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Preface

Characterization of the complex dynamics of economic cycles, by iden-
tifying regular and irregular patterns and regime switching between
different dynamic phases in the economic time series, is the key to
improve economic forecasting. Statistical analysis of stock markets and
foreign exchange markets have demonstrated the intermittent nature of
nonlinear economic time series, which exhibits non-Gaussian behavior
in the probability distribution function of price changes and power-law
dependence on frequency in the spectral density. Nonlinear determinis-
tic models of economic dynamics are capable of simulating intermittent
time series arising from a transition from order to chaos, or from weak
chaos to strong chaos, which can explain the origin and nature of in-
termittency observed in economic systems.

This monograph studies complex economic dynamics based on
a forced van der Pol oscillator model of business cycles. The tech-
nique of numerical modeling is applied to characterize the fundamental
properties of complex economic systems which present multiscale and
multistability behaviors, as well as coexistence of order and chaos. In
particular, we focus on the dynamics and structure of unstable periodic
orbits and chaotic saddles within a periodic window of the bifurcation
diagram, at the onset of a saddle-node bifurcation and at the onset of
an attractor merging crisis, as well as in the chaotic regions associated
with type-I intermittency and crisis-induced intermittency, in nonlin-
ear economic cycles. Inside a periodic window, chaotic saddles are re-
sponsible for the transient motion preceding convergence to a periodic
attractor or a chaotic attractor. The links between chaotic saddles, cri-
sis and intermittency in complex economic dynamics are discussed. We
show that a chaotic attractor is composed of chaotic saddles and unsta-
ble periodic orbits located in the gap regions of chaotic saddles. Both
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type-I intermittency and crisis-induced intermittency are the results of
the occurrence of explosion following the onset of a local or a global
bifurcation, respectively, whereby the gap regions of chaotic saddles are
filled by coupling unstable periodic orbits.

Nonlinear modeling of economic chaotic saddle, crisis and intermit-
tency can improve our understanding of the dynamics of economic in-
termittency observed in business cycles and financial markets. In view
of the universal mathematical nature of chaotic systems, the results ob-
tained from our simple prototype model of economic dynamics can in
fact be applied to more complex economic scenarios, including nonlin-
ear spatiotemporal economic systems. Characterization of the complex
dynamics of economic systems provides an efficient guide for pattern
recognition and forecasting the turning points of business and financial
cycles, as well as for optimization of management strategy and decision
technology.

I wish to thank Dr. Colin Rogers, Dr. Erico Rempel, Dr. Felix
Borotto, Mr. Rodrigo Miranda, and Mr. Wanderson Santana for their
collaboration, assistance and friendship. I wish to thank Dr. Ténus
Puu and Dr. Steve Keen for their constructive and critical comments.
I wish to thank my wife, Kwai Lin, and my daughters, Clarice, Elisa
and Janice for their love and prayers.

April 2007 Abraham C.-L. Chian
School of Economics,

University of Adelaide, Australia

& National Institute for Space Research, Brazil
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Introduction

Economic systems exhibit ubiquitous complex dynamics evidenced
by large-amplitude and aperiodic fluctuations in economic variables
such as foreign exchange rates, gross domestic product, interest rates,
production, stock market prices and unemployment (Hommes 2004).
Traditionally, economists have studied economic dynamics using the
Newtonian approach by treating the economic fluctuations as lin-
ear perturbations near the equilibrium (Scarth 1996, Gandolfo 1997,
Shone 2002). The linear approach is valid only for small-amplitude
fluctuations and cannot describe the complex characteristics of large-
amplitude and aperiodic economic fluctuations. Large-amplitude fluc-
tuations in economic and financial systems are indications that these
systems are driven far away from the equilibrium whereby the nonlin-
earity dominates the system behavior; aperiodic economic and financial
fluctuations are manifestations of chaos intrinsic in a complex system.
Hence, a non-Newtonian approach based on nonlinear dynamics is re-
quired to understand the nature of complex economic dynamics.

In recent years, there is a growing interest in applying nonlinear dy-
namics to economic modeling. For example, Chiarella (1988) introduced
a general nonlinear supply function into the traditional cobweb model
under adaptive expectations, and showed that in its locally unstable
region it contains a regime of period-doubling followed by a chaotic
regime. Puu (1991) studied the nonlinear dynamics of two competing
firms in a market in terms of Cournot’s duopoly theory; by assuming
iso-elastic demand and constant unit production costs this model shows
persistent periodic and chaotic motions. Keen (1995) introduced a real
financial sector and two stylized facts into Goodwin’s growth cycle
model; the resulting nonlinear system is able to model the complex be-
havior of Minsky’s financial instability hypothesis, with the transition
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from stability to instability and possible breakdown determined by the
level of economic inequality, interest rate and debt. Scarth (1996) de-
rived a nonlinear standard aggregate demand and supply model of a
closed economy consisting of IS, LM, and Phillips curve relationships,
described by the logistic function which admits chaotic cycles for a
range of control parameters; this model indicates that the standard
practice of linear approximations in macroeconomics is a definite limi-
tation. Brock and Hommes (1997) applied the concept of adaptively ra-
tional equilibrium to a cobweb type demand-supply model where agents
can choose between rational and naive expectations, which shows that
in an unstable market with positive information costs for rational ex-
pectations, a high intensity of choice to switch predictors leads to highly
irregular equilibrium prices converging to complex dynamics such as a
strange attractor. Rosser (2001) showed that in an integrated global
ecologic-economic system a variety of chaotic and catastrophic patterns
appear in the models of global warming dynamics and fishery dynamics,
which complicate global policy making efforts. Hughston and Rafailidis
(2005) applied a chaotic approach to develop dynamical models for in-
terest rates and foreign exchange; they used the Wiener chaos expansion
technique to formulate a systematic analysis of the structure and clas-
sification of these financial models. Many more examples of nonlinear
economical modeling can be found in the books on complex economic
dynamics (Puu 1989, Chiarella 1990, Zhang 1990, Brock, Hsieh and
LeBaron 1991, Rosser 1991, Benhabib 1992, Medio 1992, Lorenz 1993,
Day 1994, 2000, Thomas, Reitz and Samanidou 2005).

One of the main signatures of complex systems is intermittency,
which is characterized by abrupt changes of the system activity with
alternating periods of quiescent low-level fluctuations and bursting
high-level fluctuations. Temporal intermittency and spatiotemporal in-
termittent turbulence are pervasive in nature and society, e.g., the
flow of cars in heavy traffic in the cities, the floods and droughts of
rivers such as the Nile, the fluid turbulence in atmosphere and ocean,
and the sunspot cycles (Vassilicos 1995). Intermittency exhibits multi-
scale behavior (power-law dependence on frequency/wavenumber) and
non-Gaussian statistics (heavy-tail probability distribution function of
fluctuations), involving information transfer between different scales.
There is evidence that intermittency is also a fundamental feature of
complex economic and financial systems. For example, Miiller et al.
(1990) presented a statistical analysis of four foreign exchange spot
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rates against the U.S. dollar; they found that the mean absolute
changes of logarithmic prices follow a scaling law against the interval
on which they are measured and there is a net flow of information
from long to short timescales, which implies that the behavior of
long-term traders (who watch the markets only from time to time)
influences the behavior of short-term traders (who watch the mar-
kets continuously). Mantegna and Stanley (1995) showed that the
scaling of the probability distributions of the Standard & Poor 500
index can be described by a non-Gaussian process with dynamics
that, for the central part of the distribution, corresponds to that pre-
dicted for a Lévy stable process. Ghashghaie et al. (1996) reported an
analogy between the information cascade in foreign exchange market
and the energy cascade in hydrodynamic turbulence, and concluded
that the intermittent behavior of turbulent flows, with typical occur-
rence of laminar periods which are interrupted by turbulent bursts,
corresponds to clusters of high and low volatility in the foreign ex-
change markets, which gives rise to relatively high values of the prob-
ability densities of price changes both in the center and the tails.
Krawiecki, Holyst and Helbing (2002) considered a model of financial
markets consisting of many interacting agents, and obtained time se-
ries of price returns showing chaotic bursts resulting from the emer-
gence of attractor bubbling or on-off intermittency, resembling the
empirical financial time series with volatility clustering; the proba-
bility distributions of returns exhibit power-law tails. Mattedi et al.
(2004) studied the financial risk of the aerospace sector and developed
a new index for this sector based on the New York exchange and the
Over the Counter markets. They showed that the statistical character-
istics of this index are more volatile but less intermittent than other
traditional market indicators such as the Dow-Jones industrial index
and the Standard & Poor 500 index. This suggests the existence of
long memory correlations having an impact on the volatility clustering
patterns of this index.

Chaotic systems are known to describe various types of intermit-
tency, which occur whenever the behavior of a system seems to switch
back and forth between two (or more) qualitatively different behav-
iors even though all the control parameters are kept constant and no
noise is present (Hilborn 1994). The intermittent route to chaos was
first discovered by Manneville and Pomeau (1979). They identified three
types of intermittency whereby the system seems to switch between
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periodic/quasiperiodic behavior and chaotic behavior due to a transi-
tion from order to chaos via a local bifurcation such as saddle-node
(tangent) bifurcation, Hopf bifurcation, or period-doubling bifurcation.
Another chaotic scenario that leads to intermittency occurs when the
system undergoes a global bifurcation known as crisis (Grebogi, Ott
and York 1983), whereby a chaotic attractor in the state space suddenly
changes in size (interior crisis), disappears (boundary crisis), or two or
more chaotic attractors merge to form a large chaotic attractor (attrac-
tor merging crisis). In crisis-induced intermittency, the systems switch
between weakly chaotic and strongly chaotic behaviors (Grebogi, Ott
and Romeiras 1987). There are many examples of experimental observa-
tions of chaos-driven intermittency. For example, Hayashi, Ishizuka and
Hirakawa (1983) observed a transition from order to chaos via type-I
Pomeau-Manneville intermittency in the onchidium pacemaker neuron.
Ditto et al. (1989) observed crisis-induced intermittency in a magnetoe-
lastic ribbon experiment.

Stable and unstable periodic orbits are the basic elements of com-
plex dynamical systems, and are the key to explain the origin and na-
ture of chaos-driven intermittency. A complex system consists of order
and chaos; order is governed by stable periodic orbits, whereas chaos
is governed by unstable periodic orbits. In particular, unstable peri-
odic orbits are the skeleton of chaotic attractors and chaotic saddles
(Auerbach et al. 1987, Cvitanovic 1988, Hilborn 1994). Chaotic saddles
are non-attracting chaotic sets which are responsible for chaotic tran-
sients (Grebogi, Ott and Yorke 1983, Kantz and Grassberger 1985), and
are the backbones of chaotic attractors (Szab6 and Tél, 1994a, 1994b).
In addition, chaotic saddles are responsible for intermittency in the
chaotic regions outside a periodic window (Szabé et al. 2000), e.g.,
beyond a saddle-node bifurcation (type-I intermittency), and beyond
an interior crisis (crisis-induced intermittency). There is experimental
evidence of unstable periodic orbits, chaotic transients and chaotic sad-
dles. For example, Schief et al. (1994) detected the presence of unstable
fixed-point behavior in a spontaneously bursting neuronal network in
vitro and demonstrated that chaos in brain dynamics can be controlled
and anticontrolled by changing the stability properties of the unsta-
ble fixed point. Janosi, Flepp and Tél (1994) reconstructed the chaotic
transient behavior of a laser based on a long time series in a labora-
tory experiment; they showed that the motion on the chaotic transient
is more unstable than on the coexisting chaotic attractor. Faisst and
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Eckhardt (2003) identified a family of unstable traveling waves, orig-
inating from saddle-node bifurcations, in a numerical experiment for
flow through a pipe; these unstable structures provide a skeleton for
the formation of a chaotic saddle that can explain the intermittent
transition to turbulence and the sensitive dependence on initial condi-
tions in this flow.

Chaotic transients and chaotic saddles are fundamental to the un-
derstanding of complex economic dynamics. Lorenz (1993) observed
chaotic transient motion in a Kaldorian model of business cycles.
Lorenz and Nusse (2002) demonstrated the potential relevance of
chaotic saddles in the Goodwin’s nonlinear accelerator model of busi-
ness cycles. Apart from the works by Lorenz (1993) and Lorenz and
Nusse (2002), most economic literature and books on complex eco-
nomic dynamics (Puu 1989, Chiarella 1990, Zhang 1990, Benhabib
1992, Brock, Hsieh and LeBaron 1991, Rosser 1991, Medio 1992, Day
1994, 2000, Thomas, Reitz and Samanidou 2005) have only dealt with
chaotic attractors, paying no attention to chaotic transients and chaotic
saddles.

In Chapter 2, a forced van der Pol oscillator model of economic cy-
cles is formulated as the prototype model to describe the complex eco-
nomic dynamics. The fundemental properties of nonlinear dynamics of
economic cycles are studied, including discussions on order and chaos,
Poincaré map, bifurcation diagram and periodic window, multistablilty
and basins of attraction, unstable periodic orbit and chaotic attractor.

In Chapter 3, based on numerical simulations of the forced oscillator
model of nonlinear economic cyles, it is shown that after an economic
system undergoes a dynamical transition from an ordered to a chaotic
state, the system maintains its memory before the transition and the
economic variables switch alternatively between periods of quiescent
and bursting fluctuations. This type-I economic intermittency arises
from a local bifurcation known as the saddle-node bifurcation. An eco-
nomic path evolves from a periodic to an aperiodic pattern when the
exogenous forcing amplitude passes a critical value whereby the sys-
tem loses its stability due to a saddle-node bifurcation. The power
spectrum of the type-I intermittent time series is broadband and dis-
plays power-law behavior at high frequencies, similar to the real data of
foreign exchange and stock markets. The characteristic intermittency
time, measuring the average duration of quiescent periods in the in-
termittent economic time series, is a function of the exogenous forcing
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amplitude. The scaling law of the characteristic intermittency time is
useful for forecasting the turning points of nonlinear economic cycles.

In Chapter 4, a new type of crisis-induced intermittency in nonlinear
economic cycles is discussed. It is shown that after an economic system
undergoes a global bifurcation known as attractor merging crisis, the
system has the ability to keep the memory of its weakly chaotic state
before crisis. As the result, the economic variables switch alternatively
between periods of weakly and strongly chaotic fluctuations. Similar
to the type-I economic intermittency, the power spectrum of the time
series of the crisis-induced economic intermittency is broadband and
presents power-law behavior at high frequencies, typical of volatile fi-
nancial markets. As the system moves away from the crisis point, it
becomes more chaotic, consequently the discrete spikes of the power
spectrum become less evident due to increasing multiscale information
transfer in the complex economic systems. The exponent of the scaling
law of the characteristic intermittency time of the crisis-induced eco-
nomic intermittency is much larger than that of the type-I economic
intermittency.

In Chapter 5, an attractor merging crisis in chaotic economic cycles
is characterized. It is shown that the van der Pol model of economic
cycles is invariant under the flip operation. Symmetry is a common
property of complex systems that exhibit attractor merging crisis. The
analysis is performed in a complex region within a periodic window of
the bifurcation diagram determined from the numerical solutions of a
forced oscillator, where a saddle-node bifurcation marks the beginning
of the periodic window. As the exogenous forcing amplitude increases
after the saddle-node bifurcation, two coexisting periodic attractors of
period-1 undergo a cascade of period-doubling bifurcations leading to
two weakly chaotic attractors. An attractor merging crisis occurs when
two coexisting weakly chaotic attractors merge to form a single strongly
chaotic attractor, which marks the end of the periodic window. The
onset of attractor merging crisis is due to the head-on collision of the
pair of coexisting weakly chaotic attractors, respectively, with a pair
of mediating unstable periodic orbits of period-3 and their associated
stable manifolds. In addition, it is demonstrated that the two coexisting
weakly chaotic attractors also collide with the boundary of the basins
of attraction that separates the two weakly chaotic attractors.

