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PREFACE


Industrial Flow Modeling Group, iFMg at National Chemical Laboratory undertakes 
contract research and consultancy projects in the general area of reactor engineering. 
We use computational flow modeling to carry out these industrial projects. Compu
tational flow modeling is a powerful tool for the design and analysis of industrial 
flow processes. Though it is routinely used as a design tool in aerospace engineering, 
chemical engineers have started exploiting the power of computational flow model
ing only recently. Considering the central role played by reactors in chemical process 
industries, there is tremendous potential for applying computational flow-modeling 
tools to improve reactor engineering. 

Through interactions with practicing engineers from industry, it has been real
ized that there is insufficient help available to harness state of the art computational 
flow modeling tools for complex, industrial reactor engineering applications. Many 
reactor engineers either consider that the flow complexities of industrial reactors are 
impossible to simulate, or expect miracles from off-the-shelf, commercial flow mod
eling tools. These two diverse views arise because of inadequate interactions between 
the flow modeling and industrial reactor engineering communities. It is essential to 
clearly understand the role of flow modeling in reactor engineering. It is necessary 
to relate the individual aspects of reactor engineering and computational flow mod
eling in a coherent and consistent way to realize the potential of computational flow 
modeling for reactor engineering research and practice. To assist practicing engi
neers in these aspects, workshops on ‘computational flow modeling for chemical 
process industries’ were started at the National Chemical Laboratory. The enthusi
astic response to these workshops has encouraged me to write this book, which is 

xi 
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an expanded and formalized presentation of workshop notes. I have tried to provide 
sufficient information to understand and to define the specific role of computational 
flow modeling for reactor engineering applications, to select appropriate tools and 
to apply these tools to link reactor hardware to reactor performance. The intended 
audience of the book is practicing chemical engineers working in industry as well as 
chemical engineering scientists and research students working in the area of reactor 
engineering. Some prior background in reactor engineering and numerical techniques 
is assumed. 

The information in the book is organized to facilitate the central task of reac
tor engineer, that is, relating reactor hardware to reactor performance. Several steps 
to achieve such a task are discussed to clearly define the role of flow modeling in 
the overall reactor engineering activity. The necessity of using a hierarchy of mod
eling tools and establishing a clear relationship between the objectives of reactor 
engineering and the computational flow model is emphasized with the help of exam
ples. The overall methodology of achieving the objectives of reactor engineering via 
computational flow modeling is discussed. Desirable characteristics and key issues 
in selecting appropriate computational fluid dynamics (CFD) codes are briefly dis
cussed. A number of examples and case studies covering the four major reactor types 
used in chemical industries, namely, stirred reactors, bubble column reactors, flu
idized bed reactors and fixed bed reactors are included. In view of the wide range of 
reactor types, however, it is impossible to cover all the reactor types and flows relevant 
to these reactor types. Emphasis on certain topics and the selection of examples is 
biased and is directly related to my own research and consulting experience. Some 
topics, like radiative heat transfer, laminar reactive flows are completely omitted. I 
have, however, made an attempt to evolve general guidelines, which will be useful 
for solving practical reactor engineering problems. Some comments on future trends 
in computational flow modeling and its use by the chemical engineering community 
are also included. 

The material included in this book may be used in several ways and at various 
stages of flow modeling projects. It may be used as a basic resource for making appro
priate decisions about investment in the application of CFD to reactor engineering. 
It may be used as a study material for an in-house course to facilitate the apprecia
tion and application of computational flow modeling for reactor engineering. It may 
be used as a companion book while solving practical reactor engineering problems. 
I hope that this book will encourage chemical engineers to exploit the potential of 
computational flow modeling and will eventually lead to better reactor engineering. 

This book is essentially the outcome of my last fifteen years of association with 
this subject. I have received a great deal of help from numerous persons over these 
years in formulating and revising my views on both computational flow modeling and 
chemical reactor engineering. I am particularly indebted to my teacher and mentor, 
Professor J.B. Joshi, who has been one of the leading practitioners of process fluid 
dynamics for three decades. There are not adequate words to express his contributions 
to this book. I was fortunate to have an opportunity to work with Dr R.V. Chaudhari 
and Dr R.A. Mashelkar at the National Chemical Laboratory. Both of them always 
extended their full support and encouragement in my every endeavor. Without their 
support, it would not have been possible to develop our industrial flow modeling 
activity, on which this book is based. I would like to acknowledge the support pro
vided by Professor H.E.A. van den Akker of Delft University of Technology and by 
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Professors G.F. Versteeg and J.A.M. Kuipers of University of Twente, The Nether
lands. My brief stay at Professor van den Akker’s laboratory at Delft introduced me to 
different commercial CFD solvers and expanded my horizons. The idea of this book 
was formalized during my second visit to The Netherlands at University of Twente. 
I would also like to thank Dr Bharatan Patel of Fluent Inc. and Mr Paresh Patel of 
Fluent India for their support. 

I am grateful to my associates and collaborators with whom I worked on different 
industrial projects. In particular, I owe much to Professor J.R. Bourne, Mr Vaibhav 
Deshpande, Ms S.M.S. Dommeti and Mr Yatin Tayalia. My students, especially Kapil 
Girotra, Ashwin Sunthankar, Ranjit Utikar, Aravind Rammohan, Sachin Muthian, 
Avinash Khopkar, Prashant Gunjal, Vivek Buwa and Shishir Sable have contributed 
to this book in different ways. This includes technical contributions either in a 
direct or indirect way, helping me to collect the required information and reading 
the draft manuscript. My father, Mr V.B. Ranade also has painstakingly read the 
entire manuscript and suggested several ways to enhance the clarity of presenta
tion. The manuscript was improved wherever their suggestions were incorporated. 
Any remaining errors or shortcomings are, needless to say, the responsibility of the 
author. Finally, I wish to thank my wife, Nanda, for her patience, understanding and 
enthusiastic support, which carried me through this long and arduous writing process. 

Vivek V. Ranade 
December 2000 

Pune 
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INTRODUCTION
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REACTOR ENGINEERING AND 
FLOW MODELING 

All industrial chemical processes are designed to transform cheap raw materials to 
high value products (usually via chemical reactions). A ‘reactor’, in which such chem
ical transformations take place, has to carry out several functions such as bringing 
reactants into intimate contact (to allow chemical reactions to occur), providing an 
appropriate environment (temperature and concentration fields, catalysts) for an ade
quate time and allowing for the removal of products. Chemical reactor engineering 
includes all the activities necessary to evolve the best possible hardware and operating 
protocol of the reactor to carry out the desired transformation of raw materials (or 
reactants) to value added products. A reactor engineer has to ensure that the reactor 
hardware and operating protocol satisfy various process demands without compro
mising safety, the environment and economics. To realize this, the reactor engineer 
has to establish a relationship between reactor hardware and operating protocols and 
various performance issues (Fig. 1.1). 

Successful reactor engineering requires expertise from various fields including 
thermodynamics, chemistry, catalysis, reaction engineering, fluid dynamics, mixing 
and heat and mass transfer. The reactor engineer has to interact with chemists to 
understand the basic chemistry and peculiarities of the catalyst. Based on such an 
understanding and proposed performance targets, the reactor engineer has to abstract 
the information relevant to identifying the characteristics of the desired fluid dynamics 
of the reactor. The reactor engineer then has to conceive suitable reactor hardware 
and operating protocols to realize this desired fluid dynamics in practice. Thus, fluid 
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FIGURE 1.1 Chemical reactor engineering. 

dynamics plays a pivotal role in establishing the relationship between reactor hardware 
and reactor performance. 

To establish the relationship between reactor hardware and reactor performance, 
it is necessary to use a variety of different tools/models. Creative application of 
the best possible tools is required to evolve the best possible hardware configura
tion and operating protocol for the reactor under consideration. Various tools for 
modeling chemical kinetics and reactions are already well developed and routinely 
used in practice. This activity constitutes the major part of conventional chemical 
reaction engineering. Several excellent textbooks discussing these tools are available 
(for example, Aris, 1965; Levenspiel, 1972; Westerterp et al., 1984; Naumann, 
1987). Most models falling in this category make use of drastic simplifications 
when treating the reactor fluid dynamics. Indeed, sophisticated models and theories 
are available to predict the interaction between chemistry and transport processes 
such as mixing, heat and mass transfer. However, these models rarely attempt 
to rigorously relate transport properties with the reactor hardware and operating 
protocol. For a specific chemistry/catalyst, the reactor performance is a complex 
function of the underlying transport processes. These transport processes are, in turn, 
governed by the underlying fluid dynamics, and therefore by a variety of design 
and operating parameters of the process equipment. In conventional reaction engi
neering, experimental and semi-theoretical methods (like cold flow simulations or 
tracer studies) are used to relate fluid dynamics and mixing with reactor hardware 
and operating parameters. The information obtainable from these methods is usu
ally described in an overall/global parametric form. This practice conceals detailed 
local information about turbulence and mixing, which may ultimately determine 
reactor performance. This approach essentially relies on prior experience and trial 
and error methods to evolve suitable reactor hardware. These tools, therefore, are 
increasingly perceived as being expensive and time consuming ways of developing 
better reactor technologies. It is necessary to adapt and develop better techniques 
and tools to relate reactor hardware with fluid dynamics and resultant transport 
processes. 
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Over the years, aerospace engineers, who are most concerned with the task 
of establishing the relationship between the hardware and resulting fluid dynamics, 
have developed and routinely use computational fluid dynamics. Computational fluid 
dynamics (CFD) is a body of knowledge and techniques used to solve mathematical 
models of fluid dynamics on digital computers. In recent years, chemical engineers 
have realized that, although establishing a relationship between reactor hardware 
and fluid dynamics is less central (compared to aerospace engineers) to their role, 
it is no less important. With the development of high performance computers and 
advances in numerical techniques and algorithms, chemical engineers have started 
exploiting the power of computational fluid dynamics tools. Considering the cen
tral role of reactors in chemical process industries, there is tremendous potential for 
applying these tools for better reactor engineering. If applied properly, computa
tional flow modeling (CFM) may reduce development time, leading to reduced time 
to market, shorter payback time and better cash flow. It is, however, necessary to 
adapt CFD techniques and to develop a computational flow modeling approach to 
apply them to chemical reactor engineering. This book is written with the inten
tion of assisting practicing engineers and researchers to develop such an approach. 
Individual aspects of chemical reactor engineering and computational flow modeling 
(CFM) are discussed and related in a coherent way to convey and clarify the potential 
of computational flow modeling for reactor engineering research and practice. The 
emphasis is not on providing a complete review but is on equipping the reader with 
adequate information and tips to undertake a complex flow-modeling project. The 
focus is on modeling fluid flows and developing tractable reactor engineering mod
els. Numerical issues are dealt with in adequate detail to provide appreciation of the 
important aspects and to guide the development and incorporation of new models into 
available solvers. Readers interested in developing their own complete solvers may 
refer to specialized books on CFD (for example, Ferziger and Peric, 1995; Patankar, 
1980). 

The information in this book is organized to facilitate the central task of a reactor 
engineer, that is, relating reactor hardware to reactor performance. This chapter pro
vides a brief introduction to the contents to be covered in detail in subsequent chapters. 
Here, the roles of flow modeling and computational flow modeling are discussed in 
the context of reactor engineering. Various aspects of chemical reaction and reactor 
engineering are discussed in Section 1.1 to clearly define the role of flow modeling 
in overall activity. Computational flow modeling, its advantages and limitations are 
discussed in Section 1.2. Introduction to the use of CFM for reactor engineering is 
given in Section 1.3. This chapter, as a whole, will be used to appreciate and identify 
the potential of CFM for reactor engineering. 

The theoretical and numerical basis of computational flow modeling (CFM) is 
described in detail in Part II. The three major tasks involved in CFD, namely, mathe
matical modeling of fluid flows, numerical solution of model equations and computer 
implementation of numerical techniques are discussed. The discussion on mathe
matical modeling of fluid flows has been divided into four chapters (2 to 5). Basic 
governing equations (of mass, momentum and energy), ways of analysis and possible 
simplifications of these equations are discussed in Chapter 2. Formulation of different 
boundary conditions (inlet, outlet, walls, periodic/cyclic and so on) is also discussed. 
Most of the discussion is restricted to the modeling of Newtonian fluids (fluids exhibit
ing the linear dependence between strain rate and stress). In most cases, industrial 
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reactors are operated under a turbulent flow regime. Introduction to turbulence and 
various approaches (direct numerical simulations or DNS, large eddy simulations 
or LES and Reynolds averaged Navier–Stokes equations or RANS simulations) to 
modeling turbulent flows are discussed in Chapter 3. Turbulence models based on the 
RANS approach are discussed in more detail, with special consideration to reactor 
engineering applications. For several industrial applications, multiphase reactors are 
used, which involves contacting more than one phase. Various approaches to mod
eling such multiphase flows are discussed in Chapter 4 with special emphasis on 
dispersed multiphase flows. The interactions between chemical reactions and fluid 
dynamics are discussed in Chapter 5. 

Model equations governing flow processes relevant to reactor engineering appli
cations are quite often complex, non-linear and coupled. More often than not, 
analytical solutions are not possible and numerical methods are required to obtain 
a solution to the model equations. The numerical methods relevant to solving model 
equations are discussed in Chapters 6 and 7. Chapter 6 covers use of the finite volume 
method to solve generic flow models. Various aspects of the finite volume method 
such as discretization schemes, grid arrangements, implementation of boundary con
ditions and algorithms for handling pressure–velocity coupling are discussed in detail. 
Applications of these methods to solve turbulent flows, multiphase flows and reac
tive flows are discussed in Chapter 7. Guidelines for making appropriate selection of 
the available techniques based on the objective at hand are discussed. Practical ways 
of estimating errors in numerical solutions of model equations are discussed. The 
methodology and the desired qualities of computational tools required to implement 
these numerical methods on a digital computer to solve model equations are discussed 
in Chapter 8. 

Part III of the book discusses the overall methodology of using computational flow 
modeling for reactor engineering. The necessity of using a hierarchy of modeling tools 
and establishing a clear relationship between the objectives of reactor engineering and 
the computational flow model is illustrated with the help of examples. The importance 
of a physical understanding of the system for facilitating rational simplification of the 
problem, formulation of appropriate boundary conditions and identification of key 
issues is emphasized. The information discussed in Part I and Part II is used to evolve 
a systematic methodology for linking reactor hardware with reactor performance. The 
methodology is illustrated with the help of some practical examples. 

Details of the application of computational flow modeling to different types of 
reactors are discussed in Part IV. A separate chapter is devoted to three major reactor 
types used in chemical industries, namely, stirred reactors, bubble column reactors 
and fluidized bed reactors. Applications to fixed bed reactors and other miscella
neous reactor types are briefly discussed in Chapter 13. Recent work on modeling 
the complex fluid dynamics in these reactors is critically reviewed. The modeling 
approaches and the flow results obtained therefrom are evaluated from the point of 
view of their application to reactor engineering. Limitations of the current state of 
knowledge in describing the complex underlying physics of some of the flows relevant 
to reactor engineering are discussed. Despite such limitations, suggestions are made 
for making the best use of these computational flow models for reactor engineering 
applications. 

The Epilogue recapitulates the lessons learnt from our experience of apply
ing computational flow modeling while addressing practical reactor engineering 
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problems. The advantages of using CFM and the probable pit falls are re-emphasized.
Some comments on future trends in computational flow modeling and its application
by the chemical/reactor engineering community are included.

1.1. CHEMICAL REACTOR ENGINEERING (CRE)

Chemical reactor engineering activity is related to the engineering of chemical trans-
formations. Chemical transformations or reactions can occur only if the reactant
molecules are brought into molecular contact (mixed) under the appropriate envi-
ronment (temperature and concentration fields, catalysts) for an adequate time. A
process vessel which provides the necessary conditions to favor the desired reaction
and allows for removal of products, is called a ‘reactor’. A large variety of equipment

Stirred Reactors Bubble Column Reactors

Fluidized Bed Reactors Fixed or Trickle Bed Reactors

Gas Gas

L

L

GG

G

Gas

Liquid Slurry

Liquid Gas Liquid
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Gas Liquid

Gas Liquid Gas Liquid

Gas Liquid

S

S

S

G G

FIGURE 1.2 Commonly used reactor types.
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is being used as reactors in practice. Some of the commonly used types of reactor are 
shown in Fig. 1.2. Although the reactors included in this figure show contacting of 
two phases (gas–liquid or gas–solid), similar equipment can also be used to carry out 
reactions involving a single phase (homogeneous reactions) or more than two phases. 
Several different versions of these four major reactor types are used in practice. By 
looking at these configurations, one can imagine the complexities of the underlying 
fluid dynamics in these equipments. A reactor engineer is faced with a host of ques
tions when establishing a relationship between reactor hardware, operating protocol 
and reactor performance. In this section, some of these questions and the relevant 
tasks required of a reactor engineer are discussed briefly to bring out the role of flow 
modeling in the overall activity. 

The major questions being faced by a reactor engineer can be grouped into three 
classes: 

1. What chemical transformations are expected to occur? 
2. How fast will these changes occur? 
3. What is the best way to carry out these transformations? 

The first question concerns thermodynamics and chemistry. Knowledge of chemistry 
and reaction mechanisms is helpful to identify the various possible chemical reactions. 
Thermodynamics provides models and tools to estimate free energies and heat of 
formations of chemical compounds from which the energetics of all the possible 
chemical reactions can be examined. These tools help a reactor engineer to identify 
thermodynamically more favorable operating conditions. The theories and modeling 
tools required to carry out these functions are fairly well developed and do not involve 
any consideration of actual reactor hardware and underlying fluid dynamics. These 
tools are, therefore, not discussed here. More information on these topics can be 
found in chemical engineering thermodynamics textbooks (for example, Smith and 
van Ness, 1959; Sandler, 1998). Thermodynamics provides tools to estimate physical 
properties (density, solubility, vapor pressure, heat capacity, conductivity, etc.) and 
the state of transforming species under operating conditions. This information is 
required for flow modeling. A brief discussion of these issues and the key references 
are given in Chapter 2. 

The second question (estimating how fast the thermodynamically possible chem
ical transformations will occur) involves a knowledge of chemistry, reaction kinetics 
and various transport processes such as mixing, heat and mass transfer. Analysis of 
the transport processes and their interaction with chemical reactions can be quite dif
ficult and is intimately connected to the underlying fluid dynamics. Such a combined 
analysis of chemical and physical processes constitutes the core of chemical reaction 
engineering. The overall framework of reaction engineering is briefly discussed here. 

The first step in any reaction engineering analysis is formulating a mathematical 
framework to describe the rate (and mechanism) by which one chemical species is 
converted into another in the absence of any transport limitations (chemical kinetics). 
The rate is the mass, in moles of a species, transformed per unit time, while the mech
anism is the sequence of individual chemical events, whose overall result produces 
the observed transformation. Though a knowledge of the mechanism is not necessary 
for reaction engineering, it is of great value in generalizing and systematizing the 
reaction kinetics. A knowledge of the rate of transformation, however, is essential for 
any reaction engineering activity. The rate of transforming one chemical species into 
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another cannot be predicted with accuracy. It is a system specific quantity, which must 
be determined from experimental measurements. Recent advances in computational 
chemistry and molecular modeling have led to some successes in making a priori 
predictions of reaction kinetics (Senken, 1992; Dixon and Feller, 1999). However, 
in spite of such progress, most of the practical reaction engineering analysis will have 
to rely on experimental measurements of reaction kinetics (at least in the immediate 
to intermediate future). 

Measuring the rate of chemical reactions in the laboratory is itself a specialized 
branch of science and engineering. The rate is formally defined as the change in 
moles of a component per unit time and per unit volume of reaction mixture. It is 
important that this rate is an intrinsic property of a given chemical system and is not 
a function of any physical process such as mixing or heat and mass transfer. Thus, 
the rate must be a local or point value referring to a differential volume of reaction 
mixture around that point. It is, therefore, essential to separate the effects of physi
cal processes from the measured experimental data to extract information about the 
intrinsic reaction kinetics. It is a difficult task and has some parallels with the reactor 
engineering activity in reverse order (measurement of reactor performance–transport 
processes–fluid dynamics–intrinsic kinetics). More information about chemical kinet
ics and about laboratory reactors used to obtain intrinsic kinetics can be found in such 
textbooks as Smith (1970), Levenspiel (1972) and Doraiswamy and Sharma (1984). 
Assuming that such intrinsic rate data is available, chemical kineticists have devel
oped a number of valuable generalizations to formulate rate expressions including 
those for catalytic reactions. Various textbooks cover aspects of chemical kinetics in 
detail (Smith, 1970; Levenspiel, 1972; Froment and Bischoff, 1984). Mathematical 
models (and corresponding model parameters) of intrinsic reaction kinetics will be 
assumed to be available to reactor engineers using this book. 

Once the intrinsic kinetics is available, the production rate and composition of 
the products can be related, in principle, to the reactor volume, reactor configuration 
and mode of operation by solving mass, momentum and energy balances over the 
reactor. This is the central task of a reaction and reactor engineering activity. The 
difference between reaction engineering and reactor engineering lies in the treatment 
of momentum balances or in other words, of the underlying fluid dynamics. In reaction 
engineering, emphasis is given to reaction-related issues by making simplifications 
in the underlying fluid dynamics. In this way, it is possible to establish a relationship 
between the process design of a reactor and the performance of a reactor. Reactor 
engineering combines reaction engineering with the rigorous modeling of underlying 
fluid dynamics to establish a relationship between actual reactor hardware and its 
performance. 

In order to understand these aspects, it may be useful to consider the operation of 
a single-phase reactor of arbitrary type. The microscopic mass balance of a reactant 
over an element of reactor volume (Fig. 1.3) can be written in the following general 
form applicable to any reactor type: 

accumulation of rate of change of rate of change of rate of change of 
component φ = component φ due + component φ due + component φ due 

to convection to dispersion to reaction 
(1.1) 



10 CHAPTER 1 REACTOR ENGINEERING AND FLOW MODELING 

Element of reactor 
volume 

Reactants/ 
enthalpy 
leave 

Reactants / 
enthalpy 
enter 

Consumption / 
production of 
reactants / 
enthalpy 

FIGURE 1.3 Conservation over element of reactor volume. 

This general balance over an element of reactor volume can be represented 
mathematically as 

∂(ρφ) 

∂t 
+ 
∂(ρUiφ) 

∂xi 
= 

∂ 

∂xi 

� 

�φ 
∂φ  

∂xi 

� 

+ Sφ (1.2) 

where ρ is the density of the fluid, φ is the concentration of any component, Ui is the 
local velocity in the xi direction, �φ is the effective diffusivity of φ and Sφ is a volu
metric source term (rate of production of φ per unit volume) of φ. The terms appearing 
in Eq. (1.2) represent corresponding terms in Eq. (1.1). More complete and detailed 
mathematical formulation of general conservation-governing equations is discussed 
in Chapter 2 (and in references cited therein). It is important to remember that the 
source term, Sφ , will be equal to the rate based on intrinsic kinetics only if there is 
no physical resistance, i.e. there are no concentration or temperature gradients within 
the volume element under consideration. In non-isothermal operations, it is necessary 
to solve an energy balance equation along with the material balance equation. The 
form of the energy balance equation is similar to Eq. (1.2) with φ being an enthalpy 
content of the fluid. The material and energy balance equations are strongly coupled 
with each other since the source term of the energy balance equations depends on the 
rate of reaction. The material and energy balance equations are starting points for all 
reaction engineering analysis. Strictly speaking, it is necessary to know the velocity 
field at each point in the reactor in order to solve the material and energy balances 
discussed above. For any arbitrary reactor type, the velocity field can be predicted by 
solving corresponding momentum balance equations over the reactor. However, over 
the years, chemical reaction engineering analysis has made significant contributions 
by making judicious simplifications of these general equations to draw useful con
clusions about the behavior of the reactor and to bring out the limiting behavior of 
reactors without solving the momentum balance equations. 

The most fruitful and extensively used concept along these lines is the con
cept of an ‘ideal’ reactor. The simplest reactor, whose performance is governed by 
the so-called ‘zero dimensional’ equation is a ‘completely mixed reactor’. The key 
assumption is that mixing in the reactor is complete, so that the properties of the 
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FIGURE 1.4 Ideal reactors. 

reaction mixture are uniform in all parts of the reactor vessel and are, therefore, the 
same as those in the ‘exit’ stream (Fig. 1.4a). It means that mixing is much faster than 
the reaction and residence time based on net flow. It also means that the differential 
volume element chosen for the microscopic balance can cover the entire reactor. This 
greatly simplifies the governing equations and allows a reaction engineer to evalu
ate different modes of reactor operation (batch, semi-batch and continuous) and to 
understand the key features of the chemical system under investigation. An analysis 
based on a completely mixed reactor concept provides one of the limiting solutions 
for the performance expected from a practical reactor. 

The other ideal reactor concept, known as a ‘plug flow reactor’ is based on a 
‘one dimensional’ approximation of the material and energy balance equations. In an 
ideal plug flow reactor, unidirectional flow through the reactor is assumed (like flow 
through a tube). The velocity is assumed to be uniform over all the planes normal 
to the flow direction. In addition, it is assumed that no mixing takes place in the 
direction of flow and there are no gradients in the planes normal to the flow direction. 
These assumptions allow maximum variation of concentrations from reactor inlet to 
reactor outlet in contrast to the mixed reactor concept (Fig. 1.4b). Therefore, reaction 
engineering analysis of a reactor using this approximation provides a second limit on 
the performance expected from a practical reactor. 

It may not be an exaggeration to say that carrying out the analysis of an industrial 
reactor using these concepts of ideal reactors is one of the most important tasks of 
a reactor engineer. Such an analysis results in a crucial understanding and useful 
information about the sensitivity of reactor performance to underlying mixing. It 
also helps to identify the characteristics of desirable mixing within the reactor. Such 
information can be very useful in optimizing reactor performance while carrying out 
multiple reactions and catalytic or autocatalytic reactions. In addition, ideal reactor 
concepts can be extensively used to understand the interaction between chemical and 
thermal processes. The simplifications in the underlying flow and mixing allow reactor 
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FIGURE 1.5 Deviations from ideal reactors. 

engineers to carry out sophisticated operability and stability analysis of reactors (see 
reviews by Razon and Schmitz, 1987; Morbidelli and Carra, 1987). The concepts of 
ideal reactors have also been extensively used to understand the behavior of a variety 
of multiphase reactors, which are discussed a little later in this section. 

After establishing such understanding and analysis of the reaction system using 
ideal reactor concepts, the next most important question facing the reactor engineer 
is to evaluate the consequences of the assumptions involved in the concepts of ideal 
reactors to estimate the behavior of an actual reactor. The mixing in an actual reactor 
may deviate significantly from that assumed for ideal reactors. This deviation can be 
caused by channeling of fluid, by recycling of fluid or by the formation of stagnant 
regions within the reactor (Fig. 1.5). If pockets of stagnant fluid exist within the 
reactor, conversion will approach the upper limit in these regions, but this fluid does 
not leave the reactor. The fed reactants will flow through the remaining volume of 
the reactor and, therefore, will have less time to react. The result will be an average 
conversion lower than that for the ideal reactor. A similar result may occur if there is a 
short-circuit and fluid by-passes through the reactor without mixing. Deviations from 
ideal plug flow behavior in the form of some mixing in the direction of flow (instead 
of no mixing) and incomplete mixing in the plane normal to the flow direction may 
also occur. Bypassing and short-circuiting may also occur in a plug flow reactor. If 
one knows the complete history of all the fluid elements (velocity and mixing) flowing 
through the reactor, it is possible to solve the differential material and energy balances 
to quantitatively estimate the influence of such non-ideal behavior. In the absence of 
such knowledge, reaction engineers have devised ingenious tools to quantify the 
effects of non-ideal behavior. 

The residence time distribution (RTD) and state of mixedness are the two most 
important concepts used for such analysis. RTD, as the name suggests, indicates the 
spread of residence time experienced by different fluid elements while flowing through 
the reactor. The response data or measurements of the variation of reactor outlet 
concentration for the known change of inlet concentration can be used to estimate 
the RTD of a given reactor. For reactions following other than first-order kinetics, 
knowledge of RTD will not be sufficient to estimate the reactor performance. It is 
necessary to know the state of mixing between fluid elements of different ages flowing 
through the reactor. Here again, it may be noted that completely segregated (assuming 
no mixing between fluid elements of different ages) and completely mixed fluid 
elements constitute the two limiting solutions. Obtaining the RTD of an actual reactor 
and applying these two limiting assumptions to obtain the bounds on performance of 
the reactor is a practical method for a useful reaction engineering analysis. 
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Several sophisticated techniques and data analysis methodologies have been 
developed to measure the RTD of industrial reactors (see, for example, Shinnar, 
1987). Various different types of models have been developed to interpret RTD data 
and to use it further to predict the influence of non-ideal behavior on reactor perfor
mance (Wen and Fan, 1975). Most of these models use ideal reactors as the building 
blocks (except the axial dispersion model). Combinations of these ideal reactors with 
or without by-pass and recycle are used to simulate observed RTD data. To select an 
appropriate model for a reactor, the actual flow pattern and its dependence on reactor 
hardware and operating protocol must be known. In the absence of detailed quantita
tive models to predict the flow patterns, selection of a model is often carried out based 
on a qualitative understanding of flow patterns and an analysis of observed RTD data. 
It must be remembered that more than one model may fit the observed RTD data. A 
general philosophy is to select the simplest model which adequately represents the 
physical phenomena occurring in the actual reactor. 

A flow model representing the actual flow patterns and mixing within the reactor 
is necessary for realistic description of reactor behavior. Such a flow model can even 
be just a qualitative understanding to guide model development or can be a model 
with varying degrees of sophistication. For example, Van de Vusse (1962) proposed 
a model for simulating a stirred tank reactor based on intuitive understanding of flow 
generated by an impeller. He visualized the flow pattern within the stirred reactor 
in the form of three loops (Fig. 1.6a) and constructed a mixing model based on this 
visualization (Fig. 1.6b). Such a model can predict the influence of flow patterns 
within the reactor on reactor performance. In order to relate reactor configuration 
(for example, degree of baffling) and operating conditions (for example, impeller 
rotational speed) with reactor performance, it is necessary to establish a relationship 
between these hardware/operating parameters and model parameters. This can be 
accomplished by fitting model parameters to simulate the observed RTD experiments 
conducted with different reactor configurations. Results by Takamatsu and Sawada 
(1968) relating type of impeller, degree of baffling and impeller Reynolds number 
(rotational speed) are shown in Fig. 1.6c. Although these experimental findings do not 
provide any generalized correlations for stirred reactors, they were useful to indicate 
the general trends and, probably, were among the first attempts to directly connect the 
reactor hardware and operating conditions to reactor performance via a reactor model. 

Several such models with increasing complexity were developed. Mann and his 
coworkers developed models based on 200 to 400 completely mixed zones or cells 
with finite exchange between neighboring reactors connected in such a way as to 
represent the actual flow generated by an impeller (Mann and Mavros, 1982; Wang 
and Mann, 1992). In these models (shown schematically in Fig. 1.7), they used 
experimental measurements of velocity data for prescribing flow through different 
zones. They were reasonably successful in simulating reactor performance for fast, 
mixing controlled reactions. However, an approach which relies either on RTD data 
and qualitative understanding of the flow patterns or on experimental measurements 
of flow, to establish the relationship between reactor hardware and a reactor model 
or reactor performance has obvious limitations for general application. The extent of 
non-ideality, and therefore model parameters, will change with the reactor scale and 
operating conditions. These studies have increasingly pointed out the need for more 
rigorous flow modeling of chemical reactors, even for single-phase flows. 
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FIGURE 1.6 Flow model for stirred reactors (from Wen and Fan, 1975). 

Discussions on flow modeling so far have been more or less restricted to single-
phase reactors. However, in a broad range of application areas, multiple phases are 
involved in chemical reactions (see examples cited by Ramachandran and Choudhari, 
1983; Doraiswamy and Sharma, 1984; Kunii and Levenspiel, 1991; Shah, 1991; 
Dudukovic et al., 1999). Reactors carrying out such reactions are generically termed 
multiphase reactors. There are several types of multiphase reactors and several 
methods are available to classify these reactors. One of the simplest methods of 
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FIGURE 1.7 Network of zones model for stirred reactors: 2 x 10 x 10 network. Flow through 
different zones was specified using experimental measurements (from Mann and Mavros, 1982). 

classification is based on the presence of phases, such as: 

Gas–liquid reactors: Stirred reactors, bubble column reactors, packed

columns, loop reactors.

Gas–liquid–solids reactors: Stirred slurry reactors, three-phase fluidized bed

reactors (bubble column slurry reactors), packed bubble column reactors,

trickle bed reactors, loop reactors.

Gas–solid reactors: Fluidized bed reactors, fixed bed reactors, moving bed

reactors.
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Some of these reactors are shown schematically in Fig. 1.2. The existence of multi
ple phases opens up a variety of choices in bringing these phases together to react. 
Questions like operability, and stability of the flow regime need to be answered. 
When reactants under operating conditions constitute more than one phase, the need 
to understand flows and quantitative predictions becomes even more crucial. Each of 
these reactors exhibits complex fluid dynamics and can be operated in a variety of 
flow regimes. For example, a gas–solid reactor can be operated in a variety of regimes 
ranging from a fixed bed reactor (where a bed of solid particles is stationary and gas 
flows through the voids between the solid particles) to a fast-fluidized bed reactor 
(where solid particles are transported by the gas phase). Bubble column reactors may 
be operated in a homogeneous regime (with more or less uniform bubbles and uni
form gas volume fraction distribution within the reactor) or in a heterogeneous regime 
(with wide bubble size distribution and non-uniform gas volume fraction distribution 
within the column, which leads to significant internal re-circulation). Gas–liquid 
stirred reactors may also exhibit different flow regimes depending on the type, size 
and location of the impeller, gas flow rate and impeller speed. As an example, these 
flow regimes are illustrated schematically in Fig. 1.8. For very low impeller speeds, 
flow generated by rising gas bubbles dominates the flow generated by the impeller 
(Fig. 1.8a). In such cases, the gas phase behaves like a plug flow and the liquid phase 
may exhibit varying degrees of mixedness depending on relative time scales of mass 
transfer, reaction and mixing. For the other extreme, where flow is dominated by the 
impeller (Fig. 1.8e), gas bubbles follow liquid streamlines and are dispersed all over 
the reactor. In such a case, the gas phase behaves as if it is completely mixed. Thus, 
fluid dynamics and mixing in these multiphase reactors is determined by the operating 
flow regime. To select an appropriate reactor model, it is therefore essential to know 
the prevailing operating regime in the reactor (for the given hardware and operating 
conditions). Some generic multiphase flow regimes are shown in Fig. 1.9. It is not 
possible to discuss the intricacies of all of these reactors and their operating regimes 
here. More information may be obtained from the books cited above (and references 
cited therein) and from Chapters 10 to 13 of this book. 

Apart from the flow regimes, several other issues control the performance of 
these multiphase reactors. For example, in a gas–liquid reactor, the rate of mass 
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FIGURE 1.8 Flow regimes of gas–liquid stirred reactor (from Middleton, 1992). 
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FIGURE 1.9 Some flow regimes of multiphase systems (from Krishna, 1994).

transfer from gas phase to liquid phase is determined by the mass transfer coefficient,
interfacial area and concentration driving force for mass transfer. Each of these aspects
is intimately related to the underlying fluid dynamics. Overall interfacial area and its
distribution within the reactor is controlled by local gas volume fraction and local
bubble size distribution. Local as well as global mean and turbulent flow fields control
local bubble size. Local mass transfer coefficient is also dependent on local turbulence.
Gas volume fraction and its distribution are also intimately related to overall fluid
dynamics and interphase coupling of gas and liquid phases. One can imagine that
the method of gas introduction (design of gas distributor, location, size and so on)
can significantly affect the gas distribution and therefore the overall fluid dynamics
of gas–liquid reactors. The flow field will also be very sensitive to reactor internals.
This is not typical for gas–liquid reactors only but, in fact, is true for all multiphase
reactors. For all multiphase reactors, hardware details and operating conditions have
very significant impact on the resulting flow and therefore on the reactor performance.
Even small-scale hardware details like the design of feed nozzles, gas distributors and
baffles may have a dramatic influence on flow structure. The issues of scale-up and
scale-down become much more complicated for multiphase reactors, because not all
the relevant properties can be scaled proportionately. For example, in the case of
gas–liquid–solid reactors, the relative dimensions of solid particles, gas bubbles and
the reactor are bound to change with different reactor scales. Therefore, for reliable
scale-up, interphase mass and heat transfer, which ultimately depends on microscopic
fluid dynamics near the interface, overall flow patterns and mixing need to be analyzed
at all the considered scales separately. An iterative methodology needs to be adopted
to design most of these multiphase reactors. Without referring to any specific reactor
type, the overall reactor engineering methodology for designing and validating an
industrial reactor is shown in Fig. 1.10.

It is often necessary to carry out a small number of iterations over the sequence
of steps shown in Fig. 1.10. Reaction engineering with idealized models is used to
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FIGURE 1.10 Methodology of reactor engineering. 

understand the upper and lower bounds on performance and to identify important 
factors which control the performance. Studies using idealized models are also help
ful in determining the desired performance targets for transport processes such as 
mixing, mass and heat transfer. Engineering creativity, experience and accumulated 
empirical information is generally used to evolve preliminary reactor configurations. 
Reactor simulation models are then developed to evaluate these different reactor 
configurations. Using a conventional methodology, a reactor engineer has to rely 
on experimental and semi-empirical tools to obtain a knowledge of fluid dynamics, 
which is essential when addressing many crucial design issues. Several reviews and 
books have been published which analyze published empirical correlations to estimate 
parameters necessary for the design and simulation of reactors (for example, see Shah, 
1991: stirred reactors; Deckwer, 1991: bubble column reactors; Kunii and Levenspiel, 
1991: fluidized bed reactors and so on). Wherever such available information is not 
adequate, experiments on pilot scale reactors are designed and carried out. The use
fulness of pilot scale studies depends on how well these pilot reactors mimic the fluid 
dynamics and mixing in proposed large-scale reactors. For obvious reasons, such con
ventional design methods using empirical correlations have rather limited reliability. 
Uncertainty associated with extrapolation may be unacceptably high. Such methods 
are not able to relate details of reactor hardware with reactor performance. This non-
capability narrows down the choice of reactor configurations. New ideas and new 
reactor configurations are often sidelined in favor of proven and conventional reactor 
types when there is an excessive reliance on empirical information and experiments. 

To achieve and retain a competitive edge, it is becoming more and more important 
to address the third question ‘what is the best way to carry out the desired transfor
mation?’ and to design the reactor hardware and operating protocols accordingly. To 
answer this question, it is necessary for a reactor engineer to establish accurately the 
relationship between reactor hardware and reactor performance. Computational flow 
modeling tools can make substantial contributions in establishing such a relationship. 
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CFM tools can accelerate the reactor engineering tasks shown in Fig. 1.10 with min
imum experimentation on pilot scales and with enhanced confidence levels. Use of 
CFM for reactor engineering is briefly discussed in Section 1.3 and Parts III and IV 
of this book. Traditional methods of flow modeling, which rely either on experi
mental investigations or on making drastic simplifications of the flow problem to 
allow analytical solutions, are proving to be increasingly inadequate for this purpose. 
These methods have served us well to establish the reactor engineering profession, 
which has shaped the present chemical industry. However, to make further progress, 
it is essential to make creative use of the best possible tools available to reactor 
engineers. This is especially true for multiphase reactors. The ultimate wish of any 
reactor engineer is to know the complete history of all the fluid elements flowing 
through the reactor. This was considered hitherto not possible for most practical reac
tors. Recent advances in understanding the physics of flows, numerical techniques 
and digital computers can make tremendous contributions to realizing this ultimate 
wish by enabling simulations of complex flows in industrial equipment. Of course, 
there are still many unanswered questions and problems which need to be overcome 
to realize this dream. It is, however, important that reactor engineers are aware of 
the potential of these recent advances and are equipped to apply computational flow 
modeling tools creatively in their endeavors to develop innovative and better reactor 
hardware and operating protocols. The major features of these advances which are 
relevant to reactor engineering are discussed in the next section. 

1.2. COMPUTATIONAL FLOW MODELING (CFM) 

As mentioned in the previous section, the equations of fluid mechanics are analytically 
solvable for only a limited number of flows. Though known solutions are extremely 
useful in providing an understanding of the fluid dynamics, these rarely can be used 
for engineering analysis and design. Although many key ideas for the numerical solu
tion of partial differential equations were established more than a century ago, these 
were of little use before the advent of digital computers. The revolution in the ability 
of computers to store the data and to perform algebraic operations has greatly accel
erated the development of numerical techniques for the solution of equations of fluid 
mechanics. This has led to the birth of a specialized discipline called computational 
fluid dynamics (CFD). It takes little imagination to realize that rapid advances in 
computing power and CFD can make significant contributions to various engineering 
fields. Before we discuss applications to reactor engineering, various aspects of CFD 
and computational flow modeling (CFM) are introduced in this section. 

CFD deals with the solution of fluid dynamic equations on digital computers 
and the related use of digital computers in fluid dynamic research. CFD requires 
relatively few restrictive assumptions and gives a complete description of the flow 
field for all variables. Quite complex configurations can be treated and the methods 
are relatively easy to apply. It can incorporate a variety of processes simultaneously. 
CFD simulations serve as a bridge between theory and reality. Simulations have the 
added advantage that diagnostic ‘probing’ of a computer simulation does not disturb 
the flow and normal operation! The detailed predicted flow field gives an accurate 
insight to the fluid behavior and can sometimes give information which cannot be 
obtained from experiments. CFD simulations may allow one to switch on and off 
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various interactions included in the model to understand the relative contributions 
of each individual process, which is extremely difficult – if not impossible – to 
achieve in experiments. These simulations allow detailed analysis at an earlier stage 
in the design cycle, with less cost, with lower risk and in less time than experimental 
testing. It sounds almost too good to be true. Indeed, these advantages of CFD are 
conditional and may be realized only when the fluid dynamic equations are solved 
accurately, which is extremely difficult for most engineering flows of interest. It must 
be remembered that numerical simulations will always be approximate. There can 
be various reasons for differences between computed results and ‘reality’. Errors are 
likely to arise from each part of the process used to generate numerical simulations: 

• fluid dynamic equations; 
• input data and boundary conditions; 
• numerical methods and convergence; 
• computational constraints; 
• interpretation of results, and so on. 

It is necessary to develop an appropriate methodology to harness the potential of 
CFD tools for engineering analysis and design despite some of the limitations. 
Computational flow modeling (CFM) includes such overall methodology and all the 
other activities required to use CFD to achieve the engineering objectives. 

Computational flow modeling for reactor engineering requires broad-based 
expertise in process and reactor engineering and an in-depth understanding of various 
aspects of CFD, along with a generous dose of creativity. Activities involved in a typi
cal computational flow-modeling project are shown in Fig. 1.11. The identification of 
objectives for flow modeling and the application of a validated CFD model to achieve 
the set objectives are discussed in the next section with specific reference to chemical 
reactor engineering. Other aspects of computational flow modeling are introduced in 
this section and are discussed in detail in Part II (Chapters 2 to 8) of this book. 

After establishing the modeling goals, the starting point of any computational 
flow-modeling project is to develop a mathematical model (equations and boundary 
conditions) to describe the relevant flow phenomena. This involves a rigorous anal
ysis of fluids and type of flow under consideration. The first step is the rheological 
characterization of fluids under consideration. For Newtonian fluids, the knowledge 
of fluid viscosity is sufficient to develop the governing fluid dynamic equations. For 
non-Newtonian and rheologically complex fluids, it may be necessary to characterize 
the behavior of the fluid by more than one parameter. In this book, scope is restricted 
to the analysis of Newtonian fluids. Once the viscosity is known, it is necessary to 
distinguish the type of flow to select or develop an appropriate flow model. Some of 
the types are as follows: 

• compressible/incompressible; 
• laminar/turbulent; 
• steady/unsteady; 
• isothermal/non-isothermal; 
• passive/reactive; 
• single phase/multiphase. 

Each of these types will have special features. For example, unsteady flows may be 
either forced unsteady, like a flow generated by a rotating impeller, or inherently 
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FIGURE 1.11 Typical flow modeling project. 

unsteady, like vortex shedding behind a bluff body. Multiphase flows cover a very 
wide range of flows and have several sub-types depending on the nature of the phases 
(see for example, Fig. 1.9). For more details on multiphase reactors and commonly 
encountered flow regimes, refer to the discussion in Section 1.1. 

Each of these different types of flows is governed by a set of equations having 
special features. It is essential to understand these features to select an appropri
ate numerical method for each of these types of equations. It must be remembered 
that the results of the CFD simulations can only be as good as the underlying math
ematical model. Navier–Stokes equations rigorously represent the behavior of an 
incompressible Newtonian fluid as long as the continuum assumption is valid. As 
the complexity increases (such as turbulence or the existence of additional phases), 
the number of phenomena in a flow problem and the possible number of interactions 
between them increases at least quadratically. Each of these interactions needs to be 
represented and resolved numerically, which may put strain on (or may exceed) the 
available computational resources. One way to deal with the resolution limits and 
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overall simulation costs is to isolate the expensive processes and to replace them 
with simplified phenomenological models. These phenomenologies are physically 
reasonable, approximate models. The parameters of such models are guesses, fits to 
experiments or calibrated from a more detailed but more restricted numerical model. 
Several phenomenological turbulence models are widely used in engineering analysis. 
It is essential to assess the underlying assumptions and limitations of such phenomeno
logical models before they are used for a specific application. Similar or even more 
caution is necessary for multiphase flows and reactive turbulent flows. In many of 
these, even the underlying physics is not adequately understood and an engineer has 
to negotiate the challenges with inadequately validated phenomenological models. 
It must be remembered that if a phenomenological model is used to treat one of the 
controlling physical or fluid-dynamic processes in a simulation, the overall simulation 
is no more accurate than the phenomenology. It is necessary to evolve an appropriate 
methodology to use and to interpret the results obtained by such simulations. 

Reactive flows have special problems over and above the complexities of under
lying fluid dynamics. A reactor engineer wishes to know the history (path followed 
through the reactor and concentrations along the path) of all the fluid elements flowing 
through the reactor. This poses fundamental difficulties in modeling turbulent reactive 
flows. In a Eulerian approach (in which fluid motion and mixing is modeled using a 
stationary frame of reference), the location of a fluid element may be known exactly 
but its state (concentration) is not known accurately. In a Lagrangian approach (in 
which fluid motions and mixing is modeled using a frame of reference moving with 
the fluid particles), the state of the fluid element may be known accurately, however, 
its location is not known exactly. Several hybrid approaches have been used to find 
a way around this difficulty. Here again, similar to any phenomenological model, 
appropriate care needs to be taken when developing the model and interpreting its 
results. More detailed discussion of the modeling of fluid dynamics with special 
emphasis on turbulent flows, dispersed multiphase flows and reactive flows is given 
in Part II. Suggested references for developing model equations for other types of 
flows are also provided. Apart from the basic governing equations, it is necessary to 
develop specific sub-models for the system under consideration, such as models for 
variations of physical properties, interphase transport terms (momentum, heat and 
mass) and reaction sources. 

After developing suitable governing equations, it is necessary to set the required 
boundary (and initial) conditions to solve these equations. This includes decisions 
about the extent of the solution domain. The process of isolating the system under 
consideration from its surrounding environment and specifying the outside influences 
in terms of boundary conditions may not be as straightforward as it sounds. In many 
cases, inappropriate decisions about the extent of the solution domain and the bound
ary conditions may give misleading results. Some examples of this are discussed in 
Chapter 2. 

After finalizing the model equations and boundary conditions, the next task is 
to choose a suitable method to approximate the differential equations by a system 
of algebraic equations in terms of the variables at some discrete locations in space 
and time (called a discretization method). There are many such methods; the most 
important are finite difference (FD), finite volume (FV) and finite element (FE) meth
ods. Other methods, such as spectral methods, boundary element methods or cellular 
automata are used, but these are generally restricted to special classes of problems. 
All methods yield the same solution if the grid (number of discrete locations used to 
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represent the differential equations) is adequately fine. However, some methods are 
more suitable to particular classes of problems than others and the preference is often 
determined by ease of application, required computational resources and familiarity 
of the user. 

Finite difference (FD) is probably the oldest method for the numerical solution of 
partial differential equations (PDEs). In this method, the solution domain is covered 
by a computational grid. At each grid point, the terms containing partial derivatives 
in the differential equation are approximated by expressions in terms of the variable 
values at grid nodes. This results in one algebraic equation per grid node, in which 
the variable value at that node and a certain number of neighboring nodes appear as 
unknowns. Taylor series expansions or polynomial fitting is used to obtain approxima
tions for the first- and second-order derivatives. For simple geometry and structured 
grids (grid types are discussed later in this chapter and then in Part II), the FD method 
is very simple and effective. However, in finite difference methods, conservation is 
not enforced unless special care is taken. This is one of the major limitations of FD 
methods from the reactor engineering point of view. The restriction to simple geom
etry is also a significant disadvantage, since most industrial reactors have complex 
geometrical constructions. 

In the finite element (FE) method, the solution domain is broken into discrete 
volumes or finite elements (generally unstructured; in 2D they are triangles or quadri
laterals and in 3D they are tetrahedra or hexahedra). The distinguishing feature of 
FE methods is that the equations are multiplied by a weight function before they 
are integrated over the entire domain. This approximation is then substituted into 
the weighted integral of the conservation law. By minimizing the residual, a set of 
non-linear algebraic equations is obtained. An important advantage of the FE method 
is its superior ability to deal with a solution domain having complex geometry. It is, 
however, difficult to develop computationally efficient solution methods for strongly 
coupled and non-linear equations using FE. 

The finite volume (FV) method uses the integral form of the conservation equa
tions as its starting point to ensure global conservation. The solution domain is again 
divided into number of computational cells (similar to FE). The differential equa
tion is integrated over the volume of each computational cell to obtain the algebraic 
equations. Variable values are stored at the cell centers and interpolation is used to 
express variable values at cell faces in terms of the cell center values. Surface and 
volume integrals are approximated using suitable quadrature formulae. As a result, 
one obtains an algebraic equation per computational cell, in which a number of neigh
boring cell center values appear as unknowns. The FV methods can accommodate any 
type of grid and is, therefore, suitable for handling complex geometry. All terms that 
need to be approximated have physical meaning in the FV approach. Finite volume 
methods are, therefore, quite popular with engineers. The disadvantage, however, of 
FV methods is that higher than second-order approximations of gradient terms are 
difficult to implement, especially in 3D. Despite this, FV is the method of choice of 
many engineers and so it is, for this book. Detailed descriptions of various aspects of 
the FV method will be given in Part II (Chapters 6 and 7). 

Having selected the numerical method, it is necessary to generate an appropriate 
grid, i.e. discrete representation of the solution domain and discrete locations at which 
variables are to be calculated. Two types of grids, namely structured and unstructured 
grids, are briefly discussed here. In a structured grid, there are families of grid lines 
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FIGURE 1.12 Examples of structured and unstructured grids. 

following the constraint that grid lines of the same family do not cross each other and 
cross each member of the other families only once. The position of a grid point within 
the solution domain is, therefore, uniquely identified by a set of two (in 2D) or three 
(in 3D) indices. It is thus logically equivalent to a Cartesian grid. The properties of 
a structured grid can be exploited to develop very efficient solution techniques. One 
major disadvantage is the difficulty in controlling the grid distribution. In a structured 
grid, concentration of grid points in one region for more accuracy may unnecessarily 
lead to small spacing in other parts of the solution domain. A block-structured grid is 
used to eliminate or reduce this disadvantage. In a block-structured grid, the solution 
domain is divided into a number of blocks which may or may not overlap. Within 
each block, a structured grid is defined. This kind of grid is more flexible as it allows 
local (block-wise) grid refinement. For very complex geometry, unstructured grids, 
which can fit an arbitrary solution domain boundary, are used. In this case, there is no 
restriction on the shape of the control volume and the number of neighboring nodes. 
Triangles and quadrilaterals in 2D and tetrahedra or hexahedra in 3D are the most 
widely used grid shapes in practice. Examples of structured and unstructured grids 
are shown in Fig. 1.12. Unstructured grids can be refined locally and allow more 
control of the variation of aspect ratio, etc. The advantage of flexibility is often offset 
by the disadvantage of the irregularity of the data structure. The solvers for algebraic 
equation systems of unstructured grids are generally slower than those for structured 
grids. Methods of grid generation will not be covered in this book. Several excellent 
texts on grid generation are available (see for example, Thompson et al., 1985; Arcilla 
et al., 1991). Some discussion on assessing the quality of the generated grid and tips 
for rectifying observed deficiencies are given in Part II. 

Following the choice of grid type, one has to select the approximations to be 
used in the discretization process. For the finite volume method, one has to select 
the methods of approximating surface and volume integrals. The choice of method 
of approximation influences the accuracy and computational costs. The number of 
nodes involved in approximation controls the memory requirements, speed of the 
code and difficulty in implementing the method in the computer program. More 
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accurate approximation involves a larger computational molecule (more nodes) and 
gives fuller coefficient matrices. A judicious compromise between simplicity, ease 
of implementation, accuracy and computational efficiency has to be made. More 
discussion and details of choices with such a compromise in mind are given in Part II. 

Discretization yields a large system of algebraic equations. The choice of solver 
depends on the type of flow, grid type and the size of the computational molecule 
(number of nodes appearing in each algebraic equation). A wide variety of solvers 
and accelerators are available; some of which are discussed in Part II. The set of alge
braic equation is usually solved iteratively (so-called ‘inner iterations’). The details 
of solvers of algebraic equations will not be discussed in this book. Interested read
ers may refer to specialized texts on these topics (for example, Press et al., 1992; 
Fergizer and Peric, 1995). The ‘outer iterations’ involve repeating this process many 
times over to deal with the non-linearity and coupling among the model equations. 
Deciding when to stop the iterative process (convergence criterion) at each level is 
important, from both accuracy and efficiency points of view. These issues are also 
briefly discussed in Part II. Some tips for assessing the degree of overall convergence 
and tuning of solver parameters are also given. 

Of course, before tuning the solver parameters, it is necessary to develop a 
computer program to implement the numerical techniques selected to solve the math
ematical model. It takes an organized and dedicated effort to design an efficient and 
error-free computer program. After adequate testing, the program can be a valuable 
tool for engineers trying to understand and manipulate the complex fluid dynamics in 
industrial equipment. The steps in developing and testing the program are, therefore, 
of the utmost importance. It is difficult to discuss guidelines for the development of 
computer programs since this encompasses widely different issues. Patankar (1980) 
has listed some such suggestions in his book. In this book, it will be assumed that an 
error-free computer program, which takes care of grid generation and the solver part, 
is available to the reactor engineer. This assumption is not as unrealistic as it sounds, 
since there is an increasing tendency, especially in chemical process industries, to 
use commercially available CFD codes. This brief introduction and the discussion in 
Part II will allow chemical engineers to use such programs efficiently and effectively. 
The emphasis in this book is on discussions concerning the modeling of fluid flows 
relevant to chemical reactor engineers and on the usage of such tools to solve the 
model equations and reactor engineering problems. 

The path of chemical reactor engineers, hoping to use CFD tools and programs 
to enhance the productivity of a reactor, is crowded by complex challenges offered 
by multiphase flows, turbulent flows, reactive flows, non-Newtonian flows and so on. 
Understanding CFD and having access to a CFD program is only part of the solution. It 
is necessary to appreciate various issues and make decisions about modeling strategies 
and the interpretation of results. It is necessary to devise an appropriate methodology 
to achieve reactor engineering objectives by creatively employing the best available 
knowledge and tools. 

1.3. CFM FOR CRE 

The Competitive edge of any reactor technology rests on how well the underlying flow 
processes are designed and operated. If the underlying flow processes are adequately 
studied and controlled, there is always scope for performance enhancement and for 
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evolving innovative design solutions. There have been many instances in the past 
where innovative, clever analysis and engineering of flow processes have realized 
substantial enhancements even in so-called ‘mature’ technologies. One of the most 
striking examples of using a knowledge of fluid dynamics to substantially enhance 
the performance of a reactor is the development of the super-condensed mode of 
operation for the fluidized bed polymerization (of olefins) reactors. The capacity of 
such fluidized bed polyolefin reactors is constrained by the heat removal capacity 
of the reactor hardware and operating conditions. In the super-condensed mode of 
operation, a volatile liquid is injected into the fluidized bed to maximize the heat 
removal rates (via evaporation of the injected liquid). The realized increase in heat 
removal capacity obviously depends on a variety of parameters including location and 
method of liquid injection, distribution of the injected liquid, contact between liquid 
and suspended solid particles, and so on. In recent years, instead of injecting the gas 
and liquid mixture at the bottom of fluidized bed reactors, liquid is injected sepa
rately into the fluidized bed (Fig. 1.13). Detailed knowledge of complex multiphase 
fluid dynamics and mixing occurring in such complex equipment allows the correct 
selection of nozzle design and nozzle locations. Recent optimization efforts (Sinclair, 
1995) based on rigorous experiments and modeling of multiphase fluid dynamics 
resulted in a substantial increase (by 50 to 100%) in the capacity of these polyolefin 
reactors (this means producing 50 000–100 000 tons per year of polyethylene more 
from the existing reactor)! Several such examples may be cited from the current pro
cess industry. Because of confidentiality issues, many of these examples may not be 
published in the open literature. Some of the examples are discussed in Chapter 9 to 
illustrate the methodology and more are discussed in Part IV of this book. 

Performance enhancement of existing or new reactors may be realized in a variety 
of ways, such as: 

(1) producing more from existing equipment; 
(2) producing better quality products; 
(3) reducing energy consumption; 
(4) more safety of operations; 
(5) reducing pollution, and so on. 
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Realization of enhancement in any of the aspects mentioned above requires exper
tise from various fields ranging from chemistry and catalysis to reaction engineering, 
fluid dynamics, mixing and heat and mass transfer. For the given chemistry/ catalysts, 
the performance of industrial processes or equipment is a complex function of the 
underlying transport processes. These transport processes are in turn governed by 
the fluid dynamics and, therefore, by a number of design and operating parameters 
of the process equipment. Computational fluid dynamics has the potential to signifi
cantly enhance the power of reactor engineers to analyze, predict and manipulate the 
fluid dynamics of industrial reactors. It requires a broad-based knowledge of reactor 
engineering and computational fluid dynamics. A brief introduction to reaction and 
reactor engineering and computational fluid dynamics has been given in the previous 
sections. The essentials of harnessing the power of computational flow modeling to 
reactor engineering are briefly introduced here. 

One of the most important steps in using CFM for reactor engineering is to clearly 
identify and define goals for modeling the flow. This appears to be quite obvious 
to everybody. Unfortunately, in practice, causes of many of the not so successful 
applications of CFM in reactor engineering can be traced to inadequate attention to 
this step. As emphasized repeatedly here, the performance of the reactor depends on 
a variety of complex issues and interactions among them. It is not always easy to 
understand and separate the role of flow modeling in the overall performance. The 
task of defining specific objectives of the flow model itself may involve several steps, 
some of which are discussed below. 

Before defining the objectives of a flow model it is necessary to outline the per
formance objectives of the reactor in as much detail as possible. In both of these 
steps of outlining the objectives, it is useful to construct ‘wish lists’. The first wish 
list should be about the overall performance of the reactor. This list may contain 
all the items by which reactor performance will be judged (some of this may be 
just qualitative). It is then necessary to re-examine such a list in light of the con
straints posed by the given chemistry and catalysis of the system. A conventional 
reaction engineering model, which makes drastic simplifications of the underlying 
fluid dynamics, should be developed to understand the limiting behavior of the reac
tor. It is essential to carry out a detailed sensitivity analysis with respect to fluid 
dynamical issues using these performance models. This exercise often leads to iden
tification of key processes governing the overall performance of the reactor. It is 
also often necessary to carry out simulations of the start-up and shutdown processes 
of continuous reactors in order to identify any specific requirements during those 
periods. 

Identification of such key processes facilitates firming up the performance objec
tives for the reactor. These objectives in turn need to be related to the underlying 
fluid dynamics. This leads to the preparation of a second wish list about the flow and 
mixing characteristics of the reactor. After finalizing such a list, the reactor engineer 
has to visualize a reactor configuration (design and operating protocol) realizing as 
many items in the list as possible without violating the other constraints (economics, 
fabrication and so on). Here the role of flow modeling starts to become clearer. It must 
be pointed out here that though the steps discussed here appear sequential, it is often 
necessary to repeat the whole process to evolve an adequate understanding. During 
the process, interaction with design and operating teams is essential to capture the 
key issues. 
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The sensitivity analysis and wish list of underlying fluid dynamics allow one to 
quantitatively specify the objectives of the flow model. More often than not, reactor 
engineers are dealing with extremely complex phenomena in a complex geometry. 
It is, therefore, necessary to understand the limitations of the current knowledge of 
physics of flows and their implications on the predicted results. As a guideline, a chart, 
whose two axes correspond with the complexity in the flow physics and chemistry 
is shown in Fig. 1.14 (adapted from Boris, 1989). Two ‘dimensions’ of difficulty are 
considered in this figure: the complex physics of chemical kinetics and multiphase 
reactive flows along the horizontal axis and the geometry-related resolution-bound 
processes of fluid dynamics on the vertical axis. Each axis spans a range of difficulty 
from EASY to HARD. On the horizontal axis, an easy problem might involve single-
phase laminar flow with simple, slow chemical reactions involving few species. A 
hard problem involves several reactions of dozens of species in turbulent, multiphase 
flows. These latter problems almost always need a phenomenological representation 
in a practical CFD model. Along the vertical axis, an easy problem might involve 
a one-dimensional flow simulation with simple geometry. A hard problem involves 
transient, three-dimensional flow simulation in a complex geometry exhibiting widely 
different spatial and temporal scales. As one can see from this figure, most of the 
‘CAN DO’ region involves problems with either an easy physics component or an 
easy geometry component. The ‘COULD DO’ region is an extension of the ‘CAN 
DO’ region. If ample computational resources are available and the computations 
are directed at answering a few, specific questions, the ‘COULD DO’ region can be 
simulated. The outer regions of Fig. 1.14 involve problems with difficult physics and 
other computational aspects, so that detailed solution is considered impractical and 
phenomenology is invoked. Turbulent reactive flows (and multiphase flows) fall in 
this category. At this juncture, it is important to clearly understand the characteristics 
of the ‘learning’ versus ‘simulation’ model. 

Easy 

Hard 

Geometry/ 
Presence 
of 
different 
scales 

Rigorous 
Models / 
CAN DO 

All 
phenomenology 

COULD 
DO One 

phenomenology 

Easy Hard 

Physics/chemistry 

FIGURE 1.14 Interactions of fluid dynamics and chemistry (adapted from Boris, 1989). 
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It may be possible to develop a rigorous model of an idealized flow situation, 
which can be used as a ‘learning’ tool. For example, complex interactions between tur
bulence and chemical reactions can be simulated rigorously using the direct numerical 
simulation (DNS) approach. These simulations can provide a wealth of information 
about the interactions and can provide data which is very difficult to obtain from exper
iments. Therefore, although such simulations are restricted to low Reynolds number 
flows and simple geometry, these can lead to better understanding and insight into the 
development of better phenomenological models. The objectives when developing 
such a model, obviously, will be very different from those involved when simulat
ing a reactive flow in an industrial reactor. The latter model has to relate the reactor 
hardware to the performance using the finite computational resources. Several such 
examples can be given, especially in multiphase flows, where the underlying physics 
is very complex. A clear understanding and visualization of the expected results and 
their proposed use is, therefore, essential for defining the objectives of the flow model. 

After establishing the relationship between reactor performance and underlying 
flow as well as finalizing the objectives of the flow model, it is necessary to select 
an appropriate level of complexity of the flow model to meet these objectives. This 
includes not only the mathematical models of fluid flows but also various other aspects 
including the required degree of accuracy of predicted results and available resources. 
It is essential to give sufficient thought to the required degree of accuracy of the pre
dictions of the flow model right at the first stage. The intended use of the results from 
the flow model dictates the required accuracy levels. The available time, expertise and 
computational facilities also need to be examined to define realistic goals. Thorough 
analysis of these issues will allow one to clearly define the goals of the flow model 
and in the process will also evolve a methodology for using the results from the flow 
model to achieve the performance objectives. 

Various issues in the development of a flow model and its numerical simulation 
have been already discussed in the previous section. It will be useful to make a 
few comments on the validation of the simulated results and their use in reactor 
engineering. More details are discussed in Part III and Part IV. Even before validation, 
it is necessary to carry out a systematic error analysis of the generated computer 
simulations. The influence of numerical issues on the predicted results and errors 
in integral balances must be checked to ensure that they are within the acceptable 
tolerances. The simulated results must be examined and analyzed using the available 
post-processing tools. The results must be checked to verify whether the model has 
captured the major qualitative features of the flow such as shear layers and trailing 
vortices. 

Whenever phenomenological models are used, further quantitative validation of 
simulated results is essential. Even if the objective of the flow model is to qualitatively 
screen possible alternative configurations, it is important to validate the simulations 
quantitatively to ensure that they have adequately captured the basic phenomena con
trolling the performance. In many cases, however, the data on flow fields generated 
in the industrial equipment is not available and is difficult to measure. Direct quan
titative validation is not possible in such cases. The reactor engineer has to then 
assess the simulations based on indirect validations by comparing residence time 
distribution or mixing time, etc. It may often be necessary to independently vali
date various sub-models and the phenomenology incorporated in the overall flow 
model. Here again, emphasis should be on verifying whether the key processes are 
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adequately simulated. Prior experience and engineering judgement should be used 
while interpreting simulation results, which are not grid independent. 

Despite some of these limitations, computational flow modeling can prove to 
be a great help to the reactor engineer in realizing the ‘wish lists’. The validated 
computational flow model can be used to evaluate new reactor concepts, designs and 
configurations. Again this is generally an iterative process. The reactor engineer has 
to ‘dream up’ configurations which are likely to satisfy the wish list. Detailed analysis 
of the simulations of a flow model will lead to identification of the most promising 
configuration among the investigated configurations, and to further ideas for evolv
ing new reactor configurations. Though the major process improvements will, no 
doubt, stem from improved chemistry and catalysis, there is still tremendous scope 
for enhancing performance by harnessing computational flow modeling to reactor 
engineering. The following parts of the book discuss the basics of computational 
flow modeling and the overall methodology of using computational flow modeling 
for reactor engineering, illustrated with several case studies. 
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2

MATHEMATICAL MODELING OF 
FLOW PROCESSES 

A clear understanding and analysis of the role of flow processes in determining reac
tor performance leads to specific definitions of the objectives of the flow model. The 
next step is to develop a mathematical model for simulating flow processes occurring 
in the reactor, which will meet the defined objectives. Numerous types of chemical 
reactors, having different hardware configurations and modes of operation, are used 
in practice. More often than not, the flow processes occurring in these industrial reac
tors are turbulent and may involve more than one phase. It is, however, essential to 
understand the basics of mathematical modeling of single phase flow processes before 
one attempts to model complex flow processes occurring in industrial reactors. The 
scope of this chapter is restricted to discussing these basic aspects of mathematical 
modeling of single-phase flow processes. This chapter, thus, will form a basis for fur
ther discussions on the modeling of turbulent, multiphase and reactive flow processes 
(the following three chapters). This chapter is divided into three sections: govern
ing equations, auxiliary equations and boundary conditions. A brief discussion and 
summary is provided at the end. 

2.1. BASIC GOVERNING EQUATIONS 

It is customary for chemical reactor engineers to start their analysis of flow processes 
occurring in a reactor with the formulation of species conservation equations along 
with the energy conservation equations. The reactor fluid dynamics is often simplified 

35 
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to avoid the need for solving momentum conservation equations. The model equations 
are often written in terms of molar concentrations of species and temperature. These 
equations are further simplified by assuming special conditions (such as mixing is 
much faster than reactions) to derive most of the commonly used reaction engineering 
models. As mentioned in Section 1.1, such simplifications have been extensively 
used to analyze the behavior of reactors. In order to further enhance our abilities to 
understand and control the flow processes occurring in reactors, it is necessary to 
provide a more rigorous treatment of momentum conservation and to consider mass, 
momentum and energy conservation equations simultaneously. 

Any rigorous analysis of flow processes starts with the application of the universal 
laws of conservation of mass, momentum and energy. It may be of interest to point 
out that the conservation laws of momentum and energy may be derived from the 
homogeneity of space and time (Bird, 1998). It is very important to clearly identify and 
understand the implications of the underlying assumptions (both, explicit and implicit) 
when describing physical processes in mathematical equations. In this chapter, we 
will describe and discuss the basic governing equations based on these three laws 
for any continuous fluid. Without going into rigorous definition, an assumption of 
continuous fluid means that the ‘mean free path’ of the constituent molecules of 
the fluid is much smaller than the characteristic length scales of flow processes. For 
gases, the mean free path is of the order of 10−7 m and for liquids it is of the order of 
10−10 m. Most flow processes which are of interest to reactor engineers can therefore 
be modeled using the continuous fluid approximation. Additional information about 
the governing equations may be found in Bird et al. (1960), Bird and Graham (1998) 
and Bird (1998). In addition to the basic governing equations developed from the 
universal laws, it is necessary to develop relevant constitutive equations and equations 
of state for the fluids under consideration to close the system of equations. 

There are two approaches for deriving basic governing equations. In the Eulerian 
approach, an arbitrary control volume in a stationary reference frame is used to derive 
the basic governing equations. In an alternative, Lagrangian approach, equations are 
derived by considering a control volume (material volume) such that the velocity 
of the control volume surface always equals the local fluid velocity (Fig. 2.1). For 
single-phase flows, both the approaches give the same final form of the conservation 
equations (see Deen, 1998 for more discussion on different approaches to deriving 
conservation equations). These two approaches, however, offer different routes to 
simulate multiphase flow processes. Modeling multiphase flows and turbulent reactive 
flows based on these two approaches is discussed in Chapters 4 and 5 respectively. 
Basic governing equations for single-phase flow processes are discussed here. 

2.1.1. Conservation of Mass 

It is often suitable to write the mass conservation equations in terms of mass fractions 
of species rather than molar concentrations, especially for flow processes, where prop
erties of the fluid may vary with composition and temperatures. The mass conservation 
equation for species k can therefore be written (in vector symbolism): 

∂ 
(ρmk ) + ∇ · (ρUmk ) = −∇ · ( jk ) + Sk (2.1)

∂t 
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Control volume for 
differential balance at 
f ixed position in space 

Flowing fluid 

Stationary 
(a) reference frame 

element 

fluid 

Control volume for 
differential balance 
moving with fluid 

Reference frame 
moving with the 

(b) Flowing fluid 

FIGURE 2.1 Two approaches to deriving governing equations. (a) Eulerian; (b) Lagrangian. 

where t is time, ρ is fluid density, mk is the mass fraction of species k and U is fluid 
velocity. The first term of the left-hand side of this equation represents accumulation 
of species k in a volume element and the second term represents change in species 
mass fraction due to convection. The first term of the right-hand side represents the 
change in species mass fraction due to the diffusive fluxes, jk . Sk is the source of 
species k (net rate of production per unit volume). In principle, the volumetric source 
can be a rate of production or consumption due to chemical reactions or net exchange 
of species k with other phases, if present. For the non-reactive single-phase flows, 
source terms will be generally absent. Source term formulations for reactive flow 
processes will be discussed in Chapter 5. The velocity field may be known or may be 
obtained by solving momentum conservation equations (to be discussed later). It will 
be necessary to formulate equations for diffusive fluxes jk in terms of species mass 
fractions in order to use these equations to determine the species concentration fields 
in the reactor. 

In general, the diffusive mass flux is composed of diffusion due to concen
tration gradients (chemical potential gradients), diffusion due to thermal effects (Soret 
diffusion) and diffusion due to pressure and external forces. It is possible to include 
the full multicomponent model for concentration gradient driven diffusion (Taylor 
and Krishna, 1993; Bird, 1998). In most cases, in the absence of external forces, it is 
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sufficient to use the following expression for diffusive flux: 

∇T 
Jk = −ρDkm ∇mk − DkT (2.2)

T 

where Dkm is the diffusion coefficient for species k in the mixture and DkT is the 
thermal mass diffusion coefficient for species k. In many cases of interest to a reactor 
engineer, the contribution of thermal diffusion is very small compared to the dif
fusive flux due to concentration gradients. For modeling pressure-driven separation 
processes, it may be necessary to include the diffusive flux due to pressure (for more 
details, see Brodkey and Hershey, 1988; Bird, 1998). If only the most dominant term, 
the diffusion due to concentration gradient, is considered, the species conservation 
equations become 

∂ 
(ρmk ) + ∇ · (ρUmk ) = ∇ · (ρDkm ∇mk ) + Sk (2.3)

∂t 

The summation of species conservation equations of this form (written in terms 
of mass fractions) for all the species present in the continuous phase results in the 
overall mass conservation equations: 

∂ 
(ρ) + ∇ · (ρU) = Sk (2.4)

∂t 
k 

The terms appearing in this equation have similar significance to those of the individual 
species equations, that is, the first term represents accumulation, the second represents 
the contribution of convection and the third term represents the sum of volumetric 
sources of all the components. For single-phase flow processes, the summation of 
sources of all the components will be zero (since there cannot be net generation or 
destruction of mass). 

The performance equations of ideal reactors, which are well known to any reactor 
engineer, are just the limiting cases of these general mass conservation equations. 
Possible simplifications of these equations are discussed later in the chapter after 
discussing all the governing equations and their dimensionless forms. 

2.1.2. Conservation of Momentum 

Application of the law of conservation of momentum yields a basic set of equations 
governing the motion of fluids, which are used to calculate velocity and pressure 
fields. Details of the derivation of momentum transport equations may be obtained 
from such textbooks as Bird et al. (1960), Brodkey and Hershey (1988) or Deen 
(1998). The governing equations can be written: 

∂ 
(ρU) + ∇ · (ρUU) = −∇ · π + ρg + F (2.5)

∂t 

In these equations, π is the molecular flux of momentum and g and F are gravita
tional acceleration and external body forces, respectively. The physical interpretation 
of the various terms appearing in these equations again follows similar lines: the first 
term is the rate of increase in momentum per unit volume; the second term represents 
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change in momentum per unit volume, caused by convection; the fourth and fifth 
terms represent the gravitational force per unit volume and any other external force, 
if present, respectively. The third term represents molecular contributions, which 
include pressure and viscous force per unit volume and is given as 

−∇ · π = −∇p + ∇ · τ (2.6) 

where p is pressure and τ is the viscous stress tensor. It may be noted that the second 
term of the right-hand side is not simple divergence because of the tensorial nature of τ . 

In order to use these general momentum conservation equations to calculate the 
velocity field, it is necessary to express viscous stress terms in terms of the velocity 
field. The equations which relate the stress tensor to the motion of the continuous 
fluid are called constitutive equations or rheological equations of state. Although the 
governing momentum conservation equations are valid for all fluids, the constitutive 
equations, in general, vary from one fluid material to another and possibly also from 
one type of flow to another. Fluids, which follow Newton’s law of viscosity (although 
it is referred to as a law, it is just an empirical proposition) are called Newtonian 
fluids. For such fluids, the viscous stress at a point is linearly dependent on the rates 
of strain (deformation) of the fluid. With this assumption, a general deformation law 
which relates stress tensor and velocity components can be written: 

� � 2 
τij = µ ∇U + ∇UT + κ − 

3 
µ δij (∇ · U) (2.7) 

where δij is the Kronecker delta (δij = 1 if  i = j and δij = 0 if  i �= j) function, µ is 
the coefficient of viscosity and κ is the coefficient of bulk viscosity. The superscript 
‘T’ denotes the transpose of a tensor quantity. In general, it is believed that, except 
in the study of shock waves and in the absorption and attenuation of acoustic waves, 
it is convenient to ignore the coefficient of bulk viscosity. Substitution of Eq. (2.7) 
into Eq. (2.6) and Eq. (2.5) results in the complete momentum conservation equation. 
A special case of these momentum conservation equations for constant density and 
constant viscosity fluids is the famous Navier–Stokes equation, which provides the 
usual starting point for the analysis of flow processes (Bird et al., 1960; Deen, 1998). 

Any fluid, which does not obey Newton’s law of viscosity, is called a non-
Newtonian fluid. This class covers widely different materials/fluids, varying from 
those exhibiting slight deviation from Newtonian behavior to almost elastic solids. 
Fluids exhibiting slight deviations from Newtonian behavior, such as power law fluids 
(which exhibit a power law relationship between stress and strain) or Bingham plastic 
fluids (which require finite yield stress for flowing), can be readily modeled using the 
same framework. The molecular viscosity term appearing in Eq. (2.7) is replaced by 
an effective viscosity term, which may be a function of local stress and strain values. 
More complex behavior, e.g. viscoelastic behavior, requires a completely different 
framework to develop satisfactory constitutive equations. The subject of develop
ing suitable constitutive equations for viscoelastic fluids, is extremely complex and 
outside the scope of this book. As stated earlier, the focus in this book is on simulat
ing turbulent, multiphase and reactive flows. Detailed discussion about the rheology 
and motion of complex fluids can be found in Tanner (1985), Bird et al. (1987) 
(constitutive equations, models) and Crochet et al. (1984) (numerical simulation). 
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2.1.3. Conservation of Energy 

Application of the law of conservation of energy can be used to derive transport 
equations for total energy. In order to derive an equation for internal energy, it is 
first necessary to derive a transport equation for mechanical energy, which can then 
be subtracted from the equation for total energy to obtain the governing equation 
for internal energy (Bird et al., 1960; Bird, 1998). Without going into details, the 
equation for internal energy written in terms of static enthalpy is given below: 

∂ Dp
(ρh) + ∇ · (ρUh) = −∇ · (q) + − (τ : ∇U) − ∇ ·  hk jk + Sh (2.8)

∂t Dt 
k 

Here h is an enthalpy, which is defined as 

T 

h = mkhk ∵ hk = Cpk dT (2.9) 
k 

Tref 

where Tref is a reference temperature and Cpk is the specific heat of species k, at  
constant pressure. q is a flux of enthalpy. The first and second terms of the energy 
conservation equation represent accumulation and change of enthalpy due to convec
tion. The third term represents change in the enthalpy due to conduction. The fourth 
and fifth terms represent reversible and irreversible change in the enthalpy due to 
pressure and viscous dissipation, respectively. The sixth term accounts for changes 
in enthalpy due to diffusive mass fluxes and the final term is the volumetric source 
of enthalpy (due to say, chemical reactions). In the energy conservation equation, the 
flux of enthalpy, q can be written in terms of temperature gradient as 

q = −k∇T (2.10) 

where k is thermal conductivity of the fluid. 
The energy conservation equation is intimately linked to momentum conservation 

equations via the fourth and fifth terms. For most reacting systems, the contribution 
of energy released or absorbed by chemical reactions usually dominates the other 
terms originating from pressure and viscous effects. For highly viscous flows with 
low heats of reaction, it may be important to consider the viscous heating terms. 
An order of magnitude analysis is often used to examine the relative importance of 
different terms. 

These equations have general applicability for any continuous medium and are 
valid for any co-ordinate system. Additional information about the formulations of 
basic governing equations can be found in Bird et al. (1960). 

2.1.4. Analysis/Simplification of Governing Equations 

A reactor engineer has to evaluate and analyze various terms appearing in the basic 
governing equations to explore the possibilities of simplifying them and tailoring them 
to suit the needs of the problem under consideration. It is often useful and instructive 
to re-write the governing equations in non-dimensional form by using characteristic 
reference scales (length, velocity, time, temperature and so on). The dimensionless 
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form allows one to identify major factors governing the flow process. The choice 
of characteristic reference scales is obvious in simple flows (for example, average 
velocity, geometric length scale of the equipment). Use of such reference scales 
leads to a dimensionless form of governing equations containing some characteristic 
dimensionless numbers. 

By examining these characteristic dimensionless numbers, it is possible to appre
ciate possible interactions of different processes (convection, diffusion, reaction and 
so on) and to simplify the governing equations accordingly. A typical dimensionless 
form of the governing equation can be written (for a general variable, φ): 

ρr φr ∂ ρrUr φr �r ρr φr � � ρr φr 

tr ∂t 
(ρφ)+ 

Lr 
∇·(ρUφ) = 

Lr 
2 

∇·  jφ + Sk (2.11)
tr 

where the subscript ‘r’ indicates characteristic values (or reference values) used to 
make the governing equations dimensionless. �r is the effective diffusion coefficient 
of variable φ. All the symbols appearing without this subscript denote dimensionless 
quantities. If the characteristic time scale, tr is defined as the ratio of characteristic 
length (Lr ) and velocity (Ur ) scales, the dimensionless form of the equation can be 
rewritten: 

∂ �r � � 
(ρφ) + ∇ · (ρUφ) = ∇ ·  jφ + Sk (2.12)

∂t UrLr 

The dimensionless form of the equation contains one dimensionless parameter as 
a multiplier of the first term of the right-hand side and maybe some additional dimen
sionless parameters, which may appear within the dimensionless source term, Sk . 
Depending on the general variable, φ, the effective diffusion coefficient, �r appear
ing in this dimensionless number will be different, leading to different dimensionless 
numbers. For the species mass fraction, momentum and enthalpy transport equations, 
the effective diffusion coefficient will be molecular diffusion coefficient, the kine
matic viscosity of the fluid and the thermal diffusivity of the fluid respectively. The 
corresponding dimensionless numbers are, therefore, defined as follows. 

Reynolds number, Re: may be interpreted as the ratio of the convective transport to 
the molecular transport of momentum or as the ratio of the inertial to viscous forces: 

LrUrRe = (2.13)
(µr /ρr ) 

Examination of the relevant dimensionless numbers, with reference to specific char
acteristics of the problem under consideration, is useful for simplifying the governing 
equations. For example, for very high speed flows, the reciprocal of the Reynolds 
number tends to zero and it may be reasonable to ignore viscous stress terms in the 
momentum conservation equations. Under these conditions, momentum conservation 
equations reduce to well-known Euler equations. Aerospace engineers have used this 
simplification extensively for simulating high speed flows around complex shaped 
objects. On the other hand, when the Reynolds number is small (that is, when flow 
velocity or the size of the equipment is very small or the fluid is very viscous), the 
convective or inertial terms in the Navier–Stokes equations can be neglected. This 
approximation leads to well-known creeping flow equations. 
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Peclet Number, Pe: dimensionless number appearing in enthalpy or species mass 
conservation equations (defined for heat transfer and mass transfer, respectively). It 
is interpreted again as the ratio of the convective transport to the molecular transport 
and is defined as 

LrUr LrUrPeheat = � � and Pemass = (2.14)
kr /ρCpr Dr 

If these Peclet numbers are divided by the Reynolds number, the resulting dimension
less numbers are called the Pradtl number, Pr and Schmidt number, Sc, respectively. 
The Prandtl number (Pr) is the ratio of momentum diffusivity and thermal diffusivity. 
The Schmidt number (Sc) is the ratio of momentum diffusivity and mass diffusi
vity. These five dimensionless numbers can convey very useful information about the 
relative contributions of convective and molecular transport and relative magnitudes 
of momentum, heat and mass transfer. 

It must be noted that apart from these five dimensionless numbers, some addi
tional dimensional parameters may appear in the dimensionless source terms. The 
source terms appearing in basic conservation equations are made dimensionless by 
dividing the reference source term, Sr defined as 

ρrUr φr
Sr = (2.15)

Lr 

The dimensionless source term essentially represents the ratio of generation to con
vection. For various generation terms, several additional dimensionless numbers may 
be defined. For example, if the generation of momentum due to gravitational forces is 
considered, a dimensionless number, called as the Froude number (Fr), is defined as 
the ratio of convection to gravitational factors. The dimensionless numbers discussed 
here along with other dimensionless numbers are listed in Table 2.1 together with 
their physical interpretation. 

Apart from analyzing the relative contributions of various transport and gener
ation mechanisms, the reactor engineer has to use basic engineering judgement to 
evolve suitable simplifications of the mathematical model. For example, when the 
flow under consideration has a predominant direction and the variation of geometry 
is gradual, it is possible to use so called ‘boundary layer approximations’. In such 
cases, the flow is influenced mainly by what is happening upstream. Special, efficient 
methods have been developed to solve such specific simplified forms of the equa
tions. Various possibilities for simplification, for example ignoring the variation of 
fluid properties such as density, viscosity, heat capacity etc., need to be evaluated 
by considering the possible implications on the application of the model. Compress
ibility effects may be neglected when the characteristic velocity of the fluid is much 
smaller than the speed of sound in that fluid. 

The basic governing equations, written in a form suitable for any co-ordinate 
system, are useful for understanding the basic concepts and significance of various 
terms. It is, however, necessary to rewrite these equations, after considering the possi
ble simplifications, for a specific co-ordinate system appropriate to the problem under 
consideration. Cartesian and cylindrical co-ordinate systems are the most commonly 
used systems for analyzing flow processes in simple geometry. The basic governing 
equations incorporating the relevant constitutive relationships (for Newtonian fluids) 
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TABLE 2.1 Dimensionless Numbers 

Name Symbol Definition Physical Significance 

Reynolds number 

Peclet number 

Prandtl number 

Schmidt number 

Nusselt number or 
Sherwood number 

Damkohler number 

Damkohler number 

Stanton number 

Euler number 

Froude number 

Lewis number 

Weber number 

Re 

Pe 

Pr 

Sc 

Nu or Sh 

Da1 

Da2 

St 

Eu 

Fr 

Le 

We 

Re = 
ρr Lr Vr 

µr 

Pe = 
ρr CpLr Vr 

k 

Pr = 
Cpµ 

k 

Sc = 
µ 

ρD 

Nu = 
hL 

k 

Sh = 
kM L 

D 

LKn C
n−1 
A 

U 

L2 KnCn−1 
A 

D 

h 

CpρU 
or 

kL,ave 

Uz,ave 

p � 
ρU2 

� 
U2 

(Lg) 

k 

ρCpD 

U2Lρ 

σ 

or 
Lr V 

D 

Ratio of inertial forces to 
viscous forces; Ratio of 
momentum transfer by 
convection and by molecular 
action of viscosity 

Ratio of convective transport 
to molecular transport 
(of energy or mass) 

Ratio of momentum diffusivity 
to thermal diffusivity 

Ratio of momentum diffusivity 
to mass diffusivity 

Ratio of total transfer to 
molecular transfer 
(of energy or mass) 

Ratio of convective time scale 
to reaction time scale; 
ratio of convective transport 
to rate of generation due 
to chemical reaction 

Ratio of diffusion time scale 
to reaction time scale; 
ratio of diffusive transport 
to rate of generation due 
to chemical reaction 

Ratio of interface transport 
to bulk transport 

Ratio of pressure forces 
to inertial forces 

Ratio of inertial forces 
to gravitational forces 

Ratio of thermal diffusivity 
to mass diffusivity 

Ratio of inertial 
to surface forces 

For more discussion on dimensionless numbers relevant for flow process, see Bird et al. (1960) and 
Brodkey and Hershey (1988). 

written in cylindrical co-ordinates are listed in Table 2.2. To model flow processes in 
complex process equipment, it may be necessary to use a more general co-ordinate 
system. It is possible to transform the equations listed in Table 2.2 into any such suit
able co-ordinate systems. Anderson et al. (1984) listed governing equations applicable 
to any orthogonal curvilinear co-ordinates. 
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TABLE 2.2 Governing Equations in Cylindrical Co-ordinates 

∂ (ρφ) 1 ∂ 1 ∂ ∂ + (ρrUφ) + (ρV φ) + (ρW φ) 
∂t r ∂r r ∂θ  ∂z 

1 ∂ ∂φ  1 ∂ �φ ∂φ  ∂ ∂φ  = �φ r + + �φ + Sφ 
r ∂r ∂r r ∂θ  r ∂θ  ∂z ∂z 

φ �φ Sφ 

1 (continuity) 0 0 

U (r momentum) µ − 
∂p 

∂r 
+ 

1 

r 

∂ 

∂r 

� 

�φ r 
∂U 

∂r 

� 

+ 
1 

r 

∂ 

∂θ  

� 

�φ r 
∂ (V /r) 

∂r 

� 

+ 
∂ 

∂z 

� 

�φ 
∂W 

∂r 

� 

− 
2�φ 

r2 

∂V 

∂θ  
− 

2�φ U 

r2 
+ 
ρV 2 

r 

V (θ momentum) µ − 
1 

r 

∂p 

∂θ  
+ 

1 

r 

∂ 

∂r 

� 

�φ 
∂U 

∂θ  

� 

+ 
1 

r 

∂ 

∂θ  

� 
�φ 

r 

∂V 

∂θ  

� 

+ 
∂ 

∂z 

� 
�φ 

r 

∂W 

∂θ  

� 

+�φ 
∂ (V /r) 

∂r 
− 

1 

r 

∂ 

∂r 

� 
�φ V 

� − 
ρUV 

r 
+ 
�φ 

r2 

∂U 

∂θ  
+ 

1 

r 

∂ 

∂θ  

� 
2�φ U 

r 

� 

W (z momentum) µ − 
∂p 

∂z 
+ 

1 

r 

∂ 

∂r 

� 

�φ r 
∂U 

∂z 

� 

+ 
1 

r 

∂ 

∂θ  

� 

�φ 
∂V 

∂z 

� 

+ 
∂ 

∂z 

� 

�φ 
∂W 

∂z 

� 

U: Radial velocity component 
V: Tangential velocity component 
W: Axial velocity component 

After finalizing the governing equations, it is necessary to provide auxiliary 
equations to estimate fluid properties and to specify appropriate initial and boundary 
conditions. These aspects are discussed in the next section. 

2.2. AUXILIARY EQUATIONS 

To close the set of model equations, it is necessary to specify equations to prescribe or 
describe fluid density and other fluid properties such as viscosity, diffusivity, thermal 
conductivity and heat capacity. It is possible to treat these properties either as con
stants or as functions of thermodynamic variables and/or compositions. For example, 
the dependence of fluid density on composition, temperature and pressure can be 
described by the following equation: 

1 
ρ = � ∵ ρk = fk (p, T ) (2.16) 

mk /ρk 

For ideal gases, it is possible to write component density, ρk in terms of the 
molecular weight of component k, temperature, operating pressure and universal 
gas constant. For non-ideal fluids, one can use empirical correlations to represent 
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variations of fluid density with temperature. The values of fluid viscosity, thermal con
ductivity and molecular diffusivity can be estimated using kinetic theory (Hirschfelder 
et al., 1964). Kinetic theory allows one to estimate variations of these properties 
with temperature and pressure. Sometimes it is necessary to use empirical or semi-
empirical formulae to estimate these properties while solving the basic conservation 
equations. For multicomponent flows, it is customary to use mixture properties as a 
mass fraction weighted average of the individual component properties, such as 

� � � 
µ = mk µk k = mk kk Cp = mk Cpk (2.17) 

k k k 

It is possible to use alternative formulations considering mole fractions rather 
than mass fractions. For most cases, mass fraction formulations will be adequate. An 
estimation of the diffusion coefficient (of component k) in a multicomponent mixture 
(Dkm ), however, is not straightforward. For mixtures of ideal gases, the diffusion 
coefficient in a mixture can be estimated as (Hines and Maddox, 1985) 

1 − Xk
Dkm = � (2.18)

Xj /Dkj 
j,j �=k 

where Xk is the mole fraction of component k and Dkj is a binary diffusion coefficient 
for species k in species j. Pure component properties may be estimated by following 
standard practices (Reid et al., 1987). Whenever possible, experimental values of 
transport properties and equations of state should be used. Typical values of the 
physical properties of different fluids are listed in Table 2.3. Data for pure compounds 
can be found in various handbooks (for example, Vargaftik, 1983; Yaws, 1995; Perry’s 
Handbook, 1997). Data for mixtures (especially diffusion coefficients) are difficult to 
find. In the absence of experimental data, some help can be obtained from estimation 
methods. For dilute gases and gas mixtures, the kinetic theory of gases can be used 
to make reasonable estimates of transport properties (see, for example, Hirschfelder 
et al., 1964). For liquids, theory is much less well developed. A recent review on 
theory and experiment may provide some assistance in estimating or measuring the 
required transport properties (Millat et al., 1996). 

2.3. BOUNDARY CONDITIONS 

In order to solve the closed set of governing model equations, it is necessary to specify 
appropriate initial conditions and boundary conditions. For any reactor engineering 
problem, it will be necessary to select an appropriate solution domain, which is an 
important step in model formulation. The solution domain isolates the system being 
modeled from the surrounding environment. The influence of the environment on 
the flow processes of interest within the solution domain is represented by suitable 
formulations of boundary conditions. The solution domain, the co-ordinate system 
used to formulate the governing equations and the characteristics of the governing 
equations determine the boundary conditions requirements. Various commonly used 
boundary conditions are detailed here after a brief discussion on relating boundary 
conditions requirements with type of governing equations. 
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TABLE 2.3 Transport Properties (Most of the data are from Reid et al. (1987) and Perry’s Handbook (1997)) 

Viscositya Thermal Conductivityb Heat Capacityc Binary Diffusivityd , ×105 m2s−1 

×103 Pa. s at 299  K  W  m−1K−1 at 299 K J kg−1 K−1 at 299 K (atmospheric pressure) 

Fluid 
Acetic acid 1.2 2184 
Acetone 0.34 0.175 2250 
Air 0.018 0.0262 1046 
Carbon dioxide 0.0145 0.0166 878 
Carbon monoxide 0.018 1046 
Chlorine 0.014 0.0089 489 
Hydrogen 0.0087 0.182 14644 
Nitrogen 0.0175 0.0260 1046 
Oxygen 0.02 0.0267 920 
Steam 0.0095 0.61 1841 
Toluene (L) 0.55 0.148 1840 
Water 0.9 0.608 4184 

System 
CO2 /N2 1.69 at 298 K 
H2/NH3 11.1 at 358 K 
N2/NH3 3.32 at 358 K 
O2/H2O 3.57 at 352 K 
n-Heptane/Benzene 2.1 × 10−4 at 298 K 
Benzene/n-Heptane 3.4 × 10−4 at 298 K 
Water/Ethyl acetate 3.2 × 10−4 at 298 K 
Ethyl acetate/Water 1.0 × 10−4 at 293 K 

a Gases: ∼10−5 Pa. s; Water and many organic solvents: ∼10−3 Pa. s.

bGases : ∼ 5 × 10−3 to 0.1 Wm−1K−1; Non-metallic liquids : ∼0.1 to 1.0 Wm−1K−1; Metallic liquids : ∼10.0 to 100.0 Wm−1K−1.

c Gases : ∼1000 J kg−1 K−1; Liquids : ∼1000 to 4200 J kg−1 K−1.


