the nearest integer).
A distance matrix is a handy way to collect distance information. In our case,
the distance matrix is symmetric by construction; hence, we may just show
the upper triangle of the matrix, as we did in figure 8.2. The left part of the
figure illustrates the corresponding network, with undirected arcs depicted as
lines joining nodes; in a sense, this representation is abstract, in that node
placement in the figure has no physical interpretation.

! Actually, network routing can refer to quite different problems, such as optimizing the
layout in VLSI (Very Large Scale Integrated) circuits.

21t is worth noting that costs in transportation problems might not be symmetric even if
distances are. If there is more goods flow in one of the two directions, e.g., from Detroit to
New York, demand/offer mechanisms may induce asymmetric transportation fares.
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Fig. 8.1 Map and coordinates of five points on a region.
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Fig. 8.2 Network and distance matrix for a symmetric network with five nodes.

Given a network, a node routing problem calls for finding the optimal
way of visiting nodes, with respect to a given criterion, subject to certain
restrictions. A prototypical node routing problem is the Traveling Salesperson
Problem, or TSP for short. In this problem, the salesperson lives in & city
and must visit all of the other cities in the network before coming back home;
each city (or customer) must be visited once. The traveling route is closed,
and it is typically referred to as a tour. Among the many possible tours, she
would like to find one with a minimal total traveled distance. The network
in figure 8.2 may represent represents a simple TSP, whereby the salesperson
lives in city 1 and must visit the other four cities in a clever sequence. The
distance matrix can be interpreted literally, but it could also represent travel
times; whatever the case, we interpret the labels associated to arcs as costs;
the cost may also depend on both time and space. The cost for going from
city 4 to city j is ¢;;, and we have already noted that the matrix in the figure
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Fig. 8.3 Simple network to illustrate issues in representing network distances.

is symmetric. When ¢;; = ¢;;, for all ¢ and j, we have a symmetric TSP:
otherwise we have an asymmetric TSP, also denoted by ATSP.

As we pointed out, one of the cities should be regarded as the city where the
salesperson lives and must get back to; however, due to the cyclical nature
of the problem, which city is the starting point is irrelevant. For instance,
the tours (1,2,3,4,5,1) and (2,3.4,5,1,2) have the same total length. As
a consequence, if there are n cities, there are n! permutations of them. but
only (n — 1)! possible solutions for the TSP; actually, in the symmetric case,
there are only half of that, because we may travel any tour in two ways,
obtaining the same mileage. Formally, a cycle visiting all of the nodes of a
graph exactly once is called a Hamiltonian cycle. So, TSP calls for finding
the shortest Hamiltonian cycle.

The restriction that a city must be visited exactly once may sound illogical.
After all, if three cities (say 1, k, and j) are geographically arranged on a line,
it may be advantageous to travel from the first one, to the second one, then
to the third one, and finally travel back to the first city passing through the
second one. In more concrete terms, if there is a convenient freeway joining
three cities, it might well be the case that we travel twice through a city.
Consider for instance the network of figure 8.3, and assume for simplicity that
all of the distances between neighboring cities are 1. The optimal solution of
the TSP is obviously to start from city 1; go through cities 2, 3, and 4; then
go to city 5, going through 3 and 2 again; finally, get back home. This may
not look like a Hamiltonian cycle, but it is if we build the network in a more
abstract way. From the point of view of an abstract network, like the one in
figure 8.2, we travel from city 4 to city 5 “directly,” along an arc of length
3. which is the sum of the distances between cities 4 and 3. 3 and 2, and
finally 2 and 5. This may be the only way of reaching city 5 from city 4. or
maybe just the optimal way. The bottom line is that the abstract network
representation includes a “full” distance matrix, with no empty entries even
though some cities are not directly linked. The distance matrix consists of
optimal distances between pairs of nodes.

The distance matrix, since it is an “optimal” distance matrix rather than
the direct translation of a map, must satisfy a rather obvious requirement,
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which is called triangularity property:

Cij < Cig + Ciy- (8.1)

The distance from ¢ to j cannot be larger than the distance from i to k plus
the distance from & to j. We may have an equality in the aforementioned
case of three cities arranged in sequence on a line. If we are dealing with a
full matrix of triangular distances, we may look for a Hamiltonian cycle in
the associated network; a city will be visited twice if it is optimal in the real
world, but we do not see this on the abstract network model, which should
not be taken too literally.

We consider solution methods for the symmetric TSP in section 8.2. Then,
in section 8.3, we generalize the TSP by associating a demand information
with each node. If customers must be served by finite-capacity vehicles, it
is unlikely that all of the customers may be served by just one tour. If the
overall demand cannot fit one vehicle, we must use multiple tours or multiple
vehicles. This generalization leads to the Vehicle Routing Problem, which is
the core of this chapter. However, we should at least mention the existence
of other network routing problems, while referring to [3] for a full account of
network routing.

8.1.1 Other network routing problems

In this chapter we only consider very basic symmetric node routing problems,
but it is worth noting that node routing problems have lots of applications
outside the logistics field. A symmetric TSP can be used to find the optimal
path planning for a robot which has to visit a set of points in space to take
measurements or to carry out spot welding operations. An asymmetric TSP
can be used to model sequence-dependent setup times in a machine scheduling
problem; if you produce black paint after a batch of white paint, maybe you
do not need to wash the machine too accurately; going the other way around
is not that easy, as producing white paint after a batch of black one requires
a thorough setup. Similar considerations apply when producing vermouth or,
in the textile industry, when we deal with both cheap wool and cashmere.
A few concepts we use in solving symmetric problems may also be used to
cope with asymmetric problems, but the latter typically require more care,
depending on the solution algorithm we use.

It should also be mentioned that sometimes we have to cope with arc (or
edge) routing problems. Consider a postman in charge of visiting all houses
within a portion of a city. Since houses are arranged linearly along streets, it
may be much better to represent his problem as the one of visiting all of the
arcs at least once, rather than the nodes (which are used in this setting to
represent crossroads). Ideally, the postman should visit all of the arcs once,
along what we call a Fulerian cycle. Actually, a strictly Eulerian cycle may
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not exist.®> The prototypical arc routing problem is the Chinese Postman
Problem, i.e.. the problem asking for the shortest tour of a graph which visits
each arc (actually, edge) at least once.

Finally, we associate arcs with either time, space, or cost information.
When dealing with very complex transportation scheduling problems. one
may develop a space-time network. On such a network, some arcs represent
movement in space and other arcs represent movement in time. This modeling
framework is important if we want to manage, e.g., the flow of freight wagons
on a railroad network (see [16]). Further complications arise when you also
consider the many constraints you may have on the crews to be scheduled on
trains or aircrafts.

8.2 SOLUTION METHODS FOR SYMMETRIC TSP

In this section we describe basic heuristic principles for the solution of sym-
metric TSP. The principles we illustrate are not the most advanced ones, but
they are useful to build intuition and pave the way for the development of
heuristics aimed at VRP. Conceptually, TSP is a trivial problem: Find the
best sequence of stops in a set of cities. Mathematically, we have to find
the best solution within a finite set of permutations of “cities.” We could
simply enumerate all of them and spot the best one. Unfortunately, such a
simple-minded approach is not practically feasible but for very small prob-
lem instances. If we have 25 cities, there are 24!/2 ~ 3.1 - 10?3 alternative
solutions. Assuming that we are able to generate and evaluate one billion
solutions per second, it would take something like 9.84 million years to get
the optimal tour. If you have to dispatch a fleet of vehicles each and every
morning, you need a seriously faster decision approach.

In section B.6.1 we illustrate the branch and bound method as a way to
solve optimization problems with a combinatorial component, without resort-
ing to complete enumeration. In principle, we could build a mixed-integer
linear programming model with binary variables modeling the sequencing de-
cisions and use a good commercial solver implementing .P-based branch and
bound. However, we have also pointed out that the efficiency of these methods
relies on the quality of lower bounds; simple TSP model formulations have
very weak relaxations, and unless very sophisticated and ad hoc modeling
frameworks and solution methods are used, finding the optimal solution is
very hard. We will not pursue such approaches, which are hardly available
in commercial software, as we prefer to illustrate some principles which lend
themselves to generalizations when coping with additional constraints that
are important for a real-life VRP. Anyway, we should keep in mind that we

3Many of us have checked this as children, trying to draw certain geometric figures always
keeping the pencil in contact with the paper, without passing twice on the saine segment.
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could ask someone to come up with an algorithmic black box able to solve a
TSP to optimality for not-too-large problems; this can be handy in devising
decomposition-based methods.

There is a huge literature on solution methods for TSP, but the methods
we consider here can be broadly classified into two categories:

1. Constructive methods aim at building a tour by expanding a partial
route according to some reasonable criterion; such methods build one
solution directly. We illustrate two hasic constructive approaches in
sections 8.2.1 and 8.2.2.

2. Tterative methods start from a given solution and try to improve the
initial tour by generating a sequence of alternative solutions; clearly,
iterative methods are more time-consuming and require a constructive
method to get a starting point. Nevertheless, the resulting gain in solu-
tion quality may be remarkable. We outline iterative methods based on
local search in section 8.2.3.

8.2.1 Nearest-neighbor heuristic

The nearest-neighbor heuristic is arguably the simplest heuristic that may
come to mind to solve TSP. We select a city acting as a starting point, and
we grow a partial sequence by appending cities at the end of it. To select
the next city to visit, we always choose the closest one to the last city we
visited (ruling out those we have already visited). Then, after visiting all of
the cities, we close the route by going back to the starting point.

The procedure can be formally stated as follows:

Step 0: initialization. Let A" = {1,2,3,...,n} be the set of cities we want
to visit. Choose a starting point i® € N; let ¥V = A\i° be the set of
cities we still have to visit and let S = (i°) the current partial sequence.?

Step 1: choose the next city. Let i be the last city in the partial sequence
S. Find the closest city j* in V, i.e., solve argminjey ¢, ;. If there are
alternative optima, break ties arbitrarily.

Step 2: expand partial sequence. Append city j* at the end of the par-
tial sequence (8§ «— (8,7*)) and cancel it from the set of cities yet to
visit (V «— V\j*).

Step 3. If V = {, i.e., there is no city left to visit, close the route by appending

the initial city at the end of the sequence (S « (8,4°)); otherwise, go
to step 1.

4We recall that the \ operator denotes set difference.
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Example 8.1 Let us apply the nearest-neighbor heuristic to the problem of
figures 8.1 and 8.2, starting from city 1. The closest city to 1 is city 5, and
the partial sequence so far is (1,5). Among the remaining cities, the closest
one to city 5 is 3; the partial sequence is expanded to (1,5, 3). From city 3 we
should go to city 2, and finally we have to terminate the sequence with city
4. The complete tour is (1,5, 3, 2,4, 1). with total length 132.

Actually, it is easy to see from the figures that this is not the optimal
solution. From the map, the tour (1, 3,5,2,4,1) looks more sensible; indeed,
its length is 124, and it turns out that this is really the optimal tour. In this
trivial case, we see quite clearly what is wrong with the nearest-neighbor: We
should have gone from node 1 to node 3, but we were too greedy. We may
also see that the method might yield different solutions, depending on the
starting point. If we start from city 5, we get the tour (5, 3.1.4.2,5), which is
equivalent to (1,3,5.2,4,1). We could try all of the possible starting points
and keep the best result. However, even this cannot guarantee the optimality
of the solution we get.

The nearest-neighbor heuristic is conceptually simple, easy to implement, and
quite fast. The bad news is that it is a greedy heuristic, and there is no
guarantee on the optimality of the solution we get. Choosing what looks
best for the current decision we have to make (select the next city) does not
ensure the optimality of the whole tour. A clear danger is disregarding some
inconvenient city, leaving it to the last steps of the procedure. The quality of
the overall solution can thus deteriorate significantly, as the inconvenient city
(which may demand a substantial cost to visit) is going to be inserted at the
last step of the procedure; this means that the most critical city is practically
ingerted in a random position in the tour.

8.2.2 Insertion-based heuristics

The nearest-neighbor approach has many obvious limitations, which we have
already mentioned. An additional one is the fact that it allows us to append
a city only at the end of the current sequence. We could allow insertions in
any point in the sequence. Since we must get back to the starting point, it
would be even better to expand a closed route, rather than an open sequence
that we close at the last step of the procedure. This idea leads to insertion
heuristics. which are still very simple. At each step of the algorithm, we have
a set V of residual cities to visit and a partial tour 7; what we need is to select
an arc (i,7) in 7, which should be “opened” to allow insertion of a new city
between i and j, leading to a subsequence (i.k. 7). Actually, given a partial
route, we have to make two decisions:

1. which city & € V to insert in T;

2. the insertion point, i.e., between which cities ¢ and j already in 7 we
should insert k.
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Since we assume that the triangularity property holds, inserting a new city can
only increase the total length of the current partial route. Hence, a reasonable
criterion is to make decisions in such a way as to minimize the incremental
cost of the insertion. The incremental cost of inserting city & between i and
jis

Cik + Crj — Cij- (8.2)
This additional length is typically called extra mileage.

The first point we must take care of is how to find the initial partial route.
One possibility is selecting the shortest arc (i,j) and let 7 = (4, 7,¢) be the
initial partial route. To find the next city to insert in the partial route, we
may search V for the closest city to 7, i.e., we may solve

ieThey
Then, given the new city (breaking ties arbitrarily), we may look for the best
insertion point by minimizing extra mileage. The procedure is repeated until
we have the complete tour.

Example 8.2 Let us consider the TSP of figure 8.2 again. The are two cities
in the initial route. Choosing the shortest arc in the network, we set the initial
route as 7 = (3,5,3). The closest city to those included in 7 is city 1. For
now, there is no substantial degree of freedom in choosing the insertion point,
and we update the partial route 7 = (3,5,1,3). This route is equivalent to
7T =(3,1.5, 3), since the problem is symmetric and the way we travel the tour
i irrelevant.

Now the closest city to those in 7 is city 4, since its distance from city 1 is
28, whereas the distance between cities 2 and 5 is 29. Now we must find the
optimal insertion point among the three following possibilities:

C34 + C45 — C35 = 48 + 36 — 14 = 70,

Cs4 + Cq1 — C51 = 36 + 28 — 15 = 49,

Ci4 + C43 — C13 = 28 + 48 — 21 = 55.
Hence, we set T = (3,5,4,1,3). Note that there is no need to reevaluate
the whole tour after insertion, as only the incremental cost of the insertion is
needed to make the decision. Finally, we have to accommodate city 2:

c32 + Cco5 — ¢35 = 43+ 29 — 14 = 58,

Cs52 + Coq4 — C54 = 29 + 32 — 36 = 25,

C42 + c21 — cq1 = 32+ 36 — 28 = 40,

C12 + €93 — €13 = 36 + 43 — 21 = 58.

The final route we get is (3,5, 2,4, 1, 3), with total length 124. I

In this case, we get the optimal solution, but this is not guaranteed in general,
as the insertion-based heuristic is still a greedy heuristic. We could represent
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our basic constructive procedures as a greedy way to explore a search tree,
a concept that we introduce in section B.6.1 on branch and bound methods.
In a branch and bound method, we prune a branch of the search tree only if
we are sure that it cannot lead to an optimal solution. In greedy heuristics,
we basically select the most promising branch, forgetting about the others.
However, we could reduce the myopic behavior of greedy heuristics by adopt-
ing a look-ahead strategy, whereby we explore the consequence of a choice
by examining its consequences a few steps further. A further issue concerns
breaking ties when we have to make a decision. In insertion-based proce-
dures, we might have two insertion points with the same extra mileage; in
the nearest-neighbor heuristic, we may have two or more cities with the same
distance from the last one in the partial sequence. In such a case. we could
explore the consequences of each alternative a bit deeper in the search tree.
rather than breaking ties arbitrarily and take a basically random branch.

In the specific case of the insertion-based approach above, we may also
try to improve results, at some additional computing cost, by considering all
possible pairs consisting of a new city to insert and its insertion point. In fact,
in the procedure above we select a city, and then we explore possible insertion
points; we could find the optimal insertion point for each city, and only after
evaluation of the result we make a decision. Another variation on the theme
is the choice of the initial two-city tour; we could start from the two farthest
cities, rather than from the closest pair.

8.2.3 Local search methods

The two approaches we have just considered are constructive, in that they di-
rectly build one solution, with a possibly greedy logic. An alternative consists
of examining a sequence of solutions. The basic idea is trying to improve a
given solution using some simple recipe. We can perturb the solution accord-
ing to a predefined set of rules, which define a neighborhood of the current
solution: the name stems from the fact that we just apply small changes to
the current solution. For instance, since a TSP solution is basicallv a permu-
tation of cities, we could consider swapping pairs of cities in the tour. Having
defined the neighborhood structure, we may look for the best solution within
the neighborhood of the current tour. This new candidate solution may be an
improvement or not. In the first case, we set the candidate as the new current
solution and we repeat the procedure; otherwise we stop.

This very simple approach is called iterative improvement and is the
simplest example of a large family of methods collectively called local search
methods. Since we only search locally in the neighborhood of the current
solution. we might well get stuck in a locally optimal solution that is far
less performing than the globally optimal one. We should note that “locally”
means “with respect to the neighborhood structure.” In figure 8.4 we illustrate
the issue conceptually. If we are minimizing a nonconvex cost function f(x),
and we are at point xp, there is no way to escape from this local optimum and
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Fig. 8.4 Getting stuck in a local minimum.

get to the global optimum z¢, if we just look to the left and to the right and
accept only improving steps. In local search, we cannot really draw a picture
like that, because we are moving within a space whose discrete points are,
e.g., tours on a network; nevertheless, with respect to some “weird” topology,
we may have lack of convexity in the cost function, possibly leading a local
improvement procedure into bad local optima. Clearly, there is a tradeoff
between computational requirements and the richness of the neighborhood
structure (in the limit, a somewhat expensive neighborhood could require the
complete enumeration of the feasible solutions). On the one hand, defining
a small neighborhood is very efficient computationally, but it can leave us
in a very bad local optimum. On the other hand, a very rich neighborhood
structure opens many more search paths, but it can be too demanding from
a computational point of view.

Indeed, the art of local search consists of devising a parsimonious, yet ef-
fective neighborhood structure. For instance, in the TSP case we could swap
pairs of consecutive cities in the sequence, which is a rather limited neighbor-
hood structure. A richer, and quite effective, neighborhood structure is known
as 2—opt. Given a complete tour, we consider all pairs of nonconsecutive arcs.
They are canceled and substituted by two alternative arcs in such a way that
we obtain another tour. The idea is illustrated in figure 8.5. We see that the
two canceled arcs are substituted by arcs “crossing” each other (remember
that the network we draw need not be taken as a pictorial representation of
the underlying geography). The idea can be generalized by canceling % arcs
and replacing them in all possible ways. The k—opt approach, for k£ > 2,
tends to get more complex and time-consuming, and significant advantages in
terms of quality are not guaranteed.
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Fig. 8.5 An example of neighborhood generated by the 2—opt rule; the current solu-
tion is depicted in the upper-left corner.

Example 8.3 We consider once more the TSP of figure 8.2, and we tackle
it by a 2—opt approach starting from the tour (1,2,3.4,5,1), whose total
length is 178. We must compute the total length of each neighboring tour, as
depicted in figure 8.5:

(1.2.5,4,3.1) — 170,
(1,2,3,5.4.1) — 157,
(1,3,2,4,5,1) — 147,
(1.4,3,2,5.1) — 163,
(1,2,4,3,5,1) — 145.

The best tour in this set is (1,2,4, 3,5, 1), which gets to be the new current
tour. Then we evaluate the new neighborhood:

(1.2,5.3.4,1) — 155.
(1,2.4,5,3,1) — 139,
(1,4,2,3,5,1) — 132,
(1,3,4.2.5,1) — 145,
(1,2.3,4,5.1) — 178.

5From an implementation point of view, this task can be made extremely efficient by proper
use of data structures, also avoiding the recomputation of total length from scratch and
just evaluating an incremental cost; see [18].
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Note that the last solution in this neighborhood is just the initial tour. The
new current solution is (1,4,2,3,5,1), with total length 132. Repeating the
procedure one more time, we get

(1,4,5,3,2,1) — 157,
(1,4,2,5,3,1) — 124,
(1,2,4,3,5,1) — 145,
(1,3,2,4,5,1) — 147,
(1,4,3,2,5,1) — 163.

We leave to the reader the task to verify that no further improvements can be
obtained. Since we cannot find any improving tour, the algorithm stops. 0

In this lucky example, we actually end up with the optimal solution, but we
do not know that (in this small case, we may prove that 124 is the optimal
length by complete enumeration). In general, this does not happen, and the
solution we stop at may depend on the initial tour. The difficulty is that the
search process may get stuck into a local optimum, and there is no way out
because we only accept improving perturbations (see figure 8.4). There are a
couple of ideas that may come to our mind to overcome this difficulty:

e We could start the search from different initial tours, possibly generated
by alternative comstructive heuristics or by random generation. The
idea of generating multiple starting points randomly leads to GRASP
(Greedy Randomized Adaptive Search Procedure) methods.

e We may try to overcome the tendency to get stuck in local optima by
allowing nonimproving perturbations according to a sensible strategy.
In fact, looking back at figure 8.4, we see that in order to travel from
z1 to zg, we must accept a temporary increase in cost.

The last idea has lead to a fairly wide family of local search approaches, which
we just outline below, referring the interested reader to references at the end
of the chapter.

¢ In simulated annealing, optimization is interpreted as an energy min-
imization process. In classical mechanics, a physical system evolves in
such a way as to minimize its energy: A ball subject to gravity force
will roll into a hole, minimizing its potential energy, and will stay there.
There is no way a ball can pop up from the hole all by itself. In opti-
mization terms, this means that if the ball rolls into a local minimum,
it gets stuck there. In Statistical Mechanics, under the effect of thermal
noise, there is some probability that a system will find itself in a higher
energy state without external intervention. The probability of this up-
ward jump increases with temperature and decreases with the size of the
jump, i.e., the energy difference between the two states. Annealing is a



SOLUTION METHODS FOR SYMMETRIC TSP 411

technological process whereby a material is slowly cooled. allowing it to
escape from local minima and to reach a lower energy level. If we cool
the material too fast, we get a glass; if the cooling process is slow, we
get a good crystal structure when the final temperature is so low that
the system cannot change configuration anymore. Simulated annealing
exploits this idea for optimization, allowing nonimproving perturbations
according to a stochastic mechanism. Given a current solution with cost
Cola. we randomly sample an alternative solution in its neighborhood,
with cost Chew. The alternative solution is accepted with probability

given by
min {1. exp |:_‘<Cnew - Cold) :l } ,
T

where T is a control parameter acting as a temperature, which is de-
creased according to a cooling schedule. We see that at high tempera-
tures, the search process is free to wander and explore the solution space,
whereas at low temperatures it works just like local improvement. When
the algorithm freezes, the best solution visited will be reported.

Another idea for a stochastic search mechanism is mimicking biological
evolution, rather than statistical mechanics. In genetic algorithms,
unlike other local search mechanisms, we work on a population of so-
lutions. Only the best members within the current population have a
high chance of surviving: The current population evolves by crossover
(offspring are created from two parents) and mutation (a random per-
turbation is applied) mechanisms, whereby probability of selection and
survival depends on the quality of each solution. In this case, we need
a way to map a solution to a data structure, which works like a chro-
mosome, whose genes are the features of a solution (or the parameters
of an algorithm to build a solution). The mechanisms for crossover and
mutation define the neighborhood structure for this stochastic search
algorithm.

Maybe the most widely applied local search mechanism, as far as TSP
and VRP are concerned, is tabu search. This approach, unlike the
previous two, need not be stochastic. The rationale is that the best
solution in the neighborhood of the current one should be accepted, in
order to escape from local minima, while biasing the search process to-
wards good solutions. The trouble with this simple idea is that cycling
is most likely to occur: When escaping from a local minimum. we accept
a nonimproving alternative, but the best solution in the neighborhood
of this new solution may well be the previous local optimum. To avoid
cycling, we use a data structure to store some attributes of each solution
we visit, or some feature of the perturbations we apply to get them. This
data structure works as a tabu list, which forbids revisiting solutions or
applying perturbations undoing what we have just accomplished. The
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tabu list is a sort of short-term memory, as only the most recent tabu
attributes are kept there, in order to avoid restricting the search process
too much. Long-term memory mechanisms have been proposed to im-
prove the ability of diversifying search by exploring new regions of the
solution space.

Local search algorithms look conceptually simple, but in fact getting them to
work properly requires a fair amount of skill and ingenuity, not to mention
experience. Defining a good neighborhood structure, as well as setting the
parameters governing the algorithm, is not trivial. To get a feeling for the
subtle issues we may have to face, consider the application of the 2—opt
neighborhood structure to an asymmetric TSP. If we cross arcs, like we did
in figure 8.5, the consequence is that we actually invert part of the sequence;
in other words, part of the tour is traveled clockwise rather than counter-
clockwise (and vice versa). This is not relevant in the symmetric case, but
when the distance matrix is not symmetric, the new solution may be radically
different from the previous one. We face a similar issue when dealing with
time-windows in a VRP; even if distances do not change, changing the time
instants at which we visit customers may have adverse effects. In practice,
some knowledge of network and graph optimization may be needed in order to
find a good heuristic for a complex case; common sense is not always enough.

8.3 SOLUTION METHODS FOR BASIC VRP

VRP is a generalization of TSP, accounting for multiple vehicles whose routes
are subject to additional constraints. There is a set of n customers; each
customer is located on a node in a network. To serve customers, we have
a fleet of vehicles located in node 0. We consider a fleet of homogeneous
vehicles, each featuring the same capacity, and one deposit; real-life problems
may require relaxing such assumptions. A known demand d;, i = 1,...,n,
is associated with customer i. Demand need not be necessarily associated to
one item type; what is really important is that demand is measured in the
same units as vehicle capacity. Just like in TSP, we would like to minimize
distance traveled (or time, or cost); but unlike TSP, each vehicle has a finite
capacity, in terms of volume and/or weight. This is what creates the need
for multiple vehicles and/or multiple routes, because we cannot serve all of
the customers with one route. We have to develop a set of routes, starting
and terminating at the deposit, which can be carried out sequentially by one
vehicle, or in parallel by a set of vehicles.

Given such assumptions, our input data are a symmetric distance (or travel
cost) matrix, the demand per customer, and the vehicles’ capacity; the num-
ber of vehicles may be given or not, depending on the specific assumptions
about the way routes are carried out. We want to find a set of routes mini-
mizing total distance traveled, subject to vehicle capacity constraints. In the
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Fig. 8.6 Example of solution of a VRP.

basic VRP, we do not consider additional constraints such as the maximum
route duration, which is just another capacity constraint, or time windows for
serving customers. Another important simplification is that we sequence cus-
tomers within each route, but we do not really schedule routes. For instance,
suppose that early in the morning we devise five routes. Any route can be ex-
ecuted within the current working day, but we have just four vehicles. Hence,
we should decide which routes should be carried out today, and which one will
be carried out tomorrow. Clearly. this may depend on priorities associated
with customers; alternatively, we could try to devise two routes that can be
carried out by the same vehicle within one working day. by returning to the
deposit between the two routes. We see that such timing issues might be
rather complicated. In the basic VRP, we either assume that the number of
vehicles is unlimited, or we try to find a solution serving all of the customers
with a given number of vehicles, reporting infeasibility otherwise.

Despite all of these severe limitations, the basic VRP is a tough problem,
and tackling it paves the way for solution of more realistic versions. Figure
8.6 illustrates one solution of a VRP. The figure points out the twofold nature
of VRP. The solution consists of two elements, since each route consists of a
subset of customers and the sequence according to which they are visited by
the vehicle. Given the first element, we have one TSP per vehicle. This can
be exploited in decomposition strategies; it also suggests that TSP heuristics
can provide some basic principles to tackle VRP as well. VRP heuristics, too,
can be constructive or iterative. We do not consider local search methods for
VRP, because devising neighborhood structures coping with both dimensions
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of the problem (i.e., allocation of customers to routes and sequencing within
each route) is not trivial, even though the effort in doing so can be quite
rewarding.

8.3.1 Constructive methods for VRP

Constructive methods for VRP are based on the idea of growing routes accord-
ing to various patterns and based on various criteria.® To classify constructive
methods, we should begin by drawing the line between

e sequential algorithms, in which one route is grown at a time, until all
customers have been routed, and

e parallel algorithms, in which several routes are grown together.
Parallel algorithms, in turn, can be classified into two subcategories:

1. We may start from a set of small routes, one per customer, and we pro-
ceed by merging routes. The procedure stops when vehicles’ capacities
prevent us from coalescing routes. One clear disadvantage of this ap-
proach is that we have no control over the number of routes we end up
with, which may be larger than the number of available vehicles.

2. In order to overcome the aforementioned disadvantage, we may fix the
number of routes a priori, say m. The number of routes can be the
number of vehicles we plan to use. Typically, we use m well-selected
customers to devise an initial set of “seed” routes, each one consisting
of one customer. Then we proceed by selecting one customer at a time,
which is inserted in one of the m growing routes.

Finally, we have to specify the criteria we use in growing routes. There are
many of them, but we illustrate the two fundamental ones by referring to
figure 8.7.

e The savings criterion. The rationale behind the savings criterion is that
if two customers, say ¢ and j, are served by two vehicles along separate
routes, .the two vehicles have to drive from the deposit to the customer
and back. Hence, the total traveled distance amounts to cg; +c;0 +coj +
c¢jo. If the two routes are merged and the two customers are served by
the same vehicle, the new total length will be cg;+c¢;; +¢;0, with a saving
8ij = cio + co; — ¢;5. Referring to figure 8.7, we cancel the two dashed
arcs, replacing them with arc (i,7). Actually, the argument, as it is
stated, applies only to routes consisting of one customer visit. In fact, it
can be applied more generally, provided that customers ¢ and j are the
first or the last on their respective routes (see figure 8.8; remember that

6This section relies heavily on material from [7].
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Fig. 8.7 Illustrating savings and extra-mileage criteria.

Fig. 8.8 Merging two partial routes by the end points.

we are just considering symmetric problems; hence, being last or first in
the route is actually the same thing). This idea can be used to merge
partial routes together, provided that capacity constraints are satisfied;
according to this metric, we should give priority to the merger with the
largest saving. Another relevant point is that by merging routes, we
decrease the number of required vehicles.

The extra-mileage criterion. We have already met the extra-mileage
criterion when discussing insertion-based heuristics for TSP (see section
8.2.2). Here the idea is inserting customer k on the path from customer
i to j, incurring an increase of the route length given by e;n; = cir +
ck; — ¢ij. Referring again to figure 8.7 (right side), we get rid of the
dashed arc and insert two arcs, in such a way that extra mileage e;; is
minimal.
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Table 8.1 Distance matrix and customer demand for example 8.4

c; 0 1 2 3 4 5 6 7
0 - 4 2 4 3 3 5 6
1 - 2 7 4 6 5 3
2 - 5 4 4 3 4 i 1 2 3 4 5 6 7
3 -3 1 6 9
i P di 9 6 14 8 9 6 5
5 - 5 8
6 -5
7 -

Table 8.2 Savings matrix for example 8.4

rij 1 2 3 4 5 6 7
1 - 4 1 3 1 4 7
2 -1 1 1 4 4
3 - 4 6 2 1
4 3 1 2
3 - 3 1
6 - 6
7 -

To illustrate the concepts above in a concrete setting, we may describe an
early algorithm for VRP, known under the names of Clarke and Wright.” The
method is based on the savings criterion, and it is a parallel algorithm of the
first type, i.e., it is based on the coalescence of smaller routes.

Example 8.4 Clarke-Wright's algorithm is best illustrated by a small ex-
ample, whose input data are displayed in table 8.1. The distance matrix is
symmetric and we assume that vehicles’ capacity is 20. To begin with, we
may compute a savings matrix, with an entry for each pair of customers; the
result is reported in table 8.2. Since we always join customers when they are
placed at an endpoint of a route, this savings matrix can be computed once
for all. Actually, not all of its entries are relevant: For instance, customers
1 and 3 cannot be served by the same vehicle, because their total demand is
9 + 14 = 23, which exceeds vehicle capacity. The starting set of routes is

(0,1,0: (0,2,0); (0,3,0); (0,4,0); (0,5.0); (0,6,0); (0,7,0).

"See the original reference [8].
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We see from table 8.2 that 7 is the largest saving, and it is obtained by joining
customers 1 and 7, leading to the new set of routes:

(0,1,7.0); (0,2,0); (0,3,0): (0,4.0); (0,5,0); (0,6.0).

Then the table shows that two savings amount to 6, but the one associated
with customers 3 and 5 is not compatible with vehicle capacity. We should
check if joining customers 6 and 7 is feasible, since the latter customer is
already on the same route as customer 1; the total demand for these three
customers equals the vehicle capacity; hence, we may get rid of customers 1,
6, and 7. Now, current routes are

(0,1,7,6.0): (0,2,0); (0,3,0): (0.4.0); (0,5.0).

The best feasible option is merging customers 4 and 5. with a saving of 3.
Joining them, we get

(0,1,7,6,0); (0.2,0): (0.3.0); (0.4,5,0).

Now, neither customer 2 nor customer 3 fits the route (0,4,5,0); all we can do
is merging customers 2 and 3, which yields the final set of routes:

(0,1,7,6,0); (0,2,3,0); (0.4,5,0). 1

Clarke and Wright’s algorithm is conceptually quite easy, and it played a
prominent historical role, but it suffers from a few limitations. To begin with,
when we merge routes, we do so only by joining a pairs of customers at the
endpoints of their respective route (see figure 8.8). Maybe, inserting new
customers in arbitrary points of a route could be advantageous. Furthermore,
there is no control over the number of routes we end up with; in the example
above, we could not use less than three vehicles anyway, but in general, if we
have a given number of vehicles and we have to serve all of the customers in
parallel, we would like to make sure that the number of routes is kept under
control.

We can also exploit the ideas behind the insertion-based heuristic for TSP
(see section 8.2.2) to come up with a sequential algorithm based on extra
mileage. The idea is growing one route by inserting one customer at a time; the
customer and its insertion point are determined by minimizing extra mileage,
provided that the vehicle capacity constraint is satisfied. The current route
may be closed when there is no way to insert any other customer; then we
start again with a new route. A potential weakness of such an idea is that, in
order to saturate the current route, we could be forced to add a very distant
customer. This may happen if there is a small residual capacity on the truck
and the only customer with a small demand, fitting the residual capacity, is
really far from the cluster of customers in the current route. This may be a
good reason to prefer a parallel approach, in which we select which customer
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to insert, on which route, and at which point. If we wish to use m vehicles, it
is natural to start from m seed routes, each consisting of one customer. We
can grow the routes using the extra-mileage criterion; this way, we can control
the number of vehicles we use (assuming we can serve all of the customers
with that number of vehicles). If there is a fixed cost associated with each
vehicle, we may change the number of seed routes, trading off the number of
vehicles against total distance traveled.

A common issue with parallel approaches of the second kind is the selec-
tion of seed customers. A sensible rule is that they should be distant from
the deposit and distant from each other. The rationale behind the first re-
quirement is that distant customers are an inconveniency, but they must be
served anyway; it is better to include them in a route immediately, in order
to avoid late insertions that may generate a large increase of the route length.
Furthermore, it is natural to think that if customers are far away from each
other, they are best served by separate routes. Hence, let us denote by o,
j = 1,...,m, the seeds to initialize the desired m routes. The first seed
is selected by maximizing its distance from the deposit. Then, after having
selected the first k seeds, the next seed o1 is found by solving

mlaxmln {cios Cioys Ciiogsvvs Cion ) (8.3)
In plain terms, the new seed maximizes the minimum distance between itself
and the deposit and the other seeds. The idea is illustrated in figure 8.9,
under the assumption of Euclidean distances. Customer 1 is the first seed
we would select, since it is the farthest one from the deposit. Customers 3,
4, and 5 do not make good seeds because they are close to the deposit. The
next farthest node in the network is associated with customer 2. However,
this node is close to customer 1; it is reasonable to assume that they will be
served by the same route. The second seed we should select is customer 6,
which is far from both node 0 and node 1. Of course, this is just a sensible
heuristic, which only considers distance. One could also consider demand size
with respect to vehicle capacity: It may be not advisable to leave customers
with large demand to late insertions, as they may be hard to fit to residual
capacity.

We see that there is room for a large variety of combinations of heuristics
principles. Since we may grow routes using extra~-mileage or savings criteria, a
natural question is whether one of them performs best. As expected, there is
no easy answer, and the result may depend on the problem instance. To get an
intuitive feeling for the underlying issues, we may have a look at picture 8.10,
which illustrates a rather artificial but instructive example (see [7]). We have
four customers, located on an equilateral triangle; here we consider Euclidean
distance, i.e., we assume that the distances we see in the drawing correspond
to the real ones. Each customer demand is 1, and vehicle capacity is 2; so, each
route should serve two customers. If we start with four separate one-customer
routes, and we merge them in parallel using a savings criterion, we end up with
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Fig. 8.9 Selecting seeds for parallel constructive heuristics.

10

Saving criterion: total length 42

Extra-mileage criterion: total length 40

Fig. 8.10 Alternative criteria to merge routes (case 1).
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Extra-mileage criterion: Saving criterion:
total length 40 total length 35

Fig. 8.11 Alternative criteria to merge routes (case 2).

the solution illustrated in the upper part of figure 8.10, with total length 42.
Note that the largest saving (10410 — 10 = 10) is obtained by joining the two
farthest customers; this leads to a long an “circumferential” route. If we use
extra mileage. e.g., starting from two seed routes associated to the farthest
customers, we get the solution in the lower part of the figure, with total
length 40; this happens because we can serve the two closer customers with no
extra mileage. In this problem instance, the extra-mileage criterion performs
better, but if we shrink the bottom angle and reduce horizontal distances in
the triangle, as illustrated in figure 8.11, we get a different conclusion. In this
second case, we still get total length 40 when using extra mileage, whereas
the saving criterion yields a solution with total length 35. By the way, this
second solution has lower total length, but it could be unsatisfactory in terms
of workload balance: One driver gets a much easier task than the other one,
an issue that we do not consider here, but may play a very important role.
This example is clearly artificial, but it helps in building intuition about the
qualitative properties of routes developed using the two criteria. We see from
figures 8.10 and 8.11 that saving yields “circumferential” routes. This happens
because the savings criterion may consider joining far customers attractive.
In fact, Clarke and Wright’s algorithm was included in an early software tool
for VRP, developed by IBM in the 1970s. This package, called VPSX, was
sometimes criticized by practitioners just because of the circumferential nature
of proposed routes. On the contrary, when looking for small extra-mileage, it
is natural to get more “radial” patterns.