The aim of Chapter 6 is to perform an in-depth study of unstable
periodic orbits and chaotic saddles in complex economic dynamics. In
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particular, the roles of unstable periodic orbits and chaotic saddles in
crisis and intermittency in complex economic systems are investigated.
The technique of numerical modeling is applied to characterize the
dynamics and structure of unstable periodic orbits and chaotic saddles
within a periodic window of the bifurcation diagram, at the onset of
a saddle-node bifurcation and of an attractor merging crisis, as well
as in type-I intermittency and crisis-induced intermittency, of a forced
oscillator model of economic cycles. The links between chaotic saddles,
crisis and intermittency in complex economic dynamics are analyzed.
The conclusion is given in Chapter 7.



2

Nonlinear Dynamics of Economic Cycles

Complex dynamics of economic systems can be studied by applying the
concepts and techniques of nonlinear dynamics and chaos. Some models
of business cycles, such as Kaldor’s nonlinear investment-savings func-
tions and Goodwin’s nonlinear accelerator-multiplier, can be reduced
to the van der Pol equation which describes relaxation oscillations. By
introducing an exogenous driver, the forced van der Pol equation can be
adopted as a prototype model for complex economic dynamics. Numer-
ical solutions of this model can elucidate the fundamental properties
of complex economic systems which exhibit a wealth of nonlinear be-
haviors such as multistability as well as coexistence of order and chaos.
Unstable periodic orbits are the skeleton of chaotic attractors in com-
plex economic systems.

2.1 Empirical Evidence of Nonlinearity and Chaos in
Economic Data

Recently, there is a growing interest in nonlinear dynamics and chaos
in economics. Actual economic time series are rarely characterized by
regular (periodic, sinusoidal) dynamics typical of linear systems. In-
stead, various types of irregular (aperiodic, non-sinusoidal) forms of
large-amplitude fluctuations in economic time series are often observed,
which cannot be adequately explained by linear analysis. The signifi-
cant fluctuations indicated by many economic variables relative to their
mean values suggest that most economic systems are far away from the
equilibrium, i.e., inherently nonlinear.
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Chaotic motions can arise in nonlinear economic systems if the time
series is aperiodic and displays sensitive dependence on initial condi-
tions (Puu 1989, Lorenz 1993). Empirical evidence of complex behav-
iors of nonlinear deterministic systems can be obtained by calculating
statistical quantities such as Lyapunov exponents, entropies, fractal di-
mensions, and correlation dimensions. These quantitative measures of
chaos are defined for infinitely large data sets. In practice, large amount
of data points are often unavailable in macroeconomic time series. In
contrast to the laboratory experiments where a large amount of data
points can easily be obtained, most economic time series consists of
monthly, quarterly, or annual data, with the exception of some finan-
cial data with daily or weekly time series. This imposes severe limitation
on the accuracy of nonlinear analysis of economic data. In view of this
limitation, additional tests are desirable.

Brock (1986) performed a test for chaos in detrended quarterly US
real GNP data from 1947 to 1985 by calculating the correlation dimen-
sion and the largest Lyapunov exponent and applying an additional
residual test, and concluded that chaos should be excluded in the GNP
data. Barnett and Chen (1988) examined several monetary aggregates
and found positive values for the largest Lyapunov exponents in some
of their data, which provides evidence of chaos. Frank, Gencay and
Stengos (1988) applied the shuffle test proposed by Scheinkman and
LeBaron (1989) to German, Italian, and U. K. GNP data, and ruled
out the presence of chaos in their GNP data, but found evidence of non-
linearity. Sayers (1989) calculated the correlation dimension and the
Lyapunov exponents and applied the additional residual diagnostics to
U. S. business cycles, including GNP, pig-iron production, and unem-
ployment rates. Although he did not find the presence of chaos, he
obtained evidence of nonlinear structures. Further literature survey on
empirical evidence of nonlinearity and chaos in economical data will be
given in the remaining chapters of this monograph.

2.2 Modeling Nonlinearity and Chaos in Economic
Dynamics

Nonlinear dynamics models are useful to explain irregular, large-ampli-
tude, fluctuations that appear in complex economic systems (Hommes
2004). The complex behaviors of nonlinear economic systems restrict
the use of purely analytical methods to investigate nonlinear economic
models. In general, numerical simulations provide the most efficient
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way to derive information from nonlinear economic models. In contrast
to nonlinear analysis of economic data which are restricted by the small
sample size as well as noise, numerical modeling of economic systems
can provide large sample size required to characterize chaotic behav-
iors, and determine the dynamical behaviors of economic systems in
the absence and in the presence of noise. Economic models can be for-
mulated by either discrete-time or continuous-time approaches (Puu
1989; Lorenz 1993).

From the outset (Samuelson 1939; Hicks 1950), business cycle mod-
els have most frequently been formulated in discrete time, as difference
equations or iterated maps such as the logistic map (Scarth 1996). The
main reason for taking the discrete-time approach is the relative facil-
ity to handle these models, without the need of heaving computation.
For example, Stutzer (1980) characterized the qualitative dynamics of a
discrete-time version of a nonlinear macroeconomic model, which shows
complex periodic and random aperiodic orbit structures. Nusse and
Hommes (1990) considered a discrete modified Samuelson model of non-
linear multiplier-accelerator and showed that period-doubling bifurca-
tion and period-halving bifurcation leading to chaos can occur; the chaos
disappears when the accelerator is increased. Day and Pavlov (2002)
developed a variation of Goodwin’s graphical model to explain the rudi-
ments of Keynesian real/monetary cycle theory, which possesses nonlin-
ear dynamical properties of irregular, asymmetric fluctuations. Xu et al.
(2002) studied the Kaldor’s business cycle model in two-dimensional dis-
crete form and introduced an approach to detect cyclical patterns (un-
stable periodic orbits) embedded in chaotic economic data and made use
of the detected patterns to estimate the trends of periodic-like motions
in a chaotic evolution of economic systems.

A large number of nonlinear business cycle models are formulated in
continuous time based on either ordinary or partial differential equa-
tions. New econometric techniques emerged recently permit direct em-
pirical testing of continuous-time economic models. In this monograph,
the continuous-time approach will be adopted. Goodwin (1951) was one
of the first Keynesian economists to introduce nonlinear continuous-
time dynamical model with locally unstable steady states and sta-
ble limit cycles to account for the persistence of business long wave
which explains the Kondratieff economic cycle in terms of subsequent
expansions and contractions of the capital goods sector of an indus-
trialized economy, as it adjusts to the required production capacity.
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Lorenz (1987a) studied a continuous-time model of three coupled sec-
tors of Kaldor-type business cycles, and showed that if the sectors are
linked by investment demand interdependencies, this coupling can be
interpreted as a perturbation of a motion on a three-dimensional torus;
chaotic fluctuations appear in this model. Sasakura (1995) investigated
political business cycles in two different forced oscillator models of the
Duffin-type and van de Pol-type, respectively, by incorporating au-
tonomous investment and Kaldor-type induced investment function;
in both cases chaotic fluctuations emerge even when the politically mo-
tivated fiscal forcing is weak. Additional literature survey on nonlinear
economic models will be discussed in the remaining chapters of this
monograph.

2.3 Van der Pol Model of Nonlinear Business Cycles:
Kaldor’s Nonlinear Investiment-Savings Functions

Inspired by Keyne’s income theory and Kalecki’s model of investiment
(Kalecki 1937), Kaldor (1940) formulated the first nonlinear model of
endogenous business cycles by considering the interactions between the
investiment I(Y) and the savings S(Y) functions (where Y denotes
income) and the existence conditions for self-sustaining limite cycles.
By noting that the linear forms of I(Y") and S(Y") fail to produce cyclical
motions, Kaldor proposed a S-shaped (sigmoid) nonlinear form for I(Y)
and a mirror-imaged S-shaped nonlinear form for S(Y') (Gabisch and
Lorenz 1989), which yields oscillatory motion of business cycles. Chang
and Smyth (1971) reformulated Kaldor’s model of business cycles, given
by the following couped dynamical equations:

Y = a(I(Y,K) - S(Y,K)), (2.1)

K = I(Y,K), (2.2)

where the dot denotes the time derivative (d/dt), K denotes the capital
stock and « is an adjustment coefficient; with the assumptions of I <0,
Sk >0, and 0S/0K < 0.

Differentiating equation (2.1) with respect to time gives

Y =a(lyY + IgK — SyY — SgK). (2.3)
A substitution of equation (2.2) into equation (2.3) yields

Y —a(ly — Sy)Y —a(lx — Sk)I(Y,K) = 0. (2.4)
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By treating the investment Iy as usual, but the actual change in
capital stock K is determined by savings, K = S; and assuming (Ix —
Sk) is independent of capital stock so the functions are linear in K,
equation (2.4) becomes

Y - Oé(Iy - Sy)Y - aIKS(Y) = 0, (25)
which reduces to the generalized Liénard equation in physical systems
¥+ A(x)z + B(xz) =0, (2.6)

which describes the dynamics of a spring mass system with A(z)4 as a
damping factor and A(z) as the spring force.

By postulating symmetric shapes of the investment and savings func-
tions, and a parabolic functional form for the difference Sy — Iy, namely,

A(z) = oSy — Iy) = p(z® — 1), (2.7)

and
B(z) = =z, (2.8)

equation (2.5) can be rewritten as
i+ p(e? -1+ =0, (2.9)

which is known as the Van der Pol equation originally derived by Van
der Pol and Van der Mark (1928) to describe relaxation oscillations in
an electrical circuit model of the heartbeat, and can serve as a prototype
continuous-time model of complex economic dynamics. Note that the
parameter u is related to the adjustment coefficient « of the damping
term.

2.4 Forced Van der Pol Model of Nonlinear Economic
Cycles: Goodwin’s Nonlinear Accelerator-Multiplier
with Lagged Investiment Outlays

The concept of business cycles was introduced by Samuelson (1939) by
combining the accelerator and the multiplier. This model demostrates
that two simple forces related to the producers keeping a fixed ratio
of capital stock to output (real income) and the cousumers spending
of a given fraction of their incomes on consumption can combine to
generate business cycles.
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Goodwin (1951) formulated a nonlinear model of business cycles
which provides an alternative to the restrictive linear accelerator-
multiplier models of Samnelson-Hicks. In contrast to Hicks’ model
(Hicks 1950) of nonlinear business cycles which assumed that the un-
constrained linear accelerator-multiplier model takes on special param-
eter values that the system will explode, the Goodwin’s model does not
depend on specific parameter values. By introducing lagged investment
outlays in the nonlinear accelerator-multiplier model, Goodwin (1951)
derived the following driven oscillator equation

B+ (e+(1—a))y—o(y)+ (1 — )y =I(t), (2.10)

where y denotes income, « is the marginal rate of consumption, € is a
constant denoting a lag in the dynamic multiplier process, 8 is the lag
between the decision to invest and the corresponding outlays, ¢(y) is the
investment induced by the change in income, and I(t) is an exogenous
force denoting the amount of autonomous investiment outlays at .

Lorentz (1987b) and Lorenz and Nusse (2002) considered the fol-
lowing generalization of equation (2.10) to consider chaotic motion in
Goodwin’s nonlinear accelerator-multiplier

¥+ A(z)z + B(z) = I(t), (2.11)

where A(z) is an even function with A(0) < 0, and B(x) is an odd
function with B(0) = 0. By assuming the investment outlays is periodic
and continuous function of time

I(t) = asin(wt), (2.12)

where a is the amplitude of exogenous force and w the frequency of
exogenous force, and

A() = p(a® = 1), B(x) = =, (2.13)
we obtain a forced van der Pol model of nonlinear economic cycles
i+ p(x? — 1)i + 2 = asin(wt). (2.14)

In addition to Kaldor’s nonlinear investment-savings functions and
Goodwin’s nonlinear accelerator-multiplier, the forced Van der Pol
model of relaxation oscillations, given by equation (2.14), have many
other relevant economical applications (Gabisch nd Lorenz 1989; Puu
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1989; Goodwin 1990; Medio 1992; Lorenz 1993; Gandolfo 1997; Shone
2002; Chian 2001; Chian et al. 2005, 2006; Chian, Rempel and Rogers
2006, 2007). The modern economy consists of a great variety of sepa-
rate sectors and activities closely coupled to each other. For example,
Puu (1989) showed that the forced Van der Pol equation similar to
equation (2.14) can model the nonlinear dynamics of a small economy
driven exogenously by the the world market, which can produce very
rich dynamical solutions including a chaotic atractor. Puu’s model of
international trade provides an illustration of the interdependence of an
individual national economy and the world economy. Cyclic flutuations
are common characteristics of economic systems. A variety of economic
cyclic modes have been identified, including the 3-7 year business cy-
cle, the 15-25 year construction or Kuznets cycle, and the 40-60 Kon-
dratieff or economic long wave. Nonlinear interaction between different
economic modes can occur, e.g., a short-period business cycle can act
as an exogenous force on a long-period business cycle. In addition, geo-
phyical cycles such as seasonal cycles, El Nino cycles, and solar cycles
may act as an exogenous force on the fluctutations of the agriculture,
tourism, and fuel sectors.

In this monograph, we will investigate the numerical solutions of the
forced van der Pol model of business cycles, equation (2.14), which can
be rewritten as three coupled first-order differential equations

P (2.15)

By = —H(fx% — 1D)xg — 1 + asin(2nxs), (2.16)

b = w - (2.17)
2

In the absence of the exogenous forcing (a = 0), the origin (z; = 0,
x9 = 0) is the only equilibrium solution of equations (2.15)-(2.17),
which is an unstable fixed point (repeller); all other trajectories of the
system approach a single attracting periodic orbit (limit cycle) that
encircles the origin, which describes periodic relaxation oscillations
consisted of a period of slow buildup followed by a sudden discharge
(Alligood, Sauer and Yorke 1996). In the presence of an exogenous
forcing, equation (2.14) admits a rich variety of periodic and aperiodic
oscillations as the control parameters i, a and w are varied. Parlitz and
Lauterborn (1987) gave examples of the bifurcation diagrams of equa-
tion (2.14) by varying the driver frequency and the driver amplitude,
which show mode-locking and period-doubling cascade. They pointed
out that the system symmetry of the van der Pol oscillator leads to
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the coexistence of asymmetric attractors, and introduced a generalized
winding number to compute devil’s staircases and winding-number di-
agrams of period-doubling cascades. For large driving amplitudes, they
found that many periodic, quasiperiodic and chaotic attractors coex-
ist. A systematic analysis of equation (2.14) was carried out by Mettin,
Parlitz and Lauterborn (1993) by studying its dynamical behaviors over
a large range of control parameters in the three-dimensional (u, a, w)
phase diagrams, paying special attention to the pattern of the bifurca-
tion curves in the transitional region between low and large dampings.
Xu and Jiang (1996) performed a global bifurcation analysis of equation
(2.14) by investigating the phase diagrams in the two-dimensional (1, a)
plane with a fixed w, for medium damping. They studied the evolu-
tion of the global structures in simple and complex transitional zones,
and the number of coexisting attractors in overlaps of mode-locking
subzones.

In this chapter, we use the numerical solutions of equation (2.14) to
study the fundamental properties of nonlinear dynamics of economic
cycles.

