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Preface

The globalization of markets and the availability of new information technologies
have stimulated research in distribution logistics in the last few years. Classical trans-
portation, routing and inventory problems are being more and more studied from a
supply chain management perspective and the on-line information made available by
the new technologies is more and more used in the decision processes.

A scientific approach to the most innovative logistic problems, combined with
a high level of attention towards practice, has motivated a series of “International
workshops in distribution logistics (IWDL)”. This volume includes some of the pa-
pers that have been presented at the IWDL2006, the workshop of the IWDL series
which was in Brescia (Italy) in October 2006.

In this volume we focus on the distribution network, which represents the most
complex and critical part of the logistic system, and cover several areas, in particu-
lar distribution network design, supply chain optimization, internal logistics, routing
problems, transportation and e-business, and location problems.

Due to the variety of the topics in the domain of distribution logistics covered by
this volume, we decided to present the contributions in alphabetical order of the name
of the first author. The reader will find through the index the topic he/she is most
interested in. This volume is thought to be an important reference for researchers
and also for PhD and Master students.

We would like to thank the authors of the papers for their contributions. All the
papers submitted for publication in this volume were been subjected to a refereeing
process and we are deeply indebted to the referees whose professional help has been
fundamental to ensure a high quality level of this volume.

Brescia, Rotterdam Luca Bertazzi, University of Brescia, Italy
February 2009 M.Grazia Speranza, University of Brescia, Italy
Jo van Nunen, Erasmus University, The Netherlands
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Summary. In this paper we analyze the Dynamic Multi-Period Routing Problem (DMPRP),
where a fleet of uncapacitated vehicles has to satisfy customers’ pick-up requests. The service
of each customer can take place the day the request is issued or the day after. At the beginning
of a day a set of requests are already known and have to be served during the day. Additional
requests may arrive during the day while the vehicles are traveling. In this context we perform
different types of analysis, each one characterized by the comparison of alternative manage-
ment policies. The first analysis compares a policy which decides, at the time the request is
issued, whether to accept or reject it to a policy that accepts all the requests and decides, at
a later time, which ones to forward to a back-up service company. The second evaluates the
advantages of a collaborative service policy where a fleet of vehicles is managed by a unique
decision maker with respect to a policy where the same vehicles are managed independently.
Finally, in the last analysis a policy where each new request is taken into account as soon as it
is issued is compared to a policy where all the requests issued during a day are analyzed at the
end of the day. Extensive computational results evaluating the number of lost requests and the

distance traveled provide interesting insights.

Key words: Dynamic multi-period routing problems, Postponable requests,
Management policies

1 Introduction

Dynamic settings are receiving an increasing attention in routing problems thanks
also to a wider use of communication devices in vehicles equipment. Nowadays, the
use of GPS systems allows a central unit to constantly know the location of vehicles

L. Bertazzi et al. (eds.), Innovations in Distribution Logistics, Lecture Notes 1
in Economics and Mathematical Systems 619, DOI: 10.1007/978-3-540-92944-4,
© 2009 Springer-Verlag Berlin Heidelberg
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and to take dynamic decisions on the basis of the overall situation of vehicles and
customers. Such situation evolves during the day and previous plans may be modified
because new requests are issued by customers or because some unexpected event
took place such as a delay due to traffic congestion. It is expected that such dynamic
management improves the competitiveness of a company, allowing a better service
at a lower cost.

While the literature on static routing problems is wide, the literature on dynamic
routing problems is limited, though it has consistently grown in the last years. Com-
prehensive surveys on dynamic problems can be found in Psaraftis [10, 11] and, more
recently, in Ghiani et al. [5]. Among the most relevant contributions in this domain
we recall Savelsbergh and Sol [12] and Yang et al. [13] for the management of dy-
namic fleet of vehicles; Gendreau et al. [4] and Ichoua et al. [6] for real-time vehicle
routing and dispatching problems in long-distance courier services; Mitrovi¢-Mini¢
et al. [8] and Mitrovi¢-Mini¢ and Laporte [9] for the dynamic pick-up and delivery
problem with time windows and Madsen et al. [7] for a dynamic dial-a-ride sys-
tem characterized by multiple capacities and multiple objectives. Finally, Angelelli
et al. [2, 3] perform a competitive analysis for some policies in a simple dynamic
multi-period setting.

The dynamic setting we consider in this paper is the Dynamic Multi-Period Rout-
ing Problem (DMPRP) introduced in [1]. The problem is characterized by pick-up
requests arriving in real time to the central depot of a courier company. A fleet of un-
capacitated vehicles is available for the service. Every morning these vehicles leave
the depot and have to return to the depot at the end of the day. Thanks to modern
communication technology, the company knows the exact position of its vehicles at
any time instant and is able to forecast their positions in the near future. The com-
pany can react to on-line requests and possibly modify the previous traveling plans.
The distinctive features of this dynamic problem with respect to those analyzed in
the literature is that requests can be served within two days from their issuance. This
means that when a request is issued, a deadline is associated to it. Thus, every day,
the requests can be either off-line when they are known in advance (i.e. they have
been issued the day before but not serviced yet) or on-line when they come over in
real-time, while the vehicles are traveling. Moreover, requests are also classified as
postponable or unpostponable. If a request is unpostponable it has to be inserted in
the currently traveled routes, on the contrary if it is postponable it can be served ei-
ther today or tomorrow. The objective of the company is to maximize the number of
serviced requests while minimizing the average operational cost per day.

The most common approach used in the literature to solve a dynamic problem
is based on a repeated re-optimization of the off-line problem. In [1], the authors
introduce different short term strategies characterized by a look-ahead period and a
short term objective. For each strategy, a corresponding re-optimization problem is
defined and iteratively solved by means of a Variable Neighborhood Search (VNS)
meta-heuristic. An extensive computational analysis of the impact each short term
strategy has on the long term objective of the problem is provided.

In the present paper, we evaluate and compare alternative management policies,
by making use of the solution framework presented in [1]. The scope of the paper is
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to focus on the possible advantages that a company can achieve by applying some
management policies concerning, for instance, the treatment of new customers and of
on-line information. In this perspective we perform three different types of analysis,
each one characterized by two alternative management policies. In the first we com-
pare the management policy on the basis of which an immediate decision is taken, at
the time a request is issued, on whether to accept or reject it to the policy which ac-
cepts all the requests and, at a later time, forwards some of the requests, if needed, to
a back-up service company. Then, we study the advantages of a collaborative service
policy where a fleet of vehicles is managed by a unique decision maker with respect
to a less flexible policy where the same vehicles are managed independently. Finally,
the third analysis compares a policy where each new request is taken into account
as soon as it is issued to a policy where all the requests issued during a day are ana-
lyzed at the end of the day. Comparison is made by means of extensive computational
results evaluating the number of lost requests and the distance traveled.

2 The Dynamic Multi-Period Problem

A fleet of uncapacitated vehicles V = {vy,...,v,} is available to satisfy requests
issued by customers. The positions of the vehicles are known to the central depot at
any time during the day. Moreover, the vehicles can communicate with the central
depot. At the beginning of each day a set of requests are known that have to be served
during the day (unpostponable requests). These requests are assigned to the vehicles
and the vehicles leave the depot and start traveling on the basis of an initial plan.
During the day new requests may be issued by customers. Unpostponable requests
can be accepted only until a fixed time L in the morning (e.g. noon or 1:00 PM). We
define as postponable all the requests issued during the day that can be served in the
same day or postponed to the day after. The time length of each working day is equal
to 7. This is also the maximum time available to each vehicle route, i.e. we will refer
to the length of a route by meaning a time length. Decisions are repeated over a time
horizon of T' days.

All requests are requests of a pick-up service. In fact, it is assumed that delivery
requests are not consistent with this dynamic setting, since if a delivery request is
issued during the day, then a vehicle cannot be deviated to serve the new customer.
Moreover, if a vehicle leaves the depot with the load to be delivered to a customer,
the service of that customer cannot later be assigned to a different vehicle. In case the
company satisfies both pick-up and delivery requests, the assumption is that the fleet
is divided into two parts, a part dedicated to the delivery service and the other part
dedicated to the pick-up service. The part dedicated to the delivery service works
as traditionally in a static context where the vehicles follow during the day the plan
assigned to them at the beginning of the day. The part dedicated to the pick-up service
is managed dynamically.

The central depot may elaborate new plans during the day and communicates the
changes to the vehicles. The changes in a vehicle plan may concern the inclusion
of new customers, the deletion of customers or both. The vehicle can receive the
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new plans at any time and possibly deviate from its previous route while traveling
between two customers. The goal is the minimization of the total service cost over
the whole horizon. Such major target has been formalized through two hierarchical
objectives. The first one is the maximization of the number of requests directly served
by the company, which is equivalent to the minimization of the number of not served
requests, i.e. rejected or forwarded to the backup service, depending on the policy.
The second one is the minimization of the length of the routes traveled per serviced
request.

2.1 The Solution Framework

In [1] the authors introduced in a rolling horizon solution framework the concept
of a Short Term Strategy (STS). A STS includes the definition of a re-optimization
problem that is solved by means of a Variable Neighborhood Search (VNS) heuris-
tic. Before the beginning of the day and then at regular intervals (re-optimizations
intervals) the re-optimization problem is solved. The first re-optimization problem
considers unpostponable requests only and provides for each vehicle a route that
starts and ends at the depot. The subsequent re-optimization problems take into ac-
count all known requests (postponable and unpostponable) and provide for each ve-
hicle a route that starts at the forecasted position of the vehicle at the end of the
re-optimization according to the previously planned routes and ends at the depot.

Time is denoted during the day with ¢ € [0, 7]. We indicate by Rp() and Ry (¢) the
set of postponable and unpostponable requests at a given time z, respectively. We also
denote by R(#) = Rp(f) U Ry (?) the total set of the requests known at time ¢. Let At be
the length of the re-optimization interval and let ¢’ = ¢ + At. The set R(¢") differs from
R(¢) for the inclusion of all the new requests which have become available during the
last re-optimization interval At and for the elimination of all the requests served in
the meantime.

A maximum time OptTime < At is made available to the algorithm that solves
each re-optimization problem. The solution found is implemented until the end of
the next re-optimization phase. The generated routes are followed by the vehicles
from time ¢ + OptTime to time ¢ + OptTime, that is until the routes obtained with
the subsequent re-optimization have become available.

2.2 The Short Term Strategy

In [1] several Short Term Strategies have been analyzed and compared. A Short Term
Strategy (STS) consists of the following main components:

1. A look-ahead period: The period of time over which the re-optimization problem
is defined;

2. A short term objective: The criterion used to evaluate the quality of a solution in
the re-optimization problem;

3. A re-optimization problem: The off-line problem which is formulated and solved,
after a look-ahead period and a short term objective have been defined;
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4. A re-optimization interval: The length of the time interval between the solution
of two consecutive re-optimization problems.

Let r}, and r}] represent the number of postponable and unpostponable requests
served today, respectively. Moreover, let 7! and I' denote the total number of served
requests and the total length of the routes traveled in the current day, respectively.
Let 2 and /> denote the number of served requests and the total length of the routes
traveled the day after, respectively. The class of strategies that in [1] turned out to
be the most successful has a 2-day look-ahead period, and the following objective
function:

min al' + (1 —a)P + (rp + r)Ka + K (1)
where « is a real number such that 0 < @ < 1, and K, K, are negative constant
values such that K; < K, < 0. The function maximizes the number of unpostpon-
able served requests (term r}]Kl) and, as second hierarchical objective, maximizes
the total number of postponable requests to be served within the day after (term
(r}, + r})K>). Actually, the requests that are postponable today will become unpost-
ponable tomorrow and have to be served within tomorrow. Finally, the third hierar-
chical objective is the minimization of the weighted sum of the lengths of the routes
traveled today and tomorrow (term al' + (1 — @)?). We decided to set @ = 1~ so
that a decrease in the distance traveled today is to be preferred to any decrease in the
distance traveled tomorrow.

Throughout the paper we indicate by 2-day look-ahead(At) the 2-day look-ahead
strategy with the short term objective function (1) and « set to 1~. Each of the ana-
lyzed management policies, with one exception only, can be implemented by means
of a straightforward implementation of the 2-day look-ahead(At) strategy.

3 Comparison of Alternative Management Policies

In the following we consider three real situations where different management poli-
cies can be implemented. We analyze and compare different policies by making use
of a proper implementation of the 2-day look-ahead(At) strategy.

3.1 Accept/reject vs. Delay Policy

When a new request is issued, the central unit of a company can immediately check
whether it is possible to serve it given the available fleet of vehicles. The decision
has to be taken on the basis of the already accepted requests possibly modifying the
current routing plan. The company accepts to serve the request if it can be feasibly
inserted in the current plan. Otherwise the company rejects the request. We call this
policy acceptfreject. Since we assume that there are requests that can be served in the
day of their issuance or postponed to the day after, a more customer oriented version
of the acceptfreject policy is of interest: an accept/reject policy where the day in
which the service will be accomplished is fixed once for all and is made known to
the customer as soon as his/her request is accepted ( fixed day acceptfreject policy).
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In the same situation, the company may follow an alternative policy where no
request is rejected. Since the fleet may not be sufficient to satisfy all the issued re-
quests, a contract with a back-up service company has to be made in such a way that,
in case of need, some of the customers will be served by the back-up company. In this
case, the back-up company is informed on the customers to be served at the end of
the morning. This policy, called delay, allows the company to postpone the decision
about the customers to serve directly and the customers to be served by the back-up
company. At the same time the company offers a better service, since no customer is
ever rejected.

The delay policy can be implemented by means of the 2-day look-ahead(At) with
any fixed value of the parameter 4z. On the contrary, to implement the accept/reject
policy the At characterizing the strategy should be small enough to allow the defini-
tion of a new re-optimization problem as soon as a new request is issued. Moreover,
the solution framework itself has to be modified so that if a request is accepted it will
be certainly served and will be never excluded by future re-optimizations. Otherwise,
if an arriving request is not immediately included in the current solution it will be
definitely discarded from the system.

3.2 Collaborative vs. Individual Transportation Policy

Traditionally, transportation companies have focused their attention on controlling
and reducing their own costs to increase profitability. More recently, companies have
started to explore the possibility to share information with other companies and to
develop common transportation plans with further reduction of costs. A collaborative
transportation policy might open up cost saving opportunities that are impossible to
achieve with an internal company policy.

We compare a collaborative transportation policy where the route plans of a
fleet of vehicles are designed by a unique decision maker who brings together all
customer requests to a policy where the same vehicles are managed independently
(individual transportation policy). The situation refers to the real case where the
service provided by a company with a large fleet of vehicles is compared to that
provided by different smaller companies which globally own the same number of
vehicles but whose route plans are managed independently. In both cases we consider
a delay policy.

3.3 Dynamic vs. Static Policy

A dynamic policy is attractive because it may reduce operational costs and guarantee
a better service level. However, it also implies additional costs due to the devices
needed for the communication and a different organization. Do the benefits compen-
sate the costs? We compare a dynamic policy to a policy where the vehicles follow
the route plans made available at the beginning of the day and based on the requests
that arrived the day before. Since for this policy all requests issued during a day are
analyzed only at its end we call it static policy. In practice, this policy may occur
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in those companies where vehicles do not have a communication system equipment
which makes possible for the central unit to know their location at each time instant
and to dynamically change their route plans. The static policy can be implemented
by setting the re-optimization interval Ar equal to the working time 7. Whereas the
dynamic policy can be implemented by means of the 2-day look-ahead(At) strategy
with any value of the parameter A¢.

4 Computational Results

4.1 Testing Environment

The computational analysis has been carried out on random scenarios, where the re-
quests are uniformly distributed over a service area of 100 x 100 km?. Each scenario
is characterized by a planning horizon of 7 = 5 days and a daily working time of
7 = 10 h (from 8:00 AM to 6:00 PM). A scenario is also characterized by a parameter
A of a Poisson distribution according to which the requests are dynamically gener-
ated. The parameter A is the mean arrival rate of requests per day and is assumed
to take one of the following values: 100, 200, 300, 400, 500. Since a scenario can be
characterized by the presence of unpostponable requests, we have assumed that, with
a probability equal to ;, the requests issued before 1:00 PM are unpostponable. The
service is provided by means of a fleet of three uncapacitated vehicles, each of them
traveling at a constant speed of 25kmh~'. In order to make all results comparable,
an additional day is considered to complete the work of the not yet served requests.
In fact, if not so, an improper advantage might be obtained by postponing as many
requests as possible from day T to day T + 1.

Given a scenario, we generate five instances which differ for the number of the
daily requests and for their geographical location. In particular, each request coor-
dinates are randomly selected among the customer coordinates in the sets rl and 12
of the Solomon’s instances for the Vehicle Routing Problem with Time Windows.
In all the instances, the coordinates of the depot are those of the Solomon’s ones.
Moreover, requests are listed for each day in increasing order of their release time.

In the following computational experiments some features of this general data
setting have been modified according to the type of policies taken into account. For
instance, the generated scenarios may not have unpostponable requests. The number
of not served requests and the distance traveled are evaluated for each policy in order
to discuss the advantages of their application.

All computational experiments have been carried out on a 1.5GHz Intel Pentium
IV machine with 512MB of RAM.

4.2 Re-Optimization Time Interval Influence

Before analyzing the different policies behavior we have conducted some prelim-
inary experiments testing alternative 2-day look-ahead strategies differing for the
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value of the re-optimization interval At (respectively, set to 30, 150, 300, 600, 900,
1,800, 3,600). We aim at possibly identifying the best re-optimization time.

To implement the short term strategies we have set the parameter OptTime
representing the re-optimization time given to the VNS meta-heuristic equal to
max{ ,At, 30 s}. In [1] the re-optimization time was set to 4 and various val-
ues of the re-optimization interval At were tested. However, as the minimum tested
value was At = 3,600 s, the value of the re-optimization time turned out to take
reasonable values, never smaller than 300 s. In the experiments we discuss here the
tested values of the re-optimization interval are much smaller and implied the need
to avoid the situation where the re-optimization time could take values smaller than
30 s. We evaluated, on the basis of a set of preliminary experiments, that the VNS
does not require more than 30 s to solve the tested instances.

The trend of the number of lost requests as a function of Az is shown in Fig. 1
where the results for each scenario depending on A are provided. It is evident how,
independently of the scenario, the minimum number of lost requests is found for
At = 30 s. In particular, if we consider those scenarios where the number of lost
requests is quite high (i.e. 4 > 300) this number reduces on average by 50.66% when
moving from At = 3,600 to At = 30 s.
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Fig. 1. 2-day look-ahead strategies with different Az: not served requests
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In Fig. 2 we plot the average distance traveled per served request as function of At
under the different scenarios. Again, independently of A, the average distance trav-
eled to serve a request tends to reduce when At shrinks: the lower the time between
two consecutive re-optimizations the more efficient the transportation service.

These preliminary experiments have lead to the final decision to set 4t = 30 for
all the policies but the static one.

4.3 Accept/reject vs. Delay Policy

In the following we discuss the computational results obtained when comparing ac-
ceptfreject policies to the delay policy.

Table 1 is divided into three parts, one for each of the analyzed policies. The
first column in each part provides the average number of lost requests when the cor-
responding policy is applied under the five different scenarios. Each column gap,
measures the average percent increase in the number of not served requests of the
analyzed policy with respect to the delay policy. Similarly, gap,/, measures the per-
centage increase of the number of lost requests of the fixed day acceptfreject policy
when compared to its basic version without fixed day. A negative percentage value
(as for 4 = 200) means that, on average, the fixed day policy has provided a lower
number of lost requests.

Table 2 shows the average total distance traveled by the vehicles. The meaning
of each column is the same as for Table 1.

If we consider the scenarios with 4 > 300 the accept/reject policy looses on
average 71.91% more requests than the delay policy. The result is even worse if we
consider the fixed day accept/reject policy.

Table 1. Delay vs. acceptfreject policies: number of not served requests

Delay  Acceptreject fixed day acceptfreject

1 # # gapa(%) # gapy(%) gapa (%)
100 0.00  0.00 - 040 100.00  100.00
200 16.40 21.00 28.05 19.00 1585  —-9.52
300 52.00 88.40  70.00 101.60  95.38 14.93
400 94.60 162.60 71.88 175.80  85.84 8.12
500 157.6 274.00  73.86 276.60  75.51 0.95

When considering traveled distances, one can notice that, for each scenario, all
policies tend to completely use the available vehicles: But for only one case (1 =
300), the average distances traveled by applying the three policies differ from each
other for a percentage less than 1%.
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Table 2. Delay vs. acceptfreject policies: distance traveled

Delay Acceptfreject Fixed day acceptfreject
A ! I gapy(%) I gapa(%) gapa (%)
100 513,482.63 511,915.97 -0.31 516,256.46 0.54 0.85
200 588,000.22 588,730.57 0.12 587,590.58  —-0.07 -0.19
300 615,194.60 618,585.07 0.55 621,880.01 1.09 0.53
400 627,632.89 632,123.91 0.72 633,111.51 0.87 0.16
500 633,372.85 636,490.40 0.49 636,841.83 0.55 0.06

4.4 Collaborative vs. Individual Transportation Policy

In this class of experiments we have selected the scenario characterized by 4 = 300
and, since the value of A is fixed, we increased the number of instances to 10.

Since the fleet consists of three uncapacitated vehicles we compared the policy
of a company which can decide for the route planning of all the three vehicles to
the individual transportation policy applied by three different companies each one
exploiting one vehicle only. Since, in each instance, the requests are sorted in in-
creasing order of their release time, we have generated three smaller instances. The
three small instances consider one request every three requests starting with the first,
the second and the third request of the sorted list, respectively. From a practical point
of view, this is equivalent to assume that each of the three vehicles in the individual
transportation policy cover the same 100 x 100 km? geographical area.

Table 3 provides the number of not served requests in each of the 10 instances
by the collaborative transportation policy (column 2) and by the three individual
transportation policies applied to the derived instances (columns 3-5). The last line
of the table provides the average values. By moving from individual transportation
transportation systems to a collaborative one the number of lost requests decreases,
on average, by an order of magnitude.

Table 4 shows the distance traveled by the three vehicles in the collaborative
system (column 2) and that traveled by each of the three vehicles in the individual one
(columns 3-5) as well as their sum (column 6). The last column provides the percent

gap between values of column 2 and column 6 computed as Z:'j]l‘_]. As before, the
last line provides average values out of the 10 instances. The advantages provided by
a collaborative transportation policy are evident also in terms of traveled distance.
The total distance traveled by the sum of three vehicles managed individually is, on
average, higher by 4.77% even if the number of serviced requests is much lower (cfr.
column 5 in Table 3).
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Table 3. Collaborative vs. individual transportation policy: number of not served requests

Instance  # # # Yy
46 184 183 168 535.00

—_

2 54 192 185 198  575.00
3 44 203 195 193 591.00
4 54 183 188 193 564.00
5 62 192 183 198  573.00
6 53 194 194 185 573.00
7 46 191 187 175 553.00
8 44 187 180 181  548.00
9 39 183 183 187  553.00
10 66 205 199 193 597.00

50.80 191.40 187.70 187.10 566.20

Table 4. Collaborative vs. individual transportation policy: distance traveled

Instance 1 L I I Z;Z? i gap (%)
1 611,830.00 213,116.62 213,115.80 213,234.55 639,466.97 4.52
2 619,250.07 214,464.66 214,033.89 213,555.14 642,053.69 3.68
3 617,810.59 215,376.95 213,560.64 214,432.88 643,370.47 4.14
4 607,299.61 214,673.09 212,627.13 213,197.80 640,498.02 5.47
5 619,782.75 214,658.65 213,588.85 214,084.49 642,331.99 3.64
6 595,790.27 214,671.30 213,490.68 209,136.81 637,298.79 6.97
7 609,354.19 214,887.06 214,401.58 214,989.29 644,277.93 5.73
8 615,016.16 214,169.54 212,961.75 214,310.70 641,441.99 4.30
9 614,192.44 214,833.80 214,613.17 214,843.07 644,290.04 4.90

—_
(=]

613,412.14 214,297.79 212,961.39 213,079.88 640,339.06 4.39
612,373.82 214,514.95 213,535.49 213,486.46 641,536.90 4.77

4.5 Dynamic vs. Static Policy

Since on-line unpostponable requests cannot be managed by a static policy, in this
class of experiments we have considered postponable requests only. A comment is
required in order to better understand the results. Our general assumption is that we
want to guarantee the service of a request within the end of the day following its
issuance. This means that, on average, 1.5 days are available to serve a request when
the dynamic policy is applied and only 1 day when the static policy is chosen.
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In Table 5 for each scenario (value of 1) the average number of not served re-
quests for the static policy (column 3) and for the dynamic one (column 2) are shown.
If we analyze the values for 4 > 300 the number of not served requests increases, on
average, by 7 times when the static policy is considered instead of the dynamic one.

Table 5. Dynamic vs. static policy: number of not served requests

A #dynamic #slau'c
100 0.00 1.40
200 3.20 62.80
300 19.40 193.60
400 38.20 329.40
500 79.60 501.80

In Table 6 we report the average distance traveled to serve a request when the
dynamic policy (column 2) and the static policy (column 3) are applied, respectively.
By analyzing the results it is evident how, independently of the value of A, the dy-
namic policy leads to a more efficient transportation system: the gap between the
values in columns 2 and 3 is, on average, 9.49%.

Table 6. Dynamic vs. static policy: average distance traveled per served request

A Liyamic  Usaic  gap(%)
100 799.14 898.10 12.38
200 494.62 536.41 8.45
300 366.59 388.61 6.01
400 283.00 301.36 6.49
500 232.44 251.30 8.12

Conclusions

In this paper we analyzed, from a management point of view, a dynamic environment
for a carrier. The vehicles are equipped with communication devices that make it
possible to a central control unit to evaluate in real-time new service requests and
re-route the vehicles whenever beneficial. We tested different scenarios where each
scenario is characterized by a different intensity of traffic. The first result we have
obtained is that a reduction of the interval between two consecutive re-optimizations
of the service from 1 h down to 30 s reduces the number of lost customers
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and the distance traveled. Thus, in all the subsequent experiments we have fixed
the re-optimization interval to 30 s.

We then studied a number of different management policies a carrier may de-
cide to follow to carry out the service to its customers. We analyzed the policies by
evaluating two performance criteria: the number of lost customers and the distance
traveled by the vehicles.

One of the management issues a carrier has to face is whether to give an immedi-
ate accept/reject answer to a service request on the basis of the previously accepted
requests and the fleet of available vehicles or to accept all customers and, in case
of need, to make use of a back-up company at a later time. The results of the ex-
periments have shown that the latter policy is much more effective as the number
of customer served by the vehicles of the carrier increases on average by more than
70% and the distance traveled increases only slightly.

It is well known that a large carrier can take advantage of its size to increase
the average load of a vehicle and reduce the number of empty trips with respect
to a smaller carrier. Small carriers are frequent in Europe and in Italy in particular.
Small carriers may merge or at least implement a collaborative strategy to improve
their overall performance. The comparison of the behavior of three carriers that own
one vehicle each to the behavior of a hypothetical carrier that owns the three vehi-
cles shows that a collaborative strategy dramatically increases the number of served
customers and at the same time reduces the traveled distance.

Finally, we compared a dynamic environment with a static one. The dynamic
environment requires investment costs in communication devices and a more com-
plex and dynamic organization. Is it worthwhile? We have shown that the dynamic
environment reduces the number of lost customers by almost an order of magnitude
while reducing at the same time the traveled distance.

While in most cases a model and a solution algorithm for a routing problem are
designed and tested with an operational point of view we have taken in this paper a
managerial point of view and have provided, thanks to the availability of a software
for the optimization of a dynamic routing environment, to quantify the advantages
and disadvantages of different management policies.
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Summary. We study the problem of determining the optimal dimension of a work-in-process
storage area in a two-line production system with delays and breakdowns. We propose a
stochastic model and prove theoretical results that allow us to implement an exact algorithm
for the solution of the model. We optimally solve a real instance and carry out a sensitivity
analysis to evaluate if the optimal solution is stable when the initial data are perturbed.

Key words: Production, Storage area, Stochastic models

1 Introduction

The problem of determining the right storage area dimension plays an important role
in production systems. In fact, companies need to reduce costs, but at the same time
to operate in markets that change every day and stimulate them to have a diversified
and customer-oriented production. To operate in this way, a correct dimensioning of
the storage areas and an efficient planning and scheduling are necessary. Serial pro-
duction lines have been studied to find models for determining the right buffer dimen-
sion. The typical aim is to find rules for the storage space allocation (see [1, 2, 3, 4]).
What we want to do is different: To develop a stochastic model that minimizes the
sum of storage costs and of delay and break costs that occur during the process. The
system we study is a two-line assembly production system, where a work-in-process
storage area precedes the assembly stage. We solve a real instance provided by a pri-
mary company located in Brescia (Italy) and which is part of a multinational group
which produces industrial vehicles. The production is customer-oriented: The daily
production program is based on the demand of the customers. Each customer places
an order to one of the dealers of the company; then, the dealer transfers the order to
the commercial direction located in Turin (Italy), which sends it to the production
service direction located in Brescia. Finally, in the production plant located

L. Bertazzi et al. (eds.), Innovations in Distribution Logistics, Lecture Notes 17
in Economics and Mathematical Systems 619, DOI: 10.1007/978-3-540-92944-4,
© 2009 Springer-Verlag Berlin Heidelberg
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in Brescia the order is transformed in an executive program. During this step, a
storage space has to be allocated in order to guarantee a regular production at
minimum cost.

The paper is organized as follow. In Sect.?2 the problem is described and for-
mulated. In Sect.3 an exact algorithm is proposed and some particular cases are
analyzed. Finally, in Sect.4 the real instance is optimally solved and a sensitivity
analysis is carried out.

2 Problem Description and Formulation

The production plant located in Brescia is a two-line production system that produces
specific components of industrial vehicles (see Fig. 1). Line 1 produces chassis, while
line 2 produces cabs. Each item produced by line 1 is matched with a specific item
produced by line 2. Line 1 is affordable, while line 2 has two types of problems: First,
the items can take longer time than their scheduled time to finish their processing
cycle, whenever the items are not conform to the assigned quality standards. Second,
breakdowns may happen. Since any delay in line 2 can stop the production process,
a work-in-process storage area is made available in line 2.

T.ine 1

O
O

() ()
N\ /

\ Finished
‘inishe
Casentiy DO i
stock

-/

Storage area

Fig. 1. The production system

Our aim is to determine the right dimension of this storage area. It is necessary to
balance the opposite effects of different cost components. In fact, there is not only
the inventory cost, but also the penalty cost due to a wrong dimension of the storage
area. Our aim is to find the dimension of the storage area that minimizes the expected
total cost E(C), given by the sum of the investment cost / and the expected operative
cost E(O). The investment cost is deterministic, while the expected operative cost,
which depends on the break probability, can be expressed as follows. Let R be the
break event and R be the complementary no-break event, p(R) be the probability that
a break occurs during the production, p(R) = 1 — p(R) be the probability that no-
break occurs during the production, E(c|R) be the expected cost if there is a break in
one of the machines and E(c|R) be the expected cost in the opposite case. Then,

E(0) = E(cIR)p(R) + E(cIR)p(R),
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where the expected break cost E(c|R) is the sum of the cost for production loss (PL),
of the expected cost for delay E(D|R) and the expected cost at the restart of the
production E(S|R). Therefore, the optimization model can be written in compact
form as follows:

min7 + E(c|[R)p(R) + [PL + E(DIR) + E(S|R)]p(R), 1

where each cost component depends on the dimension x of the storage area expressed
in terms of number of hours of stock. Our aim is to find the value of x that minimizes
the total expected cost E(C). Let us now formulate each cost component.

2.1 Investment Cost

Every node in a production process implies an investment cost for establishment and
for development. When the node is a storage area, the investment cost is related to
the dimension of the area. If Cy denotes the investment cost of one unit of storage
area per year, then the total investment cost is:

1= Cox.

2.2 Expected Operative Cost

The expected operative cost E(O) is composed of two different cost components,
the first depending on the delays and the second on the breaks occurred during the
production.

Expected No-Break Cost

The first component of the expected operative cost is the so called expected no-break
cost (or failed sequence cost). This cost is generated when an item takes longer time
than its scheduled time to finish its processing cycle. This can happen when the item
is not conform to the assigned quality standards and, therefore, it has to be corrected
to attain the desired level. These corrections break the planned production sequence.
Therefore, two situations can happen: Either the late-comer item has a delay not
greater than the dimension of the storage area (in hours) or it has a delay greater
than it. In the former case, the item becomes available in time to be matched with
its complementary and therefore the corresponding no-break cost is equal to zero. In
the latter case, the item cannot be matched with its complementary in the production
line and therefore it must be driven out of the production line. Additional working
time is necessary to match it with its complementary and therefore a no-break cost is
charged. Let k = 1,2...,[ be the number of late-comer items per production hour,
h be the number of working hours per day, 6 be the number of working days per
year, p(k|R) be the probability to have k late-comer items per hour, given that the
no-break event occurs, and C; be the unit cost to match one late-comer item with its
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complementary out of the production line. Then, the expected no-break cost can be
expressed as:

B
E(clR) = ) E(clk, R)p(kIR),
k=1

where E(clk, R) is the expected cost to have k late-comer items per hour. Let r =
1,2,...,a be the number of hours of delay. Then, if E(c|r, k, R) is the expected cost
to have r hours of delay and k late-comer items, then E(c|k, R) can be expressed as:

E(clk,R) = )" E(clr, k, R)p(rlk, R),

r=1
which is equal to

E(clk, R) = Cikho )" p(rik,R),

r=x+1

as E(c|r, k,R) is equal to O for 1 < r < x and to C1khd for x < r < «a, because it
does not depend on the number of hours of delay. If we denote by p(rit > x|k, R) =
Y .+1 P(rlk, R), the expected no-break cost is:

B
E(c|R) = C1ho Z kp(rit > xlk, R)p(kIR). 2)
k=1

Expected Break Cost

There is a break cost when an R event happens. This type of events are often caused
by breakdowns. In this case, the main problem is not due to costs, but to the fact that
the production process is stopped. This type of events would be really catastrophic
if there are not sufficient stocks that make possible to go ahead with the production
until the failed process restarts. The expected break cost is the sum of the following
three components:

1. Cost for production loss
The cost for production loss represents the most evident effect of a breakdown.
If there is no storage area or it is not adequate, there is a clear loss of added
value. If C, denotes the added value of one hour of production, then the cost per
production loss is:

PL = C6 max(a — x,0).

2. Expected cost for delay
There is a cost for delay when, in the case of a break, an inadequate storage area
makes not possible to restore the right sequence in the production. Let n, with
n=1,2,...,x, bethe index of the hours of items in the storage area. It represents
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the numbers of hours the corresponding items remain in the storage area before
matching their complementary items.

Consider first the case with x < a. For each n, k of the corresponding items, with
k =1,2,...,8 and probability p(k|R), can be in the storage area just to replace
late-comer items. If the delay of the corresponding late-comer items is greater
than n, these items cannot be replaced in time and therefore must be matched
with their complementary items out of the production line. This happens with
probability p(rit > nlk,R) =  p(rk, R). Therefore, if x < a, the expected
cost for delay is:

a
r=n+

x B
E(DIR) = C,6 Z kp(rit > nlk, R)p(klR)  x < .
n=1 k=1

Consider now the case with x > «. In this case, the items corresponding to
n=1,2...,x—«a are already in the right sequence. Instead, foreachn = x—a +
1,...,x, k of the corresponding items, with k = 1,2, ..., 8 and probability p(k|R)
respectively, can be in the storage area just to replace late-comer items. If the
delay of the corresponding late-comer items is greater than n, these items cannot
be replaced in time and therefore must be matched with their complementary
items out of the production line. This happens with probability p(rit > nlk, R) =
Y 41 P(rlk, R). Therefore, if x > «, the expected cost for delay is:

x B
E(DIR) = C16 Z Z kp(rit > nlk, R)p(kIR) x> a.

n=x—a+1 k=1

3. Expected cost at the restart
At the restart of the production, another type of cost has to be charged. In fact,
after the stop of the production, the number of hours of stock in the storage area
is too small to restore the right sequence in the production. This cost has to be
charged until the storage area is full. Since y hours of production are needed to
recover one hour of stock, the expected cost at the restart is equal to the expected
cost for delay multiplied by vy, that is:

E(S|R) = yE(DIR).

3 Determining the Optimal Stock Dimension

In this section we propose an exact algorithm to solve the stochastic model described
above. Let us first prove the following results.

Lemma 1. p(rit > x|k, R) is a decreasing function in x for 1 < x < a and p(rit >
xlk,R) = 0 for x > a.
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Proof. We know that )", p(rlk, R) = 1. Therefore, since p(rit > 1k,R) = 1 -
p(1lk, R) and p(rit > xlk,R) = p(rit > x — 1|k, R) — p(xlk,R) for 1 < x < «, then
p(rit > x|k, R) is a decreasing function in x for 1 < x < a, and p(rit > x|k, R) = 0 for

X = Q.

The following corollary holds.

Corollary 1. E(c|R) is a decreasing function in x for 1 < x < a and E(c|R) = 0 for
Xz a.

Lemma 2. },
and is equal to 0 for x > 2a — 1.

r—ar1 P(rit > nlk, R) is a decreasing function in x for @ < x < 2a — 1

Proof. Forx = a+1, Y., p(rit > nlk,R) = p(rit > 2|k, R)+p(rit > 3|k, R)+. . .+
p(rit > alk,R) + p(rit > a + 1|k,R). Fora + 1 < x < 2a, Zfl:x_“] p(rit > nlk,R) =
Zﬁ:(x-n-an p(rit > nlk, R) — p(rit > x — 1|k, R). Since p(rit > slk,R) = 0 for s > «,
then Zz:x—(v+
is equal to O for x > 2a — 1.

 p(rit > nlk, R) is a decreasing function in x fora@ < x < 2 — 1 and it

The following corollary holds.

Corollary 2. E(DIR) = 0 and E(S|R) = 0 for x > 2a — 1.

The previous results allow us to prove the following theorem.

Theorem 1. Any dimension of the storage area x > 2a cannot be optimal.

Proof. For x > 2a, the expected no-break cost E(c|[R) = 0 thanks to Corollary 1,
the cost for production loss PL = 0 by definition and the expected cost for delay
E(DIR) = 0 and the expected cost at the restart E(S|R) = 0 thanks to Corollary 2.
Therefore, since the total cost corresponding to x > 2« is Cox, any solution x > 2«

is dominated by x = 2a.

Given Theorem 1, the optimal dimension of the storage area x* can be obtained by
complete enumeration of the integer values of x in the interval [1, 2a].

Analysis of Particular Cases

To complete our analysis, we now study some particular cases, interesting from the
practical point of view.



Optimizing the Storage Area Dimension in a Production System 23
a) Standard Production Systems

The model studied in the previous section considers a production system with a
customer-oriented production. Therefore, each item processed in the line 1 has to
be matched to the corresponding item processed in the line 2. Let us now consider
the case in which the production is standardized. In this case, the model becomes
simpler, because the investment cost / and the cost for loss production PL only are
included in the objective function.

Theorem 2. In any standard production system, any dimension of the storage area

X > a cannot be optimal. Moreover, if Cy > Cy, then x* = a; otherwise, x* = 1.

Proof. For x > a, the investment cost I = Cox and the cost for production loss
PL = 0 by definition. Therefore, since the total cost is Cyx, then any solution x > «
is dominated by x = a. Consider now any solution 1 < x < «. The total cost is

Cox+ Cy(a—x). Therefore, if C; > Cy, then the optimal solution is x* = @, otherwise
itis x* = 1.

b) No-Break Systems

Consider now the case in which there are no process stops caused by a break, but
only delays due to products not conform to the assigned quality standard. In this
case, the investment cost I and the expected no-break cost E(c|R) only are included
in the objective function.

Theorem 3. In any no-break system, any dimension of the storage area x > a cannot

be optimal.

Proof. For x > «, the investment cost I = Cox and the expected no-break cost
E(c|R) = 0. Therefore, since the total cost is Cox, any solution x > @ is dominated

by x = a.

4 Computational Results

In this section we apply the exact algorithm developed in the previous section to
solve the real instance. Let us first list the data of this instance:

- Maximum number of hours of delay a: 6;

- Maximum number of late-comer items per production hour §: 6;

- Investment cost of one unit of storage area per year Co: 8,300 Euro;

- Unit cost to match one late-comer item with its complementary out of the pro-
duction line C;: 217 Euro;

- Added value of one hour of production C;: 116,203 Euro;
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- Number of working hours per day 4: 16;

- Number of working days per year ¢: 225;

- Number of hours to obtain 1 h of stock vy: 5;

- Probability that a break occurs in the process p(R): 3.1%;
- Distribution of late-comer items:

Late-comer items Cases Frequency(%)

1 3 9.4
2 4 12.5
3 5 15.6
4 6 18.8
5 8 25.0
6 6 18.8

32 100

This distribution has been obtained on the basis of historical data. We assume
that both the probability p(k|R) of having k late-comer items given that there is a
break and the probability p(k|R) of having k late-comer items given there is no a
break are equal to the frequency of having k late-comer items.

- Distribution of hours of delay:

Hours of delay Cases Frequency(%)

1 1 6.3
2 12.5
2 12.5
3 18.8
5 31.3
3 18.8

16 100

AN B~ W

This distribution has been obtained on the basis of historical data. We assume
that the probability p(r|k, R) of having a delay equal to r given that there are k
late-comer items and no break is equal to the frequency of having a delay equal
tor.

Table 1 shows the application of the exact algorithm to the real instance. It is
organized as follows. Column 1 gives the dimension of the storage area, column 2 the
corresponding investment cost, column 3 the corresponding expected no-break cost,
column 4 the corresponding cost for production loss, column 5 the corresponding
expected cost for delay, column 6 the corresponding expected cost at the restart and,
finally, column 7 the corresponding expected total cost.

The optimal solution corresponds to a dimension of the storage area of 10 h, with
a total expected cost of 89,704.66.
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Table 1. Iterations in the solution algorithm

x I E(cIR) PL  E(DIR) E(SIR) E(C)
1 8300.00 2,883,726.56 130,728,375.00 180,232.91 901,164.55 6,888,733.98
2 16,600.00 2,499,229.69 104,582,700.00 336,434.77 1,682,173.83 5,742,994.13
3 24,900.00 2,114,732.81 78,437,025.00 468,605.57 2,343,027.83 4,592,784.51
4 33,200.00 1,537,987.50 52,291,350.00 564,729.78 2,823,648.93 3,249,581.48
5 41,500.00 576,745.31 26,145,675.00 600,776.37 3,003,881.84 1,522,626.54
6 49,800.00 0.00 0.00 600,776.37 3,003,881.84  161,544.40
7 58,100.00 0.00 0.00 420,543.46 2,102,717.29  136,321.08
8 66,400.00 0.00 0.00 264,341.60 1,321,708.01  115,567.54
9 74,700.00 0.00 0.00 132,170.80  660,854.00  99,283.77
10 83,000.00 0.00 0.00 36,046.58 180,232.91  89,704.66
11 91,300.00 0.00 0.00 0.00 0.00  91,300.00
12 99,600.00 0.00 0.00 0.00 0.00  99,600.00

Sensitivity Analysis

Our aim is now to evaluate if the optimal dimension of the storage area x* = 10 h
is stable when the initial data are perturbed. The sensitivity analysis we carry out is
based on the variation of one parameter at a time in a given interval. The results are
shown in Tables 2 and 3. Table 2 is organized as follows. Columns 1-2 show the
results obtained when the investment cost of one unit of storage area per year Cj is
modified from 0 to 20,000. Columns 3—4 show the results obtained when the unit
cost to match one late-comer item with its complementary out of the production line
C, is modified from 0 to 400. Columns 5—6 show the results obtained when the added
value of 1 h of production C, is modified from 0 to 400,000. Finally, the columns 7—8
show the results obtained when the probability that a break occurs p(R) is modified
from 0 to 10%.

The results show that the optimal solution is equal to 10 for values of Cy between
7,000 and 17,000, while it increases to 11 for values lower than 7,000 and reduces to
9 for values grater than 17,000. The optimal solution is equal to 10 for C; between
120 and 260, while it reduces up to 6 for values lower than 120 and increases to 11
for values grater than 260. The optimal solution does not vary when the added value
of 1 h of production C, is modified. Finally, the optimal solution is equal to 10 for
values of p(R) between 1.5 and 3.5%, while it reduces up to 6 for values lower than
1.5% and increases to 11 for values grater than 3.5%.

Table 3 shows the results obtained by varying the distribution probabilities of
both late-comer items and of the hours of delay. For the late-comer items, one thou-
sand distribution probabilities have been generated in the following way. Given a
maximum number a of late-comer items, the number of cases for each number
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Table 2. Sensitivity analysis: varying costs and probability of break

Co x* C x* C, x* P(R)(%) x*
0 11 0 6 0 10 0.0 6
1,000 11 20 6 20,000 10 0.5 6
2,000 11 40 6 40,000 10 1.0 8
3,000 11 60 7 60,000 10 1.5 10
4,000 11 80 9 80,000 10 2.0 10
5,000 11 100 9 100,000 10 2.5 10
6,000 11 120 10 120,000 10 3.0 10
7,000 10 140 10 140,000 10 3.5 10
8,000 10 160 10 160,000 10 4.0 11
9,000 10 180 10 180,000 10 4.5 11
10,000 10 200 10 200,000 10 5.0 11
11,000 10 220 10 220,000 10 5.5 11
12,000 10 240 10 240,000 10 6.0 11
13,000 10 260 10 260,000 10 6.5 11
14,000 10 280 11 280,000 10 7.0 11
15,000 10 300 11 300,000 10 7.5 11
16,000 10 320 11 320,000 10 8.0 11
17,000 10 340 11 340,000 10 8.5 11
18,000 9 360 11 360,000 10 9.0 11
19,000 9 380 11 380,000 10 9.5 11
20,000 9 400 11 400,000 10 10.0 11
k=1,2,...,6 of late-comer items has been randomly generated as an integer num-

ber between 0 and a on the basis of a uniform distribution. For the hours of delay, one
thousand distribution probabilities have been generated in the following way. Given
a maximum number b of late-comer items, the number of cases for each number
r=1,2,...,6 of hours of delay has been randomly generated as an integer number
between 0 and b on the basis of a uniform distribution. Table 3 is organized as fol-
lows. Column 1 gives the optimal dimension x* of the storage area. Columns 2, 3 and
4 show, for each value of x*, the percentage of times this value has been the optimal
one in the one thousand instances generated witha =4 and b =3,a=8and b =5
and, finally, a = 16 and b = 10, respectively.
The results show that the dimension of 10 has been the optimal one in more than
50% of the instances for each of the combinations of a and b.

The conclusion of the sensitivity analysis is that the optimal dimension of 10 is
stable when the initial data are perturbed.
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Table 3. Sensitivity analysis: varying distribution probabilities

X (4,3)(%) (8,5)(%) (16,10)(%)

1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 0.10 0.00 0.00
7 0.50 0.60 0.30
8 5.10 5.20 3.90
9 2400 25.10 25.00

10  51.20 50.20 53.50
11 19.10 18.90 17.30
12 0.00 0.00 0.00

Conclusions

We studied the problem of determining the optimal dimension of a work-in-process
storage area in a two-line production system with delays and breakdowns. The
stochastic model and the algorithm we proposed allowed us to exactly solve the
real instance with a stable solution and can be easily extended to solve more general
two-line production systems.
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Summary. On-line routing is concerned with building vehicle routes in an on-going fashion
in such a way that customer requests arriving dynamically in time are efficiently and effectively
served. An indispensable prerequisite for applying on-line routing methods is mobile commu-
nication technology. Additionally it is of utmost importance that the employed communication
system is suitable integrated with the firm’s enterprise application system and business pro-
cesses. On basis of a case study, we describe in this paper a system that is cheap and easy to
implement due to the use of simple mobile phones. Additionally, we address the question how
on-line routing methods can be integrated in this system.

Key words: On-line and dynamic vehicle routing, Mobile communication, Mobile
business and solutions

1 Introduction

On-line routing is concerned with building vehicle routes in an on-going fashion in
such a way that customer requests arriving dynamically in time are efficiently and
effectively served. Although dynamic routing problems and quantitative methods for
on-line routing have been discussed in the scientific literature since a seminal paper
of Psaraftis [21], the technology required for implementing on-line dispatching of
vehicles was till recently not available at a cost allowing a widespread use. An indis-
pensable prerequisite for applying on-line routing methods is mobile communication
technology. Drivers must be timely informed about the next stop to approach; the
dispatching centre must be informed about the driver’s location and the status of the
delivery. The availability of a mobile communication system alone is, however, not
sufficient. It is important that the communication system is properly interfaced with
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in Economics and Mathematical Systems 619, DOI: 10.1007/978-3-540-92944-4,
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the firm’s IT system, enterprise applications and data bases. A suitable hardware and
software solution for interconnecting enterprise applications and the mobile commu-
nication system should also allow to easily integrate on-line routing algorithms.

In the information management area, the more general topic of integrating mo-
bile co-workers in a firm’s IT system is also discussed under the buzzword of mobile
business and mobile logistics (see, e.g., [32]). This paper describes a mobile busi-
ness solution that heavily relies on the use of mobile phones and the wireless ap-
plication protocol (WAP). An advantage of such a system is its low cost and its
ease of use. Furthermore, integrating algorithms for on-line routing should be rel-
atively straightforward. A case concerning the subsequent delivery of newspapers
will serve as a base for illustrating the potential benefits of such a system. The next
section details this case and Sect. 3 subsumes the case under the broader field of mo-
bile business. Moreover, alternative mobile communication technologies are briefly
described. Section 4 discusses then in some detail the above mentioned web/WAP-
based mobile communication system, its benefits and potential drawbacks. Section 5
attends to the different decision problems arising when planning vehicle routes for
subsequent newspaper delivery. A short overview of the literature on some methods
for dynamic vehicle routing is given in Sect. 6. The discussion of these methods will
reveal that there seems to be a gap between deterministic reoptimisation heuristics,
on the one hand, and relatively simple dispatching rules based on queueing theory
and stochastic arguments, on the other hand. Section 7 lists some further application
examples. Finally, a summary and outlook is given in Sect. 8.

2 A Practical Case: Subsequent Deliveries of Newspapers

Distributing and selling magazines and newspapers is a difficult business. The com-
petitive pressure is substantial, and publishing houses should achieve high print runs
in order to earn some money. Subscribers that regularly receive a certain title are thus
very important, and publishers usually invest a relatively large amount of money in
trying to attract more subscribers. It is therefore important to keep these kind of
customers.

The newspaper delivery is usually performed by third-party carriers. In case that
a subscriber did not receive his accustomed, e.g., daily newspaper, he will complain
about this at a call centre. The operator will then apologise for the inconvenience
and assure subsequent delivery of the issue as fast as possible. Customer complaints
arrive dynamically and have to be treated on additional delivery routes. For the case
of a medium-sized regional newspaper publisher, the whole process of subsequent
delivery can be described as follows.

1. A customer complains the non-delivered newspaper issue at the call centre.

2. The operator collects the case’s data and feeds them into a software system. The
customer chooses between a voucher and a subsequent delivery of the missing
issue.
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Fig. 1. Information transfer characterised by “media break”

3. In case the customer chooses a subsequent delivery, a corresponding delivery or-
der is triggered. The order is transmitted by facsimile or phone to a local branch
of the publisher. A printout of the order is made and handed to a driver that
performs the delivery. Drivers that already started their delivery tours may then
receive additional orders by trunking.

4. The driver notifies the publisher’s dispatching centre about the completed deliv-
ery, and an operator marks the order as completed in the firm’s software system.

The following figures underpin the dimension of the subsequent deliveries.

e The publisher distributes three local newspapers as well as one supra-regional
newspaper in Germany.

e Within the ordinary delivery process, local branches and driver sites are equipped
with about 60 additional copies per driver for the purposes of potential subse-
quent deliveries.

e FEach driver executes, on average, 25 subsequent deliveries on each of the 280 de-
livery days per year. On a peak day, about more than 45 deliveries are performed
by a driver.

e Delivery drivers serve predefined delivery areas. A delivery tour starts in the
morning and ends at midday. A driver either works as a freelancer or is employed
by a carrier; his compensation depends on the time spent on delivery and the
distance driven. The average distance of a delivery tour is about 20 km.

e According to the firm’s actual figures, 26 drivers are in total daily employed for
subsequent delivery. This amounts to 26 - 280 - 20 km = 145, 600 km spent on
subsequent delivery per year.

Apparently, a relatively large number of different media (computer, facsimile,
phone, paper, trunking) is used for the purposes of transferring information. The
dashed line in Fig. 1 shows the status quo of information transmission characterised
by a number of “media breaks”. Obviously, this kind of communication has a number
of drawbacks:

e Permanent communication with the drivers is not possible.



32 Thomas Bieding, Simon Gortz, and Andreas Klose

e Drivers cannot promptly notify the dispatching centre (main centre) about a com-
pleted delivery.

e The dispatching centre has no ongoing information about the status of a delivery
and the driver’s route.

e Due to the large number of different media used, the communication process is
slow, costly and fault prone.

The solid line in Fig. 1 depicts an ideal state where all required information is cen-
tralised in a digital form from the point when a customer complaint arrives. Tech-
nologies as well as technical, managerial and organisational methods for achieving
this degree of integration of mobile co-workers is a major concern of mobile busi-
ness. The subject of mobile business and possible mobile communication solutions
are briefly described in the next section. The mobile communication system should
then allow to integrate the driver into the firm’s IT system, to streamline and cen-
tralise the information process and, finally, to integrate methods for performing the
routing in some “intelligent way”.

3 Mobile Business and Mobile Communication Solutions

The integration of mobile technology into any kind of business process is called
mobile business. Mobile business hence deals with the exchange of goods, services
and information using mobile devices [35].

The use of mobile technologies emerges new business processes. These are char-
acterised by mobility, reachability, localisation and personalisation. The user of a
mobile device such as a mobile phone or a personal digital assistant (PDA) can ac-
cess networks, products and services while on the move. This is important in context
of the use of time critical information like news services or stock tickers. Mobile
users can also be reached by other people and service providers regardless of place
and time. This feature is especially vital to business processes that regularly need
to reach their mobile workforce and pass them new tasks and instructions [23]. A
person, who carries a mobile device which is on-line, can be localised. The ability
to determine a location of a specific user is very important for location-sensitive ser-
vices. Logistic companies may be interested in identifying the current position of
a vehicle or determining a mobile co-worker who is the closest to the place of the
latest customer’s request. In addition, a mobile user can also be identified; there is
usually a one-to-one correspondence between a mobile device and the person who is
carrying it.

Mobile business is based on network technologies, service technologies, mobile
middleware and mobile devices as well as mobile localisation and personalisation
technologies [34]. In the following, these mobile technologies are briefly described.

Wireless network technologies enable data transfer between devices which are
not connected physically. They differ in transmission rate (bandwidth) and their suit-
ability for mobile business application. Regional analogue systems for speech service
were the first generation of mobile systems. The first standard based on digital signal
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transmission was the GSM (Global System for Mobile communication). This sec-
ond generation (2G) is the starting point of the development of mobile business. In
the meanwhile, GSM has spread in most countries. Its low transfer rate of 9.6 Kbps
allows only simple applications like SMS, fax or voice mail [23]. The introduction
of a faster network (2.5G) has allowed new services. The GPRS (General Packet
Radio Service) can attain speeds up to 115 Kbps (theoretically up to 171 Kbps) and
enables an ‘always-on’ connection between a mobile device and the network. The
GPRS standard is a packet-switched protocol. Like the wired internet, data are split
into parcels called packets, to which a unique address is appended. A mobile GPRS
device uses network capacity only when packets are actually being sent or received
although it is, in effect, permanently connected to the network. EDGE (Enhanced
Data for GSM Evolution) is a faster version of GSM wireless service that enables
data to be delivered at rates up to 384 Kbps. It is considered to be a 2.5G technology,
although originally designed to evolve GSM to 3G [1]. The transfer rate is compa-
rable to the speed that is offered by low-end ADSL services and could support even
streaming short video clips and other multi media applications. Nevertheless, EDGE
is an intermediate step to UMTS (Universal Mobile Telephone System). UMTS is
counted to the third generation of mobile communication systems. This technology
enables transfer rates up to 2 Mbps to stationary or mobile users but still rates up to
382 Kbps to fast moving users like drivers. UMTS promises a wide range of mo-
bile business opportunities, including real-time applications, videoconferencing and
massive volumes of transferred data. An alternative to UMTS is WLAN (wireless
local area network) technology based on the IEEE 802.11 standard. The bit rates for
the widespread 802.11g have gone up to 54 Mbps likely to be shared among 20-30
users. 802.11b enables a transfer rate of 11 Mbps. WLAN enables communication
between devices equipped with a wireless network interface in the basic service set.
This is the set of all stations that can communicate with each other. As long as a user
is moving around within the basic service set he is still connected to the network.
Service technologies like SMS and WAP provide content and applications to
mobile devices. SMS (Short Message Service) is a service available on most mobile
devices as mobile phones, laptops, PDAs that permits the sending and receiving of
short text messages. The length of the message is limited by the constraint of the
signalling protocol to 140 bytes. This translates up to 160 characters. The WAP is a
global standard for mobile communication and wireless connection to the internet.
The restrictions of mobile phones and PDAs make it impossible to provide all ser-
vices of computer based web browsers to mobile devices. Therefore, WAP browsers
are designed to provide at least the basic services. Mobile internet sites are called
WAP sites. They are written in, or dynamically converted to WML (wireless markup
language). The mobile sites are accessed and interpreted via WAP browser and dis-
played on the mobile device. Although WAP is now the protocol used for almost all
world’s mobile internet sites, some authors see the end of this technology [34].
Mobile middleware provides a way to connect and exchange information be-
tween mobile and stationary devices. It includes transmission technologies as well
as special storage technologies. For example, Bluetooth is a radio standard and com-
munication protocol designed for communication of mobile devices with each other,
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when they are in range up to 10 m. The used short-range radio frequency is secure and
globally unlicensed. Money cards and GMS SIM cards (subscriber identity module)
are so-called smart cards. These are pocket-sized cards with embedded integrated
circuits. Most smart cards contain memory and microprocessor components and are
capable of providing security services. These components allow to identify users.

Mobile localisation and personalisation technologies allow to provide geographic
and personalised applications and services. The most important localisation technol-
ogy is the Global Positioning System (GPS). It is a satellite navigation system based
on 24 satellites. The transmitted signals allow GPS receivers to nearly determine the
exact location and speed. GPS is free for everybody’s use. GPS-technology can eas-
ily be integrated in mobile devices. Personalisation technologies collect and provide
information to tailor a mobile device application, which is personalised according to
the interest of an individual or on user attributes such as role, field of work, or task
lists.

Mobile business divides in two categories, mobile B2C (or m-commerce) and
mobile solutions. Mobile solutions are used to re-engineer internal business pro-
cesses [32]. There are two types of application areas: mobile Business-to-Machine
and mobile Business-to-Employee (B2E). The first type comprises the controlling
and monitoring of machines and plants; the latter the integration of mobile co-
workers to the firm’s IT infrastructure. Horizontal mobile B2E solutions provide
mobile access to standard applications such as groupware solutions. Vertical solu-
tions are employed to improve specific business processes. The objective is a bet-
ter integration of the mobile co-worker into the business process by means of data
acquisition and transmission without media breaks. The opportunities and complex-
ity of mobile technology is sufficient to create a mobile solution. The success of a
mobile solution strongly depends on the software solution implemented to the mo-
bile devices and middleware. A complete mobile business solution integrates mobile
technology, applications and data base systems into the backend. This encloses the
rules of data access and other security aspects, the management of data synchronisa-
tion between mobile devices and the firm’s backend, and the business logic [32]. The
later is the core module of a mobile solution. Business logic deals with real life busi-
ness objects. It handles the storage of objects, prescribes the interaction of different
business objects and defines the routes and the methods by which business objects
are accessed, updated and synchronised. Business logic comprises business rules and
workflows. Hence, a mobile business solution is generally very complex and hard to
achieve by means of standard tools and procedures. In many cases, it is necessary
to develop and to implement customised solutions. The next section concretises a
mobile solution developed for the case of subsequent newspaper delivery and some
other “mobile re-engineering projects”.
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4 A Web/WAP Based Mobile Communication System

This section describes a simply structured mobile communication system used in the
case of subsequent newspaper delivery (see also [8]). Due to its ease of use and low
cost, the system seems well-suited for small and medium-sized companies.

The system establishes an indirect communication channel between the dispatch-
ing centre and the mobile co-worker (driver) via a web and WAP server and mobile
phones. Figure 2 shows the system’s general architecture. The structure shown in this
figure is not exclusively related to the case of subsequent newspaper delivery but also
applies to similar mobile business processes. The following parties are involved in
the communication process: At a firm’s main centre, a central data base/ERP system
is kept. The data base feeds a web and WAP server with required information and also
extracts data from there. In case of the newspaper delivery example, the main centre
is the firm’s main branch that is also responsible for dispatching vehicles. Decentral-
ized co-workers may also be connected to the system via the web and WAP server.
In contrast to mobile co-workers their location is fixed and they are connected using
(non-mobile) remote access technology. In case of the newspaper example, there are
no decentralized co-workers. There is, however, the call centre acting as a branch of
the main centre and directly connected to its data base by means of remote intranet
technology. Finally, there are the mobile co-workers sharing information with the
other parties via the web and WAP server. In case of our example, the mobile co-
workers are the drivers performing the subsequent delivery of newspapers. Which
information is shared how and when between which actors will be explained later
below, based on the case of subsequent newspaper delivery. Beforehand, it is shown
how the mobile co-workers are integrated to the system.

Mobile co-workers are equipped with mobile devices. The device can be a note-
book, PDA, or simply a cellular phone. The last device has a number of advantages
in case that its display capabilities are sufficient for the application in question. The
device is relatively cheap, most people are very familiar with it, and special agree-
ments and contracts with the cellular radio provider allow to keep transmission costs
very low. To this end, GPRS is used for transmitting data. In case of this technique,
transmission costs depend on the volumes of transmitted data. Hence, a permanent
connection between the mobile co-worker and the central web server can be estab-
lished, whereas the conventional GSM technology uses a time-based billing system.

For accessing and viewing web pages, the mobile phone must be WAP enabled.
A web server as well as a WAP server are then used for processing and answering
requests sent by the mobile devices. These two kind of servers just provide different
views on the same data extracted from the same data base. The servers are operated
by an application service provider. Although the servers as well as other software
tools (PERL, PHP) required for extracting information from the central data bases
and building dynamic web pages are very cheap or even free software, operating and
using such a system requires some expertise that a smaller firm possibly cannot
acquire.

Sufficient security of a mobile co-worker’s access to the web/WAP server can be
ensured in different ways. The mobile devices’ MAC addresses are registered at the
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Fig. 2. Components of the mobile communication system

server, and only registered devices may access the system. Additionally, authenti-
cated access via a user name and password can be established. For the purposes of
establishing secure data transmission, cellular radio providers furthermore offer VPN
(“virtual private network”) tunnelling techniques. Access to the web/WAP server is
then only granted via the provider’s VPN tunnel, and only calls approved by the
provider’s radius server are put through. Moreover, the cellular phone’s identifica-
tion number is then additionally transmitted for security reasons.

Web pages are dynamically built using PHP (“hypertext preprocessor”). The
required information (customer’s address, product demanded, time until delivery
should be completed, additional short information regarding the customer and his
location) is extracted from the main centre’s data base. The operators at the call cen-
tre who process the customer requests feed the data base with a customer’s data by
means of the same familiar software system that the firm had used for these pur-
poses since a long time. Different techniques can then be applied for transmitting the
required data from the data base to the web server. The data base may be directly
accessed using ODBC (“open data base connectivity”); the data may also be directly
send via the hypertext transfer protocol (HTTP) and then extracted and processed by
means of a PERL script. Other possible methods are to use the file transfer protocol
(FTP) by first sending the data to a FTP server, or to send the data as a simple e-mail
attachment. Privacy and data security is ensured by encryption and a secure socket
layer connection.