2 2 −1d Gases : ∼10−5 to 10−4 m s−1; Liquids : ∼10−11 to 10−8 m s . 
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For any partial differential equation, initial and/or boundary conditions require
ments depend on the direction of information propagation and the domain of 
dependence. Second-order partial differential equations are classified as elliptic, 
parabolic or hyperbolic. In elliptic equations, information propagates in all direc
tions simultaneously. The solution domain is, therefore, a closed domain and the 
resulting solution is always smooth. In contrast, in hyperbolic equations, informa
tion propagates along characteristic directions with finite speed. These equations can, 
therefore, be solved using marching techniques. The solution may contain discon
tinuities (like shocks) because of the non-dissipative nature of these equations. For 
parabolic equations, the solution domain is open, but always yields a smooth solution 
due to its dissipative nature. A general, second-order partial differential equation in 
N independent variables (x1, x2, . . ., xN ) can be written: 

N N �� ∂2φ 
Ajk + H = 0 (2.19) 

j=1 k=1 
∂xj ∂xk 

This equation can be classified on the basis of eigenvalues, λ, of a matrix with entries 
Ajk (Fletcher, 1991). The eigenvalues (λ) are roots of the following equation: 

det Ajk − λ I = 0 (2.20) 

where I is a unit vector. If any eigenvalue is zero, the equation is parabolic. If all eigen
values are non-zero and are of the same sign, the equation is elliptic. If all eigenvalues 
are non-zero and all but one are of the same sign, the equation is hyperbolic. It should 
be noted that the coefficients Ajk might be functions of the dependent variable φ or 
independent variables. In such a case, the same equation may be locally parabolic, 
elliptic and hyperbolic depending upon the local conditions. In many cases, equations 
governing complex flow processes exhibit mixed properties and are difficult to for
mally classify under any particular type. The ideas discussed above should be kept in 
mind when formulating appropriate boundary conditions and when selecting appro
priate numerical methods to solve the model equations. Commonly used boundary 
conditions are discussed below. 

2.3.1. Inlet 

For any model representing a flow process, the inlet boundary is a boundary through 
which the surrounding environment communicates with the solution domain. Gener
ally, at such inlet boundaries, information about the velocity (or pressure), temperature 
and composition of the incoming fluid stream is assumed to be known. When the 
velocity components at the inlet are known, the inlet boundary conditions simply 
become: 

Uin = Uset φin = φset (2.21) 

where subscript ‘set’ indicates known values. φ represents all the scalar variables of 
interest (temperature, species concentrations, physical properties and so on) except 
pressure. When the normal component of the velocity is known at the boundary, the 
boundary condition for pressure is not required since the velocity field depends on 
the pressure gradient and not on the absolute value of pressure. 
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It must be noted here that in most reactor simulations, the solution domain is 
restricted to the vessel, and generally flow within the feed pipes is not modeled. 
This means, that although volumetric flow rates are known accurately, the velocity 
distribution at the inlet is seldom known accurately. The most widely used practice 
is to use a knowledge of fully developed flow in pipes to specify the inlet velocity 
distribution. Thus, for laminar flow through a cylindrical inlet pipe, one can specify 
a parabolic velocity profile as a boundary condition at the inlet. However, if feed 
pipes have complex shapes, it will be necessary to develop an additional model to 
formulate appropriate inlet boundary conditions. Even with simple geometry like 
cylindrical pipes, in many reactor engineering applications the specification of inlet 
boundary conditions based on fully developed profiles may not be appropriate. To 
illustrate this, consider a simple example of a reactor vessel with a bottom inlet. In 
most cases, such an inlet pipe will have a bend very near to the entry in the reactor 
vessel (Fig. 2.2). Such a bend or any other pipe fitting will significantly change the 
velocity profile at the inlet defined at the vessel boundary. In such cases, either one 
has to include a significant portion of the feed pipe in the reactor simulation model 
or develop a separate model for the inlet pipe and use the results obtained from such 
a model to specify inlet boundary conditions near the vessel boundary. 

When velocity components at the inlet boundary are not known, it is necessary 
to specify the pressure at the inlet boundary. Simplified equations can then be used 
(such as Bernoulli’s equation) to calculate velocity at the inlet boundary (Fig. 2.3). 
For incompressible flow, if the specified total pressure at the inlet boundary is p0, the 

Reactor 

location 

locations 
Not appropriate to use 
fully developed profile: 

It is necessary to use 
experimental data or a 

separate model to 
specify inlet boundary 

conditions at this 

Fully developed profile 

Possible inlet 

may be used 

FIGURE 2.2 Typical arrangement of feed pipe to reactor vessel and location of inlet boundaries. 
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FIGURE 2.3 Inlet boundary conditions with unknown velocity. 

inlet velocity is given by: 

2 (p0 − ps) 
�1/2 

Uin = (2.22)
ρ 

where ps is the static pressure in the solution domain at the adjacent location of the 
inlet boundary. More complicated treatment will be necessary for compressible flows 
or for non-normal flows through the inlet pressure boundary. It must be kept in mind 
that the specified value of pressure at the boundary may lead to outflow from the 
boundary (when ps is greater than p0). It can, therefore, be used when it is not a priori 
known whether the flow enters or exits the solution domain at the open boundary 
under consideration. It can also be used as an outlet boundary condition (which may 
sometimes lead to inflow)! 

2.3.2. Outlet 

The surface of the solution domain through which the flow exits may be defined 
as the outlet. Normally the outlet boundary condition implies that gradients normal 
to the outlet boundary are zero for all the variables except pressure. If the direction 
normal to the outlet boundary is denoted by y, the outlet boundary conditions can be 
expressed as 

∂φ  = 0 (2.23)
∂y 

It is not necessary to specify pressure at the outlet boundary. 
Use of the outlet boundary condition is not appropriate when the gradients at the 

outlet boundary are not zero or when conditions downstream of the outlet boundary 
may influence flow within the solution domain (see Fig. 2.4, which shows inappropri
ate use of outlet boundary conditions). For such cases, it may be necessary to enlarge 
the solution domain to ensure that all the gradients vanish at the outlet boundary of 
the enlarged domain. Alternatively, a pressure boundary condition may be used (as 
discussed in the previous section). For the exit boundaries, static pressure is defined 
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FIGURE 2.4 Location of outlet boundary condition. 

instead of total pressure. For outflow through the boundary, this pressure is used to 
calculate the outflow velocities. If an inflow occurs through such a boundary, the 
kinetic energy of the incoming fluid is then assumed to be negligible. 

For multiphase flows, it is possible to encounter a boundary of the solution domain 
through which one of the phases exits the domain but not the other (for example, the 
top surface of the bubble column reactor). Special boundary conditions need to be 
developed to represent such cases. These are discussed in Chapter 5. 

2.3.3. Walls 

At the impermeable wall boundaries of the solution domain, normally a ‘no slip’ 
boundary condition is employed. This is achieved by setting the transverse fluid 
velocity equal to that of the surface and setting the normal velocity to zero. Since 
the normal velocity at the wall is known, the value of pressure at the wall boundary 
is not required to be known. For species concentrations or temperatures, any of the 
following conditions can be specified at the wall boundaries: 

•	 Surface temperature (or concentration) is specified. 
•	 Heat (or mass) flux at the surface is specified. 
•	 External heat transfer (or mass transfer) coefficient and external temperature 

(or concentration) at the surface is specified. 

The specified heat or mass flux at the wall is then used to calculate the gradients of 
temperature or species concentrations at the wall by using the following equations: 

∂T �	 ∂mk � 
qw = k � jkw = ρDkm 

�	 (2.24)
∂n �	 ∂nw	 w 
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where qw and jkw are the specified heat and mass (of species k) flux at the wall. At the 
impermeable, inert and insulated wall, the gradients of temperature and species con
centration are set to zero (zero flux condition). When external heat or mass transfer 
coefficients are specified, along with the external temperature or species concentra
tion, the flux at the walls are equated to the flux in terms of these external transfer 
coefficients: 

qw = hext (Text − Tw) jkw = kmext (mkext − mw) (2.25) 

Schematic representation of these three possible boundary conditions at the wall is 
shown in Fig. 2.5 for the enthalpy/temperature equation. For systems with conjugate 
heat transfer, continuity of the temperature and the normal component of fluxes are 
specified at the walls. For systems with reactions occurring on solid surfaces, gener
ally, accumulation of species at the solid surface is neglected and the diffusive flux at 
the wall is equated to the surface reaction rate. 

2.3.4. Symmetry/Periodic/Cyclic 

Recognizing the intrinsic symmetry of the flow process or the repetitious nature of the 
process equipment can minimize the size and extent of the solution domain. If such 
a possibility exists, fictitious boundaries may be used to define the solution domain 
with special boundary conditions imposed on these such fictitious surfaces. Some of 
the commonly encountered cases are discussed below. 

If the flow process is symmetric or in other words contains a surface across which 
the flux of all quantities is zero, the extent of the solution domain can be reduced. Two 
examples of such symmetric flow processes are shown in Fig. 2.6. At a symmetry 
surface, the normal velocity is set to zero and the normal gradients of all variables, 
except normal velocity, are set to zero. This ensures that there is no convective or dif
fusive flux across the symmetry surface. It must be noted that symmetric construction 
of the process equipment under consideration does not guarantee that the underly
ing flow processes are also symmetric. Even if the solution domain is geometrically 
symmetric, the flow process of interest may not be so. One example of such a case 
is shown in Fig. 2.6. When the flow processes are not symmetric, it is necessary to 

T = Tw 
w 

∂T = qw or ( - Tk hext Text∂ n 
w 

)w 

Tw 

Text 

qw 

hext 

FIGURE 2.5 Wall boundary conditions for enthalpy/temperature equation. 
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FIGURE 2.6 Examples of symmetric flows. 

include the whole vessel as the solution domain. However, wherever possible, the 
existence of symmetry planes must be recognized to reduce the size of the solution 
domain. 

When the physical geometry of the problem under consideration or the expected 
flow pattern has a cyclically repeating nature, cyclic or periodic boundary conditions 
can be used to reduce the size of the solution domain. Two types of cyclic boundary 
condition can be distinguished. The first is for rotationally periodic flow processes, 
where all the variables at corresponding periodic locations on the cyclic planes are 
the same. The second is for translationally periodic flow processes, where all the 
variables, except pressure, at corresponding periodic locations on the cyclic planes 
are the same. Examples of these two types are shown in Fig. 2.7. Such cyclic planes 
are in fact part of the solution domain (by the nature of their definitions) and no 
additional boundary conditions are required at these planes, except the one-to-one 
correspondence between the two cyclic planes. 

2.4. DISCUSSION 

The basic governing equations (2.1 to 2.10) along with appropriate constitutive equa
tions and boundary conditions govern the flow of fluids, provided the continuum 
assumption is valid. To obtain analytical solutions, the governing equations are often 
simplified by assuming constant physical properties and by discarding unimportant 



DISCUSSION 53 

Translationally 21 
periodic BC

Large periodic 
array 

1 = 2 except pressure 

Four tangential inlets 

Rotationally periodic BC 

1 

2 

1 = 2 

FIGURE 2.7 Flow processes with rotationally or translationally periodic boundaries. 

terms (refer to Section 2.1.4). For example, many analytical solutions of the Euler 
equations are available (Lamb, 1932; Milne-Thompson, 1955; Frisch, 1995). Solu
tions of low Reynolds number hydrodynamics (creeping flows) are discussed by 
Happel and Brenner (1983) and Kim and Karrila (1991). For some laminar flow 
problems, analytical solutions can be obtained by asymptotic methods or by using 
scaling arguments (Leal, 1992). Despite these extensive efforts, for most practical 
flow problems, it is not possible to obtain analytical solutions. 

Recent advances in numerical methods and algorithms allow solution of these 
governing equations using digital computers. The modeling of flow processes occur
ring in industrial equipment may, however, require additional modeling steps beyond 
the formulation of basic governing equations. Any engineer familiar with fabrication 
drawings of an industrial reactor will know the complexity and co-existence of a 
wide range of geometric and velocity scales within the reactor. An industrial reactor 
may contain several internals such as cooling coils, feed pipes, distributors and so 
on. Developing a single model to simulate all the flow processes occurring in such 
reactors is almost always impractical (if not impossible). More often than not the 
reactor engineer has to divide the overall problem into different components. Each 
component can then be modeled separately to learn about its fluid dynamics. At each 
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stage, the reactor engineer has to recombine the understanding and knowledge gained 
during the modeling of these components to build the overall model. Of course, at 
each stage, the implications of considering the separate components and extrapola
tion of these results to formulate the overall model need to be constantly evaluated. 
The approach to modeling flow processes in complex industrial reactors is discussed 
further with the help of case studies in Parts III and IV. 

Recent progress in computing technologies has resulted in an order of magnitude 
increase in our capacity to use and solve these basic equations to simulate complex 
flow processes. This may lead to thinking that given sufficient computing power, these 
equations can be solved numerically to make a priori predictions of any complex flow 
process. Unfortunately, this is NOT true, especially for those flow processes in which 
a reactor engineer will be interested. 

A close examination of the basic equations will reveal that non-linearity is at the 
core of these equations and there are no general ways of solving non-linear problems. 
The non-linearity in the governing equations manifests in the form of turbulence 
under certain conditions (high Reynolds number or Grashoff number). Turbulence is 
the most complex fluid motion, making even its precise definition difficult. Despite 
tremendous progress in the last few decades, it is not yet possible to compute, from 
first principles, how much power one would need to pump a given volumetric flow of 
liquid through a pipe if the flow rate (Reynolds number) is high enough! In order to 
describe real-life, complex flow processes, it is, therefore, necessary to develop and 
use additional models to complement the basic governing equations discussed above. 
For reactor engineering applications, the problem of turbulence is further complicated 
by the presence of chemical reactions and by multiple phases. The modeling of 
turbulent flows, multiphase flows, and reactive flows, is discussed in detail in the 
following chapters. 

2.5. SUMMARY 

Governing equations describing the flow processes of continuous fluid are well estab
lished. These equations form the basis for further understanding and further attempts 
at modeling complex flow processes. In order to close the set of equations, it is neces
sary to provide appropriate constitutive equations, equations to estimate and represent 
the variation in properties of the fluids under consideration and the correct bound
ary conditions. The importance of boundary conditions cannot be overemphasized. 
Dimensional and order-of-magnitude analysis is often helpful in identifying important 
features of the flow process and may highlight possible simplifications. Even the sim
plest flow models may require numerical solutions. Typical flow processes relevant to 
reactor engineering are usually governed by strongly coupled, non-linear equations. 
Details of complexities arising due to these non-linearities, and numerical methods 
for solving these model equations are discussed in subsequent chapters of this part. 

REFERENCES 

Anderson, D.A., Tannehill, J.C. and Pletcher, R.H. (1984), “Computational Fluid Mechanics and Heat 
Transfer”, Hemisphere, New York. 



REFERENCES 55 

Bird, R.B. (1998), Viewpoints on transport phenomenon, Korean J. Chem. Eng., 15(2), 105–123. 
Bird, R.B., Arnstrong, R.C. and Hassager, O. (1987), “Dynamics of Polymeric Liquids, Fluid Mechanics”, 

Vol. 1, 2nd edition, Wiley-Interscience, New York. 
Bird, R.B. and Graham, M.D. (1998), General equation of Newtonian fluid dynamics, in “The Handbook 

of Fluid Dynamics”, CRC Press, Boca Raton, FL. 
Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960), “Transport Phenomena”, John Wiley & Sons, 

New York. 
Brodkey, R.S. and Hershey, H.C. (1988), “Transport Phenomena: A Unified Approach”, McGraw-Hill, 

New York. 
Crochet, M.J., Davis, A.R. and Walters, K. (1984), “Numerical Simulation of Non-Newtonian Flow”, 

Elsevier, Amsterdam. 
Deen, W.M. (1998), “Analysis of Transport Phenomena”, Oxford University Press, New York. 
Fletcher, C.A.J. (1991), “Computational Techniques for Fluid Dynamics”, Vols 1 and 2, Springer Verlag, 

Berlin. 
Frisch, U. (1995), “Turbulence: The Legacy of A.N. Kolmogorov”, Cambridge University Press, 

Cambridge. 
Happel, J. and Brenner, H. (1983), “Low Reynolds Number Hydrodynamics”, Martinus Nijhoff, The 

Hague. 
Hines, A.L. and Maddox, R.N. (1985), “Mass Transfer: Fundamentals and Applications”, Prentice Hall, 

Engelwood Cliffs, NJ. 
Hirschfelder, J.O., Curtiss, C.F. and Bird, R.B. (1964), “Molecular Theory of Gases and Liquids”, John 

Wiley & Sons, New York. 
Kim, S. and Karrila, S.J. (1991), “Microhydrodynamics: Principles and Selected Applications”, 

Butterworth-Heinemann, Boston. 
Lamb, H. (1932), “Hydrodynamics”, 6th edition, Dover, New York. 
Leal, L.G. (1992), “Laminar Flow and Convective Transport Processes”, Butterworth-Heinemann, Boston. 
Milne-Thompson, L.M. (1955), “Theoretical Hydrodynamics”, 3rd edition, McMillan, New York. 
Millat, J., Dymond, J.H. and Nieto de Castro, C. A. (1996), “Transport Properties of Fluids: Their 

Correlation, Predictions and Estimation”, Cambridge University Press. 
Perry, J.H., Gree, D.W. and Maloney, J.O. (1997), “Perry’s Chemical Engineer’s Handbook”, 7th edition, 

McGraw Hill, New York. 
Reid, R.C., Sherwood, T.K. and Prausnitz, J.M. (1987), “Properties of Gases and Liquids”, 4th edition, 

McGraw Hill, New York. 
Tanner, R.I. (1985), “Engineering Rheology”, Clarendon Press, Oxford. 
Taylor, R. and Krishna, R. (1993), “Multicomponent Mass Transfer”, John & Wiley, New York. 
Vargaftik, N.B. (1983), “Handbook of Physical Properties of Liquids and Gases: Pure Substances and 

Mixtures”, Hemisphere, Washington. 
Yaws, C.L. (1995), “Handbook of Transport Property Data: Viscosity, Thermal Conductivity and Diffusion 

Coefficients of Liquids and Gases”, Gulf, Houston. 





3

TURBULENT FLOW PROCESSES 

3.1. INTRODUCTION 

Turbulence is difficult to define precisely, although any reactor engineer may intu
itively understand the differences in laminar and turbulent flow processes. Fluid 
motion is described as turbulent if it is irregular, rotational, intermittent, highly 
disordered, diffusive and dissipative. Turbulent motion is inherently unsteady and 
three-dimensional. Visualizations of turbulent flows reveal rotational flow structures 
(so called turbulence eddies), with a wide range of length scales. Such eddy motions 
and interactions between eddies of different length scales lead to effective contact 
between fluid particles which are initially separated by a long distance. As a conse
quence, heat, mass and momentum are very effectively exchanged. The rate of scalar 
mixing in turbulent flows is greater by orders of magnitude than that in laminar flows. 
Heat and mass transfer rates are also significantly higher in turbulent flows. Because 
of such effective mixing and enhanced rates of mass, momentum and heat transport, 
turbulence is often employed in chemical reactors to enhance performance. Turbulent 
flows are also associated with higher values of friction drag and pressure drop. How
ever, more often than not, advantages gained with the enhanced transport rates are 
more valuable than the costs of higher frictional losses. It can be concluded that for 
many (if not most) engineering applications, turbulent flow processes are necessary 
to make the desired operation realizable and more efficient. It is, therefore, essential 
to develop suitable methods to predict and control turbulent flow processes. 

57 
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Turbulence is the most complicated kind of fluid motion. There have been several 
different attempts to understand turbulence and different approaches taken to develop 
predictive models for turbulent flows. In this chapter, a brief description of some of the 
concepts relevant to understand turbulence, and a brief overview of different modeling 
approaches to simulating turbulent flow processes is given. Turbulence models based 
on time-averaged Navier–Stokes equations, which are the most relevant for chemical 
reactor engineers, at least for the foreseeable future, are then discussed in detail. The 
scope of discussion is restricted to single-phase turbulent flows (of Newtonian fluids) 
without chemical reactions. Modeling of turbulent multiphase flows and turbulent 
reactive flows are discussed in Chapters 4 and 5 respectively. 

3.2. TURBULENCE: PHYSICAL PICTURE 

Since a precise definition of turbulence is difficult, pictures and other visualizations 
of turbulent flows may give some idea of the complex characteristics of turbulence. 
Several such visualizations are available, including the famous painting ‘The Deluge’ 
by Leonardo da Vinci. Banerjee (1992) included several such pictures in his excellent 
paper on turbulence structures. Van Dyke (1982) published an album of fluid motion 
which is a ‘must see’ for any turbulence researcher. Several websites hold treasures 
of visual information on turbulence (see, for example, links listed at sites such as 
www.cfd-online.com and www.efluids.com). Pictures included in these resources 
show various aspects of turbulent flows and may give some intuitive understanding 
of turbulence. 

Turbulence is intrinsically unsteady, even when constant boundary conditions 
are imposed. Velocity and all other flow properties fluctuate in a random and chaotic 
way. Turbulent fluctuations always have a three-dimensional spatial character. There 
have been many attempts to analyze and to construct a physical picture of turbulence, 
following several different approaches. These different approaches, broadly classified 
into three categories, are discussed in this section. 

3.2.1. Statistical Approach 

In this approach, the unsteady processes occurring in turbulent flows are visualized 
as a combination of some mean process and small-scale fluctuations around it. The 
typical time variation of fluid velocity at a point in a turbulent flow is shown in 
Fig. 3.1. In the statistical approach, an instantaneous velocity, U, is visualized as a 
mean velocity, U (shown by a horizontal line in Fig. 3.1) and fluctuations around ¯
it, u. Based on such an approach, the statistical theory of turbulence flows has been 
developed (see Hinze, 1975 and references cited therein). It has been the basis for most 
of the engineering modeling of turbulent flow processes. Some of the key concepts 
of the statistical approach are discussed below. 

The large-scale motions (eddies) of turbulence are dominated by inertia effects. 
For these large-scale motions, viscous effects are negligible. Mean flow stretches 
these large eddies (in the form of vortices). Angular momentum is conserved during 
vortex stretching leading to a reduction in cross-section of these vortices. Thus, the 
process creates motions at smaller length scales (and also at smaller time scales). The 
stretching work done by the mean flow on large eddies provides the energy which 
maintains turbulence. The smaller eddies are themselves stretched by somewhat larger 
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eddies and in this way, transfer energy to progressively smaller length scales (larger 
wave numbers). This process of energy transfer from large scales to small scales 
is termed as ‘energy cascade’. As the length (and time) scales become sufficiently 
small, viscous effects start becoming important. For these small-scale motions, work 
is performed against the action of viscous stresses, so that the energy associated with 
the eddy motions is dissipated. This dissipation results in increased energy losses 
associated with turbulent flows. For many engineering flows, the smallest scales are 
of the order of 0.01 to 0.1 mm. 

The structure of large eddies is highly flow dependent (and directional) due to their 
strong interaction with the mean flow. The diffusive action of viscosity tends to smear 
out directionality at small scales. At high mean flow Reynolds number, the smallest 
eddies are, therefore, non-directional or isotropic. For large enough Reynolds num
bers, there exists an intermediate range of scales (‘inertial sub-range’) between these 
anisotropic large eddies and isotropic dissipative eddies. In this inertial sub-range, 
energy is transferred to smaller scales (higher velocity gradients) with negligible dissi
pation. As scale decreases below certain length scales (or velocity gradients increase 
beyond a certain limit), dissipation of kinetic energy by viscous stresses become 
dominant. Viscous stresses dissipate the kinetic energy and convert it to internal 
energy. The characteristic length scale at which viscous dissipation becomes impor
tant, is called the Kolmogorov scale. Kolmogorov and others (see Hinze, 1975) have 
described the process of ‘energy cascade’ in turbulent flows using spectral analysis. 
A typical energy spectrum of turbulent flows is shown in Fig. 3.2. ke and kd denote 
wave numbers of energy containing eddies and dissipative eddies, respectively. The 
−5/3 slope portion of the energy spectrum characterizes the presence of the inertial 
sub-range. Such spectral analysis has helped to quantify various scales occurring in 
turbulent flow processes and eventually to the development of computational mod
els, which will be discussed in the following sections. The statistical approach has 
been used successfully for several applications. However, one of the most important 
objections to using the statistical approach to describe turbulent flows is that it totally 
ignores structures occurring within turbulent flows (see for example, Banerjee, 1992). 
An alternative approach based on turbulence structures is described below. 

3.2.2. Structural Approach 

Practitioners of this approach object to the ubiquitous averaging employed in the sta
tistical approach, which obscures the structures present in the turbulent flows (high 
vorticity regions, bursts, streaks and so on). The presence of coherent structures in 
turbulent flows has long been recognized. Banerjee (1992) has given a lucid and very 
interesting account of the structural approach to studying turbulent flows. In any tur
bulent flow, such coherent structures exist. For some flows, these structures are more 
persistent and are not swamped by small-scale fluctuations. For such cases, obviously, 
the statistical approach may not be appropriate and a structure-based approach may 
be more fruitful. Banerjee (1992) cited examples where the structural approach can 
be used to develop quantitative, predictive models. However, in many flow situations, 
small-scale fluctuations and other factors shadow the coherent structures. In such 
cases, it is difficult to detect and quantify the characteristics of such structures. More
over, a consistent theoretical framework to assimilate the random and deterministic 
elements of structures is lacking (structures are assumed to be randomly distributed 
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in time and space but each occurrence is assumed to be governed by a locally deter
ministic cause). This approach is, therefore, not frequently used in the engineering 
modeling of turbulent flows. 

3.2.3. Deterministic Approach 

This is the latest approach to be used to understand turbulence, and is based on recent 
advances in the theory of non-linear problems and deterministic chaos. Here, attempts 
are being made to develop quantitative models for transition to turbulence. The tools 
developed and the results obtained by this approach so far look promising and may 
throw new light on the mechanism of transition (see Berge et al., 1984 for a more 
detailed account of the deterministic approach). Efforts to date have been focused on 
simple systems and the transition to turbulence. The application of these ideas to fully 
developed turbulent flows has, however, not yet been seriously undertaken. It is not 
yet evident whether the understanding gained through this approach can be converted 
into successful predictive models for turbulent flows of practical interest. Reactor 
engineers, therefore, have to rely on a statistical approach to develop predictive models 
for most problems of interest. 

Before examining approaches to developing predictive models, it will be useful 
to employ a statistical approach to quantify various relevant length and time scales of 
turbulent flows, keeping in mind the existence of coherent structures. Estimation of 
such length and time scales may allow an evaluation of different competing processes 
such as mixing, heat and mass transfer and chemical reactions. Broadly speaking, 
turbulent flows are characterized by two length scales: the integral scale, L, where 
the inertial sub-range begins, and the Kolmogorov length scale, λk , where the inertial 
sub-range ends, which are given by (Hinze, 1975): 

3π 
∫ 

0 
∞ E(k)/k dk  

L = 
4 

∫ ∞ E(k) dk 
(3.1) 

0 

ν3 )1/4 

λk = (3.2)
ε 

where E(k) dk is the turbulent kinetic energy contained in the wave number range 
k to k + dk, ν is the kinematic viscosity of the fluid and ε is the turbulent energy 
dissipation rate (which is defined later in this chapter). Each of these length scales is 
associated with corresponding velocity and time scales (see Hinze, 1975). 

Generally, the integral length scale is proportional to the macroscopic length scale 
of the equipment (for example, about one tenth of the diameter for pipe flows; about 
half the blade width of an impeller in stirred reactors). The small scales are decided by 
the fluid viscosity and turbulence energy dissipation rate, ε. The small-scale motions 
exhibit universal characteristics and more or less behave in the same way in all flow 
processes. The integral scale motions interact with the mean flow field and strongly 
depend on the boundary conditions of the specific problem under consideration. These 
motions are sometimes called large eddies; eddy being a hypothetical construct to 
represent motions covering a small range of length scales. These large eddies are 
mainly responsible for the transport of momentum, mass and energy, and hence need 
to be adequately simulated by any turbulence model. Various approaches to modeling 
turbulent flows are discussed in the following sections. 
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3.3. MODELING APPROACHES 

Although the structural and deterministic approaches to characterizing turbulence 
have demonstrated promising results, a deductive approach based on solution of the 
basic governing equations of the flow processes is the most widely used approach 
for engineering applications. The basic premise in modeling turbulence is that it 
can be understood within the continuum assumption of fluid dynamics. There are 
some experimental facts which might shed doubt on the validity of the assumption. 
For example, small amounts of long chain polymers have significant influence on 
turbulence properties (drag), even though the polymer molecules are well dispersed 
and have dimensions significantly smaller than the dissipation scales of turbulence 
(more about these scales later). Despite this, the continuum assumption has formed 
the basis for modeling turbulence over the last several decades and therefore will be 
accepted here for modeling turbulent flows relevant to reactor engineering. 

Accepting the continuum assumption implies accepting the use of the same 
basic momentum conservation equations (discussed in Chapter 2) to describe tur
bulent flows. If this is the case, one may wonder why there is a need for any further 
modeling? One has only to solve the momentum conservation equations described 
earlier with appropriate boundary conditions to predict the desired flow character
istics at any value of Reynolds number. However, at large Reynolds numbers, the 
inherent non-linearity in these equations manifest in terms of turbulence, which is 
a three-dimensional, unsteady phenomenon as is previously described. No doubt, 
there exist a number of numerical methods and computer programs capable of solv
ing three-dimensional, time dependent momentum equations. The main difficulty 
in solving the basic governing equations under turbulent conditions is the inability 
to resolve the wide range of spatial and temporal scales simultaneously. From the 
foregoing discussion about the scales, it can be shown that the distance between 
the large and small scales grows with increase in Reynolds number (as Re3/4). 
Therefore, as the Reynolds number increases and the flow becomes more turbu
lent, the requirements on resolution become more and more stringent. The number 
of grid points and the smallness of the time steps required to resolve all the rele
vant time and space scales of turbulent motion push the computation of turbulent 
flows in industrial equipment beyond the realms of present computing capabili
ties. Estimates from various sources differ on the required mesh spacing and on 
when computer technology will have advanced to the point where turbulent flow 
calculations can be made from first principles. It appears that most engineering 
computations involving turbulent flow processes will have to rely on models of tur
bulent flows, at least for the foreseeable future. This is especially true for chemical 
reactor engineering applications, where, in addition to turbulence, there are many 
other complexities such as chemical reactions, multiple phases, complex geometry 
and so on. 

It is sometimes argued that if Navier–Stokes equations can completely describe 
turbulent flows, it is futile to search for models which are simpler to solve and 
also retain a complete description of turbulent flows. Many reviews on turbulence 
modeling conclude by saying that we cannot calculate all the flows of engineering 
interest to the desired engineering accuracy with available turbulence models, which 
is of course true. However, the best modern computational models (and numerical 
methods) allow almost all the flows to be calculated to higher accuracy than the 
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FIGURE 3.3 Modeling approaches for turbulent flows. 

best-informed guess. This means that the methods are genuinely useful for engineer
ing applications even though they cannot replace experiments. The major efforts in 
the area of turbulence modeling have been and are still directed towards develop
ing tractable computational models of turbulent flows with reasonable demands on 
computational resources. Large numbers of models have been developed in the last 
three decades or so. These modeling approaches (which are summarized in Fig. 3.3) 
can be classified into three categories; direct numerical simulations (DNS), large 
eddy simulations (LES) and Reynolds-averaged Navier–Stokes equations (RANS). 
These three approaches are briefly reviewed. As one progresses from DNS to RANS, 
more and more of the turbulent motions are approximated and, therefore, require less 
computational resources. 

3.3.1. Direct Numerical Simulation (DNS) 

Direct numerical simulation, as the name implies, attempts to simulate all the dynam
ically important scales of turbulent flows, directly. It is based on the hypothesis that 
direct simulations may be carried out by artificially decreasing the Reynolds number 
to the point where important scales can be simulated accurately on existing com
puters. This is probably the most exact approach to turbulence simulation without 
requiring any additional modeling beyond accepting the Navier–Stokes equations to 
describe the turbulent flow processes. The result is equivalent to a single realization 
of a flow or a short duration laboratory experiment. It is also the simplest approach 
conceptually. In DNS, all the motions contained in the flow are resolved. 
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Specification of initial and boundary conditions is one of the most important 
and difficult steps in applying DNS. For example, it is necessary to provide inlet 
boundary conditions specifying the time variation of velocities at all the grid points 
lying on the inlet boundary, throughout the simulation. For DNS simulations, the 
usual application of the symmetry boundary condition will no longer be valid because 
small-scale motions in turbulent flows will not be symmetric. Since the approach aims 
to resolve all the spatial and temporal gradients, the application of DNS requires huge 
computational resources. It must be remembered that a large number of grid points are 
required to resolve small spatial scales and for each grid point, time history needs to be 
stored to make meaningful simulations. Thus, DNS generates a huge amount of data 
containing time history at each point, which may not be necessary for the engineering 
application under consideration. DNS can, however, provide valuable information 
about the interaction of small-scale and large-scale motions. Often, such information 
is very difficult or impossible to obtain from experiments. The information obtained 
from DNS can be helpful in evaluating and validating more approximate models and 
may lead to the development of better models. More details of the DNS approach 
and some applications can be found in Rogallo and Moin (1984), Kim et al. (1987), 
Reynolds (1990), Choi et al. (1994) and Leonard (1995) among others. 

The DNS approach may also give useful information about the interaction of 
chemical reactions and turbulence. Such interactions are discussed in Chapter 5. In 
general, DNS generates a lot more information than that needed for typical reactor 
engineering applications. In order to use the information, a reactor engineer has to 
resort to some sort of averaging, and such averaging may introduce errors. When the 
accuracy of some of the input data to the model, such as reaction kinetics, is not very 
high, it may be worthwhile to explore alternative approaches, which are less exact 
than DNS but require much less computational resources. Lower demands on compu
tational resources mean less turnover time (time required to complete the simulations) 
and more opportunities for engineering applications, provided the possible errors and 
their implications are fully recognized. Two such approaches are discussed below. 

3.3.2. Large Eddy Simulations (LES) 

Large eddy simulations are based on the hypothesis that the relevant scales in turbulent 
flows can be separated into large-scale and small-scale (sub-grid) components. It is 
assumed that such separation does not have a significant effect on the evolution of 
large-scale turbulent motions. The range of scales occurring in turbulent flows and 
their relationship with modeling approaches is shown schematically in Fig. 3.4. The 
large-scale motions are generally much more energetic than the small scale motions 
and are the main contributors to the transport of conserved quantities. LES attempts 
to simulate these large-scale motions more precisely than the small-scale motions. 
The small scales of turbulence are believed to be more universal in character than 
large scales, which facilitate their modeling. Therefore, in LES, large-scale motions 
are resolved rigorously and small-scale motions (large wave numbers) are modeled 
in lieu of being resolved. LES models are also three-dimensional and time-dependent 
but are much less costly (and more flexible) than DNS. 

The maximum wave number resolved with the LES approach is chosen to lie 
in the inertial sub-range of the turbulence energy spectrum. The governing transport 
equations are derived either by filtering the Navier–Stokes equation or using volume 
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FIGURE 3.4 Schematic representation of scales in turbulent flows and their relationship with 
modeling approaches (adapted from Ferziger and Peric, 1995). 

averaging concepts. Both methods lead to similar sets of governing equations. Any 
flow variable, φ, in the fluid domain, D, is decomposed into a large scale part, <φ> 
and a small scale part, φ′′ as: 

∗ ∗ φ = 〈φ〉 + φ′′ ∵ 〈φ〉 =  G(x − x ∗ , �)φ(x ) d3x (3.3) 
D 

where � is the characteristic filter scale and G is a filter function obeying the following 
property: ∫ 

G(x − x ∗ ,�)d3x ∗ = 1 (3.4) 
D 

Several filters, such as Gaussian or piecewise continuous, are used. The filter function, 
G becomes a Dirac delta function in the limit of � tending to zero. Thus, direct sim
ulations are recovered in the fine mesh limit. Such a filtering operation substantially 
reduces the amplitude of high wave number components of flow variable φ. Similar 
decomposition can also be made using the volume and surface averaging concepts. 
With this approach, the velocity associated with the face of a control volume is decom
posed into a surface-averaged value and the fluctuation around the surface averaged 
value, similar to Eq. (3.3). It must be noted that unlike the traditional Reynolds 
averages (discussed in the next sub-section), in general, the time averages of these 
fluctuating components around filtered or surface-averaged quantities are not zero: 

〈φ〉 
= 〈φ〉 φ′′ 
= 0 (3.5) 

Fluctuations around the surface- or volume-averaged quantities generate additional 
terms in the governing transport equations which require further modeling to close the 
set of equations. These models (representing the effect of scales smaller than the 
characteristic filter scale) are called ‘sub-grid scale’ models (SGS). In principle, 
the characteristic length scale of a filter is not directly related to the grid size (grid 
size, obviously, cannot be larger than the filter scale). However, the name SGS has 
stuck and is used to denote these additional models. The additional terms appearing 
in the governing equations are generally classified into three groups, namely Leonard 
stresses, sub-grid scale cross-stresses and sub-grid scale Reynolds stresses (Leonard, 
1974). Smagorinsky (1963) proposed the first sub-grid scale stress model. Several 
models have been proposed since then (Ferziger, 1976; Rogallo and Moin, 1984; 
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Hussaini et al., 1990). Extensive research efforts have been made to evaluate these 
SGS models. Two of the main problems identified with different SGS models are 
(Speziale, 1998): 

(1) the inability of SGS models to respond to changes in the local state of the flow, 
resulting in the need to make ad hoc adjustments in the model parameters. Tur
bulent channel flow, isotropic turbulence and more general homogeneously 
strained turbulent flows require values of the Smagorinsky constant that can 
differ by more than a factor of two; 

(2) the generally poor correlation of SGS models with DNS at lower turbu
lence Reynolds numbers. Even for the simple case of isotropic turbulence, 
the Smagorinsky model correlates only at about the 50% level. (Note, for 
example, that the correlation between functions y = x and y = e−x over the 
interval zero to one is more than 50% despite the fact that they are qualitatively 
different functions.) 

Several attempts have been made to reduce or eliminate these problems. Develop
ment of SGS models is an active field of research and further details may be obtained 
by referring to Germano et al. (1991), Orszag et al. (1993) and Speziale (1998) among 
others. 

The LES approach is capable of capturing time-dependent motions of large 
scale, which are averaged out in conventional turbulence models based on Reynolds-
averaged equations. Small-scale motions exhibit more universal characteristics and, 
therefore, there is more hope of developing a generalized SGS model. Rigorous DNS 
simulations may assist such development. The LES approach has been used exten
sively to simulate turbulent flows with moderately high Reynolds numbers. More 
details of the LES approach and applications may be found in Reynolds (1990) and 
Ferziger (1995). More recently, attempts have also been made to apply LES to simu
late more complex flows (for example, flow in stirred reactors, by Derksen and van den 
Akker, 1999). Despite these successes, LES is still computation intensive and suffers 
some of the disadvantages of DNS, such as difficulties in specifying boundary condi
tions and generating a huge amount of information, which may not be necessary for a 
reactor engineer. For steady state flows in particular, LES methods are still much more 
computation intensive than models based on Reynolds-averaged equations, which are 
discussed in the following sub-sections. 

3.3.3. Reynolds-averaged Navier–Stokes Equations (RANS) 

In this approach, an instantaneous value of any variable is decomposed into a mean, 
obtained by averaging over an appropriate time interval, and a fluctuating component: 

¯φ = φ + φ′ (3.6) 

The overbar denotes time averaging. The time averaged quantity is defined as: 

∫ t+�t1 
φ̄ = φ dt (3.7)

�t t 
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The Reynolds averaging obeys the following property: 

φ̄̄ = φ̄ φ̄′ = 0 (3.8) 

Equation (3.6) is substituted in the basic governing equations for φ and these are then 
time averaged to yield the governing equations for mean quantities (using Eq. (3.8)). 
For compressible turbulent flows, terms appearing in the Reynolds-averaged momen
tum equations are difficult to categorize according to the acceleration of the mean 
motion and apparent stresses. In such cases, the use of mass weighted averaging 
leads to compact expressions. Mass weighted averaging, also called Favre averaging, 
is defined as: ∫ t+�t 

ρφ dt
φ̄ = ∫ t

t+�t (3.9) 
ρ dtt 

For flows in which density fluctuations are negligible, the formulations become 
identical. Favre-averaged quantities are not easily comparable with experimentally 
measured quantities, which are normally non-weighted time averages. For most chem
ical reactor engineering applications (except maybe combustion processes), classical 
Reynolds averaging is suitable. 

The Reynolds-averaged form of the conservation equations of mass (overall) and 
momentum for an incompressible (constant density) fluid can be written as: 

∇ · (ρ Ū) = S̄i (3.10) 
k 

∂ ¯ ¯ ¯ ¯(ρU) + ∇ · (ρUU + ρuu) = −∇p̄ − ∇ · τ̄ + ρg + F (3.11)
∂t 

where the overbar indicates a time-averaged value. u is the fluctuating velocity. The 
terms appearing in Eq. (3.11) resemble those in Eq. (2.5) except for an additional 
term appearing on the left-hand side. These extra terms act as apparent stresses due to 
turbulent motions and are called Reynolds stresses or turbulent stresses and defined as: 

(τij )turb = ρuiuj (3.12) 

The Reynolds-averaged form of conservation equation for a general variable φ can 
be written as: 

∂ ¯ ¯ ¯(ρφ) + ∇ · (ρUφ̄ + ρuφ′) = ∇ · (jφ) + Sk (3.13)
∂t 

where the additional term appearing on the left-hand side represents turbulent 
transport of φ. 

In the Reynolds averaging approach, it is not necessary to resolve all the small-
scale (spatial and temporal) phenomena since the variation of time-averaged quantities 
occurs at much larger scales (Fig. 3.4). This approach, therefore, requires much 
less computing resources than the LES or DNS approaches. However, not resolving 
the small-scale phenomena comes with an inherent problem, the so-called ‘closure’ 
problem. Time averaging of the basic governing equations of flow processes leads 
to the appearance of new terms in the governing equations, which can be interpreted 
as ‘apparent’ stress gradients and heat and mass fluxes associated with the turbulent 
motion. In principle, governing equations for these new terms can be derived, however, 
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these equations contain further new unknown terms. It becomes, therefore, necessary 
to introduce a ‘turbulence model’, which relates the new unknown terms to known 
terms in order to close the set of governing equations. The process of closing the 
set of equations through a ‘turbulence model’ introduces some approximations and 
assumptions, which are discussed in the following subsection. Generally, for most 
engineering applications, averaged equations are ‘closed’ by employing first-order or 
second-order closures. The cost-to-benefit ratio for employing higher than second-
order closures is generally not favorable. 

Before discussing RANS-based models, which are commonly used for engi
neering simulations, it will be worthwhile here to examine the relationship between 
the three main approaches (DNS, LES and RANS). DNS results can be used to test 
and develop better sub-grid scale models, which can be used with LES simulations. 
Implications of the assumptions and approximations employed in RANS modeling 
can be evaluated using large eddy simulations. With advances in the development 
of massively parallel computing platforms and efficient computational schemes (for 
example, lattice Boltzmann methods introduced by Frisch et al., 1986), more and 
more attempts are being made to employ LES or DNS to flow processes relevant to 
engineers. In recent years, attempts have been made to develop a consistent modeling 
framework which can switch over from RANS to LES and then to DNS continu
ously with increases in scale resolution employed in the computational model (refer 
to Speziale (1998) for a more detailed discussion). These studies should be used to 
understand the potential and the limits of RANS-based models. Judicious analysis 
and engineering creativity is essential to construct computational models to simu
late complex industrial engineering flow processes. Some of the key models used to 
simulate turbulence with RANS equations are discussed below. 

3.4. TURBULENCE MODELS BASED ON RANS 

A turbulence model is a set of equations which express relations between unknown 
terms appearing in Reynolds-averaged governing equations with known quantities. 
Examination of Reynolds-averaged equations (Eqs (3.10) and (3.11)) reveals that 
there are four equations (one continuity and three momentum conservation equations) 
and thirteen unknowns (three mean velocities, mean pressure and nine Reynolds 
stresses). Similarly, for a general scalar variable, φ, there is one conservation equation 
(Eq. (3.13)) and four unknowns (mean value of general variable, φ̄, and three turbulent 
fluxes uφ′). The desired turbulence model has to develop a relationship between these 
extra unknown fluxes and known mean variables. RANS-based turbulence models 
can be grouped into two classes: one which uses the concept of turbulent or eddy 
viscosity and another which does not. Models pertaining to these two classes are 
discussed below. It is not the purpose of this section to present all models in sufficient 
detail that they can be used without consulting the original references. Instead, the 
most widely used two-equation model, namely the k–ε model will be described in 
sufficient detail to enable the reader to formulate a ‘baseline’ model and to appreciate 
major issues involved therein. Other models are briefly reviewed and key references 
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are cited to assist user in selecting a turbulence model appropriate to the problem 
(objective) under consideration. 

3.4.1. Eddy Viscosity Models 

A large proportion of the models of Reynolds stress use an eddy viscosity hypothesis 
based on an analogy between molecular and turbulent motions. Accordingly, turbulent 
eddies are visualized as molecules, colliding and exchanging momentum and obeying 
laws similar to the kinetic theory of gases. This allows the description of Reynolds 
stresses: 

∂Ui ∂Uj 2 ∂Uk−ρuiuj = µT + − δij µT + ρk (3.14)
∂xj ∂xi 3 ∂xk 

Here, µT is referred to as turbulent or eddy viscosity, which, in contrast to molecular 
viscosity, is not a fluid property but depends on the local state of flow or turbulence. 
It is assumed to be a scalar and may vary significantly within the flow domain. k is 
the turbulent kinetic energy (normal turbulent stresses) and can be expressed as 

1k = 2 uiui (3.15) 

Substitution of Eq. (3.14) in the Reynolds-averaged momentum conservation 
equations (Eqs (3.11)) leads to a closed set, provided the turbulent viscosity is known. 
The form of the Reynolds-averaged momentum equations remain identical to the form 
of the laminar momentum equations (Chapter 2 and Table 2.2) except that molecular 
viscosity is replaced by an effective viscosity, µeff : 

µeff = µ + µT (3.16) 

By analogy with the kinetic theory of gases, turbulent viscosity may be related to the 
characteristic velocity and length scales of turbulence (uT and lT respectively): 

µT ∝ ρuTlT (3.17) 

The turbulence models then attempt to devise suitable methods/equations to estimate 
these characteristic length and velocity scales to close the set of equations. 

Several different models have been developed. Excellent reviews describing the 
relative merits and demerits of models pertaining to this class are available (Launder 
and Spalding, 1972; Rodi, 1984; Markatos, 1986; Nallaswamy, 1987). Some salient 
features, which will provide basic information and guidelines, are discussed here. 
Most simple models, called zero equation models, estimate characteristic length 
and velocity scales by algebraic equations. Prandtl (1925) proposed a mixing length 
hypothesis for two-dimensional boundary layer flows which relates turbulent viscosity 
to velocity gradient: 

µT = ρl2 
∣∣ ∂U ∣∣ (3.18) ∣ ∂y 

This hypothesis works surprisingly well for many boundary layer flows. Prandtl 
suggested the estimation of characteristic length (mixing length) of turbulence (l) 
by postulating it to be proportional to the distance from the nearest wall. Several 
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variations of this model and several empirical corrections have been proposed over 
the years to account for the effect of low Reynolds number, transitional regime, mass 
transfer, pressure gradient, transverse curvature and three-dimensional flows (for 
example, see Cebeci and Abbott, 1975). The spreading rates and profiles of velocity, 
temperature and concentrations of a variety of boundary layer flows can be predicted 
satisfactorily. However, it is necessary to change the values of model parameters 
for different flows. This lack of universality indicates that these types of model fail 
to describe some important features of real flows. The mixing length hypothesis 
implies that the generation and dissipation of turbulence energy are in equilibrium 
everywhere. The role of convection and diffusion is ignored in these models. For most 
internal flows which are of interest to reactor engineers, it may be difficult to obtain 
satisfactory results using this class of models. 

For such flows it is necessary to devise a model which relies on using partial differ
ential equations for estimating both length scale and velocity scales of turbulence (two
equation model). Several such models have been proposed (Launder and Spalding, 
1972; Rodi, 1984; Wilcox, 1993). Two-equation turbulence models are the sim
plest ones that promise success for flows in which length scales cannot be prescribed 
empirically and are, in general, the recommended first choice for simulating internal 
turbulent flows. There are several different two-equation models proposed in the litera
ture. All of these models employ a modeled form of turbulent kinetic energy (modeling 
of the gradient diffusion term may, however, be different). The choice of the second 
model transport equation, from which the length scale is determined, is the main 
differentiating factor among these models. Instead of the length scale itself, generally 
a combination of turbulent kinetic energy, k and length scale, lT , having the form: 

z = kmln (3.19)T 

is chosen as dependent variable, z. Some of the popular forms of z are: 

• turbulence frequency of energy containing eddies = f (m = 1/2; n = −1) 
• time averaged square of the vorticity fluctuations = W (m = 1; n = −2) 
• turbulent energy dissipation rate = ε (m = 3/2; n = −1) 
• product of energy and length scales = kl (m = 1; n = 1) 

The modeled transport equations for z differ mainly in the diffusion and secondary 
source term. Launder and Spalding (1972) and Chambers and Wilcox (1977) dis
cuss the differences and similarities in more detail. The variable, z = ε is generally 
preferred since it does not require a secondary source, and a simple gradient diffu
sion hypothesis is fairly good for the diffusion (Launder and Spalding, 1974; Rodi, 
1984). The turbulent Prandtl number for ε has a reasonable value of 1.3, which fits 
the experimental data for the spread of various quantities at locations far from the 
walls, without modification of any constants. Because of these factors, the k–ε model 
of turbulence has been the most extensively studied and used and is recommended as 
a baseline model for typical internal flows encountered by reactor engineers. 

In the k–ε model of turbulence, turbulent viscosity is related to k and ε by the 
following equation: 

Cµρk2 

µT = (3.20) 
ε 
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where Cµ is an empirical coefficient. Therefore, in order to close the set of equations, 
it is necessary to obtain values for k and ε. Local values of k and ε can be obtained 
by solving their transport equations. Exact transport equations for k and ε can be 
derived from the Navier–Stokes equations (see, for example, Ranade, 1988 for such 
a derivation). Without going into details of exact transport equations, various terms 
appearing in exact equations of k and ε are interpreted by classifying them into 
four groups: convective transport, diffusive transport, generation and dissipation. 
Diffusive transport comprises a molecular as well as turbulent component. Velocity 
and pressure fluctuations contribute to the diffusive transport of turbulent kinetic 
energy as well as energy dissipation rates and are usually modeled using a gradient 
diffusion approximation. The turbulent diffusivity of k and ε are related to turbulent 
viscosity with additional empirical constants, which are known as turbulent Prandtl 
numbers for k and ε. Turbulent kinetic energy is generated by extracting energy from 
the mean flow, and the terms representing this are also modeled using the assumption 
of turbulent viscosity. The generation term in the transport equation for ε represents 
vortex stretching by mean flow and fluctuating flow. The dissipation term in the 
transport equation for k is simply equal to ε. The viscous dissipation term appearing 
in the equation for ε cannot be modeled separately. However, the difference between 
the generation and dissipation term can be modeled with the help of two additional 
empirical constants. The modeled form of transport equations for k and ε can be 
written (Launder and Spalding, 1972): 

∂(ρk) ∂(ρUik) ∂ µT ∂ k + = + G − ρε (3.21)
∂t ∂xi ∂xi σk ∂xi 

∂ (ρε) ∂ (ρUiε) ∂ µT ∂ε  ε + = + (C1G − C2ρε) (3.22)
∂t ∂xi ∂xi σε ∂xi k 

where G is the turbulence generation term given by: 

1G = 2 µT ∇Ū + (∇Ū)T
]2 

(3.23) 

These transport equations contain four empirical parameters, which are listed in Table 
3.1 along with the parameter appearing in Eq. (3.20). The values of these parameters 
are obtained with the help of experimental information about simple flows such as 
decay of turbulence behind the grid (Launder and Spalding, 1972). Before discussing 
the modifications to the standard k–ε model and its recent renormalization group 
version, it will be useful to summarize implicit and explicit assumptions underlying 
the k–ε model: 

• Turbulence is nearly homogeneous. 
• The spectral distributions of turbulent quantities are similar. 
• Diffusion is of the gradient type with constant effective Prandtl numbers. 
• High Reynolds numbers. 

It must be remembered that since all the assumptions may not be valid for flows 
of practical interest, the model parameters are not truly universal but are functions 
of characteristic flow parameters. Several attempts have been made to enhance the 
applicability of the k–ε model by modifying these empirical parameters to suit the 
specific requirements of different types of flow. One of the weaknesses of the standard 
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TABLE 3.1 Parameters of the k–ε Model 

Sr. No Parameter Standard k–ε RNG k–ε 

1 CD 0.09 0.0845 
2 C1 1.44 1.42 √ 

CD η
3(1 − η/4.38) k G/µt3 C2 1.92 1.68 + ∵ η = 

1 + 0.012η3 ε 

4 σk 1.0 ∼ 0.7179 (high Re limit)∗ 

5 σε 1.3 ∼ 0.7179 (high Re limit)∗ 

∗The general expression for estimating effective Prandtl numbers for k and ε is: 
∣ ∣ ∣0.3679 ∣ 1/σ − 1.3929 ∣∣0.6321 ∣ 1/σ − 2.3929 ∣ µ = ∣ 0.3929 ∣ ∣ 3.3929 µT 

k–ε model is that it overpredicts turbulence generation in regions where the mean flow 
is highly accelerated or decelerated. Kato and Launder (1993) proposed a modified 
k–ε model to overcome this problem. It will not be possible to discuss all the proposed 
modifications of the k–ε model here. Launder and Spalding (1972), Rodi (1984), 
Markatos (1986) and Nallaswamy (1987) discuss these modifications, among others. 
More discussion on the influence of compressibility and other issues can be found in 
Wilcox (1993). 

In recent years, renormalization group (RNG) methods have been used to for
mulate two-equation turbulence models. These methods are a general framework 
for model building in which the complex dynamics is described in terms of so-
called ‘coarse-grained’ equations governing the large-scale, long-time behavior. The 
basic idea applied to turbulence modeling is the elimination of small-scale eddies 
by employing RNG methods. As the small-scale eddies are removed, the effective 
viscosity of the system is increased. Through the scale elimination procedure, RNG 
theory develops an equation for effective viscosity and the corresponding transport 
equations of k and ε (Yakhot and Orszag, 1986; Yakhot et al., 1992). The overall 
form of the model closely resembles the standard k–ε model except for the values of 
the model parameters. The values of model parameters derived by RNG methods are 
also listed in Table 3.1. The main difference between the standard and RNG version 
lies in the equation of turbulent energy dissipation rate. In large strain rate flows, 
the RNG model predicts a lower turbulent viscosity (larger ε and lower k) than the 
standard model. Although the RNG model has been shown to perform better than the 
standard model for flows with high streamline curvature, vortex shedding etc., it has 
not yet been validated as extensively as the standard k–ε model. 

The RNG version of the k–ε model has been extended to employ a differential 
form of the equation for calculating effective viscosity from a knowledge of k and ε 
(Fluent User Guide, Vol. 4, 1997): 

( √ )2 
Cµ k 

νeff = ν 1 + √ (3.24)
ν ε 

This form allows extension to low Reynolds number and near wall flows, unlike 
the standard k–ε model, which is valid only for fully turbulent flows. Despite such 
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an extension, the standard and RNG versions of k–ε models are normally valid for 
turbulent flows away from the walls. The presence of a wall alters turbulence in a non
trivial way, by damping turbulence in the region very close to the wall. At the outer 
part of the near-wall region, turbulence is rapidly generated due to the large gradient 
in mean velocity. Correct representation of the influence of walls on turbulent flows 
is an important aspect of simulating wall-bounded flows. 

Numerous experiments have shown that the near-wall region can be divided into 
three layers (Fig. 3.5(a)). 

(1) The innermost layer, called the viscous sub-layer in which flow is laminar-like 
and the molecular viscosity plays a dominant role; 

(2)	 an intermediate buffer layer, where molecular viscosity and turbulence are 
equally important; 

(3) the outer layer, called the fully turbulent layer, where turbulence plays a major 
role. 

outer layer 

or 
blending 
region 

or 

U
/U

 

U/U /v)+5.45 

ln /vy+~ 5  y+(a) 

inner layer 

buffer layer fully turbulent region 

log-law region 

Upper limit 
depends on 
Reynolds no. 

viscous sublayer 

= 2.5 ln(U y

U y~ 60  

sublayer 

tu
rb

ul
en

t c
or

e 

n P
 

(b) (c) 

buffer & 

FIGURE 3.5 Near wall flows. (a) Flow structure near wall, (b) wall function approach, (c) low Re 
model approach (adapted from FLUENT user guide, Vol. 1). 
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There are two main approaches to modeling the near-wall region. In one approach, the 
so-called ‘wall function’ approach, the viscosity-affected inner regions (viscous and 
buffer layers) are not modeled. Instead, semi-empirical formulae (wall functions) are 
used to bridge the viscosity-affected region between the wall and the fully turbulent 
region. In another approach, special, low Reynolds number turbulence models are 
developed to simulate the near-wall region flow. These two approaches are shown 
schematically in Fig. 3.5(b) and 3.5(c). 

In most high Reynolds number flows, the wall function approach gives reason
able results without excessive demands on computational resources. It is especially 
useful for modeling turbulent flows in complex industrial reactors. This approach is, 
however, inadequate in situations where low Reynolds number effects are pervasive 
and the hypotheses underlying the wall functions are not valid. Such situations require 
the application of a low Reynolds number model to resolve near-wall flows. For the 
low Reynolds number version of k–ε models, the following boundary conditions are 
used at the walls: 

∂ε  ∂Ūt 
)2 

k = 0 = 0 or  ε = µ (3.25)
∂n ∂n 

where Ut is the velocity component tangential to the wall and n is the co-ordinate 
normal to the wall. A number of low Reynolds number modifications to the k–ε model 
have been proposed (Chen and Patel, 1988; Wilcox, 1993; Hrenya and Sinclair, 1995). 
These models are too numerous to discuss here. Instead, the wall function approach, 
which is commonly used in reactor engineering applications, is briefly discussed 
below. 

In the wall functions approach, a universal velocity profile of the form shown 
below is assumed to exist near the wall: 

1+ +u = ln y + B (3.26)
κ 

where κ is the van Karmann constant (0.41), B is an empirical constant related to the 
thickness of the viscous sub-layer (B ≈ 5.2 in a flat plate boundary layer) and u+ and 
y+ are defined as follows: 

√ 
Ut+u = √ y+ = 

ρ nP τw/ρ 
(3.27) 

τw/ρ µ 

where nP is the normal distance of the considered node at point P from the wall 
(Fig. 3.5(b)). In addition, the flow is assumed to be in local equilibrium, which 
means that the production and dissipation terms are nearly equal. These assumptions 
then allow the use of coarse resolution at the wall. In fact, the wall function approach 
requires that the dimensionless distance of the adjacent grid node from the wall should 
be greater than 30 (y+ > 30). For such a case, wall shear stress can be related to the 
tangential component of the velocity at the grid, as: 

κρC1/4√ 
k Ut 

τw = 
µ 

(3.28)
ln(y+E) 
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For turbulent kinetic energy, k, the normal gradient at the wall is usually set to zero. 
By assuming the length scale near the wall, L to be given by: 

κnP
L = 

C3/4 (3.29) 
µ 

and by assuming equilibrium between production and dissipation, the turbulent energy 
dissipation rate at the node adjacent to the wall (denoted by subscript P, located at 
a normal distance nP from the wall) can be computed without solving the transport 
equation for ε as: 

C3/4k3/2 

εP = 
µ P (3.30) 
κnP 

It should be noted that the wall function approach is valid only when the first grid point 
adjacent to the wall (node P) is within the logarithmic region. For separated flows 
within the recirculation region and separation and reattachment regions, this condition 
may not be valid. To rectify this to some extent, several alternative wall functions 
have been proposed (see, for example, Amano, 1984). Generally, to simulate complex 
industrial reactors, wall functions are applied everywhere and the regions for which 
these may not be valid are assumed to be small. When the wall function approach 
is not applicable over a large portion of the wall boundaries, low Reynolds number 
models of turbulence should be used to resolve the finer details of near-wall flows. 

In addition to representing the influence of walls on turbulence, adequate bound
ary conditions need to be specified to solve modeled equations of k and ε. At  
computational boundaries far from the wall, the following boundary conditions can 
be used (Ferziger and Peric, 1995): 

• if the surrounding flow is turbulent: 

∂k ∂ε  ε2 

Ū = −ε Ū = −C2 (3.31)
∂x ∂x k 

• in a free stream: 

k = 0 ε = 0 µT = 0 (3.32) 

For the inlet boundary conditions, it will be necessary to specify values of k and ε. If  
available, experimental values should be used to set the inlet boundary conditions. If 
k is not known, it is generally estimated from a suitable guess of turbulence intensity 
(say 5% ) at the inlet. The value of ε is usually estimated from a knowledge of k and 
assuming a characteristic length scale, L: 

k3/2 

ε = (3.33)
L 

The characteristic length used in the above equation may be taken as 0.07 times the 
equivalent pipe radius, in the absence of more information. If the Reynolds stress and 
mean velocities at the inlet are measured, ε can be estimated using the assumption of 
local equilibrium. The numerical implementation of these boundary conditions and 
numerical solution of two-equation turbulence models is discussed in Chapter 6. 
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3.4.2. Reynolds Stress Models 

The two-equation models (especially, the k–ε model) discussed above have been used 
to simulate a wide range of complex turbulent flows with adequate accuracy, for many 
engineering applications. However, the k–ε model employs an isotropic description 
of turbulence and therefore may not be well suited to flows in which the anisotropy of 
turbulence significantly affects the mean flow. It is possible to encounter a boundary 
layer flow in which shear stress may vanish where the mean velocity gradient is non
zero and vice versa. This phenomenon cannot be predicted by the turbulent viscosity 
concept employed by the k–ε model. In order to rectify this and some other limitations 
of eddy viscosity models, several models have been proposed to predict the turbulent 
or Reynolds stresses directly from their governing equations, without using the eddy 
viscosity concept. 

The exact transport equations for turbulent stresses can be derived from the 
Navier–Stokes equations, following similar procedures to those employed to derive 
the transport equations for turbulent kinetic energy. These transport equations contain 
several unknown correlations including the triple correlations of fluctuating veloci
ties. It is, in turn, possible to derive transport equations for these triple correlations, 
which will, however, contain fourth-order correlations and so on. In general, how
ever, triple and higher correlations are small in practical flows and a reactor engineer 
may not need to simulate them by transport equations. Therefore, for most reac
tor engineering flows, second-order closure, that is closing the transport equations 
for turbulent stresses, will be sufficient. Second-order closure models can be further 
classified into algebraic stress models (ASM) and differential Reynolds stress models 
(RSM). The starting point for both of these is the exact transport equation of turbu
lent stresses (these models can also be developed by a relaxation time approximation 
around an equilibrium model, Saffman, 1977). In order to understand the physical 
significance of the various terms appearing in these transport equations, the case of 2D 
boundary layers is considered here to avoid unnecessary complications. Multiplying 
each momentum transport equation by a fluctuating velocity component in the other 
direction and performing time averaging leads to the following equation: 

D u′v′ 

D t  
= −v′2 

∂U 

∂y 
− 
∂ 

∂y 
u′v′2 + p′u′ 

ρ 
+ p′ 

ρ 

( 
∂u′ 

∂y 
+ 
∂v′ 

∂x 

) 

− 2 
µ 

ρ 

∑ 

l 

( 
∂u′ 

∂xl 

∂v′ 

∂xl 

) 

(3.34) 

Analogous to the transport equation of turbulence kinetic energy, k, the first term 
on the right-hand side represents ‘production or generation’, the second represents 
‘diffusion’ and the final term represents ‘dissipation’. The third term of the right-
hand side, which has no counterpart in the k equation, represents ‘redistribution’. It is 
the correlation between fluctuations in pressure and velocity gradients, which results 
in enhancement of velocity fluctuations in one direction at the expense of those in 
the other directions. It is necessary to model these terms in order to close the set of 
equations. 

Production terms do not need any modeling since all the terms appearing there 
are calculated from the corresponding transport equations. The diffusional transport 
is assumed to be proportional to the spatial gradient of the stress component. Dissi
pation is usually assumed to take place isotropically in each of the three normal stress 
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components, and is assumed to be zero in shear stress components. The redistribu
tive action of pressure fluctuations can be represented by two groups of terms, one 
involving products of Reynolds stress and (ε/k), and the other containing products 
of stresses and mean velocity gradients (more discussion on precise details of these 
modeled terms can be found in Launder et al., 1975; Launder, 1989). It must be noted 
that the approximations of dissipative or redistributive terms do not contain gradients 
of stress terms. Developers of algebraic stress models use this fact and attempt to 
eliminate convective and diffusive terms from the transport equations of turbulent 
stresses so as to derive a set of algebraic equations among the Reynolds stresses, the 
turbulence kinetic energy, the energy dissipation rate and mean velocity gradients. 
These algebraic equations can be expressed symbolically as 

∂Ul 
ui uj = f up uq, k, ε,  (3.35)

∂xm 

The precise form of the function varies depending on the approximated forms of the 
dissipative and redistributive terms and how the convective and diffusive transport 
terms are eliminated. Launder (1971) neglected the latter terms entirely while Rodi 
(1984) assumed that the convective transport is proportional to the transport of k with 
an equivalent assumption for the diffusion term. Rodi’s algebraic stress model can be 
written: 

2 (1 − C2a) G/ε−u′u′ = ki 1 − 
3 (G/ε) − (1 − C1a) 

+ 
1 − C2a k − 

( 
u′u′ · ∇U + (u′u′ · ∇U)T 

) − 
2 

Gi (3.36)
(G/ε) − (1 − C1a) ε 3 

where i is the unit tensor and G is the generation of turbulent kinetic energy (given 
by Eq. (3.23)). The values of two additional model parameters, C1a and C2a, are 
reported as 2.2 and 0.45, respectively. The k and ε appearing in these equations can 
be obtained by solving the modeled transport equations of k and ε (Eqs (3.21) and 
(3.22)). Alternatively, one may use Reynolds stresses calculated by the above equa
tions to calculate the generation term, G in the transport equations of k and ε. This 
practice will be more consistent and accurate. Note that Eq. (3.36) is an implicit equa
tion for calculation of Reynolds stress since it appears on both sides of the equation. 
These implicit models can give rise to multiple solutions or singularities when solved 
iteratively. Therefore, several attempts have been made to develop explicit algebraic 
stress models (ASM) in recent years. For example, Gatski and Speziale (1993) devel
oped a regularized, explicit algebraic stress model, which reduces to the k–ε model 
in the limit of homogeneous turbulence in equilibrium. These explicit ASM avoid 
multiple solutions and can, therefore, be recommended for simulations of complex 
turbulent flows. Gatski and Speziale (1993) and Speziale (1998) may be referred to 
for details of model equations and further analysis. 

Wherever the convective and diffusive transport of Reynolds stresses are impor
tant (flows that are far from equilibrium), algebraic stress models may prove to be 
inadequate, and solution of the full transport equations of the Reynolds stresses may 
become necessary. Extensive efforts have been made to model the terms appearing in 
the exact transport equations of Reynolds stresses. The redistributive term has been the 
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subject of most controversy and experimentation. Several different models have been 
proposed (Daly and Harlow, 1970; Hanjalic and Launder, 1972; Launder et al., 1975; 
Reynolds and Cebeci, 1978; Launder, 1989). The current generation second-order 
closure models do not perform well when there are significant departures from equi
librium. It is a general feeling that it may require quite some time before these models 
are sufficiently well developed to perform better than simpler two-equation models 
(such as the k–ε model) for engineering problems. Recently attempts have been made 
to develop second-order closures that are suitable for non-equilibrium flows based on 
a relaxation time approximation around the non-equilibrium extension of the explicit 
ASM (Speziale, 1998). Speziale (1998) described this approach to formulate a con
sistent framework to integrate RANS (two equations to full second-order closure), 
LES and DNS based on such models. Such an approach looks promising and deserves 
further research. The details of Reynolds stress models are not included here, since 
most of the engineering flows may be adequately analyzed using modifications of 
two-equation turbulence models. Details of RSM can be found in above cited papers 
and references cited therein. A brief summary of the advantages and disadvantages 
of two-equation models (k–ε and RNG k–ε) and Reynolds stress models (algebraic 
and differential) is given in Table 3.2. 

Apart from the models discussed and mentioned here, there are some more mis
cellaneous attempts to describe specific aspects of turbulence by phenomenological 
modeling. For example, Professor Spalding and his group have proposed the use 
of ‘two-fluid’ models of turbulence to describe the ‘fragmentaryness’ and ‘intermit
tancy’ of turbulent flows. The approach has shown some successes in simulating key 
features of jets and other flows (Spalding, 1983; Malin and Spalding, 1984), how
ever, it is not adequately developed to use as a general approach. For some situations 
encountered in chemical reactors, such as combustion, this approach may be useful 
(see a review by Markatos, 1986). 

It is important for a reactor engineer to select an appropriate turbulence model for 
the application at hand from the available turbulence models. It is also important that 
implications of assumptions underlying these models are adequately understood. It 
should be kept in mind that a more complex model does not necessarily mean a better 
model. The reactor engineer has to constantly evaluate implications of the underlying 
assumptions and performance of the model in light of whatever direct and indirect 
validation one can carry out and in light of the fulfillment of the simulation objectives. 
Generally, the two-equation, k–ε model can be recommended as a baseline model. 
When the interest is in simulating unsteady vortex shedding, the renormalization 
group version of the k–ε model may be used. In any case, be it the RNG model or 
the Reynolds stress models, it is always useful to first carry out simulations using 
the standard k–ε model. While doing this, a reactor engineer must, however, be 
careful in making appropriate corrections to the standard model to compensate for 
the known deficiencies of the standard model (such as for modelling axis-symmetric 
round jets). The predicted results of the two-equation model can then be used as 
an initial guess to start the simulations using more complex turbulence models. It 
must be noted that simulated results of many complex, industrial flow processes are 
more influenced by the employed grid resolution and discretization schemes than the 
underlying turbulence model. It is, therefore, necessary to clearly identify, monitor 
and control the influence of numerical issues on predicted results (these aspects are 
discussed in Chapters 6 and 7). 
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TABLE 3.2 Summary of Two-equation and Reynolds Stress Models 

Model Advantages Disadvantages 

Standard k–ε • Simplest model to represent 
variation of turbulence length 
and velocity scales 

• Robust and economical 
• Excellent performance for many 

industrial flows 

• More expensive than zero 
equation models 

• Assumes isotropic eddy 
viscosity 

• Performs poorly for: 
− some unconfined flows 

• The most widely validated 
model 

− rotating flows 
− non-circular ducts 
− curved boundary layers 

RNG k–ε • Performs better than standard 
model for some: 
− separated flows 
− swirling flows 

• Assumes isotropic eddy 
viscosity 

• Not sufficiently validated so far 

Algebraic Stress 
Models (ASM) 

• Accounts for anisotropy 
• Combines generality of 

approach with the economy of 
the k–ε model 

• Good performance for 
isothermal and buoyant thin 
shear layers 

• Restricted to flows where 
convection and diffusion terms 
are negligible 

• Performs as poorly as k–ε in 
some flows due to problems 
with ε equation 

• Not widely validated 

Reynolds Stress 
Models (RSM) 

• Most general model of all 
classical turbulence models 

• Performs well for many complex 
flows including non-circular 
ducts and curved flows 

• Computationally expensive 
(seven extra PDEs) 

• Performs as poorly as k–ε in 
some flows due to problems 
with ε equation 

• Not widely validated 

3.4.3. Scalar Transport Models 

Turbulence is often employed to enhance the rates of mixing and transport processes. 
A reactor engineer is therefore interested in finding out the extent of turbulence 
generated in a reactor and its influence on other transport processes. The discussion 
of turbulence modeling so far has been restricted to the modeling of momentum 
conservation. It is necessary to account for turbulence, while modeling the species and 
enthalpy conservation equations. Species and enthalpy conservation, for most reactor 
engineering flows, are modeled using eddy viscosity type models. The Reynolds-
averaged equation for a general scalar variable φ is Eq. (3.13). The third term on 
the left-hand side containing the correlation of fluctuating velocity and fluctuating 
scalar variable requires further modeling. In writing the time-averaged equations, 
density fluctuations were assumed to be insignificant. The correlation appearing in 
this equation is usually modeled using the gradient transport assumption: 

νT 
u′φ′ = −  ∇φ (3.37)

σφ 
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The parameter, σφ appearing in the above equation is the turbulent Prandtl number 
for φ. The value of turbulent Prandtl number is determined experimentally and is 
generally of the order of unity. The values of turbulent Prandtl number may also be 
estimated using RNG methods (Yakhot and Orszag, 1986). The Reynolds-averaged 
species as well as enthalpy conservation equations can be closed with the help of 
Eq. (3.37), provided that the closed form of the time-averaged source term is known. 
The modeling of time-averaged source terms for reactive flow processes will be dis
cussed in the Chapter 5. Though it is possible to develop a transport equation for the 
correlation of scalar variable and fluctuating velocity by following the methods simi
lar to those used for Reynolds stress models, gradient assumption is used in practice, 
for most of the engineering simulations. 

The influence of a wall on the turbulent transport of scalar (species or enthalpy) 
at the wall can also be modeled using the wall function approach, similar to that 
described earlier for modeling momentum transport at the wall. It must be noted that 
the thermal or mass transfer boundary layer will, in general, be of different thickness 
than the momentum boundary layer and may change from fluid to fluid. For example, 
the thermal boundary layer of a high Prandtl number fluid (e.g. oil) is much less than 
its momentum boundary layer. The wall functions for the enthalpy equations in the 
form of temperature T can be written as: 

 
ρypC1/4k1/2 

ρypC1/4k1/2  µ  P P ∗  Pr 
µ ∵ < y

(Tw − TP) ρCpC1/4k1/2  T 
µ µ µP [ ( ) ]= ∗C1/4k1/2 

ρypC1/4k1/2  1 ρyp µ µqw  P ∗  ln E 
P + P ∵ > y σT Tκ µ µ 

(3.38) 

where P is the ‘pee function’ given by (Launder and Spalding, 1974) 

π/4 
( 

A 
)1/2 ( 

Pr σT 
)1/4 

P = − 1 (3.39)
sin π/4 κ σT Pr 

where Pr is the Prandtl number, A is van Driest’s constant (= 26) and E is a wall func
∗tion constant (∼ 9 for smooth walls). yT is dimensionless thermal sublayer thickness 

(the point of intersection of the linear law and the logarithmic law). 
The modeled form of scalar transport equations can be used to simulate mixing 

and concentration fields within the reactor. Such computational models can, there
fore, be used to link the reactor hardware and operating parameters with the mixing 
and residence time distribution, which will ultimately lead to estimation of reactor 
performance. A reactor engineer has to make appropriate selection of the turbulence 
model depending on the objectives under consideration. For example, for a heat trans
fer limited reactor, reactor hardware may be modified to install turbulence promoters. 
Unsteady vortices around these turbulence promoters may enhance the heat transfer 
rates and overcome heat transfer limitation. For such applications, capturing these 
vortices and simulating their influence on heat transfer rates is of primary importance. 
It is then necessary to select a turbulence model as well as its numerical implementa
tion in such a way that it does not smear local structures such as vortices. If the interest 
is in estimating wall heat or mass transfer rates, it may be worthwhile to use more 
rigorous, non-equilibrium wall functions, which are sensitized to pressure gradient 
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for better prediction of separated flows. For applications where the universal wall law 
is not valid, low Reynolds number turbulence models may be used at the expense 
of more computations. The reactor engineer may be interested in microscale flow 
characteristics near the feed nozzle in order to understand various selectivity issues 
in mixing sensitive reactions. An accurate simulation of energy dissipation rates is 
then of primary importance (these issues will be discussed in detail in the chapter on 
modeling reactive flow processes). When the objective is to quickly screen alternative 
reactor configurations to minimize overall mixing time (which is mostly dominated 
by the large-scale convective flows), it is sufficient to obtain the correct prediction of 
the mean velocity field. The choice of turbulence model is then not as critical as in 
some of the cases mentioned above. 

For multiphase flow processes, turbulent effects will be much larger. Even oper
ability will be controlled by the generated turbulence in some cases. For dispersed 
fluid–fluid flows (as in gas–liquid or liquid–liquid reactors), the local sizes of dis
persed phase particles and local transport rates will be controlled by the turbulence 
energy dissipation rates and turbulence kinetic energy. The modeling of turbulent 
multiphase flows is discussed in the next chapter. 

It must be realized that most of the available turbulence models obscure the actual 
physical processes such as eddies, high vorticity regions, large structures which stretch 
and engulf and so on. However, the cautious application and interpretation of turbu
lence models has proved to be a valuable tool in engineering research and design, 
despite their physical deficiencies. The other important issue one must remember 
concerns the appropriate selection of a turbulence model to achieve the required 
objectives. Launder (1989) argued the case of different turbulence models by draw
ing an analogy between these and a variety of transport machines: from bicycles, 
automobiles to airplanes. Just as each transport machine has its own role, different 
turbulence models can play mutually complementary roles in developing quantitative 
models for simulating turbulent flow processes. The discussion in this chapter, hope
fully, provides a road map with which a reactor engineer can plan an exploration of the 
world of turbulence modeling. Specific case studies of the application of turbulence 
models to reactor engineering are discussed in Part IV of this book. 

3.5. SUMMARY 

Turbulence is a most complex fluid motion and has puzzled theoreticians and modelers 
for more than a century. Turbulence significantly enhances rates of mixing and other 
transport processes at the expense of more friction and energy losses. Many reactor 
technologies rely on these enhanced rates of transport processes via turbulence. It 
is, therefore, of crucial importance to develop turbulence models capable of making 
quantitative predictions. The wide range of length and time scales existing in turbulent 
flows poses a severe challenge to modelers. Several different approaches such as DNS 
(direct numerical simulations), LES (large eddy simulations) and RANS (Reynolds
averaged Navier–Stokes equations)-based models have been developed. Although 
DNS and LES offer valuable insight into turbulence and mechanisms of transport, for 
the foreseeable future, most reactor engineering flows have to rely on RANS-based 
models. It is noteworthy that the simple, two-equation k–ε model succeeds in express
ing the main features of many turbulent flows by relying on just one characteristic 
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length scale and time scale. This model is, therefore, recommended as a baseline 
model. More advanced RANS-based models such as Reynolds stress models (RSM) 
and non-linear extensions of k–ε models or RNG models deserve careful evaluation 
from the cost-to-benefit point of view for each case. It must be remembered that a 
more complex model does not necessarily mean a better model. Moreover, it should 
never be forgotten that all RANS-based models contain adjustable constants that need 
to be determined by fitting experimental data. All reactor engineers are aware of the 
dangers of extrapolating an empirical model beyond its data range. Although the 
turbulence models discussed here are not entirely empirical, none of the CFD simula
tions of ‘new’ turbulent flows should be accepted as they are, without rigorous error 
analysis and validation. Some aspects of error analysis and validation are discussed 
in Chapters 6 and 7. The new information obtained from DNS and LES approaches 
should be used to examine the limitations of RANS-based models and to guide their 
further development. Despite some of the deficiencies of turbulence models, the best 
modern computational models (and numerical methods) allow almost all flows to be 
calculated to higher accuracy than the best-informed guess. This means that these 
methods are genuinely useful for reactor engineering. 
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4

MULTIPHASE FLOW PROCESSES 

4.1. INTRODUCTION 

Multiphase flow processes are key elements of several important reactor technolo
gies. These technologies cover a wide range, from very large-scale operations such 
as fluid catalytic cracking reactors, to specialized reactors to produce high value, 
low volume specialty chemicals. The presence of more than one phase raises several 
additional questions for the reactor engineer. Multiphase flow processes exhibit dif
ferent flow regimes depending on the operating conditions and the geometry of the 
process equipment. It is often necessary to develop tools to evaluate the operability of 
the multiphase flow process under specified conditions and to identify the operating 
regime. The fluid dynamics and transport processes occurring in multiphase reac
tors are especially sensitive to reactor configurations and operating conditions. Even 
small-scale hardware details such as the design of a feed nozzle or distributor may 
have a dramatic influence on the resulting flow structure. It is, therefore, of paramount 
importance to develop understanding and predictive tools to simulate multiphase flow 
processes to develop better reactor technologies. 

The subject of the modeling of multiphase flow processes is quite vast and covers 
a wide range of sub-topics. It is virtually impossible to treat all the relevant issues in 
a single book, let alone in a single chapter. Here we attempt to provide a brief review 
of modeling approaches and cite the key references for further details. An attempt 
is made to provide sufficient information to develop a baseline model. The first sec
tion discusses various flow regimes and their key features. Various approaches to 
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modeling these multiphase flow processes are then reviewed. Because of the impor
tance of dispersed multiphase flows in reactor engineering, modeling of dispersed 
flows is discussed in more detail, in Section 4.2. Three basic approaches to modeling 
multiphase flows, namely, volume of fluid (VOF), Eulerian–Lagrangian (EL) and 
Eulerian–Eulerian (EE) are discussed with reference to dispersed flows. Some com
ments are made to guide the selection of an appropriate modeling approach. The topic 
of flow through porous media is discussed with specific emphasis on flow through 
fixed bed reactors. Some comments on developing tractable computational models of 
complex, multiphase flow processes are also included. 

4.1.1. Types of Multiphase Flows 

When two or more phases move relative to each other, these phases may exhibit 
a large number of possible flow regimes. There are several ways of classifying 
these multiphase flows. The simplest, first layer classification is according to the 
presence of thermodynamic phases: gas–liquid, gas–solid, gas–liquid–solid, liquid– 
liquid, liquid–solid and so on. Each component of these classes can then be grouped 
according to the flow regimes (topology of the flow). Broadly, flow regimes are clas
sified as dispersed flows, mixed flows and separated flows (Ishii, 1975). In dispersed 
flows all the phases except one exist as dispersed (discontinuous) particles flowing 
through the continuous fluid. Examples of this flow regime include bubbles in liquid, 
solid particles in gas or liquid and liquid droplets in gas or other immiscible liquid. 
In separated flows, none of the phases exist in discontinuous particle form. All the 
phases flow in a semi-continuous mode with interfaces between the different phases. 
Examples of this flow regime include film flow, annular flow and jet flow. In mixed 
flow regimes, dispersed particles as well as semi-continuous interfaces exist together. 
Examples of this regime include droplet annular flow (where liquid flows in the form 
of an annular film over the pipe as well as suspended droplets in the gas core), bubbly 
annular flow (where some gas bubbles flow through the annular liquid film) and slug 
flow. Separated or mixed flow regimes may exist in trickle bed reactors. However, 
in most of the other reactors, dispersed flow regimes exist. Therefore, modeling of 
dispersed flows is discussed here in detail. The dispersed flow regime can be further 
divided into several sub-regimes. Some commonly encountered (in reactor engineer
ing applications) gas–solid and gas–liquid flows are shown in Fig. 1.9. Key features of 
these different regimes are discussed here with reference to gas–solid and gas–liquid 
reactors. 

In gas–solid reactors when solid particles are held stationary (so-called fixed 
bed reactor), gas flows through a porous medium comprising macropores existing 
between pellets or packed solid particles and micropores within the catalyst pellets 
(or other porous solids). Issues such as isotropy of the porous medium, initial distri
bution of gases, characteristics of solid particles, ratio of characteristic length scale 
of solid particles and that of the reactor and so on, influence the flow within fixed bed 
reactors. Support screens are often used to cover the bed of solid particles to avoid 
fluidization and carry-over of bed particles. These reactors are extensively used in 
process industries. Some examples and illustrative flow simulations are discussed in 
Chapter 13. 
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In other gas–solid reactors (fluidized reactors), gas is the continuous phase and 
solid particles are suspended within this continuous phase. Depending on the proper
ties of the gas and solid particles, the geometry of the reactor and operating flow rates 
of gas and solid phases, several different sub-regimes of dispersed two-phase flows 
may exist as shown in Fig. 1.9. For relatively small gas flow rates, the reactor may 
contain a dense bed of fluidized solid particles. The bed may be homogeneously flu
idized or gas may pass through the bed in the form of large bubbles. Further increase 
in gas flow rate decreases the bed density and the gas–solid contacting pattern may 
change from dense bed to turbulent bed, then to fast-fluidized mode and ultimately to 
pneumatic conveying mode. In all these flow regimes the relative importance of gas– 
particle, particle–particle and particle–wall interaction is different. It is, therefore, 
necessary to identify these regimes to select an appropriate mathematical model. 
Details of flow regime identification are discussed in Part IV while discussing the 
application of computational flow modeling to specific reactor types. In this chapter, 
governing equations for general flow types will be discussed. 

For many gas–liquid or gas–liquid–solid reactors, the liquid phase is a contin
uous phase in which gas bubbles and solid particles are dispersed (bubble column 
or multiphase stirred tank reactors). Bubble column reactors may also exhibit differ
ent sub-regimes, namely homogeneous bubbly flow, churn-turbulent flow and slug 
flow depending on the geometry, operating conditions such as flow rates, pressure, 
temperature and physical properties of individual phases. The characteristics of these 
regimes are quite different from each other and each regime may require specialized 
models and boundary conditions. When there is further increase in gas flow rate, 
in some cases, frothing may occur. Beyond frothing, further increase in gas flow 
rate may make gas a continuous phase with liquid drops dispersed in it. When an 
additional flow-modifying element, such as the rotating impeller in stirred reactors, 
is present in the reactor, one may have to use a different classification for the flow 
regimes. See, for example, Fig. 1.8 for some flow regimes observed in a gas–liquid 
stirred tank reactor. As long as one phase exists as a continuous phase and the others 
as dispersed phases (this includes liquid–liquid and gas–liquid–liquid reactors), the 
general model equations discussed in the next section may be used. 

Other special types of reactor may have different flow regimes specific to those 
particular configurations. For example, as mentioned earlier, in trickle bed reactors, 
liquid and gas flow through a packed bed of solid particles. Gas and liquid phases 
maintain a free interface and flow over solid particles. Several flow regimes may 
occur in such trickle bed reactors. It will not be possible to discuss modeling of flow 
in all these different types of multiphase reactors in a single chapter. Because of the 
importance of the dispersed flow regime, modeling of this flow regime is discussed 
here in detail. Modeling of other types of multiphase flow is briefly discussed and key 
references are cited for further reading. Some details are also discussed in Part IV of 
this book. 

4.1.2. Modeling Approaches 

It will be useful to discuss here different modeling approaches and some of the key 
issues in modeling multiphase flow processes. In general, there are three main issues 
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one needs to address: 

• Definition of ‘phase’/Flow regime/Required resolution 
• Formulation of governing equations 
• Solution of governing equations 

An obvious definition of ‘phase’ is ‘thermodynamic state’ (gas, liquid or solid). How
ever, it is possible to define different ‘phases’ for computational purpose, although 
the thermodynamic state is not different. For example, while modeling dispersed gas– 
solid flows when there is a wide distribution of particle sizes, it is convenient to define 
multiple phases representing the solid phase. Each such phase may be associated with 
a specific narrow band of particle sizes, having more or less identical properties (such 
as drag coefficient). It is also sometimes useful to treat two thermodynamically distinct 
phases as one phase for computational purposes. For example, in a gas–liquid–solid 
slurry reactor, if the solid particles are fine enough to essentially follow liquid flow, it 
will be convenient to treat the liquid–solid mixture as a ‘slurry’ phase and model the 
three-phase system as a two-phase system (gas–slurry). Computational phases can 
even be defined based on local flow characteristics such as turbulent or irrotational 
fluid (Spalding, 1983). Judicious definition of computational phases and considera
tion of possible flow regimes are often the first crucial steps in selecting the modeling 
approach. Once the phases are defined, relevant flow regimes can be identified (see 
a brief discussion in the previous section, and Part IV). Depending on the required 
resolution, different modeling approaches may be used. 

There are three main approaches for modeling multiphase flows: 

(a) Volume of fluid approach (Eulerian framework for both the phases with 
reformulation of interface forces on volumetric basis). 

(b) Eulerian framework for the continuous phase and Lagrangian framework for 
all the dispersed phases. 

(c) Eulerian framework for all phases (without explicitly accounting for the 
interface between phases). 

Basic concepts of these approaches are shown schematically in Fig. 4.1 and are briefly 
discussed below. 

The first approach, the volume of fluid (VOF) approach, is conceptually the 
simplest. In this approach, the motion of all phases is modeled by formulating local, 
instantaneous conservation equations for mass, momentum and energy. Such local 
instantaneous conservation equations can be solved using appropriate jump boundary 
conditions at the interface. However, the interface between different phases may not 
remain stationary and imposing boundary conditions at such an interface becomes 
a very complicated moving boundary problem. To avoid this, instead of directly 
tracking the deforming and moving interface, the VOF approach tracks motion of 
all the phases, from which motion of the interface is inferred indirectly. All the 
interfacial forces, therefore, have to be replaced by smoothly varying volumetric 
forces. If the shape and flow processes occurring near the interface are of interest, 
the VOF approach should be used. Some interface-related forces, such as surface 
or adhesion forces, can be modeled accurately using this approach. This approach 
is, however, naturally limited to modeling the motion of only a few dispersed phase 
particles. For simulations of dispersed multiphase flows in large equipment, this 
approach is not suitable, as it requires huge computational resources to resolve flow 
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FIGURE 4.1 Modeling approaches for multiphase flows. (a) ‘Volume of fluid’ approach, (b) Eulerian– 
Lagrangian approach, (c) Eulerian–Eulerian approach. 

processes around each dispersed phase particle. VOF-based models can be very useful 
as learning tools and can provide valuable information to develop appropriate closure 
models for Eulerian–Lagrangian and Eulerian–Eulerian approaches. 

In the Eulerian–Lagrangian approach, explicit motion of the interface is not 
modeled. This means small-scale fluid motions around individual dispersed phase 
particles are not considered. Their influence is modeled indirectly while considering 
the motion of dispersed phase particles. In this approach, motion of the continuous 
phase is modeled using a Eulerian framework. The motions of dispersed phase parti
cles (trajectories) are explicitly simulated in a Lagrangian framework. Averaging over 
a large number of trajectories is then carried out to derive the required information 
for the modeling of the continuous phase. In this approach, particle-level processes 
such as reactions, heat and mass transfer etc. can be simulated in adequate detail. In 
the case of turbulent flows, it is necessary to simulate a very large number of particle 
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trajectories to obtain meaningful averages. Therefore, even with this approach, when 
the number of particles to be simulated increases, computational resources become 
stretched. The approach is, therefore, suitable for simulating dispersed multiphase 
flows containing a low (<10%) volume fraction of the dispersed phases. For denser 
dispersed phase flows, it may be necessary to use a Eulerian–Eulerian approach. 

The Eulerian–Eulerian approach models the flow of all phases in a Eulerian 
framework based on the interpenetrating continuum assumption. In this approach, 
trajectory simulations and averaging are not carried out at a computational level but 
are implicitly achieved at a conceptual level. The discrete character of the under
lying process is, therefore, averaged out to provide a model involving a continuum 
associated with the dispersed phase particles. This approach is the most difficult one 
to understand conceptually, requiring extensive modeling efforts. Various averaging 
issues will have to be addressed while formulating the governing equations in this 
approach. If modeled successfully, this approach can be applied to multiphase flow 
processes containing large volume fractions of dispersed phase. It may, therefore, 
be extended to modeling and simulation of complex industrial multiphase reactors 
consisting of a large number of dispersed particles. 

In a given situation, there is no simple answer to the question as to which of these 
approaches is preferable. Depending upon the complexity of the dispersed multiphase 
flows, more often than not, it may be necessary to use multiple modeling approaches 
to develop an adequate understanding of the flow processes under consideration. 
These three approaches are complementary in many respects (Berlemont et al., 1995; 
Delnoij et al., 1997). Application of these approaches to model dispersed multiphase 
flows is discussed below. Computational aspects of solving these model equations, 
including special treatment of interphase coupling terms, are discussed in Chapter 7. 

4.2. MODELING DISPERSED MULTIPHASE FLOWS 

Dispersed multiphase flows occur in a number of industrially important reactors 
including stirred tank reactors, fluidized bed reactors, bubble column reactors, com
bustors and so on. The modeler is often confronted with a complex flow process, in 
which some fundamental problems are still unsolved. In the simplest case, the reactor 
engineer has to deal with a one-way problem: prediction of particle trajectories or dis
tribution in the known single-phase flow field. However, dispersed phase particles are 
not passive contaminants and the presence of these particles may influence the flow of 
the continuous phase. The level of interaction becomes especially complex for a turbu
lent flow field. When the size of the dispersed phase particle is very small or the mass 
loading of the particles is small, the influence of dispersed phase particles on the flow 
field of the continuous phase may be neglected. This is called one-way coupling. When 
the dispersed phase volume fraction is increased, the presence of dispersed phase will 
significantly affect the continuous phase flow field. This is called two-way coupling. If 
the particle number density is sufficiently large to allow direct particle–particle inter
actions, the modeler is faced with four-way coupling: continuous phase–dispersed 
phase particles–dispersed phase particles–continuous phase. 