2.5 Order and Chaos

One fundamental characteristic of a complex dynamical system is the
possibility of order and chaos, which can exist either separately or si-
multaneously. In an ordered dynamical system, for arbitrary initial con-
ditions, after going through a transient period the system approaches a
periodic behavior with a predictable periodicity. In contrast, a chaotic
dynamical system exhibits behavior that depends sensitively on the
initial conditions, thereby rendering long-term prediction impossible
(Strogatz 1994). Figure 2.1(a) shows a periodic time series of the nu-
merical solutions of equation (2.14) for the control parameters: p = 1,
w = 0.45, a = 0.983139. Figure 2.1(b) shows two chaotic time series of
the numerical solutions of equation (2.14) for the same control param-
eters: p =1, w = 0.45 and a = 0.9877, but with two slightly different
set of initial conditions. The initial conditions of the solid curve are
x = 0.2108, & = 0.0187; whereas, the initial conditions of the dashed
curve are z = 0.2100, £ = 0.0187. We see from figure 2.1(b) that ini-
tially the two time series are the same, however, as time increases, the
behavior of the two chaotic time series becomes very different.

The attractor is the set of points in the state space to which the
trajectories approach as time goes to infinity. Since a complex system
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Fig. 2.1. Periodic and chaotic time series. (a) A periodic time series z(t) for a =
0.983139, (b) two chaotic time series for a = 0.9877 with slightly different initial

conditions: z = 0.2108 and & = 0.0187 for the solid line, z = 0.2100 and = = 0.0187
for the dashed line.
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Fig. 2.2. Periodic attractor and chaotic attractor. (a) A periodic attractor (A:) of

period-1 in the state space (z, ) for a = 0.983139, (b) a chaotic attractor (CA) in
the state space (z, &) for a = 0.9877.

consists of both order and chaos, it contains both periodic attractors
and chaotic attractors. When the attractor is an isolated closed trajec-
tory, it is called a periodic attractor (or limit cycle); when an attractor is
a fractal set of points, it is called a strange attractor (or chaotic attrac-
tor) (Ott 1993). Figures 2.2(a) gives an example of a periodic attractor
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Fig. 2.3. State-space trajectory and Poincaré map. An illustration of a state-space
trajectory and the Poincaré map, T is the driver period and w is the driver frequency.

(A1) for a = 0.983139, corresponding to the periodic time series in
figure 2.1(a). Figure 2.2(b) gives an example of a chaotic attractor
for a = 0.9877 (CA), corresponding to the chaotic time series in
figure 2.1(b). The trajectories of arbitrary initial conditions on a chaotic
attractor will display aperiodic behavior and sensitive dependence on
initial conditions, which implies that nearby orbits will diverge expo-
nentially in time (see figure 2.1(b)). The average rate of divergence can
be measured by the Lyapunov exponents (Ott 1993). For a system with
n-dimensional phase space, there are n Lyapunov exponents which mea-
sure the rate of divergence/convergence in n orthogonal directions.

2.6 Poincaré Map

To simplify the analysis of a nonlinear trajectory (orbit or flow) of a com-
plex system, it is often convenient to reduce a flow in the state space,
namely, the numerical solution of equation (2.14), to a discrete time map
by the Poincaré surface of section method (Ott 1993). In this mono-
graph, we define the Poincaré surface of section (Poincaré map) by

P:x(t)—x(t+1T), (2.18)
where T' = 27 /w is the driver period. Figure 2.3 is an illustration of a
state-space trajectory and the Poincaré map.

2.7 Bifurcation Diagram and Periodic Window

In addition to sensitive dependence on the initial conditions, a dynami-
cal system is very sensitive to small variations in the control parameters
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Fig. 2.4. Bifurcation diagram and maximum Lyapunov exponent: global view. (a)
Bifurcation diagram, x as a function of a, (b) the maximum Lyapunov exponent
Amaz as a function of a, positive A4, indicates chaos and negative Anqz indicates
order; with fixed p =1 and w = 0.45.

(either endogenous or exogenous). As a control parameter varies, the
stability of a dynamical system changes due to a local or a global bifur-
cation. The bifurcation diagram provides a general view of the system
dynamics by plotting a system variable as a function of a control pa-
rameter (Alligood, Sauer and Yorke 1996). Figure 2.4(a) shows a global
view of the bifurcation diagram of the nonlinear model of economic
cycles described by equation (2.14), where we have kept two control
parameter p and w fixed, and only vary the forcing amplitude a. For a
given control parameter a, the bifurcation diagram in figure 2.4(a) plots
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Fig. 2.5. Bifurcation diagram and maximum Lyapunov exponent: periodic window.
(a) Bifurcation diagram, x as a function of a, for attractors Ag, A1 and As; (b) bifur-
cation diagram for attractors Ao, A2 and Ay; (c) the maximum Lyapunov exponent
Amaz as a function of a for attractors Ao, A1 and As. SNB denotes saddle-node
bifurcation, MC denotes attractor merging crisis.

the asymptotic values of the Poincaré points of the system variable x,
where the transient has been omitted.

The phase space of equations (2.15)-(2.17) has three dimensions, there-
fore the system has three Lyapunov exponents, one of which is always
zero (in the direction tangent to the flow). For the remaining two expo-
nents, for a stable periodic orbit the maximum Lyapunov exponent is less
than zero, for a quasiperiodic orbit the maximum Lyapunov exponent
is zero, whereas for a chaotic orbit the maximum Lyapunov exponent is
greater than zero. Figure 2.4(b) shows the maximum Lyapunov exponent
as a function of a, for the bifurcation diagram given by figure 2.4(a),
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calculated by the Wolf algorithm (Wolf et al. 1985). Figure 2.4 shows
that the system is quasiperiodic to the left of a ~ 1, and periodic to the
right of a ~ 1. However, in the region a ~ 1, the system can be chaotic.

An enlargement of a small region of the bifurcation diagram indi-
cated by the arrow in figure 2.4(a) is given in figures 2.5(a) and 2.5(b),
which display a periodic window. Complex dynamics is found within
this periodic window, where five attractors are identified. A saddle-
node bifurcation (SNB) at a = asyp = 0.98312 marks the beginning
of this periodic window (in terms of attractors A; and Ay). An attrac-
tor merging crisis (MC) at a = aprc = 0.98765 marks the end of this
periodic window. To the left of agyp and to the right of aj;c, we have a
chaotic attractor Ag. Two attractors Ay and Ay co-exist between agyp
and apsc, throughout this periodic window. Two more attractors As
and A4 coexist for a small interval of a, between a = 0.9862400 and
a = 0.9864085. Due to the symmetry of equation (2.1) the attractors A;
and A have the same dynamical behaviors, namely, for a given control
parameter a, the maximum Lyapunov exponents of A; and A, are the
same. The same is true for attractors Ag and A4. Figure 2.5(c) shows
the maximum Lyapunov exponent for either attractor A; or attractor
A,, which indicates that there are many small periodic windows within
a chaotic region, and there are many chaotic regions within a periodic
window. The rich dynamics found in this periodic window demonstrates
the basic features of multistability and coexistence of order and chaos
in complex economic systems. In this monograph, we focus on the pe-
riodic window given by figure 2.5 to investigate the complex dynamical
behaviors of economic systems.

2.8 Multistability and Basins of Attraction

Evidently, multistability is a fundamental feature of a complex system,
as seen in the periodic window of the bifurcation diagram in figures 2.5(a)
and 2.5(b). The basin of attraction for a given attractor is the set of
initial conditions each of which gives rise to a trajectory that converges
asymptotically to the attractor (Hilborn 1994). Note that the chaotic
attractor Ay persists to the right of agsyp = 0.983120 and is only
destroyed by a boundary crisis at a = 0.983139. In terms of attrac-
tor Ay, the periodic window actually starts at a = 0.983140. Hence,
three attractors Ag, A; and As coexist between a = 0.983120 and
a = 0.983139, as exemplified by the basins of attraction in figure 2.6(a)
for a = 0.983139. For the initial conditions starting from the light gray
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Fig. 2.6. Basins of attraction: multistability. Basins of attraction for: (a) a = 983139
with coexistence of three attractors Ao, A1 and Az; (b) a = 0.983140 with coex-

istence of two attractors A; and Aa. Attractor Ao (light gray), attractor A; (dark
gray), attractor As (white).

region, the trajectory converges to the chaotic attractor Ag; whereas,
for initial conditions starting in the dark gray (white) region, the trajec-
tory converges to the periodic attractor A; (As), respectively. Between
a = 0.983140 and a = 0.9862399, and between a = 0.9864086 and
a = apyc = 0.98765, two attractors A; and Ay coexist, as exemplified
by the basins of attraction in figure 2.6(b) for a = 0.983140, where the
light gray (white) region denotes the basin of attraction for attractor
A; (Az). Note the dramatic change in the topology of the basins of
attraction in figures 2.6(a) and 2.6(b), where the control parameter
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varies slightly from ¢ = 0.983139 to a = 0.983140. This dramatic
change is due to the destruction of the chaotic attractor Ay and its
basin of attraction by a boundary crisis. Four attractors Ay, As, As
and Ay coexist between a = 0.9862400 and a = 0.9864085.

2.9 Unstable Periodic Orbit and Chaotic Attractor

Unstable periodic orbits are the skeleton of a chaotic attractor be-
cause chaotic trajectories are closures of the set of unstable periodic
orbits (Auerbach et al. 1987, Cvitanovic 1988). In contrast to a peri-
odic attractor whereby all trajectories initiated from any point in the
state space are attracted to a stable periodic orbit (e.g., figure 2.2(a)),
in a chaotic attractor all periodic orbits are unstable since almost all
trajectories (with the exception of trajectories strictly along its stable
manifold) in the neighborhood of an unstable periodic orbit are re-
pelled by it (e.g., figure 2.2(b)). Hence, a chaotic trajectory is chaotic
because it must weave in and around all of these unstable periodic
orbits yet remain in a bounded region of state space (Hilborn 1994).
Unstable periodic orbits can be numerically found by the Newton algo-
rithm (Curry 1979). Four examples of the state-space trajectory (solid
line) and Poincaré points (cross) of unstable periodic orbits are given in
figure 2.7. The saddle-node bifurcation at a = agyp = 0.98312 gener-
ates a pair of stable and unstable periodic orbits of period-1 associated
with attractors A; and Ag, respectively, as shown in figures 2.7(a) and
2.7(b). Note that the stable and unstable periodic orbits are identical at
the onset of a saddle-node bifurcation. These two period-1 unstable pe-
riodic orbits, represented by the dashed lines to the right of a = 0.98312
in figures 2.5(a) and 2.5(b), are responsible for mediating the onset of
a boundary crisis at a = 0.983139 which destroys the chaotic attrac-
tor Ag. Figures 2.7(c) and 2.7(d) show the unstable (stable) periodic
orbits of period-3 associated with attractors As and Ay, respectively,
generated by another saddle-node bifurcation at a = 0.9862400. These
two period-3 unstable periodic orbits, represented by the dashed lines
to the right of a = 0.9862400 in figure 2.5(a), are responsible for medi-
ating the onset of another boundary crisis that destroys attractors As
and A4 at a = 0.9864085, and are also responsible for mediating the
onset of an attractor merging crisis (MC) at a = 0.98765, which marks
the end of the periodic window in figure 2.5. The unstable periodic or-
bits are robust. For example, most unstable periodic orbits that appear
within the periodic window continue to exist in the chaotic region to
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Fig. 2.7. Unstable periodic orbits: skeleton of chaotic attractor. Examples of un-
stable periodic orbits (solid line) in the state space and the corresponding Poincaré
point (cross) of: (a) and (b) period-1 for a = 0.98312, (c) and (d) period-3 for
a = 0.98624.

the right of MC in figure 2.5(a) and form part of the skeleton of the
chaotic attractor Ay beyond the attractor merging crisis.

An unstable periodic orbit with period-N turns into N-saddle points
in the Poincaré surface of section, as seen in Figure 2.7. Figure 2.8(a)
illustrates a saddle point (p), which is the intersection of in-set (stable
manifold SM) and out-set (unstable manifold UM), in a two-dimensional
Poincaré surface of section. The dashed lines represent the stable (v*)
and unstable (v*) eigenvectors of the linearized Poincaré map at p. At
the saddle fixed point p, the stable manifold SM is tangent to the stable
eigenvector v® and the unstable manifold UM is tangent to the unstable
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Fig. 2.8. Unstable periodic orbit: stable and unstable manifolds. (a) An illustration
of a saddle point (p) with its associated stable manifold (SM) and unstable manifold
(UM), the dashed lines represent the stable (v®) and unstable (v*) eigenvectors;
(b) the state-space trajectory (solid line) and Poincaré points (cross) of a period-3
unstable periodic orbit for a = amc = 0.98765; (c) the stable manifold SM (line)
of the period-3 saddle point (cross); (d) the unstable manifold UM (line) of the
period-3 saddle point (cross).

eigenvector v*. Trajectories on the in-set converge to the saddle point
as time goes on, while trajectories on the out-set diverge from the sad-
dle point as time goes on (Hilborn 1994). Figure 2.8(b) is an example
of the trajectory of an unstable periodic orbit of period-3 in the state
space for a = apc = 0.98765. The closed curve in figure 2.8(b) turns
into a saddle consisting of 3 fixed points (crosses) in the Poincaré sur-
face of section also shown in figure 2.8(b). Figures 2.8(c) and 2.8(d) are
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enlargements of the rectangular region indicated in figure 2.8(b), where
we also plotted the numerically computed stable manifold (SM) and un-
stable manifold (UM) of the saddle, respectively.

2.10 Concluding Comments

The fundamental properties of nonlinear economic dynamics discussed
in this chapter form the basis for the analysis of complex economic sys-
tems. We showed that a complex economic system exhibits multista-
bility behavior with coexistence of attractors, including the possibility
of coexistence of order and chaos (periodic attractors and chaotic at-
tractors). In addition, we showed that unstable periodic orbits are the
skeleton of a chaotic attractor. The complex dynamics of an economic
system can be displayed by the Poincaré map and by the bifurcation
diagram, which often contains many periodic windows. We identified
a periodic window within which complex dynamics is found, with the
presence of five attractors; the beginning of this periodic window is
marked by a saddle-node bifurcation (in terms of attractors A; and
Aj) and the end of this periodic window is marked by the onset of an
attractor merging crisis.
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Type-I Intermittency in Nonlinear Economic
Cycles

In this chapter, the intermittent behavior of economic dynamics is
studied by a nonlinear model of business cycles. Numerical simulations
show that after an economic system evolves from order to chaos, the
system keeps its memory before the transition and its time series al-
ternates episodically between periods of low-level apparently periodic
(quiescent) and high-level turbulent (bursting) activities. This model
of economic intermittency exhibits power-law spectrum similar to the
nonlinear time series observed in financial markets.