The following example further illustrates the (real-time) communication between
a driver and the central data base via the web/WAP server. Figure 3 shows the
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Fig. 3. Dispatching centre’s view on the system’s main page*
*The main page’s menu shows the following entries:

Order status
o Single delivery tour:

— Display customer requests on a given tour assigned to certain carrier
Download
e Data:

— Download data for spreadsheet access
System
o Administration:

— Initialize test data; configure WAP display
e Input data:

— Manually enter customer orders

dispatching centre’s view on the system’s main page. The main page offers differ-
ent options for further processing: Data may be downloaded again for further anal-
ysis using spreadsheet computation (e.g., for tracking arrival times, response times,
actual tour duration, etc.) If necessary, additional customer requests may be entered
manually (e.g., in case of missing or misentered data), and some functions for admin-
istering the system are provided. Most important is the information about customer
requests/complaints of the current day. Figure 4 shows a fictive example of such a list.
Customer requests are already assigned here to certain carriers that have to serve the
request. The displayed information comprises: the carrier’s identification number;
the customer’s id, name, address, and his demand; the time the request was posed; if
and at which time the message was read by the driver, and the status of delivery. The
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Fig. 4. Dispatching centre’s view on the list of customer requests*
* The columns of the table displaying the customer requests show the following information:
Carrier’s identification number (1); customer number (2); customer’s name (3) and address by
street (4), zip code (5), and city (6); product demanded (7); date and time when the request was
created (8); if the request was already read by the driver (9); date and time the request was read
the last time (10); status of delivery completion (11).

driver has access to relevant parts of this information in a different form by means of
a WAP enabled cellular phone. The information is displayed in two different forms.
First, a simple list of all customer requests to be served by the driver is shown as in
Fig. 5a. Each entry of this list just contains the customer’s address and the time the
request was generated. Using the phone’s function keys, the driver can click on an
entry in order to see all relevant information concerning the specific customer request
(see Fig. 5b). After performing the delivery, the driver marks a request as completed
in a similar simple way by just using the function keys of his mobile phone (Fig. 6).
This information is promptly transferred back to the web/WAP server as well as the
firm’s central data base, where now the customer request is marked as served (see
Fig. 7). This way sufficient bidirectional and on-going communication between the
dispatching centre and the drivers is established.

It seems obvious that this kind of integrated mobile communication system has
a number of advantages compared to the previously employed system, even without
the incorporation of on-line routing algorithms. Especially, the following points can
be raised:
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(b) Detailed information on customer or-
der: name, address, product demanded,
creation date and time, time when deliv-
ery has to be completed, etc.

(a) Short list of customer orders by ad-
dress and creation date and time

Fig. 5. Driver’s view on the list of customer requests and a single customer order

(a) “Should the customer’s order be really (b) “Order marked as completed. Con-
marked as completed?” tinue”

Fig. 6. After delivery, customer requests are marked as completed

Drivers are not only informed about new orders; the required bidirectional com-
munication is possible and customer orders are not only fulfilled but also digitally
processed in an integrated way by the drivers.

The aforementioned media breaks arising when transmitting information are re-
duced to a minimum.

The driver’s actions are integrated in the firm’s IT system. The process of sub-
sequent delivery is thereby accelerated and substantial time savings could be
realised.

Drivers get prompt information and are able to better plan next deliveries to be
made.

The system is very cheap and easy to use; drivers are very familiar with a cellular
phone.

Finally, the system is a prerequisite for implementing on-line routing algorithms.
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Fig. 7. Drivers actions are recorded and written back to the data base*
* See Fig. 4 for a translation of the table’s columns.

5 Decision Problems to be Addressed

Which kind of subproblems arise when planning dynamic vehicle routes for subse-
quent newspaper delivery depends on the overall solution approach adopted. More-
over, the firm’s willingness and ability to implement organisational changes has to be
taken into account. Currently, the firm predefines the drivers’ delivery areas, which
generally favours a cluster first-route second approach. Especially, the following sub-
problems may then be distinguished:

1. Design of delivery areas,

2. Location planning,

3. Determining operating times,
4. Operational on-line routing.

Constraints to be taken into account are especially a minimum and maximum
operating time of a route as well as a maximum allowed response time. A vehicle’s
capacity does in this case not play any role. Obviously, the total time spent by the
drivers must not exceed a given maximum. However, a too short route duration is also
impractical; the earnings granted to a driver are then too low and no driver will like
to operate such a route. The response time is the time that passed from the arrival
of a customer request until its attendance. Short response times are part of a high
customer service, but also very costly. A certain maximum response time must not
be exceeded. Below this limit, the response time can be viewed as a soft constraint;
attaining short response times is then more an objective than a constraint.
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Fig. 8. Prefixed delivery areas without (a) and with (b) “variable borders”

Objectives are more difficult to postulate than constraints. The problem is multi-
objective in nature. Customer service and delivery costs have to be balanced, both
the service dimension as well as the cost dimension are however difficult to measure.
Moreover, the uncertainty of customer requests adds to the complexity of finding
appropriate objectives, since in this case not only expected costs but also robustness
of solutions is an issue. In order to obtain some operational objectives it is required
to use some surrogate performance measures, which usually are (average) response
time, travel distance and time, and the number of delivery tours.

In the sequel, the above mentioned subproblems are further described.

5.1 Design of Delivery Areas

When using a cluster first-route second approach, the first step consists in dividing
the whole delivery area into a number of sub-areas that are then assigned to one or
several drivers. Although customer requests arrive dynamically and are ““stochastic”,
the subscribers and their locations itself are of course known. Different alternative
methods for obtaining reasonable clusters of subscribers might then be applied for
defining delivery areas. Objectives to be taken into account are the minimisation of
the number of required drivers as well as the minimisation of the (expected) travel
times and distances.

Since customer requests arrive at random, it seems reasonable not to fully pre-
fix the delivery areas, but to allow exchanges of customer nodes at the “borders”
of delivery areas as illustrated in Fig. 8. In Fig. 8a, the fixed areas result in an un-
favourable dynamically emerging route for subregion B and some distances can be
saved if “border customers” are exchanged between subregions as in Fig. 8b.

In both cases, the clustering will not be part of an on-line algorithm, but com-
puted beforehand by means of a suitable method. Because, subscriber locations are
known and also historical customer data can be made available, one might also take
a two-stage stochastic programming approach for performing the clustering. The
use of two-stage stochastic programs has already been proposed in the literature on
stochastic vehicle routing problems [13, 27]. In our case, the first stage decisions
would refer to the clustering, while second stage decisions would be the routing or,
alternatively, in order to take the dynamically arriving customer demands better into
account, recourse actions as, e.g., inserting a customer node in a route.
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5.2 Location Planning

After completing a customer request, the driver has either to wait until he receives
a new customer order or to finish his route and return to his home base. As already
mentioned, reliable historical customer data is available in case of the subsequent
newspaper delivery. Obviously, dynamic and stochastic routing problems have gen-
erally much in common, provided that dependable historical data is available.

Due to the probabilistic nature of a demand case, one might thus rise the question
at which location a driver should wait for a next customer request. Possible alterna-
tive waiting points are, e.g.,

A central point as, e.g., the median of the driver’s delivery area,

The closest customer/subscriber location,

The customer’s location with largest probability of a positive demand,

A suitable customer location selected by considering a combination of the two
criteria above.

Larsen et al.[17] investigate further possible rules on which such “repositioning de-
cisions” might be based for the case of the “a priori travelling saleman problem
with time windows”. The performance (average response time, travel distance and
time, number of delivery tours) of different rules for driver repositioning should then
be tested within simulation experiments using empirically validated assumptions re-
garding the customer arrival process.

5.3 Determining Operating Times

Neither the exact start and end times of a route are fixed nor is it required to start
a route immediately after a customer request has arrived. Rather, it seems advisable
to delay the start of a driver’s route in order to gather more information. There is
obviously a trade-off between the customer service degree and the delivery costs
if the routes’ start times are postponed. In case of the delivery area of Wuppertal,
e.g., 80 % of all customer complaints are known until 10 AM; and 90 % are known
until 11 AM. Moreover, routes computed on the base of full information are, on av-
erage, 30 % shorter than the routes that emerged dynamically. When delaying the
start time of routes, a larger percentage of customer requests gets known in advance;
this should allow to perform the routing in such a way that the drivers’s waiting and
travel times as well as the distances driven are reduced compared to a situation where
less information is available. On the other hand, delaying start times results of course
in longer response times. Possible strategies for determining starting times are, e.g.,
to begin a route if a given percentage of the expected number of customer requests
is known in advance. Simulation experiments should then be carried out in order to
measure the performance (average response time, travel distance and time, number
of delivery tours) of different rules for determining start times.
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5.4 Operational On-Line Routing

The on-line routing consists in inserting dynamically arriving customer requests into
one of the emerging routes in some “intelligent” or even “optimal” way. Section 6
describes some methods applicable to this purpose. The dynamic routing of cus-
tomer requests can, e.g., be based on dynamic versions of standard (parallel) inser-
tion procedures for the vehicle routing problem with time windows [20, 26], possibly
followed by some post-optimisation of the customer sequences by means of, e.g., a
Lin-Kernighan type local search heuristic [16, 18]. A reoptimisation is then triggered
whenever a new customer request arrives. Again it might be useful not to directly
communicate the resulting next stop to the driver, but to delay this decision for some
time or as long as possible in order to gather more information.

For the purposes of the on-line routing, the mobile communication system has to
be enhanced by a GPS as well as a GIS (“geographical information system’) com-
ponent. The on-line routing requires information about the current position of the
drivers. To this end, the drivers can, e.g, be equipped with GPS receivers. Although
GPS technology works quite accurately, it is fault prone to some extend, and some-
times a GPS signal cannot be received due to some interferences. Recently, GPS
devices are getting cheaper; but equipping every driver with such a device can still
be a too large investment for a small firm. Nowadays, there are also cellular phones
available that are equipped with an additional GPS module. The GPS device should,
however, work as an automatic vehicle locating system [19] and be able to automati-
cally send positioning information to the web/WAP server if a corresponding request
was sent from the server to this device. A GPS system is, however, not a conditio
sine qua non. The mobile communication system described above allows to locate
the driver exactly, directly after fulfilment of a customer request. The drivers’ posi-
tion between two customer nodes may then be simply estimated using appropriate
measures of travel times and distances.

In addition, the customer locations must be geo-coded and travel distances and
times need to be computed. Because the newspaper subscribers are known in ad-
vance, this task can be completed beforehand using, e.g, commercial geo-coding and
route planning servers (see, e.g., [30]). Since in urban areas travel times can vary sub-
stantially, it can probably be necessary to use some on-line traffic information system
(see, e.g., [11]) in order to obtain more accurate travel time information. On the other
extreme, it might also be possible to work with a rather cheap solution that just uses
“adjusted” Euclidean distances and travel time estimates in dependence of distances
and time of day. Dillmann [9] and Dillmann et al. [10] report on good experiences
with such a simplified approach.

Integrating the aforementioned mobile communication system and on-line rout-
ing algorithms is relatively straightforward. The algorithms can run on one or several
servers in the background. The required input data is pushed forward from the web
server whenever a new customer request arrives, and an algorithm’s results are writ-
ten back to the web server.
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6 Overview of Some Methods for On-Line Routing

This section briefly reviews some selected methods for on-line routing. Especially,
relatively simple dispatching rules based on stochastic arguments are contrasted with
“reoptimisation” procedures that do not include some kind of lookahead capabil-
ity. Comprehensive surveys on methods for dynamic routing problems can be found
in [14, 15, 21, 22]. Stochastic approaches to dynamic routing problems were pro-
posed by Bertsimas and van Ryzin [4, 5], whilst a tabu search procedure of Gendreau
et al. [12] as well as a column generation method of Savelsbergh and Sol [25] can be
mentioned as representatives of the second group of methods.

6.1 Reoptimisation Approaches

Savelsbergh and Sol [25] propose a column generation approach to a dynamic ver-
sion of the pickup-and-delivery problem. Column generation is used here to generate
a number of feasible routes. The routes as well as the master problem are then reop-
timised at fixed points in time during the working day, taking all known unfulfilled
transportation requests and partial routes operated so far into account. The algorithm
proposed by Savelsbergh and Sol uses heuristics to solve the pricing subproblems as
long as this way columns of negative reduced cost can be found. An advantage of the
column generation procedure is that a large number of alternative high quality routes
is available, in which new transportation requests can then be inserted for the pur-
poses of reoptimising the problem. Furthermore, in order to make feasible integral
solutions more quickly available, primal heuristics are often invoked. The method is
used for solving a dynamic pickup-and-delivery problem of a large carrier. The loads
are relatively large and have to be transported over longer distances. It can thus be
assumed that the number of requests that dynamically arrive per time unit is rela-
tively small, which makes such a complex and computational demanding method as
a column generation procedure feasible.

Gendreau et al. [12] propose a tabu search heuristic for (repeatedly) solving a
dynamic vehicle routing problem with time windows. The procedure is based on the
adaptive memory programming framework suggested by Rochat and Taillard [24]
for the vehicle routing problem and by Taillard et al. [29] as a general unifying meta-
heuristic solution approach. The method first constructs / > 1 initial solutions using
a randomised insertion procedure. Generated solutions are improved by means of a
tabu search method, and the best solutions encountered so far are stored in a pool.
New solutions are then constructed by recombining routes taken from the pooled so-
lutions, completing the resulting partial solution to a route plan and reapplying the
tabu search method. A parallel version of this method is implemented by simultane-
ously applying the tabu search to different initial solutions on different processors. In
order to take the dynamics into account, the method runs in the background working
on improving solutions as long as no new event (new customer order, completion
of an order) occurs. If a new customer request arrives, the request is inserted into
every solution of the solution pool; then a reoptimisation is triggered. In case that
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a customer order is completed, the information about the next stop of the best so-
lution obtained so far is transmitted to the vehicle. An obvious advantage of this
procedure is that, as in the case of the column generation method above, a num-
ber of diverse (and probably good) solutions is available, into which new customer
orders can be inserted. Moreover, in this case, a feasible solution that can be used
to dynamically dispatch the vehicles is always available. As a disadvantage of this
method, the large requirements on computing power and computing equipment can
be mentioned. Furthermore, as all kind of reoptimisation methods, the procedure
does not include a lookahead capability that tries to take the stochastic nature of the
problem into account.

6.2 Stochastic Approaches

Bertsimas and van Ryzin [4, 5] apply relatively simple rules for dispatching vehicles
in case of a stochastic and dynamic vehicle routing problem. Bertsimas and Simchi-
Levi [3] give a further brief overview of these methods. Swihart and Papastavrou
[28] present a similar analysis of a single vehicle pickup and delivery problem. In
[4], Bertsimas and van Ryzin consider the Travelling Repairman Problem, and in
[5] they extend the analysis to the case of multiple and capacitated vehicles. The
problem is modelled as a queueing system. To this end, it is assumed that customer
requests arrive independently according to a Poisson process, that customer locations
are uniformly distributed in a square region of the Euclidean plane, and that the
objective is to minimise the customers’ total system time, which is the time elapsed
between arrival of a demand and the time the server completes the service of the
customer. Bertsimas and van Ryzin propose and analyse then a number of different
dispatching rules and heuristics. For the case of a single uncapacitated vehicle they
give the following heuristics and results:

1. In case of low traffic when the arrival rate approaches zero, the so-called stochas-
tic median strategy (SQM) is optimal. The SQM strategy locates the server at the
median of the region and serves the demand in a first come, first served (FCFS)
order while returning to the median after each service.

2. A FCFS strategy that services the demands in the order in which they arrive is
approximately 36 % above the optimum in case of light traffic.

3. The partitioning strategy extends the above simple rule by first dividing the ser-
vice region into a number of equally sized subregions. The FCFES rule is then
applied to each subregion. This heuristic gives a constant factor approximation
in case of high traffic when the interarrival times approach the service times.

4. The travelling salesman (TS) strategy first waits until » customer requests have
arrived and afterwards builds an optimal travelling salesman tour over these cus-
tomers. Then this process is repeated. In case of high traffic and a suitable large
value of n, the policy gives a better constant factor approximation than the parti-
tioning strategy above.

5. An even better approximation is obtained in case of high traffic by means of
spacefilling curves (SC). A spacefilling curve g is a continuous mapping of the
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interval C = [0, 1) onto the unit square S = C X C such that ||g(a) — g(a')|| <
2+|a - a'| for all a,a’ € C. The SC strategy maps the customer coordinates
on the interval C, and then repeatedly visits dynamically arriving customers by
sweeping the interval C in increasing order.

6. The simple “nearest neighbour” policy just services the closest available demand

after every service completion. The method performed well within a number of
simulation experiments performed by Bertsimas and Ryzin (note that the objec-
tive is to minimise the customers’ system time).

In [5], Bertsimas and van Ryzin analyse dispatching rules for the case of m > 1 vehi-
cles as well for the case of a capacitated vehicle that can serve at most g customers.
The heuristics below are proposed for the m vehicle case.

1.

The m stochastic queue median policy extends the SQM strategy for a single
vehicle by determining the m-median of the service region. Each vehicle returns
then to the closest median after completing a single customer service. The policy
is optimal in case of light traffic.

. The randomised assignment strategy randomly assigns customer demands to

each vehicle and then services each subprocess using a single server strategy.

. The travelling salesman strategy waits as above until n customers have arrived.

Then an optimal travelling saleman tour is built and the next available vehicle is
used to serve the route. Routes are served according to the FCFES principle. The
procedure’s performance factor depends on the number m of vehicles.

The modified travelling salesman strategy divides the service region into k sub-
regions and applies the above TS strategy with parameter n/k to each subregion.
The procedure gives a constant factor approximation for the high traffic case.

. The deterministic strategy works similar as the strategy above. The strategy col-

lects however demands to routes for a given amount of time. Moreover, after a
given amount of time has elapsed, the next subregion is served. The procedure
has the same worst-case performance as the above TS strategy.
The independent partitioning policy divides the service region into m subregions
and applies any of the single server strategies for each vehicle.

Finally, Bertsimas and van Ryzin consider the following methods for the case of a
capacitated vehicle:

1.

2.

The gRP-strategy divides the service area into a given number of subregions. If
g customer requests arrived in a certain subregion, the first available vehicle is
used to serve these customers.

The gTP-strategy waits until n > ¢ customer requests have arrived. An optimal
travelling salesman tour over the n customers is then partitioned into feasible
vehicle routes.

An advantage of the above procedures is their simplicity and that they take ac-

count of the problem’s stochastic nature. Compared to reoptimisation procedures, the
above rules seem, however, rather rigid and inflexible. The results of Bertsimas and
van Ryzin depend furthermore on a number of limiting assumptions. It is question-
able if the above approaches also perform reasonably good in case of non-Euclidean



On-line Routing per Mobile Phone 47

distances, non-uniformly distributed customers, non-Poisson arrival processes, and
an objective that does not only consist in minimising the customers’ system time.
Nevertheless, the above strategies may give some guidelines for adding lookahead
capabilities to reoptimisation procedures, e.g., by means of locating one or more
suitable waiting points in the service region. As already mentioned in Sect. 5.1, a fur-
ther possible approach for including stochastic considerations might be to first build
subregions or clusters of customers by means of a two-stage stochastic program-
ming procedure with recourse, and then to apply a suitable dynamic reoptimisation
heuristic to each cluster/subregion. A further way of exploiting stochastic informa-
tion might also be the construction of a priori routes that are then used as guidelines
for dynamically dispatching vehicles. Bertsimas [2] finds closed-form expressions
for the expected length of the routes to be performed by a capacitated vehicle if a
giant tour is already given and customer demands are stochastic. He also provides
lower and upper bounds on an optimal a priori giant tour. Thomas and White [31]
discuss “anticipatory route selection” as a further interesting idea for tackling the
problem. A single uncapacitated vehicle performs pickups and deliveries, earning a
reward for pickups and adding to the total cost when travelling. The probability that
a customer requests a pickup depends on the time ¢. The problem is to determine
a policy for selecting the next node to visit such that the expected total cost of a
trip from an origin to the destination is minimised. The problem is formulated as
a Markov decision process and some structural results concerning the cost function
and optimal policy are presented. Moreover, for a few small examples the optimal
anticipatory policy is computed by means of stochastic dynamic programming. The
required computational effort is however far too large, which underpins the need for
heuristic procedures for solving the stochastic dynamic program.

7 Further Application Areas

The depicted case of subsequent newspaper delivery is a neat example of a spe-
cific class of applications characterised by a relatively high degree of dynamics. On
the one hand, it is not known when new customer complaints arrive; on the other
hand, customer requests should be fulfilled quickly in order to achieve low response
times. An on-line connection is thus needed for ensuring the required bidirectional
exchange of information between dispatcher, mobile co-worker, and the data base
backend. The WAP standard employed for this purpose shows furthermore the advan-
tage that any mobile device supporting this protocol can be used without installing
additional software on this device. A simple bookmark suffices to grant easy access
to the server. A permanent connection between the server and the mobile devices
must however be established.

A number of other mobile business cases show a much less degree of dynamics.
The information required by the mobile co-workers is then known before start of their
work. Hence, a connection between the mobile co-worker and the data base has just
to be established on demand, e.g., for downloading data, updating status information
on the data base server, updating data stored on the mobile device, uploading data to
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the data base after work finish. These kind of applications require specific pieces of
software to be installed on the mobile devices itself.

A further application example of the web/WAP-based system of Sect. 4 is the
recording and supervision of delivery times for press wholesalers and newspaper
publishers. In this business, accurate information about delivery times and route du-
rations is of vital importance for future planning. Bieding [6, 7] describes a JAVA
based system that exploits the mobile communication system of Sect. 4 for this pur-
pose. The system extends an older solution based on RFID technology and has suc-
cessfully been used in practice for about 200 carriers. A specific software allowing to
download the required data from the mobile devices during the delivery is installed
on the cellular phones. Using this device, the driver confirms arrival and departure
and only after this confirmation a status update is sent to the data base. An associated
web application allows then to receive detailed information about the delivery times
and offers several customised reports.

Private mail companies exploit a similar system for controlling their mail deliv-
ery [33]. Detailed information about mail still to be delivered is accessed by couriers
via a cellular phone and the described web/WAP-based system. The couriers work in
an off-line status; only in case of a status change, information is sent to the data base
server. Status changes occur, e.g., in case of a successful delivery, in case that mail is
returned to the sender, in case of a second delivery attempt, etc. The associated web
application serves here more as an information tool. A further event management
system based on a set of rules for automatically monitoring the work process is how-
ever additionally installed. For example, if the courier did not download data before
a given deadline, an e-mail is automatically sent to the dispatcher. Also, when some
mail is not delivered after a given time span, an automatically generated e-mail in-
forms the supervisor about this. The event management system helps to significantly
reduce a dispatcher’s and supervisor’s workload; only in case of a failure, they are
informed in detail, allowing them to react immediately. On-line routing methods can
also play an important role in this kind of application, e.g., when pick-up orders
should be sent to the “nearest” courier.

Mobile business applications are also widely used in the field of private nursing.
The employees get detailed working plans sent to their mobile device. In most cases
PDAs or also smart phones are used. Not only arrival and departure at the customer
places are confirmed, also every single outpatient care activity will be confirmed and
corresponding information sent to the company’s data base. This way, the complete
invoicing process is highly automated on a digital level, as recommended by the
German health insurance companies. An additional on-line routing could help to
identify and reduce delays.

Also for service technicians, mobile business applications provide several advan-
tages. Service orders can easily be forwarded to the responsible field force employee
with all specific information required to successfully complete orders. Assigning or-
ders to technicians can be based, e.g., on criteria like distance and a technician’s
available capacity.

The advantages of such mobile business applications are obvious. Digital in-
teractive information transmission without any media break by means of integrated
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applications and systems significantly reduces the amount of communication and en-
ables real-time availability of important information. In fact, this provides essential
transparency for monitoring, managing and optimising important processes outside
the companies’ buildings. In combination with location-based services and on-line
routing additional advantages and cost reduction could be realised.

8 Summary and Outlook

This paper introduced a web/WAP server based mobile communication system that
enables a firm to easily integrate mobile co-workers into its IT system. The use
of the system was illustrated for the case of subsequent newspaper deliveries of a
medium-sized publishing house in Germany. It was also shown that this system al-
lows a straightforward integration of on-line vehicle routing algorithms, and some
possible applicable methods were reviewed.

The mobile communication system described here exemplifies that todays com-
munication and information technology allows to quickly build mobile communi-
cation systems that are based on a relatively simple system architecture as well
as cheap and easy-to-handle system components. Such systems are of course not
only useful for supporting on-line routing; they generally allow to implement mo-
bile business processes in a firm’s IT system, to streamline the information flows
and to avoid thereby a number of dysfunctional “media breaks”. This way the neces-
sary prerequisites for supporting mobile logistic processes by means of optimisation
and quantitative methods in general are established. The development, investigation
and implementation of suitable optimisation methods for controlling logistic pro-
cesses on-line is then surely a fruitful research area. Regarding techniques for sup-
porting dynamic routing, there seems to exist a gap between stochastic approaches,
on the one hand, and reoptimisation methods, on the other hand. While the first
group of methods stresses the stochastic aspects of dynamic routing, the second
family of methods, although powerful, miss lookahead capabilities. Integrating both
methodological approaches in some way might thus be helpful for obtaining further
improvements.

References

[1] AlShaali S, Varshney U (2005) On the usability of mobile commerce. Interna-
tional Journal of Mobile Communication 3:29-37.

[2] Bertsimas DJ (1992) A vehicle routing problem with stochastic demand. Op-
erations Research 40:574-585.

[3] Bertsimas DJ, Simchi-Levi D (1996) A new generation of vehicle routing
research: Robust algorithms, addressing uncertainty. Operations Research
44:286-304.

[4] Bertsimas DJ, van Ryzin G (1991) A stochastic and dynamic vehicle routing
problem in the Euclidean plane. Operations Research 39:601-615.



50 Thomas Bieding, Simon Gortz, and Andreas Klose

[5] Bertsimas DJ, van Ryzin G (1993) Stochastic and dynamic vehicle routing in
the Euclidean plane with multiple capacitated vehicles. Operations Research
41:60-76.

[6] Bieding TJ (2001) Wann wird der Kunde wirklich beliefert. Logistik Heute 6.

[7] Bieding TJ (2004) Planning and controlling the daily delivery to the same
customers — problems and adequate solutions. In: Fleischmann B, Klose A
(eds) Distribution Logistics - Advanced Solutions to practical Problems. Lec-
ture Notes in Economics and Mathematical Systems 544. Springer, Berlin
Heidelberg New York.

[8] Bieding TJ, Ehrle C (2004) Nachlieferungen per Handy iibertragen. dnv - Der
neue Vertrieb 19.

[9] Dillmann R (2002) Strategic vehicle problems in practice — a pure software
problem or a problem requiring scientific advice. In: Klose A, Van Wassenhove
LN, Speranza MG (eds) Quantitative Approaches to Distribution Logistics and
Supply Chain Management. Lecture Notes in Economics and Mathematical
Systems 519. Springer, Berlin Heidelberg New York.

[10] Dillmann R, Becker B, Beckefeld V (1996) Practical aspects of route planning
for magazine and newspaper wholesalers. European Journal of Operational
Research 90:1-12.

[11] Fleischmann B, Gnutzmann S, Sandvoll E (2004) Dynamic vehicle routing
based on online traffic information. Transportation Science 38:420—-433.

[12] Gendreau M, Guertin F, Potvin J-Y, Taillard ED (1999) Parallel tabu search for
real-time vehicle routing and dispatching. Transportation Science 33:381-390.

[13] Gendreau M, Laporte G, Séguin R (1996) Stochastic vehicle routing. Euro-
pean Journal of Operational Research 88:3—12.

[14] Gendreau M, Potvin J-Y (1998) Dynamic vehicle routing and dispatching. In:
Crainic TG, Laporte G (eds) Fleet Management and Logistics. Kluwer Aca-
demic Publishers, London Dordrecht Boston.

[15] Ghiani G, Guerriero F, Laporte G, Musmanno R (2003) Real-time vehicle
routing: Solution concepts, algorithms and parallel computing strategies. Eu-
ropean Journal of Operational Research 151:1-11.

[16] Helsgaun K (2000) An effective implementation of the Lin-Kernighan travel-
ing salesman heuristic. European Journal of Operational Research 126:106—
130.

[17] Larsen A, Madsen OBG, Solomon MM (2004) The a priori dynamic traveling
salesman problem with time windows. Transportation Science 38:459-472.

[18] Lin S, Kernighan BW (1973) An effective heuristic for the traveling-salesman
problem. Operations Research 21:498-516.

[19] Mintsis G, Basbas S, Papaioannou P, Taxiltaris C, Tziavos IN (2004) Applica-
tions of GPS technology in the land transportation system. European Journal
of Operational Research 152:399-409.

[20] Potvin J-Y, Rousseau J-M (1993) A parallel route building algorithm for the
vehicle routing and scheduling problem with time windows. European Journal
of Operational Research 66:331-340.



On-line Routing per Mobile Phone 51

[21] Psaraftis HN (1988) Dynamic vehicle routing problems. In: Golden BL, Assad
AA (eds) Vehicle Routing: Methods and Studies. North-Holland, Amsterdam.

[22] Psaraftis HN (1995) Dynamic vehicle routing: Status and prospects. Annals of
Operations Research 61:143-164.

[23] Okhrin I, Richter K (2005) Mobile Business — Framework, Business Applica-
tions and Practical Implementation in Logistics Companies. Arbeitsberichte
Mobile Internet Business Nr. 1, Frankfurt.

[24] Rochat Y, Taillard ED (1995) Probabilistic diversification and intensification
in local search for vehicle routing. Journal of Heuristics 1:147-167.

[25] Savelsbergh M, Sol M (1998) Drive: Dynamic routing of independent vehicles.
Operations Research 46:474—490.

[26] Solomon MM (1987) Algorithms for the vehicle routing and scheduling prob-
lem with time window constraints. Operations Research 35:254-265.

[27] Stewart WR, Golden BL (1983) Stochastic vehicle routing: A comprehensive
approach. European Journal of Operational Research 14:371-385.

[28] Swihart MR, Papastavrou JD (1999) A stochastic and dynamic model for the
single-vehicle pick-up and delivery problem. European Journal of Operational
Research 114:447-464.

[29] Taillard ED, Gambardella LM, Gendreau M, Potvin J-Y (1998) Adaptive
memory programming: A unified view of meta-heuristics. Technical Report
IDSIA-19-98, IDSIA Lugano.

[30] Tarantilis CD, Diakoulaki D, Kiranoudis CT (2004) Combination of geograph-
ical information system and efficient routing algorithms for real life distribu-
tion operations. European Journal of Operational Research 152:437-453.

[31] Thomas BW, White CC (2004) Anticipatory route selection. Transportation
Science 38:473487.

[32] Wichmann T (2004) Prozesse optimieren mit Mobile Solutions. Berlecon Re-
search Report 03/2004. http://www.berlecon.de/research/reports.
php.

[33] Wilhelm H (2006) Differenzierungsmerkmal Sendungsverfolgung. Presen-
tation, 4. Lizenznehmerforum der Bundesnetzagentur, 22. November 2006,
Bonn.http://www.bundesnetzagentur.de/media/archive/8380.pdf.

[34] Wirtz BW (2001) Electronic Business. Gabler, Wiesbaden.

[35] Zobel J (2001) Mobile Business and M-Commerce. Hanser, Miinchen.



Service Design Models for Rail Intermodal

Transportation

Teodor Gabriel Crainic

NSERC Industrial Research Chair in Logistics Management, Department of Management
and Technology, School of Business and Management
and CIRRELT, University of Quebec in Montreal, Canada theo@crt.umontreal.ca

Summary. Intermodal transportation forms the backbone of the world trade and exhibits sig-
nificant growth resulting in modifications to the structure of maritime and land -based trans-
portation systems, as well as in the increase of the volume and value of intermodal traffic
moved by each individual mode. Railroads play an important role within the intermodal chain.
Their own interests and environment-conscious public policy have railroads aiming to increase
their market share. To address the challenge of efficiently competing with trucking in offering
customers timely, flexible, and “low”-cost transportation services, railroads propose new types
of services and enhanced performances. From an Operations Research point of view, this re-
quires that models be revisited and appropriate methods be devised. The paper discusses some
of these issues and developments focusing on tactical planning issues and identifies challeng-

ing and promising research directions.
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1 Introduction

Intermodal transportation forms the backbone of the world trade and exhibits signifi-
cant growth. The value of multimodal shipments in the U.S., including parcel, postal
service, courier, truck-and-rail, truck-and-water, and rail-and-water, increased from
about 662 billion US dollars to about 1.1 trillion in a period of nine years (1993 to
2003 [31]). In the same period, the total annual world container traffic grew from
some 113.2 millions of TEUs (20 feet equivalent container units) to almost 255 mil-
lions, reaching an estimated 304 millions of TEUs by 2005.

Intermodal transportation involves, sometimes integrates, at least two modes and
services of transportation to improve the efficiency of the door-to-door distribution
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process. The growth in intermodal traffic thus resulted in significant modifications to
the structure of maritime and land-based transportation systems as well as in major
increase of the volumes and value of intermodal traffic moved by each individual
mode. Thus, for example, in 2003, for the first time ever, intermodal freight surpassed
coal as a source of revenue for major, Class I, U.S. railroads, representing 23% of the
carriers’ gross revenue [31]. The growth of intermodal rail traffic in the U.S., which
reached 11 million trailers (26% of total) and containers (76%) in 2004, is the direct
result of the rapid growth in the use of containers for international trade, imports
accounting for the majority of the intermodal activity [31].

Governmental policy may also contribute to re-structuring intermodal transporta-
tion and shifting parts of the land part of the journey from trucking toward rail and
water (interior and coastal navigation). This is, for example, the main focus of the
European Union as stated in its 2001 White Paper on transportation [20]. The reason
for this is to reduce road congestion and promote environmentally friendlier modes of
transportation. The instruments favored to implement such policies vary from road
taxes to penalize truck-based transportation to the support of new rail services for
intermodal traffic.

The performance of intermodal transportation depends directly on the perfor-
mance of the key individual elements of the chain, navigation companies, railroads,
motor carriers, ports, etc., as well as on the quality of their interactions regarding
operations, information, and decisions. The Intelligent Transportation Systems and
Internet-fueled electronic business technologies provide the framework to address
the latter challenges. Regarding the former, carriers and terminals, on their own or
in collaboration, strive to continuously improve their performance. Railroads are no
exception. Indeed, for intermodal as for general traffic, railroads face significant chal-
lenges to efficiently compete with trucking in offering customers timely, flexible, and
“low”-cost, long-haul transportation services.

Railroads are rising to the challenge by proposing new types of services and
enhanced performances. Thus, North-American railroads have created intermodal
subdivisions that operate so-called “land-bridges” providing efficient container trans-
portation by long, double-stack trains between the East and the West coasts and
between these ports and the industrial core of the continent (so-called “mini” land-
bridges). Most North-American railroads are now enforcing some form of scheduled
service. In Europe, where congestion has long forced the scheduling of trains, the
separation of the infrastructure ownership from service providing increases the com-
petition and favors the emergence of new carriers and services. Moreover, the expan-
sion of the Community to the east provides the opportunity to introduce new services
that avoid the over-congested parts of the European network. New container and
trailer-dedicated shuttle-train networks are thus being created within the European
Community.

The planning and management processes of these new railroad-based intermodal
systems and operations are generally no different from those of “traditional” systems
in terms of issues and goals, profitability, efficiency, and customer satisfaction. The
“new” operating policies introduce, however, elements and requirements into the
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planning processes which, from an Operations Research point of view, require that
models be revisited and appropriate methods be devised.

This paper aims to discuss some of these issues and developments. It focuses
on the tactical planning of rail intermodal services in North America and Europe
and is based on a number of observations and on-going projects. Its goal is to be
informative, point to challenges, and identify opportunities for research aimed at
both methodological developments and actual applications.

2 Intermodal and Rail-Based Transportation

Many transportation systems are multimodal, their infrastructure supporting various
transportation modes, such as truck, rail, air, and ocean/river navigation, carriers op-
erating and offering transportation services on these modes. Then, broadly defined,
intermodal transportation refers to the transportation of people or freight from their
origin to their destination by a sequence of at least two transportation modes. Trans-
fers from one mode to the other are performed at intermodal terminals, which may be
a sea port or an in-land terminal, e.g., rail yards, river ports, airports, etc. Although
both people and freight can be transported using an intermodal chain, in this paper,
we focus on the latter.

The fundamental idea of intermodal transportation is to consolidate loads for
efficient long-haul transportation performed by large ocean vessels and, on land,
mostly by rail and truck. Local pick-up and delivery is usually performed by truck.
Most of the freight intermodal transportation is performed by using containers. In-
termodal transportation is not restricted, however, to containers and intercontinental
exchanges. For instance, the transportation of express and regular mail is intermodal,
involving air and land long-haul transportation by rail or truck, as well as local pick
up and delivery operations by truck [16]. Moving trailers on rail is also identified as
intermodal. In this paper, we focus on container and trailer-based transportation by
railroads.

Intermodal transportation systems and railroads may be described as being based
on consolidation. A consolidation transportation system is structured as a hub-and-
spoke network, where shipments for a number of origin-destination points may be
transferred via intermediate consolidation facilities, or hubs, such as airports, seaport
container terminals, rail yards, truck break-bulk terminals, and intermodal platforms.
An example of such a network with three hubs and seven regional terminals is illus-
trated in Fig. 1 [7]. In hub-and-spoke networks, low-volume demands are first moved
from their origins to a hub where traffic is sorted (classified) and grouped (consoli-
dated). The aggregated traffic is then moved in between hubs by efficient, “high” fre-
quency and capacity, services. Loads are then transferred to their destination points
from the hubs by lower frequency services often utilizing smaller vehicles. When the
level of demand is sufficiently high, direct services may be run between a hub and a
regional terminal.

Railroads operate most of their services according to a double-consolidation pol-
icy based on a series of activities taking place at rail hubs, the so-called classification
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Origin/Destination
(Regional) Terminal

Fig. 1. A hub-and-spoke network [7]

or marshaling yards. The first consolidation activity concerns the sorting and group-
ing of railcars into blocks. A block is thus made up of cars of possibly different ori-
gins and destinations, which travel as a single unit between the origin and destination
of the block. Consequently, the only operation that could be performed on a block at
a yard which is not its destination is to transfer it from one service to another. The
second consolidation activity taking place at yards, known as train make up, con-
cerns the grouping of blocks into trains. Although a hub-and-spoke network struc-
ture results in a more efficient utilization of resources and lower costs for shippers,
it also incurs a higher amount of delays and a lower reliability due to longer routes
and the additional operations performed at terminals. Carriers thus face a number
of issues and challenges in providing services that are simultaneously profitable and
efficient for the firm and high quality and cost effective for customers. Operations
Research has contributed a rich set of models and methods to assist addressing these
issues and challenges at all levels of planning and management, classically identi-
fied as strategic (long term), tactical (medium term), and operational (short term). A
more in-depth treatment of these topics may be found, for example, in the reviews of
Cordeau, Toth, and Vigo [11], Crainic [12, 13], Crainic and Laporte [17], and Crainic
and Kim [16]. In this paper, we focus on tactical planning issues.

3 New Rail Intermodal Services

Rail transportations systems evolved according to the geographic, demographic, eco-
nomic, and sociological characteristics of the countries and continents they belong
to. North American and European railroads were no exception. Yet, recently, a num-
ber of similar trends emerge. Traditional North American railroad operating policies
were based on long-term contracts for the transportation of high volumes of mostly
bulk commodities. Cost per ton/mile (or km) was the main performance measure,
with somewhat little attention being paid to delivery performance. Consequently, rail
services in North America, and mostly everywhere else in the world, were organized
around loose schedules, indicative cut-off times for customers, “go-when-full” oper-
ating policies, and significant marshaling activities in yards. This resulted in rather
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long and unreliable trip times that generated both inefficient asset utilization and
loss of market share. This was not appropriate for the requirements of intermodal
transportation and the North American rail industry responded through [14]:

1. A significant re-structuring of the industry through a series of mergers, acqui-
sitions, and alliances which, although far from being over, has already drasti-
cally reduced the number of companies resulting in a restricted number of major
players.

2. The creation of separate divisions to address the needs of intermodal traffic,
operating dedicated fleets of cars and engines, and marshaling facilities (even
when located within regular yards). Double-stack convoys have created the land-
bridges that ensure an efficient container movement across North America.

3. An evolution toward planned and scheduled modes of operation and the intro-
duction of booking systems and full-asset-utilization operating policies.

Booking systems bring intermodal rail freight services closer to the usual mode
of operation of passenger services by any regular mode of transportation, train, bus,
or air. In this context, each class of customers or origin-destination market has a
certain space allocated on the train and customers are required to call in advance
and reserve the space they require. The process may be phone or Internet based but
is generally automatic, even though some negotiations may occur when the train
requested by the customer is no longer available. This new approach to operating
intermodal rail services brings advantages for the carrier, in terms of operating costs
and asset utilization, and the customers (once they get used to the new operating
mode) in terms of increased reliability, regular and predictable service and, eventu-
ally, better price. A full-asset-utilization operation policy generally corresponds to
operating regular and cyclically-scheduled services with fixed composition. In other
words, given a specific frequency (daily or every given number of days), each service
occurrence operates a train of the same capacity (length, number of cars, tonnage)
and composition, that is, the same blocks make up all the occurrences of the service,
each block displaying a fixed definition: origin, destination, number of total cars, and
number of cars for each origin-destination included in its composition.

A full-asset-utilization operation policy generally corresponds to operating reg-
ular and cyclically-scheduled services with fixed composition. In other words, given
a specific frequency (daily or every given number of days), each service occurrence
operates a train of the same capacity (length, number of cars, tonnage) and composi-
tion, that is, the same blocks make up all the occurrences of the service, each block
displaying a fixed definition: origin, destination, number of total cars, and number of
cars for each origin-destination included in its composition.

Assets, engines, rail cars and even crews, assigned to a system based on full-
asset-utilization operation policies can then “turn” continuously following circular
routes and schedules (which include maintenance activities for vehicles and rest pe-
riods for crews) in the time-space service network, as schematically illustrated in
Fig.2 for a system with three yards and six time periods [3]. The solid lines in the
service-network (left) part of Fig.2 represent services. There is one service from
node 1 to node 3 (black arcs) and one service from node 3 to node 2 (gray arcs), both
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Service Network Vehicle Circuit

Fig. 2. Full-asset-utilization-based service network and vehicle circuit [3]

with daily frequency. Dotted arcs indicate repositioning moves (between different
nodes) and holding arcs (between different time representations of same node). One
feasible vehicle circuit in the time-space service network is illustrated in the right
part of Fig.2. The vehicle operates the service from node 3 to node 2, starting in
time period 1 and arriving in time period 3. Then from period 3 to period 4 the ve-
hicle is repositioned to node 1, where it is held for two time periods. In period 6
the vehicle operates the service from node 1 to node 3, arriving at time 1 where the
same pattern of movements starts all over again. The planning of systems operating
according to such policies requires the development of new models and methods, as
described in the next section.

Most Western Europe railroads have for a long time now operated their freight
trains according to strict schedules, similarly to their passenger trains. This facilitated
both the interaction of passenger and freight trains and the quality of service offered
to customers. Particular characteristics of infrastructure (e.g., low overpasses and in-
frastructure for electric traction) and territory (short inter-station distances) make for
shorter trains than in North America and forbid double-stack trains. Booking systems
are, however, being implemented and full-asset-utilization and revenue management
operating policies are being contemplated. Moreover, intermodal shuttle-service net-
works are being implemented in several regions of the European Union to address
the requirements of the European Commission policy and the congested state of the
infrastructure (e.g., [1, 27]).

Indeed, European railroads face a number of particular challenges. First, the rail
infrastructure, as almost the entire transportation infrastructure in Europe, is very
congested. Second, the liberalization of the rail industry in Europe has led to the
separation of the traditional national rail companies into infrastructure owners and
service operators. The former manage the infrastructure and associated network ca-
pacity, while the latter operate trains according to the capacity acquired from the in-
frastructure managers. This liberalization favors the emergence of new rail operators
providing specialized services, in particular intermodal rail shuttle services between
cities with high traffic demand.

The limited capacity of most of the infrastructure, at least in the western part of
the network, together with the increasing number of operators, forces the allocation
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of capacity according to pre-defined routes and times, which makes planning deci-
sions and the efficient utilization of resources more difficult. The European Union,
the member states, and the corresponding rail authorities are implementing steps,
however, toward interoperability and an interconnected trans-European rail network
for freight trains, the so-called freight freeways [19]. As a result, one assists at the
emergence of large service networks across the European continent operated by sin-
gle operators or by alliances of operators, similar to those seen in the airline industry.
The resulting service networks will be complex to plan and operate and appropriate
models and methods must be developed. Pedersen and Crainic [27] detail the case
and propose a first service network design model.

To alleviate the congestion in the “central” part of the network while working to-
ward the goal of increasing the market share of rail and navigation, new intermodal
services are being studied using the networks of countries that have recently joined
the Union. Andersen and Christiansen [1] describe such a project. The Longchain
Polcorridor study [24] aims to develop a new intermodal transport corridor between
Northern and South-Eastern Europe taking advantage of previously unused railway
capacity in Poland, the Czech Republic and Austria, and thus create a fast and re-
liable transport solution than can compete with the more traditional route through
Germany. The authors propose a formulation to determine an optimal service level
and design that accounts for both operating costs and a number of service quality cri-
teria. An extensive network of inland waterways, sea transport, trucking services, and
other railway lines will be used as distribution networks at the extremities of the new
network. This requires external synchronization of schedules with partner carriers.
Internal synchronization is also required to account for power-equipment switching
at particular borders due to different technical standards between participating na-
tional railroads. Andersen, Crainic, and Christiansen [3] propose formulations for
this case.

4 Impact on Planning Models

A study of the trends observed in North America and Europe, illustrated by the cases
mentioned in the previous section, indicates a number of converging issues. One may
sum up these issues by noticing that the operations and asset management of inter-
modal railroads are more and more similar to those of long-haul passenger trans-
portation, airlines and fast rail, in particular. Services are thus precisely scheduled
and service space is booked in advance. Moreover, schedules are repetitive (cyclic)
and synchronized, both internally among the railroad’s own services and externally
with those of partner carriers. This implies tighter consolidation, classification, trans-
fer, and make-up operations at terminals, as well as scheduling assets for maximum
but efficient utilization.

Traditionally, planning was performed through a series of tasks, planning models
being used one after another to address particular issues: design of the service net-
work and schedules, power (locomotive) assignment and management, empty railcar
repositioning and fleet management, and so on. This approach was not particular to
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railroads or freight transportation; it was typical of the traditional management struc-
ture and planning processes of most industrial firms facing complex issues. From an
Operations Research point of view, it reflected the limitations of our capabilities
in addressing large-scale combinatorial formulations with complex additional con-
straints. Managerial structures evolve, however, and our capabilities are continuously
being enhanced, both in terms of computer power and methodology sophistication.
The trend toward integrated models addressing in a comprehensive formulation sev-
eral issues previously treated separately, initially observed within the airline industry
(e.g., [5]) is now influencing the development of planning methods for railroad oper-
ations, most particularly within the field of intermodal transport.

To briefly illustrate these issues and the corresponding challenges, we turn to
service network design in the context of full-asset-utilization operating policies. We
conclude the section by identifying a number of other “new” planning issues offering
exiting research perspectives.

4.1 Service Network Design

Recall that service network design is concerned with the planning of operations
related to the selection, routing, and scheduling of services, the consolidation and
make-up activities at terminals, and the routing of freight of each particular demand
through the physical and service network of the company (see, for example, the sur-
veys of Crainic for service network design [12] and long-haul land transportation
[13], Crainic and Kim [16] and Macharis and Bontekoning [25] for intermodal trans-
portation, Christiansen et al. [ 10, 9] for maritime navigation, and Cordeau, Toth, and
Vigo [11] for railroads. These activities are a part of tactical planning at a system-
wide level. The two main types of decisions considered in service network design
address the determination of the service network and the routing of demand. In the
railroad context, the former refers to selecting the train routes and attributes, such
as the frequency or the schedule of each service. The latter is concerned with the
itineraries that specify how to move the flow of each demand, including the services
and terminals used, the operations performed at these terminals, etc. The objective is
generally concerned with the minimization of a global measure of the performance
of the system that includes the operating costs of providing services, performing yard
operations, and moving freight, as well as service-quality measures usually based on
delays to equipment and loads. The term “generalized cost” is often used in these
cases.

The basic service network design mathematical models take the form of deter-
ministic, fixed cost, capacitated, multicommodity network design (CMND)
formulations [26, 12, 16]. Let S represent the service network, defined on a
graph representing the physical infrastructure of the system (yards, stations,
and the rail links connecting them), which specifies the transportation ser-
vices that could be offered. Each potential service se€S is characterized by
a number of attributes such as its route, capacity measured in number of ve-
hicles, length, total weight, or a combination thereof, service class indicat-
ing the speed and priority, as well as, eventually power type, preferred traf-
fic or restrictions, etc. When schedules are to be determined, a time-space
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network G = {N,A} is introduced (see Fig.2). Nodes representing the termi-
nals (yards and stations) of the system are repeated at all periods (e.g., days) of the
considered planning horizon (e.g., a week) yielding the set N. Nodes in N repre-
senting the same terminal at two consecutive time periods are connected by holding
arcs, and departure times from origin, as well as arrival at and departure times from
intermediary stops are associated to each service. Set A is then the union of the
holding and service arcs. The service network is used to move commodities p € P
defined by their origins, destinations, the period of availability at origin and, even-
tually the due date at destination, the type of product or vehicle to be used, priority
class, and so on. The demand for product p is denoted d,,. Traffic moves according
to itineraries defined within the model as service paths [ € £P for commodity p,
each specifying the intermediary terminals where operations (e.g., consolidation or
transfer) are to be performed and the sequence of services between each pair of
consecutive terminals where work is performed.

Flow routing decisions are then represented by decision variables hf indicating
the volume of product p moved using its itinerary / € L7, and service selection
decision variables y;, s € S, define whether the particular service is operated (i.e., it
will leave at the associated departure time) or not. Let y = {y;} and & = {hf } be the
decision-variable vectors. Let also f; denote the “fixed” cost of operating service s
and cf stand for the unit transportation cost along itinerary / € £? of commodity p.
The core service network design model minimizes the total generalized system cost,
while satisfying the demand for transportation and the service standards:

Minimize Z fovs + Z Z PR+ By, ) (1)
€S PEP leLP

subject to Z h) =d,, peP, 2)
leLr
ys €{0,1}, s€8, 3)
h} >0, leLP, peP, “4)
. h) € x, )

where ¢(y, h) indicates additional restrictions, e.g., service capacity, expressed as
utilization targets, which may be allowed to be violated at the expense of additional
penalty costs. Relations 5 stand for the classical linking constraints (i.e., no flow
may use an unselected service), as well as for additional constraints reflecting partic-
ular characteristics, requirements, restrictions, and policies (e.g., particular routing or
load-to-service assignment rules) particular to the carrier considered in application.
The class of models represented by the previous formulation does not account
for the utilization of assets. Yet, to adequately plan operations according to a full-
asset-utilization operating policy requires the asset circulation issue to be integrated
into the service network design model. Adding constraints enforcing the conserva-
tion of the flow of vehicles at terminals is the first step in reaching this goal. These

constraints take the form
Doy = > v =0, i€N, ©)
€S seS
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where si* indicates the services that arrive and stop or terminate at node (yard)
i € N, while si~ stands, symmetrically, for the services that initiate their journeys
or stop and depart from node i. The resulting models, denoted design-balanced ca-
pacitated multicommodity network design (DBCMND) by Pedersen, Crainic, and
Madsen [28], account for coherent movements in and out of terminals (particularly
when‘“empty” movements are allowed) and yield cyclic and repetitive schedules for
the fleet of vehicles associated to services.

This generalization of the CMND model has not been studied much. A few appli-
cations may be found in planning maritime liner [9] or ferry [22] routes and express
postal services, e.g., [6, 21], where vehicles, ships and airplanes, have high acquisi-
tion and utilization costs and their management is central to the efficient operation of
the system. For land-based carriers, while empty-vehicle considerations were usually
part of the most comprehensive service network design models, the emphasis was not
on the management of the fleet. Thus, for example, Powell [29] considered the bal-
ance of loaded and empty truck balance at terminals in a static model for designing
Less-Than-Truckload motor-carrier services that did not consider vehicle schedules.
For rail, Crainic, Ferland, and Rousseau [15] (see also [18]) addressed the issue by
adding a product to represent the demand for empty-car repositioning movements.
The model was static and no asset schedule or route considerations were explicitly
included. More recently, Smilowitz, Atamtiirk, and Daganzo [30] developed a time-
dependent formulation similar to the one presented above for truck operations within
an express postal network and proposed a particularly tailored procedure where,
first, the linear programming relaxation of the problem is solved (approximately,
for large problem instances) using column generation and, second, a feasible solu-
tion is obtained by applying repetitively a sequence of rounding and cut-generation
procedures.

The DBCMND is a difficult problem with an added “complexity layer” com-
pared to the CMND and much work is required to study it and develop efficient
exact and heuristic solution methods. A few efforts are under way. Pedersen and
Crainic [27] studied the design of a network of shuttle intermodal trains in Europe
using a DBCMND model that included detailed yard operations (excluding car clas-
sification). The resulting formulation was sufficiently small, however, to allow com-
mercial software to be used. Pedersen, Crainic, and Madsen [28] introduced arc and
cycle-based DBCMND formulations and proposed a two-stage, tabu search-based
meta-heuristic that is shown to be efficient for problem instances up to 700 service
arcs and 400 commodities. Andersen, Crainic, and Christiansen [3] extended the arc-
based formulation to account for coordination of multiple fleets and synchronization
of schedules among subsystems. The analysis was performed within the scope of the
design of new north-south intermodal services in Central Europe and emphasized the
benefit of increased inter-system integration and coordination. The same authors also
studied various DBCMND formulations, where product flows were represented ei-
ther by arc or path variables, while design decisions were represented either by arcs
or cycle variables [2]. Notice that the latter correspond to circuits of vehicles, the
service selection (design) decisions becoming thus implicit in the selection of strate-
gies for fleet management. Commercial software was used for experimentation and
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results showed a very good computational behavior for cycle-based formulations in
terms of computational efficiency and quality of the final solution (when the optimal
solution could not be reached within the time available). Recently, Andersen et al. [4]
proposed a first branch-and-price algorithm for the generic cycle-based DBCMND
formulation.

The contributions briefly reviewed above are very encouraging, but significant
work is still required on models, algorithms, and applications. Regarding models, we
need to better understand the DBCMND class of formulations and their properties.
Initial results seem to indicate that cycle-based formulations outperform arc-based
ones, but more in-depth studies are required to fully characterize the various formu-
lations and explain their respective behaviors. Work is also required in developing
tighter lower and upper bounds on the optimal solution to these formulations. La-
grangean relaxation and decomposition approaches have provided interesting results
for other classes of network design problems and are worthy of investigation in de-
veloping good lower bounds for DBCMND problems. Using the solutions of lower
bound methods to compute “good” upper bounds proved difficult for CMND prob-
lems and we expect it to present an even greater challenge for DBCMND problems
for which identifying feasible solutions is proving to be far from trivial [28].

Turning to applications, stating a DBCMND formulation is generally only the
first step to a complete model. Actual railroad planning applications bring a rich
set of additional constraints that add both to the realism and the complexity of the
formulation. Pedersen and Crainic [27] thus discussed the need for a more general
definition of “period” within time-dependent formulations to capture adequately the
time intervals when services overlap at terminals and inter-service transfers may be
performed. The authors also emphasized the need for a more detailed representation
of terminal operations than it is usually the case in service network design models to
capture their delay and capacity impacts on the general performance of the system.
This aspect is also emphasized by Andersen, Crainic, and Christiansen [3] who de-
tailed the operations in terminals connecting the system studied to adjacent maritime
and land systems, and presented a first quantification of the benefits of synchronizing
services both internally, among services using possibly different vehicle fleets, and
externally with services belonging to neighboring systems. The authors also exam-
ined and quantified the impact of a number of fleet-management considerations, such
as limits on the length of vehicle routes and bounds on the number of departures for
particular services. One need to follow up on these early efforts by focusing on two
main areas. One the one hand, the study of integrating fleet management and service
network design must be continued to identify relevant issues and the most appropri-
ate modeling approaches, and to analyze their impact on the resulting transportation
plan and, ultimately, on the performance of the rail system. On the other hand, the
models must be enriched to account for other important planning issues, such as
congestion related to yard (and, eventually, line) operations and the management of
more than one class of assets.

Last but not least, significant algorithmic work is required. The methods
proposed so far addressed simple model formulations and have often been tested
on problem instances that do not cover the full dimensions of actual large-scale
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applications. Both exact and meta-heuristic solution methods must be developed
for the models described above. Given the dimensions and complexity (e.g., in the
number of interacting and possibly conflicting components) of these formulations,
we expect parallel optimization approaches to play an important role in addressing
real-life applications.

4.2 Additional Issues

Many other issues related to the planning and operations of intermodal and, more
generally, consolidation-based freight transportation offer rich research challenges
and opportunities.

Consider, for example, that, although bookings tend to “smooth” out demand, the
variability inherent to the system is not altogether eliminated since regular operations
tend to be disrupted by a number of phenomena. Thus, for example, ocean liner ships
do not always arrive at container port terminals according to schedule and custom
and security verifications may significantly delay the release of containers. When
this occurs, rail intermodal operations out of the corresponding ports are severely
strained: there might be several days without arrivals, followed by a large turnout
of arriving containers. Optimization approaches [14] may be used to adjust service
over a medium-term horizon in such a way that a full-asset-utilization policy is still
enforced, but a certain amount of flexibility is added to services to better fit service
and demand. Such approaches may become even more effective when appropriate
information sharing and container-release time mechanisms are implemented.

Among the other relevant challenging research issues, let’s not forget the explicit
consideration of stochastic elements in tactical planning models. Preliminary results
[23] indicate that the plans thus obtained are different and “better”” from a robustness
point of view than those of traditional deterministic models, but much more work
is needed in this field. Terminal planning issues also require attention. While the
literature dedicated to container port terminals is rather rich, there is almost nothing
dedicated to rail yards within the intermodal context (the work by Bostel and Dejax
[8] is the only exception we are aware of and it is directed toward an innovative but as
yet not implemented rail transportation system). On a more operational level, work
is required relative to detailed fleet management procedures to mitigate the impact of
incidents and accidents on service and to guide the process of getting back to normal
operations following such disruptions.

5 Conclusions

We have discussed a number of service and operating strategies railroads pro-
pose to improve the performance of their operations, increase their market share
of intermodal traffic, and efficiently compete with trucking in offering customers
timely, flexible, and “low”-cost transportation services. This evolution, including the
advance bookings and full-asset-utilization policies increasingly implemented by
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existing and planned railroad intermodal systems, challenges current models and
methods for the design of services and the management of operations. Focusing on
tactical planning issues, we have briefly examined these impacts and have identified
research challenges and opportunities.
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Summary. Supply Chain Management (SCM) is an important activity in all producing orga-
nizations. To determine efficient policies over a given time interval, it is necessary to consider
a simultaneous dynamic estimation and optimization algorithm over the disposable data base.
The aim of this paper is to present the Data Driven algorithm, describe its implementation and
show through some preliminary applications its potential advantages. To ensure that Certainty

Equivalent optimal policies prevail this aspect will be analyzed.

Key words: Optimal estimation and control, Dynamic nonlinear, Supply chain man-
agement

1 Introduction

Positive synergisms can be enhanced by appropriate Supply Chain Management
(SCM) policies in an organization. These benefits can be obtained by studying suit-
able dynamic and nonlinear mathematical models of the activities to be pursued.
These dynamic and nonlinear processes permit a careful monitoring of the
changes in the actions in time and the mutual combination of the results of different
actions [16]. However, if these decision making mechanisms are not carefully de-
signed, since activities may have greatly differing requirements, instead of achieving
greater levels of efficiency, the supply chain policy formulated may incur in severe
instabilities, indeterminacy in the process and be technically uncontrollable [8].
Mathematical System Theory [12] permits the formulation of Dynamical sys-
tems, under various conditions, as non anticipatory functional forms and can be
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solved as multi-objective dynamic nonlinear problems, useful in representing gen-
eralized SCM structures with many agents. Nonlinear multi functions or point-to-set
maps are essential to formulate accurate optimal robust SCM plans [2] and to ana-
lyze uncertainty and feedback.

Model relationships and parameters are difficult to determine a priori or by expe-
rience, as they evolve in unpredictable ways, so suitable simultaneous estimation and
optimization algorithms must be formulated to specify the model. In fact these rela-
tionships must be determined as instruments to control accurately the phenomenon,
rather than as realist approaches [9]. In such implementations the problem of es-
timability, stability and certainty equivalents of policies become fundamental [18]
[20], but these are often not considered [15]. In large scale models with dynamics,
nonlinearities and uncertainties ignoring these aspects may be perilous [10].

Model estimates may be biased, heteroscedastic subject to excessive distur-
bances, while the residual disturbances tend to be serially correlated [6]. So proper
estimation techniques must be effected, to absorb all systematic variation by for-
mulating a simultaneous estimation dynamic nonlinear optimal algorithm, such that
disturbances are subject to suitable constraints, which will ensure that these satisfy
all the required statistical conditions [8, 17].

The form of the relationships of the model and their coefficients must be deter-
mined in the space of the parameters and the values of the control variables must
be determined in the space of the variables. Since it can be shown that these two
spaces are interrelated, a simultaneous optimization algorithm to solve the combined
problem must be defined [8].

The aim of this paper is to present this algorithm, describe its implementation
and show through some preliminary applications its advantages. In particular it will
be shown how certainty equivalents of optimal policies can be obtained in spite of
stochastic disturbances and uncertainties.

The outline of the paper is the following. After the introduction, the formulation
of representative dynamic nonlinear stochastic system of supply chains is presented
for a multi-level process. In Sect. 3 the proposed dynamic system algorithm and the
certainty equivalence of a system are described, while the major statistical properties
are indicated, in Sect.4. Then in Sect.5 an application will be presented, showing
comparative results of various solution strategies. Finally appropriate conclusions
will be drawn.

2 Analysis of SCM Activity

Optimal production levels in a firm with multiple stages depend on economies of
scale and the integrated SCM policy. The determination of an optimal SCM plan is
a complex nonlinear dynamic problem with stochastic elements and uncertainties, in
which all the various decisions must be evaluated simultaneously.

The aim of this section is to characterize a model of a SCM system integrated
with a set of representative stages, such as inventory, production policy and distribu-
tion and marketing management stages.



Dynamic SCM Planning 71

Inventory management policies pervade all the stages of production of a firm and
involve management decisions regarding raw-materials, goods in process and manu-
factured goods, which will be collectively indicated as items. It follows therefore that
at each intermediate stage between departments and plants items inventories must be
considered [11].

The demand and the cost schedules associated, with inventory management
should be generally considered as stochastic processes, changing in time as non-
stationary stochastic processes [11]. Without loss of generality, assume that no back-
logging occurs. Also a particular lost sales policy is allowed and the limit may be
specified.

Multi-level proportional lot sizing and scheduling problems may be proposed
with given lead times in production [13] under the general structure of empirical
processes.

Definition 1. An Empirical Process is an ordered set of dated Input and Output vari-
ables arranged hierarchically in the form of a Gozinto chart or some similar suit-
able hierarchical scheme, subprocess by subprocess, to formulate a flow model of
the potential operations to be carried out on the underlying phenomenon, so as to

determine suitable optimal controls, with respect to some merit function [5].

Limited capacity is also assumed and demand is considered varying, but contrary
to many other formulations all the data relevant for the planning process is not as-
sumed deterministic, but must be obtained from the past operations. Machines break
down and uncertain events may occur. The operational time for activities is not usu-
ally a constant, but depends on a number of environmental aspects.

Dynamic adaptive stochastic diffusion processes are considered for sales models
to determine the global SCM plan [3]. The consumption is influenced by a series
of events which are random and sequential and depend on environmental factors and
Marketing mix plans.