The bottom line of the discussion so far is that it may be difficult to devise a
robust method based on a single heuristic principle. Occasionally, any heuristic
may yield a very poor solution. One way out of this difficulty is combining
heuristic principles, possibly introducing one or more parameters which may
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be adjusted as needed. One such idea is introducing a modified saving
§ij = S8ij — Qcijq

where the parameter § tends to penalize the inclusion of long arcs in the
route, even if they yield large savings. This may prevent the creation of too
circumferential routes. This is a simple example of parameterized criterion,
and quite complex criteria have been proposed in the literature. Choosing the
right value of one or more parameters is a tough task, but since constructive
heuristics are quite fast, probably the best idea is simply using brute force
and running the heuristic for several values of the parameter, keeping the best
solution. Then, the solution can be further refined by local search.

8.3.2 Decomposition methods for VRP: cluster first, route second

VRP is a twofold problem with a clustering component (i.e., assigning a group
of customers to each vehicle) and a routing component (i.e., finding the best
route for each vehicle). Since the second problem dimension boils down to
a set of TSP problems, which we may deal with rather effectively, the idea
of decomposing the overall problem into two subproblems is quite natural.
Various decomposition methods have been proposed and can be classified
into two broad categories:

1. In route-first, cluster-second methods we first find one tour covering
all of the customers, e.g., using some TSP solution method; then, we
partition the resulting tour into routes compatible with vehicles’ capac-
ity.

2. In cluster-first, route-second methods we first assign customers to
vehicles, subject to capacity constraints, and then we solve one TSP per
vehicle.

Here we outline a couple of possible implementations of the second principle.

An early and intuitive sequential decomposition method, due to Gillett and
Miller,® is called the sweep method. The approach has a strong geometric
motivation, which is illustrated in figure 8.12. We draw a ray from the de-
posit, and we rotate the ray clockwise or counterclockwise; in doing so, we
“sweep” customers in an order depending on their location. Whenever the
ray passes over a customer, this is included in the current cluster and the pro-
cess continues until we find a customer which cannot be fitted to the residual
vehicle capacity. Then we form a cluster by grouping the “swept” customers;
we route this subset of customers by solving the corresponding TSP, and we
proceed by forming and routing the next cluster. We see that this approach
is sequential in nature, which means that we have no control over the number

8See the original reference [11].
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Fig. 8.12 Applying the sweep method to a Euclidean VRP.

of routes we will end up with; maybe by swapping and reassigning customers
between clusters, we could reduce the number of routes. However, even if
there exists a set of feasible routes involving a given number m vehicles, there
is no guarantee that we will be able to find it. A further limitation of the
approach is that it relies on a geometric argument; figure 8.12 should be re-
ally interpreted as a map of customer locations. If distances between nodes
are strongly related to the Euclidean distances between points on the map,
the result may be satisfactory. However, if the nature of terrain and roads is
such that Euclidean distances are not closely related to actual distances, the
quality of results could be low.

More recent and sophisticated decomposition-based methods have been
proposed to overcome the limitations above, by exploiting partial mathemat-
ical modeling of VRP. Modeling the VRP by integer programming is possi-
ble, but not effective, unless nontrivial modeling and solution approaches are
adopted. However, we may build a partial model, e.g., in order to assign
customers to vehicles, leaving the routing task to a TSP solver. We illustrate
here an idea due to Fisher and Jaikumar [10], which exploits a prototypical
combinatorial optimization model known as generalized assignment. In this
problem we are given a set of n jobs which must be carried out on a set of m
machines (typically, m < n). Machines need not be identical: For each pair
congisting of job ¢ = 1,...,n and machine k = 1,...,m, we have a processing
time p;r and a cost ¢;x. We would like to carry out the whole set of jobs at
minimal cost, but we might not be able to assign each job to the cheapest
machine, because of capacity constraints: Each machine k is available for Ry,
time units. We can build an integer programming model by introducing a set
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of binary decision variables y;x, set to 1 if job ¢ is assigned to machine &, 0
otherwise:

n m
min Z Z CikYik (8.4)

i=1 k=1
m

s.t. Zyikzl, i=1....n, (8.5)
k=1
Zpikyik SRks k= ]-7"",m', (86)
i=1
Yik € {0 1}

The objective function (8.4) is total cost; constraint (8.5) makes sure that each
job is assigned to exactly one machine, and (8.6) is the capacity constraint for
each machine. This literal description of generalized assignment leaves room
to many interpretations. In the VRP case, we may interpret jobs as customers
to be served and machines as vehicles. So far, we have assumed that vehicles
are identical, and we stick to this case denoting the vehicle capacity by R;
however, we see an immediate advantage of this approach, which helps in
getting rid of many limitations. We may also include restrictions on the type
of vehicle that can be used to serve a customer (e.g., because large trucks
cannot be used in old town centers). Denoting the demand from customer ¢
by d;, in principle we can write the following model:

min > flyx)
k=1

s.t. Zyikzl, 1=1.....n,
k=1

vir € {0, 1}

This is just a generalized assignment problem with a weird objective function.
Here vector yj consists of all of the decision variables y;; associated with
vehicle k. From a conceptual point of view, we may imagine a function f(yx)
which yields the optimal tour length obtained by solving to optimality a TSP
restricted to the customers assigned to vehicle k. If we were really able to write
such a function analytically, the model above would be a working model for
VRP. Of course, we are not that lucky, but we can try to approximate function
f(-} in a way which is suitable to solution by linear integer programming:

n

flyr) = Z GikYik-

i=1
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The parameter g;x should be an approximation of the cost of assigning cus-
tomer 4 to vehicle k. Clearly, such a linear function cannot really capture
the interactions among various assignments, which influence each other when
solving the TSP. However, we can try to find a suitable value if we assume
that a set of m customer seeds is given. Such seeds play the same role as in
constructive parallel heuristics of type 2 (i.e., those based on growing a given
number of routes), and they could be selected by the logic behind expression
(8.3) on page 418; we select m seeds by finding a subset of m customers which
are far from the deposit and far from each other. Given the seeds, which are
associated with the m routes, we may estimate the cost of inserting customer
i in any route by computing the extra mileage with respect to the deposit 0
and the seed o (k =1,...,m) of that route:

ik = C0i t Ciop — CO,0%-

Now that we have a linear approximation of the TSP cost, we may solve the
generalized assignment problem by branch-and-bound, or by ad hoc methods
if problem size precludes using a commercial integer programming package;
then we solve one TSP for each vehicle. A noteworthy feature of the approach
is that if there exists a feasible solution using m vehicles, we will find one;
constructive heuristics do not offer such a guarantee. Another important
remark is that the generalized assignment formulation, as we have already
pointed out, can be extended to cope with heterogeneous vehicles and to
model some additional constraints on the vehicles that can be used to serve
a customer (some goods need freezer trucks, or separate sections because of
mutual incompatibility; for instance, think of food and chemicals).

A later extension of the generalized assignment approach was proposed by
Bramel and Simchi-Levi [6], in order to avoid the a priori selection of seeds.
In order to integrate seed selection with customer clustering, they proposed
a concentrator location formulation. Let us introduce the following decision
variables:

L2 if customer j is selected as a seed,
7710 otherwise;

yi = { 1 if customer ¢ is assinged to a route, whose seed is customer j,
i 0 otherwise.

We also need the cost coeflicients:
9ij = Coi + Cij — Coj, vj = 2¢o;.

The first cost is a familiar extra mileage, whereas the second one is associated
to the selection of customer j as a seed; the cost is approximated by the
distance of a round trip from deposit to customer j and back. The resulting
optimization model is

min ZZ%%J‘ + Zvjzj (8.7)
j=1

i=1 j=1
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s.t. sz =m, (8.8)
j=1

n
i=1
n
yy=1. i=l...n (8.10)
J=1

Yijs 25 € {0.1}

The objective function (8.7) is total cost; constraint (8.8) enforces the selection
of a given number m of seeds; constraints (8.9) and (8.10) are essentially
the same as the generalized assignment formulation; finally, constraint (8.11)
states that if customer j is not selected as a seed, we cannot assign any
customer i to it (i.e., to the route associated with seed j).

8.4 ADDITIONAL FEATURES OF REAL-LIFE VRP

In the previous section we have considered solution approaches for the basic
VRP. Typical routing problems have several additional features that make
their solution a bit tougher, even though the heuristic principles we have just
outlined can be adapted. In the following list, we illustrate a few of these
complications.

e In the basic VRP, given a set of customers along with their demand, we
have to build a brand new set of routes; if the demand pattern changes,
the set of routes may change as well. From an organizational point of
view, this may be an inconveniency. Hence, at a more tactical level, one
may try to come up with a set of fixed routes which are traveled several
times. Such fixed routing problems may also be formulated and solved
in the case of uncertain demand.

e We have taken the number of vehicles as given (or irrelevant). In fleet
planning problems, the aim is sizing a fleet of vehicles. This type of
problem is also relevant in point-to-point transportation.

e We have considered a static, deterministic, and single-period problem.
Depending on the practical context, uncertainty may affect travel times
and/or demand. One simple approach to tackle the first source of un-
certainty would be introducing slack time by judiciously overestimating
travel times. Demand uncertainty can be tackled by similar means.
However, the real issue is arguably the real-time management for such a
problem; this calls for efficient real-time data collection and an effective
organization in order to adapt routes and delivery on-the-fly. Dealing
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with uncertainty may result in a tough, dynamic and stochastic problem.
Even if we rule out uncertainty, we may have to cope with a multiperiod
problem, whereby we have to develop routes for a few consecutive peri-
ods; as we have already noted in the book, multiperiod problems need
not be dynamic in the sense of adapting to uncertain events.

We have considered a symmetric distance matrix, whereas sometimes
the underlying TSP structure is asymmetric. Apart from adjustments
in solution algorithms, a difficult issue is filling the matrix with reliable
data. In the past, one possibility was computing plain Euclidean dis-
tances and then inflating them by coefficients modeling the difficulty of
the terrain. Given technological advancement, geographic information
systems are now typically exploited to this aim. This can also be done
at the single customer address level, e.g., analyzing the ZIP code, by a
process called geocoding.

The maximum tour length in terms of time and space may be a con-
straining factor, and not only capacity. Capacity is actually multidi-
mensional, involving both weight and volume, potentially for separate
parts of the truck, such as refrigerated and nonrefrigerated. Exploit-
ing the available volume is an optimization problem in itself, for which
software packages have been developed. We should emphasize however,
that such an optimization is desirable for point-to-point service, but it
may get into the way of unloading stuff in multiple delivery problems
such as VRP: Having fully loaded the truck is of little use, if the parcel
of the first customer in the route lies at the unreachable bottom of the
truckload.

The objective function of a real VRP may involve multiple costs, and
not only distance. Some desirable features of a route may hardly be
expressed in monetary terms. If not all of the customers can be ac-
commodated for delivery today, we must decide which ones will be
served tomorrow. Moreover, overtime driver cost may by quantified,
but workload balance issues in human resource management may be
hardly turned into a cost. The flexibility of local search in dealing with
complex objectives may be used to advantage.

We may have multiple deposits and heterogeneous vehicles (possibly
with separate sections). Cluster-first, route-second methods may be
adapted in some cases.

In inventory routing problems, vehicle routing is coupled with in-
ventory management. In basic VRP, we consider customer demand as
given; but if inventories are taken into account, a brand new dimension
is open, offering both degrees of freedom and additional complexity. If
inventory is available at customer nodes, we may better manage vehicle
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capacity, by delivering flexible quantities depending on current inven-
tory state. We may also better cope with demand uncertainty. The
price we pay for such opportunities is the difficulty of the integrated
problem.

e Last but not least, delivery may be subject to time windows, linked
to traffic conditions, customer’s requirement, or to the availability of an
unloading bay. This places additional constraints on solution methods.

Given all of these complexity factors, the staggering amount of scientific lit-
erature on VRP is no surprise. One way to cope with real-life VRPs is to
extend and adapt the heuristic principles we have briefly illustrated. Local
search approaches are certainly an interesting way to tackle generalized ver-
sions of the basic VRP. However, sometimes constraints are so tight that even
finding a feasible solution is difficult. In this case, sophisticated mathematical
modeling and solution approaches can offer some advantage. Since this level
of sophistication requires advanced optimization concepts, in the next section
we just offer some clues on how constructive heuristics can be extended to
cope with time windows. Whatever solution approach we take. we should
bear in mind that real-life VRPs may be subject to significant uncertainty
and ill-defined objectives linked to human factors: hence, solution approaches
must be cast within a well-designed decision support system.

8.4.1 Constructive methods for the VRP with time windows

In the VRP with time windows,? each customer ¢ = 1....,n is associated
with an interval [e;, [;], whose endpoints are the earliest time and the latest
time for the start of service (in our case, unloading the vehicle). In practice,
multiple time windows may be associated with a single customer. Let s; be the
duration of service and ¢;; be the time to travel from customer i to customer
j. If the vehicle arrives early with respect to the time window, then it must
wait. Hence, if b; denotes the start of service for customer i, and the vehicle

visits customer j after customer 7 a j, we have
b; = max{ej, b; + 8¢ + tij}.

In the basic VRP we were deliberately ambiguous in using a “cost™ ¢;; which
could be related to space. or time, or a mixture of both. For the VRP with
time windows, we must take both time and space into account; we will denote
the distance between customers ¢ and j by g;;.

Based on our knowledge of constructive heuristics, one of the first ideas
that may come to our mind is to build routes sequentially, using an extension
of the nearest-neighbor TSP approach. In this case, “nearest” mixes both

9This section is based on [17], to which we refer for a full treatment.
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space and time considerations. We recall that in this algorithm customers are
always appended at the end of the growing route, which may be a limitation.
Let ¢ be the last visited customer; we must define a hybrid measure ¢;; of
“closeness” between i and j. One possibility is the following:

cij = M@iy + A2 Ti; + Asviy,
where:

e the weights A; are non-negative and sum up to one (actually, we must
just give two weights);

® g;; is the distance between customers ¢ and j;

e the quantity
Tij = bj — (b1 + Si)

takes into account the time difference between the end of service at 7
and the beginning of service at j (if j follows ¢ on the route);

e the quantity
Vij = lj - (bi + s; + tij)

measures the time slack we still have for service at customer j, i.e., how
much time remains to the end of its time window (the smaller v;;, the
more urgent it is serving j after i; hence, this factor works in the same
way as the previous two in making service of j after i desirable).

This generalized metric is used as a simple priority rule to append customers
to the current route. When no more customers can be appended, because the
vehicle is full or no time window is compatible, we close the current route and
start a new one. Clearly, we have no direct control on the number of routes
we build, and the algorithm looks quite greedy. In any metric depending on
weights, parameter fine-tuning is an issue. However, in this case we just have
to select a combination of two parameters ranging between 0 and 1; since a
greedy procedure is very fast, we may simply carry out a grid search, trying
several weight combinations and plucking the best solution found.

Given the already familiar limitations of nearest-neighbor, we may consider
adapting insertion-based heuristics. Consider a partial route 0,41, 142,. .., tm, 0,

starting and terminating at deposit 0. We may work at two levels:

1. For each unrouted customer u, we compute the best insertion point in
the partial route (provided vehicle capacity is not exceeded), according
to some metric.

2. We select the best customer to insert, applying some metric, which need
not be the same as in the previous point.

We should note that inserting a customer my imply a time shift for all of the
following customers along the route.
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To evaluate the opportunity of inserting customer u between ¢ and j., we
can adapt the following metric (which should be minimized to find the best
insertion point):

C1 <Z~ uj) - Ot(%‘u + Guj — /MZZ]) + (1 - a)<bju - b])

where o and 4 are parameters to be chosen. The parameter o must be selected
in the range [0, 1] and controls the relative weight we assign to space vs. time
considerations. In fact, the first term in the sum is linked to extra mileage;
indeed, it is be the familiar extra mileage if x = 1. The additional parameter
1 allows for extra fine-tuning of the heuristics; actually, such coefficients are
common in variations of insertion heuristics for TSP. The second term includes
the difference between the new start time of service at customer j, if we insert
u, denoted by b;,, and the current start time b;. This term tries to capture
the time shift effect due to insertion, provided that the insertion is feasible
with respect to time windows.

To select the customer u to insert, given the best insertion point above. we
may consider the following metric (to be maximized):

CQ(i, u‘,j) = /\QOu - Cl(i‘, utj)f

where A is a parameter to be chosen. If we select parameters 4 = o = 1 and
A = 2, this metric measures the saving in terms of traveled distance if we serve
customer u between ¢ and j rather than serving u directly from the deposit.
An alternative choice is

ealiyu,j) = BRq(u) + (1 — 8)Ri(u),

where Rg(u) and R;(u) are total distance and total time of the current route
if we insert wu, respectively; the parameter 3 must be selected in the range
[0.1] and has essential the same meaning as the parameter o above. This
metric, which should be minimized, tries to capture more fully the effect of
the insertion.

These very simple rules, and related variants, have a definite advantage
in terms of CPU time and conceptual simplicity. They might not be very
effective in tightly constrained problems. If we do not want to resort to
complex mathematics, we could also consider local search algorithms, but
there are additional complications when we try to apply something like a
2—opt neighborhood structure to a VRP with time windows. When we delete
and cross a pair of arcs, we invert the direction of some part of the route; this
is irrelevant in terms of distance, provided that the problem is svmmetric,
but it is definitely relevant in terms of time windows. Nevertheless, many
clever approaches have been proposed over the years, which are described in
the references listed at the end of the chapter.
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8.5 FINAL REMARKS

In this chapter we have considered basic VRP as a straightforward extension
of classical TSP. The interest of these network routing problems has spurred
a significant amount of work, which is documented by a vast literature where
a wide array of methods is presented. It is hard to tell if there is one best ap-
proach. On the one hand, very sophisticated mathematical approaches have
been developed, and despite technical intricacy, their potential for economic
impact must be carefully considered. On the other hand, the variety of con-
straints and complicating features has led software developers to privilege
simpler and possibly more adaptable approaches. What we tried to accom-
plish in this chapter is just to get the reader acquainted with the conceptual
foundations of these approaches.

We should also raise a couple of general points, whose practical importance
cannot be overemphasized. The first one is that we have considered VRP as
an off-line scheduling problem. In practice, disruptions and uncertainty are a
way of life; hence, it is essential to develop suitable user interfaces to manage
such situations. Such decision support systems must also rely on proper data
collection from the field; new satellite-based technologies are being exploited
for this task. Last, but not least, we have just considered cost minimization.
Environmental issues should remind us that proper transportation manage-
ment and organization has a significant impact, which goes beyond the bottom
line of a single firm.

8.6 FOR FURTHER READING

o We did not consider mathematically sophisticated approaches to solve
the TSP, which include branch and bound methods based on Lagrangian
relaxation (i.e., the relaxation of complicating constraints by Lagrangian
multipliers; see section B.4) and branch and cut methods (i.e., branch
and bound methods in which constraints, i.e., cuts, are added to strength-
en the lower bound we get from the continuous relaxation; see section
B.6.1). A not-so-recent, but still relevant reference book is [14].

e An overview of local search methods for combinatorial optimization can
be found in [1]; a recent survey is [5]. A specific reference on tabu search
is [12]; see [15] for an application of GRASP to the TSP.

e An excellent survey on early approaches to VRP can be found in [7],
from which we have taken part of section 8.3 (in particular, the examples
and the discussion associated with figures 8.10 and 8.11).

e A more recent survey, which also includes approaches based on mathe-
matical programming, can be found in [9]. See also [19].

e For VRP under uncertain demand see, e.g., [4].
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e For a complete description of simple heuristics for VRP with time win-

dows, see [17]; we have just hinted at a few basic concepts in section
8.4.1.

e Some commercially available software packages for VRP are just based

on principles we have outlined, but the complexity of real-life VRP can
only be appreciated by having a look at the data requirements to define
a problem. Many complicating constraints must be addressed. and the
data we have taken for granted, such as the distance matrix, may require
a link to a geographic information system. For instance, you can have
a look at the web site http://www.bestroutes.con/

o Many commercial tools of VRP are “closed” products. There is also

the possibility of using software components to tailor a specific applica-
tion. This is the approach taken by the ILOG Dispatcher library (see
http://www.ilog.com/)

e For routing applications in transportation by aircraft or railway, see {2]

and [13], respectively.
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Appendix A

A Quick Tour of
Probability and Statistics

The tools of Probability Theory and Statistics are essential in formulating
and solving several problems in Distribution Logistics. The main reason for
this need is uncertainty in demand, even though other uncertain factors that
may affect a supply chain are lead time, price, and exchange rates in an
international context. This appendix aims at recalling, in a reasonably concise
manner, the fundamental concepts that we use in the main body of the book.
It goes without saying that we do not intend the following treatment as a
substitute for a serious study of the matter, which is often subtle and requires
nontrivial concepts for a deep and thorough exposition. Hence, we illustrate
the main ideas by examples, including some counterexamples whose purpose is
to point out some potential traps of intuitive thinking, to show some common
misunderstandings, and to underline some pitfalls of the most used tools. We
refer the interested reader to the references for a deeper and more rigorous
treatment.

The probability of an event is a fairly intuitive concept; it may refer to the
frequency at which a random event occurs, or it may stem from a subjective
assessment. For instance, characterizing demand uncertainty for a brand new
product may require a different approach than for a well-established one. with
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a long history of sales. In the axiomatic approach to probability theory, in
order to provide a sound foundation, a sample space is defined and proba-
bilities are associated with subsets corresponding to events. These concepts
are introduced in section A.1. Given this conceptual framework, section A.2
introduces the fundamental ideas of conditional probability and independent
events. Then, we proceed to treat random variables, both discrete (section
A.3) and continuous (section A.4), and to describe some common probability
distributions such as geometric, binomial, Poisson, exponential, and normal.

The generalization to the multivariate case of jointly distributed random
variables is the subject of section A.5, which is then expanded in section
A.6, where we deal with fundamental issues such as independence between
random variables, conditional expectation, covariance, and correlation; we
also introduce useful distributions which are built on the basis of the normal,
such as chi-square and Student’s ¢, as well as the central limit theorem.

When we consider jointly distributed random variables, we may think of
random realizations of different phenomena at the same time (e.g., sales of
different items in the same week) or successive realizations of the same phe-
nomenon over time (e.g., sales of the same item over a range of time periods).
The last idea leads us to the concept of a stochastic process, which is briefly
described in section A.7.

In probability theory, we assume that a large body of knowledge is available,
and we ask possibly complex questions about expected values, probabilities,
etc. In practice, such knowledge is a scarce commodity, and we must extract
it from empirical data. Then, on this basis, we may also try to come up
with inferences about unknown parameters or forecasts. This leads us into
the realm of Statistics, which rests on the theory of probability, but it is the
empirical side of the coin. We will deal with the most relevant topics for our
applications, such as parameter estimation and confidence intervals (section
A.8), hypothesis testing (A.9), and simple linear regression (A.10). These
concepts play a key role in demand forecasting. The aim of simple linear
regression is to use one variable to explain the behavior of another variable of
interest. Of course, one can use multiple explanatory variables; this leads to
multiple linear regression, which is the topic of web section W.A.11.

In this appendix we illustrate more ideas than we actually use in the main
body of the text. One good reason for doing so is to provide the reader with
a stronger background. Another reason is to pave the way for more web
supplements, that we will include over time in the book web page.

A.1 SAMPLE SPACE, EVENTS, AND PROBABILITY

The starting point in defining probability according to the axiomatic approach
is a sample space, which we denote by , representing the set of possible
outcomes w € {2 of a random experiment or of a sequence of random experi-
ments. Intuitively, an event is something that, depending on the outcome of
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the random experiment, may happen or not. Formally, an event E is a subset
of the relevant sample space: note that an event need not be a single element
of the sample space, which is just a particular case.

Example A.1 The best-known example is dice throwing. When throwing a
dice, the outcome will be an element of the following sample space:

0 ={1,2,3,4,5,6}.

The definition of events depends on our purpose and on what we may know
about the outcome of the random experiment, as our ability to observe results
may be partial. If what we are interested in is just whether the outcome is
an even or an odd number, we define the following events:

Even = {2,4,6}, odd = {1,3,5}.

We see that the two events are subsets of the sample space Q. If we combine
several experiments, by throwing the same dice repeatedly or a pair of dice,
we may define more complex sample spaces and events.

The next logical step is assigning a probability to events. In order to do so in
a consistent way, we would like to be able to work with the following concepts:

e The probability that an event does not occur. To this aim. given an
event E C ©, it is natural to consider its complement £¢ = Q\E.!
With reference to example A.1, Egen = Ogqg-

o The probability that af least one of two (or more) events occurs. In this
case it is natural to exploit the concept of set union.

o The probability that two (or more) events occur jointly. To this aim we
exploit the concept of set intersection.

This allows us to work on events by using elementary set operations, but in
order to do so in a consistent way, we must require some additional conditions.
In fact, we should require that by working with complements, differences,
unions, and intersections of events we get other events. To formalize this
requirement, given a sample space Q, we define a family of events F, i.e.,
a set of subsets of 2. Such a family of events must satisfy the following
properties.”

e If an event is an element of the family F, then its complement is too:
EeF—E°eF.
1The \ operator denotes the difference between two sets: The set B\ A consists of the

elements of B which do not belong to A.
2Technically, these requirements lead us to consider a field of sets.
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Note that Q¢ = 0, and vice versa, which justify the inclusion of the
empty set ) in F.

o If two events belong to F, then their union does too:

E,Ece F—-E1UFE, € F.

e If two events belong to F, the same holds for their intersection:
E,E;e F—ENEecF

If the intersection of two events is empty, i.e., F1 N E; = 0, the two
events are said mutually exclusive or disjoint.

We may extend the above requirements by considering the union and inter-
sections of an arbitrary number of events.

Finally, armed with a sample space {2 and a suitable family of events F,
we may associate a probability measure P(E) to each event £ € F. The
probability measure is a function mapping an event to a real number in the
interval from 0 to 1. The probability measure, together with the other in-
gredients, defines a probability space (£2, F,P). We should note that, given a
sample space, we may define different families of events. The choice depends
on our purpose and on the available information, i.e., what we may observe;
hence, several probability spaces may be defined on the basis of the same
sample space.

The probability measure must satisfy the following conditions:

1. 0 <P(F) <1, for any event E € F;

3. for each sequence of mutually exclusive events E1, Es, E3, .. ., i.e, such
that E; N E; =0, for i # j, we have

P (G Ei> = iP(Ei).

The first and second conditions are fairly self-explanatory: The probability of
an event can be neither negative nor larger than 1, or 100%; the probability
of the sample space is 1, because “something must occur anyway.” To get a
feeling for the third one, let us refer to a pair of disjoint sets E; and E,. In

3From a mathematical point of view, passing from an arbitrary but finite number of events
to an infinite (but countable) family of sets requires some care. We go from a field to a
og-algebra, which is beyond our scope.
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such a case, it sounds reasonable to say that the probability of the union of
the two sets is the sum of the two probabilities:

P(E, UEy) = P(E1) + P(E»).

The third property generalizes the idea and allows us to express the probability
of any event by decomposing it into a set of disjoint events.

Given these basic properties of a probability measure, we can prove all of
the properties, which we intuitively associate to the concept of probability, as
well as some less intuitive ones. We now give a few illustrative examples.

¢ Given the probability of an event E, what is the probability of its com-
plement E€? Since E U E® = Q and the two sets are disjoint, applying
property 3 yields
P(E)+P(E®) =P(Q) =1,

which implies P(E®) = 1 — P(E). This is a rather intuitive property,
but it may be very useful. If computing the probability of an event
is difficult or time-consuming, it may be convenient to compute the
probability of its complement, and then to use the property to get what
we are interested in.

e From elementary set theory, we know that intersection can be expressed
on the basis of union and complement:

(E1NEy) = (ES UES)C.

Hence, the three properties enable us to work with intersection too, i.e.,
the probability that pairs of events occur together. Sometimes, instead
of notation P(Fj N Ey), the joint probability of two events is denoted
by P(E1 . EQ) or P(ElEQ)

e For two overlapping events, we cannot say that the probability of the
union event is the sum of the two probabilities. To see this, consider a
deck of poker cards, and imagine drawing a card at random. What is
the probability of getting a king or a spade? Out of the 52 cards, we
have four kings and thirteen spades, but the answer is not (4 + 13)/52;
we should not count the king of spades twice. In other words, we should
not count the intersection of the two sets twice. Indeed, it is easy to
show that

P(E1 U EQ) = P(El) + P(EQ) — P(E1 n EQ)
We leave this as an exercise. (Hint: Note that Ey U Es = Eq1U(E2\E1).)
o Finally, if Fy C Es. then P(E;) < P(E,) (if E; occurs, then Ey occurs
too for sure, but the converse does not hold). Indeed, in such a case we
may write Eo = F1 U {E2\E). Since the two sets are digjoint, P(Es) =

P(F,) + P(E5\E1), which implies P(Ez) — P(E1) = P(E\E1) =2 0,
proving the claim.
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A.2 CONDITIONAL PROBABILITY AND INDEPENDENCE

When one considers a pair of events, a natural question is whether information
about one of them tells us something about the probability that the other one
occurs. For instance, in the dice throwing case, we know that P(1) = P(2) =
1/6 if the dice is fair. But if we have partial knowledge, e.g., we know that
event Even occurred, we also know for sure that the outcome cannot be 1,
whereas there are increased chances that the result has been 2. As a practical
example, knowing that a customer purchases a certain product may tell us
something about the probability that she will buy another one, particularly if
they are complements or substitutes. A striking example of how past purchase
information can be exploited is familiar to customers of online sellers such
as Amazon.com: After you buy a few books, they are able to send rather
accurate recommendations for related titles, based on observed patterns of
other customers. The formalization of such an idea leads us to the concept of
conditional probability of an event E given the occurrence of another event

G.

DEFINITION A.1 (Conditional probability) The probability of event
E, conditional on the occurrence of event G, is denoted as P(E | G) and is
given by
P(ENG)
As an intuitive justification, if we know that event G has occurred, then we
also know that F occurs if and only if the joint event FNG occurs. Moreover,
G becomes the new sample space, and we have to renormalize the probability
dividing it by P(G) (since this probability is generally less than 1, this amounts
to increasing the ratio). We should note that the definition above makes sense
only if P(G) > 0.
As a simple example, we may compute the conditional probability

. P(QﬂEven) . 1/6 . 1
P(2 [ Even) = P(Even) 1/2 3

In this case, the conditional probability is larger than the unconditional prob-
ability P(2). In other cases, the information on G does not tell us anything
about the probability of E. If throw a pair of dice, the number shown by
one of them does not tell us anything about the other one. In this case
P(E | G) = P(E), i.e., conditional and unconditional probabilities are the
same. This leads us to the property characterizing independent events.

DEFINITION A.2 (Independent events) Two events E and G are said
independent if

P(ENG) = P(E) - P(G).
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We see that the joint probability of two independent events is simply the
product of the individual probabilities. This idea generalizes fairly easily to
an arbitrary number of events, but we believe it is also useful to see the real
meaning of independence in terms of information. If E and G are independent
events, we obtain

P(ENG) P(E)-P(G)

P |6) = Sead = MG )
P(G | E) = Pf(gf) _ P((;)('E};(E) —P(@).

The following examples aim at reinforcing the understanding of this concept.

Example A.2 Two disjoint events cannot be independent. In fact, if we
know that one of them has occurred, we have quite a good amount of infor-
mation about the other one, because its occurrence can be ruled out. Formally,
if ENG =0, we know P(ENG) =0 +# P(FE) - P(G); moreover, P(E | G) = 0.
By the same token, if G C F, the two events cannot be independent. since
if G occurs, then £ occurs as well. Formally,
EnG) PG)

_P(ENG) _P(O) _
PEIG="pE ~pe) ~ " ]

Independence is a concept that can be extended to several events.

DEFINITION A.3 FEvents Ey, Fq..... En are said independent if, given
any arbitrary subset E;, . E;,,.... E;  of this family of events, with m < N,
we have

P(E;, NE;,N...0E; )= P(E;,) P(Ej,) - P(Ej,).

We should stress that the meaning of the above definition is that knowledge
about any subset of events does not tell us anything about the remaining ones.
We should also stress that the definition requires that joint probabilities may
be factored into the product of individual probabilities for any subset of the
given family. Intuition may be misleading. For instance, it is tempting to
think that if all events are pairwise independent, then they are independent,
but this is false in general. The example below illustrates this point.

Example A.3 Let us consider three pairwise independent events. A simple
example is provided by the draw of an integer number between 1 and 4,
assuming that the four outcomes are equally likely. We see that the events
A={1,2}, B={1,3}, C = {1,4} have the same probability, 1/2. Tt is also
easy to see that these events are pairwise independent:
P(ANnB) =1/4=P(4) P(B),
P(ANC)=1/4=P(A) - P(C),
P(BNC)=1/4=P(B) -P(C).
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H, H, H,

Fig. A.1 Partitioning an event into disjoint subsets.

However,
P(ANBNC)=P{1}) =1/4 #P(A)-P(B) -P(C).

To really get the point, it is useful to reason in terms of information and
conditional probabilities. For instance, P(A | B) = P(4) = 1/2, because
knowing that B occurred does not provide us with any additional information
about occurrence of event A. However, P(A | (BNC)) =1#P(A)-P(BNC),
because if we know that the event (B N C) occurred, then necessarily the
number 1 has been drawn, so A occurred for sure.

Consider a finite partition of a sample space €1, i.e., a set of events
{Hl-, H2eH37 .- 7Hn}

mutually exclusive (empty intersections) and collectively exhaustive (their
union yields ); formally,

HiNH;=0, fori#j, and |JH;=0

i=1

Any event E can be partitioned too, on the basis of the partition of ©, by
putting together intersections of the form E N H;. Clearly,

E= O(EHH,»).
i=1

This idea is illustrated in figure A.1. Since the elements of the partition are
disjoint, given the third property of a probability measure, we have

P(E) = Zn:P(EmHi).
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If we rewrite this sum in terms of conditional probabilities, extending the idea
to an infinite countable partitioning, we get the following useful theorem.

THEOREM A.4 (Theorem of total probabilities) Consider a partition
of a sample space €, i.e., a family of mutually disjoint and collectively exhaus-
tive subsets Hy, Hy, Hs,.... Then, for any event E C Q, we have

P(E) =Y P(E | H;)P(H,).
i=1

The following example shows how the theorem can be used to compute prob-
abilities by conditioning.

Example A.4 A lazy professor, rather than administering serious exams,
adopts a multiple choice quiz. Actually, even if a student gives the correct
answer, there is still no guarantee that he really knows the subject, because
he may try a random answer and succeed by sheer luck. Let m be the number
of multiple answers and let p be the probability that the student knows the
exact answer (hence, 1— p is the probability that he will take his chances with
a random answer). Let K be the event “the student knows,” and let OK be
the event “correct answer.” Assuming that when the student tries at random,
any choice is equally likely, we may write

P(K) =p.
P(OK | K) =1,
P(OK | K€) = 1/m.

However, in order to understand if the test is reliable enough, what we would
like to assess is the conditional probability P(K | OK). To this aim, we may
use the theorem of total probabilities as follows:

P(K N OK)
P(OK)

P(OK | K)P(K)

P(OK)

P(OK | K)P(K)
P(OK | K)P(K) + P(OK | KC)YP(KC®)
p _ . mp

Lp+(1/m)(1—-p) 1+ (m-1p
where the first two lines follow by definition, and the third line results from
applying the theorem of total probabilities. Note that we assume P{OK |

K) =1, i.e., we disregard the impact of emotional factors. For instance, if
p=1/2and m = 3, then P(K | OK) = 3/4. 0

P(K | OK) =

In tackling the previous example, we have actually proved a particular case
of the following Bayes’ theorem.
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THEOREM A.5 (Bayes’ theorem) If Hy, Hy, Hs. ..., H, is a partition
of the sample space Q and E is an event, then the following holds:

P(E | H;)P(H;)
>y P(E | Hj)P(H;)'

P(HHE):

A.3 DISCRETE RANDOM VARIABLES

When working with events, we basically ask questions whose answer may be
“yes” or “no” (e.g., did we meet all customers’ demand this week?) and we
reason about the probability of each answer (what is the probability that we
will not lose customer orders during the next couple of months?). Sometimes,
we may also need more quantitative answers; this is the case, e.g., when we
want to forecast future demand in order to properly plan inventories and we
also need some measure of confidence in such a forecast.

Formally, we should associate numerical values to events. The case of
dice throwing is very simple, since the outcome of the random experiment is
naturally linked to the number shown by the dice. More generally, a ran-
dom variable is a function mapping the events within a probability space
to numbers. If the possible numerical values are a discrete finite set or the
set of integer numbers, we speak of discrete random variables. In logistics,
discrete random variables yield suitable models to capture the variability of
demands for items which are naturally sold in discrete units and relatively
low volumes (e.g., expensive spare parts for large equipments or slow-moving
items). When the demand volume is large, even if the goods are sold in dis-
crete units, a continuous model may be a reasonable approximation; we deal
with continuous random variables. which are functions mapping events to real
numbers, in the next section.

In mathematically inclined books, the notation X (w) is often used in order
to point out that a random variable is a function mapping events to numbers.
We will not be that rigorous, but the least we can do is to distinguish very
clearly a random variable from its realization, i.e., the numerical value taken
by the random variable. To this aim, we mostly follow the typical notation
whereby capital letters such as X are used to denote a random variable,
whereas the corresponding lowercase x denotes a numerical value assumed by
the variable. To get the point, assume that we are interested in the probability
that a random variable takes a value less than 10; the notation P{X < 10}
should be used, whereas P{x < 10} makes no sense. When using Greek
letters, it may be convenient to adopt the notation € (random variable) and e
(realization); this notation is quite common in Economics.

Now we may start wondering how we may reason on random variables in
probabilistic terms. From a theoretical point of view, a probability measure
is not really associated with a random variable, but rather with the events in
the underlying probability space. However, in relatively simple applications,
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this point of view is left implicit. An event that is naturally linked to the
realization of a random variable is {X < z}. The probability of this event
defines the cumulative distribution function (or CDF for short) of the
random variable X:

Fx(z)=P{X < z}.