3.1 Introduction

Characterization of the complex dynamics of economic cycles, by orga-
nizing economic regularities and identifying regime switching between
“good” and “bad” phases in the time series, is the key to accurate eco-
nomic forecasting (Diebold and Rudebusch 1999). In a classical book,
Burns and Mitchell (1946) defined business cycles as “a type of fluctu-
ation found in the aggregate economic activity of nations that organize
their work mainly in business enterprises: a cycle consists of expansions,
occurring at about the same time in many economic activities, followed
by similarly general recessions, contractions, and revivals which merge
into the expansion phase of the next cycles”. Thus, two fundamental
attributes of business cycles are: comovement (i.e., synchronization)
among various economic variables or sectors, and division of business
cycles into alternating (i.e., intermittent) phases of low-level and high-
level economic activities.
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Synchronization and intermittency are ubiquitous phenomena that
govern the nonlinear dynamics of complex systems. Fireflies provide
a good example of synchronization in nature whereby thousands of
fireflies can self-organize themselves to flash on and off in synchrony.
Periodic (ordered) solutions appear when coupled oscillators are phase-
locked due to phase synchronization; moreover, phase synchronization
can occur in coupled chaotic oscillators (Strogatz 1994). Selover et al.
(2004) proposed that national business cycles result from nonlinear
phase-locking between different industries or sectors. Intermittency is
pervasive in our world, as exemplified by traffic flow in big cities,
fluid turbulence in atmospheres and oceans, and long-term variabili-
ties of sunspot cycles (Vassilicos 1995; Ossendrijver and Covas 2003).
Financial markets also exhibit intermittent behavior wherein periods of
trading frenzy are followed by periods of quiescence; on closer exami-
nation the periods of high volatility are themselves consisted of other
sub-periods of relative quiet and other sub-periods of relative bursty
activities, which is a manifestation of self-similar and scale-invariant
properties of nonlinear systems.

Recent statistical analysis of high-frequency data of stock markets
and foreign exchange markets have demonstrated the intermittent na-
ture of nonlinear economic time series, which present non-Gaussian
behavior in the probability distribution function of price changes and
power-law behavior in the spectral density (Mantegna and Stanley
1995, 1996; Ghashghaie et al. 1996). The fat-tail seen in the non-
Gaussian probability distribution function is due to excess of large-
amplitude fluctuations (relative to Gaussian distribution) of economic
variables. The power-law frequency dependence of the spectral density
is an indication of turbulent process involving an information cascade
from large to small time scales in financial markets.

There is an increasing interest in applying chaos concept to study
nonlinear economic dynamics. Sengupta and Sfeir (1997) performed
empirical tests of volatility for monthly data of exchange rates from
February 1988 to August 1995, and concluded that chaotic instability
cannot be ruled out in general. Fernandez-Rodriguez et al. (1997) ap-
plied a multivariate local predictor, inspired by chaos theory, to nine
EMS currencies using daily data from January 1973 to December 1994,
which outperformed the random walk directional forecasting. Muckley
(2004) presented evidence of strange attractor, a long-term memory
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effect and aperiodic motion in a time series analysis of daily financial
data of two equity and two commodity indices.

Intermittency is readily found in nonlinear models of economic dy-
namics (Mosekilde et al. 1992; Haxholdt et al. 1995; Bischi et al. 1998).
In this chapter, we study an example of economic type-I intermittency
based on a model of nonlinear business cycles (Chian et al. 2006). We
will show by numerical simulations that after a transition from order to
chaos due to a saddle-node bifurcation, the time series of business cy-
cles becomes intermittent involving episodic regime switching between
quiescent and bursting phases. The power spectrum of the simulated
intermittent time series has power-law dependence on frequency, sim-
ilar to the observed data of intermittent financial markets. The char-
acteristic intermittency time will be calculated and its application for
economic forecasting will be discussed.
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Fig. 3.1. A p-1 periodic window of computed bifurcation diagram, & as a func-
tion of the driver amplitude a, for attractors A; and As. SNB denotes saddle-node
bifurcation; dashed lines denote p-1 unstable periodic orbits; p = 1 and w = 0.45.
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Fig. 3.2. Basins of attraction for two co-existing attractors A; and Az at a =
asnp = 0.98314. The gray (white) regions denote the basins of attraction of A;
(Az2).

3.2 Nonlinear Model of Economic Cycles

We adopt the forced van der Pol (VDP) differential equation to model
the nonlinear dynamics of business cycles

i+ p(z? — 1) + z = asin(wt). (3.1)

Equation (3.1) models a small open economy forced externally by a
world economy (Puu 1989), or alternatively, it models market fluctua-
tions driven by climate variabilities (Goodwin 1990). It admits regular
(periodic) or irregular (chaotic) solutions as we vary any of three con-
trol parameters: a, w, p.

Equation 3.1 is an example of two coupled oscillators: an endoge-
nous nonlinear oscillator with its natural frequency, and an exogenous
periodic oscillator with a driver frequency w. In a nonlinear system,
the natural frequency of oscillations changes with the variation of the
control parameters. Hence, in this economic model the dynamical be-
havior of nonlinear business cycles depends on the competition between
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Fig. 3.3. Phase-space trajectories of: (a) period-1 attractor (A1) for a = 0.98312,
(b) period-1 attractor (Ag) for a = 0.98312, (c) chaotic attractor (Ag) for a =
0.98311

these two frequencies as the control parameters are varied. The system
is phase-locked (synchronized) if the ratio of these two frequencies is
a rational number; its associated solution is then periodic. After the
phase-locked solution is destroyed in a saddle-node bifurcation, the so-
lution becomes chaotic. Type-I intermittency results from the transition
from order to chaos via a saddle-node bifurcation (Strogatz 1994).

3.3 Economic Type-I Intermittency

A periodic window of the bifurcation diagram determined from the nu-
merical solutions of equation (3.1) is shown in figure 3.1, where we plot
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Z as a function of the amplitude a of the exogenous forcing while keep-
ing other control parameters fixed (4 = 1 and w = 0.45) (Chian et al.
2006). Within the periodic window, two (or more) coexisting attrac-
tors A; and As are found. At the saddle-node bifurcation a = asyp =
0.98312, a pair of period-1 (p-1) stable (solid line) and unstable (dashed
line) periodic orbits for each attractor is generated, which evolve into
two small chaotic attractors via a cascade of period-doubling bifurca-
tions. To the left of agyp in the bifurcation diagram, the initial con-
ditions converge to a chaotic attractor Ag. The aim of this chapter is
to study type-I intermittency associated with the transition of periodic
attractors Aj/As to the chaotic attractor Ay for a < asyp.
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Fig. 3.5. Intermittent time series for a = 0.98311 and a = 0.9825. (a) and (b): @(t),
(c) and (d): 4 as a function of driver cycles.

Due to the symmetry of equation (3.1), which is invariant under the
flip operation x — —x when a = 0, the solutions admit coexistence
of attractors. Figure 3.2 shows the basins of attraction for attractors
Ay and As at a = 0.98314, within the periodic window. The set of
initial conditions in the gray region of the phase space (z, ) will be
attracted to Ay, whereas the set of initial conditions in the white region
will be attracted to As. Note that for values of a between 0.983120
and 0.983139 the three attractors Ay, Ay and Ay coexist. The chaotic
attractor Ay is destroyed by a boundary crisis (BC) at apc = 0.983139,
to the right of agnp.

At a = agnp, the attractors A; and Ay are periodic with period-1.
The trajectories of A; and As in the phase space (z, %) at a = agnyp are
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shown in figures 3.3(a) and 3.3(b), respectively. Examples of periodic
time series, @(t), for attractors A; and Ay are shown in figures 3.4(a)
and 3.4(b), respectively; the same time series plotted as a function of
driver cycles (t = 2mn/w, n =1,2,3,...) are given in figure 3.4(c).

For a < agnp, the solutions are chaotic. The phase-space trajectory
of the chaotic attractor Ag prior to the saddle-node bifurcation is shown
in figure 3.3(c). Two examples of chaotic time series for different values
of a, to the left of a = agnyp, are shown in figures 3.5(a) and 3.5(b),
respectively; the same time series plotted as a function of driver cycles
are given in figures 3.5(c) and 3.5(d), respectively. Type-I intermittency
is readily recognized in Fig. 3.5, exhibiting episodic regime switching
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between periods of laminar (quiescent) phases and periods of bursting
(turbulent) phases. By comparing figures 3.4 and 3.5, we identify the
laminar phases (¢ ~ 2 and © ~ 0 in the driver cycle plots) as due
to the memory effect of the post saddle-node bifurcation p-1 unstable
periodic orbits of Ay and As, respectively. As the system moves far-
ther away from the transition point a = agyp, the average duration of
laminar phases decreases due to weakening memory, as shown by the
intermittent time series in figure 3.5. This implies that after the transi-
tion from order to chaos, the regime switching of intermittent business
cycles becomes more frequent as the system moves farther away from
the transition point.

The power spectra of the periodic and intermittent time series of
figures 3.4 and 3.5 are shown in figure 3.6. Figure 3.6(a) shows that
when the solution is periodic the spectrum is discrete. Figures 3.6(b)
and 3.6(c) show that when the solutions are intermittent the power
spectra are broadband and have a power-law behavior at high frequen-
cies, which is a characteristic of chaotic systems such as intermittent
financial markets.

The characteristic intermittency time, namely, the average duration
of laminar phases in the intermittent time series, depends on the value
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of the control parameter a. Close to the transition point agyp the av-
erage duration of laminar phases is relatively longer, and decreases as a
moves away from agyp. The characteristic intermittency time (denoted
by 7) can be calculated from a long time series, by averaging the time
between two consecutive bursting phases. Figure 3.7 is a plot of log;, 7
versus log;o(asyp—a), where the solid line with a slope v = —0.074 is a
linear fit of the values of the characteristic intermittency time computed
from the time series. The squares (circles) denote the computed aver-
age duration of the laminar phases related to A; (Az). Note that the
circles and the squares coincide most of the time, due to the symmetry
of A1 and A,. Figure 3.7 reveals that the characteristic intermittency
time 7 decreases with the distance from the critical parameter agyp,
obeying the following power-law scaling:

T~ (asNB — a)_0‘074. (3.2)

This scaling formula can be used to predict the turning points, from
contraction to expansion phases, of nonlinear business cycles.

3.4 Concluding Comments

This chapter shows that after an economic system undergoes a dynam-
ical transition from an ordered to chaotic state, intermittency appears
whereby the economic activities switch episodically back and forth be-
tween periods of quiescent and bursting fluctuations. As an economic
system moves farther away from the transition point, the average dura-
tion of quiescent periods decreases. In order to understand the nature
of economic intermittent behaviors, we performed a study of type-I in-
termittency in a nonlinear model of business cycles. In this example
of intermittency, an economic path evolves from a regular (periodic)
to an irregular (chaotic) pattern as the exogenous forcing amplitude a
passes a critical value agyp, where the system loses its stability due
to a saddle-node bifurcation. It is worth emphasizing that there is a
region with intermittent chaos for attractor Ag to the right of agyp in
figure 3.1, for values of a between 0.983120 and 0.983139, which will be
a subject of further investigation.

The accuracy of business cycle forecasting relies on a precise estimate
of the durations of economic expansions and contractions and of the
turning points in business cycles (Vilasuso 1996; Schnader and Stekler
1998; Diebold and Rudebusch 1999). Nonlinear modeling of economic
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systems provides a powerful tool to simulate regime switching between
contraction and expansion phases, and to predict the turning points. In
particular, the average duration of quiescent phases in business cycles
can be determined from the characteristic intermittency time of the
simulated time series. Hence, the dynamical systems approach is ex-
tremely useful to analyze patterns in the fluctuations of complex eco-
nomic systems and valuable for sound policy making.

Some interesting connections can be made between our results and
other papers discussed in the present work. For example, Vilasuso
(1996) employed nonparametric turning-point tests to investigate the
duration of economic expansions and contractions in the United States,
which indicated evidence of a turning point to longer expansions in
1929. Our work adopted a nonlinear model of business cycles to simu-
late the duration of expansions and contractions of an open economy
driven by a global market, which can be used to predict the turning
point to a long period of economic expansions of a nation, such as de-
tected by Vilasuso (1996). Moreover, type-I intermittency studied in
this chapter demonstrates the ability of a chaotic enonomic system to
retain the memory of its system dynamics in the ordered regime. When
the system is close to its transition point from order to chaos, it keeps
this memory for a long duration in the form of quiescent phases in
economic fluctuations. This result is in agreement with the nonlinear
time-series analysis of financial data performed recently by Muckley
(2004), which obtained evidence of a long-term memory effect in a
strange attractor.



4

Crisis-Induced Intermittency in Nonlinear
Economic Cycles

In this chapter, a new type of economic intermittency is found in non-
linear business cycles. Following a merging crisis, a complex economic
system has the ability to retain memory of its weakly chaotic dynam-
ics prior to crisis. The resulting time series exhibits episodic regime
switching between periods of weakly and strongly chaotic fluctuations
of economic variables. The characteristic intermittency time, useful for
forecasting the average duration of contractionary phases and the turn-
ing point to the expansionary phase of business cycles, is computed
from the simulated time series.

4.1 Introduction

Intermittency is a fundamental dynamical feature of complex economic
systems. An intermittent economic time series is characterized by re-
currence of regime switching between periods of bursts of high-level
fluctuations of economic activities and periods of low-level fluctuations.
For example, an instability of the financial system leads to speculative
booms followed by subsequent financial crises manifested by violent
price movements in financial markets; the recurrence of these events
results in business cycles with alternating periods of boom and depres-
sion (Mullineux 1990). The spectral density of intermittent economic
time series indicates power-law behavior typical of mutiscale systems.
Statistical analysis of the high-frequency dynamics of stock markets
and foreign exchange markets has proven the intermittent nature of
these financial systems, which display non-Gaussian form with fat-tail
in the probability distribution function of price changes (Mantegna and
Stanley 2000).
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A good understanding of regime switching and memory of economic
time series is essential for pattern recognition and forecasting of busi-
ness cycles. Kirikos (2000) compared a random walk with Markov
switching-regime processes in forecasting foreign exchange rates; the
results suggested that the availability of more past information may
be useful in forecasting future exchange rates. Kholodilin (2003) in-
troduced structural shifts in the US composite economic indicator
via deterministic dummies and evaluated the US monthly macroeco-
nomic series specified by the regime-switching model. Bautista (2003)
used regime-switching- ARCH regression on the Philippine stock market
data to estimate its conditional variance and relate to episodes of high
volatility including the 1997 Asian financial crisis; this study identified
a period of high stock return volatility preceding a bust cycle marked
by a sequence of low-growth periods. Granger and Ding (1996) defined
long memory as a time series having a slowly declining correlogram,
which is a property of fractional integrated processes as well as a num-
ber of other processes including nonlinear models; the relevance of long
memory is illustrated using absolute returns from a daily stock mar-
ket index. Resende and Teixeira (2002) assessed long-memory patterns
in the Brazilian stock market index (Ibovespa) for periods before and
after the Real Stabilization Plan, and obtained evidence of short mem-
ory for both periods. Gil-Alana (2004) presented evidence of memory
in the dynamics of the real exchange rates in Europe using the frac-
tional integration techniques. Muckley (2004) employed rescaled-range
analysis, correlation dimension test and BDS test to obtain evidence of
long-memory effect and chaos in daily time series of financial data.

Intermittency is ubiquitous in chaotic economic systems. In a nonlin-
ear macroeconomic model (Mosekilde et al. 1992) describing an economic
long wave (or Kondratiev cycle) forced by an exogenous short-term con-
struction (or Kuznets) business cycle represented by a sinusoidal fluctu-
ation in the demand for capital to the goods sector, a chaotic transition
known as crisis involving a sudden expansion of chaotic attractor and a
complex form of chaos arising from intermittency are observed. In a dis-
aggregated economic long wave model describing two coupled industries
(Haxholdt et al. 1995), one representing production of plant and long-
lived infrastructure and the other representing short-lived equipment and
machinery, mode-locking, quasiperiodic behavior, chaos and intermit-
tency are detected. In a model of an economic duopoly game (Bischi et al.
1998), the phenomenon of synchronization of a two-dimensional discrete
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dynamical system is studied and on-off intermittency due to a transverse
instability is detected.