Consumers can be divided into two broad categories:

e Innovators: groups of consumers who are attracted by the novelty of the prod-
uct and therefore respond well to mass communication through promotion and
advertising.

e Imitators: groups of consumers more conservative than the previous group, who
react mostly from word of mouth communication.

Without loss of generality assume that the number of individuals who purchase
a product at time ¢ is the same as the number of units of the product purchased, since
every consumer purchases one unit of product in the period [14] and each group will
be characterized by the segment of each group.

Consider the following symbols:

° _}‘6/ (q‘,i , 1) be the non negative setup cost for item j for a quantity q‘,i at period ¢,
o fi (I}i_ \» 1) be the non negative holding cost for holding one item j in stock at time ¢ for one
period until time 7 + 1 regarding I,j items present at the initial period ¢,
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R*(IL, .. IB 1) k= 1,...,K, be the K, physical space, budget and other capacity con-
straints which must be satisfied in period t,

D/ = di(n/(1)) be the demand for the item j at time 7,

J number of items considered in the system,

a;; is a ‘gozinto’ factor. Its value is zero if item j is not an immediate successor of item i.
Otherwise its value is set at 61{ , the quantity of item that is directly needed to produce one
item j,

C" be the available capacity of machine m in period f,

I;i Inventory item j at the end of period ¢,

71, be the set of all items that share the same machine m,

M be the number of machines,

m/ the machine on which item j is produced,

pf,t capacity needed for producing one unit of item j on machine m,

S j be the set of immediate successors of item j,

T be the number of periods considered,

v; Positive and integral lead time in production for item j,

qf acquisition or production quantity of item j at time ¢,

x,i binary variable to indicate whether a setup for item j occurs in period ¢, (x,j = 1) or not
(x/ =0),

n/(f) number of individuals which will purchase an item j in the interval (¢, + 1),

Y/(¢) marketing and distribution activities in period t,

a’l (t, Yi(), Yi(t=1),--- ,Yi(t - k)) innovation coefficient relative to product j at time t,
conditioned on the past marketing activities Y/(¢), Y/(¢ — 1),--- , Y/(¢t — k), for some k < ¢,
bi(t, Y/(t, k)) imitation coeflicient relative to product j at time ¢, conditioned on the past
marketing activities as above,

N/ (t, Yi(t=1),Y(t-2), -, Yi(t- k)) total number of potential consumers of item j at
time ¢ and subject to marketing and distributional influences Y/(¢ — k), for some k <z,
N/(t) total number of potential consumers that have purchased the item j from the initial
period ( 0 ) to the present ¢,

r (nj (t)) be the net revenue function for the sale of n/(f) units of items j in period ¢ which

will include the direct marketing cost Y/(7) .

The specification of suitable typified representation of the SCM decisions model

permits the dynamic system structure to be formulated:
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J T T
Max F = {Zr(n-’m)—Zf:f(q{,r)x{+f-f<1,f_1,r)/2} (1)
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The revenue for the firm is determined from the sales of the items and inven-
tory management costs, including production setup and holding costs in (1) over
the time interval. The amounts of items acquired or produced in any period, as
relevant, are given by ¢/ and the binary variables x/ indicate whether at time ¢ a
quantity is ordered or launched in production. The amount of items in stock avail-
able at time ¢ + 1 for each good j = 1,2,...,J are specified by (2) — (3). A set of
equations (4) specify the limitations on the inventory, production or physical space
limitations.

The set of equations (5) permits the production of item j to be cycled on the
machine / at time ¢ to continue the production from the preceding period if y—1) = 1,
without any additional setup cost for the period ¢, as the (8) since if y'(jl_l) =1, y{ =1

then (yf - V(jz—n) = 0 then the binary variable x',j = 0 due to the maximization of (1).
The capacity of any machine m must be sufficient to produce the desired
items, considering the capacity required for each item, as indicated in (6). In the
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set of equations (7) the production of an item j is launched only once on a machine,
while the (8) manage the eventual continuity of production, as indicated above.

The sales predicted in each period ¢ is indicated by the (9) for each item (which
also may be null). In (10) the demand for each item is derived from the sales by
decomposing the ‘Gozinto’ charts, primarily on applying the (2) and (3), but actually
the whole system is involved.

The number of items predicted depends on the appropriate consumer segment,
depending on complex coefficients. The functional form and the parameters must be
determined from the (11) and (12), while the values of the variables of the marketing
mix must be determined over the time periods by maximization. The last four sets
equations (13)—(16) limit the variation of most of the variables.

Due to the non stationary characteristics of the stochastic process, the cost and
demand schedules will depend on the optimal level and other dynamic aspects, as
well as the functional form and the parameters which should be determined. The
model must be estimated and optimized simultaneously with respect to the historical
data time series processes of the firm for the whole Dynamic System and the ac-
tivities from ¢t = -Ty,---,0,1,---, T, where the period (-Tg, - - - ,0) is the known
historical period, while the prediction interval is specified as (1,---,T).

3 Dynamic System Models

Dynamical Systems are useful to refine concepts and represent applications by ap-
propriate modeling, while whole hierarchies of phenomena may be represented by
such systems.

Definition 2. [12]: A Dynamical System is a composite mathematical object defined

by the following axioms:

1. There is a given time set T, a state set X, a set of input values U, a set of accept-
able input functions Q = w : Q — U, a set of output values Y and a set of output
functionsI' =y : " - Y.

2. (Direction of time). T is an ordered subset of the reals.

3. The input space Q satisfies the following conditions:

a) (Nontriviality). Q is nonempty.
b) (Concatenation of inputs). An input segment wy, 1), w € £ restricted to
(tL,)NT. Ifw, € Qand t; < t < t3 there is an "’ € Q such that
zgz,ts] = wglz’ls]'
4. There is a state transition function ¢ : TXT XXX Q — X whose value is the state

’7 _
WG ) = W) and w

x(t) = p(t; 7, x, w) € X resulting at time t € T from the initial state x = x(1) € X
at the initial time T € T under the action of the input w € Q. ¢ has the following

properties:
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a) (Direction of time). ¢ is defined for all t > T, but not necessarily forall t < 1.
b) (Consistency). p(t;t, x,w) = x forallt € T, all x € X and all w € Q.
¢) (Composition property). For any t; < t, < t3 there results:

o(t3;t1, x, W) = P33 12, P(t2; 11, X, W), W)

forall x € X and all w € Q.
d) (Causality). If v, " € Q and wep = wzm then o(t; T, x, W) = @(t; T, X, W').
5. There is a given readout map n : T X X — Y which defines the output y(t) =
n(t, x(¢)). The map (t1,t] — Y given by o — n(o, (0, 7, x,w)), o € (1,t], is an

output segment, that is the restriction vy of somey € I to (7, t].

From the accounting data and the ‘gozinto’ charts, input U and output Y sets of
dated quantities are obtained. As the process may be highly nonlinear with marked
lags, intermediary vectors, indicated as states x; € X are used with an opportune
transition function. The effect of activities at an instant ¢ on the state of the system
is called an event, specified as (¢, x),t € T, x € X. A trajectory may be understood as
the graph of the state as a consequence of the variation in time, given as (f, ¢(x;, u;)).

A sufficiently general representation of a dynamic system may be formulated,
with a slight abuse of notation, in the following way:

Xee1 = @(Xg, 1) (17
v = n(x;) (18)

where:

e x, € X is the vector of the state of the dynamical system at period ¢
e 1, € U is the vector of the control variables of the dynamical system at period ¢
e y, € Y is the vector of the output of the dynamical system at period ¢
Dynamical systems are based on intermediary set of states and transition func-
tions, by applying the simultaneous estimation and optimization algorithm to deter-

mine the State set X and the transition function [19]. Under appropriate conditions
the representation of the system will result unique, as will be indicated below.

Definition 3. Given two states x;, and %,, belonging to systems S and S which may
not be identical, but have a common input space Q and output space Y, the two states
are said to be equivalent if and only if for all input segments wyy, ;) € Q2 the response
segment of S starting in state x,, is identical with the response segment of S starting

in state %;,; that is

X1y = Xy © N, @(Xgy, Wpreon) = A PRy, W) VEET, 10 < 1, Vwpy ) €S, S
(19)
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The systems S and § may be two representations of a SCM system and their
policies.

Definition 4. A system is in reduced form if there are no distinct states in its state

space which are equivalent to each other.

Suppose the actual system consists in reduced form, derivable from the firm’s
data base.

Definition 5. Systems S and S are equivalent S = S if and only if to every state in
the state space of S there corresponds an equivalent state in the state space of S and

vice versa.

Remark 1. Certain aspects of the SCM representation and the policy that entails
should be determined:

1. Can a certain state s* € S be reached from the present state, or if the dynamical
system attains a given state x; at time ¢ = 0 can it also be made to reach a certain
state x*. Evidently it is required to determine the set of states reachable from a
specific state x;.

2. Can a dynamical system be driven to a given state by an input u,. Controllability
is concerned with the connectedness properties of the system representation.

3. Reachability and controllability lead naturally to the determination of a dynami-
cal system’s observability, which provides the conditions to determine the given
actual state uniquely.

4. The stability of the system is important since it provides conditions on the way

the trajectories will evolve a given perturbation or an admissible control.

Reachability, controllability and stability are seldom formally examined in SCM
policy formulation, although at every period, exogenous events can arise to nullify
even the best plan formulated, because the controllability of the system was not re-
searched. So these aspects should be studied to ensure the feasibility of the SCM
policy.

Definition 6. Simple and multiple experiments involve different sets of inputfoutput

pairs:

o A simple experiment is an input/output pair (U, 5, Yir,.n) that is, given the system
in an unknown state an input uy, 5 is applied over the interval of time (ty, t) and
the output yy, 1 is observed.

o A multiple experiment of size M consists of M input/output pairs (ufto’[),yfto’t) i=

1,2, ..., M) where on applying on the i-th realization of the M systems the input

(M’[AW)), the i-th output y’tto’t) is observed.
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While a simple experiment is thought as a stimulus and response experiment,
multiple experiments are more complex and define multi-determined reactions, such
as synergisms of the system.

Definition 7. A system is simply (multiple) observable at state x,, if and only if a
simple experiment (a multiple experiment) permits the determination of that state

uniquely.
Definition 8. Equivalence of dynamic systems can be distinguished:

o Two systems are simply equivalent if it is impossible to distinguish them by any
simple experiment.
o Two systems are multiply equivalent if it is impossible to distinguish them by any

multiple experiment.
Theorem 1. [12]: If two systems are multiply equivalent then they are equivalent.

Definition 9. A system is initial-state determinable if the initial state xo can be de-

termined from an experiment on the system started at Xx.

Theorem 2. [12]: A system is in reduced form if and only if it is initial-state deter-

minable by an infinite multiple experiment.

The Definitions 6-9 and the results given in Theorems 1-2 formally justify the
possibility of defining one or more representations of the dynamical system. The
distinction between systems that are simply equivalent and multiply equivalent is
crucial, as comparative static or equilibrium models will be simply equivalent, while
for the analysis of dynamical systems which are multiple equivalent allow to compare
different representations and determine the optimal trajectory for the system.

Thus consider,

Definition 10. An ex ante solution is a solution formed in a given period t based on
anticipated outcome of future activities maturing in period t + 1 and consists of the

forecast of the optimal values of the control variables.

Definition 11. An ex post solution is a solution formed in a given period t, regarding
outcomes of activities maturing in period t + 1 which are assumed known (with fore-
knowledge), in period t so as to determine the optimal values of the control variables

in period t + 1.

Let a phenomenon be represented by a multiply equivalent dynamic system in an
initial-state determinable and the state in period ¢ + 1 be predicted in period 7. The
state at 7+ 1 may be obtained from a representation of another copy of such a system
in the period ¢ + 1. The state of period ¢ + 1 predicted in period ¢ on the basis of the
knowledge in the same period, will be equivalent to the state at period ¢ + 1 on the
basis of the knowledge at period ¢ + 1, which is indicated as the ex post state.
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Theorem 3. An ex ante multiply equivalent Dynamic system in an initial-state is
equivalent to an ex post system, also a multiply equivalent dynamic system in an
initial-state.

Proof: By Theorem 1 the ex ante dynamical system is multiply equivalent and its
initial state is in reduced form by Theorem 2.

Furthermore by the same reasoning the ex post dynamical system is also a mul-
tiply equivalent and its initial state is in reduced form.

By Definitions 4 and 5 they are state equivalent.

Corollary 1. A Certainty Equivalent solution consists of an optimal solution to an
optimization problem determined as an ex ante solution in the control variables u*
which are also optimal ex post.

The state of the systems are equivalent if the state transition functions do not
exhibit significant random variation. The eventual random variation will be negligi-
ble, but the expected value of the disturbances in both cases will assume null val-
ues while the variance of the processes may be positive, but the autocorrelation and
cross-correlation must be zero and the processes are stationary.

This formulation is analogous to the properties derived earlier by different
methods [18, 20].

No limitations have been enforced for the output equations (18). The random dis-
turbances of these forms may vary. The income resulting, as an output variable may
differ, due to disturbances, although optimal solution values of the control variables
will be identical in the two processes.

The SCM dynamic estimation problems and optimal policy determination should
be formulated by such an approach with a data driven formulation.

4 Specification of the Statistical Properties

All the statistical properties of given estimates of the residuals should be fulfilled at
every iteration, so suitable constraints must be defined, together with the specifica-
tion of the model of the phenomenon and the global optimization problem should be
solved for all the undetermined variables. Thus a number of independent statistical
properties must be satisfied, which may be represented as:

Y(Xie 15 X, Uiy Yir 1, Yis Wi V1, 01,62) 20 t=1,2,---, T (20)
where:

e w,, v, are random residual disturbances, to be determined so that a number of conditions
specified in the set of equations (20) are satisfied,

e 0,0, are parameters to specify the system, such that the conditions specified by (20) are
satisfied.
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The set of statistical conditions that the residuals must satisfy to obtain the correct

estimates are the following [8]:

1.

W

The parameter estimates are unbiased, this means that:
e As the size of the data set grows larger, the estimated parameters tend to the
asymptotic (true) values.

. The parameter estimates are consistent, which require the following conditions

to be satisfied:

e The estimated parameters are asymptotically unbiased,

e The variance of the parameter estimate must tend to zero as the data set tends
to infinity.

. The parameter estimates are asymptotically efficient,

e The estimated parameters are consistent,
e The estimated parameters have smaller asymptotic variance as compared to
any other consistent estimator.

. The residuals have the smallest possible variance and to ensure that this is so:

e The variance of the residuals must be minimum,
e The residuals must be homoscedastic,
e The residuals must not be serially correlated.

. The residuals are unbiased (have zero mean).
. The residuals have a non informative distribution (usually, the Gaussian distri-

bution). If the distribution of the residuals is informative, the extra information
could somehow be exploited by reducing the variance of the residuals, their bias
etc. with the result that better estimates are obtained.

Through a correct implementation of statistical estimation techniques, a set of

equation (20) can be specified. The parameter estimates are as close as possible to
their asymptotic (true) values, all the information that is available is used to deter-
mine precise estimates, so the residual uncertainty and the approximation in the data
fit is reduced to the maximum extent possible. Thus the estimates of the parameters,
which satisfy all these conditions, are the ‘best’ possible in a ‘technical sense’ [1].

To the SCM algorithm to determine the optimal policy, indicated by the system

(1)-(16) must be added the statistical conditions described above. This can be indi-
cated, for clarity as:

T
Min J = ) c(x;,u,yr) (21)
=1
Xee1 = @O, Ug, Yo, Wy 61) t=-Ty,---,0,1,2,---, T -1 (22)
Ver1 = (g, g, vp 2 62) t=-Ty,---,0,1,2,---, T -1 (23)

0 < 7(x1+l»xz’ uz’yt+l»)’z»wz»vz’ 91392)3t = _TH3' o 503 1»“ : »T - 1 (24)

where the system has been expressed as a coherent dynamical system reformulated
from system (1)—(16) and the statistical conditions constrains that have been speci-
fied summarily above.
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For major clarity, but with no loss of generality, in this representation, opportune
terms are added to each expression as residuals wy, v, and parameters 6, 6, to be
determined to satisfy the conditions.

By recursing on the specifications, i.e. by changing the functional form, and in-
creasing the number of independent variables considered, better and better fits can
be obtained, both with regard to the historical data and the predicted optimal control
policy, so the optimal control problem (21)—(24) will be solved iteratively.

The mathematical program will be formulated with respect to the residual vari-
ables, but it is immediate that for a given functional form, the unknown parameters
will be specified and thus the unknowns of the problem will also be defined and
available. Thus the mathematical program is fully specified for each functional form
to be considered.

In fact the residual terms are given from the (22) and (23) as:

X1 — (&, g, 91 2 01) t=-Tyg,---,0,1,2,---, T =1, heQ (25)
)A’z+1_77k(xz’uz’vt:92) t=—TH,~-',(),1,2,-'-,T—1, ker (26)

Wy

Ve

where 7, as usual indicates the historical values of a variable and thus suitable values
of 61,6, must be determined by the mathematical program, such that all the con-
straints expressed in terms of w;, v; Vi are specified.

The constraints which are added regarding the residuals imply the satisfaction of
the moments of the Gaussian distribution function [8].

Remark 2. The proposed algorithm dominates the traditional procedures. The algo-
rithm determines always a solution which satisfies all the statistical conditions posed,
if the system is feasible, or no solution is determinable.

This solution will ensure that the parameter estimates are unbiased, consistent,
asymptotically efficient estimates with minimum variance and the residuals have fi-
nite variance and are unbiased. If the estimates determined are sufficiently precise,
which can be obtained by appropriate modifications in the model specification, cer-
tainty equivalence of the solution will be satisfied by Corollary 1.

5 Computational Results

The SCM problem are traditionally formulated as a three stage problem in which the
functional form and the parameters estimates are considered known, so that the op-
timal policy can be determined conditioned on these aspects. Potential uncertainties
are not considered ex ante which will render the ex post solution unacceptable, as
Theorem 3 is not satisfied.

A Dynamical system formulation of the model, determined by a simultaneous es-
timation and optimization system as described in Sect. 4, the global objective func-
tion will consist of the maximization of the revenue over an interval of time. The
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state and input output system equations are formulated for each stage consecutively.
All the variables must be integrated in a global structure, redefined in a coherent
consistent way [8] so that the solution will satisfy all the statistical conditions, as in
Remark 2 and the optimal solution will consequently satisfy Theorem 3.

The aim of this section is to show by an application that all the results of this
paper are fulfilled. Of course extensive experiments are deemed, but these results are
useful to show this objective.

This approach was implemented and solved with the algorithm and for compari-
son purposes two commercial routines: Lancelot, [7] and Cplex [4] were used with
differing estimation procedures.

A simulation of a firm was carried out for illustrative purposes, represented by
48 variables and 18 control variables derived from the system (1)—(16). Also 23 rela-
tionships were obtained for the system by considering 2 raw materials, 2 production
units and 2 marketing mix variables each consisting of five marketing variables with
regard to two manufactured goods.

The 48 variables represent the state variables and the output variables at each
period, such as the stock of the two manufactured goods, two raw materials and
semi manufactured items, as well as the labor employed on each production unit and
the number of individuals who will purchase a manufactured good in that period,
the revenue and costs in the period and so on. Instead the 18 control variables for
each period include the 10 marketing variables and the price levels chosen and the
intermediary six items to carry out the production.

Many non linear and dynamic relationships were introduced in the simulation, as
evident in Fig. 1. On the basis the optimal policy for the next six periods the optimal
policies were determined and compared.
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Fig. 1. Time series for income in monetary units

The following algorithms were implemented and the results are shown in
Tables 1-3 and in Fig. 2:

1. The average values of the coefficients were obtained from the dated values of the
perturbed coeflicients, used in the simulation, to specify the non linear system to
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be solved for the next 6 periods with Lancelot, applying the non linear model.
The income obtained was 211,227,602 m.u.(monetary units) over the six periods.

2. The estimation of the parameters of the system was determined by S.P.S.S. based
on the simulation data set. The optimal solution over the same is determined by
a linear system since it is solved by the Cplex linear program, and an income of
197,167,817 m.u on six periods were predicted.

3. The C.A.s.S.a.n.D.r.A. routine was applied on the data set to solve the simul-
taneous estimation and optimization problem regarding the dynamic relation-
ships for the prediction over the next six periods, with a predicted income of
217,708,547 m.u.

In the first implementation, the model is influenced by random variation and dy-
namic effects, yet the non linear specification of the system leads to an improvement
of 7.13% over the second implementation. The effect of applying dynamic parame-
ters and non linear relationships in C.A.s.S.a.n.D.r.A. leads to a further improvement
of 4.02% over the first implementation, while the aggregate improvement of this non
linear implementation over the linearized three stages implementation was 11.15%.

The Lancelot solution yields a haphazard unstable development path, probably
not acceptable to Management, but it reflects the behavior of the income curve in the
past. These aspects are consequential to the approach consisting of three stages as
indicated in Sect. 1 and Remark (1 sub 4).

The improvement in performance with a simultaneous estimation and optimiza-
tion approach is relevant, as indicated in Sect. 3, while the consideration of linear
modelization leads to relevant inefficiencies.
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Fig. 2. Comparisons of SCM plans for different implementations

The Cplex implementation provides a linear growth of income, due to the use of
a linear program as the optimization instrument and an estimation process linear in
the parameters, so the ex ante solution may be comforting as an equilibrium growth
could be appreciated but this solution is unrealistic and inefficient.

The growth trajectory indicated by the C.A.s.S.a.n.D.r.A. routine is stable and
provides the best results in apparent adverse market conditions. The ex ante solution
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Lancelot
Variable pd.1 pd.2 pd.3 pd.4 pd.5 pd. 6
V4100) 185.0 191.8 192.0 192.3 192.0 192.6
Yl (o) 199.1 199.0 199.0 199.9 199.1 199.0
Yo 199.0 199.0 199.0 199.0 199.1 199.1
Yj() 199.0 199.1 199.1 199.0 199.1 199.1
Y@ 177.8 181.3 198.0 199.2 199.7 199.1
Y}(t) 14,103.0 14,103.0 14,103.0 14,103.0 14,103.0 14,103.0
Y2(5) 186.0 194.1 200.0 204.9 204.9 214.3
Y1) 186.0 196.1 202.3 206.9 206.9 214.3
Y2(0) 199.0 199.0 199.0 199.0 199.0 199.0
Y1) 161.4 162.1 180.0 212.6 212.6 308.2
Y2(5) 1,532.0  1,532.0 1,532.0 1,532.0  1,532.0 1,532.0
Y_%(r) 15,852.0 15,852.0 15,852.0 15,852.0 15,852.0 15,852.0
q! 667.0 667.0 667.0 667.0 667.0 667.0
q 472 204.0 205.0 204.0 204.9 204.9
q 472 504.0 205.0 204.9 204.9 204.9
q 208.0 19.6 196.4 199.0 199.0 204.4
@ 61.7 17.0 15.2 230.7 230.7 210.3
q° 0.0 144 10.7 0.0 0.0 75.1
Revenue(000)  33,135.3 36,642.6 149,409.0 2,9824  3,029.6  3,028.7

obtained is equivalent to the ex post solution, as Theorem 3 and Corollary 1 hold and
is confirmed by numeric values.

Some control variables Y}(t), Y_?(t) which are the prices to be levied for the man-
ufactured goods are analogous in the three implementations, while other control
variables exhibit pronounced variation between implementations, while for specific
control variables variation within an implementation may be large.

For the first two implementations the differences in many of the control variables
are large, while incomes are very close, except in one period, which implies that
multiple policies can be determined with very different control variables. There also
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Table 2. Prediction of optimal activities for six periods: Lancelot and Cplex algorithms

Cplex

Variable pd.1 pd.2 pd.3 pd.4 pd.5 pd. 6
Yl 7411.0 7,123.0 7,491.0 7,061.0 69240 7,023.0
YL (o) 0.0 0.0 0.0 0.0 0.0 0.0
VEI0) 0.0 0.0 0.0 0.0 0.0 0.0
Yj() 9,950.0 9,950.0 9,950.0 9,950.0 9,950.0  9,950.0
Y@ 4,000.0 4,000.0 4,000.0 4,000.0 4,000.0 4,000.0
Y}(t) 14,103.0 14,103.0 14,103.0 14,103.0 14,103.0 14,103.0
Y2(5) 60,000.0 60,000.0 60,000.0 60,000.0 60,000.0 60,000.0
Y1) 1.0 1.0 1.0 1.0 1.0 1.0
Y2(1) 2.0 2.0 2.0 2.0 2.0 2.0
V410) 4.0 4.0 4.0 4.0 4.0 4.0
Y2(5) 22,153.0 17,124.0 26,210.0 14,509.0 36,656.0 17,565.0
Y_%(t) 15,852.0 15,852.0 15,852.0 15,852.0 15,852.0 15,852.0
q! 8,900.0  8,900.0 8900.0 8,900.0 8,900.0 8,900.0
q 2,220.0 2,220.0 2,220.0 2,220.0 2,220.0 2,220.0
q 8,900.0 8900.0 8900.0 8900.0 8,900.0  8,900.0
q 1,000.0  1,000.0  1,000.0  1,000.0 1,000.0  1,000.0
@ 50.0 50.0 50.0 50.0 50.0 50.0
q° 5,510.0 5,510.0 5,510.0 5,510.0 5,510.0 5,510.0

Revenue(000) 32,862.0 32,8619 32,860.8 32,861.1 32,860.7 32,861.1

seems to be a multiplicative factor in the values of the control variables for the policy
determined for the C.A.s.S.a.n.D.r.A. algorithm compared to the Lancelot policy.
However, except for one period, which could be considered an outlier, the income of
the former policy is an improvement between 20-50%.

The stability of the solution of C.A.s.S.a.n.D.r.A. is due to the certainty equiv-
alent requirement, as with differing dynamic lags, the residual variance was always
of order 0.8 x 10~ and the estimated model is extremely close to the actual model.
This was verified in a number of implementations with different initial points and
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Table 3. Prediction of optimal activities for six periods: Cassandra algorithm

Variable
Y, ()
Y, (1)
Y (1)
410)
Y. (1)
Y1)
Y2(1)
Y2(0)
Y2(1)
Y7 (1)
Y2 (1)
Yo
ar

q

q

q;

q

¢

Revenue(000)

different initial models. In the S.P.S.S. application, the least residual variance was

pd.1

8,915.0
8,915.0
8,985.0
9,950.0
4,000.0
14,103.0
60,000.0
60,000.0
58,208.0
61,628.0
37,276.0
15,852.0
8,900.0
9,900.0
8,900.0
1,000.0
1,000.0
5,510.0

46,591.2

pd.2

8,915.0

8,915.0

8,985.0

9,950.0

4,000.0

14,103.0
60,000.0
60,000.0
58,208.0
61,628.0
37,276.0
15,852.0
8,900.0

9,900.0

8,900.0

1,000.0

1,000.0

5,510.0

26,988.7

Cassandra
pd.3 pd.4
8,915.0 0.0
8,915.0  8,195.0
8,985.0 0.0
9,950.0 0.0
4,000.0 1.0
14,103.0  14,103.0
60,000.0 1.0
60,000.0 1.0
58,208.0 2.0
61,628.0 4.0
37,276.0  156.0
15,852.0 15,852.0
8,900.0 170.0
9,900.0 222.0
8,900.0 500.0
1,000.0 50.0
1,000.0 50.0
5,510.0 250.0
26,988.7 19,904.5

pd.5

8,915.0
8,915.0
8,985.0
9,950.0
4,000.0
14,103.0
60,000.0
60,000.0
58,208.0
61,628.0
37,276.0
15,852.0
8,900.0
9,900.0
8,900.0
1,000.0
1,000.0
5,510.0

59,649.7

pd. 6

8,915.0
8,915.0
8,985.0
9,950.0
4,000.0
14,103.0
60,000.0
60,000.0
58,208.0
61,628.0
37,276.0
15,852.0
8,900.0
9,900.0
8,900.0
1,000.0
1,000.0
5,510.0

39,585.7

0.7 x 10°, which is reasonable as the data values vary and are very large.

The result obtained is encouraging and is in line with the methodological re-
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sults that have been expressed in Corollary 1, so further experimentation seems to be

worthwhile [8].

It follows from Theorem 3 that the ex ante solution is optimal compared to the

ex post solution, since all the conditions of the theorem and the preceding ones are

verified by the C.A.s.S.a.n.D.r.A. algorithm.
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Experimental comparisons cannot be carried out, since multiple copies of a real
firm are never available and balanced experiments performed on random selections
of multiple cases cannot be carried out in practice. It would seem that comparisons
of different algorithms, as proposed here, could never be carried out by realistic ex-
periments, but the approach formulated in this paper permits the formulation of an
instrumentalist approach isomorphically to proposed realistic experiments.

Suppose that an SCM over a number of periods is formulated with C.A.s.S.a.n.D.
r.A.. The solution is certainty equivalent, as indicated in Corollary 1. Further other
systems based on other assumptions may be formulated with similar precision if pos-
sible. Depending on their assumed structure simple or multiply equivalent systems
will be formulated, as indicated in Definition 5. Various ex ante solutions may be
determined which can be compared to the ex ante solution of the C.A.s.S.a.n.D.r.A.
algorithm, which is a proxy solution to the ex post solution (Theorem 3).

If a single experimental firm is available, the C.A.s.S.a.n.D.r.A. ex ante policy
can be enacted and this policy can be compared to the expost optimal solution deter-
mined at the end of the interval. The latter should be similar to the ex ante solution
and the comparative results with other solutions will indicate the efficiency of the
different approaches.

Clearly this experiment is isomorphic to a complete multiple experiment carried
out on the equivalent of many copies of experimental firms.

6 Conclusions

A Supply Chain Management system can be modeled by nonlinear stochastic and
dynamical systems, to avoid suboptimization arising from simplifications in the rep-
resentation. The analysis may be carried out at the highest level of generality with as
few a priori assumptions as possible. Data Driven modeling system should be used
rather than refer to managerial insights and anecdotal evidence.

Stochastic disturbances and exogenous events may modify the trajectories of de-
velopment so that the reachability of the goals should be ascertained periodically.
Also the controllability of the system must be checked periodically to ensure that the
system can still be controlled to achieve the desired aim. As the dynamic SCM sys-
tem will inevitably be subject to uncertainty, accurate plans may only be defined by
considering the properties of the dynamical system in a certainty equivalent context.

Within the Mathematical System framework presented in this paper, all the im-
portant aspects described above can be verified and by ensuring, when possible, that
multiply equivalent systems are derived, so optimal solutions, both ex ante and ex
post are determined, even though the output results may differ somewhat, without
influencing the optimal solution.

This methodology allows, multiply equivalent systems to be determined, so that
the system can be embedded in an optimal control problem and determine a certainty
equivalent optimal solution. Precise alternative experiments can be effected and dif-
ferent exogenous factors may be evaluated precisely.
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This approach seems to be useful for the modeling of SCM to determine precise
policies.
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Summary. It is well known that decision support systems (DSSs) usually only solve mod-
els that simplify and approximate the real problem. The planners might therefore be more
interested in a set of diverse high quality solutions to choose from, than in only the optimal
(or near-optimal) solution to the model as is usually produced by a DSS. In ship routing and
scheduling plans are generated following a rolling horizon principle, where schedules are up-
dated when new relevant information appears. However, the planners have often already made
commitments to the customers for the next few voyages, for instance regarding arrival times
and which ships that are assigned to service given cargoes. Therefore, the planners are inter-
ested in a set of high quality schedules that are close to the current (baseline) schedule in the
near future, and diverse from each other in more distant time. We suggest a multi-start heuris-
tic, including a persistence penalty function and distance measures, to produce such schedules.
The method has been tested on a set of real-life problems and it provides valuable decision

support flexibility for planners in shipping companies.

Key words: Ship routing and scheduling, Decision support, Distance measure, Per-
sistence

1 Introduction

Ocean shipping is the major transportation mode in international trade and more than
6 billion tons of goods are carried by ships every year [15]. A ship involves a major
capital investment, and its daily income and operating costs often amount to several
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thousands of dollars. Proper planning of the fleet of vessels is therefore crucial for
shipping companies to survive in an increasingly competitive market.

In this paper we focus on decision support for short-term routing and schedul-
ing problems faced by many tramp shipping companies transporting bulk products.
A shipping company operating in the tramp market usually has a set of mandatory
contract cargoes that they are committed to carry, while trying to increase their profit
from optional spot cargoes. The mandatory contract cargoes come from long-term
contracts between the shipping company and the cargo owners (shippers). Each cargo
(contract and spot) consists of a given quantity to be shipped between a given pair of
ports. There are given time windows for loading of the cargoes and sometimes also
for unloading. The fleet used for transporting the cargoes is heterogeneous where
the ships have different load capacities, speeds, equipment, etc. The ship routing and
scheduling problem mainly deals with (1) selecting spot cargoes to service, (2) as-
signing cargoes to ships in the fleet, and (3) deciding optimal ship routes and sched-
ules. All these tasks must in principle be performed simultaneously. The planners in
the shipping companies daily solve this ship routing and scheduling problem, which
is basically similar to a multi-vehicle pickup and delivery problem with time win-
dows (m-PDPTW), as described by [8].

TurboRouter [9] is a decision support system (DSS) developed by MARINTEK
in Trondheim for solving this type of ship routing and scheduling problems by using
local search-based heuristics [2]. However, the model solved by this DSS represents
only a simplification of the real-world problem. When implementing and testing the
DSS at shipping companies, we have often experienced that there exist constraints
that are fuzzy and hard to model. There are sometimes also secondary objectives,
which can be unclear, hard to model or to give proper weight to, in addition to the
primary one (that usually is measured in monetary terms). The inherent stochastic
nature of ocean shipping (for instance sailing times that are influenced by weather
conditions) also contributes to make the real-life problem hard to model and to solve.
During the work with TurboRouter and from discussing with planners in shipping
companies, we realized that it was hardly possible to model all these complicating
aspects in a good manner, neither was it desirable. This was something the planners
wanted to evaluate themselves, based on their experience. However, a good contribu-
tion for the planners would be a DSS that could present a set of diverse high quality
solutions to analyze and choose from instead of only one optimal (or near-optimal)
solution.

In ship routing and scheduling, planning follows a rolling horizon principle,
where plans are updated when new information (new cargoes, ship delays, etc.) ap-
pears. Figure 1 illustrates a typical workflow for the planning process.

When the planners perform a complete rescheduling using TurboRouter, the
solution after rescheduling is often very different from the solution prior to the
changes. However, the planners have often already made commitments to some of the
customers, for instance regarding time for start of servicing, and they may have nom-
inated specific ships for loading given cargoes. The planners are therefore interested
in new solutions that are in some sense close to the current solution, the baseline
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Information about

From brokers 7 new spot cargoes
08:45 am
" - Information about / q 10:00 am n
From ships 7 ship delays, etc. Rescheduling Schedule
: o Information about
From shippers 7 contract cargoes

Fig. 1. Scheduling workflow at a typical tramp shipping company

solution, for cargoes where commitments have been made, usually in the near fu-
ture. (See the following sections for the explanations of our measures).

The aim of this paper is to develop and present a method that can find and identify
such a set of high quality solutions to ship routing and scheduling problems. It is
desirable that these solutions are close to the baseline solution in the near future but
diverse from each other in the more distant time. In our heuristic search method, we
include a persistence penalty function in the objective function for finding solutions
close to the baseline solution. For finding a diverse set of high quality solutions we
use a structural distance measure.

There exist several references on previous work on similar ship routing and
scheduling problems that we study in this paper, see for instance [2, 1] and [11]. A
thorough review of ship routing and scheduling problems in general is given by [7].
However, there has been little focus on producing a diverse set of high quality solu-
tions to these problems instead of only the optimal (or near-optimal) solution. Brown
et al.[5] consider optimization and persistence in general. They emphasize that new
solutions that retain the features of the baseline solution are more acceptable to deci-
sion makers than solutions that require more changes. They incorporate this kind of
persistence in modelling linear, mixed-integer and integer linear programs. Brown et
al. [3] deal with optimizing submarine berthing with a persistence incentive. When
the current berthing plan is revised they introduce a penalty in the objective function
for moving submarines. In a sample problem the persistence penalty reduced the
number of revisions by 75%. Brown et al. [4] describe a problem of scheduling coast
guard district cutters. An optimization model is described for solving the problem. In
order to avoid major unnecessary changes when revising an accepted schedule they
replace the original objective with a surrogate objective that preserves persistence.
The cost of the new schedule is constrained to not cost more than the prior schedule.

Within land-based routing, [12] consider various similarity functions for
the vehicle routing problem based on structural difference between solutions.
The similarity functions or distance measures are used to choose a diverse
set of high quality solutions to present to the planner using a decision sup-
port system. Their distance measure relies heavily on depot concept, and is
thus not directly applicable for ship routing. Sorensen [14] discusses dis-
tance measures based on string comparison. The problems are characterized
by the fact that the order in which the items appear in the solution is impor-
tant. The problems discussed include the single-machine and multiple-machine
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scheduling problems, the traveling salesman problem, vehicle routing problems, and
many others. Sorensen [13] considers route stability in vehicle routing decisions. A
distance measure is used to create a metaheuristic approach that will find solutions
“close” (in the solution space) to a given baseline solution and at the same time have
a high quality in the sense that the total distance traveled is small.

The remainder of the paper is organized as follows: Sect. 2 gives a mathematical
formulation of the ship routing and scheduling problem. Section 3 deals with the per-
sistence objective to achieve new solutions close to a given baseline solution, while
Sect. 4 describes a distance measure used to evaluate the difference between two so-
lutions. A multi-start heuristic is proposed in Sect.5 to solve the ship routing and
scheduling problem with persistence and distance objectives. A computational study
is presented in Sect. 6. Finally, Sect.7 provides a summary and some concluding
remarks.

2 Mathematical Formulation

This section describes a mathematical formulation of the ship routing and scheduling
problem based on a model presented by [6] for a similar problem. Let NV be the set
of cargoes indexed by i. Associated with the loading port of cargo i there is a node
i, and with the corresponding unloading port a node N + i, where N is the number
of cargoes (both contract and optional spot cargoes) that may be serviced during the
planning horizon. Let Np = {1, ..., N} be the set of loading (or pickup) nodes and
Np = {N + 1, ...,2N} be the set of unloading (or delivery) nodes. The set of loading
nodes Np is divided into two subset, Np = N¢ U Ny, where N¢ is the set of loading
nodes associated with the contract cargoes the shipping company is committed to
transport, while Ny represents the loading nodes for the optional spot cargoes. Let V
be the set of ships in the fleet indexed by v. Then, (N,, A,) is the network associated
with a specific ship v. Not all ships can visit all ports and take all cargoes. Denote
by 7, the set of feasible nodes for ship v. Then, N, = ¥, U {o (v),d (v)} is the set
of nodes that can be visited by ship v, where o (v) and d (v) represent the origin and
destination node for ship v. The origin node o (v) can either be a port or a point at
sea, while the destination node d (v) is the last planned unloading node for ship v.
Here A, contains the set of all feasible arcs that can be sailed by ship v. Further let
Np, = Np NN, and Np, = Np N N, be the sets of loading and unloading node that
can be visited by ship v, respectively. There is a revenue R; for transporting cargo i.
The quantity of cargo i is given by Q;, while the capacity of ship v is given by Vcap, .
For each arc, Ts;j, represents the calculated sailing time from node i to node j with
ship v including service time at node i. Let [Tyy;, Tyx;] denote the time window
associated to node i. The cost C;j, represents the sailing cost between node i and j
for ship v including port cost at node i.

We use the following types of variables: the binary flow variable x;;,v €
YV, (i, j) € A, equals 1, if ship v sails from node i directly to node j, and O otherwise.
The time variable #;,, v € V,i € N, represents the time at which ship v begins service
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at node i, while variable [;,,v € V,i € N,\d(v) gives the total load onboard ship v

just after the service is completed at node i.

Then, the formulation of the ship routing and scheduling problem can be given

as follows:
maXZ Z Rixijy — Z Z CijXijy,
VeV (i, EAiIENP, veV (i,))eA,
subject to
Z injv =1, Yie Nc,
veV jeN,
Z Z Xip < 1, Yi € No,
veV jeN,
Z Xo(w)jv = 1’ Yy € q/,
JENP,U{d(v)}
D= ) i =0, WeV.je N\ o) .dw)l.,
ieN, ieN,
Z Xidwy = 1, Vv eV,
i€Np,Ufo(n)}
Xij (fiv + Tsijy — tjv) <1, Yv eV, j) e A,
Tuni < tiv < Tyxis YieN,,
.xijv (liv + Q] — l]v) = O, Yy € q/’ (l’ J) € ﬂvl‘] c NPV,
XiN+jv (liv -Q;- lN+j,v) =0, YveV,0,N+ j) e Alje Npy,
Loy = 0, Yvev,
Z Qixijy < liy < Z VeapyXijvs YveV,ie Npy,
JEN, JEN,
0 <lysiv < Z (Veary = Qi) Xn+i,jos YveV,ie Np,
JeN,
Z Xijy = Z XjN+iv = 0, YveV,ie Np,
JEN, jeN,
ty + TsiN+iy — tnsiv < 0, YveV,ie Np,
Xij €10, 1}, Vv eV, (i, j) € A,
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The objective function (1) maximizes the profit of operating the fleet. Constraints
(2) ensure that all mandatory contract cargoes are transported exactly once, while (3)
guarantee that all optional spot cargoes are transported at most once. Constraints
(4)-(6) describe the flow on the sailing route used by ship v. Constraints (7) describe
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the compatibility between routes and schedules. If ship v sails from node i to node
J the constraints ensure that the start time of service at node j is greater or equal to
the start time of service at node i plus the sailing time from node i to j including
service time at node i. The time window constraints are given by (8). If ship v is not
visiting node i, we will get an artificial starting time within the time windows for that
(i, v)-combination. Constraints (9) and (10) give the relationship between the binary
flow variables and the ship load at each loading and unloading port, respectively. The
initial load condition for each ship is given by (11), while (12) and (13) represent the
ship capacity constraints at loading and unloading nodes, respectively. The coupling
constraints (14) and the precedence constraints (15) ensure that both the pickup and
delivery node for cargo i belongs to the same route and that the delivery node is vis-
ited later than the pickup node. Finally, the formulation includes binary requirements
(16) on the flow variables.

3 Persistence Penalty Function

As described in Sect. 1, ship routing and scheduling follows a rolling horizon princi-
ple, where rescheduling is performed when new information appears. However small
modification of the input can often amplify into major changes to the current plan
(baseline solution). In the baseline solution, especially in the near future, commit-
ments have often been made regarding time for start of servicing and specific ships
may have been nominated for transporting given cargoes. Even if it is possible to
make changes for cargoes where commitments are made, it is usually not desirable
unless there are compelling reasons to do so. For instance, when decisions are made
regarding which ship that are planned to service a given cargo, additional equipment
or services needed for the port operation, like pilot, tugs and port services may be
arranged in advance. The fleet of ships is heterogeneous and if a cargo is rescheduled
and assigned to another ship, or is to be serviced at another time, other equipment
or services may be required. Then the old arrangements must be cancelled and new
ones made. Even if it is possible to make changes it may require a lot of work to do
so. When a customer is given a specific time for when he will be served he might be
unwilling to accept another time (even if it is within the original time window). The
customer might have made his own commitments to other participants in the supply
chain, or the customer’s storage facilities or production might be dependent on the
specified pickup/delivery time.

To achieve solutions that are close to the baseline solution for cargoes where
commitments have been made, we introduce a persistence penalty function to pe-
nalize solutions deviating from the baseline solution for these cargoes. To describe
the persistence penalty function we use the following notation. We denote the base-
line solution as B. The new solution after rescheduling is denoted by A. We let the
parameter U?B be equal to one if cargo i is served by different ships in solutions A
and B, and zero otherwise. T[A and TI.B represent the time when service starts at node
i in solutions A and B, respectively. The cargo-ship penalty, Py;, is the penalty for
servicing cargo i by a different ship in the new solution compared with the baseline
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solution. Finally the cargo-time penalty, P»;, is the penalty per time unit difference
in service start at node i. For cargoes where no commitments have been made, both
persistence penalties, Pj; and Py;, are equal to zero.

The persistence penalty function for solution A can now be given as follows:

P(A) = Y PuUME+ Y Pyl - TP (17
ieNp ieNpUNp
This persistence penalty function (17) is included in the objective function when
solving the ship routing and scheduling problem.

4 Distance Measure

In the ship routing and scheduling problem, the most important difference between
two solutions is which ships that service the different cargoes. In our distance mea-
sure we therefore calculate the number of cargoes that have changed ship between
two solutions. This can be seen as the Hamming distance between the solutions, see
[10]. The parameter UIAB is again equal to one if cargo i is serviced by different ships
in solutions A and B, and zero otherwise. The normalized Hamming distance (a value
between 0 and 1) between solutions A and B is given as follows:

Dus= YU (18
ieNp

The Hamming distance is normalized to make it independent of case. All distance
measures can (and should) be normalized to the 0-1 range, see [12]. It can be noted
that the penalty function (17) is similar to the normalized Hamming distance (18) if
all penalties Py; are equal to 1{, and all P,; are zero. However, as mentioned in the
previous section, this will not be the case for practical problem solving.

For a general vehicle routing problem (VRP), the Hamming distance is known to
be a weak distance measure. In the classical VRP the fleet of vehicles is homogenous
and the vehicles start at a given depot. Because of this it makes no difference which
vehicle that services a given customer. The focus on distances measure for vehicle
routing problems has therefore been to produce routes that are structurally different
regarding which customers, and the sequence of the customers, that are serviced to-
gether on the same route, see for instance [12, 14]. In ship routing and scheduling
problems, we usually have a heterogeneous fleet of ships, and due to the reasons
described above the number of different cargo-ship combinations between two so-
lutions is more important for the planner than structurally different routes regarding
the sequence of the customers (nodes).

5 Solution Method

The solution method is based on the ideas from [2], where a multi-start local search
heuristic for the ship routing and scheduling problem is presented. In the multi-start
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heuristic a number of start solutions are generated by using a constructive heuristic.
A part of each solution is randomly generated and the rest is generated by using a de-
terministic constructive insertion heuristic. The local search operators used are both
intra-route and inter-route operators. Intra-route operators try to improve the route
of one single ship, while inter-route operators looks for improvement by moving
cargoes between ships. The local search heuristic we use consists of three operators:

1-resequence: cargo i (both the loading and unloading node) is removed from the
route of ship v. The cargo is then reinserted in the best position in the route of the
same ship.

Reassign: removes a cargo from the route of a ship v and tries to find the best
feasible insertion of the cargo into the route of another ship u. If there is one or
more rejected cargoes in the cargo list, i.e. cargoes for which the heuristic has
not found any feasible insertion so far, the heuristic tries to find a place for one
of them in the route of ship v.

2-interchange: two cargoes i and j are removed from the routes of ships v and
u, respectively, and are then inserted in the best feasible position in the routes of
ships u and v, respectively.

The persistence penalty function (17) described in Sect. 3 is included in the objec-
tive function when evaluating given moves. This will ensure solutions that are close
to the baseline solution in near future. The distance measure (18) described in Sect. 4
is included in the multi-start heuristic to find a diverse set of start solutions and in or-
der to choose the final solutions to present to the planner. In the algorithm described
below we let [ represent the number of start solutions generated, m the number of
start solutions to be improved by local-search and n the number of final solutions
to present to the planner. We let 7| and T, represent threshold distance values (be-
tween 0 and 1). A pseudo-code of the multi-start heuristic is formulated in Fig. 2. The
sub-routine SELECT-SOLUTIONS is called in step 3 and 6 of the MULTI-START
algorithm to ensure a diverse set of start solutions and final solutions respectively.
In the sub-routine we start by selecting the solution with best objective value in the
sorted list of solutions Y to choose from. This solution is included in the list of se-
lected solutions, X. We then go through the rest of the solutions in list Y. Before
including a solution from list Y in list X, we calculate the distances to all other solu-
tions selected so far using distance measure (18). If all distances are greater or equal
to the threshold distance value, ¢ (equal to T and T, respectively), the solution is
selected.

6 Computational Study

A computational study has been performed on four test cases based on real data
from two different bulk shipping companies operating in the tramp shipping seg-
ment. Section 6.1 describes the test cases. In Sect. 6.2 we perform analyses to decide
proper values on the penalties in the persistence penalty function (17) described in
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MULTI-START (I,m,n, T, T) SELECT-SOLUTIONS (X, Y,n0,1)
L— list of start solutions X.push-back(Y[1])

M — list of selected start solutions no _selected =1

N— list of final solutions for y:=2 to length[Y] do

1 generateL with / start solutions if no  selected > no

2 sortL by objective value l:reak

3 SELECT-SOLUTIONS (M,L,m,T,) selected = true

4 perform local-search on all solutions in for x:=1to length[ X] do

M and update objective values d = Calculate-Distance (Y [y], X[x])

S sortM by objective value d<t
6 SELECT-SOLUTIONS(N,M.n.T,) selected — false
present the solutions in list N to the
break

planner (maximum 7z solutions) if selected

X .push-back(Y[ y])

no_selected =no_ selected +1

Fig. 2. Pseudo-code for the multi-start heuristic

Sect. 3. Section 6.3 presents analyses to decide proper values on the threshold dis-
tance values which are included in the multi-start heuristic to get a diverse set of
solutions. Section 6.4 presents computational results where different solutions to the
test cases are compared regarding solution quality (profit) and distance (closeness)
to the baseline solution.

6.1 Description of Test Cases

Cases 1 and 2 are collected from a shipping company transporting dry bulk commodi-
ties such as rock, iron ore and cement. A chemical commodity shipping company is
the basis for cases 3 and 4. The test cases are summarized in Table 1. The number of
cargoes includes both the cargoes in the baseline solution and the new optional spot
cargoes. The number of spot cargoes is displayed in a separate row.

6.2 Setting Persistence Penalties

The cargo-ship penalty P;; and the cargo-time penalties Py; and Pyy+) in the per-
sistence penalty function (17) given in Sect.3 have to be decided for each cargo.
In Sect. 3 we described that it is desirable when rescheduling that new solutions are
close to the baseline solution for some cargoes where certain commitments are made.
These cargoes are usually the cargoes that are planned to be serviced in near future
of the baseline solution and we will refer to these cargoes as persistence important
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Table 1. Test cases
Case 1 2 3 4

Planning horizon [days] 30 30 90 150

# cargoes 24 31 17 40
# optional spot cargoes 4 4 4 6
# ships 7 135 6

cargoes. In the computational study we regard the cargoes that have the ending of the
loading time window within the first third of the planning period as persistence im-
portant cargoes. This can of course be chosen to another value by the decision maker
and the importance of each cargo can also be decided individually. To illustrate that
it is often more difficult to make changes early than late in the baseline solution, we
use penalties that are linearly decreasing with time, as shown in Fig. 3.

A
Penalty
Pimax e
-
Popax —
. Time .
Start of planning End of planning
period period

Fig. 3. Persistence penalty as a function of time

To decide the proper values of the penalties we use sensitivity analyses. Case
2 is here used as an example illustration. The multi-start heuristic used includes a
random element in the generation of start solutions. Therefore, in order to make sen-
sible comparisons we perform ten runs of the algorithm and report average values.
Figure 4 shows that the average profit gap from the best solution (regarding profit
only) increases with the maximum cargo-ship penalty cost Pjyax. The figure also
shows the average number of persistence important cargoes that have changed ship
after rescheduling for different values on Pjp4x. From the figure we see that with
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Piyax equal to zero, the average profit gap from best solution is 0% while the aver-
age number of cargo-ship changes is 5.1. Increasing the maximum penalty cost will
increase the average profit gap while reducing the number of cargo-ship changes.
With a maximum penalty cost equal to 0.25% of the baseline objective value the
solutions found after rescheduling have on average zero cargo-ship changes and an
average profit gap from best solution equal to 0.5%.

——o—— Avg. profit gap

7 0,7 -----3----- Avg. cargo-ship changes

Avg. profit gap (%) / Avg. cargo-ship changes (#)
N

A\

T 1T T 1

0,1 0,2 0,3 0,4 0,5

Penalty P,,.x (% of baseline objective value)

Fig. 4. Sensitivity analysis for the cargo-ship penalty for case 2

Similar analysis as for the maximum cargo-ship penalty cost P4 is performed
for the maximum cargo-time penalty cost and the results are shown in Fig. 5. From
the figure we see with Poj4x equal to zero, the average profit gap from best solution
is 0% while the total cargo-time difference for the persistence important cargoes is
on average 7.9 days between a new solution and the baseline solution. Increasing the
maximum cargo-time penalty cost will increase the average profit gap but reduce the
total cargo-time difference.

From this we choose the values of the maximum cargo-ship penalty Pjyax and
the maximum cargo-time penalty P,yax. For case 2, it seems reasonable to set
Piyax in the range 0.15 — 0.25% of baseline objective value and Pjpax in the
range 0.004 — 0.016% of baseline objective value. With these settings, the multi-
start heuristic produces high-quality solutions that are close to the baseline solution
(for the cargoes in near future). In the rest of the computational study we use for
case 2; Pyyax = 0.25% of baseline objective value and Pyyax = 0.016% of baseline
objective value.
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Fig. 5. Sensitivity analysis for the cargo-time penalty for case 2

Similar analyses are also performed for the other test cases and corresponding
values on the penalties are chosen. The penalties are case specific and must be
adapted to the different shipping companies and the problem at hand.
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6.3 Setting Threshold Distance Values

In the multi-start heuristic described in Sect. 5 we use two acceptation threshold dis-
tance values; T; and T,. Threshold distance value T is used to ensure a diverse set
of start solutions while threshold distance value T, is used to ensure a diverse set
of final solutions. Figure 6 shows the number of different start solutions for differ-
ent values on the threshold distance value 7. Case 2 is again used as an example
illustration. From the figure we see that if we generate 500 start solutions and use
T, = 0.4 approximately 170 of the start solutions will be considered as sufficiently
different to each other.
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500 1000

Number of generated start solutions

Fig. 6. Number of different start solutions for case 2

Figure 6 is produced without persistence penalties in the objective function. In-
cluding the persistence penalties presented in Sect. 6.2 in the objective function has
only a small impact on the number of sufficiently different start solutions. For exam-
ple if we generate 500 start solutions and use 7} = 0.4 the number of different start
solutions are reduced from 172 to 162 when including persistence penalties.

Figure 7 shows, both with and without persistence penalties in the objective func-
tion, the number of final solutions that are considered to be sufficiently different from
each other for various values of the threshold distance value 75. Case 2 is again
used as an example illustration. We have generated 500 start solutions and use a
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threshold distance value Ty = 0.4. When the threshold distance value 7, = 0, the
number of different final solutions after the multi-start local search is performed
is equal to the number of different start solutions (which is 172 (without persis-
tence penalties) and 162 (with persistence penalties)). From figure we see that the
number of final solutions considered to be sufficiently different from each other de-
creases with the threshold distance value. There will also be some fewer different
final solutions when including persistence penalties in the objective function. The
persistence penalties will direct the local search towards the baseline solution for the
persistence important cargoes and more of the final solutions will be similar com-
pared with the solutions we find without persistence penalties in the objective func-
tion. Because we seek solutions that are close to the baseline solution for the per-
sistence important cargoes we choose a lower acceptation threshold distance value
T, for solutions that are close to the baseline solution than for solutions that are far
from the baseline solution. For case 2, we use acceptation threshold distance value
T, = 0.3 when we generate solutions without persistence penalties in the objective
function, while we use 7, = 0.2 when we seek solutions close to the baseline so-
lution. Then, we get 59 and 71 sufficiently different final solutions to choose from,
respectively.

200 —

160 —%,

120 — —o—— Without persistence penalties

—---x----  With persistence penalties

80 — \

Number of different final solutions

40 —

0.2 0.4 0.6 0.8 1.0
Threshold distance T,

Fig. 7. Number of different final solutions for case 2

Similar analyses are done for the other test cases and corresponding values on
the acceptation threshold distances are chosen.



Ship Routing and Scheduling with Persistence and Distance Objectives 103
6.4 Computational Results

We have tested the multi-start heuristic on the test cases described in Sect. 6.1 and
the results are summarized in Tables 2 and 3. Table 2 shows the three best solutions
to test case 2 when we optimize with respect to profit only, case 2a, and with respect
to profit and persistence penalty cost, case 2b. In the table, we report the average
number of persistence important cargoes that have changed ship, the average total
cargo-time difference for the persistence important cargoes, the average penalty cost
and the average profit gap from the best solution (with respect to profit only). The
last rows in the table include the distance matrix which reports the average distance
between the solutions. From Table 2 we see that including persistence penalties in the
objective function has a great effect on finding high quality solutions that are close
to the baseline solution. Comparing the best solution for test cases 2a and 2b, we see
that the average-ship changes is reduced from 6.2 to 0, while the average total cargo-
time difference is reduced from 8.2 to 0 days when including persistence penalties.
However, the average profit gap from the best solution is a little bit larger for case 2b.
The profit gap for the best solution to test case 2a is 0% from the best solution while
for test case 2b the profit gap is 0.5%. The average distances between the solutions
are larger for case 2a than for case 2b. The reason for this is that we accept a smaller
acceptation threshold distance for solutions that are close to the baseline solution,
see Sect. 6.3.

Table 2. Computational results for case 2

Case 2a (profit objective)  Case 2b (profit incl.
persistence penalty)

Solution 1 2 3 1 2 3
Avg. cargo-ship changes (#) 6.2 5.0 6.7 0 1.0 1.1
Avg. total caro-time 8.2 7.1 9.1 0 1.7 0.7
difference (days)

Avg. penalty cost (% of 1.7 1.4 1.8 0 0.3 0.2
baseline profit)

Avg. profit gap from best 0 0.1 0.3 0.5 0.4 0.8
solution (%)

Distance matrix 1 2 3 1 2 3

1 - 0.38 0.44 - 026 023
2 - 0.36 - 0.35
3 _ _

Table 3 shows the best solution regarding profit and the best solution regarding
profit and penalty cost for each of the four test cases. As in Table 2, we report the
average number of persistence important cargoes that have changed ship, the average
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total cargo-time difference for the persistence important cargoes, the average penalty
cost and the average profit gap from the best solution (with respect to profit only).
The average value for cases 1-4 a) and for cases 1-4 b) is shown in the two last
columns. Remark that for case 4, the average total cargo-time difference is reduced
from 86.5 days to 0.3 days when including persistence penalties. The reason for the
large decrease is that the time windows are quite wide for this test case, specially
the unloading time windows. From the table we see that the profit gap increases,
on average from 0.18% to 0.68%, when including the penalty costs in the objective
function. In return the persistence penalties direct the multi-start heuristic towards
solutions that are very close to the baseline solution with respect to the persistence
important cargoes.

Table 3. Computational results for cases 1-4

Case la 1b 2a 2b 3a 3b 4a 4b avg.a) avg.b)
Avg. cargo-ship changes (#) 5.9 07630 3.71.612.71.17.13 0.85
Avg. total cargo-time 126 24820 541.486.50.328.18 1.03
difference (days)

Avg. penalty cost (% of 72 11170 130461 03408 045

baseline profit)
Avg. profit gap from best 03 070 050.10603 090.18 0.68

solution (%)

Figure 8 shows a new user interface from the DSS TurboRouter [9] for a reduced
test case. In the figure, each ship is represented by a colour. The baseline solution
is denoted B, while the three new solutions after rescheduling are denoted, S.1, S.2
and S.3. The Gannt diagram shows which ship each cargo is assigned to and the day
when service starts (for both loading and unloading), for each of the four solutions.
Cargoes 8 and 11 are new spot cargoes and are not serviced in the baseline solution.
It is desirable that new solutions are close to the baseline solution for the part to the
left of the vertical line in the figure. The new solution, S.2, is the solution closest to
the baseline solution. However it should be noted that the solution includes one spot
cargo less than solutions S.1 and S.3. The possibility to evaluate a set of solutions,
instead of only the optimal (or near-optimal) solution, will in such cases provide
valuable decision support flexibility for the planners.
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Fig. 8. Gannt diagram from TurboRouter showing information about the solutions

7 Summary and Concluding Remarks

In this paper we focus on decision support for a short-term routing and schedul-
ing problem faced by many tramp shipping companies. TurboRouter is a decision
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support system (DSS) developed for solving such problems by using local search-
based heuristics, see [2]. However, the model solved by a DSS is only an approxima-
tion to the underlying real-life problem. After evaluating the use of TurboRouter in
different shipping companies, we realized the need for a DSS that can present a set of
good diverse solutions to choose from instead of only one optimal (or near-optimal)
solution.

In ship routing and scheduling, planning follows a rolling horizon principle,
where plans are updated when new information appears. When planners perform
a complete rescheduling using TurboRouter, the solution after rescheduling is often
very different from the solution prior to the changes. However, the planners have of-
ten already made commitments to some of the customers, for instance regarding time
for start of servicing, and they may have nominated specific ships for loading given
cargoes. The planners are therefore interested in new solutions close to the previous
solution for cargoes where commitments are made, usually in the near future.

This paper presents a method that presents a set of good solutions to ship routing
and scheduling problems. It is desirable that these solutions are close to the baseline
solution in the near future but diverse from each other in more distant time. The
heuristic methods include a persistence penalty function in the objective function,
for achieving solutions close to the baseline solution, and a distance measure for
finding a diverse set of solutions.

The computational study shows that introducing small persistence penalties in
the objective function directs the search towards solutions very close to the baseline
solution. The quality (profit) of the solutions is just slightly worse than the solutions
found when we optimize with respect to profit only, but the number of cargo-ship
changes and the cargo-time difference are considerable reduced. The distance mea-
sure is used to find a diverse set of solutions the planner can choose from. A version
of the algorithm presented will be implemented in TurboRouter [9]. Introducing per-
sistence and distance objectives when solving ship routing and scheduling problems
seem to provide valuable decision support flexibility for planners in shipping com-
panies.
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Summary. This chapter studies real-time distribution strategies and their associated benefits
for a two-level distribution system, from one depot to N retailers, wherein vehicle delivery
routes can be updated using real-time information about current inventory levels and vehicle
status. Three rolling horizon approaches are proposed in which plans are updated using a math-
ematical programming formulation. The proposed re-planning strategies are compared against
two benchmark policies using a general discrete-event simulation framework. Proposed re-

planning strategies are shown to systematically outperform the two benchmark policies.

Key words: Logistics, Inventory Routing problem, Vendor managed inventory,
Online vehicle routing problem, Dynamic fleet management, Intelligent transporta-
tion systems (ITS), Commercial vehicle operations (CVO), Real-time information,
On-line problems, Freight transportation

1 Introduction

The focus of this Chapter is on formulating Inventory-Routing Problems (IRPs) in a
stochastic dynamic environment with real-time information about current inventory
levels, as well as delivery vehicle locations and status. The main objectives are to:
(a) formulate and analyze the Online Inventory Routing Problem (OIRP), explicitly
taking into account real-time information about fleet status and inventory levels at
different facilities; (b) develop operational-control strategies to operate a distribu-
tion system in which transportation and inventory control are coordinated, tailored
to different degrees of real-time information; and (c) evaluate the performance of the
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proposed real-time strategies and the value of using real-time information in a cen-
trally operated or collaborative distribution system, along with conditions that affect
this performance.

This research is motivated by three main considerations: (a) the recognized im-
portance of logistics and distribution systems in the national and local economy (see
for example, La Londe, 1994; Ghiani et al., 2004) (b) the current trend to coordinate
logistic operations, discussed among others by (Thomas and Griffin, 1996, Campbell
et al., 1998, Bertazzi et al., 2007), and (c) the opportunities offered by Information
and Communication Technologies (ICT) to operate and control a system in real-time,
which allow sharing information between different stages in a supply chain at pro-
gressively reduced costs (Rabah and Mahmassani, 2002).

Relevant ICT developments can be divided into three groups: communication and
tracking devices that can automate information input to and transmission between
computer systems (see, e.g., Blanchard, 2003; Datta, 2003; Masters and La Londe,
1994); Commercial Vehicle Operations (CVO) technologies that allow the control
of a fleet of vehicles on a real-time basis (see Regan et al., 1995); and software
and Decision-Support Systems (DSS) that provide data processing capabilities at a
particular facility (Rutner et al., 2003; Fleischmann and Meyr, 2003; Simchi-Levi
et al., 2003). These systems increase the speed and accuracy with which data is
entered, gathered, and communicated, and provide real-time visibility into inventory
levels throughout the distribution system and better control over a fleet of vehicles.