We have seen before that if event F is included in event G, then P(F) < P(G).
An immediate consequence is that the cumulative distribution function is
a nondecreasing function with respect to its argument. Furthermore, if we
denote by x;, i =1,2,3, ..., the possible values of a discrete random variable,
assuming that they are labeled in an increasing order, so that z; < x;41. we
also see

Fx(z)=0 ife<a;

and
dim Fx(z;) =1 (A.1)
1—40oC
The cumulative distribution function for a discrete random variable is a non-
decreasing piecewise constant function, with discontinuities corresponding to
possible values of the realization (see example A.5 below).
In the discrete case, we may assign a probability to the event {X = x,}.
which results in a probability mass function, or PMF for short, associating
a probability with each possible outcome:

px(z;) = P{X = x;}.

We should note again that a probability measure is actually associated with
the events {X = z;}, and only through the function mapping events to num-
bers we may speak of the “probability of a value.”*

The link between PMF and CDF is two-way. Given the latter, we may
recover the former:

px(z;) =P{X <z;} —P{X < z;} = Fx(z;) — Fx(x;-1).

In other words, the jumps in the distribution function are exactly the prob-
abilities of the corresponding values. On the other hand, given the PMF, we
may build the CDF:

Fx{(a)=P{X <a} = Z px(x;).

ri<a

Example A.5 Consider the cumulative distribution and the probability mass
functions for a random variable directly linked to dice throwing. They are
shown in figure A.2. The mass function assigns the same probability (1/6)

4This point may get a bit thorny when dealing with continuous random variables or with
sequences of random variables over time. From a rigorous point of view, additional technical
conditions are required.
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Fy(x)
1
5/6
4/6
3/6
2/6
1/6 ————
0 1 2 3 4 5 6 X
Px(x)
1/6
0 1 2 3 4 5 6 X

Fig. A.2 Cumulative distribution and probability mass functions for dice throwing.

to each value, and by calculating the cumulative sum we get the distribution
function, which jumps on the six possible values. The jump height is exactly
given by the probabilities. We may also note that the distribution function is
continuous from the right, whereas it has discontinuities from the left. I

An immediate consequence of the conditions we require for a probability
measure is

pr(a:i) =1. (A.2)

Here and in the following, if there is a finite set of N possible values, the sum
should be rewritten as Zf\;l Of course, this property is just a rewriting of
(A.1).

Both the CDF and the PMF contain the whole knowledge about a discrete
random variable. In applications, it may be more natural to work on the mass
function, as it is intuitively related to the phenomenon we wish to model. We
would also like to come up with a few numbers summarizing some basic fea-
tures of the random variable, such as which value we could use as a prediction
of the outcome and how values are dispersed. The concept of moment of a
random variable is used to this aim.

DEFINITION A.6 (Moment of a discrete random variable) Given a
discrete random variable X, with probability mass function px(-), its moment
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of order k is defined by

o
k
u§ = abpx ().
=1

Often, to ease notation, we use p; instead of px (x;). The first few moments of
a random variable allow us to capture some (not all) of its essential features.
The expected value E[X] is the first-order moment:

E[X} = Zpil‘i.
i=1

Intuitively, the expected value is a location measure of a probability distribu-
tion and it is what we should expect “on the average.” An important property
of expected value is linearity:

ElaX + 8] = aE[X] + 3,

where o« and 3 are arbitrary numbers.
Another very important quantity is variance:

Var(X) = E[(X — E[X])?].

Variance is often denoted by ¢?; its square root o is called standard devi-
ation. It is important to note that variance is non-negative by definition; it
can be zero in the “degenerate” case of a constant random variable, which
is quite predictable. In fact, variance and standard deviation are dispersion
measures, since they are related to deviations with respect to the expected
value. Deviations are squared to avoid cancelation between deviations with
different signs. Standard deviation has the advantage of being expressed in
the same unit of measurement as expected value. In practice, it may be diffi-
cult to get a true feeling for a deviation in absolute terms: Can we say that a
standard deviation of 10 is large or small? Not really, since it makes a big dif-
ference whether the expected value is 5 or 1000 . To overcome this difficulty,
the coeflicient of variation may be used, which is defined as

. \/Var(X)’

= TR

and is often given squared, c%. A value close to zero suggests a low variability.
Unlike variance, the coefficient of variation does not depend on the chosen unit
of measurement. A pair of important properties of variance are shown in the
following example.

Example A.6 Quite often, to calculate variance, we use the following prop-
erty:
Var(X) = E[X?] - E[X].
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To show this, we just need to rewrite the definition of variance:
Var(X) = E[(X -E[X])?
E[X? - 2X - E[X] + E*[X]]
E[X?] - E[2X - E[X]] + E[E*[X]]
E[X? - 2. E[X]-E[X] + E*[X]
E[X?] - E*[X].
Here it is important to realize that the expected value E[{X] is a number and

it can be taken outside the expectation operator.
By the same token we can see that

Var(eX +3) = E [(aX +8-ElaX + 5])2}

= E[(eX +8-aE[X] - )]
- B {oﬂ (X — E{X]ﬂ
= o Var(X).
This second property shows that shifting a random variable by a given amount

has no influence on its dispersion (it has on its location, of course) and that
variance, unlike expected value, is a nonlinear operator. I

In a similar way, we may consider a function of a random variable. The
expected value of the function g(X) of the random variable X is

Ejg(X)] = ZZHQ(%‘)
i=1

For instance, the moment of order k is actually the expected value of X raised
to the corresponding power: pg?) = E[Xk].

A.3.1 A few examples of discrete distributions

In this section we recall some common distributions of discrete random vari-
ables, limiting ourselves to those which are more commonly applied in distri-
bution logistics. It is very important to realize that a practically relevant issue
is to analyze available data to figure out which distribution can reasonably
model the phenomenon of interest. In this textbook we will not dwell deeply
in such a fundamental issue.

Uniform distribution The uniform distribution assigns the same probability
mass to all possible values, p(x;) = p, like in dice throwing. Clearly, this is
possible only if a finite number IV of values are considered. From the condition

N
Zpi = 17
1=1
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we immediately see p = 1/N.

Bernoulli distribution A Bernoulli random variable stems from the idea of a
random experiment, which can result in a success with probability p or in a
failure with probability 1 —p. If we assign to the random variable X the value
1 in case of a success and 0 in case of a failure, we get the PME:

px(0)=P{X =0} =1-p,
px<1) = P{X = 1} =p

We can calculate expected value
EX]=1-p+0-(1-p)=p
and variance
Var(X) = E[X*] - E*[X] = [1? - p+0?- (1 = p)] - p* = p(1 - p).

This makes sense: The variance is zero for p = 1 and p = 0 (there is no
uncertainty on the outcome of each experiment), and it is maximized for
p=1/2.

Geometric distribution The geometric distribution is a straightforward exten-
sion of the Bernoulli distribution; it is obtained by thinking of repeating a
sequence of identical and independent experiments until we get the first suc-
cess. The number of experiments we carry out is a random variable, whose
PMF is

pi=P{X=i}=(1-p) " "p (A.3)

where p is the probability of success. To understand (A.3), we note that
X =i if we have 7 — 1 failures before getting the first success, which stops
the experiment. We should also note that this distribution has an infinite
support, i.e., there are infinite values that the variable can take with strictly
positive probability. Figure A.3 shows the PMF of a geometric variable with
parameter p = 0.2.

To compute the expected value of a geometric variable, it is useful to recall
a couple of properties of the geometric series, which hold for a € (0,1).> The

first property,
E at = (A4)

— 1—a’
can be justified by writing
o o< oC
S:E:aizl—;—Zai:l—‘ra at=1+as.
i=0 i=1 =0

5This condition is needed to ensure convergence of the series to a finite value.
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25 30 35

Fig. A.3 Probability mass function of a geometric random variable with p = 0.2.

and rearranging to obtain S. The second property is obtained by taking the
derivative of the series with respect to «, term-by-term:

iiai—aiiai_l‘ai iai —od (L)o@ (A.5)
— B gt T da P T da\l-a) (Q-a)2 V7

The first property of the geometric series allows us to prove that the (A.3)
makes sense, i.e., the sum of the probabilities is 1 (this is left as an exercise
to the reader). The second one is useful to compute the expected value:

N viml P N~ D 1-p 1
E[X]Zz;z(l—p) p_I—_—pZz(l_p) - A,

It is worth noting that the expected number of trials grows when the success
probability is decreased. We will consider again the variance of a geometric
random variable in example A.13 on page 473, as an example of computing
moments by conditioning.

= i=1

The binomial distribution The idea, as in the case of the geometric variable,
is to repeat independent experiments, but here we carry out a given number
n of experiments and we count the number of successes. The PMF is

P{X =r}= ( Z )p’(l -p)"

where we use the binomial coefficient

(7)=w=m
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0.16

0.14r

012~

01r

0.081

0.06r

Fig. A.4 Probability mass function of two binomial random variables.

To see why this coefficient should be used, we should consider that there
are many ways in which we may have r successes and n — r failures; which
experiment succeeds or fails is irrelevant. We have n! permutations of the ex-
periment,® (n —7)! permutations of failures, and r! permutations of successes;
but the specific order of each permutation is irrelevant. This distribution has
finite support and depends on two parameters. Figure A.4 shows the PMF
for n = 30, and p = 0.2, p = 0.4. Using properties of sums of independent
random variables (see section A.5), it is easy to show that

EX]=np, Var(X) = np(1 — p).

6We recall the definition of the factorial of an integer number, n! = n-(n—1)-(n—=2)---2-1;
by convention, 0! = 1.
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0.08F

0.06[

0.041

0.021

Fig. A.5 Probability mass function of a Poisson random variable.

The binomial variable, just like the geometric variable, has a “physical” mo-
tivation; we may disregard this motivation and, given empirical data on the
demand for an item sold in small volumes, we may find the parameters n and
p vielding the best fit of the theoretical model against the real data.

Poisson distribution The Poisson random variable is characterized by a pa-
rameter A, and it may take values on the set {0,1,2,3,...}. The PMF is

)\i
pize_’\—,'—, i=0,1,2,....
1.

Despite the apparent complexity of this function, it is straightforward to check
that it meets the fundamental requirement of a PMF:

=0 i=0 v

Now we may also compute the expected value:

> i > i1
— A - -
E[X] = Zze 'T“’\e Z(i—l)‘
=0 i=1
A - )‘k
k=0

It is a bit more tedious to prove that variance has the same value, Var(X) = \.
Figure A.5 shows the PMF of a Poisson random variable for A = 5.

In order to get a grasp of why this distribution is relevant, it is essential
to understand the physical meaning of the parameter A\, which is also the
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expected value. Suppose that we want to model the number of customers
or orders arriving during a certain time interval. Any customer arrival is
an event, and it is natural to measure the flow intensity of requests by an
arrival rate, which is the average number of customers arriving per unit time.
The Poisson distribution is a possible model for such a phenomenon, which
is suitable when arrivals are independent among them and uniform over time
with average rate A. In practice, we often consider a parameter At, where A is
the event rate in the time unit and ¢ is a time span of interest. We will see that
the Poisson distribution is strictly linked to the exponential distribution and
to the Poisson stochastic process, which are described in the following. The
Poisson distribution can also be thought as the limit of a binomial variable for
p — 0 and n — +oc. In other words, if we have a large number of customers
and each one of them orders an item, over a time interval, with a very small
probability, the aggregate demand will be Poisson distributed.

Empirical distributions So far, we have considered “theoretical” distributions,
which have their roots in a simple random process and are characterized by
one or two numerical parameters; more complicated distributions, depending
on more parameters. may be devised. Sometimes, however, none among the
known theoretical distributions seems to fit the available data. In such a case,
a possible alternative is to settle for an empirical distribution, whereby the
mass function is given by a vector of probabilities p;, 7 = 1..... N, which
are obtained by analyzing the empirical frequencies of the observed outcomes.
This is fairly straightforward to do, but it is essential to keep in mind a couple
of limitations and pitfalls.

e Often, theoretical distributions do not fit empirical data, because these
are affected by several underlying phenomena. The possibility of us-
ing an empirical distribution should not prevent us from understanding
the root causes of the lack of fit, and sometimes the random phenom-
ena should not be confused. A typical example is demand affected by
promotional sales. If time period with full and discounted prices are
alternated, this is likely to have a significant impact on the demand
distribution.

e Another issue is that a simple-minded approach to devising an empirical
distribution does not consider at all the possibility of having realizations
of the random variable outside the range observed so far. In some cases,
to account for extreme realizations, a mixture of empirical and theoret-
ical distributions may be used to add some “tail” to the distribution. A
similar problem occurs if we build a distribution on a subjective basis,
e.g., considering demand forecasts by several experts for a brand new
product, lacking a demand history suitable for statistical analysis. If we
denote by Dy the forecast of expert k. &k = 1,..., M, we could consider a
crude distribution where each discrete value has probability 1/M. This
makes sense if we believe that the experts are equally reliable and each
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guess is as good as the other ones. However, this automatically rules
out any value outside the minimum and maximum of Dy.

A.4 CONTINUOUS RANDOM VARIABLES

If a random variable takes values on a continuous set, such as the real line
R = {—00,+0c) or a bounded interval [a,b], we speak of a continuous ran-
dom variable. From a logical point of view, introducing continuous random
variables follows the same steps as in the discrete case, but there are some
technical complications due to the fact that the range now is noncountable.
For instance, we cannot say that there is a finite probability that the ran-
dom variable takes a specific value, as this probability is zero. The key issue
is that the probability mass is not concentrated on discrete points, but it is
distributed on a continuous range, and this requires using slightly different
concepts. As usual, we will rely on intuition without bothering too much
about rigorous arguments.

A good starting point is the cumulative distribution function, Fx(z) =
P{X < z}, which can be defined just as in the discrete case. Actually here,
unlike the discrete case, there is no practical difference between a strict in-
equality or not, since P{X < z} = P{X < z}; however, it is preferable to
maintain conceptual uniformity. As we said, we cannot speak of a probability
mass, but we may define a related concept. Consider a bounded interval [a, b];
then, given the CDF, we may write

P{a < X <b} = P{X < b} — P{X < a} = Fx(b) - Fx(a).

Under some conditions, we may come up with a probability density func-
tion, or PDF for short, such that we may also write

b
Pla< X <b} = / fx(2)dz. (A.6)
Now we may see why, in the continuous case, we have
Pla<X<b}=P{la<X<b}=P{a<X <b}=Pla< X <b}.

The reason is that including an extreme point of the integration interval,
i.e., a set of zero measure, does not change the integral. More generally, the
density function fx(-) allows us to associate a subset B of the real line with
a probability

P{X e B} = /BfX(:c) dx.

As usual, note that X is a random variable and that z is an irrelevant inte-
gration variable.
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The PDF is non-negative and, in strict analogy with condition (A.2), the
following condition must hold:

+oc
fx(z)dz = 1.
— 0G0
The support of the distribution is the subset of R where the density is strictly
positive.
To get an intuitive feeling for the meaning of the PDF, let us consider a
small interval (a,a + dz). Then we have
a+dx
P{X € (a,a+d2)} = Fx(y)dy = fx(a)dz.
a
This probability goes to zero when dxz — 0. Hence, we see that the PDF does
tell us where the realization of a continuous random variable is more or less
likely to happen, but the probability of getting a single real number is always
Zero.
To see the link between PDF and CDF, we may consider

b
P fEXSb}Z/ fx(z)dz = Fx(b) - Fx(a)

and take the limit ¢ — —oc:

b
F(b) =P{X <b} = / f(z)dz.

Going the other way around,

dF(x) _

which is a consequence of the fundamental theorem of Calculus.

Intuitively, the main difference between discrete and continuous variables
is that in the former case we have discrete sums involving a mass function,
whereas in the latter we have integrals (i.e., the limit of a sum) involving a
density. Given a CDF, in the discrete case we get a PMF by taking differences,
i.e., by considering increments. By the same token, in the continuous case we
get the PDF by taking the derivative of the CDF, which is the limit of an
incremental ratio.”

Keeping the intuition above in mind, we may follow the same path we have
seen in the discrete case and define the moment of order k for a continuous
random variable:

o

e EE[X’“]:/ 2" fx (2) da.

— o0

7A bridge between these two worlds can be built by resorting to “impulse functions,” which
concentrate the probability mass on a discrete set of points. This is necessary to deal with
mixed distributions, partly discrete and partly continuous, which are not used in this book.
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By the same token, we may define the following concepts:

e The expected value of a continuous random variable X,

+00

E[X]:/ zfx(x)dz.

— o

e The expected value of a function of a continuous random variable,

+oe
Efg(X)] :/ g(z)fx(x)dz.

—oC

With reference to the second concept, it is important to stress that, in general,
the expected value of the function is not the same as the function of the
expected value:
Elg(X)] # g(E[X]). (A7)

The two values are the same for an affine function, given the linearity of the
expected value operator, but nothing can be said in general for nonlinear
functions. We will stress this concept again in counterexample A.8 on page
457.

Variance is defined as a (central) moment of second order, just like in the
discrete case:

+o0

Var(X) = / (z - E[X))? fx () dz = E[X?] — E?[X].
—oC

We should not take for granted that variance always exists, as this integral

may diverge for certain heavy-tailed distributions. It is worth recalling that

there are other quantities summarizing some features of a distribution, such

as mode and median.

DEFINITION A.7 The mode of a distribution is defined as the point
where the density fx(x) is mazimized (if the mazimum exists).

Given this definition, it is tempting to say that the mode is the most likely
value among those the random variable may assume. To begin with, this
idea makes no sense for a continuous variable, as all values have the same
probability (zero), whereas in the discrete case it could sound more convincing.
However, the idea of “most likely” value should be made more precise, as
shown in the following example.

Example A.7 Given a density function fx{z), say that we must provide
a good forecast o for the value that the random variable X will take. To
rationalize the problem, we must first clarify what a “good” forecast is. One
possible criterion to measure the quality of a forecast is the mean square
error, or MSE for short:

E[(X - a)?].
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4& fx(X»)

» X

Fig. A.6 An example of multimodal density.

i.e., the expected value of the error in the forecast, which we square to avoid
compensation between errors by excess or by defect. Hence. we should solve
the following optimization problem:

min E[(X — a)?].

Rewriting MSE as
E[X? - 20X + a°] = E[X?] — 20E[X] + o®
and setting the derivative with respect to a to zero, we get®
o* = E[X).

We see that the best forecast, according to the MSE criterion, is not the mode
but the expected value. I

As we will see in the following, all of the common theoretical distributions
have a single mode, in the sense that the density has a single global maxi-
mum, rather than multiple local maxima. Sometimes, when analyzing real
data, we may find multimodal distributions such as the one depicted in figure
A.6, which features a local maximum as well. A typical task, given a set of
empirical data, is finding a theoretical distribution fitting the data in some
“best” way. Of course, we could do without this effort by building an empiri-
cal density, but this could result in some undesirable overfitting. Hence, quite
often spurious modes are “leveled oft” by using a theoretical single-mode dis-
tribution. However, sometimes a more careful analysis is needed, as different
modes can be linked to different elements of a phenomenon, which deserve

8We are taking for granted that this first-order condition is sufficient. For a proper treat-
ment of optimization methods, see appendix B.
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careful modeling. One significant case in distribution logistics is the distri-
bution of lead time. When ordering items from a supplier, we may observe a
typical value of lead time, with some fluctuations due, e.g., to transportation
delays. Occasionally, a much larger lead time can be observed, leading to
a secondary mode. This may be the result of occasional stockouts suffered
by the supplier, which result in unusually long lead times and need proper
modeling.

DEFINITION A.8 The median, for a continuous distribution, is a value

mx such that

Fx(mx) = 1

2
Mode, median, and expected value may be the same for a distribution charac-
terized by a symmetric density, but they are different in general.® The median
is a specific case of quantile.

DEFINITION A.9 Given a continuous random variable X, with cumula-
tive distribution function Fx(x), the a-quantile is the smallest number such
that

FX(xa) =G,

with a € [0, 1].

In other words, to the left of z, we have an area a below the graph of the
density. In the definition we account for pathological cases, but for typical
distributions the CDF is invertible and there is a unique quantile satisfying
the equation in the definition: zo = Fx'(a).

Some more care is needed for discrete distributions, since we might not find
a possible realization x; such that

pr(xk) = Q.
k=1

To see this, consider a distribution over the set {0, 1,2, 3, 4}, with probability
mass function pg = 0.1, p; = 0.4, po = 0.3, p3 = 0.1, and pgs = 0.1, and try
to find the quantile with probability level 0.85. Hence, we should modify the
definition, so that the quantile z, is the smallest number such that Fx(z,) >
«. In the example, we have zg.g5 = Zg.90 = 3. To get a feeling for the rationale
behind this definition, think of this distribution as a demand distribution,
and ask yourself which inventory level would guarantee a 85% probability of
meeting demand from stock.

91t is interesting to note, with reference to example A.7, that the median is the best forecast
for X if we take the mean absolute deviation E[| X — «|], rather than MSE, as a metric.
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By the same token, if we want to define the median in the discrete case,
we should find a number such that the following inequalities are satisfied:

P{X <mx} > and P{X>mx} <

[ R
N | —

A.4.1 Some continuous distributions

Uniform distribution A uniform variable on the interval [a, b] features a con-
stant density function on this support:

fx(z) = { 1/(b-a) ifzea,b],

0 otherwise.

A commonly used notation to say that a random variable X has this distri-
bution is X ~ Ula, b], or X ~ U(a,b). It is easy to see that

b 2 2
x b* —a b+a
E[X}_/wad”:_z(b—a)_ 2

and
b I2 a 2
Var(X) = E[Xz}—EQ[X}:/ b_adx—< ;b>
b —=a® (b+a)? (b—a)?
T 30b-a) 4 12

Example A.8 We show here a case to illustrate what we pointed out con-
cerning relationship (A.7), i.e., that the expected value of a function is not, in
general, the function of the expected value. Consider the function g(z) = x?
and a random variable X uniformly distributed over the interval [-1,1]. Its
PDF is fx(z) = 1/2, on the support, and E[X] = 0. Hence, g(E[X]) = 0.
However,

. 1 ! 1
E[g(X)}:/ x2-§d:v:/0 W=

1

The uniform distribution is commonly used in computer simulation, since
pseudorandom numbers U ~ U(0, 1) are the basis to sample from an arbitrary
distribution. In practice, its use is often justified by lack of knowledge. When
we just know a range for an uncertain quantity, the uniform distribution could
be our only choice. Triangular distributions are often used for the same reason;
in this case, we basically give the support (a.b) and the mode ¢, i.e., a lower
and an upper bound on possible values, as well as the “most likely” value (in
a very loose sense, as we have already clarified).
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Exponential distribution An exponential random variable can only take non-
negative values, 1.e., its support is [0, 4oc). The name stems from the func-
tional form of its density,

_fxem? ifz >0,
fX(”’)_{o if 7 <0,

where A > 0 is a given parameter, and the notation X ~ exp(1/A) is often
used.'® The CDF is

Fx(x) =/‘ Ae Mdt =1—e 77, (A.8)
0

and the expected value is

e 1
EX]|= / e M dr = <.
0 A

It is worth noting that the expected value is quite different from the mode,
which is zero. It can be shown that variance for the exponential distribution
is 1/A2, implying that the coefficient of variation is cx = 1.

Unlike the uniform distribution, there are typically good physical reasons
to adopt this distribution to model a random quantity. A common use is to
model interarrival times, e.g., the time elapsing between two consecutive ar-
rivals of customer orders. Note that A is, within this interpretation, the order
arrival rate and that the mean interarrival time is 1/X. There is a strong link
with the Poisson distribution: When the interarrival times are exponentially
distributed with rate A, the number of orders received in a time interval of
length ¢ is a discrete random variable following a Poisson distribution with
parameter \t. Furthermore, we will see later that this phenomenon corre-
sponds to a common stochastic process, which is unsurprisingly known as the
Poisson process.

In example A.15 on page 475 we will see that the exponential distribu-
tion enjoys a very peculiar property known as “lack of memory.” Roughly
speaking, this says that whatever time interval we observe without any ar-
rival occurring, the distribution of the time we must wait until the next arrival
is always the same. To get the point, imagine that we use the exponential
distribution to model time between failures of an equipment. Lack of memory
implies that even if the machine has been in use for a long time, this does not
mean that it is more likely to have a failure in the near future. We should
note the big difference with a uniform distribution. If we know that time
between failures is uniformly distributed between, say, 50 and 70 hours, and
we also know that 69 hours have elapsed since the last failure, we must expect
the next failure within one hour. If the time between failures is exponentially

10We are assuming that the parameter used in the notation is the expected value.
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Fig. A.7 PDF of normal random variables with y =0 and 0 =1, ¢ = 3.

distributed and 69 hours have elapsed, we cannot conclude anything, since
from a probabilistic point of view the machine is brand new. If we think of
purely random failures, due to bad luck, the exponential distribution may be
a plausible model, but definitely not if wear is a factor.

Normal (Gaussian) distribution The normal distribution characterizes what is
arguably the best-known type of random variable. Its support is the whole
real line and its PDF is the bell-shaped function

1
fx(z) = 5 = (#mw?/20%, ~o¢c <z < +00,
Varo

with parameters p and o; the density is symmetrical with respect to the point
with abscissa . A few calculations show the meaning of the two parameters:

EX] =y, Var[X] = o2

Often, the notation X ~ N(u, 0?) is used.!?

As we said, the parameter u is a location measure of the distribution,
whereas ¢ is a dispersion measure and tells how much the density is concen-
trated around the expected value. In figure A.7 we show the PDF for two
normal distributions with z = 0 and ¢ = 1, 3, respectively. In this case mode,
median, and expected value are the same.

In applications, a very special role is played by the standard normal dis-
tribution, characterized by parameters © = 0 and ¢ = 1. The reason of its

11We should note a potential ambiguity here. Sometimes, the notation X ~ N(u, o) is

used. Indeed, the second parameter characterizing a normal distribution can equivalently

be ¢ or o2.
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importance is that if we are able to work with a standard normal in terms of
quantiles and distribution function, then we are able to work with a generic
normal variable. This is important, as the CDF is the integral of the bell-
shaped function above, for which no analytical formula is known. The key
point is that, given the properties of expected value and variance, if X is
normal with parameters 4 and o, then aX + (3 has normal distribution with
parameters au + 8 and ao. In particular, Z = (X — p)/o is a standard nor-
mal. We may also go the other way around, starting from Z ~ N(0,1), and
obtain a generic normal variable X ~ N(u,c?) by considering X = u+ oZ.

Although the general CDF for a normal variable is not known analytically,
efficient numerical approximations (and fairly accurate tables) are widely
available for the standard normal case:

1 z 2
®(x)=P{Z <z} = — e~ /% dz.
@ =Pz == [
These tables and numerical procedures also yield the quantiles z, defined by
P{Z < z3} = ¢,

for a probability level ¢ € (0,1). The tables are often given with different
conventions, which may be confusing at first sight. However, given the sym-
metry of the standard normal distribution, any ambiguity is readily resolved.
A common notation, which is ubiquitous in Statistics, is z;_,, where « is a
relatively small number (say, 0.1 or 0.05) and it is intended that the quantile
21_q leaves to its left an area 1 — o under the graph of the density, whereas
« is the area under the right tail.

Sometimes we are interested in a symmetric interval around the origin,
such that « is the probability that a realization of the random variable will
fall outside the interval. Then, we should cut two symmetric tails, each one
with an area «/2 under the CDF, to the left and to the right. Given the
symmetry of the density, we have

P{-21 02 <Z < 21gp}=1-0.

The idea is illustrated in figure A.8. The statistical tables also give quantiles
for other relevant distributions in Statistics, which are obtained from the
standard normal, as we shall see in section A.6.3.

Example A.9 The knowledge of the CDF and the quantiles for a standard
normal yields all the required values for a generic normal. In fact, if X is
normal with parameters u and o, we know that Z = (X — p)/o is a standard
normal. Hence, for instance,

P{ng}:P{X;“gb‘“}=¢><b‘“>.

o [




JOINTLY DISTRIBUTED RANDOM VARIABLES 461
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Fig. A.8 Quantiles of the normal distribution.

Suppose that X ~ N(3,16) and that we are interested in the probability
P{2 < X < 7}. Looking at the statistical tables, we obtain

P2<X <7} = P{2;3 < X4_3 < 7;3}
= (1) - (-1/4)
= (1) -[1-2(1/4)]
= 0.8413+0.5987 — 1
= 0.4400.

When we are interested in the quantiles, the relationship above implies that
if we want the quantile z, for X ~ N{u,0?), all we have to do is find the
corresponding quantile z, for the standard normal and compute

Tg=p+0zg. 0

A.5 JOINTLY DISTRIBUTED RANDOM VARIABLES

So far, we have considered a single random variable, but in distribution logis-
tics we typically work with several variables at a time. For instance, we may
be interested in the sales of a given item over several days or weeks. or in the
demand for several, possibly related items within the same period. It is very
important to figure out which relationship, if any, may link these variables.
For the sake of simplicity, we will only deal with the case of two random
variables with a joint distribution, leaving the general case as a relatively
straightforward extension.

The pathway to define all the relevant concepts for two jointly distributed
random variables X and Y is similar to the case of a single variable. The
starting point consists of joint events {X < a2} N {Y < y}, to which a prob-
ability measure is associated. Given random variables X and Y, we must
specify the joint CDF

Fxy(z,y)=P{X <Y <y}
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where we use the simpler notation {X < z,Y < y} for the joint event, instead
of intersection. Just as in the case of a single random variable, this CDF
collects all the relevant information; however, we may also find mass and
density function very useful.

In the discrete case, we may define the PMF:

pxy (@) =P{X=2,Y = y;}.

Under some technical conditions, we may come up with a PDF fx v (z,y) in
the continuous case, such that, given a region D in the two-dimensional plane,
we have

P{(x.Y) €D} = | /D fry (@) dyda.

With respect to the single variable case, a new concept is the marginal dis-
tribution for the two variables, which is obtained as follows for the continuous
case:

+oc
P{XeA} = P{XecAY € (~x,+0)}= /A/_ fxy(z,y)dydz
= / fx(z)dz,
A

+00
fx(z) =/ fxy(z.y)dy

—0oC

where

is the marginal density for X. The marginal density fy (y) is obtained by
the same token, and the discrete case is similar as well. It is very important
to realize that, given the joint density, we may find the two marginals, but
we cannot really go the other way around. Quite different joint distributions
may have the same pair of marginal distributions, and this depends on the
relationship between the two variables, which we will investigate later.

The definition of expected value, variance, and moments is similar to the
scalar case. Given a function g(X,Y") of the two random variables, its expected
value is

Z Zg(mi, Y5 )px,v (T4, Uj) in the discrete case,
L
EgX.Y)=q . ..
/ / gz, y)fxy(z,y)dydxr in the continuous case.
— o — 0

Given the linearity of the sum and integral operators, we may see that the
expected value of a linear combination of random variables is the same linear
combination of the expected values. Formally, if we define a random variable

Z = i XX,
i=1
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where the numbers A; are the weights in the linear combination, its expected
value is

E[Z] =Y MEIX).
i=1
This result does not apply, in general, to variance:
Var(X +Y) # Var(X) + Var(Y).
By the same token, in general,

Elg(X) - h(Y)] # Elg(X)] - E[h(Y)].

We may have an equality in some cases, which require the introduction of the
concept of independence.

A.6 INDEPENDENCE, COVARIANCE, AND CONDITIONAL
EXPECTATION
A.6.1 Independent random variables

Independence among random variables is directly related to the familiar con-
cept of independence between events. Two random variables X and Y are
independent if the two events {X < z} and {Y < y} are independent, i.e., if
for any = and y we have

Fxy(z.y) =P{X <2 Y <y} =P{X <z} P{Y <y} = Fx(z) Fy(y)
We see that independence allows us to factorize the joint CDF into the product
of the individual CDFs. A consequence of this condition is that, in the discrete

and continuous case, we may also factorize the PMF and the PDF into the
product of marginals:

px.y(z,y) = px(x)py (y), fxv (@ y) = fx(@)fy(y).

This allows us to decompose double sums and double integrals, so that

A further consequence is that, for a set of mutually independent random
variables, we have

Var <i )\iXi> = z": )\?Var(Xi)A
1=1 1=1
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We should note that a similar expression applies to the expected values of
a linear combination of random variables; however, the formula for the ex-
pected value does not rely on any assumption about independence and holds
in general. In particular, for independent variables X and Y we have

Var (X +Y) = Var(X) + Var (Y).

Note that we may sum variances, but not standard deviations:

— 2 2
OX+y =\/0x + 0y

The next example illustrates an interesting consequence of these properties.

Example A.10 Consider a set of i.i.d. random variables X;, i = 1,...,n,
with expected value u and variance 0. By “i.i.d.” we mean independent
and identically distributed. In Statistics (see section A.8), we are commonly
interested in their average

1 n

Iy
n-
t=1

which is a random variable as well. Let us compute the expected value and
variance of Z. From the linearity of expectation, we immediately see

1 & 1< 1 &

As far as variance is concerned, given our assumption of independence, we
have

Var[Z] Var( ZX)— 12§:Var(X¢):%ig2:_
=1 i=1

If we evaluate the squared coefficient of variation, we see

»  Var(Z)  o? &%

c = =,
z = E2[Z] n22 n

which shows an intuitive property of the average of independent variables: It
is often “less uncertain” than the individual realizations.
It is very important to point out the difference between

Var(nX;) = n’o?

and

Var(ZX) = no?
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If we were to simulate the first case, we would take one realization {or sample)
of a random variable, and we would just multiply it by n. In the second case,
we take n independent realizations and we sum them. Intuitively, the second
case is less subject to random variability. As a practical illustration, consider
the random daily demand for an item, assuming that demands in different days
are independent. Weekly demand is obtained by summing daily demands and
not by taking daily demand and multiplying it by the number of days in a
week.

A.6.2 Covariance and correlation

If two random variables are not independent, it is natural to investigate their
degree of dependence, which means how can we measure it and how can we
take advantage of it. The second task leads to statistical modeling, which
we will investigate later in the simplest case of linear regression. The first
task is not as easy as it may seem, as capturing dependence is a tricky issue.
Nevertheless, we may settle for a less ambitious task and try to figure out a way
to characterize the “concordance” between random variables. For instance,
suppose that the random variable X tends to assume “large” values whenever
Y does the same. More precisely, say that in most joint realizations (X,Y),
both values tend to be either larger or smaller than the respective expected
values. We could try to come up with a measure of this association.!? One
intuitive measure of this link is covariance:

Cov(X.Y) = E[(X - E[X])(Y - E[Y])].

We have positive covariance when the events {X > E[X]} and {Y > E[Y]}
tend to occur together, as well as the events {X < E[X]} and {Y < E[Y]},
because the signs of the two factors in the product tend to be the same. If
the signs tend to be different, we have a negative covariance.

For instance, if two products are complements, it is natural to expect pos-
itive covariance between their demands; negative covariance can be expected
if they are substitutes. Similarly, if we observe over time the demand for an
item whose long- or mid-term consumption is steady, a day of high demand
should be typically followed by a day with low demand (as an example, con-
sider the weekly demand of diapers if there is a promotional sale during one
week).

From a computational point of view, it is very handy to express covariance
as follows:

Cov(X.Y) = E[(X -E[X]) (Y - Em)}

128¢trictly speaking, we obtain a measure of concordance, rather than a measure of depen-
dence; the latter should be something in the range [0, 1], whereas as will shall see, correlation
is in the range [—1, 1]; furthermore, a measure of dependence should meet some reasonable
requirements which are beyond the scope of the book.



466 A QUICK TOUR OF PROBABILITY AND STATISTICS

- E[XY ~E[X]-Y - X -E[Y] + E[X] E[Y}}
— E[XY] - E[X]-E[Y].

We easily see that if two variables are independent, then their covariance is
zero, since independence implies E[XY]| = E[X]-E[Y]. However, the converse
is not true in general, as we may see from the following example.

Example A.11 Let us consider a uniform random variable on the interval
[—1,1]; its expected value is zero and the density function is, on its support,
constant and given by fx(z) = 1/2. Now, let a random variable Y be given
by

Y =+v1- X2

Clearly, there is a very strong dependence between X and Y, because, given
the realization of X, the other one is perfectly predictable. However, their
covariance is zero. We have seen that

Cov(X,Y) = E[XY] — E[X]E[Y],
but E[X] =0 and

1
1
E[XY]:/ x\/l—x2-§dx=0,
-1

because of the symmetry of the integrand function, which is an odd function,
in the sense that f(—z) = —f(x).

The key issue is that covariance is not really a good measure of dependence.
It is only able to get a linear association between random variables, whereas
in this case there is a very nonlinear link, since points with coordinates (X,Y)
lie on the upper half of the unit circumference X2+ Y? = 1. A more intuitive
explanation is that if ¥ > E[Y], then we may have either X > E[X] or
X < E[X].

The following properties, whose proof is recommended as an exercise, are very
useful:

o Cov(X, X) = Var(X),
e Cov(X,Y) = Cov(Y, X),
e Cov(aX,Y) =aCov(Y, X),

o Cov(X,Y +2Z) = Cov(X,Y) + Cov(X, Z).
Using such properties, or the definitions, we may show

Var(X +Y) = Var(X)+ Var(Y)+2Cov(X.Y),
Var(X - Y) = Var(X) + Var(Y) —2Cov(X,Y).
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By the way, we point out that variances are always summed, even if we take
differences of random variables; otherwise, we could end up with a negative
variance, which is impossible. More generally, for an arbitrary sum of random
variables:

Var ixi :ZH:Var(Xi)Hzn:Zcov(Xi,Xj).
i=1 i=1

i=1 j<i

We see that, in the case of mutually independent variables, the variance above
boils down to the sum of variances.

A further issue with variance is that its value depends on how we measure
the underlying quantities. We cannot say that a covariance of 100 is large or
small. To define a measure which is independent on the unit of measure, we
may introduce the correlation coefficient px y:

Cov(X,Y)
VVar(X)/Var(Y)

It can be shown that the correlation coefficient takes values in the interval
[-1,1]. A value close to 1 shows a strong degree of positive correlation: a
value close to —1 shows a strong degree of negative correlation. If correlation
is zero, we speak of uncorrelated variables. We stress again that uncorrelated
variables need not be independent. A notable case in which lack of correlation
implies independence is the multivariable normal distribution: If two jointly
normal variables are uncorrelated, they are independent too.