An example of type-I intermittency in nonlinear business cycles was
studied recently (Chian et al. 2006). In the economic type-I intermit-
tency, the recurrence of regime switching between bursty and laminar
phases indicates that a nonlinear economic system is capable of keep-
ing the memory of its ordered dynamics after the system evolves from
order to chaos due to a local saddle-node bifurcation. Most economet-
ric studies of long memory treat economic data as stochastic processes
(Granger and Ding 1996; Resende and Teixeira 2002; Gil-Alana 2004),
however real economic systems are a mixture of stochastic and deter-
ministic processes. In this chapter, we adopt the deterministic approach
to study a new type of economic intermittency induced by an attrac-
tor merging crisis due to a global bifurcation (Chian et al. 2005). We
will show that following the onset of an attractor merging crisis, the
economic system retains its memory of the weakly chaotic dynamics
before the crisis; as a result, the time series of business cycles becomes
intermittent displaying episodic regime switching between periods of
weakly and strongly chaotic fluctuations.

A forced model of nonlinear business cycles is formulated in Section 4.2.
Economic crisis-induced intermittency is analyzed in Section 4.3. Con-
cluding comments are given in Section 4.4.

4.2 Nonlinear Model of Economic Cycles

We model the nonlinear dynamics of business cycles driven by the
forced van der Pol differential equation

i+ p(x? —1)i + 2 = asin(wt). (4.1)

Equation (4.1) admits periodic (ordered) or aperiodic (chaotic) solu-
tions as we vary any of three control parameters: a, w, y. Equation
(4.1) (when a = 0) is invariant under the flip operation (z — —z).
This symmetry is a typical property of dynamical systems that exhibit
attractor merging crises (Chian et al. 2005, 2006).

4.3 Economic Crisis-Induced Intermittency

The qualitative structure of the trajectory described by equation (4.1)
can change (i.e., bifurcate) as the control parameters are varied. For
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Fig. 4.1. Bifurcation diagram of & as a function of the driver amplitude a for
attractors A1 and Az. MC denotes attractor merging crisis and SNB denotes saddle-
node bifurcation. 4 =1 and w = 0.45.

example, fixed points can be created or destroyed, or their stability can
change. These changes in the system dynamics can be represented by
the bifurcation diagram. A periodic window of the bifurcation diagram
determined from the numerical solutions of equation (4.1) is shown in
figure 4.1, where we plot & as a function of the driver amplitude a
while keeping other control parameters fixed (© = 1 and w = 0.45).
Within the periodic window, two (or more) attractors A; and Ay co-
exist, each with its own basin of attraction (Chian et al. 2005). At a =
0.98312, a period-1 limit cycle for each attractor Aj/As is generated
via a local saddle-node bifurcation (SNB), which evolves into a small
chaotic attractor via a cascade of period-doubling bifurcations.

An attractor merging crisis occurs at the crisis point (MC), near
a = apro = 0.98765. The phase-space trajectories of two small chaotic
attractors (CA; and CAjy) in the phase space (x, &), near the crisis
point, are shown in figures 4.2(a) and 4.2(b), respectively. Note that
CA; and CAy are symmetric with respect to each other. In fact, the
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Fig. 4.2. Phase-space trajectories of: (a) pre-crisis chaotic attractor (CA1) for a =
0.98765, (b) pre-crisis chaotic attractor (CAz) for a = 0.98765, (c) post-crisis merged
chaotic attractor (MCA) for a = 0.98766

dynamic properties of these two co-existing attractors are identical. At
the crisis point, each of the two small chaotic attractors simultaneously
collide head-on with a period-3 mediating unstable periodic orbit on
the boundary which separates their basins of attraction, leading to an
attractor merging crisis due to a global bifurcation (Chian et al. 2005).
As a consequence, the two pre-crisis small chaotic attractors merge to
form a post-crisis large merged chaotic attractor (MCA), as seen in
figure 4.2(c).

A Poincaré map of the phase-space trajectories of figure 4.2 is plot-
ted in figure 4.3, which is a superposition of two pre-crisis weak chaotic
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Fig. 4.3. Poincaré map of the post-crisis merged chaotic attractor (MCA, light line)
for a = 0.98766, superposed by the pre-crisis chaotic attractors (CA; and CAq, dark
lines) for a = 0.98765

attractors (CA; and CAs) and the post-crisis strong merged chaotic
attractor (MCA). We define a stroboscopic Poincaré map

P fa(t),#(t)] — [x(t + T), 3t +T)], (4.2)

where T' = 27 /w is the driver period. Note that the two pre-crisis CA;
and CA, are located in two small regions within the post-crisis MCA.

The time series of & for the two small chaotic attractors CA; and
CAj at crisis, a = 0.98765, are shown in figures 4.4(a) and 4.4(b), re-
spectively. The same time series of figures 4.4(a) and 4.4(b) plotted as a
function of driver cycles are shown in figure 4.4(c). From figure 4.4(c),
we see that before crisis the fluctuations of economic variables are
weakly chaotic (laminar), localized in a small range of & (near & ~ 2
and & ~ 0), consistent with the Poincaré map in figure 4.3.

After the attractor merging crisis, there is only one large chaotic
attractor (MCA) in the system. The time series of & of MCA after
the crisis, for a = 0.98766 and a = 0.988, are shown in figures 4.5(a)
and 4.5(b), respectively. The same time series plotted as a function
of driver cycles are shown in figures 4.5(c) and 4.5(d), respectively.
The time series in figure 4.5 show that the system dynamics becomes
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Fig. 4.4. Pre-crisis time series of & for a = 0.98765: (a) @(t) for chaotic attractor
CA1; (b) @(t) for chaotic attractor CAg; (c) & as a function of driver cycles for (a)
and (b), respectively

intermittent after the onset of attractor merging crisis, with periods of
weakly chaotic (laminar) fluctuations interrupted abruptly by periods
of strongly chaotic (bursty) fluctuations. A comparison of the time se-
ries of figures 4.4 and 4.5 indicates that the laminar phases in figure 4.5
are related to the pre-crisis attractors CA; and CA,. Hence, the post-
crisis system keeps memory of its weakly chaotic dynamics prior to
crisis, and switches back and forth between the low-level fluctuations
related to CA; and CAs, linked by high-level fluctuations related to
MCA. An examination of figure 4.5 shows that, as the system moves
away from the crisis point, the average duration of laminar phases de-
creases and the regime switching becomes more frequent.
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and (b): £(t); (c) and (d): & as a function of driver cycles for (a) and (b), respectively.

The power spectra associated with the time series of figures 4.4 and
4.5 are shown in figure 4.6. It is evident that in all three cases the
high-frequency portions of the spectra present power-law behaviors,
which are typical features of intermittent financial systems such as stock
markets and foreign exchange markets (Mantegna and Stanley 2000). A
closer look of figures 4.6(a)-(c) shows that as the system becomes more
chaotic, the discrete spikes of the power spectrum become less evident
due to increasing multi-scale information transfer in the system.

The characteristic intermittency time, namely, the average duration
of the laminar phases in the intermittent time series, depends on the
value of the control parameter a. In the vicinity of the crisis point as¢
the average time spent by a path in the neighborhood of pre-crisis CA;
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Fig. 4.6. Power spectrum S(f) as a function of frequency f for: (a) a = 0.98765,
(b) a = 0.98766, (c) a = 0.988

and CAjy is very long (implying long memory), which decreases as a
moves away from ap;c (implying shorter momory). The characteristic
intermittency time (denoted by 7) can be calculated by averaging the
duration of laminar phases related to CA;/CAs over a long time se-
ries. Figure 4.7 is a plot of log,o 7 versus logo(a — apc), where the
solid line with a slope v = —0.66 is a linear fit. The squares (circles)
denote the computed average time of the laminar phases related to
CA; (CAy). Note that circles and squares coincide most of the time, as
expected from the symmetry of CA; and CA,. Figure 4.7 reveals that
the characteristic intermittency time 7 decreases with the distance from
the critical parameter, obeying a power-law scaling:

T~ (a—ape) "% (4.3)
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Fig. 4.7. Characteristic intermittency time as a function of the departure from the
crisis point, log,, T versus log,,(a—anmc). The squares (circles) denote the computed
average switching time from the laminar phases related to CA; (CAz) to the bursty
phases. The solid line is a linear fit of the computed values with a slope v = —0.66.

The scaling relation for the van der Pol model of the economic type-1
intermittency yields a scaling exponent of —0.074 (Chian et al. 2006).
Comparing with equation (4.3), we see that the decrease of 7 with the
distance from the critical parameter for the economic crisis-induced
intermittency is much faster than the economic type-I intermittency.

4.4 Concluding Comments

Forecasting the evolution of the complex system dynamics is the ul-
timate goal in economics. Chaos and nonlinear methods provide pow-
erful tools to achieve this goal. For example, Bajo-Rubio et al. (1992)
detected a chaotic behavior on daily time series of the Spanish Peseta-
U.S. dollar exchange rate which allows short-run predictions. Soofi and
Cao (1999) performed out-of-sample predictions on daily Peseta-U.S
dollar spot exchange rates using a nonlinear deterministic technique of
local linear predictor. Bordignon and Lisi (2001) proposed a method
to evaluate the prediction accuracy of chaotic time series by means of
prediction intervals and showed its effectiveness with data generated
by a chaotic economic model.
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A nonlinear prediction method being developed in population dy-
namics, weather dynamics and earthquake dynamics is based on attrac-
tor reconstruction in phase space using the time series of observed data
(Drepper et al. 1994; Perez-Munuzuri and Gelpi 2000; Konstantinou
and Lin 2004). This technique may be applied to economic forecast-
ing. Information obtained from modeling intermittency of a complex
economic system can guide the analysis of the reconstructed attrac-
tor by providing identifiable and predictable recurrent system patterns
(Belaire-Franch 2004), and allowing the calculation of the character-
istic intermittency time for each recurrent pattern. In particular, the
determination of intermittent features in the modeled economic chaotic
attractors, aided by the recognition of regions of high predictability in
the chaotic attractors (Ziehmann et al. 2000), and the calculation of
the power-law scaling in the intermittent error dynamics (Chu et al.
2002) may reduce prediction error and improve economic forecasting
precision.

Economic forecasting relies on the agent’s skill to recognize the pat-
terns of recurrence in the past economic time series and to estimate
the waiting time between bursts. Recurrence of unstable periodic struc-
tures is a manifestation of the memory dynamics of complex economic
systems. Dynamical systems approach provides effective tools to iden-
tify the origin and nature of the recurrent patterns. In this chapter,
we demonstrated how economic intermittency is induced by an attrac-
tor merging crisis and how to recognize different recurrent patterns
in the intermittent time series of economic cycles by separating them
into laminar (weakly chaotic) and bursty (strongly chaotic) phases.
The characteristic intermittency time given by the scaling relation,
equation (4.3), can be used to predict the turning points of regime
switching from contrationary phases to expansionary phases in eco-
nomic cycles.

Modeling of nonlinear economic dynamics enables us to obtain an
in-depth knowledge of the nature of regime switiching and memory, in
particular, their relation with each other. Econometric literatures on
regime switching (Kirikos 2000; Bautista 2003; Kholodilin 2003) and
long memory (Granger and Ding 1996; Resende and Teixeira 2002;
Gil-Alana 2004; Muckley 2004) have evolved largely independently, as
the two phenomena appear distint. Diebold and Inoue (2001) argued
that regime switching and long memory are intimately related, which
is in fact confirmed by our analysis. As an economic system evolves,
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microeconomic and macroeconomic instabilities lead to a variety of
global and local bifurcations which in turn give rise to chaotic behav-
iors such as crisis-induced and type-I intermittencies. The techniques
developed in this chapter can be applied to investigate intermittency in
more complex economic models and to analyze other types of economic
intermittency such as intermittency driven by a boundary crisis or an
interior crisis, on-off intermittency, and noise-induced intermittency.
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Attractor Merging Crisis in Nonlinear
Economic Cycles

In this chapter, a numerical study is performed on a forced-oscillator
model of nonlinear business cycles. In particular, an attractor merging
crisis due to a global bifurcation is analyzed using the unstable periodic
orbits and their associated stable and unstable manifolds. Characteri-
zation of crisis can improve our ability to forecast sudden major changes
in economic systems.

5.1 Introduction

In recent years there is strong interest in the study of complex eco-
nomic dynamics such as chaotic business cycles (Gabisch and Lorenz
1987; Puu 1989; Goodwin 1990; Lorenz 1993; Gandolfo 1997). Busi-
ness cycles are fluctuations of macroeconomic variables resulting from
instabilities in economic systems. Nonlinear evolution of economic in-
stabilities leads to large-amplitude fluctuations of business cycles due to
trajectories far-from-equilibrium. Complex systems approach provides
a powerful tool to monitor and forecast the nonlinear dynamics of busi-
ness cycles. For example, Mosekilde et al. (1992) studied the nonlinear
mode-interaction between long-term and short-term business cycles; in
a model of the economic long wave (Kondratiev cycle) driven by a
periodic external forcing representing short-term business cycles, they
identified nonlinear phenomena such as mode-locking, co-existence of
attractors, period-doubling route to chaos, intermittent route to chaos,
and crisis. Szydlowski, Krawiec and Tobola (2001) analyzed nonlin-
ear oscillations in the Kaldor-Kalecki model of business cycles with
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Fig. 5.1. Bifurcation diagram of = as a function of a for: (a) attractors A; and
Az, (b) attractors A2 and A4. (¢) The maximum Lyapunov exponent Amaz as a
function of a for either A; or As. MC denotes merging crisis; SNB denotes saddle-
node bifurcation; the dashed lines denote the mediating unstable periodic orbits of
period-3; w = 0.45, p = 1.

time lags in terms of bifurcation theory, and confirmed the existence
of asymmetric cycles. Puu and Sushko (2004) employed a multiplier-
accelerator model of business cycles, including a cubic nonlinearity, to
study a number of bifurcation sequences for attractors and their basins
of attraction.

Crisis is a global bifurcation resulting from the collision of a chaotic
attractor with a mediating unstable periodic orbit or its associated sta-
ble manifold (Grebogi, Ott and York 1983; Grebogi et al. 1987; Chian,
Borotto and Rempel 2002; Chian et al. 2002; Borotto, Chian and
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Fig. 5.2. (a) Basins of attraction at the crisis point a = 0.98765 for two co-existing
attractors A1 and As; (b) and (c) are the enlargements of the rectangular regions
marked in (a); the gray regions denote the basins of attraction of Ai, the white
regions denote the basins of attraction of Ag

Rempel 2004; Borotto et al. 2004) There are three types crises: bound-
ary crisis, interior crisis and attractor merging crisis. A boundary cri-
sis leads to a sudden appearance/disappearance of a chaotic attractor
along with its basin of attraction, which occurs when the mediating
unstable periodic orbit lies on the boundary between the basins of at-
traction of two attractors. An interior crisis leads to a sudden expan-
sion/contraction of the chaotic attractor, when the collision between the
chaotic attractor and the mediating unstable periodic orbit takes place
in the interior of the basin of attraction of the attractor. An attractor



54 5 Attractor Merging Crisis in Nonlinear Economic Cycles

3

CA,

j | MCA /\J
/"|/

N
il

At A,

-25 -15  -05 05 15
X
Fig. 5.3. Poincaré maps of the pre-crisis chaotic attractors (CA: and CA2, dark

lines) at the crisis point a = 0.98765, and the post-crisis merged chaotic attractor
(MCA, light lines) at a = 0.98766

merging crisis appears in many systems with symmetries, whereby two
(or more) chaotic attractors merge to form a single chaotic attractor.
An interior crisis, with an abrupt expansion of the chaotic attractor,
was identified in a nonlinear model of economic long wave forced by a
short-term business cycle (Mosekilde et al. 1992). In this chapter, we
show that an attractor merging crisis appears in a forced van der Pol os-
cillator model of nonlinear business cycles (Chian et al. 2005). The onset
of an attractor merging crisis is characterized using the tools of unstable
periodic orbits and their associated stable and unstable manifolds.