In summary, with access to real-time information on the current state of the sys-
tem — i.e. inventory levels at each facility and status of the fleet — managers can react
faster to changes in predicted demand patterns or traffic conditions, and make on-
line decisions on a continuing basis to adjust and improve routing plans accordingly.
However, the operational decisions are complex, since the underlying problems are
combinatorial and unfold in real-time, precluding the evaluation of all possible alter-
natives by the decision maker. Moreover, the stochastic nature of such systems im-
plies that information about the state of the system is gradually revealed and cannot
be accurately predicted in advance. In order to take maximum advantage of real-time
information made available by ICTs, supply-chain managers need to use information
effectively. That requires the development of models and algorithms that can exploit
the full potential of real-time information for distribution-logistic operations.

While previous published contributions on IRPs share some common elements,
most of the problems addressed in the literature consider systems that have different
characteristics. A detailed review is presented in Baita et al. (1998), Campbell et al.
(1998), Campbell and Savelsbergh (2002), Kleywegt et al. (2002), Giesen (2007),
and Bertazzi et al. (2007). The main difference between problems found in the liter-
ature, with the exception of Giesen et al. (2005), with the problem addressed in the
present Chapter, is that vehicle plans are not modified after they leave the depot.

Finally, previous research on real-time fleet management has focused on how
to serve load demands for transportation services that are exogenous to the system,
in the context of dynamic vehicle-routing problems (Gendreau et al., 1999, Larsen
et al., 2002, Larsen et al., 2004, Jehova et al., 2006), pick up and delivery problems
with full truck loads (Regan et al., 1995, Regan et al., 1996, Yang et al., 2004, Kim
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etal., 2002, Kim et al., 2004), and pick up and delivery problems with multiple loads
(Mitrovic-Minic et al., 2004, Gendreau et al., 2006).

In this research, routing decisions are coordinated with inventory control. In that
fashion, it is expected that monitoring inventory levels would allow improving the
forecast and coordination of transportation activities, giving the operator the option
to visit a facility earlier than needed to take advantage of transportation savings. That
could be particularly useful when demand is highly variable and/or unpredictable,
which is normally the case when final consumers are separated by several echelons
from the echelon considered, or as a consequence of the phenomenon known as the
bullwhip effect (Lee et al., 1997, Fine, 1998, Chen et al., 2000).

The specific distribution system considered is a two-level supply chain, in which
a set of geographically dispersed facilities facing stochastic demands have to be re-
peatedly replenished from a central warehouse (or depot) over a long period of time.
The facilities to be replenished could represent final customers, retailers who serve
demand from final customers, or distribution centers from which a set of additional
facilities are replenished. In this system, products are transported from the depot to
the set of retailers by a vehicle with limited capacity, the plans for which can be
updated with real-time information about the state of the system, thanks to modern
information and communication capabilities. This problem is designated as the On-
line Inventory Routing Problem (OIRP) under real-time information. The OIRP is
formulated and solved considering inventory allocation and transportation decisions
together. As such, the OIRP considers the trade-off among transportation, inventory
holding, and stock-out costs.

Key features of this OIRP are the presence of uncertainty about future consump-
tion rates at different facilities, and the possibility of updating plans based on accurate
real-time information about the complete state of the system. This is in contrast with
deterministic environments, in which decisions can be made with perfect hindsight,
thus real-time operational capabilities would not modify the nature of the problem.
The possibility of updating plans on a quasi-continuous basis, given information on
demand realizations, makes possible some additional decisions to update truck-route
plans, such as modifying the set and/or the sequence of subsequent customers to be
visited; diverting a truck from its current destination to visit a different facility; and
adjusting amounts to be delivered to subsequent customers in the route.

Such an operational environment could enable more efficient use of existing re-
sources and increase system reliability. However, the design of effective strategies
to operate the system can be extremely difficult. On one hand, the dispatcher faces a
fleet-routing and scheduling problem — which is combinatorial — to obtain new opera-
tional plans. Since even simplified static and deterministic versions of the inventory-
routing problem are computationally hard (Bertazzi et al., 2007), a trade off between
quality of solution and speed should be considered in the search for new plans. On
the other hand, given that plans can be modified at any time, based on new informa-
tion, the events and circumstances under which a plan update would be beneficial
should be specified.

The rest of the chapter is organized as follows. In the next section, a detailed defi-
nition of the problem studied and general approach are presented. Section 3 discusses
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re-planning strategies for the OIRP under real-time information, presenting a detailed
mechanism of how a central decision maker would operate under these policies, and
presents a formulation for the routing problem used to update plans corresponding to
the problem of interest under real-time information. Section 4 describes the simula-
tion framework developed to evaluate the different strategies proposed, and presents
experimental results and analysis from these simulations. Concluding remarks are
presented in the final section.

2 Problem Definition

2.1 Main Assumptions

In this research — unlike the common view in real-time fleet management problems
where load demands are exogenous to the system — decisions to replenish inventory,
by how much, in what sequence, and by which vehicle, are conducted in an integrated
real-time decision framework. In addition a central-planner approach to the problem
is assumed. That is, the system is operated and controlled by a central decision maker,
with real-time information about the complete state of the system, who seeks to move
inventories in the system in such a way as to maximize total expected profit in the
long-run for the entire system.

Also, it is assumed that upper hierarchical (strategic and tactical) decisions about
the system configuration are given, e.g., the set of facilities to be refilled from a par-
ticular distribution center, and the characteristics of the fleet of vehicles assigned to
serve those facilities are not directly considered. Moreover, in this initial develop-
ment, a single-vehicle approach to the problem is assumed.

Demand processes at different facilities are assumed to be the only source of
uncertainty; travel times between facilities are assumed to be fixed and known even
though, in real-world applications, particularly in urban areas, uncertainties in traffic
conditions could lead to significant travel time variation. Moreover, time associated
with loading and unloading operations is not considered. In addition, is assumed that
demands are known in probability distribution, and that these demand processes at
retailers cannot be affected by the central decision maker.

Another important assumption is that daily and weekly cycle operation charac-
teristics are not taken into account; that is, the system is assumed to be operating
continuously, without interruption. Moreover, labor-related constraints are not con-
sidered. In short, it is assumed that the vehicle and all facilities are always in oper-
ation; i.e., deliveries can be scheduled at any time, with neither time windows for
particular facilities nor restrictions on the number of hours that a driver can operate
a vehicle. Therefore, delivery routes are constrained only by the vehicle’s capacity
to transport products. Those other types of constraints would cloud the analysis, and
interfere with the initial fundamental insights of interest in this investigation; future
extensions could readily incorporate such constraints for implementation purposes.
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2.2 Preliminaries and Problem Parameters

In order to present the OIRP, the following general notation is used. The set of retail-
ers is designated as J, 3 = {1,2,...,1,..., N}, and the set of all facilities (depot and
retailers) as 3y, Jo = J U {0}. Those N+1 facilities are denoted by sub-index i = 0,1,
2, ..., N (sub-index O is for the depot) and are located in a bounded subset in the Eu-
clidean space. The function d;; gives the Euclidean distance between facilities i and
J» or between a facility 7 and the vehicle location j. Each retailer i has a maximum
capacity to store inventory, k;, measured in the units of the single product considered.
In addition, the vehicle has limited capacity, 1°, measured in the same units, and is
assumed to travel at constant speed according to the Euclidean metric. Without loss
of generality, the vehicle speed is assumed to be one.

Each retailer i serves an independent demand process. In general, it is assumed
that each facility serves a compound Poisson demand process, in which customer
arrivals to retailers follow Poisson processes, and customers’ demand sizes are inde-
pendent discrete random variables. Demand processes have associated arrival rates
A; (¢) for retailer i at time ¢. In addition, customer demand sizes are assumed to be
Poisson distributed with mean 6, (f). Thus the expected demand per unit of time at
retailer i at time £, u; (), can be calculated as y; (£) = A; (¢) - ; ().

The state of the system at time ¢, X (¢), can be described by the following param-
eters: (1) inventory levels at time #, «(f) = (¢1(2), ..., Li(?), ...., tn(2)), Where ¢;(¢) is the
inventory level at facility i at time ¢, (2) location of the truck at time ¢, £(¢), and (3)
load remaining in the truck at time ¢, v(¢). Hence, the state of the system at time ¢ can
be expressed as:

X0 =] t®vo] ()

The decision maker can update plans at any epoch ¢ based on X (f) and past
events, but without knowledge of future events. Plan updates are implemented im-
mediately unless the vehicle is moving, in which case a time lag — between the epoch
when a decision to update a plan is made and the plan is implemented — is consid-
ered. This is modeled using a time projection, which takes into account the time from
the moment the decision to update the current plan is made until the new plan begins
to be executed. Hence, instead of considering the actual state of the system at time
t in the solution procedure, the state of the system is projected to a time (¢ + 0¢),
X (t + 1), assuming expected consumption rates and truck current speed and desti-
nation, where 0t is the projection time, which includes any solution procedure used
to update plans and the time required for the driver to modify his current destination.

In the OIRP, there are three sets of cost parameters: (1) transportation cost per
unit of distance traveled by the vehicle, 7C, (2) inventory holding costs at each re-
tailer i, h; for retailer i, and (3) penalty associated with each unit of demand lost
during stock-out, p; at retailer i.
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2.3 Decision Variables, Main Constraints and Objective Function

In this OIRP system, decisions available to the decision maker are related to truck
plans, and consist of when, and how truck plans are updated. A plan or policy 7, can
be specified by the sequence of facilities to be visited, amounts to be delivered, and
arrival times, to each one of those facilities. In addition, since the state of the system
is continuously monitored and plans can be updated at any time, plan update epochs
are also decision variables.

The main constraints that must be satisfied in the OIRP are related to the dynam-
ics of the system and could be stated as follows:

(a) Inventory levels at each retailer are always non-negative and less than their ca-
pacity,i.e. 0 < ; (f) < k;, fori € J, and all 7.

(b) At consumption epochs, if the demand size is greater than the inventory level
at a particular facility, that inventory decrease the demand size, otherwise the
difference between the demand size and the inventory remaining is lost demand
and the inventory level decreases to zero.

(c) Inventory levels at retailers increase at delivery epochs by an amount equal to the
amount delivered.

(d) The load remaining in the truck is always non negative, i.e., v() > 0, for all 7.

(e) The amount delivered to a retailer i is not greater than the load remaining in the
vehicle at that delivery epoch, and the load remaining in the vehicle after the
delivery is decreased by the quantity delivered.

(f) The total amount delivered in a tour does not exceed its capacity.

(g) The location of the truck is modified whenever the truck is not idle, and the truck
moves toward the next facility at unit speed.

The objective of the central decision maker is to move the inventories in the
system so as to minimize the expected total operating cost, composed of: (1) total
transportation costs, (2) total inventory holding costs, and (3) total lost sales penalty
costs.

Thus far, the formal definition of the problem studied in this Chapter has been
introduced. The next section discusses major sources of complexity, the general ap-
proach that is being used to deal with the OIRP, and the proposed re-optimization
strategies.

3 Proposed Real-Time Strategies for the OIRP

This section presents the general approach to deal with the OIRP, two benchmark
policies used to compare the proposed strategies, and the formulation and design of
re-optimization based strategies. Under those strategies, the inventory control side
of the problem is solved first without considering joint replenishment to different
facilities; the resulting fill-up-to levels are then used in a local off-line problem which
is then solved in different real-time control strategies, reflecting different degrees of
real-time information, to update plans.
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3.1 General Approach

As previously stated, the OIRP does not seem to be tractable. Among the main diffi-
culties in solving this control problem are:

(a) Simplified static and deterministic versions of the problem are NP-Hard, i.e.,
given the complete stream of future demands at each retailer, the associated
inventory-routing problem, to optimally schedule deliveries to retailers, is very
difficult to solve. In addition to the sequencing complexity of the problem, it is
difficult to correctly capture the effect of short-term decisions on long-term costs,
since deliveries depend on the time and amount reloaded in the previous visit to
that facility. An optimal solution to the problem would require a long-term plan-
ning horizon; therefore, it is unlikely that the problem could be solved to near
optimality in a reasonable time even for small problem-instances. This precludes
the use of a complete static and deterministic IRP formulation for re-planning
purposes in real-time operations.

(b) In addition to the combinatorial challenge of the static version of the problem,
demands are dynamic and stochastic, and decisions can be updated at any time. In
fact — in contrast with other real-time fleet operation problems in which requests
to the system are clearly decision epochs — in the OIRP, final customer-demand
epochs occur so often that it would be infeasible to adjust plans at each one of
them. Thus, update epochs are not clearly defined, and obtaining the best update
epoch is not trivial.

(c) Because retailer deliveries can be combined on the same route, optimal policies
to serve each retailer depend not only upon that retailer’s inventory level, but also
upon the state of the complete system. In fact, transportation costs to service a
particular facility are not fixed, but depend upon the set of facilities served on
the same route (Campbell et al., 1998, Bertazzi et al., 2007). Moreover, since a
single vehicle serves all retailers, the lead time to replenish a particular retailer
might be affected by congestion, in terms of the number of additional deliveries
that are scheduled before that visit.

(d) Advances in real-time online combinatorial optimization neither provide tools to
solve problems, such as the OIRP, to optimality nor give clear guidance on how
to exploit online information in its operation (Grotschel et al., 2001b, Grétschel
etal., 2001a).

(e) Finally, as in most real-time combinatorial problems, there is a trade-off between
the quality of a new plan and the response time at update epochs.

Those difficulties preclude solving the problem or finding an optimal policy di-
rectly from the formulation presented in the previous section. Instead, an approach is
proposed wherein the inventory control side of the problem is solved first, taking into
account only a simplified version of the routing problem. In this approach, inventory
reorder parameters are established for each facility and then used as target levels on
a routing problem used to update plans.

For the proposed approach, different operational policies are proposed, tailored
for different degrees of sophistication in terms of ICT. Those policies are based on a
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rolling-horizon framework, wherein new operational plans are repeatedly generated,
based on updated information about the state of the system, and are implemented
until the next update epoch is reached. In that scheme, operational strategies are
defined by when and how plans are updated.

In terms of plan update epochs, three different cases are analyzed, ordered in
terms of decreasing ICT requirements: (1) truck routes can be continuously updated,
allowing for en-route diversions, (2) truck routes can be updated only at facilities
(en-route diversion not allowed), and (3) truck routes cannot be updated after the
truck leaves the depot, i.e. truck plans can be updated only upon tour completion.
In all cases, full information about the state of the system at plan update epochs is
assumed, and a Mixed-Integer Programming (MIP) problem formulation is solved
for new plan generation.

In order to evaluate and compare proposed real-time strategies discrete-event
simulation experiments are conducted. The proposed policies are compared to each
other and against two benchmark policies described next.

3.2 Benchmark Policies

There are no accepted benchmarls for evaluating real-time fleet operational strate-
gies. As discussed by Kim (2003), “detailed specifications of the problem have a
significant impact on the performance of a policy.” Since the OIRP has not been
studied before, two benchmark policies are introduced and developed.

The first benchmark policy, BENCHI, emulates what can be achieved operat-
ing the system in a decentralized manner with agents following optimal policies.
In BENCHI, each retailer manages his own inventory, placing orders to a central
supplier who, once a day, schedules deliveries for previous-day orders. In this case,
based on the orders received at the end of each day, the supplier creates routes solving
a Vehicle-Routing Problem (VRP). Each retailer will follow an optimal continuous-
review policy to control his inventory, which in this case corresponds to an (s, S)
policy. That is, each retailer will place an order of size (S-s) immediately if his in-
ventory level is below s. The optimal parameters for an (s, S) policy can be obtained
using Zheng and Federgruen algorithm (1991) or by exhaustive search over the fea-
sible region.

The second benchmark policy, Most-Urgent-Next (MUN) is based on a simple
greedy decision rule. Under MUN, at each delivery epoch, the vehicle is send next
to refill the retailer closest to run out of inventory. To select the next retailer to be
refilled, inventory levels are inspected, and the time at which each retailer would run
out of inventory, if not visited, is calculated based on average consumption rates. If
the vehicle has enough load remaining to refill the selected retailer, it would be sent
directly to that location, otherwise it would go first to be refilled at the depot and
then to that retailer. In that policy, each retailer i is refilled up to a pre-specified tar-
getlevel, S, or up to capacity ;. MUN implementation assumes that inventory levels
are monitored and that routes are created so that the next delivery is decided upon
refilling a retailer. In this strategy, whenever the vehicle is at the depot, a decision
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on waiting an additional time or departing immediately has to be weighed until ve-
hicle departure. To evaluate the effect of waiting-additional-time decisions, for each
facility the expected increment in lost sales costs is compared against transportation
costs savings associated with waiting an additional time interval. If the expected in-
crement in lost sale costs are smaller than transportation cost savings an additional
time interval is waited, otherwise the vehicle is send to the most urgent facility.

In these benchmark policies, operational control parameters, such as reorder lev-
els, are adjusted based on the specific parameters of each scenario.

3.3 Off-Line Optimization Problem Formulation

This subsection presents the local off-line problem used on optimization based con-
trol strategies to update plans. First, the general approach to locally update plan is
presented. Second, optimization of refilling levels method is presented. Finally, a
mathematical formulation of the routing problem used to update delivery plans is
presented.

a) Preliminaries

One of the main difficulties in formulating this problem is to be able to capture the
effect of short-term decisions on long-run costs. If the customers were visited in
isolation of each other using direct deliveries from the depot, served by independent
vehicles, the optimal policy for each customer could be computed. In this case, a well
known result on inventory control for single items inventory systems with stochastic
consumption rates, constant replenishment lead times, and standard cost assumptions
is the optimality of (s, S) policies, see for example Axsiter (2000) and Zipkin (2000).
In an (s, S) policy each time the inventory position (inventory on hand plus on order
minus backorders) is below s a delivery is scheduled to send a quantity equal to S
minus the inventory position, so the inventory position becomes equal to S.

However, since only one truck is serving all customers and customer deliveries
can be combined on the same route, transportation (delivery) costs are not fixed.
Indeed, they would depend on the set of customers that are served together on the
same route. Then the optimal policy to serve each customer would depend not only
on its inventory level, but also on the complete state of the system.

To deal with this problem, optimal refilling levels for each facility are first spec-
ified, assuming that there is no pattern of deliveries. These levels are then kept as
targets to refill up to, on each delivery, when plans are generated. However, there are
only penalties associated with violating them as they are not included as hard con-
straints in the off-line routing problem. The off-line routing problem generates a plan
that stipulates for each customer the next delivery time and quantity to refill, based
on reorder quantities and on the current state of the system, i.e. inventory levels at
each facility, and location and load remaining on the truck. This plan is obtained by
minimizing the sum of transportation costs, and expected Lost Sales Penalty (LSP)
costs, subject to visiting all customers once during the planning horizon.
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In the next subsection, the method used to compute reorder quantities for each
facility is presented, followed by the mathematical formulation of the oft-line routing
problem.

b) Optimization of Refilling Levels

To compute the target refilling levels for each facility, the sum of expected costs
(per time unit) for all facilities is minimized, assuming there is no pattern of deliv-
eries and the truck visits only one customer per route. That is, the truck goes back
to the depot after refilling a customer, and from there would go to the next cus-
tomer as needed. Since the truck visits only one customer per route, transportation
costs associated with serving a particular customer are fixed. However, even though
customers are visited in isolation, the possibility of waiting for service due to the
(single) truck serving other facilities is incorporated. Additionally, unlike traditional
inventory systems where quantities are fixed after orders are placed, quantities can
be updated upon arrival at the customer.

Then, using a policy that places orders when the inventory level is s and refills
up to level S, the expected cost per time unit (AC) at steady state at each facility
could be calculated using the renewal reward theorem (see for example [35]). An
approximation made in the calculation of AC (in (3) below) is to neglect the impact
of expected stock-out time during the cycle on the cycle length and holding costs
(see Axsiter, 2000 pp. 65), as follows:

_ Elcost per cycle]

AC; = )

E[cycle length]
FTC; + h (S,f + Li) ((Si = Lip) + 5(Si = si + Li,ui)) +pi-oiVLi G(Si_LiHi)

i VL;
(S,v—»s,' + Ll)
Hi

AC,‘ ~
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where FTC; is the fixed transportation cost to serve retailer i (in isolation); G(x)
is the loss function that gives the expected number of lost sales at the end of a pe-
riod with demand distributed N(0,1) given that the initial inventory level is x (see
Axsiter, 2000); and L; = T + dy; + W; , is the sum of the review period, T, and the
total lead time. The length of the review period, 7, is the time between plan updates
and depends on the policy implemented. The lead time is composed of travel time
from the depot to retailer i, dy;, and the expected waiting time W; for retailer i. This
expected waiting time could be expressed, as a function of reorder quantities, using
the following recursive expression:

W; = Z Pr{ret. j is in service} - (do j) + Pr{ret. j is waiting for service} - (2d0 j)
J#i

Bj i

“)
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where 8 and y are the proportion of the cycle in which a retailer is being served
and waits for service, respectively. To evaluate the waiting times for all facilities,
given a vector of reorder quantities, a bisection procedure is used iteratively until the
waiting times for all facilities are consistent.

Finally, to obtain the optimal reorder quantities, the sum of average cost for all
facilities is minimized, subject to L; = T + d(0, i) + W;; equations (4), (5), and (6);
and Y; 2dy; - (ui/(S; — s;)) < 1 . The first four are definitional constraints, and the
fourth implies that truck utilization rate should be less than 100%. This problem
is solved using a steepest decent numerical procedure, in which at each step the
gradient is evaluated numerically. Then, the solutions found in this step are used
as input parameters every time the off-line routing problem presented in the next
subsection is called.

¢) Mathematical Formulation of the Problem

In this off-line routing problem, the current inventory levels at all facilities are con-
sidered as given, as are the load remaining and the distance to all facilities for the
truck. When the truck is at the depot the load remaining is equal to the truck capacity.
Additional input parameters are the transportation cost 7C [$/hr]; inventory holding
cost /; [$/unit-day]; lost sales cost p; [$/unit]; and order up to level S ;[units].

It is assumed that the central decision maker would try to follow the optimal re-
order up to S policy for each customer. However, since patterns of deliveries are not
considered, he/she would deviate from that policy to take advantage of transporta-
tion savings. In order to measure the impact on transportation and inventory cost of
deviating from the reorder up to S policy, Incremental Inventory Costs (/IC) for each
facility are computed. These /IC are calculated as a one time deviation from the re-
order up to S policy, assuming that after this deviation the optimal policy is resumed.
These IIC can be expressed as the sum of expected Incremental Transportation Costs
(ITC), and expected Lost Sales Penalty costs (LSP). Notice that the impacts on hold-
ing costs are only considered through the specification of reorder up to levels. To
compute /TC, first notice that if each retailer is considered in isolation, for a given
consumption rate u, the minimum transportation costs are achieved when deliveries
arrive when the inventory level is zero and the quantity delivered is S. In this case
transportation costs per unit of time are FTC - (u/S). Then ITC, associated with
scheduling a delivery of size ¢ units at time ¢ after the current time, given that the
current inventory level is ¢, could be expressed as
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ITC(q,t/L):[F(g)C—F(g)c](Z)zFTC-(Z—g)(g)zFTc-(l—g) %)

where 0 < g < (S —¢+ - 1), and S is the optimal reorder up to level. On the other
hand, expected Lost Sale Penalty (LSP) costs, associated with scheduling a delivery
at time ¢ after the current time, given that the current inventory level is ¢, could be
computed, approximating the distribution of total demand during ¢ as N(tu, to?), as:

LSP(t/v =p f (u =0 fpewdu (8)

LS Pt = peot [ (v—(L_tM))fﬁ(v)dv=p-o-\/t-G(L_t,u) o
i o oVt

o

Based on these /IC, an off-line problem could be formulated similarly to a vehicle
routing problem (VRP), where the next visit to each customer is scheduled based on
its current inventory level, but adding in the objective function the /IC. This static
off-line problem is formulated as minimizing the sum of /IC for all retailers and
total transportation costs for the next delivery, subject to visiting all customers once
during the planning period (next week) and inventory levels not exceeding order —
up-to levels, S, for each retailer.

Thus, the variables of this problem are:

q! : Quantity to be delivered to retailer i by the truck in its " tour, where tours
are numbered from O (0 is the current tour).

1 If facility j is visited immediately after facility i by the truck
x{; =1 inits " tour
0 Otherwise

+ [ 1If facility i is served by the truck in its 7" tour
i =1 0 Otherwise

t; - Arrival time to retailer i. (i € J).

t: Arrival time to the depot by the truck in its ! tour. tg is the truck arrival time
to the depot in its current tour.

In addition, the parameters of this model are:

t; : Retailer i current inventory level.

k; - Retailer i capacity to store inventory.

T : Truck capacity.

v : Load remaining in the truck, which is equal to 7" when the truck is at the
depot.

T C : Transportation cost per unit of distance traveled by the truck. This is mea-
sured in [$/hr], since the truck moves at constant speed.
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h; : Retailer i inventory holding cost [$/unit-day].

pi : Retailer i lost sales cost per unit of demand not satisfied [$/unit].

S : Retailer i order up to level [units].

s; - Retailer i reorder level [units].

¢: Facility where the truck is currently located. £ € {0,1,2,...,N,N + 1}, it is
equal to N+1 when truck is en-route. In this case, a dummy node, N+1, is created at
the projected position.

d;;: Distance from facility i to facility j. Notice that when the truck is en-route
distance from the dummy node N+1 to all facilities should be included.

R =1{0,1,2,...,R} : Set of tours (routes) for the truck in the planning horizon,
where R is the maximum number of tours not considering the current tour (» = 0).
Thus, r € R.

H : Length of planning horizon (maximum number of hours of operation).

The Mixed Integer Programming (MIP) formulation is presented below:

Min. Y LS Pi(ti/w) + Y 3 ITCiq), /) -y + TC- > 3" diy- [Z x;j] (10)
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TC - Ties, T jesy:jei dij - (Zrem 13)
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The objective function (10)—(11) minimizes the sum of the total expected lost
sale penalties at each facility for the next scheduled visit, and the total transportation
costs.

All tours start at the depot with a full truck, with the exception of the current
tour, » = 0, in which the truck starts at any facility or en-route (at node N+1), and
the truck might not be full (its current load is v).

Constraint (12) ensures that the next visit for each retailer is programmed. Equa-
tions (13) and (14) ensure that the truck returns to the depot in all its tours. Constraint
(15) dictates that the truck should leave from its current location. Constraints (16)—
(17)—(18) give continuity of flow ensuring that the number of arrivals equals the num-
ber of departures at each node. Constraints (19)-(20) ensure that subsequent routes
could be traveled only if the previous route is completed. Constraints (21)—(22) en-
sure that current route leave the initial node and subsequent routes leave the depot to
visit retailers. Constraints (23) through (33) ensure that the arrival times at each fa-
cility are consistent with travel times between them and the initial conditions, where
M is a big number. Constraint (34) dictates that the last route should be completed
before the end of the planning horizon H. Constraint (35) relates facilities served on
each route with its links. Constraints (36) guarantee that only customers visited from
a particular route could receive deliveries from it. Constraints (37)—(38) ensure that
the truck capacities are not exceeded and that the quantity delivered cannot exceed
the load remaining in the vehicle. Constraints (39)—(40) guarantee that inventory lev-
els should not exceed the order up to level, S; and inventory level should be greater
than s; after refilling; however an exception is allowed at the current facility if the
load remaining in the truck is insufficient (40).

As mentioned, the purpose of this formulation is to update truck plans making
use of updated information about the state of the system. The next section describes
three strategies that solve this formulation in a rolling horizon framework.
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3.4 Re-optimization Based Real-Time Strategies

The off-line problem described in the previous section will be used to determine how
to update truck routes and inventory allocations in a rolling horizon framework. Dif-
ferent policies could be devised based on how often the off-line problem is solved
and/or how many steps of the current solution are implemented before solving a new
instance with updated system state information. Three policies, ordered in terms of
increasing ICT requirement, are presented and tested. These are Replan at Tour Com-
pletion (RTC), Replan at Delivery Epochs (RDE), and Replan at Delivery Epochs
with possible en-route diversions (RDE+div).

a) Replan at Tour Completion (RTC) Strategy

In Replan at Tour Completion (RTC), the off-line IRP is solved each time the truck
returns to the depot, i.e. completes a tour, and only the first route of the current solu-
tion is implemented. In this policy, the review period, 7, used to compute the optimal
refill levels, is obtained as the expected distance on a tour over the set of retailers.

b) Replan at Delivery Epochs (RDE) Strategy

In Replan at Delivery Epochs (RDE), the off-line problem is called at delivery
epochs. Each time a truck arrives to a facility, either a retailer or the depot (deliv-
ery epoch), an off-line IRP is solved and the solution implemented until the next
delivery epoch. That is the amount specified by the solution is delivered at the cur-
rent facility, and the truck is sent to the next facility specified by the solution. In this
policy, the review period, 7, used to compute the optimal refilling levels, is obtained
as the expected distance between two retailers.

c) Replan at Delivery Epochs with Possible En-Route Diversion (RDE+div) Strategy

In Replan at Delivery Epochs with possible en-route diversion (RDE+div), plans
are updated at delivery epochs, as in RDE, as well as when demand disruptions
occur. In this case, inventory levels are continuously monitored while the vehicle
is traveling; whenever a facility’s consumption since the last plan update falls below
or above 3 standard deviations from its expected demand, the current plan is updated.
To update the plan, the state of the system (i.e. the location of the truck and inventory
levels assuming expected consumption rates) is first projected. Then, based on the
projected state of the system, an off-line routing problem is solved and the next step
implemented. In this strategy, the truck could be diverted if in the new plan the next
facility to be visited differs from the current destination.

In order to solve the off-line IRP formulation used in these strategies, the first
term in equation is piecewise linearized, so that small instances can be efficiently
solved using CPLEX 10.0 with default settings. This problem can be solved in a few
seconds for most instances with less than six facilities and a few minutes for instance
with less than nine facilities. The design of heuristics to solve larger size instances is
beyond the scope of this Chapter, and is left as a future extension.
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4 Simulation Experiments and Results

This section describes the experiments designed to evaluate and compare proposed
real-time policies, and discusses the results. Simulation runs were performed with
all three re-optimization strategies, RTC, RDE and RDE+div, as well as the two
benchmark policies, BENCH1 and MUN presented in the previous section.

4.1 Simulation Scenarios

This section presents the main elements and defining parameters of the simulated
scenarios. First, the set of fixed parameters used in all simulations is introduced. Sec-
ond, parameters in scenarios with steady-state demand processes are defined. Third,
inventory reorder levels are obtained for each combination of strategy and scenario
simulated. Finally, experiments with demand disruption at one facility are presented.

Because of limited computational resources (each simulation run takes hours of
computer time — even days for some re-optimization strategies —), a full factorial
design was not practical, so not all parameter combinations were applied. For each
strategy, simulations were performed for four cases of facility layouts, and 12 param-
eter sets, representing typical cost settings, probabilistic scenarios, and constraints.

Distances between facilities are Euclidean and are measured in units of time
[hours], because it is assumed, without loss of generality, that the vehicle moves at
unit speed. All facilities are located in a square region, with side length of 4 h, with
the depot in the center of the square region, i.e. the depot is located at (2, 2). In all
cases simulated, seven retailers and one depot are considered. In case 0, retailers are
symmetrically distributed around the depot at 1.2 h apart, and in cases 1 to 3 they
are randomly distributed in the region. Figures 1 through 4 show the locations of
facilities for each case. Facilities were renumbered to coincide with their position in
the TSP tour.

In addition to the location of facilities for each case studied, the following set of
parameters is considered as fixed: the vehicle capacity, 1" = 400 [units]; the length
of the planning horizon used on the off-line problem for re-optimization strategies,
H = 100 [hrs] which is also assumed to be the amount of working hours per week;
lost sales penalty costs, p; = 100 [$/unit] for all retailers; and the fixed transportation
costs used to obtain refill levels for re-optimization strategies, FTC; = 2 - dy; - TC,
which is computed as twice the cost of a tour from the depot only to that retailer. In
addition, the time projection used in the case of diverting the vehicle is 6 min, i.e.
0t = 6 min.

Two sets of scenarios were studied: (1) products with high inventory-holding
costs and no capacity constraints at retailers’ sites, and (2) products with low
inventory-holding costs and capacity constraints at retailers’ sites. Scenarios with
low inventory holding costs and no capacity constraints at retailers were not consid-
ered, since for those scenarios the best policy would be full-truckload deliveries.

For each set of scenarios, a base case was considered. Parameter set 1 is the base
case for high inventory-holding cost scenarios, in which TC =100 [$/hr], #; = 10
[$/unit-day] for all retailers, and demand parameters are the same for all retailers, and
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Fig. 3. Location of facilities for Case 2

equal to 4; = 50 [arrivals/Day] and 6; = 1 [units], for all i. This demand process can
be approximated as N(50, 10%) for daily periods. For low inventory-holding cost sce-
narios, Parameter set 7 is the base case, in which /; = 1 [$/unit-day], x; = 100 [units]
for all retailers, and the remaining parameters are the same as in Parameter set 1.
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Fig. 4. Location of facilities for Case 3
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In order to analyze the impact of transportation costs and demand variability on
the proposed policies, ten additional scenarios were designed, as shown in Table 1. In
scenarios with high (low) inventory holding costs and without (with) retailer capacity
constraints, parameter sets 2 and 3 (8 and 9) capture variation in transportation costs,
whereas parameter sets 4 to 6 (10 to 12) reflect differing levels of demand variability.

In the experimental design, the magnitude of each cost parameter is less relevant
than the relationship among them. For that reason, the scenarios studied vary the
ratio between transportation and inventory costs.

The reorder parameters of the (s, S) policy used in BENCH1 were obtained using
Zheng and Federgruen algorithm (1991). RTC and RDE reorder parameters were
obtained using the procedure described in Sect. 3.3.2. The only difference between
RTC and RDE is the review period considered. In RTC the expected TSP length was
used, and in RDE the expected distance between two facilities was used. For the
MUN strategy, RDE refilling up to levels, S, were used.

Table 1. Simulation scenarios

Parameter Set TC h K A 0 Approx.
[$/hr] [$/day]  [units] [arrivals/day] [units] N(u,0?)
1 100 10 0 50 1 N(50,10%)
2 33 10 0 50 1 N(50,10%)
3 300 10 0 50 1 N(50,10%)
4 100 10 0 10.5 4.8 N(50,17%)
5 100 10 0 4.35 11.5 N(50,25%)
6 100 10 0 2.4 20.8 N(50,33%)
7 100 1 100 50 1 N(50,10%)
8 33 1 100 50 1 N(50,10?)
9 300 1 100 50 1 N(50,10%)
10 100 1 100 10.5 4.8 N(50,17%)
11 100 1 100 4.35 11.5 N(50,252)
12 100 1 100 2.4 20.8 N(50,33%)

4.2 Simulation Results

For every combination of strategy and set of parameters studied, simulations were
carried for 30 replication runs of 100 h (1 week) each, and all four facility layout
cases. For each parameter set, the different strategies were simulated with common
random numbers (for demand generation), and the same initial conditions. The initial
conditions for the first replication were the same for all strategies in the same sce-
nario, starting with the vehicle at the depot, and the same initial inventory levels. The
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effect of initial conditions is only relevant up to the first visit to each facility, which
is small compared to the length of each run to have significant effects. Moreover,
those initial conditions were only used in the first replication, and results suggest
that transient-state effects are negligible.

For each simulation run, the following measures of performance were examined:
average transportation costs; average inventory holding costs; and average lost-sale
penalty costs. For each of those measures, interval estimates were obtained. These
results are presented in Appendix.

4.3 Analysis of Results

Simulations were carried only under typical system parameters, and run under ide-
alized probabilistic distributions. Thus, the results presented are valid only for the
range of values studied, which are nonetheless intended to be representative of real-
world applications, and hence adequate to provide general insight for them.

For all parameter sets considered, the three proposed online strategies system-
atically outperformed benchmark strategies. The best proposed strategies achieved
reductions in average total costs of approximately 30 and 15% compared against
benchmark policies BENCH1 and MUN, respectively. The average cost improve-
ments were computed as the average of:

(Avg. Total Cost of Strategy — Avg. Total Cost of BENCH)

-100% 43
Avg. Total Cost of BENCH ’ 43)

For all sets of parameters and cases considered. Moreover, the optimal decentral-
ized benchmark policy, BENCHI1, was systematically outperformed by centralized
strategies. This can be explained in part by the fact that BENCHI tends to carry
more inventory to protect against longer lead times. In addition, all proposed strate-
gies achieved less variability in average costs than the BENCHI1 strategy.

Among re-optimization strategies, those that update plans at delivery epochs,
RDE and RDE+div, were the best strategies for the set of parameters considered.
The possibility of diversion — either en-route or when the vehicle is idle at the depot —
improves system performance in scenarios with low inventory-holding costs and high
demand variability. However, further research is needed to better delineate scenarios
in which en-route diversion could be beneficial, since in RDE vehicle idle time at the
depot is set upon arrival and not updated, even when that might be profitable. The
benefits of re-planning at delivery epochs tend to be higher in cases where there are
clusters of facilities close to each other and/or near to the depot, such as in case 2.

As noted, experiments were carried out for two sets of scenarios: (1) products
with high inventory-holding costs, and (2) products with low inventory-holding costs
and retailer capacity constraints. As shown in Fig.5, a comparison of the two sets
of scenarios illustrates that re-planning strategies tended to increase their benefits
relative to the benchmark policies when applied to scenarios with low inventory-
holding costs.
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Fig. 5. Impact of inventory holding cost

In Figs.6 and 7, reductions in average total costs for proposed re-planning
strategies vs. the two benchmark policies are illustrated. In scenarios with high
inventory-holding costs (Fig. 6), the benefits of the proposed strategies tend to de-
crease (increase) as transportation costs increase, when compared with BENCH1
(MUN). That again can be explained by the longer lead times in BENCHI1, requiring
facilities to carry more inventory. Thus, the higher the inventory-holding costs, the
worse the performance of BENCHI.

In scenarios with low inventory-holding costs and retailer capacities (Fig.7),
the benefit of the proposed strategies tends to increase, as transportation costs in-
crease when compared to any of the benchmark policies. Thus, with the exception
of BENCHI, for scenarios with high inventory-holding costs, the benefits of the
proposed re-planning strategies tend to increase as a function of the proportion of
transportation costs in the total cost function.

Among re-planning strategies when transportation costs are more significant in
the total costs, re-planning at delivery epochs is less beneficial, compared with re-
planning only at tour completions. A comparison between RDE and RTC shows that
RDE reduced by approximately 11, 8, and 4% the average total costs in scenarios
with high inventory-holding costs, i.e. under parameter sets 2 (7C = 33), 1 (TC =
100), and 3 (T'C = 300), respectively. In scenarios with low inventory-holding costs,
the differences are less dramatic and remain relatively constant (around 2.5%) with
respect to changes in transportation costs. Those differences could be explained
mainly by the higher inventory levels maintained under RTC, which amplify the
differences between RDE and RTC when inventory-holding costs are predominant
in the total cost function.
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As shown in Fig. 8, with high inventory-holding costs, as demand variability
increases, the benefits of the proposed strategies tend to decrease, compared to
benchmark strategies. Conversely, in scenarios with low inventory-holding costs and
capacity constraints (Fig.9), the benefits of the proposed strategies tend to increase
vs. BENCHI1 and decrease vs. MUN, as demand variability increases. As expected,
MUN becomes more competitive in scenarios with very high demand variability. In
scenarios with increased demand variability, i.e. those with parameter sets 5, 6, 11,
and 12, the advantage of re-planning at delivery epochs vs. only at tour completion
tends to be slightly higher than in scenarios with less demand variability.

The possibility of diversion — either en-route or when the vehicle is idle at the
depot — improves system performance in scenarios with low inventory-holding costs
and high demand variability. However, further research is needed to identify scenar-
ios in which en-route diversion would be beneficial.

B Low Demand Variability 8 Medium Demand Variability OHigh Demand Varisbility O Very High Demand Variahility ]

-30.0%

~20.0%

-15.0% 4

0.0% 4

50%
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RTC vs. BENCH1 RTC ws. MUN RDE vs. BENCH" RDE v=. MUK RDE-+div vs. RDE+div ve_ MUN
BENCH1

Fig. 8. Impact of increments in demand variability in scenarios with high inventory-holding

costs, parameter sets 1, 4, 5 and 6

5 Conclusion

In this Chapter the OIRP was introduced and three rolling horizon strategies were
proposed, corresponding to different degrees of sophistication in terms of ICT. The
central idea of the proposed approach (which is then applied online with varying trig-
gers depending on the operational control strategy followed), is to establish inven-
tory reorder parameters for each facility, and use those as target levels in the routing
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problem solved to update the plans. These target levels are obtained by solving the
inventory control side of the problem first, assuming known transport costs corre-
sponding to a simplified version of the routing problem. The routing problem used to
update plans includes both transportation and inventory-related costs in its objective
function, and is formulated as a MIP, solved for small instances in the experiments
presented in the paper using a commercial solver.

The proposed strategies were compared against two benchmark policies using
a general discrete-event simulation framework. The proposed re-planning strategies
are shown to systematically outperform the two benchmark policies. Among pro-
posed strategies, those that update plans at delivery epochs exhibited superior per-
formance for the set of parameters considered in the experiments.

The work presented here represents a first step in addressing the complex prob-
lem of optimally operating logistics processes in real-time. It has been previously
established that combining inventory planning with fleet operation could result in
potentially considerable savings relative to operating each process separately. Oper-
ating the two processes jointly in real-time can help realize those advantages, and
amplify them substantially by responding more effectively to demand fluctuations.
The specific problem addressed in this Chapter can be extended along several di-
mensions, including multiple-vehicle fleets, additional echelons, multiple product
types, among many others. For systems with non-affiliated retailers, the problem and
approach presented here provide an example of collaborative logistics, which give
rise to interesting problem classes and open significant opportunities for novel ap-
proaches and mechanisms for achieving mutual gains through online collaboration.
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Fig. 10. Simulation results: parameter set 1 TC = 100 [$/hr], h; = 50[$/week], A; = 50[arrivals/
day], 6; =1 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost __ Transp. Cost Total Cost
Mean 22,569 2,041 24,610 3,428 28,038
BENCH1 St Dev 862 1,474 1,244 164 1,240
cv 0.04 0.72 0.05 0.05 0.04
Mean 12,843 1,901 14,744 6,415 21,159
MUN St Dev 539 1,798 1,572 494 1,633
cv 0.04 0.95 0.11 0.08 0.08
Mean 16,221 167 16,388 4,621 21,008
RTC St Dev 646 278 591 241 561
cv 0.04 1.67 0.04 0.05 0.03
Mean 13,997 312 14,308 4,943 19,252
RDE St Dev 227 387 486 258 543
cv 0.02 1.24 0.03 0.05 0.03
Mean 14,158 228 14,386 4,980 19,366
RDE+div St Dev 234 304 307 248 397
cv 0.02 1.33 0.02 0.05 0.02
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 22,812 2,928 25,739 4,363 30,103
BENCH1 St Dev 841 2,302 1,852 432 1,963
cv 0.04 0.79 0.07 0.10 0.07
Mean 16,361 1,763 18,124 7,437 25,561
MUN St Dev 725 1,672 1,393 545 1,541
cv 0.04 0.95 0.08 0.07 0.06
Mean 18,895 321 19,215 5,308 24,523
RTC St Dev 703 498 886 330 911
cv 0.04 1.55 0.05 0.06 0.04
Mean 17,287 307 17,594 5,536 23,130
RDE St Dev 316 410 498 317 602
cv 0.02 1.34 0.03 0.06 0.03
Mean 17,238 239 17,477 5,606 23,083
RDE+div St Dev 327 271 417 354 592
cv 0.02 1.13 0.02 0.06 0.03
Strategy ) Case 2
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 22,721 1,432 24,153 3,041 27,194
BENCH1 St Dev 683 1,691 1,576 216 1,665
cv 0.03 1.18 0.07 0.07 0.06
Mean 12,725 612 13,337 7,366 20,703
MUN St Dev 381 1,202 1,104 525 1,372
cv 0.03 1.97 0.08 0.07 0.07
Mean 14,903 660 15,563 4,367 19,930
RTC St Dev 362 755 693 264 701
cv 0.02 1.14 0.04 0.06 0.04
Mean 12,647 680 13,327 4,922 18,249
RDE St Dev 250 574 636 230 640
cv 0.02 0.84 0.05 0.05 0.04
Mean 12,658 443 13,101 4,919 18,019
RDE+div St Dev 252 592 667 235 739
cv 0.02 1.34 0.05 0.05 0.04
Strategy . Case 3
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 23,221 1,821 25,041 3,355 28,396
BENCH1 St Dev 901 1,620 1,410 279 1,488
cv 0.04 0.89 0.06 0.08 0.05
Mean 14,696 1,046 15,742 6,650 22,392
MUN St Dev 616 1,234 981 555 1,244
cv 0.04 1.18 0.06 0.08 0.06
Mean 16,938 534 17,473 4,466 21,939
RTC St Dev 528 667 855 282 851
cv 0.03 1.25 0.05 0.06 0.04
Mean 14,960 257 15,217 4,727 19,943
RDE St Dev 337 576 535 222 627
cv 0.02 2.24 0.04 0.05 0.03
Mean 15,020 212 15,232 4,805 20,037
RDE+div St Dev 308 326 410 198 478
cv 0.02 1.54 0.03 0.04 0.02

30 replication with common random numbers

Results in [$/week]
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Fig. 11. Simulation results: parameter set 2 TC=233[$/hr],

[arrivals/day], 6; =1 [units] for all i

h; =50 [$/week], ;=50

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 21,344 181 21,525 1,408 22,932
BENCH1 St Dev 461 502 544 38 536
cv 0.02 2.78 0.03 0.03 0.02
Mean 11,904 1,748 13,651 2,476 16,128
MUN St Dev 489 1,579 1,290 186 1,278
cv 0.04 0.90 0.09 0.08 0.08
Mean 14,906 315 15,220 1,689 16,910
RTC St Dev 477 670 775 72 770
cv 0.03 2.13 0.05 0.04 0.05
Mean 12,649 187 12,837 1,890 14,727
RDE St Dev 231 282 281 72 301
cV 0.02 1.50 0.02 0.04 0.02
Mean 12,635 236 12,871 1,901 14,772
RDE+div St Dev 248 313 312 84 293
cv 0.02 1.33 0.02 0.04 0.02
Case 1
Strategy Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 20,641 1,886 22,527 1,920 24,447
BENCH1 St Dev 699 1,950 1,512 72 1,535
cv 0.03 1.03 0.07 0.04 0.06
Mean 15,338 2,274 17,612 2,632 20,244
MUN St Dev 802 2,434 2,076 189 2,081
cV 0.05 1.07 0.12 0.07 0.10
Mean 17,971 432 18,402 1,873 20,275
RTC St Dev 703 801 869 119 891
cv 0.04 1.86 0.05 0.06 0.04
Mean 16,246 282 16,527 1,980 18,507
RDE St Dev 313 330 412 124 399
cv 0.02 117 0.02 0.06 0.02
Mean 16,212 243 16,455 1,987 18,442
RDE+div St Dev 297 367 415 91 403
cv 0.02 1.51 0.03 0.05 0.02
Case 2
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 20,559 787 21,345 1,300 22,646
BENCH1 St Dev 418 859 835 55 848
cv 0.02 1.09 0.04 0.04 0.04
Mean 11,087 985 12,072 2,576 14,648
MUN St Dev 405 1,008 873 177 864
cv 0.04 1.02 0.07 0.07 0.06
Mean 13,720 490 14,210 1,635 15,845
RTC St Dev 348 632 671 81 707
cVv 0.03 1.29 0.05 0.05 0.04
Mean 11,243 518 11,761 1,903 13,664
RDE St Dev 203 611 819 81 639
cv 0.02 1.18 0.05 0.04 0.05
Mean 11,275 386 11,661 1,952 13,613
RDE+div St Dev 193 411 439 109 452
cv 0.02 1.07 0.04 0.06 0.03
Case 3
Strategy Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 21,317 493 21,811 1,389 23,199
BENCH1 St Dev 482 745 843 43 842
cv 0.02 1.51 0.04 0.03 0.04
Mean 13,287 909 14,195 2,316 16,511
MUN St Dev 504 1,452 1,146 181 1,151
cVv 0.04 1.60 0.08 0.08 0.07
Mean 15,735 247 15,981 1,604 17,585
RTC St Dev 464 480 666 72 697
cv 0.03 1.95 0.04 0.04 0.04
Mean 13,682 363 14,045 1,751 15,795
RDE St Dev 209 501 516 75 512
cv 0.02 1.38 0.04 0.04 0.03
Mean 13,766 238 14,004 1,790 15,794
RDE+div St Dev 205 374 410 90 426
cVv 0.01 1.57 0.03 0.05 0.03

30 replication with common random numbers

Results in [$/week]
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Fig. 12. Simulation results: parameter Set 3 TC =300 [$/hr], h; =50[$/week], ;=50
[arrivals/day], 6; =1 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 29,895 488 30,383 8,441 38,825
BENCH1 St Dev 642 731 761 688 1,156
cv 0.02 1.50 0.03 0.08 0.03
Mean 19,248 829 20,077 15,671 35,748
MUN St Dev 707 1,386 1,114 1,459 2,103
cv 0.04 1.67 0.06 0.09 0.06
Mean 20,780 368 21,147 9,666 30,814
RTC St Dev 628 577 743 749 1,050
cv 0.03 1.57 0.04 0.08 0.03
Mean 19,086 448 19,534 10,027 29,562
RDE St Dev 470 547 517 682 931
cv 0.02 1.22 0.03 0.07 0.03
Mean 19,167 452 19,619 10,063 29,682
RDE+div St Dev 437 483 538 709 914
cv 0.02 1.07 0.03 0.07 0.03
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 30,680 1,703 32,383 10,581 42,965
BENCH?1 St Dev 980 1,742 1,813 845 2,226
cv 0.03 1.02 0.06 0.08 0.05
Mean 21,104 1,529 22,633 16,244 38,877
MUN St Dev 1,063 1,710 1,426 1,885 2,254
cv 0.05 1.12 0.06 0.12 0.06
Mean 24,095 609 24,705 11,183 35,888
RTC St Dev 874 934 1,182 897 1,555
cv 0.04 1.53 0.05 0.08 0.04
Mean 22,833 529 23,362 11,523 34,886
RDE St Dev 536 624 800 1,062 1,364
cv 0.02 1.18 0.03 0.09 0.04
Mean 22,800 505 23,305 11,578 34,883
RDE+div St Dev 738 682 966 1,012 1,448
cv 0.03 1.35 0.04 0.09 0.04
Strategy ) Case 2
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 28,522 727 29,250 7,470 36,719
BENCH1 St Dev 661 1,167 1,231 716 1,562
cv 0.02 1.60 0.04 0.10 0.04
Mean 16,594 4,798 21,393 15,627 37,020
MUN St Dev 781 3,346 2,759 2,391 2,722
cv 0.05 0.70 0.13 0.15 0.07
Mean 19,246 771 20,017 8,978 28,995
RTC St Dev 655 1,172 1,023 796 1,247
cv 0.03 1.52 0.05 0.09 0.04
Mean 17,627 553 18,180 9,578 27,758
RDE St Dev 428 765 888 819 1,218
cv 0.02 1.38 0.05 0.09 0.04
Mean 17,561 469 18,031 9,566 27,597
RDE+div St Dev 460 417 537 663 869
cv 0.03 0.89 0.03 0.07 0.03
Strategy . Case 3
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 29,530 1,009 30,539 8,368 38,907
BENCH1 St Dev 905 1,053 1,118 745 1,399
cv 0.03 1.04 0.04 0.09 0.04
Mean 20,035 449 20,484 14,654 35,138
MUN St Dev 818 555 949 1,645 2,134
cv 0.04 1.24 0.05 0.11 0.06
Mean 22,267 372 22,639 9,184 31,823
RTC St Dev 636 444 689 821 1,207
cv 0.03 1.19 0.03 0.09 0.04
Mean 20,555 561 21,116 9,563 30,678
RDE St Dev 416 806 822 832 1,286
cv 0.02 1.44 0.04 0.09 0.04
Mean 20,594 573 21,167 9,585 30,751
RDE+div St Dev 533 592 673 803 1,089
cv 0.03 1.03 0.03 0.08 0.04

30 replication with common random numbers

Results in [$/week]
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Fig. 13. Simulation results: parameter set 4 TC=100 [$/hr], h; =50[$/week], 4;=10.5
[arrivals/day], 6; = 4.8 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 26,668 1,924 28,592 3,293 31,885
BENCH1 St Dev 833 1,779 1,870 238 1,922
cv 0.03 0.92 0.07 0.07 0.06
Mean 16,535 923 17,458 6,903 24,360
MUN St Dev 531 996 1,118 514 1,339
cv 0.03 1.08 0.06 0.07 0.05
Mean 20,424 863 21,287 4,757 26,044
RTC St Dev 636 989 1,109 331 1,169
cv 0.03 1.15 0.05 0.07 0.04
Mean 17,050 1,018 18,068 5,197 23,265
RDE St Dev 355 855 798 303 820
cv 0.02 0.84 0.04 0.06 0.04
Mean 16,934 727 17,660 5326 22,987
RDE+div St Dev 436 804 769 333 831
cv 0.03 1.11 0.04 0.06 0.04
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 26,615 2,797 29,412 4,326 33,738
BENCH1 St Dev 1,055 2,524 2,131 401 2,200
cv 0.04 0.90 0.07 0.09 0.07
Mean 19,530 1,282 20,812 7,222 28,034
MUN St Dev 957 1,953 1,806 543 1,972
cv 0.05 1.52 0.09 0.08 0.07
Mean 23,530 524 24,054 5,388 29,442
RTC St Dev 908 839 1,185 317 1,225
cv 0.04 1.60 0.05 0.06 0.04
Mean 20,716 649 21,365 5,867 27,231
RDE St Dev 430 690 701 480 882
cv 0.02 1.06 0.03 0.08 0.03
Mean 20,810 307 21,118 5,872 26,990
RDE+div St Dev 428 555 611 431 686
cv 0.02 1.81 0.03 0.07 0.03
Strategy . Case 2
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 26,427 1,817 28,244 2,953 31,196
BENCH1 St Dev 1,117 1,751 1,602 254 1,662
cv 0.04 0.96 0.06 0.09 0.05
Mean 15,341 1,651 16,992 7,352 24,343
MUN St Dev 540 1,621 1,570 563 1,590
cv 0.04 0.98 0.09 0.08 0.07
Mean 19,364 545 19,909 4,340 24,249
RTC St Dev 751 596 982 287 989
cv 0.04 1.09 0.05 0.07 0.04
Mean 15,385 699 16,084 4,976 21,060
RDE St Dev 273 641 617 311 673
cv 0.02 0.92 0.04 0.06 0.03
Mean 15,458 812 16,270 5,125 21,395
RDE+div St Dev 269 784 806 310 817
cv 0.02 0.96 0.05 0.06 0.04
Strategy i Case 3
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 27,080 2,313 29,393 3,318 32,711
BENCH1 St Dev 849 2,482 2,267 255 2,309
cv 0.03 1.07 0.08 0.08 0.07
Mean 17,761 860 18,621 6,730 25,351
MUN St Dev 682 965 1,089 550 1,238
cv 0.04 1.12 0.06 0.08 0.05
Mean 21,753 1,165 22,918 4,513 27,431
RTC St Dev 943 1,582 1,557 294 1,565
cv 0.04 1.36 0.07 0.07 0.06
Mean 18,207 911 19,118 4,893 24,011
RDE St Dev 439 1,205 1,020 305 1,031
cv 0.02 1.32 0.05 0.06 0.04
Mean 18,213 578 18,791 4,949 23,740
RDE+div St Dev 510 672 627 322 764
cv 0.03 1.16 0.03 0.07 0.03

30 replication with common random numbers

Results in [$/week]
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Fig. 14. Simulation results: parameter set 5 TC=100 [$/hr], h; =50[$/week], A;=4.35
[arrivals/day], 6; = 11.5 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 30,862 2,273 33,135 3,105 36,241
BENCH?1 St Dev 1,292 2,761 2,590 243 2,615
cv 0.04 1.21 0.08 0.08 0.07
Mean 19,999 1,509 21,508 7,251 28,759
MUN St Dev 1,043 1,693 1,803 598 2,105
cv 0.05 1.12 0.08 0.08 0.07
Mean 25,127 2,488 27,615 4,981 32,596
RTC St Dev 989 2,867 2,857 437 2,860
cv 0.04 1.15 0.10 0.09 0.09
Mean 19,988 1,895 21,883 5,358 27,241
RDE St Dev 419 1,540 1,473 436 1,615
cv 0.02 0.81 0.07 0.08 0.06
Mean 20,272 1,383 21,654 5,558 27,212
RDE+div St Dev 485 1,386 1,370 381 1,499
cv 0.02 1.00 0.06 0.07 0.06
Case 1
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 30,842 4,103 34,945 4,083 39,028
BENCH1 St Dev 1,354 4,971 4,560 375 4,586
cv 0.04 1.21 0.13 0.09 0.12
Mean 23,346 1,259 24,606 7,219 31,825
MUN St Dev 1,117 1,514 1,478 853 2,139
cv 0.05 1.20 0.06 0.12 0.07
Mean 28,961 1,647 30,607 5616 36,223
RTC St Dev 1,605 1,640 2,242 472 2,197
cv 0.06 1.00 0.07 0.08 0.06
Mean 24,254 1,248 25,502 6,386 31,888
RDE St Dev 637 1,519 1,367 571 1,487
cv 0.03 1.22 0.05 0.09 0.05
Mean 24,592 959 25,551 6,327 31,878
RDE+div St Dev 709 1,350 1,375 584 1,455
cv 0.03 1.41 0.05 0.09 0.05
Case 2
S"a‘egy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 30,787 2,473 33,260 2,919 36,179
BENCH1 St Dev 1,061 2,254 2,035 274 2,165
cv 0.03 0.91 0.06 0.09 0.06
Mean 18,397 2,570 20,967 7,416 28,384
MUN St Dev 599 2,245 2,082 770 2,188
cv 0.03 0.87 0.10 0.10 0.08
Mean 24,345 1,885 26,229 4,363 30,593
RTC St Dev 963 2,152 2,193 482 2,229
cv 0.04 1.14 0.08 0.11 0.07
Mean 18,311 2,872 21,182 5,361 26,543
RDE St Dev 418 2,646 2,545 501 2,645
cv 0.02 0.92 0.12 0.09 0.10
Mean 18,589 1,596 20,184 5312 25,496
RDE+div St Dev 344 1,633 1,741 501 1,848
cv 0.02 1.02 0.09 0.09 0.07
Case 3
Strategy Inv. Holding Cost _Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 31,057 3,478 34,536 3,098 37,634
BENCH1 St Dev 1,391 3,501 3,377 252 3,371
cv 0.04 1.01 0.10 0.08 0.09
Mean 21,483 999 22,482 6,897 29,378
MUN St Dev 1,187 1,158 1,457 848 2,098
cv 0.06 1.16 0.06 0.12 0.07
Mean 26,585 1,774 28,359 4,703 33,062
RTC St Dev 1,204 2,158 2,348 303 2,343
cv 0.05 1.22 0.08 0.06 0.07
Mean 21,582 1,767 23,348 5,591 28,940
RDE St Dev 494 1,567 1,615 551 1,651
cv 0.02 0.89 0.07 0.10 0.06
Mean 21,587 905 22,492 5,639 28,131
RDE+div St Dev 525 1,315 1,209 544 1,384
cv 0.02 1.45 0.05 0.10 0.05

30 replication with common random numbers

Results in [$/week]
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Fig. 15. Simulation results: parameter set 6 TC=100 [$/hr], h; =50[$/week], A;=2.4
[arrivals/day], 8; =20.8 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 34,425 4,670 39,096 3,044 42,140
BENCH1 St Dev 1,691 4,308 3,834 325 3,758
cv 0.05 0.92 0.10 0.11 0.09
Mean 23,539 1,954 25,493 7,302 32,795
MUN St Dev 1,197 1,728 1,783 881 1,941
cv 0.05 0.88 0.07 0.12 0.06
Mean 29,653 4,261 33,914 5,281 39,195
RTC St Dev 1,614 3,799 3,574 523 3,630
cv 0.05 0.89 0.11 0.10 0.09
Mean 23,151 4,040 27,190 5717 32,907
RDE St Dev 633 2,860 2,841 479 2,775
cv 0.03 0.71 0.10 0.08 0.08
Mean 23,482 2,630 26,112 5,793 31,906
RDE+div St Dev 524 2,704 2,699 417 2,749
cv 0.02 1.03 0.10 0.07 0.09
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 34,452 5,503 39,955 4,050 44,005
BENCH1 St Dev 1,673 4,789 4,108 414 4,211
cv 0.05 0.87 0.10 0.10 0.10
Mean 26,848 2,233 29,081 7,225 36,306
MUN St Dev 1,119 2,763 2,382 776 2,527
cv 0.04 1.24 0.08 0.11 0.07
Mean 33,758 2,504 36,262 5,824 42,086
RTC St Dev 1,463 3,145 3,157 479 3,215
cV 0.04 1.26 0.09 0.08 0.08
Mean 27,965 3,227 31,192 7,002 38,194
RDE St Dev 841 2,572 2,350 560 2,517
cv 0.03 0.80 0.08 0.08 0.07
Mean 28,194 1,324 29,518 6,785 36,303
RDE+div St Dev 833 1,997 2,050 720 2,134
cv 0.03 1.51 0.07 0.11 0.06
Strategy . Case 2
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 34,610 3,952 38,563 2,734 41,297
BENCH1 St Dev 1,464 2,876 2,592 331 2,660
cv 0.04 0.73 0.07 0.12 0.06
Mean 21,356 3,562 24,918 7,523 32,441
MUN St Dev 841 2,225 1,930 857 1,944
cv 0.04 0.62 0.08 0.11 0.06
Mean 28,890 1,965 30,855 4,419 35,274
RTC St Dev 1,271 2,334 2813 498 2,829
cv 0.04 1.19 0.09 0.11 0.08
Mean 21,304 4,612 25,916 5,247 31,163
RDE St Dev 587 3,785 3,640 548 3,844
cv 0.03 0.82 0.14 0.10 0.12
Mean 21,667 2,631 24,298 5,800 30,098
RDE+div St Dev 453 2,452 2,386 646 2,430
cv 0.02 0.93 0.10 0.11 0.08
Strategy . Case 3
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 35,055 3,169 38,224 3,119 41,343
BENCH1 St Dev 1,409 2,945 3,135 290 3,112
cv 0.04 0.93 0.08 0.09 0.08
Mean 25,234 1,656 26,891 7,029 33,920
MUN St Dev 1,309 1,979 1,978 789 2,347
cv 0.05 1.19 0.07 0.11 0.07
Mean 31,198 2,420 33,618 4,926 38,544
RTC St Dev 1,359 2,973 2,462 423 2,527
cV 0.04 1.23 0.07 0.09 0.07
Mean 24,729 4,071 28,800 6,065 34,865
RDE St Dev 762 3,254 2,833 634 2,964
cv 0.03 0.80 0.10 0.10 0.09
Mean 25,215 2,420 27,635 6,213 33,848
RDE+div St Dev 609 2,029 1,893 642 1,937
cv 0.02 0.84 0.07 0.10 0.06

30 replication with common random numbers

Results in [$/week]