It is essential to examine the extent of coupling between dispersed and continuous 
phase to select an appropriate modeling approach. This is especially important for 
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FIGURE 4.2 Coupling between phases in dispersed multiphase flows (from Elghobashi, 1991). 

turbulent flows. The extent of coupling can be analyzed by examining relevant length 
and time scales. Elghobashi (1991) proposed a regime map for this purpose. His 
classification map is shown in Fig. 4.2. (x1 − x2)/dP denote the relative distance 
between the particles, which is approximately related to the volume fraction of the 
dispersed phase, α2. τ x 

12 is a particle relaxation time, which represents entrainment 
of the particles by the continuous phase (expressions for various relevant time scales 
for dispersed multiphase flows are listed in Appendix 4.1). When particle relaxation 
time is much smaller than the eddy lifetime experienced by the particle (τ x 

12 � τ t 12), 
particle motion is governed by continuous phase turbulence. In the other extreme, 
when (τ x 

12), particle motion is only slightly affected by gas phase turbulence. 12 � τ t 

When the collision time scale is much smaller than the particle relaxation time scale 
(τ2 

c � τ x 
12), particle motion is governed by particle collisions. This is valid for dense 

dispersed multiphase flows. Similar analysis can also be carried out by comparing 
various characteristic length scales of motion with dispersed phase particle diameter 
(Gore and Crowe, 1989). Governing equations and boundary conditions for three 
modeling approaches are discussed below. 

4.2.1. Volume of Fluid (VOF) Approach 

Using the VOF approach, flow processes around individual dispersed phase particles 
are resolved unlike with EL or EE approaches. In this approach, the participating 
fluids share a single set of conservation equations. The governing equations can, 
therefore, be written: 

∂ 
(ρ) + ∇ · (ρU) = Sk (4.1)

∂t 
k 

∂ 
(ρU) + ∇ · (ρUU) = −∇ · π + ρg + F (4.2)

∂t 
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Discussions in Chapter 2 may be referred to for explanations of the various symbols. 
It is straightforward to apply such conservation equations to single-phase flows. In 
the case of multiphase flows also, in principle, it is possible to use these equations 
with appropriate boundary conditions at the interface between different phases. In 
such cases, however, density, viscosity and all the other relevant properties will have 
to change abruptly at the location of the interface. These methods, which describe 
and track the time-dependent behavior of the interface itself, are called front tracking 
methods. Numerical solution of such a set of equations is extremely difficult and 
enormously computation intensive. The main difficulty arises from the interaction 
between the moving interface and the Eulerian grid employed to solve the flow field 
(more discussion about numerical solutions is given in Chapters 6 and 7). 

The volume of fluid (VOF) approach simulates the motion of all the phases rather 
than tracking the motion of the interface itself. The motion of the interface is inferred 
indirectly through the motion of different phases separated by an interface. Motion of 
the different phases is tracked by solving an advection equation of a marker function 
or of a phase volume fraction. Thus, when a control volume is not entirely occupied 
by one phase, mixture properties are used while solving governing Eqs (4.1) and (4.2). 
This avoids abrupt changes in properties across a very thin interface. The properties 
appearing in Eqs (4.1) and (4.2) are related to the volume fraction of the kth phase as 
follows: � αk ρkCpk 

ρ = αk ρk Cp = � (4.3)
αk ρk 

The average of any other variable φ can also be written: 

αk ρk φk 
φ = � (4.4)

αk ρk 

The volume fraction of each fluid, αk , is calculated by tracking the interface between 
different phases throughout the solution domain. Tracking of the interfaces between N 
different phases present in the system is accomplished by solving continuity equations 
for N − 1 phases. For the kth phase, this equation has the following form (similar to 
scalar advection): 

∂αk + (Uk · ∇)αk = Sαk (4.5)
∂t 

It must, however, be noted that the marker function or the volume fraction does not 
uniquely identify the interface. Several different interface configurations may corres
pond to the same value of volume fraction (Fig. 4.3). Several specialized techniques 
have been proposed to track the interface accurately (Rider and Kothe, 1995; Rudman, 
1997). Some of these techniques are discussed in Chapter 7. 

The VOF approach allows one to model various interfacial phenomena; for exam
ple, wall adhesion and surface (or interfacial) tension can be modeled rigorously using 
this approach. Brackbill et al. (1992) developed a continuous surface force (CSF) 
model to describe interfacial surface tension. CSF model replaces surface force by 
a smoothly varying volumetric force acting on all the fluid elements in the interface 
transition region. For two-phase flows (dispersed or secondary phase is denoted by 
subscript 2), surface force, FSF can be written (Brackbill et al., 1992): 

FSF = 2σα2κn (4.6) 



�� � � 

93 MODELING DISPERSED MULTIPHASE FLOWS 

FIGURE 4.3 Possible interface configurations for the same value of volume fraction in the control 
volume (volume fraction = 0.5). 

where σ is surface tension, κ is local curvature and n is the surface normal. The 
surface normal is defined as the gradient of the secondary phase volume fraction: 

n = ∇α2 (4.7) 

The local surface curvature is defined as 

1 n 
κ = |n| |n| · ∇  |n| − (∇ · n) (4.8) 

The volume force described by Eq. (4.6) appears as a source in the momentum equa
tion on the side of the interface corresponding to the secondary phase. In conjunction 
with this surface tension model, wall adhesion phenomena can also be modeled. The 
contact angle that the fluid is assumed to make with the wall is used to adjust the 
surface normal near the wall (Brackbill et al., 1992). For accurate implementation of 
surface tension and wall adhesion phenomena, the solution method has to maintain a 
compact and sharp interface between phases. If care is taken in the numerical imple
mentation, the VOF approach can simulate the deformation of shape of dispersed 
phase particles due to the surrounding flow (Delnoij, 1999). Thus, the VOF approach 
should be used when small-scale processes occurring near an interface separating 
the fluid particle from the continuous phase play a crucial role. Knowledge of these 
small-scale flow processes and the deformation of gas bubbles is crucial for accurate 
estimation of local mass and heat transfer rates near the dispersed phase particle. 
The main disadvantage of VOF is that it is computationally very demanding and, 
therefore, difficult to apply to dispersed multiphase flows containing a large num
ber of dispersed phase particles. It may, however, serve as a useful learning tool for 
understanding details of dispersed multiphase flows. Recently, vigorous efforts have 
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been made to use the VOF approach to simulate the motion of a few bubbles or a few 
particles to enhance the current understanding of the local flow characteristics around 
these dispersed phase particles (Stover et al., 1997; Delnoij et al., 1997; Krishna 
and van Baton, 1999). Due to computational constraints, most of these studies have 
been restricted to two-dimensional simulations, so that the quantitative agreement 
between predicted results and experimental data is not very satisfactory. Efforts are 
continuing to improve the underlying modeling of physics as well as its numerical 
implementation. 

4.2.2. Eulerian–Lagrangian Approach 

Using this approach, trajectories of dispersed phase particles are simulated by solving 
an equation of motion for each dispersed phase particle. Motion of the continuous 
phase is modeled using a conventional Eulerian framework. Depending on the degree 
of coupling (one-way, two-way or four-way), solutions of both phases interact with 
each other. For two-way or four-way coupling, an iterative solution procedure needs 
to be adopted. For four-way coupling, additional models to simulate particle–particle 
interactions also need to be incorporated while simulating the trajectories of dispersed 
phase particles. In simple, one-way coupling, a continuous phase flow field can be 
obtained independent of the motion of the dispersed phase. Using such a flow field, 
the trajectories of dispersed phase particles can be obtained by solving the equations 
of motion for dispersed phase particles. 

Historically, the equation of motion of a single rigid sphere in a stagnant fluid 
was first studied by Stokes (1851). He derived the well-known drag formula based 
on this study. To examine issues other than the drag force, a good starting point may 
be the so-called BBO (Basset–Boussinesq–Oseen) equation (Gouesbet et al., 1984). 
Tchen (1947) attempted to generalize the BBO equation to the case when the fluid 
is no longer at rest. Maxey and Riley (1983) developed equations of motion for a 
small rigid particle in a non-uniform flow. Development of the equation of motion 
for a rigid sphere which has non-stationary translational and rotational motion in a 
non-uniform flow is not a trivial problem. At present, a rigorous form of the equation 
of motion has been derived only in the case of creeping flow (Peirano, 1998). For 
general application, a modified form of the Maxey and Riley equation in the form of 
a general force balance over a single dispersed phase particle is used (Auton, 1983): 

dUP 
mP = Fp + FD + FVM + FL + FH + FG (4.9)

dt 

Here mP and UP represent the mass and velocity vector of the particle, respectively. 
The right-hand side represents the total force acting on the dispersed phase particle. 
The sum of forces due to continuous phase pressure gradient, Fp, and due to gravity, 
FG, can be written: 

Fp + FG = VP∇p − ρPVPg (4.10) 

where p is pressure in the continuous phase and VP is volume of the particle. The drag 
force, FD, can be written: 

π 
FD = −  CDρCD2 | UP − UC | (UP − UC) (4.11)

8 P 
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where the subscript C denotes the continuous phase and P denotes the particulate 
phase. The drag force has been studied extensively. The drag coefficient, CD, depends 
on the flow regime (particle Reynolds number) and the properties of the continuous 
phase. Several empirical correlations have been proposed for the estimation of the 
drag coefficient. For a single rigid sphere, the drag coefficient is usually approximated 
by the correlation proposed by Schiller and Naumann (1935): 

ReP < 1000 ⇒ 24/Re(1 + 0.15 Re0.687)
CD = (4.12)

ReP ≥ 1000 ⇒ 0.44 

ReP is the particle Reynolds number: 

ReP = 
ρCdP|UP − UC| 

(4.13) 
µC 

|UP −UC| represents the resultant slip velocity between the particulate and continuous 
phase. Some other commonly used drag coefficient correlations are listed in Appendix 
4.2. For fluid particles such as gas bubbles or liquid drops, the drag coefficient may 
be different than that predicted by the standard drag curve, due to internal circulation 
and deformation. For example, Johansen and Boysen (1988) proposed the following 
equation to calculate CD, which is valid for ellipsoidal bubbles in the range 500 < 
Re < 5000: 

0.622 g|(ρP − ρC)|d2 

CD = ∵ Eo = P (4.14)
1.0/Eo + 0.235 σ 

Kuo and Wallis (1988) proposed a different equation for estimation of the drag coef
ficient, which is suitable for spherical and spherical cap bubbles. For the specific 
system under consideration, several specialized correlations may be used to estimate 
the drag coefficient. If the dispersed phase particles are not spherical, appropriate 
correction factors need to be introduced in these drag coefficient correlations (Clift 
et al., 1978). It may also be necessary to correct the drag coefficient to account for the 
influence of a wall (Brenner, 1961). Most of these correlations have been developed 
for the motion of a single particle. When the dispersed phase volume fraction is high, 
the presence of other dispersed phase particles will affect the effective value of the 
drag coefficient. Several corrections have been proposed to account for the influence 
of the surrounding particles. Some of these are discussed in the section describing 
the Eulerian–Eulerian approach. Some drag coefficient correlations suitable for gas– 
liquid and gas–solid flows are discussed in Part IV while discussing the modeling of 
different reactor types. 

Apart from the drag force, there are three other important forces acting on a 
dispersed phase particle, namely lift force, virtual mass force and Basset history 
force. When the dispersed phase particle is rising through the non-uniform flow field 
of the continuous phase, it will experience a lift force due to vorticity or shear in the 
continuous phase flow field. Auton (1983) showed that the lift force is proportional to 
the vector product of the slip velocity and the curl of the liquid velocity. This suggests 
that lift force acts in a direction perpendicular to both, the direction of slip velocity 
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FIGURE 4.4 Lift (a) and virtual mass forces, (b) on dispersed phase particles. 

and the direction of the curl of the continuous phase velocity field (Fig. 4.4). For 
locally homogeneous flows, the lift force is given by 

FL = −CLρCVP(UP − UC) × (∇ × UC) (4.15) 

where CL is an empirical lift coefficient. For potential flow and spherical particles, 
Drew and Lahey (1979) report the value of lift coefficient as 0.5. Recently Oesterle 
(1994) investigated lift forces in the Reynolds number range 1 to 1000, which is 
typical for reactor engineering applications. This study shows that lift forces are not 
negligible and tend to increase with increasing particle diameter. Two other situations 
may lead to transverse force: (1) when the dispersed phase particle is rotating and (2) 
when the particle is moving in the vicinity of a wall. Most studies related to these 
situations are restricted to small Reynolds number and have recently been summarized 
by Peirano (1998). 

When a dispersed phase particle accelerates relative to the continuous phase, 
some part of the surrounding continuous phase also is accelerated. This extra acceler
ation of the continuous phase has the effect of added inertia or ‘added mass’ (Fig. 4.4). 
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This ‘added mass’ effect is modeled by introducing the virtual mass term, FVM: 

DI 
FVM = −  + I · ∇UC ∵ I = CVMρCVP(UP − UC) (4.16)

Dt 

The material derivative, D/Dt, in this equation should be the derivative pertaining to 
the dispersed phase particle. The virtual mass coefficient, CVM, may be a function of 
the volume fraction of neighboring bubbles. For a single dispersed particle, it is in 
the range 0.25 to 0.5. For gas–liquid flows, van Wijngaarden (1976) recommended 
following expression to estimate CVM: 

CVM = CVMP(1 + 2.78αP) (4.17) 

where CVMP indicates the value of CVM for a single particle of dispersed phase. 
There may be some additional forces, such as Basset force (due to development 

of a boundary layer around the dispersed phase particles), thermophoretic force (due 
to large temperature gradient) and Brownian force. The Basset force (denoted by FH 

in Eq. 4.9) is relevant only for unsteady flows and in most cases, its magnitude is much 
smaller than the interphase drag force. Basset force involves a history integral, which 
is time-consuming to evaluate. Moreover, Basset force decays as t−n with n > 2 (Mei, 
1993) for intermediate time. Therefore, it is very often neglected while integrating the 
equation of motion of the particle. Picart et al. (1982) discussed specific conditions 
under which the Basset term may be neglected. For most reactor engineering flows, the 
other two forces, thermophoretic and Brownian forces, are also quite small compared 
to some of the terms discussed earlier. 

Once the velocity field is calculated from the force balances discussed above, the 
trajectories of all the particles can be calculated using: 

dxi = UPi (4.18)
dt 

When simulating the trajectories of dispersed phase particles, appropriate bound
ary conditions need to be specified. Inlet or outlet boundary conditions require no 
special attention. At impermeable walls, however, it is necessary to represent col
lisions between particles and wall. Particles can reflect from the wall via elastic or 
inelastic collisions. Suitable coefficients of restitution representing the fraction of 
momentum retained by a particle after a collision need to be specified at all the wall 
boundaries. In some cases, particles may stick to the wall or may remain very close 
to the wall after they collide with the wall. Special boundary conditions need to 
be developed to model these situations (see, for example, the schematic shown in 
Fig. 4.5). 

As particles move within the solution domain, solution of the force balance of 
each particle requires information about the flow field of the continuous phase. The 
continuous phase flow is described using the volume-averaged (overall) mass and 
momentum conservation equations: 

∂(αCρC) + ∇ · (αCρCUC) = SC (4.19)
∂t


∂(αCρCUC)
+ ∇ · (αCρCUCUC) = −αC∇p − ∇ · (αCτC) + αCρCg + SCm (4.20) 
∂t 
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FIGURE 4.5 Wall boundary conditions for dispersed phase particles. (a) Reflection, (b) saltation, 
(c) particle escapes or vanishes. 

where SC and SCm are mass and momentum sources representing the exchange 
between dispersed phase particles and the continuous phase. Individual species and 
enthalpy conservation equations can be written analogously. For very low concentra
tions of small, dispersed phase particles, the influence of dispersed phase particles on 
the flow field of the continuous phase can be ignored. In such cases, equations for the 
continuous phase reduce to those of the single-phase conservation equations. 

At moderate flow (mass) rates of dispersed phase particles, it is necessary to 
model the two-way coupling between continuous and dispersed phases. Such coupling 
occurs through volume fraction, αC, and exchange source terms, SC and SCm. The 
momentum exchange from dispersed phase particles to continuous phase is just the 
opposite of the momentum transfer rate due to drag, lift and virtual mass forces 
exerted by the continuous phase on the dispersed phase particles. These sources can 
be computed by summing the changes in momentum (or enthalpy or mass) of a 
particle as it passes through the control volume for continuous phase, over all the 
particles passing through that control volume. Suitable area and volume averaging 
methods need to be developed to formulate these coupling source terms. For such 
a coupled system, it is necessary to solve the governing equations of the dispersed 
and continuous phase iteratively until one obtains the converged solution. Two-way 
coupling was discussed recently by Delnoij et al. (1997) for gas–liquid bubbly flows 
and by Hoomans et al. (1998) for gas–solid flows. Interested readers are referred to 
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these papers for more details of averaging and other coupling related issues. Some of 
these details are discussed in Chapter 7 when describing numerical methods to solve 
multiphase model equations. 

If the volume fraction of the dispersed phase particles is high, particles may 
directly interact with each other by collisions and/or coalescence. The characteristic 
time of collisions between dispersed phase particles can be related to volume fraction, 
particle diameter and particle kinetic energy using the framework of kinetic theory. If 
the characteristic time of collisions is smaller than the particle response or relaxation 
time, the particles will not have adequate time to recover their own behavior between 
collisions. For such cases, four-way coupling will have to be accounted for. The 
four-way coupling problem, in its full generality, is still unsolved and is the object 
of much current research effort. Various approaches are used to tackle this problem. 
One can use a Eulerian framework in which collisions between particles are described 
using a kinetic theory approach. This approach is briefly discussed in the next section. 
Alternatively, particle–particle interactions can be included in a Lagrangian approach 
by considering particle collisions while simulating a large number of particles. 

Several attempts have been made to simulate a large number of dispersed phase 
particles simultaneously (recently reviewed by Hoomans, 2000). These studies can 
be broadly divided into three approaches: 

(1) Hard sphere approach 
(2) Soft sphere approach 
(3) Monte Carlo techniques 

In a hard sphere approach, particles are assumed to interact through instantaneous 
binary collisions. This means particle interaction times are much smaller than the 
free flight time and therefore, hard particle simulations are event (collision) driven. 
For a comprehensive introduction to this type of simulation, the reader is referred to 
Allen and Tildesley (1990). Hoomans (2000) used this approach to simulate gas–solid 
flows in dense as well as fast-fluidized beds. There are three key parameters in such 
hard sphere models, namely coefficient of restitution, coefficient of dynamic friction 
and coefficient of tangential restitution. Coefficient of restitution is discussed later 
in this chapter. Detailed discussion of these three model parameters can be found in 
Hoomans (2000). 

In a soft sphere approach, particles are allowed to overlap slightly. The contact 
forces are then calculated from the deformation history of the contact, using say 
a linear spring/ dashpot model. Xu and Yu (1997) and Mikami (1998) among oth
ers have used this approach to model gas–solid flows. In Monte Carlo simulations 
(Frenkel and Smith, 1996), a new overlap-free particle configuration is generated at 
each time step. The new configuration is accepted based on the change in system 
energy. Seibert and Burns (1998) used this method to simulate segregation phe
nomena in liquid–solid flows. In all these approaches, simultaneous simulation of 
a large number of particles stretches the limits of currently available computational 
resources. Despite the recent advances in devising efficient numerical techniques 
(to process collision events in an assembly of a large number of particles), applica
tion of these approaches is still more or less restricted to two-dimensional solution 
domains. These models may give useful information about particle–particle interac
tions. However, it is still difficult to apply these models to simulate large industrial 
multiphase reactors. As an alternative to simultaneously tracking many particles, 
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it may also be possible to adapt a Lagrangian simulation, based on single-particle 
tracking using the ‘double-solution’ approach. In this approach, the trajectory of 
a single particle surrounded by a ‘cloud of probability of collision’ is simulated 
(Oesterle and Petitjean, 1993; Sommerfeld, 1995). A random process is used to 
decide when collisions may occur and particle characteristics are suitably modified to 
account for collisions. Even these models have not yet been applied to large multiphase 
reactors. 

It may be noted that the discussion so far has not considered turbulent flow. When 
the continuous phase flow field is turbulent, its influence on particle trajectories needs 
to be represented in the model. The situation becomes quite complex in the case of 
two-way coupling between continuous phase and dispersed phase, since the presence 
of dispersed phase can affect turbulence in the continuous phase. The Eulerian frame
work may be more suitable to model such cases. Even when dispersed phase particles 
are assumed to have no influence on the continuous phase flow field, the trajectories 
of the particles will be affected by the presence of turbulence in the continuous phase. 
For such cases, it is necessary to calculate the trajectories of a sufficiently large num
ber of particles using the instantaneous local velocity to represent the random effects 
of turbulence on particle dispersion. 

The instantaneous velocity is equal to the mean velocity (which is known) plus 
a fluctuation velocity (which is unknown). Predictions using a turbulence model may 
give values of variance of the fluctuating velocity. The assumption of a Gaussian 
distribution for the fluctuations and a random value for fluctuation to be added to the 
mean velocity is not sufficient to obtain the instantaneous value. Instantaneous val
ues should satisfy the Lagrangian correlation coefficient along the trajectory. Several 
models have been proposed to estimate the instantaneous velocity. See, for example, 
recent reviews by Sommerfeld (1993) and Gouesbet and Berlemont (1999). Two com
monly used models to estimate instantaneous fluid velocity from the time-averaged 
flow field of the continuous phase are briefly discussed below: 

(a)	 Discrete random walk model. In this model, the fluctuating component of 
the velocity is assumed to have a Gaussian distribution and is calculated by 
multiplication of a normally distributed random number and the local root 
mean square (rms) value of the velocity fluctuations. The same value of 
random number is used for the eddy lifetime (integral time scale). For each 
eddy lifetime, new value of random number is used. This stochastic process 
generates a correlation coefficient which linearly decreases from 1 at a delay 
equal to zero, to 0 at a delay equal to twice the eddy lifetime. Despite such 
a crude approximation for the correlation coefficient, this approach leads to 
reasonable results and has been widely used for a number of applications 
(Chen and Crowe, 1984; Sommerfeld, 1990). 

(b)	 Continuous random walk model. In this model, the instantaneous fluid veloc
ity is obtained by solution of a Langevin equation (Thomson, 1987), which 
may provide a more realistic description of turbulent eddies, although at 
the expense of greater computational effort. These models correlate the 
velocity fluctuation experienced by a particle at the new location with the 
fluctuation at the previous location using an exponentially decaying corre
lation function (Langevin velocity correlation function). In inhomogeneous 
turbulence, however, it has been found that the Langevin model fails and 
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may lead to the accumulation of fluid particles in regions of low turbulence 
(Sommerfeld, 1993). 

Berlemont et al. (1990) proposed a more sophisticated approach, the so-called 
‘correlation slaved approach’, to estimate instantaneous velocity. They consider a cor
relation matrix, which evolves along the trajectory (also see, Gouesbet and Berlemont, 
1999). Their model, however, needs much larger computational resources than the 
above two approaches. 

Once the instantaneous velocity is obtained, particle trajectories can be simulated. 
To introduce two-way coupling, it is necessary to calculate the source terms in the 
balance equations of mass, momentum and energy for the continuous phase. With 
such source terms, the continuous phase flow field needs to be solved again, which is 
later used to calculate new trajectories. The number of iterations between turbulence 
and particulate modules to obtain convergence is typically three. However, in strongly 
coupled flows, convergence may be difficult to reach (Kohnen et al., 1994). 

The main advantage of using a Lagrangian framework for dispersed phase parti
cles is that particle-level phenomena can be modeled rigorously. Species and enthalpy 
conservation equations for individual particles can be written: 

d(mP mk ) = Sk (4.21)
dt 

d(mPCPhP) = Sh (4.22)
dt 

The sources of interphase transport, Sk and Sh, can be formulated by considering 
particle-level phenomena, which will be of interest to the reactor engineers such as: 

• heating or cooling of particles (simple heat balance over a particle); 
• devolatilization (evaporation of volatile component from the solid particle); 
• droplet vaporization; 
• surface reaction (diffusion or kinetic controlled); 
• coalescence and break-up. 

It can be seen that in many of these particle-level phenomena, sources will be a 
function of continuous phase variables. Such a situation results in strong coupling 
between particle trajectory simulations and simulation of the continuous phase flow 
field. Detailed modeling of each of these can be accomplished following conventional 
practices and will not be discussed here. More information can be found in textbooks 
on chemical reaction engineering and heat and mass transport processes (Levenspiel, 
1972; Westerterp et al., 1984; Kuo, 1986; Kunii and Levenspiel, 1991). 

Particle size distribution can conveniently be accommodated in a Lagrangian 
framework for dispersed phase particles. Detailed analysis of particle trajectories and 
particle-level phenomena can be very useful for the reactor engineer. Even for reactors 
where particle–particle interactions are significant and a Eulerian approach may be 
more suitable, modeling with a Lagrangian framework can provide limiting solutions 
as well as a basis for interpreting the Eulerian results from the particle perspective. 
Analysis of residence time and circulation time distribution within the reactor or 
massless particles can provide useful insight into the mixing process occurring within 
the reactor. Some of the possible applications of this approach are discussed in Parts III 
and IV. 



� 

� 

102 CHAPTER 4 MULTIPHASE FLOW PROCESSES 

4.2.3. Eulerian–Eulerian Approach 

With this approach, even the dispersed phase is treated as a continuum. All phases 
‘share’ the domain and may interpenetrate as they move within it. This approach is 
more suitable for modeling dispersed multiphase systems with a significant volume 
fraction of dispersed phase (>10%). Such situations may occur in many types of reac
tor, for example, in fluidized bed reactors, bubble column reactors and multiphase 
stirred reactors. It is possible to represent coupling between different phases by devel
oping suitable interphase transport models. It is, however, difficult to handle complex 
phenomena at particle level (such as change in size due to reactions/evaporation etc.) 
with the Eulerian–Eulerian approach. 

For single-phase flows, rigorous basic transport equations are given in the form 
of mass, momentum and energy conservation (see Chapter 2). These equations are 
local, instantaneous equations and can be applied to all the volume and time domains 
under consideration. For multiphase flow processes, such local instantaneous field 
equations cannot be formulated without appropriate averaging. Several different aver
aging methods have been used. For example, Ishii (1975) and Drew (1983) used time 
averaging while Harlow and Amsden (1975), Rietema and van den Akker (1983) 
and Ahmedi (1987) used a volume averaging method. Besnard and Harlow (1988), 
Kataoka and Serizawa (1989) and Lahey and Drew (1989), among others, discussed 
various issues involved in the formulation of governing equations for multiphase flow 
processes. Recently, Enwald et al. (1996) discussed in detail the rigorous formula
tion of two-fluid model equations based on averaging techniques and corresponding 
closure laws. In this section, we present a general form of governing equations for 
dispersed multiphase flows, which will be suitable for further numerical solution, 
without going into details of their derivation. 

The concept of volume fraction is introduced here heuristically without resorting 
to a rigorous treatment. With this approach, it is assumed that it is meaningful to 
conceive a volume fraction of phase k, αk in any small volume of space at any 
particular time. If there are n phases in total, this gives: 

n 

αk = 1.0 (4.23) 
k=1 

This means that there are sufficiently large numbers of dispersed phase particles in a 
volume characterized by the macroscopic length of the system. 

The continuity equation for each phase can therefore be written: 

n
∂(αk ρk ) + ∇ · (αk ρkUk ) = Spk (4.24)
∂t 

p=1,p=k 

where the subscript k denotes phase k. Spk is the rate of mass transfer from the pth 
phase to the kth phase. This rate is based on a per unit volume of dispersion and not 
that of phase k. If it is based on the volume of phase k, it will be necessary to multiply 
it by the volume fraction of phase k, αk . Summation of net mass transfer over all 
phases will be zero as there can be no net creation or destruction of mass. 

The momentum balance for phase k can be written: 

∂(αk ρkUk ) + ∇ · (αk ρkUkUk ) = −αk ∇p − ∇ · (αk τk ) + αk ρkg + Fk + Fg (4.25)
∂t 
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Here, Fk denotes the interphase momentum exchange terms between phase k and all 
other phases present in the system. Additional momentum sources, if any, and terms 
relevant to granular multiphase flows, are grouped together in Fg. It should be noted 
that pressure, p, is regarded as being shared by all the phases and, therefore, appears in 
the governing equations of all phases. The significance of the remaining terms in the 
equations is similar to those discussed for single-phase flow processes in Chapter 2. 

Interphase coupling terms make multiphase flows fundamentally different from 
single-phase flows. The formulation of these terms and, therefore, of interphase 
exchange coefficients must proceed carefully, with attention being paid to the force 
balance for a single particle and to any possible inconsistencies. The interphase 
coupling terms must satisfy the following relation: 

Fkq = −Fqk (4.26) 

The interphase coupling terms for phase k can be written: 

n n 

Fk = Kkq(Uq − Uk ) + SqkUqk (4.27) 
q=1 q=1,q =k 

where K is the interphase momentum exchange coefficient. The second term rep
resents the momentum transferred between phases due to mass transfer. This 
formulation automatically satisfies the constraint described by Eq. (4.26). In principle, 
the interphase momentum exchange terms should include all the relevant interphase 
forces described earlier in Section 4.2.2. To incorporate these forces, the particle vol
ume included in expressions given earlier (Eqs (4.15) and (4.16)) must be replaced 
by the volume fraction of the dispersed phase. In most cases, the interphase drag 
force term dominates the other interphase forces such as lift force terms or virtual 
mass terms. When the dispersed phase density is much smaller than the continuous 
phase density (as with a bubble column reactor), the virtual mass effect may become 
significant. In such cases, special formulations will be necessary rather than those 
described by Eq. (4.27). 

In order to clarify interphase momentum exchange terms, the case of two-phase 
flow is considered below. Let phase 1 be a continuous phase and phase 2 a dispersed 
phase. The interphase exchange force exerted in the i direction on the dispersed phase 
(phase 2) by the continuous phase can be modeled as 

2
)1/23α1α2ρ1CD( (U2j − U1j ) (U2i − U1i) 

F2i = −  
j 

(4.28)
4dp 

The sign of this force is decided by the sign of the difference in i directional velocities 
of the two phases (i directional slip velocity). This expression can be generalized 
to more than one dispersed phases in a straightforward way. CD denotes the drag 
coefficient. The expressions given earlier (Eqs (4.12) and (4.14)) may be used to 
estimate the value of drag coefficient. Refer to Appendix 4.2 for some other commonly 
used correlations for estimating the drag coefficient. It is necessary to correct the 
estimation of drag coefficient to account for the non-spherical shape of the particle 
and for the presence of other particles. The presence of other particles will also modify 
the drag coefficient. For example, bubbles tend to follow one another’s wake leading 
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to reduction in the effective drag coefficient. Measurements by Tsuji et al. (1984) on 
two spheres in the Reynolds number range 100 to 200 can be expressed as 

dP 
�2 

CD = CD0 1 − (4.29)
LP 

where CD0 is the drag coefficient for a single particle of diameter dP and LP is the dis
tance between the centers of the two spheres. Several correlations have been proposed 
to represent the influence of other particles on the drag coefficient (see a recent review 
by Enwald et al., 1996 and Appendix 4.2). More information about drag coefficient 
correlations is included in Part IV when discussing the modeling of different reactor 
types. 

For granular flows (fluid–solid flows), in which particle–particle interactions 
play a substantial role, it is necessary to introduce additional terms in the basic 
governing equations. Granular flows may exhibit several sub-regimes such as: (i) an 
elastic regime, in which the multiphase system behaves like an elastic solid and stress 
is strain dependent; (ii) a plastic regime, in which stress is independent of strain 
rate, typical for slow flow conditions; and (iii) a viscous regime, in which stress is 
dependent on strain rate (see Fig. 4.6 for a schematic representation of these regimes). 
Several models based on concepts ranging from elasticity to soil mechanics have been 
proposed. For reactor engineering, the kinetic theory of granular flows will be most 
useful to model fluid–solid flows in dilute to dense bed regimes. The kinetic theory 
of granular flows is based on similarities between the flow of a granular material, 
a population of particles with or without interstitial gas, and the molecules of gas. 
This treatment uses classical results from the kinetic theory of gases (Chapman and 
Cowling, 1970) to predict the form of transport equations for a granular material. One 
of the most complete works in the field of kinetic theory of granular flow is Jenkins 
and Richman (1985). Detailed discussion of the development of models of granular 
flow is beyond the scope of this book. Readers are referred to Gidaspaw (1994) and 
some recent papers (Nieuwland et al., 1996; Kuipers and van Swaaij, 1997; Peirano 
and Leckner, 1998). Kinetic theory based models introduce several additional terms 
in the solids stresses and, therefore, modify momentum conservation equations for 
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FIGURE 4.6 Schematic representation of different regimes of granular flow regimes. 
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solid phases. The solids stress can be written as: 

2¯αsτ̄s = −Ps Ī + 2αsµsS + αs λs − 
3 
µs ∇ · Us Ī (4.30) 

where Ps is solids pressure, µs is solids (shear) viscosity and λs is solids bulk viscosity. 
S̄ is given by: 

1 � � ∇Us + (∇Us)
TS̄ = (4.31)

2 

In addition to these solids stresses, the solids momentum equation may have the 
following terms: 

n 

Fg = Kls(Ul − Us) + Ss (4.32) 
l=1 

The first term on the right-hand side represents momentum exchange between solid 
phases l and s and Kls is the solid–solid exchange coefficient. The last term represent 
additional shear stresses, which appear in granular flows (due to particle translation 
and collisions). Expressions for solids pressure, solids viscosity (shear and bulk) 
and solid–solid exchange coefficients are derived from the kinetic theory of granular 
flows. 

The solids pressure, Ps consists of a collisional and a kinetic part: 

Ps = PC,sn + αsρsθs (4.33) 

where PC,sn is the pressure caused by collisions between the solid phases s and n 
and θs is the granular temperature. Granular temperature is a measure of the kinetic 
energy contained in the fluctuating velocity of particles, and is defined: 

1 
θs = u2

s (4.34)
3 

Several different expressions have been derived for solids pressure, solids shear vis
cosity and solids bulk viscosity, employing different approximations and assumptions 
while applying the kinetic theory of granular flows. Some of the commonly used equa
tions are described below (see Gidaspaw, 1994 and a review given by Peirano, 1998): 
Solids pressure: 

Ps = αsρsθs(ω + 2(1 + es)αsg0s) (4.35) 

For dense suspensions (Gidaspaw, 1994): 

ω = 1 (4.36) 

and for dilute suspensions, Bolio et al. (1995) used 

ds 
ω = 1 + √ (4.37)

6αsD 2 

es is the value of the restitution coefficient of solid particles (for elastic particles, the 
restitution coefficient is unity) and g0s is a radial distribution function. The restitution 
coefficient is defined as the ratio of normal relative velocity after the collision and 
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before the collision. The value of restitution coefficient may depend on particle size 
and relative velocity, however, generally it is assumed that it has a constant value 
for a given material. Measured restitution coefficients for different types of materials 
are given by Foerster et al. (1994). In the framework of the kinetic theory, the radial 
distribution function accounts for the increase in probability of collisions when the 
gas becomes denser. Analogously, when particles are closely packed (when motion 
is almost impossible), the radial distribution function tends to infinity. Chapman and 
Cowling (1970) derived an expression for the radial distribution function. However, 
this expression is not consistent with the asymptotic behavior of dense gases at extreme 
high concentrations. Several empirical correlations have been proposed. Lun and 
Savage (1986) proposed: 

� �−2.5αs max
αs 

g0s = 1 − (4.38)
αs max 

Ogawa et al. (1980) proposed: 

� 1 �−1 
3αs 

g0s = 1 − , αs,max = 0.65 (4.39)
αs,max 

Ma and Ahmadi (1986) proposed a more complicated expression, which shows good 
agreement with simulations. However, in most engineering simulations, the above 
two empirical expressions are used and may be considered adequate. 

Solids shear viscosity also comprises a kinetic contribution and collisional 
contributions. Commonly used expressions for viscosity are: 

4 θs 
µs,coll = αsρsdsg0s(1 + es) (4.40) 

5 π 

10dsρs(θsπ)
1/2 4 

�2 

µs,kin = 
96(1 + es)g0s 

1 + 
5 

g0sαs(1 + es) (4.41) 

Bulk viscosity accounts for resistance of solid body to dilation and can be given as 

� 
θs 
�1/24 

λs = αsρsdsg0s(1 + es) (4.42)
3 π 

In the limit of maximum packing, granular flow becomes incompressible. Under 
such conditions, the kinetic contribution to viscosity is replaced by a friction contri
bution. Theories of soil mechanics may be used to estimate such friction contributions 
(Schaeffer, 1987). 

The granular temperature, θs is obtained by solving its transport equation, which 
has the form: 

3 ∂ 
(ρsεsθs) + ∇ · (ρsεsUsθs) = τs : ∇Us − ∇ · (kθ θs) − γθ + φfs + φls (4.43)

2 ∂t 

where the first term on the right-hand side represents the generation of energy by 
the solid stress tensor, τs, the second term represents diffusion of energy (kθ is the 
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diffusion coefficient). The third term represents collisional dissipation of energy. 
The fourth and fifth terms represent energy exchange between fluid and solid, and 
solid and solid respectively. In order to close the equation set, it is necessary to 
develop expressions for new terms appearing in the governing equation of granular 
temperature. For these terms as well, several different alternative expressions have 
been derived (see Gidaspaw, 1994 and a review by Peirano, 1998). Without discussing 
specific issues related to these different expressions, here we list some of the most 
commonly used expressions required to close the equation set. Granular temperature 
conductivity can be written: 

75ρsds θsπ θs 
κθ =

√ 

1 + 
6 
αsg0s(1 + es) 

�2 

+ 2α2ρsds(1 + es)g0s (4.44)s192(1 + es)g0s 5 π 

Dissipation of energy due to inelastic collisions can be expressed in the form: 

2γθ = 3(1 − es )α
2ρsg0sθs

4 θs − ∇Us (4.45)s dP π 

Energy exchange between the fluid and the solid phase is modeled as 

φfs = −3Kfsθs (4.46) 

In order to fully understand the physical significance of various terms appearing in the 
governing equations of granular flows, the references cited above can be consulted. 
Detailed modeling of the various terms appearing in the granular flow equations is a 
fast developing field. It must be mentioned here that the modeler has to be careful to 
ensure consistency in all the different formulations when finalizing the complete set 
of governing equations. This is especially true when there are more than one solid 
phases (see Mathiesen (1997) and Mathiesen et al. (2000) for more discussion about 
the consistency in model formulations). 

Other conservation equations (enthalpy and species) for multiphase flows can be 
written following a similar general format. For example, the enthalpy conservation 
equation is written: 

∂ Dpk 
n 

(αk ρkhk )+∇ · (αk ρkUkhk ) = −∇ · q+(τk : ∇Uk )+εk + (Qpk + Spkhpk )+Sk 
∂t Dt 

p=1 

(4.47) 
where hk is the specific enthalpy of phase k and Sk is the source of enthalpy (for 
example, due to chemical reaction). Qpk is the energy transfer between the pth and 
kth phase. Spkhpk is the energy transfer associated with the mass transfer between p 
and k phases. Heat or mass transfer between phases must satisfy the local balance 
condition: 

Qpk = −Qkp Spk = −Skp (4.48) 

The species conservation equation for multiphase flows can be written: 

n 
i i∂ 

(αk ρkmk
i ) + ∇ · (αk ρkUkmk ) = ∇ · (αk ρkDk

i ∇mk ) + (Spk ) (4.49)
∂t 

p=1 
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where mk
i is the mass fraction of species i in phase k. Spp (mass transfer from phase p 

to phase p) is zero. The rate of energy or mass transfer between phases can be written: 

Qpk or Spk = (hpk or kpk )(φp − φk ) (4.50) 

where the second term on the right-hand side represents the temperature or concen
tration driving force and the first term represents heat or mass transfer coefficient. An 
appropriate value of heat or mass transfer coefficient can be obtained by using suitable 
correlations of Nusselt number (in terms of Reynolds number and Prandtl number) or 
Sherwood number (in terms of Reynolds number and Schmidt number). Some typi
cal correlations to estimate fluid–particle heat transfer coefficients and mass transfer 
coefficients are listed in Appendix 4.3. Evaporation of volatile fluid from dispersed 
phase particles needs special attention. Several different models with varying degrees 
of sophistication have been proposed. More often than not, semi-empirical models 
based on saturation and boiling temperatures along with time relaxation parameters 
are adequate to simulate evaporation processes in chemical reactors. In these models, 
source due to evaporation or condensation is generally expressed as 

rvαl ρl (Tl − Tsat )
ṁv = (4.51)

Tsat 

where Tsat is a saturation temperature and rv is an empirical parameter controlling 
the rate of evaporation. See, for example, Theologos et al. (1997) on modeling the 
evaporation of liquid oil in the bottom section of a FCC riser reactor. 

Boundary conditions for Eulerian multiphase flow models can be formulated 
using the usual practices discussed in Chapter 2. Some comments regarding special 
considerations for multiphase flows are included here. At impermeable walls, the 
usual ‘no slip’ boundary condition can be specified for the continuous phase. However, 
this condition will not be realistic for dispersed phase particles, which may slip 
along the wall if the particle size is bigger than the characteristic roughness scale of 
walls (Fig. 4.7). Sinclair and Jackson (1989) and Sommerfeld (1993) discussed the 
formulation of these boundary conditions in detail. For granular flows, Sinclair and 
Jackson (1989) formulated wall boundary conditions based on a microscopic model 
of particle collisions with the wall. They assumed that momentum flux transmitted 
to the boundary by collisions (product of the change of momentum per collision, 
collision frequency and the number of particles per unit area next to the wall) is equal 
to the tangential stress exerted by the particle adjacent to the wall. This leads to the 
following boundary condition: 

√ 
πρsUsψ θsαs 

τsw = √ � � (4.52)
2 3αs max 1 − (αs max/αs)

−1/3

where ψ is a specularity coefficient (equivalent to 1 minus the tangential restitution 
coefficient). For the granular temperature, a zero flux boundary condition is usually 
specified at the walls. Alternatively, it is possible to derive a boundary condition 
for granular temperature at the wall by equating the sum of the flux of granular 
temperature to the wall and the generation of granular temperature at the wall to the 
energy dissipation at the wall due to inelastic particle–wall collisions. Details may be 
found in Johnson and Jackson (1987). 
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FIGURE 4.7 Dispersed phase particles may slip at wall. 

The other situation which may require special treatment is a boundary of mul
tiphase dispersion through which dispersed phase particles are allowed to escape, 
but not the continuous phase (for example, the top surface of gas–liquid dispersion 
in a bubble column reactor). The standard ‘outlet’ boundary conditions need to be 
suitably modified to represent the observed flow processes. It is possible to simulate 
the actual behavior by specifying appropriate sink near the top surface (see Ranade, 
1998 and Chapter 11). 

So far, discussion has been restricted to laminar multiphase flow processes. How
ever, in most industrial multiphase reactors, flow processes are turbulent. Modeling 
multiphase turbulent flow processes is a fast developing field. Some recent devel
opments and general modeling issues are briefly discussed here. The presence and 
motion of dispersed phase particle may affect the macroscopic turbulence field of 
the continuous phase as well as the microscale characteristics of this turbulence field. 
Depending on particle size, density (particle response time) and volume fraction of the 
dispersed phase, dispersed phase particles may enhance or suppress the turbulence. 
Particles may interact with microscale fluctuations of continuous phase and may damp 
the turbulence (suspension and oscillations of particles may dissipate the energy). 
Larger particles may enhance turbulence by extracting energy from macroscale fluc
tuations and by vortex shedding. Elghobashi (1991) proposed a regime map based on 
particle response time and the Kolmogorov time scale to identify the influence (damp-
ing/enhancement) and degree of coupling between turbulence regimes in multiphase 
flows (Fig. 4.2). This map may be used to estimate the extent of coupling between 
dispersed phase particles and turbulence. 

Most attempts at modeling complex, turbulent multiphase flows rely on the prac
tices followed for single-phase flows, with some ad hoc modifications to account 
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for the presence of dispersed phase particles. For multiphase flows, several new 
correlations appear in time-averaged (RANS type) governing equations. Different 
models have been proposed to specifically represent turbulence in dispersed gas– 
liquid (reviewed by Ranade, 1995; Lahey, 1987; Lane et al., 1999) and dispersed 
gas–solid flows (reviewed by Sommerfeld, 1993; Bolio et al., 1995; Peirano, 1998). 
Some of these models are discussed in Part IV, while discussing the specific issues 
in modeling bubble column and fluidized bed reactors. The two-equation turbulence 
models (k–ε) form the basis for most of these studies. Turbulence in a continuous 
phase is usually modeled using transport equations for turbulent kinetic energy and 
turbulent energy dissipation rates. These transport equations are written in a form 
similar to single-phase flows: 

∂ 
(αk ρk φk ) + ∇ · (αk ρkUk φk ) = −∇ ·  αk 

µTk ∇φk + Sφk (4.53)
∂t σTk 

where φk can be turbulent kinetic energy or turbulent energy dissipation rate in phase 
k. The symbols µTk and σTk have usual meanings of turbulent viscosity and turbulent 
Prandtl number for phase k. Sφk is the corresponding source term for φ in phase k. 
Source terms for turbulent kinetic energy and dissipation can be written: 

Skk = αk [(Gk + Gke) − εk ] (4.54) 

εk
Sεk = αk [C1(Gk + Gke) − C2εk ] (4.55)

kk 

where Gk is generation in phase k and Gke is extra generation (or dissipation) of tur
bulence in phase k. Generation due to mean velocity gradients, Gk can be calculated 
using the single-phase flow equation (Eq. (3.23)). Extra generation or damping of 
turbulence due to the presence of dispersed phase particles is represented by appro
priate formulation for Gke. Some formulations for Gke, suitable for gas–liquid and 
gas–solid flows, are discussed in Part IV when discussing different reactor types. 
In the absence of adequate information, in many cases, extra generation terms are 
usually set to zero. Various attempts to develop models to represent extra genera
tion or damping of turbulence are reviewed by Lahey (1987) and more recently, by 
Peirano and Leckner (1998). The turbulent viscosity, µTk , is calculated using the 
formula specified for single-phase flows (Eq. (3.20)). The values of parameters for 
the k–ε model are usually kept the same as those for the single-phase model (listed 
in Table 3.1). In principle, values of these parameters will be functions of particle 
loading and ratio of particle relaxation time to eddy lifetime (Lahey, 1987; Squire 
and Eaton, 1994). Cao and Ahmadi (1995) discussed the variation of parameter (Cµ) 
appearing in the expression for turbulent viscosity with volume fraction of dispersed 
phase. More research is needed to predict the continuous phase turbulence in mul
tiphase flows accurately. The situation becomes even more difficult when modeling 
turbulence in the dispersed phase. Turbulence in the dispersed phase may be phys
ically understood as the particle velocity fluctuations caused by collisions between 
particles and interactions with the continuous phase. These modeling attempts are 
discussed by Balzer et al. (1995), Simonin (1995) and Enwald et al. (1996). 

In most practical applications of dispersed multiphase flows, the suspension 
consists of non-spherical particles having different diameters. The range of particle 
diameters or particle size distribution may (non-reactive fluidization of particles) or 
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may not remain constant (bubble columns where gas bubbles may coalesce or break 
up and change the particle size distribution). It is necessary to adequately model the 
influence of particle size distribution on the fluid dynamics of multiphase flows. With 
the Lagrangian approach, the influence of particle size distribution can be readily 
included in the simulations. However, in a Eulerian–Eulerian approach, appropriate 
models and closures need to be developed. The three major approaches to accounting 
for the influence of particle size distribution (PSD) on fluid dynamics of multiphase 
flows are discussed below. 

The first approach is an approximation, which relies on identifying an effective 
value of size of dispersed phase particle, which will behave in the same way as the 
population of dispersed phase particles with a specific PSD. Such an approach may 
give acceptable results if the PSD is narrow and smooth (uni-modal). There are many 
ways of defining a mean or an effective particle diameter for the suspension of parti
cles. The mean volume-length diameter, the mean volume-surface diameter (Sauter 
mean diameter) and the mass mean diameter are the most commonly used mean diam
eters (Soo, 1990). According to Soo (1990), the mean volume diameter is suitable 
for the determination of volume fraction, whereas the mean surface diameter is rele
vant to physical mechanisms at the interface. Recently, Peirano and Leckner (2000) 
analyzed the fluid dynamics of gas–solid flows and concluded that for dilute suspen
sions (where collisional mechanisms can be neglected), if particle Reynolds numbers 
are smaller than 1, the mean volume-length diameter is the most representative. At 
higher Reynolds number (>1000), the mean volume-surface diameter is the most 
representative. For intermediate Reynolds number, the effective diameter smoothly 
varies from the mean volume-length to the mean volume-surface diameter. Such an 
effective diameter may be specified to simulate suspensions with narrow PSD. 

When PSD is not smooth and wide (or is bi-modal), it is necessary to rep
resent the dispersed phase by more than one fluid phase. The size distribution of 
dispersed phase particles is usually discretized into a few size groups. Each of these 
size groups is considered as an individual dispersed phase when simulating such mul
tiphase flows. Several attempts have been made to develop a multiple solid phase 
granular flow model to simulate gas–solid flows with a wide size distribution of solid 
particles. Jenkins and Mancini (1987) extended the kinetic theory of granular flow 
to binary mixtures (assuming equal granular temperature). Gidaspaw et al. (1996) 
and Magner (1996) extended this to binary mixtures with unequal granular tempera
ture. Recently, Mathiesen et al. (2000) developed a generalized gas–solid model with 
multiple solid phases. They also discuss several consistency issues in formulating 
such a generalized model. Such a generalized model requires appropriate formu
lations of particle–particle drag coefficients, apart from consistent formulations of 
various previously discussed terms such as radial distribution function, solids pres
sure, solids viscosity and so on. It must be noted that computational requirements 
increase significantly with an increase in the number of solid phases. Mathiesen et al. 
(2000) reported results of simulations with three solid phases, which show encourag
ing agreement with experimental data. This approach shows promise, and deserves 
further investigation to explore applications to industrially relevant multiphase flows. 

A similar approach can be used to simulate fluid–fluid flows such as gas–liquid 
or liquid–liquid. However, in such flows the dispersed phase particles can coalesce or 
break up during the flow, and the particle size distribution evolves as the flow devel
ops. Therefore, to define multiple phases with specific ranges of particle diameters 
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to represent the dispersed phase, it is necessary to develop models of coalescence 
and break-up to simulate the changes in particle size distribution. Recently Carrica 
et al. (1999) reported the development of such a model to simulate bubbly two-phase 
flows. They derived conservation equations for different bubble phases by represent
ing an equation of bubble size distribution function as a multi-group scheme. An 
equation for bubble number density corresponding to each group can then be derived 
after incorporating appropriate coalescence and break-up models (see for example, 
Prince and Blanch, 1990 or Luo and Svendsen, 1996 for coalescence and break-up 
models). Carrica et al. (1999) used 15 groups for simulating bubbly flow around a 
surface ship. Thus, instead of solving transport equations for two phases, they need 
to solve transport equations for 16 phases, which requires much larger computational 
resources. The required resources will be increased by a factor more than the ratio 
of the number of transport equations in the model (8), because of the increase in the 
required number of iterations to converge. When the bubble size distribution makes 
significant contributions, it is necessary to adopt such an approach. As an alternative 
to such intensive simulations, an approximate model for coalescence and break-up 
may be developed by considering a bubble number density equation. Coalescence 
and break-up processes locally affect bubble number density. A local effective bubble 
diameter can then be found from bubble number density and gas volume fraction. 
This approach avoids having to solve an excessive number of transport equations and 
may give adequate representation of the variation of effective bubble size within the 
domain. Lane et al. (1999) recently used such an approach to simulate gas–liquid 
flows in stirred vessels. 

The recent progress in experimental techniques and applications of DNS and 
LES for turbulent multiphase flows may lead to new insights necessary to develop 
better computational models to simulate dispersed multiphase flows with wide particle 
size distribution in turbulent regimes. Until then, the simulations of such complex 
turbulent multiphase flow processes have to be accompanied by careful validation 
(to assess errors due to modeling) and error estimation (due to numerical issues) 
exercise. Applications of these models to simulate multiphase stirred reactors, bubble 
column reactors and fluidized bed reactors, are discussed in Part IV of this book. 

4.3. OTHER TYPES OF MULTIPHASE FLOWS 

4.3.1. Flow Processes in Porous Media 

Fixed bed reactors or packed bubble column reactors are examples of flow processes 
occurring in porous media, which are commonly encountered by reactor engineers. 
The problem of predicting fluid flow and the rates of mixing and other transport 
processes in such reactors is an important task for a reactor engineer. In general, 
two approaches are used to model the fluid dynamics of such reactors. The first one 
uses a lumped parameter approach and treats the irregular geometry of the packed 
region as an isotropic or non-isotropic porous media, characterized by a few lumped 
parameters. The second approach treats the geometrical intricacies of the packed 
region rigorously. Obviously, the second approach is computationally demanding 
and can be applied only to a small region of the reactor. It nevertheless can serve as 
a useful learning tool. These approaches are briefly discussed below. 
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In the lumped parameter approach, the packed region or the porous region is 
represented by introducing a suitable source or sink in the appropriate conservation 
equations. Most of the engineering simulations of flow through porous media (such as 
flow through fixed bed reactors or bundles of heat exchanger tubes) use this approach. 
The extra resistance offered by the porous medium to the flow can, for example, be 
represented by introducing a sink in the usual single-phase momentum conservation 
equations as: 

µ 1 ∇pp = − U − C ρU|U| (4.56)
β 2 

where β is a permeability and C an inertial resistance factor characterizing the porous 
media. The values of these two empirical constants need to be specified either from 
experimental data or by using the more rigorous models mentioned earlier. To model a 
packed bed reactor, usually the Ergun (1952) equation is used to estimate the values of 
characteristic parameters. Use of the Ergun equation leads to the following expressions 
for β and C: 

β = 
D2 

p 

150 

ϕ3 

(1 − ϕ)2 
C = 

3.5 

Dp 

(1 − ϕ) 

ϕ3 
(4.57) 

where Dp is particle diameter and ϕ is porosity. It is possible to use different values 
of these characteristic constants for different directions to represent the anisotropy of 
porous media. Any other empirical pressure drop correlation may be used instead of 
the Ergun equation. To model the porous region of complex shaped particles, such as 
fibers of glass wool, more complex equations or a look-up table may also be used. 

The additional sink is added to the usual conservation equations corrected for 
the volume fraction of the porous media. The governing equations look similar to 
those for Eulerian multiphase flow processes (Section 4.2.2) except that the volume 
fraction of the porous medium is not a variable. In the enthalpy equation, it is possible 
to include influence of porous media by considering an effective thermal conductivity, 
keff , of the form: 

= ϕkf + (1 − ϕ)ks (4.58)keff 

where ϕ is a porosity. Subscripts f and s denote fluid and solid, respectively. It 
may also be necessary to include suitable modifications in the turbulence model to 
account for the different turbulence generation mechanism within the porous media. 
More often than not, the characteristic length scale of the porous region determines 
the characteristic length scale of the turbulence downstream of the porous region. The 
presence of porous media, therefore, decouples turbulence field upstream of porous 
region from the downstream. In such a situation, a length scale appropriate to the 
porous region under consideration may be used to estimate the desired turbulence 
quantities at the interface between the porous region and the downstream region. 

Rigorous modeling of flow through porous media is very challenging, and 
recently, it has been explored as a learning tool. In this approach, microscopic flow 
processes are modeled in detail by considering a small periodic structure of the porous 
media. Geometrical details of solid regions and open regions are modeled rigorously. 
Therefore, although the governing equations become relatively simple (single-phase 
flow equations), the geometric modeling and grid generation become quite compli
cated. Computational demands also increase significantly. For example, Logtenberg 
et al. (1999) simulated flow and heat transfer in a fixed bed reactor by considering ten 
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spherical particles in close contact. They had to use about 250 000 computational ele
ments. Their model does not need any empirical parameters and could reproduce the 
flow and heat transfer behavior of a cluster of particles quite well. Such models will 
be very useful in developing a detailed understanding of microscopic flow structures 
in packed bed reactors and will complement lumped parameter models. 

4.3.2. Separated Multiphase Flows 

While discussing the flow through porous media in the above section, it was assumed 
that the open space is filled by a homogeneous continuous phase. It is possible to 
encounter situations in which more than one phase flows through packed beds. For 
example, in a typical absorption column/reactor, gas and liquid phase flow through 
the packed bed. For such a flow, there exists an interface between gas and liquid 
phases. Such a flow regime is called a separated flow regime. When gas and liquid 
phases are transported through conduits at high gas throughputs, an annular flow 
regime may exist in which liquid flows in the form of an annular film attached to 
the conduit walls and gas flows through the central core. This flow regime is also a 
separated flow regime. In a separated flow regime, several sub-regimes such as wavy 
flow may exist. To model such separated multiphase flows, it is necessary to use a 
volume of fluid (VOF) approach, since the interface between separated phases plays 
an important role. The basics of the VOF approach have already been discussed in 
Section 4.2.3. Application of VOF to simulate complex, separated multiphase flow 
have only recently started. Wehrli et al. (1997) and Casey et al. (1998) show some 
results of the application of VOF to simulate wavy flow over inclined solid surfaces. 
Considering the computational requirements of such simulations, the rigorous mod
eling of separated multiphase flows may be used as a learning tool and to developing 
semi-empirical lumped sub-models. Such lumped sub-models can then be used to 
simulate complex, multiphase flows through packed beds. The approach discussed 
for modeling flow through porous media may be extended to simulate multiphase 
flows through porous media. Details of modeling such packed bed or trickle bed 
reactors are briefly discussed in Chapter 13. 

4.4. SUMMARY 

Modeling multiphase flow processes is a complex and still developing subject. It is 
often an iterative process requiring multiple modeling frameworks to understand dif
ferent aspects of the flow problem. The underlying physics is still inadequately known 
and a reactor engineer modeling complex multiphase flow processes often has to com
plement detailed modeling efforts with validation experiments and data analysis. It 
is indeed essential to use a hierarchy of models with an appreciation of ‘learning’ 
versus ‘simulation’ models to represent multiphase flow processes accurately. An 
appropriate methodology needs to be developed to systematically interpret the results 
obtained using different modeling frameworks. Ultimately, there is no substitute for 
the engineering judgement and creativity of a reactor engineer to develop a tractable 
computational model to simulate complex industrial multiphase flow processes. 
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APPENDIX 4.1. TIME SCALES FOR DISPERSED MULTIPHASE FLOWS (FROM 
PEIRANO AND LECKNER, 1998) 

Eddy lifetime or the integral time scale of turbulence can be expressed in the frame
work of the k–ε model as 

′ CDk1 
τ1 = (A4.1.1)

ε1 

Subscript 1 indicates continuous phase and 2 indicates dispersed phase. CD is a 
parameter of the standard k–ε model (0.09), k1 is turbulent kinetic energy and ε1 is 
turbulent energy dissipation rate. The eddy lifetime seen by dispersed phase particles 
will in general be different from that for continuous phase fluid particles due to the 
so-called crossing-trajectory effect (Csnady, 1963). This can be expressed in the form: 

τ ′ 
τ ′ 1= � (A4.1.2)12 � � 

1 + Cβ 3|Ur |2/2k1 



� 

� 

APPENDIX 4.2 119 

where Ur is relative velocity and Cβ is a constant which depends on the type of 
flow. The particle relaxation time, which represents entrainment of particles by the 
continuous phase, is defined by 

4dPρ2 
τ x = (A4.1.3)12 3ρ1CDP |Ur | 

where CDP is the average drag coefficient for a single particle in a suspension. In the 
frame of a kinetic theory, the particle–particle collision time can be written: 

dP π 
�1/2 

τ c = (A4.1.4)2 24α2g0 θs 

where θs is the granular temperature and g0 is a distribution function defined in Section 
4.2.2. Particle response time is defined as 

ρ2dp
2 

τp = (A4.1.5)
18µ1 

APPENDIX 4.2. CORRELATIONS FOR DRAG COEFFICIENT 

A4.2.1. Drag Coefficient for Single Particle 

Reference Correlation 

A B 
Morsi and Alexander (1972) CDS = + + C ∵ Res = 

ρCdp|Up − UC|
Res Re2

s µC 

Res A B C 
0–0.1 24 0 0 
0.1–1 22.73 0.0903 3.69 
<10 29.2 −3.9 1.222 
<100 46.5 −116.7 0.6167 
<1000 98.3 −2778 0.3644 

24 4 
Molerus (1980) CDS = + √ + 0.4 

Res Res 

24 � � 
Patel et al. (1993) CDS = 1 + 0.15 Re0

s 
.687 Res < 1000 

Res 

24 
Richardson et al. (1971) CDS = Res < 0.2 

Res 

24.0 3.6 
0.2 < Res < 500CDS = + 

Re0.313Res s 

4.0 
CDS = Res > 500 

9.0 
24 � � 

Ma and Ahmadi (1989) CDS = 1 + 0.1 Re0
s 
.75 

Res 

4.8 
�2 

Dalla Ville (1948) CDS = 0.63 + √ 
Res 
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Morsi and Alexander’s (MA) correlation represents the single-particle drag curve 
accurately. Ma and Ahmadi’s correlation predicts values comparable with the MA 
correlation. Molerus’ correlation deviates from the MA correlation at higher Reynolds 
numbers. Patel’s correlation is found to give a better fit with the MA correlation 
than Richardson’s correlation. Dalla Ville’s correlation overpredicts values of drag 
coefficient compared to the MA correlation. 

A4.2.2. Drag Coefficient for Multi-particle Systems 

Reference Correlation 

Molerus (1980) 

Ergun (1952) 

Richardson and 
Zaki (1954) 

Ma and Ahmadi 
(1989) 

Garside and 
Al-Dibouni 
(1977) 

Modified 
Richardson 
and Zaki equation 
by Garside and 
Al-Dibouni 
(1977) 

� ro 
�224 ro 1 

CDM = 1 + 0.347 + 
Re δ 2 δ ζ =0.9 

4 ro +√ + 0.4 + 0.565 
Re δ ζ =0.9 

ro 1 = ∵ ζ = packing parameter 
δ (ζ/(1 − α)1/3) − 1.0 

4 150(1 − α)
CDM = + 1.75 α <  0.8 

3α αRe 
24 � � 

CDS = 1 + 0.15 Re0
s 
.687 Res < 1000 

Res 

CDS = 0.44 Res > 1000 

CDM = CDSα
−2.65 α >  0.8 

1 
CDM = CDS 

(1 − ((1 − α)/αSmax))2.5αSmax 

24 � � 
CDS = 1 + 0.1 Re0

s 
.75 

Res 

A = α4.14 

B = 0.8α1.28 α � 0.85 

B = α2.65 α >  0.85 

f = 0.5 A − 0.06 Re + 0.0036 Re2 + 0.12 Re(2B − A) + A2 

� �2 
1 4.8 

CDM = 
f 2

0.63 + � 
(Re/f ) 

5.1 + 0.27 Re0.9 
sn = 

1 + 0.1 Re0.9 
s 

CDS
CDM = 

α2(n−1) 

α: volume fraction of dispersed phase. 
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The Ergun equation with the Richardson and Zaki correlation (ERZ) gives continuous 
variation of the drag coefficient over the relevant range of dispersed phase volume 
fractions. The modified Richardson and Zaki correlation (MRZ) was also found to 
give a similar continuous variation of drag coefficient. The predictions of Molerus’s 
correlation were found to be very sensitive to the values of packing parameters at a 
continuous phase volume fraction of about 0.4. Either ERZ or MRZ correlations may 
be used to represent the influence of other particles when simulating dense gas–solid 
flows. 

APPENDIX 4.3. INTERPHASE HEAT AND MASS TRANSFER CORRELATIONS 

System Correlation Reference 

Solid or fluid 
particle, 
Re ∼ 1 

Solid or fluid 
particle, high 
Pe and low Re 

Solid or fluid 
particle, low 
Pe and low Re 

Solid or fluid 
particle, 
high Re 

Solid particles, 
low Re 

Particles at 
all Pe 

Granular 
flows/dense 
flows 

Dense flows 

Nu or Sh = 2 + Pe/2 ∵ Pe = Re Pr Rimmer (1968) 

Nu or Sh = 0.997 Pe1/3 ∵ Pe = Re Pr Levich (1962) 

Nu or Sh = 0.997 Pe1/3 + 0.992 Acrivos and 
Goddard (1965) 

Nu or Sh = 2 + 0.6 Re1/2 Pr1/3 Ranz and 
Marshall (1952) 

)1/2Nu or Sh = (4 + 1.21 Pe2/3 Brian and Hales 
(1969) 

Nu or Sh = 1 + (1 + Pe)1/3 Clift et al. (1978) 

Nu = (7 − 10αc + 5αc
2)(1 + 0.7 Re0.2 Pr1/3) Gunn (1978) 

+(1.33 − 2.4αc + 1.2αc
2) Re0.7 Pr1/3 

Nu or Sh � = � Nelson and 
Galloway 2ξ + 2ξ 2 (1−αc )

1/3 − 2 tanh ξ
[1−(1−αc )1/3]2 

(1975) 
ξ − tanh ξ1−(1−αc )1/3 

ξ = 0.3 (1 − αc)
−1/3 − 1 Re1/2 Sc1/3 

Dimensionless numbers appearing in these correlations are as follows:

Re = Particle Reynolds number = (ρcdpUr /µc)

Pr = Prandtl number = (µcCp/kc)

Pe = Peclet number = Re Pr or Re Sc

Sc = Schmidt number = (µc/ρcD)
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The first five correlations predict limiting values of the Sherwood or Nusselt number 
as 2 and are mainly valid for single-particle or very dilute flows. The last two correla
tions predict Nusselt and Sherwood numbers lower than 2 for dense flows and should 
be used to simulate dense granular flows. 
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REACTIVE FLOW PROCESSES 

5.1. INTRODUCTION 

Modeling and analysis of reactive flow processes is the most important task carried 
out by chemical reactor engineers. A brief introduction to the classical reaction engi
neering approach to this task is given in Chapter 1. The concepts of residence time 
distribution and mixedness have been used extensively in the past to gain an insight 
into the interaction of flow, mixing and chemical reactions. Classical analysis based on 
these concepts, treats the chemical reactions in a rigorous way but makes some drastic 
assumptions about the underlying fluid dynamics. When the characteristic time scale 
of chemical reactions is comparable to or lower than the characteristic time scale for 
mixing, effective reaction rate is a complex function of mixing (and fluid dynamics) 
and chemical kinetics. Several idealized models, the so-called micromixing models, 
have been developed to treat such situations (some of which are discussed later in 
this chapter). These micromixing models require information about local turbulent 
kinetic energy and energy dissipation rates. It is, therefore, necessary to develop fluid 
dynamics based models of reactive mixing to enable better understanding and con
trol over reactive flow processes. In many practical situations, even when reaction 
time scales are not smaller than mixing time scales globally, local hot spots may 
make reaction time scales smaller than local mixing time scales. Detailed CFD-based 
models need to be developed to understand the formation of such local hot spots and 
their effect on reactive flow processes. Even for slow reactive processes, CFD-based 
models are needed to establish relationships between several hardware-related issues 
(location, orientation and design of feed nozzles, distributors, internals and so on) and 
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reactor performance. This chapter discusses various issues concerned with modeling 
approaches to reactive flow processes. 

In any reactive flow process, molecular diffusion, which brings molecules of 
different species together, is essential for chemical reactions to occur. Mixing or some 
form of interspecies contact is essential for mutual molecular diffusion. Reactive flow 
processes are therefore controlled by fluid mechanics, mixing, diffusion and chemical 
reactions. Any useful mathematical model of reactive flow processes should give 
emphasis to all contributions in proportion to the importance of their effects. The 
interaction of these processes may lead to different reactor performances for the 
same chemical reaction. The same reaction rate (kinetics) may be classified as ‘slow’ 
or ‘fast’ depending on the relative rates of reactions and mixing. In principle, it 
is possible to represent all details of the reactive flow processes by the governing 
equations discussed in Chapter 2. These governing equations may be solved to get 
all the information, from the largest macroscopic space scale to the point where the 
fluid assumption itself breaks down, provided all the necessary data and boundary 
conditions are available. 

The real question is how, in practice, this information can be obtained from the 
governing equations considering the severe constraints imposed by finite computer 
memory, storage and processing speeds. Even in the case of slow reactions, solutions 
to reactive flow processes require special techniques because of the presence of non
linear reaction sources. When reactions are fast, obtaining accurate solutions of even 
laminar reactive flow processes is extremely difficult (Oran and Boris, 1982). The 
presence of turbulence complicates the task of modeling reactive flow processes by 
an order of magnitude. The existence of widely different and interacting scales makes 
the task of formulating governing equations much more difficult than with laminar 
flow processes. It is necessary to understand the different steps occurring in turbu
lent reactive flow processes in order to examine the possibility of developing models 
suited to specific classes of flow processes. Though such models may lack universal 
applicability, they will still be valuable tools in modeling particular classes of reac
tive flow processes. The presence of more than one phase further complicates the 
modeling of reactive flow processes. It is necessary to judiciously combine conven
tional reaction engineering models developed for multiphase reactors with rigorous 
CFD-based models to achieve the relevant reactor engineering objectives. 

In this chapter, modeling turbulent reactive flow processes and multiphase reac
tive processes is discussed. First, the following section discusses general aspects of 
mixing and defines various characteristic time scales for turbulent reactive flow pro
cesses. Different approaches to modeling single-phase reactive processes are briefly 
reviewed. More emphasis is given to modeling reactive flow processes in the liquid 
phase than in the gas phase. RANS-based phenomenological models and probability 
density function based models to simulate single-phase flows are then discussed in 
detail. In Section 5.3, modeling multiphase reactive processes is briefly discussed. 
Applications of these models to simulate different industrial reactors are discussed in 
Part III and Part IV. 

5.2. TURBULENT REACTIVE MIXING 

Traditionally reactor engineers analyze the mixing of fluids in terms of the degree 
of segregation (Levenspiel, 1972), a measure of mixing on the molecular scale. 
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FIGURE 5.1 Macrofluid and microfluid Idealizations (from Levenspiel, 1972). 

Two extremes of molecular mixing are traditionally known as microfluid and 
macrofluid. In microfluid, species are completely mixed on a molecular scale, while 
in macrofluid, there is no mixing on a molecular scale although the lumps of fluid are 
macroscopically well mixed. When miscible reactants are brought together to react in 
a reactor, the extent of mixing may control the reactor performance. Consider the case 
of a reactor carrying out reactions between two reactants A and B as shown in Fig. 5.1. 
Reactants A and B are introduced into the reactor in separate streams. Two extremes of 
microfluid and macrofluid may be considered. When reactants A and B are mixed on 
a molecular scale at a rate much faster than the reaction rate (microfluid), reaction will 
occur and the effective rate will be controlled by reaction kinetics. When reactants A 
and B are mixed macroscopically but are not mixed on a molecular scale (macrofluid), 
virtually no reaction can take place. Real systems will behave in an intermediate way, 
exhibiting A-rich and B-rich regions with partial segregation. In many fast reactions 
(compared to mixing) and high viscosity systems (such as polymerization reactions), 
the mixing process interacts with chemical reactions and may significantly influence 
the reactor performance (product distribution, product quality and so on). The tradi
tional methods of finding the upper and lower limits on performance by employing the 
microfluid and macrofluid concepts are useful to guide the base-line design. Detailed 
fluid dynamics based modeling and simulations of interaction between mixing and 
chemical reactions may, however, lead to enhanced understanding and the capability 
to tailor the reactor performance. This chapter is restricted to the analysis of turbu
lent reactive mixing. Before discussing modeling approaches, it is useful to consider 
a physical picture of turbulent mixing and to estimate the relevant length and time 
scales to determine whether the reaction is ‘fast’ or ‘slow’. 

The basic concepts and physical picture of turbulence were discussed in 
Chapter 3. As discussed there, fluid motions of several scales co-exist in turbulent 
flows. Vortex stretching continuously forms small-scale fluid motions from large-
scale motions. Kinetic energy is transferred to progressively smaller scales during 
this process. At the smallest scale, energy is irreversibly dissipated into heat at a rate 
ε, the turbulent energy dissipation rate. These smallest scales are called Kolmogorov 
scales and are defined as 

( ν 
λK = tK = (5.1) 

ν3 )1/4 )1/2 

ε ε 
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where ν is kinematic viscosity (momentum diffusivity), λK is the length scale and tK 

is the time scale. The strongly dissipative nature of fluid motions at these smallest 
scales indicates ‘viscous mixing’. This formation of smaller scales constitutes the 
essence of mixing. Complete viscous mixing, however, does not ensure complete 
molecular mixing because in general, momentum diffusivity and molecular diffusivity 
are different. Molecular mixing is usually characterized by the Batchelor length scale, 
λB, which is the penetration depth of the scalar by diffusion in the Kolmogorov time 
scale, tK and can be written: 

λK ν 
λB = √ ∵ Sc = (5.2)

Sc D 

where Sc is the Schmidt number and D is the molecular diffusion coefficient. For 
most gases, the Schmidt number is of the order of unity and therefore molecular 
mixing is as fast as viscous mixing. However, for most liquids, the Schmidt num
ber is of the order 1000, which implies much slower molecular mixing. Typical 
energy and concentration spectra (and dissipation of turbulent kinetic energy and 
concentration fluctuations) for isotropic turbulence are shown in Fig. 5.2. The upper 
two curves are for turbulent kinetic energy and the lower two curves are for con
centration fluctuations. It can be seen that the spectrum for concentration extends 
further to the right (towards scales smaller than Kolmogorov scales) than the energy 
spectrum (for systems with ν/D � 1). For accurate simulation of mixing, it is 
necessary to resolve all the scales contributing to the dissipation of concentration 
fluctuations. This means that for simulations of reactive mixing in liquids, an even 
wider (than simulations of turbulent flows) range of length scales, encompassing 
inertial-convective, viscous-convective and viscous-diffusive sub-ranges, need to be 
modeled and resolved. 

In order to gauge the relative importance and possible interaction between turbu
lence and chemical reactions, it is necessary to evaluate the various processes involved 
in reactive mixing. When a fluid element of different component (tracer) is added to 
the turbulent flow field, molecular mixing (and reaction, if possible) proceeds through 
several steps/mechanisms, some of which are listed below: 

Step 1: convection by mean velocity 
Step 2: turbulent dispersion by large eddies 
Step 3: reduction of segregation length scale 
Step 4: laminar stretching of small eddies 
Step 5: molecular diffusion and chemical reaction 

The fluid element of a tracer is transported within the solution domain by the mean 
flow field. During this process, turbulent fluctuating motions reduce the characteristic 
scales of ‘lumps’ of tracer (turbulent dispersion by large eddies). Generally, chemical 
engineers use the scale of segregation and intensity of segregation to characterize 
turbulent mixing (Danckwerts, 1953). The scale of segregation is a measure of the 
size of the unmixed lumps. Intensity of segregation is a measure of the difference in 
concentration between neighboring lumps of fluid. The lower the intensity of segrega
tion the more the extent of molecular mixing. These two parameters are demonstrated 
qualitatively in Fig. 5.3 (for rigorous definitions, see Brodkey, 1975). Convection and 
turbulent dispersion by large eddies lead to macroscale mixing and do not cause any 
small-scale mixing. Fluid motions in the inertial sub-range reduce the characteristic 
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FIGURE 5.2 Energy and concentration spectra for isotropic turbulence (from Bakker, 1996). 

scales of lumps of tracer via vortex stretching. This is step 3 mentioned above. Such 
a reduction in scale increases the interfacial area between segregated lumps of tracer 
fluid and the base fluid, which increases the rate of mixing by molecular diffusion. 
However, the increase in interfacial area resulting from inertial sub-range eddies may 
not be substantial. The mixing caused by this step is typically called ‘meso-mixing’. 
Meso-mixing reduces the scale of mixing substantially but does not significantly 
affect the intensity of mixing. Engulfment and viscous stretching by Kolmogorov 
scale eddies lead to substantial increases in the interfacial area for molecular diffusion 
and therefore, contribute significantly to molecular mixing. A schematic represen
tation of steps 3 and 4 is shown in Fig. 5.4. Inertial sub-range motions reduce the 
characteristic scale of mixing to the Kolmogorov length scale, λK. Viscous-convective 
motions (engulfment and stretching) create a large interfacial area for molecular dif
fusion and reduce the characteristic scales to Batchelor length scale, λB. The final step 
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FIGURE 5.3 Scale and intensity of segregation (from Brodkey, 1975). 

is a diffusion process through the interfacial area between layers of different fluids, 
accompanied by chemical reactions, if any. Molecular diffusion leads to complete 
mixing and dissipates concentration fluctuations. 

In addition to an examination of length scales, it is useful to carry out quantitative 
examination of different relevant time scales of the mixing processes. Comparison 
of these time scales with the characteristic time scales of chemical reactions will be 
useful to determine the rate-controlling step in reactive flow processes. 

The characteristic time scale for convection can be written: 

LR VR 
τc = or (5.3)

UR QR 

where LR is the characteristic length scale and UR the characteristic velocity scale of 
the reactor. The second term on the right-hand side is similar to the mean circulation 
time in the reactor, which is a ratio of reactor volume, VR, and circulatory flow within 
the reactor, QR. The characteristic time for the turbulent dispersion may be estimated 
as the ratio of the square of the characteristic length scale of the reactor to the effective 
turbulent dispersion coefficient (�D). Alternatively, it may be estimated as the ratio 
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FIGURE 5.4 Schematic representation of small-scale mixing processes (from Baldyga and Bourne, 
1984). (a) Reduction of length scale due to deformations within the inertial sub-range. (b) Creation of 
large interfacial area by vorticity acting on fluid elements of initial thickness of order λK. 

of the characteristic length scale of the reactor to the square root of turbulent kinetic 
energy, k: 

τD = 
L2 

R 

�D 
or 

LR√ 
k 

(5.4) 

An estimate of the effective turbulent dispersion coefficient for any reactor is generally 
difficult because of the spatial variation in the dispersion coefficient within the reactor. 
A first-level approximation may be based on average turbulence kinetic energy and 
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turbulent energy dissipation rates. These two time scales representing convection and 
turbulent dispersion determine large-scale or macromixing in the reactor. 

The last three steps control the small-scale or micromixing in the reactor. The 
characteristic time constant for the third step, that is for reduction in segregation scale 
(inertial-convective mixing), is (Corrsin, 1964; Baldyga, 1989) 

L2 )1/3 

tMS = s (5.5)
ε 

where Ls is the segregation length scale and ε is the rate of dissipation of turbu
lent energy. The characteristic time for the engulfment step (tE) can be estimated as 
(Baldyga and Bourne, 1989) 

( ν )1/2 
tE = 17.25 (5.6)

ε 

where ν is kinematic viscosity. This equation may be used for liquid systems with 
Schmidt number less than 4000. Alternatively, a modified form of Corrsin’s equation 
can also be used (Pohoreki and Baldyga, 1993): 

( ν )1/2 
tE = 3.086 (ln Sc − 1.27) (5.7)

ε 

The diffusion time scale (tDS) can be estimated as (Baldyga and Bourne, 1984) 

( )1/2ν 
tDS > arcsinh (0.1Sc) (5.8)

ε 

where Sc is the Schmidt number, defined as the ratio of kinematic viscosity to 
molecular diffusivity. 

These time scales of turbulent mixing processes need to be examined with ref
erence to other important time scales of interest such as reaction time scale, average 
residence time and so on. While doing such an analysis, it may be easier to regroup 
these five steps into two categories: (1) macromixing processes, characterized by tmacro 

and (2) micromixing processes, characterized by tmicro. When one of the micromixing 
step is rate controlling, tmicro can be equated to the characteristic time scale of that 
particular micromixing step. It is also possible to define effective time scale when 
both step 3 and step 4 influence the micromixing process. This effective time scale 
can be expressed in the form (Ranade, 1993): 

M − 1 
teff = tMS 1 + [ ] (5.9)

M e(M−1)t/tMS − 1 

where M is the ratio of tMS and tE. This effective time scale reduces to tE for small 
values of time and to tMS for small values of tE. When there is an interaction between 
macromixing and micromixing processes, it is not possible to formulate a simple 
expression for characteristic time scale. The time scales discussed above are used 
to classify different reactive mixing models and to examine the available modeling 
approaches in the following section. 
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5.3. MODELING APPROACHES 

Several factors determine the extent of influence of turbulence on effective rates of 
chemical reactions, including: 

•	 whether reactants are premixed or non-premixed; 
•	 rate of chemical reactions relative to the rate of scalar mixing; 
•	 turbulence length scales relative to size of a reaction zone; 
•	 multiple reactions/order of reactions. 

Chemical reactions may also affect turbulence by releasing energy and modifying the 
fluid properties locally. The influence can be quite significant in variable density flows 
(e.g. combustion). Nevertheless, in many computational models of constant density 
reactive flow processes, it is implicitly assumed that chemical reactions do not affect 
scalar mixing rates. 

Available reactor models can be classified according to their assumptions about 
the relative magnitudes of characteristic time scales of mixing (micromixing and 
macromixing) and reactive flow process (chemical reaction time scale, tkin or resi
dence time, τ ). The relationship between suitability of different models and extent of 
macro- and micromixing is shown schematically in Fig. 5.5. When both, macro- and 
micromixing time scales are much smaller than the process time scale (high macro-
and micromixing), ideal reactor models can safely be used (top right case in Fig. 5.5). 
When the rate of macromixing is slow but that of local micromixing is fast, the rel
evant mixing scale is intermediate between a micromixing scale and a reactor scale. 
Although reactants are locally mixed on a molecular scale, there is macroscopic seg
regation (top left case in Fig. 5.5). Cell balance models (Patterson, 1985; Middleton 
et al., 1986) can be used to simulate such reactive flow processes. In these models, 
no special modeling efforts are generally necessary except for the special treatment 
demanded by extra non-linearity (due to the reaction source) present in the reactive 
systems. The governing equations discussed in Chapter 2 can be used to simulate the 
behavior of such systems. 

When local micromixing is slow compared to the reaction time scale and the 
macromixing time scale is smaller than the process time scale, the performance of a 
reactive flow process is controlled only by the micromixing. In such cases, though 
there is no macroscopic segregation, reactants are not mixed on a molecular scale (see 
the right bottom case of Fig. 5.5). Several micromixing models have been developed 
to simulate such reactive flow processes. Some of the widely used models are: 

•	 ‘Engulfment Deformation Diffusion (EDD)’ model of Baldyga and Bourne 
(1984). 

•	 ‘Interaction by Exchange with the Mean (IEM)’ model of David and 
Villermaux (1987). 

•	 ‘Engulfment (E)’ model of Baldyga and Bourne (1989). 

These models are not discussed here and the cited papers may be referred to for details 
of model equations. When macroscale and microscale segregation exist together (bot
tom left case of Fig. 5.5), none of the cited models are adequate. For such systems, it 
is necessary to include detailed interaction of fluid mechanics, mixing and reactions 
in the mathematical model. Various modeling approaches to simulate reactive flow 
processes with macro- and microscale segregation are discussed briefly below. 
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FIGURE 5.5 Extent of macromixing and micromixing and suitability of reactor models. 

5.3.1. Direct Numerical Simulations (DNS) 

As mentioned in Chapter 3, DNS involves full numerical simulation of the governing 
equations without approximations. Even in laminar reactive flow processes, space and 
time scales of relevant processes may range over many orders of magnitude. Such a 
wide range of time scales makes the governing equations quite ‘stiff’. (In general, 
governing equations describing a flow process are termed ‘stiff’ if the process being 
modeled has a characteristic time of variation shorter than the time step one can 
afford.) Chemical reactions may cause very steep gradients locally. Resolving such 
gradients and handling the strongly coupled, non-linear governing equations may pose 
challenges even in laminar flow processes. Turbulence, which occurs on intermediate 
spatial scales, poses further problems in solving the governing equations. Despite the 
‘stiffness’ of governing equations, DNS attempts to simulate reactive flow processes 
by resolving all the relevant space and time scales. Such rigorous DNS studies (see for 
example, Chakrabarti and Hill, 1997) have pointed out several characteristic features 
of reactive flow processes, such as: 

(1) persistent tendency to initially segregate, with relatively thin reaction zones; 
(2) scalar dissipation zone tracks well with the reaction zone, however, product 

concentration does not; 
(3) reaction rate is highest in regions of greatest compressive strain rates; 
(4) scalar variance decay is dominated by molecular dissipation and not by 

reaction. 

Such an insight is useful for understanding the interaction of turbulence and chemical 
reactions and the influence of such interactions on effective rate and selectivity of 
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chemical reactions. However, DNS may be carried out only for relatively simple 
geometry with moderate Reynolds number. Even then, huge computational resources 
are required. Some idea of the computational requirements imposed by the resolution 
demanded by DNS may be obtained by examining relevant dimensionless numbers. 
For direct simulations of reactive flow processes, in addition to resolving all the flow 
length scales from the integral to the Kolmogorov scale, scalar fields must be resolved 
up to Batchelor’s scale. This means that the maximum wave number for the scalar 
field varies as: 

kmax ∝ Sc3/2Re3/4 (5.10) 

To make the matters worse, chemical reactions steepen scalar gradients and often, 
larger values of kmax need to be used. Since (kmax × kmax × kmax) values must be 
stored in the computer memory for each field for each time step, application of DNS 
to reactive flow processes is limited to moderate Reynolds numbers and Schmidt 
numbers near unity. The Damkohler number (ratio of characteristic time scales of 
small-scale mixing and chemical reaction, see Chapter 2) is generally limited to 
values less than 30 to 50. Even if huge computational resources are available, the 
DNS approach is difficult to apply to the realistic geometry of industrial chemical 
reactors. 

Moreover, practical reactive flow processes usually involve many interacting 
chemical species. These interactions are represented by many sets of coupled equa
tions, which must be solved simultaneously. Before developing a model representing 
the entire reactive system, each individual process/chemical reaction must be under
stood and modeled separately. These sub-models can then be incorporated into the 
overall model, either directly or using a phenomenology. For reactive flow processes 
relevant to reactor engineers, it is often the case that various sub-models are not known 
adequately (for example, rates of chemical reactions or thermo-chemical data). It must 
be noted that, although DNS can provide valuable information about the interactions 
of flow processes and chemical reactions, it requires huge computational resources. 
When the accuracy of the required sub-models to carry out reactive flow simulations 
is inadequate, spending of huge computational resources on DNS is seldom justified. 
DNS, therefore, is not used to simulate complex industrial reactive flow processes. 
DNS, however, is an excellent tool for studying the fundamentals of turbulent reac
tive flow processes and for verifying other closure and phenomenological models of 
reactive flow processes. 

5.3.2. Large Eddy Simulation (LES) 

As discussed in Chapter 3, with LES, the smallest scale to be resolved is chosen to lie 
in the inertial sub-range of the energy spectrum, which means the so-called sub-grid 
scale (SGS) wave numbers are not resolved. As LES can capture transient large-scale 
flow structures, it has the potential to accurately predict time-dependent macromixing 
phenomena in the reactors. However, unlike DNS, a SGS model representing inter
action of turbulence and chemical reactions will be required in order to predict the 
effect of operating parameters on say product yields in chemical reactor simulations. 
These SGS models attempt to represent an inherent loss of SGS information, such as 
the rate of molecular diffusion, in an LES framework. Use of such SGS models makes 
the LES approach much less computationally intensive than the DNS approach. DNS 
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studies may be used to develop a suitable SGS model, which may, in turn, be used 
with an LES model to simulate complex reactive flow processes. The SGS models 
may also be developed based on phenomenological, micromixing models. The LES 
approach, therefore, may serve as a link between the more simplified moment clo-
sure/phenomenological models and DNS models. The overall computational demands 
of combining SGS models with LES simulations of complex industrial reactors may 
prove to be beyond the typical resources available to reactor engineers. It may be 
more effective to use Reynolds-averaged or phenomenological models in such cases. 

5.3.3. RANS-based Models 

By far, the most widely employed models for reactive flow processes are based on 
Reynolds-averaged Navier Stokes (RANS) equations. As discussed earlier in Chap
ter 3, Reynolds averaging decomposes the instantaneous value of any variable into 
a mean and fluctuating component. In addition to the closure equations described in 
Chapter 3, for reactive processes, closure of the time-averaged scalar field equations 
requires models for: (1) scalar flux, (2) scalar variance, (3) dissipation of scalar vari
ance, and (4) reaction rate. Details of these equations are described in the following 
section. Broadly, any closure approach can be classified either as a phenomenologi
cal, non-PDF (probability density function) or as a PDF-based approach. These are 
also discussed in detail in the following section. 

Apart from these three main approaches (DNS, LES and RANS), several attempts 
have been made to simulate reactive flow processes by using specialized micromix
ing models. These micromixing models are phenomenological and require empirical 
information to determine values of essential parameters (David and Villermaux, 
1987; Ranade and Bourne, 1991). A typical model follows a lump of fluid in a 
Lagrangian frame that mixes with its environment following predetermined rules. 
Since the motion of a fluid element is tracked in a Lagrangian frame, chemical 
reactions occurring within the fluid element are treated without modeling. However, 
these micromixing models cannot be used as stand-alone models to simulate general 
reactive flow processes for the following reasons: 

(1) these models require knowledge of mean velocity and turbulence fields; 
(2) coupling between the micromixing time scale (see Section 5.1.1) and 

turbulence time scales is ambiguous; and 
(3)	 extension to complex, inhomogeneous flows, where the environment contains 

partially reacted fluids, is difficult. 

It is possible to eliminate some of these disadvantages of micromixing models by 
judiciously developing a composite modeling approach based on RANS and these 
micromixing models. Some such attempts are also discussed in the following section. 

5.4. RANS-BASED MODELS OF REACTIVE FLOW PROCESSES 

Reynolds-averaged equations for momentum transport, are already discussed in Chap
ter 3. For modeling reactive flow processes, in addition to the solution of overall mass 
conservation equation described in Chapter 3, it is necessary to solve conservation 
equations for individual species. Following the practices of Reynolds averaging, an 
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instantaneous concentration of species k, Ck , can be written as the sum of time-
averaged species concentration Ck and a fluctuation around the time average, Ck 

′ . The 
time averaged conservation equation for species k can therefore be written: 

∂ ( ) ( ) 
ρCk + ∇ ·  = ∇ ·  jk + Sk (5.11)ρUCk + ρu′Ck 

′ 
∂t 

Note that unlike conventional molar units, concentration of species in the above 
equation is written in terms of mass fractions (Ck = mk ). Similar to the momentum 
equations discussed in Chapter 3, time averaging introduces unknown terms in the 
averaged equations. It is necessary to close the equation by modeling these unknown 
terms representing the turbulent flux of component k and the mean reaction rate. The 
scalar flux is dominated by the transport due to velocity fluctuations in the inertial 
sub-range of the energy spectrum. It is, therefore, primarily a term related to an 
integral scale of turbulence and is independent of molecular diffusivity. The gradient 
diffusion model is often employed to relate the scalar flux to the mean field: 

u′C′ = 
νT ∇Ck (5.12)k σTk 

where νT is turbulent momentum diffusivity and σTk is turbulent Schmidt number for 
component k. Although the gradient diffusion assumption may fail in some situations, 
it is typically employed to carry out engineering simulations of complex reactive flow 
processes. 

The most difficult term to close in Eq. (5.11) is the reaction rate term. Reaction 
rates are seldom formulated by considering all the elementary reactions. More often 
than not, the reactive system is represented by a lumped mechanism, considering 
only a few species. The case of m components participating in n independent chem
ical reactions is usually represented by two two-dimensional matrices (m × n) of  
stoichiometric coefficients and order of reactions and two one-dimensional vectors 
(n) of frequency factors and activation energy. n chemical reactions are written: 

n m 

zrkCk = 0 (5.13) 
r=1 k=1 

Stoichiometric coefficients (zrk ) are generally considered positive for products and 
negative for reactants. Each chemical reaction is associated with its kinetics represent
ing dependence of net rate of reaction on concentrations of participating species and 
temperature. Dependence on concentrations of participating species is represented 
by order of reaction, ‘o’. The rate is represented by two parameters, frequency fac
tor, k0, and activation energy, �E (see textbooks such as Levenspiel, 1972 for more 
discussion on these two parameters). The net rate of formation or consumption of 
component k due to reaction n is usually written: 

l=m 

Coln�En /R′T ) 
∏ 

Rkn = −zknk0ne(− l (5.14) 
l=1 

where zkn is molar stoichiometric coefficient for species k in reaction n. k0n and �En 

are frequency factor (pre-exponential factor) and activation energy for reaction n, 



∑ 

∏ 

( ) 

136 CHAPTER 5 REACTIVE FLOW PROCESSES 

respectively. R′ is the universal gas constant. The product is taken over all participating 
reactants with oln is an order of reaction n with respect to reactant l. The net reaction 
source term for species k is calculated as a sum of the reaction sources over the n 
chemical reactions: 

Sk = Rk = Rkn (5.15) 
n 

For any industrial reacting system, the relevant parameters appearing in the rate 
expression (Eq. (5.14)) need to be obtained by carrying out experiments under con
trolled conditions. It is necessary to ensure that physical processes do not influence the 
observed rates of chemical reactions. This is especially difficult when chemical reac
tions are fast. It may sometimes be necessary to employ sophisticated mathematical 
models to extract the relevant kinetic information from the experimental data. Some 
references covering the aspects of experimental determination of chemical kinetics 
are cited in Chapter 1. It must be noted here that in the above development, the 
intrinsic rate of all chemical reactions is assumed to follow a power law type model. 
However, in many cases, different types of kinetic model need to be used (for exam
ples of different types of kinetic model, see Levenspiel, 1972; Froment and Bischoff, 
1984). It is not possible to represent all the known kinetic forms in a single format. 
The methods discussed here can be extended to any type of kinetic model. 