PXY =

A.6.3 Distributions obtained from the normal and the central limit
theorem

In general, if we sum identically distributed random variables, we do not get
a random variable with the same distribution. For instance, if we sum two
i.i.d. uniform random variables, we do not get a uniform random variable. By
the same token, summing independent exponential variables, we do not get
an exponential variable. If we allow the possibility of dependencies among the
variables, the issue can get really complicated.

A most notable exception is the normal distribution. If we sum independent
normal random variables, we still get a normal variable.!3 If we take a linear
combination, with weights \;. of a set independent normal variables X;, i =

1....,n, with parameters u; and o;, we get a normal random variable
n
X = NX,
=1

BProving this requires the introduction of moment generating function, which is beyond
our scope.
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with
n n
EX] =) Xp,  Var(X) =) Xol.
i=1 i=1

It is important to note that this result does not require independence. If
we have jointly normal random variables, any linear combination of them is
still normal; the covariances affect the variance of the linear combination.
If we group variances and covariances in a matrix ¥, with elements o;; =
Cov(X;, X;), s = Cov(X;, X;) = Var(X;) = of, we may see that

Var(X) = A'ZA,

where A is a column vector grouping coefficients A;.
If we combine independent standard normal variables according to more
complex patterns, we find some useful distributions.

Lognormal distribution A random variable X is said to have a lognormal
distribution if In(X) is normal (note the use of natural logarithm). In other
words, if Y is normal with parameters 4 and o2, then X = e is lognormal.
There is a link between the parameters of the lognormal variable and those
of the underlying normal variable. For instance, it can be shown that

E[X] = e#t7 /2,

Hence, if Y ~ N(—02/2,0?), then E[X] = 1. This suggests using a lognormal
variable with unit expected value to model random errors in a multiplicative
model, whereas a normal variable with zero expected value would model ran-
dom errors in an additive model (see section A.10.6). More generally, the
normal distribution enjoys the nice property that by summing normal vari-
ables, we still get a normal variable; a similar property holds when we multiply
lognormal random variables.

Chi-square distribution Let Z;, i = 1,...,n, be standard and independent

normal variables. The random variable X defined as
X=Z}+Z;+ -+ Z
is certainly not normal, as it cannot take negative values. This variable is
called chi-square with n degrees of freedom and is often denoted by x2.
We note that the expected value of a squared standard normal is
E[Z%] = Var(Z) + E*[Z] = 1,

from which we immediately see

EX])=n
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02,

Fig. A.9 PDF of two chi-square random variables with 4 and 8 degrees of freedom,
respectively; the variable with 4 degrees of freedom is less uncertain and has a higher
mode.

It can also be shown that
Var(X) = 2n.

Quantiles of chi-square variables are tabulated for several degrees of freedom.
Figure A.9 shows the PDF for a chi-square variable with 4 and 8 degrees of
freedom.

Student’s t distribution 1f Z and x?2 are a standard normal and a chi-square
with n degrees of freedom, respectively, and they are also mutually indepen-
dent, the random variable

_Z
VX3 /n

has a Student’s ¢ distribution with n degrees of freedom. One could wonder
why this weird ratio plays a practical role; we will see why later, when we
consider parameter estimation and confidence intervals.

The density of the ¢ distribution is bell-shaped and it looks much like a
standard normal; the main differences lie in its heavier tail and in a lower
mode. In figure A.10 we show the densities of 77 and 75 random variables,
along a standard normal Z. We see that for increasing n. the tails of T, get
thinner and the density tends to a standard normal. In fact, for large n the
two distributions are virtually identical.

It can be shown that

T, =

n

E[T,] =0,  Valln)= —s.
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Fig. A.10 PDF of Student’s ¢ distribution, with n = 1 (dash-dotted line) and n =5
(dashed line), compared with a standard normal (continuous line).

Statistical tables are available for quantiles ¢ty _q p, i.e., numbers satisfying the
condition
P{Tn < tl—a.n} =1—-a.

F distribution Finally, if we combine two independent chi-square variables
with n and m degrees of freedom, respectively, to get a variable defined as

Foo- Xa/n
n.m — 2 bl
Xo /™

we obtain the F' distribution with n and m degrees of freedom. This distribu-
tion too has applications in Statistics, which has motivated the compilation
of tables yielding quantiles.

Central limit theorem We have stressed that, by summing identical random
variables, we do not get a similar distribution in general. However, if we sum a
large number of i.i.d. random variables (please note independence), we obtain a
distribution which gets closer and closer to a normal. This observation, which
can be formalized as follows, contributes to explain the role of the normal
distribution: When a phenomenon results from the sum of a large number of
independent components, a normal distribution can make a good model.

This result is known as central limit theorem. A rigorous statement of
the theorem requires some concepts of stochastic convergence, but we may try
to clarify the sense of the theorem. Consider a sequence Xi, Xo, ..., X, of
i.i.d. random variables, with expected value p and standard deviation ¢. For
n going to infinity, it can be shown that the sum

X1+ Xo+ -+ X,
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has a distribution which is approximately normal with expected value nu and
standard deviation /no. In other words, the variable

Xyt Xp 4o+ X —np
Vno

tends to a standard normal distribution. A little more precisely, we have

Xi+Xo+-+ X, —nu
P )
{ N <‘L} (@),

where ®(z) is the CDF of a standard normal. To illustrate the practical con-
sequence of the theorem, if we have a large number of independent customers
who order a certain item, we may assume that the overall demand can be
modeled by a normal random variable. Such an assumption must be vali-
dated by proper statistical procedures, or at least checked in terms of basic
tests. For instance, if the standard deviation is too large with respect to the
expected value, there is a non-negligible chance of a negative demand, which
makes no sense; in such a case, an asymmetric demand distribution would
probably be a better model.

A.6.4 Conditional expectation

In section A.2 we have introduced conditional probabilities. When we deal
with random variables, we may introduce the concept of conditional expecta-
tion, which is essentially the expected value of a variable X, given knowledge
of the realization of another variable Y. As a practical example. we might
wonder what is the expected demand for ice cream (random variable X) as
a function of temperature (random variable V). What we really get is a ran-
dom variable denoted by E [X | Y]. Conditional expectation is actually a very
subtle concept in probability theory, which requires some nontrivial techni-
cal machinery when continuous random variables or stochastic processes (see
next section) are involved. However, we may start from the discrete case to
build intuition heuristically.

We would like to know how the event {Y = y} influences the distribution
of X. Working along the lines of conditional probability, we may introduce a
conditional probability mass function:

P{X=2Y=y} pxyizy

Then, we may define conditional expectation:

EX Y =y;]= Z%‘P{X =z; | Y =y;} = Z%PX‘Y(J?J?JJ) (A.10)

Tt is a useful exercise to check that, if X and Y are independent, then E(X |
Y =y) = E(X). We cannot really extend this concept directly to continuous



472 A QUICK TOUR OF PROBABILITY AND STATISTICS

random variables, as the event {Y = y} has zero probability. What we can
do is to define a conditional density

fX,Y(l'7y) X

leY(‘rly): fY(y)

which yields the conditional expectation

+oo
BXY =y = [ afav(e]v)de, (A1)

-0

Example A.12 Suppose that the joint density of two continuous random
variables is
fxy(z,y) = Kz +y),

where 0 < z,y < 1 and K is a normalization constant such that integrating
the density over its support we get 1. To compute E(X | Y), the first step is
finding the marginal density of Y

fr (@) =/O K(z+y)de=K(y+1/2).

Hence, the conditional density is

pvtel9) = B -

and we actually see that knowledge of the constant K is not needed. Applying
the definition!? (A.11), we get

r+y 243y
dr = .

1 1
BUCIY =) = [ afxvtelpdo= [ o

From this example, we see that we get a function of y. The notation E(X |
Y =y) points out that if the realization of the random variable Y is y, then
we have a number which is the conditional expected value of X. The notation
E(X | Y) actually shows that this is a random variable, which is actually the
best forecast we can come up with, as a function of Y. Indeed, conditional
expectation is all about the proper use of (partial) information.

If we interpret E(X | Y) as a random variable, then it is natural to con-
sider its expected value (expectation, in this case, is with respect to Y). A
fundamental property of conditional expectation is

E[X] = E[E[X | Y]] (A.12)

14 Readers with a background in measure-theoretic probability would object that this is not
really the definition, which requires a way to model information by some o-algebra, but
please bear with us.
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We may clarify the meaning of (A.12) by rewriting it explicitly:

Z EX |Y =y]P{Y =y;} in the discrete case.
E[X] = y +oo
/ E[X |Y =y|fy(y)dy in the continuous case.

—

We will not prove this property, but at least in the discrete case we may see
a link with the theorem of total probabilities theorem.

Equation (A.12) is very relevant from a practical point of view. Among
other things, it may be exploited as a trick of the trade to compute expected
values when a direct approach looks too difficult. In the following we will
show a few applications of this technique.

Example A.13 In the previous sections we have considered the geometric
distribution with parameter p and we have proved that its expected value is

EX] =1,

b
To this aim, we have used some familiar properties of the geometric series,
but there is a much more straightforward way to obtain the same result by
conditioning on the outcome of the first trial (the reader should recall the
physical motivation of this distribution). If the first trial is a success, and
this occurs with probability p, we have X = 1 because we have just attained
our success and we stop the sequence of trials immediately. Otherwise, we
have already failed once, and we must try again. However, since experiments
are independent, we are just back to square one, and the expected number of

trials to go is the same as before. Formally:

E[X] = E[X | OK]-P{OK}+E[X | NOK] - P{NOK} = 1.p+ (1 +E[X])(1 - p).

from which we immediately get E[X] = 1/p, which confirms our previous
result. The real bonus, though, comes when computing variance. As a pre-
liminary step, we have
E[X?] = E[X?|O0K] P{OK}+ E[X?|NOK] -P{NOK}
= 1?p+E[(1+X)(1-p)
= p+ (14 2EX]+EX*)(1-p)
p+(1+2/p)(1 —p) +E[X?](1 - p),

il

which yields

9 _
E(x% = L.
p

Then we immediately obtain

Var(X) = E[X?] - E*[X] = -= =
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I

Example A.14 Here we generalize the result obtained in example A.10 on
page 464, by considering a random variable defined as

N
zZ=> X,
=1

where now N is a discrete random variable, with known expected value and
variance, rather than a number; we also assume that NV is independent from
variables X;, which are mutually independent as well. In other words, we
consider a sum of a random number of random variables, and we want to
come up with its expected value and variance. This is practically relevant, for
instance, when we want to sum the demand over a random number of time
periods corresponding to a random procurement lead time.
By conditioning with respect to N, we have

N N
DX DX
i=1 i=1
We start from the inner conditional expectation:
n n
> x| x| -2[>-x
i=1

i=1
where in the second-to-last step we have used the independence between N
and X;. Hence, we have

E N

:E{E

N

S

i=1

E N=n = HE{XA,

N:n} =B

N| = NE[X|],

r N
E|Y X
Li=1

and, by computing the overall expectation,

N1
E {Z X;| = E[NE(X\]| =B[N E[X)]

i=1

This result is fairly intuitive, actually, and one could wonder if we took un-
necessary pains in using conditioning arguments. However, when we consider
variance, things are a bit more difficult. Using the same technique, and some
patience, we can arrive at the result:

N
Var (Z X,-) = E[N] - Var(X;) + E*[X;] - Var(N).

We should note the imperfect symmetry of this formula, where expectations
and variances of the involved variables are combined in a way that boils down
to (A.10) when N is a number, in which case its variance is zero. I
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When we have introduced the exponential distribution, we have hinted at its
“lack of memory” property. Now we may get a clear picture of what we meant.

Example A.15 Consider an exponential random variable X with parameter
A, and say that X models the random life of some equipment (or a light bulb)
whose average life is 1/A. From the cumulative distribution function (A.8) we
see that

P{X >t} =e .

This makes sense, as this probability goes to zero when t increases, with a
speed which is large when expected life is short. Now suppose that, after light-
ing the bulb, we notice that it is alive and kicking at time t; we could wonder
what its expected residual life is, given this information. In general, after a
long time of work, the death of a piece of equipment gets closer and closer.!®
To formalize the problem, we should consider the conditional probability that
the overall life of the light bulb is larger than ¢ + s:

P{X >t+s)N(X >1)}
P{X >t}
P{X >t+s}
P{X >t}
e—At+s)

P{X>t+s|X>t} =

e—/\t
e—)\s

= P{X > s}

We see a rather surprising result: The elapsed time ¢ does not influence the
residual life s and, after a time span of length ¢, the light bulb is statistically
identical to a brand new one. This is why we speak of lack of memory in the
exponential distribution, which makes it suitable to model certain “purely
random” phenomena, but not situations such as failures due to wear.

A.7 STOCHASTIC PROCESSES

When we think of the joint distribution of random variables, we may naturally
think of the realization of several phenomena at the same time. However, we
may also be interested in the successive realizations of a single phenomenon
over time, i.e., a collection of random variables indexed by time. The time
index can take integer values, for instance, when we are interested in observing
daily or weekly demand for an item. so that time is discretized in time buckets.

3Even more so in case of early burnout, which is typical of former Engineering students
like the authors.



476 A QUICK TOUR OF PROBABILITY AND STATISTICS

In such a case we will use notation like
X, t=0,1,2,3,4,.... (A.13)

The sequence of random variables (A.13) is a discrete-time stochastic pro-
cess. When the integer parameter does not represent time, we may speak of
a discrete-parameter process. In some loose sense, the stochastic process is a
generalization of deterministic functions of time, in that for any value of ¢ it
vields a random variable (which is a function itself) rather than a number. If
we observe a sequential realization of the random variables over time, we get
a sample path of the process.

Naive thinking would draw us to the conclusion that, in order to charac-
terize a stochastic process, we should give the marginal distribution of Xp
for all the relevant time instants ¢. Actually, this is not enough, as we should
consider the joint distribution of the random variables. This may be very
hard in general, and it is customary to look for relatively simple cases. The
easiest one is arguably the case in which all the random variables are mutually
independent.

Example A.16 (Gaussian processes) A common class of stochastic pro-
cesses consists of sequences of random variables whose marginal distribution
is normal, which is why they deserve the name of Gaussian processes. To
be precise, we should say that a Gaussian process requires that the random
variables X;,, X4,,..., Xs,, have a joint normal distribution for any possible
choice of time instants t1,%s,...,ty, but for the sake of simplicity we will
put in the same bag any process for which the marginal distribution of X, is
normal. However, it is important to realize that in doing so we are consider-
ing processes which may be very different in nature. Consider the stochastic
process

X,=t-¢& t=0,1,2,3,...,

where € is standard normal variable. In our loose sense, we may say that this
is a Gaussian process, since X; is normal with expected value 0 and variance
t2. However, it is a somewhat degenerate process, since uncertainty is linked
to the realization of a single random variable. If we know the value of X; for a
single time instant, then we can figure out the whole sample path. Figure A.11
illustrates this point by showing a few sample paths of this process. A quite
different process is obtained if all variables X; are normal with parameters p
and o2 and mutually independent. Figure A.12 shows a sample path of the
process X; = t- &, where & ~ N(0,1). However, the marginal distributions of
the individual random variables X; are exactly the same for both processes.
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Fig. A.11 Sample paths of the stochastic process X; =t - € € ~ N(0,1).

400} 1 # \
sl bl
o dﬂh‘w!!ﬂ\k‘! |MM |
sk U ol f Wity
A UW 'M*WL"\\WL JM | ui' »E
_400t- l h | ! | . ‘ |

Fig. A.12 Sample path of process X; =t - €;, wherc é&; ~ N(0,1).
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The example above deals with processes such that the expected value of X; is
constant.'® In practice, we should expect trends (e.g., for recently developed
products) and/or seasonality (e.g., for ice cream). A process with constant
statistical properties is probably easier to deal with, but we should clarify
what we mean exactly.

DEFINITION A.10 A stochastic process X; is said to be weakly sta-
tionary, or second-order stationary, if the expected value is constant, i.e.,
E[X:] = u, and the covariance Cov(X;, Xi4), for all s = 0,1,2,3,..., does
not depend on t.

This definition deserves a few comments.

o To begin with, we speak of weak stationarity because we are only consid-
ering the first two moments of the relevant random variables, whereas
stationarity in general has to do with joint distribution of every possible
subset of random variables.

e The second condition has two implications.

1. By setting s = 0, we see that variance is constant too, as Var(X;) =
Cov(X;, X;) = 0. Hence, the two processes in example A.16 are
not really stationary, since variance changes with time.

2. The second point is that the covariance between X;, and X;, de-
pends only on the time distance |¢; — 3], i.e., on the width of the
time interval we consider, but not on where this interval is placed.

The second implication of definition A.10 suggests that we should reflect a
bit on the link between two random variables X; and X:;.,. In example
A.16 we just considered two extreme cases: In the first one, knowledge of X,
implies perfect knowledge of X;.s for any s; in the second one, because of
independence, such a knowledge does not tell us anything. It is reasonable to
guess that there are many interesting intermediate cases.

Example A.17 Consider a small shop with one clerk. Customers arrive
according to some probabilistic law, and if the clerk is busy with another
customer, they wait in a queue. To keep it simple, assume that the shop is
open 24/7, so that there is no issue with closing periods. The service time is
also a random variable, characterized by some suitable distribution. Let W}, be
the waiting time of the kth customer; if we consider the sequence of waiting
times for k = 1,2,3,..., we obtain a discrete-parameter stochastic process.
Can we say that the variables W are independent? Ruling out pathological

16We should stress that, for the “degenerate” process, it is the unconditional expectation
which is constant and equal to zero; conditional expectation is quite different, since a very
little knowledge results in a deterministic function of time.
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cases, the general answer is no. If customer k undergoes a long waiting time.,
then we may conclude that this unlucky customer probably arrived at a time
in which the system is congested and there is a long queue. Hence. we might
expect that the waiting time for customer k + 1 will be large too. However,
if the clerk. on the long term, is able to serve all of the customer, sooner
or later this congestion will be resolved. Hence, we should expect that the
waiting times of two faraway customers, say Wy and Wy_1000, are practically
independent. In other words, intuition suggests that the random variables 1,
and W, should have some positive correlation and that this tends to fade
out for increasing values of s.

The last example motivates the following definition.

DEFINITION A.11 (Autocovariance and autocorrelation)
Given a weakly stationary stochastic process Xy, the function

C(S) = COV(Xt, Xt+s)

is called autocovariance of the process with delay s. The function

is called autocorrelation function.

We should note that because of how it is defined, autocovariance depends only
on s, which is justified for a stationary process. The definition of autocorre-
lation relies on the fact that variance is constant, which implies
COV’(Xt,Xt+5) C(S)
R(s) = p(Xi, Xi4s) = = —5.
VVar(Xe)/Var(Xees) 0
Even from this cursory and crude treatment, we may see that stochastic
processes are a thorny object to deal with, since in general we should describe
the joint distribution of all the involved random variables. For this reason,
whenever it is practically acceptable, we should work with processes in which
mutual dependence among random variables is at least limited to a simple
structure, if not absent at all. We have a relatively easy case when the process
“memory” is limited to its last value. Formally,

EXii1 | Xi, Xoo1. Xeoa, Xios, . ] = E[X | X4

A process meeting this condition is said a Markov process. A typical ex-
ample of Markov process is

Xt == Xt—l -+ gt-

where ¢ is a normal random variable and all variables ¢ are mutually inde-
pendent. Figure A.13 shows two sample paths in the case ¢ ~ N(0,1); a
process like this is also called random walk.
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Fig. A.13 Two sample paths of the process X: = X;—1 + &, with initial condition
Xo =0 and & ~ N(0,1).

So far, we have dealt with discrete-time processes, but the time param-
eter may also be represented by a real number. In such a case we have a
continuous-time stochastic process

X(@), t>0.

In principle, the definitions we have given above for stationarity, autocovari-
ance, and autocorrelation have a straightforward extension to the continuous-
time case. Actually, continuous-time processes require a much more complex
machinery for a deep understanding. Here we limit ourselves to considering a
very common and useful process, which is known as Poisson process.

Example A.18 The Poisson process is an example of counting process, i.e.,
a stochastic process N(t) counting the number of events occurred in the time
interval [0,¢]. Such a process starts from zero and has unit increments over
time. We may use such a process to model order or customer arrivals. The
Poisson process is obtained when we make specific assumptions about the
interarrival times of customers. Let Xi, k = 1,2,3,4, ..., be the interarrival
time between customer k — 1 and customer k; by convention, X is the arrival
time of the first customer after the start time ¢ = 0. We obtain a Poisson
process if we assume that variables X are mutually independent and all
exponentially distributed with parameter A, which is in this case the arrival
rate, i.e., the average number of customers arriving per unit time. A sample
path is illustrated in figure A.14; we see that the process “jumps” whenever
a customer arrives, so that sample paths are piecewise constant.

We have already mentioned the link between Poisson and exponential dis-
tributions and the Poisson process. If we consider a time interval [ti,t3],
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Fig. A.14 Sample path of the Poisson process.

with 1 < t9, then the number of customers arrived in this interval, i.e.,
N(tg) — N(t1), has Poisson distribution with parameter A(tz — ¢1). Further-
more, if we consider another time interval [ts.t4], where t3 < t4. which is
disjoint from the previous one, i.e., ({2 < t3), then the random variables
N(tg) — N(t1) and N(t4) — N(t3) are independent. We say that the Poisson
process has stationary and independent increments.

The Poisson process is a useful model to represent the random arrival of
customers who have no mutual relationships at all. This is a consequence of
the lack of memory of the exponential distribution, which we have illustrated
in example A.15 on page 475.

The model can be generalized to better fit reality. For instance, if we
observe the arrival process of customers at a big retail store, we easily observe
variations in the arrival rate. If we introduce a time-varying rate A(t), we get
the so-called inhomogeneous Poisson process. Furthermore, if we consider
not only customer (or order) arrivals, but the demanded quantities as well, we
see the opportunity of associating another random variable, the quantity per
order, with each customer. The cumulative quantity demanded D(t) in the
time interval [0, ¢] is another stochastic process, which is known as compound
Poisson process. The sample paths of this process would be qualitatively
similar to those in figure A.14, but the jumps would be random variables.
This is a possible model for demand, when sale volumes are not large enough
to warrant use of a normal distribution.

A.8 PARAMETER ESTIMATION

In this section we enter the realm of Statistics, which, in a sense, goes the other
way around with respect to probability theory. In the latter, we assume perfect
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knowledge of essential properties of a phenomenon, e.g., encoded in the density
function of a random variable, and we ask possibly complicated questions
about the probability of occurrence of an event of interest. Whatever the
questions, in probability theory we take for granted that we have knowledge
of parameters such as expected value and variance. In Statistics, it is raw
data we start from, and we would like to build a probability distribution; we
do not really know expected values or variances, and we would like to come up
with some sound procedure to estimate them, to qualify the reliability of such
estimates, and to test hypotheses about them. This does not mean that we
discard probability theory; on the contrary, this is the conceptual foundation
for such “sound” procedures, but the mindset is completely different. In
Statistics, we aim at squeezing information out of available data, and this
may require some finesse in understanding which data are relevant, which
ones should be discarded, and how they can be related.

The basic problem we consider in this section is parameter estimation,
with specific reference to the estimation of an expected value. The starting
point is a set of data; these can be obtained, e.g., by historical demand data,
by a survey where customers have been interviewed, or by computer-based
experiments with Monte Carlo simulation. A formalization of the vague idea
of “a set of data” is needed to rely on a sound probabilistic foundation, and
this yields the concept of a random sample.

DEFINITION A.12 (Random sample) If X1, X5, ..., X, are indepen-

dent random wvariables characterized by the same CDF Fx, then they are a
random sample.

In other words, the elements of the random sample are a sequence of i.i.d.
random variables. It is very important to stress the role of independence in
the definition above. All of the following concepts depend critically on this
assumption. It may well be the case that there is correlation in a practical
sample, but then a blindfolded application of naive statistical procedures may
lead to erroneous conclusions and a possible business disaster. Furthermore,
we also assume that the data are somewhat homogeneous, since they are iden-
tically distributed. Clearly, if the data have been observed under completely
different settings, the conclusions we draw from their analysis may be severely
flawed.

Given a random sample, we typically summarize the data by using some
recipe. Formally, we compute a statistic.

DEFINITION A.13 (Statistic) A statistic is a random variable whose
value is determined by a random sample.

In other words, a statistic is basically a function of a random sample. As a
concrete example, the most common statistic is the sample mean:

X =

S|

i X;. (A.14)
=1
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The sample mean should not be regarded as a number, but as a random
variable. Assume that the expected value of the random variables in the
sample is p. Then the expected value of the sample mean, as we know from
example A.10 on page 464, is

E[)?J = 4.

This property justifies using the sample mean X as one possible estimator
of the expected value p. Hence, we are using realizations of a random variable
to estimate the unknown value of a number, and a natural question is, Which
properties make a good estimator? The first one is that an estimator should
be unbiased, in the sense that its expected value is the parameter we wish to
estimate. As we have seen, the sample mean is an unbiased estimator of the
expected value. However, there are other issues in using an estimator, since
this is a random variable with some variance; of course, we would like to have
estimators with small variance. From example A.10. we know the variance of
sample mean,
Var[ X | = U—, (A.15)
n

where o2 is the variance of each single element X; in the random sample. As
it is reasonable to expect, this variance decreases for an increasing size of the
sample. However, we insist again that the last property relies on independence
in the sample, whereas unbiasedness of the sample mean does not.

Equation (A.15) is useful in drawing some conclusions on how reliable an
estimate is, but it relies on another parameter, o, which is typically unknown
as well. The typical estimator for variance is sample variance:

= ==Y (xi- %), (A.16)

=1

This formula can be understood as a sample counterpart of the definition of
variance: It is basically an average squared deviation with respect to sample
mean. From a computational point of view. the following rearrangement can
be useful:

1 -\ 2
§% = n_lz(Xi—X)
=1

- (ixf LaXY O, +n)—(2>
d=1

i=1
1 u =2
= (ZX?—nX). (A.17)
=1

The sample standard deviation is just S, the square root of sample vari-
ance. We note again that these estimators are random variables, and we
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should make sure that they are unbiased, i.e., E[S?] = ¢ This is the reason
for the apparently odd denominator in (A.16), which is n — 1 rather than n.
From the rearrangement above we see

E[s?] = nil<§E[Xﬂ—nE[)?2}>

2
LN P SN C

= 0'2.

Actually, the need for the denominator n — 1 stems from the fact that we
are measuring deviations against X rather than . From an intuitive point
of view, we could say that the need to estimate the unknown expected value
implies that we “lose one degree of freedom” in the n available data in the
sample. This point of view can be made rigorous, but we will settle for the
intuitive sense.

Now that we know something about expected value and variance of the
sample mean, we can dig deeper and ask questions about its distribution.
Finding the distribution of an estimator can be a tricky issue since, as we have
seen, summing random variables with a given distribution need not result in
a random variable with the same distribution. However, we may at least look
for some partial results. To begin with, the central limit theorem says that
for a large sample, the distribution of the sample mean tends to a normal. We
also know that if we are actually sampling from a normal distribution, then
the sample mean will be normal too for any size of the sample.

Sample variance is a bit trickier, even if we assume normal samples. From
an intuitive point of view, we see from equation (A.17) that it involves squares
of normal variables. Given what we know about the chi-square and Student’s
t distribution, the following theorem, which summarizes basic results on the
distribution of the estimators we have considered, should not come as a sur-
prise.l7

THEOREM A.14 Let X1,..., X, be a random sample from a normal dis-
tribution with expected value p and variance o®. Then:

1. The sample mean X has normal distribution with expected value p and
variance o2 /n.

2. The random variable (n—1)S?/0? has chi-square distribution with n— 1
degrees of freedom.

3. Sample mean and sample variance are independent random variables.

17See, e.g., [4] for a proof.
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4. The random variable
X—p
S/v/n

has t distribution with n — 1 degrees of freedom.

The third statement above is somewhat surprising, since sample mean and
sample variance are statistics depending on the same random variables, but
it is essential in establishing the last distributional result, which will play a
fundamental role in the following. We should note that if the true variance
were known, we could work with the statistic

X —u

a/vn

which is a standard normal. If the random sample is not normal, the results
above do not hold for a small sample. We will rely on central limit theorem
in justifying the application of statistical procedures, which are valid for a
normal sample, to a large non-normal sample. This is enough for what we
do in the main body of the book, but this heuristic approach should not be
applied to other problems without due care.

A.8.1 Sample covariance and correlation

In applications, we are often interested in modeling the relationships among
different variables: For instance, we would like to estimate the impact of ad-
vertising on sales, or of temperature on ice cream demand. The amount of ads
and the temperature are treated as explanatory variables, in that they con-
tribute to explain demand. In section A.10 we will discuss regression models
in some detail, but it is useful to start discussing here the sample counterparts
of covariance and coefficient of correlation, which we have introduced in sec-
tion A.6.2 to investigate the link among random variables. Indeed, one test
that we can carry out to check the impact of a variable on another one is es-
timating their coefficient of correlation. As with expected value and variance,
we assume that we lack knowledge of the probability distributions involved,
and we must analyze empirical data to come up with estimates. It is impor-
tant to realize that our sample must consist of joint realizations of variables
X and Y. If we want to investigate the impact of temperature on ice cream
demand, we must have pairs of observation taken in the same place at the
same time; clearly, mixing observations is no use.
Just as we have defined sample variance in equation (A.16), we may define
sample covariance Sxy between random variables X and Y
1 < = -
Y X=X -Y) (A.18)

i=1

SXYZn—l
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where 7 is the size of the sample, i.e., the number of pairs. This definition is
also consistent with sample variance, since 5% = Sxx.

To estimate the (coefficient of) correlation pxy between X and Y, we may
use sample coefficient of correlation, or sample correlation for short:

-1 < rxy < +1,

kg3
Y -%) Y -7y
i=1 i=1
(A.19)
where factors n—1 cancel each other. Once again, we stress that the estimators
we have just defined are random wvariables depending on the random sample
we take.

As in the case of sample variance, we have to include a term n — 1 to
make the estimators unbiased. Checking unbiasedness is left as an exercise,
but one could wonder why we should divide by n — 1 and not n — 2, given
that we rely here on the estimates of two parameters, the expected values
of both X and Y. Apart from a formal proof, which we omit, one intuitive
check is that using n — 1 is required for consistency with sample variance. As
another intuitive argument, we could note that the minimal size of the sample
to get an estimate of variance, covariance, and correlation is two; otherwise,
we cannot compute any deviation from the mean. We will see that in linear
regression the minimal sample size is actually three, and there we will see a
n — 2 factor come into play.

The sample coefficient of correlation, just as its probabilistic counterpart,
is adimensional and it lies in the range [—1, 1]. We recall that this is not really
a measure of dependence, but a measure of concordance in the deviations with
respect to the means. The sample correlation tells us if a positive (negative)
deviation of Y with respect to Y is associated with a positive (negative)
deviation of X from X. A positive coefficient suggests that, on average, when
Y is larger than Y, then also X is larger than X; similarly, when Y is smaller
than Y, also X is smaller than X on average (see figure A.15). On the
contrary, a negative coefficient of correlation suggests that when Y is larger
than Y, X is smaller than X, and vice versa. A case of negative correlation
is illustrated in figure A.16. When none of these patterns occurs, we have no
correlation, like in figure A.17.  Clearly, if we want to use these tools for
forecasting, a very small correlation tells that, probably, the variable X is not
very useful in predicting Y, since apparently there is no relationship. On the
contrary, a strong (in absolute sign) correlation suggests that there is a strong
link and that maybe X can be very useful in predicting Y.

Correlation analysis is very useful, but like any other tool we must be well
aware of its pitfalls and limitations to use it properly.
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Fig. A.15 A case of correlation 0.8.

Fig. A.16 A case of correlation —0.8.
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Fig. A.17 A case of correlation 0.

e In the first place, the concept of correlation is often confused with cau-

sation. When X and Y are correlated, it is tempting to conclude that X
“causes” Y. This may be true, but it is knowledge of the phenomenon
that allows to draw such a conclusion. Correlation, per se, does not
measure anything but a symmetric association. In fact, the definition of
covariance and correlation is symmetric: Sxy = Sxy. It may even be
the case that there is a third variable, say Z, which is actually causing
Y and is correlated with X this lurking variable effect can lead us to an
erroneous conclusion. As a well-known example, assume that X is the
amount of spending in advertisements, Z is the amount of discount in
promotional sales, and Y is demand. We might observe an increase in
demand due to ads, leading us to conclude that advertisements are very
useful. However, it might be the case that the real cause of the increase
in demand is the reduction in price which is often associated to ads in
order to boost sales.

We have already pointed out that, in general, lack of correlation does
not imply independence. When the relationship between X and Y is
nonlinear, the coefficient of correlation could not reflect this link at all.
An example is shown in figure A.18, where we may see that there is
indeed a link between the two variables, but sample correlation is prac-
tically zero. This happens because when Y is larger than its mean, X
can be larger or smaller than its mean (see also example A.11 on page
466). In the last part of this appendix we will outline some nonlin-
ear transformations of data which could be useful to overcome, at least
partially, this limitation.
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Fig. A.18 A nonlinear relationship between X and Y.

Table A.1 An example of negative correlation

1 1 2 3 4 5 6 7 8 9 10

x 9 6 10 2 7 3 2 5} 6 2
Yy 79 7.5 136 168 8.1 15 98 128 158 17.7

o Finally, peculiar data can have a very large impact on the analysis. In
fact, when we have a single observation (X;,Y;) which is quite far from
the average, the terms X; — X and/or Y; — ¥ may be much larger, in
absolute value, than the other terms in the sum. This issue is often called
“King Kong” or “Big Apple” effect.!® The following example shows the
care that should be taken in presence of a peculiar observation.

Example A.19 Consider a sample consisting of ten observations of temper-
ature and demand for an item, as displayed in table A.1. These data are
depicted in figure A.19, which suggests a negative correlation; the sample cor-
relation is indeed —0.47, and this would support the belief that temperature
has a negative effect on demand for this item.

But now suppose that we include another observation, as in table A.2 and
the corresponding figure A.20. Based on the sample correlation, which is now
positive (0.85), conclusions could be quite different. Actually, this would be

188tatistics on towns in the USA may be affected by the inclusion of NY, which has peculiar
characteristics.
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Fig. A.19 Pictorial representation of the data in table A.1; sample correlation is
—0.47.

Table A.2 Example of positive correlation due to the King Kong effect

1 1 2 3 4 5 6 7 8 9 10 11

z 9 6 10 2 7 3 2 ) 6 2 40
y 79 75 136 168 81 15 98 128 158 177 425

somewhat careless: What we can say is that in the one observation in which
we had a very high temperature, we observed a large demand. However, we
cannot really conclude that in the normal range, a larger temperature leads
to an increase in demand. I

A.8.2 Confidence intervals

The sample mean is a point estimator for the expected value; since it is subject
to some variance, it would be nice to have some measure of how much we can
trust that single number. The same consideration applies to any estimator,
and the typical additional information which is associated comes in the form
of a confidence interval. Roughly speaking, a confidence interval is a range
in which the true, unknown parameter should lie with some probability. This
probability is known as confidence level; if the confidence level is 1 — o,
where o is a relatively small value such as 0.01 or 0.05, then we can say that
the confidence interval contains the “true” value with probability 1 — «. The
following definition formalizes the definition of a confidence interval.



PARAMETER ESTIMATION 491

45 1y
40 4
35 4
30
25

20

Fig. A.20 Pictorial representation of the data in table A.2; sample correlation is now
0.85.

DEFINITION A.15 Let the confidence level be 1 —«. A confidence interval
for a parameter 8 is a pair of statistics Ty and Ty, such that'®

PTi<0<T}=1-a.

This is a general definition of a confidence interval, which takes a more specific
form depending on how we estimate the parameter and on possible additional
assumptions on the distribution of samples.

If we are dealing with a normal sample, with unknown expected value
and variance, which are estimated by sample mean and sample variance, we
observed that the statistic _

X—p

S/vn
has t distribution with n — 1 degrees of freedom. Hence, if we denote by
t1—a/2,n—1 the (1 — a/2)-quantile of ¢ distribution, we have

—H
P<—tiapmni1< <t o1y =1—a,
{ 1-a/2,n—1 S/\/ﬁ = l1-a/2, 1} &

which can be rearranged as

— S - S
P {X - tl—a/?,n—l% <ps X+ tl—o/ln*lﬁ} =l-a

19In the statement we take for granted that Ty < Tb. In general, an inequality involving
random variables is potentially critical, and we should require that it holds with probability
one.
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We see that the interval

<X - tl—a/?ﬂr—l%a X + tl—a/2,n—1%> (A.20)
is a confidence interval for the expected value y, with confidence level 1 — a.
It is essential to grasp the meaning of a confidence interval, which has a
probabilistic interpretation. In fact, the confidence interval is the outcome
of a random sampling experiment. All we can say is that if we repeat the
random sampling a large number of times, the true value would fall within
the confidence interval in a fraction (1 — «)% of the experiments. There is a
probability a that p lies outside the interval, either to the left or to the right.
We consider quantiles with probability 1 —a/2 because symmetry of Student’s
distribution implies that the probabilities associated to the right and left tails
are equal.

Example A.20 Let us consider the random sample
{43, 79, 26, 137, 45, 55, 93, 52, 46, 17},

under the assumption that it comes from a normal distribution, and let us
compute a 95% confidence interval for the expected value. We have

n=10, X =593, S~ 352422,
and from statistical tables (or from a suitable piece of software) we may get
ti—a/2,n—1 = to.975,0 = 2.2622.

By straightforward application of (A.20), we obtain the confidence interval
(34.0893, 84.5107).

From a qualitative point of view, we can observe the following:

o The larger the confidence level 1 — ¢, the larger the confidence interval,
in other words, a wider interval is required to be “almost sure” that it
includes the true value.

e The interval is large when the underlying variability ¢ of the elements
of the sample is large.

e The interval shrinks when we increase the number of samples.

e When the sample is very large, we may use the quantiles 2;_, /2 from
the standard normal distribution.

Given these observations, we could conclude that when we really need a tight
interval, we must accept the cost of a large sample. Actually, this need not be
always true. In stochastic simulation on a computer, we may sometimes ex-
ploit different sampling mechanisms to reduce the variance o2 of the elements
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in the sample. In other cases, there might be competing ways to estimate
a parameter; it turns out that, sometimes, there is a biased estimator with
lower variance. If the bias tends to disappear when the size of the sample
increases, this estimator may be preferable.