Fig. 16. Simulation results:

day], 6; =1 [units] for all i

Logistics in Real-Time

143

parameter set 7 TC = 100 [$/hr], h; = 5[$/week], A; =50[arrivals/

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,178 440 2,618 4,158 6,776
BENCH?1 St Dev 41 605 594 173 588
cv 0.02 1.38 0.23 0.04 0.09
Mean 2,066 762 2,828 4,648 7,476
MUN St Dev 75 1,357 1,325 484 1,355
cv 0.04 1.78 0.47 0.10 0.18
Mean 2,153 183 2,336 3,215 5,551
RTC St Dev 58 350 351 172 414
cv 0.03 1.92 0.15 0.05 0.07
Mean 2,098 220 2,318 3,134 5,452
RDE St Dev 46 246 232 211 328
cv 0.02 1.12 0.10 0.07 0.06
Mean 2,104 93 2,197 3,183 5,380
RDE+div St Dev 42 227 233 177 309
cv 0.02 244 0.11 0.06 0.06
Case 1
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,004 2,128 4,132 5872 10,004
BENCH1 St Dev 67 1,633 1,590 196 1,643
cv 0.03 0.77 0.38 0.03 0.16
Mean 2,024 1,299 3,323 6,397 9,720
MUN St Dev 87 1,892 1,845 680 1,800
cv 0.04 1.46 0.56 0.11 0.19
Mean 2,135 177 2,311 4,360 6,671
RTC St Dev 74 341 341 306 548
cv 0.03 1.93 0.15 0.07 0.08
Mean 2,098 307 2,405 4,208 6,613
RDE St Dev 44 479 467 334 606
cv 0.02 1.56 0.19 0.08 0.09
Mean 2,087 184 2,271 4,286 6,557
RDE+div St Dev 45 292 286 339 508
cv 0.02 1.59 0.13 0.08 0.08
Case 2
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,196 603 2,799 3,931 6,731
BENCH?1 St Dev 56 781 768 200 753
cv 0.03 1.30 0.27 0.05 0.11
Mean 1,991 429 2,420 4,729 7,149
MUN St Dev 63 648 644 490 813
cv 0.03 1.51 0.27 0.10 0.11
Mean 2,056 444 2,500 3,059 5,559
RTC St Dev 61 476 442 249 472
cv 0.03 1.07 0.18 0.08 0.08
Mean 1,955 323 2,278 3,062 5,339
RDE St Dev 41 650 647 196 718
cv 0.02 2.02 0.28 0.06 0.13
Mean 1,945 175 2,119 3,071 5,191
RDE+div St Dev 42 266 273 236 394
cv 0.02 1.53 0.13 0.08 0.08
Case 3
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost __ Transp. Cost Total Cost
Mean 2,165 1,108 3,273 4215 7,489
BENCH1 St Dev 60 1,241 1,214 205 1,271
cv 0.03 1.12 0.37 0.05 0.17
Mean 2,083 424 2,507 5,073 7,579
MUN St Dev 77 647 616 526 757
cv 0.04 1.53 0.25 0.10 0.10
Mean 2,151 264 2,416 3,185 5,600
RTC St Dev 61 488 494 252 637
cv 0.03 1.85 0.20 0.08 0.11
Mean 2,115 188 2,303 3,156 5,458
RDE St Dev 38 311 305 225 407
cv 0.02 1.66 0.13 0.07 0.07
Mean 2,114 105 2,218 3,205 5,424
RDE+div St Dev 48 227 232 249 314
cv 0.02 217 0.10 0.08 0.06

30 replication with common random numbers

Results in [$/week]
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Fig. 17. Simulation results: parameter set 8 TC=33 [$/hr], & =5[$/week], ;=50
[arrivals/day], 6; =1 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,228 107 2,335 1,411 3,746
BENCH1 St Dev 46 333 324 34 330
cv 0.02 3.11 0.14 0.02 0.09
Mean 2,086 364 2,450 1,575 4,025
MUN St Dev 97 619 576 158 612
cv 0.05 1.70 0.24 0.10 0.15
Mean 2,153 126 2,279 1,062 3,341
RTC St Dev 53 315 292 89 286
cv 0.02 2.50 0.13 0.08 0.09
Mean 2,106 133 2,240 1,049 3,288
RDE St Dev 37 324 317 68 322
cv 0.02 2.43 0.14 0.06 0.10
Mean 2,109 93 2,202 1,053 3,255
RDE+div St Dev 36 168 172 77 202
cv 0.02 1.80 0.08 0.07 0.06
Case 1
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,082 727 2,809 1,989 4,799
BENCH1 St Dev 59 859 839 48 842
cv 0.03 1.18 0.30 0.02 0.18
Mean 2,028 860 2,888 2,142 5,030
MUN St Dev 80 1,184 1,142 160 1,184
cv 0.04 1.38 0.40 0.07 0.24
Mean 2,148 322 2,470 1,440 3,910
RTC St Dev 58 439 458 109 461
cv 0.03 1.36 0.19 0.08 0.12
Mean 2,064 358 2,423 1,427 3,850
RDE St Dev 51 549 541 112 577
cv 0.02 1.53 0.22 0.08 0.15
Mean 2,068 213 2,281 1,448 3,729
RDE+div St Dev 50 338 340 96 373
cv 0.02 1.59 0.15 0.07 0.10
Case 2
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,231 308 2,539 1,359 3,897
BENCH1 St Dev 40 593 591 42 588
cv 0.02 1.92 0.23 0.03 0.15
Mean 1,845 90 1,934 1,797 3,731
MUN St Dev 49 184 173 174 259
cv 0.03 2.05 0.09 0.10 0.07
Mean 1,874 377 2,251 1,053 3,304
RTC St Dev 38 635 615 7 621
cv 0.02 1.68 0.27 0.07 0.19
Mean 1,745 421 2,166 1,092 3,258
RDE St Dev 37 447 440 70 435
cv 0.02 1.06 0.20 0.06 0.13
Mean 1,750 236 1,986 1,089 3,075
RDE+div St Dev 48 363 347 88 360
cv 0.03 1.54 0.17 0.08 0.12
Case 3
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost __ Transp. Cost Total Cost
Mean 2,215 194 2,409 1,417 3,826
BENCH1 St Dev 51 534 542 35 532
cv 0.02 2.76 0.22 0.02 0.14
Mean 2,027 259 2,286 1,753 4,039
MUN St Dev 83 458 419 158 429
cv 0.04 1.77 0.18 0.09 0.11
Mean 2,101 280 2,381 1,079 3,460
RTC St Dev 57 501 496 74 526
cv 0.03 1.79 0.21 0.07 0.15
Mean 2,007 170 2,177 1,099 3,276
RDE St Dev 43 273 277 70 299
cv 0.02 1.61 0.13 0.06 0.09
Mean 2,009 98 2,107 1,121 3,228
RDE+div St Dev 40 228 230 71 247
cv 0.02 2.33 0.11 0.06 0.08

30 replication with common random numbers
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Fig. 18. Simulation results: parameter set 9 TC = 300 [$/hr], h; = 5[$/week], A; = 50[arrivals/
day], 6; =1 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,007 3,317 5,324 11,593 16,917
BENCH?1 St Dev 63 2,482 2,445 550 2,587
cv 0.03 0.75 0.46 0.05 0.15
Mean 2,077 426 2,503 14,269 16,772
MUN St Dev 95 442 427 1,532 1,648
cv 0.05 1.04 0.17 0.11 0.10
Mean 2,132 172 2,304 9,507 11,811
RTC St Dev 63 279 283 776 826
cv 0.03 1.62 0.12 0.08 0.07
Mean 2,096 192 2,288 9,358 11,646
RDE St Dev 36 301 290 491 642
cv 0.02 1.57 0.13 0.05 0.06
Mean 2,109 140 2,249 9,466 11,715
RDE+div St Dev 44 251 251 597 621
cv 0.02 1.80 0.11 0.06 0.05
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 1,799 7,725 9,524 15,720 25,244
BENCH1 St Dev 62 2,998 2,977 1,000 3,075
cv 0.03 0.39 0.31 0.06 0.12
Mean 2,009 929 2,937 18,889 21,826
MUN St Dev 67 1,205 1,168 1,384 1,469
cv 0.03 1.30 0.40 0.07 0.07
Mean 2,060 1,001 3,060 12,338 15,399
RTC St Dev 62 837 852 853 1,310
cV 0.03 0.84 0.28 0.07 0.09
Mean 2,029 873 2,902 12,072 14,974
RDE St Dev 39 745 741 945 1,097
cv 0.02 0.85 0.26 0.08 0.07
Mean 2,031 493 2,524 12,172 14,696
RDE+div St Dev 47 635 638 783 1,046
cv 0.02 1.29 0.25 0.06 0.07
Strategy . Case 2
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,056 3,174 5,229 10,616 15,845
BENCH1 St Dev 69 2,274 2,233 748 2,359
cv 0.03 0.72 0.43 0.07 0.15
Mean 2,022 2,323 4,345 12,921 17,266
MUN St Dev 101 2,007 1,966 1,470 2,024
cv 0.05 0.86 0.45 0.11 0.12
Mean 2,089 685 2,774 8,874 11,647
RTC St Dev 61 703 678 753 1,110
cv 0.03 1.03 0.24 0.08 0.10
Mean 2,058 430 2,488 8,747 11,234
RDE St Dev 46 563 549 619 871
cv 0.02 1.31 0.22 0.07 0.08
Mean 2,085 380 2,445 8,881 11,326
RDE+div St Dev 55 1,100 1,085 662 1,236
cv 0.03 2.89 0.44 0.07 0.11
Strategy . Case 3
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 1,991 3,514 5,505 11,643 17,148
BENCH1 St Dev 66 2,453 2,412 667 2,464
cv 0.03 0.70 0.44 0.06 0.14
Mean 2,050 880 2,930 14,527 17,457
MUN St Dev 89 1,169 1,116 1,470 2,068
cv 0.04 1.33 0.38 0.10 0.12
Mean 2,096 721 2,816 9,178 11,995
RTC St Dev 62 807 831 689 1,194
cV 0.03 1.12 0.30 0.08 0.10
Mean 2,072 617 2,688 9,036 11,724
RDE St Dev 48 637 632 733 1,041
cv 0.02 1.03 0.23 0.08 0.09
Mean 2,056 493 2,550 9,121 11,670
RDE+div St Dev 46 569 570 570 821
cv 0.02 1.15 0.22 0.06 0.07

30 replication with common random numbers

Results in [$/week]
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Fig. 19. Simulation results: parameter set 10 TC =
[arrivals/day], 6; = 4.8 [units] for all i

Ricardo Giesen, Hani S. Mahmassani, and Patrick Jaillet

100 [$/hr], h; =5[$/week], 1,=10.5

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,173 2,082 4,255 4,119 8,374
BENCH1 St Dev 58 2,259 2,229 200 2,281
cv 0.03 1.09 0.52 0.05 0.27
Mean 2,227 808 3,035 5,007 8,042
MUN St Dev 107 914 915 600 1,130
cv 0.05 1.13 0.30 0.12 0.14
Mean 2,395 658 3,054 3,782 6,836
RTC St Dev 94 786 768 237 801
cv 0.04 1.19 0.25 0.06 0.12
Mean 2,273 652 2,925 3,603 6,528
RDE St Dev 57 1,264 1,250 297 1,307
cv 0.02 1.94 0.43 0.08 0.20
Mean 2,281 602 2,883 3,620 6,503
RDE+div St Dev 52 877 859 321 913
cv 0.02 1.46 0.30 0.09 0.14
Case 1
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,000 3,985 5,986 5721 11,707
BENCH1 St Dev 68 2,999 2,958 257 2,971
cv 0.03 0.75 0.49 0.04 0.25
Mean 2,183 1,023 3,206 6,661 9,867
MUN St Dev 106 1,241 1,199 571 1,162
cv 0.05 1.21 0.37 0.09 0.12
Mean 2,419 726 3,145 5,181 8,326
RTC St Dev 114 901 917 269 953
cv 0.05 1.24 0.29 0.05 0.11
Mean 2,273 634 2,907 5212 8,119
RDE St Dev 52 906 900 553 1,074
cv 0.02 1.43 0.31 0.11 0.13
Mean 2,292 637 2,929 5,080 8,009
RDE+div St Dev 49 932 927 357 993
cv 0.02 1.46 0.32 0.07 0.12
Case 2
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,199 2,081 4,280 3,842 8,122
BENCH1 St Dev 75 1,643 1,630 196 1,613
cv 0.03 0.79 0.38 0.05 0.20
Mean 2,161 541 2,702 4,971 7,674
MUN St Dev 110 707 663 487 926
cv 0.05 1.31 0.25 0.10 0.12
Mean 2,408 466 2,874 3,459 6,334
RTC St Dev 110 578 591 271 645
cv 0.05 1.24 0.21 0.08 0.10
Mean 2,190 690 2,881 3,586 6,466
RDE St Dev 43 946 949 484 1,120
cv 0.02 1.37 0.33 0.13 0.17
Mean 2,195 364 2,559 3,431 5,990
RDE+div St Dev 54 520 504 284 596
cv 0.02 1.43 0.20 0.08 0.10
Case 3
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost __ Transp. Cost Total Cost
Mean 2,159 2,412 4,571 4,126 8,697
BENCH1 St Dev 72 2,049 2,017 225 2,051
cv 0.03 0.85 0.44 0.05 0.24
Mean 2,233 570 2,804 5,155 7,959
MUN St Dev 101 737 729 533 836
cv 0.05 1.29 0.26 0.10 0.11
Mean 2,442 710 3,152 3,805 6,957
RTC St Dev 108 939 919 288 910
cv 0.04 1.32 0.29 0.08 0.13
Mean 2,297 468 2,765 3,653 6,418
RDE St Dev 50 758 746 264 790
cv 0.02 1.62 0.27 0.07 0.12
Mean 2,296 558 2,854 3,744 6,598
RDE+div St Dev 45 864 868 298 899
cv 0.02 1.55 0.30 0.08 0.14

30 replication with common random numbers

Results in [$/week]
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Fig. 20. Simulation results: parameter set 11 TC = 100 [$/hr], h; = 5[$/week], A; = 4.35
[arrivals/day], 6; = 11.5 [units] for all i

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,155 7,635 9,790 4,017 13,807
BENCH?1 St Dev 112 5,935 5,883 297 5,990
cv 0.05 0.78 0.60 0.07 0.43
Mean 2,432 985 3,417 5,626 9,042
MUN St Dev 123 1,166 1,159 560 1,302
cv 0.05 1.18 0.34 0.10 0.14
Mean 2,704 1,200 3,903 4612 8,515
RTC St Dev 139 1,811 1,743 360 1,969
cv 0.05 1.51 0.45 0.08 0.23
Mean 2,438 2,003 4,441 4,102 8,543
RDE St Dev 59 1,963 1,958 359 2,036
cv 0.02 0.98 0.44 0.09 0.24
Mean 2,467 1,476 3,943 4,199 8,142
RDE+div St Dev 57 1,778 1,758 355 1,965
cv 0.02 1.20 0.45 0.08 0.24
Case 1
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 1,997 11,111 13,108 5,463 18,571
BENCH1 St Dev 12 5,915 5,856 334 5,932
cv 0.06 0.53 0.45 0.06 0.32
Mean 2,365 1,828 4,193 7,101 11,294
MUN St Dev 115 2,188 2,141 679 2,086
cv 0.05 1.20 0.51 0.10 0.18
Mean 2,703 1,454 4,157 6,321 10,479
RTC St Dev 134 1,850 1,793 417 1,933
cv 0.05 1.27 0.43 0.07 0.18
Mean 2,462 1,752 4,214 6,097 10,311
RDE St Dev 66 2,302 2,289 596 2,526
cv 0.03 1.31 0.54 0.10 0.24
Mean 2,488 921 3,409 6,006 9,414
RDE+div St Dev 64 1,253 1,225 521 1,543
cv 0.03 1.36 0.36 0.09 0.16
Case 2
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,199 6,968 9,167 3,689 12,857
BENCH1 St Dev 84 4,807 4,759 282 4,894
cv 0.04 0.69 0.52 0.08 0.38
Mean 2,406 1,310 3,716 5,258 8,975
MUN St Dev 133 2,227 2,155 756 2,089
cv 0.06 1.70 0.58 0.14 0.23
Mean 2,728 1,732 4,460 4,306 8,766
RTC St Dev 131 1,873 1,841 374 1,947
cv 0.05 1.08 0.41 0.09 0.22
Mean 2,398 1,974 4,372 4,129 8,501
RDE St Dev 58 1,550 1,561 620 1,679
cv 0.02 0.79 0.36 0.15 0.20
Mean 2,436 653 3,088 4,073 7,161
RDE+div St Dev 61 940 944 577 1,060
cv 0.03 1.44 0.31 0.14 0.15
Case 3
Strategy Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost __ Transp. Cost Total Cost
Mean 2,144 7,516 9,659 3,960 13,620
BENCH1 St Dev 88 4,136 4,083 197 4,123
cv 0.04 0.55 0.42 0.05 0.30
Mean 2,415 946 3,361 5,691 9,052
MUN St Dev 85 1,372 1,337 654 1,289
cv 0.04 1.45 0.40 0.11 0.14
Mean 2,715 1,144 3,859 4,678 8,537
RTC St Dev 140 1,398 1,353 398 1,444
cv 0.05 1.22 0.35 0.09 0.17
Mean 2,459 1,823 4,282 4,458 8,740
RDE St Dev 71 2,178 2,142 530 2,402
cv 0.03 1.19 0.50 0.12 0.27
Mean 2,502 784 3,287 4,562 7,849
RDE+div St Dev 74 1,138 1,130 376 1,162
cv 0.03 1.45 0.34 0.08 0.15

30 replication with common random numbers

Results in [$/week]
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Fig. 21. Simulation results: parameter set 12 (TC
[arrivals/day], 6; = 20.8 [units] for all i)

= 100 [$/hr], h; =5[$/week], 1,=2.4

Strategy Case 0 (Symmetric case)
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 2,137 18,784 20,921 3,758 24,679
BENCH1 St Dev 145 8,613 8,512 363 8,639
cv 0.07 0.46 0.41 0.10 0.35
Mean 2,673 1,174 3,847 6,441 10,288
MUN St Dev 118 1,487 1,460 671 1,474
cv 0.04 1.27 0.38 0.10 0.14
Mean 2,906 4,250 7,156 5,436 12,592
RTC St Dev 149 4,277 4,239 471 4,401
cv 0.05 1.01 0.59 0.09 0.35
Mean 2,626 3,741 6,367 4,641 11,008
RDE St Dev 82 3,575 3,563 385 3,475
cv 0.03 0.96 0.56 0.08 0.32
Mean 2,660 2,214 4,874 4,779 9,653
RDE+div St Dev 66 2,021 2,034 517 2,128
cv 0.02 0.91 0.42 0.11 0.22
Strategy . Case 1
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 2,017 17,912 19,928 5,131 25,059
BENCH1 St Dev 127 7,455 7,373 349 7,482
cv 0.06 0.42 0.37 0.07 0.30
Mean 2,571 2,220 4,791 7,824 12,615
MUN St Dev 127 2,385 2,345 733 2,368
cv 0.05 1.07 0.49 0.09 0.19
Mean 2,866 3,121 5,986 7,362 13,349
RTC St Dev 129 3,558 3,512 560 3,604
cv 0.05 1.14 0.59 0.08 0.27
Mean 2,652 1,920 4,572 7,253 11,826
RDE St Dev 68 1,667 1,654 605 1,739
cv 0.03 0.87 0.36 0.08 0.15
Mean 2,660 1,946 4,606 7,451 12,057
RDE+div St Dev 71 1,832 1,814 543 1,889
cv 0.03 0.94 0.39 0.07 0.16
Strategy N Case 2
Inv. Holding Cost Lost Sales Cost  Total Inv. Cost Transp. Cost Total Cost
Mean 2,232 13,941 16,173 3,398 19,571
BENCH1 St Dev 122 8,261 8,195 303 8,219
cv 0.05 0.59 0.51 0.09 042
Mean 2,617 2,381 4,997 5,639 10,636
MUN St Dev 132 2,314 2,324 711 2,297
cv 0.05 0.97 0.47 0.13 0.22
Mean 2,926 3,228 6,154 4,816 10,970
RTC St Dev 130 3,391 3,354 486 3,479
cv 0.04 1.05 0.54 0.10 0.32
Mean 2,616 2,712 5,328 4,683 10,011
RDE St Dev 74 2,434 2,426 759 2,389
cv 0.03 0.90 0.46 0.16 0.24
Mean 2,669 1,805 4,474 4,667 9,142
RDE+div St Dev 78 1,884 1,861 604 2,051
cv 0.03 1.04 0.42 0.13 0.22
Strategy . Case 3
Inv. Holding Cost Lost Sales Cost _ Total Inv. Cost Transp. Cost Total Cost
Mean 2,168 14,369 16,537 3,766 20,303
BENCH1 St Dev 97 7,092 7,049 289 7,109
cv 0.04 0.49 0.43 0.08 0.35
Mean 2,711 1,360 4,071 6,624 10,695
MUN St Dev 136 1,965 1,967 792 2,176
cv 0.05 1.44 0.48 0.12 0.20
Mean 2,917 2,907 5,824 5410 11,235
RTC St Dev 121 4,036 4,015 386 4,119
cv 0.04 1.39 0.69 0.07 0.37
Mean 2,668 2,066 4,734 5,480 10,214
RDE St Dev 78 2,432 2,423 650 2,565
cv 0.03 1.18 0.51 0.12 0.25
Mean 2,710 1,175 3,886 5,405 9,291
RDE+div St Dev 69 1,753 1,732 744 2,099
cv 0.03 1.49 0.45 0.14 0.23

30 replication with common random numbers

Results in [$/week]
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1 Introduction

Analysis, planning and control of distributive logistic systems represent nowadays a
major research field, which has aroused great interest of companies as well. Actually,
because of the ever increasing competition, companies must always be efficient and
productive, with ambitious objectives such as maximizing service levels, complying
with required due-dates, minimizing inventory levels at each stage of the network,
minimizing transportation and infrastructure costs. For this reason, the integration of
production, distribution and inventory management results to be a crucial aspect to be
considered. In this context, different groups of researchers have devoted their atten-
tion to the design, analysis, optimization and management of distributed production
systems, in order to define optimal decisions or coordination schemes for the dif-
ferent decision makers acting in such networks. All these aspects are summarized
in the common expression supply chain management, which emphasizes the view
of the company as a part of a chain composed of different stages, such as suppliers,
manufacturers, assemblers, warehouses, customers [1, 2, 3].

From a modelling point of view, a supply chain can be represented in differ-
ent ways, corresponding to centralized or decentralized structures, to analytical or
simulation models, and so on. For the single node of a distributed production sys-
tem, an important distinction is between continuous-time models and discrete-event
models: in the former case, models are referred to as fluid models, in which all the
quantities are represented by means of continuous variables; in the latter case, the
whole system dynamics is driven by the occurring of asynchronous events which
usually change the values of system state variables. Many continuous-time models
have been developed for representing production systems. Among them, an impor-
tant research stream consists in the determination of analytical solutions for produc-
tion systems that have to meet a random demand [4, 5, 6]. Other works are relative to
multi-inventory systems in which demand is supposed to be unknown but generally
bounded and the proposed control schemes are aimed at defining appropriate inven-
tory levels in order to meet such demand [7, 8]. On the other hand, discrete-event
models are generally suited for representing real case studies with a high level of de-
tail or for comparing different scenarios characterized by the presence of stochastic
aspects, for which an analytical evaluation is too difficult. In [9] a discrete-event sim-
ulation model is used for an integrated product supply chain system, where different
decision makers act and real-time information is provided. In [10] a simulation-based
optimization framework involving simultaneous perturbation stochastic approxima-
tion is developed for supply chain systems.

The objective of the present work is the definition of a model for a single node
of a supply chain and the statement and solution of a relative optimization problem.
The ultimate objective of our research work consists in studying the behaviour of
a supply chain system, by defining some coordination mechanisms among the dif-
ferent nodes of the network; as a consequence, each node needs to be analytically
represented at a quite aggregate level of detail. Moreover, in our model, we want to
focus on the interactions among the different nodes; this means that for each pro-
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duction node the process of raw material arrivals and finite product departures must
be represented in detail. For all these reasons, the model that we have defined inte-
grates some aspects of continuous-time models with other aspects of discrete-event
approaches. On one hand, fluid models generally allow to determine closed-loop
solutions (that is, solutions expressed as functions of the current system state) for
planning/control problems, while they normally do not represent in detail the inter-
actions with external entities (such as arrivals and departures of parts). On the other
hand, discrete-event models can describe a supply chain system with a high level of
detail, managing stochastic aspects as well, but they do not allow the definition of
analytical solutions. Since our objective is that of defining an analytical approach for
a single production node interacting with other nodes in a supply chain, the resulting
model we propose is a hybrid model combining a continuous dynamics (correspond-
ing to the production process) with discrete-event processes (representing the arrivals
of raw materials and departures of finite products).

In this work, we propose an optimization procedure based on this hybrid model,
acting at a tactical/operational decision level and being relevant to the minimization
of order costs, inventory costs and costs due to deviations from the external demand;
decisions concern the process of raw material arrivals, the process of finite product
deliveries and the production effort. The resulting optimization problem is hard to
be solved and, then,it is decomposed into two subproblems. The former subproblem
refers to the determination of the optimal production effort and the optimal product
departure process, whereas the latter subproblem corresponds to the determination
of the optimal replenishment policy. The overall optimization problem and its de-
composition have already been presented in [11, 12, 13, 14], where only the first
subproblem has been fully described and dealt with. One of the main novelties of the
present work is a detailed analysis of the second subproblem (which has been defined
in [15]) and, thus, the definition of a solution procedure for the overall optimization
problem.

As a further innovative aspect, in this work some basic multi-site structures are
considered, which exploit the solution procedure determined for the single nodes of a
supply chain. Generally speaking, if a supply chain is represented as a decentralized
structure, several decision agents are considered, each one provided with its own
information set, giving rise to either a cooperative or a competitive environment. In
the case of cooperation among different agents, the main aspect to consider is the way
in which the coordination of the various decisional entities may be achieved. On the
contrary, in the case of competition, the decisional agents are provided not only with
different information sets, but also with individual performance objectives. In this
work, two simple schemes are presented: a competitive environment of two parallel
producers which compete for serving a customer and a cooperative framework of
two producers belonging to subsequent stages in the supply chain.

The paper is organized as follows. In Sect. 2 the proposed model and optimization
problem for a production node in a supply chain system is defined. The decomposi-
tion of the optimization problem into two subproblems is also discussed in the same
section. Sections 3 and 4 are devoted to the statement and solution of the first and
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second subproblem, respectively. Some simple multi-site structures are discussed in
Sect. 5, where the described optimization procedure is adopted and exploited by dif-
ferent decision agents in the network.

2 The Optimization Problem for a Single Node in a Supply Chain

A single node of a supply chain is here modeled as a production center, where raw
parts arriving from suppliers (or from previous nodes in the chain) are manufactured
and immediately transformed into final products, without considering any assem-
bly operation. More specifically, each part entering the single node is supposed to
be processed by a single operation and, then, it is transformed into one product. A
schematization of this model is represented in Fig. 1, where the two inventories refer
to raw materials and final products, respectively; the corresponding inventory levels
at time ¢ are indicated with variables &(¢) and x(?).

Raw materials | &) | | x(1) | Finite products
b

Fig. 1. Schematization of the production node

As previously specified in the Introduction, the proposed model is a hybrid
model, which combines a continuous-time dynamics, related to the production
process, together with a discrete-event dynamics, associated with arrivals of raw ma-
terials and departures of finite products. The production process is represented by a
production effort k(f), which models the portion of the overall work-capacity K as-
signed to the production at time 7. On the other hand, arrivals of raw materials and
departures of finite products are modelled as discrete-event processes, in which the
events (arrivals and departures) are not equally spaced in time. In particular, in the
arrival process, I" is the number of raw material arrivals, within the considered time
horizon, §;, 7 = 1, ..., T, is the time instant at which the i-th arrival takes place, and
O;,i =1,...,T,is the amount of raw materials entering the node at time instant ¢;,
that is the i-th ordered quantity (Fig.2). In an analogous way, the flow of products
delivered to clients is represented as a finite sequence of departures (Fig. 3), charac-
terized by the following quantities: N, that is the number of finite products requests,
within the considered time horizon, #;, i = 1, ..., N, that is the time instant at which
the i-th departure of finite products occurs, Q;, i = 1,..., N, that is the amount of
finite products leaving the system at time instant #;,. Moreover, the external demand
is characterized by the due-date of the i-th departure of finite products (i.e., the i-th
lot), namely #7,i = 1,..., N. It is assumed that the required quantities in the external
demand are satisfied and then they correspond to Q;.
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Fig. 2. The arrival of raw materials
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Fig. 3. The delivery of finite products

concern the following issues:

153

The system state variables are inventory levels £(¢) and x(r), whereas decisions

The arrival process, i.e., how many orders to place (I”), the ordering time instants
(6;, i=1,...,I'), and the quantities to order (@;, i = 1,...,I);

The production process, corresponding to the function k(#),0 < ¢ < #y;
The departure process, i.e., the delivering time instants for each lot of finite prod-
ucts (t;, i=1,...,N).

Taking into account the asynchronous time instants which characterize the arrival

and the departure processes, the state equations of the proposed single node model
can be written, for the raw material inventory and for the finite product inventory,

respectively, as

£S1a) =§<6,<)—fm k() di + O i=0,...I—1
§;

tit1
x(t[+1)=x(t[)+f k(t)dt — Qi1 i=0,....,.N-1
1,

i

where dp = 0, 7o = 0, and £(0) and x(0) are given initial inventory levels.

ey

)
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The proposed optimization takes into account the order cost C° due to the
acquisition of raw materials from suppliers, the cost C' relevant to the inventory
occupancy, and the cost CT relevant to the deviations from the due-dates, stated,
respectively, as in the following

r
c? = Z (cf + cv@i) (3)
i=1
Or Iy
cl = ngo‘ &) dr + ijo‘ x(1) dt 4)
N
cl = aZ(ri - t;‘)z (5)
i=1

where ¢, and ¢, are the fixed and variable unitary order costs, respectively, Hs and
H, are the unitary inventory costs for raw materials and finite products, respectively,
while « is a suitable parameter, weighing the deviation of the delivering times from
the corresponding due-dates. As regards the expression of cost term C7, note that
early and late deliveries are equally penalized. Every deviation from the correspond-
ing due-date yields a decrease of the node service level, which results to be a crucial
performance indicator in a supply chain system. This is the reason why a quadratic
form of the cost has been chosen, aiming at strongly penalizing deviations from due-
dates.
The overall optimization problem can then be stated as follows.

Problem 1. Given the initial conditions 6g = 0, 7y = 0, £(0) > 0, and x(0) > 0, find

min ci=¢c’+c' +c’
I, 6:,0;,i=1,...I"
t,i=1,..,.N
k1), O<t<ty

subject to (1), (2), and

0<k(r)<K 0<t<ty (6)
Oit1 > 0; i=0,....,N—1 7
timy>t;  i=0,...,N—1 (8)
EH>0 0<t<6r )
x(1) =0 O<t<ty (10)
0;,>0 i=1,....T (11)
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Problem 1 is a nonlinear functional optimization problem, thus a simplified ver-
sion of this problem is needed. The heuristic approach proposed here is that of de-
composing it into two subproblems (of course, this decomposition approach leads to
a sub-optimal solution of Problem 1):

1. The first subproblem consists in minimizing the inventory cost for final products
and the deviations from due-dates; the decision variables regard the production
effort (k(r),0 <t < ty) and the departure process (¢;, i = 1,...,N), assuming to
have unlimited available raw materials;

2. The second subproblem is relevant to the minimization of the inventory cost for
raw materials and order costs; the decision variables are associated with the ar-
rival process (I, 6; and @;,i = 1,..., "), with the fixed production effort coming
as a solution of the first subproblem.

By defining
Iy N
C, =H, f x(tydt +a Y (4 —1)° (12)
p i Z}
I Sr
Cs = cr+¢,0;)+H &(ndt (13)
5= D (er+a®)+ He |

i=1

the first and the second subproblem can be stated, respectively, as follows.

Problem 2. Given the initial conditions #y = 0 and x(0) > 0, find

k(’t),Osrer

subject to (2), (6), (8) and (10).

Problem 3. Given the initial conditions 6o = 0 and &£(0) > 0, and given k(¢) = k°(t)
solution of Problem 2, find

subject to (1), (7), (9), and (11).
[m|

Note that Problem 2 still is a functional optimization problem, while Problem 3
is a parametric optimization problem. In the following, these two problems will be
studied, in order to find some properties of their optimal solutions and, thus, to define
solution procedures for the two problems. Problem 2 will be analysed in Sect. 3,
whereas Problem 3 will be studied in Sect. 4.
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3 Solution of Problem 2

In this section, Problem 2 is analysed and some fundamental results about the op-
timal solution of the problem will be reported. The proofs of the theorems are only
sketched in the present section, whereas their complete version can be found in [14].

As previously pointed out, Problem 2 is a functional optimization problem, as a
function k(#) has to be determined over the considered optimization interval. A first
simple result can be provided, in order to convert Problem 2 into a more tractable
(parametric) optimization problem. Note that, in the following, k°(¢) refer to the op-
timal pattern of the decision variable k(7).

Proposition 1. In the optimal solution of Problem 2, the function k(t) is such that
in each time interval between two subsequent delivery instants, e.g., (i, tiv1], the

following conditions hold
k=0, t<t<ti+7, i=0,....N—1 (14)

K=K, ti+1<t<ty, i=0,....,N—1 (15)

for some t; such that 0 < 1; < t;11 —t;. Note that the value k°(t; + ;) is irrelevant, and
thus it is not necessary to precise it in the statement of the proposition; it is possible
to set either k°(t; + ;) = 0 or k°(t; + ;) = K, indifferently.

Proof. Suppose, ab absurdo, that an optimal solution of Problem 2 exists that does
not satisfy conditions (14), (15). This implies that a time interval 7; such that 0 <
7; < tiy1 — t; exists, where one or both of the following conditions hold:

(a) there is an interval (#; + 7;, t;+1) of nonzero length in which the value of k(¢) is not
constantly its maximum value, that is,
k) #K, ti+7i<t<tiy

with 7; < tiy] — &
(b) there are some intervals (at least one) of nonzero length, preceding time instant
t; + T;, in which the value of k(¢) is not identically zero, that is,

k) £0, t<t<t
witht; <t; <t; <t; + 1.

Then, in case condition (a) occurs, it is immediate to understand that a new solution
can be obtained by “reducing” the length of the interval (#; + 74, #;+1), and imposing
that in such interval the production effort is at its maximum value, i.e.,
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k() =K, ti+7 <t<ti

being 7/ > 7, and ["" k() de = [**) k(o) dv.

Evidently, this new solution is characterized by the same value of cost CT, but it
has a lower value of cost C’, then the original solution cannot be optimal.

Similar considerations apply in connection with condition b), or even with refer-
ence to the combination of the two conditions. ]

The result provided by Proposition 1 allows to convert the functional optimiza-
tion problem into a parametric one, by restricting the search for optimal solutions of
Problem 2 to those characterized by functions k(7) satisfying conditions (14), (15).
Thus, it is possible to define

e 1,1=0,...,N—1, that represents the (nonnegative) idle time between t; and
liv1;
o T, i=0,...,N—1,thatis the (nonnegative) production time between t; and t; .

Thanks to Proposition 1, Problem 2 can also be stated as a multistage optimal
control problem. First of all, the following assumptions will be made concerning the
parameters characterizing Problem 1:

e The initial inventory level is all consumed to satisfy the first order, that is

x(0) < O (16)

This assumption is not restrictive since, if this condition is not verified, in the
optimal solution of Problem 2 no production is realized (T; = 0) for a certain
number of orders starting from the first one; then, the beginning of the sequence
of orders can be simply shifted onward till meeting condition (16);

e The two terms of cost function C; are “well balanced”, that is the inventory cost
has not a prevailing effect with respect to the deviation cost from due-dates; this
corresponds to suppose that

H.K <« 17)

If such a condition were not fulfilled, then the optimization problem would be of
poor interest.

Taking into account Proposition 1 and on the basis of the above considerations,
cost function C, can now be written as

N-1 KT2 N-1 2
Co=H ) (x(t,»)(‘r[ FT)+ ) J ra ) (n+Ti+ti-1,) (18)
i=0 i=0

Furthermore, the state equation (2) and the time instants #;, i = 1,..., N can be
expressed, respectively, as

x(t) = x(ti-)) + KTiey - Q; i=1,...,N (19)
ti=ti+7i4+Ti.y i=1,...,N (20)

On these bases, Problem 2 can be re-stated as follows.
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Problem 4. Given the initial conditions #y = 0 and x(0) > 0, find

T;>0 i=0,....,N—1 1)
7720 i=0,....N-1 (22)
x(t) =0 i=1,...,N (23)

O

It is apparent that Problem 4 is structured into N stages, being x(#;) and ¢; the
state variables at stage i, 7;_; and T;_; the control variables acting at the same stage.
Obviously, Problem 4 can be also viewed as a mathematical programming problem
with non linear objective and non linear constraints. It can be solved by mathematical
programming solvers, yielding the optimal control law in an open-loop form for a
specific value of the initial conditions. In this work, instead, we are interested in
adopting optimal control strategies defined as functions of the system state, that is,
solutions typically denoted as closed-loop ones. Then, we will find the solution of
Problem 4 as a set of optimal feedback control strategies. In order to do that, it is
first of all necessary to discuss some significant properties of the optimal solution
of Problem 4. Note that in the following propositions the values 77 and 77, i =
0,...,N — 1, refer to the optimal values of the decision variables 7; and 7;, i =
0,...,N — 1, respectively.

Proposition 2. In the optimal solution of Problem 4, the decision variable T; is al-
ways positive, that is
TP >0 i=0,....,N—1 (24)

O

Proof. The value of the inventory level just after the generic delivery time instant #;
is given by
x(t;) = x(ti.)) + KTy — Q; = 0, i=1,...,N (25)

Note that, in an optimal solution of Problem 4, the inequality x(#;,-1) < Q; must
hold. In fact, if x(;_;) were greater or equal to Q;, this would imply that the whole
quantity of products required at the delivery time #; has been manufactured during the
time intervals preceding #;,_; (remember also that condition (16) prevents the initial
inventory contents from being still partially available after the first delivery time in-
stant). But, due to the structure of the cost function (including the inventory cost), this
is never convenient since it makes the cost function value increase without providing
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any advantage. Then, some part of the required quantity Q; has to be produced just
during time interval (#;_y, ;), that is, x(z,_1) < Q;, as above claimed. Thus, by taking
into account (25), condition T2,>0,i=1,...,N, is proved.

|

Proposition 3. In the optimal solution of Problem 4, if t; > 0 for somei € {1,...,N—
1}, that is, if the i-th time interval (t;,t;4+1) includes a nonzero idle time, then the

inventory level x(t;) (that is, just after the delivery at time instant t;) is zero.

Proof. Suppose, ab absurdo, x(t;) = ¥ > 0 and 7; > 0, in an optimal solution.
Products corresponding to this inventory level x(#;) have been realised in time interval
(ti-1, t;) or in previous time intervals, and they cannot be part of the initial inventory
that is all consumed, by assumption, to satisfy the first order. These products are not
necessary for order deliveries realised in #; or before and certainly they are not all
necessary for order deliveries after #;, owing to condition 7; > 0. This implies that a
solution with 7; > 0 and x(#;) = X such that 0 < ¥ < ¥ is feasible and guarantees the
same deliveries in the same time instants (thus yielding the same value of cost CT),
but with a lower value of the inventory cost C’. This proves that any solution with
7; > 0 and x(¢;) > 0 cannot be optimal.

[

A o . %=1 .
95 o3=4
uﬂ 2 9,
J‘ 0, | %
t

I 5] I3 Iy Is

Fig. 4. Behaviour of the state variable x(¢) in the optimal solution

On the basis of the above propositions, it turns out that the behaviour of the
state variable x(7) in the optimal solution is of the type represented in Fig. 4. Note
that the overall sequence of time intervals can be decomposed into a set of § (1 <
S < N) subsequences of time intervals in which the resource works at the maximum
production effort, except in a portion of the first time interval of the subsequence for
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which k(#) = 0,1; < t < t; + 7;, being 7; > 0. Note also that, save the first time
interval (7, #;) (which may include, for the possible presence of a nonzero initial
inventory level, a time interval in which k(#) = 0 with a nonzero inventory level), for
all subsequent idle intervals the inventory level must be equal to zero, as represented
in Fig. 4.

For notational purposes, still referring to an optimal solution of Problem 4, a set
& is defined, gathering the indexes corresponding to the beginning of the different
subsequences, namely:

E={oj, j=1,...,5} (26)
where o1 = 0 and obviously Ty, > 0, j=2,...,8, by definition of the set =.
The S subsequences correspond to {07y, ...,002—1}, {02,...,03—-1},.. ., {os,...,

os4+1 — 1}. Moreover, for the sake of notational convenience, define og.; = N. For
instance, in the example reported in Fig. 4, it turns out § = 3, & = {0, 1,4} and the
three subsequences are defined as {0}, {1, 2, 3}, {4}.

Note that the decomposition of the overall optimization horizon into S subse-
quences of time intervals allow to decompose the problem of finding the optimal
control strategies at each stage i, i = 0,..., N — 1, into S independent control prob-
lems, each conditioned by the initial values, i.e., lo;s x(taj), j=1,...,5.Inorder to
find the optimal solution of Problem 4 it is then necessary to first solve the problem
by mathematical programming to find the positive idle times, hence the set =. Once
known this set =, optimal strategies for each subsequence are derived, as explained
in the following.

For the sake of simplicity, from now on, the weights appearing in the cost func-
tion will be expressed in a more compact form, introducing the term y = «\H,.
Condition (17) then yields:

K<y 27

Theorem 1. Consider a generic j-th subsequence composed of o > 1 orders (with

0 = 0 js1—0j), the optimal solution at each stage of the subsequence is the following.

Case 1) For the first stage of the subsequence, that is stage (i — 1) = o j:

e ifthe inventory level at the end of stage (i — 1) is positive:

1 2K -2 1 K-2 1
oo 1o, K20y v+ 1y

i i 28
P4 2y + )yK T oo yyk M) @8
R 1 K-2(v+ 1)y K-2(v+ l)y
N = i — ti— i ti— 2
T T, G T o 2w+ g D 29
e ifthe inventory level at the end of stage (i — 1) is zero:
o i — x(fi-1)
T° = 30
i—1 K ( )
1 1 ;. K—-2(v+1
R T LT BEE Y

v+l T v+ K 20+ 19K
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where v is the total number of stages in the subsequence whose inventory level goes
to zero, and the generic constant Ci.| is calculated iteratively depending on data of
the whole subsequence, following these steps:

o fori=oj:
. Qi
Ci=t - Kl (32)
o fromi=oj —1backwardtoi=oj+3:
— ifthe inventory level at the end of the stage i is positive:
Vi + 1 Q,‘

Ci=Ci - % 0O+ 2y (33)

— if the inventory level at the end of the stage i is zero:

vi+1
Ci=Ci+6 - ' 0; (34)
K
where v; is the number of stages whose inventory is equal to zero, from the stage

i (included) to the last stage of the subsequence.

Case 2) For the intermediate stage of the subsequence, that is stage (i — 1) = o +
L,...,051 —2, wheno > 2:

e ifthe inventory level at the end of stage (i — 1) is positive:

Oi o

T»O_l = l‘? -l — 2y T = 0 35)

r

e ifthe inventory level at the end of stage (i — 1) is zero:

Te, = Qi _I);(ti—l) ©. =0 36)

Case 3) For the last stage of the subsequence, that is stage (i — 1) = o ji1 — 1:
7, =0 (37)

O

Sketch of the proof. The results stated in the Theorem have been found applying
dynamic programming techniques, starting from the last interval (stage) of a subse-
quence and proceeding backwards up to the first interval (stage). First of all, the last
stage of a subsequence, that is stage (n — 1), is considered and the relative problem is
stated, as a function of the initial conditions #,,_;, x(#,_1 ), and of the decision variables
T,-1 and T,,—;. In this case, the optimal values of the decision variables are found, as
stated in the Theorem, and the optimal cost-to-go at stage (n — 1) is obtained.
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Then, the intermediate stage is considered, but different cases must be analysed.
Actually, the intermediate stage can be stage (n — 2), or (n — 3), or previous stages;
thus, each of these stages has been considered, starting from stage (n — 2). In this
case, the problem is stated adding the cost-to-go at stage (n — 1), already computed,
and the optimal solutions are found considering first-order Kuhn—Tucker conditions;
two cases arise, depending on whether the inventory level at the end of stage (n — 2),
i.e., x(t,-1), is positive or null. Therefore, two optimal solutions are found and two
costs-to-go are determined, corresponding to the two cases. When considering the
intermediate stage (n — 3), two different problems must be stated according to the
behaviour of the optimal solution at stage (n — 2) (either x(¢,-1) > 0 or x(t,-1) = 0),
which correspond to two different costs-to-go. For each of the two problems stated
for stage (n—3) two different solutions are found, corresponding to whether x(,,-) is
positive or null (this means that four different cases are developed for stage (n — 3)).
Generalising this approach to a generic intermediate stage of a subsequence, the
result stated in the Theorem is proved.

The optimal values of the decision variables for the first stage of a subsequence
are computed following the same reasoning line already described for the intermedi-
ate stage, since the first stage of the subsequence can be either stage (n—2), or (n—3)
or previous stages, depending on the length of the subsequence. As a matter of fact,
the problems to be solved at each stage are the same for the intermediate and the first
stage, while the solutions are different because they correspond to different cases of
Kuhn-Tucker conditions.

]

Theorem 2. Consider a generic j-th subsequence, composed of o = 1 orders (with

0 = 0 jy1 — 0}), the optimal solution at stage (i — 1) = o is:

To, = Qi —;(fi—l) (38)
S Qi —;(fi—l) B X(;;l) (39)
O

Sketch of the proof. The previous statement is proved considering the last stage of
the subsequence, i.e., stage (n — 1), which is both the first and the last stage (since
the considered subsequence is composed of 1 order). First-order Kuhn—Tucker con-
ditions are developed and the optimal values of the decision variables are found.

]

4 Solution of Problem 3

Once Problem 4 has been solved, in particular finding the feedback control law,
Problem 3 still needs to be studied. As previously described and as it is clear in
the statement of Problem 3, the optimal solution of Problem 4 provides some data
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characterizing Problem 3, related to k(7). A major feature of the optimal solution of
Problem 4 is the optimal behaviour of the production effort k(¢) that turns out to be
either null or equal to its maximum value K, as depicted in Fig. 5. The set of subse-
quences defined by (26) and identified when solving Problem 4 corresponds to a set
of §' time intervals during which production is active (and, correspondingly, S idle
periods). For the sake of simplicity, quantities u; and p; are introduced and defined
as follows:

pj=to,+75  j=1,...,8 (40)
pj = lo, j=1....8 41)
It is straightforward that
0 te(pj1, ujl ;
k(t) = / J =1,....,8 42
0 {K e ol 42)

where pg = 0. The time intervals (u;, p;l, j = 1,...,5, will be in the following
denoted as production intervals.

k(1)

z Pt P, 4 p

Fig. 5. Plot of k(¢) in the optimal solution of Problem 2

With the above assumptions and considerations, some important properties of
the optimal solution of Problem 3 can now be derived, as provided in the following
propositions.

Proposition 4. In the optimal solution of Problem 3, no material arrival occurs in
the intervals in which k() = 0, i.e.,

¢ i) i=1..., I j=1,...,8 (43)
O

Proof. Suppose, ab absurdo, that 6; € (p;-1, ;] in the optimal solution of Problem
3. It is straightforward that a solution with 6; = u; would be feasible (since no
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production is realized in (6;, ;]) and it would be also characterized by the same
order cost and by a lower inventory cost. This proves that any solution with ¢; €

(pj-1, pj] cannot be optimal.

The above proposition states that it is never convenient to have material arrivals
in the time intervals in which production is not active. This fact is actually quite
intuitive since it can be easily argued that placing orders in such time intervals would
only yield an increased inventory cost. This is actually the same reasoning line that
leads to prove the following result.

Proposition 5. In the optimal solution of Problem 3, the raw materials arrived at
time 6,— are all consumed in the production process before the following arrival

occurs at 8;. This means that

£0;)=0 i=1,...,I (44)
£ =0; i=1,...,T (45)
O

Proof. Suppose, ab absurdo, that in the optimal solution of Problem 3, the inventory
level in the time instant ¢; is positive. It is easy to verify that a solution in which
the i-th order is placed in the time instant §; > &; (with ®; = 0,) and such that the
inventory level in §; is equal to zero would be feasible and would guarantee a lower
inventory cost (with the same order cost). This proves that any solution in which a
generic order is placed when the inventory level is still positive cannot be optimal.
]

Proposition 4 implies that the inventory level &(f) keeps constant during the time
intervals (o;_1, u;l, j=1,...,5, thus yielding

Euj)=¢&pi-n  j=1...,8 (46)

Moreover, thanks to Proposition 5, it is possible to state that in the time instant
in which the i-th material arrival occurs, the inventory level changes instantaneously
from O to the ordered quantity ©,. A possible behaviour of £(f) is then depicted in
Fig. 6.

In the following, some results will be provided concerning a generic production
interval j, for which a cost C; is considered, made of the fixed order cost and the
inventory cost. Actually, the variable order cost (which has been considered in the
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Fig. 6. A possible pattern of &(r)

definition of Problem 3) can be neglected when searching for some properties of the
optimal solution of Problem 3. This is motivated by the fact that the variable order
cost (obtained as the sum of the ordered quantities @;, i = 1,...,I, times a cost
term c¢,) does not depend on the problem decision variables. This fact is due to the
following consideration. The decision variables ©;, i = 1,...,I, can be derived if
the order time instants 6;, i = 1,..., I, are known. The quantity ©; to order at each
time instant 6; must assure that the inventory level &(f) never becomes negative and
that it becomes equal to 0 exactly in d;4, as stated in Proposition 5. Thus, supposing
to have a null initial inventory level, it must be

N r
2 Koj=up =6 (@7)
Jj=1 i=1

The variable order cost

M~

¢, 0; (48)
i=1
can be written as
r S
v ) 0=k Y p;— ) (49)

i=1 j=1
thus, it depends only on problem data. For this reason, this cost term will be from
now on neglected.

Consider a generic j-th production interval, with an initial inventory £(u;) and a
final inventory &(p;), as depicted in Fig. 7. From now on, we define as n; the number
of orders to be placed in the j-th interval and 6;;, i = 1,...,nj, the time instant in
which the i-th order is placed in the j-th production interval. Of course, it must be

anzr (50)

S
J=1

Analogously, the corresponding ordered quantities will be referred to as @;;, i =
1,...,n;. With these considerations, in a production interval j, there are n;+1 reorder
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Fig. 7. £(¢) in a generic production interval j

periods, whose length is denoted as 4;;, i = 1,...,n; + 1. In the following propo-
sition, a property relevant to the values of these quantities in the optimal solution is
reported.

Proposition 6. In the optimal solution of Problem 3, if nj orders (n; > 1) are placed
within the j-th production interval, then the time intervals between two subsequent
order deliveries inside the interval (except the first and the last one) have the same
length. The reorder periods are obtained as a function of the initial and final inven-
tory level, (1) and &(p;), and of the number of orders n;.

0O
Proof. The generic cost C; associated with the interval j can be written as
1 1 1
Cj =n;cy + Hg 2[']’]5(/1]) + Z 2KA3,1 + 2KA§’,”+1 + A],nj+1£(pj) (51)
i=2
where, thanks to Proposition 5, 4 is given by
1
dja = &) (52)
Moreover, variables 4; are related by the following expression
nj+1
> Aji=pi-u; (53)
i=1

which, considering (52), becomes
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1
1 nj+
L)+ K;A,,,:p,»—ﬂ, (54)
that can be written as
1 nj+1
hi= )+ ;Aj,f ~pj+uj=0 (55)
The problem concerning interval j can be stated as follows, being 4;;, i =
2,...,n;+1 the decision variables, while &(p;), £(u;) and n; are considered as known
data
min  C;
Ajiy =2, 1

where C; is given by (51), subject to
hj=0 (56)

A;>0  j=2,...nj+1 (57)

with h; defined as in (55).

This problem is a quadratic programming problem, characterized by a quadratic
objective function, n; decision variables and one linear equality constraint. Consid-
ering Kuhn-Tucker conditions for this problem, one Lagrangian multiplier, i.e., 4,

must be considered, leading to the following equations:

L +1 (58)
A A = i=2,...,n;
which become
KAJ',,‘+/1=0 i=2,...,nj (59)
KAju +E(pp) +1=0 (60)
These equations, together with the relation (54), letus obtain4;;, i = 2,...,n;+1
as
Au=di= g, |K(oj = 1)+ €)) — &) i=2...n; (61)
1
Ajnr1 =45 - Kf(ﬂj) (62)
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Fig. 8. The optimal behaviour of &(z) for the case n; = 3

The result proposed in Proposition 6 implies that, in a given production interval
J, the reorder periods are equal, except the first and the last one. In the following,
such intermediate reorder periods will be referred to as 4;,j = 1,...,5 (without
using 4 ;). Moreover, the ordered quantities are the same (an example is provided in
Fig. 8 for the case of n; = 3). Therefore, also the ordered quantities can be simply
indexed by j (instead of using the pair j, i), and will be in the following referred to
as @; such that:

0;= | [Kips =)+ &) - &) (63)

J

The statement of Proposition 6 does not consider the case in which n; = 1, that is
when only one order is placed in the j-th production interval. In this case, the reorder
periods can be simply derived by remembering the result of Proposition 5 (implying
that the inventory level goes to zero before reordering again). As also depicted in
Fig. 9, the following relations hold:

E(uy)
Aj,] = KJ (64)
Ajp=pj—pj— 5(1;?) (65)
O; = K(pj — uj) + &pj) — &(uy) (66)

The propositions previously reported define some significant properties of the
optimal solution of Problem 3. Such properties help in rewriting Problem 3 in a
simplified way. For doing this, it is necessary to introduce a binary variable indicating
whether in a given production interval any orders are placed or not; to this end, we
define w; € {0, 1} as follows:

{0 if =0
‘W—{l SO S B (67)

Before rewriting Problem 3, it is still necessary to express the inventory cost.
Note that such a cost is the area defined by &(f) multiplied by the unitary cost He.
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Fig. 9. The optimal behaviour of &(¢) for the case n; = 1

Such an area is computed by exploiting the geometric properties of £(f) coming from
the previous propositions. Two different expressions of the inventory cost in the j-th
production interval can be written, depending on whether any orders are placed in
a production interval or not. In the former case (corresponding to w; = 1), the area
defined by &(7) in the production interval j is:

1 2 1 2
[f(ﬂ,)] + L Kndi = [0y (68)
On the contrary, if w; = 0, the area defined by £(7) in the production interval j is:
0 1
Af = (o= € + £ (69)
Moreover, for completing the expression of the inventory cost, it is still necessary
to add the term corresponding to a positive inventory level during idle intervals. This

is the last term included in the cost function of the following problem which is the
new version of Problem 3.

Problem 5. Given the initial conditions py = 0 and &(0) = 0, find

Ca

-1

S S
min c nij+H, wj A’ +(1-w)) -A%+H
13416060 f;; / f;; J (=) AG+He ) &0 wsen = )]

.....

~.
I
—_

where Al is given by (68), A(j). is given by (69), subject to
Sy =&pj-)  j=1....8 (70)

Ep) = Eup) + Knjdj = K(pj =) j=1.....8 (71)
pp=0  j=1,....8 (72)
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&) =0 j=1,....8 (73)

4;<pj—pj j=1...,8 (74)

4;20 j=1....8 (75)

Mwj—n;>0 j=1...,8 (76)

wj—-n; <0 j=1...,8 77)

w; €{0,1} j=1....8 (78)

where M is a positive and sufficiently large number.

m|

In constraints (71), the values of the inventory level at the end of each production
interval are defined. Note that such constraints hold both for the case in which orders
are placed within the production interval and for the opposite case (in which, of
course, n; = 0).

Problem 5 is a nonlinear mixed-integer mathematical programming problem,
which can be solved by nonlinear solvers included in mathematical programming
software tools. The solution of Problem 5 provides decisions about how many orders
must be forwarded to suppliers, the time instants corresponding to order deliveries
and the ordered quantities. Actually, the provided solution is typically a local opti-
mum.

Note that Problem 5, which is here considered as a subproblem within the op-
timization procedure defined for a node of a supply chain, is actually a general re-
plenishment problem that significantly extends the classical Wagner-Within model.
More specifically, in the model proposed here, demand is a time-varying determin-
istic quantity (as in Wagner-Within model), but the time instants in which orders are
placed are asynchronous (and no time discretization has been realized). Moreover, in
the present case, the inventory serves a production process characterized by a piece-
wise constant production effort (which can be also null in specified time intervals).

5 The Multi-Site Case

The optimization approach regarding a single node is extended to consider the in-
teractions among different stages of the supply chain structure. In this section, two
simple multi-site schemes will be analyzed, the former being related to a competitive
case, the latter considering a cooperative structure.

The first multi-site structure we want to analyze is a simple case in which differ-
ent production nodes can serve a customer (the simple case of two competitive nodes
is reported in Fig. 10). In particular, the considered problem regards the definition of
an optimization procedure in order to define the best production centre able to serve a
given demand. It is assumed that each producer has to optimally realize a predefined
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Fig. 10. A simple competitive multi-site structure

job sequence, over a certain time horizon, and that, at a given time instant, a new
request comes by a generic consumer, in terms of a required quantity and a required
delivery time instant.

In order to formalize the optimization problem concerning production and deliv-
ery of finite products to a consumer in a supply chain, some assumptions have been
considered. First of all, the requests coming from consumers are processed one at
a time and they are sequenced depending on a chronological order; moreover, each
consumer request cannot be split, this means that it must be satisfied by only one
producer. Furthermore, transportation operations are modelled in a very simplified
way, thus each request corresponds to one transportation operation and transporta-
tion times between each producer and each consumer are known and constant.

The decision process through which a consumer chooses the best producer for
satisfying its demand can be schematized as a sequence of some decision steps. First
of all, the consumer makes a request (Q, %), where 7* is the due date of the request
and Q is the required quantity of products. Then, each producer p = 1,..., P (in the
case shown in Fig. 10, it is P = 2) answers to the request following these steps:

e Producer p determines the required time instant for ending the production as
1, = n* —1p, where ,, is the transportation time between the production site p and
the consumer;

e Producer p inserts (¢}, Q) in its job sequence;

e Producer p applies the optimization procedure defined for single production
nodes (Problem 2) and it obtains its optimal solution, determining its optimal
delivering time dt,, and the production cost CP,, yielded by the insertion in the
job sequence of the considered request;

e Producer p computes its transportation cost CT;

e Producer p can thus determine the characteristics of the product delivery to the
consumer and, specifically, the total cost C, = CT, + CP, and the delivering
time to the consumer 7c,,, where tc, = dt, + t,.
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Once received this information by all the producers, the consumer chooses the
best producer to which the required production can be assigned; its choice is realized
by adequately weighing the price and the supply characteristics, in terms of delivery
time.

A second example of multi-site structure consists in the connection of two pro-
duction nodes belonging to two subsequent stages of the supply chain system. Note
that, in this case, the production nodes operate in a cooperative framework. A sketch
of this two-node framework is given in Fig. 11.

0] x,(0) &0 x,5(1)
> — - — | (0.7

Producer 1 Producer 2 Consumer

Fig. 11. A simple cooperative multi-site structure

First of all, finite horizon time periods are defined and correspond to optimiza-
tion horizons for both the nodes; such intervals are driven by the external demand
which reaches Producer 2 in the form of the already defined finite sequence of asyn-
chronous requests (Q;,77), i = 1,...,N. As previously described, considering the
transportation time, m; are transformed in £, as in the definition of Problem 2.

In particular, by solving Problem 2, Producer 2 finds the optimal closed-loop
production policy, determining the optimal production effort k°(¢), the optimal values
of the idle times 77, i = 0,...,N — 1, and the optimal values of the production
times 77, i = 0,...,N — 1. Then, by solving Problem 3, Producer 2 calculates the
optimal raw material replenishment policy, computing the number of orders to be
placed at each production interval, the reorder periods at each production interval,
and the corresponding ordered quantities. This also leads to the determination of the
time instants at which orders are placed. The replenishment policy is thus defined
for Producer 2 and it corresponds to a finite sequence of asynchronous requests for
Producer 1.

The way in which Producer 1 deals with the received requests is based on its in-
ternal optimization procedure (solution of Problem 2 and Problem 3) and on the fol-
lowing considerations. An early delivery by Producer 1 to Producer 2 would involve
an increased inventory cost for Producer 2, whereas a tardy delivery by Producer 1 to
Producer 2 would cause a higher cost relevant to the deviations form due-dates of the
external demand. If the unitary costs defined by Producer 2 are known by Producer
1, and as far as a cooperative framework is considered, the cost relevant to deviations
from due-dates is no more symmetric for Producer 1 and it can be computed on the
basis of the unitary costs of Producer 2. More in detail, we suppose that the uni-
tary raw material inventory cost and the unitary cost for deviations from due-dates
are H;» and a, for Producer 2; then, two different unitary costs for deviations from
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due-dates are defined for Producer 1, respectively, for earliness and tardiness, defined
as ag, and ar,. Thus, it will be ag = Hgp and ar; = a».

In this case as well, transportation operations are very simply modelled as fixed
delays. Moreover, it would be desirable that decisions taken by Producer 1 did not
“perturb” too much the production policy of Producer 2. More specifically, it would
be interesting to maintain the set of subsequences found by Producer 2 unchanged.
As a matter of fact, by preserving the defined subsequences, Producer 2 could also
admit early or tardy deliveries by Producer 1, since it is provided with control strate-
gies, function of the system state and in particular of the current inventory level. If
Producer 1 does not succeed in fulfilling the requests of Producer 2 by preserving the
set of subsequences, Producer 2 needs to re-run the overall optimization procedure.

6 Conclusions

A hybrid model for a production node of a supply chain system is proposed in the
paper. The node is represented by defining the dynamics of two inventories referred
to raw materials and final products, respectively. On the basis of such a model, an
optimization problem relevant to the minimization of order costs, inventory costs
and costs due to deviations from the external demand has been stated. The decision
variables refer to the process of raw material arrivals, the process of finite product de-
liveries and the production effort. The resulting optimization problem is a nonlinear
functional optimization problem. A solution procedure based on the decomposition
of the problem into two subproblems is proposed. The former subproblem refers
to the determination of the optimal production effort and the optimal product de-
parture process, whereas the latter subproblem corresponds to the determination of
the optimal replenishment policy. Finally, the exploitation of the proposed solution
procedure in two very simple multi-site structures is described.

Present and future research is devoted to the definition of more complex decen-
tralized decisional structures in which production nodes equipped with the described
optimization algorithm interact both in cooperative and in competitive frameworks.
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Summary. The past warehousing literature dealing with order picking and batching assumes
batch sizes are given. However, selecting a suitable batch size can significantly enhance the
system performance. This paper is one of the earliest to search optimal batch sizes in a general
parallel-aisle warehouse with stochastic order arrivals. We employ a sample path optimization
and perturbation analysis algorithm to search the optimal batch size for a warehousing service
provider facing a stochastic demand, and a central finite difference algorithm to search the op-
timal batch sizes from the perspectives of customers and total systems. We show the existence

of optimal batch sizes, and find past researches underestimate the optimal batch size.

Key words: Stochastic optimization, Sample path optimization, Order picking,
Batch size

1 Introduction

Order picking — the process of retrieving products from storage (or buffer areas) in
response to a specific customer request — is the most labor-intensive operation in
warehouses with manual systems, and a very capital-intensive operation in ware-
houses with automated systems (Goetchalckx and Ashayeri, 1989; Tompkins et al.,
2003). Managing order picking systems effectively and efficiently is a challenging
process in many warehouses. Order picking efficiency can often be improved by or-
der batching (Gademann and Van De Velde, 2005), which is a method to group a set
of orders into a number of sub-sets, each of which can then be retrieved by a single
picking tour (De Koster et al., 2007).