5.2 Nonlinear Model of Economic Cycles

We adopt the driven van der Pol (VDP) differential equation to model
the nonlinear dynamics of business cycles under the action of a periodic
exogenous force

i+ p(z? — 1)i 4+ 2 = asin(wt). (5.1)

The equilibrium solution of the VDP equation reduces to a repeller
fixed point located at the origin (0, 0) in the phase space (z,dx/dt). In
the absence of exogenous forcing (a = 0), the asymptotic solution of
equation (5.1) is a limit cycle surrounding the equilibrium fixed point. In
the presence of exogenous forcing, either periodic (orderly) or aperiodic
(chaotic) solutions appear when we vary any of three control parameters:
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Fig. 5.4. Time series @(t) for: (a) chaotic attractor CA; at a = 0.98765, (b) chaotic
attractor CAz at a = 0.98765, (c) merged chaotic attractor MCA at a = 0.98766

a, w, pr. The VDP equation (5.1) (when a = 0) is invariant under the flip
operation (z — —z). This symmetry is a typical property of dynamical
systems that exhibit attractor merging crises (Grebogi et al. 1987).

5.3 Attractor Merging Crisis

In order to obtain a global view of the system dynamics, we construct
a bifurcation diagram from the numerical solutions of equation (5.1)
by varying the control parameter a while keeping the other two control
parameters fixed (u = 1,w = 0.45). The Poincaré plane is defined by

P:x(t)—x(t+T), (5.2)

where T' = 27 /w is the driver period.
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Fig. 5.5. Phase space trajectories, at the crisis point a = 0.98765, of the two
mediating unstable periodic orbits of period-3 responsible for attractor merging
crisis of: (a) A1, (b) A2

The bifurcation diagrams figures 5.1(a)-5.1(b) display a periodic win-
dow in a complex region where four different attractors are found.
The periodic window begins with a saddle-node bifurcation (SNB)
at a = 0.98312, where a pair of period-one (p-1) stable (solid lines)
and unstable (not shown) periodic orbits is generated for attractor A;
(figure 5.1(a)) and attractor Ay (figure 5.1(b)), respectively; the peri-
odic window ends with a global bifurcation due to an attractor merging
crisis (MC) at aprc = 0.98765, where the two chaotic attractors CA;
and CAg combine to form a merged chaotic attractor (MCA). The rich
dynamical states displayed by the bifurcation diagram indicate that a
dynamical system is sensitively dependent on a small variation of its
control parameters.

As we increase a after the saddle-node bifurcation (SNB), the stable
periodic orbit (SPO) of A; (A2) undergoes a cascade of period-doubling
bifurcations leading to a chaotic attractor CA; (CAj). Figure 5.1(a)
(5.1(b)) shows that a second attractor As (A4) coexists with A; (As),
respectively, for a small range of the control parameter, between a =
0.9862400 and a = 0.9864085. Attractor As (A4) is created by a saddle-
node bifurcation, where a pair of p-3 stable (solid lines) and unstable
(dashed lines) periodic orbits is generated. Az and A4 are destroyed at
a = 0.9864085 due to a boundary crisis (see e.g., Chian, Borotto and
Rempel 2002).
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Fig. 5.6. Poincaré map in the vicinity of CA; (same region as Fig. 5.2(b)). (a) and
(d): before crisis (a = 0.9873), (b) and (e): at crisis (a = 0.98765), and (c) and (f):
after crisis (a = 0.98766). The crosses denote the Poincaré points of the mediating
unstable periodic orbit of period-3; the dark lines (dark points) denote the chaotic
attractors (CA; and MCA); the light lines denote the stable/unstable manifolds
(SM/UM) of the mediating saddle.

The corresponding behavior of the maximum Lyapunov exponent for
either A; or Ay, calculated by the Wolf algorithm (Wolf 1985), is shown
in figure 5.1(c). Figure 5.1 shows that there are many chaotic regions
within a periodic window and there are many periodic windows within a
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Fig. 5.7. Crisis diagram depicting the system dynamics as the control parameter a
varies. Saddle-node bifurcations (SNB) occur at a certain value of a, creating two co-
existing attractors (A; and A2), which via a cascade of period-doubling bifurcations
evolve into two chaotic attractors (CA; and CAz). At the crisis point (MC), CA;
and CAj collide head-on with the mediating unstable periodic orbits (M1 and M2),
respectively, leading to the onset of attracting merging crisis (MC) and the formation
of a merged chaotic attractor (MCA).

chaotic region, which indicates that in a complex dynamical system there
is order within chaos and chaos within order.

Multistability is a basic feature of complex dynamical systems
whereby two or more attractors can coexist for a given value of the con-
trol parameter. This is depicted by the basins of attraction in figure 5.2,
at the merging crisis point MC, where two attractors A1 and Ay coex-
ist. The set of initial conditions in the gray region of the phase space
(x,dx/dt) willlead to A1, whereas the set of initial conditions in the white
region will lead to Ag, as clarified in the enlarged plots, figures 5.2(b)
and 5.2(c), respectively, of the two rectangular regions marked in
figure 5.2(a).

After the attractor merging crisis, the two pre-crisis chaotic attrac-
tors (CA; and CAs) of figure 5.2(a) combine to form a merged chaotic
attractor (MCA), as shown in figure 5.3 in the Poincaré plane. The
merged attractor after crisis is larger than the union of the two attrac-
tors before crisis. Time series plots of the economic variable &(t) at
pre-crisis are given in figure 5.4(a) for CA; and figure 5.4(b) for CAq,
respectively, and at post-crisis (MCA) is given in figure 5.4(c). The
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amplitudes of business cycle fluctuations after the attracting merging
crisis are much larger than before the crisis.

Unstable periodic orbit (UPO) plays a key role at the onset of attrac-
tor merging crisis. We numerically determine UPO from the numerical
solution of equation (5.1) using the Newton algorithm. Analysis shows
that the mediating p-3 unstable periodic orbits (M), evolved from the
saddle-node bifurcations at the birth of As (A4), are responsible for
the attractor merging crisis. The dashed lines in figures 5.1(a)-5.1(b)
denote M. The phase space trajectory of the two mediating UPOs that
collide with A; (As), respectively, at the crisis point MC are displayed
in figure 5.5. Note that the two UPOs in figure 5.5 are symmetric under
reflection off x- and y- axis. This is a manifestation of the symmetry
property of the VDP equation (5.1).

Characterization of crisis in economic dynamics can be performed us-
ing the Poincaré method. On the Poincaré plane, an UPO transforms
into a saddle fixed point with its associated stable and unstable mani-
folds. Figure 5.6 displays the dynamical states of chaotic business cycles
on the Poincaré plane in the vicinity of A; (same region as figure 5.2(b))
before (figure 5.6(a)), at (figure 5.6(b)), and after (figure 5.6(c)) the on-
set of attractor merging crisis, respectively. The crosses denote the three
fixed points of the p-3 mediating saddle. The dark lines (and points)
denote the chaotic attractor, and the light lines in figures 5.6(a)-5.6(c)
denote the numerically computed stable manifolds of the mediating sad-
dle. Evidently, figure 5.6(b) demonstrates the head-on collision, at the
crisis point MC, of the chaotic attractor with the mediating saddle and
its stable manifolds. This collision leads to the formation of a merged
chaotic attractor, seen in figure 5.6(c).

Figures 5.6(d)-(f) displays the same system dynamics of figure 5.6(a)-
(¢), with the stable manifolds replaced by the numerically computed
unstable manifolds (UM) of the mediating saddle. Our numerical cal-
culations render support to the conjecture of Parker and Chua (Parker
1989) and Ott (Ott 1993) that a chaotic attractor contains the un-
stable manifolds of every UPO of the chaotic attractor. Figure 5.6(f)
demonstrates that the post-crisis chaotic attractor in fact coincides
with the closure of the unstable manifolds of the mediating saddle.
Although we only show the dynamical states of A; in figure 5.6,
the same behavior also applies to Ay due to the symmetry of the VDP
system.
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FExamination of figure 5.2 shows that at the onset of attractor merg-
ing crisis, the attractors collide head-on with the boundary of the basins
of attraction that separate attractors Ay and As. This boundary co-
incides with the stable manifolds of the mediating saddle, as demon-
strated by figures 5.2(b) and 5.6(b). Hence, figures 5.2 and 5.6 provide
two alternative ways of characterizing the onset of attractor merging
crisis.

5.4 Concluding Comments

This chapter shows that chaotic transitions such as the attractor merg-
ing crisis is a fundamental feature of nonlinear business cycles. The
crisis diagram for the attractor merging crisis studied is given in
figure 5.7, which summarizes the system dynamics leading to the onset
of crisis. Mathematical modelling of crisis can deepen our understand-
ing of sudden major changes of economic variables often encountered
in business cycles. The techniques developed in this chapter for crisis
characterization (e.g., figures 5.2 and 5.6) can contribute to improve
the prediction of the onset of abrupt major changes in business cycles
as well as other economic systems.

Attractor merging crisis appears in systems with symmetry such as
equation (5.1). This type of crisis is absent when the system symmetry
is broken. However, other types of crisis phenemena such as boundary
crisis (Chian, Borotto and Rempel 2002) and interior crisis (Borotto,
Chian and Rempel 2004) can be found in asymmetric systems such as
the asymmetric van der Pol equation (Engelbrecht and Kongas 1995),
and are in fact present in the solutions of equation (5.1). The tech-
niques developed in this chapter can be readily applied to character-
ize boundary and interior crises. Hence, crises and global bifurcations
are ubiquitous in either symmetric or asymmetric nonlinear economic
Systems.



6

Chaotic Transients in Nonlinear Economic
Cycles

6.1 Introduction

In chapter 2, we showed that a nonlinear economic system is intrinsi-
cally unstable; as the endogenous or exogenous parameters are varied,
the system undergoes a variety of local and global bifurcations such
as saddle-node bifurcation and attractor merging crisis, seen in the
periodic window in figure 2.5. Chapter 3 showed that saddle-node bi-
furcation is a route from order to chaos, leading to a chaotic dynamical
behavior known as type-I intermittency. Chapter 5 analyzed an attrac-
tor merging crisis in chaotic business cycles which leads to a transition
from weak chaos to strong chaos; the strong chaos exhibits a dynamical
behavior known as crisis-induced intermittency, as seen in chapter 4.
In this chapter, we will study the roles of unstable periodic orbits and
chaotic saddles in type-I intermittency and crisis-induced intermittency
in complex economic systems (Chian, Rempel and Rogers 2006), based
on the forced van der Pol oscillator model of nonlinear economic cycles

i+ p(z? = 1)i + z = asin(wt). (6.1)

6.2 Chaotic Saddle

Chaotic sets are not necessarily attracting sets. A set of unstable peri-
odic orbits can be chaotic and nonattracting so that the orbits in the
neighborhood of this set are eventually repelled from it; nonetheless,
this set can contain a chaotic orbit with at least one positive Lyapunov
exponent (Nusse and York 1989). If the chaotic orbit has also one neg-
ative Lyapunov exponent the nonattracting set is known as a chaotic
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Fig. 6.1. Chaotic saddle in bifurcation diagram. (a) Bifurcation diagram, & as a
function of a, for attractors (dark) Ao, A1, A2, Az and A4, and the surrounding
chaotic saddle SCS (gray); (b) bifurcation diagram of (a) and the band chaotic
saddle BCS (gray). SNB denotes saddle-node bifurcation, MC denotes attractor
merging crisis.

saddle. Both chaotic saddles and chaotic attractors are composed of
unstable periodic orbits.

Figure 6.1(a) shows a bifurcation diagram for both attractors (dark)
and chaotic saddles (gray) for a periodic window (same as figure 2.5(a)),
where we plot & as a function of the amplitude a of the exogenous
forcing while keeping other control parameters constant (¢ = 1 and
w = 0.45). As seen in chapter 2, within this periodic window, two or
more attractors can coexist. To plot the chaotic saddle, for each value
of the control parameter a, we plot a straddle trajectory close to the
chaotic saddle using the PIM triple algorithm (Nusse and Yorke 1989,
Rempel et al. 2004a,b). The periodic window in figure 6.1(a) begins
with a saddle-node bifurcation (SNB) at asyp = 0.98312, where a pair
of period-1 stable and unstable periodic orbits for each attractor (A
and As) is created, respectively. As we increase a, the pair of period-1
stable periodic orbits undergoes a cascade of periodic-doubling bifurca-
tions which leads to the formation of a pair of weakly chaotic attractors
localized in two separate bands in the bifurcation diagram. We call the
region of the phase space occupied by the attractor throughout the pe-
riodic window the band region, and the region occupied by the chaotic
saddle, the surrounding region (Szabé et al. 2000). Trajectories started
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in the surrounding region usually behave chaotically for a finite tran-
sient time while traversing in the vicinity of the surrounding chaotic
saddle (SCS), after which they converge to the attractor. The transient
time is related to the structure of SCS and its manifolds. Like a saddle
point, chaotic saddles possess a stable and an unstable manifold. The
stable manifold of a chaotic saddle is the sets of points that converge
to the chaotic saddle in forward time, and the unstable manifold is the
sets of points that converge to the chaotic saddle in the time reverse
dynamics (Nusse and Yorke 1989). Initial conditions close to the stable
manifold are first attracted to SCS and stay close to its neighborhood
for sometime, before they are repelled by its unstable manifold. The
closer an initial condition is to the stable manifold, the longer its tran-
sient time. Note from the bifurcation diagram in figure 6.1(a) that as
the control parameter a varies, the dynamics of the surrounding chaotic
saddle also undergoes considerable changes.

The end of the periodic window in figure 6.1(a) is marked by an at-
tractor merging crisis (MC) at ap¢c = 0.98765, where the two banded
weakly chaotic attractors merge to form a strongly chaotic attractor.
Figure 6.1(a) shows that for a small range of the control parameter, be-
tween a = 0.9862400 and 0.9864085, attractors Az and Ay coexist with
A7 and As. Attractors Az and A, are created by a saddle-node bifur-
cation at a = 0.9862400, where a pair of period-3 stable and unstable
periodic orbits are generated. Az and A4 are destroyed by a boundary
crisis at a = 0.9864085. We will demonstrate later that the attractor
merging crisis (MC) at a = 0.98765 arises from the collision of the two
banded weakly chaotic attractors with the pair of period-3 mediating
unstable periodic orbits created at a = 0.9862400. Right after the at-
tractor merging crisis, the pair of weakly chaotic attractors lose their
asymptotic stability and are converted into a pair of chaotic saddles in
the band regions, as shown in figure 6.1(b). It is worth pointing out
that, although in figure 6.1(a) we plot the surrounding chaotic saddle
only inside the periodic window, it is actually present throughout the
whole bifurcation diagram. In the chaotic regions beyond SNB and MC,
the chaotic saddles are embedded in the chaotic attractor Ag.