When chemical reactions are slow (with respect to mixing) it is not necessary 
to employ additional models to close the reaction source terms. For slow reactions 
(Da � 1), turbulent mixing will be complete before the reaction can take place. The 
contributions of fluctuating concentrations may be neglected. Therefore, the time-
averaged reaction source term can be related to the time-averaged temperature and 
species concentrations: 

�En /R′T ) ColnRkn = −zknk0ne(− l (5.16) 
l 

For fast and intermediate reactions, the time-averaged reaction source term will con
tain some additional terms. These additional terms need to be modeled to close the set 
of equations. For example, consider the case of a single second-order reaction with 
instantaneous rate given by 

R = k0e−�E/R′T C1C2 (5.17) 

The non-linearity in terms of concentrations and exponential factor containing tem
perature, make the task of closing the reaction source term quite difficult. Even for an 
isothermal system, the time-averaged reaction source term will contain a new term, 
the time average of the product of fluctuating concentrations (‘c’) of component 1 
and component 2: 

R = k0e−�E/R′T C1C2 + c1c2 (5.18) 

Closure models for terms like the second term in the bracket of the right-hand side 
are vital to the modeling of turbulent reactive flow processes. It must be noted that 
as the chemistry becomes more complicated, several such terms will appear, which 
will make the task of modeling more difficult. Various methods have been used to 
develop such closure models. These methods are classified into two groups, namely 
conventional closure models with or without using probability distribution functions 
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(PDF) and phenomenological models, which are not closure methods in the accepted 
sense. 

5.4.1. Closure Models/PDF-based Models 

If the chemical reactions are very fast compared to the mixing rate, it may be assumed 
that any mixed reactants are immediately reacted. No rate expression is therefore 
necessary. The simplest model to represent such cases is called the ‘eddy break up 
(EBU) model’ (Spalding, 1970; Magnussen and Hjertager, 1976). In the EBU model, 
the effective rate of chemical reactions is equated to the smaller of rate calculated 
based on kinetic model and that based on the eddy break-up rate. The eddy break
up rate is defined as the inverse of a characteristic time scale k/ε. Therefore, for 
fast reactions, the rate of consumption or formation is proportional to the product of 
density, mass fraction and the eddy break-up rate (ε/k). The model is useful for the 
prediction of premixed and partially premixed fast reactive flows. EBU, however, was 
originally developed for single-step chemical reactions. Its extension to multiple step 
reactive systems should be made with caution. 

For complex chemistry, in many cases, a ‘conserved scalar’ or a ‘mixture frac
tion’ approach can be used, in which a single conserved scalar (mixture fraction) is 
solved instead of transport equations for individual species. The reacting system is 
treated using either chemical equilibrium calculations or by assuming infinitely fast 
reactions (mixed-is-reacted approach). The mixture fraction approach is applicable to 
non-premixed situations and is specifically developed to simulate turbulent diffusion 
flames containing one fuel and one oxidant. Such situations are illustrated in Fig. 5.6. 
The basis for the mixture fraction approach is that individual conservation equations 
for fuel and oxidant can be combined to eliminate reaction rate terms (see Toor, 1975 
for more details). Such a combined equation can be simplified by defining a mixture 

1+− 
= 

n + 1 

mOmFn 
fMixture fraction 

Fuel f = 1 

Oxidizer f = 0 

Individual species mass fraction is 
computed from mixture fraction and/ 
or assuming equilibrium chemistry 

FIGURE 5.6 Mixture fraction approach. 
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fraction, f :

nmF − mO + 1


f = (5.19) 
n + 1 

where mF and mO are mass fractions of fuel and oxidant, respectively and n is the 
number of moles of oxidizer required to burn one mole of fuel. Since the conservation 
equation of mixture fraction, f does not contain reaction terms the time-averaged 
equation can be readily obtained as 

∂ ∂ ( ) ∂ µT ∂f 
ρf + ρUif = (5.20) 

∂t ∂xi ∂xi σT ∂xi 

The time-averaged mixture fraction can be related to time-averaged values of local 
mass fractions of fuel and oxidant by using the time-averaged form of Eq. (5.19). It 
can be seen that a knowledge of time-averaged mixture fraction is not sufficient to 
obtain values of time-averaged fuel and oxidant mass fractions (one equation and two 
unknowns). In addition to average mixture fraction, if the variance of the mixture 
fraction is known, it is possible to obtain values of individual mass fractions of fuel 
and oxidant (see Toor, 1975; Jones and Whitelaw, 1982). The variance of mixture 
fraction can be obtained by solving its transport equation: 

( ) ∂ (∂
ρf ′2 

) ∂ µT ∂f ′2 ∂f ∂f ′
)2 

+ ρUi f ′2 = − 2 u′f ′ − 2D (5.21)
∂t ∂xi ∂xi σT ∂xi ∂xi ∂xi 

This equation contains three new terms, namely flux of scalar variance, production of 
variance and dissipation of scalar variance, which require further modeling to close the 
equation. The flux terms are usually closed by invoking the gradient diffusion model 
(with turbulent Schmidt number, σT, of about 0.7). This modeled form is already 
incorporated in Eq. (5.21). The variance production term is modeled by invoking an 
analogy with turbulence energy production (Spalding, 1971): 

( )2 
∂f ∂f 

2u′f ′ = −Cg1υT (5.22)
∂xi ∂xi 

where Cg1 has a value of approximately 3. Spalding (1971) modeled the dissipation 
of variance as 

∂f ′
)2 

ε 
2D = Cg2 f ′2 (5.23)

∂xi k 

where Cg2 is about 0.2. Corrsin (1964) modeled the dissipation as a function of a scalar 
length scale and the rate of turbulence energy dissipation in isotropic turbulence: 

∂f ′
)2 2f ′2 

2D 
∂xi 

= 
4 
( 
Ls

2/ε 
)1/3 + (ν/ε)1/2 ln Sc 

(5.24) 

The scalar length scale, Ls, is assumed to be equal to k3/2/ε in the above expression. 
For systems with low values of Schmidt number, Corrsin’s model reduces to that of 
Spalding, albeit with higher coefficient (0.5). Corrsin’s model is found to be useful 
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even for shear flow turbulence (Patterson, 1985). Detailed models of the variance 
dissipation rate are difficult to formulate in a general manner due to the large range 
of time/length scales involved. Fox (1995) proposed an alternative multiscale model. 
Most of the published models, however, use Eq. (5.23) to model the dissipation rate 
of scalar variance. Knowledge of mean mixture fraction and its variance is sufficient 
to calculate local values of fuel and oxidant mass fractions (Toor, 1975). 

An alternative way of relating concentrations (mass fractions) of individual 
species to f is the assumption of chemical equilibrium. An algorithm based on mini
mization of Gibbs free energy to compute mole fractions of individual species from 
f has been discussed by Kuo (1986). The equilibrium model is useful for predicting 
the formation of intermediate species. If such knowledge of intermediate species is 
not needed, the much simpler approximation of ‘mixed-is-burnt’ can be used to relate 
individual species concentrations with f . In order to calculate the time-averaged values 
of species concentrations the probability density function (PDF) approach is used. 

The probability density function, written as p(f ), describes the fraction of time 
that the fluctuating variable f takes on a value between f and f + �f . The concept is 
illustrated in Fig. 5.7. The fluctuating values of f are shown on the right side while p(f ) 
is shown on the left side. The shape of the PDF depends on the nature of the turbulent 
fluctuations of f . Several different mathematical functions have been proposed to 
express the PDF. In presumed PDF methods, these different mathematical functions, 
such as clipped normal distribution, spiked distribution, double delta function and 
beta distribution, are assumed to represent the fluctuations in reactive mixing. The 
latter two are among the more popular distributions and are shown in Fig. 5.8. The 
double delta function is most readily computed, while the beta function is considered 
to be a better representation of experimentally observed PDF. The shape of these 
functions depends solely on the mean mixture fraction and its variance. The beta 
function is given as 

f α−1 (1 − α)β−1 

p(f ) = ∫ 
f α−1 (1 − α)β−1 df 

(5.25) 
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FIGURE 5.7 Graphical description of probability density function (PDF). 



∫ 

140 CHAPTER 5 REACTIVE FLOW PROCESSES 

p(f) p(f) 

��# ��# 

�=� f �>� f 

FIGURE 5.8 Shapes of commonly used probability density function. (a) Double delta function. (b) Beta 
function. 

where α and β are given by: 

 ( )  
f 1 − f 

α = f  
f ′2 

− 1 (5.26) 

( )   ( ) f 1 − f 
β = 1 − f  

f ′2 
− 1 (5.27) 

The time-averaged values of scalar variables, φ̄k (species mole fractions and 
temperature) is calculated as: 

1 

φk = p(f )φk (f ) df (5.28) 

0 

Thus, PDF and time-averaged values of individual species can be calculated if the 
mean values of mixture fraction (f ) and mixture fraction variance (f ′2) are known. 

In several closure models, the covariance of two initially unmixed streams is 
related to the variance of a non-reactive scalar (Dutta and Tarbell, 1989). Many inves
tigators have attempted to use the concept of probability density function (PDF) to 
evaluate higher order correlation appearing in time-averaged reaction source terms. 
The difficulties associated with the chemical reaction terms are thus shifted to com
puting the PDF of an inert scalar. The presumed PDF methods discussed above, 
assume a form for the PDF rather than computing it. From a computational stand
point, presumed PDF methods are straightforward extensions of moment closure 
methods. These methods also have been extended for non-adiabatic flow processes. 
In non-adiabatic processes, the local thermo-chemical state is not only related to mix
ture fraction but also to enthalpy. It is then necessary to employ a joint probability 
density function for mixture fraction and enthalpy. The presumed PDF methods have 
been widely employed in simulations of non-premixed combustion systems, and are 
mainstays of the engineering simulations of reactive flow processes (computational 
aspects of PDF-based models are discussed in Chapter 7). However, when there is 
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more than one reaction involving finite-rate chemical reactions, the application of 
moment closure or presumed PDF methods becomes increasingly unreliable. These 
methods are also not suitable for modeling reactive processes with multiple feed 
points. Several other inherent limitations of these methods are discussed in detail by 
Fox (1996). 

One of the ways to overcome the difficulties associated with these methods is to 
use full PDF methods. These methods obtain the PDF by solving a balance equation 
for the one-point, joint velocity composition PDF wherein the chemical reaction terms 
are in closed form (Pope, 1981). Unlike presumed PDF methods, full PDF methods do 
not require a priori knowledge of the joint composition PDF, and the effect of chemical 
reactions is treated exactly. The one-point, joint velocity composition PDF or the one-
point joint composition PDF does not contain information about fluctuations in the 
velocity and composition gradients (two-point information). Therefore, appropriate 
models are necessary to represent these terms and viscous and scalar dissipation in 
the joint PDF. It is possible to formulate a PDF approach using either a Lagrangian or 
Eulerian framework. Details of full PDF modeling are discussed by Pope (1985), Tsai 
and Fox (1995) and Fox (1996) among others, and will not be discussed here. The 
Lagrangian full PDF methods provide a link with phenomenological micromixing 
models (Fox, 1998). These phenomenological models may offer a computationally 
less demanding alternative to the full PDF methods and may adequately represent 
liquid phase reacting flows. These non-PDF closure approaches are discussed in the 
following section. 

5.4.2. Phenomenological (non-PDF) Models 

A number of simple, non-distributed models of reactive mixing have been developed. 
The engulfment model (E) of Baldyga and Bourne (1989) and the interaction by 
exchange with the mean (IEM) model of David and Villermaux (1975) are two exam
ples of many such attempts. Non-distributed models (which mostly use a Lagrangian 
framework to describe local phenomena occurring in discrete fluid lumps) have been 
used successfully to simulate the interaction of micromixing and chemical reactions. 
None of these models, however, can account for the effects of bulk circulation, large-
scale dispersion and local mixing that lead to spatial distribution of segregation, 
conversion and yield in the reactor. These models cannot, therefore, be used to 
simulate any general, three-dimensional reactive flow processes. It is necessary to 
develop an appropriate framework, which combines the advantages offered by these 
phenomenological models with the potential of using them in a general Eulerian 
modeling framework. Some of these attempts are discussed here. 

(a) ESCIMO model. The acronym stands for the main constituent concepts of the 
approach, namely engulfment, stretching, coherence, inter-diffusion and moving 
observer (Spalding, 1978). In this model, mixing and chemical reactions occurring in 
small-scale coherent ‘folds’ are considered. The folds are formed by the engulfment 
of one fluid by another, as a consequence of ‘roll up’ of vortex sheets. The first part 
of the ESCIMO approach involves the solution of equations describing mixing and 
chemical reactions within these coherent ‘folds’ (biographical part). The second part 
(demographic part) involves determination of the composition of the population of 
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these ‘folds’, within the reactor. With this approach, the mixing, molecular diffu
sion and chemical reactions occurring within each fold can be modeled rigorously, 
which is similar to any non-distributed, Lagrangian (moving observer) micromixing 
model. The second part poses significant difficulties because it requires representing 
three-dimensional reactive flow processes. It requires repeated solutions of transport 
equations defining the probability of finding a fold of any specific group at the specific 
location (Spalding, 1983). This restricts the applicability of the ESCIMO approach 
to simple flow processes, such as a well-stirred reactor. Ma et al. (1982) proposed 
the concept of ‘limited-migration’ to address this problem partially. Although the 
approach shows a promising way of combining Lagrangian and Eulerian viewpoints 
to simulate reactive flow processes, applications of this approach are rather restricted 
and not sufficiently validated by comparison with experimental data. 

(b) Flamelet models. In this approach, the complex chemistry calculations are de
coupled from the turbulent flow description by introducing the concept of coherent 
‘flamelet’. Multi-component transport and chemical reactions can be modeled rigor
ously for the flamelet. The results of local flamelet analysis can then be incorporated 
in the overall calculation of the turbulent flow field (Libby and Williams, 1980; Liew 
et al., 1984; Darabiha et al., 1989). For practical applications, a flamelet library (a 
database) is constructed to provide the required specific information, such as the con
sumption rates per unit flamelet area. The mean reaction rate sources required for the 
calculation of mean flow and composition fields are computed by taking the product of 
rate per flamelet area and flamelet area per unit volume. The latter quantity is obtained 
by solving its transport equation, which requires further modeling effort (Darabiha 
et al., 1989). In general, flamelet models are applicable to large Damkohler number 
systems (fast reactions) in which the typical turbulent scale is larger than the flame 
thickness. These models are therefore relevant to simulating IC engines and continu
ous flow combustors (at least for part of their operation). The flamelet approach has 
not been used to simulate liquid phase flow processes with fast reactions, for which 
multi-environment models may be more useful. 

(c) Multi-environment models. In this approach, some of the micromixing models 
are extended to simulate interaction between macro- and micromixing by introduc
ing the concept of multiple environments. Ritchie and Togby (1979) proposed a 
three-environment model; Mehta and Tarbell (1983) proposed a four-environment 
model. Ranade and Bourne (1991) have extended the engulfment model of Baldyga 
and Bourne (1989) to a general multi-environment model and have incorporated it 
in a Eulerian description of turbulent flow processes by developing transport equa
tions for volume fractions of multi-environments. These models have the potential 
to simulate complex interactions between small-scale and large-scale reactive mix
ing. In the Ranade and Bourne (1991) model, the population of small-scale coherent 
fluid lumps (size of the order of the Kolmogorov length scale) is divided into N 
sub-groups (or environments). Each coherent fluid lump is assumed to have uniform 
concentration, implying that molecular diffusivity is not playing a significant role 
(a reasonable assumption for systems with Schmidt number <4000). The variations 
of concentration within these different sub-groups indicate incomplete micromixing 
and small-scale segregation. The large-scale mixing and transport of the small, coher
ent fluid lumps within the reactor (macromixing) is simulated using the general 
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convective-dispersion transport equation in terms of general variable, φ: 

∂ ∂ ∂ ∂ 
(ραk φk ) + (ρUiαk φk ) = �φαk φk + Sφk (5.29)

∂t ∂xi ∂xi ∂xi 

where αk is the volume fraction of sub-group (or environment) k. When general vari
able, φ, is unity, the equation reduces to the governing equation of the volume fractions 
of different environments. For species concentrations, general variable, φ, is equal 
to Cmk , which is the concentration of the mth species in environment k. The species 
concentration, Cmk , may change due to convection, turbulent dispersion, micromix
ing and chemical reactions. The latter two terms are represented by the source terms 
in these equations, which are modeled using an extension of the engulfment model 
(Ranade and Bourne, 1991): 

j−1 j−1 N 

Sαj = Eαjαj+1 + 2Eαj+1 αi − Eαj αi − Eαj αi (5.30) 
i=1 i=1 i=j+2 

j−1 j−1 

Scmj = Eαjαj+1Cmj+1 + Eαj+1 αi Cmi + Cmj+1 − EαjCmj αi 
i=1 i=1 

N 

− EαjCmj αi + αj γmj (5.31) 
i=j+2 

where γmj is the rate of production of component m due to chemical reactions occur
ring in the jth environment. The parameter, E is the reciprocal of a characteristic 
micromixing time scale (see Section 5.1). 

This approach provides a flexible yet simple framework for modeling turbulent 
reactive flow processes. When micromixing is fast, that is, when E is large, small-
scale mixing will make the concentrations in all sub-groups equal. This will reduce 
the model to a cell balance model. When macromixing is fast, the volume fractions of 
different sub-groups are the same all over the reactor and the model will reduce to the 
generalized engulfment model. In such cases, if the number of sub-groups is specified 
as two, the model reduces to that of Baldyga and Bourne (1989). At intermediate 
levels of micro or macromixing, the model is able to simulate the interaction of 
mixing and chemical reactions. The model is sensitive to the initial volume ratio 
of the segregated reactants, which has been experimentally observed. Many other 
closure models (for example, Patterson, 1985; Li and Toor, 1986; Dutta and Tarbell, 
1989) do not possess this important property. The model also satisfies two important 
limits: the slow reaction (pure mixing) limit and the fast reaction limit (Ranade and 
Bourne, 1991). It has been compared with other published models by Ranade (1993). 
It has also been used successfully for simulating reactive mixing of series-parallel 
reactions in semi-batch stirred reactors by Ranade and Bourne (1991). More recently, 
a similar, four-environment model was used by Kolhapure and Fox (1999) to simulate 
mixing in a sensitive LDPE reactor. These authors have shown good agreement with 
the results obtained using this approach and those obtained with full PDF simulations. 
The methodology of combining multi-environment models with a computational fluid 
dynamics framework has recently been formalized by Fox (1998). This approach 
looks quite promising and suitable for simulating liquid phase fast chemical reactions 
in turbulent flow processes. 
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There are a few other non-PDF approaches to simulating reactive flow processes 
(for example, the linear eddy model of Kerstein, 1991 and the conditional moment 
closure model of Bilger, 1993). These approaches are not discussed here as most of the 
engineering simulations of reactive flow processes can be achieved by the approaches 
discussed earlier. The discussion so far has been restricted to single-phase turbulent 
reactive flow processes. We now briefly consider modeling multiphase reactive flow 
processes. 

5.5. MULTIPHASE REACTIVE FLOW PROCESSES 

In general, multiphase reactive flow processes are classified into three types according 
to the location of the reaction zone: 

(a) Reactions occur in one of the participating phases (either in the bulk or near 
the interface). Several gas–liquid, liquid–liquid reactive processes fall into 
this category. 

(b) Reactions occur on the surface of one of the participating phase. Catalytic 
reactions in gas–solid, liquid–solid and gas–liquid–solid reactive processes 
fall into this category. 

(c) Reactions occur in one phase but products form another immiscible phase. 
Reactive crystallization, liquid phase reactions generating volatile products 
or soot formation fall into this category. 

For multiphase reactive systems of types (a) and (b), at least one of the reactants 
has to reach the reaction zone from a different phase. In such systems, generally 
mass transfer between these two different phases (and its interaction with chemi
cal reactions) is of primary importance and turbulent mixing is often of secondary 
importance. For such systems, modeling multiphase flows as discussed in Chapter 4 
is directly applicable. The only additional complexity is the possibility of interaction 
between mass transfer and chemical reactions. The typical interphase mass transfer 
source for component k between phases p and q can be written (for the complete 
species conservation equation, refer to Chapter 4): 

Skpq = kMpqapqηpq �Ckpq (5.32) 

where kMpq is the mass transfer coefficient, apq is an interfacial area per unit volume, 
ηpq is an enhancement factor representing interaction of mass transfer and chemical 
reactions, and �Ckpq is the net concentration driving force for mass transfer between 
phases p and q. For slow (compared to mass transfer rate) reactions, the enhancement 
factor will be unity. For fast reactions, the enhancement factor will be a function of 
reaction kinetics and concentrations. 

The subject of mass transfer with chemical reactions has been well developed. 
Several excellent books discuss suitable models to estimate enhancement factors 
(Doraiswamy and Sharma, 1984; Westerterp et al., 1984) to represent interactions 
between mass transfer and chemical reactions. Models have been developed to formu
late expressions for the enhancement factor for a number of different reacting systems. 
In many situations, however, it is not possible to derive a closed form expression for 
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the enhancement factor, which is applicable over all temperature ranges and composi
tions within the reactor. For such cases, it is recommended to use so-called ‘look up’ 
tables. A detailed local model for the interaction of mass transfer and chemical reac
tions can be developed and solved separately, to generate these enhancement factor 
‘look up’ tables at various conditions. Efficient interpolation routines can then supply 
values of enhancement factor to the multiphase reactive flow model at the desired 
conditions (compositions and temperature). If an appropriate model is developed to 
simulate interaction between mass transfer and chemical reactions, such a model 
may be used within the general modeling framework (VOF, EL or EE) discussed in 
Chapter 4 to simulate multiphase reactive flow processes. 

VOF-based models simulate the small-scale flow processes near the interface. It 
is possible to calculate the interfacial area from the simulated interface shape and ori
entation. Thus, VOF simulations may allow a detailed understanding of the interaction 
of mass transfer and flow processes around the interface. It must, however, be noted 
that quantitative agreement between VOF predictions and experimental data is not 
satisfactory for most cases relevant to reactor engineering. Therefore, although VOF 
simulations may be useful as learning tools, the application of VOF to simulate real
istic reactive flow processes is not possible without first getting accurate predictions 
of flow field and interface shape. In a Eulerian–Lagrangian approach, particle-level 
phenomena can be modeled rigorously by developing species conservation equations 
for individual dispersed particles (Eqs (4.21) and (4.22)). The sources appearing in 
such particle conservation equations will have the form of Eq. (5.32). Interfacial area 
in such sources is computed from the effective diameter of the concerned dispersed 
phase particle. Different approaches to handling such systems have been discussed in 
the previous chapter. To simulate interphase mass transfer and reacting systems, it is 
necessary to consider two-way coupling between dispersed and continuous phase. The 
source terms (representing mass or heat transfer) computed from the particle trajec
tories need to be included in the governing equations of the continuous phase. If there 
is an interaction between mass transfer and chemical reactions, as discussed above, 
an appropriate local model needs to be considered when evaluating net sources due 
to mass transfer. For turbulent reactive multiphase flow processes, several stochastic 
trajectories must be used to compute an appropriate source term for the continuous 
phase equation. An instantaneous driving force for concentration (or temperature) will 
be a function of the instantaneous concentration (or temperature) of the continuous 
phase. Various ways of estimating the instantaneous velocity of the continuous phase 
have been discussed in Chapter 4. In principle, similar practices may be applied 
to estimate instantaneous concentration. However, considering the uncertainties in 
estimating interphase mass transfer coefficients and other related parameters, often 
time-averaged concentrations (or temperature) are used to formulate interphase mass 
transfer and reaction source terms. 

In Eulerian–Eulerian (EE) simulations, an effective reaction source term of the 
form of Eq. (5.32) can be used in species conservation equations for all the participat
ing species. The above comments related to models for local enhancement factors are 
applicable to the EE approach as well. It must be noted that interfacial area appearing 
in Eq. (5.32) will be a function of volume fraction of dispersed phase and effective 
particle diameter. It can be imagined that for turbulent flows, the time-averaged mass 
transfer source will have additional terms such as correlation of fluctuations in vol
ume fraction of dispersed phase and fluctuations in concentration even in the absence 
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of chemical reactions. If there is an interaction between chemical reaction and mass 
transfer, time averaging with an enhancement factor will introduce even more addi
tional correlations. In most engineering simulations, however, the time-averaged 
source term is taken as the source term computed using time-averaged variables. The 
effort of developing additional closure models is generally not justified in the face 
of existing uncertainties in estimating mass transfer coefficient and interfacial area. 
There have been attempts to derive the transport equation for interfacial area rather 
than computing it from a knowledge of average volume fraction and the size of the 
dispersed phase particle (Kataoka et al., 1992). Many engineering simulations, how
ever, adopt the approach of calculating the mass transfer/reaction source term based 
on time-averaged variables and lumping all the effects of turbulence on mass transfer 
in the value of mass transfer coefficient, kMpq. Additional computational aspects of 
modeling multiphase reactive flow processes are discussed in Chapter 7. Some exam
ples of CFD-based simulations of multiphase reactive flows are discussed in Parts III 
and IV. 

When reactions occur on a surface, the effective rate of surface reaction may 
depend on the rates of various intermediate steps including: 

• mass transfer of reactants to surface; 
• adsorption of reactant species on the surface; 
• surface chemical reactions; 
• desorption of products from the surface; and 
• mass transfer of these products from the surface to the bulk. 

It is possible to formulate an expression for effective rate by analyzing relative 
rates of these different steps. Numerous reaction-engineering textbooks (for example, 
Levenspiel, 1972; Doraiswami and Sharma, 1984) discuss the formulation of effec
tive rates and, therefore, it will not be discussed here. Such models of effective rate 
can be incorporated in the CFD framework by suitably modifying the source term 
(Eq. (5.32)). In many solid catalyzed processes, an effective rate of continuous phase 
reactions can be defined in terms of catalyst (solid) loading. In such cases, it is not 
necessary to model the surface reactions rigorously. The reaction sources appearing in 
the continuous phase can be directly formulated from a knowledge of volume fraction 
of solid phase. Some of these examples are discussed in Part III and IV. 

The interaction of turbulent mixing and chemical reactions is relevant only to 
multiphase reactive processes of type (c) discussed at the beginning of this section. 
In this type, reactions take place in one phase. Therefore, if the reactions are fast 
compared to the mixing rate, turbulent mixing can affect the effective reaction rate, 
as discussed earlier in this chapter. The reaction part of such systems can be modeled 
using the methods discussed in Section 5.2. These systems, however, have additional 
complexity because of the formation of products which are thermodynamically more 
favorable to exist in a different immiscible phase. For example, in a reactive crys
tallization, homogeneous liquid phase reaction forms a product, which precipitates. 
In such a case, two approaches are possible. In the first, simpler approach, inter
phase mass transfer sources can be modeled as discussed above without any special 
treatment. Alternatively, in the second approach, the spontaneous nucleation process 
is represented by employing some empirical models. For example, Magnussen and 
Hjertager (1976) proposed a nucleation model to simulate soot formation in combus
tion processes. They developed a conservation equation for nuclei concentration by 
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appropriate formulations of nuclei formation and consumption rates. Similar nucle
ation models can be developed to simulate reactive crystallization (Wei and Garside, 
1997). Since most such models rely heavily on empirical information and are rather 
system-specific, these models are not discussed here. Depending upon the considered 
objectives of the flow model, the reactor engineer can formulate an appropriate model 
using the basic methodology discussed in this and the previous three chapters. 

5.6. SUMMARY 

Modeling turbulent reactive flow processes is a complex and still developing subject. 
Before undertaking detailed reactive mixing modeling, it is essential to carry out the 
analysis of various relevant time (and length) scales of the system under considera
tion. Such an analysis will be useful to evaluate different modeling approaches and 
to select the best-suited approach. For most liquid phase reactive processes, where 
reactions are fast compared to turbulent mixing, phenomenological models such as 
multi-environment models integrated within a CFD framework look promising. For 
many gas phase reactive processes like combustion, a mixture fraction approach with 
presumed PDF may be more suitable. Computationally intensive approaches like 
LES and DNS are more suitable as learning tools. These simulations can be fruitfully 
employed to validate some of the important issues of the other computationally less 
expensive models. For most multiphase reactive processes, interphase mass transfer 
plays the central role. Turbulent mixing is rarely important in such cases, except when 
reactions occur in one phase and form immiscible products. For such cases, models to 
simulate homogeneous turbulent reactive mixing are applicable. Additional models to 
simulate nucleation or to simulate transfer of immiscible product into another phase 
may be included. It must be remembered that the quality of results of reactive mixing 
simulations will depend on the quality of several input data such as rate constants, 
mass transfer coefficients, interfacial area and so on. These quantities are seldom 
known accurately for industrial processes under relevant operating conditions. Sen
sitivity with respect to values of input parameters must be examined before using 
the simulations for reactor engineering. Approaches to developing tractable compu
tational models for simulating complex industrial reactive flow processes and ways 
of direct or indirect validation are discussed with examples in Parts III and IV. 
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6

NUMERICAL SOLUTION OF 
MODEL EQUATIONS 

6.1. INTRODUCTION 

Mathematical models of flow processes are non-linear, coupled partial differential 
equations. Analytical solutions are possible only for some simple cases. For most flow 
processes which are of interest to a reactor engineer, the governing equations need 
to be solved numerically. A brief overview of basic steps involved in the numerical 
solution of model equations is given in Section 1.2. In this chapter, details of the 
numerical solution of model equations are discussed. 

In general, numerical solution of the governing transport equation replaces con
tinuous information contained in the exact solution of partial differential equations by 
discrete information available at a finite number of locations (grid points). The values 
of all the dependent variables at these finite numbers of grid points are considered as 
basic unknowns. The task of a numerical method then becomes one of providing a set 
of algebraic equations for these unknowns and prescribing an algorithm to solve these 
algebraic equations. The algebraic equations (called discretized equations) involving 
the unknown values of dependent variables are derived from the governing partial dif
ferential equations. Some assumptions about how the unknown dependent variables 
change between grid points are necessary for such derivation. Generally, piecewise 
profiles are assumed, which describe variation over a small region around the grid 
point in terms of values at that grid point and the surrounding grid points. To facilitate 
this, the solution domain is divided into a number of sub-domains or computational 
cells (the process is called grid generation), so that a separate profile assumption can 
be associated with each computational cell. 
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For a given differential equation, there can be several different ways to derive 
the discretized equations (finite difference, finite volume, finite element). A brief 
introduction to these three methods is given in Chapter 1 (Section 1.2). As mentioned 
therein, finite volume methods ensure integral conservation of mass, momentum and 
energy over any group of control volumes and, of course, over the whole solution 
domain. This characteristic exists for any number of grid points (and not only for the 
limiting case of a large number of grid points) and is the most attractive feature from 
the reactor engineer’s point of view. Thus, as a limiting case of one computational 
cell, the finite volume equations become equivalent to those written for the ideal, 
completely mixed reactor (with which most reactor engineers are quite familiar). 
This book, therefore, discusses details of the finite volume method. This chapter is 
restricted to discussing application of the finite volume method to solve the general 
conservation equations discussed in Chapter 2. Applications to solve more com
plex model equations (like those governing multiphase flows or reactive mixing) are 
discussed in the next chapter. 

Before discussing the finite volume method, it is worthwhile to examine 
the desired properties of the numerical solution method, which are summarized 
below: 

(a) Consistency: In a consistent method, the error between the discretized equation 
and the exact equation (called the truncation error) tends to zero, as the grid 
spacing tends to zero. Truncation error is usually proportional to a power of the 
grid spacing, �x and/or the time step �t. It is usually estimated by employing 
Taylor series expansions to recover the original equation plus the remainder, 
which represents the truncation error. If the most important term in such a 
remainder is proportional to (�x)n or (�t)n, the method is termed an nth order 
approximation. For any consistent method, n should be greater than zero. 

(b) Stability: Having consistent approximations does not guarantee that the solu
tion of the discretized equations system will become the solution of an exact 
equation in the limit of small step size. In any numerical method, errors appear 
in the course of solution process. It is essential to ensure that the numerical 
method does not magnify these errors (such a method is said to be stable). 
Stability of the numerical method is difficult to determine especially for non
linear problems. To ensure stability, many numerical methods need to impose 
limits on the time step or need to employ under-relaxation practices. Some of 
these issues are discussed later. 

(c) Convergence: If the solution of the discretized equations tends to the exact 
solution of the differential equations as the grid spacing tends to zero, the 
numerical method is said to be convergent. For linear problems, consistency 
and stability are the necessary and sufficient conditions for convergence. For 
non-linear problems, however, convergence is usually checked by carry
ing out numerical solutions for a number of successively refined grids. 
Usually a consistent and stable numerical method leads to a grid-indepen-
dent solution. 

Besides examining these properties of numerical methods, specific efforts need to 
be made to assess the accuracy of numerical solutions of flow processes. Various types 
of errors and possible ways of estimating and controlling these errors are discussed 
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in Section 6.5. Application of a finite volume method to solve partial differential 
equations and specific algorithms to treat pressure–velocity coupling are discussed in 
Sections 6.2 and 6.3, respectively. 

6.2. FINITE VOLUME METHOD 

In the finite volume method, discretized equations are obtained by integrating the 
governing transport equations over a finite control volume (CV). In this section, 
general aspects of the method are briefly discussed using a generic conservation 
equation for quantity, φ. Patankar (1980), Versteeg and Malalasekara (1995) and 
Ferziger and Peric (1995) may be referred to for a more detailed description. 

Let us consider the task of solution of a generic transport equation of the following 
form in a two-dimensional solution domain: 

∂ (ρφ) ( ) + ∇ · (ρUφ) = ∇ ·  �φ∇φ + Sφ (6.1)
∂t 

The first step is to divide the solution domain into a finite number of control vol
umes or computational cells (grid generation). Two types of grid, namely, structured 
and unstructured grids, were briefly introduced in Section 1.2 (and are illustrated in 
Fig. 1.12). Methods of grid generation will not be discussed in this book. Some of the 
references useful for grid generation and some of the available grid generation tools 
are cited in Chapters 7 and 8, respectively. For the purpose of discussing the finite 
volume method, here we consider a simple, structured grid arrangement. Different 
methods can be employed to generate a structured computational grid (that is to select 
positions of computational nodes and boundaries of computational cells). However, 
usually boundaries of computational cells are decided as a first step and then a com
putational node is assigned at the center of each computational cell or control volume 
(CV) (as shown in Fig. 6.1a), rather than selecting node positions in a first step and 
assigning cell faces at the midpoints of each pair of nodes (Fig. 6.1b). It is important 
to note that CVs should not overlap and each CV face should be unique to the two 
CVs, which lie on either side of it. Here we illustrate the procedure using a Cartesian 
grid. A typical finite volume grid and notation is shown in Fig. 6.2. 

(b)(a) 

FIGURE 6.1 Finite volume grid, nodes centered in control volumes (left) and faces centered between 
nodes (right). 
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FIGURE 6.2 Typical finite volume CV and the notation used for a Cartesian grid. 

6.2.1. Discretization of Governing Model Equations 

The governing transport equations are integrated over each computational cell 
(employing a divergence theorem) and over the considered time interval �t: 

t+�t ∫ 

t 

  

 

∫ 

V 

∂ (ρφ) 

∂t 
dV + 

∫ 

S 

ρUφ · n dS  = 
∫ 

S 

�φ ∇φ · n dS  + 
∫ 

V 

Sφ dV 

  

 
dt (6.2) 

where integration over V denotes volume of a computational cell and S denotes 
surface of a computational cell. In order to discuss the main issues of the finite 
volume method, let us first consider a steady state problem. For such a case, the outer 
integral over time and the first term of Eq. (6.2) will vanish. The second term is the 
net convective flux of quantity φ through the boundaries of a control volume. The 
third term is the net diffusive flux. To calculate convective and diffusive fluxes, one 
needs to know (ρUφ) or (�φ grad φ) everywhere on all the surfaces bounding the 
considered control volume. This information is not available since the values of all 
the variables are known only at the computational nodes. It is, therefore, necessary to 
make approximations while estimating the flux through the surface of computational 
cells. The fourth term in Eq. (6.2) represents the volumetric source (or sink). Usually 
all terms in the governing equations which cannot be classified as in the first three 
terms, are accommodated in such a source term. Approximations also need to be 
invoked to estimate such volume integrals. 

To carry out the integration step shown in Eq. (6.2) on a computational cell, 
two levels of approximation need to be invoked. At the first level, the surface (or 
volume) integral is approximated in terms of the variable values at one or more 
locations on the cell face (within the CV). At the second level, the variable values at 
these locations are approximated in terms of the values at the computational nodes 
(cell centers). A judicious compromise between simplicity, ease of implementation, 
accuracy and computational efficiency has to be made while selecting these two levels 



∫ 

( ) ( ) ( ) ( ) 

155 FINITE VOLUME METHOD 

of approximation. For the first level of approximation, normally a simple second-order 
approximation is used to replace the surface or volume integrals. Therefore, a surface 
integral is approximated as a product of the integrand at the cell face center and the 
cell face area. Similarly, a volume integral is approximated as the product of the mean 
value of the integrand over the CV (approximated as the value at the cell center) and 
the CV volume. To illustrate these approximation practices, consider the CV centered 
on a node P. Flux through the CV boundary denoted ‘e’ (east face of CV) in Fig. 6.2, 
Fe, can be written: 

Fe = f dS  (6.3) 
Se 

where f is the component of the convective or diffusive vector in the direction normal 
to face e and Se is the area of face e. Invoking the second-order approximation, Fe 

can be written: 

Fe = feSe (6.4) 

where fe is the value of the integrand at the center of face e. Alternative second-order 
approximations for Fe are possible, which may write Fe in terms of fne and fse (fne 

and fse are values of the integrand at the north-most point and south-most point of 
the east face, respectively). Simpson’s rule may then be used to represent Fe in terms 
of fe, fne and fse as a fourth-order approximation. It must be noted that values of the 
integrand are normally not available at cell faces and, therefore, need to be obtained 
by interpolation. To preserve the accuracy of the above approximation, interpolation 
should also use at least the same or higher order approximation. Considering this, in 
most cases, it is sufficient to use the second-order approximation given by Eq. (6.4). 

The volume integrals can be approximated as follows: 

Sφ = SφPVP (6.5) 

where SφP is the value of source term Sφ at the cell center P, and VP is the volume 
of the computational cell centered around node P. A higher order approximation of 
this volume integral will require the values of φ at more locations than just the center. 
Since only the values at cell centers will be available, correspondingly higher order 
interpolation schemes need to be used to retain the accuracy of these volume integrals. 
Here again, normally it is sufficient to use the second-order approximation represented 
by Eq. (6.5). These approximations allow one to write Eq. (6.2) in the following form 
(steady state equation for the two-dimensional Cartesian grid shown in Fig. 6.2): 

Se (ρUφ)e − Sw (ρUφ)w + Sn (ρV φ)n − Ss (ρV φ)s 

dφ dφ dφ dφ = Se � − Sw � + Sn � − Ss � + SφPVP (6.6)
dx dx dx dxe w n s 

The second level of approximation concerns estimating the values of variables 
and gradients of variables (normal to cell faces) at locations other than computational 
nodes (cell centers). Such an approximation will then result in a set of linear algebraic 
equations. It must be noted that the source terms appearing in Eq. (6.6), that is SφP, 
will generally be non-linear. It is necessary to linearize such source terms in order to 
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formulate a set of linear algebraic equations. A generic source term linearization can 
be expressed as 

= Sφ 
P φP (6.7)SφPVP C + Sφ 

The assumption of a linear profile between the neighboring nodes offers the 
simplest approximation of the gradient at the face lying between those nodes. For 
example, the gradient of φ at face e can be written: 

∂φ  φE − φP = (6.8)
∂x xE − xPe 

For a uniform Cartesian grid, this approximation is of second-order accuracy. Even 
for a non-uniform grid, the error reduction with respect to grid refinement is similar 
to that of a second-order approximation. Higher order polynomials can be used to 
estimate the required gradients. For example, a fourth-order approximation for the 
gradient at face e on the uniform Cartesian grid can be written: 

∂φ  27φE − 27φP + φW − φEE = (6.9)
∂x 24�xe 

Such higher order approximation for the gradient makes sense, only if the integrals are 
also approximated using higher order approximations. For most complex flow simu
lations, second-order approximation of the gradient (given by Eq. (6.8)) is considered 
satisfactory. 

Velocity and other variables at cell faces can be obtained by employing suitable 
interpolation practices. Numerous alternative interpolation methods have been devel
oped. Generically, a value of general variable φ at the cell face can be expressed 
in terms of two neighboring nodes and one additional upstream node (the need to 
include an additional upstream node is discussed later in this chapter). For example, 
the value of φ at cell face e can be written: 

β1φP + β2φE + β3φW ∵ Ue > 0 
φe = 

β1φE + β2φP + β3φEE ∵ Ue < 0 
(6.10) 

where β are coefficients dependent on the interpolation method (refer to Fig. 6.2 to 
clarify the notation of node points), which obey the following restriction: 

β1 + β2 + β3 = 1 (6.11) 

Substitution of gradient terms (Eq. (6.8)), interpolated values and the linearized source 
term in Eq. (6.6) gives the discretized form of Eq. (6.6) for a uniform grid: 

aPφP = aEφE + aWφW + aWWφWW + aNφN + aSφS + aSSφSS + Sφ (6.12)C 

where, 

aE = De − (β2Fe) (6.13) 

aW = Dw + (β1Fw − β3Fe) (6.14) 

aWW = β3Fw (6.15) 
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aN = Dn − (β2Fn)	 (6.16) 

aS = Ds + (β1Fs − β3Fn)	 (6.17) 

aSS = β3Fs	 (6.18) 

P + (Fe − Fw + Fn − Fs) (6.19) 

F = S (ρU) or S (ρV )	 (6.20) 

aP = aE + aW + aN + aS + aWW + aSS − Sφ 

�φ �φ
D = S or S	 (6.21)

�x �y 

When deriving these expressions, it was assumed that velocity at all the cell faces is 
positive. In other cases, suitable modifications to include appropriate upstream nodes 
(in place of φWW and φSS) should be made. It can be seen that the continuity equation 
indicates that the last term inside the bracket of Eq. (6.19) will always be zero for 
constant density flows. The behavior of numerical methods depends on the source 
term linearization employed and interpolation practices. Before these practices are 
discussed, a brief discussion of the desired characteristics of discretization methods 
will be useful. The most important properties of the discretization method are: 

•	 Conservativeness: To ensure the overall conservation of φ, the flux of φ leaving 
a CV across a given face, must be equal to the flux of φ entering the adjacent 
CV through the same face. Therefore, the flux through the common face must 
be represented by one and the same expression in adjacent CVs. 

•	 Boundedness: Numerical solution methods must respect the physically consis
tent bounds on variable values (bounded by minimum and maximum boundary 
values when there is no source). An essential requirement of boundedness is 
that all the coefficients of the discretized equation should be of the same sign 
and (usually) positive. If this condition is not satisfied, it is possible to observe 
unphysical ‘wiggles’ in the solution. It can be seen from Eqs. (6.13) to (6.18) 
that some of the coefficients may become negative if values of β are not chosen 
carefully. For example, aE can become negative if Fe > (De/β2). It must also be 
noted that source term linearization practices should ensure that Sφ 

P is always 
negative in order to possess the boundedness property (otherwise the value of 
aP may become negative). Diagonal dominance of the discretized equations 
is a desirable feature for satisfying the ‘boundedness’ criterion. Scarborough 
(1958) gave a sufficient condition for diagonally dominant set of equations as: 

|anb| � 1 at all nodes 
(6.22) 

aP < 1 at least at one node 

Diagonal dominance and all positive coefficients ensure boundedness. 
Special procedures are invoked to ensure the boundedness of many higher order 
schemes, which otherwise, may produce wiggles and unbounded solutions. 
Some of these methods are discussed in the following. 

•	 Transportiveness: Transportiveness can be illustrated by considering the dis
tribution of φ in the vicinity of its source. The contours of constant φ are 
shown in Fig. 6.3 for different values of Peclet number (ratio of strengths of 
convection and diffusion, Pe = F/D). For a process with zero Peclet number 
(pure diffusion), contours of constant φ are circular and therefore conditions 
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FIGURE 6.3 Distribution of φ around its source. (from Versteeg and Malalasekara, 1995. Printed 
with permission from the Publishers.) 

at node P will be influenced not only by upstream conditions at W but also by 
all the conditions further downstream (node E). As the value of Peclet number 
increases (more convection), directionality of influence becomes increasingly 
biased towards the upstream direction. This means that conditions at node E are 
strongly influenced by those at P but conditions at P will experience only a weak 
influence from those at node E. At the extreme case of infinite Peclet number, 
the constant φ contours are completely stretched in the direction of flow and 
conditions at node E will not influence those at node P. Discretization schemes 
must respect the transportiveness property (directionality of influence) of flow 
processes. 

Source term linearization and interpolation practices to estimate cell face values are 
discussed with reference to these desirable properties of the discretization method. 

(a) Source term linearization 
The linearization of source term, SφP should be a good representation of the S and 
φ relationship. Depending on the functional form of SφP, there are several different 
ways of formulating coefficients Sφ 

C and Sφ of Eq. (6.7). Patankar (1980) discussed P 
various linearization practices and recommended the following method: 

∗ 

= S∗ dSφP ( )∗SφP φP + 
dφ

φP − φP (6.23) 

where ∗ indicates the guess value or the previous iteration value. This linearization 
practice is recommended provided that the source term decreases with increasing φ. 
Thus, the coefficients of linearized source terms can be written: 

[ ( ) ] ( )∗ ∗ 
∗ dSφP

Sφ = S∗ dSφP 
φP VP Sφ = VP (6.24)C φP − 

dφ P dφ 

This formulation ensures that the slope of the linearized source term representation 
(Eq. (6.7)) is the same as the slope of the non-linear source term at node P, and 
is always negative. It must be noted that linearization with steeper slopes normally 
leads to slower convergence. For detailed discussion of the effect of source term 
linearization on convergence, and on the handling of source terms with non-negative 
slope with φ, see Patankar (1980). 
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(b) Interpolation practices 
Some commonly used interpolation practices are discussed here. A simple and 
straightforward approximation to the value at the CV face center is linear interpolation 
between the two nearest nodes. At location e on a Cartesian grid (Fig. 6.2), general 
interpolation coefficients (β) for such a scheme can be written: 

β1 = (1 − λe) β2 = λe β3 = 0 (6.25) 

where the linear interpolation factor, λe is defined as 

λe = 
xe − xP 

xE − xP 
(6.26) 

Interpolation with Eq. (6.25) is second-order accurate. This approximation is called 
the ‘central differencing scheme’ (CDS). 

It can be seen that the central differencing scheme discussed above is conserva
tive. The coefficients of CDS satisfy the Scarborough criterion. However, for uniform 
grid (λe = 0.5), when the Peclet number is higher than 2, the coefficients aE will 
become negative [Fe > (De/β2)]. This violates the boundedness requirements and may 
lead to physically unrealistic solutions. At all values of Peclet number, CDS retains the 
same directionality of influence and, therefore, does not possess the transportiveness 
property. To gain the transportiveness property, several differencing schemes have 
been proposed. The simplest is the first-order upwind differencing scheme (UDS), 
which approximates the value of φe by retaining only the upstream influence (with 
reference to Eq. (6.10)): 

β1 = 1 β2 = 0 β3 = 0 (6.27) 

It can be seen that this UDS is conservative and transportiveness is built into 
the formulation. It is the only discretization scheme which unconditionally satisfies 
the boundedness criteria and therefore, never leads to ‘wiggles’. Unfortunately, the 
scheme is only first-order accurate and is numerically diffusive. This numerical dif
fusion is magnified in multidimensional problems if the flow is oblique to the grid. 
The rapid variations in the variables will be smeared out and since the rate of error 
reduction is only first order, very fine grids are required to obtain an accurate solu
tion. In order to exploit the higher accuracy of CDS, several combinations of CDS 
and first-order UDS have been proposed (for example, hybrid differencing schemes 
and power law differencing schemes). In all these combined schemes, CDS is used as 
long as Peclet numbers are less than 2. For larger Peclet numbers, either the standard 
UDS or the power law variant is used (Patankar, 1980). These combined schemes 
are also unconditionally bounded and therefore widely used in various computational 
codes. However, the accuracy in terms of Taylor series truncation error is still only 
of first order. 

Several attempts have been made to employ higher order interpolation schemes. 
One of the most popular schemes is QUICK (quadratic upstream interpolation for 
convective kinetics), proposed by Leonard (1979). In this scheme, the face value 
of φ is obtained by a quadratic function passing through two bracketing nodes (on 
each side of the face) and a node on the upstream side (Fig. 6.4). The formulae for 
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FIGURE 6.4 Quadratic profiles used in QUICK scheme. 

estimating φe using Eq. (6.10) can be written: 

λe (�xw + λe�xe) λe (1 − λe)�x2 

β2 = β3 = −  e β1 = 1 − β2 − β3 
�xe +�xw �xw (�xe +�xw) 

(6.28) 

For the uniform grid, the coefficients of the three nodal values involved in the interpo
lation become 3/8 for the downstream point, 6/8 for the first upstream node and −1/8 
for the second upstream node. This scheme is more complex than CDS and it extends 
the computational molecule by one more node in each direction (the conventional 
tri-diagonal methods are, therefore, not directly applicable. See the discussion in the 
following subsection). The scheme has a third-order truncation error and was made 
popular by Leonard (1979). The transportiveness property is built into the scheme 
by considering two upstream and one downstream node. However, the main coeffi
cients of the discretized equations are not guaranteed to be positive. This may lead to 
instability and may lead to unbounded (wiggles) solutions under certain conditions. 

Several attempts have been made to reformulate the QUICK and other higher 
order schemes to ensure the boundedness property. One way to achieve this is to 
place the troublesome negative coefficients in the source term to alleviate the stability 
problems (see for example, Hayase et al., 1992 and references cited therein). Other 
attempts include modifications of higher order schemes either based on flux limiting 
or based on slope limiting (see Leveque, 1996 for a recent review). It will be instructive 
to examine the various discretization schemes using the so-called ‘normalized vari
able diagram’ to understand and to compare these modifications. Depending on the 
direction of normal velocity at the face, the locally normalized variable is defined as 

φ − φU 
φ̃ = (6.29)

φD − φU 

where subscript D, U and C denote downstream, upstream and central node, respec
tively. It can be seen that normalized values of φ at downstream and upstream nodes 
are 1 and 0, respectively (Fig. 6.5). Because of this, all the discretization schemes 
can now be written in terms of the normalized variable at the center node. Most of 
the widely used discretization schemes are shown in Fig. 6.6 in terms of the nor
malized variable diagram (NVD). Leonard (1988) has shown that any linear NVD 
characteristic which passes through the second quadrant may produce unphysical 
oscillations (CDS, QUICK). Characteristics, which pass through the fourth quadrant 
(below point O), are artificially diffusive. Characteristics, which pass above point 
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FIGURE 6.6 Discretization schemes on normal variable diagram. 

P (1, 1), are oscillatory in two dimensions (second-order upwinding; for details of 
second-order upwinding schemes, see Shyy et al., 1992). Characteristics passing 
through point Q (0.5, 0.75) have second-order accuracy (third order, if the slope at Q 
is 3/4). Thus, NVD can be used to evaluate different discretization schemes as well 
as devise new ones. 

Van Leer (1977) introduced a monotized centered (MC) scheme. The SUPER
BEE scheme is specifically developed to handle discontinuities (Roe, 1985). Gaskell 
and Lau (1988) proposed a SMART (sharp and monotonic algorithm for realistic 
transport) scheme, and Leonard (1988) proposed the SHARP (simple high accuracy 
resolution program) scheme based on modifications of QUICK to preserve bound
edness. These schemes are also shown in Fig. 6.6. All of these schemes try to 
avoid non-physical oscillations by introducing modifications around the basic QUICK 
scheme. The SUPERBEE limiter tends to be overcompressive, meaning that it tends 
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to steepen up smooth profiles into discontinuities. For this reason, it is useful for 
preserving discontinuities but inappropriate for problems with smooth solutions. The 
desire to use higher order discretization schemes must be balanced against the lim
itations imposed by the complexity of the problem being solved, the availability of 
computing resources, the stability and convergence of the solution algorithm and the 
capacity to tolerate non-physical over- and undershoots. Among the various schemes, 
QUICK (and its modifications SHARP or SMART) and second-order upwind differ
encing schemes look more attractive from the point of view of accuracy and ease of 
implementation. For complex multiphase flows, the flow field may exhibit extreme 
sensitivity to the gradients of the dispersed phase volume fraction. In such cases, a 
hybrid or power law scheme advocated by Patankar (1980) may be a better choice, at 
least while initiating the simulations from an arbitrarily guessed flow field. 

Using one of the suitable discretization schemes discussed above, it is possible 
to relate values of variables and their gradient at CV faces to the node values. It is also 
necessary to use suitable interpolation schemes to estimate other relevant quantities 
like effective diffusion coefficients, (�) at required locations. Either algebraic mean 
or harmonic mean can be used to estimate the value of effective diffusion coefficients 
at cell faces. For example, the effective diffusion coefficient at face e can be written 
(for a uniform grid): 

�φe = 
�φP + �φE 

2 
or 

2�φP�φE 

�φP + �φE 
(6.30) 

The harmonic mean to estimate effective diffusion coefficients (second expression 
on RHS of Eq. (6.30)) can handle abrupt changes in values of �φ without requiring 
an excessively fine grid in the vicinity of the change (see Patankar, 1980 for more 
details). 

The foregoing discussion allows one to formulate a set of algebraic equations 
comprising one algebraic equation for each CV (per variable). However, CVs having 
one or more faces coinciding with the boundaries of the solution domain may require 
special treatment. The discussion on implementation of boundary conditions within 
the framework of the finite volume method is postponed until Section 6.3.3. Methods 
for the solution of algebraic equations resulting from the discretization process are 
discussed below. 

6.2.2. Solution of Algebraic Equations 

After implementing all the boundary conditions, one obtains one algebraic equation 
per node (per variable), which relates the variable value at the node to the values of 
variables at several neighboring nodes. The numbers of equations and unknowns are 
equal and, therefore, the system is well defined and closed. The algebraic equation 
for any CV has the following form: 

aPφP = anbφnb + SφC (6.31) 
l 

where P denotes the node at which the governing equation is approximated, nb denotes 
neighboring nodes and the index l covers all the neighboring nodes involved in dis
cretized approximation. The coefficients (aP and anb) and the source term, SφC, are 
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estimated using the initial guess or previous iteration values. The node P and its neigh
bors appearing in the above equation form the so-called computational molecule. 
Examples of computational molecules are shown in Fig. 6.7. Before discussing the 
solution of algebraic equations of the form (6.31), it will be useful to introduce the 
concept of under-relaxation. 

It must be remembered that linear algebraic equations of the form (6.31) are 
approximate forms of the original non-linear discretized equations. The overall iter
ative procedure of repeatedly solving linearized equations to obtain solutions of 
non-linear equations is susceptible to divergence, especially when these are cou
pled with equations of other variables. In order to control the magnitude of change 
during each iteration, an under-relaxation parameter, αφ is introduced: 

φnew = αφφ
new + 1 − αφ 

∗	 (6.32)P P φP 

where φnew is the solution of Eq. (6.31) and ∗ indicates the guess value or the previ-P 
ous iteration value. The under-relaxation parameter, αφ , takes a value between zero 
and one. Lower values of under-relaxation parameter lead to more stable but slower 
convergence. The optimum value of under-relaxation parameter is problem depen
dent. Generally, small values are used during the early iterations, which are gradually 
increased as convergence is approached. Converged results are independent of the val
ues of under-relaxation parameters. Instead of explicitly applying under-relaxation as 
shown in Eq. (6.32), it is more efficient to combine Eqs (6.31) and (6.32) to form the 
modified equation (Patankar, 1980): 

aP ∗ φP = anbφnb + SφC + (1 − αφ)	
aP 

φP (6.33)
αφαφ l 

The diagonal dominance of such a modified discretized equation set is increased since 
the coefficient of φP in the modified equation is larger than that in Eq. (6.31) while 
other coefficients remain the same. This formulation has a positive effect on many 
iterative solution methods and is, therefore, recommended. 

The system of linear algebraic equations (Eq. (6.31) or (6.33)) can be written in 
matrix notation: 

Aφ = B (6.34) 

where A is a square matrix (since the number of equations and unknowns must be 
equal), φ is a vector of unknown variable values at the grid nodes and B is the 
vector containing the remaining terms. The matrix A is usually a sparse matrix (most 
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FIGURE 6.8 Structure of the matrix for a five-point computational molecule. 

of the elements are zero). The structure of matrix A depends on the ordering of 
variables in vector φ and the size of the computational molecule. For the case of a 
five-point computational molecule, the structure of A is shown in Fig. 6.8. For the 
unstructured grid, the coefficient matrix A remains sparse, however, it no longer has 
a banded structure. Different types of solvers are, therefore, needed for structured 
and unstructured grids. In this section, some of the methods used to solve algebraic 
equations resulting from the structured grid are discussed. Details of solvers suitable 
for unstructured grid can be found in Saad and Schultz (1986). General information 
about the solution of algebraic discretized equations may be found in Ferziger and 
Peric (1995). 

Direct methods of solution of linear algebraic equations are essentially matrix 
inversion algorithms (Gauss elimination, LU decomposition etc. Details of these 
methods can be found in Press et al., 1992). These methods have large memory 
requirements and are computationally expensive for a large number of equations. 
These methods become especially inefficient when solving linearized non-linear 
equations. Iterative methods are based on repeated application of a relatively sim
ple algorithm (a Jacobi point by point method or line by line methods) leading to 
eventual convergence. If each iteration is inexpensive and the required number of 
iterations is small, an iterative method will be more efficient than the direct method. 
For many CFD problems, this is usually the case. The other advantage of iterative 
methods is that only non-zero coefficients of the equations need to be stored in core 
memory. Some of the basic methods which can be used with iterative solvers are the 
Gauss-Siedel method, successive over-relaxation (SOR) and the tri-diagonal matrix 
algorithm (TDMA). The TDMA is actually a direct solver for the one-dimensional 
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problem if the value at one node is a function of only its neighboring two nodes. It 
is, however, widely used in a line-by-line fashion to solve multidimensional CFD 
problems (where the value at a node is a function of more than two neighboring 
nodes). Proper choice of sweeping the lines on which TDMA is applied can accel
erate the overall convergence rate (for example, marching the lines from upstream 
to the downstream direction). When higher order discretization schemes are used 
(QUICK or second-order upwind schemes), the TDMA method can be applied only 
by incorporating a large number of neighboring contributions in the source term. 
Understandably, the performance of TDMA deteriorates for such cases, resulting 
in slower convergence. A more generalized version of TDMA known as the penta
diagonal algorithm (for a set of linear equations containing five non-zero elements 
per equation) is available (see Fletcher, 1991). 

For even larger computational molecules (arising in multidimensional problems 
with complex body fitted grids), Stone (1968) proposed a strongly implicit procedure 
(SIP). Schneider and Zedan (1981) developed an improved version of this method 
called modified SIP or MSIP. Details of these methods may be found in the cited 
references and in Anderson et al. (1984) and Peric (1987). These methods may also 
act as a basis for developing additional methods to accelerate convergence, such as 
conjugate gradient (Golub and van Loan, 1990) or multi-grid methods (Hackbusch, 
1985; Peric et al., 1988; Sathyamurthy and Patankar, 1994). Several acceleration 
methods based on additive correction philosophy have been proposed (for example, 
Hutchinson and Raithby, 1986; Kelkar and Patankar, 1989). In additive correction 
philosophy, a correction to the current solution field is sought, so that the corrected 
solution obeys global conservation within the considered sub-region. Combination 
of the correction methods and multi-grid methods may also be effectively used to 
accelerate the convergence. Multi-grid methods are more like useful strategies than 
specific methods. Within the multi-grid framework, several choices of such param
eters as number of grid levels, number of iterations on each grid level, the order in 
which various levels are visited, interpolation between various levels, may be made 
to construct different methods. The rate of convergence, of course, will depend on 
the choice of these parameters. These details will not be discussed here and may be 
found in the cited references. 

6.3. FINITE VOLUME METHOD FOR CALCULATION OF FLOW FIELD 

The discussion in the previous section assumed that the velocity field required to 
calculate the necessary coefficients of the discretized equations was somehow known. 
However, generally, the velocity field needs to be calculated as part of the overall 
solution procedure by solving momentum conservation equations. The governing 
equations are discussed in Chapters 2 to 5. The basic momentum transport equations 
governing laminar flow are considered here to illustrate the application of the finite 
volume method to calculation of the flow field. The governing equations can be 
written: 

∂ 
(ρV ) +∇ ·(ρVV ) = −∇p +∇ ·  µ ∇V + ∇V T

) + κ − 
2 

3 
µ δij (∇ ·  V ) +ρg

∂t 
(6.35) 
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It can be seen that since momentum equations are vector equations, the convective and 
diffusive terms in the equations appear more complicated than the generic transport 
equations discussed in the previous section. The convective terms are non-linear and 
the viscous terms contain more than one term. However, all of these terms can be 
discretized using the methods discussed in the previous section. All the extra non-zero 
terms not conforming to the generic equations are usually combined in the form of a 
source term. It must also be noted that all the three momentum equations are strongly 
coupled because each velocity component appears in all three momentum equations. 
This coupling can also be handled by the techniques of iterative solution discussed 
earlier. The unique feature of momentum equations, which distinguish them from the 
generic transport equation discussed earlier, is the role played by the pressure. The 
pressure gradients appear in the source terms of the momentum equations but there is 
no obvious equation to obtain the pressure. The pressure field is indirectly specified 
via the continuity equation. It is, therefore, necessary to calculate the pressure field in 
such a way that the resulting velocity field satisfies the continuity equation. Special 
treatments are needed to convert the indirect information in the continuity equation 
into a direct algorithm to calculate pressure (algorithms to treat pressure–velocity 
coupling). Some widely used algorithms are discussed in this subsection. Since the 
principal variable in momentum equations is a vector, it allows more freedom in the 
choice of variable arrangements on the grid. 

6.3.1. Co-located and Staggered Grid Arrangement 

Basic features of grids used for numerical solution are discussed in Section 6.2. When 
all the variables are stored at the same set of grid nodes, the arrangement is termed 
as ‘colocated’. It is, however, not necessary that all the variables share the same 
grid. It is possible, and sometimes advantageous, to use different locations for stor
ing values of different velocity components and pressure (staggered grid). The two 
types of grid arrangement are shown in Fig. 6.9. ‘Colocated’ seems to be an obvious 
choice, which has significant advantages in complicated solution domains. However, 
straightforward application of the finite volume method discussed earlier for momen
tum equations using the colocated grid fails to recognize the difference between a 
checkerboard pattern and uniform pressure fields. The staggered grid arrangement is 
proposed to suit the natural coupling of pressure and velocity. In this arrangement, the 
velocity field is stored at the faces of CV around a pressure node. In such an arrange
ment, the pressure and diffusion terms are very naturally approximated by a central 
difference approximation without interpolation. Also the evaluation of mass fluxes 
in the continuity equation (on the faces of a pressure CV) is straightforward. With a 
staggered grid arrangement, the natural coupling between pressure and velocity fields 
helps to avoid some types of convergence problems and oscillations in the pressure 
field. Because of these advantages, the staggered grid arrangement has been used 
extensively to solve momentum equations. In recent years, more and more problems 
with complex geometry have been tackled using non-orthogonal grids. The staggered 
grid arrangement for equations in generalized coordinates is complicated because it 
introduces additional curvature terms, which are difficult to treat numerically. Thus, 
improved pressure–velocity coupling algorithms were developed which enable the 
use of colocated grids to solve momentum equations. Most commercial CFD codes 
now use colocated arrangements. 
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FIGURE 6.9 (a) Co-located and (b) Staggered grid arrangements. 

6.3.2. Algorithms to Treat Pressure–Velocity Coupling 

The momentum and continuity equations can be combined to derive an equation for 
pressure. For example, for constant density and viscosity fluid, the continuity equation 
can be used to simplify the divergence of the momentum equation (Eq. (6.35)) to yield 
an equation for pressure: 

∂ ∂p ∂ ∂ ρUiUj= −  (6.36)
∂xi ∂xi ∂xi ∂xj 
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This elliptic pressure equation can be solved by the methods discussed earlier. It 
is important to note that the numerical approximations of this equation must be 
consistent with the approximations used in discretizing the original momentum and 
continuity equations. For example, the outer derivative of pressure in Eq. (6.36) comes 
from the continuity equation, while the inner derivative arises from momentum equa
tions. These outer and inner derivatives must be discretized using the corresponding 
schemes used for discretizing the continuity and momentum equations, respectively. 
Violation of this constraint may lead to incorrect solution of the continuity equa
tion. To maintain consistency, generally the pressure equation is derived directly 
from the discretized momentum and continuity equations rather than approximating 
Eq. (6.36). Several methods have been proposed to estimate the pressure field. The 
most widely used methods for incompressible flows, which are relevant to reactor 
engineering applications, are implicit or semi-implicit pressure correction methods. 
In these methods, pressure or pressure correction (or both) equations are derived from 
the discretized momentum and continuity equations, and used to enforce mass con
servation at each iteration (or time step). Some of these methods are briefly discussed 
below. 

One of the popular methods proposed by Patankar and Spalding (1972) is called 
SIMPLE (semi-implicit method for pressure linked equations). In this method, dis
cretized momentum equations are solved using the guessed pressure field. The 
discretized form of the momentum equations can be written: 

( ∗) 

aPUi
∗ 
P = anbUi

∗ 
nb + S∗ − VPi 

δp 
(6.37)Ui δxi 

where (δ / δxi) indicates a discretized version of spatial derivative and ∗ indicates the 
guess value or the value obtained from the previous iteration. VPi is the volume of 
CV around the node P. The velocity values obtained by solving these equations will 
not satisfy the continuity equation since the correct pressure field will not be known 
beforehand. In order to correct the fields obtained, SIMPLE proposes corrections of 
the form: 

′ ∗UiP = Ui
∗ 
P + uiP p = p + p′ (6.38) 

The discretized versions of the momentum equations and Eq. (6.38) lead to discretized 
equations in terms of velocity and pressure correction: 

∑ δp′ 
aPuiP = anbuinb − VPi (6.39)

δxi 

The corrected velocities are assumed to satisfy continuity equations. If the corrected 
velocity expressions (Eq. (6.38)) are substituted in the discretized continuity equa
tion, pressure correction equations can be derived. However, velocity corrections 
as given by Eq. (6.39) involve velocity corrections at neighboring nodes and unless 
some approximations are made, it is not possible to obtain the desired pressure correc
tion equations. In SIMPLE algorithm, the first term comprising velocity corrections 
at the neighboring nodes is neglected to yield a simplified expression for velocity 
corrections: 

VPi δp′ 
uiP = −  (6.40) 

aP δxi 
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For a staggered grid arrangement, velocity correction can be related to pressure 
corrections at the two nodes around it: 

u = 
VP ( 

pP 
′ − p′ )	 (6.41)e	 EaPδxi 

Substitution of this velocity correction into the discretized form of the continuity 
equation then leads to a pressure correction equation of the following form: 

aPp = anbpnb + S∗	 (6.42)P M 

where SM is the mass imbalance and ∗ indicates the value obtained from the currently 
available values of variables. The coefficients of this discretized equation, aP and 
anb, can be obtained with the help of Eq. (6.40). Equation (6.42) can be solved to 
obtain the pressure correction field. Once the pressure correction field is known, Eq. 
(6.40) can be used to obtain velocity corrections. Equation (6.38) can then be used to 
obtain the corrected pressure and velocity field. The gross assumption of neglecting 
velocity corrections at the neighboring nodes (first term of Eq. (6.39)), however, has 
detrimental consequences on the overall performance of the algorithm. The corrected 
pressure and velocity fields need to be under-relaxed in order to maintain the stability 
of the algorithm. As mentioned earlier, under-relaxation is a way to control the change 
in the variable values during the iterative processes. Such under-relaxation for the 
pressure and velocity field may considerably reduce the rate of convergence. Several 
methods have been proposed to enhance the rate of convergence. 

van Doormal and Raithby (1984) proposed a variation of SIMPLE, called SIM
PLEC (SIMPLE consistent). In this method, instead of neglecting the first term of 
the right-hand side of Eq. (6.30), it is assumed that the order of magnitude of the 
velocity corrections at the neighboring nodes will be the same as that of the node 
under consideration. This assumption is more consistent and leads to the following 
equation for velocity correction: 

VPi δp′ 
uiP = −( ∑ )	 (6.43) 

aP − anb δxi 

The overall algorithm is exactly the same as that of SIMPLE, the only exception being 
that Eq. (6.43) is used instead of Eq. (6.40) to derive the discretized pressure correction 
equation. The more consistent approximation proposed in SIMPLEC reduces the need 
for under-relaxing the pressure. 

Patankar (1980) proposed a revised SIMPLE algorithm called SIMPLER (SIM
PLE revised). In SIMPLER, the velocity correction part of the SIMPLE algorithm 
is retained. However, instead of using the pressure corrections to calculate the pres
sure field, the SIMPLER algorithm uses a separate pressure equation to calculate the 
pressure field. The discretized momentum equation can be written: 

aPUiP = anbUinb + SUi 
− VPi	

δp 
(6.44)

δxi 

If Eq. (6.44) is substituted into the discretized continuity equation, a discretized 
equation of the pressure field can be obtained which will be similar to Eq. (6.42) 
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in form. The coefficients of this pressure equation and pressure correction equation 
will also be the same. The source terms, however, will be different. In the pressure 
equation the source terms are calculated in terms of pseudo-velocities, which can be 
written (drawing an analogy with the earlier derivation): 

ÛiP = 
anbUinb + SUi (6.45) 

aP 

Since no terms are omitted when deriving the pressure equation used by SIMPLER, 
the resulting pressure field corresponds with the velocity field. Therefore, unlike 
SIMPLE, the correct velocity field results in the correct pressure field. Consequently, 
SIMPLER does not require under-relaxation of pressure and performs significantly 
better than SIMPLE. 

Issa (1986) proposed a two-step corrector algorithm called PISO (pressure 
implicit with splitting of operators). In this algorithm, the first corrector step is the 
same as that of the SIMPLE algorithm. The corrected velocity and pressure fields 
are used to derive the second correction equation. For this second step, the first 
term in the right-hand side of Eq. (6.39) containing the neighboring velocity cor
rections is calculated from the first correction step. Application of the discretized 
continuity equation to the corrected velocities leads to the second pressure correction 
equation. The coefficients of the second pressure correction equation are the same 
as those of the first correction equation. The source term, however, contains terms 
containing neighboring velocity corrections. Details of the derivation of this sec
ond correction equation may be found in Issa (1986) and Versteeg and Malalasekara 
(1995). 

Several variants of the SIMPLE family of algorithms have been proposed. Various 
studies comparing relative performances of these algorithms are available (for exam
ple, Jang et al., 1986; Braaten and Shyy, 1987; Wanik and Schnell, 1989; McGuirk 
and Palma, 1993). It must be noted that there is no single algorithm, which may be 
identified as the best algorithm for all types of problems. The performance of any 
algorithm depends on the flow conditions, the degree of coupling between various 
equations, the amount of under-relaxation used and sometimes, also on details of the 
numerical technique used to solve the algebraic equations (direction of sweeps and so 
on). In general, when momentum equations are not coupled with a scalar variable, the 
PISO algorithm performs better than SIMPLE or SIMPLEC. When such a coupling 
exists, PISO may show no significant advantage over the other methods. SIMPLER 
and SIMPLEC have proven to be robust and efficient in strongly coupled problems. 
Both of these are superior to SIMPLE in many flows. It is, however, difficult to sin
gle out a superior algorithm between SIMPLER and SIMPLEC. General experience 
suggests that SIMPLER is more robust and more suitable for complex applications 
like multiphase flows. 

The solution algorithm for this class of methods can be summarized as follows: 

1. Momentum equations are solved using the guessed (or available from the 
previous iteration) velocity and pressure field. 

2. The pressure correction equation is solved and the velocity field is corrected 
using the derived pressure correction field. For PISO, a second pressure 
correction equation is solved to correct the pressure and velocities again. 



171 FINITE VOLUME METHOD FOR CALCULATION OF FLOW FIELD 

For SIMPLER, the pressure equation is solved based on the updated velocity 
field. 

3. Scalar equations (if any) are then solved using the corrected velocity field (for 
example, k and ε equations when solving the k–ε model of turbulence or the 
enthalpy equation when solving non-isothermal flows). 

4. Fluid properties are updated (if not constants). 
5. Return to step 1 until a converged solution is obtained. 

The algorithms discussed so far can be applied directly when staggered grids are 
used. In staggered grids, the cell face values required for assembling the discretized 
continuity equation are available readily and contain the pressure gradient terms nat
urally. For the colocated grid, however, some modifications to these algorithms are 
required to avoid oscillations in the pressure field. Although these oscillations can be 
filtered out (van der Wijngaart, 1990), to devise a compact pressure correction equa
tion similar to those discussed earlier, it is necessary to consider corrections to cell 
face velocities rather that node velocities (where the values are naturally available in 
colocated grids). The corrections to cell face velocities can be derived following the 
methods discussed earlier, the only difference is that the coefficient aP in Eq. (6.40) 
are not the nodal values, as in the staggered arrangement, but are interpolated cell 
center values. This procedure may appear unnatural compared to direct application 
of the staggered arrangement, however, as mentioned in the previous sub-section, 
a colocated grid arrangement is preferable for flow simulations in complex geom
etry. Details of the derivation of pressure correction equations and application of 
SIMPLE-like algorithms to colocated grids may be found in Lilek and Peric (1995) 
and Ferziger and Peric (1995) among others. In general, the performance of SIMPLE-
like algorithms (convergence rate, dependence on under-relaxation factors, computing 
costs etc.) is similar for staggered and colocated grid arrangements. The difference 
between solutions obtained with different variable arrangements is much smaller than 
the discretization error. 

The overall solution procedure and other finer details of under-relaxation and 
convergence criteria are briefly discussed in Section 6.5. It is useful to briefly discuss 
the implementation of commonly encountered boundary conditions when solving 
flow field equations. 

6.3.3. Implementation of Boundary Conditions 

Mathematical formulations of various boundary conditions were discussed in Section 
2.3. These boundary conditions may be implemented numerically within the finite 
volume framework by expressing the flux at the boundary as a combination of inte
rior values and boundary data. Usually, boundary conditions enter the discretized 
equations by suppression of the link to the boundary side and modification of the 
source terms. The appropriate coefficient of the discretized equation is set to zero and 
the boundary side flux (exact or approximated) is introduced through the linearized 
source terms, SC and SP. Since there are no nodes outside the solution domain, the 
approximations of boundary side flux are based on one-sided differences or extrapo
lations. Implementation of commonly encountered boundary conditions is discussed 
below. The technique of modifying the source terms of discretized equation can also 
be used to set the specific value of a variable at the given node. To set a value at 
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node P, the components of the linearized source terms, SC and SP, are set to very 
large values, like (φset 1030) and (−1030) respectively. In such a case, the right and 
left sides of the discretized equation (Eq. (6.12)) are dominated by these large terms 
yielding approximately: 

≈1030 φP = ≈1030 φset (6.46) 

This fixes the value of variable φ at node P to φset. This method can also be used to 
simulate solid obstacles within a solution domain by fixing φset to zero. The system 
of discretized equations can then be solved as usual without considering the obstacles 
separately. 

Convective fluxes are usually specified at the inlet boundaries (and set to zero at 
impermeable walls and the symmetry axis). Upwind approximations can usually be 
used. For the staggered grid arrangement, the velocity node is located at the boundary 
surface. The velocity at such a node on the boundary is then directly specified without 
the need for solving the discretized equation. For colocated grids, the specified inlet 
velocity is used to calculate the convective flux from the cell face coinciding with 
the inlet boundary. For diffusive fluxes, either the flux or the boundary value of the 
variable is specified. If the boundary value is specified, diffusive fluxes are evaluated 
using one-sided approximations for normal gradients. If the flux is specified, it is used 
to calculate the flux, and an approximation to the flux in terms of nodal values can be 
used to calculate the boundary value of the variable. For the zero gradient boundary 
condition, no term needs to be added to the source term. 

For a staggered grid arrangement, a knowledge of pressure is not required at the 
boundaries on which the normal velocity is specified. At such boundaries, zero gradi
ent boundary conditions should be used for pressure correction and pressure equations. 
When boundary pressure is specified, the pressure correction at the boundary needs 
to be set to zero. When a colocated grid arrangement is used, the boundary pressure 
needs to be known in order to calculate pressure forces appearing in the momentum 
equations. This is normally obtained by extrapolation. In most cases, linear extrapo
lation is sufficient. It must be noted that for incompressible flows, the absolute value 
of pressure (and, therefore, of pressure correction) is not relevant; only differences in 
the pressure are meaningful. Usually, the pressure is set to a fixed reference value at 
a suitable grid point and pressure values at all other nodes are calculated relative to 
this reference value. 

At the outlet, extrapolation of the velocity to the boundary (zero gradient at the 
outlet boundary) can usually be used. At impermeable walls, the normal velocity is 
set to zero. The wall shear stress is then included in the source terms. In the case 
of turbulent flows, wall functions are used near walls instead of resolving gradients 
near the wall (refer to the discussion in Chapter 3). Careful linearization of source 
terms arising due to these wall functions is necessary for efficient numerical imple
mentation. Other boundary conditions such as symmetry, periodic or cyclic can be 
implemented by combining the formulations discussed in Chapter 2 with the ideas of 
finite volume method discussed here. More details on numerical implementation of 
boundary conditions may be found in Patankar (1980) and Versteeg and Malalasekara 
(1995). 
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6.4. FINITE VOLUME METHOD FOR UNSTEADY FLOWS 

To compute unsteady flows, the time derivative terms in the governing equations 
need to be discretized. The major difference in the space and time co-ordinates lies 
in the direction of influence. In unsteady flows, there is no backward influence. The 
governing equations for unsteady flows are, therefore, parabolic in time. Therefore, 
essentially all the numerical methods advance in time, in a step-by-step or ‘marching’ 
approach. These methods are very similar to those applied for initial value problems 
(IVPs) of ordinary differential equations. In this section, some of the methods widely 
used in the context of the finite volume method are discussed. 

For unsteady flows, discretization schemes need to be devised to evaluate the 
integrals with respect to time (refer to Eq. (6.2)). The control volume integration is 
similar to that in steady flows discussed earlier. The most widely used methods for 
discretization of time derivatives are two-level methods. In order to facilitate further 
discussion, let us rewrite the basic governing equation as an ordinary differential equa
tion with respect to time by employing the spatial discretization schemes discussed 
earlier: 

dφ = f (t, φ)  (6.47)
dt 

By integrating with respect to time between two grid points, one obtains: 

n+1 n+1 
dφ 

∫ 
dt = φn+1 − φn = f (t, φ) dt (6.48)

dt 
n n 

Since the variation of φ with time is not known, some approximations are necessary 
to evaluate the integration of the function. Four commonly used approximations are 
detailed below (shown schematically in Fig. 6.10). 

(a) Explicit Euler: Integral is evaluated using the value of φ available at the previous 
node: 

n+1 

f (t, φ) dt = �t f  (tn, φn) (6.49) 

n 

f 
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t 
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FIGURE 6.10 Approximation of time integral. (a) Explicit, (b) Implicit, (c) Mid-point, (d) Trapezoid. 
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(b) Implicit Euler: Integral is evaluated using the value of φ available at the next 
node: 

n+1 

f (t, φ) dt = �t f  (tn+1, φn+1) (6.50) 

n 

(c) Mid-point rule: Integral is evaluated using the value of φ available at the mid
point: 

n+1 

1f (t, φ) dt = �t f  (t , φn+ 1 ) (6.51)n+ 2 2 

n 

(d) Trapezoid rule: Integral is evaluated using linear interpolation: 

n+1 
1 [ ] 

f (t, φ) dt = �t f (tn, φn) + f (tn+1, φn+1) (6.52)
2 

n 

The first method is an explicit method while the remaining three are implicit methods 
(to varying degree). The Euler explicit and implicit methods are first-order accurate 
(errors are proportional to �t) while the remaining two methods are second-order 
accurate (errors are proportional to �t2). Explicit methods have minimum require
ments for memory and computations but are unstable at larger time steps. Implicit 
methods may require an iterative solution (and more memory) to obtain the values 
at the new time step but are much more stable. Apart from the two-level methods 
discussed here, there are multi-level methods such as the Runge–Kutta methods and 
Adams methods. Detailed discussion of these methods can be found in Press et al. 
(1992). For computational flow modeling, if the spatial discretization is second-order 
accurate, two-level methods for integration with respect to time will generally be 
sufficient, and are widely used. For special purposes, when higher order spatial dis
cretization is used (for example, in large eddy simulations), higher order schemes 
can be used. Here we discuss application of two-level methods to solve the generic 
unsteady transport equation (Eq. (6.1)). 

Integration of first term of Eq. (6.1) over a computational cell and over a time 
interval can be written as: 

∂(ρφ)  ( 
φn+1 − φn 

) 
dV dt = P ρ �V (6.53)P 

V ∂t 

The procedure for evaluating integrals of the remaining terms of Eq. (6.1) over a 
control volume remain the same as discussed earlier. To evaluate integration with 
respect to time, it will be necessary to employ one of the two-level methods dis
cussed above. As mentioned earlier, generally all the terms appearing in Eq. (6.1) are 
linearized when carrying out discretization. Linearization simplifies the task of time 
integration. Integration of φ with respect to time can then be written (considering the 
example of a term containing φE): 

aEφE dt = aE θφ
n+1 + (1 − θ) φn �t (6.54)E E 
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where θ is a parameter controlling the degree of implicitness. Zero implies an explicit 
scheme, and one implies a fully implicit scheme (0.5 corresponds to the Crank– 
Nicholson scheme). Carrying out such a procedure for all terms of the governing 
transport equation, a discretized equation similar to Eq. (6.11), is obtained for the 
unsteady simulations: 

aPφ
n+1 
P = 

∑ 
anb 
[ 
θφn+1 

nb + (1 − θ) φn 
nb 

] 
nb ( ) ∑ 

+ a0 
P − (1 − θ) anb + (1 − θ) SP φ

n 
P + SCφ (6.55) 

nb 

where 

aP = θ 
∑ 

nb 

anb + a0 
P − θSPφ a0 

P = ρ 
�V 

�t 
(6.56) 

For physically realistic and bounded results, it is necessary to ensure that all the 
coefficients of the discretization equation are positive. This requirement imposes 
restrictions on the time step that can be used with different values of θ . It can be seen 
that a fully implicit method with θ equal to unity is unconditionally stable. Detailed 
stability analysis is rather complex when both convection and diffusion are present. In 
general, simplified criteria may be used when an explicit method is used in practical 
simulations: 

�xi �x2 

�t < or (6.57)
Ui 2�φ 

These criteria can be interpreted as no fluid particle (information) can propagate more 
than one grid length in a single time step. If the details of development from the initial 
guess to the final steady state are not important and only the final steady state is of 
interest, such a restriction on the time step may limit the rate of convergence. In such a 
case, implicit methods are advantageous. Since implicit methods are unconditionally 
stable, large time steps can be used and it might suffice to do a single iteration per 
time step. Such a pseudo-time-marching approach can be conveniently used to obtain 
steady state solutions to complex flow problems. Pseudo-time-marching is analogous 
to employing an under-relaxation. Pseudo-time-marching uses the same time step 
for all CVs, which is equivalent to using a different under-relaxation factor for each 
CV; use of a constant under-relaxation factor for all CVs is equivalent to applying a 
different time step for each CV. Typical steps in applying SIMPLE-like algorithms to 
solve unsteady flow problems are summarized in Fig. 6.11. Within a single time step 
it may be necessary to carry out several iterations to obtain an adequately converged 
solution of the governing equations. Within each such iteration, there may be internal 
iterations to solve algebraic equations. Some issues related to the overall performance 
of such a solution procedure are discussed in the next chapter. 

6.5. APPLICATION OF FINITE VOLUME METHOD 

Implementation of the basic steps of the finite volume method discussed above to 
solve the governing equations of a flow model requires development of a computer 
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FIGURE 6.11 SIMPLE family of algorithms for unsteady flows. 

program. Development of a computer program involves many issues and is outside 
the scope of this work. It is assumed that suitable computational tools are available to 
a reactor engineer. Key issues which need to be considered when selecting suitable 
computational tools, are discussed in Chapter 8. In this section, various issues relevant 
to computational flow simulations are discussed with the help of a simple example. 
Consider a cubical vessel with rectangular inlet and outlets as shown in Fig. 6.12a. 
Geometrical and other details are given in Table 6.1. Simulations were carried out for 
four different viscosity fluids (in the range 0.001 Pa.s to 100 Pa.s) to determine the 
possible influence of viscosity on the numerical solution of model equations. 
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FIGURE 6.12 Outline of vessel (isometric and two-dimensional approximation). 

TABLE 6.1 Data Used for Simulation Example 

Three-dimensional vessel (Fig. 6.12a): 

Volume = 1 m3 

Length = Depth = Breadth = 1 m  
Inlet area = 0.1 × 1.0 = 0.1 m2 

(Distance between top edge of inlet to vessel edge = 0.1 m) 
Outlet area = 0.1 × 1.0 = 0.1 m2 

(Distance between bottom edge of outlet to vessel bottom = 0.1 m) 

Two-dimensional approximation (Fig. 6.12b): 
Depth = 0.01 m 
Inlet velocity = 1 m  s−1 

Fluid viscosity = 0.001 Pa.s, 1 Pa.s, 10 Pa.s and 100 Pa.s 
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6.5.1. Solution Domain and Computational Grid 

The first task in initiating a numerical simulation is to select an appropriate solu
tion domain and formulate appropriate boundary conditions to specify the influence 
of the environment on flow processes in the considered solution domain. Flow in 
a cubical vessel with rectangular inlet and outlet can be conveniently modeled by 
considering a two-dimensional geometry, if the end effects are assumed not to be 
important. In any case, it can be seen that the most important flow processes occur 
in the x–y plane. It is, therefore, useful to examine various numerical issues such 
as the required number of grids, discretization schemes etc., by carrying out two-
dimensional simulations. If necessary, after identifying an adequate number of grid 
points, a complete three-dimensional simulation may be carried out to verify the ade
quacy of the two-dimensional approximation. A two-dimensional solution domain 
was therefore considered for numerical simulation of the flow in a cubical vessel 
(Fig. 6.12b). 

The next issue is the formulation of appropriate boundary conditions. The avail
ability of suitable boundary conditions may also affect the decision concerning the 
extent of the solution domain. Obviously in practice, the inlet and outlet of any vessel 
will be connected to the associated pipe work. It is essential to decide the extent 
of the solution domain in such a way that it does not affect the simulated results. 
Generally for high velocity inlets, conditions in the process vessel do not affect the 
flow characteristics of the inlet pipe, and therefore it is acceptable to set the inlet 
boundary conditions right at the vessel boundary. More often than not, some pip
ing at the outlet section may have to be considered if the outlet boundary condition 
is to be used. Alternatively, one may use constant pressure boundary conditions. 
Possible boundary conditions and solution domain are shown in Fig. 6.13. Before 
examining the influence of the solution domain on the simulated results, it is nec
essary to identify an adequate number of grids to resolve all the major features of 
the flow. 

Flow simulations in the simplest solution domain (Fig. 6.13a) were carried out 
with different numbers of grids: 10 × 10, 20 × 20, 40 × 40, 80 × 80. Commer
cial CFD code, FLUENT (Fluent Inc., USA) was used for these simulations. Since 
the geometry of the proposed solution domain was simple, it was possible to gen
erate a suitable computational grid using the tools provided within FLUENT, and 
a separate grid generation tool was unnecessary. For all of these four grid levels, 
uniform grids were used. Typical grids used for simulations (for the 40 × 40 case) 
are shown in Fig. 6.14. Typical flow results in the form of vector and contour plots 
are shown in Fig. 6.15. The influence of grids on predicted results is shown in Fig. 
6.16. All of these results were obtained for fluid with viscosity 100 Pa.s. It can be 
seen that there is almost no change in the predicted results for grids beyond 40 × 40. 
Therefore, 40 × 40 grids (for square geometry) were used to examine the influence 
of length of the outlet pipe and corresponding boundary conditions. Comparison of 
predicted results for different configurations is shown in Fig. 6.17. Since the dif
ference in predicted results with and without outlet pipes is not significant, for all 
further simulations, a solution domain without extensions of inlet or outlet pipes was 
considered. 
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FIGURE 6.13 Different solution domains. 

6.5.2. Convergence and Error Analysis 

As mentioned in the earlier part of this chapter, the overall solution procedure is 
iterative and an adequate degree of convergence needs to be ensured before further 
processing of simulated results. Usually a measure of how closely each discretized 
equation is balanced is used to decide convergence. For this, generally the imbalance 
in the governing equations is summed over all computational cells in the solution 
domain. Such a sum is called the residual and for a general conservation equation can 
be written (from Eq. (6.12)): 

R = ∣ aEφE + aWφW + aWWφWW + aNφN + aSφS + aSSφSS + Sφ 
C − aPφP∣ 

all nodes 
(6.58) 
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FIGURE 6.14 Typical grid used for simulations (40 × 40). 

The residuals (R) for each of the governing equations need to be reduced to an ade
quately low level. Definition of an ‘adequate’ degree of convergence may be problem 
dependent. In general, an examination of the history of residuals and variables at 
key locations, along with the integral balances may provide a good indication of the 
degree of convergence. The convergence behavior of a numerical method depends 
on several factors discussed in this chapter. For a given algorithm and discretization 
scheme, values of the under-relaxation factor control the rate of convergence. 

For the problem considered in the previous sections, the influence of under-
relaxation factors on the reduction in residuals is shown in Fig. 6.18. It can be 
seen that up to a certain limit, as the under-relaxation factor increases, the rate of 
residual reduction increases. However beyond a certain limit, further increase in 
under-relaxation parameters may lead to divergence (see, for example, results for an 
under-relaxation parameter of 0.85, where residues increase with further iterations). 
For an under-relaxation parameter of 0.6 (for velocities), residual and variable history 
are shown in Fig. 6.19. These profiles and an examination of integral balances indicate 
that adequate convergence occurs in about 150 iterations. Further simulations lead to 
further reduction in residuals, however, the predicted results are almost independent 
of the actual value of residuals beyond 150 iterations. This fact further confirms that 
convergence level obtained at 150 iterations (with an under-relaxation parameter of 
0.6) was satisfactory. Comparison of the converged results obtained using different 
under-relaxation parameters confirms that the value of under-relaxation parameter 
has no influence on the converged results. After ensuring adequate convergence, it is 
important to examine possible errors in the simulated results. 



181 APPLICATION OF FINITE VOLUME METHOD 

FIGURE 6.15 Typical simulation results; Grid: 40 × 40. Vector: maximum length 1 m s−1. Contours 
of stream function: 10 uniform contours between 0 to 0.001 (Lowest level: A; Highest level: J). 
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FIGURE 6.16 Influence of grid size of predicted results (Velocity profile at x = 0.5 m). 
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FIGURE 6.17 Influence of solution domain of predicted results (Velocity profile at x = 0.5 m; Grid: 
40 × 40). 

There are several ways of evaluating possible errors in the simulated results. 
Values of residuals in the discretized equations are one of the indicators of errors. In 
addition, it is often useful to examine integrated fluxes of the quantity of interest (for 
example, mass flow rate) and compare them with the expected values. For example, 
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FIGURE 6.18 Influence of under-relaxation parameters on convergence (Pressure residual; Grid: 
40 × 40). 

in the case considered, net mass flow passing through any constant I plane should 
be equal to the inlet mass flow rate. Simulated results reveal that computed net mass 
flow rate is the same as the inlet flow rate, indicating adequate convergence. All the 
results discussed so far were obtained with a first-order upwind differencing scheme. 
In order to assess the quality of results, simulations were carried out for two higher 
order schemes: a second-order upwind method and QUICK (with SMART limiter 
to prevent non-physical oscillation). The predicted profiles at the mid-I plane of the 
base case are compared with the results of these two cases in Fig. 6.20. It can be 
seen that the difference in predicted results of the three discretization schemes is 
not significant. Thus, simulated results are not dependent on any of the numerical 
parameters: number of grids, discretization schemes, convergence criterion and so 
on. After ensuring this, further evaluation of simulated results can be done with the 
help of experimental data, if available. After such validation, the computational model 
may be used to understand the flow process under consideration. Here we illustrate 
the possible use of the computational model to understand the influence of the fluid 
viscosity on the fluid dynamics of the considered configuration. 

6.5.3. Simulations with Low Viscosity Fluid 

Starting with simulations of fluid with viscosity 100 Pa.s, further simulations were 
carried out for fluids with viscosity 10 Pa.s, 1 Pa.s and 0.001 Pa.s. Initially all sim
ulations were carried out for 40 × 40 grids. Typical predicted results are shown in 
Figs 6.21 and 6.22. It can be seen that fluid viscosity has a pronounced influence 
on fluid dynamics. As the viscosity decreases, the penetration depth of the incom
ing jet increases, leading to circulatory flow within the domain. For lower viscosity 
fluids, much sharper profiles exist within the solution domain. It will be of interest 



184 CHAPTER 6 NUMERICAL SOLUTION OF MODEL EQUATIONS

(b) 

(a) 
0.000001

0.00001

0.0001

0.001

0.01

0.1

1
0 50 100 150 200 250

Iteration number

Pressure
U Velocity
V Velocity

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100 120 140 160 180 200

Iteration number

U top
U middle
U bottom

N
or

m
al

iz
ed

 r
es

id
ua

ls
V

el
oc

it
y,

 m
s–1

FIGURE 6.19 Residual and variable history (Under-relaxation factor for velocity = 0.6; Grid: 40 ×
40). (a) Residuals; (b) Velocity (top: J = 36; middle: J = 22; bottom: J = 7).

to examine whether the conclusion of grid adequacy is valid for the low viscosity
fluids. Predicted results for the lowest viscosity fluids, obtained with different grids,
are shown in Fig. 6.23. It can be seen that the predicted results are functions of grid
size and are no longer grid independent even for the finest grid size used (640 × 640).
This can be understood with reference to the phenomenon of turbulence discussed
in Chapter 3. For a fluid with viscosity of 0.001 Pa.s, the set boundary conditions
generate flow with sharp gradients, through which flow instability and turbulence
sets in. In turbulent flow widely different scales co-exist and flow becomes inherently
unsteady. It can be seen that even 400 000 computational cells turn out to be inad-
equate to capture all the small-scale features of turbulence (without using unsteady
state equations). It may be necessary to use an appropriate turbulence model in such a
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FIGURE 6.20 Influence of discretization scheme on predicted results (Velocity profile at x = 0.5; 
Grid: 40 × 40). 

case. The solution of model equations describing turbulent and other complex flows 
is discussed in the next chapter. 