Once again, we stress that all we have said for confidence intervals holds
under the assumption of a normal sample, consisting of independent random
variables. If the sample is not normal, then we may invoke the central limit
theorem and say that the confidence interval could be a fairly accurate ap-
proximation for a large sample; otherwise, different forms of intervals should
be devised, particularly if the underlying distribution is very skewed and the
sample is small. The next example shows how the general theory can be
adapted to cope with a specific case.

Example A.21 Say that we are interested in estimating the fraction of a
population meeting a certain condition, e.g., they like a certain product. Of
course, what we should do is take a sample, ask a question, and calculate the
fraction of “yes” answers over the total. More formally, what we are doing is
estimating the parameter p of a Bernoulli random variable (see section A.3.1).
If we denote the size of the sample by n, we know that the number X of “yes”
answers is a binomial variable, with expected value np and variance np(1 —p).
For a suitably large sample, thanks to the central limit theorem, we may say
that

X —np

np(1l —p)

from which we may build an approrimate confidence interval,

~ N(0,1).

PE z1_a2Vp(l —D)/n,

where p = X/n. In this case, we see a different way to estimate variance, since
expected value and variance are related in a very specific way. However, we
may still use much of what we know, at least when the sample is large. 0

The following example shows that care is needed to ensure independence.

Example A.22 We use again example A.17, where a simple queuing system
was considered. A typical problem in this field is determining the number of
servers, i.e., clerks, in such a way to avoid long waiting times that lead to
customer dissatisfaction. What we can do, among other things, is simulating
the queuing system for different numbers of servers, in order to assess the
tradeoff between system cost and service quality. A possible measure of service
quality is the expected value of the waiting time. This can be estimated
by a suitably long experiment, but how long exactly? We could simulate
the process until n customers have been served, collect the waiting time Wy
for each customer k = 1,...,n, and use the formula (A.20) to check if the
confidence interval is small enough. In doing so, we might make at least three
mistakes at the same time.
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1. To begin with, if we start our simulation with an empty system, we have
a transient phase that may affect our statistics. We should wonder if
we should discard the first data to avoid this issue. A similar problem
must be dealt with when simulating inventory control systems, as the
initial inventory may play a role, unless the simulation experiment is
very long. In the shop case, this may be not an issue if the shop opens,
say, at 9 a.m. and closes at 5 p.m., because in such a case reaching the
steady state is not an issue.

2. A more general issue is that the waiting times are unlikely to be normally
distributed, and the confidence interval will only be an approximation;
as we have said, however, this is fairly good for a large sample.

3. Actually, the really serious mistake is that, as we have pointed out in
example A.17, waiting time of successive customers are not independent
random variables. What may happen is that sample variance underes-
timates the true variance, and the width of confidence interval is un-
derestimated as well. The net result is that we are overconfident in our
conclusions.

In practice, the way out of the last issue is the batch method. We simulate m
samples, each one consisting of n customers, amounting to nm customers for
the whole experiment, and we consider the m sample means

W = ZWk j=1,....m.
k=(j-1)n-+1

Fach sample mean W’ is, at least approximately, independent from the other
ones, and we may apply the standard procedure on them. The good news is
that they should have a rather small variance and, thanks to the central limit
theorem, they are more or less normal, providing further justification for the
approach.

A.9 HYPOTHESIS TESTING

Parameter estimation can be used to address questions like “What is the
average demand for a given item?” or “What is the average useful life of this
product?” If a sample is available, we may also build a confidence interval
to assess the reliability of the estimate. A different but related issue must
be tackled when, for instance, a manufacturer claims that his product has an
average life of © = 100 hours. and a skeptical customer does not trust his
claim. One thing she could do is run a statistical experiment in order to have
a check. Suppose that the estimated average life is 99 hours; can she sue the
manufacturer? Not really, since the sample mean is a random variable, and
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it might well be the case that an “unlucky” sample leads to a result which
is smaller than the true value. On the other hand, if the result were 101, we
would be willing to trust the manufacturer, but we could be wrong as well.
However, if the sample mean were 50 hours, we could be somewhat suspicious
about the truth of the claim, because such a large discrepancy with respect
to the claim is hardly attributable to randomness in the sample.

When facing such an issue, we run a twofold risk: On the one hand, we
could reject a claim which is in fact true; on the other one, we could accept a
claim which is false. Hence, we need a sound theoretical basis to make well-
informed decisions. We illustrate here a procedure for hypothesis testing.
In the literature, the term significance testing is also used, e.g., when we want
to check if the sample correlation coefficient is significant. Here we mainly deal
with hypotheses about the mean of a normally distributed population, but we
will also outline different tests. Formally, we postulate a null hypothesis
Hy, which is tested against an alternative hypothesis H;. The overall idea
is analyzing the properties of a certain statistic under the assumption that
the null hypothesis is true. In our case, we use properties of the sample
mean assuming that the random sample comes from a normal population
with expected value i = g, where ug comes from the null hypothesis. Then,
by checking the sample mean, we see if it is consistent with Hp; if it looks
severely inconsistent, we reject the null hypothesis, keeping under some control
the probability of rejecting Hg when, in fact, it is true (i.e., the probability of a
type I error). We do not consider here the risk of accepting a false hypothesis
(a type II error).

To formalize the problem in a more general setting, we consider a popula-
tion which is distributed according to a density (or cumulative distribution)
Fy, depending on an unknown parameter 8, which in our case is the expected
value, but it need not be in general. We formulate a null hypothesis, denoted
by Hg, such as Hy: 8 = 1, or Hy : 8 < 1. Then, we take a random sample of
size n from the population, denoted by (X3, Xs. ..., X,,). To ascertain if the
sample is “compatible” with the null hypothesis, we build a region C € R”,
called rejection region, according to a suitable criterion; then we accept Hg
if (X1, Xa,...,X,) & C, or wereject it if (X1, Xo,...,X,) € C. We build the
rejection region in such a way that we have a small probability « of rejecting
a true hypothesis; in other words, if Hy is indeed true, the sample may hap-
pen to fall in the rejection region, but it is unlikely. The number « is called
significance level.

To be more concrete, let us consider testing a hypothesis about the expected
value y of a normally distributed population, assuming that the variance o2
is unknown as well. Say that the null hypothesis is

Ho @ p = po,
which we test against the alternative

Hy:p # po.
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Table A.3 Sample data for hypothesis testing

5.00 1.82 1595 -13.74 9.28 1396 1231 10.78 5.40 11.77

Intuitively, we should reject Hy if the sample mean X is “far” from po (both
larger or smaller). To make “far” clearer, we build the test statistic

TS = \/E(X — :U‘O)7
S
where S is the sample standard deviation. From section A.8 we know that

if the null hypothesis is true and if the population is actually normal, the
statistic TS has ¢ distribution with n — 1 degrees of freedom. Hence,

P,, {_tl—a/Q,n—l < M

< tl—a/2,n-1} =1-q,

where we use the notation P, to emphasize that we compute this probability
under the probability measure assumed in Hg. Wrapping everything up, the
procedure prescribes the following, for a given significance level a:

X —

accept Hp if ‘@(—S—H—(ﬁ Stica/2n-1;
X —

reject Hy if ’@(_;u_o) >l—a/2n-1-

Example A.23 Consider the data listed in table A.3. Actually, these data
have been obtained by running a generator of pseudorandom variates, and
they are samples from a normal distribution with expected value 5 and stan-
dard deviation 10. Now, suppose we forget about what we know, and let us
test the hypothesis that 4 = 5, with a significance level « = 0.1. To begin
with, we compute the sample statistics:

n=10, X =T7.253, S=85757.

Note that the sample mean looks rather large with respect to yg = 5, but this
intuitive feeling must be carefully checked, taking the large variability and the
limited sample size into account. The test statistic is

_ V/10(7.253 — 5)
- 8.5757
and this should be compared with the quantile ¢;_4 /2 n—1 = to.95,90 = 1.8331.

Since TS < 1.8331, we cannot reject the hypothesis with that significance
level. a

TS = 0.8308,
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We may notice some similarity with confidence intervals. Indeed, in the case
above we might argue that we reject the hypothesis if pg does not fall within
the confidence interval. However, the underlying thinking is a bit different, at
least in principle. Furthermore, we should use a different rejection region if
the hypothesis is different, leading to a one-sided, rather than two-sided, test.
Consider, for instance, the following null hypothesis

Ho:p < po

against the alternative
Hy oy > po.

In this case we build the test under the assumption p = pg, but the rejection
region is only one of the two tails:

V(X ~ po)

V(X = po)
S

Intuitively, in this case we reject Hy if the sample mean is suspiciously large.
Also note the use of a quantile with probability level (1—«) instead of (1—a/2).
We trust that the reader will now find the symmetric case rather easy to figure
out. What may be not so easy to figure out is, Which is the appropriate
hypothesis to use when tackling a real-life business problem? Sometimes the
answer is obvious. For instance, if the unknown parameter is the average life
of an item, we should not complain if this is larger than claimed. Hence, we
may argue that in such a case we should test something like Hy @y > puo,
complaining with the manufacturer only if the test statistic gets stranded on
the left tail. In other cases, the answer might not be that obvious.

Another tricky point is finding a suitable value of . Note that the larger
the value of a, the easier it is to reject the null hypothesis. This happens
because the rejection region increases with a. So, we could find a case in which
we accept {or, better said, we cannot reject) the null hypothesis if & = 0.05,
but we reject it if we set o = 0.06. This is clearly a critical situation, because
the right confidence level is nowhere engraved on a rock. A useful concept
from this point of view is the p-value. In a two-sided test, the p-value is given
by the probability that a variable T,,_1, i.e., following a t distribution with
n — 1 degrees of freedom, is in absolute value larger than the value of the
statistic T'S:

accept Hy if <ti—an-1:

reject Hy if >t1_an-1.

p=2-P{Tu_s 2|t]}.
if TS = ¢. In practice, the p-value is a “critical” significance level, in the sense
that the hypothesis would be accepted for all significance levels smaller than
P-
Example A.24 In example A.23, we could not reject the null hypothesis
with a significance level @ = 0.1. With a different significance level. we could
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Table A.4 Hypothesis testing about the mean of a normal population, when variance
is unknown: TS is the test statistic and « is the significance level

Hy H; TS Test with Level « p-Value if TS =¢
L= fo B FE o —@%LO—) reject if | TS|> t1_q/2n-1 2P{T—1 2|t|}
w<po p>po @ reject if TS > t1—a,n-1 P{Th_1 >t}
w>po  B< do \/ﬁ—()_fg:—M—O) reject if TS < —f1_an—1 P{Tn-1 <t}

reach a different conclusion. For instance, if &« = 0.5, we must use the quantile
to.75,9 = 0.7027, resulting in a rejection. However, we have a 50% probability
of rejecting a true hypothesis, because the rejection region is large. To spot
the “critical” significance level, we may compute the p-value:

p=2-P{Ty > 0.8308} = 2-0.2138 = 0.4276.

We see that we may reject the hypothesis only if we accept at least a 42.76%
probability of a type I error.

The p-value for one-sided tests is found using a similar logic, where only one
tail of the Student distribution is considered. Table A.4 summarizes what we
have discussed. If the variance were known, the reasoning is again the same,
but we should use the quantiles from the standard normal distribution.

A.9.1 An example of a nonparametric test: the chi-square test

In the main body of the book, we often assume that the demand for a certain
item is normally distributed. However, this should not be taken for granted,
and the claim should be tested in some way. When we test if experimental
data fit a given probability distribution, we are not really testing a hypothe-
sis about a parameter or two; in fact, we are running a nonparametric test.
The chi-square test is one example of such a test. The idea is fairly intuitive,
although the technicalities may require some care. We could divide the range
of realizations in J disjoint intervals, and compute the probability that a ran-
dom variable distributed according to that distribution falls in each interval.
Then, we may calculate the number E; of observations (out of n) that should
fall in interval j, j = 1,...,J, if the assumed distribution is indeed the true
one. This number should be compared against the number O; of observations
which actually fall in interval j; a large discrepancy would suggest that the
hypothesis about the underlying distribution should be rejected.

Like any statistical test, the chi-square test relies on a distributional prop-
erty of a statistic. It can be shown that for a large number of samples, the
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statistic

v=3 (0, ;;.Ej)Q
J

j=1

has (approximately) a chi-square distribution. But what about the degrees
of freedom? This is the tricky part of the procedure, as this depends on the
number of parameters of the distribution that we have estimated using the
data. If no parameter has been estimated, the degrees of freedom are J — 1.
Otherwise, the distributional results are more complicated. Whatever the
case, the intuitive idea of the test is that if x2 > Xz,a: where « is the level of
significance and k is a suitable number of degrees of freedom, the hypothesis
should be rejected. Indeed. if the hypothesis were true, x2 should be close to
zero; a large value leads to rejection of the hypothesis.

A.9.2 Testing hypotheses about the difference in the mean of two
populations

Sometimes, we have to run a test concerning two (or more) populations. For
instance, we could wonder if two markets for a given product are really dif-
ferent in terms of expected demand. Alternatively, after the reengineering of
our business processes, we could wonder if the performances are significantly
different. In both cases, the rationalization of the problem calls for assessing
the difference between two expected values, py — g, where pq and po are the
expected values of two random variables. We consider here how we can build
a confidence interval for this difference; running a test of hypothesis requires
a fairly straightforward adaptation. What we should do exactly depends on
a number of issues:

e Is the number of samples, from both populations, large or small?

o Are the two variances known? If they are not, can we assume that they
are equal?

e Are the samples from the two populations independent?
e Are the two populations normal?

Depending on the answers to these questions, we may exploit certain distri-
butional results about the statistic

X1 - Xa. (A.21)

i.e., the difference between the two sample means. Let n; and ng be the two
sample sizes, respectively.

If the two samples are both large and mutually independent, the statistic
(A.21) is, at least approximately, normally distributed. Furthermore, inde-
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pendence allows to estimate the standard deviation of the difference by

/st S5
5% -%: = \ln, Ty

where 5% and S2 are the two sample variances. Then, the following confidence
interval can be built:

(5&;1 - Xz) + Zl_a/gs)?l_)?z.

Based on these estimates, it is also easy to test if the two populations are
significantly different (in this case, the test boils down to checking if the
origin lies within the confidence interval).

With small samples (say n1,n2 < 30), the procedure is not as simple. A
relatively easy case is when we may assume that the two variances in the two
populations are the same. To estimate the standard deviation, we may pool
the observations,

\/(nl _1)82 + (ny — 1)S2
S, = .,

ny+ ne —2
and use
1 1
Sv _w. =8/ —+ —
X:1-Xo PV T g

to build a confidence interval
(X1— X2) £tn4ns—21-a/2 5%, _Xa-

We see that we are relying on Student’s ¢ distribution; we know that, strictly
speaking, this requires that the two populations are normal. Also note the
number of degrees of freedom. If the two variances are different, we may also
use the same distribution, but we must estimate the degrees of freedom. A
(nontrivial) distributional result justifies the following estimate:

S? +S_§ 2
N1 Ny

1 /82N’ L1 (8 2
.ZV1 -1 17\71 ]Vz -1 ]\72

Since f need not be an integer, we may round it down (which makes sense
because with fewer degrees of freedom the confidence interval is larger and
more conservative) and build the confidence interval

k‘\)
I

52 SQ
1+__2_

(XI_XZ)itf.l_a/g n—l g
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All of the above procedures rely on the independence between the two pop-
ulations. Now assume, on the contrary, that the samples are strictly related.
Such a case occurs when the observations actually paired. For instance, if
we draw random demand scenarios and we evaluate the performance of two
management policies, we have paired samples X,(Cl) and X;(f), which are the
performances of policies 1 and 2, respectively, in scenario k. The case of paired
samples requires working directly on the differences

Dy =XV - x

computing the statistics

3

— 1
D=- Dk',
n
k=1
1 & 2
Sp =,/ —— D? —nD" |,
e (z o )
k=1
and building the confidence interval
—= S
D itn-l,lﬂa/Q_D

N
A.10 SIMPLE LINEAR REGRESSION

We considered the sample correlation coefficient in section A.8.1 as a way to
assess the possible role of a variable X in explaining the dynamics governing
a phenomenon measured by another variable Y. However, from a forecasting
point of view, this is not enough, as we would also like to predict which value
of Y we may expect corresponding to a certain level of Xy the independent
variable X. In order to do so, we must come up with an explicit link, in the
form of a functional dependence, between Y (e.g., demand) and the explana-
tory variable X (e.g., outside temperature). The simplest tool to analyze such
links is simple linear regression, which assumes a functional relationship
such as

Y =a+bX. (A.22)

We speak of “regression” because we try to identify suitable values a and b
in such a way that the model is consistent with a set of empirical observa-
tions. It is “linear” because we are using a linear?” function to model the
relationship between variables; we should recall that correlation captures lin-
ear associations, but it may fail to point out nonlinear associations. It is

20Well, we should really say affine.
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3007 y

250 4 .

* y=10+5x

y=100+x

0 10 20 30 40 50

Fig. A.21 Regression lines with different levels of “sample fit.”

“simple” because there is only one explanatory variable; we may (and typi-
cally should) also build multiple regression models in which more factors are
used to explain the values assumed by a variable of interest.

In the rest of this appendix we illustrate simple linear regression in some
detail. Multiple and nonlinear regression will not be considered in detail: We
just describe a simple way to use linear regression to estimate a nonlinear
relationship in section A.10.6, and we outline multiple linear regression in
web section W.A.11. We also emphasize that the mathematical tools we will
use, per se, do not assign a precise role to variables: The model captures
an association, and we interpret X as the cause and Y as the effect; but we
could switch these two roles, and the mathematics would just be the same.
Regression is a very useful but dangerous tool, as by playing with numbers
one may build models which have really no meaning at all. Hence, we will try
to point out all the pitfalls of simple-minded linear regression.

The starting point of linear regression is a set of empirical observations, i.e.,
pairs (X;,Y;). In general, if we have three or more points, it will be impossible
to find a pair of coefficients a and b ensuring a perfect fit by a linear function.?!
What we can do, for instance, is to find the “best” coefficients a and b in such a
way that the theoretical model, the regression line, is as close as possible to the
empirical data. For instance, a look at figure A.21 shows a set of data which
is more consistent with line ¥ = 10 4+ 5X than line Y = 100+ X. To make
the idea more concrete, we must explicitly specify a distance measure between

210f course, we might consider the idea of assuming a complicated functional form, with
a lot of coefficients which ensure enough degrees of freedom to get an almost perfect fit.
Unfortunately, this “overfitting” process is sensitive to noise, among other things, and it is
rarely advisable.
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the prediction we get from the theoretical model, V; = a + bX;, and the n
empirical observations of X ed Y; we will use the sum of squared deviations
as a measure, leading to the least squares method. In the next section we
do so without referring to statistical concepts at all, as the approach can be
cast within the framework of function approximation, which is an important
branch of Numerical Analysis. Then, we will introduce statistical concepts,
which are needed to evaluate the reliability of the predictions we obtain from
a linear regression model.

A.10.1 Best fitting by least squares

Say that we have a set of n points (z;,7;), ¢ = 1,...,n. These points can
be the result of empirical measures or simulation experiments, but for now
we treat them as numbers. Please note the use of lowercase letters; we are
not (yet) considering our data points as the outcome of random sampling.
We postulate a functional form, say y = f(z). and we look for the function
which yields the best approximation of the given data, within some class of
functions and with respect to a given criterion. In the case of linear regression,
we consider the class of affine functions like

y=flz)=a+be.

and we look for the “optimal” pair of coefficients a and b. In general, a perfect
fit is impossible to obtain with a reasonably simple model, and we will have
some deviation between the theoretical prediction and the empirical data. We
define a residual ¢; as

ei =y — flay) =y — (a+bxy). (A.23)

We should aggregate the n residuals in order to come up with a single number
playing the role of a distance. There are different and sensible ways for doing
50, but the most common one is by summing the squared residuals:

n

8s=>"e? => (yi—a—bx;)’, (A.24)
i=1

i=1

where SS stands for Sum of Squared residuals. Then, the approximation
problem boils down to an optimization problem requiring the minimization
of SS with respect to a and b. Of course, we square the residuals in order
to avoid cancelation between positive and negative values, but we could also
take absolute values. One reason to prefer squared residuals is that they lead
to an analytical solution, whereas absolute deviations call for a numerical
solution by linear programming. An analytical solution allows for an easier
interpretation, and it paves the way for the application of statistical tools.
Summing squared residuals is equivalent to taking an average. as dividing
the objective function by n does not change the solution of the optimization
problem. We could also consider a worst-case error, leading to a min-max
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optimization problem; this is more appropriate in other applications, but it
calls again for a numerical solution.

To find the optimal values of a and b, we just need to enforce the first-order
optimality conditions.?? The first condition, with respect to a, is

%Si = —ZQ(yi—a—bxi)

= -2 (iyi*ia—ibzi>
i=1 i=1 i=1

= =2 (iyi—na—bim):&
i=1 i=1

which yields . .
1 1
a*:g;yi—bggmi:@—bf, (A.25)

where T and ¥ are the average values of z and y; formally, they are similar to
sample means. This condition, by the way, tells us that the barycenter (Z,7)
of the experimental data lies on the regression line, which does make sense.
The optimality condition with respect to b reads

dS8 ~
E— ——QZl’i(yi—a—b(Ei)—O.

i=1

We can plug the optimal value a* into this condition:

9SS = 1o 1o
W = —2;@1‘ Yi — E;y]—bgg:lxj —-bl’i

2 n n n n kel n
- (1’121‘1@/Z — le . Zyi +bei . in - anmf) =0.
i=1 i=1 i=1 i=1 i=1 i=1

Rearranging this condition, we get

n n k3 n
n E TilYi — E Zi- E Yi E Ty — NITY
i=1 i=1 i=1 i=1
b* = = = .
n ks : - 2 2
ny x| >’ ~nz
i=1 i=1 =1

(A.26)

22They are sufficient conditions, as the objective function is convex with respect to the
decision variables; see appendix B.
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The second rewriting is easily obtained by dividing both numerator and de-
nominator by n, and it may be easier to remember. As we anticipated, we
find explicit expressions for a* and 6, which can be interpreted intuitively to
improve our understanding of the results. To ease the notation, we will drop
the asterisk * and denote the optimal value of coefficients by a and b.

We begin by rewriting the formula (A.26). Using the same trick, i.e., by
dividing both numerator and denominator by n, we may see that

n n n
Y _ —
S_: TilYi — Z LY Z zi (Y — )

_ 4=l i=1 _ =1

- n [ - n :
inQ - ;T Z T; (Ii - .f)
i=1 i=1 =1

Now, we can use the rather obvious identities

b

n i

Z(Ii -5 =0 and Z(»Tz —F) =0

i=1 =1

to subtract a zero term from both the numerator and denominator of the
fraction and to rearrange:

7

Yooy -0 - (Y -7
i=1

b = i=1
Zmi (- T) — Zf(% — )
i=1 i=1
T 1 n
Sle-B -1 D - -7
— =1 — n 1=1
n _ B 1 n o
Z:1(x1—r)(a:z—a:) n_lg(xl—x)
S, TeySzS Trud,
= SQy = y52 Y = ; v, (A.27)

In the last line, we have used the notations S, Sy, Sy, and ry,. Formally,
these quantities are similar to sample standard deviations, covariances, and
correlation coefficients, but the interpretation is different here as we are deal-
ing with numbers and not with random samples; still, the notation is quite
handy and tells us a lot. When we cast regression within a statistical mod-
eling framework, we will point out what should be considered as a random
variable by using uppercase letters when appropriate.

This way of writing the regression coefficient b suggests an interesting ge-
ometrical interpretation. In fact. it plays the role of an incremental ratio
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3009 y

y=0.90x - 5.57

300 ¥

Fig. A.22 Geometrical interpretation of coeflicient b {case 1).

between y and z. In elementary analytical geometry, the slope of a line pass-
ing through points Pi(z1;y1) and Po(z2;y2) is
Y-y Ay
b= vy 2 B, (A.28)
In linear regression, the terms A, and A, are replaced by the terms S, and
Sz, which basically measure the observed variability in y and x. Moreover,
the “correlation coefficient” tells us if, for increasing values of z, the values of
y tend to increase (positive correlation), to decrease (negative correlation), or
are not affected at all (no correlation). Clearly, we have a positive slope in the
first case, a negative slope in the second case, and a horizontal line in the last
case. The last case does not necessarily imply that there is no link between
the two variables: We should recall here figure A.18 on page 489; correlation
is just a measure of linear association, and in that case linear regression will
not pick up the link between the two variables.

To get a feeling for equation (A.28), it is also useful to fix a correlation
coefficient and to see how b changes when the ratio between S, and S, varies.
In figures A.22, A.23, and A.24 we show three cases with high correlation,
namely 0.9; however, in the first case, Sy is definitely larger than S, they are
practically equal in the second one, and S, is larger than S, in the last case.

A.10.2 Analyzing properties of regression estimators

So far, we have dealt with linear regression as an approximation problem,
without any reference to statistical concepts. However, when we plug a value
zo in the regression line to obtain a forecast, we would like to see something
like a confidence interval. Before doing so, we should also check if the re-
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Fig. A.23 Geometrical interpretation of coeflicient b (case 2).
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Fig. A.24 Geometrical interpretation of coefficient b (case 3).
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gression has some significance and if the coefficients ¢ and b can be trusted.
In order to do so, we must make some assumptions about the way data are
generated. The statistical model we will consider is the following:

Y; = a+ Bz + €, i=1,...,n, (A.29)

where o and 3 are unknown parameters we have to estimate, and the ¢; are
random variables meeting the following conditions:

¢ All the variables ¢; are mutually independent and identically distributed
with expected value zero and standard deviation ¢; = o, for all i.

e Each random variable ¢; is also independent from x;, which is considered
as a number.

The last remark deserves some comment. We consider the variable as a num-
ber, which makes sense if it represents a quantity, such as price, which is under
the control of a decision maker. It is also possible to build regression models
in which random variables X; are considered. This second approach makes
sense when X is not under our control, as in the case of outside temperature,
or when we measure a quantity = subject to some measurement error. We will
deal with the easier case for the sake of simplicity, but the basic results are
the same, if the random variables ¢; and X; are independent. Whatever the
choice, Y; is definitely a random variable and, given the assumptions above,

E[Y:] = a + Bz, Var(Y;) = crz

for some value of x;. Basically, random variables ¢; play the role of an error.
Errors, in this model, are a sort of catch-all for what is intrinsically random
or what we are not able (or willing) to take into account.”® The assump-
tions above on errors have the basic meaning that we are not missing some
significant pattern with our very simple model.

From a notational point of view, it would be advisable to denote the errors
by €; in order to separate the random variable from its realization. We refrain
from doing so to avoid heavy notation. What is really important is that, in this
context, Greek letters are associated what what we don’t know and what we
cannot observe. We assume that the “true” data generating process is given as
in equation (A.29), but we ignore the values of the parameters a and 3, which
are unknown numbers. When we take a random sample, consisting of pairs
of observations (z;, Y;), we are implicitly sampling €;, but the realizations of
the errors are not directly observable. What we can do is build estimators
a and b, which are random variables, for the unknown parameters o« and 3.
Again, we are departing from our usual notation and use lowercase ¢ and b

231n Physics, there has been a very heated debate between the likes of Einstein and Bohr
about randomness. Is it an intrinsic feature of Nature, or is it the result of our lack of
knowledge?
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to denote random variables, just to avoid unnecessary burden. Given values
of the estimators, we may evaluate the residuals

€; ZY—i —(a+b:cz-).

To summarize, we use Roman letters (a, b, e;) to refer to what we may estimate
and observe and ultimately use for forecasting: Greek letters a, 3. €; refer to
unknown numbers and unobservable random variables.

Now the natural questions to ask concern the quality of a and b as estima-
tors of a and 3. We should check bias first, i.e., we verify that E[b] = 3 and
Ela] = «, given the assumptions above about the data generating process.
Then, we should investigate their variability and their effects on the predic-
tive ability of our model. To this aim, we refer again to formulas (A.25) and
(A.26), where we plug random variables Y; where numbers y; occur.

Biasedness The first issue we tackle is whether E[b] = § or not. The first
step is rewriting the formula (A.27) in our context, where a random variable
Y; replaces the number y;:

3

SzY i=1
b = 2 -
’ D (wi— )
i=1

n

Z(xi—f)'[a+311+6i~(a+3f+a]

i=1

i=1 .
= g+ -~ . (A.30)
i=1
Here 7 is the average of the z;, and € is the sample mean of the errors, over

the n observations. We see that b is given by the sum of 3 and a random term
depending on the errors ¢;. We should essentially prove that the expected
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value of this random term is zero:

E[b]

il
es!
&

+

Il
s
+
el
i

Z(mi—f)~E[ei—-€]
= g+ =3+0.
Z(l’z‘—_

i=1

In the manipulations above, we have used the fact that 8 and x; are numbers
and can be taken outside the expectation; then we rely on the assumption
that the expected value of the errors is zero, as well as the expected value of
their sample mean.

The same line of reasoning can be adopted to prove the desired property
of a. We rewrite (A.25) in the assumed context:

= . 1 b
a = Y—bsz;K—EZ@
= %z::ajL@mZ%—e __le
o+ = Z -b)z + = 261

Now we must take the expected value of both the terms above. We note that
a is given by the sum of three terms. The first one is a number and can be
taken outside the expectation; in the second term, the z; are numbers as well,
and we may use the just proven fact that E[b] = §; finally we have the sum
of errors, whose expected value is zero. Wrapping everything up, we have

a+ — Z —b)x; + — Zel
a+~ﬁ;E[ﬁ—b]zi+ﬁ;E[ei]:

Estimation errors Now we have some guarantee about the quality of the esti-
mators we build by the linear regression approach: Provided that the assump-
tions about the data generating process are true, the estimators are unbiased.
This is good news, but we should also have an idea about their variability. A

Ed]
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useful way to frame the issue is considering the standard error of estimate,
denoted by See and defined as

See, = VE[(b— 8)?], See, = VVE[(a — a)?].

Recalling that E[Z?] = Var(Z) + E?[Z], for any random variable Z, and that
our estimators are unbiased, we also see that

See, = |/ Var(b — ) + E*[b — 3] = /Var(b - 5).

A similar relationship holds for See,, a, and «.

From the (ideal) point of view of someone endowed with knowledge of the
parameters o and 3, See measures the dispersion of the estimator around its
expected value. From our (real) point of view, See is a valuable tool in going
beyond a point estimator; we can build confidence intervals, test hypotheses,
and even try building a probability distribution for a predicted outcome. The
bottom line is that if See, and See; are small enough, then we could start
consider the possibility of trusting our model; otherwise, great care must be
taken in taking business decisions.

To quantify the estimation error, we start with the parameter 3. Recalling
equation (A.30),

n

S (@i - 7) (e —7) Y (@i-3)e

b=3- =L _ 342t

n n

S (@ — ) S @i-2)

i=1 i=1

we may proceed as follows:

Z (‘rl - f) €

Seeb = «m — Var i:nI
\J Z (4 f)2

i=1
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S N e
(z: - 7)° =T

In the manipulations above we have taken advantage of the nature of the x;
(numbers) and of the errors ¢; (mutually independent and with fixed standard
deviation o).

The careful reader will notice that there is a problem with the formula
above: How do we know o, if we cannot observe the errors but just the
residuals? The answer is that we should estimate this standard deviation as
well, but this does not prevent a practical use of See. Before doing so, it is
useful to interpret the result we have obtained.

o As expected, the reliability of our estimate of the slope of the linear
law describing our phenomenon depends on intrinsic variability of the
phenomenon itself. If random variability is low, and the n observations
are very close to the line Y = o + Sz, then estimating the slope is a
fairly easy task. Indeed, we see that See; is proportional to o..

o Another fairly intuitive observation is that the more observations we
have, the better. In fact, for each observation we have, the denominator
of the ratio above increases, reducing Sees.

e A less obvious observation is that our ability to estimate the slope de-
pends on where the observations are placed. We note that at the de-
nominator of the ratio there is a term similar to a variance, which is in
fact the (nonrandom) variability of the observations z;. If the points z;
are close to each other, i.e., they are close to their average T, we have a
small denominator. It is difficult to see the impact of small variations
of z on Y, because this effect is “buried” in noise. If the observed range
of z is wide enough, assessing the impact of z on Y is easier.

The last point is illustrated in the following example.

Example A.25 Say that we want to use simple linear regression to investi-
gate the relationship between outside temperature and ice cream consumption.
Simple linear regression is but the simplest approach, as other factors may
play a role, leading to multiple regression; furthermore, the relationship need
not be linear. Leaving these caveats aside, our task is certainly difficult if all
we have is a set of data whereby temperature, measured in Celsius degrees,
lies between 22° and 22.5°. Even if the relationship is linear, with slope 3,
we should expect a rather small difference - 0.5 in the consumption for the
two extreme temperatures in the range. The slope 8 should be positive, but
in a random sample we might have enough noise to get a negative estimated
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slope b. The task would be probably easier if we had a sample in the range
between 10° and 30°. The difference 3(30 — 10} should be large enough to
avoid, at least, a negative estimated slope because of randomness. 0

The example suggests that we should have observations over a large range of
the explanatory variable x, in order to get a good estimate of slope. However,
it is worth noting that in many cases a linear relationship may hold over a
limited range; if the “real” model is nonlinear, a linear one may be at best a
suitable local approximation. Hence, by taking a wide sample we might run
into a different kind of trouble, namely poor fit. Furthermore, we should be
very careful when we extrapolate a prediction, i.e., when we consider some-
thing like Yy = a+bxg, where z lies outside the range of observed values. For
instance, the mode] considered in the example above would probably suggest
that on very cold days we have negative ice cream consumption!

In order to assess the estimation error for a, we may follow the same route
we took for the slope. The starting point is

a=Y —bi= ((l+/3$i+6¢>—'bl—a+< -br+ - Zel

SRR
i)

\
A
To get closer to See, we observe that

1 n
-0+~ i
(507 +~ Ze}
(Seep - ) +—ZVar €;) + 2Cov ( 8- b)z, _ZEZ>

=1

o2
= S@eb 72+ nf 2= Cov(b—BZq).
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Var(a — «)

I
<
&

it

This expression is quite complex, but actually we can show that the last
term is null. Focusing on this term, and rewriting b — [ in order to see the
contribution of errors, we obtain

. et
ov(b—ﬁ,ZQ) = Qov| &L 1

= Z(az —z)? =t
=1

Z Z Cov ((z; — T) €5, ¢5)

i=1 j=1
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Z Cov((z; — T) e, €) o2 (z; — %)

n

=1
Z(% - z)? Z(l“z - z)?

=1 i=1

where we have exploited the mutual independence between the errors ¢; and
the fact that their variance does not depend on the observations. Now, plug-
ging the expression of Seep, we obtain

7 1
S N S (a.31)
i=1 T

This formula too lends itself to a useful interpretation, as we see that we have
two terms under the square root. The second one is basically linked to the
average contribution of random error €, whereas the first one is linked to the
error in the estimate of 3. Let us get a closer look at both terms.

e Suppose, for a moment, that we have been pretty good at estimating
the slope, i.e., b = 3. If in the sample we observed, the errors have been
positive on average (>, ¢; > 0), we will arguably tend to estimate an
intercept a which is larger than the true one, ¢, because we observed a
set of points which are on average above the ideal line Y = a4+ 8z. On
the contrary, if the errors have been negative on average (3., € < 0),
we have basically observed a set of points below the ideal line, and the
estimate a will turn out smaller than the true intercept «; in this last
case, the estimated line will lie below the ideal one. This error in the
“vertical” placement of the line will be smaller when the number n of
samples is large. This is basically what the term o./+/1 in See, tells us.
The idea is illustrated in figure A.25, where we see that the observations
of the dependent variable Y are more often than not above the ideal line;
this is due to an “excess” of positive observations of the random error,
leading to an estimated line above the ideal one.

e To see the second phenomenon contributing to the error in estimating
@, let us assume that we had an “ideal” sample of errors, >, €; = 0.
The first term in See, tells us that even in this case, we will have an
error in the estimate of a due to errors in the estimate of the slope. As
we see from the expression of the estimator a, the regression line goes
through the barycenter (Z,Y) of the n observations. This implies that
if the estimated value b is larger than the true slope 3. the estimate
a will be smaller than «, for the case £ > 0. On the contrary, if we
underestimate the slope 3, i.e., the estimated line is “flatter” than the
ideal one, the estimate a will be larger than «, for a positive average
value . Basically, if the average error is zero, then we have a rotation
of the ideal line around the barycenter of the observation, which in this
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Fig. A.26 The effect of an error in the estimate of the slope 3 on the estimate of the
intercept a (1).

case lies on both the ideal and the estimated line. We may get a better
picture of this phenomenon by having a look at figure A.26. Clearly,
the larger the error in the estimate of the slope, the larger the error in
a, but this also depends on the barycenter T of the observations of the
independent variable. If this is large, the slope error (3 —b) has a larger
impact because the “lever arm,” i.e., the distance between the vertical
coordinate axis and the center of rotation, is large. In the opposite limit
case, i.e., when (Z = 0), the impact of this rotation in the intercept
a is null. We can see this in figure A.27, where the barycenter of the
observations, (#.Y), lies on the vertical axis.



516 A QUICK TOUR OF PROBABILITY AND STATISTICS

true line: y=23+x
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*
. estimated line: y=23+0.8x

Fig. A.27 The effect of an error in the estimate of the slope 3 on the estimate of the
intercept a (2).