6.3 Chaotic Transient

Figure 6.2(a) shows the Poincaré map of the surrounding chaotic saddle
SCS (gray) obtained by the PIM triple algorithms (Nusse and Yorke
1989, Rempel et al. 2004a,b) in the beginning of the periodic window,
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Fig. 6.2. Poincaré maps of chaotic saddle leading to periodic attractor. (a) Poincaré
map of the surrounding chaotic saddle (gray) and the pair of period-1 fixed points
(cross) A1 and Az for a = 0.98312, (b) the unstable manifold (UM) of the sur-
rounding chaotic saddle, (c) the stable manifold (gray) of the surrounding chaotic
saddle.

superposed by the pair of period-1 periodic attractors A; and As (cross)
at agsyp = 0.98312. Figures 6.2(b) and 6.2(c) display the unstable
and stable manifolds, respectively, of the surrounding chaotic saddle of
figure 6.2(a), found by the sprinkler algorithm (Kantz and Grassberger
1985, Hsu, Ott and Grebogi 1988, Rempel et al. 2004a,b). Figures 6.1(a)
and 6.1(b) show that the chaotic saddles have gaps which reflect the
fractal structure of a chaotic saddle along its unstable direction. The
presence of gaps in the chaotic saddle can be seen in figure 6.2(a).
It follows from figure 6.2 that a chaotic saddle is formed by the
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Fig. 6.3. Time series of chaotic transient leading to periodic attractor. (a) Time
series, & as a function of ¢, of a chaotic transient (SCS) that converges to a periodic
time series of period-1 attractor A; for a = 0.98312 after the time indicated by the
arrow; (b) the same time series of (a) plotted as a function of the driver cycles; (c)
time series of a chaotic transient (SCS) that converges to a periodic time series of
period-1 attractor Az for a = 0.98312 after the time indicated by the arrow; (d) the
same time series of (c) plotted as a function of the driver cycles.

intersection of its stable and unstable manifolds. The empty space be-
tween the intersection points along the unstable direction is the origin
of the gaps in the chaotic saddle. Inside the periodic window the gaps
of the chaotic saddle are empty in the sense that they do not contain
unstable periodic orbits, only nonrecurrent points whose orbits con-
verge very quickly to the small neighborhood of the period-1 attractors
(Robert et al. 2000). Figure 6.3 shows examples of the time series of the
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Fig. 6.4. Poincaré maps of chaotic saddle leading to chaotic attractor. (a) Poincaré
maps of the surrounding chaotic saddle (gray) and the pair of weak chaotic attractors
CA; and C Az for a = 0.98765, (b) the unstable manifold (UM) of the surrounding
chaotic saddle, (c) the stable manifold (gray) of the surrounding chaotic saddle.

trajectory at agyp = 0.98312. For an arbitrary initial condition, the
trajectory stays a finite transient period in the neighborhood of the sur-
rounding chaotic saddle SCS until it converges to either of the period-1
periodic attractor A; (figures 6.3(a) and 6.3(b)) or Ay (figures 6.3(c)
and 6.3(d)) at the time indicated by the arrow, depending on the initial
condition. Thus, inside the periodic window the surrounding chaotic
saddle plays the role of chaotic transient motion before converging to
the attractor.
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Fig. 6.5. Time series of chaotic transient leading to chaotic attractor. (a) Time
series, & as a function of ¢, of a chaotic transient (SCS) that converges to a chaotic
time series of the weak chaotic attractor CA; for a = 0.98765 after the time indicated
by the arrow; (b) the same time series of (a) plotted as a function of the driver cycles;
(c) time series of a chaotic transient (SCS) that converges to a chaotic time series
of the weak attractor CAz for a = 0.98765 after the time indicated by the arrow;
(d) the same time series of (¢) plotted as a function of the driver cycles.

Figure 6.4(a) shows the Poincaré map of the surrounding chaotic sad-
dle SCS (gray) obtained at the end of the periodic window, superposed
by the pair of weakly chaotic attractors CA; and CAg (black) at aprc =
0.98765. Figures 6.4(b) and 6.4(c) display the unstable and stable man-
ifolds, respectively, of the surrounding chaotic saddle of figure 6.4(a).
Figure 6.5 shows examples of the time series of the trajectory at ap;c =
0.98765. For an arbitrary initial condition, the trajectory stays a finite
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Fig. 6.6. Time series and power spectrum of type-I intermittency. (a) Time series
of type-I intermittency, © as a function of time ¢, for a = 0.98311; (b) the power
spectrum, |Z|* as a function of the frequency f, of the time series of (a).

transient period in the neighborhood of the surrounding chaotic sad-
dle SCS until it converges to either of the weakly chaotic attractor CA;
(figures 6.5(a) and 6.5(b)) or CAg (figures 6.5(c) and 6.5(d)) at the time
indicated by the arrow, depending on the initial condition. This confirms
the results of figures 6.2 and 6.3, that inside the periodic window, the sur-
rounding chaotic saddle plays the role of chaotic transient motion before
approaching an attractor.

6.4 Unstable Structures in Type-I Intermittency

Next let’s turn our attention to the role of chaotic saddles in the
chaotic regions of figure 6.1. As shown by chapter 3, the chaotic at-
tractor prior to the onset of the saddle-node bifurcation, to the left of
asyp = 0.98312 in figure 6.1, exhibits type-I intermittency whereby
the time series of economic variables switch episodically back and forth
between periods of apparently periodic and bursting chaotic fluctua-
tions, exemplified in figure 6.6(a); the corresponding power spectrum
has a power-law behavior at high-frequencies as shown in figure 6.6(b),
typical of real intermittent financial data.

We saw in figure 6.2(a) that at the onset of saddle-node bifur-
cation at agyp = 0.98312 there is a surrounding chaotic saddle
(SCS) which represents the chaotic transient preceding convergence
to the period-1 periodic attractors A; and As. Note that there are
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Fig. 6.7. Chaotic attractor and chaotic saddle in type-I intermittency. (a) Poincaré
map of the chaotic attractor (CA) for type-I intermittency at a = 0.98311, (b)
the surrounding chaotic saddle (SCS) embedded in the chaotic attractor of (a), (c)
and (d) are enlargements of the two rectangular regions of (b). The cross denotes
the pair of period-1 unstable periodic orbits created at the saddle-node bifurcation
a = 0.98312.

gaps in the surrounding chaotic saddle in figure 6.2(a). As the sys-
tem undergoes a transition from order to chaos via a saddle-node bi-
furcation, the surrounding chaotic saddle (SCS) is converted into a
chaotic attractor (CA) as shown in the Poincaré map in figure 6.7(a)
for a = 0.98311, where we also plotted the fixed points (cross) of the
pair of period-1 unstable periodic orbits (M) created by the saddle-
node bifurcation at agypg = 0.98312. Since the unstable periodic orbits
are robust, all the unstable periodic orbits (with the exception of M)
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contained in the surrounding chaotic saddle after the saddle-node bi-
furcation (figure 6.2(a)) continue to exist in the chaotic region beyond
the saddle-node bifurcation (to the left of asyp). Thus, the surround-
ing chaotic saddle is embedded in the chaotic attractor of figure 6.7(a),
as shown in figure 6.7(b). An enlargement of the rectangular regions of
figure 6.7(b) is given in figures 6.7(c) and 6.7(d), respectively. Although
the pair of period-1 saddle points (M) appear only after the saddle-node
bifurcation, the system keeps the memory of these saddle points even
prior to the occurrence of the saddle-node bifurcation. When an un-
stable periodic orbit, from either the surrounding chaotic saddle or the
gap regions in figure 6.7(b), approaches the vicinity of the location of
these saddle points (cross), it is decelerated and spends more time in
the regions shown in figures 6.7(c) and 6.7(d). In other words, all or-
bits of the chaotic attractor mimic (synchronize with) these period-1
unstable periodic orbits (M) when they come to their neighborhood
(Kaplan 1993). This is the origin of the laminar phases seen in type-I
intermittency of figure 6.6(a), which can also be explained in terms of
phase synchronization of the unstable periodic orbits (Pikovsky et al.
1997; Pazo, Zaks and Kurths 2003; Pikovsky, Rosenblum and Kurths
2003). When a chaotic orbit moves away from the regions shown in
figures 6.7(c) and 6.7(d), the orbit becomes desynchronized with re-
spect to the unstable periodic orbit (M) created by the saddle-node
bifurcation, which is manifested by the bursting phases in type-I inter-
mittency of figure 6.6(a).

6.5 Attractor Merging Crisis

We study next what happens to the chaotic attractors at the end of
the periodic window at ay;c = 0.98765. Chapter 5 showed that at asc
an attractor merging crisis occurs due to the collision of two coexisting
weakly chaotic attractors CA; and CAs with a pair of mediating un-
stable periodic orbits of period-3 and their associated manifold, which
coincides with the boundary of the basins of attraction dividing the two
weakly chaotic attractors. As the result of this crisis, two small chaotic
attractors combine to form a single large chaotic attractor to the right
of aprc. Figures 6.8(a) and 6.8(b) are the enlargements, respectively, of
the two rectangular regions of figure 6.4(a), showing the surrounding
chaotic saddle SCS (black) and its stable manifold (the gray regions),
the pair of weakly chaotic attractors CA;/CAs (thin line), and the
pair of period-3 mediating saddles (cross). The stable manifold of the
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Fig. 6.8. Attractor merging crisis. Chaotic attractor-chaotic saddle collision at the
attractor merging crisis for a = 0.98765. (a) Poincaré maps of the weak chaotic
attractor WCA; (thin line), the surrounding chaotic saddle SCS (black), the stable
manifold of SCS (gray), the mediating period-3 saddle (cross) and its associated
stable manifold SM (dashed line); (b) Poincaré maps of the weak chaotic attractor
WCA; (thin line), the surrounding chaotic saddle SCS (dark line), the stable man-
ifold of SCS (gray), the mediating period-3 saddle (cross) and its associated stable
manifold SM (dashed line). (a) and (b) correspond to the two rectangular regions
indicated in figure 6.4(a).

mediating saddle is indicated by the dashed lines which separates the
surrounding region occupied by the surrounding chaotic saddle from
the band region occupied by the weakly chaotic attractors. Figure 6.8
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reveals that at the onset of crisis, a chaotic attractor-chaotic saddle
collision takes place whereby the chaotic attractor collides with the
stable manifolds of both the mediating period-3 periodic saddle and
the surrounding chaotic saddle.

6.6 Unstable Structures in Crisis-Induced Intermittency

As the result of the chaotic attractor-chaotic saddle collision at the on-
set of the attractor merging crisis, for a greater than apsc, the two
banded pre-crisis chaotic attractors CA; and CAs in figure 6.4(a) merge
to form a single large chaotic attractor (MCA), as shown in figure 6.9(a),
for a = 0.9877. An enlargement of the two rectangular regions of
figure 6.9(a) in the vicinities of the regions previously occupied by CA;
and CAs are plotted in figures 6.9(b) and 6.9(c), respectively, where we
also plotted the saddle points of the mediating period-3 unstable pe-
riodic orbits (cross) and their stable manifold SM (thin line). The nu-
merically determined surrounding (SCS) and banded (BCS; and BCS3)
chaotic saddles which are embedded in the merged chaotic attractor of
figure 6.9(a) are plotted in figure 6.9(d). An enlargement of the two rect-
angular regions of figure 6.9(d), corresponding to the same regions cov-
ered by figures 6.9(b) and 6.9(c), is given in figures 6.9(e) and 6.9(f),
respectively, where we also plotted the mediating saddle (cross) and its
stable manifold SM (thin line). The stable manifold (SM) of the mediat-
ing saddle divides the merged chaotic attractor into the band region and
the surrounding region. This division can be used to guide the numerical
finding of the post-crisis chaotic saddles in the band and surrounding re-
gions, respectively (Rempel et al. 2004a,b). It is evident from figure 6.9
that the banded chaotic saddles BCS; and BCS; (black) are located in
the band regions previously occupied by the pre-crisis weakly chaotic at-
tractors, since they are in fact converted from these two banded chaotic
attractors at ap;c. BCSy and BCSs are found by a straddle orbit that
never leaves the banded regions. Similarly, the surrounding chaotic sad-
dle SCS (gray) is found by a straddle orbit that never enters the band
regions.

It follows from the previous analysis that two nonattracting sets con-
sisting of the surrounding chaotic saddle (SCS) and a pair of banded
chaotic saddles (BCS; and BCS3) are embedded in the post-crisis
merged chaotic attractor (MCA), as shown in figure 6.9(d). Actually,
the merged chaotic attractor is larger than the union of the surround-
ing and banded chaotic saddles, since the gaps in the post-crisis chaotic



6.6 Unstable Structures in Crisis-Induced Intermittency 73

(&) (d) a=09877 BCS,
2 2 e
scs -
1 1 N7 !
J'C x - '/
0 of \ Wl
N, - [
1 -1 - BCS,
-2 - -2
~25 -15  -05 0.5 15 25 -15  -05 05 1.5
X x
b) 1% e) 195 —— o
( ) ( ) ! BCSI |IL
19 | 1.9 / ==~
ses AT ,
\ 1/
Z° s
Z y
X 185 x 18 7 .a'f ‘/ IF
/ a/ / * |
18 1.8 5"’3.* / 4;,1 [SM
[l
[ | |
1.75 175 p: .
0.05 01375 0225 03125 0.4 005 01375 0225 03125 04
X X
© o M o
0.125 0.125
X -005 X -0.05
-0.225 -0.225
04 - —04 : . .
~o. 0075 025 0425 06 201 0075 025 0425 06
X X

Fig. 6.9. Chaotic attractor and chaotic saddle in crisis-induced intermittency. (a)
Poincaré map of the merged chaotic attractor (MCA) at a = 0.9877; (b) and (c)
are enlargements of the two rectangular regions indicated in (a) showing the merged
chaotic attractor (MCA), the period-3 mediating saddle (cross) and its associated
stable manifold (SM); (d) Poincaré maps of the surrounding chaotic saddle SCS
(gray) and the pair of banded chaotic saddles BCS; and BCS; (black) at a = 0.9877;
(e) and (f) are enlargements of the two rectangular regions indicated in (d) showing
the surrounding chaotic saddle (SCS), the banded chaotic saddles BCS;/BCSa2, the
period-3 mediating saddle (cross) and its associated stable manifold (SM).

saddles indicated in figures 6.9(d), 6.9(e) and 6.9(f) are not empty.
They are densely filled by uncountably many unstable periodic orbits
created by an explosion right after the onset of attractor merging crisis
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Fig. 6.10. Coupling unstable periodic orbits. (a) and (b) correspond to the same
plots of figures 6.9 (e) and (f), respectively, showing the Poincaré maps of the sur-
rounding chaotic saddle SCS (gray) and the pair of banded chaotic saddles BCS;
and BCS; (black) at a = 0.9877, the stable manifold (SM) of the period-3 mediat-
ing saddles (not shown), and the pair of period-13 coupling unstable periodic orbits
(cross) located in the gap regions of the surrounding and banded chaotic saddles.