6.6. SUMMARY 

The finite volume method ensures integral conservation of mass, momentum and 
energy and is, therefore, attractive for reactor engineering applications. The steps in 
applying the finite volume method to solve transport equations are listed below. 

•	 Select appropriate solution domain (and boundary conditions). 
•	 Divide the selected domain into an adequate (which may be verified by exam

ining the grid dependence of predicted results) number of computational 
cells. 

•	 Obtain a set of discretized equations by integrating transport equations over 
computational cells. This step requires use of various discretization and 
interpolation schemes. 

•	 Select an appropriate algorithm to treat the various couplings and non-
linearities. 

•	 Select a corresponding method to solve the linearized algebraic equations. 
•	 Implement these methods in a computer program and obtain results. 
•	 Evaluate the results obtained. 

Each of these steps has been discussed in detail in this chapter. Generally, second-
order approximations for interpolation are adequate. Various second-order schemes 
and their modified versions to minimize non-physical ‘wiggles’ were discussed. 
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(a) 

(b) 

(c) 

FIGURE 6.21 Influence of viscosity (Vector plots; contours of stream function: A = −0.001 and 
J = 0.001). Viscosity (a) 100 Pa.s; (b) 10 Pa.s; (c) 1 Pa.s. 

The QUICK discretization scheme along with SMART or SHARP modifications, 
is recommended. Various algorithms for treating pressure–velocity coupling were 
discussed. The performance of these algorithms depends on flow conditions, degree 
of coupling between various equations, under-relaxation parameters and so on. Our 
experience of using the SIMPLER algorithm for a wide variety of reactors indicates 
that it is quite robust and efficient. A cubical reactor was considered to demonstrate 
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FIGURE 6.23 Influence of grid size for low viscosity fluid (µ = 0.001 Pa.s).

application of the finite volume method to flow simulations. Various aspects of practi-
cal flow simulations (including post-processing) were illustrated with the help of this
example. Difficulties in obtaining grid-independent results for the case of turbulent
flows were illustrated. The solution of model equations describing turbulent and other
complex flows is discussed in the next chapter.
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7

NUMERICAL SOLUTION OF

COMPLEX FLOW MODELS


A reactor engineer frequently encounters turbulent, multiphase and reactive flows, 
which are more complex than those discussed in the previous chapter. In this chapter, 
modifications or special techniques/algorithms required to extend the finite volume 
method to handle such complexities are discussed. In addition, some of the practical 
issues involved in carrying out numerical simulations of complex flow models are 
also discussed. 

7.1. SIMULATION OF TURBULENT FLOWS 

Mathematical models for simulating turbulence are discussed in Chapter 3. Here the 
scope is restricted to simulations of RANS-based turbulence models. Information 
about numerical methods relevant to LES and DNS may be found in the references 
cited in Chapter 3. For RANS-based turbulence models, in addition to Reynolds-
averaged momentum and continuity equations, governing equations for the additional 
turbulence variables such as turbulent kinetic energy or turbulent energy dissipation 
rate, need to be solved. Algorithms and methods discussed in the previous chapter 
can be directly applied to solve these model equations. Usually, turbulence model 
equations are solved after correcting the pressure and velocity fields (refer the overall 
solution procedure shown in Fig. 6.11) in each iteration. For example, when turbulent 
flows are simulated using the two-equation, k–ε model of turbulence, the governing 
equations for k and ε are solved using the methods discussed for general scalar 
equations. It must be noted that the magnitudes of source terms appearing in the 
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governing equations for k and ε are significant and must be treated carefully for good 
convergence behavior. Since both k and ε will always be positive, the source term 
must be linearized to ensure the non-negativity of k and ε. One of the simplest ways 
to linearize these source terms is to express the ratio of ε and k in terms of turbulence 
viscosity: 

ε CDρk = (7.1)
k µT 

When initiating the calculations, turbulent viscosity is set to a small value (usually 
the same as the molecular viscosity). Linearized source terms for k and ε can then be 
written: 

CDρk 
SCk = VcellG SPk = −Vcellρ (7.2) 

µT 

CDρk CDρk 
SCε = VcellC1G SPε = −Vcellρ C2 (7.3) 

µT µT 

When wall functions are used to specify wall boundary conditions, it is important to 
suitably linearize the source terms appearing in momentum equations by following 
the practices discussed in the previous chapter. 

In many turbulent flow simulations, it is useful to carry out the first few iterations 
without considering the turbulence model. This allows some flow field to develop 
within the solution domain. The solution of turbulence model equations are then 
activated and the whole set of equations are solved until the desired convergence 
is obtained. It is often useful to set some small values to turbulent kinetic energy 
and dissipation rates when initiating their solution. For more complex turbulence 
models (non-linear k–ε models, algebraic or differential Reynolds stress models), 
it is always desirable to obtain preliminary results using the standard k–ε model, 
which is quite robust. It is often observed that the number of computational cells and 
discretization schemes have more significant impact on the simulated results than 
the choice of turbulence model. Measures should therefore be taken to assess the 
adequacy of the grid employed and the discretization scheme. It must be noted that 
usually the application of wall functions imposes some constraints on the location 
of the nearest grid node from the wall. The validity of these assumptions must be 
verified by examining simulated results. 

Some prior knowledge of the expected flow field always helps to estimate the 
required under-relaxation techniques and to evolve suitable solution strategies. In 
some cases exhibiting complex interactions, it is helpful to temporarily switch off 
the solution to some of the equations. The progress of error reduction can be moni
tored and controlled by adjusting several parameters of the numerical method (such 
as direction of sweeps of algebraic solver, internal iterations of different variables 
and so on). The importance of ensuring adequate convergence was mentioned in the 
previous chapter. It is even more crucial in simulating turbulent flows. Often in com
plex turbulent flows, the user may have to employ lower values of under-relaxation 
factor. Such low values will force slow changes in the predicted flow field, sometimes 
indicating an apparently converged behavior. It is important to verify the degree of 
convergence by comparing the history of key variables at different points as well 
as the history of some relevant integrated flow measure (such as volume-averaged 
turbulent energy dissipation rate). 
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In order to illustrate some of the issues relevant to simulations of turbulent flows, 
here we consider the same example discussed in the previous chapter. As noted there, 
for low viscosity fluids, it is difficult to obtain grid-independent results. The reason is 
that with the given boundary conditions, the flow is turbulent for low viscosity fluids 
and requires an extremely large number of grids to resolve the small-scale features 
completely. To avoid the need for using an excessively large number of grid points, 
one may use a turbulence model (at the expense of information about the small-scale 
features) and obtain grid-independent results for the mean flow field. To illustrate this, 
the standard k–ε model was used to carry out simulations of the flow of low viscosity 
fluid (0.001 Pa.s) in the cubical reactor discussed in the previous chapter. Profiles of 
velocity and turbulent kinetic energy at x = 0.5 m predicted with different numbers of 
grids are shown in Fig. 7.1. It can be seen that with the turbulence model, the predicted 
results become almost grid-independent if the number of computational cells are more 
than 25 600 (160 × 160). It is useful to examine the variation of predicted volume-
averaged turbulence characteristics (energy dissipation rate and kinetic energy) with 
the inverse of the number of computational cells (shown in Fig. 7.2). It can be seen 
that predicted characteristics obtained with a 160 × 160 grid are quite close to the 
values extrapolated to an infinite number of computational cells, which confirms the 
earlier conclusion of grid independence. 

In order to bring the considered example closer to the reactor-engineering field, a 
case with a downward pumping impeller in the vessel was considered. The presence 
of a downward pumping impeller was approximated by specifying a uniform down
ward velocity at the impeller location (Fig. 7.3). Two different values of velocity, 
1 ms−1 and 5 ms−1, were specified. The influence of the number of computational 
cells on the predicted flow for the case with an impeller (with downward velocity 
5 ms−1) was examined. The results are shown in Fig. 7.4. It can be seen that even 
with the impeller, 160 × 160 grids are adequate to simulate the turbulent flow. Thus, 
all subsequent simulations were carried out using this grid. It can be seen that with a 
downflow impeller, the volume-averaged turbulent energy dissipation rate is substan
tially higher (compare Figs 7.2 and 7.4). The predicted flow field (velocity vectors, 
contours of stream function and contours of turbulent kinetic energy) for a downward 
velocity of 5 ms−1 is shown in Fig. 7.5. It can be seen that because of the asym
metric inlet, the flow field is not symmetric around x = 0.5 m. The influence of 
the impeller downward velocity on the volume-averaged turbulent characteristics is 
shown in Fig. 7.6. 

The case of an impeller downward velocity of 5 m s−1 was further investigated 
to examine the influence of turbulence models and discretization schemes. The influ
ence of discretization schemes on predicted results (with the standard k–ε model) 
is shown in Fig. 7.7. It can be seen that with a sufficiently fine grid, the influ
ence of the discretization scheme is not significant. Additional simulations reveal 
that for the coarser grid there is a significant difference in the predicted results 
of different discretization schemes. The difference diminishes as the number of 
computational cells increases. The influence of the turbulence model employed on 
predicted results is shown in Fig. 7.8. It can be seen that the predictions by stan
dard and RNG versions of k–ε models are almost the same. The predictions of the 
Reynolds stress model are, however, significantly different from these two models. 
This illustrates the importance of appropriate selection of turbulence model and the 
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FIGURE 7.1 Influence of grid size on predicted results. (a) U-profile at x = 0.5 m, (b) k-profile at 
x = 0.5 m.  

necessity for validation of the computed results. It should be emphasized that a math
ematically more complex model does not necessarily guarantee better predictions. 
A suitable turbulence model should be selected by considering the specific flow 
characteristics (refer to the discussion in Chapter 3). The example discussed here 
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FIGURE 7.3 Configuration with downflow impeller. 

also illustrates the importance of detailed analysis and post-processing of simulated 
results. Not only for turbulent flows but also for any complex flow-modeling prob
lem, before one uses simulated results, systematic error analysis based on numerical 
experiments as well as some experimental validation is essential. Examples of the 
validation of single-phase flows generated by different impellers are discussed in 
Chapter 10. 
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FIGURE 7.4 Influence of grid size on volume averaged turbulent characteristics with impeller. 

(b) (c) 

(a) 

FIGURE 7.5 Predicted flow field with two equation turbulence model (standard k–ε model). (a) 
Vector plot, (b) Contours of stream function (−0.01 [A] to 0.01 [ J]), (c) Contours of turbulent kinetic 
energy (0 [A] to 0.01 [K]). 
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7.2. SIMULATION OF MULTIPHASE FLOWS 

Mathematical models governing multiphase flows are discussed in Chapter 4. As 
mentioned earlier, multiphase flows may exhibit several different flow regimes, and 
different modeling approaches are used to simulate these different flow regimes. 
Three basic modeling approaches, namely (1) volume of fluid approach (VOF), (2) 
Eulerian–Lagrangian (EL), and (3) Eulerian–Eulerian (EE) and the corresponding 
basic transport equations governing multiphase flows were discussed in Chap
ter 4. Although the basic finite volume method is applicable to simulation of 
multiphase flows, each of these approaches requires different features and spe
cial algorithms to solve the governing equations. Some of these issues are briefly 
discussed here. 

7.2.1. Volume of Fluid (VOF) Approach 

In the VOF approach, the present phases share a single set of conservation equa
tions as discussed in Chapter 4. The essential feature of the VOF model is that 
it simulates the motion of a fluid–fluid interface embedded in the overall motion. 
It is important to maintain a compact interface thickness (one computational cell 
thick) to realize accurate simulations. VOF methods employ a marker function 
F(x,t) (or a volume fraction) that uniquely identifies the fluid under consideration. A 
unit value for F indicates a cell completely filled with one phase, whereas a zero 
value indicates a cell containing only the other phase. Therefore, computational 



198 CHAPTER 7 NUMERICAL SOLUTION OF COMPLEX FLOW MODELS 

– 4 

–3 

–2 

–1 

0 

1 

2 

3 

4 

5 

0 0.2 0.4 0.6 0.8 1 

Power-law 
2nd order upwind 
QUICK-SMART 
QUICK-MUSCL 

–1
 

V
el

oc
ity

, m
 s 

(a) Distance from the bottom, m 

–2
 

T
ur

bu
le

nt
 k

in
et

ic
 e

ne
rg

y,
 m

2
s 

10 

8 

6 

4 

2 

0 

Power-law 
2nd order upwind 
QUICK-SMART 
QUICK-MUSCL 

0 0.2 0.4 0.6 0.8 1 

(b) 
Distance from the bottom, m 

FIGURE 7.7 Influence of discretization schemes on predicted results. (a) U velocity at x = 0.5 m,  
(b) Turbulent kinetic energy at x = 0.5 m.  

cells with intermediate values of F contain an interface between phases. The 
motion of the interface is tracked by solving the transport (advection) equation of 
F given by 

∂F + (U · ∇) F = 0 (7.4)
∂t 
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FIGURE 7.8 Influence of turbulence model on predicted results. (a) U velocity at x = 0.5 m/s, (b) 
Turbulent kinetic energy at x = 0.5 m.  

The position of the interface between phases is inferred from the values of marker 
function. The discretized form of this equation relates the value of F at the new time 
level with its previous time-level value and to the fluxes of F through the cell faces. 
Approximations used in calculating these cell fluxes may lead to smearing of the 
fluid–fluid interface, which has to be minimized during numerical simulations. Several 

1 
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FIGURE 7.9 VOF interface reconstruction methods. 

techniques such as SLIC (simple line interface calculation) and PLIC (piecewise linear 
interface calculation) have been developed to minimize computational smearing of 
the interface (see Rider and Kothe, 1995, for a review). 

One of the most popular VOF methods is that due to Hirt and Nichols (1981). 
This method uses an approximate interface reconstruction that forces the interface to 
align with one of the co-ordinate axis, depending on the prevailing direction of the 
interface normal. A schematic diagram of reconstruction of a two-dimensional inter
face is shown in Fig. 7.9. To compute fluxes in a direction parallel to the reconstructed 
interface, upwind fluxes are used. Fluxes in a direction perpendicular to the recon
structed interface are estimated using a donor–acceptor method. In a donor–acceptor 
method, a computational cell is identified as a donor of some amount of fluid from one 
phase and another neighbor cell is identified as the acceptor of that donated amount 
of fluid. The amount of fluid from one phase that can be convected (donated) across a 
cell boundary is limited by the minimum of the filled volume in the donor cell or the 
free volume in the acceptor cell. This minimizes numerical diffusion at the interface. 

The PLIC method is much more accurate than the SLIC method discussed above 
(Rider and Kothe, 1995; Rudman, 1997). In PLIC, an interface within a computational 
cell is approximated by a straight-line segment with a slope determined from the 
interface normal (Fig. 7.9). This interface normal is calculated from the gradient of 
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volume fraction (using a nine-point computational molecule in two dimensions). The 
line segment cuts the computational cell in such a way that the fractional fluid vol
ume is equal to the value of marker function at that cell. The resulting fluid polygon 
is then used to determine fluxes through any cell face. Implementation of the PLIC 
method (calculation of face fluxes) proposed by Youngs (1982) is shown graphically 
in Fig. 7.10 for one specific interface configuration. Sixteen possible different config
urations, depending on the orientation of the interface with respect to the co-ordinate 
axis, have been identified. For any specific configuration, formulae similar to those 
shown in Fig. 7.10 can be derived to calculate cell fluxes. 

Apart from the identification of interface and calculation of cell fluxes, an 
appropriate computer implementation of interfacial tension is also one of the key 
elements in carrying out realistic VOF simulations. Most studies have implemented 
the continuum surface force (CSF) model of Brackbill et al. (1992) to describe inter
facial tension. As discussed in Chapter 4, the CSF model replaces the interfacial 
force by a smoothly varying volumetric force acting on all fluid elements in the 
interface transition region (see Eq. (4.6)). The local surface curvature appearing 
in this equation can be calculated from the unit normal at the interface between 
phases (see Eq. (4.8); Kothe et al., 1991; Delnoij, 1999). For additional details of 
numerical implementation, the original references should be consulted. It is suffi
cient to emphasize here that the accuracy of the CSF model depends on sharpness 
of the interface maintained by the interface-tracking model. Preferably, the sharp
ness of the interface should be maintained at around the order of the cell width 
[O(δx)]. 

Apart from the interface tracking and forces due to interfacial tension, conven
tional numerical techniques developed for single-phase flow simulations are used 
to solve the relevant transport equations. As mentioned earlier, controlling numer
ical diffusion and smearing of the interface are key issues in realistic VOF-based 
simulations. The size of computational cells and discretization schemes, therefore, 
significantly affect the predicted results. To illustrate VOF simulations, the formation 
of gas bubbles through an orifice sparger was simulated. The considered geometry, 
computational grid and other necessary data are shown in Fig. 7.11. Simulations 
were carried out in an unsteady mode. To simulate transients accurately, it is nec
essary to ensure adequate convergence at each time step. Typical predicted results 
0.12 s after the introduction of gas from the nozzle are shown in Fig. 7.12. It can be 
seen that the discretization scheme has a substantial influence on the predicted shape 
and rise velocity of bubbles. Similar observations were made by Delnoij (1999). 
The computational requirements of VOF-based simulations are much higher than 
those of Eulerian–Eulerian or Eulerian–Lagrangian approaches. In most cases, accu
rate simulations of interfacial phenomena require simulations in three-dimensional 
domains, which further increases computational demands. For example, detailed 
two-dimensional VOF simulations carried out by Krishna and van Baten (1999) 
showed significant discrepancies in the observed and predicted bubble rise veloc
ities. Most VOF-based simulations are, therefore, restricted to a few large fluid 
particles. Despite this, VOF-based simulations can be used as useful learning simu
lations to gain insight into the interaction of continuous flow field and deformation 
and interfacial processes of large fluid particles. Some examples are discussed in 
Part IV. 
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Side fractions: 

Stop = 0 

Sright = F(i, j) · 2 · tan β y 

Sleft = 0 

y Sbottom = F(i, j) · 2 · cot β 

x β = tan−1 −nx 

ny 

Fluxes through the four cell faces: 

Ifutop > 0 

Ifutop · δt ≤ 1 − Sright · δy 

Ftop = 0 

else 
1 

Ftop = [utop · δt − (1 − Sright ) · δy]2 cot β 
2 

Ifuright > 0 
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2 

FIGURE 7.10 Young’s VOF method to determine cell face fluxes (from Delnoij, 1999). 
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FIGURE 7.11 Geometry and grid used for VOF simulation (Domain size: 0.1 m  × 0.1 m; inlet nozzle 
width = 0.001 m; inlet gas velocity = 0.2 ms−1). 

(a) (b) 

FIGURE 7.12 Results of VOF simulations at 0.12 s (influence of differencing scheme). (a) Power law. 
(b) QUICK (SUPERBEE). 
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7.2.2. Eulerian–Lagrangian Approach 

In this approach, the finite volume methods discussed in the previous chapter can 
be applied to simulate the continuous fluid (in a Eulerian framework). Various algo
rithms for treating pressure–velocity coupling, and the discussion on other numerical 
issues like discretization schemes are applicable. The usual interpolation practices 
(discussed in the previous chapter) can be used. When solving equations of motion 
for a continuous fluid in the presence of the dispersed phase, the major differences 
will be: (1) consideration of phase volume fraction in calculation of convective and 
diffusive terms, and (2) calculation of additional source terms due to the presence of 
dispersed phase particles. For the calculation of phase volume fraction and additional 
source terms due to dispersed phase particles, it is necessary to calculate trajectories 
of the dispersed phase particles, in addition to solving the equations of motion of the 
continuous phase. 

To calculate dispersed phase particle trajectories it will be necessary to solve a 
set of coupled ordinary differential equations (Eqs. 4.1 and 4.9). Any standard initial 
value ODE solvers can be used for this purpose. These methods are not discussed 
here. Necessary details may be found in texts such as Numerical Recipes (Press 
et al., 1992). When calculating the trajectories of dispersed phase particles, any other 
auxiliary equations to account for heat transfer or chemical reactions can also be 
solved following similar procedures. Care must be taken to ensure that the time steps 
used for integration are sufficiently small and the trajectory integration is adequately 
time accurate. It is often necessary to use different time steps to simulate transients 
in the continuous flow field and trajectories of dispersed phase particles. 

Although the methods discussed in the previous chapter and standard ODE 
solvers can be used to carry out simulations of dispersed multiphase flows using a 
Eulerian–Lagrangian approach, some important issues deserve additional comments. 
Use of different time steps for different processes is one important issue. If direct 
interaction among dispersed phase particles is considered (collisions and bouncing of 
particles), then it may be necessary to use three different time steps: (1) �tF to resolve 
transients in the macroscopic flow of the continuous phase; (2) �tP to estimate forces 
acting on dispersed phase particles (during this time interval, the macroscopic flow 
field of continuous phase may be assumed to be constant); and (3) �tT to update 
positions of dispersed phase particles (during this time interval, forces acting on par
ticles may be assumed to be constant. Particle velocities and positions may, however, 
change due to particle collisions). These three time scales are shown schematically 
in Fig. 7.13 for a case of a gas–liquid flow. The sequence of collisions needs to be 
processed one collision at a time. Obviously for each collision, the collision time will 
be different and needs to be computed after identifying the two colliding (for binary 
collisions) particles. Efficient numerical techniques such as neighbor list techniques 
have been developed to minimize computations for the identification of two colliding 
particles causing the next collision (see Hoomans et al., 1996; Delnoij, 1999 for more 
details). To account for collisions between dispersed phase particles, both soft parti
cle (for example, Tsuji et al., 1993) and hard particle (for example, Hoomans et al., 
1996) models have been used. Collisions act as an important mechanism to transport 
momentum and energy, in the case of gas–solid flows. For dispersed gas–liquid flows, 
however, the contribution of collisions to momentum transport may be neglected 
(Delnoij et al., 1999). In such a case, it may be sufficient to use two time steps, one to 
update the flow field of the continuous phase and the other for trajectory calculations. 
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∆tflow 

∆tbubble 

tab 

∆tbubble 

FIGURE 7.13 Time steps used for Eulerian–Lagrangian simulations. �tflow: Time step used to resolve 
macroscopic liquid flowfield, �tbubble: Time step used to estimate forces acting on bubbles (macroscopic 
liquid flowfield is assumed to be constant), tab: Time step used to displace bubbles and to account for 
collisions. Forces acting on bubbles are assumed to be constant. 

Trajectory calculations require the calculation of net force acting on the dispersed 
phase particles. To calculate such a net force, local values of pressure, continuous 
phase velocities, partial and substantial derivative of pressure and partial and sub
stantial derivatives of continuous phase velocities need to be available at the center 
of mass position of dispersed particles. However, these Eulerian variables and their 
derivatives are known only at discrete nodes in the computational domain. There
fore, suitable interpolation should be used to obtain the required values at the particle 
location, using the previously obtained solution of the continuous phase flow equa
tions. As a first-level approximation, a continuous phase velocity may be taken as 
a computational cell based velocity for all locations within the cell. The accuracy 
of the results, however, will be significantly influenced by this assumption. A better 
assumption would be to use appropriate area or volume averaging. The concept may 
be illustrated by considering a two-dimensional example as shown in Fig. 7.14. The 
local value of a quantity f at the center of mass of the dispersed phase particle (fP) 
can be calculated using 

fP = 
1 

�x�y 

4 ∑ 

n=1 

An fn (7.5) 

with fn being some Eulerian quantity at node n, and An representing an area: 

A1 = (�x − δx)(�y − δy) A2 = δx(�y − δy) 

A3 = δy(�x − δx) A4 = δxδy (7.6) 

Extension of these formulae for volume averaging in three-dimensional Eulerian– 
Lagrangian simulations is straightforward. 
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dxf3 
f4 

Bubble	
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y 

f1 f2
x


FIGURE 7.14 Area weighting of node values (fn ) (Refer Eqs. (7.5) and (7.6)). 

So far, discussion has focused on simulating one-way coupling between contin
uous and dispersed phases. To simulate two-way coupling between multiple phases, 
iterative procedures need to be employed. The overall procedure is as follows: 

•	 Solution of the continuous phase flow field (in the absence of dispersed phase). 
•	 Calculation of trajectories of dispersed phase particles. 
•	 Recalculation of continuous phase flow using the interphase exchange of 

momentum, heat and mass determined from trajectory calculations. 
•	 Recalculation of dispersed phase trajectories in the modified continuous flow 

field. 
•	 Repetition of the previous two steps until convergence is achieved. 

For the calculation of continuous phase flow in the presence of dispersed phase par
ticles, again several averaging procedures need to be employed. The volume fraction 
of the continuous phase in a computational cell is calculated by subtracting the ratio 
of volume occupied by dispersed phase particles and the volume of the computational 
cell from unity: 

Vpi 

εc = 1 − i∈cell (7.7)
Vcell 

When calculating continuous phase volume fraction, it is very important to account 
for the possibility of dispersed phase particles overlapping with more than one com
putational cell. The volume occupied by such particles needs to be distributed over 
the respective cells. Calculation of the exact distribution of the volume of the dis
persed phase particles to the respective cells may become computationally intensive 
when several particles are considered. Equations to distribute the volume of dispersed 
phase particles to different computational cells are illustrated in Fig. 7.15 for the two-
dimensional case. Delnoij (1999) proposed some approximations based on the lengths 
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1 

1 2 

34 

2 

 ( ( )21 δ1 
)2 

δ2
A3 = δ1δ2 − Rp δ1 1 − + δ2 1 − 

2 Rp Rp 

( ( ) ( ))] 
δ1 δ2−Rp arccos − arcsin 
Rp Rp   ( ) ( )2

δ2 δ2 A3 + A4 = Rp Rp arccos − δ2 1 − 
Rp Rp 

  ( ) ( )2
δ1 δ1 A3 + A2 = Rp Rp arccos − δ1 1 − 
Rp Rp 

A1 + A2 + A3 + A4 = π R2 
p 

FIGURE 7.15 Distribution of particle volume into surrounding Eulerian cells (two-dimensional case). 

of common edge segments of adjacent computational cells on which dispersed phase 
particles overlap: 

π ( ) (  ) π ( ) (  ) 
A1 = Rp + δ1 Rp + δ2 A3 = Rp − δ1 Rp − δ2

4 4 
π ( ) (  ) π ( ) (  ) 

A2 = Rp − δ1 Rp + δ2 A4 = Rp + δ1 Rp − δ2 (7.8)
4 4 

Numerical experiments indicate that such an approximation may be acceptable 
for most engineering simulations. These approximations may be extended to 
three-dimensional simulations by considering volumes instead of areas. 

The momentum transfer rate from the dispersed phase particles to the continuous 
phase is the opposite of the sum of all the forces exerted by the continuous phase on 
the dispersed phase: 

ScmVcell = (FDi + FLi + FVMi) (7.9) 
i∈cell 

Scmis the net source due to dispersed phase particles (Eq. (4.11)). FD, FL and FVM 

are drag, lift and virtual mass forces (Section 4.2.1). It must be noted that Eq. (7.9) 
assumes that the volume-averaged momentum transfer (from the dispersed phase) 
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for a computational cell is equivalent to the sum of local momentum transport rates 
of all the dispersed phase particles within that computational cell. In principle, local 
momentum transport rate for each dispersed phase particle (at its center of mass) must 
be distributed to all the surrounding nodes of the continuous phase (Fig. 7.14). Since 
the local values of continuous phase properties are obtained by the reverse procedure, 
this method will ensure momentum conservation rigorously (as Newton’s third law 
is strictly obeyed). Suitable area or volume averaging (similar to Eqs. (7.5) and (7.6)) 
can be employed to implement this method. 

It should be noted here that although Eulerian–Lagrangian simulations do not 
require substantially new algorithms, the overall solution procedure is complex and 
interdependent. Computational load increases substantially as the number of dispersed 
phase particles increases. The usual considerations of number of computational cells, 
discretization schemes etc. will be important in multiphase flows as well. Advanced 
post-processing tools are generally required to interpret and to use the simulated 
results. Validation becomes a complex task since the simulated results are func
tions of several underlying sub-models and numerical approximations (constitutive 
equations of interphase transport equations, various interpolations from continuous 
to dispersed and vice versa). In most cases, available experimental data is of time-
averaged quantities (such as velocity or volume fraction profiles). Calculation of 
time-averaged quantities from full transient simulations is memory intensive. Special 
procedures need to be employed during transient simulations to allow calculation 
of time-averaged quantities. For most dispersed phases, true time-averaged quanti
ties (independent of further increase in averaging time) require long computational 
times (a few days to weeks of dedicated CPU time on reasonably powerful proces
sors are common). Obviously, before one initiates such lengthy calculations, several 
numerical experiments should be carried out to finalize the appropriate selection of 
parameters. 

Since Eulerian–Lagrangian simulations involve many different numerical param
eters (choices of integration of trajectory calculations, method of accounting for the 
influence of turbulence on particle trajectories and so on) in addition to the usual 
numerical issues, it is difficult to discuss these issues here in detail. To illustrate the 
results of a Eulerian–Lagrangian simulation, the case of the reactor with a downward 
impeller is considered. Gas is introduced through a sparger located below the impeller. 
Net flow of liquid through the reactor was set to zero for these simulations. The loca
tion of the sparger and boundary conditions used for the simulations are shown in 
Fig. 7.16. Trajectories of gas bubbles introduced from the sparger were modeled 
using two methods: (1) a discrete random walk with no velocity interpolation within 
computational cells; and (2) a continuous random walk with velocity interpolation 
within computational cells. Simulations were carried out until the predicted results are 
almost independent of additional time steps. Predicted results (in the form of iso-lines 
of gas volume fraction) are shown in Fig. 7.17. Both the methods predict accumu
lation of gas near the ‘eyes’ of circulation loops. Although the predicted overall gas 
volume fraction from these two methods is not significantly different, trajectories and 
local details are quite different. It is indeed essential to validate (either directly or 
indirectly) predictions of such complex multiphase flow simulations before they are 
used for engineering applications. Examples of such validation are discussed when 
describing applications of the Eulerian–Lagrangian approach to simulating gas–liquid 
flows in bubble column reactors in Chapter 11. 
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Escape 

Downflow impeller 

Sparger, Gas mass 
flow rate = 0.01 kg s–1,0.25 m 

dB = 0.005 m  

0.25 m 0.25 m 

FIGURE 7.16 Geometry and boundary conditions used for Eulerian–Lagrangian simulations. 

With a Eulerian–Lagrangian approach, processes occurring at the particle surface 
can be modeled when simulating particle trajectories (for example, the process of 
dissolution or evaporation can be simulated). However, as the volume fraction of 
dispersed phase increases, the Eulerian–Lagrangian approach becomes increasingly 
computation intensive. A Eulerian–Eulerian approach more efficiently simulate such 
dispersed multiphase flows. 

7.2.3. Eulerian–Eulerian Approach 

In this approach, the governing equations are formulated based on the concept of 
interpenetrating continua. The governing equations are discussed in Chapter 4. It 
can be seen that the form of governing equations is similar to that for single-phase 
flows. Simulation of multiphase flows, however, requires solution of a larger number 
of equations (governing as well as auxiliary). The increase in the number of equa
tions may not increase the difficulty of obtaining solutions. The main difficulties in 
simulating multiphase flows lie in handling the pressure–velocity coupling and non
linearity and strong coupling between various equations, which cause extremely slow 
convergence. 

For single-phase flows, pressure is shared by three momentum equations and 
requires special algorithms to compute the pressure field. Most of these algorithms 
(discussed in the previous chapter) use one continuity equation and three momen
tum equations to derive pressure and/or pressure correction equations. However, for 
multiphase flows, there is more than one continuity equation. Answers to questions 
such as which continuity equation should be used to derive pressure equations are 
not obvious. As discussed in the previous chapter, it is customary to employ iterative 
techniques to solve single-phase flow equations. Such iterative techniques can, in 
principle, be extended to simulate multiphase flows. In practice, however, the process 
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(a) 

(b) 

FIGURE 7.17 Eulerian–Lagrangian simulations; iso-lines of gas volume fraction of 0.0002. (a) Discrete 
random walk without velocity interpolation, (b) Continuous random walk with velocity interpolation. 

is often found to converge with intolerable slowness. A suitable remedy to acceler
ate convergence needs to be devised, and some possible ways of overcoming these 
difficulties are discussed here. 

Several alternatives may be used to derive suitable pressure or pressure correc
tion equations. In this section, we will discuss a specific option based on the work 
of Spalding (1980) and Carver (1984). This option has been used to simulate gas– 
liquid flows in stirred vessels (Ranade and van den Akker, 1994) and bubble columns 
(Ranade, 1992; 1997) and was found to be quite robust. The method is illustrated 
here for two-fluid models. It can be extended to more than two phases following the 
same general principles. The overall method is an extended version of the SIMPLER 
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FIGURE 9.3 Sample of simulation results for a two pitched blade turbine (legend not shown due to 
confidentiality constraints). (a) Grid; (b) vector plot; (c) contours of turbulent KE (red: high values; blue: 
low values). 
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FIGURE 9.5 Simulated flow field for two alternative reactor configurations (red: high values; blue: 
low values; legend not shown due to confidentiality constraints). (a) Four pitched blade turbine, (b) two 
pitched blade turbine with cage (left: vector plots; right: contours of turbulent kinetic energy.) 



High 

Low 

(a) (b) 

FIGURE 9.10 Flow and mixing in the mixing cup (from Ranade, 1999). (a) Contours of stream 
function. (b) Left side: contours of oxygen mass fraction; right side: contours of ethylene mass fraction. 
(Legend not shown due to confidentiality constraints). 
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FIGURE 9.12 Contour plot of axial velocity (volume above the grid) (from Ranade, 1999b) (red: high 
values; blue: low values; legend not shown due to confidentiality constraints). 



(a) (b) 

FIGURE 9.21 Typical predicted results for the loop reactor (excluding vapor space). (a) Vector plots 
(liquid phase), (b) contours of gas volume fraction (red: high; blue: low). (Legend not shown due to 
confidentiality constraints.) 



FIGURE 9.22 Typical predicted results for the loop reactor (top: vector plot and vapour space; 
bottom: contours of gas volume fraction). (Red: high values; Blue: low values; legend not shown due to 
confidentiality constraints.) 
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FIGURE 10.10 Presence of trailing vortices (Rushton turbine). (a) Turbulent kinetic energy (impeller 
center plane; impeller rotation: counter-clockwise), (b) Z-vorticity (r/T = 0.165; impeller rotation: from 
left to right). 
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FIGURE 10.15 Simulated results at typical r–z plane for the case of a pitched blade turbine. 



FIGURE 10.28 Typical predicted flow field. (Left: contours of dimensionless turbulent kinetic energy; 
Right: contours of gas hold-up). Ten uniform contours, maximum value = 0.1 (red); minimum value = 0 
(blue). 

FIGURE 10.29 Contours of gas hold-up on horizontal plane located at a distance of BW/3 from 
impeller center plane (impeller rotation is counter-clockwise). Ten uniform contours between 0 and 0.1; 
Red: 0.1; Blue: 0. 
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FIGURE 10.30 Computational simulation of accumulation of gas behind impeller blades (Blue: 0; 
Red: >0.1). 
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algorithm discussed in the previous chapter. It has three specific components devel
oped for the simulation of multiphase flows, namely, derivation of pressure equations, 
a partial elimination algorithm (PEA) to handle tight coupling between momentum 
equations of two phases, and reformulation of continuity equations to calculate phase 
volume fractions to ensure that the sum of the volume fractions is unity. 

Let us consider these three aspects in reverse order. Before we proceed, 
it must be emphasized that the usual interpolation rules, calculation of mean 
(harmonic/algebraic) and procedures to obtain finite volume discretized equations 
discussed in the previous chapter are applicable to multiphase flows as well. Apply
ing the general methodology of the finite volume technique to two fluid flows, a 
discretized equation for any general variable φ can be written: 

bnbφP = anbφnb + SC (7.10) 
nb nb 

The coefficients a consist of all the inflow contributions (convective as well as diffu
sive) while the coefficients b consist of all the outflow contributions. In the absence 
of any source or sink, the mass conservation equation dictates that the sum of inflow 
contributions is equal to the sum of outflow contributions. In the presence of linearized 
source terms, one can write, 

bnb = anb − SP = aP (7.11) 
nb nb 

If the flows are unsteady, the terms containing aP0 can be added on both sides of 
Eq. (7.10) (refer to Section 6.4). It must be noted that for multiphase flows, the inflow 
and outflow terms require considerations of interpolations of phase volume fractions 
in addition to the usual interpolations of velocity and the coefficient of diffusive 
transport. The source term linearization practices discussed in the previous chapter 
are also applicable to multiphase flows. It is useful to recognize that special sources 
for multiphase flows, for example, an interphase mass transfer, is often constituted 
of terms having similar significance to the a and b terms. Such discretized equations 
can be formulated for each variable at each computational cell. The issues related 
to the phase continuity equation, momentum equations and the pressure correction 
equation are discussed below. 

(a) Phase continuity equation: To calculate a phase volume fraction, it is necessary to 
solve the phase continuity equation. There is one such equation for every phase. It is, 
however, useful to solve equations for all phases except one. The volume fraction of 
the remaining phase can then be deduced from the knowledge that the sum of volume 
fractions of all phases at any point (computational cell) is unity. The discretized phase 
continuity equation for each phase can be written in the form of Eq. (7.10). However, 
the as and bs appearing in this equation must be defined without the phase volume 
fractions, since phase volume fraction replaces the general variable φ in this case. 
Because of this, Eq. (7.11) relating inflow and outflow contributions is no longer valid 
for discretized phase continuity equations. This may lead to difficulties with iterative 
solutions of phase continuity equations. Before convergence, the values of as and bs 
may not be in proper balance. Direct solution of discretized equations may generate 
non-physical values of phase volume fractions. It is, therefore, useful to build ‘traps’ 
into the solution procedure to catch and avoid non-physical values. 
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To illustrate the two possible ways of avoiding non-physical values of phase 
volume fractions, let us consider a dispersed two-phase flow. The volume fraction of 
two phases can be obtained by solving the following equations: 

DαP a
D D = FD αC = 1 − αP (7.12)P P P 

where the superscript indicates either a continuous (C) phase or a dispersed phase (D). 
F consists of all the inflow contributions including the sources at any grid node P and 
a contains all the coefficients of the outflow contributions. As mentioned earlier, 
straightforward solution of Eq. (7.10) may lead to non-physical values of volume 
fractions (less than zero or greater than one). One of the ways to avoid this is to build 
a constraint on the sum of two volume fractions within the solution procedure. This 
requires formulation of a discretized equation for the volume fraction of continuous 
phase and combining the two discretized equations to obtain: 

FD C 
D P aP =αP FD C D 

P aP + FP
CaP 

(7.13) 

This formulation ensures that the sum of the two volume fractions is unity. This 
method is very simple to implement when the volume fraction equation is solved using 
a point-by-point method, and is recommended by Spalding (1980). For more implicit 
calculations of volume fractions, further algebraic manipulations are necessary to 
accommodate Eq. (7.13) within the implemented numerical technique. 

The other alternative is to subtract the two discretized continuity equations to 
obtain: 

C 
D = 

aP − FP
C + FP

D 

(7.14)CαP aP + aD 
P 

It is also possible to subtract the original continuity equations before discretiza
tion and then apply the usual discretization procedures to derive the corresponding 
algebraic equations. This alternative has a special advantage when used with the 
pressure correction equations derived from the overall continuity equations (sum 
of two individual phase continuity equations). This combination then ensures that, 
simultaneously, both phase continuity equations are satisfied. Pressure correction 
enforces D + C = 0, while the volume fraction calculation enforces D − C = 0, 
leading to satisfaction of D = 0 and C = 0 (D and C denote dispersed phase 
and continuous phase continuity equations, respectively). This option is, however, 
restricted to two-phase flow simulations. The earlier option (Eq. (7.13)) suggested 
by Spalding (1980) can be extended to simulations of any number of phases in a 
straightforward manner. 

Once the possibility of non-physical values of volume fraction is eliminated, 
solving phase continuity equations does not exhibit any other peculiarities, and the 
methods discussed in the previous chapter can be applied. One more point that must be 
mentioned while discussing the solution of phase continuity equations is of numerical 
or false diffusion. Numerical diffusion or false diffusion is not specific to multiphase 
flows and is related to any fixed-grid numerical solution procedure. However, it 
becomes very important in simulating multiphase flows. For example, suppose that 
in a field of uniform velocity, a ‘front’ exists across which phase volume fraction 
exhibits a discontinuity. In the absence of diffusion, such a front will move within the 
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fluid without losing its discontinuous character. Numerical computations discussed 
here, however, would lead to smearing of the discontinuous front. Extra precautions 
are, therefore, necessary to recognize and control the extent of numerical diffusion 
when simulating multiphase flows. 

(b) Momentum equations: Momentum equations differ from general transport equa
tions because of the pressure gradient terms in the source terms. It is necessary to 
estimate the pressure field before solving the momentum equations. Of course this 
is necessary even for the simulation of single-phase flows and is discussed in the 
previous chapter. As discussed there, several ways of treating pressure–velocity cou
pling have been developed. The most widely applied are the SIMPLE family of 
algorithms, in which the pressure field is obtained either by solving the pressure cor
rection equation (SIMPLE) or by solving directly the pressure equation (SIMPLER). 
Similar algorithms can be developed for multiphase flows. However, the presence of 
more phases widens the possible choices for deriving the discretized pressure correc
tion or pressure equations. These issues are discussed later. At this stage, it may be 
assumed that a suitable pressure field is available to solve the multiphase momentum 
equations. 

The other specific feature of multiphase momentum equations is the term contain
ing interphase momentum transport (Eq. (4.16)). The interphase momentum transport 
terms invariably contain the velocities of all interacting phases at that grid node. Typ
ically, the discretized momentum equation for two-phase flows (for the node P) can 
be written: 

∑ 
C + V 1 δp ( )

1 1aPU1 = anbU1 
nb + S1

P + β12 UP
2 − UP

1 (7.15)P δx
nb 

Superscripts indicate phase index. All coefficients appearing in this equation can be 
derived by following the standard methods discussed earlier. The coefficient β12 rep
resents all the relevant interphase interaction terms, which cause slow convergence, 
as mentioned earlier. Large interaction coefficients ‘tie together’ the velocities of two 
phases. Therefore, any iterative procedure involving one variable at a time proceeds 
very slowly. It is necessary to manipulate the discretized equations to eliminate the 
presence of the velocity of the other phase from the discretized momentum equa
tions. This can easily be done by using an equation for Up

2 analogous to Eq. (7.15). 
The modified equation can be written: 

1 2 1aPaP + β12 aP + a2 U1 
P P 

2 1 2= aP + β12 anbU1
C + β12 anbU2 

nb + S1 
nb + S2 

C 
nb nb 

2+ VP
1 aP + β12 + β12VP

2
] δp 

(7.16)
δx 

This equation implicitly accounts for the interaction between the velocities of two 
phases and therefore, enhances convergence rate. When the interphase interaction 
coefficient is zero, the above equation reduces to that for single-phase flows. It is 
useful to note here that the coefficient of pressure gradient term also becomes modified 
by the presence of the second phase. These modified coefficients should be used when 
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deriving the discretized pressure correction or pressure equations. These equations 
are now discussed below. 

(c) Pressure correction equation: Following the procedures discussed in Section 6.3.2, 
it is possible to derive the pressure correction equation for multiphase flows. For this 
purpose, any one of the phase continuity equations can, in principle, be used. In 
general, it has been found that use of an overall continuity equation is more suitable. 
The overall continuity equation is obtained by adding the continuity equations of all 
phases. Since the phases present may have large difference in densities, it is often 
advantageous to normalize the phase continuity equations by phase-specific reference 
densities. Practical experience indicates that the density of each phase can be used 
as a reference density of that phase. This means that pressure correction equations 
or pressure equations are derived on the basis of overall volumetric (since the phase 
continuity equation is normalized by the density of that phase) continuity equations. 
It may be noted that in the overall continuity equation, the transient term as well 
as diffusion and mass source terms are absent. This is because the sum of volume 
fractions of all phases is unity and by definition, the sum of diffusion terms is zero. 
The sum of all interphase mass source terms is zero, because even though mass may 
be transferred from one phase to another, the net mass source must be zero. 

Usual interpolation rules and definitions of velocity and pressure corrections, 
similar to single-phase flows (Eq. (6.29)), can be used to derive a pressure correction 
equation from the discretized form of the overall continuity (normalized) equation. 
The momentum equation for multiphase flows (Eq. (7.16)) can also be written in 
the form of Eq. (6.28) for single-phase flows. Again, following the approximation 
of SIMPLE, one can write an equation for velocity correction in terms of pressure 
correction, p′: 

uP′ = −  [ VP
1

1 

aP + β12 + β12VP
2 

1
2 ( )] δp′ 

(7.17)
2 1aPaP + β12 aP + a2 δxP 

A similar equation can be derived for velocity corrections for all components and for 
all phases. The above expression neglects velocity corrections from the right-hand 
side, following the single-phase flow practice. It is useful to note that in handling 
pressure–velocity coupling, the coefficients of the pressure gradient term appearing 
in Eq. (7.17) need not be very precise. The skilled numerical analyst can often enhance 
convergence by changing their magnitudes selectively or by further approximating 
them to reduce the computational demands. What is, however, important is that the 
coefficients have the right sign and that they properly reflect the relative sensitivi
ties of the various phases to changes of pressure. Straightforward application of the 
procedure discussed here, does achieve this. Substitution of corrected velocities in 
the discretized overall continuity equation after using appropriate expressions of δp
results in a pressure correction equation in the form of Eq. (6.32). The mass imbalance 
term in Eq. (6.32) will be replaced by an overall (normalized) imbalance term. 

Having established the required discretized equations, the overall solution 
procedure for simulations of multiphase flows is as follows: 

•	 Solve the volume fraction equations for all but one phase. The methods for 
avoiding non-physical values of volume fractions should be employed. 

•	 Solve the momentum equations for all phases based on the guessed pressure 
field (or that obtained from solution of the pressure correction equation during 
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the previous iteration). The partial-elimination algorithm (PEA) should be 
used to handle the tight coupling between velocities of various phases. 

•	 The pressure correction equation is solved based on the normalized overall 
continuity equation. 

•	 The velocity and pressure fields are corrected based on the pressure correction 
field (for the SIMPLE algorithm). 

•	 This cycle of adjustments is repeated several times until the errors remaining 
in all equations are acceptably small. 

If the SIMPLER algorithm is to be used, corresponding pressure equations need to be 
solved following the procedures discussed in the previous chapter. The usual solution 
methods employed for single-phase flow simulations will be equally applicable to 
solving discretized equations of multiphase flows and, therefore, need not be discussed 
here again. When there are additional transport equations such as enthalpy or species 
equations (in addition to the momentum equations), PEA should be used to tackle 
the tight coupling between enthalpies and concentrations in various phases. When 
simultaneous mass and energy transfers are taking place, special manipulations may 
be applied to retain the applicability of PEA. 

It is often useful to simulate multiphase flows by employing the techniques of 
unsteady flows. This provides an added under-relaxation, which is often necessary for 
multiphase flows with large dispersed phase volume fraction. There are several phys
ical and numerical parameters which influence predicted results and the convergence 
behavior of the computational model. It is not possible to discuss all these issues 
here. Just to illustrate the possible results of Eulerian–Eulerian simulations, an exam
ple considered in the previous section is simulated here using the Eulerian–Eulerian 
approach, which allows simulation with higher gas flow rates. Therefore, the gas mass 
flow rate through the sparger was specified as ten times higher than that considered 
for the case simulated using a Eulerian–Lagrangian approach (0.1 kg s−1). In these 
simulations, the top surface of the cavity was considered as a wall when solving the 
liquid phase and as an outlet while solving the gas phase. Details of the implementa
tion of such a boundary condition are discussed in Chapter 11. The predicted results 
are shown in Fig. 7.18. It can be seen that strong circulatory flow generated by the 
impeller leads to the accumulation of gas near the eyes of circulation (Fig. 7.18c). The 
approach can be used to simulate complex multiphase flows as illustrated in Chapters 9 
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FIGURE 7.18 Results of Eulerian–Eulerian simulations. (a) Liquid flow field (maximum velocity = 
6.5 m/s), (b) Gas flow field (maximum velocity = 8 ms−1), (c) Contours of gas volume fraction (8 uniform 
contours between 0 [A] to 0.07 [G]). 
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to 14. The convergence behavior of multiphase flow simulations depends on several 
factors including selected algorithm, extent of PEA, applied under-relaxation and 
initial guess. In most cases, the convergence behavior of multiphase flows cannot 
be discussed independently of the solver employed (and programs). Some general 
comments are made when discussing applications of the Eulerian–Eulerian approach 
to simulate complex multiphase flows in later chapters (Chapters 10 to 14). 

7.3. SIMULATION OF REACTIVE FLOWS 

Various approaches to modeling reactive flows are discussed in Chapter 5. For most 
approaches, based on RANS equations, the usual finite volume method can be applied 
to solve the required transport equations of mean or variance of relevant quantities. 
However, obtaining a converged solution in a reacting flow can be difficult for a 
number of reasons. The chemical reactions and corresponding energy changes may 
have a strong impact on the basic flow patterns. This is especially true for gaseous 
combustion reactions, in which reactions release a large amount of energy causing 
significant changes in density, and large accelerations. Strong coupling between the 
mass/momentum transport equations and the species transport equations exists for 
such systems, which may lead to difficulties in convergence. Even when there is no 
significant coupling between momentum and species transport equations, non-linear 
coupling between different species equations due to chemical kinetics may make the 
solution task more complicated. In many cases, the reaction source term of any single 
species depends on concentrations of other species. Unless the solver is solving all the 
species equations simultaneously (which is not usually the case), this interdependence 
can lead to convergence difficulties. Another convergence issue in reacting flows is 
related to the magnitude of reaction source terms. For fast chemical reactions, the 
reaction source term may dominate the discretized species transport equations and it 
may no longer remain diagonally dominant. Such source-dominated equations may 
lead to rapid and unstable changes in species concentrations. 

Some of the modeling approaches used for dealing with very rapid chemistry are 
discussed in Chapter 5. Apart from these modeling approaches, several techniques 
have been evolved to tackle convergence difficulties. In many cases, it is advantageous 
to start simulations from a simplified case. For example, it is often beneficial to first 
carry out cold flow simulations without considering chemical reactions. Using these 
results as an initial guess, complete model including chemical reactions and energy 
equations can be solved. For reactive flows, it is essential to carry out the time scale 
analysis of the processes under consideration (as discussed in Chapter 5). The relative 
magnitudes of characteristic time scales of convection, mixing and chemical reactions 
often provide guidelines for selecting suitable parameters of the numerical method. 
If such a time scale analysis reveals very different time scales for different processes, 
it may be necessary to use a fractional time step method, which uses different time 
steps for different processes. For example, when implementing the multi-environment 
model, Ranade and Bourne (1991) used two different time steps, one for simulating 
large-scale processes such as convection and turbulent diffusion and the other for 
simulating micromixing and reactions occurring within each computational cell. 

When using a conserved scalar approach with the equilibrium assumption, it 
is necessary to carry out computations of: (1) equilibrium composition of gas from 
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FIGURE 7.19 Generic coupling between a PDF solver and a CFD solver. 

the atomic composition and the total enthalpy; and (2) mean scalar values from 
the instantaneous mixture fraction. Often these calculations are carried out using a 
separate program by executing it outside the main flow solver. The results of these 
computations can be stored in look-up tables. These look-up tables along with an 
efficient interpolation algorithm, are used by the flow solvers to estimate the required 
quantities. The generic coupling of such external codes with CFD solvers is shown 
in Fig. 7.19. Details of numerical methods required for interpolation, integration 
etc. are not discussed here and can be found in Press et al. (1992). For full PDF 
methods, Monte Carlo methods may be used (Pope, 1981; 1985). Roekaerts (1989) 
extended these methods using a Monte Carlo ensemble associated with a fixed grid, 
instead of using stochastic differential equations. This approach can conveniently be 
implemented in conventional turbulent flow solvers. The above cited papers and a 
recent review by Fox (1996) can be referred to for more details of full PDF methods 
and their relationship with other approaches to modeling reactive flows. 

To simulate multiphase reactive flows, it is necessary to devise suitable partial or 
full elimination algorithms to treat coupling between multiple phases due to interphase 
mass transfer and chemical reactions. If the reactions are slow, the standard partial 
elimination algorithm, discussed earlier, can be applied since in such a case, the 
interphase mass transfer terms are linear. When chemical reactions interact with mass 
transfer, interphase transfer terms become non-linear and special algorithms need to be 
developed on a case-by-case basis. If enhancement in mass transfer rate (multiplier 
to the standard linear interphase mass transfer term, see Eq. (5.32)) is accounted 
for by developing a look-up table (following the strategy used for PDF models), 
the standard elimination algorithm discussed earlier can be used. Computationally, 
however, it is more efficient to develop a case-specific linearization to account for the 
functional dependence of mass transfer enhancement on species concentrations. For 
very complex multiphase reactive flows, it may be useful to use a multiscale modeling 
approach rather than developing an all-encompassing comprehensive CFD model. In 
the multiscale approach, complex chemistry and its interaction with mass transfer 
and mixing are modeled using a simpler (than CFD) modeling framework comprising 
fewer computational cells or sub-regions. Such a model, therefore, requires several 
empirical inputs regarding the underlying flow patterns, degree of mixing, phase 
volume fractions and so on. Detailed flow simulations using a suitably simplified 
(with respect to chemistry) CFD model is used to generate the necessary information. 
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Inlet 

Outlet 

Reaction: A −→ B 
Molecular weights of A and B = 20 
Liquid density = 1000 kg m− 3 

Reactor volume = 0.01 m3 

Residence time = t = 10 s 
Reaction rate constant = k = 1.0, 0.1, 0.01 l/s 
Conversion based on ideal mixing: Xmix = 1/1 + kτ 
Initial conditions: mass fractions, mA = 1.0, mB = 0.0 
Boundary conditions: at inlet, mA = 1.0, mB = 0.0 
Sample of simulated results: 

Sr. No. Rate constant, l/s Impeller speed, m s− 1 (1 − XA)mix 1 − XA 

1 1.0 5.0 0.090909 0.06083 
2 1.0 1.0 0.090909 0.04453 
3 1.0 0.0 0.090909 0.07500 
4 0.1 5.0 0.5 0.49383 

FIGURE 7.20 Initial and boundary conditions for reactive flow simulations. 

CFD results can provide guidelines to select an appropriate simplified model. Some 
examples of such an approach are discussed in Chapter 9. A simple example, which 
illustrates the evaluation of the often-used assumption of a completely mixed reactor, 
is discussed here, by continuing the case of the cubical reactor considered in earlier 
examples. 

A simple, homogeneous (slow) first-order reaction was considered. Simulations 
were carried out for cases with and without impeller in the same cubical reactor. Initial 
and boundary conditions are shown in Fig. 7.20. It can be seen that the mean residence 
time of the reactor is 10 s. Three cases with different first-order reaction rate constants 
(0.01 s− 1, 0.1 s− 1, 1.0 s− 1) were simulated (samples of the results are listed with 
Fig. 7.20). Results of simulations with an impeller velocity of 5 m s− 1 are discussed 
first. As expected, for the lowest reaction rate constant, where the characteristic 
reaction time scale is much higher than mean residence time, the simulated results 
agree quite well with the analytical solution obtained based on the assumption of a 
completely mixed reactor. Even for the case of characteristic reaction time scale of 
10 s (which is the same as the residence time), deviation from the analytical solution 
(of predicted outlet concentration of reactant) is just about 1% (for the case with 
rate constant 0.1 s− 1). As the reaction time scale becomes smaller than residence 
time (rate constant 1.0 s− 1), deviation increases and is equal to 33%! If the reaction 
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rate becomes even faster, one has to use special reactive mixing models discussed 
in Chapter 5. This simple exercise illustrates the well-known fact that the extent 
of deviation from ideal mixing is dependent on relative time scales of reaction and 
mixing. Simulations of a case with rate constant 1.0 s−1 for an impeller speed 1 m s−1 

indicates an even higher deviation of 51% from the ideal mixed predictions. The 
case without an impeller, however, leads to 17.5% deviation. This means that the 
situation with impeller velocity of 1 m s−1 leads to the highest conversion of reactant. 
Deviation from ideal mixing is expected to lead to higher conversion of reactant than 
that predicted by the ideal model. The higher the impeller velocity, the closer the 
system becomes to the ideal system. Therefore, higher conversion is obtained with 
an impeller velocity of 1 m s−1 than 5 m s−1. However, when there is no impeller, the 
inlet fluid short circuits through the reactor. This causes a decrease in the effective 
volume of the reactor resulting in lower conversion, although it gives a maximum 
deviation from the ideally mixed situation. Additional examples of using CFD models 
for reactor applications are discussed in later chapters. Some issues relevant to the 
application of CFD methods to industrial equipment are discussed in the following 
section. 

7.4. SPECIAL TOPICS 

7.4.1. Complex Geometry 

Many flows relevant to chemical reactor engineering practice involve complex geome
tries. Although the principles of discretization and solution methods for algebraic 
systems described earlier may be used, some modifications are required to handle 
such complex geometries. The properties of the solution algorithm depend on choice 
of the grid and the arrangement of variables on the grid. Some of these issues are 
discussed in this section. 

For a regular (for example, rectangular or circular) geometry, the grid lines usu
ally follow the co-ordinate directions. In complicated geometries, the choice of grid 
is not trivial. The grid is subject to constraints imposed by the discretization method 
and solution algorithm. If the algorithm is designed for structured quadrilaterals, 
an unstructured grid consisting of triangles cannot be used. When the geometry is 
complex, some compromises have to be made to fulfill the constraints. Body-fitted 
non-orthogonal grids are most often used to calculate flows in complex geometries 
(most commercial codes use such grids). In such grids, grid lines follow the bound
aries of the solution domain, which makes implementation of boundary conditions 
easier. The transformed equations for non-orthogonal grids, however, contain addi
tional terms leading to difficulty in programming and increased computational costs. 
Despite this disadvantage, these grids are used in most applications. Grid genera
tion for complex geometries will not be discussed here. Some relevant comments are 
included in Chapter 1. More details of grid generation can be found in Thompson 
et al. (1985) and Arcilla et al. (1991). Some general comments relevant to numerical 
solutions are included here. 

Though complex geometry demands that the grid be non-orthogonal, it is useful 
to make it as orthogonal as possible. In finite volume methods, orthogonality of 
grid lines at corners (vertices) of computational cells (CV) is not important. The 
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angle between the cell face normal vector and the line connecting the CV centers 
on either side is important. Cell topology is also important. If the midpoint rule 
integral approximation and linear interpolation is used, then the accuracy will be 
higher if CVs are quadrilaterals than if CVs are triangles (in 2D). Accuracy is also 
improved if one set of grid lines closely follows the streamlines of flow (especially 
for convective flows). This can be achieved with a structured grid (of quadrilaterals 
in 2D) but not with triangular grids. Complex geometries also demand non-uniform 
grids. A finer grid should be used in the regions where strong variations are expected 
to occur. When generating non-orthogonal and non-uniform grids, three measures of 
grid quality should be kept in mind: 

•	 ratio of adjacent cell sizes: preferably less than two; 
•	 aspect ratio of a computational cell (ratio of adjacent edges of a cell): 

preferably less than five; 
•	 skewness of a computational cell (angle between adjacent edges of a cell): 

preferably greater than 45◦ . 

When the geometry is complex, grid generation may require a significant fraction 
of the time necessary to complete the development and application of the computa
tional model. Since the accuracy of the flow solution depends as much on the grid 
quality as on the approximations used for discretization of the equations, time spent 
generating a quality grid is a worthwhile investment.The basic principles of the finite 
volume method discussed in the previous chapter are independent of the type of grid 
used. There are, however, some new features, which need to be introduced to handle 
arbitrary non-orthogonal grids. Some of these are discussed here. 

As discussed in the previous chapter, with the finite volume method, we need to 
approximate the surface and volume integrals to calculate fluxes and sources. Consider 
the two-dimensional control volume shown in Fig. 7.21. Following Eq. (6.6), the mass 
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FIGURE 7.21 A typical control volume (2D) for non-orthogonal grid. 
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flux through face e can be written as: 

me = (ρUn)e Se (7.18) 

where n is a unit normal vector to the east face. Unlike with a regular grid, the surface 
vector has components in more than one Cartesian direction and all the velocity 
components contribute to the mass flux. Mass flux can be calculated by summing 
products of each Cartesian velocity component and the corresponding surface vector 
component (projection of the cell face on a Cartesian co-ordinate plane): 

me = ρe UxSx + UySy 
e (7.19) 

where superscripts or subscripts indicate Cartesian co-ordinate direction. The con
vective flux of any transported quantity can be calculated as the product of mass flux 
through the face and the value of transported property at the center of the cell face. 
Various interpolations discussed in the previous chapter can be used to estimate the 
value of transported property at the center of the cell face. The integrated diffusive 
flux in a general coordinate system can be written: 

De = (� grad φ · n)e Se (7.20) 

The gradient of φ at the cell face center can be expressed either in terms of the deriva
tives with respect to global Cartesian co-ordinates or local orthogonal co-ordinates. 
If the local orthogonal system attached to the cell face center is used, then only the 
derivative in the normal (n) direction contributes to the diffusive flux: 

∂φ  
De = �e Se (7.21)

∂n e 

On a Cartesian grid, n = x at the e face and the usual schemes can be used to estimate 
gradient at e. For example, a central differencing scheme will give: 

∂φ  φE − φP = (7.22)
∂n e LPE 

where LPE is the distance between nodes E and P. When the grid is non-orthogonal, 
the above expression must be corrected by a term containing the difference between 
the gradients in the ξ and n direction. Mujaferija (1994) has proposed the correction 
as: 

φE − φP
De = �e Se + �eSe(grad φ)e · (n − iξ ) (7.23)

LPE 

where iξ is the unit vector in the ξ direction (Fig. 7.21). The second term of the 
right-hand side is usually evaluated explicitly from previously known values. 

Apart from the convective and diffusive fluxes, it is also necessary to evaluate 
source terms. As mentioned in the previous chapter, the volume integral can be 
calculated as a product of the CV center value of the integrand and the CV volume. 
This approximation is independent of the CV shape. For non-orthogonal grids, the 
calculation of the cell volume becomes more complicated. For 2D quadrilaterals, the 
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volume of the cell can be calculated by taking the vector product of the two diagonals. 
The expression for cell volume of the cell shown in Fig. 7.21 becomes: 

1 [ ] 
Vcell = (xne − xsw)(ynw − yse) − (xnw − xse)(yne − ysw) (7.24)

2 

In three-dimensional solution domains, the cell faces are not necessarily planar. Suit
able approximations are necessary. Further details of discretization on non-orthogonal 
grids will not be presented here. The purpose of this section was just to highlight some 
of the relevant issues. Reader may refer to Ferziger and Peric (1995) and references 
cited therein for more details. Even if a reactor engineer is not interested in develop
ing an in-house CFD code, familiarity with these issues is essential for developing 
computational models of complex flows in complex geometry. More often than not, 
poor quality grids lead to divergence, and suitable corrective measures need to be 
taken to obtain convergence. Some examples of the simulation of complex flows in 
industrial equipment are discussed in Chapters 9 to 14. 

7.4.2. Enhancing Convergence Performance 

Overall convergence performance depends on several factors. Factors such as, large 
number of computational cells, overly conservative under-relaxation factors, strong 
non-linearity and coupling between different equations, hinder convergence. Grid 
quality also affects the convergence rate significantly. It is often necessary to use 
various ‘tricks’ to enhance the convergence performance. Different classes of flow 
problems (with varying degrees of complex flow physics and complex geometry) may 
require different strategies. Some of the general ways of enhancing convergence are 
discussed here. 

Supplying an initial guess for important flow variables often enhances overall 
convergence behavior. The process of providing an initial guess also allows the user 
to examine the main characteristic space and time scales. Examination of these scales 
is necessary to select appropriate numerical parameters such as time step and under-
relaxation factors. The process is also useful to verify the adequacy of the generated 
grid. Another commonly used technique to enhance convergence performance of 
complex flow problems is to break down the overall problem into a sequence of 
problems with increasing complexity at each stage of the sequence. For example, 
when solving a non-isothermal problem, it may be a good idea to first obtain a 
reasonable solution (need not be completely converged) to the isothermal problem, 
which can act as a good initial guess for the non-isothermal problem. Solution of 
the simplified isothermal problem can be started by setting the initial guess to the 
temperature field, which will remain unchanged during the solution process. After 
obtaining reasonable convergence for the isothermal problem, solution of the enthalpy 
equation can be started. Sometimes it is advantageous (computationally) to switch 
off the solution of momentum and continuity equations while solving the enthalpy 
equations. Once the enthalpy equation starts converging, all the equations can be 
included in the solution process. Several examples of such a step-by-step procedure 
to improve the convergence of complex flow problems are discussed in Chapter 9 and 
later chapters. 
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As mentioned in the previous chapter, it is advantageous to use under-relaxation 
factors to improve the convergence behavior of a set of non-linear coupled equa
tions. Under-relaxation needs to be applied not only to direct flow variables such as 
velocity, pressure, temperature etc. but also to indirect variables like fluid properties 
(density, viscosity, heat capacity), when these variables are composition or tempera
ture dependent. It is indeed impossible to provide generalized guidelines for setting 
under-relaxation parameters since several factors such as the algorithm, parameters 
of the linear equation solver, the extent of non-linearity and coupling affect suitable 
values of under-relaxation factors. Usually, the solution is started with rather conser
vative values of under-relaxation factors. The values may be increased as the solution 
progresses with the help of continuous monitoring of residual history. The influ
ence of under-relaxation factors on convergence rate is demonstrated in Fig. 6.18. 
Unless repeated simulations of similar cases have to be carried out, it may not be 
computationally economical to optimize under-relaxation factors. 

Apart from the formulation of discretized governing equations and algorithms 
to treat various couplings, the solution method of the resulting linear algebraic equa
tions also has a significant impact on convergence rate. In many CFD simulations of 
complex flows, iterative line-by-line solvers are used. Two parameters of line-by-line 
solvers, namely, the direction of sweeping lines in the solution domain and the num
ber of sweeps for each equation, govern the overall convergence behavior. In general, 
lines which are normal to the primary flow direction, are solved in the direction of 
the primary flow. When there is no single dominant flow direction, it is useful to use 
alternating sweep directions. An increase in the number of sweeps for any equation 
leads to more computations per iteration; however, this may improve the local and 
therefore, global convergence behavior. Of course, there will be an optimum number 
of internal iterations or of sweeps throughout the solution domain, to minimize over
all convergence time. Generally, a higher number of sweeps needs to be specified for 
pressure and for any equation which is difficult to converge (e.g. species equations in 
the presence of non-linear chemical reactions). When the flow problem involves large 
body forces, it is often necessary to increase the number of sweeps of the pressure 
equation. 

In addition to these parameters of line-by-line solvers, several other techniques 
have been proposed to accelerate the convergence rate. Some of these methods are dis
cussed in Section 6.2.2 and only brief comments will be added here. One-dimensional 
block corrections based on an additive correction philosophy (Kelkar and Patankar, 
1989) reduce long wavelength errors in the direction in which they are applied. How
ever, these methods are not suitable if very steep gradients exist in the solution. 
Multigrid methods are effective in reducing long wavelength errors in such situations. 
As mentioned earlier, choice of such parameters as number of grid levels, number of 
iterations on each level, the order in which various levels are visited, interpolations 
between various levels and so on will affect convergence behavior. The values of these 
parameters need to be tuned to accelerate the overall convergence performance. It is 
not possible to discuss all these details here, and the reader is referred to Hackbusch 
(1985) and Ferziger and Peric (1995). 

For time-dependent flows, in addition to the factors discussed above, the values 
of time step and number of iterations per time step, govern the overall convergence 
behavior. In general, the selected time step should be at least an order of magni
tude smaller than the smallest relevant time scale of the modeled flow process. If the 
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explicit method is used to march in time, iterations within a time step are not required. 
However, in such a case, the value of time step is severely constrained. For an implicit 
method, it may be necessary to use more than one iteration per time step to obtain 
a converged solution at each time step. In general, the value of time step is selected 
in such a way that the number of iterations per time step does not increase beyond 
20. For many practical transient flows, a very fast ‘start-up’ phase exists, which may 
decay rapidly. In such cases, the value of time step may be gradually increased as 
the calculations proceed. When the problem is being solved as a transient problem 
and the steady or pseudo-steady solution is of interest, it may not be necessary to 
obtain complete convergence for each time step at the beginning. Once the solution 
is developed, the internal iterations can be increased to achieve the desired accu
racy of the solution. This simple technique is useful for solving complex multiphase 
flows, which are often solved as time-dependent flows. In addition, several problem-
dependent techniques can be used to accelerate the overall convergence behavior of 
multiphase flows. Examples of these are discussed in Chapters 9 to 13. 

7.4.3. Error Analysis of Complex Simulations 

Errors in CFD simulations arise mainly from two sources: 

•	 inherent errors in representing reality by the set of model equations (physically 
deficient representation); and 

•	 errors arising from inexact solution methods (numerically deficient 
representation). 

It is essential to identify and separate these two types of errors to avoid confusion. If 
numerical errors are not isolated, they may lead to undesirable spurious model cali
bration exercises. It is, therefore, necessary to devise systematic methods to quantify 
numerical errors. The basic idea behind error analysis is to obtain a quantitative 
measure of numerical errors, to devise corrective measures to ensure that numeri
cal errors are within tolerable limits and the results obtained are almost independent 
of numerical parameters. Having established adequate control of numerical errors, 
the simulated results may be compared with experimental data to evaluate errors in 
physical modeling. The latter process is called model validation. Several examples of 
model validation are discussed in Chapters 10 to 14. In this section, some comments 
on error analysis are made. 

Low-order numerical methods contribute to the robustness and computational 
efficiency of the CFD code. However, this same robustness and speed make it imper
ative that error estimates be available so that plausible looking results are not confused 
with accurate results. In many complex reactor-engineering applications, the reac
tor engineer may be interested in capturing the trends rather than absolute values. 
Even then, it is essential to verify that captured key flow features are independent of 
numerical parameters. Formal error estimates for grid-based numerical methods may 
be based on Taylor series expansions (Roache, 1976). These analytic approaches are 
valuable for development and evaluation of numerical methods but are rarely used to 
assess complex flow simulations. The usual method of assessing the numerical accu
racy of complex flows is through grid refinement. In this approach, the computations 
are repeated on progressively finer grids and resolution is presumed to be adequate 
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when results do not change significantly with grid density. Estimates of the local con
verged solution may be obtained by extrapolating solutions obtained on two or more 
grids to an infinitely dense grid (zero grid spacing). An example of such a method is 
discussed in Chapter 6. It must, however, be remembered that routine application of 
grid refinement to complex flow simulations (with complex flow physics and com
plex geometry) is problematic for several reasons. Most flow simulations relevant to 
industrial reactor engineering routinely use a few hundred thousand computational 
cells (see examples in Chapter 9 to 14). Moreover, for complex geometric configu
rations, numerical errors resulting from non-uniform distribution of grids, and from 
departures from grid orthogonality further complicate the quantification of numeri
cal errors. In such cases, systematic assessment of grid sensitivity requires variation 
in both grid density as well as grid distribution and topology. More often than not, 
difficulties in grid generation and the magnitude of computational resources required 
for such complex flow simulations preclude the routine use of grid sensitivity tests. 

When systematic grid refinement is not possible to assess numerical errors, global 
balances of numerically non-conserved quantities (quantities that are not conserved 
at the control volume level in the construction of the numerical scheme) can be 
used. Haworth et al. (1993) described this approach in detail. The method is based 
on volume-integrated partial differential equations for primary or derived physical 
quantities of interest. Balances can be applied to the full computational domain or to 
any sub-domain down to the single-cell level. Comparison of relative magnitudes of 
terms in the balances provides insight into the physics of the flow being computed. 
For quantities that are not conserved on a computational cell level, the imbalance 
provides a direct measure of numerical inaccuracy using a single grid simulation. 
Haworth et al. (1993) recommended imbalance in mean kinetic energy, which they 
show to be a good measure of low-order spatial discretization error. For more details, 
the original paper may be consulted. Such an approach, combined with grid refinement 
studies (wherever possible), can provide a useful measure of numerical errors. 

For multiphase flows, the analysis of numerical errors becomes more difficult 
but even more important. In many practical multiphase flows, it may not be possible 
to obtain grid-independent solutions. More often than not, the reactor engineer has to 
rely on CFD simulations, which may show grid dependence, when making important 
practical design decisions. In such cases, it is essential to ensure that grid dependence 
is not affecting key conclusions on which the engineering decision is being based 
(even though the overall flow field may show grid dependence). Some examples of 
developing useful engineering decisions based on flow simulations obtained with 
modest grid requirements are discussed in Chapters 9 to 14. 

7.5. SUMMARY 

Modifications and enhancements in the basic finite volume method, necessary for 
simulations of complex multiphase or reactive flows, are discussed in this chapter. 
Approximations invoked in linearization of source terms and interpolation practices 
need to be examined carefully in light of their implications on convergence and 
accuracy. For most of the multiphase flow simulation methods, suitable modifications 
need to be incorporated in the discretized equations to avoid non-physical results. 
Some such modifications are discussed in this chapter. Complex geometry of the 
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considered solution domain often poses severe challenges to convergence behavior 
and accuracy of the simulation method. Some suggestions with respect to these aspects 
are included. Aspects of error analysis to identify various sources of errors appearing 
in the construction of the overall numerical solution method are also discussed. Once 
an adequate control on numerical errors is established, evaluation or validation of the 
underlying physical model may be carried out. Even though the user is not interested in 
writing an in-house code, the issues discussed in this chapter will be useful for carrying 
out simulations of complex flows using ready-to-use commercial CFD codes. 
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8

COMPUTATIONAL TOOLS FOR

SIMULATING FLOW PROCESSES


Basic mathematical models governing flow processes are discussed in Chapters 2 to 5. 
These model equations are usually partial differential equations, which need to be 
solved using numerical methods. Some of the relevant numerical methods are dis
cussed in Chapters 6 and 7. It must be mentioned here that knowledge of fluid 
dynamics (for model development) and numerical methods to solve the model equa
tions can be useful only if appropriate computational tools are available to apply 
these to solving the problem at hand. In this chapter, process of mapping model equa
tions and numerical methods on digital computers is discussed. The tasks and desired 
characteristics of computational tools (programs) required for such mapping and for 
carrying out numerical simulations of flow processes of practical interests are also 
discussed. Use of these computational flow-modeling tools for reactor-engineering 
applications is discussed in the subsequent chapters. 

8.1. MAPPING A COMPUTATIONAL FLOW MODEL ON A COMPUTER 

The overall process of any computational flow-modeling project was discussed in 
Section 1.2 (see Fig. 1.11 for key steps). It will be instructive to re-examine such a 
process with the background of Chapters 2 to 7. The first step of any flow-modeling 
project is to identify key controlling processes and relate these controlling processes to 
underlying fluid dynamics. This analysis will allow one to formulate clear objectives 
for the flow-modeling exercise. It must be mentioned here that, usually, the potential 
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FIGURE 8.1 Mapping computational models onto CFD tools. 

benefit of undertaking a flow-modeling exercise will determine the extent of resources 
made available to the project. Clear understanding of the role of fluid dynamic model
ing in the overall project is essential. Detailed knowledge of fluid dynamics, analysis 
of space and time scales of the specific problem at hand and analysis of the available 
resources (computing resources, time, expertise and so on), are required to develop 
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an appropriate modeling approach. The modeling approach devises ways of dividing 
the complex problems into tractable sub-problems and ways of achieving the project 
objectives within the allocated resources. A thorough knowledge of computer imple
mentation of flow models is essential to evolve a suitable modeling approach. Steps 
in the implementation of a computational flow model on a computer are discussed 
below. 

The basic elements of mapping a computational flow model on a computer are 
shown in Fig. 8.1. Some comments on developing a modeling approach were made 
in Chapter 1. Ways of devising a suitable modeling approach are discussed further in 
Chapter 9 with the help of practical examples. In this chapter, we essentially restrict 
the discussion to the basic elements which are necessary to generate simulated results 
from the flow model. 

•	 Geometry modeling of the reactor under study. It is first necessary to select 
an appropriate solution domain to decouple the system under investigation 
from the surrounding environment. While finalizing the extent of the solution 
domain, care must be taken to understand and eliminate the influence of domain 
boundaries on the predicted flow results. Once the domain is finalized, it 
is important to decide what geometrical features are essential to model to 
capture the influence of equipment hardware on flow processes of interest. For 
example, if the near wall region is an important concern (say to estimate wall 
heat transfer coefficient), it is necessary to consider the geometry and shape of 
the wall accurately. If the interest is only in understanding global flow patterns, 
the complex shape of the wall may be approximated, without jeopardizing the 
utility of the simulations. 

•	 Grid generation. To implement the finite volume method, it is necessary to 
divide the solution domain into a number of computational cells, this pro
cess being called ‘grid generation’. As briefly mentioned in Chapter 1, either 
structured or unstructured grids may be employed. Prior knowledge of vari
ous relevant scales and likely regions of steep gradients helps in generating a 
suitable grid for the problem at hand. While generating the grids, care should 
be taken to avoid extremes of aspect ratios and skewness. It is also necessary 
to formulate grid sequencing and refinement strategies to understand the influ
ence of grid spacing/distribution on simulated results. More often than not, it 
will be difficult to obtain a truly grid-independent solution for complex flows 
in industrial reactors. Systematic grid sequencing studies may help to derive 
maximum benefit from the simulated results, despite the non-availability of a 
truly grid-independent solution. 

•	 Specification of necessary information/data related to flow process under con
sideration. Once a suitable grid is generated, the user has to specify the 
necessary information concerning the physicochemical properties of fluids 
such as molecular viscosity, density, conductivity etc. for the solution of model 
equations. If the process under consideration involves chemical reactions, all 
the other necessary data about reaction kinetics (and stoichiometry, heat of 
reaction etc.) need to be supplied. In addition to system-specific data, speci
fication of boundary conditions on the edges/external surfaces of the solution 
domain is a further crucial aspect of the solution process. It is also neces
sary to provide all the information related to the numerical method selected 
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to solve the model equations (under-relaxation parameters, time step, internal 
iterations and so on). It may sometimes be necessary to provide an initial guess 
to start the iterative solution procedure. 

•	 Solution of model equations for the generated grid. Once the grid is generated 
and the required data are available, the main task of implementing a numerical 
method to solve the model equations can be initiated. The numerical solution 
involves formulation of algebraic equations by discretizing model equations 
on the generated grid, and solution of these algebraic equations until conver
gence using a suitable algorithm. Relevant details of numerical methods are 
discussed in Chapters 6 and 7. It is necessary to strike a balance between effi
cient implementation of numerical methods (which may be better if programs 
are developed for specific cases) and its general applicability. 

•	 Analysis of simulated flow results. The solution process generates huge 
amounts of data about the simulated flow process (flow, species and tem
perature fields within the solution domain). With large numerical simulations, 
one may become lost in the sea of numbers in the absence of appropriate tools 
to analyze the simulation results. Appropriate analysis strategies and tools 
to implement these strategies must be developed to draw useful conclusions 
about the flow process under consideration. Some ways of identifying key 
flow features, such as vortices, are also useful for qualitative evaluation of 
simulation results. Methods and tools for error analysis and for validation are 
also essential to derive maximum information from the simulation results and 
to plan further studies. 

The necessary computational tools required to carry out these steps are generally 
classified into three categories: pre-processors, solvers and post-processors. The 
temptation to give a brief review of some of the major available commercial CFD 
codes is resisted here since all these codes are fast evolving and the information avail
able today may not be relevant even in the near future. The relevant CFD products of 
some of the leading vendors are listed in Table 8.1. The web sites mentioned in this 
table may be visited to get up-to-date information about these codes. Links to other 
available CFD codes may be found at www.cfd-online.com. Instead of comparing 
different CFD codes at their present stage, which may not be relevant for long, here 
we discuss some of the key issues which will be useful when evaluating CFD codes. 

Although in many commercially available CFD codes, some capabilities of pre-
and post-processors are bundled up with the solver, it will be useful to discuss the CFD 
tools by classifying them in the stated three categories. It is important to mention here 
that it is more useful to compare CFD codes based on underlying technological issues 
rather than based on their ‘features’. The main technological issues in pre-processors, 
solvers and post-processors are listed in Table 8.2, and are discussed in the following 
sub-sections. 

8.2. PRE-PROCESSORS 

This category usually includes geometry modeling and grid generation tools. In some 
cases, specification of the required information about the system under consideration 
and the numerical technique used can also be specified using pre-processors. Some 
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TABLE 8.1 Some Leading CFD Codes 

Vendor Products 

General Purpose CFD Codes 

FLUENT Pre-processors: preBFC, GAMBIT, Tgrid 
Main codes: Fluent4.5, Fluent5, FIDAP, Rampant, Nekton, MixSim 
Post-processors: in-built in above codes, Flpost 
www.fluent.com 

AEA Technology Pre-processors: CFX-Build 
Main codes: CFX4, CFX5, CFX-ProMixus 

CHAM 

Post-processors: CFX-Visualize 
www.aeat.com/cfx 
Main code: PHOENICS 
Post-processor: PHOTON 
www.cham.co.uk 

STAR-CD Pre- and post processor: PROSTAR 
Main code: STAR-CD 
www.cd.co.uk 

AVL Pre-processor: FAME 
Main codes: FIRE, SWIFT 
Post-processor: in-built in above codes 
www.avl.com 

CFDRC Pre-processor: CFD-GEOM 
Main code: CFD-ACE6, CFD-ACE (U) 
Post-processors: CFD-VIEW 
www.cfdrc.com 

Stand-alone Pre-processors 
Pointwise Gridgen 

www.pointwise.com 
ICEM-CFD ICEM-CFD Tetra, ICEM-CFD Hexa 

www.icemcfd.com 

Stand-alone Post-processors 
AVS AVS/ AVS Express 

www.avs.com 
CEI Ensight, EnsightGold 

www.ceintl.com 

of the major tasks of any CFD pre-processor are: 

•	 to enable the user to model the geometry of the problem under consideration; 
•	 to generate a suitable computational grid for the modeled geometry; 
•	 to compile all the necessary data and information about the grid in a form 

suitable to the CFD solver; 
•	 to accept relevant input data from the user; 
•	 to check the consistency of the input data (as far as possible); 
•	 to store all this information in a form suitable for reading into CFD solvers for 

further processing. 

Geometry modeling and grid generation are the major elements of CFD pre
processors. For simple geometry conforming to a standard co-ordinate system (for 
example, Cartesian or cylindrical-polar co-ordinates), geometry modeling and grid 



TABLE 8.2 Key Issues for Evaluating CFD Pre-processors, Solvers and Post-processors 

Pre-processor Solver Post-processor 

Geometry modeling approach: Grid types: import from different Porous media models: Algorithms: pressure- Ease of analysis during 
solid modeler/surface modeler; pre-processors; co-located/ isotropic/non-isotropic; correction/density based; simulation: coupling with 
top-down/bottom-up staggered; (un) structured pressure drop model; UD? multiple pressure corrections? solver/local integral quantities 

Geometry import facilities: CAD Automatic grid refinement Rheological models: Multiphase flows: partial/full Error analysis: residue reduction, 
packages, general formats like tools, addition of grid elements non-Newtonian fluids/UD? elimination? Pressure distribution within domain 
IGES Geometry modifications Algorithm? correction? 

Geometry repair facilities: (change scale/cell type etc.) Reactive-flows: Multiphase flows: calculation of Basic presentation capabilities: 
gaps/trimmed surfaces, removal without re-meshing Phenomenological models-EB, volume fractions/internal traps vectors, contours, streak-lines, 
of coincident entities ESCIMO, multigroup E model iso-surfaces 

Visualization: internal grids, Memory: 1 million cell PDF-based models: presumed/ Segregated/coupled solver? Computation of fluxes, 
multiple views problem:∼ 0.35–1 GB full PDF algorithm? Option? sub-domain balances 

Grid types: single/multi-block; Compressible/incompressible; Surface reactions: options for Source-dominated flows: Automatic feature detection: 
structured/unstructured/mixed primary variables/stream rate controlling steps/UD? handling of user-defined trailing vortices/re-attachment 

function Multiphase reactive flows: mass sources/scalars 
Grid generation tools: Transient simulations: automatic transfer/reactions in all phases? Convergence behavior: Presentation of user-defined 

automatic/parametric control on time steps/efficient sensitivity to under-relaxation derived quantities: constraints/ 
generation, recovery from error storage parameters flexibility 
(UNDO facilities) 

Boundary layer capability Turbulence models: user-defined Boundary conditions: Algebraic equation solvers: Visualizing results on arbitrary 
model (UD)? Wall functions: profile/transient/UD? conjugate gradient? surfaces 

Mesh control: clustering, aspect constraints on near wall cells Special/user-defined BCs for Acceleration tools: Overlay capabilities/lighting/ 
ratios, skewness multiphase flows? multigrid/block correction shading 

Tools for assessment of grid Simulation of rotating flows: Consistency checks for Parallelization: technology? Importing tabular data for 
quality sliding mesh/multiple reference BCs/input data speed-up efficiency validation/comparisons 

frames 
Grid refinement: smooth- User-defined scalar equations: Importing physical property and On-line convergence monitoring XY plots, Function calculators to 

ing/orthagonality/clustering constraints on form/algorithm kinetics data from external tools compare global results 
databases 

Setting fluid properties/input Multiphase flows: Discretization schemes: Data storage/Exporting data to Post-processing of transient 
data: databases/consistency Eulerian–Eulerian (EE) space/time; higher order/user different post-processors simulations/multiple datasets 
checks capabilities: closure/drag defined? 

Setting boundary laws/additional forces Limiter functions to avoid Access to the source Animation/video 
conditions/defining cell types EE-granular flows: model non-physical results/UD? code/internal flow facilities/different formats 

Exporting information to 
different solvers 

options/Eulerian–Lagrangian 
(EL): true/psuedo? particle 
models/UD? 

Special discretization 
procedures for multiphase flows 

Overall computational 
performance/bench mark cases 

Exporting results to other 
presentation tools (RGB, BMP, 
MPEG, PS, EPS) 

Future developments: new VOF: surface forces/ Facility to provide internal Future developments: Future developments: better 
technologies adhesion/contact angle; UD? traps/limits algorithms/algebraic solvers integration 
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generation is fairly straightforward and can be executed by accepting relevant data 
from the user. However, most industrial reactors have complex configurations and 
therefore require advanced geometry modeling tools. Complex geometries may be 
developed either by using a bottom to top approach (defining points, lines, faces 
and so on to construct higher order objects) or by using a top to bottom approach 
(starting with solid volumes and carrying out Boolean operations on them to arrive 
at the desired geometry). With the advent of widespread applications of computer 
aided design (CAD) and solid mechanics analysis, several geometry modeling tools 
are now available. Most of these tools allow use of a top to bottom approach to define 
the desired geometry. Most pre-processors of the commercially available CFD codes 
allow one to import geometry from these design tools. In addition to importing geom
etry information from these design tools, most CFD pre-processors also have in-built 
geometry modeling tools. Some tools are also provided to repair ‘dirty’ geometry 
(gaps, trimmed surfaces and so on). These capabilities are essential and must be 
critically evaluated during the selection process. 

Meshing or generating a suitable computational grid for the modeled geome
try is one of the most important pre-processor tasks. Quite sophisticated algorithms 
and tools are required to divide the modeled geometry into computational cells 
based on either a structured or unstructured grid. A structured grid requires that 
all interior nodes have an equal number of adjacent elements (typically all elements 
are quadrilateral or hexahedral). This restriction is relaxed in an unstructured grid 
(triangular or tetrahedral elements may be used). The type of grid is subject to 
constraints imposed by the discretization method selected and the solution algo
rithm. Once the type of grid is selected (structured or unstructured), several methods 
are available to generate the desired grids. Details of these methods will not be 
discussed here. More information on grid generation may be found in Thompson 
(1996) and at an excellent website on grid generation maintained by Steven Owen: 
http://www.andrew.cmu.edu/user/sowen/mesh.html. 

It must be mentioned here that geometry modeling and grid generation may 
account for a substantial percentage of the time required to carry out the total flow 
modeling task. For example, in aerospace engineering applications, the time spent on 
geometry modeling and grid generation may account for more than 50% of the total 
project time. Even for reactor engineering applications, where model development 
may require most of the time, the time spent on grid generation is not insignificant. 
It is, therefore, important to evaluate various facilities made available in any grid 
generation tool, to reduce the time spent on grid generation. Most commercial grid 
generation tools allow parametric grid generation to facilitate faster grid generation 
for similar geometries. Facilities to recover from errors, while building the geometry 
or while generating the grids, are also very useful (e.g. customizable UNDO features). 
A boundary layer capability to ensure adequate resolution near walls and corners is 
also useful. Appropriate tools to provide control of clustering, cell aspect ratio and 
cell skewness, are essential to generate good quality grids. More often than not, 
some refining operations are needed to make the generated grid better suited to flow 
simulations. Such refining operations may be classified into (1) smoothing (includes 
operations which adjust node locations while maintaining the element connectivity), 
and (2) clean-up (operations which change element connectivity). Capabilities for grid 
refinement and tools to assess the quality of the generated grid are very important and 
need to be examined critically. 
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Although boundary conditions and fluid properties may be set in pre-processors, 
most commercial codes allow these to be set in CFD solvers. 

8.3. SOLVERS 

Solver tools implement the numerical methods discussed earlier (Chapters 6 and 7) to 
solve the model equations. It is important to give appropriate importance to (1) gen
eral applicability, (2) ease of use, (3) economy of computations, (4) maintainability, 
and (5) expandability. These five requirements may have contradictory demands on 
the way computer programs are generally written and developed. Most computer 
programs developed by academic research groups focus on including more complex 
physical models and may tolerate deficiencies in other requirements, such as ease of 
use and maintainability. The capability to handle complex grids is also, generally, 
moderate in such academic codes. Most commercial codes try to provide ease of use 
and maintainability along with the capability to handle complex grids. Such codes 
may, however, have to trade some of the recent advances in understanding of the 
physics of complex flow processes (e.g. multiphase and reactive flows), to provide 
general applicability and robustness. The provisions to include new mathematical 
models may, therefore, become one of the important criteria in the selection of com
mercial CFD code, especially for reactor engineering applications. Before reviewing 
key issues in evaluating commercial CFD codes, some comments on in-house CFD 
code are relevant. 

Although commercial CFD tools are being increasingly used to address complex, 
industrial reactor engineering problems, the experience and insight gained through the 
use of in-house CFD codes is often very useful. It is always beneficial to develop some 
CFD tools in-house, to get a first hand feel. Patankar (1980) listed several suggestions 
for the development of such in-house CFD codes. It is beneficial to adopt a modular 
approach to construct the required CFD tools. Cross et al. (1989) discussed some of 
the guidelines and trends in CFD software engineering, which may also be useful for 
the new code developer. Ferziger and Peric (1995), in their excellent book, discussed 
various numerical methods and their computer implementation. Corresponding FOR
TRAN programs are available from their website (ftp.springer.de/technik/pub/peric). 
The process of development of a CFD code, its de-bugging and validation can provide 
much needed insight into the behavior of flow processes, as well as their numerical 
simulation. This process and experience may significantly enhance the ability to use 
and to modify various commercially available CFD tools. In-house code may also 
serve the purpose of testing new models by simulating relatively simple validation 
problems. The validated model can then be incorporated in a commercial CFD code 
to carry out numerical simulations of industrial process equipment. With the advent 
of the world wide web (WWW), it is now easy to download the necessary components 
and construct an in-house CFD tool kit. A good source to find useful CFD resources 
is http://www.cfd-online.com. Free and shareware CFD programs as well as several 
general purpose numerical programs are listed on this site. 

Industrial reactor engineering applications are generally carried out using com
mercial CFD tools to ensure enhanced maintainability and useful life of the developed 
models. Key characteristics of CFD solvers and tools are summarized in Table 8.2. 
For reactor engineering applications, one of the most important features of CFD codes 
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is the ability to extend the in-built models via user-written modules. No matter how 
general the CFD code is, it will always be necessary to develop specific sub-models 
(see e.g. case studies discussed in Chapter 9) to simulate specific reactors. It is impor
tant to understand the power and limitations of such user-defined capabilities of any 
CFD code before one commits to use it for reactor engineering applications. Docu
mentation and tools to assist the incorporation of new models into commercial CFD 
code also play an important role in determining the effort and resources required to 
extend commercial CFD code to include specific model equations. Every commer
cial CFD code vendor offers different ways and facilities to incorporate new models. 
Many commercial CFD codes impose constraints (form of the equations, algorithm 
used for the user defined equations and so on) on user-defined equations, which need 
to be evaluated carefully. In many situations, it is necessary to replace some of the 
terms in the default model equations. In such situations, a facility to select terms in the 
default model equations is very useful. If such a facility is not present, the user has to 
develop programs to subtract the unwanted terms in the default equations and include 
the new ones. This may lead to some inconsistencies if the discretization methods 
used by the user and those used in the default code are not the same. Many of the lead
ing commercial CFD vendors organize ‘User Group Meetings’ to promote exchange 
of expertise and exchange of user-defined enhancements. Archives of ‘user-defined 
routines’ are also maintained by some vendors. Such archives and proceedings of 
user group meetings are very useful sources of information related to the use of a 
particular CFD code in reactor-engineering applications. 