The last missing piece in the puzzle is how we can estimate the standard
deviation o, of the random errors, which are not directly observable. The
only viable approach we have is to rely on the residuals e; as a proxy for the
errors €;. Each residual is, for a given value z;, the deviation between the
theoretically predicted value, Vi=a+ bz;, and the observed one, Y;. Note
that if we trust the estimated model, ¥; is the expected value of ¥;; hence,
in order to assess the variability of the errors, it is reasonable to consider the
variability of the observations with respect to their expected value. Another
way to get the picture is by noting that the assumptions behind the statistical
model imply that 02 = Var(Y;), but the variance of the observed value Y; is
a squared deviation with respect to an expected value which depends on z;.
This reasoning leads to the following estimate:

~\2
G = Zizlrg}f 2_ 0 . (A.32)

This is basically a sample standard deviation; the only point which could raise
a few eyebrows is the denominator, which is n — 2 rather than n — 1. The
serious way to see this is by showing that with that term the estimator of o
is unbiased. A first (very) intuitive argument runs as follows. What is the
minimal number of observations to analyze the standard error? If we had just
n = 2 observations, we could say nothing, because in such a case the observed
points would exactly spot one line, and there would be no deviation between Y;
and Y;. If we had n or n—1 at the denominator, the conclusion would be that
whenever we have n = 2, estimated random variability is zero, which makes
no sense. The term n—2 points out that with just two observations we cannot
say anything, as we have a ratio 0/0. It is only from the third sample on that
we can say something. Of course, this argument is just an interpretation and
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Table A.5 First data set for example A.26

1 1 2 3 4 5 6 7 8 9 10 11

z 0 1 2 3 4 5 6 7 8 9 10
y 100 104 111 114 121 125 129 133 141 147 150

Table A.6 Second data set for example A.26

1 1 2 3 4 6 7 8 9 10 11

5
x 0 1 2 3 4 5 6 7 8 9 10
Y 73125 149 91 95 175 93 118 125 193 134

not a proof. Another intuitive way to interpret the formula runs in terms of
degrees of freedom. In this case, we are estimating ftwo parameters, o and 3,
of the model, and this consumes some available information in the observed
sample; this results in the loss of two degrees of freedom.

Now, we are ready to evaluate the standard estimation errors of the regres-
sion parameters. This turns out to be essential in building confidence intervals
and testing hypotheses.

Example A.26 Reliability of estimators ¢ and 6. To build some in-
tuition as far as See is concerned, let us consider the two data sets given in
tables A.5 and A.6. To distinguish the two cases, we will use subscript 1 for
the estimates referred to the first data set of table A.5 and subscript 2 for
the data set of table A.6. Using equations (A.25) and (A.26), we obtain the
following estimators:

a1 = 99.64, by = 5.07, az = 99.32, by = 5.06.

We wee that the regression coefficients are essentially the same, even if the
data look quite different. How different exactly can be seen in figures A.28
and A.29. In the first case, the observed points lie almost exactly on a line;
in the second one, we see a lot of variability. The two situations are clearly
discriminated when we compute the See for the four parameters:

Seeq, = 0.688, Seep, = 0.116, See,q, = 19.53, Seep, = 3.30.

We see that large standard errors, with respect to the value of the estimators.
are associated with the second data set. We could even wonder if the linear
relationship we have estimated is statistically significant. In the next section
we consider such an issue in a general setting.
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Fig. A.28 Plot of the first data set for example A.26.
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Fig. A.29 Plot of the second data set for example A.26.
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A.10.3 Confidence intervals and hypothesis testing for regression
estimators

To use regression in a sensible and responsible way, we should assess the
probability distribution of the estimators a and 4. This distribution depends
on the distribution of the errors ¢;. If we assume that errors are normally
distributed, since the estimates a and b basically involve sums of the errors,
they will be normal too. We use this knowledge in order to:

e compute confidence intervals

e test hypotheses

These related activities are essential in order to assess the validity of the
regression model (if the confidence interval for b includes both positive and
negative values, we are unsure about the effect of the independent variable on
the output) and to use regression as a forecasting tool (a one-number forecast
may be extremely dangerous, and its uncertainty must be qualified).

In doing so, we must rely on estimates of the volatility .. As we have
seen in section A.8.2, Student’s ¢ distribution is involved; taking into account
the form of the estimator (A.32), we may also see that we should use the ¢
distribution with n — 2 degrees of freedom.

Confidence intervals Although we will never know the exact value of the pa-
rameters « and 3, we may use See to build a confidence interval including the
unknown values with probability p; to avoid an ambiguous notation, here we
avoid denoting the confidence level by 1 —a.

Example A.27 To illustrate the idea, we use again the data set in tables
A5 and A.8, to build confidence intervals for the estimates of o and 3, with
confidence level p = 95%.

We have eleven data points; from statistical tables or numerical software
we obtain the relevant quantile for the ¢ distribution with nine degrees of
freedom: tg.9759 =~ 2.26. Hence, using the standard errors of estimate we
obtained in example A.26, we may say that, with probability 0.95, we have in
the first case

a —1tga75.9- See, = 99.64 — 2.26 - 0.688 = 98.09 < a0 <
a -+ tp.975,9 - See, = 99.64 4+ 2.26- 0.688 = 101.19

b—togrsg-Seep =5.07—2.26.0.116 =481 < 3 <
b+ to.975.9 - Seep = 5.07 4+ 2.26 - 0.116 = 5.33,

whereas in the second one we have

a—togrs,g - See, =99.32 —2.26-19.53=52.13< a <
a-+to.975.9 - Seeg = 99.32 — 2.26 - 19.53 = 146.51

b—too75,9-Seep =5.06—-2.26-330=-2.79<3<
b+ to.975,9 - Seep = 5.06 + 2.26 - 3.30 = 12.93.
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We see that, as expected, the confidence intervals for the second data set are
much larger. What is more important is that even the sign of the slope is
somewhat dubious.

We should remark that the confidence intervals we obtain rely on several
assumptions about the random errors in the underlying statistical model,
and on our ability to estimate their variance. Nevertheless, they are useful
approximations showing that, for a given probability p, the standard error of
estimate has an important impact on our knowledge of parameters o and .

Hypothesis testing Armed with some knowledge about the distribution of the
estimators, we may also run some hypothesis testing on parameters o and .
The conceptual background has been given in section A.9, and here we provide
the reader with a few examples.

Typical questions we want to answer concern the impact of the explana-
tory variable on the predicted variable. For instance, if we cannot reject the
hypothesis # = 0, we cannot trust the model too much. Sometimes, we want
to check if the effect has some sign; for instance, if we look for support to
the hypothesis that a reduction in price has a significant impact on sales, we
should consider the hypothesis § < 0. Sometimes, it is not trivial to decide
if the test is one- or two-sided. Similar questions can be asked as far as « is
concerned, and they are typically of two types:

1. Can we say that, with some probability p, the parameter (a or 3) is
positive (or negative, or non-null, depending on our problem formula-
tion)?

2. What is the maximum confidence level with which we can state some
property about the parameter?

If our aim is checking whether o or § is nonzero (which amounts to saying,
in the second case, that x has a statistically significant impact on V'), with
some probability p, we must essentially check if, at confidence level p, the
confidence interval includes 0 or not. Referring to example A.27, we may say
that, in the first case, both parameters o and § are different from zero with
probability 95%; in the second case we cannot.

If we are wondering with what probability we can say that a parameter is
different from zero, we must reason on the maximum width of the confidence
interval such that the origin is not included; in this case, this is equivalent
to finding a p-value. If @ and b are positive, as in our examples so far, we
should set the left endpoint of the interval to zero to obtain the corresponding
quantile. In the case of o we have

a

a—t, o See, =0 = ton—o = .
pyn a psn—2 See,

Given the quantile, we can read the probability level p, checking tables for
the ¢ distribution with n — 2 degrees of freedom.
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Example A.28 The data set of table A.5 yields two values ¢, 9. for ¢ and 3,
equal to 144.84 and 43.71, respectively. This implies that the two parameters
are nonzero with (practically) 100% probability.

The case of the second set, in table A.6, is different, as the two quantiles
are 5.08 and 1.53. This means that o is positive with (practically) 100%
probability, whereas the probability for 3 is only 92%.

A.10.4 Performance measures for linear regression

We have discussed important properties of the estimators ¢ and b of param-
eters « and 3, but of course the real deal is using the explanatory variable z
to predict the output Y. For instance, regression analysis could support the
view that the average price of soft drinks has an impact on the demand for
salted snacks, because reducing the price of drinks stimulates people to offer
an aperitif. Based on a suitable amount of data, it is likely that we could
indeed support this, but of course it is unlikely that this is the only or the
main factor explaining sales volume of salted snacks. Other factors could be
the price, the weather, proximity to social or sports events, etc. So, on the one
hand, the view that the 3 coefficient of the relationship between soft-drink
price and salted snack sales is significantly negative could be supported by
proper statistical analysis, but, on the other hand, this does not imply that
such a model is a good one. We should try to measure how much variability
of the output variable can be attributed to an explanatory variable.

To make this idea concrete, we can measure the correlation between Y;
and Y. By considering the squared correlation coefficient, we may define the

following R? statistic, which is based on the sample correlation coefficient
(A.19):

—

R? =72 = =2

YV n (K—?)z'z:(?i—?)j

i=1 i=1

3

By its very definition, R? is a measure bounded between 0 and 1. It is also
interesting to rewrite this expression in order to shed some more light on its
meaning, paving the way for useful interpretations. We know that
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hence, we may rewrite R? as

R2

i=1 i=1

SRS

i=1 i=1

Now we prove that the first term in the numerator is actually zero:

5 (%) (5 7)

= > [¥i—(a+bx)](a+bx; —a— b7)

So we end up with the following formula for R?:

LN
R2:_~——%(K—Y> :—3.
Sm-mt

i=1

We see that R* can be interpreted as the ratio of two (sample) variances: the
“variance” of the forecasts Y; and the variance of real observed data Y;. We
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Fig. A.30 A geometrical interpretation of the R* coefficient: a case with R? = 0.29.
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Fig. A.31 A geometrical interpretation of the R? coefficient: a case with R? = 0.98.

should note that, by definition, the forecasts lie on a line; when we speak of
“variance,” we actually mean the (nonrandom) variability with respect to the
average ordinate along the line. In other words, R? measures the fraction of
variability which is explained by the regression model Y = a + bx. Referring
back to our snack sales example, the R? of a regression against the average
soft-drink price is likely to explain a small fraction of variability.

To improve our feeling for R?, we may have a geometrical look. In figure
A.30, the forecasts Y; display a lower level of variability than observed data
Y;: in fact, observations are somewhat placed around the line, but we see a
lot of variability beyond the variability due to the slope of the line. Hence,
there is a lot of variability which is not explained by the model. By comparing
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figure A.30 against figure A.31, we see that when R? increases we have a much
larger ability of explaining the observed data, and unexplained variability is
quite limited.

A.10.5 \Verification of the underlying assumptions

In running a diagnostic test on the explanatory/predictive ability of a regres-
sion model, we should not forget that all we have said depends heavily on a
set of precise assumptions on the random errors. It is therefore essential that
these assumptions are tested, at least informally, against the observed data.
We recall the assumptions:

e ¢; is a random variable with expected value zero.

e The random variables €; are mutually independent and identically dis-
tributed; in particular they have the same standard deviation.

e The distribution of the error ¢; does not depend on z;.

e We have perfect knowledge of z, which is not a random variable but is,
instead, a number and can be measured with no uncertainty.

There are specific procedures to check the validity of these assumptions. We
illustrate here graphical checks, which are useful for a rough-cut analysis and
reinforce the concepts.

The assumptions above say that the noise ¢; in the model can be regarded
as (a) a stochastic process with expected value zero, (b) stationary, (c) not
autocorrelated, and (d) independent of z. To really check this, we should
observe the errors, which is not possible, because we do not have knowledge
of the ideal line o + Bx. We must settle for a prozry of €, i.e., the residual
e =Y, —(a+bz).

The assumption about the expected value is automatically met, since the
estimators are such that @ = Y — bZ. To check stationarity and lack of
autocorrelation, we may plot the residuals. If the assumptions are compatible
with the data, the plot of the residuals e; should look like figure A.32, where
we see that they reasonably behave like pure noise. On the contrary, the next
three figures display plots of residuals which do not support the underlying
assumptions.

In figure A.33 we see a pattern which is typically associated to positively
correlated errors. If we draw a positive error at observation number ¢, the
next observation i 4+ 1 is likely to be affected by a positive error as well. The
same holds for negative errors, and we see “waves” of positive vs. negative
residuals. Such a pattern may be observed for at least a couple of reasons.
The first one is that there is indeed some correlation between consecutive
observations in time. In such a case subscript ¢ really refers to time and to
the order in which observations were taken; the obvious case is when time
is the explanatory variable. Ancther possible reason has really little to do
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Fig. A.32 Plot of residuals coherent with the regression model assumptions.

with Statistics: We may also observe a pattern like this when there are non-
linearities in the observed phenomenon. Consider for instance the nonlinear
function in figure A.34, and assume we use linear regression to approximate it,
using a few sample points (possibly affected by noise). The nonlinear curve is
somehow cut by the regression line, and this results in a nonrandom pattern
in the residuals: They have one sign in the middle range of the interval of z,
and the opposite sign near the extreme points.

Of course, this second case has more to do with the appropriateness of
selected functional form, and we are somewhat improperly using statistical
concepts as a diagnostic tool. If so, we should clarify the meaning of the
subscript ¢ associated with an observation. If the explanatory variable is time,
subscript ¢ refers to the position in the chronological sequence of observations,
and there is no ambiguity. But if we are regressing sales against price, we
might wish to sort observations according to the value of the explanatory
variable; in this case. subscript ¢ should not refer to the order in which we
took our samples.

Actually, we are talking about two different issues, and we should pay due
attention to both of them. Whatever the case, a quantitative check can be
run by estimating the correlation between e; and e;4 1.

Another check concerns the stationarity of the error process. In section A.7
we have considered weak stationarity of the second order, which basically says
that we should (at least) check stationarity of the mean and the variance of
the error process. In figure A.35 we see that the mean error seems dependent
on i. If i is actually the time of the observation (but it need not be), we should
consider running a multiple regression in which time is an explanatory vari-
able. A quantitative check can be run by estimating the “correlation” between
e; and i. Figure A.36 displays a case in which the errors in the first observa-
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Fig. A.33 Plot of residuals suggesting autocorrelation in the errors.
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Fig. A.34 Using linear regression with a nonlinear underlying function results in “au-
tocorrelated” residuals.
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Fig. A.35 Plot of residuals suggesting that the mean of the error process is not sta-
tionary.
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Fig. A.36 Plot of residuals suggesting that the variance of the error process is not
stationary.

tions look much smaller, in absolute value, than in the last observations. This
raises some doubt on the stationarity assumption for variance. A technical
word used in Econometrics to refer to a situation like this is heteroskedastic-
ity. We could probably circumvent the difficulty by assigning more weights
to observations with a larger amount of information (i.e., less noise), but this
goes beyond the scope of this book. One way to have a quantitative check is
by estimating the “correlation” between €? and i.
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Finally, we should check whether residuals do not depend on z. To this
aim, we can produce plots of residuals like those in figures A.35 and A.36,
where the independent variable is x, rather than the observation index or
time.

A.10.6 Using linear regression to estimate nonlinear relationships

After the long list of checks and caveats we have seen so far, the reader might
have the feeling that linear regression is a rather rigid tool, whose practical
use is hindered by a plethora of assumptions. There are statistical issues,
which can be somehow circumvented by using more sophisticated techniques.
We refer the reader to a book on statistics or econometrics to appreciate the
richness of this field.

Apart from statistical issues, linearity itself is certainly a possibly strong
limitation, as both Nature and Business are nonlinear. For instance, if we want
to study the relationship between the amount we spend in advertisements and
revenue, a linear model could lead to the following two difficulties (at least):

1. A linear relationship fails to capture thresholds effects: Below a certain
minimal effort, the message is not perceived at all.

2. A linear relationship fails to capture saturation effects: Increasing the
effort beyond a certain limit is useless because of intrinsic limitation in
the market size and because of competition. The bottom line is that
there are diminishing marginal returns from the investment. whereas
a linear model used to take decisions could suggest the opportunity of
increasing the effort too much (at least, if the advertisement costs are
linear or marginally decreasing).

If we have to deal with a nonlinear phenomenon, one possibility is to forget
about a simple linear law and to develop a theory of nonlinear regression.
This has indeed been done, but nonlinearity can introduce an array of tech-
nical complications. Hence, we could try to use linear regression as a tool to
estimate nonlinear relationships. This may seem to be a hopeless endeavor,
but an example can prove that we can actually resort to suitable data trans-
formations to identify the parameters of a postulated nonlinear relationship
between x and Y.

Example A.29 Suppose we have a data set displaying a strong nonlinearity,
as depicted in figure A.37. In such a case, enforcing a linear regression would
be less than advisable, but we can try to work with a nonlinear functional form
lending itself to a data transformation, such that the familiar tool can be used.
Since we have just dealt with simple linear regression, whereby we estimated
two parameters, we should use a nonlinear function linking ¥ and z, in which
two parameters are used. A typical choice is an exponential functional form
like

Y = ka2, (A.33)
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Fig. A.38 Linearizing a nonlinear relationship by a logarithmic transformation.

To linearize this relationship, we can exploit a logarithmic transformation:
logY =log(kz") = logk + ~logz.

We see that, on a logarithmic scale with coordinates log Y and log . we have a
linear relationship. This should be checked against the actual data by plotting
them according to the transformed scales. An example of this rough-cut check
is displayed in figure A.38. This plot suggests that the relationship between
logY and logz can be captured by a linear model, which can be estimated
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Fig. A.39 Verifying the fit of the assumed functional form.

by the following linear regression model:

logY = a+ Slogz +¢, (A.34)

where
a = logk, (A.35)
8 = (A.36)

While the nonlinear transformation is a rather simple trick from a techni-
cal point of view, the real trouble comes when we consider the statistical
side of the coin. Since we are using the linear regression machinery on the
transformed variables (logarithmic, in the case above), we should check the
familiar assumptions within the transformed model. To check the residuals,
we can analyze a plot like the one in figure A.39. We will also find confidence
intervals, but they will refer to the transformed variables; to get confidence
intervals in terms of the original variables, we must invert the transformation.
For instance, the data set we are considering yields the following estimated
model: %

logY = 0.58 + 1.93logz + ¢, (A.37)
which can be transformed back in terms of the original variables Y and :2°

Y = (10%5%) 219 . 10° = 3.80 - 279% - 10°. (A.38)

24In the estimated model we use the residual e rather than the unobservable error e.
25From this equation we see that decimal logarithms have been used; natural logarithms
can be used as well, but one advantage of decimal logarithms is that their value is more
readable in terms of order of magnitude of their argument.
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Fig. A.40 Estimated nonlinear relationship.

The fit of the resulting model can be seen in figure A.40. In this case, it
turns out that the See for a is 0.04. Let us assume that, given the degrees of
freedom and the required confidence level, the right quantile is t = 2; then,
the confidence interval for ¢ is 0.58 —=2-0.04 = 0.5 <a < 058+ 2-0.04 =
0.66. Actually, this is not a confidence interval for the original demand model
(A.33), but for the transformed one instead. To get confidence intervals for k,
we must transform the confidence interval for a back to the original parameter
k., using equation (A.35). Therefore, we can say that the parameter k of model
(A.33) lies, with that confidence level, in the range from kp;, = 1005872004 &
3.16 t0 kmax = 1005842:0.04 ~~ 4 57 We immediately see that this confidence
interval, unlike those we are used to, is not symmetrical around the point
3.80:; this happens just because of the nonlinear transformation, which more
often than not results in a lack of symmetry.

Finally. it is important to understand the role of the error e. In the trans-
formed model (A.37) the error is additive with respect to the estimated line.
When we use the inverse transformation to get back to the original variables =
and Y, we see from equation (A.38) that the error is not additive; in fact, we
have a multiplicative factor 10¢. From a statistical point of view, we assume
that the error € is independent of = in the underlying model (A.34); however,
when we switch back to the original variables, we see that the residuals in the
original model tend to grow with x (see figure A.41). Note that by residuals
in the original model we mean

el =Y, — k(z:)".

In the figure, we see that the residuals tend to increase, in absolute value,
when z increases. From a statistical point of view, if we assume that the
usual assumptions hold for the linearized model, this happens because there
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Fig. A.41 Residual plot for model (A.38).

is a random variable which is not additive in the original model, but it gets
multiplied by z. From the point of view of least-squares optimization, we did
not really minimize the sum of squared residuals in the original model, but in
the transformed model. The residual in the transformed model can be written
as:

Y;
e; =log¥; —log (kz") = log <W> .

The bottom line is that, with respect to the residuals in the original model, we
assign less weight to the residuals in the transformed model when z is large,
which results in the effect of figure A.41. 0

The example above shows that using suitable variable transformations is a
nice way to extend the range of applicability of linear regression; however, this
raises issues as far as confidence intervals and errors are concerned. This is
why such transformations should be taken with care, and full-fledged nonlinear
regression might be a better alternative.

We close this section by noting that if the error ¢ in the underlying statis-
tical model is normally distributed, the multiplicative term 10¢ has lognormal
distribution. To see this, note that

€
10¢ = eln 10° _ e In10

and € - 1n10 has normal distribution as well. If you use natural rather than
decimal logarithms, the result follows directly.
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W.A.11 MULTIPLE LINEAR REGRESSION

In simple linear regression we use one explanatory variable, whereas in practice
multiple factors could contribute to explain a phenomenon of interest. This
suggests the adoption of a multiple regression model. If we want to preserve
linearity, we may resort to the following statistical model:

Y=a+25jl‘j+6,

j=1

where m is the number of explanatory variables, each one associated with
its 3;. Solving the related least squares problem is not too difficult, but this
extension is characterized by a few issues and opportunities:

o It is tempting to use as many factors as possible, but this may be a bad
idea if they are somehow related; this raises issues such as collinearity
and ill-conditioned regression.

e Increasing the number of factors cannot decrease the R? statistic; how-
ever, we should come up with a more refined measure, able to capture
the tradeoff between a possibly increased fit and the issues above when
using too many factors. In other words, we want to understand whether
a sort of “cost/benefit” ratio justifies the use of more explanatory vari-
ables.

e We may also use “categorical” variables, i.e., variables related to the
presence or lack of a certain feature. For instance, we may relate sales
to the presence of promotions or to peculiar events. This is accomplished
by using dummy explanatory variables, taking values which can be either
Oorl.

In the web section we deal with all of the points above.

A.12 FOR FURTHER READING

e Readers interested in a practical approach to probability theory may
read, e.g.. [5]. which is rich of examples; some of them provided an
inspiration for examples in this appendix.

e Example A.12 has been taken from [1], which is a readable introduction
for those interested in a more rigorous introduction to the axiomatic
approach to probabilities.

e As far as Statistics is concerned, there are many books, but an excel-
lent introduction is [4], which points out the probabilistic foundation of
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Statistics, offers complete and readable proofs, and is at an adequate
level for a reasonably quantitative-minded reader.

e The use of linear regression for forecasting purposes is well illustrated
in [3].

e Readers interested in a serious introduction to parameter estimation
and regression analysis can have a look at [2], which also deals with
nonlinear regression. See also [6].
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Appendixz B

An Even Quicker Tour
m Mathematical

Programmaing

The objective of this appendix is to get the reader acquainted with uncon-
strained and constrained optimization models, limiting the exposition to what
is strictly necessary for the main body of the book. We will use the term Math-
ematical Programming to refer to that subset of Optimization Theory which
deals with finite-dimensional problems. With respect to a full-fledged treat-
ment, we will cut corners as far as mathematical rigor is concerned; further-
more. emphasis is on optimization models, rather than optimization methods.
On the one hand, treating computational optimization methods would require
too much background and detail; on the other hand. we are typically users of
off-the-shelf optimization software, and what we normally need is just some
knowledge of the underlying methods in order to choose the right one within
a library and to understand diagnostics when something goes wrong.
Another good reason to present some basic optimization concepts is that,
sometimes, practitioners use approaches which can be somewhat justified (or
criticized) as the crude simplification of an optimization model. Given the

535



536 AN EVEN QUICKER TOUR IN MATHEMATICAL PROGRAMMING

computational speed of state-of-the-art optimization software and their in-
tegration as components in commercially available packages, such practices
may have lost their original justification. Taking for granted that old prac-
tices should still be used, even without a solid reason, may lead to poor
performance. A well-known example is the overstatement of fixed ordering
costs, which leads to large lots with an unnecessary increase in on-hand in-
ventory. Sometimes, just in time practices may make lots obsolete altogether,
but in other cases the real answer should come from a suitable quantitative
model. In section 4.6.2 we illustrate this point in detail for a multi-item in-
ventory management problem. In this case, we use optimization as a means
to an end, to illustrate a problem, rather than as a decision-making tool.
This “conceptual” use of optimization models, which should be contrasted
to the “computational” approach, is quite common in Economics. We will
sometimes use optimization as a framework to clarify issues, even if the result
is not really implemented. Again, to accomplish this limited aim, excessive
mathematical finesse and deep algorithmic knowledge are not really needed.

In section B.1 we introduce the basic elements of optimization model build-
ing, using a toy production planning problem. A more formal treatment is
offered in section B.2. Intuitively, we should expect that the larger an opti-
mization model, the more CPU time is needed for its solution. In practice, this
need not be true; a major factor in the difficulty of tackling an optimization
model is its convezity, or lack thereof. We introduce basic convexity concepts,
i.e., convex sets and convex functions, in section B.3. Another important fac-
tor is linearity vs. nonlinearity of the model. We consider nonlinear program-
ming models in section B.4, whose main aim is introducing the shadow price
concept; from a theoretical point of view, getting a grasp of shadow prices
is essential for an economic understanding of optimality conditions, whereas
from a computational point of view this is important in interpreting the solu-
tion of a model. We deal with linear programming with continuous decision
variables in section B.5; if modeling requires the introduction of integrality
restrictions on the decision variables, solving the model is more difficult, and
we will see why in section B.6.

As we have hinted at, optimization modeling in the past had a reputation of
a pretty academic subject. The situation has changed in recent years, because
of several reasons. The obvious one (maybe too obvious) is the availability
of more and more powerful hardware at decreasing costs, which paves the
way for the solution of optimization models which were beyond our reach.
But also software has improved considerably. To begin with, more efficient
software has been developed. The simplex method for linear programming was
invented in 1947, whereas branch and bound methods for integer programming
date back to the early 1960’s; still, there is an ongoing and amazing progress
in new commercial software releases. Nevertheless, you may have powerful
hardware and lightning-fast software, but all of this is useless if you lack data.
As the old adage says, garbage in, garbage out. Nowadays, optimization
libraries exploit software engineering approaches and come in the form of
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object-oriented libraries, which can be integrated as components of a firm-wide
information system. Databases can be accessed, and visualization libraries
and management tools complete the picture. Indeed, optimization libraries
are part of well-established ERP packages, which provide the required data
backbone for a successful application.

All of this is good, but it does not warrant the conclusion that optimization
models are a panacea. We should keep in mind at least a couple of fundamental
limitations. The first one is that some objectives a manager has in mind
cannot be easily quantified; furthermore, an optimization model assumes that
all of the (possibly conflicting) objectives are put in the same basket of a
single objective function that we maximize or minimize. Sometimes, assessing
tradeoffs is a thorny issue, which cannot be solved by attaching some weight
factor to each single facet of the overall problem. As a typical example,
consider the tradeoff between on-hand inventory and customer service level.
Assuming the first objective is easy to quantify, the second is not: How much
does an angry customer cost? Hard to tell, isn’t it? Sometimes, late delivery
penalties are explicitly written in a contract, but loss-of-goodwill is harder to
assess. Hence, we may need some help in visualizing the tradeoff, and this
is the reason for the inclusion of section B.7 on multiobjective optimization,
whose aim is to spot some “reasonable” solutions, leaving to the decision-
maker the task of selecting the most preferred one.

Another limitation of the models we consider in the appendix is that they
are all deterministic, i.e., they rely on perfect knowledge of data. This is
hardly the case in practice, especially in distribution logistics, where demand
uncertainty is the problem. In the main body of the text we will hint at
ways of extending deterministic optimization models to cope with uncertainty
represented as a set of alternative scenarios (see sections 1.5.2 and 2.2.3).

B.1 ROLE AND LIMITATIONS OF OPTIMIZATION MODELS

The best way to get acquainted with optimization models is by a little toy
example, whereby we want to optimize a production mix.*

Example B.1 Suppose we have been hired by a rather small firm. which
manufactures and sells just two items, P; and P,. Each item requires a given
manufacturing cycle, which involves use of four resource types (machine A,
B, C, and D). Note that A refers to a machine type, and not to a physical
machine; what matters is the overall availability of each resource type, which
may constrain the amount produced. Table B.1 displays the single operation
times for each item on each machine (T4, ..., Tp) measured, e.g., in minutes

1The numerical values are taken by an illustrative example available on
http://www.factory-physics.com, as a companion to an excellent text in manufac-
turing systems modeling and management, [3].
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Table B.1 Data for the production mix example

Item Ta Tg Tc Tp Cost Price Demand
Py 15 15 15 25 45 90 100
P 10 35 5 14 40 100 50

per piece. We assume that the working calendar and the number of machines
per type are such that the weekly availability for each resource type is 2400
minutes per week. Producing a single piece of any item has some cost, which
may include raw materials and variable manufacturing costs, expressed in
some monetary unit, say €; this cost is also shown in the table, and we should
also add a fixed cost of 5000€ per week. This cost is incurred anyway, unless
we shut the plant down, but this decision is not considered at our level. What
we should decide is the production mix, i.e., how many pieces of each type
we manufacture each week. This approach makes sense if both capacity and
demand are constant over time, which rules out building inventories. The
weekly demand for both items is given in the last column of the table, which
also includes the price at which we may sell each item. Our aim is maximizing
profit.

One simple and intuitive way of tackling such a problem is by checking
which item looks most profitable. If we look at profit contribution, P, looks
definitely better than P; (100 — 40 > 90 — 45); hence, one possible idea
is maximizing the amount we produce of the more profitable item. Let us
denote by x; the amount produced for item 7 = 1,2. What are the factors
limiting x57 One factor is available capacity. We have four resources, but one
of them is the most critical (the bottleneck) as far as P, is concerned. A lock
at table B.1 shows that the largest requirements of item P, is on machine
B. Hence, to figure out the maximum amount we can produce of P, we can
consider the following inequality:

35y < 2400 = z, < 68.57.

Actually, market limitations tell us that we cannot sell more than 50 pieces,
so we set x2 = 50. This decision leaves some room to produce an amount
z1 of item P;. To find how much we can produce, we should compute the
residual availability of each resource, given what we must reserve to P,. We
can write down a system of inequalities, in order to find out the binding one:

1521 +10-50 <2400 = z; <126.67,

1521 +35-50 <2400 = 1 < 43.33,
1521 +5-50 <2400 = =z, <143.33,
25r; +15-50 €2400 = z; <66.
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We see that machine B is still the critical factor; the largest amount we can
produce is &1 = 43.33. The reader might object that we can just make 43
pieces, and that all variables x; should be restricted to integer values. This is
certainly true for discrete items produced in small quantities; when we pro-
duce “continuous” items, such as paint, we may consider decisions modeled
by real variables, and this is also true for large-volume discrete items, since
accepting real-valued quantities is a negligible modeling error. We will see
that, whenever possible. continuous variables make our life much easier; for
now, let us neglect such issues and say that real-valued variables are accept-
able. Since x1 = 43.33 does not exceed the market limit for P, we can take
this as a possible solution and calculate profit:

(90 — 45) x 43.33 + (100 — 40) x 50 ~ 5000 = —50.

The bad news is that profit is negative, so what went wrong? A possible idea
is that we have not considered resource usage. True, P, is more profitable,
but it uses a larger amount of the bottleneck machine B. Maybe, had we
taken this into account, P; would have looked much better than FP,. We
can try this conjecture immediately, by maximizing production of P;. If we
repeat a similar reasoning, we get an even worse solution; in fact, we would
come up with the solution ;1 = 96 and x5 = 0, which yields a worse profit:
45-96 — 5000 = —680. Now, it seems that shutting the plant down is the only
option, unless we can reduce costs or ask for a higher price.

Actually, we have the option of building an optimization model. whereby
we explicitly maximize profit, subject to relevant constraints:

max 45z, + 60z (B.1)
s.t. 1527 + 1029 < 2400,
1521 + 35z < 2400,
1521 + 59 < 2400,
2521 + 15z < 2400,
0 < a; <100,
0 < x9 < 50.

This model includes:

e two decision variables, x1 and xs, which are restricted to non-negative
values?;

e four capacity constraints, one per resource type;

e two market bounds on production;

2Unless you are really bad with marketing, you do not sell negative quantities.
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e an objective function which we wish to maximize.

The objective function, as it is written, is not really profit, which should be
written as (90 — 45)z; + (100 — 40)x, — 5000. Nevertheless, it is easy to see
that adding or subtracting a constant term to or from any objective function
does not change the optimal solution: Shifting the graph of a function up or
down does not change its minima and maxima.

The model above is an example of linear programming model. It is linear
because the decision variables occur linearly in the objective function and the
constraints: You do not see terms such as xf, r1x2, Or sinzg, which would
make the model nonlinear. There is a wide array of software packages to solve
such a problem numerically. We will discuss their algorithmic foundation very
briefly in section B.5, but using any of them, we get the following solution:
x] = 73.85, x5 = 36.92. This solution looks like it came out of the blue, but
the good news is now profit is positive: 538.46. If you find fractional quantities
way too annoying, we can add an integrality restriction on decision variables,
which results in the integer solution 7 = 73 and x5 = 37, with profit 505. The
reduction in profit should not be surprising: Whenever we add a restriction
to a maximization problem, the value of the objective cannot increase. It is
tempting to believe that whenever variables are restricted to integer values,
all we have to do is finding the optimal solution in the continuous domain,
and then round it in a sensible way; unfortunately, we will see in section B.6

that this is not the case; solving integer programming problems can be very
hard.

The optimal production mix is a typical linear programming model, and it
can be easily solved for a large number of items and resources. Still, it looks
too simplistic as a real-life production planning model, and indeed it is. The
first difficulty we would face is demand variability; of course we could apply
the model weekly, updating the demand data, but this would be quite myopic
and it would not ensure satisfaction of demand. To begin with, if capacity is
limited, we could build up inventories when demand is low, in order to meet
demand when this is larger than capacity. In other words, there is a tradeoff
between the cost of inventories and the cost of capacity. If we consider capacity
as given, which is reasonable for short-term planning, we should generalize the
model (B.1) to a multiperiod model taking demand variability into account.
When facing a nontrivial modeling problem, the starting point is thinking
of the decisions we must take, and how they can be represented by decision
variables. Then we try to express constraints on decision variables and to
write the objective function (e.g., profit to maximize or cost to minimize). In
the process, we might discover that additional variables are required to express
a constraint or the objective, and the process may need to be iterated. The
main ingredient in a multiperiod model is, of course, time. Say that, for our
purposes, we need a production plan stating weekly production quantities for
N items, over a planning horizon of 7' weeks. There are several reasons why
we cannot stretch the planning horizon beyond some limit. To begin with,
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the model could be too hard to solve, but there is a more important issue:
uncertainty. We deal with forecasting in chapter 3; it is clear that no demand
forecast is reliable if it is too far in time. Given uncertainty in demand, we
should solve the model on a rolling horizon basis, revising decisions on the
basis of new information; hence stretching the forecasts beyond a certain limit
is useless, if not dangerous. Also, the choice of the time bucket must be made
sensibly; we are assuming that a weekly time bucket is enough, leaving to
detailed execution level the timing of the single activities.

Since what we need is a time-bucketed production plan, we see that the
most relevant decision variables are the manufactured quantities z;;. for item

t=1,...,N and time bucket t = 1,...,T. We can immediately generalize the
capacity constraints of example B.1. If we have M resource types, indexed by
m=1,..., M, we should write a set of inequalities:

N

Y rimtit € R, m=1.. M t=1..T,

i=1

where 7, is the amount of resource m required for the production of one unit
of item 7 and R, is the availability of resource m during time bucket t. We are
considering this availability as given, and it could change over time because of
planned maintenance, holidays, etc. In a different problem setting. available
capacity can be a decision variable, rather than a given parameter. Typically.
there is some uncertainty in execution, because of possible machine break-
downs; hence, we should leave some slack when stating resource requirements
and/or availability. All of this may not be relevant for distribution logistics,
however, What is certainly common in distribution as well is demand uncer-
tainty (chapter 5 deals with inventory management under uncertainty). For
the sake of simplicity, we assume that we have quite reliable demand forecasts,
which allows us to represent the demand for item ¢ during time bucket ¢ by a
parameter d;;. Note that the demand d;; should not be just directly related
to manufactured quantities x;;, since production and demand are partially
decoupled by inventories; in a given week, we may sell less than demand (if
we have not enough capacity and inventory), and we may produce more or
less than demand. Hence, we need to introduce two more variables: the sold
amount z;, for each item i and time bucket ¢, and the inventory level I, at
the end of time bucket ¢, after adding an amount z;; to inventory and selling
an amount z;;. This last type of clarification is often essential in discrete-time
models, where we consider the value of variables only at the beginning and at
the end of time intervals, but not during the time intervals themselves.

Now we can write down the second type of constraint we met in the optimal
mix model, i.e., sales cannot exceed demand:

Zit S dit-, Vl.f

Note that unlike the static model, this bound involves sales variables z;;:, not
production variables x;;. Now we certainly need some constraint linking the
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three groups of variables. This is an inventory balance constraint, stating that
the inventory level at the end of a time bucket is given by what was available
at the beginning of the time bucket, plus what has been produced, less what
has been sold:

Lip = It 1 + Tt — Zigs Yi, t.

Strictly speaking, we made a mistake as far as time bucket t = 1 is concerned:
for the first time bucket, the constraint involves the initial inventory level I,
which is not a decision variable, as it is given. This is an essential consideration
when we really implement decision models using a software tool, but we will
not pay attention to such issues. Of course, all the involved decision variables
are restricted to non-negative values.

Now we are ready to write the last missing piece, i.e., the objective function.
This must include the weekly inventory holding cost, as well as the variable
cost and the selling price for each item; if we denote them by h;, ¢;, and p;,
respectively, we arrive at the following linear programming model:

N T N T N T

D 3> T ) ST o o 2
i=1 t=1 i=1 t=1 i=1 t=1

s.t. Iitzf,;,t_l—kxit—zit, i=1,....N. t=1,...,T,
J\Y

ZrimxitSRmt, m=1,....M, t=1,...,T,
i=1

ZitSdita izl,...,N, t:1,...,T,

Tity zits Lie 2 0.