(Szabé et al. 2000, Robert et al. 2000). This set of unstable periodic
orbits within gaps, called coupling orbits with components in both
band and surrounding regions, are responsible for the coupling between
these two regions. Before crisis, for a less than ap;¢, trajectories on the
banded chaotic attractor never abandon the band region. For a slightly
greater than ay;c a trajectory started in the band region can stay in
that region for a finite duration of time, after which it crosses the stable
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Fig. 6.11. Time series and power spectrum of crisis-induced intermittency. (a) Time
series of crisis-induced intermittency, ¢ as a function of time ¢, for a = 0.9877; (b)
the power spectrum, |#|? as a function of the frequency f, of the time series of (a).

manifold (SM) and escapes into the surrounding region. Once inside the
surrounding region, the trajectory moves to the neighborhood of the
surrounding chaotic saddle (SCS). After some time, the trajectory is
injected back to the band region. This process of switching between the
band and surrounding regions repeats intermittently. Hence, the cou-
pling orbits located in the gaps of both banded and surrounding chaotic
saddles link the trajectory from one region to the other; in principle,
each switching may involve different coupling orbits. Right after crisis,
the coupling orbits created by the explosion have very long period with
the period approaching infinity as a — aps¢ from above (Szabé et al.
2000). In that case, it is more difficult to numerically find a coupling
orbit. However, as the control parameter a is increased further away
from the crisis point ap;¢, shorter coupling orbits are created. Figures
6.10(a) and 6.10(b) show a pair of period-13 coupling unstable periodic
orbits numerically found in the same regions of figures 6.9(e) and 6.9(f)
using the Newton algorithm (Curry 1979; Rempel et al. 2004a). Note
that in figure 6.10 the Poincaré points of the coupling unstable periodic
orbits are in fact located in the gaps of both banded and surrounding
chaotic saddles.

Figure 6.11(a) shows the time series of crisis-induced intermittency,
corresponding to the same control parameter of figures 6.9 and 6.10.
This time series alternates episodically between the laminar periods
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associated with the two banded chaotic saddles and the bursting pe-
riods associated with the surrounding chaotic saddle. The transition
between the laminar and bursting periods is linked by the coupling
unstable periodic orbits. The power spectrum corresponding to figure
6.11(a) is given in figure 6.11(b), which exhibits power-law behavior at
high frequencies, typical of real intermittent financial data.

6.7 Concluding Comments

We demonstrated in this chapter that a chaotic economic attractor
is composed of chaotic saddles and unstable periodic orbits situated
within the gaps of chaotic saddles. These unstable structures are the
origin of intermittency in nonlinear economic models. In type-I eco-
nomic intermittency, the laminar phases associated with low-level fluc-
tuations of economic variables is a result of a phase synchronization of
a chaotic orbit with the unstable periodic orbit created at the saddle-
node bifurcation, whereas the bursting phases related to high-level fluc-
tuations of economic variables are an indication that a chaotic orbit is
far away from the unstable periodic orbit created at the saddle-node
bifurcation. We showed that the attractor merging crisis in complex
economic systems is due to a chaotic attractor-chaotic saddle collision,
whereby two weakly chaotic attractors combine to form a large chaotic
attractor. After the crisis, the pair of pre-crisis weakly chaotic attrac-
tors are converted into a pair of banded chaotic saddles. The post-crisis
chaotic attractor is composed of the surrounding chaotic saddle, two
banded chaotic saddles and coupling unstable periodic orbits in the gap
regions which act as the link between the surrounding chaotic saddle
and the banded chaotic saddles. In the time series of crisis-induced in-
termittency seen in figure 6.11(a), the laminar phases indicate that a
chaotic orbit is in the region of the banded chaotic saddles, whereas
the bursting phases indicate that a chaotic orbit is in the region of
the surrounding chaotic saddle; the laminar and bursting phases are
connected by the coupling unstable periodic orbits which have compo-
nents in the gap regions of both surrounding chaotic saddle and banded
chaotic saddles. Characteristic intermittency time, which measures the
average duration of the laminar phases of either type-I or crisis-induced
economic intermittency, can be calculated from the numerically simu-
lated time series. This result can be useful for forecasting the turning
point from bust to boom phases in business cycles.
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Conclusion

In this monograph, we adopted a forced oscillator model of nonlinear
economic cycles as a prototype to model the fundamental dynamical
behaviors of a complex economic system, which exhibits multistabil-
ity (coexistence of attractors), multiscale (power-law dependence on
frequency), and coexistence of regularity and irregularity (order and
chaos). It is important to point out that although we have selected the
van der Pol model for its mathematical simplicity and its wide interest
in economics, in view of the universal mathematical properties of non-
linear dynamical systems, the dynamical characteristics investigated in
this simple model is actually applicable to other more sophisticated
economic scenarios. We succeeded in characterizing the anatomy of a
complex economic system by classifying its structure and dynamics.
In terms of the system structure, our analysis shows that a complex
economic system is composed of a hierarchy of stable and unstable
structures, namely, stable and unstable manifolds of a fixed point in
the state space and in the Poincaré section, stable and unstable peri-
odic orbits, stable and unstable manifolds of a chaotic saddle, stable
(periodic) and unstable (chaotic) attractors. In particular, we showed
that unstable periodic orbits are the building blocks of chaotic saddles
and chaotic attractors; moreover, chaotic saddles are embedded in a
chaotic attractor and are responsible for the transient motion preced-
ing the convergence to an attractor (periodic or chaotic). In terms of
the system dynamics our results show that, as the control parameters
are varied, a complex economic system undergoes a variety of dynamic
transitions which change its stability properties, namely, local bifurca-
tions such as period-doubling bifurcation, saddle-node bifurcation and
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Hopf-bifurcation, and global bifurcations such as boundary crisis, inte-
rior crisis and attractor merging crisis.

Economic systems are unstable by nature, dominated by instabili-
ties driven by both endogenous and exogenous forces. This very unsta-
ble nature of economic dynamics is clearly manifested by the unstable
structures, such as unstable periodic orbits and chaotic saddles, inher-
ent in chaotic economic systems. Recently, there is a surge of interest
on the relevance of these unstable structures in economic dynamics.
Lorenz and Nusse (2002) reconsidered the Goodwin’s nonlinear acceler-
ator model with periodic investment outlays and used it as an economic
example of the emergence of complex motion in nonlinear dynamical
systems. They showed that in addition to chaotic attractors, this model
can possess coexisting attracting periodic orbits or simple attractors,
which imply the emergence of transient chaotic motion (chaotic sad-
dles). They applied straddle methods to numerically analyze this model
in order to detect compact invariant sets which are responsible for the
complexity of the transient motion, and concluded that chaotic saddles
are prevalent in nonlinear economic models. Ishiyama and Saiki (2005)
numerically found many unstable periodic orbits embedded in a chaotic
attractor in a Keynes-Goodwin type of macroeconomic growth cycle
model of two countries with different fiscal policies. These unstable pe-
riodic orbits not only look similar in shape to the chaotic attractor,
there is a correspondence between the unstable periodic orbits and the
chaotic attractor in terms of their statistical properties such as means,
variances, Lyapunov exponents and probability density functions. Each
value related to labor share rates, employment ratios, expected inflation
rates and the instability of the chaotic attractor is almost the same as
those of the unstable periodic orbits. Their results indicate that both
statistical and dynamical features of a chaotic attractor in complex
economic systems are captured by just a few unstable periodic orbits,
in agreement with the periodic orbit theory of dynamical systems of
Auerbach et al. (1987) and Cvitanovic (1988). This monograph renders
strong support for the conclusions, that unstable periodic orbits and
chaotic saddles are essential elements of complex economic systems, of
Lorenz and Nusse (2002) and Ishiyama and Saiki (2005).

We demonstrated that intermittency is an intrinsic behavior of a
chaotic economic system by analyzing in detail two examples of economic
intermittency due to a local or a global bifurcation, namely, type-I in-
termittency and crisis-induced intermittency, respectively. The former
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is generated by a saddle-node bifurcation, the latter is generated by a
crisis phenomenon such as the attractor merging crisis. In type-I inter-
mittency, an economic system is capable of keeping the memory of its
ordered dynamics before the transition to chaos; the time series of eco-
nomic variables alternates between periods of seemingly periodic and
chaotic fluctuations. In crisis-induced intermittency, an economic sys-
tem is able to maintain the memory of its weakly chaotic dynamics before
the transition to strong chaos; the time series of economic variables alter-
nates between periods of weakly and strongly chaotic fluctuations. These
two examples of chaos-driven intermittency can reproduce a number of
patterns, namely, persistence, recurrence, memory, regime switching and
volatility clustering, which are present in the intermittent time series ob-
served in business cycles and financial markets (Diebold and Rudebusch
1999). The robustness of the unstable periodic orbits which form the
skeleton of chaotic attractors and chaotic saddles can explain persis-
tence, recurrence and memory patterns in business and financial cycles.
The episodic switching between different dynamic states of an intermit-
tent chaotic system can explain regime switching observed in economic
and financial time series. The phase synchronization of unstable periodic
orbits can be responsible for the spikes in the turbulent bursts as well as
the quiescent phases in the time series, thus providing an explanation
for the volatility clustering in financial data. Hence, the techniques de-
veloped in this paper for characterizing the complex dynamics of eco-
nomic systems can become powerful tools for pattern recognition and
forecasting of business and financial cycles. For example, the anticipa-
tion of the turning points is fundamental for forecasting business-cycle
recessions and recoveries for countries showing asymmetric cycle dura-
tions (Garcia-Ferrer and Queralt 1998). Modeling of intermittency in
nonlinear economic cycles can provide an estimate of the average du-
ration of the contractionary phases of economic cycles and predict the
turning points to expansionary phases. The classical NBER model of
leading economic indicators was built solely within a linear framework
which is inadequate for predicting the complex behavior of business cy-
cles. By combining the complex system approach (such as chaotic the-
ory developed in this paper) and the intelligent system approach (such
as neural network), a superior performance for forecasting business cycle
can be obtained relative to the classical model (Jagric 2003).

The techniques developed in this monograph can be readily applied
to the study of chaos and complexity in management systems such as
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logistics and supply chain management (Mosekilde and Larsen 1988;
Sosnovtseva and Mosekilde 1997), organizational dynamics and strate-
gic management (Senge 1990; Stacey 2000), public policy and public
administration (Kiel 1994). In fact, economic dynamics is a result of
complex interactions of economical, political, social, climate, environ-
mental and technological systems. For example, Berry (2000) performed
an eigenanalysis of macroeconomic rhythms in the inflation rate and
the rate of economic growth for the United States from 1790 to 1995,
and obtained strong evidence of mode-locking of (Kondratiev) long
waves by geophysical cycles; he suggested that a geophysical pacemaker
may control the periodic appearance of long-wave crises, which leads
to the clustering of innovations that drive successive surge of techno-
logical change. Nonlinear models of solar cycles, climate, and ecological
systems indicate that these natural systems exhibit chaotic behaviors.
Chian et al. (2003) showed that the dynamical systems approach is a
powerful tool to model the complex dynamics of space environment and
the solar-terrestrial relation which have great impact on climate, tech-
nology and environment. Sandor, Walsh and Marques (2002) discussed
the rationale and objectives for pilot greenhouse-gas-trading markets,
such as the Chicago Climate Exchange, now under development around
the world; these markets represent an initial step in resolving a fun-
damental problem in defining and implementing appropriate policy ac-
tions to address climate change. Numerical modeling based on complex
systems approach may be useful for the development of these emissions-
trading markets, by assisting society to better understand the complex
coupled energy-climate-environment system and assist policymakers to
identify and implement optimal policies for managing the risks related
to climate change.

The sensitive dependence of a dynamical system on small variations
of its parameters can be used to control the chaotic behavior of a sys-
tem by applying a small perturbation (Ott, Grebogi and Yorke 1990),
which can be useful for stabilizing economic systems and optimizing
management policies. This idea is based on the fact that a chaotic at-
tractor has embedded in it an infinite number of unstable periodic or-
bits, which provides the flexibility to choose the most desirable periodic
orbit whereby a chaotic system can be stabilized by introducing a small
perturbation to convert it from an unstable periodic orbit to a stable
periodic orbit. Lai and Grebogi (1994) showed that chaotic transient
can be converted into sustained chaos by feedback control. There is
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evidence of chaos control in laboratory and numerical experiments.
For example, Schief et al. (1994) applied the chaos method to control
brain dynamics and succeeded to increase the periodicity of the in vitro
neuronal population behavior and showed that neuronal systems can
be made less periodic by applying chaos anticontrol techniques. Lopes
and Chian (1996) showed that chaos in a coupled three-wave system,
resulting from period-doubling bifurcations and type-I intermittency,
can be controlled by applying a small wave with appropriate ampli-
tude and phase. Kopel (1997) used a model of evolutionary market to
show how firms can improve their performance in terms of profits if the
decision makers of the firms apply the targeting method to switch from
a chaotic evolution to a desired regular path. Kaas (1998) used the
chaos control technique to show that the government can in principle
stabilize an unstable Walrasian equilibrium in a short time by varying
income tax rates or government expenditures. Rosser (2001) suggested
that chaotic dynamics may actually be a desirable outcome for the
sustainability of global complex ecologic-economic systems affected by
climate change, as long as the policy agents are able to implement en-
vironmental policies that keep the system dynamics within sustainable
levels by directing the management efforts at the appropriate levels of
ecologic-economic interactions.

In this monograph, we only considered economic systems which are
of low-dimension and varying only in time, described by ordinary dif-
ferential equations. In many areas of economics and management, we
must deal with dynamical systems which are of high-dimension and
varying both in space and time. For example, in a study of fishery
management of a lake district, Carpenter and Brock (2004) concluded
that because of the complex interactions of mobile people and multi-
stable ecosystems, optimal policies and management regimes will be
highly heterogeneous in space and fluid in time. Some recent papers
have demonstrated that nonlinear phenomena such as chaotic saddles,
crisis, type-l intermittency and crisis-induced intermittency, observed
in low-dimensional dynamical systems appear also in high-dimensional
spatiotemporal dynamical systems (Chian et al. 2002, 2003; He and
Chian 2003, 2004; Rempel et al. 2004b; Rempel and Chian 2005).
Hence, the techniques developed in this monograph can be used to
model complex spatiotemporal economical and managerial systems de-
scribed by partial differential equations.
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In this monograph, we have only focused on the deterministic charac-
teristics of an economic system. Note, however, that uncertainty always
plays a role in the economy, therefore a real economic system consists of
both deterministic and stochastic dynamics (Hommes 2004). Barnett
and Serletis (2000) reviewed the literature on the efficient markets hy-
pothesis and chaos, and contrasted the martingale behavior of asset
prices to nonlinear chaotic dynamics; in addition, they discussed the
difficulty of distinguishing between probabilistic and deterministic be-
haviors in asset prices. Dhamala, Lai and Kostelich (2000) developed
strategies to detect unstable periodic orbits from transient chaotic time
series, in the presence and in the absence of noise, by examining recur-
rence times of trajectories in the vector space reconstructed from an
ensemble of such time series, which can be useful for extracting unsta-
ble periodic orbits in intermittent economic and financial data. Small
and Tse (2003) addressed the question of how to detect determinism
in financial time series by examining daily returns from three financial
indicators: the Dow Jones Industrial Average, the London gold fixings,
and the U.S. dollar to Japenese Yen exchange rates; for each data set
they applied surrogate data methods and nonlinearity tests to quan-
tify determinism over a range of time scales, and found that all three
time series are distinct from linear noise or conditional heteroskedastic
models; they concluded that there exists detectable deterministic non-
linearity in real financial time series that can potentially be exploited
for forecasting of financial markets.

In conclusion, characterization of nonlinear dynamical properties of
economical time series obtained via numerical modeling may be the first
step to understand the complex behavior of economic systems. Many of
the traditional techniques being used by economists for modeling eco-
nomic dynamics are based on linear approaches which are only valid
near the equilibrium, and many of the tools being used by the invest-
ment professionals are based on the assumption that the asset returns
have Gaussian distribution. In reality, the economic dynamics is of-
ten highly nonlinear and far away from the equilibrium, and the asset
returns are usually intermittent with typically non-Gaussian distribu-
tions. The application of the complex systems approach developed in
this paper to economic modeling and forecasting can improve decision
making and policy planning, with positive impacts to the management
of economic systems.
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