Apart from the available mathematical models and facilities for adding new 
mathematical models, there are several other issues of concern when selecting an 
appropriate CFD code. The facility to import grids from a variety of grid generation 
tools/pre-processors is obviously needed. A facility for scaling an entire geometry 
without the need for re-meshing will be useful for studying scale-up or scale-down 
(geometrically similar) behavior. An ability to introduce minor modifications in the 
geometry (e.g. introducing or removing baffles), without re-meshing, will be use
ful for evaluating different reactor configurations. An ability to handle grids of high 
aspect ratio and high skewness is important since most industrial reactors have com
plex geometry. It is difficult to identify upper limits of grid aspect ratio or skewness 
which these codes can handle since these values are strongly problem dependent. 
A facility for automatic grid refinement according to user-defined criteria will also 
be useful. Automatic grid refinement and appropriate data interpolation tools greatly 
facilitate grid sequencing studies and the generation of grid-independent results. Not 
all commercial codes provide these facilities. In addition to grid refinement, higher 
order discretization schemes play an important role in enhancing the accuracy of sim
ulation results. An ability to incorporate a user-defined discretization scheme will, 
therefore, be a useful facility (which is not provided by most currently available 
commercial CFD codes). 

To simulate turbulent flows, Reynolds-averaged Navier–Stokes (RANS) equa
tions form the basis for most codes. Several turbulence models are usually provided. 
A new turbulence model may also usually be incorporated via user-defined routines. 
Recently, many of the commercial CFD codes have announced the inclusion of large 
eddy simulation (LES) capabilities. Considering the importance of rotating equip
ment used in reactor engineering applications, the ability to handle multiple reference 
frames or sliding meshes is important. Most leading commercial CFD codes provide 
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similar facilities to simulate single-phase flows. Capabilities to simulate multiphase 
flows may, however, differ considerably from code to code. The same is true for 
reactive mixing or combustion models. This is expected to be so as both of these 
fields are still evolving at a fast pace. The same comments are also applicable to 
porous media models, complex rheological models and surface reaction models. The 
user-defined capabilities of CFD codes mentioned above become even more impor
tant in these areas and need to be evaluated based on the intended reactor engineering 
applications. Available options for boundary conditions also must be examined, espe
cially for multiphase flows. Some sort of consistency checks on input data and on 
permissible combinations of boundary conditions are always useful. A facility to 
import physicochemical data from available databases is useful when simulating flow 
systems with large numbers of components. 

The SIMPLE or PISO family of algorithms (SIMPLE, SIMPLER, SIMPLEC, 
SIMPLEST, PISO, SIMPISO) are usually used to treat pressure–velocity coupling. 
Most commercial codes provide options to use state of the art multigrid techniques 
and block correction methods to accelerate the solution of algebraic equations. Often, 
for single-phase flows, the solver performance of most codes is similar, but may, 
however, differ significantly for multiphase flows, depending on algorithms and traps 
used to handle the interphase coupling (partial elimination or full elimination, cal
culation of volume fractions and so on). Unfortunately, information on how the 
multiphase flow equations are discretized and what in-built traps are included to 
avoid non-physical results, is usually not disclosed by commercial CFD vendors. The 
availability of various options for interpolation and trajectory calculations when car
rying out Eulerian–Lagrangian simulations of dispersed multiphase flows may also 
differentiate the available codes. Several versions (and different implementations) of 
VOF models also make direct comparisons difficult. It may be useful to formulate a 
few benchmark problems (related to the intended reactor engineering applications) 
to evaluate the performance of different CFD codes. On-line convergence monitoring 
tools are often useful and are needed to carry out complex simulations. The ability 
to run the CFD solver on multi-CPU machines is also important to reduce the turn-
round time of complex reactor engineering problems. The speed-up ratios achieved 
for specific parallel hardware should be examined before selecting the CFD solver 
(or the hardware). 

Although it is important to compare the underlying technologies of different CFD 
codes, it should be noted that the ability to carry out the desired simulation using a 
given CFD code depends more on the expertise of the user rather than on the CFD 
code itself. The skilled CFD user can obtain the desired results from any available 
commercial CFD code by suitably exploiting user-defined routines. The tools required 
to analyze the results obtained by CFD codes are discussed below. 

8.4. POST-PROCESSORS 

Numerical solutions of model equations generate large sets of numbers. Appropriate 
post-processing tools are essential to analyze and to interpret these simulation results. 
Many commercial CFD codes provide in-built post-processing facilities or allow 
results to be exported to other post-processing packages. The key issues in evaluating 
CFD post-processors are briefly summarized in Table 8.2. 
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The first component in the analysis of simulation results is usually checking the 
degree of convergence and estimating numerical errors. These facilities are usually 
incorporated in solvers rather than in separate post-processors. Most CFD codes 
report normalized residuals. It is important to evolve criteria to judge the adequacy of 
residual reduction suitable for the application under consideration: different variables 
often need different residual reduction criteria. The progress of residual reduction and 
the distribution of residuals often indicate whether the numerical solution is adequate. 
A facility to report sub-domain or global balances is also useful for examining the 
adequacy of the numerical solution. Once adequate convergence (more often than not, 
multiple criteria are needed to ensure adequate convergence) has been confirmed, the 
simulation results may be studied in several ways. 

Two of the most common ways of examining simulation results are: (1) vector 
plots, in which the length of every arrow indicates the magnitude of the local veloc
ity, and the direction of the arrow indicates the direction of the local velocity; and 
(2) contour plots, which represent the predicted field in the form of constant value 
contours. Superimposing a vector plot of two components of velocity on the con
tours of the remaining component of velocity is often done to provide information 
about the three velocity components in a plane. Most post-processors allow such 
vector or contour plots on any arbitrarily defined planes or surfaces within the solu
tion domain. Other options to visualize simulation results, such as three-dimensional 
iso-surfaces, particle streak lines, and particle tracks can reveal important features of 
the predicted flow field. Automatic feature detection facilities are offered by some 
of the advanced visualization tools, which may be able to automatically detect ‘trail
ing vortices’ behind impeller blades and are, therefore, useful for verifying whether 
the simulation results have captured essential features of the flow or not. Additional 
facilities such as different options for coloring vectors or iso-surfaces, perspective 
views, overlaying different views and so on, are often useful to clearly understand 
interactions between different variables of interest and to enhance the quality of the 
results presented. 

For quantitative validation of simulation results, it is often necessary to compare 
predicted profiles (of velocity or other variable of interest) with experimental data: 
X–Y plotting facilities are useful for this purpose. Most post-processors allow the 
user to import tabulated data for comparison with simulation results. Facilities to 
calculate the usual global quantities of interest to reactor engineers, such as overall 
pressure drop, dispersed phase volume fraction, heat or mass transfer rates and so 
on, are necessary to address reactor engineering concerns. Most codes allow use of 
user-defined routines to evaluate different quantities of interest, which may then be 
displayed using the standard tools discussed above. 

It is often necessary to evolve problem-specific post-processing strategies in 
order to extract as much information as possible from the generated numbers. The 
need for good post-processing tools is even greater when detailed post-processing 
studies indicate that the agreement between simulation results and experimental data 
is not satisfactory. Under such circumstances the user needs to understand the simu
lation results to identify possible causes for the observed discrepancies. Rather than 
blindly blaming the underlying model, careful post-processing of simulation results 
may reveal a wealth of information which will be useful for further development of 
a mathematical model. When the simulated flow results look satisfactory, the reactor 
engineer has to extract useful information for further use. Generally, different models 
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are used to address different practical reactor-engineering projects (refer to discus
sion in Chapter 1). More often than not, flow models are used to obtain the desired 
information for the other intermediate reactor models such as mixing cell models. 
Some such examples are discussed in the next chapter (Chapter 9). Post-processing 
tools should allow easy exchange of information among different levels of models. 
Such an exchange, until recently, used to be manual or via a case-specific in-house 
interface. However, there is an increasing trend to automate the information exchange 
so that flow information from the CFD model can be exported to intermediate reactor 
models, and reaction information may be imported to CFD code from such reactor 
models. Development of these interfaces is still in the early stages and more up-to-date 
information may be found on different web sites (for example, see www.pfd.ie). 

8.5. SUMMARY 

The basic elements involved when using a computational flow model for reactor engi
neering or any other application, are: (1) geometry modeling and grid generation; 
(2) specification of system data and selection of mathematical models and bound
ary conditions; (3) solution of model equations; and (4) analysis and interpretation 
of simulation results. The tools required to carry out these elements are generally 
classified into three groups: pre-processors, solvers and post-processors. Some of 
the leading commercial tools are listed in Table 8.1. Rather than comparing these 
commercial tools, key issues in evaluating any CFD code are discussed briefly in this 
chapter (Table 8.2). Some comments on the importance of using an in-house CFD 
code and resources to construct such an in-house code are also included. In principle, 
the skilled CFD user can obtain the desired results from any reasonable commercial 
CFD code by suitably exploiting user-defined routines. It is important to critically 
examine the capabilities of user-defined routines and constraints imposed on the use 
of these routines. 

Knowledge of underlying physics and its mathematical representation (Chapters 
2 to 5), of numerical methods to solve such mathematical representations (Chapters 
6 and 7) and of computational tools to implement these numerical methods (this 
chapter), equip the reader to harness the potential of computational flow modeling 
for reactor engineering. It is essential to develop an appropriate modeling approach 
to suit the reactor-engineering objectives at hand. Development of such approaches 
is discussed in Chapter 9 with the help of practical examples. 
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FLOW MODELING FOR

REACTOR ENGINEERING


Basic tasks of reaction and reactor engineering are discussed in the first chapter. 
A general methodology for applying computational flow modeling tools to reactor 
engineering is also briefly discussed in Section 1.3. Basic information about the 
elements of computational flow modeling (CFM) is given in Section 1.2 and Chapters 
2–8. Applications of CFM to reactor engineering are now discussed here in detail. 

A variety of chemical reactors are being used in industrial practice: some typical 
reactors are shown in Fig. 1.2. Pertinent design issues for each of these reactor types 
are different and are impossible to discuss in a single chapter. A general methodology 
can, however, be discussed without going into details of each reactor type. Before 
we proceed, it should be noted that most industrial chemical reactors present severe 
challenges to the mathematical modeler. A reactor engineer needs to be familiar 
with the basic concepts of the mathematical modeling of physical processes (see, 
for example, Denn, 1986; Aris, 1978; Polya, 1962). The relative importance and 
roles of governing equations, constitutive equations, boundary conditions and input 
data need to be clearly understood while interpreting results and drawing engineering 
conclusions based on simulation results. 

Adequate mathematical representation of any complex physical process may 
require many different mathematical models, perhaps a continuum of models, each 
having different capabilities, appropriate to its specific objectives. Reactor engineers 
must recognize the possibility of employing a hierarchy of models to develop the 
necessary understanding and to obtain the required information to achieve com
plex reactor engineering objectives. Perhaps an analogy with the variety of vehicles 
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available for transport may make the point clear. Various alternative vehicles, from a 
bicycle, scooter, car and helicopter to aircraft are available for a person who wants 
to travel. Each of these vehicles has unique features and a corresponding range of 
applications. Availability of powerful alternatives for transport has not made other 
less powerful modes obsolete. More often than not, the best way to travel the desired 
distance is based on using different vehicles for different parts of the journey. Sim
ilarly, there will be a hierarchy of mathematical models, each having some unique 
features and corresponding range of application, which may be used to construct as 
complete a picture of the physical process as possible. Computational flow modeling 
is certainly a very powerful tool and in principle, a self-consistent, comprehensive 
mathematical model can be constructed to simulate the behavior of industrial reactors 
within a CFM framework. However, it would be inefficient to use such a complex 
model to obtain information which might be obtained by relatively simple models. 
The reactor engineer has, therefore, to match the available modeling tools and reactor 
engineering objectives at hand. It is often difficult to develop a mathematical model 
which addresses the practical reactor engineering problem directly. Instead, it is nec
essary to use different models to develop the required understanding and information, 
and combining this with engineering judgement to propose an appropriate reactor 
engineering solution. CFM certainly enhances the capability of a reactor engineer to 
make deeper journeys into the underlying physics for a better understanding. It should, 
however, be used along with other models with different capabilities to construct an 
overall picture. The necessity of using a hierarchy of modeling tools and establishing 
a clear relationship between the reactor engineering objectives and computational 
flow modeling, is illustrated here with the help of some examples. 

9.1. REACTOR ENGINEERING METHODOLOGY 

A general reactor engineering methodology is shown in Fig. 1.10. Based on available 
information concerning the chemistry and catalysis of the process under consideration, 
the first step in reactor engineering is to select a suitable reactor type. Krishna (1994) 
discussed a systems approach for reactor selection. He advocates setting up a ‘wish 
list’ for reactor selection. The subject of reactor selection is not discussed further 
here, and interested readers may refer to the original paper (Krishna, 1994). It must, 
however, be emphasized that setting up of such a ‘wish list’ is one of the most important 
steps not only for the selection of reactor type but also for any reactor engineering or 
mathematical modeling activity. The success of the application of mathematical (or 
otherwise) modeling to any reactor engineering project depends on setting up such 
‘wish lists’ which act as maps or guides for the selection and application of relevant 
tools. The results obtained by these various tools and the ‘wish lists’ are used to evolve 
a suitable reactor engineering solution. 

For the development of a new reactor technology, a typical ‘wish list’ could be 
(from Krishna, 1994): 

• operability within technologically feasible region; 
• intrinsically safe operations; 
• environmentally acceptable; 
• maximum possible conversion of feed stocks; 
• maximum selectivity of reaction to the desired products; 
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•	 acceptable impurity profiles; 
•	 lowest capital and operating costs. 

To enhance the performance of an existing reactor technology/hardware, a typical 
wish list could be: 

•	 more throughput per unit volume; 
•	 improved selectivity and better quality product; 
•	 safer operation; 
•	 reduced energy consumption; 
•	 more environment friendly operation. 

The next step is to translate the wish list into a quantitative form and establish a rela
tionship between items in the wish list and reactor hardware and operating protocols. 
The reactor engineer’s task is to design and tailor the reactor hardware and operating 
protocols to realize the wish list. Several activities are involved in this process. It may 
often turn out that some of the items in the wish list require contradictory options 
of hardware and operation. In such cases, a careful analysis of different items in the 
wish list must be made to assign priorities. Operability, stability and environmental 
constraints often receive precedence over throughput and energy consumption when 
such conflicting requirements arise. 

Some of the tasks of the reactor engineer when establishing the relationship 
between reactor configuration/operation and performance are shown in Fig. 1.10. 
Examination of these tasks emphasizes the need for developing a multilayer modeling 
strategy. Some of the tasks, such as examining the influence of reactant flow rate 
and operating temperature on the performance of the reactor (conversion, selectivity, 
stability and so on), can be answered by developing conventional reaction engineering 
models. In these models, some assumptions are made regarding the flow and mixing 
of various species in the reactor, instead of solving the fluid dynamics equations. Thus, 
although these models cannot directly relate the reactor hardware with performance, 
these models are computationally much less demanding than CFD-based models and 
can give a quick understanding of the overall behavior of the reactor. These models 
can be used to identify the important parameters/issues, which may require further 
study. Of course, the class of conventional chemical reaction engineering models 
itself contains a variety of models. It will be useful to distinguish between ‘learning’ 
models and ‘design’ models at this stage. 

‘Learning’ models are developed to help to understand basic concepts and to 
obtain specific information about unknown processes. The results obtainable from 
such models may not lead directly to design information but are generally useful to 
take appropriate engineering decisions. ‘Design’ models, on the other hand, yield 
information or results, which can be used directly for reactor design and engineering. 
It is first necessary to develop design models to estimate reactor sizing and to evolve 
a preliminary reactor configuration. Several ‘learning’ models can then be developed 
to help understand various reactor engineering issues, such as: 

•	 start-up and shut-down dynamics; 
•	 multiplicity and stability of thermo-chemical processes occurring in the 

reactor; 
•	 sensitivity of reactor performance with respect to mixing and residence time 

distributions; 
•	 selectivity and by-product formations. 
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The understanding gained by development and application of these ‘learning’ models 
is helpful in identifying the needs for developing more sophisticated simulation mod
els to establish the desired reactor design. These models are also useful in identifying 
the likely impact of reactor fluid dynamics on reactor performance. The results allow 
the reactor engineer to identify gaps between available knowledge and that required 
to fulfill the ‘wish list’. The identified gaps can then be bridged by carrying out exper
iments in the laboratory and/or pilot plant(s), and by developing more comprehensive 
fluid dynamic models. 

Computational flow modeling enters the reactor engineering activity at this 
point. Despite the advantages, conventional chemical reaction engineering models 
will not be directly useful for understanding the influence of reactor hardware on 
reactor performance. For example, how the design of the distributor for dispersed 
phase affects the radial distribution of dispersed phase and thereby the reactor per
formance, will be difficult to predict without developing a detailed fluid dynamic 
model (CFM) of the reactor or without carrying out experiments on a scale model. 
The CFM-based approach will make valuable contributions at this stage by pro
viding the required insight, by helping to devise the right kind of experiments and 
by allowing the screening of alternative configurations and by providing tools for 
extrapolations and scale-up. Of course, the whole process of reactor engineering is 
not sequential! All steps interact with and influence each other. The results obtained in 
laboratory experiments on hydrodynamics and residence time distribution (RTD) or 
from the computational flow model may demand changes and revisions in the earlier 
analysis and the whole process is iterated until a satisfactory solution emerges. In 
this book, we are particularly concerned with the application of computational flow 
modeling to obtain the relevant information about reactor engineering. Translating 
reactor engineering requirements to formulate suitable flow models and the use of 
such flow models for reactor engineering is illustrated here with the help of a few 
examples. 

Before we discuss the examples, some general comments on CFM for reactor 
engineering will be useful. Computational flow models can be built either as ‘learning’ 
models or ‘design’ models. For ‘design’ models, which are expected to yield directly 
applicable design results, relating reactor engineering objectives to computational 
flow modeling objectives is relatively simple and straightforward. Some special types 
of reactors, such as chemical vapor deposition reactors, are designed directly based on 
a comprehensive computational flow model. Such comprehensive CFD models enable 
the reactor engineer to directly relate reactor hardware (and operating protocols) to 
reactor performance. In several other cases, however, it may be necessary to use com
putational flow models to assist the process of reactor engineering decision-making. 
In such cases, correct formulation of the flow problem plays a crucial role. Devel
oping computational models to obtain the required information about the behavior 
of industrial chemical reactors is a complex task and requires specialized knowledge 
and approach. Previous chapters have provided basic information about the elements 
of computational flow modeling. Part IV of this book contains separate chapters on 
three major reactor types, namely stirred reactors, bubble column reactors and flu
idized bed reactors. One chapter is included to cover miscellaneous reactors, along 
with fixed and trickle bed reactors. These chapters are designed to provide specialized 
knowledge pertinent to different reactor types, which will assist the reactor engineer 
wishing to develop reactor flow models. In this chapter, examples are discussed to 
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illustrate the basic methodology and to relate results obtained from computational 
flow modeling to reactor engineering objectives. 

9.2. EXAMPLE 1 – SUSPENSION POLYMERIZATION REACTOR 

Suspension polymerization is an old and relatively simple process to produce poly
mers and copolymers for various applications. It is mainly used to produce specialty 
copolymers which have high value but low volume demand. Because of the opera
tional problems associated with the transport of highly viscous droplets in suspension, 
continuous operation of suspension polymerization process is difficult: polymeriza
tion is carried out in a stirred reactor operated in batch mode. Controlling the particle 
size distribution (PSD) is one of the major reactor engineering objectives apart from 
high conversion and selectivity. Although the process has been widely studied, the 
understanding of factors that affect the PSD and several other physical phenomena 
that occur inside the vessel is still limited. Most suspension polymerization reactors 
are designed and operated based on wisdom accumulated from prior experience. In 
this example, the potential of using computational flow modeling to enhance our 
understanding and, thereby, enhance control of the performance of a suspension 
polymerization reactor is discussed. 

Let us consider a typical suspension polymerization process for manufacturing 
polymer beads (for example, polystyrene beads for ion-exchange resins). For such a 
process, control of particle size distribution is crucial as it determines the usable yield 
from the process. Different applications demand different ranges of particle sizes. 
Typical ion-exchange applications may require polymer bead diameters within the 
range 250 to 1000 �m. Any polymer particles falling outside this range are a waste 
of raw materials. For specialty applications, demands on particle size distribution are 
even more stringent. A typical suspension polymerization reactor is shown schemat
ically in Fig. 9.1. While many operating protocols are used, it is common to disperse 
catalyzed monomer into aqueous phase containing a suspending or stabilizing agent 
(Leng and Quarderer, 1982). A certain time period is allowed for drops to attain a 
stable size distribution, after which the batch is heated to polymerization temperature. 
It is important that coalescence or agglomeration is prevented during polymerization. 
Failure to achieve adequate stabilization may lead to mass polymerization and reactor 
shutdown. Of course, avoiding such a possibility is no longer a problem, but enhanc
ing the yield of polymer beads within the usable range is still a challenge for a reactor 
engineer. 

Despite several studies spanning five decades, the understanding of factors which 
control PSD and the several phenomena that occur inside the stirred reactor is still 
limited. Several (design and operating) parameters affect the PSD. Some of the more 
important parameters include: 

• Impeller 
• type of impeller (shape and number of blades), 
• number of impellers and their locations, 
• impeller diameter, 
• impeller speed; 

• reactor geometry (shape, height to diameter ratio); 
• water to monomer ratio; 



248 CHAPTER 9 FLOW MODELING FOR REACTOR ENGINEERING 

Liquid–liquid 
dispersion 

Impeller 

FIGURE 9.1 Suspension polymerization reactor. 

•	 chemical recipe (type and concentration of initiator, stabilizer, surfactant, 
catalyst and so on). 

It is not possible (and also not necessary) to review all the available information on 
suspension polymerization here. Some recent reviews may be referred to for more 
information (Vivaldo-Lima et al., 1997, 1998). Most of the answers to the questions 
related to chemical recipe may have to be obtained by conducting specific experiments. 
Other questions, such as selection of operating temperature, batch time etc., can be 
answered by developing a conventional reaction engineering model (a single-drop 
polymerization reactor model, by assuming complete mixing, will give information 
about the progress of polymerization with time). The need for a detailed understanding 
of fluid dynamics is, however, essential to an understanding of the liquid–liquid 
dispersion process occurring in the reactor. The breakage of monomer liquid phase 
into individual droplets and their dispersion within the reactor ultimately controls 
the particle size distribution. This is where computational flow modeling can make 
significant contributions. 

The literature on drop breakage is extensive (see the recent review by Zhou and 
Kresta, 1998). Grossly approximating, one may state that the main drop breakage and 
coalescence events occur at the impeller at intervals defined by the mean circulation 
time. Different drop size distributions arise due to equilibrium between drop break
up and coalescence. For the case of stabilized dispersion (such as used in suspension 
polymerization reactors), the extent of coalescence is significantly reduced. For such 
systems, it is necessary to understand the relationship between fluid dynamics and 
drop breakage as well as between reactor hardware and the resulting fluid dynamics 
to evolve suitable reactor design. Several models have been developed to describe 
drop breakage in turbulent flows (see, for example, Kumar et al., 1998). A suitable 
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drop breakage model (and a coalescence model if necessary) can be combined with 
a population balance model to simulate drop size distribution and thereby bead size 
distribution of a batch suspension polymerization reactor. 

These models require information about mean velocity and the turbulence field 
within the stirred vessels. Computational flow models can be developed to provide 
such fluid dynamic information required by the reactor models. Although in princi
ple, it is possible to solve the population balance model equations within the CFM 
framework, a simplified compartment-mixing model may be adequate to simulate an 
industrial reactor. In this approach, a CFD model is developed to establish the rela
tionship between reactor hardware and the resulting fluid dynamics. This information 
is used by a relatively simple, compartment-mixing model coupled with a population 
balance model (Vivaldo-Lima et al., 1998). The approach is shown schematically in 
Fig. 9.2. Detailed polymerization kinetics can be included. Vivaldo-Lima et al. (1998) 
have successfully used such an approach to predict particle size distribution (PSD) of 
the product polymer. Their two-compartment model was able to capture the bi-modal 
behavior observed in the experimental PSD data. After adequate validation, such a 
computational model can be used to optimize reactor configuration and operation to 
enhance reactor performance. 

It is also possible to use computational flow models without explicitly linking 
them with models predicting the particle size distribution. In such an approach, one can 
use insight gained from the results of the CFD model by implicitly combining it with 
an understanding of drop breakage phenomena and polymerization reaction, to evolve 
the desired reactor engineering solution. Recently, Ranade (1999a) demonstrated such 
an application to enhance the performance of an industrial suspension polymerization 
reactor. Ranade (1999a) considered the case of an existing industrial polymerization 
reactor agitated with two pitched blade impellers. The reactor was designed based 
on laboratory-scale experiments carried out in a 5 liter reactor and a few experiments 
on a pilot scale reactor (700 liter). The plant scale reactor was operated in batch 
mode. The yield of usable polymer beads (particles) was about 65%, which clearly 
indicated scope for enhancing the reactor performance. The approach of Ranade 
(1999a) is discussed below. 

As mentioned earlier, both chemical (catalyst, surfactants, stabilizers) and phys
ical (fluid dynamics, energy dissipation rates, circulation time and so on) factors 
control the performance of the suspension polymerization reactor. It is first necessary 
to examine the available experimental data to clearly understand the role of these 
chemical and physical factors. The available data indicates that the yield of usable 
polymer beads in laboratory scale reactor is more than 85%. Laboratory experiments 
were then planned to examine the sensitivity of the yield to various parameters of the 
polymerization recipe under the same hydrodynamic conditions. These experiments 
showed that the yield is relatively insensitive to small deviations in the chemical 
recipe. Analysis of the available data on pilot and plant scale indicated a progres
sive decrease in the yield of usable polymer beads from laboratory to pilot to plant 
scale. This analysis and some indirect evidence suggested that it may be possible 
to re-design the plant-scale reactor hardware to generate better fluid dynamics and 
mixing to increase the yield of particles in the desired size range. 

One may use an approach discussed earlier in which a comprehensive mathe
matical model is developed, which relates the reactor hardware to fluid dynamics 
and polymerization reactions in one framework. However, it is extremely difficult 
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FIGURE 9.2 Modeling a suspension polymerization reactor (approach of Vivaldo-Lima et al., 1998). 

and time consuming to develop such an approach for an industrial polymerization 
reactor. The uncertainties in kinetics and physicochemical properties coupled with 
the complexities of coalescence-break-up models may raise doubts about the direct 
correspondence between model predictions and plant performance. Ranade (1999a) 
therefore used an approximate approach, in which the first step is to understand the 
role of fluid dynamics in controlling the PSD without mathematically relating them. 
It is first necessary to identify the controlling drop breakage mechanism (shear, elon
gation, turbulence and so on). Without going into specific details of any particular 
application, it can be said that: 

•	 Wide distribution of shear strain rates within the reactor will result in a wider 
PSD. This means impeller rotational speed should be kept small enough to 
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ensure narrower strain rate distribution. It should, of course, be able to provide 
the necessary bulk flow and should be able to keep the monomer droplets 
well dispersed within the reactor. Adequate dispersion of monomer droplets 
ensures that they all experience the same environment and leads to narrower 
PSD. 

•	 Impeller size, shape and speed should ensure that the turbulence energy dissi
pation rates within the impeller zone are not excessive so as to avoid unwanted 
finer particles. 

Several other qualitative requirements may be added. These may, however, be suffi
cient to illustrate the possible application of CFM. These fluid dynamical requirements 
form the ‘wish list’ of the reactor engineer, who has to evolve a suitable reactor con
figuration (height to diameter ratio, impeller type, size, location, number and so on) to 
satisfy this wish list. The conventional way is to modify some standard configuration, 
test it in pilot scale and then scale it up for the full-scale plant. Unfortunately, because 
of the costs and time involved in testing new configurations at pilot scale, usually 
new concepts/designs are sidelined in favor of known configurations. In such cases, 
CFD-based models can make substantial contributions. CFD models can be used to 
select an appropriate impeller, number of impellers, location of feed pipes, to satisfy 
the fluid dynamical ‘wish list’. If the fluid dynamical ‘wish list’ is evolved carefully, 
the CFD-based model will be useful in optimizing the polymerization reactor with
out explicitly developing the detailed reaction and particle size distribution model. 
It may be necessary to modify the ‘wish list’ based on the understanding gained via 
CFD models. In most cases, however, the whole process converges to an appropriate 
solution in a couple of iterations. 

After establishing the fluid dynamical requirement, the first step is to analyze 
the fluid dynamics of the existing industrial reactor. Details of the computational 
modeling of flow generated in a stirred reactor are discussed in Chapter 10. Without 
discussing those details, results reported by Ranade (1999a) are discussed here. A 
typical computational grid and predicted results for the flow generated by two pitched 
blade turbines are shown in Fig. 9.3. The simulated flow field was used to predict 
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FIGURE 9.3 Sample of simulation results for a two pitched blade turbine (legend not shown due to 
confidentiality constraints). (a) Grid; (b) vector plot; (c) contours of turbulent KE (white: highest value; 
black: lowest value). Reproduced in colour plate section between pages 210 and 211. 
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(a) 

(b) 

FIGURE 9.4 Two alternatives to enhance reactor performance. (a) Four pitched blade turbine, 
(b) two pitched blade turbine with cage. 

circulation time distributions, volume averaged velocity and other relevant flow char
acteristics. The average as well as maximum and minimum shear rates and energy 
dissipation rates were examined. Evaluation of these simulation results by combin
ing the available information/understanding of drop breakage and the performance 
of a working reactor in the plant, indicated that it may be beneficial to reduce the 
impeller rotational speed without reducing the volume-averaged velocity to ensure 
the required bulk flow. One way to achieve this is to use more impellers and/or use 
larger diameter impellers. Another alternative is to combine the two pitched blade 
impellers with a cage to facilitate dispersion at lower speeds. To narrow the circulation 
time distribution, a draft tube could be used, however, in view of the possibility of 
polymer deposition on a draft tube and the subsequent cleaning problems, the option 
of a draft tube was not considered further. Various alternative reactor configurations 
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FIGURE 9.5 Simulated flow field for two alternative reactor configurations (white: highest value; 
black: lowest value; legend not shown due to confidentiality constraints). (a) Four pitched blade turbine, 
(b) two pitched blade turbine with cage (left: vector plots; right: contours of turbulent kinetic energy.) 
Reproduced in colour plate section between pages 210 and 211. 

were evolved and screened heuristically to check whether they satisfied the ‘wish 
list’. Shortlisted configurations were then studied using the computational model. 
The two alternative reactor configurations are shown in Fig. 9.4. Flows generated 
by these configurations were then simulated. The simulated flow field indicated that 
the volume-averaged velocity within the reactor is adequate (see Fig. 9.5 for sample 
results). The four-impeller configuration was found to be more effective in reducing 
the heterogeneity within the vessel. The pitched blade impellers, however, generate 
strong velocity gradients just below the impellers, which may widen the resulting 
PSD. The shape of the blade was, therefore, modified to generate as uniform a veloc
ity as possible across the blade length. To achieve this, a simple phenomenological 
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model which approximately relates the axial flow generated by the blade with blade 
angle and blade width was used: 

Flow ∝ (BW r�r sin θ)  (9.1) 

This proportionality was used to determine suitable blade width (BW ) and blade angle 
(θ ) profiles along its length. The flow generated by these hydrofoil impellers was 
then simulated. Critical evaluation and comparison of the flow generated by hydrofoil 
impellers with that generated by PTD indicated that with four hydrofoil impellers, the 
polymerization reactor may be operated at an impeller speed which gives minimum 
variation in circulation time and much less heterogeneous distribution of turbulent 
energy dissipation rates, without affecting the bulk flow within the vessel. Plant trials 
with the new hydrofoil impellers resulted in 15–20% increase in the yield of usable 
polymer beads (Ranade, 1999a). Thus, in this case, even without combining the 
PSD model and CFD framework, it was possible to enhance reactor performance by 
judicious application of computational flow modeling. In many practical industrial 
reactor engineering problems, such an approach may have to be adopted. 

9.3. EXAMPLE 2 – OXY  REACTOR FOR EDC 

Ethylene dichloride (EDC) is used to manufacture vinyl chloride monomer (VCM), 
which is one of the largest commodity chemicals produced in the world. EDC may 
be produced by the direct chlorination of ethylene or oxychlorination of ethylene in 
the presence of oxygen and hydrogen chloride. Pyrolysis of EDC produces VCM 
and an equal amount of hydrogen chloride as a co-product. This hydrogen chloride 
produced in the pyrolysis reactor is utilized by the oxychlorination process as one 
of the reactants. Therefore, the component processes of direct chlorination, EDC 
pyrolysis and oxychlorination are combined to develop a balanced process for the 
production of VCM with no net consumption or production of hydrogen chloride: 

1 Catalyst
C2H4 + 2 HCl + 2 O2 −−−−→ C2H4Cl2 + H2O (9.2) 

The development of oxychlorination technology in the late 1950s encouraged new 
growth in the vinyl chloride industry. Here, we will be considering an oxychlorination 
(OXY) reactor to illustrate the application of computational flow modeling to reactor 
engineering. 

In the oxychlorination process ethylene reacts with dry hydrogen chloride and 
oxygen to produce EDC and water. Though commercial processes for oxychlorina
tion differ somewhat, the reaction, in general, is carried out in the vapor phase in 
either a fixed bed or a fluidized bed reactor. The reaction is carried out at a temper
ature of about 200◦ C and at a pressure of about 500 kPa (Ullmann, 1986). At these 
operating conditions, the reactants are in gaseous form. Air, oxygen-enriched air or 
pure oxygen is used to supply the oxygen necessary for the reaction. Oxychlorination 
catalysts contain copper (II) chloride as the main active ingredient along with numer
ous additives. The catalyst used in the reaction is solid at the operating conditions. 
It is a highly exothermic reaction and, therefore, an efficient means of heat removal 
is essential for temperature control. Higher reactor temperatures result in increased 
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by-product formation and catalyst deactivation. Most modern, large-capacity EDC 
plants therefore use fluidized bed reactors to carry out this process (Ullmann, 1986). 

In fluidized bed reactors the gaseous reactants are introduced below the bed 
of solid catalyst particles. The upward flowing gas fluidizes the solid catalyst par
ticles (under fluidized conditions the gravity force acting on the solid particles is 
compensated by the drag force exerted by the gas flow and particles behave like a 
fluid). The high mobility of the solids ensures excellent heat transfer characteristics, 
which makes fluidized bed reactors an appropriate choice for highly exothermic gas– 
solid reactions, especially for large-capacity plants (Kunii and Levenspiel, 1991). A 
schematic of a fluidized bed OXY reactor is shown in Fig. 9.6. Manufacturing compa
nies have developed different versions of fluidized bed reactor technology, and despite 
its widespread use in practice, the technology of fluidized bed OXY reactors is still 
very complicated and details are closely guarded. The complexity of the technology 
originates in the extremely complex fluid dynamics of these reactors. Depending on 
particle characteristics (size, shape, density, restitution coefficient, etc.), geometry 
of the equipment (diameter, height, gas distributor, etc.) and operating conditions 
(gas and solid flow rates, pressure, temperature), fluidized bed reactors may exhibit 
different regimes of gas–solid flows. Small changes in reactor configuration or any 
of the operating conditions may change the underlying fluid dynamics and, therefore, 
may change the performance significantly. 
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FIGURE 9.6 Schematic diagram of OXY reactor (from Ranade, 1999b). 
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Major reaction engineering issues in fluidized bed reactors are discussed in 
several excellent textbooks (see, for example, Kunii and Levenspiel, 1991). The 
conventional reaction engineering models (discussed in these textbooks) along with 
the knowledge of reaction chemistry, kinetics and thermodynamics may allow the 
reactor engineer to establish a relationship between reactor volume (amount of cat
alyst), feed flow rates and yield and selectivity obtainable under specific operating 
conditions. Several issues related to catalyst (activity, high temperature stability, age
ing, etc.) need to be known. Of course, even at this stage, some assumptions about 
the underlying flow processes need to be invoked to estimate rates of backmixing, 
mass and heat transfer processes. Computational fluid dynamic models can help the 
reactor engineer to obtain the required information about the fluid dynamics. It is 
also possible to couple simulations of reactions within the CFD framework (see, for 
example, Samuelsberg, 1994). Details of the modeling of fluidized bed reactors are 
discussed in Chapter 12. In this section, use of a computational flow model to enhance 
the performance (capacity) of an existing industrial OXY reactor is discussed. 

9.3.1. Capacity Enhancement of an Existing OXY Reactor 

In order to explore the possibility of enhancing the capacity of an existing OXY reactor, 
several issues need to be carefully examined. Due to the sensitivity of fluidized bed 
reactors to operating flow rates, the strategy of forcing more feed through the reactor 
to enhance the capacity has a rather restricted applicability. The increased feed rate 
may cause such problems as increased catalyst carry-over etc. The other alternative 
to enhance capacity is to use oxygen-enriched air or pure oxygen as the oxidation 
medium instead of ordinary air. This will allow a higher feed rate of reactants without 
increasing the total gas flow rate through the reactor. Processes operated with oxygen-
enriched air or pure oxygen may also lead to significant reductions in gas treatment 
problems. Before converting the existing process/reactor operating with air, either 
to an oxygen-enriched or pure oxygen process/reactor, it is essential to ensure that 
the existing reactor hardware is able to handle such a change. It must be ensured 
that the local concentrations of oxygen and flammable compounds (such as ethylene) 
are within safe limits. Considering the extreme corrosiveness of the system, likely 
scenarios such as malfunctioning of the gas distributor, and the effect on reactor 
performance and safety of operations need to be carefully evaluated. Computational 
flow models can be used to achieve this. 

In an industrial OXY reactor, air is introduced in the bottom conical portion of 
the reactor (below the grid). The air stream is mixed with other reactants (ethylene 
and HCl) in specially designed mixing elements attached to the grid to ensure fast 
and adequate mixing. Various proprietary and elaborate designs are used to ensure 
proper mixing of ethylene- and oxygen-containing streams and to restrict the volume 
of fluid containing a flammable mixture. Without disclosing any proprietary informa
tion, one of the simplest and effective mixing elements, a so-called ‘mixing cup’ is 
schematically shown in Fig. 9.7. This mixing element is designed in such a way that 
the composition of mixture exiting these cups is outside the flammability envelope. 
Air enters mixing elements attached to the grid through the bottom orifice. Ethylene 
and HCl streams are supplied to each element via a suitable distributor. The grid of the 
OXY reactor may contain several mixing elements. The reactor engineer has to ensure 
that air is fed to these various mixing elements uniformly. Non-uniform distribution 
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FIGURE 9.7 Schematic of mixing cup (from Ranade, 1999b). 

of air to these elements will lead to mal-distribution of oxygen in the fluidized bed. 
The layout of these elements on the grid will have an influence on gas distribution 
within the fluidized bed reactors. 

These issues indicate that it is crucial to obtain quantitative information about 
fluid dynamics and mixing in mixing elements as well as in the overall reactor in order 
to evaluate the possibility of capacity enhancement using oxygen-enriched air. One 
of the concerns is to examine the scenario of malfunctioning of a mixing element and 
to evaluate and compare the consequences for ordinary and enriched air feed. Prior 
experience and knowledge about the catalyst and kinetics of the reaction suggested 
that catalyst and process conditions were adequate to convert additional feed, pro
vided the reactor is operated in the same flow regime. Due to this fact and the limited 
time available, it was decided that it is sufficient to develop a computational model 
to simulate gas flow and mixing within the industrial fluidized bed reactor without 
considering any reactions. This decision facilitated rapid development and applica
tion of the computational model. Possible consequences must, however, be kept in 
mind when interpreting and applying the results obtained from the computational 
flow model. When developing a computational flow model for OXY reactors, several 
demands imposed by the set objectives should be kept in mind. It is necessary to con
sider the overall configuration of OXY reactor to evaluate possible mal-distributions. 
The construction of an industrial OXY reactor is extremely complex. It is normally 
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fitted with internal cooling coils to remove and recover the heat of reactions. The 
presence of internal cooling coils may also lead to mal-distribution. The bottom coni
cal portion, grid containing mixing elements, feed distributors, internal supports, etc. 
makes the task of modeling the geometry of an industrial reactor quite complex. To 
restrict the computational demands, an appropriate modeling methodology needs to 
be evolved. Here we discuss the methodology used by Ranade (1999b) to simulate 
flow in a complex industrial OXY reactor by developing different modeling layers 
and some of his results. The methodology will be useful for identifying and enhancing 
the capacity limits of existing reactor hardware. 

9.3.2. Methodology to Simulate Flow in an OXY Reactor 

Construction of a large-scale industrial OXY reactor is extremely complex. A wide 
range of length scales, ranging from a few meters (reactor diameter and length) to 
a few millimeters (orifice of mixing element), appears to be important. There is a 
corresponding two to three orders of magnitude difference between gas velocities in 
the various elements of an OXY reactor. Resolving these widely different length and 
velocity scales (typically in the range, 0.01 to 4 m and 0.2 to 100 m s−1) simultaneously 
may stretch the limits of computational resources. It is, therefore, necessary to evolve 
a suitable modeling strategy. It must be emphasized that at every stage, the reactor 
engineer must be aware of the underlying assumptions (explicit and implicit) and 
their consequences, when interpreting and using the results. 

The overall problem of modeling the fluid dynamics of an industrial OXY reactor 
was first divided into several small components (mixing element, bottom conical 
portion of the reactor, portion above the grid). Each of these components was studied 
using a separate model. The understanding gained through these studies was then 
combined to construct the model for the whole reactor (the methodology is shown 
pictographically in Fig. 9.8). From the discussion of Section 9.3.1, it is clear that it is 
essential to resolve all the fine-scale flow characteristics of the mixing element. It may 
not be necessary (or possible) to resolve such fine scales when simulating flow in the 
bottom portion or upper portion of the OXY reactor. Therefore, in the present work, a 
three-layer modeling strategy was used. A computational model was first developed 
to understand the fluid dynamics of the mixing elements. Apart from the mixing, it 
was also used to characterize the pressure drop across the mixing elements under 
different operating conditions. In the second layer, gas flow in the bottom portion of 
the reactor was modeled to examine possible mal-distribution of feed air. Flow in the 
top portion above the grid was modeled to examine the influence of layout of mixing 
elements on the grid. In the third layer, gas flow in the complete reactor (excluding 
the internal cyclones) was simulated. The grid plate supporting the fluidized bed was 
modeled as a porous plate with pressure drop characteristics obtained from results of 
the first modeling layer. An attempt was made to evaluate and synthesize information 
obtained from all three modeling layers, validate these whenever possible (either 
directly or indirectly) and then use the information to evaluate various scenarios. 

Suitable computational models for each of the layers discussed above were devel
oped on the basis of available information and a time scale analysis of flow in OXY 
reactors (see Ranade, 1999b for more details). Because of the magnitude of pressure 
drop across the grid, it was found necessary to employ compressible flow equations. 
An ideal gas assumption was used to calculate the density of gas at any point (as a 
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FIGURE 9.8 Modeling methodology (from Ranade, 1999b). 

function of local pressure, temperature and effective molecular weight of the gas). 
Under normal operating conditions, the flow was found to be turbulent. Turbulent 
stresses were modeled using a suitable two-equation turbulence model (see Chap
ter 3). In order to capture the influence of the shape of the mixing cup, it was modeled 
using a body-fitted grid. Suitable boundary conditions were developed. The bottom 
part of the OXY reactor containing the bottom conical portion, the grid and the top 
portion up to the cooling coils was modeled using body fitted grids. Air feed was 
modeled by prescribing appropriate mass and momentum sources to the cells located 
just below the air feed pipe. The open area of the grid plate was modeled as a porous 
media. Appropriate sources of ethylene and HCl were specified at grid porous cells 
to simulate feed pipes. The characteristic resistance of these porous media was pre
scribed from results obtained for a single mixing element. The coil bundle inside the 
reactor was modeled as porous media and the top surface of the solution domain was 
modeled as a constant pressure surface. Six species namely, oxygen, nitrogen, inert, 
water, ethylene and HCl were considered for these simulations. The computational 
model was mapped on to a commercial CFD code, FLUENT (Fluent Inc., USA) with 
the help of user-defined subroutines. 

9.3.3. Fluid Dynamics of OXY Reactor 

(a) Mixing element: Flow in a mixing element (cup) is governed mainly by the 
pressure drop across the grid plate. Pressure outside a mixing cup is higher than that 
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prevailing over the annular open space of the cup. This pressure difference causes 
airflow from the surrounding space into the cup through the bottom orifice. This high 
velocity air jet impinges on the jet of ethylene and HCl mixture, generating intense 
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turbulence and leading to complete mixing of the two streams, which escape from 
the annular opening of the cup. 

Simulations were first carried out to examine the relationship between pressure 
drop across the grid and the resulting airflow through the cup. For all these simulations, 
the flow rates of ethylene and HCl were set to pre-determined values corresponding 
to reactor loading. The pressure drop across the cup was then adjusted to get the 
right amount of airflow through the cup. These simulations were carried out for three 
reactor loadings. After verifying the model predictions, by comparing these with 
plant data (see Fig. 9.9), the computational model was used to gain an insight into the 
fluid dynamics of the mixing elements. Predicted contours of stream function in the 
mixing cup are shown in Fig. 9.10a. It can be seen that the two impinging jets (air jet 
from the bottom orifice and mixture of ethylene and HCl from the pipe) generate a 
complex re-circulating flow within the mixing cup. The incoming, high velocity jet 
of air through the bottom orifice causes formation of two re-circulating loops near the 
walls of the mixing cup. There is relatively little exchange between these recirculating 
loops and the high velocity upward flow. Predicted contours of oxygen mass fraction 
and ethylene mass fraction within the mixing cup are shown in Fig. 9.10b. 

The stagnation point formed by the two impinging jets is located near the end of 
ethylene and HCl feed pipe. Particle streak lines calculated based on the predicted flow 
results (not shown in the figure) clearly indicate the location of the stagnation point, 
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FIGURE 9.9 Comparison of predicted pressure drop with plant data (from Ranade, 1999b). 
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FIGURE 9.10 Flow and mixing in the mixing cup (from Ranade, 1999b). (a) Contours of stream 
function. (b) Left side: contours of oxygen mass fraction; right side: contours of ethylene mass fraction. 
(Legend not shown due to confidentiality constraints). Reproduced in colour plate section between pages 
210 and 211. 

which of course depends on the relative flow rates of air and the mixture of ethylene and 
HCl. It can be seen that (Fig. 9.10) the fluid escaping through the annular open space 
travels almost vertically upward. The maximum turbulent kinetic energy is located 
near the bottom orifice. The region of highest turbulent viscosity (and, therefore, of 
highest mixing rates) is, however, somewhat away from the bottom orifice (near the top 
of the two recirculating loops at the bottom of the mixing cup). The maximum value 
of turbulent viscosity is almost 5000 times the value of molecular viscosity. These 
detailed flow and composition results were analyzed to identify regions containing 
mixtures within the flammability envelope and variations with design and operating 
parameters. The possible accumulation of ethylene and HCl in the re-circulation loops 
near the bottom of the cup was also examined quantitatively. 

The validated model for the mixing cup was then used to examine the possibilities 
of operation at higher flow rates and with higher oxygen concentrations. At higher 
oxygen concentrations, the flow rate of the ethylene stream becomes higher than that 
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of the air stream and the stagnation point moves downwards. Two important design 
concerns (the possibility of an enlarged bottom orifice due to corrosion, and the 
possibility of a non-symmetric distributor pipe in the mixing cup), were examined 
using the computational model with both ordinary and oxygen-enriched air. The 
influence of an asymmetric feed pipe for the ethylene/HCl stream on flow and mixing 
within the mixing cup was also quantitatively examined. These results were useful 
in understanding the fluid dynamics and the limits of the existing configuration of 
mixing element and distributor for the ethylene/HCl stream. 

(b) OXY reactor: When simulating overall flow in the OXY reactor, it is computa
tionally intractable to resolve scales of the order of the bottom orifice of the mixing 
cup. Therefore, the resistance offered by such small openings and associated abrupt 
direction changes within the mixing cup were represented by a sub-model (based on 
the concepts of flow through porous media). Simulation results of throughput versus 
pressure drop across the mixing element were used to adjust the inertial resistance 
coefficient of the porous media (assuming that the contribution of laminar resistance 
is negligible). The value of this inertial resistance coefficient naturally depends on 
the diameter of the bottom orifice of the mixing element (for a corroded bottom, the 
value will be lower) and other construction details. 

Overall flow simulations of the reactor were carried out to simulate normal oper
ation as well as operation with malfunctioning mixing elements. Typical predicted 
flow results are shown in Fig. 9.11 in the form of contour and iso-surface plots. The 
flow simulations give an insight into operation of the OXY reactor. Air fed to the 
reactor first flows in a downward direction. After impinging on the reactor bottom, 
air is distributed evenly in the bottom portion below the grid and enters the mixing 
elements. It mixes with ethylene and HCl and escapes from the annular openings 
(with a velocity of the order of 5 m s−1) of the mixing cup. It can be seen that the 
jets from the annular opening reach up to the ethylene and HCl stream distributor 
(see Fig. 9.11b). In order to examine the influence of reactor internals and the lay
out of mixing elements on gas flow above the grid plate, a volume above the grid 
plate was modeled separately. It must be noted that flow above the grid plate may 
be significantly influenced by the presence of solid particles. The model used in the 
present work can be extended to simulate gas–solid flows using recent advances in 
the understanding of the kinetic theory of granular flows. However, here, the scope 
was restricted to understanding the role of layout of mixing elements on the grid in 
distributing gas in the reactor. The high velocity jets emanating from the mixing ele
ments dominate the immediate region above the grid plate. Typical predicted results 
of simulations of gas flow above the grid plate using single-phase flow equations are 
shown in Fig. 9.12. These predicted results were then used to calculate particle tra
jectories to obtain useful information about particle impingement on reactor internals 
and possible implications for the erosion of internals. The model and results were 
used to examine alternative layouts of mixing cups on the grid plate to minimize 
mal-distribution and re-circulating regions above the grid plate. The results were also 
used to understand and to evaluate possible de-fluidization of catalyst particles near 
the wall region. 

The model of the overall reactor was used to examine various scenarios, such as 
a cup with enlarged bottom orifice or the total absence of a cup. This type of mal
functioning mixing element (enlarged orifice or absent mixing cup) offers a point of 
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FIGURE 9.11 Flow characteristics of oxyhydrochlorination reactor (from Ranade, 1999b). 
(a) Contours of axial velocity, (b) iso-surfaces axial velocity (0.75 m s−1), (c) contours of oxygen mass 
fraction (legend not shown due to confidentiality constraints). 

least resistance to the airflow. This leads to substantially higher velocity jets escaping 
the grid plate (with velocities up to 80 m s−1). Such high velocity jets may lead to 
significant mal-distribution and erosion within the OXY reactor. Such localized high 
velocity flow provides significantly more oxygen in that region, which may be of 
concern from safety and selectivity (reactor performance) point of views. The com
putational flow model presented here provided much more quantitative information 
about the gas flow in the OXY reactor. Not all the quantitative results can be discussed 
here for reasons of brevity and confidentiality. The results presented here may, how
ever, give an essence of what kind of analysis can be carried out using the detailed 
computational flow model to evaluate the influence of various operating parame
ters on flow, and therefore on reactor operation. The computational model allowed 
not only quantitative estimation of the limits of existing reactor hardware, it also 
allowed evaluation of alternative configurations (mixing element/layout) to improve 
these limits. Despite certain limitations (since reactions and some other aspects were 
not included in the model), the computational model was found to be quite helpful 
in engineering decision making to realize performance enhancement of an existing 
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FIGURE 9.12 Contour plot of axial velocity (volume above the grid) (from Ranade, 1999b) (legend 
not shown due to confidentiality constraints). Reproduced in colour plate section between pages 210 
and 211. 

OXY reactor. The results obtained and the flow model form a sound basis for further 
work on the modeling of gas–solid flows in fluidized reactors. It may be possible to 
include reactions in such a model to develop a comprehensive tool to enhance OXY 
reactor technology. The methodology can be used to enhance both existing and new 
reactor technologies. 

9.4. EXAMPLE 3: BUBBLE COLUMN REACTOR 

Bubble column reactors, in which sparged gas provides the necessary mixing, offer an 
attractive way to carry out gas–liquid processes. Because of their simple construction 
and operation, bubble columns are widely used in process industries. However, the 
simple construction also has the drawback of having fewer degrees of freedom avail
able to a reactor engineer to tailor performance. The performance of bubble columns 
is controlled by several physical and chemical phenomena with different spatial and 
temporal scales. Gas–liquid fluid dynamics is determined by local gas volume fraction 
(hold-up) but extends over the whole reactor. Gas–liquid mass transfer and chemical 
reactions depend on local concentrations and on local gas–liquid interfacial areas. 
Interfacial area depend on local gas hold-up and bubble size distribution. Bubble 
size distribution depends on a variety of parameters, including type and location of 
sparger, local and global mean and turbulence fields properties of liquid phase and so 



265 EXAMPLE 3: BUBBLE COLUMN REACTOR 

on. Although much progress has been made in gaining a better understanding of each 
of the phenomena mentioned, a comprehensive computational model, which is able 
to simulate all of the above interactions simultaneously, is still too difficult to develop 
and use for industrial applications. As mentioned in the case of the polymerization 
reactor, uncertainties in estimating the parameters of sub-models describing various 
phenomena make the task of developing a comprehensive model less justifiable. On 
the other hand, conventional reaction engineering models, which include detailed 
descriptions of reaction and mass transfer from bubbles, normally consider ideally 
mixed systems or one-dimensional models (see for example, Fleischer et al., 1995). 
Both the assumptions often do not hold true for bubble column reactors. Under these 
circumstances, it may be more efficient and may be necessary to use a multilayer or 
multiscale modeling strategy. Recently Bauer and Eigenberger (1999) proposed such 
a multiscale modeling strategy based on the fact that the influence of mass transfer 
and reaction on fluid dynamics can be represented by three variables: 

• interphase drag coefficient or interphase momentum exchange terms; 
• interfacial area; and 
• local gas flux due to mass transfer and reaction from gas bubbles. 

If the values of local mean bubble diameter and local gas flux are available, a fluid 
dynamic model can estimate the required influence of mass transfer and reactions on 
the fluid dynamics of bubble columns. Fortunately, for most reactions, conversion and 
selectivity do not depend on details of the inherently unsteady fluid dynamics of bub
ble column reactors. Despite the complex, unsteady fluid dynamics, conversion and 
selectivity attain sufficiently constant steady state values in most industrial operations 
of bubble column reactors. Accurate knowledge of fluid dynamics, which controls the 
local as well as global mixing, is however, essential to predict reactor performance 
with a sufficient degree of accuracy. Based on this, Bauer and Eigenberger (1999) 
proposed a multiscale approach, which is shown schematically in Fig. 9.13. 

Simplified hydrodynamics 
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Number density function 
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and bubble concentration 
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Bubble size and 
interfacial mass flux 
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Mass transfer and reaction models 

Detailed hydrodynamics 

FIGURE 9.13 Concept of multiscale modeling of bubble column reactors (from Bauer and 
Eigenberger, 1999). 
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FIGURE 9.14 Iterative process used in multiscale modeling (from Bauer and Eigenberger, 1999). 

In this approach, a simplified reactor model acts as a hub. Instead of invoking 
conventional simplifying assumptions to develop the model, this approach uses infor
mation obtained from detailed fluid dynamic models and detailed bubble–bubble 
interaction (population balance) models. Such a basic reactor model provides the 
local mean bubble diameter and the interfacial mass flux to the hydrodynamic model. 
The details of modeling approaches to simulate the fluid dynamics of bubble column 
reactors are discussed in Chapter 11. We restrict the scope here to discussing the 
overall approach. The whole reactor behavior is simulated by employing an iterative 
procedure over these different modeling layers as shown in Fig. 9.14. Some results 
obtained by Bauer and Eigenberger (1999) using this approach to simulate a pseudo-
first-order reaction in a two-dimensional bubble column are shown in Figs 9.15 to 
9.17. Four iterations were required to obtain the converged results. Gas sparged at 
the bottom disappears rapidly due to the reactive consumption and does not extend 
over the entire column. This changes the flow field of the liquid phase, and mixing 
significantly. The influence of changes in mixing in the reactor can be clearly seen 
from the mass fraction profiles within the reactor (Fig. 9.17). The approach can be 
extended to simulate more complex industrial bubble column reactors. 

Recently Ranade (2000) used a similar multiscale approach to simulate a complex 
industrial loop reactor. The objective of the project was to develop a comprehensive 
understanding of the fluid dynamics of the operating loop reactor and to develop 
appropriate scale-up guidelines based on such an understanding. The schematic of 
the industrial loop reactor considered is shown in Fig. 9.18 (in 2D). The reactor was 
designed to carry out a pre-polymerization (condensation polymerization) reaction. 
The low molecular weight products of the condensation reaction and solvent are 
vaporized in the heater section. These vapors lead to gas-lift action and generate the 
circulation within the loop reactor, which ensures the desired mixing in the reactor. 
Generally, the circulation rate is orders of magnitude greater than the net flow through 
the reactor. The vapors generated are removed from the top after separating from the 
liquid in the vapor separator. Vapor bubbles erupting at the gas–liquid interface throw 
some liquid droplets into the vapor space and a fraction of these liquid droplets may be 
carried over with the removed vapor. Such a carry-over of liquid often imposes limits 
on enhancing reactor capacity. One of the objectives of the project was, therefore, 
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(a) (b) 

FIGURE 9.15 Predicted streamlines of liquid flow (from Bauer and Eigenberger, 1999). (a) Neglecting 
mass transfer, (b) accounting for mass transfer. 

(a) (b) 

FIGURE 9.16 Predicted contours of gas hold-up (from Bauer and Eigenberger, 1999). (a) Neglecting 
mass transfer, (b) accounting for mass transfer. 
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FIGURE 9.17 Predicted concentration and bubble diameter profiles within the column (from Bauer 
and Eigenberger, 1999). 

to understand liquid carry-over in the loop reactor. An accurate understanding of the 
factors controlling the circulation rate and mixing within the reactor is essential for 
scaling up the reactor. 

From this brief description it is clear that the fluid dynamics of the loop reac
tor is intimately connected to the reaction. The reaction generates volatiles, which 
ultimately drive the circulation. However, it was found that it is possible, and may 
be more efficient, to decouple the reaction part from the flow. The overall problem 
was tackled by dividing it into several sub-problems. The methodology is shown in 
Fig. 9.19. In the first sub-problem, using the available empirical information about 
the operating plant, the fluid mechanics and mixing was approximated to develop 
a reactor model (plug flow for the loop and complete mixing for the vapor–liquid 
separator). The reactor model was calibrated and validated by comprehensive com
parisons of predicted results with plant data. Such a model was used to predict profiles 
of concentration, temperature and vapor generation. This information, combined with 
additional information about the flow regimes in the heater section, was supplied to 
the flow model. 

Computational fluid dynamics based flow models were then developed to sim
ulate flow and mixing in the loop reactor. Even here, instead of developing a single 
CFD model to simulate complex flows in the loop reactor (gas dispersed in liquid 
phase in the heater section and liquid dispersed in gas phase in the vapor space of the 
vapor–liquid separator), four separate flow models were developed. In the first, the 
bottom portion of the reactor, in which liquid is a continuous phase, was modeled 
using a Eulerian–Eulerian approach. Instead of actually simulating reactions in the 
CFD model, results obtained from the simplified reactor model were used to specify 
vapor generation rate along the heater. Initially some preliminary simulations were 
carried out for the whole reactor. However, it was noticed that the presence of the 
gas–liquid interface within the solution domain and inversion of the continuous phase, 
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FIGURE 9.18 Schematic of industrial loop reactor. 

presented severe challenges to numerical methods, leading to difficulties in obtaining 
converged results. The exact shape of the gas–liquid interface does not significantly 
affect the flow and mixing in the vapor–liquid separator. The shape of the gas–liquid 
interface was, therefore, assumed. A typical grid used for flow simulation is shown 
in Fig. 9.20. A sample of the simulated flow field in the bottom portion of the loop 
reactor is shown in Fig. 9.21. 

In the second part, flow in the vapor space of the separator, where the gas phase 
is a continuous phase, was modeled. An Eulerian–Lagrangian approach was used to 
simulate trajectories of the liquid droplets since the volume fraction of the dispersed 
liquid phase is quite small. The grid used for the vapor space is shown in Fig. 9.20. The 
simulated gas volume fraction distribution near the gas–liquid interface and corre
sponding gas flow in the vapor space are shown in Fig. 9.22. The gas volume fraction 
distribution and the gas velocity obtained from the model of the bottom portion of the 
loop reactor were used to specify boundary conditions for the vapor space model. In 
addition to the gas escaping from the gas–liquid interface, it is necessary to estimate 
the amount of liquid thrown into the vapor space by the vapor bubbles erupting at the 
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FIGURE 9.19 Methodology used for model loop reactor. 

gas–liquid interface. A separate volume of fluid (VOF) based model was developed to 
understand bubble eruption processes and to estimate the amount of liquid thrown into 
the vapor space. It was, however, found that the predicted results of amount of liquid 
thrown per bubble were significantly different than the available data. An expression 
for estimating the amount of liquid thrown per bubble based on a phenomenological 
model of Azbel (1981) was, therefore, used to couple the loop part with the vapor 
space part. In addition, a separate flow model to simulate details of mixing near the 
feed nozzle (interaction of feed flow with re-circulating flow) was developed. An 
attempt was made to validate various sub-components of the computational models 
using the available data. The models were then used to carry out various numerical 
experiments on computer. These results were used to construct detailed information 
about the loop reactor and to evolve appropriate scale-up guidelines. 
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FIGURE 9.20 Computational grid. 

9.5. EXAMPLE 4: FCC REGENERATOR 

Fluidized catalytic cracking (FCC), which converts heavy oil to value added low 
boiling point products is an important process in refineries around the world. During 
cracking reactions, catalyst is deactivated rapidly owing to coke deposition. In indus
trial FCC units, the deactivated catalyst is continuously regenerated by employing a 
regenerator connected to the cracking reactor. Besides regenerating the catalyst (by 
contacting it with air), the FCC regenerator also provides the heat required for the 
endothermic cracking reactions. 

A schematic diagram of a typical industrial FCC regenerator is shown in Fig. 9.23. 
The spent catalyst particles are circulated through the regenerator. The orientation, 
size and location of the spent catalyst distributor are important parameters controlling 
solids mixing. The regenerated catalyst is withdrawn from the outlet located at the 
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(a) (b) 

FIGURE 9.21 Typical predicted results for the loop reactor (excluding vapor space). (a) Vector plots 
(liquid phase), (b) contours of gas volume fraction (legend not shown due to confidentiality constraints). 
Reproduced in colour plate section between pages 210 and 211. 

bottom conical portion. Air is introduced in the regenerator through a distributor 
located just above the bottom conical part of the reactor. The regenerator is operated 
in a dense bed (or turbulent bed) regime (superficial gas velocity is much higher than 
the minimum fluidization velocity). The extent of regeneration of catalyst particles 
depends on effective contacting between supplied air and catalyst particles. Most of 
the supplied air passes through the regenerator in the form of large gas bubbles (voids). 
These voids interact with each other and may coalesce or break up within the dense 
bed. As these voids rise through the dense bed, a macroscopic circulation of catalyst 
particles is set-up within the dense bed. When these voids break up at the top surface 
of the dense bed, solid particles are thrown into the free board region (dilute bed). 
Reaction of coke on these solid particles with un-reacted oxygen in the dilute bed 
region may cause excessive temperature excursions (called after-burning, which has 
a detrimental effect on throughput as well as catalyst and equipment life). Some of 
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FIGURE 9.22 Typical predicted results for the loop reactor (top: vector plot and vapour space; bot
tom: contours of gas volume fraction) (legend not shown due to confidentiality constraints). Reproduced 
in colour plate section between pages 210 and 211. 

the main requirement in the reactor engineering of FCC regenerators are therefore, to 
limit the extent of after-burning and to ensure adequate regeneration of spent catalyst. 
Use of computational flow modeling within the framework of a multilayer modeling 
strategy to address these issues is discussed below. 

9.5.1. Modeling Approach 

Gas–solid flow and reactions occurring in an industrial FCC regenerator present severe 
challenges to flow modelers and reactor engineers. Several attempts have been made 
to model gas–solid flows based on an analogy with the kinetic theory of gases. A 
detailed review of these attempts is given in Chapter 12. It is sufficient to state here 
that none of the available models for simulating dense bubbling beds, were able to 
predict the continuous bubbling with corresponding satisfactory estimations of bub
ble volume fractions. Ranade (1996) reported that in many cases Eulerian–Eulerian 
computational models predicted eventual carry-over of all solids from the regenerator 
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FIGURE 9.23 Schematic diagram of typical industrial FCC regenerator. 

at high superficial gas velocities. Though there has been some progress in simulat
ing bubbling fluidized beds (see, for example, van Wachem et al., 1999), it may 
be necessary to use a multilayer modeling strategy to simulate industrial bubbling 
fluidized bed reactors. Ranade (1998) used a three-layer approach, which is shown 
schematically in Fig. 9.24. 
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FIGURE 9.24 Multilayer modeling of FCC regenerator. 

A regenerator performance model based on a mixing cell framework is used as a 
first layer. The model is used to gain an understanding of the overall behavior of the 
FCC regenerator. The sensitivity of the regenerator performance to a variety of operat
ing conditions was studied. The model was used to fit some of the kinetic constants by 
comparing model predictions with plant data. A second modeling layer comprised a 
bubble–bubble interaction model to track bubble trajectories. This Lagrangian model 
was used to understand the coalescence of bubbles and to estimate the bubble size 
distribution within the dense bed. A third, CFD-based modeling layer was developed 
to simulate complex macroscopic flow and reactions in a FCC regenerator. The flow 
of information between these layers is not unidirectional. There has to be significant 
interaction and exchange of information during the development and application of 
these three modeling layers to obtain as much information about the FCC regenerator 
as possible. The application of these three modeling layers to develop a comprehensive 
understanding of a FCC regenerator is described below. 
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9.5.2. Regenerator Performance Model 

In view of the possibility of limiting mass transfer from the voids phase, a heteroge
neous model (comprising two phases: emulsion and voids (or bubbles)) was used to 
simulate the dense bed. The homogeneous model was used for the dilute bed region. 
The generalized mixing cell framework used in the model is shown in Fig. 9.25. 
It can be seen that the framework allows the flexibility of independent selection of 
appropriate mixing in the dense phase, voids phase and dilute bed. Mass balances 
were written for bubble (void), emulsion and dilute bed regions of the regenerator 
(Utikar and Ranade, 1997). Model equations were incorporated into a user-friendly 
code called MoBB (Model for Bubbling Beds), to simulate regenerator performance. 

Preliminary numerical experiments were carried out to select an appropriate 
value of time step. To illustrate the typical results obtained using MoBB, a sample 
of results is shown in Fig. 9.26. It was observed that the regenerator attained steady 
state in approximately 30 min. The coke on regenerated catalyst reduced from 1% 
initially to about 0.35% at steady state. The emulsion temperature increased from 
723 to 932 K. The oxygen mole fraction at the outlet was about 0.003 and that of 
carbon dioxide was 0.146. In addition to the prediction of these outlet parameters, the 
simulation model also provided information about the variation of concentrations and 
temperatures within the regenerator. The influence of air flow rate and coke on spent 
catalyst (CSC) on oxygen breakthrough from the dense bed is shown in Fig. 9.26. It 
is interesting to note that exit oxygen concentration (from the dense bed) does not 
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FIGURE 9.25 Mixing cell model (from Ranade, 1998). 
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FIGURE 9.26 Typical results obtained from mixing cell model (from Ranade, 1998). 

increase with increase in gas flow rate, if CSC is equal or greater than 1% (within 
the range studied here). As expected, as airflow rate increases, emulsion temperature 
increases and the amount of coke on the regenerated catalyst decreases. The model 
parameters (kinetic and transport parameters) were calibrated by comparing model 
predictions with available plant data. 

9.5.3. Bubble–Bubble Interaction Model 

In a gas–solid fluidized bed, where gas velocity is equal to the minimum fluidization 
velocity, the solid particles are suspended and this suspension behaves as a fluid. 
When gas flows at a higher rate than required for minimum fluidization, it results in 
the formation of voids or bubbles (regions devoid of solids). Most of the gas supplied 
in excess of the minimum fluidization velocity flows through the bed in the form 
of bubbles. The gas velocity, orifice diameter and minimum fluidization velocity 
control bubble formation at the gas distributor. For a specific reactor configuration 
and gas–solid system, the latter two variables are well defined. If the gas distributor 
consists of multiple orifices, it will be necessary to estimate the non-uniform gas 
flow through these multiple orifices. The gas flow through each orifice is controlled 
by the pressure drop across the distributor (difference between pressure below the 
distributor orifice and the static head above that orifice). The static head at any point 
above the distributor plate is in turn controlled by the bubble voidage distribution 
within the whole dense bed. These phenomena were modeled in a second layer to 
estimate the bubble size distribution and effective bubble size within the dense bed of a 
regenerator. 
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A bubble–bubble interaction model based on potential flow over bluff bodies 
was developed and incorporated in a code called, BuDY (for Bubble DYnamics). 
The model is based on an assumption that the instantaneous velocity of an individual 
bubble in a fluidized bed can be obtained by adding to its rise velocity in isolation, 
the velocity which the emulsion phase would have had at the nose of the bubble, 
if the bubble was absent. The details of model development, model equations and 
solution procedures are described in Ranade (1997a). Appropriate representation of 
bubble formation, coalescence and exit of bubbles from the dense bed were included 
in the model. With the knowledge of initial bubble positions and bubble size, subse
quent bubble positions can be tracked to predict instantaneous velocities and bubble 
positions within the dense bed. 

The bubble-tracking model is capable of giving the number of bubbles present in 
the dense bed, their positions, diameter and velocity at any instant of time. Using these 
data, time variation of average bubble holdup as a function of time can be found. It can 
be used to examine the radial distribution of bubbles at various desired axial locations. 
A separate program was developed to calculate time-averaged voidage distribution (in 
a Eulerian framework) within the dense bed from the computed bubble trajectories. 
The model was also used to understand the role of bubble–bubble interactions and 
coalescence on the bubble dynamics of dense beds. Several numerical experiments 
were carried out to understand the influence of bubble diameter, orifice spacing etc. on 
bubble dynamics. The predicted bubble dynamics from the model reproduces the main 
dynamical characteristics observed in experiments. This model was used to simulate 
bubble distribution for the industrial gas distributor comprising 648 orifices. It was 
found that the number of bubbles decreased drastically as bubbles rise through the 
dense bed. The total number of bubbles and bubble volume fraction within the dense 
bed fluctuated quite significantly (the predicted fluctuations were found to be chaotic, 
Ranade, 1997a). The attractor reconstructed from the predicted voidage fluctuations 
showed remarkable similarity with that reconstructed from the experimental data. 
The model was used to obtain an effective bubble size within the dense bed of a FCC 
regenerator. 

9.5.4. CFD Model 

In order to understand the macroscopic circulation within the dense bed, it is necessary 
to develop a CFD-based model. Such a model will also be necessary to simulate radial 
non-uniformity in oxygen and temperature distributions. The validated CFD model 
can be used to evaluate various configurations of air distributor and spent catalyst 
distributor. As mentioned earlier, it was not possible to use the kinetic theory of 
granular flows to simulate flow and reactions in the dense bed of a regenerator. Ranade 
(1998) alternatively used the analogy of bubbles in fluidized beds with bubbles in 
viscous liquids to simulate macroscopic flow patterns in a bubbling FCC regenerator. 
The flow in the dense bed of the FCC regenerator was modeled as a two-phase 
flow comprising an emulsion phase (representing gas–solid mixture with minimum 
fluidization voidage) and a void phase (representing almost solids-free gas regions 
within the bed). The two-fluid model of Ranade (1997b) was used for this purpose. The 
available design and operating information, published correlations and results of the 
first two modeling layers were used to estimate various relevant scales such as bubble 
diameter, entrainment, catalyst circulation rate and so on. A wide range of space 
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and velocity scales co-exists in a FCC regenerator. The diameter of the regenerator 
(∼ 5 m) is larger by a few orders of magnitude than the holes of a gas distributor or 
cyclone standpipes (a few centimeters). It is therefore impractical to resolve all these 
scales in a single computational model. Appropriate sub-models representing the 
small-scale internals were developed to make the problem computationally tractable. 
The results obtained using other modeling layers (kinetic and transport parameters, 
effective bubble size within the dense bed and so on) were used as input parameters 
to the CFD model. 

The detailed model equations were described by Ranade (1998). In applying 
two-fluid theory to the bubbling dense bed of a regenerator, it must be noted that 
the continuous phase density needs to be calculated from the voidage in the dense 
phase (emulsion phase) and from the density of the catalyst particles. The molecular 
viscosity of the emulsion phase was specified to be 1 Pa.s based on empirical evidence. 
The average bubble diameter was specified based on the results obtained using BuDY. 
The reactions occurring in the dense bed of the FCC regenerator were simulated using 
species conservation equations (and enthalpy) for the emulsion and bubble phase. 
Only the principal coke burning reaction (to form carbon dioxide) was considered. 
Terms representing heat generated due to the combustion of coke and heat transfer 
from bubble to emulsion phase were adequately modeled. As mentioned earlier, all 
parameters appearing in the above set of equations were estimated using available data 
and the results of the first two modeling layers. The governing equations described 
above were solved using a commercial CFD code, FLUENT (Fluent Inc., USA). 
Details of the mapping of these model equations onto FLUENT and solution strategies 
are discussed in Ranade (1998). 

The model was used to simulate the macroscopic flow and reactions occurring 
in a FCC regenerator. A typical grid and predicted velocity field for emulsion phase 
are shown in Fig. 9.27a and 9.27b, respectively. It can be seen that, except in the 
region near the regenerator walls, the emulsion phase flows in an upward direction. 
The predicted velocities in the horizontal planes are much smaller than those in the 
vertical plane. Fig. 9.27c shows void phase distribution at a typical vertical plane in 
the dense bed. These flow results were used to simulate coke burning in the dense bed 
of the regenerator. As expected, higher values of oxygen mass fractions are predicted 
near the air distributor. The oxygen mass fraction in the void phase quickly drops down 
as one goes away from the distributor. The knowledge of oxygen breakthrough from 
the top surface (Fig. 9.28) of the dense bed is important for estimating the extent of 
after-burning and possible locations of hotspots. The results presented here constitute 
only a small fraction of the information obtained from the model. The simulation 
results were analyzed in detail to extract useful information about the behavior of the 
FCC regenerator. The predicted results were compared with proprietary, plant and 
experimental data. The predicted extent of solids mixing was found to be less than 
that indicated by the data. With appropriate tuning of model parameters, however, 
adequate agreement was obtained between predicted results and available data. The 
tuned CFD-based model was then used to aid understanding of the macroscopic flow 
and its influence on reactions occurring in the dense bed of a FCC regenerator. Some 
results obtained using the model are discussed below. 

It is important to develop the capability to simulate the influence of changes in the 
air distributor on regenerator performance. During the operating life of a regenerator, 
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(c)(b)(a) 

FIGURE 9.27 Computational grid and typical predicted results for the FCC regenerator (from 
Ranade, 1998). (a) Grid, (b) vector plot, (c) contours of gas volume fraction. (Light: high values; dark: low 
values; legend not shown due to confidentiality constraints.) 

FIGURE 9.28 Oxygen breakthrough from the top surface of the dense bed (contours of oxygen 
mass fraction) (from Ranade, 1998). (Light: high values; dark: low values; legend not shown due to 
confidentiality constraints.) 
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the distribution of sparger orifices may change several times owing to either mechan
ical or operational considerations. The bubble–bubble interaction model (BuDY) was 
used to simulate the influence of distributor design on bubble formation, coalescence 
and effective bubble sizes. The CFD-based model was used to examine the influence 
of distributor design on time-averaged void distribution and macroscopic circulation 
within the dense bed. The results were useful in understanding the sensitivity of the 
generated flow to changes in distributor configuration. Examination of the simula
tion results for the emulsion phase indicates the possibility of short-circuiting spent 
catalyst particles. To avoid this, several techniques are used in practice, one of the 
simplest being to install a ski jump type platform near the entry of the spent cata
lyst. Such a ski jump throws the spent catalyst particles inside the dense bed (instead 
of releasing them at the regenerator wall), such that the particles enter the upward 
flowing region of the dense bed. The CFD model was used to evaluate various con
figurations of spent catalyst entry. Although these results are not included here, it is 
sufficient to state that the CFD model, along with the other two models (MoBB and 
BuDY), was used successfully to characterize quantitatively the performance of the 
industrial FCC regenerator. Results obtained using these models proved quite useful 
when making engineering decisions regarding gas distributor and spent catalyst entry 
configurations. 

9.6. SUMMARY 

The examples discussed in this chapter illustrate that the multilayer approach is not 
only useful but may also be necessary to develop useful and tractable simulation 
models of industrial reactors. Computational flow (CFD) models play a crucial role 
in linking actual reactor hardware to reactor performance. Their ability to extrapolate 
cold flow results to high temperature and pressure is especially valuable. Judicious 
use of these computational flow models (1) to understand basic phenomena and (2) for 
simulation of complex reactors with the help of other modeling layers, will lead to 
better reactor engineering practices. Details of developing computational flow models 
for reactors of different types are discussed in the following chapters. The approach 
illustrated in this chapter may then be adapted to understand the behavior of industrial 
reactors, in order to (1) enhance the performance of existing reactor hardware or 
(2) evolve better reactor technologies. 
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STIRRED REACTORS


Stirred reactors, in which one or more impellers are used to generate flow and mixing 
within the reactor, are among the most widely used reactors in chemical and allied 
industries. Stirred reactors offer unmatched flexibility and control over transport pro
cesses occurring within the reactor. A skilled reactor engineer can tailor the fluid 
dynamics and, therefore, performance of a stirred reactor by appropriate adjustments 
to reactor hardware and operating parameters. Parameters such as reactor shape, 
aspect ratio, number, type, location and size of impellers and degree of baffling pro
vide effective handles to control the performance of stirred reactors. However, the 
availability of such a large number of parameters also makes the job of selecting 
the most suitable configuration for the stirred reactor quite difficult. It is essential to 
first translate the ‘wish list’ of reactor performance into a ‘wish list’ of desired fluid 
dynamics of stirred reactors. Once the desired flow characteristics are identified, it 
is then necessary to use or to develop appropriate tools to relate reactor hardware 
and operating procedures to resulting flow within the reactor. In this chapter, appli
cations of computational flow modeling tools to simulate flow within stirred reactors 
are discussed in detail. Emphasis is on providing adequate information to the readers 
to enable them to initiate simulations of industrial stirred reactors. Before that, we 
discuss some reactor engineering issues related to stirred reactors. 

285 
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10.1. ENGINEERING OF STIRRED REACTORS 

Several types of stirred reactor are used in practice and several ways of classifying 
these exist. Some of the widely used types of stirred reactors are shown in Fig. 10.1. 
The stirred reactor shown in Fig. 10.1(a) is a typical multiphase reactor used for carry
ing out exothermic reactions such as hydrogenations and oxidations. Stirred reactors 
provide excellent heat and mass transfer characteristics and can handle multiphase 
systems effectively. Most industrial reactors of this type use more than one impeller 
and have one or more set of cooling coils. Alternatively, the contents of the reactor are 
circulated through an external heat exchanger if the geometrical constraints restrict 
the provision of heat transfer area within the reactor. When per pass conversion of gas 
is low, gas is recirculated using an external compressor. To avoid the need for exter
nal circulation of unreacted gas, gas-inducing type impellers may be used (shown in 
Fig. 10.1b). It typically comprises a hollow shaft impeller with a stator arrangement 
to enhance gas induction rate. Numerous variations of these typical configurations 
are possible and are used in practice. For highly viscous systems, helical ribbon or 
screw impellers are used either with or without a draft tube (Fig. 10.1c). As mentioned 
earlier, the reactor engineer has to select the best possible hardware configuration to 
suit the process under consideration. Some of the industrial processes carried out in 
stirred reactors are listed in Table 10.1. These processes are classified on the basis of 
phases handled in the stirred reactor. 

Engineering of stirred reactors (see Fig. 1.10 for a general methodology of reac
tor engineering) begins with the analysis of process requirements and evolving a 
preliminary configuration of the reactor. This step is based on laboratory study and 
on reactor models based on idealized fluid dynamics and mixing. In most industrial 
cases, this step itself may involve several iterations, especially for multiphase sys
tems. It is often necessary to carry out reactor sizing for different values of relevant 
transport rates (heat transfer, mass transfer) or operating parameters (rotational speed, 
solid loading and so on). The process of evolving preliminary configuration helps to 
firm up performance targets for the reactor. Transformation of a preliminary reactor 
configuration to an industrial reactor proceeds through several steps, some of which 
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FIGURE 10.1 Types of stirred tank reactor. (a) Multiphase stirred reactor. 1: impeller, 2: baffles, 3: 
cooling coils, 4: gas sparger. (b) Stirred reactor with gas-inducing impeller (dead-end type). (c) Stirred 
reactor with helical ribbon impeller (used with or without a draft tube). 
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TABLE 10.1	 Some Industrial Applications of Stirred Reactors 

Phases Applications 
handled 

Liquid	 Alkylations, Sulfonations, Esterifications, Bulk and solution polymerizations 
(styrene, acrilonitrile, ethylene, propylene) and so on 

Gas–liquid	 Oxidations (ethylene, paraffins), Chlorinations (acetic acid, dodecane), 
Carbonylations (methanol, propanol), Esterifications, manufacture of sulfuric 
acid, adipic acid, oxamide and so on 

Gas–liquid–	 Hydrogenations (olefins, edible oils, several chloro and nitro aromatics), 
solid	 Oxidations (p-xylene), Fermentations (alcohol, single cell proteins, 

antibiotics), Waste water treatment and so on 
Liquid–liquid	 Suspension and emulsion polymerizations (styrene, vinyl-chloride), 

Oximations, Extractions 
Liquid–solid	 Calcium hydroxide (from calcium oxide), Regeneration of ion-exchange 

resins, Anaerobic fermentations 
Gas–liquid–	 Bi-phasic hydroformylations, Carbonylations 
liquid 
Gas–solid	 Stirred fluidized beds (poly-ethylene, poly-propylene) 

are listed below. Computational flow modeling can make substantial contributions to 
each of these steps. 

(1)	 Reaction engineering models for simulating reactor performance: Reaction 
engineering models are used to examine the ‘sensitivity’ of reactor per
formance to various fluid dynamics related issues such as residence time 
distributions, short-circuiting and by-pass. These models are also a useful aid 
to understanding issues related to reactor dynamics and start-up/shutdown 
operations. If the performance is found to be sensitive to fluid dynamics 
related issues, computational flow models can be used to obtain accurate 
information about the desired processes. Some examples of combining infor
mation from detailed flow models with reaction engineering models based 
on a mixing cell framework are discussed in Chapter 1. Such combined reac
tion engineering models are useful to interpret and extrapolate laboratory-
and pilot-scale experiments. Detailed simulations of reaction engineering 
models at different values of transport parameters (mass transfer coefficient, 
heat transfer coefficient, mixing and so on) are carried out to identify operable 
windows and to evolve quantitative demands on reactor hardware. 

(2)	 Resolving conflicting process requirements: For most industrial situations, 
a reactor has to carry out several functions simultaneously. It is quite common 
to find that the requirements of these different functions of the reactor may be 
quite different or sometimes may even conflict with each other. For example, 
the desired fluid dynamic characteristics for blending and heat transfer are 
quite different (they require more bulk flow and less shear) from those for 
gas–liquid dispersion and mass transfer (which require more shear). Such 
conflicting requirements make the task of evolving a ‘wish list’ for the desired 
fluid dynamics difficult. The reactor engineer has to achieve a compromise 
between conflicting process requirements to achieve the best results. Not 
much progress can be made without a good understanding of the underlying 
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fluid dynamics of stirred reactors and its relation with design parameters on 
the one hand and with the processes of interest, on the other. Experimental 
investigations have contributed significantly to a better understanding of the 
complex hydrodynamics of stirred vessels in recent years. However, com
putational models offer unique advantages for understanding the conflicting 
requirements of different processes and their subsequent prioritization. Using 
a computation model, one can switch on and off various processes, which 
is not possible when carrying out experiments. Such numerical experiments 
can give useful insight into interactions between different processes and can 
help to resolve the challenges posed by conflicting requirements. 

(3)	 Translating batch data for continuous reactors: In most cases, laboratory-
and bench-scale experiments required to validate the reactor concept are 
carried out in batch mode. It is then necessary to translate (or to use) the data 
obtained in these experiments to design continuous reactors. The location of 
feed pipes, outlets and their influence on mixing and performance needs to be 
understood. Computational flow models can be of great help in this regard. 

(4)	 Scale-down/scale-up analysis: It is essential to analyze the possible influ
ence of the scale of the reactor on its fluid dynamics and performance. It 
should be noted that a small-scale reactor would invariably have higher shear 
and more rapid circulation than a large-scale reactor. Multiphase processes, 
therefore, are often dispersion controlled in small-scale reactors and are 
coalescence controlled in large-scale reactors. The interfacial area per unit 
volume of reactor normally reduces as the scale of the reactor increases. 
Scale-up/scale-down analysis is useful when planning laboratory and pilot 
plant tests. It may often be necessary to use a pilot reactor configuration which 
is not geometrically similar to the large-scale reactor in order to maintain sim
ilarity of the desired process. Conventionally, such an analysis is carried out 
based on certain empirical scaling rules and prior experience. Computational 
flow modeling can make substantial contributions to this step by providing 
quantitative information about the fluid dynamics. 

(5)	 Testing new reactor concepts: More often than not, development of reactor 
technologies relies on prior experience. New reactor concepts are often side
lined due to lack of resources (experimental facilities, time, funding etc.) 
to test them. Experimental studies have obvious limitations regarding the 
extent of parameter space that can be studied and regarding extrapolation 
beyond the studied parameter space. A wide variety of impellers with dif
ferent shapes are used in practice. Different practices relating to impeller 
clearance etc. are followed for different impellers and for different applica
tions. Computational flow models, which allow a priori predictions of the 
flow generated in a stirred reactor of any configuration (impellers of any 
shape) with just a knowledge of geometry and operating parameters, can 
make valuable contributions to developing new reactor technologies. 

This brief review of steps in the engineering of stirred reactors indicates that the 
availability of large degrees of freedom regarding reactor configuration and impellers 
can be effectively exploited to evolve better reactor technologies. This, however, 
requires detailed knowledge and understanding of the fluid dynamics of stirred reac
tors. For example, in a recent US patent, Roby (1997) claims development of an 
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FIGURE 10.2 Schematic of liquid phase oxidation reactor patented by Roby (1997). 

improved reactor for the oxidation of p-xylene to manufacture terephthalic acid. The 
schematic diagram of the proposed reactor hardware is shown in Fig. 10.2. A brief 
analysis of the methods claimed to achieve better performance in stirred oxidation 
reactors, may help one to understand the role and demands on CFD-based flow mod
eling for engineering stirred reactors. The major contribution of the claimed invention 
is very high efficiency of oxygen utilization in a single pass. Oxygen is introduced 
in a draft tube. Gas–liquid mixture is pumped downward at high velocities inside the 
draft tube. Pumping leads to formation of a jet below the draft tube, which entrains 
fluid outside the draft tube and impacts the bottom of the reactor vessel, setting up roll 
cells in the process. These roll cells trap gas bubbles resulting in very high efficiency 
of oxygen use. The formation of these roll cells is intimately related to details of hard
ware configuration (design of downward pumping impeller, draft tube construction, 
jet velocity, clearance between draft tube and reactor bottom, shape of reactor bottom 
and so on) and operating conditions (impeller speed, gas flow rate and so on). A com
putational flow model can play a very useful role here in understanding the formation 
of roll cells and establishing a relationship between the roll cells and reactor hard
ware. Apart from the formation of roll cells, the inventor emphasized the relationship 
between reactor performance and fluid dynamics by insisting on the following: 

•	 oxygen should be fed into the reactor at the point of highest shear; 
•	 reactant hydrocarbon should be fed into the reactor at the point of highest 

turbulence. 
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Identifying the locations of zones of highest shear and turbulence and how these 
locations change with scale and configuration of the reactor can best be carried out 
with the help of a computational flow model. Such a computational model can also 
be used to evaluate the patented concept of gas containment baffles. The purpose 
of such a gas containment baffle is again to increase oxygen utilization efficiency 
and to minimize the oxygen break-through in the vapor space in the reactor. In fact, 
the computational flow model can be used to evolve new hardware configurations 
to achieve the desired process objectives provided it can a priori simulate the flow 
in stirred reactors. Thus, a computational flow model can be used as a powerful 
reactor-engineering tool, provided it meets the following requirements: 

• it can be applied to impellers of any shape; 
• it can account for interactions between multiple impellers/reactor internals; 
• it can be extended to multiphase systems. 

In the following sub-section, state of the art CFD modeling of stirred reactors is 
reviewed with reference to these requirements. 

10.2. CFD-BASED MODELING OF STIRRED REACTORS 

Flow in baffled stirred reactors has been modeled by employing several different 
approaches which can be classified into four types, and are shown schematically in 
Fig. 10.3. Most flow simulations of stirred vessels published before 1995 were based 
on steady-state analyses (reviewed by Ranade, 1995) using the black box approach. 
This approach requires boundary conditions (mean velocity and turbulence charac
teristics) on the impeller swept surface, which need to be determined experimentally. 
Although this approach is reasonably successful in predicting the flow characteristics 
in the bulk of the vessel, its usefulness is inherently limited by the availability of data. 
Extension of such an approach to multiphase flows and to industrial-scale reactors is 
not feasible because it is virtually impossible to obtain (from experiments) accurate 
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Specify boundary 

Grid rotating with impeller
impeller swept 

Interface over which gridssurface 
slide(wherever fluid 

exits impeller Detailed geometry needs to 
swept volume) be modeled, full transient (a) (b) 
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Stationary framework 
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Solution with stationary 

Impeller rotation is modeled 
Solution with rotating using sources/sinks 
framework Transient terms are 
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solutions communicate Transient terms are 
Detailed geometry needs neglected
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Detailed geometry needs to 
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FIGURE 10.3 Approaches to modeling flow in stirred reactors. (a) Black box approach, (b) sliding 
mesh approach, (c) multiple reference frame or inner-outer approach, (d) snapshot approach. 
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boundary conditions for such systems. More importantly, this approach cannot be 
used to make a priori simulations. It cannot, therefore, be used as a design tool; 
hence, studies based on this approach are not discussed in this chapter. 

To eliminate some of the limitations described above, recently attempts have been 
made to simulate flow within and outside the impeller region either with a combination 
of moving and deforming or with a sliding mesh (Harris et al., 1996; Ranade et al., 
1997). In the sliding mesh approach, full transient simulations are carried out using 
the two grid zones (Fig. 10.3b). One grid zone is attached to the stationary baffles 
and reactor wall while the other is attached to the rotating impeller. Obviously, the 
boundary between these two zones should have a radius more than that of the impeller 
blade tips and less than that of the inner edges of the baffles. The detailed geometry 
of the impeller needs to be modeled: impeller blades are modeled as solid rotating 
walls. Flow within the impeller blades is solved using the usual transport equations 
unlike the black box approach described earlier. The sliding mesh approach has the 
potential to generate a priori predictions without requiring any experimental input. 
It can therefore be used as a design tool to screen different configurations, however, 
the following considerations make the sliding mesh approach less attractive as a 
reactor-engineering tool: 

•	 As it relies on the solution of full time varying flow in a stirred vessel, its 
computational requirements are greater by an order of magnitude than those 
required by steady state simulations. 

•	 Because of the excessive computational requirements, there are restrictions on 
the number of computational cells that can be used for the simulations. Such 
a limitation may make a priori predictions of the desired flow characteristics 
such as energy dissipation rates, shear rates near impeller blades etc. less 
accurate. 

•	 The results obtained using this approach are not yet sufficiently validated for 
turbulent regime. 

For most engineering applications, knowledge of the full time varying flow field 
(which becomes cyclically repeating after a number of impeller rotations) may not 
be necessary. It may, therefore, be desirable to develop an approach which allows 
a priori simulations of the flow generated by an impeller of any shape with the same 
computational requirements as required for steady state simulations. Such an approach 
can be used as a design tool for screening different alternative mixer configurations. 
There are two main approaches for approximating unsteady flow in stirred vessels. 
In both approaches, a fictitious cylindrical zone with a radius more than that of the 
impeller blade tips and less than that of the inner edges of the baffles and height 
sufficient to include an entire impeller is defined (Fig. 10.3c and 10.3d). The full 
geometry needs to be modeled and in these approaches also, impeller blades are 
modeled as walls. 

•	 The first approach is called the ‘multiple reference frame’ (MRF) or ‘inner
outer’ approach (inner-outer approach in fact defines inner and outer zones with 
a finite overlap whereas in the MRF approach there is no overlap between inner 
and outer regions). In this approach, flow characteristics of the inner region are 
solved using a rotating framework. These results are used to provide boundary 
conditions for the outer region (after azimuthal averaging), flow in which is 
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solved using a stationary framework. Solution of the outer region is used to 
provide boundary conditions for the inner region. A few iterations over inner 
and outer regions may lead to a converged solution. Brucato et al. (1994) 
and Harris et al. (1996) applied the inner-outer method to simulate flow in 
stirred vessels whereas Marshall et al. (1996) used a ‘multiple reference frame’ 
approach. The multiple reference frame approach (MRF) is computationally 
less intensive than the inner-outer method. This approach is available with 
several commercially available CFD codes. 