The earlier papers dealing with order batching problem usually assume the batch
size is directly given. A natural question is: are these given batch sizes suitable? Con-
sidering setup time and unit service time for order picking, the total service time and
batch size are not related linearly: the setup time will take a bigger proportion in the
total service time for a small batch, while the unit service time will take a bigger
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proportion in the total service time for larger batches. Therefore it is an interest-
ing question to explore the optimal batch size when orders arrive according to a
stochastic process. A following research question is: how to find an optimal batch
size if it exists? Most research involved in optimizing batch sizes, with the objec-
tive to minimize total service times assumes the order set is given. Gademann and
Van de Velde (2005) have pointed out that the deterministic version of the batch
problem with optimal routing is NP- hard when the batch size is larger than 2, in a
parallel-aisle layout. It is tough or even infeasible to determine optimal batch sizes
for the stochastic version of the problem. Few papers explore optimum batch sizes
in a stochastic context. Chew and Tang (1999) assume orders arrive according to a
Poisson process and approximate the travel time in a rectangular warehouse and use
this approximate expression to minimize the total throughput time of the first order
in a batch. They compare their results with simulation. Le-Duc and De Koster (2007)
extend these results by determining the optimal batch size minimizing the throughput
time of a random order in a two-block warehouse. All methods use approximation
methods and do not directly optimize the batch size, as this is very cumbersome. In
this paper we opt for a different approach, by efficient simulation optimization. Sim-
ulation optimization can help the search for an improved policy while allowing for
complex features that are typically outside of the scope of analytical models. In this
paper, we will employ SPO (sample path optimization), a simulation optimization
technique with the advantage of high efficiency and convenience. However, SPO re-
quires a technique to estimate the gradient of the objective function with respect to
the batch size.

A large number of gradient estimation techniques exist, such as Infinitesimal Per-
turbation Analysis (IPA), Likelihood Ratios, Symmetric Difference, and Simultane-
ous Perturbation (Fu, 2002). IPA is mainly used to calculate a sample path derivative
with respect to an input parameter in a discrete event simulation (Heidelberger et al.,
1998). We will employ this technique since it is an “efficient gradient estimation tech-
nique” (Ho et al., 1979), which can “expedite the process of performing experiments
on discrete event simulation models” (Johnson and Jackman, 1989). The implicit as-
sumption of IPA is that the average of the change which results from the perturbation
equals the change in expectation, and it yields an unbiased estimator. Convergence
is an important issue for the implementation of IPA. Heidelberger et al. (1988) have
studied the convergence properties of IPA sample path derivative, and derived the
necessary and sufficient condition for the convergence. Applications of perturbation
analysis have been reported in simulations of Markov chains (Glasserman, 1992),
inventory models (Fu, 1994), supply chain problems (Gong and Yiicesan, 2006),
manufacturing systems (Glasserman, 1994), finance (Fu and Hu, 1997), and statisti-
cal process control (Fu and Hu, 1999). In some formulations in this paper, we will
face complicated objective functions. In order to obtain optimal batch sizes, we need
to compute the gradient of these objective functions. However, either their gradients
are not available in explicit form or they are given by complicated expressions. We
therefore resort to a finite difference method, which makes it possible to use arith-
metic operations to determine the gradient.



Approximate Optimal Order Batch Sizes in a Parallel-aisle Warehouse 177

In this paper, we consider the optimal order batch size problem with stochastic
demand in a parallel-aisle warehouse (see Fig. 1), with cross aisles at the front and
back of the aisles. The warehouse faces a demand with a given distribution. An or-
der picker travels at a constant velocity with a S-shape routing policy, one of most
common routing policies in practice. In order to improve picking efficiency, orders
are batched.

The research objective in this paper is to minimize the operational costs by
optimizing the order batch size, defined as the set of orders that are picked by one
order picker in one route, and batch size q is the number of items in the batch, with
constraint "% < q < qUB, where the upper bound qV® is determined by the capacity
of pick devices (pallets or bins) and the lower bound q"? is specified by an additional
condition like system stability. To achieve this research objective, we consider three
major research questions and build corresponding models as follows.

First of all, we examine the operational cost from the perspective of a warehous-
ing service provider and build the corresponding Model-1. This model focuses pri-
marily on an internal objective by minimizing the average total service time, which
is the sum of setup time and travel time. We exclude picking time as this is not in-
fluenced by the batching policy. Orders are picked in a FIFO sequence. Model-1
emphasizes the impact of order batching on performance of a warehousing service
provider. Secondly,we examine the cost for customers and build a corresponding
Model-2, which is taken from Chew and Tang (1999). The contribution in Model-
2 is to provide an efficient finite difference algorithm. While using straightforward
simulation takes much time to obtain a solution by enumeration, our method takes on
average 6 seconds to get one solution. Finally,we consider the total cost for both the
warehousing service provider and the customers by combining Model-1 and Model-
2 into a new Model-3. The contribution of this research is twofold. First we show
SPO and perturbation analysis algorithms are efficient in deriving optimal values.
Second we combine the perspectives of both customers and a warehousing provider
in one model and show it can also be solved by perturbation analysis and an SPO
algorithm.

The remainder of the paper is organized as follows: in the following section, we
search optimal batch sizes for warehousing service providers in a general stochastic
parallel-aisle warehouse by sample path optimization and infinitesimal perturbation
analysis techniques. Section 3 is devoted to an efficient finite difference algorithm
to search optimal batch sizes for customers. In Sect.4, we present a model with
the objective of minimizing the total cost, and provide an efficient finite difference
algorithm to search the optimal batch size. We conclude with final discussion, con-
tribution summary and further research in Sect. 5.
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2 Optimal Order Batch Sizes for Model-1

2.1 Model

Model-1’s objective is to minimize the total expected operation time of a warehous-
ing service provider E[T,(q, D)], where ¢ is the decision variable, the subscript p
indicates a warehousing service provider, and D is the demand generated from a
given distribution f(D). E[T,(q, D)] is the product of the expected number of batches
E[D/q] and the expected operational time of one batch. Following [4], we do not con-
sider picking time since the batching policy does not influence the total picking time
for a given demand. But the batch size does influence the total setup time and the
total expected travel time. Therefore, in our model the expected operational time of
one batch is the sum of a setup time 3 and an expected travel time E[L(q)/v], where
E[L(q)] is the expected travel distance and v is a constant travel velocity. E[L(q)]
depends on the warehouse layout and the routing method. We assume a rectangu-
lar, parallel-aisle layout, as sketched in Fig. 1 and an S-shape routing method (see
De Koster et al., 2007). For this environment, Chew and Tang (1999) have found a
closed form approximate expression for E[L(g)]. We have

M -1: i E|T D
odel D~f(r[%}(§]§qu [T,(q,D)]

s.t. E[T,(q,D)] = E[L(q)/v + BIE[D/q]

2.2 Algorithm

This section demonstrates how to obtain the optimal batch size quantities in a
parallel-aisle warehouse with stochastic demand. Our scheme is to use the simula-
tion optimization algorithm by combining sample path optimization and perturbation
analysis to examine optimal order batch sizes.

Algorithm Description

To compute the optimal batch size values, we adopt a sample path optimization
technique as main algorithm, where we use IPA (Infinitesimal Perturbation Analy-
sis) to calculate the gradient value. We start with an arbitrary batch size ¢'. After
randomly generating an instance of the demand, we construct and solve Model-1 in
a deterministic fashion. Then, we compute gradient values by the decision tree from
the perturbation analysis. The procedure is summarized in a pseudo-code format in
the following procedure, where K denotes the total number of steps taken in a search
path of the main algorithm, U represents the total number of steps in one inner
cycle which is to provide a gradient estimation at one step of the main algorithm, @y
represents the step size at the each iteration k, and ¢* represents the batch size at the
k™ step. The choice of step size is important to guarantee convergence of the batch
size. A proper choice will be explained further in Theorem 4.
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Algorithm 1
(I) Initialization.

(I.1) Initialize K.

(1.2) Initialize U.

(1.3) Initialize q'.

(1.4) Initialize ) = /1 for a constant a.

(D) Setk « 1.
Repeat.

Setu « 1.
Repeat.

(IL.1) A. Generate the demand dl’j from f(D).

(I1.1) B. Compute the objective value of Model-1 in a deterministic fashion.

(IL.1) C. Compute and accumulate gradients dL¥,

also record generated demand d* and realized travel distance LY.

u—u+l,

Until u=U.

(I1.2) Compute the desired gradients ag[qL] lg=g* = [1] fo:l dLk,

E[DIF = | XY d% and EILI* = |, 3.0, LY at the k step.

(I1.3) Calculate the desired gradients dTCII‘ = (i 613[1” ly=g* +B) E[qD,(]k

+(LELL + B)(="10D).

(I1.4) Update the batch size by q’“rl — qu - adef]‘J, where ay = a/k.

k—k+1,

Until k = K.
(III) Return the {q" },’f:] and the objective function value.

We explain the procedure as follows:

(D Initialization. The algorithm starts with an arbitrary value for the batch size
g". K and U are given and can be determined by a pilot study to solve the following
trade-oft: while a small K cannot provide sufficient data, and output will have a big
variance, a too large K is inefficient to improve the optimal value.

(I1) The main loop in step (II) is an outer loop with K steps. Each step includes
a U-step inner loop computation in step (II.1), IPA analysis in step (II.2), the desired
gradient calculation in step (II.3), and the updating of batch sizes in step (IL.4).

We first run an inner loop with U steps. At each step of the inner loop, we gen-
erate the demand from distribution f(D), solve the problem of Model-1 in a deter-
ministic fashion once the demand is observed, and calculate the perturbation value
dLt. Secondly, we conduct critical computation agzL] ly=gt = { Dy dLX | which is

just the IPA technique. Thirdly, we compute the gradient of the expected travel time

LI+ )R + CELLE + )=,

Finally, we update batch sizes ¢**! by ¢**! « |¢* — axdT} ] at the k" step. Also note

that since the algorithm stops at k = K, we do not need an extra stopping rule here.
(IIT) Return the ¢* and objective function value at each step. Then we can conduct

the output analysis.

with respect to the batch size by dT; = (
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Algorithm Justification

If an algorithm can converge and the objective function subject to minimization is
convex, the algorithm can provide a global optimal value. In order to justify Algo-
rithm 1, we build four theorems. Theorem 1 is to justify the convexity of our objective
function. Theorem 2, 3, and 4 will show the convergence of Algorithm 1.

In order to examine the convexity of objective function E[T,(q, D)]. We first
establish Theorem 1 as follows.

Theorem 1. The objective function E[T,(q, D)] = E[L(q)/v + BIE[D/q] is a convex
function of gq.

Proof: For item locations with uniform distribution, Chew and Tang [4] have
given approximate distance estimation for the S-shape routing policy. Based on their
result, we have

. ;
5 =M L nea® - Z( M+ 4B ()

For a constant 6 with 0 < 8 < 1, f(g) = —6? is a concave function of g. So
E[L(q)/v + B] here is a concave function. E[D]/q is nonincreasing convex function
of g. From Boyd and Vandenberghe (2004), the product E[L(q)/v + BIE[D/q] of
a concave function E[L(g)/v + ] and a nonincreasing convex function E[D]/q is
convex. O

In this algorithm, it is critical to find an efficient gradient estimator. We use per-
turbation analysis to compute this gradient. Perturbation analysis is a powerful tech-
nique for the efficient performance analysis of dynamic systems. Its fundamental
approach is to keep track of information along a perturbed path. The main principle
behind perturbation analysis is that if a decision variable of a system is perturbed
by a small amount, the sensitivity of the response of the system to that variable can
be estimated by “tracing its pattern of propagation through the system” (Carson and
Maria, 1997). This will be a function of “the fraction of the propagations that die
before having a significant effect on the response of interest” (Carson and Maria,
1997). The fact that all derivatives can be derived from the same simulation run rep-
resents a significant advantage to IPA in terms of the efficiency. With the support of
this technique, we have the Theorem 2.

Theorem 2. The gradient of expected travel time with respect to batch size can be
computed by dT), = (1 aE[L] +8) E[D] +(E[L] +B)(— fq[k[))Z] ), where atzE]L] can be calculated
by the perturbation analyszs and deczs:on tree method.

Proof: From Model-1, we have

OE[T,(q)]
dq

1 OE[L E|D E[L [D
SR ;k]+< 1 - k)z] @)

k v aq a=¢*
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Fig. 1. Perturbation analysis for a batch in a parallel-aisle warehouse with S-shape routing
policy

In this formula, the critical issue is to compute the gradient of the travel distance
with respect to batch sizes. Gong and Yiicesan [10] have provided an implementa-
tion framework and theoretical justification of SPO and IPA, and they compute the
gradient by an analytical duality method. Different from them, we conduct direct
perturbation analysis, and then derive a decision tree from perturbation patterns.

We conduct a perturbation analysis for a single batch with S-shape routing pol-
icy here. For a batch with batch size g, we give the system a perturbation, i.e., let
the batch size increase by 1. In Fig. 1 the item with a cross “X” is the perturbed
item. By comparing the distance before and after perturbation, we can compute the
perturbation of distance.When the number of visited aisles is even, there are three
perturbation patterns. (see perturbation patterns 1, 2, 3 in Fig. 1). When the number
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of visited aisles is odd, there are four perturbation patterns. (see perturbation patterns
4,5,6,7in Fig. 1).

[ Generate &, and 1, ]
|
N,?E N,?70
[{& 00,1379, | LG9 | [} 29y | [ 1640101401120, |
(0] [0]
|§q+]<§*| |§q+1>5*| | §q+l<§*| |§q+l:€*
[2(Max+ @(81-E9)] [2n"]  [2(H-n"+ (=€ [2(H-n")] [2(11541-19)]

Fig. 2. Decision tree from perturbation analysis

In the following research,we use the notation below:

M =the number of aisles;

H =the length of aisles. We assume a bin containing one kind of item has one
unit length;

w = the cross distance between two consecutive aisles;

D = the mean of demand;

N, =the number of visited aisles;

E = the even number set;

O = the odd number set;

¥ ={1,2, ..., g} the indices set of g items;

& =the aisle position of item 7, & = 1, ..., M,

n; = the location position of item i, ; = 1, ..., H;

Q, = the position set covered by the routing when batch size is ¢g. The position of
an item i € ¥ is indicated by (&;, ;);

& = max(&;,i € V) be the farthest aisle visited;

n* = max(n;, Vi, s.t.& = &) be the farthest position at the farthest aisle visited.

By tracing its pattern of propagation through the system, we can build a decision
tree for the gradient computation in Fig. 2. Theorem 2 follows from IPA analysis in
Fig. 1 and the decision tree in Fig. 2. O

Theorem 3. If demand D has a density on (0, o0) and E[D] < oo, batch size g € R+
and g < oo, the gradients obtained by Theorem 2 are bounded with probability 1.

Proof: Generate the aisle position &,,; and location position 17,1 of a perturbed item.
For S-shape routing policy, from the decision tree in Fig. 2, the gradient can be com-
puted as follows:
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2[ng+1 + (g1 — 9], &1 >E and N, € E
27]*» §q+l <§*a(§q+1’7]q+l) ¢Qq ande €EE
oL O» §q+l :g*a(§q+l’7]q+l)¢gq ande €EE
g " 2[H - 0" + w(Ege1 — 9], Ege1 > & and N, € O (3)
2(H—-n"), Egr1 <& (Egr1>Mgr1) € 2y and N, € ©
2(g+1 = 1), Eqr1 =& Nge1 > N'and N, € O
0, (€g+15Mg+1) € Q4 and N, € 6.

From (3), we have

oL X . . )

g < M2+ 0(Eper = E0L202AH =0 + 0l = )
2(H—-1%),2(Mge1 — 1)) < 2H + 2w(M — 1). 4)
The boundedness of gradient follows from (4). O

Theorem 4. By the sample path optimization in Algorithm 1 for a proper choice of
step size, the batch size {g~ Yoo, converges with probability 1.

Proof: In order to ensure the convergence, a key issue is the selection of a suitable
step size @y, where we have

Condition (1): A criterion for choosing y is to let step size go to zero fast enough
so that the algorithm can converge, but not so fast that it will induce a wrong value.
One condition to meet that criterion is 332 @ = co and 3;2 a} < oo.

For instance, o = a/k for some fixed @ > 0 satisfies Condition (1). The first part
of this condition facilitates convergence by ensuring that the steps do not become
too small too quickly. However, if the algorithm is to converge, the step sizes must
eventually become small, as ensured by the second part of the condition.

For a convex objective function E[T,(g)], a bounded gradient (see Theorem 2
and Theorem 3), and a step size a; which satisfies the condition (1), according to
Robbins and Monro (1951), we have a limit point of {g* Yre > Which is stationary with
probability 1. O

2.3 Results

We implement Algorithm 1 in Matlab. Experiments are conducted on a computer
with 1.73GHz CPU and 516MB RAM. After acquiring characteristic information
like warehouse size and generating the demand by a normal distribution N(u, o) to
specify the problem, the distance computation program can return batch sizes and
objective values at each step to the main program. Then by the gradient comput-
ing algorithm, the main program can update the batch size until it converges. Here
we adopt an initial step size a@; = 0.5 by a pretest experiment. Since the objective
function is convex, this convergence will lead to a global optimum.
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Without loss of generality, the position of our depot is the first aisle and the
first location. The probability to visit an aisle is equal for all aisles and uniformly
distributed. We have aisle number &; ~ U(1, M),¥i € ¥. The probability to visit a
location in a visited aisle is also equal, i.e., location position n; ~ U(1, H),Vi € V.
In order to verify the result from the simulation optimization, we compare it with
the result of enumeration, where we enumerate all the possible batch size values
from ¢"® to ¢gVB. In combination with Monte Carlo simulation, the enumeration is
conducted as follows. First, we generate a very large order number, and then generate
the position of each item by given distributions & ~ U(1,M),Vi € ¥ and n; ~
U(1,H),Yie V. Then, for every value of g, we determine the batches of size g in an
FCFS sequence. Third we compute the routing length and corresponding warehouse
operation time of each batch by the S-shape policy. For every batch size we compute
the expected warehousing operation time and hence finally find the optimal batch
size.

We present experiments in Table 1. We have conducted two groups of experi-
ments: varying the aisle number M (experiments 1 to 5) and varying the aisle length
H (experiments 6 to 10). The computation results include the items below:

gF= the optimal batch size obtained by enumeration;

q = the statistical estimation of batch size by the stochastic simulation algorithms,
which includes the mean batch size ¢ and half width (HW) of the 95% confidence
interval (CI);

R(g) = the rounded integer value of the estimated batch size;

Ay = |lg — g1/ 4", the direct bias of statistical estimation;

A3 = |R(q) — ¢*|/qF, the indirect bias of rounded statistical estimation;

We compute the average direct bias 41=1/N Y, |q — ¢%|/¢t = 0.255% and the
average indirect bias 4,=1/N ¥, IR(q) — ¢%|/qE = 0%. The average direct bias of sta-
tistical estimation is less than 1%, and the average indirect bias of rounded statistical
estimation is negligible.

Table 1. Experiment result for Model-1

=
S
<

Hw q"8 ¢"8 ¢* g1 =q+HW  R(q) 4, Ay

1 25203 50 1 50 49.8694+0.0876 50 0.26% 0
2 30203 50 1 50 49.7793+0.0773 50 0.44% 0O
3 35203 50 1 50 49.8895+0.0271 50 0.22% 0
4 40203 50 1 50 49.9391+0.0763 50 0.12% 0
5 45203 50 1 50 49.8394+0.0745 50 0.32% 0
6 40253 60 1 60 59.7696+0.0876 60 0.38% 0
7 40273 60 1 60 59.9196+0.0773 60 0.13% 0
8 40283 60 1 60 59.8195+0.0272 60 0.30% 0
9 40303 60 1 60 59.9093+0.0765 60 0.15% 0
1

10 40 323 60 60 59.8597+0.0743 60 0.23% 0
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From the experiment, we observe that

the optimal batch size for Model-1 equals to the upper bound q* = qU®,
which is robust in both groups of simulation experiments. We can understand this
result from the limiting system behavior. By increasing the batch size, the travel and
setup time per batch will converge to a constant.

L M 1 M= H
tim E129 4 g1 = tim Map—a - Dye 2@ - Z(])"H +8
q—00 v Y M v = m 2v
2MH +4Mw + H

+B

2v )

However, with an increasing batch size ¢, the number of batches E[D]/q will
continue to decrease, and therefore the total operation time, which is the product of
the two items, will also decrease. That is the reason why the optimal batch size will
converge to its upper bound.

3 Optimal Order Batch Sizes for Model-2

3.1 Model

Model-1 in Sect. 2 considers the main operation time from the perspective of a ware-
housing service provider. It does not measure the time of customers and the service
level. It is also necessary to examine the time spent by customers in a warehousing
system. We therefore adopt the turnover time of a consumer’s order, which is from
[4], as the objective to build the Model-2 as follows.

Model — 2 : Min TTO(‘I)qLBSquUB

s.t. Tro(g) = Wi(g) + Wa(q) + E[S ]

Chew and Tang [4] focus on the first order in a batch. However, their results can
be generalized to a random order in a batch. In Model-2, the objective Tro(g) is the
turnover time of a customer’s order, i.e., the duration an order stays in the system,
when batch size is ¢ with ¢'® < g < qVB. Tro(q) consists of three parts: expected
batch time W;(q), expected waiting time W>(gq) and expected service time E[S ]. Let
the order arrival rate be 1. The expected batch time W;(g) is given by Chew and
Tang (1999) as Wi(q) = (¢ — 1)/A. Expected waiting time W,(g) is approximately
computed by the linear combination of expected waiting times of M/M/1, M/D/1,
and D/M/1. Expected service time E[S ] consists of travel time, picking and sorting
time.
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3.2 Algorithm

The essential problem in searching for the optimal batch size is the choice of the
computation method. From Chew and Tang (1999), our objective function is a spe-
cially complicated function of g, and an analytical gradient computation method is
infeasible. Perturbation analysis is also highly complicated in Model-2, especially
for the perturbation analysis of W,. Even if we had obtained the decision tree by per-
turbation analysis, its computation will not be efficient. Therefore we use the finite
differences (FD) for our objective function. There are two FD approximations: for-
ward FD and central FD. The forward difference derivative approximations consume
less computer time, but they are usually not as precise as central difference method.
Therefore we mainly use central FD as our gradient computation method.

We use finite difference optimization algorithm to examine order batch problem
in a parallel-aisle warehouse, and demonstrates how to obtain the optimal batch size
quantities. The procedure is summarized in a pseudo-code format in Algorithm 2,
where we start with a batch size ¢', usually ¢' = gVZ, K denotes the total number of
steps taken in a search path, a; represents the step size at the each iteration k, and ¢*
represents the batch size at the k' step.

Algorithm 2
(D) Initialization.
(I.1) Initialize K.
(1.2) Initialize q" to qV®
(II) Set k « 1.
Repeat.
(I1.1) Compute T O(q +h) and Tk O(q —h), when k >1.
(I1.2) Compute the desired gradients.

dTk, = Té"(quh,),_ﬂo(qk) when k =1.
k
di _ Trold" +h) TTU(q - , when k >1.
(11 3) Update the batch szze,qk+1 — l¢* — axdTk Tod-
ke—k+1,
Until k = K.

(IIT) Return the {q } _, and the objective function value.

Theorem 5. By the finite difference algorithm 2 and a step size ay which can satisfy
Condition (1), the batch sizes {qk}Z":]in Model-2 can converge.

Proof: From Bertsekas (1999), for the finite difference algorithm with a step size
which can satisfy Condition (1), if the objective function in Model-2 is convex, the
batch size can converge. Chew and Tang (1999) have showed that T7o(q) = Wi(g) +
Wa(q) + E[S]is a convex function of g for ¢"% < g < qV8, where ¢*® is determined
by the system equilibrium condition since if the arrival rate A is too high the system
will become unstable and g2 is specified by facility capability limitation. O
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3.3 Results

Based on Chew and Tang (1999) formulation and our optimization algorithm, we
implement the optimization procedure in Matlab. One run of simulation takes only 6
seconds on average. Let ¢' = g, for the number of aisle ranging from 25 to 45, we
obtain the search paths indicated in Fig. 3. All the experiments converge in the last
500 steps. We compute the statistical estimation by the transient deletion technique.

50 T T T T T T T
P 25 aisles |
- — -+ 30 aisles
o 35 a!sles |
— — 40 aisles
35 —— 45 aisles |
(0]
N
»n
<
IS]
©
oM

0 500 1000 1500 2000 2500 3000 3500 4000
Steps

Fig. 3. Search path by Algorithm 2

In order to verify the result from optimization algorithm 2, we compare the result
with that by enumeration, where we traverse all possible batch size values from ¢"®
to gVB. For all possible values of batch size ¢, we compute the expected objective
values from Chew and Tang [4] and find the optimal batch size. We present the result
in Fig. 4.

We present experiments in Table 2. The left part of Table 2 is the indices of
experiments. The middle part of Table 2 is the experiment setting: M, H, w, ¢*® and
qYB. We have conducted two groups of experiments: varying the aisle number M
(experiments 1 to 5) and varying the aisle length H (experiments 6 to 10). The right
part presents the computation results, which includes the items below:

gF = the optimal batch size obtained by enumeration;

q = the statistical estimation by Algorithm 2, which includes the mean batch size
q and HW of the 95%CI,

R(q) =the rounded integer value of the estimated batch size;
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Fig. 4. Turnover time versus batch sizes in Model-2

A1 =g — qF|/4F, the direct bias of statistical estimation;

A2 =|R(q) — ¢*|/q", the indirect bias of rounded statistical estimation;

We compute the average direct bias 41=1/N Y, |q — ¢%|/q%t = 2.785% and the
average indirect bias 4, = 1/N ¥, IR(q) — ¢&1/gE = 0.769%. The average direct bias
of statistical estimation is less than 3%, and the average indirect bias of rounded
statistical estimation is less than 1%.

Table 2. Experiment result for Model-2

=
S
<

Hwq"¢d*"q¢ g1=q+HW  Rig4 4

25203 50 6 7 6.9129+0.0061 7 1.24% 0
30203 50 7 8 7.7847+0.0046 8  3.08% O
35203 50 8 9 8.7647+0.0034 9 2.61% 0
40 203 50 9 10 9.8098+0.0025 10 1.90% 0O
45203 50 10 11 10.8911+0.0018 11 0.99% 0O
40 253 50 10 12 12.4991+0.00005 12 4.16% 0
40 273 50 10 13 13.5003+0.00006 14 3.85% 7.69%
40 28 3 50 10 14 14.4994+0.00006 14 3.57% 0O
40 303 50 10 15 15.4996+0.00007 15 3.33% 0O
10 40 323 50 10 16 16.4998+0.00005 16 3.12% 0

O 0 3 N N AW~



Approximate Optimal Order Batch Sizes in a Parallel-aisle Warehouse 189

From the result we can observe that, the optimal batch size for customers is close
to its lower bound and less than its upper bound ¢*® < ¢ < ¢Y®, which is robust in
both groups of simulation experiments. This result is similar to results of Chew and
Tang (1999).

4 Optimal Order Batch Sizes for the Total System

The objective functions of both Model-1 and Model-2 are unilateral. The result from
Model-2 is similar to Chew and Tang (1999) and Le-Duc (2005), and this result pos-
sibly underestimates the positive effect of batch procedure. The result from Model-
1 also possibly overestimates the positive effect of batch procedure. While a large
batch size brings short-run minimal cost to warehouse service providers, it will also
cause long throughput times for the customers, and may therefore harm the long-run
interest of warehouse service providers. Considering both sides, we therefore build
Model-3 and measure the total system cost.

4.1 Model

The objective in Model-2 is the turnover time for a single customer’s order while the
objective in Model-1 is the total service time for the total customers. So we need to
transform the data in Model-1, and compute the time spent by service provider on a
single customer, that is Tp(q) = EWL@IE yithout loss of generality, we assume a
single customer corresponds to a single order. Let ¢; be the operation cost per unit
time for service provider, and ¢, be the waiting cost per unit time for customer. Then
c1Tp(q) + c2T10(q) is the total system cost C(g) for one customer. We have:

Model =3 : Min  C(q)g1p<4<qus

s.t. C(q) = c1Tp(q) + c2Tro(q)

E[L
oty = L@+ B

Tro(g) = Wi(q) + Wa(q) + E[S]
The ratio of ¢; and ¢, in Model-3 is used to measure the weight of both sides in
the system. We define: the unit cost ratio y = 2 .
4.2 Algorithm

We mainly use central FD as gradient computation method since the objective
function in Model-3 is a specially complicated function of ¢g. The procedure is sum-
marized in a pseudo-code format in Algorithm 3, where we start with an initial batch
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size ¢!, for example ¢! = ¢YB, K denotes the total number of steps taken in a
searching path, oy represents the step size at the each iteration k, and ¢* represents
the batch size at the k" step.

Algorithm 3
(D) Initialization.
(I.1) Initialize K.
(1.2) Initialize q' to qV®.
(II) Setk « 1.
Repeat.
(I1.1) Compute C*(g* + h) and C*(¢* — h), when k >1.
(I1.2) Cokm{ﬂfge thzek)desired gradients.
k _ Cg+h-C'(¢ —
de Ck(qk+h};_Ck(qk_,h)vvhen k=1.
dc* = oh , when k >1.
(I1.3) Update the batch size, ¢*' « | g* — aydC*].
k—k+1,
Untilk = K.

(II1) Return the {g"* },’((:] and the objective function value.

Theorem 6. By the finite difference algorithm 3 and a step size ay which can satisfy
Condition (1), the batch sizes {qk}Z":]in Model-3 can converge.

Proof: From [1], for the finite difference algorithm with a step size which can
satisfy Condition (1), if the objective function in Model-3 is convex, the batch size
can converge. In Sect.2, we have proven Tp(q) and therefore c;Tp(g) are convex
function. Chew and Tang [4] have showed that the objective function T7o(g) is a
convex function of gq. So C(q) = ¢1Tp(q) + c2Tr0(q) is a convex function of g. The
convexity ensures the algorithm will converge to a global optimum. O

4.3 Results

Based on the formulation in Model-3, we implement the optimization algorithm 3 in
Matlab. The running time ranges from 13 seconds to 19 seconds. For the coefficient y
ranging from 30 to 70, we obtain the search paths in the Fig. 5. For all the experiments
we conducted, we observe the search paths converge in the last 500 steps. We use the
transient deletion technique to conduct the statistical estimation.

In order to verify the result from the finite difference optimization, we compare it
with the result of enumeration, where we traverse all the batch size values from qLB
to V2. We compute the expected objective values for all possible values of ¢ and
find the optimal batch size.

For the aisle numbers ranging from 25 to 45, we respectively compute their
“total cost”, “part 1 cost” which is the cost of warehousing service providers, and
“part 2 cost” which is the cost for the customers. The result is presented in Fig. 6 and
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Table 3. Experiment result for Model-3

=
S
<

Hw 8¢y ¢° g =q+HW R(g) 4, Ay

25203 50 6 2012 12.2801+3.5136e-004 12 2.33% 0
30203 50 7 2012 12.4999+1.1592e-005 12 4.17% 0
35203 50 8 2012 12.5000+1.3900e-005 13 4.17% 8.33%
40 203 50 9 2013 12.7900+9.0225e-004 13  1.62% 0
45 203 50 10 20 13 13.4995+9.3120e-005 13 3.84% 0
40 253 50 10 20 14 14.9999+1.8239e-005 14 3.57% 0
40 273 50 10 20 15 15.4998+1.7737e-005 15 3.33% 0
40 28 3 50 10 20 16 15.5001+2.3669e-005 16 3.12% 0
40 303 50 10 20 16 16.9980+2.4165e-005 16 3.12% 0
40 323 50 10 20 17 17.5000+2.5194e-006 18 2.94% 5.88%
40 203 50 10 30 15 15.4992+9.7966e-006 333% 0
40 203 50 10 40 18 18.1962+6.0757e-004 18 1.09% 0
40 203 50 10 5020 20.4999+6.3132e-006 20 2.50% 0
40 203 50 10 6023 22.9373+1.3000e-003 23  0.27% 0
40 203 50 10 7025 25.2757+7.0235e-004 25 1.10% 0

O 0 9 O Lt A W N =
J—

—_ e e e

AW N = O
—_
W

—
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summarized in Table 3. The first column of Table 3 is the experiment index. The sec-
ond part is the experiment setting: we have conducted three groups of experiments:
varying the aisle number M (experiments 1 to 5), the aisle length H (experiments 6
to 10) and the cost ratio y (experiments 11 to 15). The third part of Table 2 is the
computational results by Algorithm 3 and enumeration, containing ¢%, g, R(q), 4,
and 4,.

We compute the average direct bias 41=1/N Y, |g — ¢£|/¢% = 2.700% and the
average indirect bias 4,=1/N ¥, |R(q) — ¢£1/qE = 0.947% . The average direct bias
of statistical estimation is less than 3%, and the average indirect bias of rounded
statistical estimation is less than 1%.

From the results, we can observe that the optimal batch size for the total system
is less than the optimal batch size g7 in Model-1 and larger than g; in Model-2. We
have ¢; < ¢} < qj, which is robust in all the experiments with a different number of
aisles, different aisle length, and different cost ratios y. The result also shows that ex-
isting research underestimates the optimal batch size. This serious underestimation
is due to the unilateral objective function, and it leads to an inferior performance of
warehousing service providers. Our problem is a basic economic equilibrium prob-
lem with two sides of agents: a warehousing service supplier and consumers. From
the perspectives of different agents, the optimal batch sizes are different.
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Fig. 5. Search path by Algorithm 3

S Concluding Remarks

This paper studies the optimal order batch size problem in a parallel-aisle warehouse
with stochastic order arrivals. The contribution of this paper is twofold in both appli-
cation and methodology.

While existing literature directly assumes the batch size value, this paper shows
that an optimal batch size exists. A too large batch size will harm the throughput time
of consumers, and a too small batch size will bring a negative impact to warehousing
costs. Existing literature focusing on the customer perspective only claims a suitable
batch size will be close to its lower bound. Our research shows an optimal batch size
will be larger than its lower bound when the costs of warehousing service providers
are considered.

Past literature has not provided an efficient method to search optimal batch sizes.
This paper provides an IPA and SPO stochastic approximate optimal implementation
scheme to search the batch sizes for the warehousing service providers in a general
parallel-aisle warehouse setting. This paper also presents an efficient FD algorithm
to search the optimal batch sizes for customers and the total system. The estimation
biases of the proposed algorithms are satisfactory.

A further topic for research could be to investigate the optimal batch size with
the different routing policies in a general parallel-aisle warehouse with stochastic
order arrivals. This paper employs an S-shape routing method. It is also possible to
research the optimal batch size with other heuristic routing policies like the mid-
point routing policy and the largest gap routing policy, or the optimal routing policy.
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Fig. 6. Cost vs. batch sizes in Model-3

The latter will probably be hard to solve.
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Summary. The importance of natural gas as an energy source is increasing. Natural gas has
traditionally been transported in pipelines, but ships are more efficient for transportation over
long distances. When the gas is cooled down to liquid state it is called liquefied natural gas
(LNG). The LNG supply chain consists of exploration, extraction, liquefaction, transportation,
storage and regasification. Maritime transportation is a vital part of the LNG supply chain, and
LNG is transported in special designed ships, LNG tankers. The demand for LNG tankers has
increased considerably as the entire LNG industry continues to see strong growth. Hence,
there is a great potential and need for optimization based decision support to manage the LNG
fleet, liquefaction plants, and regasification terminals in this business.

Here, we are studying the LNG supply chain in close cooperation with a worldwide actor
within the LNG business. This actor is responsible for the LNG supply chain management
except the exploration and extraction.

We describe the real planning problem and present both an arc-flow and a path-flow model
of the problem. Both models are tested and compared on instances motivated from the real-
world problem. It is a very complex problem, so only small instances can be solved to opti-

mality by these solution approaches.

Key words: Maritime transportation, Inventory routing

1 Introduction

Worldwide, there are large reserves of natural gas. Several existing gas producers
are increasing their production capacity and new sources are explored. However, in
some of these areas there are no significant markets (for instance North Africa, West
Africa, South America, The Caribbean, The Middle East, Indonesia, Malaysia and
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Northwestern Australia). Some of the natural gas is liquefied at these locations for
shipping to areas far away where usage of natural gas exceeds indigenous production.
Such markets include Japan, Taiwan, Korea, Europe and the U.S. The transformation
process from gas to liquefied natural gas (LNG) is done by cooling down the gas at
atmospheric pressure at a temperature of —260°F (—162°C) before loading it into
special designed tank ships, LNG tankers. By liquefying the natural gas into LNG
the volume is reduced by a factor of 610 [8]. The reduction in volume makes trans-
portation and storage more efficient. In addition, LNG offers greater trade flexibility
than pipeline transport, allowing cargoes of natural gas to be delivered where the
need is greatest and the commercial terms are most competitive.

Natural gas as an energy source is of increasing importance as the world’s de-
mand for natural gas is expected to increase by 70% between 2002 and 2025 [9].
Hence, the demand for LNG tankers is increasing. In 2007 there were 220 LNG
tankers in operation, and 35 LNG tankers were scheduled for delivery in 2007. Fur-
thermore, by 2015 the number of LNG tankers in operation will almost double to
400 [10]. As a consequence of the increasing market for LNG, the supply chain man-
agement has become more complex and the need for decision support has become
even more evident. We consider a real tactical supply chain optimization problem
for LNG including the production volumes, liquefaction, transportation, storage, re-
gasification and sale volumes. Suez Energy International (SEI) is a global energy
actor and is facing such a planning problem. The company is involved within most
of the LNG supply chain except exploration and extraction, and is using a num-
ber of liquefaction plants and regasification terminals throughout the world. For the
company’s activity, the LNG can be considered a single product. The natural gas
is cooled down at the liquefaction plants, stored at given pick-up ports, and trans-
ported at sea by LNG tankers to inventories at delivery ports before regasification.
Inventory storage capacities are given at all ports. The production and consumption
volumes are variable at all terminals. The transportation at sea is carried out with
SEI’s own heterogeneous fleet of LNG tankers. The hold at the LNG tanker is sep-
arated into several cargo tanks. It is assumed that an LNG tanker is always fully
loaded when it leaves the pick-up port, but it is possible to unload a variable number
of cargo tanks at each regasification terminal. In fact, the LNG is at boiling state in
the cargo tanks. Thus, some of the LNG evaporates during a voyage. Hence the term
boil-off. This gas is used as fuel. The planning problem is to maximize the profit by
designing routes and schedules for the fleet, including determining the production
and consumption volumes at all terminals, without exceeding the ship capacities and
the inventory limits of the storages. We call this problem the LNG inventory routing
problem (LNG-IRP).

Maritime transport optimization is a well established field of research within
transportation planning with reviews in [12, 13, 5, 4]. Though the attention to mar-
itime transportation has been limited compared to other modes of transportation, we
have witnessed an accelerating amount of research in the literature during the last
decade and the interest in these types of problems is increasing.

In maritime transportation, usually large quantities are loaded and unloaded at
each port call (ship visit at port). Both the (un)loading and transportation are time



Supply Chain Optimization for the Liquefied Natural Gas Business 197

consuming and expensive. Thus, the potential is great if the planning of the trans-
portation and the inventory management at each end of a sailing leg is integrated.
In practice, we can find several maritime supply chains where one of the actors has
the responsibility for both the transportation and the inventory management. For in-
stance, [3] studies such a problem for a company producing and consuming ammo-
nia. Here the company both produces and consumes the product and is controlling the
fleet of ships. Furthermore, [1] consider a maritime inventory routing problem with
multiple chemical and oil products. These products have to be transported in sepa-
rated compartments on board the ship and stored in separate storages at the ports.
Moreover, [11] study a planning problem that integrates both the shipment planning
of petroleum products from refineries to depots, and the production scheduling at the
refineries. More maritime inventory routing problems are referred in [6].

However, no research on LNG-IRP is reported in the literature as far as we know.
With increased focus on this type of problems in the industry, we expect several
contributions in near future.

The purpose of this paper is to introduce a new type of problem within maritime
transportation and provide two types of formulations for the same problem. More-
over, it will contribute to increased knowledge about the LNG supply chain from an
OR point of view.

The rest of the paper is organized as follows: Sect. 2 gives some insights into the
LNG industry and describes the real planning problem considered. The problem is
formulated as an arc-flow model in Sect. 3, while Sect. 4 is devoted to the path-flow
model. Computational results on small instances of the real planning problem are
reported in Sect. 5. Finally, concluding remarks and future research follow in Sect. 6.

2 Description of a Real LNG Supply Chain Planning Problem

Suez Energy International (SEI) is a global energy actor. The company is a sub-
sidiary of the international conglomerate Suez and together with its sister company,
Suez Energy Europe (SEE) has the responsibilities of maintaining Suez’ energy oper-
ations. SEI are involved within most of the liquefied natural gas (LNG) supply chain
except exploration, extraction, and transportation to end-customers. Hence, the com-
pany is involved in liquefaction, transportation, storage and regasification of LNG. In
addition, the company can influence the amount produced at the liquefaction plants
and sold at the regasification terminals. Figure 1 shows the LNG supply chain and
highlights the considered parts of the chain.

SEI is engaged in LNG supply chain planning at all levels, ranging from strategic
decisions as determining the fleet size and mix, acquisition of plants and terminals,
long-term contracts, to operational planning like determining the speed of each LNG
tanker. In this paper, we consider the tactical supply chain planning problem and the
typical planning horizon spans two to four months.

At the liquefaction plants the natural gas is cooled down to liquid state. Then,
from ports located close to the liquefaction plants, the LNG is transported in special
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Fig. 1. The LNG supply chain

purpose vessels to ports close to storages and regasification terminals. Here, the LNG
is converted from the liquefied state to the gaseous state, ready to be moved to the
final destination through the natural gas pipeline system.

SEI controls two regasification terminals located in Zeebrugge, Belgium and
Boston, USA. It has also 10% equity participation in a liquefaction plant located
in Trinidad and Tobago. In addition, the company uses third-party facilities for pick-
up and deliveries in other parts of the world. SEI currently purchases and distributes
approximately 8 million tons of LNG per year from Algeria, Quatar, Trinidad and
Tobago. The LNG operations are continuously increasing. For instance, a sales and
purchase contract for 2.5 million tons of LNG per year was signed with Yemen LNG
in August 2005. This contractual supply is expected to begin in 2009, and has 20
years duration.

Due to the expected increase in activity, SEI sees the need for an advanced de-
cision support tool to coordinate and manage the fleet, and the inventories at both
liquefaction and regasification terminals. For that reason, inventory management
considerations are included at all ports. A reality consisting of 10 liquefaction plants
and 10 regasification terminals is not impossible to imagine in the future. The num-
ber of spot cargoes in the LNG business is still limited, but we will see an increase
in this activity in the future. In order to limit the size of the model and the level of
details, we have disregarded possible spot trade in this paper.

The production of LNG at the liquefaction plants is normally at a maximum
level. However, it is possible to regulate the production within certain limits. At each
plant there exists given capacities of the storages. Production costs are dependent on
volume and plant.

At the other end of the supply chain, the gas is unloaded from the LNG tankers
and stored in storages with specified capacities. SEI’s customers are governments, in-
dustrial corporations, the service industry, and residential users throughout the world.
The sales contracts include fixed contracts where the agreed volume cannot be vio-
lated, contracts with lower and upper limits on quantities to deliver, and short term
contracts which should be satisfied only if profitable. From this contract structure,
we assume that for each port, we can specify upper and lower limits of demand for
gas and an associated revenue per day. In reality, the consumption rate varies from
day to day.
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Extraction of natural gas, and hence the production of LNG, takes place all over
the world. Natural gas is transported by either pipe lines or by ship to the customers.
The main flows of natural gas and LNG in the world are shown in Fig.2. Hence,
the ports associated to the LNG liquefaction plants and regasification terminals are
placed all over the world.

Major trade movements
Trade flows worldwide (billion cubic metres)

Usa
Canada
Mexico s
M s. & Cent. America °°°
Europe & Eurasia

M Middle East
Africa —— Natural gas
M Asia Pacific — LNG

Fig. 2. The main flows of natural gas and LNG in the world. Figure from [2]

The LNG is transported by a fleet of LNG tankers controlled by SEI or by the
associated company Suez Energy Europe. This fleet consists currently of 6 LNG
tankers which they either have ownership over, or have chartered on long-term agree-
ments. However, this number of LNG tankers will increase with increased activity.
The LNG tankers have different cost structure, load capacity and specific ship char-
acteristics. The hold of an LNG tanker is separated into several cargo tanks. Since
the LNG is at boiling state in the cargo tanks, some of the cargo evaporates each
day. This is called boil-off. Each day, the amount of boil-off in each cargo tank is a
constant rate of the cargo capacity in the tank. Usually, the boil-off is used as fuel. It
is the cargo itself that keeps the tanks cool, so if a cargo tank runs empty, the tem-
perature will gradually increase. It is costly and time consuming to recool the cargo
tanks before loading. Thus, there should always be some LNG left in the cargo tanks
to keep them cool until (re)loading starts. Then, only a safety level should be left
in the cargo tanks. No boil-off is assumed for the active tanks during loading and
unloading in a port, while boil-off is considered for the tanks not affected at delivery
ports. The loading and unloading of a ship are assumed to take one time period (one
day) independent of the quantity loaded.
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Successive calls at liquefaction plants are not relevant to consider. Furthermore,
we can disregard the safety level from the calculations if we reduce the tank ca-
pacities with an appropriate safety level. Hence, when we speak about an ‘empty
cargo tank’, there is a safety level of cargo left in the tank. In an optimal plan, an
LNG tanker always arrives at a pick-up port and starts loading in the moment all
the cargo tanks are empty and departs from the port fully loaded. However, at the
delivery ports it is possible to unload partially. This means that several regasification
terminals might be called in sequence, and a maximum number of successive deliv-
ery ports is given. In practice, this number is two. Due to sloshing problems for some
types of LNG tankers, it is assumed that it is impossible to unload partial cargo tanks.
Thus, a number of full cargo tanks adjusted for future boil-off until the next call to
a liquefaction plant, must be unloaded at each delivery port. Figure 3 shows four
snapshots of a voyage for an LNG tanker containing four cargo tanks. In Fig. 3a),
the LNG tanker leaves the liquefaction plant fully loaded and the storage there is in
one of its extreme situation; empty. The LNG tanker sails to a regasification termi-
nal, and it has to arrive this terminal before the storage is empty. In Fig. 3b), we see
that some of the gas has evaporated while sailing. The LNG tanker can then unload
one or several of its cargo tanks. In this example, all tanks have been unloaded in
one regasification terminal. Then, the LNG tanker returns in Fig.3d) to the same
liquefaction plant and the LNG tanker is just empty when it arrives the port.

Liquefaction Regasification

plant . -LNG terminal

Fig. 3. LNG tanker inventory
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The sailing time from one port to another is calculated based on the speed of the
LNG tanker and the distance, but does not depend on the load aboard. There might
also be several paths between two ports with different time consumptions and costs.
For instance, this gives the possibility to use the Suez Canal or to sail around Africa.

The berth capacity of the ports is limited. Thus, a maximum number of LNG
tankers can visit each port in each time period. However, it is possible to wait out-
side a port before loading and unloading, and the maximum number of waiting days
outside each port is given. Normal boil-off is assumed during such waiting days. In
contrast, no boil-off is assumed for the time periods from the last port call in a ship
route until the end of the planning horizon. There is no natural depot for the LNG
tankers. The initial position of an LNG tanker may be at a port or a point at sea.
Furthermore, the LNG taker might be empty or loaded, and there is a set of first port
call candidates in its route. Since there is no depot for the LNG tankers, there is no
requirement for a specified position for any ship at the end of the planning horizon. In
fact, the LNG tanker will end their route in one of the ports in the planning problem.

The LNG tankers are very specialized tank ships without any other area of appli-
cation. In the short-term, there is no option to change the fleet size. The ship costs
consist of several components. The fixed costs are the time charter rates which exist
for all ships, while the variable costs consist of port and canal fees, and bunker oil
costs.

In contrast to pickup and delivery vehicle routing problems [7], the number of
calls to a port is not known, the quantity loaded or unloaded at each call is unknown
and finally, there exist no pickup and delivery pairs. The LNG-inventory routing
problem (LNG-IRP) aims at maximizing the profit by designing ship routes and
schedules for the fleet in the planning period. Furthermore, the problem consists
of deciding the production volumes of LNG, and determining the level of demand
fulfillment. Finally, feasible inventory levels at both port types and load aboard the
LNG tankers regarding the ship capacity and boil-off must be ensured.

3 Arc-Flow Formulation

This section describes the arc-flow formulation of the LNG-IRP. First, in Sect. 3.1 we
introduce the network and describe the ship routing and scheduling constraints for the
problem. Then, in Sect. 3.2 we present the constraints representing the ship inventory
management. Section 3.3 is devoted to the activities at the ports, including the port
inventory management. Finally, the objective function is addressed in Sect. 3.4.

The notation is based on the use of lower-case letters to represent decision vari-
ables and indices, while capital letters represent sets, constants and any constant
superscripts.
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3.1 Ship Routing and Scheduling

In the mathematical description of the problem, let N be the set of physical ports
indexed by i. This set consists of pick-up ports N¥ and delivery ports N”. Further, let
vV, indexed by v, represent the heterogeneous fleet of ships (LNG tankers) available
for routing and scheduling. Then, the set N*P denotes all ports feasible for ship v
(except its origin and destination node). Furthermore, (N,, A,) is the total network
associated with a specific ship v. Here, N, = N*P U {o(v), d(v)} is the set of ports
that ship v can visit, and o(v) and d(v) are the (artificial) origin node and (artificial)
destination node, respectively. The set A, contains all feasible arcs for ship v, which
is a subset of {i € N,}x {i € N,}. This set will be calculated based on capacity, time
and inventory constraints, and other restrictions such as those based on precedence
of pick-up and delivery nodes. From these calculations, we can extract the sets N =
NP NN, and NP = NP n N, consisting of pick-up and delivery nodes that ship v
may call, respectively.

The length of the planning horizon is given by the parameter . Moreover,
7 denotes the set of time periods, 7~ = {1,2, e TMX}, which is indexed by 7. Let
the parameter 7;;, represent the sailing time on arc (i, j) for ship v. Sailing on arc
(i, 1) is considered waiting outside port i, Tj;, = 1. The maximum number of time
periods a ship can wait outside a port before loading or unloading is denoted T".
Cargo handling, i.e. loading and unloading, is assumed to take one time period. To
ease the representation, the cargo handling at port i is assumed to take place during
the first time period on the sailing on arc (i, j), i # j. Each ship has a number of cargo
tanks, WX where the set of cargo tanks on each ship is given by ‘W, and w is the
corresponding index.

The binary flow variable x;;,,, (i, j)) € A,, v € V, 1t € T serves two purposes;
sailing between two ports and waiting outside a port. If the variable equals 1 and
i = j, ship v waits one time period outside port i. On the other side, when i # j and
Xiju = 1, ship v either loads or unloads at port i in time period ¢ before it immediately
starts sailing toward port j. The decision to load or unload a cargo tank is handled
by the binary variable zj,, i € N2, w e W,,v e V,t €T, which equals 1 if ship
v decides to load or unload cargo tank w in port i during time period ¢. Furthermore,
the binary variable u;,,, i € NPP, v € V, t € 7 equals 1 if ship v loads or unloads
any cargo tank in port i during time period ¢.

In order to increase the readability of the arc-flow model, we eliminate the pos-
sibility of several paths between two nodes. However, this can easily be included in
the model by introducing an additional index for the paths on the flow variable.

Then, the routing and scheduling part of the arc-flow LNG-IRP formulation is as
follows:

TMX
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Z Xjive — Z Xiju(t-Ty) = 0, VjENf)D,ve(V,IE‘T, (1)
ieNPP iENEP|t>T;;,

Zxo(v)jvt =1, Yve V=1, 2)
JEN,

szid(v)vt =1, Yve V. 3)
teT ieN,

Constraints (1)-(3) describe the flow on the route used by ship v. The first sailing
from ship v’s origin node, o(v), is handled by constraints (2), while constraints (3)

give the end conditions for ship v, i.e. the ship must end its route in the destination
node d(v).

D7 Xiju =t =0, VieNPPveViieT, @4
JEN,|j#i
XigyeUive = 0, VieNPPveV teT, ®)
t+T" +2 min{T;;,}
w . PD
Xie ST, Yie NP veV,teT, 6)
T=tr<TMX—TV_2 min{T;y}
t+TV
MX
Xijvt Z Ziwwt + Z Z ijv(‘r+T,-j‘,) - Wv = O’
weWw, T=tlr<TMX-T;;,weW,

Vit jie N, je NP, (i,)e A,veV,teT. (7)

In constraints (4) we describe the connection between the cargo handling and
the sailing. If a ship starts sailing between two ports, it must either load or unload
depending on the type of port. Moreover, constraints (5) state that a ship cannot
wait outside a port, i.e. traverses on an arc (i, ), in the same time period it loads or
unloads. Constraints (6) limit the number of waiting days outside port i for ship v.
Furthermore, constraints (7) assure that if a ship calls two consecutive delivery ports,
all cargo tanks must unload at these ports.

Ziwne € {0, 1}, Vie N'Pwe W, veV,teT, (8)
wive €10, 1}, Vie NP veViteT, )
Xijw €1{0,1}, Vi, j)eA,veVteT. (10)

Finally, the formulation involves binary requirements (8)-(10).

A possible route through the network is illustrated in Fig. 4. The ship starts from
its origin node in time period 1. The ship is either at sea and spends one time pe-
riod to reach pick-up port i or it waits outside port i in this time period. After the
arrival at port i in time period 2 the ship loads its cargo tanks in this time period,
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before it sails to delivery port j. The sailing time between i and j is three time peri-
ods. When the ship has unloaded some of its cargo tanks in port j in time period 6,
the ship starts sailing towards delivery port k in time period 7. Here, the ship unloads
the rest of the cargo tanks and starts sailing towards port i. The ship arrives port i in
time period 14, but waits one day outside the port, before the ship loads all its cargo
tanks and sails towards the destination node.

Destination @

Port &

Portj Xeivr1= 1

Port i

Xogivi= 1

Origin
| . . . . . . . .
T T T T T T T T T T T T T T

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15¢

Fig. 4. Illustration of a possible route through the network for ship v

3.2 Ship Inventory Management

In order to describe the ship inventory management part of the LNG-IRP, we need
the following additional notation.

The capacity of cargo tank w on ship v is given by L,,. There is no loading
or unloading at the origin node o(v), but all cargo tanks have an initial load at the
beginning of the planning horizon, L?,. Furthermore, the parameter I;, equals —1 if
port i is a pick-up port, and 1 if the port is an delivery port. The boil-off parameter
B!, states the amount of cargo evaporating in each time period. A duty is a journey
which starts when a ship either loads all its cargo tanks in a pick-up port or leaves the
origin node, and the duty ends immediately before the ship starts loading at the next
call at a pick-up port or when the ship reaches the destination node. We can for ship
v calculate upper and lower bounds on the total sailing time including waiting for the
duties with visiting delivery port i. These upper and lower bounds are denoted Tilv) MN
and TPMX respectively.

The load in cargo tank w at ship v at the end of time period ¢ is measured by the
continuous variable ,,,,, w € W,,v € V,t € 7. Note the initial condition /,,,o = Lfv’v.
Finally, the continuous variable g, i € Nf D ywe W, veV,teT measures the
amount of cargo loaded into or unloaded from cargo tank w at ship v in time period .
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t—1

= Lywt + buv-1) + B, Z Ziwne + Z Z Xid(vyvr

ieNFP ieN, =1

= > I = B, Ywe Wyve Ve T, (1)
ieNPP
W = > 2 = 0, Vie NP veV,ieT, (12)
weW,
Giwvt — LyvZiwwe = 0, Vie Nf,W eW,,veV,teT, (13)
Uive = Ziw = 0, Vie NP we W, ,veV,teT, (14)
i = Yz <0, VieNPveV,ieT, (15)
weW,

it = (Luw = BE, TR ) 2y 20, Vie NP.we W,,veV,ieT,  (16)
Giwwe = (Luw = BE, TR ) 2o <0, Vie NPwe W,,veV,ieT, (17
0 < Ly < Ly, Vwe W, veV,teT. (18)

The inventory balance on the ships are handled by constraints (11), which cal-
culate the volume of LNG in each cargo tank on each ship in every time period.
The amount of LNG in a cargo tank on a ship decreases at sea at an amount BY in
each time period, although there is no boil-off from a cargo tank that is being loaded
or unloaded. In addition, there is no boil-off from the cargo tanks on a ship at the
destination node. An illustration on how the variables and parameters affect the ship
inventory is given in Fig. 5. Constraints (12)-(13) ensure that all cargo tanks are fully
loaded at pick-up ports, when a loading starts. On the other hand, constraints (14)-
(15) ensure that if a ship is unloading at least one cargo tank is unloaded, and vice
versa. Moreover, constraints (16) give lower limits to the amount of LNG unloaded
at the delivery ports, where the amount of cargo not delivered must be less or equal to
the accumulated boil-off during the longest possible trip between two pick-up ports.
The boil-off rate is usually a small percentage. Hence, constraints (16) allow only
one unloading of a cargo tank before it is reloaded. Furthermore, constraints (16) in
combination with constraints (7) limit the ships to sail to maximum two consecu-
tive delivery ports. The upper limits on the unloading volumes at the delivery ports
are given by (17). Finally, bounds on the ship inventory variable are described in
constraints (18).

If a ship ends its route in an delivery port, the cargo tanks that have been un-
loaded should have sufficient LNG left aboard to reach a pick-up port. This amount
is represented by the parameter LE . The constraints required for handling the end

conditions for the delivery ports are as follows:

Xid(vyvtZiwvt (lwvt - Lfv) = 03 Vie NVD, w e (Wv, S (V, te Tv (19)
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CI iwvt

l wy(t-1)

Fig. 5. Inventory balance for the ships

+TV £
2 Xidowr 20 Xjiv(=Ty) (lwvz - va) =0,
7=t JENP

Vie NP weW,,veV,teT. (20

Constraints (19) ensure that if there is an unloading immediately before the des-
tination node, the cargo left in these cargo tanks at the unloading node should equal
the parameter LE . Constraints (20) have similar purpose when a ship calls two con-
secutive delivery ports before the destination node. If a ship calls two consecutive
delivery ports, all cargo tanks must have been unloaded when leaving the second
delivery port. Thus, there is no need for including z; Or Zjy,, in constraints (20).

Linearization of Constraints

Constraints (19)-(20) are nonlinear when we relax the binary requirements of the
variables. In this section we linearize those constraints.

Luwe = L Xiaeye > 0, VieNPweW,veV,teT, (1)
lwvt + va (xid(v)vt + Ziwvt) < 2va + L{iw Yie NVD» weE (Wv’ AS (V»t €T. (22)

Constraints (21) assure that all ships should have at least LE, of LNG aboard
each cargo tank when they reach the destination node. Furthermore, constraints (22)
are bounding when XizuyveZivwe = 1. When XigoyiZiwve = 1, i.e. when a ship unloads
a cargo tank before sailing to the destination node, constraints (22) limits the cargo
aboard that cargo tank to be less or equal than L,,,. Hence, constraints (21)-(22), can
be regarded as linearized reformulations of constraints (19).

+TV

E
bo(i4Tug) F Low | 2 Xiawwe + X Xjivr | < 2L + Ly,
id vy ) v
- J! v

Vie NP weW,veV,teT. (23)
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When a ship unloads at two consecutive delivery ports before sailing to the des-
tination node, there should be exact Lﬁv of LNG left in the cargo tanks. Constraints
(23) are bounding when a ship calls consecutive delivery ports before sailing to the
destination node. Then, the cargo left in each cargo tank should be equal or less
than LEV. Hence, we can use constraints (23) in combination with constraints (21) to
linearize constraints (20).

3.3 Port Operations and Inventory Management

Here, the constraints handling both the port operations and the inventory manage-
ment at the ports are presented. We need to introduce the following additional pa-
rameters and variables:

The daily production and sales of LNG at the ports have to be within a given
interval [YU, Yi,] , which can change from one time period to another. Furthermore,

the inventory levels at the ports should be within the upper and lower limits [S S i].
The maximum number of ships at a port in a time period is given by the parameter
NCAP,

The sales and production of LNG are given by the continuous variable y;, i € N,
t € 7, while the continuous variable s;, i € N, t € 7 represents the inventory level
at the liquefaction plants and regasification terminals in the different time periods.
Note that sy represents the initial inventory.

Sit = Si(i—1) — Z Z Liqiwe + Liyi = 0, Vie N,teT, (24)
veVweW,

D i < NEW, VieN.teT, (25

veV

S, < si<Si, VieN,teT,  (26)

Y, <yi<Yy Vie N,teT. 27)

The port inventory balances are given by constraints (24), and are further illus-
trated in Fig. 6. Constraints (25) ensure that the port capacity in the number of ships
in each time period is not exceeded. The upper and lower bounds for the variables
are given in constraints (26)-(27).

G iwvt Vit

Sit-1)

Regasification terminal Liquefaction terminal

Fig. 6. Inventory balance at regasification and liquefaction terminals
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3.4 Objective Function

Finally, we can present the objective function for the arc-flow LNG-IRP formulation.
We need to introduce the following revenue and cost parameters.

The parameter RE'V;, represents the unit revenue in each time period for selling
LNG to the customers at the delivery ports, while COS T, is the unit cost from pro-
ducing LNG at the pick-up ports. Finally, C;j, is the transportation cost, i.e. the cost
of traversing arc (i, j) for ship v. The transportation cost parameter is a compound
cost parameter, consisting of daily operating costs for ship v, port fees at port 7, and
any canal fees.

max Z ZRE Vieyir — Z ZCOS Tiryir — Z chz‘jvxijvz (28)

ieNDteT ieNPteT (i, ))eAVeVIET

The objective function (28) maximizes total profit of selling LNG to end-
customers while minimizing the costs of production and transportation.

4 Path-Flow Formulation

In the arc-flow formulation, the routes including arrivals times and load quantities are
constructed based on the values on the variables, while these routes are enumerated
a priori and feed into the path-flow formulation. The model is presented in Sect. 4.1,
while the algorithm for enumerating the paths is described in Sect.4.2.

4.1 The Model

In the path-flow formulation of the LNG-IRP, a route r € R, contains the geograph-
ical route and the schedule with information about the arrival times for all port calls
for ship v in the planning horizon. In addition, the route contains information about
the quantities loaded and unloaded at the liquefaction plants and regasification ter-
minals, respectively.

The parameter Z;,, equals 1 if ship v calls port i in time period ¢ on route r and
0 otherwise, while the corresponding (un)loading volume is given by the parameter
QOivir- The cost of sailing route r for ship v is given by the parameter C,,. The cost
parameters are composed of ship operation cost, port fees, and canal fees.

The binary variable A,,, v € V, r € R, is the ship route variable, and equals 1 if
ship v chooses to sail route r, and 0 otherwise.

Then, the path-flow formulation of the LNG-IRP can be modeled as follows:

max > > REViyi= Y > COSTyyi= ) > Cuur, (29)

ieND €T ieNP teT” veV reR,

subject to
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i =ity = Y, D TiQuirdur + Iyis = 0, VieNteT,  (30)
veV reR,

D2 Ziwdir < NEAP, VieN,teT, (31
veV reR,

S, <su<Si Vie N,teT, (32)
Y, <vi <Y, Vie N,teT, (33)
Z Ay =1, YveV, (34)
reR,

Ay €10, 1}, YveV,reR,. (35)

The objective function (29) maximizes the profit from the LNG activities. The
inventory balances are given in constraints (30), while the port capacity constraints
are given by (31). The bounds in constraints (32)-(33) are identical to constraints
(26)-(27). Constraints (34) are the convexity constraints, limiting the ships to sail
exactly one route. Finally, the formulation involves binary requirements (35) on the
ship route variables A,,.