What we have here is a simple version of a common model for production
planning. In chapter 2 we show that this can be the basis of models which
are also relevant in distribution logistics, even if purchasing rather then man-
ufacturing is the core problem. In principle, the model can be extended to
cope with more complex problems, involving the production of components
and their assembly into end items. Furthermore, we will see that we should
also consider possible economies of scale, e.g., due to fixed costs associated
to the setup of each machine. In distribution logistics, we may have similar
issues with fixed ordering or transportation costs, and they can be tackled by
introducing binary decision variables, as we illustrate in section 2.2. Clearly,
each extension increases the computational requirements of solving the model,
which can spell trouble for large problem instances we meet in real life. Yet,
there are some more basic issues that we must be well aware of.

e In the model above we have assumed perfect knowledge of all the in-
volved data, most notably demand. There are a few lucky cases in
which one may afford the luxury of making strictly to order. In such a
case, assuming a known demand may make sense. In general, demand
uncertainty may be very critical. One possibility to tackle the issue is
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by extending the linear programming framework to deal with uncertain
scenarios. This is a very challenging and demanding approach, both for
modeling and computing; we give an example of such an approach in
section 1.5.2.

e Some data are not uncertain in the stochastic sense, but they may still be
hard to quantify. The model above is based on a lost-sales assumption:
If we are not able to serve a customer order immediately from stock,
it is lost. In practice, it may be difficult to assess if what we lose is
just the order or the customer; in the second case, data depend on our
decisions. Sometimes, backorders are considered: Formally, negative
inventory levels may be feasible, and they correspond to orders which
are waiting to be fulfilled. Negative inventories should not be penalized
by holding costs but by backlog costs. Unfortunately, it may be quite
difficult to quantify a backlog cost; we deal with such issues in chapter
3.

o We have considered sales of different items as unrelated: What we sell
or not for an item does not influence sales of other items. This is not
necessarily true, especially if products are complements or substitutes.
If cross-effects are well understood, we can try to extend the model;
otherwise, the task may be too difficult.

¢ A multiperiod model may suffer from “end-of-horizon” effects. In the
model above, it is easy to see that whatever the optimal solution in
intermediate periods, we have I’y = 0: i.e., inventories are depleted
during the last time bucket. This happens because. from the model’s
point of view, there is no reason to keep inventories available after the
end of the world. We may think of circumventing the difficulty by
taking a suitably large time horizon and using the model in a rolling
horizon fashion.® By doing so, it is reasonable to expect that the border
effect will be less critical, but we pay a price in terms of increased
computational burden; furthermore, if the planning horizon is too long,
we lack reliable demand data.

All of the above limitations can be tackled using sophisticated approaches
which are bevond the scope of an introductory book. The message we want
to deliver is that the use of optimization models is always a means to an end.
and it must be framed within a decision process. Optimization models may
be a very useful support in this process, but they are not the decision process.

3This means that if our planning horizon consists of 7' time buckets, we do not wait until
the end of this horizon to replan. but instead we replan immediately at the beginning of
the next time period. In practice only the decisions pertaining to the first time bucket
are actually implemented. The planning horizon rolls forward, in the sense that it involves
initially time buckets (1,...,7), then (2,..., T+ 1), (3,..., T + 2), and so on.
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The danger is to find an optimal solution for a model, which is quite poor for
the real problem. This may happen if we neglect implicit constraints, which
may be difficult to formalize but make the “optimal” solution hard to imple-
ment. Moreover, no optimization model, however sophisticated, can overcome
defects in the organizational structure. If the business process is flawed, math-
ematical modeling will hardly help. For instance, if the optimization model is
used in one room by a planner, but in the next room the marketing manager
decides to launch a campaign based on discounted prices without feeling the
need of informing anyone, the likely spike in demand will make plans quickly
obsolete and unusable. On the other hand, sale plans should be compatible
with available capacity; if economic incentives lead the sales office to promise
unrealistic due dates for order fulfillment, long-term customer relationships
will suffer.

B.2 OPTIMIZATION MODELS

The building blocks of an optimization model are:

o A set of decision variables. In general, decision variables are collected in
a vector within some multidimensional space; in the case of the optimal
mix model, the size of this space is just the number of end items. In
complex models, the size of the vector can be very large, but finite
nonetheless. Typically, the term mathematical programming is reserved
to optimization models in finite-dimensional spaces.?

o An objective function, which may be a cost to minimize or a profit to
maximize.

o A feasible set, which constrains the decision variables; the feasible set
depends on technological, economical, and commercial constraints.

In abstract terms, an optimization model is something like:

min F(x) (B.3)
s.t. x €5 CR",

where f is the objective function, x is the vector of decision variables, and
S is the feasible set, which is a subset of the n—dimensional space R". If
S = R", we have an unconstrained problem. There is no loss of generality
in considering only minimization problems; a maximization problem can eas-
ily be transformed into an equivalent minimization problem by noting that

4We are ruling out optimal control problems in continuous time; in such a case, we deal
with functions u(t) whose domain, t € [0,T], is not even countable. Also, infinite-horizon
discrete-time problems, whose feasible set is countable but infinite, are not considered here
because of their limited role in supply chain management.
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max f(x) = —min(—f(x)); by “equivalent,” we mean that the transformed
problem has the same set of optimal solutions (we should not take for granted
that there is a unique optimal solution; actually, we should not even take for
granted that there is an optimal solution).

Constrained optimization models are built by representing the feasible set
in a practical way. We have seen the following constraints in the previous
examples:

o Equality constraints, i.e., equations linking decision variables.
o Inequality constraints.

e Constraints stating that some variables should belong to specific sets,
such as x € Z. ={0,1,2,3,...} for integer variables.

Solving an optimization problem like (B.3) means finding a global optimizer.

DEFINITION B.1 Given the optimization problem (B.3), a point x* € S
is said to be a global optimizer if f(x*) < f(x), for all x € §. We have
a local optimizer if the condition only holds in the intersection between S
and a neighborhood of x*.

When one speaks of an “optimum,” a little ambiguity arises, because it is not
quite clear if we mean the optimizer x* or the optimal value f(x*); usually,
the context clarifies what we really mean. We may also use the notation
x* = argminges f(x).
Given an optimization model, the following cases may arise®:
1. There is no optimal solution because the feasible set S is empty; this
may happen, e.g., when production capacity is small with respect to
demand and we do not admit lost sales.

2. There is no optimal solution because the optimum goes to infinity (typ-
ically, this is due to a modeling error).

3. There exists a unique optimizer.

4. We have multiple equivalent optimizers; in such a case, we might wish to
come up with a “secondary” criterion in order to discriminate between
solutions which are equally good from the main point of view.

The first case is not as unlikely as one might think. It may be the result
of excessively stringent requirements on the solution. But even if it happens
only every now and then, you may imagine the future of a decision support

5We do not consider rather pathological cases. such as minx subject to z > 2, in which
there is no optimal solution because the feasible set is open: in this case 2* = 2 is not the
optimizer, but it solves the related problem inf z.
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system which occasionally informs a planner that he should shut everything
down because there is no solution. The least we should offer is some diagnostic
about where constraints can be relaxed in order to restore feasibility. This
task can be accomplished, e.g., by adopting “elastic” model formulations.

Example B.2 In section B.1 we developed a multiperiod planning model
allowing for lost sales. Now assume that your boss insists that demand must
be met at all costs. That model could be modified as follows in order to forbid
both lost sales and backorders:

N T
min ZZhiIit
1=1t=1
s.t. Iitzli,t—1+xit—dit7 izl,.‘..,N, t=1,...,T,

N
mem“SRmt, m=1....M, t=1,...,T,
i=1

Zity, Lip 2 0.

Here we want to meet demand at minimum (inventory holding) cost; since we
assume that demand must be met, revenue is fixed and profit maximization is
equivalent to cost minimization (we assume pricing is an outside decision). By
the way, a typical newcomer’s mistake, when trying to capture the requirement
“demand must be met,” is writing down a constraint like z;; > d;;. But such
a constraint does not make any sense, because it rules out inventory holding,
and it can only be satisfied by the trivial solution x;; = d;;, which is probably
not feasible if capacity constraints do matter. Actually, what makes sure
that demand is met is the non-negativity constraint on inventory level, which
together with the inventory balance constraint entails I; ;1 + x4 > dis.

It is clear that meeting demand can be a hard constraint when capacity is
tight, and we may be unable to find a solution. What we should do is to help
the decision maker in figuring out where the critical requirements are (which
demand is too high and when, or which resource is too scarce and when).
Then, it is up to the decision maker to find a way out. One way to do so is
relaxing a constraint by a suitable penalty function. For instance, if we define
a suitably high penalty coefficient § for lost sales, we may write the following
elastic model formulation:

N T N T
min ZZhiL‘t -l-ﬂzzzit

i=1t=1 i=1 t=1
s.t. Ly =T 1+ i —dy + 2, i=1,....N, t=1,...,T,
N
> Pim@it < Rme.  m=1,..,M, t=1,..T,
=1

Tity Zit, Iit Z 07
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where z;; represent a lost sale for item 7 in time bucket ¢. If the penalty 3
is high enough, whenever the original model is feasible, the optimal solution
of the elastic formulation is the same as in the previous model, i.e.. z}, =
If we have some 2}, > 0, this means that there is a critical order somewhere.
Having an idea of where to look is helpful in supporting a negotiation process
with some customers, who may be willing to wait a little more for delivery
or may accept a substitute product. All of these adjustments can actually
be modeled and explicitly represented in an optimization model, but some
decision makers may find themselves in trouble when required to quantify the
costs of these actions.

By the same token. we may consider relaxing capacity constraints as fol-
lows:

ZrimxitSRmt—%Omt. mzl,...,M’, t = T

i=1
where O,,: > 0 plays the role of overtime capacity. If this new variable is
penalized by a true economic cost, the resulting model actually represents a
joint production and capacity planning model; if it is penalized by a large
coefficient with no real monetary value, we have a true penalty function.

Now that we have an idea of how to formulate an optimization model, let us
consider how we can solve one. What we know from Calculus is that setting
the first-order derivative to zero, i.e., enforcing a stationarity condition, may
be a starting point.

Example B.3 Let us consider the problem

B
min f(z) = Az + e stz >0,

where A and B are strictly positive parameters. In the main body of the text,
we show that this is the form of a well-known model to find an “optimal”
quantity to order. The feasible set includes a troublesome point, x = 0, where
the objective function is not defined. We could rewrite the feasible set as
x > 0, but we prefer to avoid the trouble and note that when = gets smaller
and smaller, the objective function grows without bound; hence the optimal
solution must lie in the interior of the domain and the constraint is actually
irrelevant.

Setting the first-order derivative with respect to x to zero, we get the

stationarity condition:
B

!
r)=A—-—= =0,
flay=A-5=0,
which yields the candidate solution x* = /B/A. We see that indeed z* > 0,
but to make sure this is a true minimum, we must check the second-order
derivative too:

11 B
[(x) = 2$—3~
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Since this is positive on the domain of interest, the candidate point is actually
the global minimizer. I

When we have an optimization problem involving several decision variables,
the stationarity condition would involve all of the first-order derivatives, yield-
ing a possibly awkward system of nonlinear equations:

of
8(13‘1'

We recall that we may collect the first order derivatives of a function in a
vector, called gradient and denoted by V f(x*). Hence, we may rewrite the
stationarity conditions in the compact form Vf(x*) = 0. However, leaving
aside the possible difficulty of solving this system of equations, this is not
what we need to solve most optimization problems.

(x)=0, i=1,...,n (B.4)

e To begin with, stationarity conditions assume that the objective func-
tion is differentiable, which should not be taken for granted; a practical
case of a nondifferentiable objective function featuring kinks arises in
purchasing decisions, when quantity discounts are offered.

o If the decision variables are discrete, e.g., because they are restricted to
integer values, we cannot rely on the derivative concept.

e We know that first-order conditions are not sufficient, as they do not
discriminate mimima, maxima, and saddle points, but they are actually
not even necessary in constrained optimization. In a linear program-
ming problem, stationarity cannot play any significant role; to see why,
consider an objective function like f(zy,x3) = 4621 + 6022, and notice
that its gradient is constant and will never vanish.

In general, it is hard to come up with simple global optimality conditions
that are both sufficient and necessary. Typically, we settle for weaker condi-
tions which are just necessary for local optimality. Despite their limitations,
such conditions are the starting point for the development of numerical opti-
mization procedures which are widely used.® There are, however, practically
relevant cases in which some difficulties can be avoided. These cases exploit
some properties linked to convezity, which is the subject of next section.

B.3 CONVEX SETS AND FUNCTIONS

The difficulty in solving an optimization problem does depend on the number
of variables and constraints, but this need not be the main driving factor.

8We should remark that typical optimization routines offered in spreadsheets and numerical
libraries aim at local optimization; the end result may depend on the starting point provided
by the user to the search algorithm.
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Fig. B.1 Tlustrating the concept of convex set.

Nonlinearity is typically more troublesome than linearity, but the main dis-
criminating feature is convexity, both in the feasible region and the objective
function. We introduce convex sets first, then convex functions. The first con-
cept is useful to investigate properties of the feasible set of an optimization
problem; the second concept is useful to characterize the objective function.

Informally, a set S C R™ is convex if, taken any pair of points x and y in S,
all points on the line segment joining x and y lie in S as well. For instance, the
set Sy in figure B.1 is convex, whereas S; and S3 are not. It is worth noting
that S3 is an example of the kind of feasible sets we deal with when tackling
an integer programming problem. Formally, the segment joining two points
can be described as a linear combination of them, such that the weights are
non-negative and their sum is 1; such a linear combination is called convex
combination:

Ax + (1= Ny

for A € [0,1]. We see that when A is 0 and 1 we get the two extreme points
of the segment. Now we may formally define a convex set.

DEFINITION B.2 (Convex set) A set S C R" is said convezx if, for any
X,y € S, we have
X+(1-NyesS

for0< A <1,

Let us consider again set S in figure B.1; this set is a polyhedron, ie.,
the intersection of a finite number of half spaces (in two dimensions, the
intersection of half planes). A half space is the subset of points in R™ lying
on one side of a hyperplane, i.e., the set of points satisfying a linear inequality
like

n

Zaiazi =a'x < 3.

i=1
It is easy to see that a half space is a convex set; a polyhedron is convex
because intersection is an operation preserving convexity. Proving this is
helpful in reinforcing the concepts above.
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f(x) f(x) f(x)

» —> >
X X X

Fig. B.2 Tlustrating the concept of convex function.

Example B.4 Let us prove that the intersection of convex sets is a convex
set. Consider m convex sets S;, j = 1,...,m and their intersection:

S = ﬁ Sj.
j=1

We know that, taken any pair of points x and y in set S;, for any j, convexity
implies that Ax + (1 — A)y € S;, for any A between 0 and 1. If we take two
points in the intersection S, then the two points belong to all of the sets S;.
But then also Ax + (1 — A)y belong, for any A € [0, 1], to all sets S;; hence,
this combination belongs to the intersection S too.

Convexity of sets is readily extended to convexity of functions. The first
function in figure B.2 is convex, but the second is not. If we regard these
functions as costs to be minimized, we see that the first function has one
local minimizer that is global as well, whereas the second one has two local
minimizers, and only one of them is the global one. We expect that local
minima are a complicating factor both for optimization algorithms and for
the development of optimality conditions. For instance, stationarity cannot
discriminate local vs. global optimizers. However, stationarity is a concept
requiring differentiability, whereas convexity does not. The third function in
the figure is in fact convex, but it is not everywhere differentiable. Convexity
of a function is actually linked to the convexity of its epigraph, i.e., the set of
points above the function graph. If the epigraph of a function is a convex set,
the function is convex too; this can be formalized as follows.

DEFINITION B.3 (Convex function) A function f: S — R is convez
on S if, for any x,y € S, we have

FOx+ (1 =Ny) <Af(x)+ (1= Nfy)
for0 <A< 1.

From a geometrical point of view. the condition above tells that a function is
convex if, given any pair of points on its graph, the line segment joining them
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Fig. B.3 Economy and diseconomy of scale.

lies above the graph of the function. From an economical point of view, convex
functions are associated to a diseconomy of scale. The functions in figure B.3
represent a total cost ¢(z) as a function of the level x of some activity. such
as a produced, purchased, or transported quantity. As expected, the cost is
increasing with respect to x, but in the function on the right the marginal cost
is increasing too,” which is exactly what diseconomies of scale are about. On
the left, we see a function displaying an economy of scale (decreasing marginal
cost); a typical case occurs when quantity discounts on some purchased item
are offered by the supplier. This type of function is. in some sense. a convex
function turned upside down. We say that a function f(x) is concave when
—f(x) is convex. Indeed, concave functions are used, among other things, to
model economies of scale.®

We have given a general definition of a convex function, which may be
hard to check. It is useful to mention that, when the function f(x) depends
on a single variable and is twice differentiable, convexity is equivalent to non-
negativity of the second-order derivative. If the function represents a cost, the
condition f”(z) > 0 for x € S basically says that marginal cost is increasing.
Reversing the inequality, we characterize concave functions. The related con-
dition for functions of several variables is a bit more involved. Here we just
point out that an affine function, such as f(x) = a’x + b, is a very peculiar
one, as it is both convex and concave.

In optimization, functions are used both to represent the objective function
and to describe the feasible set. It is interesting to shed some light on the
relationship between convex functions and convex sets when dealing with an
inequality constraint.

"If the cost function is differentiable, the marginal cost is the first-order derivative ¢/ (z).
8A relevant example of a concave cost function is the total cost in the economic order
quantity model, as given in equation (1.2) on page 23; there is an economy of scale with
respect to demand, and this is important in distribution logistics.
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Example B.5 We show that the region S described by the inequality con-
straint
9(x) <0

is a convex set if g is a convex function.

If x € 5, it means that g(x) < 0; by the same token, if y € S, then
g(y) < 0. What we want to prove is that Ax + (1 — )y € S, for all A € [0, 1],
i.e., that g(Ax 4+ (1 — A)y) < 0. But, since g is convex, we have

g(Ax + (1= Ay) < Ag(x) + (1= Ng(y) <0,

where the last inequality depends on the fact that we are summing non-
positive terms, which are obtained by multiplying a non-positive quantity by
a non-negative coefficient. This proves that Ax + (1 — M)y isin S.

The properties we have proved in examples B.4 and B.5 are useful when we
characterize a feasibility region by inequality constraints, but what about the
equality constraints h(x) = 07 We can regard an equality constraint as a pair
of inequality constraints h(x) < 0 and h(x) > 0. This implies that an equality
constraint describes a convex set only if A(x) both convex and concave and,
as we have said, this happens only for an affine function®:

h(x) = Z a;z; + b
=1

Convexity is a property that makes optimization problems relatively easy. For
instance, if we want to minimize a convex differentiable function, we get a sim-
ple necessary and sufficient condition for global optimality in unconstrained
optimization.

THEOREM B.4 Consider the unconstrained optimization problem
min f(x).
x
If the objective function is convex and differentiable, the stationarity condition
Vix)=0
is necessary and sufficient for global optimality.

In fact, the function we considered in example B.3 is convex, and in that
case stationarity yields the (unique) global minimizer, without the need of
bothering about local minima, maxima, nor saddle points. If we deal with a
maximization problem, it is easy to see that the theorem can be applied by
requiring concavity of the objective.

9We typically speak of linear constraints, but the function is actually linear only if b = 0.
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When dealing with constrained optimization, stationarity of the objective
is not necessarily related to optimality. However, we can exploit stationarity
again by using a trick based on the so called Lagrange multipliers. We do
this in the next section, where we also see that in constrained optimization
we need both a convex objective and a convex feasible set to get a relatively
easy problem.

B.4 NONLINEAR PROGRAMMING

The constrained optimization problem

is a nonlinear programming problem if even one function among f. h;, or g
is nonlinear. The stationarity condition (B.4) for the objective function does
not help in finding an optimizer (ruling out trivial cases); to see why, a look
at the following counterexample suffices:

min z2.

2<z<3
The obvious optimizer x* = 2 is not a stationarity point. because it is the
lower bound on z that determines the optimal solution; the function is sta-
tionary at the origin, but this point is outside the feasible region. However,
assuming that all of the involved functions are well-behaved enough, in terms
of differentiability, we can try to use stationarity concepts to find candidate
optimal points.

For the sake of simplicity, we start considering the equality constrained

case:

min f(x) (B.6)
s.t. h;(x) =0, i=1,...,m,

which can be dealt with by the classical Lagrange multipliers method.

THEOREM B.5 Assume that the functions f and h; in problem (B.6) meet
some differentiability requirements, that the point x* is feasible, and that the
constraints satisfy a suitable regularity property inx*. Then, a necessary con-
dition for local optimality of x™ is that there exist numbers A7, j = 1,....m,
called Lagrange multipliers, such that

m

Vi) + > N Vh(x™) =0.

j=1
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The reader has certainly noticed that we have been very loose in stating the
conditions of the theorem. In fact, what we need for the main body of the
text is the concept of Lagrange multiplier, and since in this book we deal
with relatively simple problems, we can do without too many technicalities.
However, it is important to realize that, in general, the theorem is somewhat
weak. It holds under technical conditions,'® which we do not describe in
detail; furthermore, it is only a necessary (hence, not sufficient) condition for
local (hence, not global) optimality. The good news is that it can be shown
that the condition of the theorem is necessary and sufficient for a convex
optimization problem. We say that a minimization problem is convex, if
its feasible set and objective function are both convex.

To interpret the condition above, we may observe that it generalizes the
stationarity condition; the trick is requiring stationarity not for the objective
function, but for the following Lagrangian function:

L(x,A) = f(x) + Y Ajhs(x) = f(x) + N'h(x). (B.7)
j=1

In practice, the “recipe” requires us to augment the objective function by the
constraints, which are multiplied by the Lagrange multipliers, and to enforce
stationarity both with respect to the decision variables x:

Vi L(x.A) = Vf(x) + i AjVhj(x) =0, (B.8)
j=1

and with respect to the multipliers, which actually yields the constraints again:

hi(x)
VAL A) = | h2(®) | =0, (B.9)

The mechanism can be best clarified by an example, but it is important to
check that the conditions above are consistent. We have n decision variables
and m equality constraints (m < n); equations (B.8) and (B.9) yield a system
of n + m (possibly) nonlinear equations to find the n values =} and the m
multipliers A.

19That differentiability is required is clear, otherwise we cannot take the derivatives involved
in the condition. The “regularity” conditions are known in the literature as constraint
qualification conditions and take many forms. One such condition is that in x* the gradients
of functions h; are linearly independent. That this condition makes some sense is not too
difficult to understand. The stationarity condition in theorem B.5 states that the gradient
of the objective can be expressed as a linear combination of the gradient of the constraints;
in pathological cases this may be impossible if gradients of the constraints are, e.g., parallel.
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Fig. B4 A quadratic programming example: geowmetrical interpretation of Lagrange
conditions.

Example B.6 Consider the quadratic programming problem:
min ;Bf + 1%
s.t. T+ xo = 4.

This is called “quadratic” programming because the objective function is a
quadratic form and the constraints are linear; assuming that the objective
function is convex, this is the easiest case of nonlinear programming. Since
this quadratic form is indeed convex, we may use theorem B.5 to find the
global optimum. We associate the constraint with one multiplier A. and form
the Lagrangian function:

Llry,x9, M) = 2% + 22+ My + 29 — 4).

The stationarity conditions:

oL

- = Q.Tl + A= O,

(9.1‘1

oL
- = Q.Tg -+ )\ = 0,

8:02

oL

a = r1+a2—4=0,

are a system of linear equations, yielding r} = 2% = 2 and A™ = —4. We may

also notice that the equality constraint can also be written as 4 — 23 —axg = 0;
if we do so, we just have a change in the sign of the multiplier.

We may get an intuitive feeling for the conditions by taking a look at figure
B.4, where we see the level curves of the objective function (the concentric
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circles) and the feasible region (a line). From a geometrical point of view, the
problem calls for finding the closest point to the origin on the line 1 +z9 = 4.
We note that the optimizer is where this line is tangent to the level curve
associated to the lowest value of the objective. From an analytical point of
view, the gradient of the objective function f(x) = z?% + 3 is

of

) 21
Vi(z, z2) = = [ ‘| .

of 2z

dxy

This gradient, changed. in sign, is a vector pointing toward the origin, which
is the steepest descent direction for the distance. At point x* = (2,2) the
gradient is [4, 4)'. The gradient of the constraint h(x) =z, +z2 — 4 is

oh

ox1 1
Vh(zy,z2) = = [ jl .

oh 1

By

Note that this vector is orthogonal to the feasible region and is parallel to
the gradient of the objective at the optimizer. If we multiply the gradient
of the constraint by A* = —4 and we add the result to the gradient of the
objective, we get the null vector, as required. Actually, all of this boils down to
requiring that the gradient —V f*, i.e., the descent direction for the objective,
is orthogonal to the constraints at the optimizer; this means that further
improvements could only be obtained by going out of the feasible region,
which is forbidden. The last condition is what characterizes the optimizer.

B.4.1 The case of inequality constraints

The case of inequality constraints can be tackled by an approach which is
similar to the Lagrange multiplier method, even though historically it has
been developed much later. The basic theorem here is known under the names
of Kuhn and Tucker. Given our limited aim, we will try to justify their result
intuitively. Let us consider a problem like

max  »_ fi(z;) (B.10)
i=1
s.t. igi(xi) < b, (B.].l)

with a single inequality constraint. To be concrete, we interpret the decision
variables z;, i = 1,..., n, as activities yielding a profit f;(x;) and consuming a
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resource amount g;(x;). The objective function (B.10) is total profit, and the
budget constraint (B.11) says that total resource consumption cannot exceed
its availability b. Note that the objective function is measured in monetary
terms, whereas b is measured in resource units.

Now, there are two possible cases: Either the resource is fully utilized in
an optimal solution, or it is not. In the case of a resource budget constraint,
it is likely that the first case will apply. i.e., the constraint is active in the
optimal solution; if we accept this hypothesis, for the moment, the inequality
constraint can be treated as an equality. Then, we can think of applying the
same approach we have seen for equality constraints. Introducing a multiplier
1, we write the Lagrangian function:

n

Lxp) = filz:) + u<b - Zgi(lfz)) = [fil@i) = pgi(e:)] + pb.
i=1 i=1

i=1

In the case of equality constraint, the way we include the constraints in the
Lagrangian function is irrelevant. In the case of inequality constraints, this
is not true. Using economic intuition, we may try to see why the way we
have included the constraint makes sense. To this aim, let us interpret the
Lagrangian function as a profit, for a given value of the multiplier u. This
function includes a term, pb, which is constant for a given value of the mul-
tiplier and can be disregarded. The Lagrangian includes the sum of profits,
minus a coefficient x4 times the consumption of the resource. From a dimen-
sional point of view, we immediately see that the multiplier is a price: money
per unit resource. If we interpret the multiplier this way, it is also clear that it
cannot be negative. Indeed, when dealing with equality constraints, the sign
of the multiplier is not restricted and the constraint can be introduced in the
Lagrangian in both possible ways; in the case of an inequality constraint, the
multiplier is restricted in sign and we must pay attention to the sense of the
inequality.

Remember that, for the moment, we are assuming that the resource budget
is fully utilized at the optimum. What is the right price u* associated with
the optimal solution? We should find a resource price such that the overall
consumption is equal to the resource availability, no more. no less. In fact,
for a given price, the optimization problem could be decomposed into a set of
n unrelated unconstrained problems, one for each decision variable x,;. Each
problem corresponds to the optimization of a single activity in which resource
availability is taken into account by a resource price which should discourage
excessive resource usage. Someone should coordinate all of the individual
decisions, by pricing the resource so that the n independent agents in charge
of each single activity use the resource in such a way to exactly consume the
available budget b. If we exceed the budget, the price should be increased; if we
do not saturate the resource, then we should decrease the price (if the budget
constraint is active at the optimum). We illustrate this type of interpretation
in a few places in the main body of the text.
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But what if the constraint is not active at the optimum? In such a case,
we have

Z gl('r:‘) < b&
i=1

for the optimal solution x*. We may get this solution by assigning a price
i* =0 and solving the unconstrained problem.!!

We will further pursue the economic interpretation in the next section, but
what we have seen suggests a few intuitive conclusions:

e When dealing with an inequality constraint g(x) < 0, the sign of the
multiplier is restricted and the sense of the inequality is important when
we add the constraint to the Lagrangian function.

e If the multiplier is strictly positive, u* > 0, then the constraint is active,
g{x*) = 0; if the constraint is inactive, g(x*) < 0, then the multiplier
must be zero. In other words, at least one of them must be zero, which is
summarized by the complementary slackness condition u*g(x*) = 0.

All of these intuitive (and far from rigorous) arguments can be summarized
in the following theorem, which we state for an inequality-constrained mini-
mization problem like

min f{x) (B.12)
s.t. ge(x) <0, E=1,....10L
THEOREM B.6 Assume that the functions f and g; in problem (B.12)
are suitably differentiable, that point x* is feasible, and that the constraints
satisfy a regularity condition in x*. Then, a necessary condition for the local
optimality of x* is that there exist numbers puf >0, k=1,...,1, such that

l
V) + > piVer(x™) =0

k=1

and
wrgr (X)) = 0, k=1,...,1

These conditions are known as Kuhn—Tucker conditions and are a general-
ization of the Lagrange conditions for equality-constrained problems. The first

11t is tempting to say that if a constraint is not active at the optimal solution, the constraint
can be eliminated from the model. Actually this not always true. It is possible to build
counterexamples, such as nonconvez problems in which by eliminating an inactive constraint
the optimal solution is still a local optimum, but another point becomes feasible and is the
new global optimum. What we can say is that small perturbations of an inactive constraint
do not change the optimal solutions; we will see more of this interpretation in the next
section.
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condition can be interpreted as the stationarity of the Lagrangian function

l
Llx ) = f(x) + Y prgi(x) = f(x) + W'g(x).
k=1

With respect to the equality-constrained case, we must also require non-
negativity of the multipliers and complementary slackness.

The remarks we have made about the limitations of theorem B.5 apply here
as well; in the convex and differentiable case, these conditions enable us to find
the global optimum. If we have both equality and inequality constraints, we
form a Lagrangian using all of them, but apply the additional Kuhn—Tucker
restrictions to inequalities only.

The theorem applies to a minimization problem, but what if we have a
maximization problem? The answer can be found in our previous intuitive
reasoning. In this case, the Lagrangian function should be

L(x, ) = f(x) — p'gx).

This can be proved mathematically, but it is consistent with economic intu-
ition. For instance, we build the Lagrangian function this way in section 5.2.1,
when we tackle a multi-item newsvendor problem.

We close this section by warning readers against a common misunderstand-
ing. We have justified Kuhn-Tucker conditions by an economic argument,
whereby the Lagrangian function was interpreted as a profit. For a given
multiplier u, it makes sense to maximize the profit. Now, in this case, it is
tempting to say that the stationarity conditions on the Lagrangian function
are conditions for a maximum of the Lagrangian. By the same token, in an
equality-constrained problem such as min f(x), subject to h{x) = 0, it is
tempting to say that we look for the minimum of the Lagrangian function
L(x,A) = f(x) + N'h(x). But it is easy to see that this is wrong, as the min-
imum of this Lagrangian function is always —oc. To see this, fix an arbitrary
point x°; we may drive the value of the Lagrangian function to —oc just by
setting A; to +00 or —oo, depending on the sign of each constraint h;(x°). In
fact, a deeper study of the subject, leading to duality theory, shows that we
should minimize the Lagrangian function with respect to the original variables
x. but we should maximize it with respect to Lagrange multipliers (which are
restricted in sign for inequality constraints). All of this is beyond the scope
of this book.

B.4.2 An economic interpretation of Lagrange multipliers: shadow
prices

To introduce Kuhn—Tucker conditions we have suggested an economic inter-
pretation, i.e., that Lagrange multipliers express how much a constraint is
“important” at the optimum. In this section, we would like to dig a bit
deeper into this interpretation.
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Example B.7 Consider the quadratic programming problem:

min (1 —2)? + (22 — 2)?
s.t. r1+ a2 = b,

where b is a parameter, and let us investigate how the optimal value changes
as a function of b. In fact, the optimal value of the objective is a function
g(b) = f(x3,x5:b), and in this very simple case we may find this function
explicitly. To this aim, we may eliminate the constraint in order to get an
equivalent unconstrained problem. From the constraint we get zo = b — 13
and plug this into the objective function to obtain

(l‘l —2)2 + (b—? -—.1?1)2.

Then, setting the first-order derivative with respect to x1 to zero, we get z7 =
b/2. This also implies 23 = b/2, which can be easily checked geometrically,
since the problem asks for finding a point on the line x1 + 22 = b, such that
the distance from point (2, 2) is minimal. The optimal value as a function of

bis )
q<b>=2(g-2),

and if we take the derivative with respect to b we obtain

dgq

— =b—4.

db
This shows that the optimal value will decrease, if we increase b when the line
is below the point (2, 2) (the line gets closer to the point); if the line is above
that point, increasing b will increase the distance. If we neglect all of this and
apply the Lagrange multiplier approach, we build the Lagrangian first:

L{z1,22,A) = (z1 — 2)? + (rg — 2)2 + Mz + 22 —b),

and the stationarity conditions are

oL

— = 2 -2 =
(9131 (.’L‘l ) + >\ 0,
aLc

— = 2 —2)+ A=
B2 (12 ) + 0,
oL

'éX = 21 + g — b= 0,

which yield
b

:1:1‘:2:;:5, A*=4-0.

We see that, apart from a change in sign, the multiplier is actually the deriva-
tive of the optimal value with respect to b.
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The result of the example suggests that a multiplier measures the sensitivity
of the optimal value with respect to a perturbation of the right-hand side
of the associated constraint. Indeed, this can be proved in a more general
setting. The change in sign is not really relevant, as it depends on how we
build the Lagrangian function, but differentiability of the value function ¢(b)
is an issue.

Thanks to the complementary slackness condition, we can also extend the
result to the case of an inequality constraint. If the constraint is inactive,
the sensitivity is zero, because small perturbations of the constraint have no
effect. Otherwise, the constraint can be substituted by an equality constraint
and we are back to the case above, with the additional caveat concerning
the sign of the multiplier. We may also see why the non-negativity condition
on the multiplier makes sense: If b is the resource availability and we are
minimizing cost, an increase in the availability can only decrease the cost
(remember the change in sign). We have also seen that if g is money and b is
measured in resource units, the multiplier has the dimension of a price; indeed,
an alternative term to indicate a Lagrange multiplier is shadow price.

The shadow price tells, to a first-order approximation, how much the op-
timal value would change if we could increase the availability of a resource.
Hence, this also tells the maximum unit price we should be willing to pay for
one more unit of that resource. If the resource price is larger than the shadow
price, then the increase in overall cost term in the objective function would be
more than offset by the increase in profit. If the resource is not fully utilized,
then there is no point in getting more (the shadow price is zero).

Of course, this interpretation must be taken with care, as it holds for small
perturbations, just like any first-order approximation based on a first-order
derivative. It can be seen as a sort of marginal analysis, which can be very
useful in interpreting optimality conditions.

Example B.8 Let us consider again problem (B.10). Given the additive
form of both the objective and the constraint, the stationarity conditions
on the Lagrangian function can be written separately for each activity i =

L) —u ) =,
which also vields
)
ﬁ? =pu . (B.13)
ox; (")

The ratio of partial derivatives is the ratio between the (marginal) increment
in profit from activity 7, if we increase its level, and the increment in resource
consumption. Equation (B.13) tells that this ratio is given by the multiplier,
but above all it tells us that in the optimal solution this ratio must be the
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same for all of the activities. In fact, if this were not the case, i.e., if there
were two activities 7 and k such that

%(x*) %‘(X*)

61']‘ > Ozy,
09; 1wy Ok i
2 ) )

then x* could not be the optimal solution, because we could increase the
overall profit by reallocating part of the resource from & to j.

This type of marginal analysis proves very useful in the chapters dealing with
inventory management.

B.5 LINEAR PROGRAMMING

The optimization model (B.5) is a linear programming problem if all of the
involved functions are linear (strictly speaking, affine). In this case, the model
has the following form:

n
min Zcimi
i=1
n
s.t. Zaijxi:ﬁj, i=1...,m,
i=1

n
Z%kwiﬁ&c, kE=1,...,l
i=1

Linear unconstrained optimization does not make sense, because the gradi-
ent is constant and the stationarity condition cannot be met; the optimum
is unbounded. Linear programming problems are “easy,” in the sense that
quite efficient and reliable algorithms are available to solve them. This de-
pends partly on the convexity properties of linear programming and partly
on its geometrical features: The feasible set is a polyhedron, and we can find
an optimal solution by looking only at the extreme points (vertices) of the
polyhedron.

Example B.9 Let us consider the optimal mix problem (B.1) again and try
a geometrical solution. A good starting point is observing that the problem
can be simplified as follows:

max 45z + 60z,
s.t. 1521 + 35z < 2400,

25x1 + 1529 < 2400,
0 < a5 <50.
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/ increasing profit

Fig. B.5 Feasible set for the optimal mix model.

In fact, it is easy to verify that any mix satisfying the second capacity con-
straint will also satisfy the first and the third one. To see this, observe that
item P; requires the same resource amount on machine groups A, B, and C,
while P, has a higher requirement on B: the availability of resources A. B,
and C is the same, but only the second one is critical.’? A similar consider-
ation applies to the market limit for item P;: We cannot produce 100 pieces
of it anyway, because there is not enough capacity on resource D.

We can also verify these observations geometrically, by drawing the fea-
sible set and checking for redundant constraints. In practice, good software
solvers do this automatically. In figure B.5 we see the feasible region, which
is the intersection of three half spaces linked to the three relevant constraints.
The vertices of this polyhedron are the origin O(0,0) and points A(0, 50),
B(43.33,50), ('(73.85,36.92), and D(96,0). The figure also displays the level
curves of the profit function, which is increasing along the shown direction.
We also see that the highest level of profit is associated to point C, which is
indeed the optimal solution. Note that we cannot find the optimal solution
by reasoning along the lines of example B.1, by focusing on one product at a
time: in fact, this yields points B and D, for which profit is negative.

We should also note that by changing selling prices, we could also change
the optimal solution, but this would be a vertex anyway. If the profit level
curves were parallel to a constraint, we would have an infinite number of
equivalent optimal solutions on a face of the polyhedron. {

12WWe could say that B is the bottleneck, and we should expect that the shadow prices for A
and C turn out zero. There is a whole managerial approach, the Theory of constraints, re-
volving around the idea of just focusing on relevant constraints. However, spotting relevant
constraints may be difficult in a very dynamic and complex setting.
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The classical algorithm to tackle linear programming problems is the simplex
method, which explores vertices of the feasible polyhedron by a clever strategy,
until a locally optimal solution is found, which is also a global one, courtesy
the convexity of the problem. The simplex method was born in 1947, but
it is continuously improved from a computational point of view. We also
mention that alternative strategies are available, which explore the interior
of the feasible region; these interior point methods may be more efficient
than standard simplex on some type of problems. For all the purposes of this
book, we may consider linear programming models as problems which can be
tackled by a reliable, mature, and affordable technology.