•	 The second approach is based on taking a snapshot of flow in stirred ves
sels with a fixed relative position of blades and baffles. Ranade and Dommeti 
(1996a) proposed such a computational snapshot approach, in which impeller 
blades are modeled as solid walls and flow is simulated using a stationary 
framework for a specific blade position. Appropriate sources are specified to 
simulate impeller rotation. If necessary, simulations are carried out at differ
ent blade positions to obtain ensemble-averaged results over different blade 
positions. In this approach also, the whole solution domain is divided into 
two regions, similar to the MRF approach. In the inner region surrounding the 
impeller, time derivative terms are approximated in terms of spatial deriva
tives. In the outer region, time derivative terms are usually quite small in 
magnitude in comparison with the other terms in the governing equations and 
are neglected. 

Recently, attempts have also been made to employ large eddy simulation (LES) 
models (Derksen and van den Akker, 1999) to simulate flow in stirred vessels. How
ever, computational requirements of these models are much higher than even the 
sliding mesh approach, and therefore, application of this approach will be restricted 
to relatively simple impeller shapes. The results obtained by this approach are not yet 
sufficiently validated. Although sliding mesh and LES approaches look unattractive 
as design tools, these approaches are important as learning tools to help understand 
details of fluid dynamics near the impeller blades. MRF or the computational snap
shot approach look promising as design tools since these can be extended to impellers 
of any shape, to any number of impellers and to multiphase flows, without excessive 
demands on computational resources. Approximations employed with both MRF 
and computational snapshot methods are of the same level and therefore lead to 
almost the same results. The computational snapshot approach can be implemented 
in any stationary frame CFD program without requiring any substantial modifications. 
Since information about MRF can be found in the manuals of most commercial CFD 
programs, we restrict our discussion here to the computational snapshot approach. 

10.3. COMPUTATIONAL SNAPSHOT APPROACH 

The flow generated by an impeller of any shape is governed mainly by pressure 
and centrifugal forces generated by impeller rotation and the corresponding rotating 
flows. The shape of the impeller blade controls the direction and characteristics of the 
impeller discharge stream via the generated pressure and centrifugal forces. Blade 
rotation causes suction of fluid at the rear side of the blades and equivalent ejection 
of fluid from the front side of the blades. This phenomenon of ejection and suction 
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needs to be modeled correctly to simulate impeller rotation in the steady framework 
proposed in the computational snapshot approach. In the sliding mesh approach, the 
suction and ejection of fluid from the back and front sides of impeller blades is rep
resented naturally, since movement of the blade is accounted for in full time varying 
simulations. In the computational snapshot approach, impeller blades are considered 
to be fixed at one particular position (similar to taking a snapshot of the rotating 
impeller). It is then necessary to model the suction and ejection phenomenon men
tioned here using suitable means. The development of an appropriate representation 
of a rotating impeller in a steady framework is discussed below. It is assumed that the 
flow is fully developed. This means that in a frame rotating with the blades, profiles 
within impeller blades do not change with time. 

Consider a finite volume representation of a basic conservation equation for a 
general variable φ: 

∂ ∂φ  
(Vcellρφ)+(area ρUφ)e −(area ρUφ)w+· · ·  =  (area �φ )e −· · ·+Sφ (10.1)

∂t ∂x 

All the terms appearing in Eq. (10.1) are formulated following the usual finite volume 
method discussed in Chapter 6, except the first term containing the time derivative. 
Usually, the computational cell volume, Vcell, is considered constant and is written 
outside the time derivative. For the computational snapshot approach, it is useful to 
consider the above form. In the sliding mesh approach, the above equation needs to be 
modified to account for grid movement. In the snapshot approach, instead of consid
ering a moving grid, the time derivative term in the above equation is approximated 
and a steady framework is used to solve Eq. (10.1). 

Consider evaluation of Eq. (10.1) in a steady framework by assuming the cycli
cally repetitive flow between the impeller blades. As mentioned earlier, in a snapshot 
approach, blades are considered stationary at one position. For an instant, when the 
blades of the rotating impeller coincide with the position of the blades considered in 
the snapshot simulation, the following equation is solved in a steady framework: 

(area ρUφ)e − (area ρUφ)w + · · ·  =  area �φ 
∂φ  

∂x e 

− · · · + Sφ − 
∂ 

∂t 
(Vcellρφ) 

(10.2) 
It is necessary to approximate the time derivative terms appearing in this equation. 
By separating the variables, one can write the time derivative term as (for constant 
density fluid) 

∂ ∂ ∂ 
(Vcellρφ) = Vcellρ (φ) + ρφ (Vcell) (10.3)

∂t ∂t ∂t 

Generally in a fixed grid simulation, the volume of any computational cell remains 
constant. This can be applied to all computational cells used in the snapshot approach 
except those directly attached to the front and rear sides of blades. As the impeller 
rotates, the volume of cells attached to the front side of the blade decreases. Corre
spondingly, the volume of computational cells attached to the rear side of the impeller 
blade increases (Fig. 10.4). The rate of increase or decrease can be calculated directly 
from the area of the interface between computational cells and impeller blade and the 
velocity with which the impeller is rotating. Thus, for the computational cells attached 
to the front and rear sides of impeller blades, the second term of the right-hand side 
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FIGURE 10.4 Computational snapshot approach. 

of Eq. (10.3) can be written: 

∂ 
ρφ (Vcell) = ρφ(2 πNr)Abc (10.4)
∂t 

where N is impeller rotational speed in revolutions per unit time. The bracketed 
quantity on the right-hand side is the tangential velocity of the impeller blades at radial 
location, r, and Abc, is the projection of the area of the interface between computational 
cell and impeller blade on a plane normal to the tangential velocity. Please note that 
for the computational cells attached to the front side, volume decreases with time 
and therefore, there will be a negative sign on the right-hand side of Eq. (10.4). For 
the mass continuity equation, that is, when φ is unity, Eq. (10.4) represents the mass 
source and sink at the front and rear sides respectively. 

Using the assumption of cyclically repetitive flow within the impeller region, the 
first term on the right-hand side of Eq. (10.3) can be approximated as 

∂ ∂ 
Vcellρ (φ) = −Vcellρ(2πN ) (φ) (10.5)

∂t ∂θ  

This cyclically repetitive flow will occur only in certain region around the rotating 
impeller; baffles at the walls destroy such cyclically repetitive flow. Fortunately, for 
the region where cyclically repetitive flow does not exist, the magnitude of time 
derivative terms is quite small compared to other terms in Eq. (10.1) and therefore, 
the time derivative terms may be neglected. As there is no way to find in which region 
flow will be cyclically repetitive without solving the full time varying equations, 
this region has to be specified based on available empirical information. Simulations 
carried out with this approach, however, indicate that the predicted results are not very 
sensitive to choice of the assumed region of cyclically repetitive flow. Eqs (10.4) and 
(10.5) can be used to simulate the flow generated by a rotating impeller in a steady 
state framework. 
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In addition, since the impeller blades are modeled as stationary walls, it is also 
necessary to include additional source terms to computational cells attached to the 
edges of impeller blades, representing the shear caused by the rotating impeller blades 
(Fig. 10.4). For all the computational cells attached to the four thin edges of the 
impeller blade, a momentum source needs to be added when solving for the tangential 
velocity. Though the standard wall function formulation is not strictly applicable to 
very thin walls, it may be used in the absence of better information to define the 
momentum source: � 

κy+ � 
WBLD

SW = 
ln(Ey+)

µ 
yP 

(AB) (10.6) 

where WBLD is the tangential velocity of the blade averaged over AB, which is the con
tact area between the computational cell and impeller blade. y+ is the dimensionless 
distance from the wall, defined by: 

C1/4
ρk1/2yP 

y+ = D (10.7) 
µ 

If the calculated value of y+ is less than 11.225, the near wall cell center lies in the 
viscous sub-layer and therefore the factor in the square bracket of Eq. (10.6) is set to 
unity. 

Ranade and Tayalia (2000) validated the snapshot approach by considering 
a two-dimensional case of rotating flows. Application of this approach to simulating 
complex, three-dimensional flows in stirred tank reactors is discussed below. The 
next section will discuss application of this approach to cases relevant to reactor 
engineering. 

10.3.1. Simulation of Flow Generated by a Disc (Rushton) Turbine 

Recently Ranade et al. (2001a, 2001b) used a computational snapshot approach to 
simulate the flow generated by a disc (Rushton) turbine in a fully baffled vessel. 
The predictions were compared with the comprehensive data available in the open 
literature. Computations were carried out for the stirred vessel configuration used in 
the experimental studies by Schafer et al. (1997) and Perrard et al. (2000). Standard 
wall functions were used to specify boundary conditions at all the stationary walls 
(Launder and Spalding, 1974). The top surface of the liquid was also modeled as a 
wall, since Schafer et al. (1997) used a closed vessel in their experiments. For the 
impeller shaft, disc and hub, an angular velocity corresponding to the impeller rota
tional speed was specified as boundary condition. Half of the vessel was considered as 
the solution domain. Cyclic boundary conditions were imposed at the open surfaces 
of the solution domain. Based on available experimental information, a region sur
rounding impeller blades was selected in which time derivative terms were included 
in the governing equations (using the approximation given by Eq. 10.5). Beyond this 
region, surrounding the impeller blades, time derivative terms were assumed to be 
negligible. The solution domains and boundary conditions used in their work are 
shown in Fig. 10.5. 

Turbulence was modeled using the standard k–ε model. All the governing equa
tions were discretized using a QUICK discretization scheme with SUPERBEE limiter 
function (Fluent User Guide, 1997). The SIMPLE algorithm (Patankar, 1980) was 
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Cyclic planes 

FIGURE 10.5 Solution domain and boundary conditions for simulations of a disc turbine. 

Time derivative 
terms were 
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using Eq. (10.5) 

Time derivative 
terms were 
neglected 

used to iteratively solve discretized equations. Preliminary numerical experiments 
were carried out to examine the influence of grid size on predicted results. The find
ings of these preliminary simulations were in line with those reported by Ng et al. 
(1998). These studies indicated that in order to capture trailing vortices, it is neces
sary to use more than 100 cells to cover the impeller blades. Results of Ranade et al. 
(2001a) obtained with the 630 800 grids (80 × 83 × 95 : : r × θ × z) are discussed 
below. A blade of a Rushton turbine was discretized with 29 × 3 × 25 cells (r × θ × z). 
Typical grids used are shown in Fig. 10.6. Iterations were continued until the sum 
of normalized residues fall below 1 × 10−3 and none of the local as well as volume 
integrated variables of interest showed any appreciable change with further iterations. 

Numerical simulations carried out with the computational snapshot approach 
show the well-known flow patterns generated by the Rushton turbine. Predicted flow 
fields for typical r–z planes are shown in Fig. 10.7 (vector plot and contours of 
turbulent kinetic energy). Simulations indicate the upward inclination of the radial 
jet issuing from the impeller, which is in agreement with published experimental 
evidence (for example, Ranade and Joshi, 1990). The predicted turbulent kinetic 
energy contours show the high turbulence region in the impeller stream. Apart from the 
qualitative agreement, the predicted results in the bulk region also show satisfactory 
agreement with the experimental data of Ranade and Joshi (1990). The predicted 
pumping number for the Rushton turbine (calculated at r/T = 0.18) is 0.6, which is 
lower than the generally accepted value. It is, however, within the range reported in 
the published literature (0.75 ± 0.15). Recent angle-resolved velocity measurements 
also indicate a pumping number value of about 0.61 (Perrard et al., 2000). The 
snapshot approach may underpredict the radial velocities in the immediate vicinity 
of the blades, since the blades are modeled as stationary walls. This leads to lower 
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Rushton Turbine 

r ×  × z : 80 × 83 × 95 
Blade : 29 × 3 × 25 
Region d/dt : 14 < K < 77 

J < 55 

FIGURE 10.6 Computational grid for simulations of a disc turbine. 
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FIGURE 10.7 Predicted flow field at typical r–z planes (from Ranade et al., 2001a). 
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tangential velocities in the immediate vicinity and therefore lower radial velocities. In 
general, the overall predicted results showed satisfactory agreement with experimental 
data. Black box approaches used in the previous decade (Ranade and Joshi, 1990; 
Ranade et al., 1991) have shown that if the flow characteristics near the impeller 
swept surfaces are known, flow characteristics in the bulk region of the tank can be 
predicted with an accuracy adequate for most engineering applications. The crucial 
test of any a priori predictive model is therefore, whether it can predict flow near 
impeller blades accurately. The predicted (using a computational snapshot approach) 
results in the near impeller region were, therefore, examined in detail. 

The predicted profiles of mean radial and tangential velocities at the impeller 
center plane are compared with the experimental data measured by PIV and LDA in 
Fig. 10.8. A similar comparison for turbulent kinetic energy is shown in Fig. 10.9. 
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FIGURE 10.8 Comparison of predicted mean velocity field with angle-averaged PIV data (impeller 
center plane) (from Ranade et al., 2001b). (a) Radial mean velocity (b) Tangential mean velocity. 
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FIGURE 10.9 Comparison of predicted turbulent kinetic energy with angle-averaged PIV data 
(impeller center plane) (from Ranade et al., 2001b). 

It can be seen that agreement between predicted and experimental profiles of mean 
velocity is satisfactory. It must be noted that when the experimental data contain 
contributions due to the periodic motion of the impeller blades, the highest values 
of turbulent kinetic energy are obtained at the vicinity of the impeller tip, due to the 
apparent turbulence generated by the periodic motion. When the random turbulent 
kinetic energy is calculated by considering the mean value of five sets of angle-
resolved data, the agreement between experiments and CFD results is improved in 
the vicinity of the impeller. The difference between the predicted turbulent kinetic 
energy and experimentally measured turbulent kinetic energy after removing the peri
odic component is reasonable for the standard k–ε model. The contours of predicted 
turbulent kinetic energy at the impeller center plane of the Rushton turbine are shown 
in Fig. 10.10a (impeller rotation direction is counter clockwise). It can be seen that 
snapshot simulations clearly show the presence of higher turbulent kinetic energy at 
the locations of trailing vortices behind the impeller blades. Z-vorticity contours at the 
z–θ plane (r/T = 0.165) are shown in Fig. 10.10b. This figure also clearly shows the 
presence of a pair of trailing vortices behind the rotating impeller blades. The trailing 
vortices move radially outwards and axially towards the impeller center plane, which 
is in agreement with experimental observations. To examine the flow structure around 
impeller blades, the predicted mean velocity field behind the impeller blades of the 
Rushton turbine at three different angles from the blade (8◦, 15◦, 30◦) are shown in 
Fig. 10.11. The presence of trailing vortices and their movement within the impeller 
stream are clearly evident from this figure. Comparison of these predicted results with 
the experimental data of Schafer et al. (1997) shows good qualitative agreement. The 
predicted strengths of the trailing vortices are found to be somewhat lower than the 
experimental values, which leads to relatively early dissipation of trailing vortices in 
the simulations. 

In order to assess the computational snapshot approach in more detail, predicted 
normalized mean velocity components and normalized turbulent kinetic energy were 
directly compared with the available data of Schafer et al. (1997). In the case of 
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FIGURE 10.10 Presence of trailing vortices (Rushton turbine). (a) Turbulent kinetic energy (impeller 
center plane; impeller rotation: counter-clockwise), white: highest level, black: lowest level, (b) Z-vorticity 
(r/T = 0.165; impeller rotation: from left to right) (from Ranade et al., 2001a). Reproduced in colour 
plate section between pages 210 and 211. 
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FIGURE 10.11 Flow field behind impeller blades (Rushton turbine) (from Ranade et al., 2001a). 

the Rushton turbine, predicted circumferential profiles at r/T = 0.171 and z/T = 
0.329 were compared with the experimental data in Fig. 10.12. Fig. 10.12a shows 
good agreement between the predicted radial mean velocities and the experimental 
data. The three curves show the predicted results between the three blades of the 
Rushton turbine considered in the simulations. It can be seen that these three predicted 
profiles between the blades are quite similar. Comparison of the predicted tangential 
mean velocity with the experimental data is shown in Fig. 10.12b. Although overall 
agreement is reasonable, significant discrepancies were observed in certain areas. 
For the axial component (Fig. 10.12c), the predicted profiles show significantly less 
variation than the experimental data. It must, however, be noted that predicted profiles 
of axial mean velocity in the impeller stream are very sensitive to location. At a slightly 
different axial location at the same radial location, predicted profiles show similar 
behavior to that observed in the experimental data. In the case of turbulent kinetic 
energy (Fig. 10.12d), the agreement between predicted and experimental data is good 
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FIGURE 10.12 Comparison of simulated and experimental results for Rushton turbine (r/T = 
0.171; z/T = 0.329). Traces; simulation results; • Schafer et al. (1997) data (from Ranade et al., 2001a). 

for the region near the trailing blade. In the immediate vicinity of the leading blade, 
predicted turbulent kinetic energy values are much lower than the experimental data. 
Reasons for this disagreement are not immediately obvious. A recent study using a 
different turbulence model (Jenne and Reuss, 1999) indicates that different time scales 
or anisotropy considerations (Reynolds stress models) are of minor importance and do 
not lead to significant improvements in the observed agreement. Further studies which 
combine experimental and computational investigations are needed to evaluate the 
influence of turbulence models (and grid refinement near the blades) on the predicted 
characteristics of trailing vortices and on the flow field within the blades. Despite 
some of the observed discrepancies, predictions using a computational snapshot are 
very encouraging. The snapshot approach could become a promising tool to design 
mixing processes in stirred vessels if it can be extended to impellers of any shape, to 
multiple impellers and to multiphase flows. 

10.3.2. Simulation of Flow Generated by an Impeller of Different Shape 

In order to examine application of the snapshot approach to simulating flow generated 
by an impeller of any shape, the case of a pitched blade turbine was considered. The 
geometry of the stirred vessel agitated by a 45◦, four bladed, pitched blade turbine as 
used by Schafer et al. (1998) was modeled using structured grids. The computational 
grid was generated using the geometry-modeling tool, GAMBIT (Fluent Inc., USA). 
In view of the symmetry, only one quarter of the vessel was considered as the solution 



302 CHAPTER 10 STIRRED REACTORS 

domain. Solution domains and boundary conditions used in the present work are 
shown in Fig. 10.13. For these simulations, 269 667 grids were used (57×57×83 :: r× 
θ × z). The blade of the pitched blade turbine was discretized with 22 × 3 × 15 cells 
(r × θ × z). Typical grids used are shown in Fig. 10.14. Other boundary conditions 
and numerical parameters were kept the same as used for the disc turbine. For this 
case also, turbulence was modeled using the standard k–ε model. All the governing 
equations were discretized using a QUICK discretization scheme with SUPERBEE 
limiter function (Fluent User Guide, 1997). 

Numerical simulations carried out with the computational snapshot approach 
show the well-known flow patterns generated by a pitched blade turbine. Predicted 
flow fields for typical r–z planes are shown in Fig. 10.15 (vector plot and contours of 
turbulent kinetic energy). Simulations of the pitched blade turbine clearly show the 
presence of a reverse loop directly below the impeller. This is also in agreement with 
experimental observations (Ranade and Joshi, 1989). The predicted pumping number 
for the pitched blade turbine (calculated at the K plane just below the impeller) 
is 1.0, which is in good agreement with published data (Ranade and Joshi, 1989). 
The predicted results also show good overall agreement with experimental data in 
the bulk region of the tank. As mentioned in the previous section, it is important to 
examine the quality of simulations in the region near the impeller since this controls 
the overall quality. Flow near the impeller blades is, therefore, examined in detail. 
A single trailing vortex is detected behind the blades of the pitched blade turbine. 
An iso-surface of predicted Z-vorticity (ω) for the pitched blade turbine is shown 
in Fig. 10.16 (the impeller blade is moving inside the plane of the paper). It can 
be seen that the trailing vortex is attached to the rear side of the blade and flows 
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FIGURE 10.13 Solution domain and boundary conditions for pitched blade turbine simulation. 
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FIGURE 10.14 Computational grid for pitched blade turbine simulation. 

downwards as it moves away from the leading blade. To examine the flow structure 
around the impeller blades, predicted mean velocity fields behind the impeller blades 
of the pitched blade turbine at four different angles from the blade (1◦, 8◦, 15◦ , 
30◦) are shown in Fig. 10.17. The presence of the trailing vortex and its movement 
within the impeller stream is clearly evident from these figures. Comparison of these 
predicted results with the experimental data of Schafer et al. (1997, 1998) shows good 
qualitative as well as quantitative agreement. 

The predicted circumferential profiles at three different radial locations at 
z/T = 0.329 were compared with experimental data. Figs 10.18–10.20 show the 
results of normalized axial and radial velocity components, and normalized turbu
lent kinetic energy, respectively for the pitched blade turbine. It can be seen that 
the predicted results of axial velocity show good agreement with experimental data 
(Fig. 10.18). In the region near the trailing blade, predicted results show a sharp peak 
in the downward velocity, which was not observed in the experimental data. It may, 
however, be noted that experimental data measured using LDA generally has a large 
scatter in the region near the rotating blades. Outside the impeller swept region, the 
agreement between predicted and experimental data looks quite satisfactory. Similar 



304 CHAPTER 10 STIRRED REACTORS 

2
k/U tip 

0.07 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

Pitched blade turbine 

I plane passing through 
center of the blades 

FIGURE 10.15 Simulated results at typical r–z plane for a pitched blade turbine (from Ranade et al., 
2001a). Reproduced in colour plate section between pages 210 and 211. 

conclusions can be drawn from the comparisons of normalized radial velocity shown 
in Figs 10.19a–c. For the case of turbulent kinetic energy, Fig. 10.20a indicates that 
predicted turbulent kinetic energy values are much higher than those observed in 
experimental data obtained within the impeller swept region. Outside the impeller 
swept region, however, agreement between predicted and experimental data is much 
better. The snapshot approach was also shown to be capable of capturing the influence 
of blade angle and blade width of a pitched blade turbine on generated flow (Ranade 
and Dommeti, 1996b). Thus, the snapshot approach can be used to simulate flow 
generated by impellers with complex blade shapes. It can be used to evaluate the 
influence of impeller blade shape and size on the generated flow field. 

10.3.3. Simulation of Flow Generated by Multiple Impellers 

Results described so far suggest that the snapshot approach can be used to make 
a priori predictions of the complex flow generated in stirred vessels for impellers 
of any shape. A number of industrial stirred tank reactors make use of two or more 
impellers mounted on the same shaft. When more than one impeller is used, the 
flow complexity is greatly increased, especially when there is interaction between the 
flow generated by the two impellers. The extent of interaction depends on relative 
distances between the two impellers (and clearance from the vessel bottom). In order 
to examine whether the computational snapshot approach can be used to simulate 
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FIGURE 10.16 Presence of trailing vortices (pitched blade turbine) (from Ranade et al., 2001a). 

interaction between multiple impellers, the case of a dual Rushton turbine, studied 
by Rutherford et al. (1996), was considered. 

The flow structure in vessels agitated by dual impellers is determined mainly 
by the flow characteristics of the impellers and interactions between them. When 
the clearance between the two impellers is sufficiently high, they are likely to act 
independently of each other. For smaller clearances, the two impeller streams may 
interact, resulting in complicated and often unstable flow patterns. Rutherford et al. 
(1996) experimentally studied the flow generated by dual Rushton turbines in cylin
drical baffled vessels. They report three stable flow patterns observed with different 
values of lower impeller clearance (C1), impeller separation (C2) and upper impeller 
submergence (C3). These three patterns are qualitatively shown in Fig. 10.21. The 
parallel flow pattern shown in Fig. 10.21a was observed when two impellers were well 
separated (C1 = C3 = 0.25T , C2 = 0.5T ). In this pattern, each impeller generated 
its own characteristic upper and lower ring vortex leading to formation of four stable 
ring vortices. When impeller separation was decreased (C1 = C2 = C3 = T /3), 
the flow pattern shown in Fig. 10.21b was observed. It was termed ‘merging flow’ 



306 CHAPTER 10 STIRRED REACTORS 

θ = 8°θ = 1° 

θ = 30°θ =15° 

FIGURE 10.17 Flow field behind impeller blades (pitched blade turbine) (from Ranade et al., 2001a). 

since two impeller streams merge and form two large ring vortices. The third stable 
flow pattern was named ‘diverging flow’ (Fig. 10.21c) and was observed for smaller 
bottom clearance at the lower impeller (C1 = 0.15T , C2 = 0.5T , C3 = 0.35T ). 
In this case, the lower impeller stream is directed towards the vessel bottom. This 
results in the lower impeller producing one large ring vortex while the upper impeller 
generates the usual well-defined two ring vortices. 
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FIGURE 10.18 Comparison of simulated and experimental results for pitched blade turbine (nor-
malized axial velocity, Uaxial/Utip). r/T = (a) 0.118; (b) 0.171; (c) 0.197. Traces; simulation results; • 
Schafer et al. (1998) data (from Ranade et al., 2001a). 

The computational snapshot approach was used to simulate flow generated in 
these three impeller configurations (for more details, see Deshpande and Ranade, 
2001). The predicted velocity vectors in the r–z plane located midway between the 
two baffles for parallel, merging and diverging flow configurations are shown in 
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FIGURE 10.19 Comparison of simulated and experimental results for pitched blade turbine (nor
malized radial velocity, Uradial /Utip). r/T = (a) 0.118; (b) 0.171; (c) 0.197. Traces; simulation results; • 
Schafer et al. (1998) data (from Ranade et al., 2001a). 

Figs 10.22–10.24 respectively. Experimental results corresponding to these flow pat
terns are also shown in the respective figures. It can be seen that agreement between 
predicted and experimental results is satisfactory. Good agreement for the parallel 
flow, where there is almost no interaction between impeller streams, can be antici
pated from the good agreement found in the single impeller case. For small impeller 
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FIGURE 10.20 Comparison of simulated and experimental results for pitched blade turbine (nor
malized turbulent kinetic energy, k/Utip) r/T = (a) 0.118; (b) 0.171; (c) 0.197. Traces; simulation results; 
• Schafer et al. (1998) data (from Ranade et al., 2001a). 
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FIGURE 10.21 Schematic of stable flow patterns observed with dual Rushton turbines (from 
Rutherford et al., 1996). (a) Parallel flow, (b) merging flow, (c) diverging flow. 
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FIGURE 10.22 Comparison of experimental ((a) Rutherford et al., 1996) and predicted ((b) 
Deshpande and Ranade, 2001) results for dual Rushton turbines (Parallel flow regime). 

separation, predicted results clearly show the merging of impeller streams at an ele
vation midway between the two impellers, as was observed in the experiments. The 
influence of lower impeller clearance from the vessel bottom on the direction of the 
impeller stream was also predicted quite well, leading to the diverging flow pattern. 
Similar interaction between impeller streams was also evident from the contours of 
the predicted turbulence kinetic energy (not shown here). Qualitatively, these results 
agree fairly well with the experimental results reported by Rutherford et al. (1996). 
However, the predicted values of turbulent kinetic energy are slightly lower than the 
experimental data. Quantitative comparison of predicted mean velocity and exper
imental data is shown in Figs 10.25 and 10.26 for two different values of radial 
positions. These results indicate that the computational snapshot approach could ade
quately simulate the three different flow patterns having varying degrees of interaction 
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(a) (b) 

FIGURE 10.23 Comparison of experimental ((a) Rutherford et al., 1996) and predicted ((b) 
Deshpande and Ranade, 2001) results for dual Rushton turbines (merging flow regime). 

between two impellers without requiring any adjustable parameter or any empir
ical input. Similar predictions can also be obtained from other quasi-steady-state 
approaches such as MRF and inner-outer, or full transient approaches such as sliding 
mesh. For example, predicted results reported by Micale et al. (1999) for the corre
sponding dual impeller cases are also shown in Figs 10.25 and 10.26, which more or 
less agree with the predictions of the snapshot approach. One reason for the observed 
differences in predictions of the different approaches is the difference in the number 
of grids used when carrying out the simulations. In general, it can be said that either 
snapshot or other state of the art approaches (MRF or sliding mesh) may be used 
to make a priori predictions of the flow field generated by multiple impellers. An 
absence of rotating framework or moving grids makes the computational snapshot 
approach easier to implement, especially with higher order discretization schemes 
and multiphase flows, which are discussed in the following section. 

10.3.4. Simulation of Multiphase Flows 

Many of the situations encountered by reactor engineers involve (refer to Table 10.1) 
contact with more than one phase in a stirred tank. It is, therefore, essential to examine 
whether CFD models can simulate complex multiphase flows in stirred tanks. Here 
the case of gas–liquid flows in a stirred tank is considered. Similar methodology 
can be applied to simulate other two-phase or multiphase flows in stirred vessels. The 
computational snapshot approach discussed previously has been extended to simulate 
gas–liquid flows (see Ranade et al., 2001c for more details). A two-fluid model was 
used to simulate gas–liquid flow in a stirred vessel: the model equations and boundary 
conditions are listed below. 
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(a) (b) 

FIGURE 10.24 Comparison of experimental ((a) Rutherford et al., 1996) and predicted ((b) 
Deshpande and Ranade, 2001) results for dual Rushton turbines (diverging flow regime). 

Mass balance equations: 

∂ ∂ 
(ρk αk ) + (ρk αkVki) = 0 (10.8)

∂t ∂xj 

Momentum balance equations: 

∂ ∂

(ρk αkVki) + (ρk αkVkiVkj )


∂t ∂xj 

∂p ∂ ∂Vki ∂Vkj= −αk + ρk αkgi + Fki + αk µk + 
∂xi ∂xj ∂xj ∂xj 

2 ∂ ∂Vkm− αk µk (10.9)
3 ∂xi ∂xm 

where Fki is interphase momentum exchange term: 

F2i = −  
3αLαGCD|V2i − V1i|(V2i − V1i) (10.10) 

4 dB 

Balance equations listed here are before time averaging. For more details of time-
averaged two-phase balance equations, the reader is referred to Ranade and van den 
Akker (1994) and the FLUENT manual. Turbulence was modeled using a standard 
k–ε turbulence model. Governing equations for turbulent kinetic energy, k and 
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FIGURE 10.25 Comparison of experimental and predicted results for dual Rushton turbines (from 
Deshpande and Ranade, 2001). 
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turbulent energy dissipation rates, ε are listed below: 

∂ ∂ ∂ µt ∂k 
(ρLαLk) + (ρLαLVLik) = αL + αL(G − ρLε) (10.11)

∂t ∂xj ∂xj σk ∂xj 

∂ ∂ ∂ µt ∂ε  ε 
(ρLαLε) + (ρLαLVLiε) = αL + αL (C1G − C2ρLε)

∂t ∂xj ∂xj σε ∂xj k 
(10.12) 

where G is turbulence generation rate and µt is turbulent viscosity, which are given by: 

∂Vj ∂Vi ∂Vi ρLCµk2 

+ (10.13)G = µt 
∂xi ∂xj ∂Vi 

µt = 
ε 

In the absence of better knowledge, standard values of k–ε model parameters are 
generally used in these multiphase simulations. Wall functions were used to specify 
wall boundary conditions. Gas was introduced at the sparger by defining an appropri
ate source of gas at the sparger cells. The top surface of the dispersion was assumed 
to be flat and was modeled as a free slip wall. Bubbles escaping from the vessel were 
simulated by specifying an appropriate sink at the top row of computational cells 
(see Chapter 11 for detailed discussion on boundary conditions used for simulating 
dispersed gas–liquid flows). 

The snapshot approach for gas–liquid flows was implemented using a commercial 
CFD code, FLUENT (Fluent Inc., USA). User-defined subroutines were used for 
this purpose. Half of the vessel was considered as a solution domain. The solution 
domain and details of the finite volume grid used was similar to those used for single-
phase flows discussed earlier (however, the number of cells in the θ direction were 
half of that used in single-phase simulations). A QUICK discretization scheme with 
SUPERBEE limiter function was used to integrate all the equations (Fluent User 
Guide, 1997). Simulations were carried out for three values of dimensionless gas 
flow rates (QG/ND3), 0.01, 0.02 and 0.03. 

Predicted gas–liquid flow fields for a dimensionless gas flow number 0.01 at 
the typical r–z planes are shown in Figs 10.27 and 10.28. The simulations indicate 
significant upward inclination of the radial jet issuing from the impeller in the presence 
of gas, which is in agreement with the published experimental evidence. It can be 
seen that even at such a low gas flow rate, simulations indicate that gas bubbles are not 
dispersed in the lower circulation loop (left side of Fig. 10.27). Significant upward 
inclination in the presence of gas is also obvious from the contours of turbulent 
kinetic energy shown in Fig. 10.28. Contours of gas hold-up confirm that the impeller 
is unable to re-circulate gas bubbles in the lower loop. Contours of predicted gas hold
up on horizontal plane passing through the impeller are shown in Fig. 10.29 (impeller 
rotation direction is counterclockwise). It can be seen that snapshot simulations of 
gas–liquid flows clearly show the presence of gas accumulation at the locations of 
trailing vortices behind the impeller blades. The gas hold-up just behind the blade 
is orders of magnitude larger than the average gas hold-up. Such gas accumulation 
significantly modifies the flow around impeller blades. Predicted contours of gas 
hold-up at different r–z planes near the impeller region are shown in Fig. 10.30. It 
can be seen that just behind the leading blade, gas accumulates in the core of two 
trailing vortices. In the present computational model, coalescence was not modeled 
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FIGURE 10.27 Typical predicted flow field. Left: vectors of gas phase; Right: vectors of liquid phase 
(from Ranade et al., 2001c). 

and hence the model is not able to simulate the formation of gas cavities behind 
impeller blades. However, even in the absence of a coalescence model, computations 
could capture significant gas accumulation in the region of the trailing vortices. As 
one moves away from the leading blade, the lower region of gas accumulation shifts 
upwards and eventually merges with the upper region as observed in the experimental 
data. Thus, it can be said that the computational snapshot approach can capture 
the essential features of gas accumulation behind the impeller blades. If a suitable 
coalescence model is combined with the present computational model, formation 
of gas cavities may be simulated. Coalescence and break-up models, which may 
be used to simulate the evolution of bubble size distribution in dispersed gas–liquid 
flows, are discussed in Chapter 11. Similar models can be used to estimate bubble 
size distributions and interfacial area in gas–liquid stirred reactors. It is, however, 
necessary to obtain detailed experimental data for gas–liquid flows in stirred vessels 
to quantitatively validate these computational models. Even in the absence of such 
quantitative validation, these models may be used to qualitatively evaluate different 
configurations of gas–liquid stirred reactors. Simulated results may be used to identify 
regions of high mass transfer coefficient and high interfacial area within the reactor 
to guide locations of feed pipes etc. 

Two-fluid or multifluid models can be extended to simulate not only gas–liquid 
flows but also any combinations of different phases present in stirred reactors. To 
simulate gas–liquid–solid, slurry reactors, liquid and solid phases are often lumped 
together and treated as a slurry phase with effective properties. This approximation is 
reasonable as long as the solid volume fraction is low (∼1% ). For higher solid loading, 
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FIGURE 10.28 Typical predicted flow field. (Left: contours of dimensionless turbulent kinetic energy; 
Right: contours of gas hold-up). Ten uniform contours, maximum value = 0.1 (white); minimum value = 0 
(black) (from Ranade et al., 2001c). Reproduced in colour plate section between pages 210 and 211. 

FIGURE 10.29 Contours of gas hold-up on horizontal plane located at a distance of BW/3 from 
impeller center plane (impeller rotation is counter-clockwise). Ten uniform contours between 0 and 0.1; 
white: 0.1; black: 0 (from Ranade et al., 2001c). Reproduced in colour plate section between pages 210 
and 211. 
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FIGURE 10.30 Computational simulation of accumulation of gas behind impeller blades (black: 0; 
white: >0.1) (from Ranade et al., 2001c). Reproduced in colour plate section between pages 210 and 211. 

it may be necessary to treat the three phases separately. For such systems, it is often 
necessary to model the motion of solid particles using models based on the kinetic 
theory of granular flows. Some aspects of this are discussed in Chapter 4. Application 
of granular flow models to simulate the motion of dispersed solids is discussed in 
more detail in Chapter 12 for fluidized bed reactors. Dispersion of solid particles in 
liquid can be simulated using the two-fluid models discussed above (Gosman et al., 
1992; Micale et al., 2000). Coalescence break-up models, discussed with reference 
to gas–liquid flows in Chapter 11, can also be applied to simulate coalescence and 
break-up processes in gas–liquid and liquid–liquid dispersions (Lane et al., 1999). 

In general, it may be concluded that the computational snapshot approach or 
other equivalent, state of the art CFD models can capture the key features of flow 
in stirred tank reactors and can be used to make either quantitative (for single-phase 
or pseudo-homogeneous applications) or semi-quantitative (for complex, multiphase 
applications) predictions. Possible applications to reactor engineering are discussed 
below. 

10.4. APPLICATION TO REACTOR ENGINEERING 

The possibility of using CFD models to screen configurations of industrial reactors 
will allow reactor engineers to spend more time evolving creative and innovative 
reactor designs. For example, the configuration proposed for a liquid phase oxidation 
reactor (LOR) can be studied using a computational flow model to help understand 
the relation between reactor configuration and claimed performance enhancement. 
Ranade (1998) discussed the use of CFD models to aid understanding of the forma
tion of roll cells and the region of high turbulence just below the draft tube in the 
proposed LOR. Detailed analysis (using post-processing and visualization tools) of 
results predicted by such CFD models will be useful in tailoring LOR configurations 
to suit different process requirements. At this point, it is essential to re-emphasize 
the importance of understanding the limitations and assumptions involved in setting 
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up the computational model when interpreting the predicted results. As discussed 
earlier, predictions of CFD models can go wrong for two main reasons (other than 
human error and machine malfunction): they may be based upon a physically incorrect 
mathematical representation or upon numerically deficient representation. Inadequa
cies of the second kind can be and should be eliminated or minimized by using careful 
numerical experimentation with grid distributions, discretization schemes etc. (refer 
to Chapters 6 and 7 for more discussion on these issues). Inadequacies of the first 
kind will almost always be present for the tractable simulation of complex industrial 
reactors. Reactor engineers therefore have to identify the most important aspects of 
the flow which are relevant to reactor performance, and to accurately represent those 
aspects in the mathematical model. In most cases, one has to break up the problem 
into several sub-problems and employ a hierarchy of modeling tools with appropriate 
degrees of sophistication. 

Considering again the example of LOR, one of the most important functions of 
LOR hardware is to set up roll cells below the draft tube, which can capture gas bubbles 
to enhance the efficiency of oxygen use. As shown by Ranade (1998), it is possible 
to use CFD models to obtain qualitative as well as quantitative understanding of such 
roll cells. However, from the reactor engineering point of view, a major objective 
is to examine whether the roll cells formed provide adequate residence time for 
gas bubbles to achieve the desired oxygen consumption. It is therefore necessary to 
understand the phenomenon of bubble capture within these roll cells and its influence 
on mass transfer (with chemical reaction) from a single gas bubble. Before setting 
up the computational model to simulate turbulent gas–liquid flow in a complicated 
geometry, it may be worthwhile to develop a bubble-tracking model employing a 
Eulerian (for liquid phase)–Lagrangian (for bubbles) framework. Such a model will 
allow one to undertake a preliminary screening of alternative configurations without 
developing the complete model. It is possible to represent detailed mass transfer with 
reaction (based on validated reaction kinetics) by such a computational model. Apart 
from preliminary screening, results of such a model will also provide the basis for 
developing a realistic but tractable model in a Eulerian–Eulerian framework. 

Development of a detailed model based on a Eulerian–Eulerian framework may 
be necessary to make realistic estimations of bubble size distribution, bubble flow, its 
influence on impeller power dissipation and flow field. Ranade and van den Akker 
(1994) have shown that gas–liquid flow in the bulk region of stirred reactors can be 
reasonably predicted using the computational snapshot approach. However, unless 
details of flow near the impeller blades are simulated adequately, it is not possible 
to determine the desired characteristics of gas–liquid flow (and their variation with 
configuration, scale and operating parameters). Recent work (Ranade et al., 2001c) 
shows that it is possible to simulate trailing vortices and gas accumulated in these 
vortices using a two-fluid model. However, these models are not able to predict the 
cavity formation behind blades without becoming computationally too demanding. 
In order to address the reactor engineering issues of interest, it may be necessary to 
break the overall problem into sub-problems and again use an appropriate modeling 
approach for each sub-problem. For example, the complex problem of trailing vor
tices behind impeller blades and their interaction with bubbles may be simplified by 
studying vortices behind a single blade. Ranade and Deshpande (1999) modeled and 
simulated gas–liquid flow over a single impeller blade. They were able to predict 
the details of trailing vortices and the capture of gas bubbles within these vortices. 
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Rigby et al. (1997) also applied a CFD-based model to understand bubble break-up 
from ventilated cavities in gas–liquid reactors. Ranade et al. (2001d) used a volume of 
fluid (VOF) approach to understand cavity formation behind blades. Observations and 
insight gained through such studies may be used to develop appropriate sub-models, 
which can then be incorporated in a detailed reactor-engineering model. 

With appropriate validation (direct and indirect), detailed reactor engineering 
models can be used to screen and optimize reactor hardware. For most practical 
reactor engineering applications, validation of a computational model can be carried 
out only via indirect means. For single-phase, homogeneous flow applications it is 
often possible to use CFD models to optimize reactor hardware. For such applications, 
it is necessary to include species conservation equations in the mathematical model. 
The influence of species concentrations on fluid properties can easily be accounted for 
in such models. When reactions are slow compared to mixing, extension to include 
species conservation equations is straightforward. In such cases, CFD models can be 
used directly to simulate reactor performance and to evaluate the influence of design 
and operating parameters on reactor performance (Middleton et al., 1986; Brucato 
et al., 2000). When reactions are fast compared to mixing, special models to account 
for microscale segregation need to be developed (see Chapter 4 for more discussion 
on the modeling of mixing with fast reactions). Ranade (1993) described an example 
of the application of a CFD model (with a multi-environment micromixing model) to 
evaluate the influence of design and operating parameters of a stirred reactor on its 
performance. Some of his results are discussed here. 

Ranade (1993) considered the case of a semi-batch stirred reactor to carry out 
diazotization reactions. The underlying chemistry can be represented by classical 
series-parallel reactions: 

A + B → R B + R → S (10.14) 

The first reaction is extremely fast compared to the second reaction and compared to 
the expected mixing rate in stirred reactors. Reactions are carried out in a semi-batch 
mode with reactant B fed over a time tfeed to a reactor containing pure component A. 
Thus, if the added reactant B mixes instantaneously with A, a second reaction cannot 
take place. All the added B will be consumed in the first reaction (since B is a limiting 
reactant). If the mixing is not fast enough, all the added B will not be in contact with 
A and will have the opportunity to undergo a second reaction to produce component 
S. The yield of component S can therefore be considered as a measure of mixing: 
the more the yield of S, the poorer will be the mixing. The objectives of Ranade’s 
(1993) study were to establish relationships between reactor configuration (feed pipe 
location, scale) and operating parameters (impeller speed, feed flow rate) and reactor 
performance, that is, the yield of desired product, R. Since the physical properties of 
liquids were not strong functions of species concentrations and operation was prac
tically isothermal, it was possible to decouple the flow and reactive mixing models. 
In the first phase, a computational model was developed to predict detailed mean and 
turbulence characteristics of the stirred reactor equipped with a standard Rushton tur
bine. Since the feed pipes were located in such a way that most of the reaction zone lies 
outside impeller swept volume, a black box approach was conveniently used to gener
ate the desired results quickly. The predicted results were verified by comparing with 
the published data on flow generated by Rushton turbines. These results were then 
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used to simulate reactive mixing in stirred reactors. The multi-environment model of 
Ranade and Bourne (1991), which is discussed in Chapter 4, was used. Comparison 
of the predicted influence of feed location, impeller speed and reactant concentra
tions with experimental observations is shown in Fig. 10.31. It can be seen that the 
computational model correctly captures the influence of all of these parameters. The 
validated model was then used to select an appropriate feed location and other oper
ating conditions. It was further used to evaluate the possibility of using multiple feed 
inlets to enhance reactor capacity without reducing the yield of desired product R. 

Even if the feed location is near the impeller stream, higher feed flow rate leads 
to reduction in the yield of the desired product as shown in Fig. 10.31 (feed rate and 
therefore reactor capacity will be inversely proportional to the feed time, tfeed shown 
in this figure). A possible alternative to increase reactor capacity is to use multiple 
feed pipes at the same radial and axial locations to ensure the same levels of turbulence 
at all feed pipes. If multiple feed pipes can be used, reactor capacity can be enhanced 
without changing the feed rate through each feed pipe. However, it must be noted 
that feed introduction via multiple inlets may lead to deterioration of selectivity of the 
desired product if the reaction plumes emanating from different feed inlets interact 
with each other. The computational model was used to evaluate the idea of introducing 
feed through multiple inlets. The predicted results are shown in Fig. 10.32. It can be 
seen that, for feed location A, selectivity remains unaffected by an increase in the 
number of inlets, up to eight feed inlets. This means it is possible to reduce feed 
time or increase capacity by a factor of eight without affecting selectivity towards the 
desired product! Thus, the computational model can be applied to optimize reactor 
configurations if the necessary cost data is available. 

Computational models can be used for reactor engineering applications in a 
variety of other ways. Even for multiphase reactors, where direct verification of 
models is difficult, CFD-based models can be used to evaluate alternative reactor 
configurations and to characterize existing reactor hardware. Such characterizations 
or fluid dynamic audits of existing reactor hardware will be useful to identify the 
scope for potential improvement and ways of realizing this potential by evolving 
retrofit designs. Bakker and coworkers (Bakker et al., 1994a; 1994b; Fasano et al., 
1994) cited several examples of using CFD models to enhance the performance of 
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FIGURE 10.32 Influence of the number of feed inlets on selectivity (from Ranade, 1993). 

stirred reactors. For example, maps of volumetric mass transfer coefficients (kLa) for 
gas–liquid stirred reactors can be generated based on information about turbulence 
characteristics predicted using CFD models and empirical relationships between these 
characteristics and bubble diameters. Such maps are used to identify regions of high 
mass transfer rates and regions of high driving (for mass transfer) force (near feed 
pipe). It makes sense to provide the highest mass transfer rates in the region where 
concentration-driving force is also highest. Such a provision will be much more 
productive than the case where high mass transfer rates exist in a region of low 
concentration-driving force. Such models can therefore be used to select or to devise 
the best-suited reactor configuration to achieve the best mass transfer performance. 

CFD models will also be used to carry out scale-up and scale-down analysis, 
especially for non-geometric scale-up. In many reactor-engineering applications, it 
is necessary to carry out laboratory-scale or bench-scale experiments to understand 
the behavior of large-scale reactors. It is essential to undertake systematic scale-down 
analysis to ensure that small-scale experiments mimic key features of the large-scale 
system. More often than not, it is necessary to use a geometrically dissimilar system in 
order to mimic key features of a large-scale system. Scale-down and scale-up analysis 
using CFD models may prove to be very valuable in such an endeavor and will help 
to derive maximum benefit from the small-scale experiments. CFD models also allow 
extrapolation of cold flow results to actual operating conditions (high temperature and 
pressure) and provide tools to interpret and extrapolate small-scale experimental data. 
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Detailed characterization of flow generated by various impellers also leads to 
extremely useful information about the sensitivity of the impeller fluid dynamics to 
fabrication details, providing evidence for the well-known saying that ‘impellers, 
which look alike may not perform alike’. The insight gained via computational mod
els will lead to better reactor and process engineering. Creative analysis of CFD 
simulations may lead to new impeller designs. Ultimately, it may be possible to cre
ate ‘designer’ flow fields to ensure better reactor performance. In many situations, 
CFD models may be used to generate information which will be used by other sets of 
models. Compartment models or zones-in-loops models mentioned in Chapter 1 fall 
into such a category. With a combination of two or more different modeling tools, it 
is possible to derive useful engineering information. For example, recently Vivaldo
lima et al. (1998) developed combined CFD and compartment models to simulate 
a suspension polymerization reactor. They showed that the combined model could 
capture the key features of complex interactions of coalescence and break-up pro
cesses with polymerization reactions. Thus, judicious combinations of CFD models 
with other modeling tools may lead to realistic simulations of complex multiphase 
reactors. Use of computational flow models to understand basic phenomena and to 
simulate complex industrial reactors (using a hierarchy of modeling tools) establishes 
a link between reactor hardware (and operating protocols) and reactor performance 
and eventually leads to better reactor engineering. 

10.5. SUMMARY 

State of the art CFD models can be used to make a priori predictions of flow in stirred 
reactors, at least for homogeneous systems. Quasi-steady approaches (MRF or com
putational snapshot approach) look promising, in view of their a priori nature and 
low computational requirements. They can predict the flow generated by impellers 
of arbitrary shape and can predict interaction between multiple impellers. They can 
be extended to simulate multiphase flows as well. In general, predicted results show 
good agreement with experimental data. Important characteristic flow features around 
impeller blades are captured adequately. Careful numerical experiments using these 
CFD models can be used to better understand the characteristics of existing reactor 
hardware and to enhance performance. Even in the case of multiphase flows, where 
accurate quantitative predictions are difficult, computational models will be for qual
itative grading of different configurations, and can greatly assist engineering decision 
making process. 
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11

BUBBLE COLUMN REACTORS


The processes involving reactions between liquid and gas phases are technologically 
important in many industries. In a bubble column reactor, reactant gas itself (along 
with an inert gas, if present) provides the required stirring action. It offers an attrac
tive way to carry out gas–liquid and gas–liquid–solid reactions because of its simple 
construction and operation. However, because of the simple construction, bubble col
umn reactors also have an inherent limitation of having fewer degrees of freedom 
available to tailor performance characteristics. In a bubble column reactor, local flow, 
turbulence and gas hold-up distribution are interrelated in a complex way with the 
operating and design variables. Fluid dynamics of bubble columns may change con
siderably with variations in physicochemical properties and scale of operation. This 
causes problems in efficient design and scale-up of bubble column reactors and often 
results in oversizing of these reactors. Oversizing does not always reduce unreliabil
ity and may often cause additional problems concerning product quality and stable 
reactor operation at varying loads. Development of a detailed fluid dynamic model 
is therefore essential to understand of the complex interaction between multiphase 
fluid dynamics and the design and operating variables. Such a model can be used to 
reduce the number of experiments and to interpret the experimental results with more 
confidence. The detailed predicted flow field can give an accurate insight and may 
sometimes give information that cannot be obtained from experiments. This chapter 
reviews and discusses the application of computational fluid dynamics based models 
to bubble column reactors. 

327 
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11.1. ENGINEERING OF BUBBLE COLUMN REACTORS 

Several types of bubble column reactor are used in practice, some of which are 
shown in Fig. 11.1. As can be seen from this figure, several different modes of 
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FIGURE 11.1 Types of bubble column reactors (from Lee and Tsui, 1999). 
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TABLE 11.1 Some Applications of Bubble Column Reactors 

Process Reactants Main Products 

Oxidation ethylene, cumene, butane, 
toluene, xylene, ethylbenzene, 
acetaldehyde, cyclohexane, 
cyclohexene, n-paraffins, 
glucose 

vinyl acetate, phenol, acetone, 
methyl ethyl ketone, benzoic 
acid, phthalic acid, 
acetophenone, acetic acid, 
acetic anhydride cyclohexanol 
and cyclohexanone, adipic 
acid, sec-alcohols, glutonic 
acid 

Chlorinations 

Alkylation 

Hydroformylation 
Carbonylations 

Hydrogenation 

Gas to Liquid Fuels 

aliphatic hydrocarbons, 
aromatic hydrocarbons 

ethanol, propylene, benzene, 
tolune 

olefins 
methanol, ethanol 

benzene, adipic acid dinitrile, 
nitroaromatics, glucose, 
ammonium nitrate, 
unsaturated fatty acids 

F-T synthesis, methanol from 

chloroparaffins, chlorinated 
aromatics 

ethyl benzene, cumene, 
iso-butyl benzene 

aldehydes, alcohols 
acetic acid, acetic anhydride, 
propionic acid 

cyclohexane, hexamethylene 
diamine, amines, sorbitol, 
hydroxyl amines 

liquid fuels 

Coal Liquification 
Desulferization 
Aerobic 

syngas 
coal 
petroleum fractions 
molasses 

liquid fuels 
desulferized fractions 
ethanol 

Bio-Chemical 
Processes 

operation are possible for bubble column reactors. These bubble column reactors are 
also extensively used for gas–liquid–solid processes. Bubble column reactors provide 
excellent heat and mass transfer characteristics. Some of the important industrial 
applications are listed in Table 11.1. Similar to any reactor type, the engineering of 
bubble column reactors begins with the analysis of process requirements and evolving 
a preliminary configuration for the reactor. Before relating the process requirements 
and design of bubble column reactors, it will be useful to give a brief overview of 
the complex fluid dynamics of bubble columns. This will facilitate an appreciation 
of various design issues and the role of rigorous flow modeling in the design and 
scale-up of bubble column reactors. 

In a bubble column reactor, gas is sparged at the bottom of the liquid pool 
contained by the column. The net liquid flow may be co-current or counter-current to 
the gas flow direction or may be zero. Large varieties of spargers or gas distributors are 
used in industrial practice to introduce gas in bubble columns. Sparger design controls 
bubble size distribution in the bottom portion of the bubble columns. Spargers, like 
porous plates, generate uniform size bubbles and distribute the gas uniformly at the 
bottom of the liquid pool. For such spargers, when gas superficial velocity is small 
(less than 2 cm s−1), all the bubbles formed at the sparger rise almost vertically. Larger 
(>0.2 cm diameter) bubbles may rise with inherent oscillations. This flow regime is 
called homogeneous. In this flow regime, macroscopic internal liquid circulation does 
not exist. The presence of bubbles may generate turbulence and affect the transport 
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characteristics as described by Ranade and Joshi (1987). However, such an operating 
regime is unstable and even small perturbations can cause transition to a heterogeneous 
regime. 

In a heterogeneous regime, significant bubble–bubble interactions occur and 
coalescence sets in to generate a wider bubble size distribution. Long-time averag
ing indicates that gas bubbles move towards the column center while rising upwards. 
Experimental data reported by Yao et al. (1991), measured using an ultrasonic Doppler 
technique, clearly show radially inward motion of gas bubbles (in a time-averaged 
sense). Such an inward motion and strong interphase coupling results in non-uniform 
gas hold-up profile, with maximum at the column center. This leads to strong macro
scopic internal liquid circulation in the column with upflow in the central region and 
downflow in the near-wall region. Such internal re-circulation results in increased 
backmixing, which is one of the major drawbacks of bubble column reactors. Several 
internal designs like draft tubes, radial baffles etc. have been proposed to control the 
degree of backmixing in bubble column reactors. In recent years, inherently unsteady 
characteristics of gas-liquid flows in bubble columns have been studied (Chen et al., 
1994; Delnoij, 1999). These studies indicate that capturing the unsteady flow struc
tures may be essential for accurate description of mixing in bubble columns. Various 
factors such as type of sparger, column diameter, height to diameter ratio, physico
chemical properties, solid volume fraction (and other properties such as size and 
settling velocity) and operating conditions (pressure, temperature, and superficial 
velocities) affect the unsteady flow and mixing in bubble column reactors (Ranade 
and Utikar, 1999; Ranade and Tayalia, 2001). The presence of solid particles may 
further complicate the fluid dynamics of bubble columns. The fluid dynamic influence 
of solid particles depends on mean particle size, size distribution, particle density and 
solids volume fraction. The superficial gas velocity, resulting internal circulation, 
and solid particles interact in a complex way. In most design applications, empirical 
correlations and pilot-scale experiments on two or more scales are used to estab
lish the relationship between these adjustable design and operating parameters and 
self-adjusting fluid dynamics and mixing in various phases. 

A general procedure for the design and scale-up of reactors is discussed in 
Chapter 1. As discussed there, preliminary configurations are evolved on the basis of 
laboratory study and reactor models, which assume idealized fluid dynamics and mix
ing. Using idealized reactor models, various configurations and modes of operation 
are evaluated. In most industrial cases, this step itself may involve several iterations. 
The process of evolving a preliminary configuration helps to firm up performance 
targets for the reactor. Transformation of such a preliminary reactor configuration 
to an industrial reactor proceeds through several steps. Some of the relevant reactor 
engineering issues for bubble column reactors are summarized in Fig. 11.2. Some of 
these issues are discussed later, in Section 11.3. As discussed in Chapter 1, basic reac
tion engineering models based on approximations of the underlying fluid mechanics 
allow estimates of reactor size and reactor performance for different operating modes. 
Such studies are often used to select the type of reactor configuration and mode of 
operation (co-current/counter-current, upflow/downflow and so on). The influence 
of operating conditions on conversion and selectivity of the desired products can be 
examined using these reaction engineering models. These models are used to select 
feasible operating windows, and also to understand the sensitivity of reactor perfor
mance with a degree of backmixing, mass transfer coefficient, interfacial area, heat 
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FIGURE 11.2 Reactor engineering of bubble column reactors: relevant issues. 

transfer, operating regime and so on. Such studies are useful to quantify key desired 
fluid dynamic characteristics of the reactor. These models are, however, unable to 
predict the influence of actual hardware details, as all the fluid dynamic information 
used in these models is usually based on empirical correlations. 

Studies from reaction engineering models and basic process economics set the 
‘wish list’ of the reactor, which may read something like the following: reactor hard
ware should (1) operate in a churn-turbulent regime over the specific gas flow rate 
range; (2) provide a certain minimum volumetric mass transfer coefficient and certain 
minimum heat transfer coefficient; (3) provide a certain minimum heat transfer area; 
(4) provide radially and axially uniform gas distribution; (5) provide adequate mixing 
to ensure that mixing time is less than the specified time; (6) entrainment of liquid 
droplets with the escaping gas phase should be less than the specified mass flow rate; 
and so on. In order to address these issues, it is necessary to develop comprehensive 
fluid dynamic models. If it turns out that some of the demands cannot be met with real
istic reactor hardware, new iterations of studies with reaction engineering models are 
carried out, based on the information provided by the detailed fluid dynamics model 
of realistic reactor hardware. In some cases, it is possible to include detailed reaction 
engineering models within the CFD framework to develop a combined model. In 
some cases, for example, those involving very fast reactions, such combined models 
are mandatory for realistic simulations. However, even in other cases where it is usu
ally more efficient to keep reaction engineering models and detailed fluid dynamic 
models separate, significant exchange of information takes place between these two 
types of model (see examples discussed in Chapter 9). 

CFD-based models allow identification and quantification of the extent of 
non-idealities (such as bypass and channeling). These models also allow reliable 
extrapolation of results obtained on experimental and pilot scales. Apart from 
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providing inputs to reaction engineering models, detailed CFD models establish 
relationships between hardware configurations such as sparger, internal baffles or 
draft tubes and resulting fluid dynamics and, therefore, with reactor performance. 
More often than not, the development of reactor technologies relies on prior experi
ence. New reactor concepts are often sidelined due to lack of resources (experimental 
facilities, time, funding etc) to test them. Experimental studies have obvious lim
itations regarding the extent of parameter space that can be studied and regarding 
extrapolation beyond the studied parameter space. Computational flow models, which 
allow a priori predictions of the flow generated in a bubble column reactor of any 
configuration (different mode, spargers, internals) with just a knowledge of geometry 
and operating parameters, can make valuable contributions to developing new reactor 
technologies. 

The fluid dynamics of bubble column reactors is very complex and several differ
ent CFD models may have to be used to address critical reactor engineering issues. The 
application of various approaches to modeling dispersed multiphase flows, namely, 
Eulerian–Eulerian, Eulerian–Lagrangian and VOF approaches to simulate flow in a 
loop reactor, is discussed in Chapter 9 (Section 9.4). In this chapter, some examples 
of the application of these three approaches to simulating gas–liquid flow bubble 
columns are discussed. Before that, basic equations and boundary conditions used to 
simulate flow in bubble columns are briefly discussed. 

11.2. CFD-BASED MODELING OF BUBBLE COLUMN REACTORS 

Most flow models published before 1990 to predict the flow characteristics of the 
heterogeneous regime in a bubble column reactor were restricted to one-dimensional 
approximations (reviewed by Ranade, 1992). These models require experimental 
information about the radial gas hold-up profile and turbulent viscosity and, therefore, 
lack generality (Kumar et al., 1994). Application of a computational fluid dynamics 
(CFD) based approach is being increasingly adopted to predict the detailed fluid 
mechanics of bubble columns. In a bubble column reactor, gas is sparged at the 
bottom of the liquid pool, through which gas bubbles rise upwards. While rising, these 
gas bubbles may interact with each other and may generate complex, re-circulating 
turbulent flow. The resulting flow is characterized by many distinct flow structures of 
various length scales (from tiny vortices shed by the bubble to macroscopic circulation 
covering the whole reactor). 

Depending on the required resolution, various approaches to modeling dispersed 
multiphase flows have been developed. For example, when it is essential to resolve 
small-scale fluid dynamics around individual bubbles, it is necessary to use a vol
ume of fluid (VOF) approach. With VOF, it is possible to resolve small-scale vortices 
behind bubbles, bubble–bubble interactions (coalescence/breakup) and mass and heat 
transfer between bubbles and surrounding liquid. These simulations can, therefore, 
be used to predict mass transfer coefficients and other interphase exchange terms. 
However, application of VOF is usually restricted to simulations of a few bubbles due 
to the huge computational requirements. If it is reasonable to model the small-scale 
flow around individual bubbles using lumped parameters such as drag coefficient or 
mass transfer coefficient, but it is necessary to simulate trajectories of individual bub
bles, a Eulerian–Lagrangian approach needs to be used. This approach allows one to 
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simulate bubble-scale phenomena accurately. However, it becomes computationally 
too demanding if millions of bubbles (which may exist in any typical industrial bubble 
column reactor) need to be simulated over a long period of time. For such cases, it is 
necessary to use a Eulerian–Eulerian approach, which invokes extensive modeling to 
simulate the behavior of gas–liquid dispersions with high gas volume fractions. As 
in most industrial applications of bubble column reactors, dispersed phase hold-up is 
not small (and often the dispersed phase is introduced through a distributed sparger 
rather than a single nozzle), a Eulerian–Eulerian approach will be most suitable and, 
therefore, it is discussed in more detail here. 

11.2.1. Eulerian–Eulerian Approach 

Most earlier attempts at understanding and modeling the fluid dynamics of bubble 
columns were aimed at characterizing the flow with the help of one or two charac
teristic parameters (circulation velocity and/or average turbulent intensity) (see, for 
example, the widely cited paper of Joshi and Sharma, 1979). Recent advances in 
computational fluid dynamics encouraged vigorous application of CFD to modeling 
flow in bubble columns. Professor Svendsen and coworkers (Torvik and Svendsen, 
1990; Svendsen et al., 1992) and Professor Hofmann and coworkers (Grienberger 
and Hofmann, 1992; Hillmer et al., 1994) published initial results of such CFD 
approaches, apart from Ranade (1992; 1993a). Jakobsen et al. (1997) and Delnoij 
(1999), among others, have reviewed some of the recent modeling attempts. Model 
equations, their application to the simulation of flow in bubble columns and a brief 
review of recent simulations of bubble columns using a Eulerian–Eulerian approach 
are discussed in this section. 

Model equations 

Generally a two-fluid approach is used to derive governing continuity and momentum 
transport equations (discussed in Chapter 4) for dispersed multiphase flows. Invari
ably, some kind of averaging method needs to be employed to derive these governing 
equations. Several different averaging methods are used (Drew, 1983; Ahmadi, 1987; 
Besnard and Harlow, 1988; Lahey and Drew, 1989). Because a variety of flow struc
tures co-exist in bubble columns, it will be useful to make some comments on the 
relationship between the averaging method, governing equations, fluid dynamics of 
bubble columns and possible simulated results. The starting point for the derivation 
of governing equations is definition of a control volume. To simulate dispersed mul
tiphase flows, careful definition of the control volume will provide guidance for the 
interpretation of simulated results. 

If the considered control volume size is smaller than the dispersed phase particle, 
it will be necessary to track the gas–liquid interface as is done in the VOF approach. 
In the Eulerian–Eulerian approach, control volume is assumed to be large enough 
to define local phase volume fractions. For a meaningful definition of phase volume 
fractions in a control volume, control volume should be large enough to contain 
a sufficiently large number of dispersed phase particles. In bubble columns, when 
there is a wide bubble size distribution, control volume should be large enough to 
contain a sufficiently large number of the biggest size bubbles. The mean values of 
different variables of interest are then defined on the basis of such a control volume. 



334 CHAPTER 11 BUBBLE COLUMN REACTORS 

Obviously, approximations employed for the terms comprising deviations from mean 
values and the resulting equations will depend on the assumed size of the control 
volume. When developing model equations by considering such a large (with respect 
to bubble size) control volume, all the small-scale (of the order of bubble size) flow 
structures need to be modeled. The small-scale flow around individual bubbles and 
its effects are generally modeled by introducing interphase coupling terms in the 
governing equations, defined in terms of flow properties averaged over control volume 
(and its faces). Small-scale turbulence is also modeled using an appropriate turbulence 
model. It is important to note here, that there is no relationship between size of control 
volume assumed when deriving the governing equations and size of computational 
cells used to solve these governing equations numerically. Size of the assumed control 
volume affects the terms appearing in the governing equations. Once the governing 
equations are derived (modeled), their numerical solution can be carried out using a 
computational grid of any size to ensure grid independence. 

In bubble columns, the flow is inherently unsteady. Significant flow structures, 
which are larger than the typical bubble size but smaller than column diameter, exist 
in the column. Such structures are clearly evident in visualizations of flow in bubble 
columns (Chen et al., 1994). If it is intended to resolve these unsteady structures, 
model equations should be based on a control volume larger than the bubbles but 
smaller than the characteristic scale of such internal flow structures. If it is sufficient 
to simulate only the long-time averaged flow, even larger control volumes (larger 
than the characteristic scales of internal flow structures) may be used. In such a case, 
additional terms, representing the influence of transient internal structures, will appear 
in the model equations. Two recent modeling studies based on these two options are 
discussed briefly below. 

Recently, Pfleger et al. (1999) simulated gas–liquid flow in an apparent two-
dimensional bubble column. The expected bubble size in the system investigated 
by these authors is 2 to 5 mm. The governing equations were derived by assuming 
control volumes larger than gas bubbles but smaller than the expected size of the 
internal circulation cells. The local flow around individual bubbles was modeled using 
appropriate interphase coupling terms. The resulting model equations were solved 
using different sizes of computational cells. Small-scale turbulence was modeled 
using a standard k–ε turbulence model (with and without dispersion). Their results 
indicate that results obtained with a computational cell volume of about 0.1 cm3 

(which is of the same order as bubble volume) are almost grid independent and agree 
quite well with experimental data. Samples of their results are shown in Fig. 11.3a 
(time averaged) and 11.3b (transients). Long-term averaging of these simulated results 
shows the well-known flow pattern with upward motion at the column center. In 
addition to correct prediction of time-averaged results, their model was also able to 
adequately capture inherently transient oscillations of the bubble plume. The standard 
k–ε turbulence model was found to capture the inherent dynamics of gas–liquid flows 
in bubble columns. 

While deriving the time-averaged governing equations, if the characteristic time 
scale is defined to be larger than the characteristic time scales of local circulation cells, 
additional terms representing the influence of inherently unsteady circulation cells 
on the long-time averaged flow pattern will appear in the governing equations. For 
example, Ranade (1997) introduced two additional terms in the momentum transport 
equations to simulate long-time-averaged effects: one to account for the effect of 
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FIGURE 11.3 Simulated results for rectangular 2D bubble column (from Pfleger et al., 1999) (a) Time-averaged results, (b) transient results. 
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FIGURE 11.4 Simulations of time-averaged flow in bubble columns (from Ranade, 1997). Compar
ison with experimental data of (a) Grienberger and Hofmann (1992): VG = 0.02 ms−1, and (b) Menzel 
et al. (1990): VG = 0.024 ms−1 . 

column wall and the other to account for the effect of bubble wakes. If the influence of 
local circulation cells is appropriately included in the model equations, no matter how 
small the computational cells used to solve the resulting equations, local circulation 
cells will not appear in the simulation results and the solution will directly predict 
the long-time-averaged flow pattern. Some results reported by Ranade (1997) are 
shown in Fig. 11.4, and show good agreement between experimentally measured 
time-averaged flow characteristics and simulated results. Whether it is necessary to 
capture inherently unsteady local circulation cells, or it is sufficient to predict long-
time-averaged results, depends on the objective at hand. Care must be taken to use 
appropriate assumptions and derive appropriate model equations to suit the objectives 
under consideration. Once the model equations are derived, the user must ensure that 
simulated results are not grid dependent. With these comments, we describe here 
governing equations for turbulent gas–liquid flows, derived using a control volume 
larger than the bubbles, which are able to capture inherently unsteady local circulation 
cells. 

The time-averaged mass conservation equation can be written: 

∂ ∂ 
(ρk αk ) + (ρk αkVki + ρk αkvki) = 0 (11.1)

∂t ∂xj 

where ρk is the density of phase k, αk is the volume fraction of phase k and Vki is the 
mean velocity of phase k in direction i. The second term and third term represent 
the convective mass transport and the turbulent diffusive mass transport, respectively. 
The time-averaged momentum equation can be written: 

∂ ∂
(ρk αkVkiVkj ) = −αk 

∂p ∂p′ 
(ρk αkVki) + − αk + ρk αkgi + Fki


∂t ∂xj ∂xi ∂xi


∂ − ρk αkvkivkj + Vkivkjαk 
′ + Vkjvki α

′ 
k∂xj 

+ (viscous shear terms) (11.2) 

where Fki represents all the interphase coupling terms except pressure. vki, p
and α′ indicate fluctuating components of velocity, pressure and volume fraction, 
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respectively. It should be noted that pressure, p, is regarded as being ‘shared’ by both 
phases and therefore it appears in the transport equations of both phases. Formulation 
of the pressure term has occasioned some uncertainty (Spalding, 1978) and it is some
times thought that different pressures ‘ought’ to be provided for each phase. Pressure 
inside an individual bubble is related to the pressure of the continuous phase via 
surface tension and bubble radius. However, this pressure inside the bubble has no 
relation to the flow of dispersed phase particles and is, therefore, irrelevant for the 
description of flow equations (Rietema and van den Akker, 1983). Pressure at the 
gas–liquid interface can be assumed to be equal to the liquid phase pressure since 
equations are spatially averaged over a control volume larger than individual bubbles 
(Johansen, 1988). For most reactor engineering situations, where speed of sound in 
each phase is large compared to velocities of interest, an assumption of microscopic 
pressure equilibration is adequate (Spalding, 1978; Drew, 1983). 

Interphase coupling terms make two-phase flows fundamentally different from 
single-phase flows. Formulation of these terms, Fki, must proceed carefully, with 
attention being paid to force balance for a single bubble and to any possible 
inconsistencies. Interphase coupling terms must satisfy the following relation: 

F1i = −F2i (11.3) 

where subscript 1 and 2 denote liquid and gas (dispersed) phase, respectively. For 
dispersed two-phase flows, there are at least two transient forces acting at the interface 
in addition to the standard drag force, namely virtual mass force arising from the inertia 
effect (Ishii and Zuber, 1979; Auton, 1983; Cook and Harlow, 1986) and Basset force 
due to the development of a boundary layer around a bubble (Basset, 1888). In 
addition to this, transversal lift force, created by gradients in relative velocity across 
the bubble diameter, may also act on the bubble (Thomas et al., 1983). Time averaging 
of interphase coupling terms is tedious and involves several unknown correlations, 
which need to be modeled. Neglecting all third-order correlations and all correlations 
involving gradients of a fluctuating quantity, Johansen (1988) derived an expression 
for the time-averaged interphase coupling term (with an assumption of low volume 
fraction for the dispersed phase), which is given below: 

3 ρ2CDB
F1i = α1|V2i − V1i| +  2α1

′ (v2i − v1i) (V2i − V1i)
4 dB } ∂V2i ∂V1i + α1 × v1i − 2v1iv2i + v22

2i + fV ρ2 α1(V2j − V1j ) + 〈〉i 
∂xj ∂xj ∫ t6µ ∂V2i ∂V1i 〈〉i + fB V2j − V1j + 

[π v(t − t′)]1/2 
dt′ 

dB 0 ∂xj ∂xj 

+ fL ρ2εmliεrsl α1(V2m − V1m) + α1
′ (v2m − v1m) 

] ∂V2s (11.4)
∂xr 

Where εrsl is the Levi-Cevita tensor and 

∂V2i ∂V1i〈〉i = α1
′ v2j − (11.5)

∂xi ∂xj 

The terms on the right-hand side of Eq. (11.4) correspond to interphase drag force, 
virtual mass force, Basset force and lift force, respectively. fL is a transversal lift 
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coefficient and is about 0.5 for potential flows and spherical particles (Drew et al., 
1979). fB is a Basset force coefficient. For low volume fractions of dispersed phase, 
its value is about 1.5. fV is a virtual mass coefficient. The numerical value of fV is 
generally shape dependent: for rigid, spherical solid particles, it is reported as 0.5 
(Maxey and Riley, 1983). For bubbles in water, Cook and Harlow (1986) used a value 
of fV = 0.25. CDB is a drag coefficient, which will be a function of bubble Reynolds 
number, which should be based on the resultant slip velocity between two phases. 

It must be noted that the Basset history term will be significant only for the 
simulation of unsteady flows. An order of magnitude analysis presented by Hunt 
et al. (1987) suggests that, for large bubble columns (D > 0.15 m), where square 
of the terminal rise velocity of the bubble would be smaller than the product of the 
gravitational constant and the characteristics length scale, the interphase coupling 
term will be dominated by the drag force term. Various correlations are available to 
estimate the value of drag coefficient for the dispersed phase particles (Clift et al., 
1978; Ranade and Joshi, 1987). For the commonly encountered range of bubble 
Reynolds numbers, that is, 500 < ReB < 5000, the following correlation may be 
used to estimate the drag coefficient (Clift et al., 1978): 

gρ d2 

CDB = 
0.622 ∵ Eo = B (11.6)

0.235 + (1/Eo) σ 

For an air–water system, terminal rise velocity of bubbles is not very sensitive to bub
ble diameter. Therefore, for bubbles with diameters in the range 3 to 8 mm, the ratio 
of drag coefficient to the bubble diameter (CDB/dB) can be considered as approxi
mately constant. Ranade (1997) carried out simulations by setting the ratio of drag 
coefficient to bubble diameter (CDB/dB) equal to 290 m−1. 

For the swarm of bubbles, it is necessary to modify this equation to account 
for the interaction between bubbles and bubble wakes. Measurements by Tsuji et al. 
(1984) for two spheres in the Reynolds number range 100 to 200 can be expressed as 

dB 
)2 

CDB = CDB0 1 − (11.7)
LB 

where LB is the distance between centers’ of two moving spheres (which can be 
related to the volume fraction of dispersed phase) and CDB0 is the drag coefficient of 
an isolated bubble. In many cases, it is difficult to estimate the influence of the presence 
of other bubbles on the interphase drag coefficient under operating conditions. In such 
cases, it is often beneficial to use empirical information about the velocity of bubble 
swarms to back-calculate the interphase drag coefficient: 

4ρ gdB
CD = 

3ρLV 2 (11.8) 
b 

where Vb is effective bubble velocity in a swarm. For the swarm of large bubbles, 
Krishna et al. (1999) measured rise velocity and proposed the following correlation: 

Vb = Vb∞(2.25 + 4.09UG) (11.9) 
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where UG is superficial gas velocity (ms−1) and Vb∞ is the rise velocity of a single 
bubble. This expression is recommended to estimate the drag coefficient of large 
bubbles in swarms. 

It must be noted that although Eq. (11.4) describes the time-averaged form of 
interphase coupling terms, how turbulence (and dispersed phase volume fraction) 
affect several empirical coefficients appearing in this expression, is seldom known. 
(Note that, fortunately, influences of higher turbulence and higher volume fraction 
of dispersed phase on interphase drag coefficient are opposite to each other.) In the 
absence of quantitative information, it is not really meaningful to rigorously include 
various terms appearing in the interphase coupling forces due to time averaging. 
In most cases, therefore, only those terms containing mean values of variables are 
retained and all other effects are lumped by suitably modifying values of empirical 
coefficients appearing in this equation. Unfortunately, no systematic data or study is 
available to independently validate values of empirical coefficients used in practice. 
Such an effort is essential to make further progress in modeling interphase coupling 
terms. When turbulence effects are neglected and interphase drag force dominates the 
overall interphase coupling terms, the interphase coupling term can be written (for 
multidimensional flows): 

3α1α2ρ1CDB (V2j − V2i)
2
)1/2 

(V2i − V1i)
FD2i = −  (11.10) 

4dB 

It also must be kept in mind that all consistent two-phase momentum equations should 
reduce to single-phase equations if there is no slip between the two phases or the 
volume fraction of dispersed phase is zero. 

Apart from interphase coupling terms, time-averaged transport equations demon
strate the effects of turbulence via various higher order and unknown terms. The 
viscous shear terms normally can be neglected in comparison with the turbulent shear 
terms. For closure of time-averaged transport equations, the concept of eddy vis
cosity is generally employed. Velocity correlations (Reynolds stresses) are generally 
modeled following the practice of single-phase flows: 

2 ∂Vkl 
vkivkj = −νt 

∂Vki + 
∂Vkj + δij k + νt (11.11)

∂xj ∂xi 3 dxl 

where δij is the Kronecker delta and νt is the kinematic turbulent viscosity. Johansen 
(1988) reported an alternative route to anisotropic modeling of these velocity corre
lations. The form reported in Eq. (11.11), however, is most commonly used. Several 
authors proposed empirical formulae to estimate effective turbulent viscosity (Sato 
et al., 1981; Salcudean et al., 1985; Clark et al., 1987). Most of these formulae, 
however, prescribe a unique value of turbulent viscosity for the entire reactor and, 
therefore, fail to account for its spatial variation. To account for this variation, the 
desired turbulence model should be able to predict turbulence length and velocity scale 
correctly. Two-equation turbulence models are the simplest models that promise suc
cess for flows in which length scale cannot be prescribed empirically. Among the 
various two-equation turbulence models, the k–ε model is the most widely tested 
and used. With this model, turbulence viscosity is related to local values of turbulent 
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kinetic energy, k and the rate of turbulent energy dissipation, ε in that phase: 

Cµk2 

νt = (11.12)
ε 

The above equation has been proposed for single-phase flows. The interaction of 
various turbulence length scales may affect the validity of this equation or values of 
parameters for two-phase flows. Lahey (1987) proposed a correlation of Cµ in terms 
of gas hold-up. However, his correlation is valid only for small diameter tubes with 
large liquid throughput. For large diameter columns, with low liquid throughput, no 
systematic study is available. Therefore, following general practice, the same value 
of Cµ may be used as that for single-phase flows (0.09). 

The correlation between fluctuating velocity and hold-up is modeled using a 
gradient transport approximation as: 

νt ∂αk 
′ 

vkiα
′ 
ki = −  (11.13)

σG ∂xi 

where σG is the turbulent Schmidt number for the gas bubbles. Simple gradient trans
port is strictly valid only when the size of energy-containing eddies is much smaller 
than the distance over which the volume fraction gradient varies appreciably. More 
general formulations are available (Lumley, 1975; Elghobashi and Abou-Arab, 1983), 
when this condition is not satisfied. The value of turbulent Schmidt number for bub
bles will, in principle, depend on bubble size and scale of turbulence. Turbulent eddies 
smaller than bubble size will not contribute to the bubble dispersion. However, no 
systematic data or theory is available to quantitatively estimate the values of turbulent 
Schmidt number for gas bubbles. Recently, Ranade and Mashelkar (1993) attempted 
to subtract the effect of eddies from a particular range of length scales from the over
all turbulent transport. A similar model may be able to predict the value of Schmidt 
number for a given bubble size. At this stage, however, the general practice is to set 
the value of turbulent Schmidt number to unity. 

The pressure coupling term has the same magnitude but opposite sign in con
tinuous and dispersed phase momentum equations. This term, therefore, implies a 
transfer of momentum between the two phases. Elghobashi and Abou-Arab (1983) 
developed a closure approximation for the correlation of fluctuating volume fraction 
and fluctuating pressure. However, values of the constants appearing in their model 
are known only approximately due to lack of relevant experimental data. In this situa
tion, an approximation derived by Johansen (1988) may be used to represent pressure 
coupling term: 

∂p′ ∂ 
αk 

′ = −ρk αk 
′ vkj 

∂Vki − ρkVkj αk 
′ vki (11.14)

∂xi ∂xj ∂xj 

Modeling of correlations of fluctuating volume fraction and fluctuating velocity 
appearing in this equation have already been discussed. 

In order to close the set of modeled transport equations, it is necessary to estimate 
turbulent viscosity or if the k–ε model is used, the turbulent kinetic energy, k and 
turbulent energy dissipation rate, ε. The modeled forms of the liquid phase k and ε 
transport equations can be written in the following general format (subscript 1 denotes 



( ) 

( ) 

341 CFD-BASED MODELING OF BUBBLE COLUMN REACTORS 

the continuous phase): 

∂ ∂ ∂ νt ∂φ  
(α1φ) + (α1Vkiφ) = α1 + Sφ (11.15)

∂t ∂xi ∂xi σφ ∂xi 

where φ can be either k or ε, and σφ is the model parameter describing turbulence 
dispersion of φ. The corresponding source terms for k and ε can be written as: 

Sk = α1[(G + Ge) − ε] (11.16) 

ε 
Sε = α1 [C1(G + Ge) − C2ε] (11.17)

k 

where C1 and C2 are model parameters of the k–ε model. The general practice is to 
use the same values of these parameters as proposed for single-phase flows (Launder 
and Spalding, 1972) used to estimate turbulence in two-phase flows (these values are 
listed in Table 3.1). G is turbulence generation based on the single-phase mechanism 
and Ge is an extra turbulence generation due to the presence of dispersed phase. The 
turbulent generation term, G, is given by: 

∂V1i
G = −v1iv1j (11.18)

∂xj 

Correlation of fluctuating velocities appearing in this expression is modeled using 
Eq. (11.11). Extra turbulence generation Ge can be modeled in different ways. 
Johansen (1988) modeled it as 

∂V2i
Ge = −ρ2α1v2igi − fVρ2α1v2iv2j (11.19)

∂xj 

where fV is a virtual mass coefficient. Svendsen et al. (1992) related the extra 
turbulence generation with the interphase drag force: 

(∑ )1/2 
(V2i − V1i)

2Ge = CbFDres (11.20) 

where Cb is an empirical constant. Kataoka et al. (1992) carried out a detailed analysis 
of these extra terms in the source of turbulent kinetic energy. Their analysis suggests 
that the extra generation of turbulence due to large bubbles (represented by Eq. 11.20) 
is almost compensated by the extra dissipation due to the small-scale interfacial struc
tures. Based on comparison of predicted turbulent kinetic energy with experimental 
data, published computational studies also indicate that the value of parameter Cb is 
almost zero (Ranade, 1997), which indirectly confirms the analysis of Kataoka et al. 
(1992). Before we discuss some published results, it is essential to discuss special 
boundary conditions required to simulate flow in bubble columns. 

Application of model equations to simulate flow in bubble columns 

The first step in the application of model equations to simulate flow in a bubble 
column is to select an appropriate solution domain and formulate corresponding 
boundary conditions. Consider a typical bubble column configuration, where gas is 
introduced in a plenum below the sparger (Fig. 11.5). Figure 11.5 shows semi-batch 
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FIGURE 11.5 Outline of two-dimensional bubble column. 

operation. The gas pressure in the plenum is sufficient to support the liquid head 
above the sparger and to maintain the required gas flow through the pool of liquid. 
Higher plenum pressure prevents liquid from weeping through the sparger. As gas 
is introduced in the column, gas bubbles rise through the liquid pool and raise the 
liquid level in the column. Gas bubbles burst at the gas–liquid interface, and is shown 
schematically in Fig. 11.6. Bursting bubbles may throw some liquid droplets into 
the overhead space. Depending on the gas flow rate, droplet size (settling velocity) 
and overhead space, these droplets may or may not escape the column from the top 
opening. If there is a net liquid flow, a gas–liquid separator needs to be configured 
at the top region of the column. One has now to select a suitable solution domain 
and formulate appropriate boundary conditions to translate this physical picture into 
a mathematical framework. 

Generally, the gas pressure in the plenum is assumed to be uniform and plenum is 
not considered in the solution domain. The region above the sparger is considered to 
be within the solution domain. In most published simulations, the sparger is assumed 
to distribute the gas uniformly through the sparger region and was modeled as an inlet. 
To model the sparger as a velocity inlet, it is necessary to specify the velocity and 
volume fraction at the inlet boundary. Since the gas volume fraction below the sparger 
is unity, it is tempting to specify gas volume fraction at the sparger boundary as unity, 
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(a) (b) (c) 

(d) (e) 

FIGURE 11.6 Schematic diagram of bubble bursting at the interface (from Newitt et al., 1954). 

and to specify gas phase velocity so as to ensure the desired net gas flow. However, 
it must be remembered that gas enters the solution domain in the form of bubbles, 
which rise with a velocity different than the superficial gas velocity. It is therefore 
advantageous to set the gas velocity at the sparger inlet equal to the estimated bubble 
rise velocity. The volume fraction at the inlet can then be specified in a way that 
ensures the desired net gas flow. Thus, if the sparger is assumed to distribute gas 
uniformly, the boundary conditions can be written as: 

〈UG〉 
VG = Vb∞ αG = (11.21)

VG 

where 〈UG〉 is superficial gas velocity over the sparged area. For special sparger 
configurations such as ring spargers, a similar approach can be used by considering 
appropriate sparger area in the computational grid. When sparger type and resistance 
is not adequate to ensure uniform distribution, it will be necessary to include a sparger 
model in the overall flow model in order to account for non-uniform gas sparging at 
the sparger. Ranade (1993b) developed a simple model to simulate non-uniform gas 
sparging. In this model, the gas velocity through any location in the sparged area 
is assumed to be a function of pressure drop across the sparger at that location. 
The plenum pressure (pressure below the sparger) can be assumed to be uniform. 
The pressure above the sparger, p0, is the sum of the overhead pressure, ptop, and 
hydrostatic head above the sparger. Thus, the pressure balance across the sparger can 
be written: 

∫ H 

pS − p0 = kLVG + kTV 2 ∵ p0 = ptop + (ρL αL + ρG αG)g dz  (11.22)G 
0 

where kL and kT are characteristic laminar and turbulent resistance coefficients of the 
sparger, and pS is the pressure below the sparger (plenum pressure). 

For column walls, which are impermeable to fluids, standard wall boundary 
conditions may be specified. Whether the full column should be considered in the 
solution domain or symmetry or other boundary conditions may be invoked to reduce 
the extent of the solution domain, essentially depends on the objective and the pro
posed mathematical model. If the interest is in estimating long-time-averaged flow 
characteristics (as done by Ranade, 1997), invoking symmetry is often useful and 
can facilitate rapid results. However, when the interest is in capturing inherently 
unsteady flow characteristics, which are not symmetrical, it is essential to consider 
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the whole column as the solution domain (as done by Ranade and Tayalia, 2001). 
Overall flow can be modeled using an axis-symmetric assumption, if and only if, 
the governing equations are derived in such a way as to represent the influence of 
local dynamic flow structures on time-averaged flow via additional terms. Ranade 
(1997) developed such a model based on two empirical coefficients to simulate long-
term-averaged flow patterns. The two parameters were estimated from a data set of 
Yao et al. (1991). The same values of these parameters were used for subsequent 
simulations. Results show good agreement between predicted results and long-time-
averaged experimental results of Hillmer et al. (1994), Grienberger and Hofmann 
(1992), Menzel et al. (1990) and Hills (1974). However, when the objective is to 
simulate inherently unsteady flow, which is asymmetric, it will be necessary to avoid 
imposing symmetry boundary condition. For a two-dimensional column, therefore, 
it will be necessary to consider the whole domain. For three-dimensional cylindrical 
columns, either a body-fitted grid should be used, which will avoid specification of 
boundary condition at the axis, or conventional axis boundary conditions should be 
modified to allow flow through the axis (the value of any variable at the axis location 
is set to average of all the computational cells surrounding it). 

Boundary conditions for the top horizontal surface of the bubble column requires 
special attention. Following the experimental practice of keeping the height of the 
gas–liquid dispersion smaller than actual column height, the top surface of the column 
can be modeled as an outlet for gas and liquid phase. It is expected that the solution of 
the model equations will determine the height of the gas–liquid dispersion and only 
gas will exit from the inlet. In other words, it is expected that the model will predict 
a gas volume fraction of unity above the gas–liquid interface. Such an approach, 
however, has to ensure that the governing equations are capable of handling change 
in the prevailing continuous phase (liquid below the gas–liquid dispersion height and 
gas above it). This is seldom done and despite this, solution of the conventional two-
fluid model using the top surface as an outlet is attempted. As expected, such an 
attempt always leads to non-physical velocity values at the region of the gas–liquid 
interface and encounters severe convergence difficulties. In many cases with high 
superficial gas velocity, the liquid mass of the column is lifted out of the column. In 
order to enhance convergence behavior, Padial et al. (2000) used a smoothly varying 
continuous phase density across the gas–liquid interface: 

1 2 αG − 1 

ρC = ρL + ρG − (ρL − ρG) tanh 2 (11.23)
2 αG (1 − αG) 

Such an empirically adjusted smooth profile of continuous phase density helps to 
maintain a fairly stable interface. Some fraction of the liquid, however, may still 
escape the column during initial phases of solution development. 

In most reactor engineering applications, it may not be necessary to include the 
gas–liquid interface in the solution domain. In an alternative approach, the solution 
domain is restricted to the height of gas–liquid dispersion. Of course, an exact value 
of dispersion height is not known a priori. However, in most cases, overall gas volume 
fractions and therefore, height of the gas–liquid dispersion can be estimated. Even 
if there is 40% error in the prediction of overall gas volume fraction, it will result 
in only 10% error in the estimation of height of gas–liquid dispersion, if the volume 
fraction is about 25%. Except for very shallow bubble columns, fluid dynamics is not 



345 CFD-BASED MODELING OF BUBBLE COLUMN REACTORS 

sensitive to the 10% error in the height of gas–liquid dispersion. Thus, it is always 
possible to estimate a reasonable solution domain height to model gas–liquid flows 
in bubble columns. The top surface of the solution domain may then be assumed to 
coincide with the free surface of dispersion. This free surface may or may not be 
assumed to be flat. The normal liquid phase velocity, the tangential shear stress and 
the normal fluxes k, ε and φ are set to zero at the free surface. The gas bubbles are 
free to escape from the top surface. If source code is accessible, one can modify 
the code to implement these boundary conditions. In most commercial CFD codes, 
user-defined routines with options such as ‘patch boundary conditions’ may be used 
to implement this boundary condition. When direct implementation is not possible, 
Ranade (1998, 2000) proposed two approximate alternatives. 

In the first alternative, if the terminal rise velocity of gas bubbles is known (or can 
be estimated with confidence), the top surface of the dispersion may be defined as an 
‘inlet’. Normal liquid velocity may be set to zero while normal gas velocity may be 
set to terminal rise velocity. The implicit assumption here is that gas bubbles escape 
the dispersion with terminal rise velocity. It should be noted that even after defining 
the top surface as an inlet, gas volume fraction at the top surface is a free variable. 
There is no implicit forcing of gas volume fraction distribution. Alternatively, the top 
surface of the dispersion can be modeled as a no shear wall. This will automatically 
set normal liquid velocity to zero. It will also set normal gas velocity to zero. In 
order to represent escaping gas bubbles, an appropriate sink may be defined for all 
the computational cells attached to the top surface (Figure 11.7): 

SG = −ABαGBWGBρG (11.24) 

where AB is the area of the bottom surface of the computational cell attached to the 
top surface, WGB and αGB are the normal velocity of gas bubbles and gas volume 
fraction of the computational cells lying below the computational cell attached to the 
top surface. Such formulations of top surface avoid handling sharp gradients of gas 
volume fractions at the gas–liquid interface and are much more stable numerically. 

To illustrate application of the Eulerian–Eulerian approach, some results of two-
dimensional bubble columns are discussed here. Three-dimensional bubble columns 
and other reactor engineering applications are discussed in Section 11.3. 

No shear 

Gas–liquid 
Interface 

WGB 

α GB 

computational 
cells 

wall 

Top row of 

Define sink for gas
 phase at the top row
 using Eq. (11.24) 

FIGURE 11.7 Top boundary condition for bubble column reactor. 
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Brief review of recent simulations of bubble columns 

Rigorous experimental data is available for apparently two-dimensional bubble 
columns (Becker et al., 1994, 1999). It is, therefore, useful to simulate the fluid 
dynamics of such a column to validate the underlying mathematical model. Pfleger 
et al. (1999) recently reported comparison of their simulated results with experimen
tal data (Fig. 11.3). Sokolichin and Eigenberger (1999) also reported good agreement 
between predicted results and experimental data. To illustrate such simulations, we 
reproduce some of the results obtained by Ranade (2000). He simulated gas–liquid 
flow in a two-dimensional bubble column (0.2 m width, 0.45 m dispersion height 
and 0.04 m depth) having the same geometrical column configuration as used in the 
experiments by Becker et al. (1999). A solution domain and computational grid 
(51 × 90 × 11 computational cells for width × height × depth) is shown in Fig. 11.8. 
A two-fluid model was used to simulate gas–liquid flow in such a column. A standard 
k–ε model was used to simulate turbulence. A QUICK discretization scheme was 
used with a SUPERBEE limiter functions (see Chapter 6 for more details on dis
cretization schemes). Modeled interphase coupling terms comprised drag force and 
virtual mass terms. For estimation of drag coefficient, a correlation of Schiller and 
Naumann (1935) was used. Governing equations were solved in a transient manner 
with a time step of 0.008 s. For each time step, 100 internal iterations were carried 

inlet) 

Gas inlet 

Gas outlet 
(modeled as 

FIGURE 11.8 Solution domain and grid. 
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FIGURE 11.9 Predicted flow field, Top: liquid phase; Bottom: gas phase (from Ranade, 2000). 

out. This number of internal iterations was sufficient to ensure an adequate degree of 
convergence of all the equations. Further refinement of time step did not affect the 
simulation results significantly. 