4.2 Path Enumeration Algorithm

Here, we present an algorithm for complete enumeration of all possible paths, called
routes, for the path-flow LNG-IRP formulation. By use of a recursive algorithm we
can identify all possible routes with information regarding the geographical route,
the arrival times and the number of cargo tanks loaded and unloaded at all ports.
When a route has been found, the algorithm must identify all the duties within the
routes. These duties are in fact distinct subpaths in the route. The algorithm must
calculate the aggregated boil-off from each cargo tank during the duties in order
to calculate the exact amount of cargo unloaded at the delivery ports. This can be
expressed mathematically if we introduce some new notation. Let 4,,, indexed by d,
denote the set of duties for ship v on route r. The aggregated boil-off in cargo tank w
on ship v on duty d on route r is given by B5 ‘;‘r 4 Furthermore, X; 4 = 1 if arc (i, j)
is traversed by ship v starting in time period 7 on duty d on route r, and 0 otherwise.
4 = 1if ship v loads or unloads cargo tank w in time period ¢ on duty

Moreover, Z%
iwvtrd .
d on route r, and 0 otherwise.
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Bwvrd Bwv Z ZXUV"dTl./V Z Z iwvtrd |

(DT iENPP1eT
YweW,,veV,reR,ded,, »
Z Z lwwrdLWv»VZEN veV.ieT.reR,
weW,ded,,
Qivir = Z Zzﬁvvtrd (va - erd) Vi e ND veV.iieT.reR,. (37)
weW,ded,,
Zivir 2 Ziyya Vi € Nysw e Wy, v e Vit € T r e Ry d € 4, (38)

With equations (36)—(38) we can calculate the input from the path enumera-
tion algorithm to the path-flow model. In equations (36) we calculate the aggregated
boil-off during a duty. The aggregated boil-off is used as input when calculating the
amount of cargo loaded and unloaded at the ports in equations (37). Finally, equa-
tions (38) gives the relation between the cargo tank (un)loading parameter on a duty
and the ship call parameter.

Destination
Port k
ij 1 Xidpyvis= 1

Port Xkivi1=
Xijp2= 1

Port i

Xogvivi= 1
Origin @
I i I t I I I t

8 9 » 5 14 157

v D]D]liii]i]i]i]i]ﬂ] [I][I]I

Fig. 7. lllustration of a possible route through the network for ship v and the corresponding
cargo tank levels

Figure 7 illustrates a possible route through the network for a ship with two cargo
tanks. The ship loads both its cargo tanks in time period 2. Then it unloads one cargo
tank in time period 6 and the other one in time period 11. Some LNG is left in the
cargo tanks for the boil-off after the tanks have been unloaded. This boil-off keeps
the cargo tanks cool and is also used as fuel until the cargo tanks are reloaded in time
period 15.

The pseudocode for the path enumeration algorithm is described in Algorithm 1
and Algorithm 2. Here, Algorithm 1 initializes the path enumeration algorithm, while
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the recursive part of the algorithm which searches for all paths is given in Algorithm
2. To illustrate how the algorithm works we use the example from Fig. 7. The path
enumeration algorithm will first identify the complete route, then it will identify the
three duties in the network. The first duty starts in the origin node and ends in port i
in time period 2. The second one starts in time period 2 when the ship leaves port i,
and ends in time period 15 when the ship once again will leave port i. Note that the
waiting day outside port i in time period 14 is considered belonging to the second
duty. Finally, the third duty both starts and ends in time period 15, as it covers the
sailing from port 7 to the destination node d(v).

Algorithm 1 initializePath

for all v € V do
r = 0, the route numbering starts from O for each ship
NHST = (@, the list of nodes in the route
call createPath(r, o(v), NHS T)

end for

Algorithm 2 createPath(r, i, NINLIS T)
NUST = NINLIST (§ (i)
for all j|(i, j) € A, do
if j # d(v) then
call createPath(r, J, NH ST)
else
NHST = NLIST | ( j)
Identify all duties in N*/57 and create the set 4,, and the tables X;juya, Zir, and Z;
Calculate the boil-off, Bf4 | in each duty with equations (36)
Calculate the quantity loaded or unloaded, Q;,,, with equations (37)
r=r+1
end if
end for

For instance, if the cargo tanks have a capacity of 75,000 m® each and the boil-
off is 115 m?, we can calculate the aggregated boil-off and the amount of cargo
unloaded at the ports. The aggregated boil-off for cargo tank 1 on the second duty is
then calculated based on a 13 time period long duty, less one time period for loading
and one for unloading: Bi4, = 115(13 —2) = 1 265 m?>. Note that the loading in
time period 15 belongs to the third duty. Then, if cargo tank 1 is unloaded at port j
in time period 6, 73,735 m?> will be unloaded there. Since the two cargo tanks are

identical, the second tank will unload 73,735 m? at port k in time period 11.
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5 Computational Results

The purpose of the computational study is to evaluate the two proposed model for-
mulations of the LNG-IRP, the arc-flow formulation presented in (1)—(28), and the
path-flow formulation presented in (29)—(35). The models have been solved by use
of XPRESS Optimizer v 17.1 on a computer with a 3 GHz processor and § GB RAM
running on Rock Cluster v 4.2.1 operating system. Furthermore, the path enumera-
tion algorithm presented in Sect. 4.2 has been programmed in C++ and solved on the
same architecture.

We have created 21 instances motivated by the real planning problem faced by
Suez Energy International. An overview of these instances is presented in Table 1. In
this table the number of ships, cargo tanks, ports, and time periods are given for each
instance. The number of pick-up and delivery ports are given in parenthesis behind
the total number of ports. The number of ships ranges from 1 to 5 depending on
the instance, while the number of ports is between 3 and 6. Keep in mind that each
port may have ship calls several times during the planning period. Furthermore, the
instances have 30, 45, or 60 time periods. To be able to test how the time horizon
affect the solution time, some instances share most characteristics, but have different
number of time periods. For instance, instance 1-3 have the same physical network
and similar upper and lower bounds on production and sales, and 30, 45, and 60
time periods, respectively. The other instances can also be grouped similarly (4-6,
7-9,...).

The number of rows and columns for the instances for both formulations are
presented in Table 2. Note that the number of integer columns for the path-flow
formulation is the number of routes for the ships. This number gives some indication
of the complexity of the problems, and how the instances escalate with the number
of time periods. As we can see from the table, the path-flow formulation scales very
poorly with respect to the number of time periods. Furthermore, for instances #9 and
#15 we were not able to enumerate all routes as the optimizer ran out of memory
during the enumeration process. For the other instances the number of routes spans
from 426 for instance #10 to more than 1.5 million for instance #21.

In Table 3 the solution times for each instance are reported. For both formula-
tions, the table reports the time to solve the linear relaxation, first integer solution,
best integer solution, and the total solution time. All these solution times are mea-
sured starting from the moment the optimizer starts solving the problem, after the
complete matrix has been fed into the solver. Maximum running time for the in-
stances is 10 h. Thus, if the search is not completed within the time limit, the search
is interrupted. In addition, the table reports the time needed for the path enumeration
algorithm to enumerate all routes and feed them into the solver for the path-flow
formulation.

The LNG-IRP is hard to solve. In general, both formulations solve the minor in-
stances efficiently, while both formulations have problems with solving the instances
with longer planning horizon to optimality. The path-flow formulation is the most
efficient formulation with respect to total solution time for 7 of the instances, while
the arc-flow performs better for 7 when we disregard 2 instances where we only have
test results from the arc-flow formulation. The path-flow formulation suffers from its
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Table 1. Instance overview

# Ships Tanks Ports (P,D) Time Periods

11 2 413) 30
2 1 2 413) 45
3001 2 4(13) 60
4 2 2 312 30
5 2 2 312 45
6 2 2 312 60
72 2 4022 30
8 2 2 422 45
9 2 2 422 60
10 2 1 5(2,3) 30
12 1 523 45
12 2 1 5(2,3) 60
13 2 2 523) 30
14 2 2 523) 45
15 2 2 523 60
16 3 1 422 30
17 3 1 422 45
18 3 1 422 60
19 5 1 6(3,3) 30
20 5 1 633) 45
21 5 1 6(3,3) 60

poor scaling capacity, which leads to large solution time even for the LP relaxation.
For instance, solving the LP relaxation for instance #3 with the path-flow formula-
tion is almost 2 h, while the corresponding solution time for the arc-flow formulation
is 0's. As a consequence of the long solution time for the path-flow formulation’s LP
relaxation, the time to find the first integer solution is longer than for the arc-flow
formulation for 11 of the instances, and faster for only 3 of the instances.

The solution values and the MIP-gaps are presented in Table 4. The MIP-gap is
defined as [IMIP*-Bound*| /Bound*, where Bound* is the best bound on the solution
from the branch-and-bound procedure and MIP* is the best (mixed) integer solution.
For the instances that were not solved to optimality, the MIP-gaps are in the interval
[2.9%,42.9%]. One of the reasons for the large MIP-gaps is the poor linear relax-
ation for the LNG-IRP. If we define the LP-gap as the percentage deviation between
the best MIP solution and the LP solution, [MIP*-LP*| /LP*, the average LP-gap is
19,4% for both model formulations. This indicates that for some of the instances
where we did not manage to prove the optimal solution, the best integer solution
found might be near optimal or even the optimal solution.
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Table 2. Dimensions of the instances

Arc-flow Path-flow
# Rows Columns Int columns Rows Columns Int columns
1 2,072 1,411 871 243 1,791 1,551
2 3,107 2,116 1,306 363 63,101 62,741
3 4,142 2821 1,741 483 2,534,165 2,533,685
4 2764 2044 1,384 184 1,110 930
5 4,144 3,064 2,074 274 28348 28,078
6 5524 4,084 2,764 364 849,858 849,498
7 3424 2764 1,924 244 9,018 8,778
8 5,134 4144 2,884 364 461,293 460,933
9 6844 5524 3,844 - - -
10 3,544 2,102 1,502 304 728 426
11 5314 3,152 2,252 454 6,883 6,431
12 7,084 4,202 3,002 604 93,325 92,723
13 4564 2702 1,802 304 4,010 3,710
14 6,844 4,052 2,702 452 239 208 238,758
15 9,124 5,402 3,602 - - -
16 3,846 3,036 2,346 245 1,339 1,096
17 5,766 4,551 3,516 365 20,863 20,500
18 7686 6,066 4,686 485 363,802 363,319
19 9,670 7,480 6,070 367 2774 2,414
20 14,500 11,215 9,100 547 65,695 65,155

21 19,330 14,950 12,130 727 1,561,996 1,561,276

Looking at the quality of the first integer solutions found during branch-and-
bound, we can see that for 11 of the instances the optimizer finds better solutions
for the path-flow formulation than for the arc-flow formulation. Also the arc-flow
formulation finds better integer solutions for 6 of the instances when we disregard
instances #9 and #15. The path-flow formulation’s linear relaxations are tighter than
the corresponding linear relaxations for the arc-flow formulation for all instances ex-
cept instances #10 and #13. We would expect that the path-flow formulation would
have best linear relaxation for all instances. However, when solving these instances
without presolve applied, the conclusion alters. With the optimizer’s presolve turned
off, the LP solutions for instances #10 and #13 are 2,433.7 for the arc-flow formula-
tion and 2,403.1 for the path-flow formulation.
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Table 3. Solution times. All measures in sec. LP — linear relaxation, MIP ! - first MIP solution,
MIP* — best MIP solution, Total — total solution time, Enum = time to enumerate the routes

Arc-flow Path-flow
# LP MIP' MIP* Total LP MIP' MIP* Total Enum

1 0 0 1 2 0 0 0 0 0
2 0 6 6 63 5 12 12 27 1
3 0 31 7,548 7,548 7,131 8,992 23,540 36,000 56
4 0 0 2120 0 0 0 1 0
50 3 7,105 36 000 1 6 186 423 0
6 0 6 23,706 36,000 140 378 32,096 36,000 19
7 0 1 1 1 0 0 1 43 0
8 0 1 3 4 27 43 180 1,761 8
9 0 155 454 456 - - - - -
10 0 0 0 0 0 0 0 0 0
11 0 0 3 15 0 4 196 973 0
12 0 7 27 56 15 70 33,605 36,000 2
13 0 0 21 22 0 0 1 5 0
14 0 0 2,693 3,797 67 237 1,162 36,000 4
15 2 63 33,093 36,000 - - - - -
16 0 1 42 55 0 0 13 14 0
17 0 0 225 9,217 0 0 206 13,625 0
18 0 0 335436,000 35 223 35,896 36,000 7
19 0 1 17 172 0 0 3 39 0
20 0 11 7,476 36 000 3 13 3,074 36,000 1
21 1 4112214 36,000 321 8724 20492 36,000 32

6 Concluding Remarks

In this paper we have introduced a new type of optimization problems, the liquefied
natural gas inventory routing problem, LNG-IRP. This problem deals with managing
the supply chain for the liquefied natural gas (LNG) business at a tactical planning
level. Here, one actor controls the supply chain from liquefaction to sales, where
both the production and sales levels are variable and may change from day to day.
Furthermore, ship routing and scheduling of specialized ships (LNG tankers) are im-
portant parts of this supply chain. The problem is more complicated than many other
maritime inventory routing problems, as it deals with variable rates of production
and consumption. Moreover, the ship routing and scheduling are also more compli-
cated, as the ships’ cargo tanks should not run dry at sea, as they have to deal with a
constant rate of boil-off. In addition, the ships load all their cargo tanks at the pick-up
ports, and unload a discrete number of cargo tanks at the delivery ports.
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Table 4. Solution values and MIP-gaps for the instances

Arc-flow Path-flow

# LP MIP' MIP* MIP-gap(%) LP MIP' MIP* MIP-gap
1 1,036.9 807.0 887.0 0.0 1,024.7 887.0 887.0 0.0
2 1,504.8 1314.7 1,314.7 0.0 % 1,470.4 1,314.7 1,314.7 0.0
3 1,940.0 1,354.7 1,533.0 0.0 1,896.6 1,133.8 1,331.5 28.8
4 7827 490.7 681.0 0.0 7609 537.0 681.0 0.0
5 1082.1 507.8 940.8 2.91,044.6 688.5 940.8 0.0
6 1,3753 429211226 15.2 1,326.8 804.2 1,095.3 16.9
7 1,313.6  992.1 1,018.6 0.0 1262.5 905.0 1,018.6 0.0
8 1838.21,142.2 1,492.6 0.0 1,761.3 1,166.2 1,492.6 0.0 %
9 2,346.9 1,243.8 1 784.2 0.0 - - - -
10 2,329.7 2,170.0 2,170.0 0.0 2396.1 2,002.0 2,170.0 0.0
11 3371.3 2,231.9 2,544.8 0.0 3,350.2 1,996.8 2,544.8 0.0
12 3,944.5 2,247.8 2,920.3 0.0 3892.7 2,403.2 2,745.6 26.6
1323945 1,742.5 2,170.0 0.0 2,396.2 2,068.3 2,170.0 0.0
14 3,462.3 1,659.0 2 591.0 0.0 3,352.6 2,259.9 2,591.0 15.2
15 4,421.3 1,997.1 2,882.3 18.8 - - - -
16 1,290.5 867.1 1118.0 0.0 % 1,287.3 1,085.7 1,118.0 0.0
17 1,778.4 1,291.3 1,435.4 0.01771.2 1,291.3 1,435.4 0.0
18 2,244.9 1,243.0 1,579.7 16.6 2,228.2 953.2 1,579.7 27.6
19 1910.9 1,530.8 1,697.6 0.0 1,909.4 1,180.8 1,697.6 0.0
20 2,498.4 947.4 2 032.5 6.0 2,483.1 1,304.0 2,011.3 16.0
21 3,026.6 910.3 2,062.3 25.1 2995.7 1,090.4 1,684.5 429

We have proposed two formulations of the LNG-IRP; an arc-flow and a path-flow
formulation. In the path-flow formulation, a path represents a possible geographical
route and schedule for a ship during the entire planning horizon. In addition, the path
handles the ship inventory management, the boil-off from the cargo tanks, and the
amount of cargo loaded and unloaded at the pick-up and delivery ports. Moreover,
we have presented an algorithm for complete enumeration of the columns in the
path-flow model.

Both model formulations have been tested on instances motivated by a real plan-
ning problem. Both formulations provide good solutions to the test instances pre-
sented, although none of them were able to solve the largest instances to optimum.
From the limited number of instances, it is hard to conclude which formulation is
superior. The path-flow formulation was able to solve more instances faster to op-
timum than the arc-flow formulation, while the arc-flow formulation finds the first
integer solution faster than the path-flow formulation. Furthermore, the path-flow
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formulation suffers from poor scaling capabilities. Hence, the optimizer ran out of
memory when we tried to enumerate the columns for two of the instances.

The LNG-IRP is hard to solve. Thus, none of the proposed formulations where
able to verify the optimal solutions for all instances presented. To be able to solve
these, and even larger instances, more research is required. Solution approaches
based on both exact methods and heuristics may be appropriate for solving larger
instances of the LNG-IRP. Within exact methods, column generation seems like a
particularly interesting alternative since we will be able to work with a subset of the
columns for the problems. Moreover, the LP-gap for the LNG-IRP is poor. Thus,
development of valid inequalities might also be valuable.

Acknowledgments

This work was carried out with financial support from the Research Council of
Norway through the INSUMAR project (Integrated supply chain and maritime trans-
portation planning), the OPTIMAR project (Optimization in Maritime transportation
and logistics) and the DOMinant project (Discrete optimization methods in maritime
and road-based transportation). We would also like to thank Chief Analyst Stephane
Hecq and Senior LNG Analyst Dr. Geert Stremersch from the Suez Corporation for
their involvement in the project.

References

[1] F. Al-Khayyal and S.-J. Hwang. Inventory constrained maritime routing and
scheduling for multi-commodity liquid bulk, part I: Applications and model.
European Journal of Operational Research, 176:106—130, 2007.

[2] BP. BP Statistical Review of World Energy 2007. British Petroleum, 2007.

[3] M. Christiansen. Decomposition of a combined inventory and time constrained
ship routing problem. Transportation Science, 33(1):3-14, 1999.

[4] M. Christiansen, K. Fagerholt, B. Nygreen, and D. Ronen. Maritime trans-
portation. In C. Barnhart and G. Laporte, editors, Transportation, volume 14 of
Handbooks in Operations Research and Management Science, pages 189-284.
Elsevier Science, 2007.

[5] M. Christiansen, K. Fagerholt, and D. Ronen. Ship routing and scheduling,
status and perspectives. Transportation Science, 38(1):1-18, 2004.

[6] Marielle Christiansen and Kjetil Fagerholt. Maritime inventory routing prob-
lems. Encyclopedia of Optimization, 2007. To appear. pp. 16.

[7] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. Solomon, and F. Soumis.
VRP with pickup and delivery. In P. Toth and D. Vigo, editors, The Vehicle
Routing Problem, volume 9 of SIAM Monographs on Discrete Mathematics
and Applications, pages 225-242. SIAM, Philadelphia, PA, 2002.

[8] EIA. The Global Liquefied Natural Gas Market: Status and Outlook. Energy
Information Administration, U.S. Department of Energy, 2003.



218 Roar Grgnhaug and Marielle Christiansen

[9] EIA. International Energy Outlook 2005. Energy Information Administration,
U.S. Department of Energy, 2005.

[10] IEA. Natural Gas Market Review 2007: Security in a globalising market to
2015. International Energy Agency, 2007.

[11] Jan A. Persson and Maud Go6the-Lundgren. Shipment planning at oil refineries
using column generation and valid inequalities. European Journal of Opera-
tional Research, 163(3):631-652, 2005.

[12] David Ronen. Cargo ships routing and scheduling: Survey of models and prob-
lems. European Journal of Operational Research, 12(2):119-126, 1983.

[13] David Ronen. Ship scheduling: The last decade. European Journal of Opera-
tional Research, 71(3):325-333, 1993.



Modeling The Pre-Auction Stage: The Truckload Case

Gianfranco Guastaroba', Renata Mansini?, and M. Grazia Speranza®

! University of Brescia, Department of Quantitative Methods, Italy

guastaro@eco.unibs.it

University of Brescia, Department of Electronics for Automation, Italy
rmansini@ing.unibs.it

University of Brescia, Department of Quantitative Methods, Italy

speranza@eco.unibs.it

Summary. In transportation service procurement, shipper and carriers cost functions for serv-
ing a pair of origin-destination points, usually called lanes, are highly dependent on the op-
portunity to serve neighboring lanes. Traditional single-item auctions do not allow to capture
this type of preferences. On the contrary, they are perfectly modeled in combinatorial auctions
where bids on bundles of items are allowed. In transportation service procurement the man-
agement of a combinatorial auction can be seen as a three-stage process. Each stage involves
several complex decision making problems. All such problems have relevant practical impli-
cations but only some of them have received attention in the literature. In the present paper we
focus on the pre-auction stage for transportation procurement. In particular, we analyze the
problem of a shipper who has to decide between undertaking and/or outsourcing (through an
auction) his transportation requests. The problem has never been analyzed before. We propose
two different models for the problem in the truckload case and provide their computational

comparison on randomly generated instances.

Key words: Electronic auctions, Truckload problem, Shipper’s lane selection prob-
lem, Arc routing problems

1 Introduction

The worldwide use of the Internet has deeply modified the way commercial agree-
ments in logistics are stipulated (see Cranic and Speranza [7]). As in traditional
marketplaces, every agent that approaches an e-marketplace has to solve different
complex problems, either in case one has to buy or to sell an item. Making the most
profitable pricing decision is one of them (see Elmaghraby and Keskinocak [15]).
A widely used price mechanism is the auction. Several auction protocols are known

L. Bertazzi et al. (eds.), Innovations in Distribution Logistics, Lecture Notes 219
in Economics and Mathematical Systems 619, DOI: 10.1007/978-3-540-92944-4,
© 2009 Springer-Verlag Berlin Heidelberg



220 Gianfranco Guastaroba, Renata Mansini, and M. Grazia Speranza

in the literature and used by the practitioners. Between them, the most suitable for
the procurement of goods and services is the reverse auction, in which a buyer de-
mands either a Request for Quotation (RFQ) or a Request for Proposal (RFP) for
the item/s needed. The price is then determined by a competition between potential
sellers. Electronic auctions, conducted over the Internet, have several benefits com-
pared to the traditional ones such as lower transaction and participation costs and
the access to possibly larger markets (see [26]). Despite most of the auctions in-
volve the sale of multiple distinct items, research in auction theory has traditionally
focused on single item auctions assuming that bidders have no preferences for sets
of items. On the contrary, bidders often show preferences for bundles of items ex-
pressed either as complementary or substitution effects (see de Vries and Vohra [10]).
Running single-item auctions for multiple distinct items, for example in parallel or
in sequence, results in inefficient allocations when bidders show complementarity or
substitution preferences (see, the well-known “exposure problem” in DeMartini et al.
[11]). To correctly model such preferences on items researchers have proposed the
use of combinatorial auctions, where bidders are allowed to bid on any combination
of the items auctioned off.

In different contexts, the potential benefits deriving from the use of combinatorial
auctions are enormous. In the present paper, we consider the context of transporta-
tion procurement, so that the items auctioned off are transportation services. In this
domain, buyer is a manufacturer, a distributor, a retailer and any other company that
needs to move goods, while potential sellers are all the trucking companies. From
now on, we will refer to the buyer as the shipper and to the sellers as the carriers.
For sake of simplicity, we assume that the shipper is the auctioneer, while the carriers
act as bidders of the procurement auction. Items being auctioned off are distinguish-
able pairs of origin-destination points, usually called lanes, to which the shipper
associates the number of loads that have to be moved during the temporal horizon
considered in the proposed agreement. Jara-Diaz [21] defines a lane as a one-way
movement from an origin to a destination with the associated set of shipments for
the period considered by the RFP.

E-procurement of transportation services is a typical application domain where
agents participating to the procurement auction show complementarity or substitu-
tion preferences on service contracts (see Caplice [3]) and have to solve a complex
decision problem. In fact, a carrier’s convenience to serve a lane depends not only
on the number of loads the carrier hauls on that lane (economies of scale), but also
on the number of loads he might carry on other neighboring lanes (economies of
scope) (see Sheffi [36]). An important factor contributing to a carrier’s transportation
costs is indeed the deadheading cost (also called repositioning cost) which can be
defined as the cost incurred when moving an empty truck from its current position
to the origin of a new lane (see Caplice and Sheffi [4] and Ergun et al. [17]). Thus,
one of the main problems faced by a carrier is to find the right bid (the right bundles
of lanes) and the corresponding price to submit as an auction bid. On the other side of
the auction, there are shipper’s decision problems. A shipper that manages a fleet of
vehicles may get substantial benefits from running an auction, in the case the fleet
is not sufficient to fulfill all the required transportation services and the shipper has
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to outsource some of them, or in case the available fleet is sizable, but the auction
might provide carriers able to achieve the same requests at a significant lower cost.
We identify the problem faced by the shipper in deciding which lanes he can per-
sonally serve and which ones he has to outsource as the Shipper’s Lane Selection
Problem (SLSP).

Several other complex problems can be encountered in the design and imple-
mentation of a combinatorial auction (see Abrache et al. [1] and Peke¢ and Rothkopf
[31]). Selecting the most suitable auction protocol (see Klemperer [23]), deciding
the type of the auction (see Parkes [30] for a theoretical justification of the use of
multi-round combinatorial auctions when bidders have hard valuation problems) and
its bidding language (see Abrache et al.[1], Nisan [28] and [29], Sandholm [35] and
Caplice and Sheffi [5] where the authors report the traditional practice in truckload
transportation), managing uncertainty in shipper-carriers relationship and determin-
ing the winners of the auction (see again the chapter by Caplice and Sheffi [5]) are
only some of the problems that an auctioneer has to solve when setting up a com-
binatorial auction. Several excellent surveys have been published on general combi-
natorial auctions. These include the papers by de Vries and Vohra [10], Peke¢ and
Rothkopf [31], Gavish [19], Kalagnanam and Parkes [22] and the volume edited by
Cramton et al. [8].

The aim of this paper is twofold. We first provide a survey on the use of combina-
torial auctions in transportation service procurement and detect open research areas.
Secondly, we focus our analysis on one new problem, the Shipper’s Lane Selec-
tion Problem, and provide two alternative mathematical formulations for it. Though
such models are easily adaptable for transportation service procurement in general,
we concentrate on the procurement of transportation trucking services since it is
the most relevant among all the transportation modes. Indeed, the Bureau of Trans-
portation Statistics of the U.S. Department of Transportation (BTS [2]) reports that
in 2002 trucks moved more than $6.2 trillion and 7.8 billion tons of manufactured
goods and raw materials. This is about 74.3% of the value shipped and 67.2% of
the weight carried. In particular, we analyze the transportation services procurement
assuming the shipper is requiring truckload transportation (TL) services.

The following sections of the paper are organized as follows. In Sect.2 we an-
alyze the stages composing the organization of a combinatorial auction process and
describe the main decision making problems encountered in each phase. In partic-
ular, when analyzing the pre-auction stage, the Shipper’s Lane Selection Problem
(SLSP) is introduced. In Sect. 3 the two mixed-integer linear programming formula-
tions to model the SLSP for the truckload case are provided. Section 4 is devoted to
an experimental comparison of the two models on random instances, while in Sect. 5
conclusions and future developments are drawn.

2 The Outline of an Auction Process

An auction process typically consists of several steps involving different actors and
requiring the solution of different problems. Plummer [32] gives a description of the
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bidding process from the carrier’s perspective. The process starts with carriers re-
sponding to Requests for Quotation (RFQ) or Requests for Proposal (RFP) moved
for by the shipper. Usually a carrier decides on which RFQ (or RFP) to bid by con-
sidering his fleet size and the current commitments in his network. In Caplice and
Sheffi [5] the authors describe the complete combinatorial auction framework from
a more general point of view. They identify three main stages that form an auction
process:

e Pre-auction stage: the shipper estimates his transportation service requests for
the upcoming period. He then determines the carriers to be invited to the auc-
tion through a screening selection and decides what information carriers have to
return back, the type of the service rate (e.g. flat rate per move, rate per mile),
the service details (e.g. days of transit, capacity available) and the type of bid al-
lowed (e.g. simple bids, combinatorial bids and possible constraints on allowed
combinations).

e Auction stage: the shipper communicates the freight network to the carriers. Car-
riers conduct their own analysis and determine their bidding strategy. Every bid
consists in a bundle of lanes and in the rate (the price) the carrier asks to serve it.
Then, carriers submit their bids.

e Post-auction stage: the shipper receives bids and has to determine the winners of
the auction. Once the winners have been determined, the shipper communicates
to the participants the winning bids.

Each one of the described stages involves a complex decision problem in which
operational research methods can represent valuable tools for decision makers. While
the third stage is the most studied in the literature, very few contributions exist for
the carriers’ bidding problem in the second stage and no attention at all has been
reserved to the pre-auction stage.

Many efforts have been made in analyzing the post-auction stage in the trans-
portation field. The first reported use of management science tools to determine the
winners of an auction can be found in Moore et al. [27]. The authors describe how
the optimization and simulation tools, developed in 1988 at Reynolds Metals Com-
pany to centralize interstate truckload freight operations, have resulted in improving
on-time delivery of shipments and in a decrease of the annual freight costs by over
$7 million. The authors introduce a mixed integer programming model that glob-
ally minimizes transportation costs subject to several operational constraints such as
upper bounds on the number of carriers to be selected and individual carriers’ ca-
pacity constraints. Their model allows simple bids with volume constraints and does
not allow combinatorial bids. Moreover, due to the limited computational capabili-
ties available, the model was not fully implemented in practice. Ledyard et al. [25]
describe the iterative combinatorial auction implemented by Sear Logistics Services
(SLS) in 1993. The authors report that SLS has been the first procurer of trucking ser-
vices that used a combinatorial auction to reduce its costs, saving about a 13% over
past procurement practices. Elmaghraby and Keskinocak [15] discuss the implemen-
tation of the combinatorial auction for procuring transportation services experienced
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by the Home Depot. The company decided to use a single-round combinatorial auc-
tion, eventually allowing for a second round only for a limited number of lanes and
a selected group of carriers. The winner determination problem was solved using an
integer programming based algorithm. They point out that several other companies
use the same optimization tool to procure transportation services, included Walmart
Stores, Compaq Computer Co., Staples Inc., and many others. de Vries and Vohra
[10] mention Logistics.com Inc.’s use of combinatorial auctions to procure trans-
portation services for K-Mart Corporation and Ford Motor Company. Caplice and
Sheffi [4] report how shippers can use optimization-based techniques for transporta-
tion services procurement. While in [5] the same authors discuss three formulations
of the winner determination problem, called “carrier assignment problem”, usually
used in practice for the procurement of truckload transportation services. The first
formulation allows only simple bids with no side constraints, the second one intro-
duces both simple bids and combinatorial bids, and the last one is based on flexible
combinatorial bids. In a typical procurement application, side constraints are often
introduced to ensure additional conditions on a valid assignment are satisfied (see
[9] and [16], see [5] for an illustration of the constraints most commonly used in the
practice of truckload services).

In the auction stage, carriers have to determine their optimal bidding strategy,
analyzing their internal costs structure determined by their own resources and by
their existing commitments. Several researchers have pointed out the computational
difficulties of the bid valuation and construction problem in a combinatorial auction
(e.g., see Parkes [30]). Several practical cases have been described where the use
of optimization tools in selecting bundles of lanes would have been greatly benefi-
cial to carriers. See, for example, the difficulties in forming bundles experienced by
bidders in the Sears Logistics Services TL combinatorial auction [25]. Caplice [3]
introduces some heuristic algorithms that carriers can use to create open loop tours,
closed loop tours, inbound-outbound reload packages, and short haul packages using
potential savings estimates based on historical load volumes. In a simulation based
study, Regan and Song [33] show that the use of combinatorial auctions is beneficial
for carriers compared to traditional single-item auctions in terms of revenue. Regan
and Song [34] propose a linear model in which the objective function to be mini-
mized is the total empty movement costs subject to constraints that impose all loads
for every commitment, new or pre-existing, have to be satisfied. Then, the authors
suggest approximation methods to construct carrier’s optimal or near optimal bids
with and without pre-existing commitments. Kwon et al. [24] propose a quadratic
integer programming model for the carrier’s bid generation problem in which carri-
ers employ vehicle routing-type models to identify packages of lanes based on the
actual routes that a fleet of trucks will follow in practice. Some researchers have ana-
lyzed the use of advisors applied to electronic freight marketplaces (see [6] and [18]).
In this context, advisors are software agents that assist carriers in making “profitable”
bidding decisions, by processing the information available in the market, and realize
its integration into the dynamic planning of transportation operations (see [1]).

Finally, the stage that has received less attention in the literature is the pre-auction
stage. In such stage the shipper has to determine for which lanes it may be convenient
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to auction off the transportation service. If the shipper has a fleet of vehicles able to
serve all his transportation requests, he might be interested to set up an auction to find
out if there exist carriers able to offer the same transportation services at a significant
lower cost. If, on the contrary, the fleet available is not enough to fulfill all the needs,
the shipper has to determine which lanes to serve with his own fleet and which ones to
outsource by an auction in order to serve all transportation requests at the minimum
cost. We identify such problem as the Shipper’s Lane Selection Problem. To the best
of our knowledge, this problem has never been analyzed in the literature up to now.
In the following section we provide two alternative mathematical formulations for
this problem in the truckload case.

3 Modeling the Shipper’s Lane Selection Problem: The
Truckload Case

Let us consider a shipper who has a set of transportation requests (lanes) to be sat-
isfied. Each lane consists in carrying a load from an origin straight to its destination
(truckload (TL) case). For sake of simplicity, we suppose that every request has to
be fulfilled only once in the life span of the agreement between the shipper and his
customer. We assume that traveling costs are expressed as distances between two
nodes and that satisfy the triangle inequality. We also assume that the shipper has a
vehicle which can be used for the service. We assume, for sake of simplicity, that
every carrier is allowed to submit bids only for single requests. Moreover, the ship-
per is able to estimate, for example by inferring from historical data, the bid price
that carriers potentially participating to the auction will submit on each lane. Finally,
implementing and running an electronic auction involves a fixed cost, no matter the
number of carriers participating. The shipper main problem is to decide which lanes
to serve directly and which ones to outsource by means of an auction. The objective
is to optimize the trade-off between the travel costs of a direct service and the cost
of paying carriers for the service plus the possible set-up cost of the auction. Let us
formalize the problem.

Let L be a set of lanes, i.e. a set of transportation requests each one identified
by an origin and a destination. Given a complete bi-directed graph G = (V, A) with
node set V (including the depot), arc set A and lane set L C A, the problem looks
for a directed cycle starting and ending at the depot covering a subset of lanes while
minimizing the direct traveling costs plus the sum of costs incurred by the shipper
to auction off the lanes not served by his own vehicle, i.e. the sum of the estimated
costs paid to the bidders for the requests auctioned off plus a fixed cost incurred for
running the auction.

Let us define as ¢;; the travel cost from node i to node j, (i, j) € A, and as ¢;; the
estimated cheapest price asked by a potential carrier for serving the lane (i, j) € L.
Finally, define as K the fixed cost incurred by the shipper when implementing and
running the auction.

A feasible solution for the Shipper’s Lane Selection Problem is defined by a
simple directed cycle starting and ending at the depot, covering a subset of lanes
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L’ C L. Since a same node may serve either as origin or as destination of different
lanes, a feasible solution is always a simple cycle but it may be non elementary.

w @a”

*® 0

Fig. 1. A non elementary optimal cycle

Figure 1 shows an example where the optimal solution for a problem with four
nodes (including the depot) and three lanes (set L = {(1,0),(2,3),(3,2)}) is a non
elementary cycle. The travel costs are all equal to 1, whereas the estimated cheapest
price requested by potential carriers is equal to 1 — €, 0 < € < 1, for each request
and K = 5. The optimal solution for the shipper is to serve all the lanes with his own
vehicle by a non elementary cycle traversing arc (0, 2), then serving lanes (2, 3) and
(3,2) and moving to node 1 to serve lane (1,0), then returning to the depot. The total
cost paid by the shipper is equal to 5. In this solution the selection of both arcs (2, 3)
and (3, 2) forms a subtour (node 2 is visited more than once). In order to allow non
elementary solutions, the mathematical formulation of the problem cannot use the
generalized subtour elimination constraints (e.g. see Toth and Vigo [38]). We have to
formulate constraints that allow subtours but eliminate those of them that are isolated
from the depot.

Figure 2 shows an example where the optimal solution consists of a cycle which
serves only a part of the available lanes while some others are auctioned off. The
graph is the same as that used in Fig. 1 with the same set of lanes and the same
travel costs. The estimated bid prices are the same as those used in the previous
example but for that associated to lane (1, 0) which is set equal to 2 + €. Finally, we
set K = 1. Then, an optimal solution is to traverse arc (0, 1), to fulfill lane (1, 0)
returning to the depot and to auction off the remaining lanes. The solution is shown
in Fig. 2, where the cross-hatched lines represent the lanes auctioned off. The total
cost paid by the shipper is equal to 5 - 2€. The cheapest cost the shipper should pay
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by satisfying all the transportation requests with his own vehicle is equal to 5. The
cost incurred by the shipper auctioning off all the requests would be equal to 5 — €.

Fig. 2. An optimal solution with some lanes auctioned off

3.1 Models Formulation

As the decision maker has to determine a minimum cost cycle traversing an arc subset
of a graph, the SLSP is similar to the problems belonging to the class of Arc Routing
Problems (see the excellent surveys by Eiselt et al. [13, 14] and the book edited by
Dror [12]). Since the objective to be minimized is a function not only of the travel
cost associated to each arc but also of the costs associated to the auction, the SLSP
is rather different from all the problems formerly addressed in the literature.

In the following, we present two integer programming formulations for the SLSP.
The first model is new, whereas the second model derives from a well-known formu-
lation for the capacitated arc routing problem.

Let x;j, (i, j) € A, be a binary variable that takes value 1 if arc (i, j) is traversed
by the shipper’s vehicle, and 0 otherwise. Let /;;, (i, j) € L, be a binary variable that
takes value 1 if lane (i, j) is auctioned off and O otherwise. Finally, let z be a binary
variable that takes value 1 if at least one lane is auctioned off and O otherwise, and
u, S € V\{0},S # 0, be a binary variable which takes value 1 when at least one
node in set S is visited by the optimal solution and O otherwise. M, and M, are large
constant values which can be set equal to |L| and V2, respectively.

A first formulation of the truckload Shipper’s Lane Selection Problem (SLSP1)
can be as follows:

(SLSPl) min Z C,'j)C,'j+ Z ajl,‘j'f'KZ (1)

(i, ))eA (. ))eL

x;2(-1L) G j)eL (2)
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Dby < Miz 3)
(i,j)eL
ZXﬁZ inj ieV “4)
JEVALD} JeVA{i}
D i< Ma® S CVA[OLS #0 )
ieS jeS
DX xjzu® S CV\(0LS #0 (6)
i¢S jeS
x;€{0,1} (G, )€eA (7
lije{0,1} (G, )eL (8)
u$ €{0,1} S CV\{0},S #0 )
z€{0,1}. (10)

The objective function (1) minimizes the estimated total cost incurred by the
shipper to serve all his lanes. The total cost is given by the sum of the transportation
costs incurred by the shipper visiting customers with his own vehicle, plus the sum
of the estimated cheapest prices for the requests auctioned off, plus the fixed cost
paid to set up the auction.

For every request (i, j) € L, constraint (2) forces variable x;; to take value 1 if the
request is not auctioned off, i.e. if /;; = 0. Notice that if /;; = 1 then x;; is free to take
any value. However, the minimization of the objective function forces variable x;; to
take at optimum value 0 as the most convenient of the two. Constraint (3) imposes
that if at least a request is auctioned off, i.e. /;; = 1 for some (7, j) € L, then the
binary variable z will take value 1. One may notice that if /;; = O for all (i, j) € L
then z is forced by the objective function to take value 0 as the most convenient
of the two. Constraints (4) (in-degree and out-degree constraints) establish that at
optimum the total number of selected arcs entering into node i € V must be equal to
the total number of selected arcs leaving it. This ensures that the number of selected
arcs entering into any subset §, S € V\{0},S # 0, is equal to the number of selected
arcs exiting it. The set of constraints (5) along with constraints (6) eliminate isolated
subtours. Indeed, the following implications are true:

Zinj>O = u=1 = Zinjzl.

ieS jes i#S jes

Specifically, for each subset S C V\{0}, constraint (5) forces binary variable u° to
take value 1 if, at optimum, at least one arc between two nodes in S is selected. For
each subset § € V\{0} constraint (6) imposes that, at optimum, the number of arcs
entering into S must be at least equal to the value taken by variable . This imposes
that if at least one arc is selected between two nodes in S, i.e. #5 = 1, then at least one
arc starting from a node not in § must enter into §. Moreover, if }es > jes Xij = 0
then S is free to take any value, and it will take value 0 as the most convenient
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Fig. 3. Violated constraints. Subsets S, S, and S

one, forced by the objective function. Finally, constraints (7) — (10) define binary
conditions.

In Fig. 3 we show how constraints (5) — (6) eliminate isolated subtours referring
to the data of the example shown in Fig. 1. In particular, we show how the solution
represented in Fig.3 violates the constraints. Let us consider all the subsets S C
V\{0} with cardinality equal to 2. We have labeled them as S|, S, and S 3 and plotted
in Fig. 3. One may notice that considering only subsets S ; and S, the constraints are
satisfied since there is no arc selected in the solution between the two nodes in S | and
in S, respectively. Let us consider subset S'3. In the depicted solution x;3 = x3, = 1,
then binary variable «5° is forced to take value 1 by constraint (5). By constraint (6) at
least one arc must enter into subset S 5. Then, the current solution violates constraint
(6). Finally, notice that all subsets with cardinality 1, and the unique subset with
cardinality 3, do not violate any constraint.

Model (SLSP1) requires V| * (|V|—1) binary variables x;;, |L| binary variables /;;,
2VI-1_1 binary variables u% and the binary variable z. The total number of constraints
is equal to |L| + (2! = 2) + |V| + 1. Thus, even for the smallest instances, the number
of variables and the number of constraints are very large and grow exponentially in
the number of vertices.

An alternative mathematical formulation for the SLSP can be derived from the
formulation of the Capacitated Arc Routing Problem (CARP) (see Golden and Wong
[20]). The new mathematical formulation (SLSP2) is as follows:

(SLSP2) (1)

Dk <ISI- 1+ Mou® S CVA(0),S #0 (11)
ieS jeS

(2) = (4) and (7)—(10)
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D) = l-w' S CV\(0LS #0 (12)
ieS j¢S
wWHwS <1 S CV\0LS 0 (13)
w® e{0,1} S CV\{0L,S #0. (14

With respect to the (SLSP1) formulation, the model makes use of a new set of
binary variables wS. The meaning of all the other variables is the same as in the
previous formulation.

Constraints (13) ensure that, at optimum and for every node subset S, only one
of the two binary variables x5 and w® can take value 1. Hence, if the number of arcs
between nodes in a subset S is strictly greater than |S| — 1, then the variable u® is
forced to take value 1 by constraint (11). If variable «° takes value 1, then constraint
(13) forces variable w* to take value 0. Finally, from constraint (12), the number of
arcs leaving set S must be greater than 1.

This model requires 2/V'=! — 1 additional binary variables w® and has 2/VI=! — 1
more constraints.

4 Experimental Analysis

In this section we compare the computational times required by the two models to
optimally solve a set of random instances. The models have been solved with CPLEX
10.1. Experiments have been run on a PC with 2,992 Mhz Intel Pentium III processor
and 2 Gb of RAM.

The benchmark problems have been generated starting from Solomon’s instances
for the VRPTW (see [37]). In detail, we have considered the first 15 customer co-
ordinates of 5 random instances (R102, R104, R106, R108, and R110). We have
changed the position of the depot assuming it is located at the origin of the axes.
The latter choice has been motivated by the fact that, by maintaining Solomon’s de-
pot coordinates no optimal solution auctioned any lane off. Euclidean distances have
been rounded to the nearest integer. To provide a different level of lanes density, for
each Solomon’s instance considered we have generated three different sets L, each
one characterized by a different number of transportation requests. This means 15
instances altogether. Lanes have been generated randomly, assuming a predefined
average number of lanes for each node, excluding the depot. The first set L is com-
posed by the minimum number of lanes needed to ensure that at least a request is
incident to every node of the graph:

LI =T(VI-1D/2].

The second set of lanes has been generated assuming that the ratio |L|/(|V| - 1)
is equal to 1. One may notice that this means to generate, on average, two lanes
incident to every node. Finally, the third set of lanes has been generated assuming
that the ratio |L|/(|V|—1) is equal to 2. Notice that this means to generate, on average,
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four lanes incident to every node. Given the number of nodes, equal to 14 without
considering the depot, the cardinality of set L is equal to 7, 14 and 28, respectively.

For each lane (i, j) € L the expected cheapest price ¢;; has been uniformly gener-
ated in the interval [a@ * (co; + ¢;j + cjo), (coi + ¢ij + ¢jo)], Where a has been set equal
to 0.2. Finally, the fixed cost K, paid whenever the auction is implemented, has been
set equal to 70.

Table 1 provides the computational times required by the two models when solv-
ing the 15 test instances. The table is organized into five columns. The first column
provides the cardinality of set L, i.e. the number of lanes randomly generated in the
graph. The second column indicates the Solomon’s problem from which the nodes
coordinates have been selected. The third column provides the number of lanes (#)
auctioned off in the optimal solution. Finally the last two columns provide the com-
putational times of the models. Time is expressed in seconds.

One may notice that the SLSP1 formulation, independently of the instance, finds
the optimal solution in about 7/8 mins, whereas the SLSP2 model requires compu-
tational times that are highly correlated with the type of instance. The SLSP2 model
is always faster than the SLSP1 when the average number of lanes incident to every
node of the graph is greater or equal than 1, i.e. for |L| > 14. Conversely, the SLSP1
model is highly faster when the number of requests is minimum (|| = 7) and the op-
timal solution auctions some lanes off. The only exception is represented by instance
R110 where the number of lanes auctioned off is zero.

Table 1. Computational times (in seconds)

|L| Problem # SLSP1 SLSP2

7 R102 2 473.08 155829.37
R104 2 458.48 747.94
R106 2 481.66 24304.41
R108 2 463.35 1555.18
R110 0 451.36 110.39

14 R102 0 449.97 54.78
R104 2 451.52 51.39
R106 3 451.27 69.09
R108 0 447.97 49.30
RI110 0 447.09 53.88

28 R102 6 449.09 52.94
R104 3 453.47 53.16
R106 2 449.32 54.09
R108 5 448.36 50.80
R110 3 453.58 52.63
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5 Conclusions and Future Research

In this paper we have introduced the Shipper’s Lane Selection Problem. We have
proposed two equivalent integer linear programming formulations and compared the
computational times required by the two models to solve a set of randomly generated
instances. Since the problem is new, several interesting issues can be considered
for further developments. From the modeling point of view, to assume a shipper’s
fleet composed by more than one vehicle, to consider the Less-Than-Truckload case
and to allow more than one load per single lane are natural extensions. Moreover,
as the problem cannot be solved in a reasonable amount of time with more than
16 customers, the design of effective and efficient heuristics seems to be a primary
concern.
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Summary. This paper describes classical and advanced ambulance location models devel-
oped over the past 35 years. One of these models, called the Double Standard Model (DSM)
maximizes double demand coverage with a fixed number of ambulances. A dynamic version
of DSM was developed and tested on data from the Island of Montreal. The static version was
successfully applied to data from Montreal, Austria and Wallonia.
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1 Introduction

The design and provision of efficient and cost effective ambulance services is a prob-
lem faced by all major municipal and regional authorities throughout the world. This
is an area in which operations researchers have traditionally had an important im-
pact. Their role is likely to increase in coming years with the development of pow-
erful metaheuristics and their interaction with geographic information systems and
advanced telecommunication technologies. A central problem arising in ambulance
fleet management is to decide where to locate ambulances in order to provide ade-
quate population coverage. Since the early 1970s, there has been a steady evolution
in the models and algorithms proposed for this type of problem. The aim of this paper
is to report on some recent developments in the area of ambulance location.
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Formally, ambulance location models are defined on a graph G = (VU W, A)
where V is the a node set representing aggregated demand points, W is a set of po-
tential ambulance location site, and A = {(7, j) € VX W, i # j} is an arc set. With each
arc (i, j) is associated a travel time #;;. A demand pointi € V is covered by site j € W
if and only if d; < r, where r is a preset coverage standard. Let W; = {j € W : #;; < r}
be the set of location site covering demand point i. Several objectives and constraints
are possible. For example, one could determine the minimum number of ambulances
needed to cover all demand, or maximize the demand covered with a given number
of ambulances. More involved models aimed at covering some demand points sev-
eral times have also been proposed. In addition, dynamic and probabilistic models
have been put forward.

In the Location Set Covering Model (LCSM) (Toregas et al. [23]) the aim is to
minimize the number of ambulances needed to cover all demand points. The model
uses binary variable x; equal to 1 if and only if an ambulance is located at j:

(LSCM) Minimize " x; (1)
JjEW
subject to Z xjz1 (ieV), (2)
JEW;
x;€{0,1} (j € W). 3)

In the Maximum Covering Location Problem (MCLP) (Church and ReVelle [4])
p ambulances are given and the aim is to cover the largest possible demand z(p).
Denote by d; the demand at node i € V and let y; be a binary variable equal to 1 if
and only if i is covered by at least one ambulance:

(MCLP) Maximize z(p) = Z diyi (4)
1%

subject to Z xj2y; (i€V), 5)
JeWi

D, 5i=P (©)
JEW

x; €{0,1} (jeW), (7)

yi €{0,1} (i€ V). (3

In practice, one can repeatedly solve MCLP with increasing values of p and select
a solution offering a good compromise between p and z(p).
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The main drawback of LCSM and MCLP is that once an ambulance has been dis-
patched to a site its coverage becomes lost. To remedy this situation, several classes
of more sophisticated models have been proposed. In the first class, multiple cov-
erage of each demand point is ensured. In the second class, the probability that an
ambulance will be available at any moment is explicitly taken into account. A third
class of models allow for ambulance relocation in real-time. In other words, ambu-
lance location models have evolved from static to probabilistic to dynamic settings.
For recent surveys of ambulance location models, see Marianov and ReVelle [17],
Brotcorne et al. [3], Goldberg [14], and Cordeau et al. [5].

This study focuses on the Double Standard Model (DSM) of Gendreau et al. [10]
which belongs to the first class and has also been extended to handle dynamic ambu-
lance relocation (Gendreau et al. [11]). Applications to Canadian data are provided
by these authors. This model has recently been applied to the Austrian and Belgian
contexts, by Doerner et al. [8] and Thirion [22], respectively.

The remainder of this paper is organized as follows. Section 2 presents an
overview of some advanced ambulance location models, with an emphasis on DSM.
In Sect. 3, we summarize the applications of the DSM to the Canadian, Austrian and
Belgian cases. Conclusions follow in Sect. 4.

2 Advanced Ambulance Location Models

Our review of advanced ambulance location models covers the three classes of ex-
tensions presented in the introduction but, for logical reasons, the probabilistic case
is described immediately after the dynamic case.

2.1 Multi-Coverage Static Models

One of the first extensions of MCLP model has been the use of several vehicle types
and the introduction of the requirement that each demand point should be covered
with one vehicle of each type (Schilling et al. [20]). Daskin and Stern [6] have later
proposed a hierarchical objective to first maximize the demand covered more than
once, and then the demand covered exactly once. Hogan and ReVelle [15] consider
only one vehicle type but have developed two Backup Coverage Problems called
BACOPI1 and BACOP2. In BACOP1 the number p of ambulances is sufficient to
cover the demand at least once, and the objective is to maximize the total demand
covered at least twice. In BACOP?2 the objective is a convex linear combination of
the demand covered once or at least twice.

The Double Standard Model (DSM) of Gendreau et al. [10] works with two
coverage standards r; and r,, with r; < r, as specified by the United States
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Emergency Medical Services Act of 1973. A proportion « of the demand must be
covered within ry, while the entire demand must be covered within r,. In the DSM,
the objective is to maximize the demand covered twice within r; using p ambulances,
at most p; of which are located at j € W, subject to the double coverage constraints.
Let W! = {j € W:t; <r}and W = {j € W : 1;; < rp}. The integer variable
x; denotes the number of ambulances located at j € W and the binary variable y’; is
equal to 1 if and only if the demand at node i € V is covered k times (k = 1 or 2)

within r;. The formulation is then:

(DSM) Maximize Zd,»y% )
5%
subject to Z xj21 (ieV), (10)
jew?
Zdiy}Z(IZdi (11)
i€V i€V
Dixpzyl4t (e, (12)
jew!
Yizy (ieV), (13)
Dixi=p (14)
JEW
xj<p;j (JEW), (15)
v €01} (ieV), (16)
v €{0,1} (ieV), (17)
xj > 0andinteger (je W). (18)

In this model, the objective function computes the demand covered twice within
r1 time units. Constraints (10) mean that all demand is covered within r,. The left-
hand side of (12) represents the number of ambulances covering node i within r;
units, while the right-hand side is equal to 1 if i is covered once within 7, units,
and equal to 2 if it is covered at least twice within r; units. The combination of
constraints (11) and (12) ensures that a proportion @ of the demand is covered within
r1. Constraints (13) state that node i cannot be covered at least twice if it is not
covered at least once.

2.2 Multi-Coverage Static Models

The only known dynamic ambulance relocation model is due to Gendreau et al. [11]).
Their Dynamic Double Standard Model (DDSM) can be used to redeploy am-
bulances in real-time whenever a call is made. In addition to the DSM con-
straints, the DDSM includes the following requirements: 1) vehicles moved in
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successive redeployments cannot always be the same; 2) repeated round trips be-
tween the same two location sites must be avoided; 3) long trips between the initial
and final location sites must be avoided.

The dynamic aspect of the redeployment model is captured by time-dependent
constants M L, equal to the cost of repositioning, at time #, ambulance / from its current
site to site ] € W. This includes the case where site j coincides with the current
location of the ambulance, i.e., M = 0. The constant M’ captures some of the
history of ambulance /. If it has been moved frequently prlor to time ¢, then M’ will
be larger. If moving ambulance [ to site j violates any of above constramts then
the move is simply disallowed. Binary variables x;; are equal to 1 if and only if
ambulance / is moved to site j. The constraints of the DDSM are similar to those
of the DSM, with the extra constraint that at most one deployment per ambulance is
allowed. The objective at time ¢ is:

(DDSM') Maximize Z diy? - Z Z M) (19)

1% JjeW I=1

2.3 Probabilistic Models

Probabilistic models take into account the fact that ambulances are not always avail-
able to answer a call. Each ambulance has a probability g, called busy fraction, of
being unavailable. It is computed as the ratio of the total time spent by all ambu-
lances on all calls to the total ambulance time available. If i € V is covered by k
ambulances, then the expected demand covered at that node is E;; = d;(1 — ¢*) and
the marginal contribution of the k™ ambulance is : Eiy—Eix-1 =di(1 - q)qk‘1

In the Maximum Expected Covering Location Model (MEXCLP) (Daskin [7]),
up to p ambulances may be located in total, and more than one vehicle may be located
at the same node. Let y; be a binary variable equal to 1 if and only if node i € V is
covered by at least k ambulances. The model is as follows :

Maximize Z di(1 - q)qk_lyik (20)
1%

JJ
subject to Z xj > Zy”‘ @ieV), 2D

JEW; =
Z Xj<p (22)

JEW

x; > 0 and integer (jew), 23)

vk €{0,1}ieVk=1,...,p). (24)
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The validity of this model stems from the fact that the marginal contribution of
the k" ambulance is concave in k. Therefore, if yi = 1, then y;, = 1 for h < k. Since
the objective is to be maximized, both (21) and (22) will be satisfied as equalities. It
follows that the two sides of (21) will be equal to the number of ambulances covering
nodeie V.

A dynamic implementation of MEXCLP, called TIMEXCLP, in which travel
speeds change dynamically over time has been developed by Repede and Bernardo
[18], while Goldberg et al. [13] have worked with stochastic travel times. These au-
thors have also developed a formula to compute the probability that a site will be
covered at any time. A related model used to locate physicians’ cars in the Montreal
region was recently developed by Gendreau, Laporte and Semet [12].

ReVelle and Hogan [19] have developed two versions of the Maximal Availabil-
ity Location Problem, called MALP I and MALP II, in which each demand point
is covered with the probability @, given that an ambulance is unavailable with prob-
ability g. Further studies on the estimate of the busy fraction have been conducted
by Batta et al. [2] and by Marianov and ReVelle [16]. Finally, Ball and Lin [1] have
developed an extension of LSCM which contains a linear constraint on the number
of ambulances required to achieve a given reliability level.

3 Applications of the Double Standard Model

The Double Standard Model has been applied by three groups of researchers. The
data used in these studies originate from Montreal (Gendreau, Laporte and Semet
[10], [11]), from the eight rural provinces of Austria (Doerner et al. [8]), and from
part of Wallonia (Thirion [22]).

3.1 Application to Montreal

The first application of the Double Standard Model was made to the Island of Mon-
treal data, using the population distribution of 1986 (Statistics Canada [21]). The
demand points are defined by the centroids of the |V| = 2’521 census tracts which
range from two to 7°000 inhabitants. The total population is 1°758’600. For this
study, four sets W of potential location sites, with |[W| = 40, 50, 60 and 70 were used,
and the number p of ambulances was 25, 30, 35 or 40.

Because of its large scale, this instance was solved heuristically. An upper bound
z on the objective function value of DSM was first computed by solving the linear
relaxation of the integer program at the root of the search tree by means of CPLEX.
A first heuristic called CPLEX2 was obtained by solving the integer linear program
and stopping 1) at the optimum, or 2) after 100’000 branch-and-bound nodes, or 3)
as soon as a feasible solution of value z < 0.99 z was reached.
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A second heuristic, called TABU, consisted of applying tabu search starting from
a solution derived from the linear relaxation. Consider the values x; taken by the x;
variables in the continuous solution. If these values are integer, then the solution is
feasible and optimal. Otherwise, Lx jJ ambulances are allocated to each site j and p

- 2jew [x jJ additional ambulances are allocated to the sites j for which x; > 0. This
initial solution may be feasible or infeasible. The solution space is then explored
according to the usual tabu search rules. The basic move consists of relocating an
ambulance to one of its five closest neighbour sites where it is still possible to lo-
cate an ambulance. However, a simple application of this move would often yield
uncovered areas and for this reason the neighbour solution is obtained by moving
not only a single ambulance, but a sequence of ambulances in order to maximize the
objective function at each step of the sequence. More specifically, a move can be
described as a set of r pairs (j;, j;) (t = 1,...,r), where an ambulance is moved from
Ji to ji.

The objective function used during the search is not the original objective func-
tion z defined by (9), but a modified hierarchical objective:

Z=z+Myz1+ M, 2

where M, and M, are two weights satisfying M; > M, > 1. The functions z;, z, are
defined as follows:

a=liev: Y x> (25)
jew?
and
o =min {a, ) dy}/ ) d. (26)
i€V i€V

The tabu search algorithm stops after 1000 iterations without improvement, or when-
ever it has identified a feasible solution within 1% of z.

Table 1 compares lower bounds values obtained by TABU and CPLEX2 to z
and gives the computation times in seconds needed to run these two heuristics on a
Sun Sparcstation 1000. Both algorithms consistently yield near optimal solution. It
can be seen that CPLEX is slightly better than TABU, but has more unstable com-
putation times. The solution with 40 potential sites and 25 ambulances is depicted
in Fig. 1.

The tabu search algorithm developed for the static double standard location prob-
lem was extended by Gendreau, Laporte and Semet [11] to the dynamic case. The
same algorithm is applied at each instant ¢ at which a call is made, with the modi-
fied objective function (19), resulting in a redeployment plan. Because it takes about
around 3 min to run the algorithm, it is preferable to precompute solutions during
the time elapsed between two consecutive calls. More, specifically, for each site j
at which an ambulance is currently positioned, one can determine a relocation plan
under the hypothesis the ambulance located at j would be the one dispatched to
answer the next call. In order to speed up the solution process, several scenarios
can be considered simultaneously by using parallel computing. When the next call
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Table 1. DSM results for the Island of Montreal

m p TABU CPLEX2 TABU CPLEX2
/z /z time (s) time (s)

40 25 0995 0.995 282 349
30 0.997 0998 227 205
35 0992 0995 259 330
40 0.999 1.000 188 157
50 25 0.992 0.993 692 2999
30 0.994 0995 403 396
35 0.995 0.994 186 227
40 0.999 0.999 175 185
60 25 0.995 0.996 354 491
30 0.992 0.993 353 316
35 0.996 0998 238 234
40 0.996 0.999 194 207
70 25 0.991 0.993 698 1855
30 0.994 099 333 331
35 0.995 0.9% 270 225
40 0.998 0.999 201 221

occurs, the corresponding redeployment plan is implemented and new solutions are
recomputed. There always exists a risk that a scenario cannot be computed in time
for the next call, in which case no redeployment is implemented.

In order to test the feasibility of this approach, the tabu search algorithm was run
on a network of 16 Sun Ultra-1/140 workstations (spec int95:5.87; spec fp95:8.38;
ram: 64M; Solaris 7 exploitation system) and PVM was used for the parallel im-
plementation. Six simulated data sets derived Urgences Santé data in Montreal were
used to run the tests. Each set corresponds to a 7 h period and contains an average
of 130 calls served by an average of 54 ambulances. These calls were distributed
into four categories: urgent calls requiring one ambulance : 80%; urgent calls re-
quiring two or three ambulances : 3%; less urgent calls: 10%; pending calls : 7%.
The covering radiuses were »; = 7 min and r, = 15 min. With the proposed sys-
tem, all calls were covered within with r,, and 98% of urgent calls were covered
within r; with an average of 3.5 min (the desired response time set by Urgences
Santé for urgent calls is 7 min 90% of the time). Less urgent calls were served
within an average of 9 min. The algorithm was capable of precomputing in time
a redeployment plan in 95% of all cases. The only case where this was not pos-
sible is when two calls arrived within less than 32 seconds of each other. Out of
all calls, 62% required no relocation and 99.59% of all relocation involved at most
five ambulances with an average of 2.08. Thirty-three scenarios extracted from the
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Fig. 1. DSM solution for the Island of Montreal. Number of ambulances located at a site
(L or2)

simulation data were solved exactly by CPLEX. On these scenarios the tabu search
heuristic produces solutions within 2% of the optima.

3.2 Application to Austria

Doerner et al. [8] have applied a model derived from DSM to locate ambulances
in Austria. In their model, constraint (10) and (11) are treated as soft constraints,
and the fraction of the demand w; covered per ambulance for each demand point i is
bounded above by a constant wy. This requirement is also treated as a soft constraint.
The objective function to be maximized is therefore:

7 =z—- M7y — Myzp — M3zs,

where z is defined by (9) and M, M,, M5 are positive constants. The functions z;,
27, 73 are defined as follows:

a=lieV: Z xj = 0} 27)

jew?
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n=a-min (@) dy!/ ) d) (28)
i€V i€V
and
3= Z max {0,d;/ Z Xj—wo} (29)
eV /waz

The model was solved by the tabu search algorithm of Gendreau, Laporte and
Semet [10], and also by an ant colony optimization (ACO) heuristic inspired from
that of Doerner et al. [9]. Basically, several location plans are determined, and am-
bulances are located at the selected sites. If fewer than p ambulances have been
assigned though this process, the remaining ambulances are randomly assigned to
the remaining sites. A measure of the attractiveness of the solution is computed
and is used to assign a “pheromone value” to the solution. More specifically, the
pheromone values 7, are numbers associated to the decision of locating s ambu-
lances at site j. The pheromone values are periodically updated in order to influ-
ence the design of ulterior solutions. The higher the value of 7, is, the more likely
s ambulances will be located at site j in future iterations. The authors have also
applied a local search mechanism, similar to that of the tabu search algorithm of
Gendreau, Laporte and Semet [10] in order to improve the successive solutions con-
structed by their ACO algorithm. The ACO algorithm generated solutions of similar
quality to those produced by tabu search but required significantly more computa-
tion time.

Both algorithms were applied to locate 1’952 ambulances over 460 bases in all
of Austria, except Vienna. In two cases where it was possible to compute an optimal
solution with an exact algorithm, the optimum was found. Figure 2 depicts the best
solution identified for the Province of Salzburg.

Doerner et al. [8] have clearly demonstrated the practicality of the Gendreau,
Laporte and Semet tabu search algorithm [10] over a different data set and with a
slightly modified model. In our opinion, the main advantage of this model lies in
the assignment of a maximum demand to any ambulance. This feature seems to be
absent from previous ambulance location models.