B.6 INTEGER LINEAR PROGRAMMING

When some or all of the decision variables in a linear programming model are
restricted to integer values, we have an integer linear programming prob-
lem. To be more precise, we have a pure integer programming problem when
the restriction must be enforced on all of the decision variables, and we have a
mixed-integer programming problem when some variables are continuous. A
generic integer variable takes values in the set Z4 = {0,1,2,3,4,...}; the case
of negative integers is quite rare in applications. Actually the most common
case involves binary decision variables, which are restricted to the set {0,1};
these variables are so common because they model logical decisions, such as
“should we open a new distribution center in that city, or not?” Clearly, this
is an all-or-nothing decision; we cannot open 75% of a distribution center.

Unlike continuous linear programming, integer programming can be tough.
The main issue is that the feasible set is nonconvex. In convex programming,
we have a suitable characterization of an optimal solution; this means that
if we are handed an optimal solution, it is fairly easy to check that this is
really the optimal one; for linear programming, this requires adapting the
Kuhn-Tucker conditions. With integer programming, even if we are handed
a feasible solution by someone swearing its optimality, there is no easy way
to check this claim. Apparently, a trivial strategy can be applied: Disregard
the integrality restrictions, solve the continuous relaxation of the problem,
and then round the solution. Indeed, in the very simple optimal mix instance
we have considered, such a strategy would work. The continuous solution is
r; = 73.85 and x2 = 36.92, which is not too far from the optimal integer
solution z; = 73 and zo = 37. But the following counterexample proves that
this is not a generally viable approach.

Example B.10 Counsider the following pure integer programming problem:

max T1 + o
s.t. 10301 - 8£C2 S 13,
2:131 - 2$2 2 1,
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T1,29 € L.

If we relax the integrality requirement, i.e., we just require x1, 9 > 0, we can
apply the simplex method to find

x] =4.5, x5 =4,

with an optimal objective value 8.5. By relaxing integrality constraints this
way, we obtain the continuous relaxation of the integer program. The
reader is invited to try rounding the above solution; unfortunately, the trivially
rounded solutions are not feasible, and the integer optimum is

] = 2, Ty =1

with optimal value 3. We see that the continuous solution is quite far from the
true integer optimum; in this case it is even difficult to find a feasible solution
by rounding, let alone the optimal one. We invite the reader to check the
situation graphically to figure out where the trouble is: The feasible solution
consists only of points (1,0} and (2, 1), whereas the convex polyhedron in the
continuous relaxation is very narrow and includes a lot of non-integer points
far from these two feasible solutions.

The bottom line is that in integer programming we must resort to some type
of enumeration in order to find the optimal solution. Certainly, enumerating
all of the feasible integer solutions is typically out of the question; even if they
are finite, the number of feasible integer solutions can be staggering in a real-
life problem. Luckily enough, the example above does suggest a way to avoid
complete enumeration of the feasible set. We may see that, in a maximization
problem, the continuous relaxation yields an optimistic estimate of the optimal
value of the objective, i.e., an upper bound. For a minimization problem, the
continuous relaxation yields a lower bound. This observation is the starting
point of a class of methods which are collectively known under the label of
branch and bound methods and are discussed in the following section. Making
such a method work requires quite a bit of finesse, but getting a grasp of the
overall idea is not too difficult. We should do so in order to appreciate the
potential trouble in solving a large mixed-integer program. However, from
our point of view, the ability of building a mixed-integer linear programming
model is more important than the ability of solving it; this task can be left to
state-of-the-art software packages which are commercially available and are
continuously improved. Some mixed-integer programs which were way beyond
the reach of very powerful computers a few years ago can now be routinely
solved on a desktop PC. Mixed-integer programming models are among the
main topics of chapter 2 on network design. For this class of applications,
commercial packages based on branch and bound are actually able to solve real
problems, at least to near-optimality. Unfortunately, other types of problems,
such as the vehicle routing problems described in chapter 8, cannot be tackled
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Fig. B.6 Search tree for a pure binary programming problem.

by the same approach. In principle, a mixed-integer programming model can
be built, but it proves too hard to solve at optimality by branch and bound,
unless very sophisticated and specialized approaches are used. This is why, in
that case, we typically resort to heuristic approaches.

B.6.1 Branch and bound methods

From a certain point of view, some integer programming problems could look
easier than continuous linear programming models. Consider a pure binary
problem, i.e., a linear programming problem where all of the variables are
restricted by z; € {0,1},7 = 1,...,n. In such a case, the number of feasible
solutions is clearly finite, and we could think of enumerating all of them to
spot the optimal one. We can visualize the search process as in figure B.6,
where we show a search tree; at each node of the tree we branch on a decision
variable, which basically amounts to partitioning the feasible set into disjoint
regions. However, this idea is not really feasible but for small values of n;
in fact, we might have up to 2™ candidates to test. Many of them would be
ruled out by constraints, but we see that the complexity of such an algorithm
is exponential. Furthermore, it is not yet clear how to branch on general
integer variables (opening a branch for every possible integer value is out of
the question), nor how to cope with mixed-integer problems.

What we should aim at is exploring only a small part of the search tree,
avoiding portions of the feasible set in which we cannot find the optimal
solution. In other words, we should prune the tree in order to avoid wasting
computational effort, but how can we be sure that we cannot find the optimal
solution in the portion of tree below a certain node? We have already noted
that if we relax integrality constraints, for a minimization problem, we get a
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lower bound on the optimal value of the objective. In a pure binary problem,
this means that if we relax the restriction z; € {0.1} to z; € [0,1], we can
apply the simplex method to get such a lower bound. Now suppose that, while
wandering up and down the tree, we already came across a feasible solution
whose cost is, say, 100. At present we are considering a node in the tree, in
which variables z;, i = 1, ..., k, have been fixed to a binary value, and we have
solved the relaxation of the problem with respect to the remaining variables
z; i =k+1,...,n. The optimal value of the relaxation turned out to be 102;
should we branch on that node? Not really, since the best solution we can
hope to find in the subtree below that node has cost 102; maybe the optimal
solution in that subset of the feasible region will turn out even worse than
that. Hence, by exploring that subtree we cannot improve what we already
have in hand; so, we may safely prune that branch.

This line of reasoning, suitably adapted to more general integer program-
ming problems, is the foundation of branch and bound methods. Actually,
there are many variations on the theme, but all of them rely on two basic
ingredients:

1. A branching strategy, which builds a search tree by generating finer and
finer partitions of the original feasible set. Each branching spawns two
(or more) subtrees, corresponding to subsets of the feasible region. We
should not miss any opportunity; hence, the subsets must be collectively
exhaustive of the feasible region. For the stake of efficiency. it is also
advisable that they are mutually exclusive. This is easy to achieve
when branching on binary decision variables. A different approach is
taken when dealing with a generic integer variable. Say that solving the
continuous relaxation yields a fractional value 27 = 3.7. We can branch
on this variable by creating two subproblems, one subject to the bound
z < 3 and the other one to z > 4, respectively. Ruling out pathological
cases which may happen when the original feasible region is unbounded,
sooner or later we will end up with a subproblem such that the simplex
method returns an integer solution. This subproblem is a “leaf” of the
tree, and we may resume search somewhere else (recording the newly
found integer solution if it provides us with the best solution so far).

2. A bounding strategy, which in commercial libraries is based on the con-
tinuous relaxation of the integer problem.™® A bounding strategy helps
in limiting the search process, during which we keep an incumbent solu-
tion, i.e., the best integer solution found so far; the value of the incum-
bent solution is, for a minimization problem, an upper bound on the
optimal value. We compare this upper bound against the lower bound
of a node to understand if the latter is worth digging deeper. We must

138everal ad hoc strategies have been devised for specific problems, but they have no place
in a commercial package for general mixed-integer models.
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stress the fact that we cannot prune a node by comparing two lower
bounds. To see why, consider a subproblem P; with lower bound 190
and a subproblem P, with lower bound 180. P; may look more promis-
ing, and maybe we could consider branching on it first, but we cannot
eliminate Py from further consideration; it may well be the case that the
optimal solution of P; has cost 191, whereas P, yields a solution with
cost 195.

An efficient branch and bound method also requires dealing with other issues:
how to select the next subproblem to tackle; how to solve efficiently a linear
program after adding a constraint, without starting everything from scratch;
the selection of the variable we should branch on. Sometimes, we can tackle
a rather large model by a branch and bound method; somewhat surprisingly,
there may be smaller problems which prove a much harder nut to crack. The
main factor is the quality of lower bounds: If they are tight, the pruning pro-
cess can be effective; otherwise, a lot of useless branches will be explored. This
is why sometimes we may have to settle for heuristics, i.e., faster algorithms
to find a hopefully “good” solution with no guarantee about its optimality.
We outline a few heuristics for the vehicle routing problem in chapter 8; we
have to resort to heuristics in this case because straightforward mixed-integer
model formulations of this problem yield weak continuous relaxations. Still,
the range of real-life models that we can tackle by commercial libraries has
been considerably expanded, also thanks to ways to reinforce the quality of
bounds. We will not cover these sophisticated methods, but we illustrate the
basic approach by a complete example.

Example B.11 Solving an integer linear program by branch and
bound. A good candidate to illustrate a full run of branch and bound is
the optimal mix problem (B.1), whose continuous solution is z} = 73.84,
x5 = 36.92, with profit 538.46; this is an upper bound on the profit from the
optimal integer solution, since this is a maximization problem. Let P, the
root problem in the tree, i.e., the problem with the feasible set depicted in
figure B.5. It is convenient to associate each subproblem with two vectors of
lower and upper bounds on variables, respectively; for Py we have the original
market demand bounds

Lo=[0 0, Uy=[100 50]'.

To partition the feasible region, we may start branching on variable x1, gen-
erating the two subproblems P; and P;, resulting from the addition of con-
straints x1 < 73 and x1 > 74, respectively, which do not eliminate any integer
solution. The whole search tree is depicted in figure B.7; each subproblem
corresponds to a rectangle defined by the bounds on variables; we see the ad-
ditional constraints on each branch, whereas each node contains the optimal
solution of the relaxed subproblem along with its profit.
Subproblem P is characterized by the following bounds on variables:

Li=[0 0, U,=[73 50/
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whereas P, is associated with
Ly=1[714 0], Uy =[100 50]'.
Solving P, yields
xr] =73, x5 = 37.29,
with profit 522.14. From P, we get

i =174, 2} =236.67

with profit 530.00 (rounded within two decimal digits). Both profits are
smaller than the profit in P, which is natural since they are obtained af-
ter including a further restriction. We cannot eliminate either subproblem.
If we branch from P;, we create subproblem P; with condition zo < 37; its
bounds on variables are

Ly=[0 0, Us=[73 37/,
and by applying the simplex method we get our first integer solution:
x] =73, x5 =37

with profit 505. This is a feasible solution, corresponding to a leaf of the tree,
and it is not necessarily optimal; it just gives a lower bound on the optimal
profit against which we may compare upper bounds from relaxations.

From P;, adding the constraint zo > 38, we get subproblem P;, with
bounds on variables

Ly=10 38, Usg=[73 50].
Its continuous solution is
x] = 71.33, x5 =38

with profit 490.00. This solution is not integer, but we can get rid of the
subproblem, since its upper bound is smaller than the lower bound 505; going
down this branch of the tree, we cannot improve the incumbent solution. It
is, however, necessary to branch from subproblem P, which looks promising
given its upper bound 530. From P, we generate subproblems Ps and Ps.
Imposing x5 < 36, i.e.,

Ls=(74 0, Us=[100 36],

yields
x] = 74.40, x5 = 36

with profit 508, which still looks better than 505. From the other subproblem,
where 9 > 37, we do not get anything as the problem is infeasible; by adding
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more and more restrictions, we ended up with an empty feasible set. In fact,
we may see that the rectangle

Le=[74 37),  Us=][100 50)

has no intersection with the feasible set, as the lower bounds on production
are such that capacity constraints are violated for machines B and D.

We still have to explore subproblem Ps, by branching on the fractional
variable z1. By imposing z; < 74, we get another integer solution,

whose profit is 490 and is not better than the incumbent. The constraint
21 > 75 yields another integer solution

x] =75, x5 = 35,

with profit 475, which is of no use.
Now we can conclude that the integer solution

x7 =173, x5 =37

is indeed the optimal one. We see that, in this case, we did a lot of work
just to prove that the first integer solution we met was the optimal one. This
may also happen in practical problems, even though a sequence of improving
incumbents is normally visited before proving optimality.

B.6.2 Model building in integer programming

As we have already pointed out. integer programming models may pop up
when there is a need to restrict purchase or production decisions to integer
quantities, maybe multiples of a standard batch. However, the most common
reason for using such models is by far the inclusion of logical decisions. In the
remainder of this section we illustrate a few examples of modeling decisions by
binary variables. The ability of using binary variables is essential in modeling
distribution network design problems, as we illustrate in chapter 2.

Example B.12 Lot sizing with setup times and costs. In this example
we illustrate the use of binary variables to model fixed charges. In the multi-
period planning model (B.2) we did not consider the need for machine setup
before starting production. Suppose that in order to produce a lot of item ¢,
we need to spend a setup time r,,, for each resource m. This setup time does
not depend on the lot size, and it gives us an incentive to stock an item. By
the same token, we may have a fixed cost f; associated to each setup for item
i; this may depend. e.g., on material which is scrapped at the beginning of
a lot because of the need of adjusting machines. In purchasing, setup times
play no role, but we may need to tackle similar issues, e.g., when there is a
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fixed component in the transportation cost. The decision of starting a lot of
item ¢ at the beginning of time bucket ¢ is a logical decision; either we do it
or not. In principle, we could introduce a step function such as

1 ifz>0,
5("‘3)_{0 ifz=0,

which allows us to express fixed charges. Unfortunately, this is a nonlinear and
discontinuous function; If we want to stick to commercial linear programming
packages, we must introduce a binary decision variable:

5 = 1 if we carry out a setup for item ¢ during time bucket ¢,
“ 710 otherwise,

and we must figure out a way to link z;; and d;; using linear constraints. We
can do this by a typical trick of the trade, based on the aptly named “big-
M.” Let M be a suitably large constant; more precisely, it should be an upper
bound on the amount that we can or should produce during a time bucket;
assuming we can quantify the big-M, we write the following constraint:

xit < Méy.

If 6;; = 0, however big the constant M is, this boils down to z; < 0; since
production variables are non-negative, this means that if we do not carry out
the setup, we cannot produce that item. If §;; = 1, we get x;; < M, which is
a redundant constraint if M is large enough. In practice, one way to quantify
the big-M is to consider that there is no economic reason to produce more
than we can sell in the remaining time to the end of planning horizon:

T
Tit < (Z dq;-,-> 6“. (B14)
T=1

An alternative approach is based on capacity constraints; if we carry out the
setup for item ¢, the largest amount we can produce is bounded as follows:

Ry — 7!
Ti < (M Sit.

Tim
This bound is obtained by thinking of allocating to item ¢ all of the available
capacity on resource m, minus the setup time. But which resource exactly?
And how should we choose between this idea and (B.14), which is based on
demand? From a computational point of view, the smaller the big-M, the
better. It is not difficult to understand why. If we use a large constant, there
is nothing wrong logically, but this weakens the bound we get from continuous
relaxation of the binary setup variables. So, we should select the smallest big-
M we can, provided this still yields a redundant constraints when §;; = 1.}4

14 Actually, the best strategy is to reformulate the model completely, using less intuitive
decision variables, such as the amount we produce during one time bucket to meet demand



INTEGER LINEAR PROGRAMMING 573

The resulting model is a fairly straightforward extension of (B.2):

N

T N T T N T
Zpizit - Z Z CiTit — Z Z hilis — Z Z fidie  (B.15)
=1 =1 t=1 i=1 t=1 i=1 1=1
it:Ii,t—1+$it—Zit, i=1,....N, t=1,...,T,

max

i

b~

s.t.

-

(PimTit + ThmTit) < Rint, m=1...,M, t=1,...,T,
i=1
ZitSditw, i=1,...,N, t:1....,T,

xngz\[&t. ’L:L,N tZ]_T.
Zit, Zitn Lix >0, 6 € {0,1}.

The careful reader could raise one possible objection: Constraint (B.14) is
not really an exact translation of what we could write using the step function
§(x). In fact, the model above allows a useless setup, as we can set § = 1 and

= 0. However, such a solution is feasible, but it will never be optimal if
there is a setup cost.

Example B.13 Multiple choices. In this example we illustrate the use
of binary variables to model mutually exclusive logical decisions. Suppose we
have L alternative suppliers for a raw material that we need to feed a manu-
facturing process. Each supplier [ = 1,..., L asks a unit price p;, which need
not be the same for all suppliers; apart from this variable cost, we should
also take into account a fixed ordering cost f;, which may depend on the
geographic distance of the supplier (think of a fixed component of the trans-
portation cost). It may well be the case that lower unit prices are associated
with a distant supplier, so that the tradeoff is not obvious. Assume further
that we prefer using one supplier for the whole planning horizon; this can be
justified by organizational reasons and by the need to establish a trustworthy
relationship.

The decision of how much, when, and from whom to buy will be a part of
a possibly large multiperiod model, but let us focus on this purchase decision.
We need first a decision variable z;; expressing how much we buy from supplier
[ in time bucket ¢. Just like the lot sizing model of the previous example, we
need a binary decision variable to model the fixed cost component: Let d
be 1 if we buy from supplier [ in time bucket ¢, O otherwise. To link the two
decision variables, we need a big-M constraint, such as

xie < M.
in a future time bucket. These disaggregated decision variables allow for smaller big-Ms.

Sophisticated model formulation is beyond the scope of this book, and we refer the interested
reader, e.g., to [2].
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The objective function includes a cost component like

T L
SN (e + fide)-

t=1 =1

Now, we must enforce the selection of (at most) one supplier over the whole
time horizon. To this aim, we introduce another set of binary variables -,
set to 1 if supplier [ is the lucky one. The selection of at most one supplier is
modeled by the inequality
L
Z7l S 17
I=1

where we are using an inequality to allow for the selection of no supplier;
if we insist on selecting exactly one supplier, we can rewrite the constraint
as an equality. However, there should be no trouble with the inequality,
which is somewhat more general, as other demand satisfaction constraints
will probably enforce the selection of a supplier. The last step is linking the
two sets of binary variables:

T
Y ou<Ty, 1=1...,L (B.16)
t=1

Note that we must multiply v by the number of time buckets, to allow for
purchasing whenever we want, and not just once over the planning horizon.
We should note that there is an alternative way to express this link, which is
logically equivalent to (B.16):

o < i, l=1,..,L, t=1,...,T. (B.17)

1t is easy to see that both constraints do their job. It could be argued that
the first idea is better since it involves much less constraints, whereas the
form (B.17) is disaggregated. In fact, good software libraries, when handed
an aggregate form like (B.16), reformulate the model automatically by dis-
aggregating that constraiut into the form (B.17). To see why this is a good
idea, observe that the aggregate form is obtained by summing each single
inequality over t. In general, when we sum constraints, we enlarge the feasi-
bility region.!® In our case, the two feasible sets are the same in the discrete
domain; otherwise one of the two formulations would not be correct. How-
ever, when relaxing the integrality constraint, we get a weaker continuous
relaxation when using the aggregate form. Sometimes, the difference in the
quality of the bounds we get is so large that branch and bound efficiency is
remarkably improved by disaggregation.

15For instance, all the points that satisfy both inequalities g1(x) < 0 and g2(x) < 0, also
satisfy g1 (x) + g2(x) < 0, but not vice versa.
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B.7 ELEMENTS OF MULTIOBJECTIVE OPTIMIZATION

All of the optimization concepts and models we have illustrated in this ap-
pendix rely on two (quite limiting) assumptions:

1. All data are known with certainty.

2. All of the requirements we have on the solution, which are typically in
mutual conflict, can be aggregated into one objective function.

Both assumptions are certainly not to be taken for granted. In distribution
logistics, uncertainty does typically affect demand. At a more strategical level,
when long-term decisions must be taken within a globalized context. exchange
rates, prices of raw materials, and selling prices for end items are also affected
by uncertainty. In the main body of the text we give a few clues on how to
cope with uncertainty.

Also the second assumption is open to quite some bit of criticism. To
begin with, not everything can be translated to monetary terms. In an era of
pollution and greenhouse effect, the environmental impact of a transportation
policy has to play some role, which is not easy to trade off against the pure
optimization of transportation costs; also the social impact of opening a huge
commercial center in a neighborhood may be significant, and this is important
to design a retail network. But even if we stay within the bounds of low-level
tactical decisions, the economic impact of a lost sale or a delayed shipment
may be hard to assess. If there is a contract stating precise penalties for
late delivery, it is easy to bring everything to a common monetary measure.
However, the damage to your image with customers and its long-term impact
is hard to assess. In a risky situation, it may be difficult to assess our own
degree of risk aversion.

The bottom line is that it may be hard to come up with a single objec-
tive function capturing all of the facets of a complex decision problem. This
is why multicriteria decision-making and multiobjective optimization tech-
niques were born. In this section we illustrate a couple of basic concepts in
multiobjective optimization, which are essential, e.g., to appreciate different
modeling approaches we use when managing inventories under uncertainty.
For the sake of simplicity, assume that we have just two objective functions,
f1 and f5, both to be minimized, which cannot be aggregated into one ob-
jective function. From a mathematical point of view, each feasible solution
is characterized by a vector of objective values; hence, we could consider a
“vector” optimization problem:

G 3 fl(x>
min { () } (B.18)
8.t. x € S. (B.19)

However, stated as such, the problem has no meaning, and this is why we
use “min.” Indeed. vectors are not a well-ordered set. unlike the real line.
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We cannot say that a vector is better than another one: The number 5 is
larger than the number 2, but we cannot compare vectors [10 1]’ and [2 5}’
that easily. True, we can say that a vector is longer, by referring, e.g., to the
Euclidean concept of vector length, but this amounts to choosing a specific
norm to scalarize the problem; it is this scalarization that is difficult to specify.

As a concrete example, consider the task of selecting a household electric
appliance, such as a fridge or a washing machine. Among the many factors
playing a role in our choice, cost is certainly an important one. However, we
may also consider esthetics of design, reliability, quality of post-sale services,
capacity (for both fridge and washing machine), and washing time (in the
second case only). All of these factors are hard to express as money. But
even factors that have a definite economic impact are hard to assess for us.
Think of resource consumption; sure, the energy class of the appliance has
an impact on our energy bill, but this is difficult to measure because it is
a future and uncertain cost. Last but not least, some customers are more
sensitive than others to the ethics of energy consumption. So, it is difficult
to choose between a cheap appliance that consumes a lot of energy and a
more expensive one which allows a significant energy saving. Nevertheless,
one thing should be clear, if we consider only price and energy consumption:
We should not prefer an expensive appliance that consumes huge amounts
of energy over an alternative that is less expensive and saves a lot. This
observation alone may not help us in spotting one “optimal” solution, but at
least it eliminates unreasonable alternatives from further consideration. In
other words, we should just concentrate on efficient solutions.

DEFINITION B.7 Given the vector optimization problem (B.18), a feasible
solution x* is said efficient® or nondominated solution, if there is no other
solution x € S such that

AER) S AETD) and fo(X) < f2(x7)

with a strict inequality for at least one of the two objectives. The set of
nondominated solutions is called efficient frontier.

The idea may be easily grasped by having a look at figure B.8. We see that
in the case of the figure the is not necessarily one optimal solution, but rather
a set of “reasonable” solutions to which we may restrict the choice, ruling
out dominated alternatives. What we can do to help the decision maker is to
generate a set of reasonable alternatives. To this aim, we can scalarize the
problem according to some strategy, boiling the vector problem down to a
family of single-objective optimization problems.

160Often we speak of Pareto efficiency, in honor of Italian economist Vilfredo Pareto, who
studied the allocation of goods among economic agents in these terms. By the way, it is
worth noting that although he is best remembered as an economist, he had a degree in
Engineering. In the 1950s, many scholars who eventually made a big name in Economics
worked on inventory management and workforce planning.
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AL

O  dominated solution

@® nondominated solution

Fig. B.8 Illustrating the concept of efficient solution.

The first, perhaps more intuitive, approach is to devise a weighted linear
combination of the two objectives: We define a parameter A, bounded by 0
and 1, which expresses the relative importance of the objectives; letting A
span its range, we define and solve a sequence of problems:

min Af1(x) + (1= X)) fa(x)
s.t. xeS.

Note that the parameter A has no precise economic meaning, as it is just
a tool to span the efficient frontier. This approach is clearly intuitive and
related to the idea of varying a set of weights. We have the guarantee that
all of the solutions we generate this way are efficient; however, it does not
guarantee in general that all of the efficient solutions will be generated, unless
some condition related to convexity is satisfled.!” An alternative approach is
based on the idea of transforming one objective into a constraint. In other
words, we can optimize f;, subject to the constraint that fs cannot exceed
some limit (or vice versa):

min  fi(x)

17To see why, try the following exercise, with reference to figure B.8. Imagine drawing the
level curves of the linear combination of objectives when X varies; changing this parameter
implies a rotation on these lines, and all of the three efficient solutions are optimal for some
interval of A. But what happens if the second efficient solution, i.e., the one closest to the
origin, moves up along the north—east direction?
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£,(x)
A

£,(A) B

£,(B)

- f,(x)

f,(A) f,(B)

Fig. B.9 The efficient frontier.

s.t. x €S,

fa(x) < fa.

Solving a family of scalar problems for varying values of fa, we may trace the
efficient frontier. If we have an optimization problem over continuous decision
variables, the efficient frontier will look something like figure B.9. It is worth
noting that this second approach does not suffer from the aforementioned
difficulty with the weighted combination approach, but the most important
feature, arguably, is that it is more “readable” for a decision maker.'® While
the parameter \ has no clear managerial meaning, the parameter fo is much
clearer. It is a threshold level, that might be chosen by having a look at what
competitors do. For instance, if we have to trade off service level against the
cost of our inventories, having an idea of what service level is offered by our
competitors helps a lot in choosing a sensible threshold.

We clearly see that optimization modeling in such a context is a tool to
support decision makers, and not to replace them. It is up to an informed
manager to compare alternatives A and B in figure B.9, to assess the involved
tradeoffs, and to decide if the improvement of solution B with respect to A,
in terms of the second objective, is enough to compensate the loss in terms of
the first one

180n the other hand, we should also mention that sometimes the model resulting from a
convex combination of objectives may be easier to solve from a computational point of view.
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B.8 FOR FURTHER READING

e Example B.10 is taken from [5], which is good introductory reading for
solution methods.

e A more complete treatment can be found, e.g., in [1], whereas [7] is an
excellent reference as far as integer programming is concerned.

e Readers interested in optimization models for manufacturing manage-
ment may also have a look at [2].

e The bibliography on optimization methods is quite rich, but the same
cannot be said when it comes to model building. A welcome exception is
[6], which deals with a wide class of applications; {4] may also be useful
reading, and it is more focused on supply chain management.

e From a practical point of view, optimization modeling is of no use if it is
not complemented by a working knowledge of commercial optimization
software. We suggest having a look at http://www.ilog.com, which
also offers interesting material describing real-life applications. Other
useful links are:

http://www.informs.org

http://www.optimization-online.org
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affine function, 551
alternative hypothesis, 495
anticipation function, 54, 78
arc, 71

arc routing, 402

assortment, 11, 54
autocorrelation, 479, 524
autocovariance, 479

backlog, 236
backorder, 236
backward induction, 374
Bass model, 177
Bayes’ theorem, 442
Beer Game, 324
Bernoulli

random variable, 447, 493
bias (in forecasting), 104
binary decision variable, 77
binomial

random variable, 493
binomial coefficient, 448
bounding strategy, 567
branch and bound, 78, 567
branching strategy, 567

Index

brand loyalty, 239
bullwhip effect, 39, 42, 324
bundle, 66

bundle of products, 216

capacity
allocation, 332

CDF, see cumulative distribution
function

central limit theorem, 28, 470

chi-square

random variable, 468

chi-square test, 498

coefficient of correlation, 485

coefficient of variation, 95, 445

collaborative planning, forecasting
and planning, 330

competitive factors, 9

complementary slackness, 558

component commonality, 38

concave function, 83, 551

concordance, 486

concordance (between random vari-
ables), 465

conditional
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expectation, 471

probability, 438, 471
confidence

interval, 490

level, 490
confidence interval, 506
constrained optimization, 553
constraint

equality, 545

inequality, 545
constraint qualification, 554
constructive method, 404
continuous random variable, 452
continuous relaxation, 565, 567
continuous review, 271
contracts

buy-back, 378

franchising, 378, 389

quantity discounts, 390

revenue sharing, 379

Vendor Managed Inventory, 381
control variable, 78
convex

combination, 86

function, 504, 550

hull, 86

optimization problem, 554

set, 549
convex combination, 549
convexity, 536, 577
correlation, 467, 521, 525

among customers, 327
correlation coefficient, 58
cost

average, 12

backlog, 543

fixed, 12, 21, 77, 536, 571, 573

holding, 543

inventory, 203

inventory holding, 15, 21

linear, 12

marginal, 12, 551

nonlinear, 12, 21

ordering, 15, 200, 573

administrative, 200

receiving, inspection and han-
dling, 202
setup, 202
transportation, 201
semi-variable, 14
stockout, 16
sunk, 13
transportation, 14
variable, 13
counting process, 480
covariance, 465, 478, 485
cross-docking, 342
cross-docking platform, 8
cumulative distribution function, 443,
461
customer goodwill, 239
customer lifetime value, 239
CV, see coefficient of variation

decision variable, 544
Delivery Lead Time, 10
Delphi method, 166
demand
deterministic, 335
uncertainty, 351
demand uncertainty, 56
dependability, 10
design variable, 78
diseconomy of scale, 551
dispersion measure, 445
distribution
F, 470
binomial, 448
chi-square, 484
empirical, 451, 455
exponential, 451, 475, 480
geometric, 447, 473
lognormal, 468, 532
normal, 459, 470, 476, 481
Poisson, 450, 458, 480
standard normal, 459, 492
Student’s ¢, 469, 484, 491, 497,
519
support, 447
uniform, 446



DLT, see Delivery Lead Time
double marginalization, 361

early sales, forecasting through, 172
echelon stock, 308, 343
economic order quantity, 19, 56, 61,
551
economies of scale, 13
economy of scale, 69, 83, 551
edge, 71
EDLP, see everyday low prices
efficient frontier, 576
efficient solution, 576
elastic model formulation, 79, 546
Enterprise Resource Planning, 3
EOQ,
seeeconomic order quan-
tity19
policy, 45
quantity discount, 223
two-echelon, 335
under capacity constraints, 221
epigraph, 550
ERP, see Enterprise Resource Plan-
ning
error (in regression), 508, 524
estimator, 483
unbiased, 483
event, 434
disjoint, 436
independent, 438
mutually exclusive, 436
every day low prices, EDLP, 331
every-day low prices, 30
expected value, 445, 454
explanatory variable, 485, 501
exponential
random variable, 458
exponential smoothing
simple, 128
with seasonality, 144
with seasonality and trend, 154
with trend, 138
extreme point, 562
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factorial, 449
feasible set, 544
first-order optimality condition, 504
fixed charge, 571
flexibility, 11
delivery, 11
order cancellation, 333
product, 11
to product innovations, 11
volume, 11
flow time, 6
forecasting, 328
explanatory models, 119
causal models, 119
new products, 166
qualitative methods, 116, 166
quantitative methods, 116
Forrester effect, see bullwhip effect
function of a random variable, 446.
454, 462

generalized assignment, 422
gradient, 548
graph, 71
bipartite, 72
directed, 71
undirected, 71

heterogeneity

customer, 328
heteroskedasticity, 527
heuristics, 568
horizontal transshipment, 307
hypothesis testing, 495, 520

i.i.d. (random variables), 464, 470
incentives, 359
incumbent solution, 567
independent

events, 438

random variables, 463, 476
industry

car, 18, 47

ebusiness, 17, 91, 334

electronics, 17, 91, 379
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electronics distribution, 326

entertainment, 380

food, 24, 98, 100, 303

furniture, 17

grocery, 342

grocey, 386

luxury, 47, 307

retail, 10, 17, 96, 113, 118, 305—

307, 326, 334

spare parts, 39

white goods, 117, 305
information

sharing, 329
initialization, 140, 147, 155
initialization (of parameters in ex-

ponential smoothing), 134

installation stock, 308
integer linear programming, 564
interior point method, 564
intermodal center, 69
inventory

(Q,R) model, 270

allocation, 347

fixed period, 270

fixed quantity, 270

in transit, 61

in-transit, 29

on hand, 211

periodic review, 270

position, 211
inventory control system, 494
inventory policy

(Q.R), 312, 352

S, 344
iterative method, 404

Kuhn—Tucker conditions, 558

lack of memory, 481
Lagrange multiplier, 553
Lagrangian function, 554
Lagrangian multiplier, 218
Lancaster model, 171
lateral shipment, 9

lead time

uncertain, 355
least-squares method, 84
linear programming, 54, 71, 503,
540, 562
location measure, 445
logistics
industrial, 3
reverse, 4, 9
lost sales, 236
lot sizing, 325
lower bound, 565, 567
LTL, see transportation, less-than-
truckload
lurking variable, 488

MAD, see mean absolute deviation
Make to Order, 46, 91
Make to Stock, 46, 91
MAPE, see mean absolute percent-
age error
marginal distribution, 462, 476
Markov process, 479
mean absolute deviation, 104, 110
mean absolute percentage error, 107
mean error, 110
mean error (in forecasting), 104
mean percentage error, 107
mean square error, 454
median, 456, 459
memory, lack of, 458, 475
meta-modeling, 84
mixed-integer programming, 564
mode, 454, 459, 469
model
analytical, 49
descriptive, 49
multiperiod, 35, 44, 540
multistage, 35, 44
prescriptive, 48
simulation, 49
moment (of a random variable), 444,
453
moving average, 120
MPE, see mean percentage error
MSE, see mean square error



MTO, see Make to Order

MTS, see Make to Stock
multicriteria decision-making, 575
multiobjective optimization, 575
multiperiod problem, 426

nested policy, 313
network, 71, 399
arborescent, 7, 55
convergent, 7
divergent, see network, arbores-
cent
linear, 6
optimization, 71
pure distribution, 7
newsvendor problem, 31, 245
multi-item, 259
two-period, 265
node, 71
destination, 72
intermediate, 55
source, 72
node routing, 400
nondominated solution, 576
nonlinear programming, 84, 553
nonparametric test, 498
normal
standard distribution, 28
null hypothesis, 495

objective function, 544
operational

problem, 43
optimization

nonconvex, 50
optimizer

global, 545

local, 545
order decoupling point. 47
ordering cost, 327

p-value, 497, 520

paired observations, 501

parameters selection, 121, 132, 139,
147

INDEX 585

PDF, see probability density func-
tion
penalty coefficient, 79
penalty function, 546, 547
performance evaluation
model, 49
piecewise-linear function, 84
plant location, 76
PMF, see probability mass func-
tion
Poisson
process, 480
compound, 481
inhomogeneous, 481
random variable, 450
stochastic process, 451
polyhedron, 349, 562
postponement, 39, 346
Pricing policies, 331
private information, 381
probability
distribution, 27
joint, 437
measure, 436
probability density function. 452,
462
probability mass function, 443, 462
problem
minimum cost flow, 74
operational, 71
plant location, 76
strategic, 42, 71
tactical, 43
transportation, 72
programming
linear, 73
stochastic, with recourse, 35
pull system, 44
push system, 44

quadratic programming, 555
quality. 9. 18

conformance, 10

target, 10
quantile, 28, 456, 460, 470, 491
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R? statistic, 521
random sample, 482
random variable, 442
binomial, 451
discrete, 442
random walk, 479
regression
multiple linear, 165
nonlinear, 528
simple linear, 158, 501
rejection region, 495
reorder level, 210
reorder point, 56, 210
residual, 503, 509, 524
revenue management, 4, 50
risk
adverse, 38
averse, 249
neutral, 38, 249
pooling, 36, 39, 56, 57, 347
risk aversion, 575
RMSE, see root mean square error
rolling horizon, 35, 543
root mean square error, 106, 110
route, 400

safety stock, 56, 273
sample
correlation, 486, 501
covariance, 485
fit, 115
mean, 482
path, 476
space, 434
standard deviation, 483
test, 115
variance, 483
scalarization, 576
scenario, 78
search tree, 407
sell-in, 333
sell-out, 333
service, 10
service level, 16, 28, 537, 578
type I, 242

type 11, 243
shadow price, 219, 561
significance level, 495
simple linear regression, see regres-
sion, simple linear
simplex method, 564
simulation, 49, 55
discrete-event, 49
standard deviation, 445
standard error of estimate, 511
standard normal
random variable, 468
stationarity (of a stochastic process),
478, 525
stationarity condition, 547, 552
statistic, 482
statistical model, 508, 520
stochastic process
continuous-time, 480
discrete-parameter, 476
discrete-time, 476
Gaussian, 476
weakly stationary, 478
stochastic programming
two-stage, 78
stock
cycle, 24
in-transit, 24
pipeline, 24
safety, 28
seasonal, 25
speculative, 24
stockout, 56
cost, 28
probability, 28
store loyalty, 239
strategy, 9
supply chain
arborescent, 342
supply chain structure
convergent, 306
divergent or arborescent, 306
linear, 306
multiechelon, 303, 359
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support (of a probability distribu-
tion), 453
sweep method, 421

tactical problem, 71
Theil’s U statistic, 112
time bucket, 541
total probabilities (theorem of), 441,
473
tour, 400
transit point, 8, 342
transportation
consolidation, 327
full truckload, 41
less-than-truckload, 41
point-to-point, 40
transportation cost, 572
transshipment node, 8
transshipment point, 342
type I error, 495, 498
type II error, 495

uncertainty

delivery, 233

delivery lead times, 233

demand, 233

inventory levels, 233

subjective, 27
unconstrained problem, 544
uncorrelated variables, 467
uniform

random variable, 457
upper bound, 565, 567

variability, 324

variance, 445, 454

Vehicle Routing Problem, 41

Vendor Managed Inventories, VMI,
330

Vendor Managed Inventory, 41, 381

vertex, 71, 562

VMI, see Vendor Managed Inven-
tory, 330

VRP, see Vehicle Routing Problem

yield management, 4
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