3.3 Application to Wallonia

Finally, Thirion [22] has recently applied and compared several ambulance location
models to a zone comprising 247 communes in the provinces of Namur and Brabant
Walloon in the French speaking part of Belgium. This zone is currently served by
46 ambulances, 25 of which are located on nine sites within the zone, and 21 are
located on 12 sites outside the zone but can still answer calls inside the zone. The
set W is made up of 259 sites comprising the 247 communes of the zone, and the 12
current location sites outside the zone which are considered to be fixed. Currently,
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Fig. 2. DSM solution for the Province of Salzburg. Number of ambulances located at a site
(lor2)

126 communes (51.01%) are covered by an ambulance within 8 min, while five can-
not be reached within 15 min. In 2005, 77.47% of the 19’197 calls made to the
ambulance services could be reached within 8 min.

A straight application of the LCSM shows that 26 ambulances would be neces-
sary to cover all demand points within 8 min, while successive applications of the
MCLP show that only eight sites are necessary to cover 82.33% of all calls within 8
mins and 15 sites yield a 95.34% coverage.

The MEXCLP was also applied to these data. The busy fraction g was estimated
as 17.79% in 2005. It was found with this model that 12 ambulances would be needed
to cover 81.26% of all demand, taking into account the temporary unavailability
of some ambulances. To obtain a 95% coverage, 28 ambulances would be needed.
The data should be contrasted with those of the MCLP which ensures a zero busy
fraction.

Finally, the DSM was also applied to the same data. It was found that 20 am-
bulances are necessary to cover 82.38% of all calls twice within eight min, and 30
ambulances are necessary to bring the proportion up to 95.22%. Optimally relocating
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the 25 ambulances currently located inside the zone while leaving the location of the
21 outside ambulances unchanged would yield a 91.31% double coverage of all calls,
as opposed to the current proportion of 75.88%.

These results clearly show that the application of models such as the MEXCLP
and the DSM, which are based on different principles, can yield a significant im-
provement in simple or double coverage by simply reallocating the available ambu-
lances to different sites. Figure 3 shows the locations of the 25 ambulances of the
zone in the current situation, and as suggested by the MEXCLP and DSM solutions.

4 Conclusions

We have described some classical and advanced ambulance location models de-
veloped over the past 35 years. One of these models, called the Double Standard
Model (DSM), maximizes double coverage with a fixed number of ambulances. A
dynamic version of the DSM was developed by Gendreau, Laporte and Semet [11].
The static and dynamic versions of the DSM were successfully tested on data from
the Island of Montreal. A slightly modified version of the DSM was later applied
to Austrian data. Recently, the application of DSM to Walloon data has shown that
significant coverage improvements could be reached without increasing the number
of ambulances now in use.
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Summary. The Vehicle Routing Problem with Soft Time Windows consists in computing a
minimum cost set of routes for a fleet of vehicles of limited capacity that must visit a given set
of customers with known demand, with the additional feature that each customer expresses a
preference about the time at which the visit should occur. If a vehicle serves the customer out
of its specified time window, an additional cost is incurred. Here we consider the case with
penalties linearly depending on the time windows violation. We present an exact optimiza-
tion algorithm for the pricing problem which arises when the vehicle routing problem with
soft time windows is solved by column generation. The algorithm exploits bi-directional and

bounded dynamic programming with decremental state space relaxation.

Key words: Combinatorial optimization, Vehicle routing, Column generation,
Dynamic programming, Time windows

1 Introduction

In distribution logistics it is common that customers impose constraints on the ar-
rival and departure time of the vehicles visiting them for pick-up or delivery opera-
tions. Therefore any planning algorithm for optimally routing and scheduling a fleet
of vehicles must comply with these restrictions. The scientific literature in logis-
tics optimization is rich of references to the vehicle routing problem with time win-
dows (VRPTW): for a recent survey the reader is referred to Cordeau et al. [5] and
Kallehauge et al. [12].

Soft time windows do not represent constraints but rather preferences about the
time at which visits should occur at customers’ locations: if a customer is visited
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out of his preferred time window, a penalty is incurred in terms of additional costs
that are charged to the distributor/collector. The main advantage of routing with soft
time windows is that a feasible plan may include more visits than in the case in which
the same time windows are imposed as “hard” constraints; solutions implying a small
violation of one or more time window constraints and that therefore would have been
discarded as infeasible for the VRPTW, may be discovered in this way and hence
more profitable plans can be produced. However the optimization algorithm must
take into account the additional cost terms coming from the penalties; as illustrated
in the remainder this implies a number of algorithmic problems that must be suitably
addressed to make use of the mathematical optimization techniques developed so far
for the VRPTW.

Several heuristic algorithms have been proposed for the vehicle routing problem
with soft time windows (VRPSTW), starting with the early work by Sexton and Choi
[14], which concerned the pick-up and delivery version of the problem; Koskosidis
et al. [13] developed an optimization-based heuristic; Balakrishnan [1] developed
several constructive heuristics, while Taillard et al. [15] and Chiang and Russell [4]
presented tabu search heuristics; more recently Ibaraki et al. [9] studied acceleration
techniques for local search algorithms in the case of multiple soft time windows.

In this paper we present an algorithm for the resource constraint elementary
shortest path problem with soft time windows, which forms the basis to develop
a branch-and-price algorithm for the exact optimization of the VRPSTW. Recent
examples of branch-and-price algorithms for the VRPTW are those of Desaulniers
et al. [6] and Jepsen et al. [11].

2 Problem Formulation

The VRPSTW is defined as follows: a graph G(V, A) is given, where the vertex
set V is made of a set N of N customers and two vertices, numbered O and N + 1
representing the depot, where V vehicles are located. Non-negative weights #;; and
¢;; are associated with each arc (i, j) € A; they represent respectively the traveling
time and the transportation cost on each arc (i, j) € A; traveling times are given by
shortest path lengths and therefore they satisfy the triangle inequality.

A positive integer demand ¢; is associated with each vertex i € N and a capacity
Q is associated with each vehicle. A non-negative integer service time §; and a time
window [a;, b;], defined by two non-negative integers, are also associated with each
vertex i € N if the service at vertex i starts inside its time window [a;, b;] no penalty
is incurred; if a vehicle starts servicing the customer at vertex i before time a; or after
time b;, then a linear penalty has to be paid, which is proportional to the anticipation
or delay through non-negative coefficients @; and §; respectively. Indicating with 7;
the starting time of service at vertex i the penalty term 7;(T;) is defined as follows:

G,’,'(a,‘ — T,) if T,‘ <a;

m(T) =<0 ifa, <T; <b;
Bi(Ti=by) ifT;=b,.
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However the vehicles are allowed to wait at no cost at any time along their routes.
Column generation algorithms for routing problems rely upon a set covering re-
formulation, as follows.

minimize Z Wrzp
feF

subjecttonifzf >1 Vie N (1)

- Yzz-v @)
zr €{0, 1} VfeF (3)

where ¥ is the set of feasible vehicle routes, wy is the cost of route f € ¥, that is
the sum of the costs of the arcs in the route plus the penalties due to the soft time
windows violations, and x;r is the number of times route f € F visits customer
i € N. The linear relaxation of this set covering reformulation usually yields very
tight lower bounds (see for instance Bramel and Simchi-Levi [3] and the references
therein). However since in general ¥ contains an exponential number of columns,
only a subset ¥ is kept in a restricted linear master problem (RLMP) and further fea-
sible routes are generated by the iterated solution of a pricing problem. The pricing
problem consists in finding routes with negative reduced cost or proving that none
exists. The reduced cost of route f € F is:

Wr=Wwyg— Z xif»/li + /10
ieN

where (4, 4p) is the vector of non-negative dual variables corresponding to constraints
(1) and (2) in the linear restricted master problem.

The capacity constraints as well as the penalties are taken into account in the
pricing subproblem: in particular the former ones restrict the set ¥ of feasible routes,
while the latter ones contribute to determine the cost of each route.

Hence the pricing subproblem turns out to be a resource constrained shortest
path problem with soft time windows. A vehicle must go from vertex 0 to vertex
N + 1, visiting a subset of the other vertices; no cycles are allowed. Because there
are non-negative prizes A associated with the vertices, negative cost cycles can occur.
Therefore the requisite that the path must be elementary does not come for free from
cost minimization but it must be explicitly enforced. The capacity constraint is taken
into account as a resource constraint: each vehicle leaving the depot has Q units of
available resource and every time it visits a customer with demand g; it consumes ¢;
units of resource. The objective is to minimize the cost, given by the sum of the costs
of the arcs traversed plus the sum of the penalties for anticipation and delay, minus
the sum of the prizes collected at the vertices visited.

The main difficulty in dealing with soft time windows in column generation al-
gorithms is that the possibility of trading time vs. cost generates an infinite number
of possible solutions of the pricing problem that do not dominate one another. In
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algorithmic terms this means that the pricing algorithm, usually a dynamic program-
ming algorithm, must take into account an infinite number of Pareto-optimal states.
The pricing subproblem turns out to be an elementary shortest path problem with
continuous resources on a graph with negative-cost arcs. The resource constrained
elementary shortest path problem (RCESPP) on graphs with negative cost cycles is
strongly NP-hard (see Dror, [7]) and it has been recently investigated by Righini and
Salani who proposed bi-directional bounded dynamic programming algorithms [17]
and decremental state space relaxation [16]. Another recent contribution on the sub-
ject is due to Irnich [10]. Hereafter we extend this research stream and we show how
it can be adapted to the case with soft time windows implying continuous resources.
In particular we present experimental evaluations of the bi-directional search tech-
nique [17], coupled with decremental state space relaxation [16] [18], when dynamic
programming labels represent in a compact way an infinite number of non-dominated
states.

3 The Algorithm

The resource constrained elementary shortest path problem with soft time windows
is solved to optimality by a bi-directional dynamic programming algorithm.

3.1 States, Labels and Extension

A state associated with vertex i € N represents a path from the depot O to i. Different
states associated with the same vertex correspond to different feasible paths reaching
that vertex.

When a vehicle reaches a vertex it can start the service immediately or it can
wait and start the service at a later time in order to reduce costs in case of early
arrival. Therefore from each feasible state an infinite number of feasible states can
be generated. For this reason our dynamic programming algorithm must take into
account an infinite number of non-dominated states and this is done by grouping
them into labels. Each label corresponds to an infinite number of states associated
with the same path.

A label associated with vertex i € N is a tuple L; = (S,i,r,C(T;)), where S is
a binary vector indicating the vertices visited along the path, i is the last reached
vertex, r is the amount of capacity consumed up to i, C is the cost of the path, T;
is the time at which the service at vertex i begins. In each label the function C(T})
describes the trade-off between cost and time. This function is piecewise linear and
convex, because it is the sum of piecewise linear and convex functions, like the one
shown in Fig. 1, one for each visited vertex. Its domain ranges from earliest possible
arrival time to infinity.

In bi-directional dynamic programming these states are called forward states
and in the same way we define backward states, corresponding to paths from vertex
i to the final depot N + 1 represented by labels (S, i, r, C(T;)), where T; is the time at
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A Hi

Time window
a b;

;Ti

Fig. 1. A soft time window at a generic vertex i € N: a linear penalty 7; is incurred depending

on the service starting time 7

which the service at vertex i begins.

Remark. To keep a perfect symmetry in the description of the algorithm, one
could equivalently define 7; in backward labels as the time at which the service at
vertex i terminates and consider backward time windows [a; + 6;, b; + 6;], specifying
the range in which the service at vertex i should preferably terminate. In the exposi-
tion we preferred not to introduce backward time windows, in order not to make the
notation unnecessarily complicated, and hence we refer to service starting time and
to the original time windows both in forward and in backward labels.

The dynamic programming algorithm iteratively extends all feasible forward and
backward labels to generate new forward and backward labels respectively. The ex-
tension of a forward label corresponds to appending an additional arc (i, j) to a path
from O to i, obtaining a path from O to j, while the extension of a backward label
corresponds to appending an additional arc (j, i) to a path from i to N + 1, obtaining
a path from jto N + 1.

To avoid negative cost cycles a dummy resource is associated with each vertex
i € N: there is only one unit available for each dummy resource and it is consumed
when the corresponding vertex is visited. The binary vector S, indicating the vertices
already visited, is therefore a resource consumption vector related to the dummy
resources. It is initialized at 0 at vertex 0. Note that S does not keep any information
about the order in which the vertices are visited. When a forward label (S, i, r, C(T}))
is extended to a vertex j, a new forward label (S’, j, 7", C’(T;)) is generated and the
update rule is:

, Se+1 ifk=j
Si= {S ifk # j
k 1 ]

A label (S, i, r, C(T;)) corresponds to an elementary path only if S < 1 Vk e N.
The resource consumption r indicates the amount of capacity used. When a ve-
hicle leaves the depot O all the resource is available, that is » = 0, and the extension
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rule is:
¥ =r+gq;

A label (S, i, r, C(T))) is feasible only if r < Q.

Finally the cost C(7}) is initialized with the function C(T) = 0 VT > O at the
depot 0. At each extension the cost depends on both traveling time and penalties and
it is updated according to the formula:

C'(Tj) = C(Tj —(0; + l‘ij)) - A;/2+ Cij — /lj/2 + JTj(Tj),

where A; = =g ifi = 0and A; = —Ap if j = N+1. In this expression the cost function
of the predecessor is evaluated at T; = T; — (6; + t;;), which is the latest time instant
at which the service at vertex i should begin to allow starting the service at vertex j
at time 7T';.

Figure 2 shows an example of forward extension. In graphical terms, the cost
function C(T}) is shifted to the right by the service time at vertex i, that is 6;, plus
the traveling time f;; spent to reach vertex j, it is shifted up by the traveling cost ¢;;
minus the prizes 4;/2 + 4;/2 collected for visiting the vertices. Then it is summed
to the penalty term 7;, which depends on the arrival time 7T';. If C(T;) is piecewise
linear and convex, then the resulting function C’(T';) preserves both these properties.
The number of segments in these piecewise linear functions is increased by at most
two at every extension.

Fig. 2. Forward extension of a label of vertex i to vertex j. The C’(T;) function resulting from
the extension is the sum of the C(7;) function of the extended label suitably shifted and the
penalty function 7;(T';)

The extension rules for backward labels are symmetrical to those above. The cost
function at the final depot is initialized as C(Ty41) = 0 VT4 < T, where 77" is
defined below.
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3.2 Dominance Rules

In general the effectiveness of any dynamic programming algorithm heavily depends
on the number of states generated. Hence it is essential to fathom feasible states
which cannot lead to optimal solutions.

In our case this is done in two ways: first, by the deletion of parts of the linear
functions in all labels and, second, by suitable dominance rules.

Consider a generic forward label like that represented in Fig. 3. Since all penalty
functions have a positive penalty term for delays, the rightmost part of the function
certainly has positive first derivative. Since waiting at no cost is allowed, all states in
this part of the function are dominated by the states of the same label with smaller
values of both time and cost. Therefore these dominated states can be replaced by
states with the same cost of the dominating ones, as shown in Fig.3. In graphical
terms this means that the rightmost part of the piecewise linear function in each la-
bel is a horizontal unbounded segment, replacing all the segments with positive first
derivative resulting from the last extension. A symmetric argument holds for back-
ward labels, where a horizontal segment replaces the leftmost part of the piecewise
linear functions with negative first derivative.

4 C(T)

> T,

Fig. 3. States on the ascending part of the piecewise linear function are dominated: the same

value in time can be reached at a smaller cost

The second way to eliminate dominated states is by dominance tests, that are
performed each time labels are extended. Let L' = (S’,i,7,C'(T})) and L” =
(S”,1,r",C"(T!")) be two labels associated with vertex i; let (S’,7,7,C’,T]) and
(S8”,i,r",C",T/") be two states belonging to L’ and L” respectively, corresponding
to two points on the piecewise linear functions C’(T;) and C”(T;"). Then the former
state dominates the latter only if

S/ < S//
r<r
CI < CII
4 "
T, < T
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and at least one of the inequalities is strict. When a dominance rule is applied to
single states and the test succeeds, the effect is simply to delete one of the two states.
In our case, where each label represents an infinite number of states, the effect of the
dominance test is to delete some parts of the piecewise linear functions, as shown in
Fig.4. The states surviving the dominance test are those of minimum cost for each
feasible value of the service starting time.

C(m)

Gap

i Concavity

Fig. 4. As an effect of the dominance test, some parts of the piecewise linear functions are
deleted. Only the states drawn with heavy lines are non-dominated and survive the test

This holds for both forward and backward labels. As a consequence, the resulting
piecewise linear functions may have gaps and are not convex in general, as the small
example in Fig. 4 shows.

When a new label is generated, it is compared to all the labels currently associ-
ated with the same vertex and the dominance test is applied for each comparison. Let
L =(S",i,r,C'(T)) and L” = (S§”,i,r",C"(T;)) be the labels of vertex i that are
compared. Then if S = S” and ' = r”’ then the two labels are merged into one, so
that at most one piecewise linear function is stored for each feasible combination of
S, iand r; in this case the non-dominated states form a new piecewise linear function
possibly with vertical gaps and concavities as the one formed by the points in heavy
lines in Fig. 4. In the other case, for instance (w.l.o.g.)if §* < §” and ' < r”, then
the dominated states in C”'(7;) are deleted and hence the resulting piecewise linear
function can have also horizontal gaps, as the black heavy lines in Fig. 4.

3.3 Profitable Time Windows

The combined effect of soft time windows and dual prizes induces profitable time
windows in the pricing problem. Consider a vertex i with dual prize 4;, soft time
window [a;, b;] and penalty coefficients @; and ;. Any visit to the vertex occurring
out of the time window [a; — A;/a;, b; + 4;/B;] is not profitable, because the penalty to
be paid would be larger than the prize gained. Such a non-profitable visit can always
be skipped from any path P, yielding another path " not worse than $, owing to
the triangle inequality. We do not explicitly include these profitable time windows
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in our model as hard constraints, but we use this observation to detect unreachable
vertices, as explained in the next paragraph. Owing to this observation we also define
a maximum allowed arrival time 7" = max;cn{b;+4;/B;i+1t; n+1}, Which is the latest
possible arrival time at the final depot for an optimal path.

Unreachable Vertices

A vertex j is unreachable from a label L = (S, i, r, C(T;)) when its demand ¢; cannot
be fulfilled with the remaining capacity Q — r or when its profitable time window
would be violated by any visit starting from label L, thatis T;+6;+1;; > b;+A4;/B; for
all feasible values of 7. For the purpose of the dominance test, unreachable vertices
can be counted as if they were already visited, exploiting an idea of Feillet et al.
[8]. Indicating with U” and U” the characteristic vectors of the sets of unreachable
vertices in two labels L” and L”, the condition

S/ S S//
in the dominance test is replaced by
S/ + U/ < S// + U”,

which is a weaker and therefore more effective sufficient condition.

Search Policy

Labels are extended according to the vertices they are associated with. The vertices
are cyclically visited in increasing order of the starting time a; of their soft time
windows; for each vertex the algorithm extends all its labels that have not yet been
extended. At each vertex all the labels not yet extended are sorted according to a
hierarchical criterion: first they are sorted by increasing overall length of the path; in
case of ties they are sorted by increasing amount of capacity consumed; in case of
further tie, they are sorted by number of vertices visited.

Joining Forward and Backward States

In our bi-directional dynamic programming algorithm forward and backward paths
must be joined together to produce complete paths from vertex O to vertex N + 1. Let
L = (S/",i,r/",C(T;)) be a forward label and L = (S?", j, r*", C?"(T)) be a
backward label. The join between L/ and L”" is subject to feasibility conditions on
the resources. In particular the feasibility test on dummy resources S imposes that a
same vertex can not be visited by both paths:

ST +SP <1 VkeN.

Moreover the consumption of capacity in the overall resulting path can not exceed
the overall amount of available capacity, that is:
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Y4 < 0.

If the join is feasible, then the cost of the resulting path can be obtained as the mini-
mum of the function

C(T) = C™™(T) = A;/2 + cij — A;/2 + C™(T + 6; + 1;)).

This function may have several local minima, as shown in Fig. 5. However the detec-
tion of the global minimum takes time linear in the number of discontinuity points of
the two piecewise linear functions, since it requires a merge operation between two
sorted lists.

N

T

Fig. 5. When a forward and a backward labels are joined, the two corresponding piecewise
linear functions are summed up. The resulting piecewise linear function may have multiple

local minima. All its points below 0 correspond to negative reduced cost routes

Resource-Based Bounding

Since all forward and backward states generated by the bi-directional search algo-
rithm are tentatively joined, it is crucial to reduce their number as much as possible.
To this purpose we select a critical resource, whose consumption is monotone along
the paths, and we do not extend states in which at least half of the available amount
of that resource has already been consumed. We tried using », T and |§] as critical
resources. These choices are compared in the next section.

Decremental State Space Relaxation

Decremental state space relaxation (DSSR) was independently introduced by Righini
and Salani [16] and by Boland et al. [2] to reduce the number of states to be explored
by dynamic programming. The basic idea is that the elementary path constraints are
not imposed on all the vertices of the graph but rather on a subset of critical vertices.
If the optimal solution of the pricing problem is not elementary, one or more vertices
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visited more than once are inserted into the critical vertex set and the dynamic pro-
gramming algorithm is executed again. In this way at each iteration a lower bound
for the pricing problem is computed. Computational experiments reported in [16]
show that the number of vertices that must be defined as critical in order to obtain a
feasible solution is usually only a small fraction of N and therefore the pricing prob-
lem is solved to proven optimality in a fraction of the computing time required by
dynamic programming when multiple visits are forbidden at all vertices.

In our algorithm we map each label (S, i, r, C(T;)) onto a new label (S‘ i, 1, C(TY)),
where $ is the set of critical vertices, initially empty. This is done for both for-
ward and backward labels. The dominance rule is then modified, replacing condition
S’ < §” by 8’ < §”. Also in this case the detection of unreachable critical ver-
tices is useful to enhance the effect of dominance tests. Indicating with U the set of
unreachable critical vertices, the dominance testis §’ + U’ < 8" + U".

DSSR Policies

In Boland et al. [2] several different policies to update the critical set were con-
sidered. A computational comparison between them is also reported in Righini and
Salani [18]. In the algorithm for the VRPSTW, we used the policy called HMO ac-
cording to the terminology of [2]: it consists in adding to the critical vertex set one
vertex at each iteration, selecting one at random among those visited the largest num-
ber of times.

Initialization of the critical vertex set

Also the initialization of the critical vertex set can be done in different ways. In
Righini and Salani [18] several policies were compared. The aim is to identify a
subset of vertices that have a high probability to belong to the final critical vertex
set. Let us define f;; to be a measure of the “cycling attractiveness” of a vertex i with
respect to a vertex j as the ratio of the prize A; over the duration of the cycle i- j-i:

ﬁj = A;/(6; + tij + 9j + l‘j,').
Now we define an ordering of the vertices based on the following four criteria:

Highest Cycling Attractiveness (HCA): order by max jea{fi/}-
Total Cycling Attractiveness (TCA): order by 3’ jean g fij-
Weighted Highest Cycling Attractiveness (WHCA): order by max jea 3 fij(bi —
a;)}.
e Weighted Total Cycling Attractiveness (WTCA): order by 3’ jean iy fij(bi — i)

In general these criteria give different results and none of them is reliable to reveal
the necessary vertices to be put in the critical vertex set. Let us define HCA,,, TCA,,,
WHCA,, and WTCA,, to be the sets containing the first m vertices according to
each of the ordering criteria above. We use as an initial critical vertex set the one
obtained from the intersection of these four sets. By a suitable choice of the value of
m the initial critical vertex set can be set large with the aim of reducing the number
of iterations (high m) or small to reduce the probability of inserting unnecessary
vertices into it (low m). In our computational experiments we set m = 8.
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4 Experimental Results

For our experiments we used instances derived from the well-known Solomon’s
VRPTW benchmark. In particular we considered the instances in the class random
with 100 customers. The integer coefficients «; and 3; for each vertex were generated
at random with uniform probability distribution in the range [1, 5]. The values of the
t;; data are the Euclidean distances rounded down to the nearest multiple of 0.1. The
values of the ¢;; data are given by 6; + 1;;. The vehicles capacity was set to 200.

All tests were performed on a PC equipped with an Intel Core Duo T2500 2x1.0
GHz processor, with 1024 MB RAM. The algorithms were coded in C++. We used
GLPK as a linear programming solver for the RLMP.

Tables 1, 2 and 3 report on the experimental comparison between the bi-
directional bounded dynamic programming algorithm without DSSR and with
DSSR, when the critical resource used for stopping the extension in both directions
is respectively the amount of capacity used, the time elapsed and the number of
vertices visited. For all algorithms we report the number of stored labels and the
computing time. For the DSSR algorithms we also report the number of iterations
and the number of critical vertices at the end.

A time-out of 15 min was imposed to all tests. A dash in the “Time” column
indicates that the time-out was exceeded.

Table 1. Comparison between bi-directional bounded dynamic programming algorithms with-

out and with DSSR, using capacity as a critical resource

Instance D.P. DSSR

Labels Time Labels Iterations Critical Time

r101 100 3,636 0.30 1,218 1 0 0.13
r102 100 29,190 4.24 5,882 4 5 5.83
r103 100 70,654 18.08 8,351 5 7 14.19
r104 100 141,422 54.92 10,893 6 7 25.00
r105 100 9,248 0.94 2,357 4 3 1.47
r106 100 47,889 9.95 7,251 4 5 8.00
r107 100 93,888 26.47 8,755 4 5 1278
r108 100 166,226 69.97 11,446 6 7 26.59
r109 100 26,092 3.91 5,498 5 4 5.98
r110 100 64,594 16.20 7,332 4 4 9.64
r111 100 80,498 21.22 9,431 5 6 19.11
r112 100 191,198 86.86 11,979 5 5 2644
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Table 2. Comparison between bi-directional bounded dynamic programming algorithms with-

out and with DSSR, using time as a critical resource

Instance D.P.

r101
r102
r103
r104
r105
r106
r107
r108
r109
r110
rill
rl12

Labels Time Labels Iterations Critical

100 1,935 0.09 724
100 37,698 11.69 9,792
100 219,389 311.25 20,219
100 485,653 -37,272
100 6,667 0.69 2,060
100 82,709 58.22 12,461
100 308,385 549.99 20,847
100 481,206 - 38,076
100 28,577 6.67 5,587
100 136,516 162.34 12,764
100 161,772 135.19 18,773
100 430,117 — 27,943

[TV NN O Yo NI N SO e R, B .

DSSR

L N B A9 W N O

Time

0.06
19.24
83.36

225.36

1.34
28.80
68.24

230.87

9.84
38.69
74.61

206.75

Table 3. Comparison between bi-directional bounded dynamic programming algorithms with-

out and with DSSR, using the number of vertices visited as a critical resource

Instance D.P.

r101
r102
r103
r104
r105
r106
r107
r108
r109
r110
rlll
rl12

Labels Time Labels Iterations Critical

100 4,518 030 1,367

100 373,100 —-26,470
100 415,083 — 48,253
100 521,151 - 249
100 22,764 4.08 3,808
100 468,522 -32,710
100 448,413 — 47,882
100 558,889 - 66,627
100 175,621 155.84 18,498
100 304,154 - 25,526
100 420,081 — 54,034

100 521,833 - 59,536

[TV NN O Yo NI N SO e Y. B .

DSSR

L N A L 9 L W 9 WL O

Time

0.14
101.81
566.94

3.38
186.64
453.78

61.78
120.25
767.61
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A first observation that can be drawn from the three tables reported, is that DSSR
yields a remarkable improvement. In the worst cases only 7 vertices among 100
needed to be considered as critical in order to obtain a feasible solution.

A second observation concerns the choice of the critical resource: for the bench-
mark instances considered here capacity was definitely the most useful critical re-
source. Bounding on the basis of the number of vertices visited was particularly
ineffective since the limit is set to half of the vertices, that is 50, while the average
number of vertices in optimal paths is between 6 and 7. It should be remarked that
Righini and Salani [16] obtained their best results on the same data-set with hard
time windows using the elapsed time as a critical resource. Hence the relaxation of
the time windows constraints makes the problem definitely more difficult, owing to
an increased number of feasible labels.

A third observation concerns multiple pricing. The time spent by a pricing al-
gorithm in column generation may be excessive if only one column is added to the
RLMP at each iteration. An important feature of the algorithm described here is that
it allows multiple pricing, which has become a common practice in column genera-
tion algorithms. At each join operation multiple columns with negative reduced cost
can be found and inserted into the RLMP.

Moreover, by a trivial modification of the dominance test, the algorithm can be
easily transformed into a heuristic, to accelerate the pricing phase.

5 Conclusions

In this paper we have presented an exact pricing algorithm for the vehicle routing
problem with soft time windows, an important optimization problem in distribution
logistics, for which no exact optimization algorithm has been published so far at the
best of our knowledge.

The pricing algorithm is based on bi-directional and bounded dynamic program-
ming with decremental state space relaxation.

We have described how an infinite number of non-dominated states are repre-
sented in a compact way by means of piecewise linear functions, whose description
is stored in the labels extended by the dynamic programming algorithm; we have
also presented the corresponding dominance rules and other algorithmic details.

The outcome of our computational experiments shows that this technique yields
significant improvements compared to classical dynamic programming algorithms.

The next step will be to develop a branch-and-price algorithm for the exact
optimization of the VRPSTW, exploiting this effective pricing technique. For this
purpose the main developments needed are: (1) accurate and fast heuristics to com-
pute primal bounds; (2) heuristic pricing algorithms to further speed up the search
for profitable columns; (3) branching strategies compatible with the structure of the
pricing problem.
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Summary. Let us consider a set of markets plus a depot and a set of products. Each product
is made available at a given price in a subset of markets. The distance between each couple
of markets and between each market and the depot is known. The Uncapacitated Traveling
Purchaser Problem with Budget constraint (UTPP-B) looks for a simple cycle starting at and
ending to the depot which visits a subset of markets at the minimum traveling cost while pur-
chasing all products at a global cost that does not exceed a defined budget threshold. Although
the problem arises in several application domains very few contributions exist in the litera-
ture for the UTPP-B. We propose and compare two solution algorithms for the problem, an
enhanced local search heuristic and a Variable Neighborhood Search (VNS) approach. UTPP
benchmark instances with additional budget constraints are used for computational experi-
ments. Heuristic performances are compared to exact solution values provided in [13] while

solving with a single-objective hierarchical approach a bi-objective UTPP.

Key words: Traveling purchaser problem, Budget constraint, Local search, Variable
neighborhood search

1 Introduction

The Traveling Purchaser Problem (TPP), originally proposed by Ramesh [9] is a
generalization of the Traveling Salesman Problem and can be stated as follows. Con-
sider a set of markets M := {1, ..., m} plus a depot (indexed 0) and a set of products
K :={1,...,n}. A traveling cost between each couple of markets and between each
market and the depot ¢;;, Vi, j € M U {0}, is given. Each product k, k € K, can be
purchased in a given cluster of markets M, € M at a nonnegative price fj; depending
on the market 7, i € My. The problem objective is to find a cycle starting at the depot

L. Bertazzi et al. (eds.), Innovations in Distribution Logistics, Lecture Notes 267
in Economics and Mathematical Systems 619, DOI: 10.1007/978-3-540-92944-4,
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and purchasing each product while minimizing the sum of the traveling costs plus the
purchasing costs. This problem is also known as uncapacitated TPP to distinguish it
from the capacitated one. The latter is a generalization where for each product k a
required amount dj to be purchased is specified and a defined quantity gy, is made
available at market i, i € My, where 0 < gi; < dj and 3y, gri = di for all k € K and
i€ M.

In this paper we analyze a bounded version of the uncapacitated TPP where the
purchasing costs are removed from the objective function and added to the prob-
lem constraints by specifying a threshold B (the budget) as upper bound on the total
amount which can be spent to purchase products. The problem looks for a minimum
traveling costs cycle such that the demand for all products is satisfied at a global
purchasing cost which does not exceed the budget threshold B. We identify such
problem as the uncapacitated TPP with budget constraint (UTPP-B). The introduc-
tion of this bounded version aims at avoiding the sum in the same objective function
of two cost measures which may be extremely different in nature. This is indeed
the main drawback of the TPP formulation which does not take into account how,
in many practical applications, the traveling costs are represented as distances or
traveling times whereas the purchasing costs are measured as currency. Moreover, a
trade-oft frequently characterizes these two objectives since reducing the purchasing
cost may imply an increase in the distance traveled.

Whereas many contributions can be found on the UTPP in the literature, its
bounded version UTPP-B, although its recognized practical relevance, has received
a limited attention. The uncapacitated version of the TPP was originally introduced
by Burstall [1] and Ramesh [9] and has found several applications in scheduling and
routing contexts. The problem is known to be NP-hard in the strong sense, reducing
to the Traveling Salesman Problem (TSP) when each market offers a product which
is not provided by the remaining ones. It also contains the uncapacitated facility
location problem and the set cover problem as special cases. Due to its computa-
tional hardness several heuristic procedures have been proposed to solve both the
capacitated and the uncapacitated version of the problem (see, for instance, Golden
et al. [3], Ong [7], Pearn and Chien [8], Voss [15], Renaud et al. [11] and Mansini
et al. [6]). Branch and Bound exact algorithms have been studied by Singh and van
Oudheusden [14] while recently Laporte et al. [5] have introduced a branch-and-cut
procedure for the capacitated version of the problem which is able to solve problems
with up to 200 markets and 150 products.

On the contrary, the bounded version UTPP-B is cited and analyzed in very few
works. In Riera-Ledesma and Salazar-Gonzdlez [13] the authors have introduced the
bi-objective TPP, i.e. a bi-criteria version of the TPP where minimizing the purchas-
ing cost and the traveling distances are two separate objectives. The bi-objective is a
generalization of the TPP whose solution provide insight into the trade-off between
the two costs. The authors tackle the problem by generating the set of all supported
and non-supported efficient points in the objective space. For each efficient point
in the objective space a Pareto optimal solution in the decision space is computed
by solving a single-objective problem while bounding the remaining cost function.
In the case the single objective is represented by traveling costs while purchasing
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costs are bounded in the constraints the problem solved is the UTPP-B. The authors
provide exact solutions by means of a Branch and Cut approach for instances with
up to 100 markets and 200 different products. The uncapacitated TPP with budget-
constraint is also analyzed in Ravi and Salman [10] as an application of telecom-
munication network design. In this paper the authors introduce an algorithm for the
bi-criteria version of the UTPP with metric distances based on the rounding of an LP
relaxation solution whose worst-case ratio is poly-logarithmic. They also show that
for a special case of the UTPP which models the ring-star network design problem
with proportional costs a constant factor approximation algorithm exists.

In the present paper, we propose two solution algorithms for the UTPP-B. To
the best of our knowledge these procedures represent the first heuristics proposed in
the literature to solve this bounded version of the TPP. In particular, the first pro-
cedure is based on an enhanced local search scheme where a neighbor solution is
obtained from the current one by removing /-consecutive markets and inserting as
many markets as required to restore solution feasibility. The heuristic uses a neigh-
borhood similar to that proposed in [12] with the addition of a simple tabu structure
introduced to avoid cycling. We will refer to such algorithm as enhanced local search
since with respect to a pure local search scheme it varies the neighborhood during
the search. The procedure is very efficient and, in those instances where budget con-
straint is not too tight (i.e. not too close to the minimum purchasing cost), it is also
able to provide very effective solutions. The second algorithm is based on a Vari-
able Neighborhood Search scheme (see Hansen and Mladenovi¢ [4] and references
therein) where a sequence of neighborhoods N,(-) is introduced each one character-
ized by a different parameter g representing the number of markets randomly inserted
in a current solution. This procedure has the merit to show how a simple and straight-
forward application of a VNS structure along with an effective local search can be
enough to produce high quality solutions.

The paper is organized as follows. In Sect.2, the mathematical formulation of
the UTPP with budget constraint is described. The solution algorithms are intro-
duced in Sect. 3, while Sect.4 is devoted to computational results. We have tested
the proposed algorithms on benchmark instances of the uncapacitated TPP to which
a budget constraint has been added. More precisely, algorithms performance has
been compared to the optimal solution value provided in [13], where the authors
deal with the UTPP with budget constraint to compute Pareto optimal solutions
of a bi-objective TPP. Finally, conclusions and future developments are drawn in
Sect. 5.

2 Problem Formulation

The uncapacitated TPP-B can be formally defined on an undirected complete graph
G = (V,E), where V := {0} U M is the vertex set with vertex O representing the depot
and E :={(i, j) : i, j € V,i < j} is the edge set. The problem looks for a simple cycle
in G, starting at and ending to vertex 0, which visits a subset of vertices at a minimum
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traveling cost while purchasing all products at a global purchasing cost which does
not exceed the budget threshold B. To avoid explicit consideration of trivial cases
we have assumed that none of the markets can provide each of the n products at the
cheapest cost.

To formulate the uncapacitated version of the problem we have introduced the
following three sets of decision variables:

~._ J 1 ifedge (i, j) belongs to the optimal cycle |, . .

Yij = {O otherwise; V@ j) € E,

Vo= 1 if mark.et i belongs to the optimal cycle VieV
0 otherwise;

2 = 1 if prodgct k is purchased at market i Vk € K. Vi € M,
0 otherwise;

For any S c V, we define as E(S) = {(i,j) € E : i,j € S,i < j} and as
o) =1{G,j)) e E :i € S§,je V\S} Moreover, we indicate as M*, the set
M* = {0}U{i € M : Jk € Ksuchthati € M; and |M| = 1}, representing the
markets which necessarily have to make part of any feasible solution.

The uncapacitated TPP with budget-constraint can be formulated as follows:

(UTPP-B) min v := Z CijXij (D)
(i, ))eE
> xj=2y Viev 2
(i, j)es({i})
x,~,~22y, VS CMandVreS 3)
(i, ))ed(S)
DD fumi<B @)
keK ieM,
Dai=1 Vkek (5)
ieM;
7 <yi VkeKandVie M (6)
vi=1 VieM 7
Xij € {O, 1} Y (i, ]) eE (8)
yi€{0,1} VYieV\M" )
2 €1{0,1} Vke KandVie M; (10)

Objective function (1) establishes the minimization of the routing costs. The set
of constraints (2) ensures that the degree of each market i in the solution (y; = 1) has
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to be equal to two, i.e. each selected market is visited only once. The inequalities (3)
ensure connectivity. Constraint (4) imposes a budget threshold equal to B on the total
purchasing costs. Equalities (5) guarantee that each product & is purchased, whereas
for inequalities (6) it is not possible to purchase a product k at an unvisited market.
Equalities (7) impose that all the markets belonging to set M* are necessarily selected
in any feasible solution. Constraints (8)—(10) are binary conditions on the variables.

3 Solution Algorithms

In this section we describe the two algorithms proposed to solve the UTPP-B. Given
a current solution s, we call external the markets which do not belong to it and define
as T'abu the set of markets in s which are forbidden to exit the solution in the current
iteration.

The first proposed algorithm is called EJEMO (EJEct and MOve). Its detailed
description is provided in Fig. 1. EJEMO receives as input a feasible solution s/
and provides as output a new, possibly improved, feasible solution s*. The algorithm
consists in an enhanced local search procedure which moves from a current solu-
tion s to its neighbor s’ by removing a chain of / markets and inserting as many
markets as required to restore feasibility (procedure ChainEjection(s,/)). Inserted
markets (set S) become tabu for a maximum of r,,, iterations during which they
cannot be removed from the current solution. If the new solution s” has a better value
with respect to s, the parameter / (initially set to its maximum value /,,,) remains
unchanged (internal while loop) and the algorithm moves from s to s’. Otherwise
the parameter / is reduced and the search is restarted from s. When [ reaches its
minimum value /,,;, (for loop), the algorithm diversifies the search generating a new
solution s” by using the procedure Shaking(s, &). This procedure randomly inserts
in the current solution s as many markets as necessary to increase its traveling costs
by at least a predefined percentage £ (initially set to its maximum value %,,,,). The
procedure aims at possibly escaping from a local minimum by leading the search
towards unexplored regions of the solution space. After the insertion of the new mar-
kets, the heuristic starts again with / set to a new initial value /,,,, computed as a fixed
percentage of the markets making part of the current solution, whereas the diversifi-
cation parameter / is reduced by a constant percentage /. The algorithm’s stopping
rule is given by h = h,,;,, (main while loop).

Procedure ChainEjection(s,/) is a two-step routine. The first step tries to re-
duce the length of the current cycle s by removing the chain of / consecutive markets
that yields the largest reduction in the traveling costs. At this aim the procedure finds
the set P(s) of all possible paths with [ + 1 edges belonging to the current solution s
and which do not contain markets belonging to M* or markets which are tabu (since
they have been inserted in one of the previous iterations). If P is void an aspiration
rule is applied which allows to consider tabu markets for paths construction. For
each path p € P(s), the procedure calculates the routing cost reduction produced by
its removal and the path yielding the highest reduction is removed by directly join-
ing its extreme vertices. The second step controls if the new cycle is feasible and,
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Fig. 1. Pseudo-code of EJEMO algorithm

InpPUT:

initial solution s.
OurpPuT:

final solution sZ.

MaN Loor:
hoi= Py, 2= Fopaxs
sE =1, v(sF) = v(sh;
s 1= sF, v(s) 1= v(sP);
while (& > h,,;,) {
for (1:=lLyux; I > Lpin; L:i=1-1); {
s’ := ChainEjection(s, );
Let S be the set of markets inserted to restore feasibility;
ifr=0then{r:=r,.,};
Add markets in S to T'abu with tabu tenure r;
ri=r—1;
while (v(s") < v(s)) {
s:= 5, v(s) :=v(s);
s’ := ChainEjection(s,);
let S be the set of markets inserted to restore feasibility;
ifr=0then{r:=r,. };
Add markets in S to Tabu with tabu tenure r;
ri=r—1;
} end while
if v(s) < v(sF) then { sF := s, v(s%) := v(s) };
} end for
s :=Shaking(s, h);
s:=8",v(s) == v(s");
h:=h— hy;
} end while

if not, it restores feasibility by consecutively applying, if necessary, two feasibility
procedures (GetAll(s) and BudgetRestore(s)).

Procedure GetAll(s) receives as input a solution s which is infeasible with re-
spect to products purchasing. It iteratively inserts external markets one after the other
until all products result to be bought. Since the procedure aims at satisfying products
demand while minimizing routing costs, the markets to enter the solution are selected
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and inserted according to cheapest insertion rule and without considering purchasing
costs. All inserted markets become fabu with a tabu tenure value r depending on the
iteration. Every r,,, iterations the tabu tenure r reduces to zero and the set T'abu
becomes void. This means that when entering a solution a market will remain tabu
for a number of iterations equal to the current value of parameter » where r is less
than or equal to 7,45

The solution finally provided by GetAll(s) may not be feasible with respect to
the budget threshold constraint. In such case the procedure BudgetRestore(s) is
applied. As a first step, such procedure finds all the subsets of markets external to
solution s with cardinality one and two such that, if singularly inserted in the current
solution, guarantee the budget to be satisfied. Then, the subset which allows to get
feasibility with the smallest increase in the traveling costs, is added to the current
solution. Markets insertion is made by cheapest insertion rule. If no subset of cardi-
nality less than or equal to two is enough to restore budget feasibility, the procedure
iteratively inserts one by one the external markets, previously sorted according to a
saving cost rule, until the budget constraint is satisfied. More precisely, when insert-
ing one or two markets in a solution, the corresponding saving in the purchasing costs
is exactly computed as the difference between the total purchasing costs before and
after markets insertion. The markets inserted become fabu for a number of iterations
equal to r as described above.

EJEMO is very quick and has the main advantage of depending on only two
main parameters: the one establishing the length of the chain to be removed (pa-
rameter /) and that controlling diversification and imposing a maximum number
of restarts (parameter /). For parameter / we have also tested the variant of the
algorithm in which [ is initially set to its minimum value /,;, and then increased
up to I, Since this version has provided a worse performance we have aban-
doned it.

Finally, the idea of removing chains of markets is also used in the algorithm
proposed in [12]. With respect to such local search heuristic in our case markets
inserted into a solution become tabu with a predefined tabu tenure. The length of the
tabu list is not constant but reduces at a constant rate from r,,,, to zero. As soon as
tabu tenure is zero it is reset to its maximum value 7.

The second proposed algorithm uses a modification of the previous heuristic as
a local search to be applied within a Variable Neighborhood Search (VNS) scheme.
Figure 2 shows the pseudo-code of the implemented algorithm.

In a Variable Neighborhood Search scheme a sequence of neighborhoods N,(-) is
introduced each one characterized by a different parameter g. If intensification of the
search is required, the initial value of g is set to a minimum value so that the closest
neighborhood is selected first. The parameter will be increased only if no solution
improvement can be obtained. If diversification of the search is required, the initial
value for ¢ is set to a maximum value and then decreased.

In our case the algorithm explores increasing neighborhoods of a current solu-
tion (the VNS parameter ¢ is initialized to its minimum value ¢,,;,,) and moves from
this solution to a new one restarting the whole procedure if and only if an objective
function improvement has been obtained. The algorithm receives as input an initial
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Fig. 2. Pseudo-code of Variable Neighborhood Search algorithm

InpUT:

initial solution s.
OurpPuT:

final solution sVVS.

MaiN Loop:
SYNS = sl u(sVNS ) 1= w(s);
for (q := Guin} 4 <= Guaxs 4 = 4 + Quuep) {
s’ := RandomIns(s"™S, g);
for (1 :=Lu; 1> Lyins L= 1= 1) {
s” = Improvement(s’, [);
if (V(s) < v()) |
s ="
v(s") == v(s");
L= lyax;
} end if
} end for
if (v(s") < v(s"™5)){
SYNS = u(sYNS) = w(s);
q = Gmin;
} end if
} end for

solution s’ and provides as output the possibly improved solution sV¥$ which is ini-
tialized to s'.

Given ¢ and the solution s""”, a new solution s’ belonging to the neighbor-
hood N,(sV™5) is generated from s*™5 by inserting ¢ external random markets
(RandomIns(s"™5, g) procedure). Insertion is made according to the cheapest in-
sertion rule. Then a local search procedure is applied to s’. The local search rou-
tine starts by setting the parameter / to its maximum value /,,, (computed as a
predefined percentage of the markets making part of the current solution). Then
procedure Improvement() is called. As procedure ChainEjection() in EJEMO,
Improvement(s’, /) routine is based on the ejection of / consecutive markets from a
solution s’. However, in this case, the chain to be ejected is not selected a priori as the
one which yields the highest travel costs reduction, but the method iteratively eval-
uates each feasible solution which can be obtained by removing / consecutive mar-

kets and by inserting as many external markets as necessary to restore the feasibility

VNS
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(through GetAll() and BudgetRestore() procedures). As far as an improving so-
lution is obtained the evaluation of /-markets chains ejection is interrupted (first im-
provement rule), the algorithm moves to the new solution, while the parameter / is
reset to a new maximum value /,,,, (depending on the number of markets in the cur-
rent solution) and the local search is restarted. If no improvement is achieved, after
evaluating all feasible solutions obtainable by the elimination of / consecutive mar-
kets, the parameter [ is decreased by one unit and the procedure is repeated. When
| = Iy the local search stops providing the best solution s” found. If this solution
is better than the incumbent one sV, the algorithm moves to this new solution and
the VNS procedure restarts with ¢ := g, and s¥¥5 := &', otherwise the parameter
q is increased by a value g.,. Parameter g controls search intensification and diver-
sification. When no better solutions can be found g is increased allowing the search
to explore farthest and possibly more promising regions of the solution space. The
algorithm stops when ¢ takes its maximum value g,,,,. The proposed VNS is not as
efficient as EJEMO algorithm but, on average, provides more effective solutions.

Both proposed solution algorithms receive as input an initial feasible solution
s! consisting of two steps. In the first one a construction heuristic is applied: the
markets are sorted according to a predefined rule and then added one by one to a cycle
until all products have been purchased. In the second step, the previously obtained
solution is improved by possibly reducing its traveling costs with a TSP-improving
heuristic. If, at step one, the constructed solution results to be infeasible with respect
to the budget threshold B, the BudgetRestore() routine is called. In the construction
heuristic we have used the nearest neighborhood rule to select the market which
has to be inserted next and we have started insertion with markets belonging to set
M*. As TSP-improving heuristic we have applied GENIUS algorithm (see Gendrau
et al. [2]).

4 Computational Results

Proposed algorithms have been coded in C and run on a PC Pentium with 3.5 GHz
and 2 GB of RAM.

Since no instances for the TPP with budget constraint are available in the lit-
erature, we have used the Euclidean instances proposed by Laporte et al. [5] for
the uncapacitated TPP (Class 3 instances). We have set the budget constraints equal
to the optimal purchasing costs provided by Riera Ledesma and Salazar Gonzalez
in [13] when solving the bi-objective formulation of the Uncapacitated TPP on the
same set of instances. In this paper, the authors have developed an iterative procedure
to determine the solutions efficient set of their bi-criteria problem in the objective
space. For each efficient point in the objective space, a Pareto optimal solution in
the decision space is computed. The first step of this general method determines, for
each instance, two initial efficient points through a two phases procedure which op-
timizes hierarchically the two objective functions represented by the purchasing and
the routing costs. More precisely, an efficient point is computed by first minimizing
the purchasing costs over all markets and then by setting this value as a constraint
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in a problem which minimizes the routing costs. The other one is obtained by first
solving the problem that looks for the cycle at minimum cost while purchasing all
products and then by finding the minimum purchasing costs over the subset of se-
lected markets.

For each efficient point obtained by solving a given instance of the bi-objective
problem a corresponding instance for the UTTP-B is generated by setting its budget
threshold B equal to the optimal purchasing costs of the efficient point. This means
that for each instance of Class 3 two different instances for the UTPP-B are created.
Notice that while the instance corresponding to the first efficient point will have
a tight budget threshold (the optimal purchasing costs correspond to the minimum
purchasing costs), this is not the case for that corresponding to the second one. It is
immediate to see that the optimal solutions for these UTPP-B instances correspond
to the optimal traveling costs of the corresponding efficient points. We will identify
the instances corresponding to the first efficient point and characterized by a budget
equal to the minimum purchasing costs as tight-budget instances, while we will refer
to those instances associated to the second efficient point as untight-budget instances.

We recall that instances in Class 3 are characterized by integer coordinate
vertices generated in a [0,1,000] x [0,1,000] square according to a uniform distri-
bution and Euclidean distances. Each product k is associated with |Mj| randomly
selected markets, where |My| is randomly generated in [1,|V| — 1]. Product prices
are generated in the interval [1,500] according to a discrete uniform distribution.
In [13] the authors provide optimal solutions (initial efficient points) for instances
with m = 50,100,150,200 markets and n = 50,100 products. For each combina-
tion of m and n they solve five different instances made available on the web page
http:/jwebpages.ull.esfusers/jjsalaza. This means that, for our problem, we have gen-
erated and solved 80 instances altogether, 40 of which are tight-budget instances and
40 untight-budget ones. Moreover, given the random nature of the proposed solution
algorithms, each of them has been run 5 times (5 trials) over each instance. The fol-
lowing two tables provide the average, min and max percentage errors with respect
to the optimal solution value out of these 5 trials for the 40 tight-budget instances
(Table 1) and for the 40 untight-budget ones (Table 2), respectively.

Each table is divided into two parts, the first one provides the computational re-
sults for heuristic EJEMO whereas the second one those for the VNS procedure.
The column headings in each table have the following meaning: symbol # identifies,
given m and n, the instance solved; B provides the budget threshold (the optimal
purchasing costs of the corresponding efficient point); opt gives the optimal solution
value (optimal traveling costs); aver., min and max refers to the average, the min-
imum and the maximum percentage error of the heuristic solution value from the
optimal one out of the 5 trials; finally, sec provides the average computational time
in seconds out of the 5 trials.

For heuristic E/JEMO we have set the parameters A, = 35% and h,,;, and
hy equal to 1%. The decision has been taken after trying different values for the
maximum percentage h,,,, equal to 20%, 25%, 40%, and 50%, respectively. The
maximum value for the tabu tenure r,,,, has been set to 4, while parameter /,,,, and
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Table 1. Computational results: tight-budget instances

n

m

#

50 501

100

Average

100

150

200

50

100

150

200

(O I S

L o S

L S

B opt

76 3629
66 3511
70 3164
80 3439
72 4116

151 4050
137 4442
134 4174
159 4117
145 4110

224 4851
199 4434
193 4609
222 4692
215 5018

299 4816
258 4564
262 4259
291 4684
282 5184

58 2930
53 3091
71 2977
62 3311
67 2890

123 3842
121 3767
137 3725
121 3749
129 3893

177 4312
188 4584
191 4724
189 4649
192 4502

230 4124
261 5120
246 4660
245 4673
258 4699

EJEMO

aver. min

3.25 2.65
5.74 3.59
1.99 1.04
1.19 0.55
5.52 4.64

2.20 0.49
6.66 5.11
17.48 8.53
2.79 1.51
5.51 4.70

9.35 7.87
8.21 4.53
2.26 1.48
222222
8.41 6.30

4.94 3.09
5.67 3.22
8.32 7.54
1.96 1.96
6.25 4.44

5.24 3.38
1.99 0.49
2.57 0.97
7.70 2.66
1.42 1.31

5.23 0.96
9.25 5.89
7.21 4.62
6.57 3.55
2.17 1.64

10.63 4.17
8.89 3.77
8.82 5.86

10.90 7.14
7.01 2.95

7.49 4.92
9.79 7.01
8.51 4.59
7.01 4.86
6.01 2.43

6.11 3.72

max

3.69
9.83
3.60
1.48
6.75

3.04
7.99
22.76
3.84
7.20

11.44
13.01
3.62
222
12.71

7.56
9.14
10.24
1.96
7.66

6.83
3.49
6.18
11.87
1.63

9.24
12.37
9.96
9.98
2.80

13.01
13.46
12.47
13.85
10.35

10.14
11.19
10.52
8.88
9.45

8.44

sec

1.99
1.88
1.77
1.81
2.04

2.72
2.75
2.76
2.82
2.77

6.31
5.46
5.76
5.93
6.70

10.51
9.21
9.52

10.48
9.60

1533
12.85
13.93
13.67
13.27

4.09
3.69
4.22
3.99
3.30

4.28
4.71
4.67
5.40
4.77

2.79
3.16
2.86
3.06
3.13

5.75

VNS
aver. min max sec

0.71 0.61 0.74  4.12
1.12 0.00 3.25 4.23
0.05 0.00 0.25  3.95
0.00 0.00 0.00 1.87
0.47 0.00 2.36  3.28

0.00 0.00 0.00 11.18
0.10 0.00 0.18  9.74
0.68 0.00 1.92 10.97
0.00 0.00 0.00 6.46
0.00 0.00 0.00  7.30

2.80 1.46 4.16 13.53
1.16 0.59 1.65 14.73
0.00 0.00 0.02 17.49
0.00 0.00 0.00 19.67
0.00 0.00 0.00 20.49

0.13 0.00 0.25 29.56
0.52 0.00 2.61 29.91
0.01 0.00 0.02 31.96
0.00 0.00 0.00 22.88
1.01 0.00 1.81 22.52

0.00 0.00 0.00 32.47
0.46 0.03 1.59 23.84
0.19 0.00 0.37 33.75
0.38 0.00 1.00 37.85
0.00 0.00 0.00 21.59

0.03 0.03 0.03 137.36
1.28 0.00 6.24 197.63
0.23 0.00 0.62 142.59
1.06 0.00 5.25 167.48
0.11 0.00 0.28 141.94

0.93 0.00 4.66 324.90
1.34 0.00 6.65 365.70
1.36 0.28 2.46 251.93
1.01 0.00 2.41 234.38
0.75 0.33 0.71 264.40

0.00 0.00 0.00 253.17
1.20 0.29 2.09 271.57
1.06 0.00 1.59 272.74
0.03 0.00 0.00 251.32
0.44 0.00 0.87 336.05

0.52 0.09 1.40 101.21

2717
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Table 2. Computational results: untight-budget instances

n

m# B opt

EJEMO
aver. min max

50 50 1 176 1684 0.00 0.00 0.00
2 143 935 0.00 0.00 0.00

100

Average

100

150

200

50

100

150

200

3 158
4242
5 269

1 277
2 309
3 238
4 287
5 263

1 394
2 343
3443
4 411
5 362

1 446
2 447
3 466
4 451
5 478

1137
2 186
3 156
4 146
5111

1 211
2 266
3 239
4 248
5249

1 380
2 321
3421
4 337
5 339

1 408
2 438
3 485
4 429
5 470

1422
1228
1317

2120
1854
1614
2822
2340

2409
1815
1917
2143
2800

2933
1989
1860
2414
3148

1335
832

1475
1586
2391

1919
1662
1597
1406
2709

1863
2505
1898
2292
2848

1483
2683
2364
3024
2308

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

2.03 1.84 2.08
0.00 0.00 0.00
0.00 0.00 0.00
0.35 0.00 0.89
0.29 0.00 1.24

0.00 0.00 0.00
0.00 0.00 0.00
0.05 0.05 0.05
0.00 0.00 0.00
0.50 0.50 0.50

0.14 0.00 0.38
0.03 0.00 0.05
0.00 0.00 0.00
0.00 0.00 0.00
0.10 0.10 0.10

0.18 0.00 0.30
0.12 0.12 0.12
0.00 0.00 0.00
1.56 1.07 2.40
0.00 0.00 0.00

0.60 0.31 0.68
1.13 0.60 1.26
0.00 0.00 0.00
2.39 0.21 3.84
0.04 0.04 0.04

0.65 0.00 2.20
0.01 0.00 0.04
0.00 0.00 0.00
0.02 0.00 0.09
0.01 0.00 0.04

3.84 3.84 3.84
0.63 0.48 0.78
0.00 0.00 0.00
0.11 0.03 0.20
0.00 0.00 0.00

0.37 0.23 0.53

VNS
sec aver. min max  sec

1.99 0.00 0.00 0.00 1.00
1.88 0.00 0.00 0.00 0.66
1.77  0.04 0.00 0.00 0.60
1.81 0.00 0.00 0.00 0.53
2.04 0.00 0.00 0.00 1.00

272 0.96 0.00 1.60 0.87
2.75 0.00 0.00 0.00 0.88
2.76 0.00 0.00 0.00 1.03
2.82 0.00 0.00 0.00 1.47
7.820.00 0.00 0.00 1.04

29.20 0.14 0.00 0.71 1.27
5.22 0.00 0.00 0.00 1.52
21.09 0.00 0.00 0.00 1.04
1.71 0.00 0.00 0.00 0.92
12.36  0.30 0.00 0.50 1.95

2.50 0.27 0.00 0.68 1.94
23.44 0.17 0.00 0.85 2.04
1.98 0.00 0.00 0.00 1.36
16.87 0.00 0.00 0.00 4.75
27.36 0.00 0.00 0.00 1.99

13.17 0.00 0.00 0.00 2.63
11.39 0.00 0.00 0.00 0.77
8.23  0.00 0.00 0.00 1.47
6.07 0.34 0.00 0.57 4.62
2.57 0.00 0.00 0.00 10.94

1.58 0.18 0.05 0.68 22.94
320 0.18 0.18 0.18 7.14
1.47 0.00 0.00 0.00 23.51
1.51 0.00 0.00 0.00 2.60
3.82 0.04 0.04 0.07 12.93

1.93 0.02 0.00 0.05 3.07
2.17 0.00 0.00 0.00 21.88
1.99 0.00 0.00 0.00 1.33
3.82 0.00 0.00 0.00 29.81
1.90 0.00 0.00 0.00 18.23

3.09 1.94 0.00 3.24 37.70
1.22 0.23 0.11 0.26 29.58
1.61 0.00 0.00 0.00 8.24
2.25 0.01 0.00 0.03 14.27
7.820.00 0.00 0.00 1.53

6.27 0.12 0.01 0.24 7.08
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Lnin are equal to 10% and 1% of the number of the markets making part of the current
solution, respectively.

For algorithm VNS we have easily set gpqar = 20 and guin = Ggep = 1 as the
best parameter values, whereas some testing has been required in order to choose
the initial value for parameter / which is resulted to be more crucial. At this aim
we have solved several instances with different values of parameter /.. In Fig.3
we report the average percentage errors with respect to the optimal solution value
found by the VNS approach out of the 5 tight-budget instances (tight-budget line
in the graph) and the 5 untight-budget instances (untight-budget line in the graph)
with 100 markets and 100 products for five different values of the parameter [,
equal to 5, 10, 15, 20, and 25%, respectively. For this testing we have considered
only one algorithm trial. We can notice how, in both the cases, the better algorithm
performance can be obtained by setting /,,, equal to 5% of the number of markets
in the current solution. This result has been confirmed by other experiments carried
out on instances with a different number of markets and products.

1.00% +

0.90%

0.80% .

0.70% —a— L{ntlght budget
5 0.60% A —— tight budget
£ 0.50% A
@ 0.40% A . . N

0.30% //

0.20% A

0.10% A

0.00% : : , '

5 10 15 20 25
Imax

Fig. 3. Tuning of the parameter /,,,, over instances with 100 markets and 100 products

By comparing the two tables it is evident how tight-budget instances are the most
difficult ones. In such instances EJEMO algorithm behaves rather poorly providing
an average error equal to 6.11% out of the 40 solved instances (given the five tri-
als). Moreover, it is never able to find the optimal solution value (cfr. column min
in Table 1). Such bad performances are, on average, due to ChainEjection() pro-
cedure which fails to eject the right markets. Indeed, the simple selection rule used
by such procedure to choose the chain of markets to be removed behaves accept-
ably good only when the number of good quality solutions is large enough as for
untight-budget instances. On the contrary the Variable Neighborhood Search pro-
cedure yields an average error equal to 0.52% and finds the optimal solution value
in 32 out of the 40 instances solved (considering the 5 trials). From the efficiency
point of view, the computational time required by EJEMO is almost constant for
all instances (its average value out of all instances is equal to 5.75 s), whereas the
average computational time for the VNS algorithm grows quickly with the problem
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size reaching an average value of 276.97 s for instances with 100 markets and 200
products.

Both heuristics performance improves when untight-budget instances are taken
into account. Table 2 shows that £JEM O provides an average percentage error out of
all instances equal to 0.37% with a maximum error never larger than 3.84%. More-
over, given the five trials, it is able to find the optimal solution values in 27 out of
40 solved instances. The results obtained by the VNS approach are even better: this
procedure yields an average percentage error equal to 0.12% out of the 40 solved
instances and gets the optimal solution value (given the five trials) in all but three
instances. The average computational times are close to 7 s for both the heuristics.

To conclude, if we consider tight-budget instances the ranking of the proposed
algorithms in terms of solution values suggests VNS as a first choice followed by
EJEMO. Nevertheless, if running time is of high relevance £EJEMO may be used
even if at a price of a lower performance. On the contrary for untight-budget instances
procedure VNS is the dominant one providing solutions which are more effective and
as efficient as those yielded by EJEMO.

5 Conclusions

In this paper we have analyzed a variant of the uncapacitated Traveling Purchas-
ing Problem based on the minimization of the traveling costs while bounding the
purchasing costs in the constraints. For this problem, which has found very little at-
tention in the literature, we have introduced two different solution algorithms. The
first one is an enhanced local search procedure which generates neighbor solution
by ejecting chain of consecutive vertices from the current solution and is based on
a simple tabu structure to avoid cycling (EJEMO algorithm). The second one is a
straightforward implementation of a Variable Neighborhood Search scheme which
uses a modification of the previous algorithm as local search routine.

Computational results on benchmark instances created for the problem have
shown how EJEMO is an efficient and effective procedure when the solved instances
are characterized by a large budget threshold (untight-budget instances). On the other
side, the procedure may produce bad results when the number of good quality solu-
tions is small as for the tight-budget instances.

On the contrary the VNS approach always provides effective solutions and in the
case of untight-budget instances it is also efficient showing an average computational
time equivalent to that of EJEMO.

As future developments we will study a dynamic version of the problem for the
capacitated case. As a first step in this direction we will analyze the performance of
the proposed heuristic algorithms as well as that of a new multi-start variant of the
VNS approach when applied to the capacitated version of the problem. The best re-
sulting approach will be used as solution algorithm for the dynamic routing problem.
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