Simulation results clearly showed the inherently unsteady flow characteristics of 
gas–liquid flows. The predicted instantaneous flow field is shown in Figs 11.9 and 
11.10 at three different planes. It can be seen that gas bubbles rise in the column in a 
meandering way. Experiments by Becker et al. (1999) indicate that the bubble swarm 
moves laterally with a period of about 16 s. Eulerian–Eulerian simulations carried out 
by Ranade (2000) also show a meandering effect. The time history of the simulated 
velocity field at four locations within the column clearly shows the oscillatory nature of 
the flow (Fig. 11.11). It can be seen that simulation results somewhat underpredict the 
period of oscillations (∼12 s). However, overall characteristics are in good agreement 
with experimental observations. Recent simulations by Pfleger et al. (1999) also 
show some underprediction of the period of oscillation. Despite this, time-averaged 
predictions agree quite well with experimental data. The predicted results shown 
in Figs 11.9 and 11.10 indicate the three-dimensional nature of the flow even in 
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0.10 

0.0 

FIGURE 11.10 Predicted gas volume fraction distribution (from Ranade, 2000). 

an apparent two-dimensional bubble column. If such three-dimensional effects are 
not considered, the meandering motion of the bubble swarm is not captured with 
adequate accuracy because of the overprediction of turbulent kinetic energy. Volume 
integration of the predicted turbulent energy dissipation rate indicates that about 
30% of the input energy (g〈VG〉) is dissipated in the form of turbulent energy. The 
remainder of the energy must be dissipating at the gas–liquid interface. Predicted 
overall gas volume fraction is 0.63%. If we assume that average slip velocity is 
about 0.23 ms−1, the amount of energy dissipated at the gas–liquid interface may be 
estimated as the product of the gravitational constant, gas volume fraction and slip 
velocity. This is about 68% of the total input energy. This value agrees quite well 
with the predicted overall turbulent energy dissipation (assuming that the laminar 
dissipation is negligible compared to turbulent dissipation). The simulated results 
can be examined in a variety of ways to understand the dynamic characteristics of 
gas–liquid flows in bubble columns. For example, three-dimensional iso-surface plots 
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FIGURE 11.11 Transient velocity traces at different locations in rectangular 2D column (from
Ranade, 2000).

may give more information about the prevalent flow structures. The iso-surface of gas
volume fraction may also clearly show the meandering motion of the bubble swarm
(not shown here). In order to identify streamwise vortices, it is useful to examine
values of normalized helicity (which is a scalar quantity representing the cosine of
the angle between the velocity and vorticity vectors). Near the vortex cores, the
magnitude of normalized helicity will be near unity with its sign depending on the
orientation of the velocity vector to the vorticity vector. A typical helicity iso-surface
plot is shown in Fig. 11.12 and shows several regions high magnitude normalized
helicity indicating the presence of vortex cores. Thus, Eulerian–Eulerian simulations
are able to capture the inherently unsteady flow characteristics of gas–liquid flows in
bubble columns.

For bubble columns with relatively low gas volume fractions, bubble size distri-
bution is fairly narrow. As gas velocity and therefore, gas volume fraction increases,
a heterogeneous or churn-turbulent regime sets in with much wider bubble size distri-
bution than the homogeneous regime. With such a wide bubble size distribution, it is
important to develop appropriate averaging methods and corresponding closure mod-
els. Use of governing equations, derived based on the assumption of a single bubble
size, generally lead to significant overprediction of gas volume fraction, though com-
parison of liquid phase mean velocity is not bad (see Kumar et al., 1994, for example).
Recently, Krishna et al. (2000a) proposed use of a three-phase model to simulate the
churn-turbulent regime of bubble columns. Basic concepts are shown schematically
in Fig. 11.13. Based on experimental observations, the gas phase is divided into two
separate phases, one with small bubbles of diameter of the order of a few millimeters,
and the other with large spherical cap bubbles with diameter of a few centimeters.
Large bubbles were introduced only in the central core, in their simulations. Drag
coefficient values were calculated based on empirical correlations of observed bubble
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FIGURE 11.12 Iso-surface of normalized helicity. Normalized helicity = 0.5 (dark surface) and −0.5 
(light surface) (from Ranade, 2000). 

slip velocities. Krishna et al. (2000a) had introduced four adjustable parameters to 
tune the drag coefficient and diameter of the large bubbles. With these parameters, 
they were successful in simulating liquid velocity profiles and gas volume fractions 
as observed by Hills (1974). Treatment of the outlet boundary conditions was not 
discussed in their paper. Comparison of their simulated results and experimental data 
is shown in Fig. 11.14. The comparison looks quite adequate for most engineering 
applications. It must, however, be noted that these results may not be grid independent 
and the values of adjustable parameters may depend on grid size. 

Instead of arbitrarily considering two bubble classes, it may be useful to incor
porate a coalescence break-up model based on the population balance framework in 
the CFD model (see for example, Carrica et al., 1999). Such a model will simu
late the evolution of bubble size distribution within the column and will be a logical 
extension of previously discussed models to simulate flow in bubble columns with 
wide bubble size distribution. Incorporation of coalescence break-up models, how
ever, increases computational requirements by an order of magnitude. For example, a 
two-fluid model with a single bubble size generally requires solution of ten equations 
(six momentum, pressure, dispersed phase continuity and two turbulence character
istics). A ten-bubble class model requires solution of 46 (33 momentum, pressure, 
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FIGURE 11.13 Three phase simulation of bubble columns (from Krishna et al., 2000a). 

10 continuity and two turbulence characteristics) equations. In such a model, each 
bubble class is considered as a separate phase and momentum and continuity equa
tions are solved for each bubble class. If the bubble size distribution is relatively 
narrow and can be represented by a single velocity field, it is possible to reduce the 
computational requirements by solving the momentum equations for only one bubble 
class and assigning the same velocity field to all bubble classes (Lo, 2000). Separate 
continuity equations comprising terms pertaining to coalescence and break-up need 
to be solved for each bubble class. For such a case with the ten-bubble class model, 
the number of governing equations reduces from 46 to 19. This approach will be 
quite useful to simulate gas–liquid interfacial area and mass transfer with moderate 
increase in computational demands. Recently, Buwa and Ranade (2000) employed 
this approach to simulate evolution of bubble size distribution in a two-dimensional 
bubble column. Their model is briefly discussed in Appendix 11.1. 

Bubble column reactors are also widely used as slurry reactors. The simplest way 
to simulate the fluid dynamics of slurry bubble column reactors is to treat the solid and 
liquid phases as a single slurry phase with effective slurry properties. This approach 
was used by Torvik and Svendsen (1990) and may give reasonable predictions for 
low solid volume fractions. The variation of solid volume fraction within the column 
is ignored in such an approach. For denser slurry applications, however, solid volume 
fraction may vary significantly within the column and solid and liquid phases need to 
be considered separately. The overall fluid dynamics can then be simulated using a 
three-fluid model (gas, liquid and solid). It is necessary to formulate appropriate inter
phase exchange terms for these three phases. When the solid volume fraction in slurry 
bubble column reactors increases even further and is more than 10%, it is necessary to 
use granular flow models to simulate flow of solid particles. Details of granular flow 
models are discussed in the next chapter when describing the modeling of fluidized 
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FIGURE 11.14 Comparison of predictions using three-phase model and experimental data (from
Krishna et al., 2000a).

bed reactors. Wu and Gidaspaw (2000) used such a granular flow model to simulate
the fluid dynamics of a methanol synthesis reactor. Their results show encouraging
agreement with the pilot plant data. Further experimental and computational research
on fluid dynamics of dense slurry bubble column reactors is essential to make fur-
ther progress in predictions of such slurry reactors. Recent experimental techniques
such as computer tomography (CT) and computer aided radioactive particle tracking
(CARPT), which can ‘look’ into opaque, dense slurry bubble columns, may provide
the necessary experimental data to guide further development.
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In general, it may be concluded that it is possible to develop appropriate Eulerian– 
Eulerian models to simulate complex gas–liquid (solid) flows, with some support from 
the experimental data. Some of the possible applications of such models are discussed 
in the next section. Before discussing these applications, recent simulations carried 
out with Eulerian–Lagrangian and volume of fluid (VOF) approaches are briefly 
reviewed here. 

11.2.2. Eulerian–Lagrangian and VOF Approach 

Basic governing equations to apply Eulerian–Lagrangian and VOF approaches to 
simulate dispersed gas–liquid flows are discussed in Chapter 4. As mentioned therein, 
the major advantage of the Eulerian–Lagrangian approach is its greater flexibility 
with respect to incorporation of microscopic, particle-level phenomena. Bubble– 
bubble interaction and coalescence or break-up can be included in the model. The 
precise state of individual bubbles can be monitored, which has significant advantage 
in simulating gas–liquid reactors. However, this flexibility and knowledge of the 
precise state of individual bubbles comes with associated increase in computational 
costs. Simulation of large industrial bubble column reactors containing millions of gas 
bubbles often becomes computationally intractable. However, despite this limitation, 
Eulerian–Lagrangian simulations can provide very useful insight and can be used to 
validate the averaging procedure employed in developing Eulerian–Eulerian models. 

In order to reduce the computational requirements, Lapin and Lubbert (1994) 
considered bubble clusters instead of individual bubbles while employing a Eulerian– 
Lagrangian approach to simulate bubble columns. However, they externally imposed 
bubble slip velocity rather than calculating it by solving momentum equations. Delnoij 
(1999) carried out more rigorous Eulerian–Lagrangian simulations of flow in bubble 
columns. Apart from solving momentum equations for individual bubbles, Delnoij 
also considered bubble–bubble collisions and their effect on bubble trajectories. 
Samples of their results are shown in Fig. 11.15. Delnoij (1999) did not consider 
coalescence and break-up. Ranade and Utikar (1999) used bubble tracking in a 
Lagrangian framework along with the coalescence models. They have, however, 
simplified the governing equations using the approximation of potential flow around 
bubbles. Despite such a simplistic approximation, their model could capture the key 
features of the dynamics of gas–liquid flows reasonably well. It is necessary to develop 
a comprehensive computational model based on a Eulerian–Lagrangian framework 
(with coalescence and break-up models) to simulate dispersed gas-liquid flows in bub
ble columns. Detailed comparisons of simulated results from Eulerian–Lagrangian 
approach and Eulerian–Eulerian approach will be very useful to validate averaging 
procedures employed to derive Eulerian–Eulerian models. Such detailed comparisons 
and analysis will lead to better formulations of Eulerian–Eulerian models, which may 
then be reliably used for reactor engineering applications. 

It must be noted here that even for Eulerian–Lagrangian simulations, although 
there is no complexity of averaging over trajectories, the accuracy of simulations of 
individual bubble trajectories depends on lumped interphase interaction parameters 
such as drag force, virtual mass force and lift force coefficients. All of these inter
phase interaction parameters will be functions of bubble size and shape, presence of 
other bubbles or walls, surrounding pressure field and so on. Unfortunately, adequate 
information is not available on these aspects. To enhance our understanding of basic 
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t = 30.0000 [s] t = 30.0000 [s] t = 50.0000 [s] t = 50.0000 [s] t = 70.0000 [s] t = 70.0000 [s] 

FIGURE 11.15 Results of simulations of Delnoij et al. (1997). Column width = 0.175 m; Column 
height = 1.3475 m; superficial gas velocity = 0.035 m/s−1; uniform bubbles of diameter 0.002 m. 

issues in bubble–bubble interaction and to obtain the required information for model 
development, it may be necessary to develop and to use volume of fluid (VOF) or 
interface tracking based simulations. As discussed in Chapter 4, the volume of fluid 
approach allows resolution of the small-scale flow field around individual bubbles 
(including possible deformation of bubbles). Such capability will provide valuable 
information about bubble–bubble interactions. Lin et al. (1996) applied VOF to sim
ulate the motion of gas bubbles in two-dimensional columns. More recently, Li et al. 
(2000) and Krishna et al. (2000b) also carried out VOF simulations of the rise of 
single bubbles under different operating conditions. A sample of results from Li et al. 
(2000) is shown in Fig. 11.16. The agreement between simulated rise velocity and 
experimental data is quite encouraging. Krishna and van Baten (1999) also tried to 
simulate interaction between multiple bubbles while they are rising through the two-
dimensional columns. However, agreement between predicted and experimentally 
observed rise velocity is not as good as observed in the case of single bubbles. It 
may be necessary to carry out detailed three-dimensional VOF simulations to get 
accurate predictions of bubble–bubble interactions. No such attempt has been pub
lished so far. Although the computational requirements of such an exercise will be 
huge, such VOF simulations will be very useful to develop appropriate sub-models 
for Eulerian–Eulerian and Eulerian–Lagrangian approaches. 

A brief review of recent modeling attempts indicates several limitations of the 
current state of the art. However, with an appropriate dose of engineering judgment 
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FIGURE 11.16 Comparison of simulated and experimental rise velocities at different pressures 
(from Li et al., 2000). 

and the necessary experimental back-up, it is possible to derive meaningful engineer
ing results using these CFD models of bubble column reactors, which otherwise may 
not be possible. Some of the possible applications are illustrated in the following 
section. 

11.3. APPLICATION TO REACTOR ENGINEERING 

An overall procedure for reactor engineering is discussed in Chapter 1. Additional 
comments on the engineering of bubble column reactors are made in Section 11.1. 
Some of these are repeated here to emphasize their importance. As for any other reac
tor, conventional reaction engineering models are first used to evaluate the influence of 
various fluid dynamic characteristics (mixing, volume fraction, interfacial area, heat 
transfer coefficient and so on) on overall performance of a reactor. These studies lead 
to the formulation of specific duties for the reactor, which may be related to specific 
demands of the underlying fluid dynamics. After finalizing these demands on reactor 
fluid dynamics, the reactor engineer has to evolve a suitable hardware configuration 
to fulfill these demands. CFD-based models can make significant contributions at this 
stage. 

After completing reaction-engineering work, it is first necessary to evolve a reac
tor configuration before one can start evaluating whether such hardware can perform 
the expected duties. In the case of bubble columns, evolving reactor hardware involves 
at least the following (also see Fig. 11.2): 

•	 Bubble column configuration/dimensions: simple versus loop configura
tion, diameter, height to diameter ratio, internals (draft tube, radial baffles, 
cooling/heating coils, packings), feed inlet/outlet nozzles (for gas as well as 
liquid phase components), gas-liquid separator, foam breakers/entrainment 
reducers, necessary process monitoring sensors and so on. Each of these will 
further involve selection from various alternatives. Even for the very simple 
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bubble column reactor with no internals, it is necessary to select a suitable 
sparger in addition to the basic sizing. 

•	 Design of sparger: type, sparger resistance, sparger holes, gas velocity and 
bubble size generated at sparger, operability of the sparger at varying gas 
loads, design of plenum chamber (if necessary) and so on. 

More often than not, the reactor engineer evolves more than one configuration to 
meet the expected duties. It is necessary to examine these alternatives and to select 
a few short-listed configurations for further studies. Normally, this short-listing pro
cedure involves various heuristic arguments based on prior experience and available 
information. CFD models can be used to quickly evaluate the various configurations 
to assist this short-listing procedure. To estimate commonly required reactor duties 
like liquid phase mixing and heat transfer coefficient, it may be sufficient to predict 
time-averaged liquid velocity profiles and corresponding time-averaged gas volume 
fraction profiles. For such cases, it may be adequate to use two-dimensional models. 
One example of such a model developed by Ranade (1997) was discussed in an ear
lier section. The work of Krishna et al. (2000a) also confirms that two-dimensional 
models may give adequately accurate estimations of overall gas volume fraction and 
liquid circulation velocities. Such two-dimensional models may also be used to qual
itatively evaluate the influence of different reactor internals, such as draft tubes and 
radial baffles, on liquid phase mixing in the reactor. Ranade (1993b) demonstrated 
such an application to evaluate the influence of radial baffles on mixing in bubble 
column reactors. 

The two-dimensional models are, however, unable to capture details of flow 
structures. If it is essential to capture such flow structures in the simulated results, 
it is necessary to use three-dimensional models. For example, to evaluate different 
spargers, it will be necessary to examine the role of unsteady structures on mixing. 
Ranade and Tayalia (2001) evaluated liquid phase mixing caused by single and double 
ring spargers using a computational model. They considered an axis-symmetric, two-
dimensional domain as well as the full 3D domain (which does not require imposition 
of symmetry at the column axis). Though estimated volume-averaged quantities such 
as gas volume fraction, liquid velocity are within 10% for the 2D and 3D models, the 
details of flow structures are quite different. Typical results obtained for a double-ring 
sparger are shown in Fig. 11.17. Comparison of the predicted flow field for single 
and double ring spargers using a 3D model are shown in Fig. 11.18. The complete 
3D computational model was able to differentiate between single and double ring 
spargers and can, therefore, be used to evaluate different spargers. Recently Padial 
et al. (2000) used a three-dimensional model to evaluate the influence of size and 
location of draft tube on the fluid dynamics of bubble column reactors. Such models 
can then be extended to simulate the influence of draft tube on mixing in bubble 
column reactors. 

Once a small number of reactor configurations have been short-listed based on 
the CFD models discussed above, more rigorous simulations and rigorous experi
mental verification (and calibration, if necessary) of the computational models can 
be undertaken. The behavior of gas–liquid dispersions is known to be very sensitive 
to impurities and therefore it is essential to undertake a systematic experimental pro
gram at this stage. Scale-down methodologies should be used to arrive at a suitable 
experimental program. These small-scale experiments are invariably carried out in 
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FIGURE 11.17 Typical results obtained for double ring sparger (From Ranade and Tayalia, 2001). 
(a) Vector plot, (b) particle streak lines. 

�=� �>� 

FIGURE 11.18 Comparison of predicted flow field for double (a) and single (b) ring spargers (from 
Ranade and Tayalia, 2001). 

simple geometries and different conditions than actual operating conditions. Avail
able information on the influence of pressure and temperature should be used to select 
appropriate model fluids for these experiments. Detailed CFD models should then be 
developed to simulate the fluid dynamics of a small-scale experimental set-up under 
representative conditions. The computational model is then enhanced further until it 
leads to adequately accurate simulations of the observed fluid dynamics. The validated 
CFD model can then be used to extrapolate the experimental data and to simulate fluid 
dynamics under actual operating conditions. An example of the application of such a 
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methodology to a loop reactor is discussed in Chapter 9. Here we briefly discuss two 
recent examples from the published literature. 

The first is concerned with optimization of an industrial ozonation reactor (Cockx 
et al., 1999). Ozonation reactors are used to remove microorganisms or micropollu
tants from drinking water. The efficiency of these reactors depends on liquid phase 
mixing (since disinfection kinetics is approximately first order) and gas–liquid mass 
transfer. Cockx et al. (1999) developed a computational model using a Eulerian– 
Eulerian framework. The model was evaluated first by comparing predicted results 
with a pilot-scale airlift reactor. Different sub-models, such as drag coefficient, 
effective bubble diameter and so on, were calibrated to obtain adequate agreement 
between predicted and experimental results. The computational model was then used 
to simulate the fluid dynamics and performance of an industrial-scale (350 m3) ozona
tion reactor. Although local measurements of flow variables were not available for 
the industrial-scale reactor, some local measurements of ozone concentrations and 
residence time distribution data were available. These data were used to validate pre
dictions of the computational model. These comparisons are shown in Fig. 11.19. 
It can be seen that agreement is adequate for most reactor engineering applications. 
The validated CFD model was then used to optimize a larger ozonation reactor by 
suitably modifying internals. The model was used to evaluate alternative reactor con
figurations and to evolve a final configuration. Initial and modified configurations of 
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FIGURE 11.19 Validation of computational model (from Cockx et al., 1999). (a) Predicted and 
measured cumulated tracer plots. (b) Predicted and measured concentration of dissolved ozone (numbers 
in squares indicate experimental data). 
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FIGURE 11.20 Initial (a) and modified (b) configurations of industrial ozonation reactor (from Cockx 
et al., 1999). 

ozonation reactor are shown in Fig. 11.20. The proposed modifications led to better 
hydraulics and a significant increase in ozone transfer efficiency. 

The second application deals with simulation of methanol synthesis in gas–liquid 
slurry bubble column reactors, discussed by Wu and Gidaspaw (2000). Most slurry 
bubble columns are designed using one-dimensional models with empirical correla
tions of gas volume fractions and other necessary fluid dynamic characteristics. Most 
of these one-dimensional models assume uniform solid (catalyst) volume fraction 
over the reactor. Wu and Gidaspaw (2000) developed a detailed hydrodynamic model 
by considering a two-dimensional solution domain. The hydrodynamic model was 
coupled with the reaction model to simulate overall performance of the methanol 
synthesis reactor. The comparison of their predicted results and experimental data is 
shown in Table 11.2. The agreement between predicted results of such a detailed two-
dimensional model with experimental data was much better than that observed with 
predictions of a one-dimensional model. Apart from predicting the realistic values of 
conversion, the detailed hydrodynamic model provides valuable information on flow 
structures and their sensitivity with respect to design and operating parameters. Such 
information is essential for guiding further developments in syn-gas to liquid fuels 
technology. 

As discussed earlier, coalescence break-up models incorporated in detailed CFD 
models will allow accurate simulation of interfacial area and corresponding mass and 
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TABLE 11.2 Methanol Synthesis Reactor: Comparison of simulations and 
experimental data (from Wu and Gidaspaw, 2000) 

CO Gas Slurry Total Methanol, 
Conversion, % hold-up, % height, in catalyst, kg gmol h−1kg−1 

Simulation 14.24 26.9 215 740 16.93 
RUN E-8.1 13.50 29.5 200 567 20.50 

heat transfer. It may, however, be necessary to calibrate the parameters of coalescence 
and break-up models with the help of experimental data before the combined models 
can be used to estimate mass transfer performance. Even in the absence of adequate 
experimental data for calibration purposes, detailed CFD models can be used to qual
itatively evaluate different configurations and can identify the most promising sparger 
and internal designs. The design of feed pipe and product outlets can be evaluated as 
well, as illustrated by the ozonation reactor case discussed here. Computational flow 
models and CFD tools play a crucial role in linking actual reactor hardware to reactor 
performance. These models allow extrapolation of cold flow results to actual oper
ating conditions (high temperature and pressure) and provide detailed information 
and insight into the reactor flow field. In general, the reactor engineer has to ensure 
that the computational model contains adequate basic physics, that the numerical 
implementation is well within the set tolerances, and that simulations capture all the 
relevant flow features. Judicious use of such computational flow models, (1) to help 
understand basic phenomena and (2) to simulate complex industrial reactors (using 
a hierarchy of modeling layers), will lead to better engineering of bubble column 
reactors. 

11.4. SUMMARY 

Application of a Eulerian–Eulerian approach to modeling flow in bubble column reac
tors is discussed in detail. Some recent applications of this and Eulerian–Lagrangian 
and VOF approaches were reviewed to identify areas which need further research. 
Despite their limitations, CFD models are capable of predicting the detailed flow field 
within bubble columns. By devising effective methods to graphically display numer
ical solutions, many aspects of the flow structure can be carefully studied. Moreover, 
CFD models may be used to study various aspects of flow fields that are not easily 
amenable to experimental measurements. Some recent examples of using CFD mod
els to simulate industrial bubble column reactors were discussed. Judicious use of 
computational models will be useful to qualitatively grade different configurations 
and may greatly assist the engineering decision-making process. Recent progress in 
the development of coalescence break-up models may enhance the ability of compu
tational models to make quantitative predictions of mass transfer in bubble column 
reactors. 



REFERENCES 361 

REFERENCES 

Ahmadi, G. (1987), On the mechanics of incompressible multiphase suspensions, Adv. Water Res., 10, 
32–43. 

Auton, T.R. (1983), The dynamics of bubbles, drops and particles in motion in liquids. PhD thesis, 
University of Cambridge, UK. 

Basset, A.B. (1888), “A Treatise on Hydrodynamics”, Deighton-Bell, Cambridge. 
Becker, S., Sokolichin, A. and Eigenberger, G. (1994), Gas-liquid flow in bubble columns and loop reactors: 

Part II: Comparison of detailed experiments and flow simulations, Chem. Eng. Sci., 49, 5747–5762. 
Becker, S., De Bie, H. and Sweeney, J. (1999), Dynamic flow behavior in bubble columns, Chem. Eng. 

Sci., 54, 4929–4935. 
Besnard, D.C. and Harlow, F.H. (1988), Turbulence in multiphase flow, Int. J. Multiphase Flow, 14, 

679–699. 
Buwa, V. V. and Ranade, V. V. (2000), Modeling of bubble coalescence and breakage processes in gas-liquid 

flows, NCL Internal report, August 2000. 
Carrica, P.M., Drew, D., Bonetto, F. and Lahey, R.T., Jr. (1999), A polydisperse model for bubbly two-phase 

flow around a surface ship, Int. J. Multiphase Flow, 25, 257–305. 
Chen, R.C., Reese, J. and Fan, L.-S. (1994), Flow structure in a three-dimensional bubble column and 

three-phase fluidized bed, AIChE J., 40, 1093–1104. 
Clark, N.N., Atkinson, C.M. and Flemmer, R.L.C. (1987), Turbulent circulation in bubble columns, AIChE 

J., 33, 515. 
Clift, R., Grace, J.R. and Weber, M.E. (1978), “Bubbles, Drops and Particles”, Academic Press, New 

York. 
Cockx, A., Do-Quang, Z., Line, A. and Roustan, M. (1999), Use of computational fluid dynamics for 

simulating hydrodynamics and mass transfer in industrial ozonation owers, Chem. Eng. Sci., 54, 5085– 
5090. 

Cook, T.L. and Harlow, F.H. (1986), Vortices in bubbly two-phase flows, Int. J. Multiphase Flow, 12, 35–43. 
Delnoij, E. (1999), Fluid dynamics of gas-liquid bubble columns: A theoretical and experimental study, 

Doctoral dissertation, Twente University, Enschede, The Netherlands. 
Delnoij, E., Lammers, F.A., Kuipers, J.A.M. and van Swaaij, W.P.M. (1997), Dynamic simulation of 

dispersed gas–liquid two-phase flow using a discrete bubble model, Chem. Eng. Sci., 52, 1429. 
Drew, D.A. (1983), Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech., 15, 261. 
Drew, D.A., Cheng, L. and Lahey, R.T. Jr. (1979), The analysis of virtual mass effects in two-phase flow, 

Int. J. Multiphase Flow, 5, 233. 
Elghobashi, S.E. and Abou-Arab, T.W. (1983), A two-equation turbulence model for two-phase flows, 

Phys. Fluids, 26, 931–938. 
Grienberger, J. and Hofmann, H. (1992), Investigations and modeling of bubble columns, Chem. Eng. Sci., 

47, 2215–2221. 
Hesketh, R.P., Etchells, A.W. and Russell, T.W.F. (1991), Bubble breakage in pipeline flows, Chem. Eng. 

Sci., 46, 1–9. 
Hillmer, G., Weismantel, L. and Hofmann, H. (1994), Investigations and modeling slurry bubble columns, 

Chem. Eng. Sci., 49, 837–843. 
Hills, J.H. (1974), Radial non-uniformity of velocity and voidage in a bubble column, Trans. IChemE, 52, 

1–9. 
Hunt, J.C.R., Auton, T.R., Sene, K., Thomas, N.H. and Kowe, R. (1987), ICHMT Intn. Seminar on 

Transient Phenomena in Multiphase Flow, Dubrovnik, Yugoslavia, May 24–30, 103–125. 
Ishii, M. and Zuber, N. (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, 

AIChE J., 25, 843–855. 
Jakobsen, H.A., Sannaes, B.H., Grevskott, S. and Svendsen, H.F. (1997), Modelling of vertical bubble-

driven flows, Ind. Eng. Chem. Res., 36, 4052–4074. 
Johansen, S.T. (1988), On the modeling of dispersed two phase flow, PhD thesis, University of Trondheim, 

Norway. 
Joshi, J.B. and Sharma, M.M. (1979), A circulation cell model for bubble column, Trans. I. Chem. Eng., 

57, 244–251. 
Kataoko, I., Besnard, D.C. and Serizawa, A. (1992), Basic equation of turbulence and modeling of 

interfacial terms in gas–liquid two phase flows, Chem. Eng. Commun., 118, 221. 



362 CHAPTER 11 BUBBLE COLUMN REACTORS 

Kim, W.K. and Lee, K.L. (1987), Coalescence behavior of two bubbles in stagnant liquids, J. Chem. Eng. 
Jpn., 20, 449. 

Kirkpatrick, R.D. and Lockett, M.J. (1974), The influence of approach velocity on bubble coalescence, 
Chem. Eng. Sci., 29, 2363. 

Krishna, R., Ursenau, M.I., van Baten, J.M. and Ellenberger, J. (1999), Rise velocity of swarm of large 
gas bubbles in liquids, Chem. Eng. Sci., 54, 171–183. 

Krishna, R. and van Baten, J.M. (1999), Simulating the motion of gas bubbles in liquids, Nature, 398, 208. 
Krishna, R., van Baten, J.M. and Ursenau, M.I. (2000a), Three-phase Eulerian simulations of bubble 

column reactors operating in the churn-turbulent regime: a scale-up strategy, Chem. Eng. Sci., 55, 
3275–3286. 

Krishna, R., van Baten, J.M. and Urseanu, M.I. and Ellenberger, J. (2000b), Rise velocity of single 
circular-cap single bubbles in two-dimensional beds of powders and liquids, Chem. Eng. Proc., 39, 
433–440. 

Kumar, S.B., Devanathan, N., Moslemian, D. and Dudukovik, M.P. (1994), Effect of scale on liquid 
circulation in bubble columns, Chem. Eng. Sci., 49, 5637–5652. 

Lahey, R.T. (1987), ICHMT Int. Seminar on Transient Phenomena in Multiphase Flow, Dubrovnik, 
Yugoslavia, May 24–30, pp. 139–177. 

Lahey, R.T. and Drew, D.A. (1989), The three-dimensional tune and volume averaged conservation 
equations for two-phase flows, Adv. Nucl. Sci. Technol., 20, 1–69. 

Lapin, A. and Lubbert, A. (1994), Numerical simulation of the dynamics of two-phase gas-liquid flow in 
bubble columns, Chem. Eng. Sci., 49, 3661–3674. 

Launder, B.E. and Spalding, D.B. (1972), “Mathematical Models of Turbulence”, Academic Press, London. 
Lee, S.-Y. and Tsui, Y.P. (1999), Succeed at gas/liquid contacting, Chem. Eng. Prog., 54, 23–49. 
Lehr, F. and Mewes, D. (2001), A transport equation for the interfacial area density applied to bubble 

columns, Chem. Eng. Sci., 56, 1159–1166. 
Li Yong, Zhang, J. and Fan, L.S. (2000), Discrete-phase simulations of single bubble rise behavior at 

elevated pressure in a bubble column, Chem. Eng. Sci., 55, 4597–4609. 
Lin, T.J., Reese, J., Hong, T. and Fan, L.S. (1996), Quantitative analysis of and computation of two-

dimensional bubble columns, AIChE J., 42, 301–318. 
Lo, S. (2000), Modeling of bubble break-up and coalescence with the MUSIG model, Report No. AEAT

4355, CFX International, UK. 
Luo, H. and Svendsen, H.F. (1996), Theoretical model for drop and bubble break-up in turbulent 

dispersions, AIChE J., 42, 1225–1233. 
Lumley, J.L. (1975), Lecture Series No. 76, Von Karmann Institute, Belgium. 
Maxey, M.R. and Riley, J.J. (1983), Equation of motion for a small rigid sphere in nonuniform flow, Phys. 

Fluids, 26, 883. 
Menzel, T., Weide, T., Staudacher, O., Wein, O. and Onken, U. (1990), Reynolds shear stress for modelling 

of bubble column reactors, Ind. Eng. Chem. Res., 29, 988–994. 
Newitt, M.D., Dombrowski, N. and Knelman, F.H. (1954), Liquid entrainment: 1. mechanism of drop 

formation from gas or vapor bubbles, Trans. Inst. Chem. Eng., 32, 244. 
Padial, N.T., VanderHeyden, W.B., Rauenzahn, R.M. and Yarbro, S.L. (2000), Three-dimensional 

simulation of a three-phase draft-tube bubble column, Chem. Eng. Sci., 55, 3261–3273. 
Pfleger, D., Gomes, S., Gilbert, N. and Wagner, H.-G. (1999), Hydrodynamic simulations of laboratory 

scale bubble columns fundamental studies of the Eulerian–Eulerian modeling approach, Chem. Eng. 
Sci., 54, 5091–5099. 

Prince, M.J. and Blanch, H.W. (1990), Bubble coalescence and break-up in air sparged bubble columns, 
AIChE J., 36, 1485–1499. 

Ranade, V.V. (1992), Flow in bubble columns: some numerical experiments, Chem. Eng. Sci., 47, 1857– 
1869. 

Ranade, V.V. (1993a), Turbulent flow and mixing in bubble columns, Proc. European Symposium on 
Computer Aided Process Engineering – 3, Eds Moser, F., Schnitzer and Bart, H. J., pp. 27–31. 

Ranade, V.V. (1993b), Numerical simulation of turbulent flow in bubble column reactors, AIChE 
Symposium Series no. 293, 89, 61–71. 

Ranade, V.V. (1997), Modeling of turbulence flow in a bubble column reactor, Chem. Eng. Res. Des., 75, 
14–23. 

Ranade, V.V. (1998), Modeling of flow in bubble columns. NCL internal report. 



363 MULTIGROUP MODEL 

Ranade, V.V. (2000), Modeling of gas–liquid flows in stirred and bubble column reactors, CPCFD Meeting, 
Cincinnati, May 2000. 

Ranade, V.V. and Joshi, J.B. (1987), Transport phenomena in multiphase reactors, Proceedings of 
International Symposium on Transport Phenomena in Multiphase Systems, BHU Press, Varanasi, 
pp. 113–196. 

Ranade, V.V. and Mashelkar, R.A. (1993), Turbulent mixing in dilute polymer solutions, Chem. Eng. Sci., 
47, 1619–1628. 

Ranade, V.V. and Tayaliya, Y. (2001), Modeling of fluid mechanics and mixing in shallow bubble column 
reactors: influence of sparger design, Chem. Eng. Sci., 56, 1667–1675. 

Ranade, V.V. and Utikar, R.P. (1999), Dynamics of gas–liquid flows in bubble column reactors, Chem. 
Eng. Sci., 54, 5237–5244. 

Rietema, K. and van den Akker, H.E.A. (1983), On the momentum equations in dispersed two phase 
systems, Int. J. Multiphase Flow, 9, 21–36. 

Salcudean, M., Lai, K.Y.M. and Guthrie, R.I.L. (1985), Multidimensional heat, mass and flow phenomena 
in gas–liquid stirred reactors, Can. J. Chem. Eng., 63, 51–61. 

Sato, Y., Sadatomi, M. and Sekoguchi, K. (1981), Momentum and heat transfer in two-phase bubble flow 
I, Int. J. Multiphase Flow, 7, 167. 

Schiller, L. and Naumann, Z. (1935), Z. Ver. Deutsch. Ing., 77, 318. 
Spalding, D.B. (1978), Second International Conference on Physicochemical Hydrodynamics, Washing

ton, pp. 421–436. 
Sokolichin, A. and Eigenberger, G. (1999), Applicability of standard k–ε turbulence model to the dynamic 

simulation of bubble columns, Chem. Eng. Sci., 54, 2273–2284. 
Svendsen, H.F., Jakobsen, H.A. and Torvik, R. (1992), Local flow structures in internal loop and bubble 

column reactors, Chem. Eng. Sci., 47, 3297–3304. 
Thomas, N.H., Auton, S.K. and Hunt, J.C.R. (1983), Int. Conference on Physical Modeling of Multiphase 

Flows, Coventry, UK, pp. 169–181. 
Torvik, R. and Svendsen, H.F. (1990), Modelling of slurry reactors: a fundamental approach, Chem. Eng. 

Sci., 45, 2325–2333. 
Tsuji, Y.-, Morikawa, Y. and Shiomi, H. (1984), LDV measurements of an air-solid flow in a vertical pipe, 

J. Fluid Mech., 139, 417–434. 
Wu, Y. and Gidaspaw, D. (2000), Hydrodynamic simulation of methanol synthesis in gas–liquid slurry 

bubble column reactors, Chem. Eng. Sci., 55, 573–587. 
Yao, B.P., Zheng, C., Gasche, H.E. and Hofmann, H. (1991), Bubble behavior and flow structure of bubble 

columns, Chem. Eng. Proc., 29, 65–75. 

APPENDIX 11.1: MULTIGROUP MODEL TO SIMULATE BUBBLE SIZE DISTRIBUTION 

In a multigroup model, bubble population is divided into a number of groups and each 
group is treated as a separate phase. In many cases, it is adequate to associate a single 
velocity field calculated based on an effective bubble diameter instead of associating 
separate velocity fields to each bubble group. This approximation significantly reduces 
the burden on computational resources. In order to simulate bubble size distribution, 
it is, however, necessary to solve mass balance equations for each bubble group. The 
multigroup model developed by Buwa and Ranade (2000) is described here. 

Their formulation is based on the concept that the entire bubble population can be 
described in terms of mass (or diameter) of the smallest bubble. It is assumed that the 
mass of any bubble in the considered population will be an integer multiple of the mass 
of the smallest bubble, mmin. The simplest way to describe the bubble size distribution 
in such circumstances will be to define (mmax/mmin) number of bubble groups, where 
mmax is the mass of the largest bubble that can be envisaged in the considered bubble 
population. However, it can be seen that such a description will require an inordinately 
large number of bubble groups (1000 groups to describe a population with smallest 
bubble of 1 mm and largest bubble of 10 mm). Fortunately such a high resolution 
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FIGURE 11A.1 Multigroup model to describe bubble population. 
Notes: (1) Lower and upper limits are inclusive in a particular group and are integer (multiples of mass of 
minimum bubble). This means, Lg = Ug−1 + 1. (2) Central index associated with the group, Ig is defined 
as algebraic mean of lower and upper limits. 

of the bubble size distribution is seldom required. It is adequate to lump bubbles of 
different sizes into a single group and to describe the entire bubble population using 
5 to 20 non-uniform sub-groups. The choice of boundaries between these sub-groups 
depends on bubble size distribution itself and may have to be finalized by examining 
the predictions (following a procedure similar to that for selection of grid distribution 
for flow simulations). The approach and notation used by Buwa and Ranade (2000) 
to describe classification of bubble population in terms of different groups is shown 
in Fig. 11A.1. The mass conservation equation for any individual bubble group, g, 
can then be written as: 

∂ ∂ 
(ρGεGg) + (ρGεGgUGgj ) = mg{C+ − C− + B+ − B−} (11A.1)

∂t ∂xj 
g g g g 

where Cg and Bg represent loss (superscript −) or gain (superscript +) in the number 
of bubbles of group ‘g’ due to coalescence and breakup respectively. Following the 
principles of population balance, the loss and gain terms can be expressed as 

C+ 
g = 

1 

2 

g ∑ 

k=1 

KCkl PCkl nk nlXgkl 

C− 
g = 

NG ∑ 

k=1 

KCgk PCgk ngnk ∵ 

∵ Lg ≤ Ik + Il ≤ Ug, Xgkl = 
Ik + Il 

Ig 
(11A.2) 

Ug < Ig + Ik ≤ UNG (11A.3) 

where ng is bubble number density of group g, NG is total number of bubble groups, 
KCgk is rate of coalescence of bubbles of group g and k and PCgk is probability of 
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coalescence of bubbles of group g and k. Xgkl accounts for the intergroup transfer due 
to coalescence. 

NG Ug ∑ ∑ PBki immin
B+ = 2 KBknk φgk ∵ φgk = ∑Ik −1 (11A.4)g 

k=g i=Lg j=1 PBj,Ik −1−j mg 

B− 
g = KBgng (11A.5) 

where KBk is the total breakage rate of bubbles of group ‘k’, PBki is the probability 
of formation of a bubble with mass ‘immin’ from a bubble of group ‘k’. The term ∑Ik −1 

j=1 PBj,Ik −1−j represents sum of probabilities of bubble of group ‘k’ breaking with 
breakage fraction varying from mmin/mk to (Ik −1)mmin/mk . The term φgk signifies the 
number of group ‘g’ bubbles formed per number of group ‘k’ bubbles broken. Note 
that this formulation conserves mass but does not conserve bubble numbers. Suitable 
modifications may however be made to ensure conservation of bubble numbers and/or 
interfacial area while retaining the same overall structure. 

Several authors have proposed different models to describe the bubble coales
cence and breakage processes (Prince and Blanch, 1990; Hesketh et al., 1991; Luo and 
Svendsen, 1996; Carrica et al., 1999; Lehr and Mewes, 2001). Bubble coalescence 
and breakage may occur by different mechanisms. Local turbulence in the liquid 
phase, velocity gradients and shear flows are known to cause bubble coalescence. 
Similarly, collision of a bubble with energetic eddies in the liquid phase or other phe
nomena such as tip streaming are known to cause bubble breakage. In most gas–liquid 
reactors, turbulence-induced breakage and coalescence were found to be dominant 
in comparison with other mechanisms (Prince and Blanch, 1990). Buwa and Ranade 
(2000) compared magnitudes of different mechanisms and have recommended the 
turbulence induced collision model of Prince and Blanch (1990) to describe bubble 
coalescence, and the turbulent eddy interaction model of Luo and Svendsen (1996) 
to describe the bubble breakage process. These models were used to close the set of 
mass conservation equations of bubble groups described above: 

KCkl = 0.35π(dk + dl )
1/3ε1/3 d2/3 + d2/3 

)1/2 
(11A.6)k l 

{ } { 3 }1/2−tkl ho
PCkl = exp ∵ tkl = 

rkl ρl 
ln 

hf 
, 

τkl 16σ 

2/3 
} ( 

rkl 1 1 1 
)−1 

τkl = 
ε1/3 

, rkl = + (11A.7)
4 dk dl 

KBk = 0.923(1 − αG) ε1/3d−2/3 
) 1 fBV,max 

∫ 1 

(1 + ξ)2ξ−11/3 exp{−χk } dξ dfBVk 2 fBV,min ξmin 

(11A.8)    12 f 2/3 − (1 − fBV)
2/3 − 1 σ  imminBV 

χk =  βρcε2/3dk 
5/3
ξ 11/3  

∵ fBV = (11A.9) 
mk 

∫ 1 

PBki = exp {−χk } dξ (11A.10) 
ξmin 
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FIGURE 11A.2 Predicted equilibrium bubble size distribution at three values of turbulent energy 
dissipation rates. Effect of energy dissipation rate on (a) group mass fraction and (b) total surface area. 

dk and rk denote the diameter and radius of bubbles of group k. fBV is a breakage 
fraction and is defined in Eq. (11A.9), h0 and hf , used in Eq. (11A.7), denote initial 
and critical film (between two coalescing bubbles) thickness and are usually assumed 
to be 1×10−4 m (Kirkpatrick and Lockett, 1974) and 1×10−8 m (Kim and Lee, 1987). 
Typical equilibrium bubble size distributions predicted by this model at three different 
values of turbulent energy dissipation rates and corresponding total interfacial area are 
shown in Fig. 11A.2a and 11A.2b respectively. As expected, the model predicts the 
shift towards finer bubble sizes at higher values of turbulent energy dissipation rates. 
Ongoing and future experimental and modeling studies are expected to lead towards 
enhanced understanding and better predictive capabilities. For example, recently Lehr 
and Mewes (2001) have proposed a new model to describe bubble breakage process, 
which was found to improve the predictions of bubble size distribution. Such new 
models of coalescence and breakage can be incorporated in the overall framework 
discussed here. 
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FLUIDIZED BED REACTORS


Fluidized bed reactors offer the advantages of excellent solid mixing and heat transfer 
characteristics. These reactors find widespread applications in the chemical, petro
chemical, metallurgical and energy industries. Some typical applications involving 
gas–solid fluidized bed reactors are listed in Table 12.1. Flow regimes prevailing in 
these fluidized bed reactors are also listed in this table. Despite the widespread use, the 
complex hydrodynamics of fluidized bed reactors is still not completely understood. 
Several different flow regimes may exist in the reactor as detailed in Table 12.1. 
Depending on these flow regimes and different configurations, several varieties of 
fluidized bed reactors are used in practice, as shown in Fig. 12.1. Application of com
putational flow modeling to the reactor engineering of these fluidized bed reactors is 
briefly discussed in this chapter. 

Before we discuss reactor-engineering issues of fluidized bed reactors, we briefly 
describe flow regimes and their identification. A discussion on the basics of modeling 
multiphase flows and possible approaches was given in Chapter 4. With reference 
to that discussion, we include here a brief review of CFD modeling of fluidized 
bed reactors and guidelines for selection/development of appropriate flow models 
to simulate the most commonly encountered flow regimes in fluidized bed reactors. 
Despite the significant progress made in recent decades, several questions and issues 
concerning the rigorous modeling of gas–solid fluidized beds remain unanswered. 
The consequences and implications of not understanding some of these issues on 
reactor engineering applications are discussed. Despite these, ways of fruitfully using 
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TABLE 12.1 Some Industrial Applications of Fluidized Bed Reactors 

Processes/applications	 Operating regime 

Fluidized bed catalytic cracking (FCC) 

Maleic anhydride/phthalic anhydride 
Acrylonitrile 
Ethylene dichloride 
Polymerization of olefins 

(polyethylene/polypropylene) 
Coal gasification 
Fischer–Tropsch synthesis 
Acrylonitrile/metacrylonitrile 
Calcination/roasting of ores 
Incineration of solid waste 

Riser reactor: fast-fluidized bed regime 
Regenerator: bubbling bed/turbulent 

fluidized bed regime 
Turbulent fluidized bed regime 
Bubbling/turbulent bed regime 
Bubbling/turbulent bed regime 
Bubbling/turbulent fluidized bed regime 

Turbulent fluidized bed regime 
Dense phase/fast-fluidized bed regime 
Bubbling/turbulent bed regime 
Bubbling/turbulent bed regime 
Bubbling/turbulent bed regime 

computational fluid dynamic models of gas–solid fluidized bed reactors are presented 
with the help of some examples. 

12.1. ENGINEERING FLUIDIZED BED REACTORS 

It must be noted that different flow regimes have quite different hydrodynamic char
acteristics and therefore, it is essential to identify the desired or prevailing flow regime 
in the fluidized bed reactor. An ideal situation is to have a comprehensive flow model 
which will a priori predict the prevailing flow regime. However, knowledge of the 
prevailing flow regime and development of a computational flow model specifically 
tailored to the prevailing regime leads to more reliable simulations. Such an approach 
is used to carry out most simulations of industrial fluidized bed reactors. Before we 
describe computational models for specific flow regimes, the characteristics of various 
flow regimes and their identification is discussed briefly below. 

12.1.1. Gas–Solid Flows in Fluidized Bed Reactors 

When gas is passed through a bed of solid particles, various types of flow regime, 
ranging from fixed bed to pneumatic conveying, are observed. The prevailing flow 
regime and quality of fluidization depend on several factors. Operating conditions, 
solids flow rate (flux), gas flow rate (flux) and system configuration affect the pre
vailing flow regime. In addition, the properties of solid particles (size distribution, 
shape, density, and restitution coefficient) significantly affect the quality of fluidiza
tion. Geldart (1973) suggested a simple, four-group classification of solids within 
which the range of bed behavior can be categorized based on particle density and 
particle size (Geldart’s classification is shown in Fig. 12.2.): 

•	 Group C: This class of solids includes very fine and cohesive powders, e.g. 
cement, flour, starch etc. With this class, normal fluidization is extremely 
difficult and channeling takes place when fluidized. 
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FIGURE 12.1 Types of fluidized bed reactors (from Kuipers et al., 1998).

• Group A: Solid particles having a small mean particle size or low particle
density (<∼1500 kg m−3). Typical examples of this class are catalysts used
for fluid catalytic cracking (FCC) processes. These solids fluidize easily, with
smooth fluidization at low gas velocity and bubbling/turbulent fluidization at
higher velocity.
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FIGURE 12.2 The Geldart classification of particles for air at ambient conditions. Region A′: Range 
of properties for well-behaved FCC catalyst (from Kunii and Levenspiel, 1991). 

•	 Group B: Solids having particle size 40 �m < dp < 500 �m and density in 
the range 1400 < ρs < 4000 kg m−3. These solids fluidize vigorously with 
formation of bubbles, which grow in size; e.g. sand particles. 

•	 Group D: These solid particles are large and/or dense and are spoutable. Large 
exploding bubbles or severe channeling may occur in fluidization of group D 
solids. 

Apart from density and particle size as used in Geldart’s classification, several other 
solid properties, including angularity, surface roughness and composition may also 
significantly affect quality of fluidization (Grace, 1992 and references cited therein). 
However, Geldart’s classification chart often provides a useful starting point to exam
ine fluidization quality of a specific gas–solid system. Reactor configuration, gas 
superficial velocity and solids flux are other important parameters controlling the 
quality of fluidization. At low gas velocity, solids rest on the gas distributor and 
the regime is a fixed bed regime. Some commonly encountered gas–solid flow 
regimes are shown in Fig. 1.9. The relationship between these flow regimes, type 
of solid particles and gas velocity is shown schematically in Fig. 12.3. When super
ficial gas velocity increases, a point is reached beyond which the bed is fluidized. 
At this point all the particles are just suspended by upward flowing gas. The fric
tional force between particle and gas just counterbalances the weight of the particle. 
This gas velocity at which fluidization begins is known as minimum fluidization 
velocity (Umf). The bed is considered to be just fluidized, and is referred to as a 
bed at minimum fluidization. If gas velocity increases beyond minimum fluidiza
tion velocity, homogeneous (or smooth) fluidization may exist for the case of fine 
solids up to a certain velocity limit. Beyond this limit (Umb: minimum bubbling 
velocity), bubbling starts. For large solids, the bubbling regime starts immediately 
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FIGURE 12.3 Progressive change in gas–solids contact (flow regimes) with change in gas velocity 
(from Kunii and Levenspiel, 1991). 

if the gas velocity is higher than minimum fluidization velocity (Umb = Umf ). 
With an increase in velocity beyond minimum bubbling velocity, large instabili
ties with bubbling and channeling of gas are observed. At high gas velocities, the 
movement of solids becomes more vigorous. Such a bed is called a bubbling bed 
or heterogeneous fluidized bed (Fig. 1.9). In this regime, gas bubbles generated 
at the distributor coalesce and grow as they rise through the bed. For deep beds 
of small diameter, these bubbles eventually become large enough to spread across 
the diameter of the vessel. This is called a slugging bed regime. In large diame
ter columns, if gas velocity increases still further, then instead of slugs, turbulent 
motion of solid clusters and voids of gas of various size and shape are observed. 
Entrainment of solids becomes appreciable. This regime is called a turbulent flu
idized bed regime (Fig. 1.9, Fig. 12.3). With further increase in gas velocity, solids 
entrainment becomes very high so that gas–solid separators (cyclones) become nec
essary. This regime is called a fast fluidization regime. For a pneumatic transport 
regime, even higher gas velocity is needed, which transports all the solids out of 
the bed. As one can imagine, the characteristics of gas–solid flows of these dif
ferent regimes are strikingly different. It is, therefore, necessary to determine the 
prevailing flow regime in order to select an appropriate mathematical model to 
represent it. 

Several regime maps have been proposed in the literature. One widely used 
regime map developed by Grace (1986) is shown in Fig. 12.4. This map is developed 
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FIGURE 12.4 General flow regime map for gas–solids flows (from Kunii and Levenspiel, 1991). 

using two dimensionless numbers defined in Fig. 12.4. The main conclusions to be 
drawn from this regime map can be summarized as follows: 

•	 For fine solids (class A and B), stable operation of a bubbling bed exists over a 
wide range of operating conditions. For larger particles (class D), the operating 
range is relatively narrow. 

•	 For small particles, bubbling starts at a gas velocity much higher than minimum 
fluidization velocity (3–8 times Umf) and continues way beyond the terminal 
velocity Ut . For large particles, bubbling occurs at a gas velocity close to Umf . 
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•	 Fast fluidization is possible for small particles at very high gas velocity (around 
1000 Umf). 

There are several empirical correlations to predict minimum fluidization velocity and 
minimum bubbling velocity, which can be used to examine whether bubbles will 
exist or not (see for example, correlations summarized by Kunii and Levenspiel, 
1991). Generally, most of these correlations predict similar results for fine particles 
(<100 �m). However, for large solid particles, there is a considerable scatter in the 
predictions of different published correlations. When there is a wide size distribution 
and non-spherical particles, it is often necessary to use experiments to make reliable 
estimates of minimum fluidization and minimum bubbling velocity. Bubbles in a 
bubbling bed can be quite irregular in shape and vary greatly in size. In beds of 
fine solid particles, bubbles grow quickly to a few centimeters in size and remain 
at that size as a result of equilibrium between coalescence and splitting. For larger 
particle beds, bubbles grow steadily in the bed and reach tens of centimeters in size. 
Several correlations have been proposed to estimate bubble sizes and bubble growth 
in fluidized beds (Mori and Wen, 1975; Darton et al., 1977; Werther, 1978 and 
so on). Similarly several correlations have been proposed to estimate bubble rise 
velocity (Davidson and Harrison, 1963; Werther, 1983). Since the types of turbulent 
fluidized bed regime are not very well defined, the transition between bubbling bed 
and turbulent regime and that between turbulent and fast fluidization regime, are also 
not very clearly defined. A recent review by Bi et al. (2000) may be consulted to 
estimate these transition velocities. With this brief introduction to gas–solid flows in 
fluidized bed reactors, major reactor engineering issues, conventional design practices 
and the role of computational flow modeling to facilitate better reactor engineering 
are discussed below. 

12.1.2. Reactor Engineering 

For good reactor operation, it is desirable to realize effective gas and solid contact 
leading to maximum mass and energy exchange between gas and solid particles. The 
objective of a reactor engineer is to realize such an effective gas–solid contact with
out compromising other desirable characteristics such as residence time distribution 
(RTD), backmixing and so on. Prevailing flow regimes obviously play an important 
role in determining gas–solid contacting characteristics. 

Bubbling fluid beds are generally used when excellent solids mixing and bed 
to wall heat transfer characteristics are desired. RTD and degree of backmixing is a 
strong function of such bubbling characteristics as mean bubble size, size distribution, 
bubble rise velocity, bubbling frequency and bubble shape. Knowledge of bubble size 
and rise velocity can then be used to estimate transport coefficient between bubble 
and dense phase and also to estimate solids circulation and mixing. Studies indicate 
that the fluidized bed reactor can be operated in different modes either to promote 
solid mixing or segregation. In bubbling fluidized beds, bubbling of gas causes gross 
circulation of solid particles. When a bed of wide particle size distribution and of 
widely varying density is fluidized, denser particles tend to settle at the bottom of 
the bed. This phenomenon is counter-balanced by circulation of solids. At very large 
gas velocity (Uo � Umf , where Uo is superficial gas velocity) solids circulation 
dominates the process and at gas velocity close to Umf solids segregation dominates 



374 CHAPTER 12 FLUIDIZED BED REACTORS 

the process. Mixing and segregation of solids in the bed is set up by the dynamic 
equilibrium between the two competing mechanisms. 

From a reactor engineering point of view, macroscale circulation of solid particles 
enhances backmixing, which lowers the conversion and selectivity of the fluidized 
bed reactor. In bubbling fluidized beds, severe by-passing of reactant gas is possible 
through fast rising large gas bubbles. It is generally believed that gas by-passing can be 
avoided in high velocity fluidized beds (turbulent or fast-fluidization regimes). High 
velocity fluidized bed reactors are attractive for high-pressure applications, since the 
reactor diameter is reduced for the same gas throughput. 

In riser reactors, which are operated in a fast-fluidized regime (Uo > 20Ut , where 
Uo is gas superficial velocity and Ut is terminal settling velocity of solid particles), 
solids backmixing and radial distribution of solids play a central role in determining 
overall performance. Fast-fluidized beds are characterized by downflow of solids in 
the near wall region and upflow of solids through the central core. Solid volume 
fractions exhibit distinct peaks near the walls. In order to make realistic simulations, 
it is essential to predict such wall peaking of solids volume fraction accurately. The 
possibility of formation of clusters and their influence on the efficiency of gas–solid 
contacting is also an important design issue. Clusters formation and their properties 
are not yet well understood and several conflicting reports about their significance 
have been published (see a review by Chen, 1995). Cluster formation may increase or 
decrease local transport coefficient and may alter the fluid dynamics of riser reactors. 
Compared to the large body of empirical information/correlations available for the 
case of bubbling beds, empirical information available for fast-fluidized bed reactors 
and turbulent fluidized bed reactors is much less and contains a significant amount of 
scatter (Zijerveld, 1998; Venderbosch, 1998; Bi et al., 2000 for reviews of recent data). 

Conventional design practices involve making use of such accumulated empirical 
information to develop reaction-engineering models (two- or three-phase models for 
bubbling beds and axial dispersion models for turbulent and fast fluidized beds). Such 
models are invariably based on very simplified fluid dynamics (Kunii and Levenspiel, 
1991). These models are used to understand the sensitivity of reactor performance to 
operating and model parameters. In many cases, transition from bubbling to turbulent 
fluidization is not sharp and significant uncertainty exists about the location of the 
transition. Thompson et al. (1999) developed a generalized bubbling-turbulent (GBT) 
model based on a probabilistic approach to overcome such difficulties. Kunii and 
Levenspiel (2000) recently discussed a reaction-engineering model for circulating 
fluidized beds operated in a fast-fluidized regime. These models and sensitivity studies 
using these models, coupled with prior experience in designing fluidized bed reactors, 
are used to evolve an experimental program to collect the required information about 
hydrodynamics with adequate accuracy. Experimental data obtained at two or more 
scales is then used to develop an appropriate fluid dynamic basis for the specific 
gas–solid system under consideration. This information is used again with reactor 
performance models to evaluate designs of industrial fluidized bed reactors. Scale-up 
experiments need to be carried out to ensure that the hydrodynamics of large-scale 
industrial reactors (with different gas distributors and internals) is not very different 
from that of pilot-scale reactors showing satisfactory reactor performance. Obviously, 
such a procedure restricts options for reactor configurations and it also has a significant 
amount of uncertainty due to the empiricism employed. 
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Moreover, these conventional models are not useful to understand the influence of 
details of the hardware configuration on reactor performance. Detailed hydrodynamic 
models are necessary to resolve hardware-related issues. For example, distributor 
design of an industrial fluidized bed reactor involve several aspects including shape 
and location of distributor, number of holes, distribution of holes, orientation of 
holes and so on. Empirical information suggests that if pressure drop across the 
distributor is small (less than 20% of the pressure drop across the fluidized bed), 
gas mal-distribution and by-passing (due to formation of large bubbles at the dis
tributor holes) may occur. This information is not adequate to optimize distributor 
design and to estimate its influence on gas and solid dynamics within the fluidized 
bed. Non-optimum distribution of holes may result in local settling of solids and 
may lead to erosion-related problems, as was mentioned for the OXY reactor case 
in Chapter 9. Similar comments are applicable to designing the feed nozzle system 
(diameter, shape, orientation, number of nozzles, location of nozzles and so on). Feed 
nozzle design affects local gas–(liquid–)solid contacting and therefore, overall perfor
mance. To design improved feed systems for riser or bubbling bed reactors, detailed 
knowledge of local fluid dynamics is necessary. Apart from the distributor and feed 
nozzle design, to resolve other reactor-engineering issues such as designing internals 
etc. it would be necessary to develop detailed fluid dynamic models. In analyzing 
important issues such as the formation of local hot spots, by-passing, solids entrain
ment in a free board and so on, CFD-based models can contribute uniquely. With such 
contributions, computational flow modeling may greatly accelerate the entire reac
tor development program with enhanced confidence levels and better performance. 
CFD models can significantly reduce the demands on pilot planting by providing effi
cient and effective interpolation and extrapolation tools. A typical reactor engineering 
program for fluidized bed reactors based on CFD models is shown in Fig. 12.5. 
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FIGURE 12.5 Reactor engineering of fluidized bed reactors. 
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It should, however, be noted that the physics of gas–solid contacting is extremely 
complex, and as yet, has defied rigorous representation in mathematical models. As 
shown in Fig. 12.5, some experimentation will be necessary. Keeping the specific 
objectives in mind, the reactor engineer has to judiciously formulate a model for the 
reactor. Key predictions of such a model need to be validated by comparison with 
experimental data before they can be used for reactor engineering applications (to 
evaluate different configurations, to short-list the most promising ones, to provide 
the relevant information of fluid dynamics to the reaction engineering models, to 
optimize distributor, feed system and reactor internals, to scale-up and to scale-
down and so on). As mentioned in previous chapters, it is necessary to use different 
modeling approaches (hierarchy of models) to construct a useful picture of industrial 
fluidized bed reactors. A brief review of modeling strategies and some recent results 
are discussed in the following section. Some applications of CFD models to reactor 
engineering are then discussed. 

12.2. CFD MODELING OF GAS–SOLID REACTORS 

Basic approaches to modeling gas–solid flows, namely, Eulerian–Eulerian and 
Eulerian–Lagrangian, are discussed in Chapter 4. For gas–solid flow model
ing, usually, Eulerian–Lagrangian models are called discrete particle models and 
Eulerian–Eulerian models are called granular flow models. Granular flow models 
(GFM) are continuum based and are more suitable for simulating large and complex 
industrial fluidized bed reactors containing billions of solid particles. These models, 
however, require information about solid phase rheology and particle–particle interac
tion laws. In principle, discrete particle models (DPM) can supply such information. 
DPMs in turn need closure laws to model fluid–particle interactions and particle– 
particle interaction parameters based on contact theory and material properties. The 
interrelationship between various models is schematically shown in Fig. 12.6. In prin
ciple, it is possible to work our way upwards from direct solution of Navier–Stokes 
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FIGURE 12.6 Hierarchy of models for the simulation of gas–solids fluidized bed reactors. 
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equations, lattice-Boltzmann models and contact theory to obtain all the necessary 
closure laws and other parameters required for granular flow models. However, with 
the present state of knowledge, complete a priori simulations are not possible. It is 
necessary to use these different models judiciously, combined with key experiments, 
to obtain the desired engineering information about gas–solid flows in industrial 
equipment. Direct solution of Navier–Stokes equations or lattice Boltzmann methods 
are too computation intensive to simulate even thousands of solid particles, rather than 
millions of particles. DPMs are usually used to gain an insight into various vexing 
issues such as bubble or cluster formations and their characteristics or segregation 
phenomena. A few hundred thousand particles can be considered in such DPMs. The 
understanding developed and simulation results are either directly or indirectly used 
to develop granular flow models. Applications of DPM and GFM to simulate gas– 
solid flows in riser and bubbling/turbulent bed reactors are discussed in the following 
sections. 

12.2.1. Discrete Particle Models (DPM) 

In discrete particle models, continuous phase (gas phase) is modeled using Eulerian 
framework. The trajectories of dispersed phase (solid phase) are then modeled in 
a Lagrangian framework. Acceleration of individual particles of dispersed phase 
is calculated from a force balance over that particle. Particle trajectories are then 
simulated using the flow field of gas phase. Basic governing equations are described 
in Chapter 4. Based on a large number of particle trajectories, desired characteristics 
of the gas–solid flow can be evaluated. The basic framework can be extended to 
include two-way coupling between gas and solid phases as well as four-way coupling 
to include particle–particle interactions. For most fluidized bed reactor applications, 
it is necessary to include the influence of particle collisions on the dynamics of gas– 
solid flows. To simulate particle–particle collisions, two approaches may be used: in 
the first approach, particle interaction times are assumed to be very small compared 
to the free flight times (hard-sphere approach) and in the second, interaction times 
are assumed to be large compared to the free flight times (soft-sphere approach). 
Hoomans (2000) applied a hard-sphere approach to model bubbling fluidized beds 
and riser flows; Kaneko (2000) applied a soft-sphere approach to simulate bubbling 
fluidized bed reactors. Some of these results illustrating the influence of key model 
parameters are discussed below. 

Before implementing hard-sphere or soft-sphere models, several issues related 
to formulations of various terms need to be sorted out. For hard-sphere models, key 
parameters are coefficient of restitution, coefficient of tangential restitution and coef
ficient of friction. For soft-sphere models, key parameters are normal spring stiffness, 
tangential spring stiffness and damping coefficient (Hoomans, 2000). In principle, 
soft-sphere models reduce to hard-sphere models in the limit of very high spring stiff
ness. In practice, however, soft-sphere models cannot be applied for very high values 
of spring stiffness due to computational constraints. Higher values of spring stiffness 
require lower and lower values of time step and may inordinately increase demands 
on computational resources. For most simulations based on soft-sphere models, an 
arbitrary low value of spring stiffness is specified. Fortunately, the actual magnitude 
of the spring stiffness parameter does not significantly affect the simulated fluidization 
behavior and low value can be safely used for most simulations. Simulation results 
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FIGURE 12.7 Simulated results for three values of spring stiffness ((a) 8 N m−1; (b) 800 N m−1; 
(c) 80 000 N m−1). Soft sphere approach; number of particles = 14 000, u = 3 umf (from Kaneko, 2000). 

(Kaneko, 2000) obtained for three values of spring stiffness constant (spread over 
four orders of magnitude) are shown in Fig. 12.7. It can be seen that if the objective 
is to understand the macroscopic behavior of the fluidized bed, low values of spring 
stiffness can be used for faster simulations. It must, however, be remembered that 
when such artificially low values of spring stiffness constant are used, the predicted 
values of contact time between solid particles are not realistic. When the objective is 
to understand local particle to particle heat or mass transfer, it is important to make 
accurate predictions of particle contact times. For such cases, it is necessary to use 
realistic values of spring stiffness constant at the expense of increased computational 
resources. 

DPMs can also be used to understand the influence of particle properties on 
fluidization behavior. It has been demonstrated that ideal particles with restitution 
coefficient of unity and zero coefficient of friction, lead to entirely different flu
idization behavior than that observed with non-ideal particles. Simulation results of 
gas–solid flow in a riser reactor reported by Hoomans (2000) for ideal and non-
ideal particles are shown in Fig. 12.8. The well-known core-annulus flow structure 
can be observed only in the simulation with non-ideal particles. These comments 
are also applicable to simulations of bubbling beds. With ideal collision parameters, 
bubbling was not observed, contrary to the experimental evidence. Simulations with 
soft-sphere models with ideal particles also indicate that no bubbling is observed 
for fluidization of ideal particles (Hoomans, 2000). Apart from the particle charac
teristics, particle size distribution may also affect simulation results. For example, 
results of bubble formation simulations of Hoomans (2000) indicate that accounting 
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FIGURE 12.8 Simulated fluidization behavior for ideal and non-ideal particles in a Riser reactor (from 
Hoomans, 2000). 

for non-uniform particle size leads to much better agreement with experimental data 
as shown in Fig. 12.9. During simulations with uniform particles, some small satellite 
bubbles appeared above and alongside the main bubble. Such satellite bubbles were 
not observed in the experiment nor in simulations with non-uniform particles. 

When appropriate parameters are used, both, hard-sphere and soft-sphere models 
lead to similar predictions. Bubble formation results obtained from hard-sphere and 
soft-sphere models are shown in Fig. 12.10 (from Hoomans, 2000). The main bubble 
size and position in the bed observed in both simulations agree quite well with the 
experiment. The shape of the bubble observed in the experiment was more rounded 
than that observed in simulations. Thus, any of these, hard-sphere or soft-sphere 
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FIGURE 12.9 Comparison of simulation results with uniform and with log-normal particle size 
distribution and experimental observation (from Hoomans, 2000). 
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FIGURE 12.10 Comparison of simulation results for hard and soft sphere models with experimental 
results (from Hoomans, 2000). 

models can be applied to gain insight into fluidization behavior. It should be noted 
that although predicted results of both approaches are almost the same, the compu
tational efficiency of these two models might be different depending on the problem 
under consideration. Soft-sphere simulations progress at a constant speed (controlled 
by the time step, which in turn depends on the value of spring stiffness constant) 
whereas hard-sphere simulations are event driven and their speed depends strongly 
on system dynamics. More frequent collisions will slow down hard-sphere simulations 
(controlled by time interval between successive collisions). 

DPMs may be used to understand the influence of particle characteristics on 
bubble formation, cluster formation and so on. These models may provide information 
regarding bubble size, cluster size, heat and mass transfer from such clusters to 
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reaction engineering models. DPMs may also be used to extrapolate cold-flow data 
on bubble sizes/cluster sizes to high temperatures and high pressures. Interaction 
of gas distributor holes and gas–solid dynamics in the fluidized beds can also be 
examined with these models. Kaneko (2000) used DPMs to examine the behavior of 
fluidized polymerization reactors. These results are discussed in Section 12.3. 

It must be noted here that most industrial fluidized bed reactors operate in a 
turbulent flow regime. Trajectory simulations of individual particles in a turbulent field 
may become quite complicated and time consuming. Details of models used to account 
for the influence of turbulence on particle trajectories are discussed in Chapter 4. These 
complications and constraints on available computational resources may restrict the 
number of particles considered in DPM simulations. Eulerian–Eulerian approaches 
based on the kinetic theory of granular flows may be more suitable to model such 
cases. Application of this approach to simulations of fluidized beds is discussed below. 

12.2.2. Granular Flow Models (GFM) 

Granular flow models are based on the interpenetrating continuum assumption. Both, 
gas and solid phases are modeled as a continuum. In this approach, individual parti
cle trajectories are not simulated but an attempt is made to represent physics of those 
trajectories and particle–particle interactions using averaged form of governing equa
tions. Because of use of such averaged equations, models based on this approach can 
be extended to simulate gas–solid flows comprising large number of solid particles. 
Basic equations of this approach are discussed in Chapter 4. Some recent work on 
development of CFD based models of fluidized bed reactors is briefly reviewed here. 
The discussion is divided into riser (fast fluidization regime) and dense bed (bubbling/ 
turbulent bed regime) simulations. 

Simulations of riser reactors 

Riser reactors are used in a variety of applications, with fluid catalytic cracking 
(FCC) probably the most important one. Evolutionary design changes are constantly 
being introduced into all components of riser hardware to enhance the performance. 
Computational fluid dynamics has been used to understand the fluid dynamics of 
FCC systems and to evaluate alternative hardware configurations (Theologos et al., 
1997; Ranade, 1998). Several attempts have been made to model gas–solid flows in 
vertical pipes (Dasgupta et al., 1998; Kuipers and van Swaaij, 1999 and references 
cited therein). Most of these attempts were based on the kinetic theory of granular 
flows (KTGF). Gao et al. (1999) simulated gas–solid flows in risers without using 
the kinetic theory of granular flows. Their results showed reasonably good agreement 
with two experimental data sets. However, in general, models based on KTGF require 
less ad hoc adjustments and have much wider applicability. 

Sinclair and Jackson (1989) used the kinetic theory of granular flows to simu
late gas–solid flows in risers. Their model was found to exhibit extreme sensitivity 
with respect to the value of restitution coefficient, es. Nieuwland et al. (1996) also 
observed such an extreme sensitivity. Bolio et al. (1995) reported that such extreme 
sensitivity could be overcome by including a gas phase turbulence model. Despite 
these studies, there are no systematic guidelines available to make appropriate selec
tion of models and model parameters (such as laminar versus turbulent, values of 
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restitution coefficients and specularity coefficient and interphase drag coefficients) to 
simulate gas–solid flow in industrial risers. It is observed from most of the available 
studies that the range of gas and solid fluxes investigated is not directly relevant to the 
operating range of industrial riser reactors. The influence of riser diameter, particle 
size and density, solids flux on various flow characteristics (pressure drop, solid vol
ume fraction profiles and so on) has not been studied systematically. Here we report 
computational experiments discussed by Ranade (1999) to evolve possible guidelines 
for modeling gas–solid flows in riser reactors. 

A two-fluid model with kinetic theory of granular flows was used to formulate 
the governing transport equations for gas–solid flows in riser. For details of the model 
equations, refer to the discussion in Chapter 4. Although in many industrial reactors, 
gas–solid flow in a riser may not be fully developed (except at the top region of the 
riser), it is always beneficial to start by developing relevant models to simulate fully 
developed gas–solid flow in a vertical riser. After adequate validation of such a base 
model, it can then be extended to simulate developing flow of gas and solid mixture. 
Ranade (1999) modeled fully developed flow by considering a very short riser with 
periodic (translationally) boundaries. With this approach, it is not necessary to model 
the large height of the riser reactor to ensure a fully developed state of flow. The 
computational grid used in his simulations is shown in Fig. 12.11. In order to resolve 
steeper gradients near the wall, a finer grid was used in the near wall region. The 
computational model was mapped on to a commercial CFD code, FLUENT version 
4.5 (Fluent Inc., USA) with the help of user-defined subroutines. 

For each simulation, superficial gas and solid velocities were specified as input 
parameters. Computations were started by setting the initial guess equal to these 
specified velocities. After each time step (of 0.001 s), all the variables except fluid 
pressure at the inlet, were set from the values calculated at the corresponding outlet 
computational cells. When setting the gas and solid axial velocity at the inlet, a 
correction was made to enforce the specified net gas and solid fluxes. At the riser wall, 
boundary conditions proposed by Sinclair and Jackson (1989) are recommended and 
were used for solids axial velocity and granular temperature. For the gas phase, the 
usual no slip boundary conditions (with wall functions) were used. To estimate the 
interphase drag force, a correlation proposed by Wen and Yu (1966) was used. For 
the gas–solid flows considered in this work, the contributions of lift and virtual mass 
forces were negligible. The kinetic theory of granular flows was used to calculate other 
relevant properties (such as solids viscosity and pressure). A standard k–ε model was 
used to simulate gas phase turbulence. In order to consider solid phase turbulence, the 
time-averaged granular temperature equation was solved. Additional terms including 

2AHE�@E? � 
9=��>�K�@=HEAI5O��AJHO =NEI� 

FIGURE 12.11 Computational grid for riser reactor (fully developed flow). 



383 CFD MODELING OF GAS–SOLID REACTORS 

dissipation of solid phase turbulence, correlation between fluctuations of granular 
temperature and solids phase volume fraction were considered in the model. The basic 
governing equations are discussed in Chapter 4. Using these governing equations and 
the proposed boundary conditions, transient simulations were carried out until the 
fully developed steady state results were obtained. 

Using a similar model, Bolio et al. (1995) reported good agreement between 
model predictions and the experimental data of Tsuji et al. (1984). Instead of repeating 
those simulations, we report here a comparison of simulated gas–solid flow with the 
experimental data of Yang (1991). The value of solid flux used in these experiments 
was also rather low (10 kg m−2 s−1). The comparison is shown in Fig. 12.12. It can 
be seen that the centerline gas velocity predicted without considering the turbulence 
model, is significantly higher than that reported by Yang (1991). Predicted results after 
considering the turbulence model show much better agreement with experimental data 
(Fig. 12.12). The predicted radial profiles of solid hold-up are shown in Fig. 12.13. In 
order to verify that the predicted results are not unreasonably sensitive to the value of 
particle–particle restitution coefficient, gas–solid flow simulations were also carried 
out with a restitution coefficient of 0.95. Comparison of predicted radial profiles of gas 
and solid velocity for these two values of restitution coefficient indicate that predicted 
results are not unduly sensitive to the value of restitution coefficient. 

It can be seen that lower values of particle–particle restitution coefficient predict 
higher values of centerline solids hold-up. Unfortunately, experimental data concern
ing solids hold-up was not available for the same operating conditions. The predicted 
profiles of granular temperature for the two values of restitution coefficient also show 
significant difference at the region near the symmetry axis. Despite these differences, 
it can be concluded that the model does not exhibit extreme sensitivity to the value 
of restitution coefficient. The influence of the value of the speculiarity parameter on 
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FIGURE 12.12 Comparison of simulation results with experimental data at low solids flux (dp = 
54 �m, ρs = 1545 kg m−3, D = 0.14 m, Ug = 4.33 m s−1, Gs = 10 kg m2 s−1) (from Ranade, 1999). 
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FIGURE 12.13 Sensitivity of simulation results to model parameters (dp = 54 �m, ρs = 
1545 kg m−3, D = 0.14 m, Ug = 4.33 m s−1, Gs = 10 kg m−2 s−1) (from Ranade, 1999). 

predicted results was also examined. Kuipers and coworkers (1991, 1998) used a 
value of speculiarity coefficient 0.5 while Bolio et al. (1995) used a very small value 
(0.002). The reduction in the value of speculiarity parameter causes flatter profiles 
of gas velocity (Fig. 12.12). An order of magnitude decrease in the value of spe
culiarity coefficient (0.05 from 0.5) increased the wall slip of solid particles from 
0.9 to 3.2 m s−1. It can be seen that the predicted results obtained with the value 
0.5 showed much better agreement with experimental data (Fig. 12.12). In view of 
these results, for all subsequent simulations, particle–particle restitution coefficient, 
particle–wall restitution coefficient and speculiarity coefficients were set to 1.0, 0.9 
and 0.5, respectively. With these parameter settings, the computational model was 
found to give satisfactory agreement with the experimental data of Yang (1991). 

To simulate gas–solid flows in industrial FCC risers, it is necessary to simulate 
flows at high solids fluxes. At higher solids flux, radial segregation increases and a 
significant downflow of solids may occur in the near-wall region in the riser. Several 
authors have reported such downflow of solids near the wall (van Breugel et al., 
1969; Bader, 1988; Nieuwland et al., 1996; Derouin et al., 1997). We simulated 
the experimental conditions reported in these studies using the same computational 
model as was used to simulate the data of Yang (1991). Typical comparisons at higher 
solids fluxes are shown in Fig. 12.14. It can be seen that the agreement between 
predicted results and experimental data has significantly deteriorated and the model 
used in the present work failed to capture the significant downflow near the riser wall. 
It was interesting to note that the simulations showed the downflow at the wall if 
they were carried out without considering the gas phase turbulence model. Pita and 
Sundaresan (1991) showed reasonable agreement between predicted results and the 
experimental data of Bader et al. (1988) without including the turbulence model. Their 
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FIGURE 12.14 Comparison with experimental data from van Breugel et al., 1969 (dp = 40 �m, 
ρs = 2300 kg m−3, D = 0.30 m, Ug = 6.30 m s−1, Gs = 390 kg m−2 s−1 ). (From Ranade, 1999). 

computational model, however, exhibits extreme sensitivity with respect to particle– 
particle restitution coefficient and therefore cannot be used to simulate practical riser 
flows. 

Kuipers and van Swaaij (1999) also observed that it was not possible to sim
ulate the downflow near the riser wall without modifying the underlying interphase 
momentum exchange model. The pronounced lateral segregation and solids downflow 
near the wall with velocities much higher than terminal-settling velocities may occur 
due to the formation of clusters. Typical size of these clusters and how these clusters 
affect the dynamics of gas–solid flows in vertical risers is not properly understood. 
Several ad hoc modifications based on fitting a limited set of experimental data have 
been attempted. Matsen (1982) proposed a correlation to estimate slip velocity of 
clusters as a function of single-particle terminal settling velocity and volume fraction 
of solids. The ratio of slip velocity to terminal settling velocity at 10% solids volume 
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fraction is about 5. Kuipers and van Swaaij (1999) used a correlation proposed by 
Nieuwland et al. (1994) to correct the interphase drag coefficient to account for clus
ter formation in the riser flows. This correlation predicts the ratio of slip velocity to 
terminal settling velocity as about 30. Thus, these two correlations to account for the 
influence of clusters on the interphase drag force term differ significantly from each 
other. It appears that cluster formation, their size and slip velocity may be functions 
of more parameters than just the solids volume fraction and terminal settling velocity. 
In order to further understand various issues in the simulations of gas–solid flows in a 
riser, it will be instructive to examine the results of numerical experiments. Here we 
describe the results of some such numerical experiments to illustrate the influence of 
relevant variables such as riser diameter, particle diameter and solids flux on predicted 
results. 

For these numerical experiments, a base case of gas–solid flow with the following 
parameters was considered: particle diameter 100 �m, particle density 2000 kg m−3, 
gas density 5 kg m−3, riser diameter 0.30 m, gas superficial velocity 10 m s−1 and 
solids flux of 400 kg m−2 s−1. The model of Ranade (1999) was used along with the 
turbulence model to simulate the base case and various other cases with systematic 
variation of the main governing parameters of gas–solid flows in risers. The data used 
for these numerical experiments are listed in Table 12.2. Additional simulations were 
also carried out to examine the interaction between parameters by simultaneously 
varying more than one parameter. Unless otherwise mentioned, for all simulations, 
the particle–particle restitution coefficient was set to one, the particle–wall restitution 
coefficient was set to 0.9 and the speculiarity coefficient was set to 0.5. The influence 
of several parameters on the predicted values of solids velocity, slip velocity, solids 
volume fraction, solids granular temperature and gas phase turbulent kinetic energy 
was studied. Analysis of the results obtained by these numerical experiments will 
be useful to guide the development of a computational model to simulate industrial 
fluidized beds. 

The influence of riser diameter on the predicted results is shown in Fig. 12.15. 
It can be seen that there are significant qualitative differences in the predicted radial 

TABLE 12.2 Data Used for Numerical Experiments and Predicted 
Pressure Drop 

No. D, 
m 

dp, 
�m 

ρs , 
kg  m−3 

ρg , 
kg m−3 

Ug 

m s−1 
Gs, 
kg m−2 s−1 

�p/L 
Pa/m 

1 0.30 100 2000 5 10.0 400 647.17 
2 0.06 100 2000 5 10.0 400 1924.3 
3 1.00 100 2000 5 10.0 400 488.35 
4 0.30 200 2000 5 10.0 400 666.65 
5 0.30 050 2000 5 10.0 400 617.35 
6 0.30 100 2000 5 10.0 200 444.97 
7 0.30 100 2000 5 10.0 100 375.74 
8 0.30 100 2000 5 5.0 400 950.21 
9 0.30 100 2000 5 5.0 200 528.21 

10 0.30 100 1000 5 10.0 400 385.72 
11 0.30 100 2000 1 10.0 400 546.67 
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FIGURE 12.15 Influence of riser diameter (from Ranade, 1999). 

profiles for the small diameter riser (0.06 m) and for larger diameter risers (0.3 and 
1.0 m). For the small diameter riser, pronounced wall peaking was predicted even in 
the absence of cluster corrections. For the large diameter risers, the model predicts 
a qualitatively different profile with minima in solids hold-up near the wall. As the 
riser diameter increases, the location of the maximum in the predicted solids flux 
profile shifts towards the riser wall. In view of the significant influence of riser diam
eter on the characteristics of gas–solid flows in risers (especially on solids granular 
temperature), it is inappropriate to use empirical cluster corrections derived by fitting 
the experimental data obtained in a smaller diameter riser. The formation of clus
ters and the role of riser diameter in cluster formation need to be studied in detail 
to develop industrially useful models (Sunderesan, 2000). Simulations using DPMs 
may be useful in this regard. 

Additional numerical experiments were carried out for three values of particle 
diameters and two values of solids density. These results are shown in Fig. 12.16a 
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FIGURE 12.16 Influence of particle diameter, particle density, gas and solids flux (From Ranade, 1999).
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and 12.16b. Smaller particle diameters lead to a flatter profile for solids velocity. 
As expected, the predicted slip velocity increases with particle diameter. All slip 
velocity profiles exhibit a sharp peak near the riser wall. The predicted solids hold
up profiles for all four cases are not significantly different. The predicted granular 
temperature increases with particle diameter and particle density, though the shape 
of the profile remains the same. Results of the numerical experiments to examine 
the influence of gas and solids flux are shown in Fig. 12.16c and 12.16d. It can be 
seen that for the same superficial gas velocity, the decrease in solids flux leads to 
higher granular temperature and higher slip velocities. For the same solids flux, a 
decrease in gas velocity significantly reduces the granular temperature. Predicted 
profiles of slip velocity exhibit a maximum in the near-wall region, the magnitude 
of which increases with increasing superficial gas velocity and decreasing solids 
flux. The computational model, however, failed to predict any significant downflow 
of solids even for the highest solids flux (400 kg m−2 s−1) and lowest gas velocity 
(5 m s−1) case. The role of gas phase and secondary solids phase turbulence on radial 
segregation of solids needs to be studied systematically to evaluate the currently used 
KTGF-based models. The predicted values of pressure drops (Table 12.2) show the 
expected trends. However, unless the downflow near the wall is captured, quantitative 
comparison with the experimental data will be difficult. 

Pita and Sundaresan (1991) reported results of numerical experiments using their 
computational model (without including a turbulence model). They reported the exis
tence of multiplicity for large diameter risers. In order to examine the possibility of 
multiple solutions, numerical experiments were initiated with several different initial 
guess fields. However, multiplicity was not detected in any of the cases discussed 
above. The computational model always converged to the same result from any initial 
guess field. The computational model used in the present work predicted monotonic 
decrease in pressure drop with increase in riser diameter for specific values of gas and 
solid fluxes. This trend is in line with the observations of Yerushalmi and Avidhan 
(1985). Pita and Sundaresan’s model, however, predicted a reversal in the trend: it 
predicts an increase in pressure drop with increase in riser diameter, if it increases 
beyond a certain value (about 0.1 m). Such a reversal in trend may occur if the model 
predicts the downflow of solids near wall for the large diameter risers. The model 
used in the present work did not predict any downflow even for the 0.5 m riser. It 
is necessary to generate systematic data concerning radial segregation of solids and 
effective slip velocity of solids (clusters and particles) by conducting experiments at 
different riser diameters covering the range of particle diameters and gas and solid 
fluxes relevant to industrial riser flows. The data will also be useful to understand 
cluster formation and to quantify its influence on the dynamics of gas–solid flows. 
Understanding gained through interpretation of experimental data and the results 
of numerical experiments may be translated into appropriate sub-models to repre
sent cluster formation and their effect on gas–solid dynamics. Such sub-models may 
be able to capture the downflow of solids near riser walls with adequate accuracy. 
Instead of empirically adjusting the values of restitution coefficient and speculiarity 
coefficient, independent measurements of these parameters should accompany the 
experimental data suggested above. 

In light of these comments, some recent work (Kuipers et al., 1998; Dasgupta 
et al., 1998; Mathiesen et al., 1999, 2000; Neri and Gidaspaw, 2000) on the application 
of granular models to simulating gas–solid flows in riser reactors is briefly reviewed 
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here. Mathiesen et al. (1999, 2000) developed a multifluid model to account for the 
particle size distribution. Each solid phase is characterized by a diameter, form factor, 
density and restitution coefficient. Their model was able to predict axial segregation 
by particle size quite well (Fig. 12.17a). The model was, however, not able to capture 
radial segregation by particle size adequately. This may be because the model ignored 
some of the external forces acting on solid particles. The predictions of solids volume 
fraction were also not very good (Fig. 12.17b). The model of Neri and Gidaspaw 
(2000) could capture the oscillatory motion of dense clusters reasonably well. Pre
dicted results show the well-known core-annulus flow regime in the time-averaged 
sense. The values of solid volume fraction near the wall, however, were underpre
dicted (Fig. 12.17c). Apart from the time-averaged results, the predicted dynamic 
characteristics were found to be in reasonable agreement with experimental data. 
Their results show that imposition of the symmetry boundary condition at the riser 
axis is not justified because of the strongly asymmetric instantaneous flows. Benyahia 
et al. (2000) also report simulations of oscillatory behavior and asymmetric flow in 
risers. The calculated solids volume fraction deviated from the experimental data at 
the wall region. These results indicate that state of the art CFD models are not yet able 
to capture the influence of clusters without empiricism. It is essential to establish a 
systematic database to develop useful empirical relationships for immediate use and 
to guide further development of computational models. Herbert et al. (1999) system
atically stored data collected over the past several years at ETH in an Oracle relational 
database. Databases of this type will be valuable for further development and for fine 
tuning CFD-based models for reactor engineering applications. Some applications of 
such CFD models to reactor engineering are discussed in the next section. 

Simulations of bubbling/turbulent bed reactors 

Bubbling/turbulent fluidized bed reactors are characterized by excellent solids mixing 
and gas–solids contact. Most of these properties can be attributed to the presence of 
bubbles. An understanding of the formation and motion of gas bubbles and their 
influence on various transport rates is of crucial importance for reactor engineering of 
bubbling/turbulent bed reactors. In a bubbling bed, distinct gas voids or bubbles exist. 
In turbulent beds, voids and large clusters of solids particles are distributed all over the 
reactor. A Eulerian–Eulerian approach is particularly suitable to simulate industrial 
bubbling/turbulent bed reactors (which may contain billions of solid particles). Some 
of the key issues in developing computational models for such reactors are discussed 
below. 

Bubbling/turbulent beds contain regions of steep voidage gradients, which are 
difficult to handle numerically. Most early work on the simulation of dense bubbling 
beds was restricted to simulation of a single or few bubbles in a two-dimensional 
fluidized bed for a short time (Kuipers et al., 1991). Although this work is useful, for 
industrial applications it is more relevant to simulate vigorously bubbling fluidized 
beds and obtain predictions of bubble frequency, bubble volume fraction, bubble size 
and bubble rise velocities. When reviewing these attempts, Clift (1993) invoked the so-
called ‘Occam’s razor’ and recommended that such CFD models of dense bubbling 
beds may only be used as ‘learning models’, and conventional or discrete bubble 
Lagrangian models may be used for the design and scale-up of bubbling fluidized 
beds. His recommendation was mainly based on state of the art results in 1993. Since 



391 CFD MODELING OF GAS–SOLID REACTORS 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

��� 

���� � � ��� ��� 
���� � � ��� ��� 
���� � � ��� ��� 
���� � � ��� ��� 
���� � � ��� ��� 
���� � � ��� ��� 

�
��
�
��
��

 �
�
�
� 

��� ��� ��� ��� ��� ��� 

��� ������ ��� 

���� 

���� 

���� 

���� 

���� 

��� 

��� 
��� 

�
�
��
�
� 
��
��
��
�
�

 �
�
� 

� � ��� � 

���� � ���� � ��� � ���� ��� ���� ��� ���� ��� 
��� ������ �������� r�R ��� 

���� 

���� 

���� 

���� 

���� 

���� 

�
��
��
��
� 
�
�
��
�
� 
��
��
��
�
�

 

��� ��� ��� ��� ��� ��� ��� ��� 
��� X ���� 

FIGURE 12.17 Some simulation results for gas–solids flows in a riser. (a) Axial particle diameter 
profiles for different superficial gas velocities (VSUP ) (from Mathiesen et al., 2000). (b) Radial solid volume 
fraction profiles at 0.7 m from the bottom, VSUP = 1.0 m s−1 (from Mathiesen et al., 2000). (c) Radial 
solids volume fraction profiles at different heights: solid line and circles 1.86 m; short-dashed line and 
squares 4.18 m; long-dashed line and diamonds: 5.52 m (from Neri and Gidaspaw, 2000). 
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then, significant progress has been made and it is now possible to simulate bubbling 
beds having a large number of bubbles. Ferschneider and Mege (1996) applied a two-
fluid model to simulate bubbling fluidization of Geldart group A powders (particle 
diameter 100 �m) in a two-dimensional column. Comparison of their predicted results 
with experimental data is shown in Fig. 12.18. It can be seen that although predictions 
of bubble diameter and bubble rise velocity are reasonable, the model significantly 
overestimates bubble volume fraction. Such an overestimation may lead to carry-over 
of the entire dense bed as reported by Ranade (1998). 

It should be noted that a two-fluid model along with the kinetic theory of gran
ular flow contains several modeled terms (stress tensors, solid phase bulk and shear 
viscosity, radial distribution function and so on). Several different modeled versions 
of each of these have been used (Nieuwland et al., 1996). A general consensus on 
selection of an appropriate version has not yet emerged. Enwald et al. (1999) used 
two different stress tensor models to simulate bubbling beds, which led to quite 
similar results. Fortunately, the existence of bubbles is independent of which stress 
tensor model is used, since the mechanism of bubble formation originates from gen
eral two-fluid model formulation (Glasser et al., 1996). In addition to the selected 
model equations, numerical issues such as mesh refining and discretization schemes 
may also play a significant role. Syamlal (1998) reported significant influence of dis
cretization scheme on simulated bubble shapes. His results are shown in Fig. 12.19. 
Studies by van Wachem et al. (1998, 1999) and Enwald et al. (1999) also indicate 
the strong influence of numerical parameters on simulated characteristics of bubbling 
fluidized beds. In both of these studies, bubbling beds of Geldart group B particles 
were simulated. van Wachem et al. (1998) report that a finer mesh is required to 
simulate bubbling at lower fluidization velocities. They had to use different mesh 
sizes for different velocities in order to get similar volume fractions inside bubbles at 
different fluidization conditions (0.007 m for two times minimum fluidization veloc
ity and 0.01 m for four times minimum fluidization velocity). Their simulated results 
also indicate reasonably good predictions of bubble size and bubble rise velocity 
(Fig. 12.20). Enwald et al. (1999) report that as the operating pressure or the ratio of 
density of fluidizing medium to solid particles decreases, a finer mesh is required. A 
sample of simulated results reported by Enwald et al. (1999) is shown in Fig. 12.21. It 
can be seen that simulations with a granular flow model lead to very few bubbles near 
the distributor, unlike experimental observations. Simulations with constant particle 
viscosity models carried out with a fine mesh resulted in reasonable agreement with 
experimental data. 

In light of these recent works and progress in the development of robust and effi
cient parallel solvers, it is now possible to use CFD models for the reactor engineering 
of bubbling/turbulent fluidized beds. The key issue in developing such models is that 
the reactor engineer should not focus on developing an all-encompassing model by 
including every conceivable term. Instead, the reactor engineer should make judi
cious use of accumulated knowledge about the considered fluidized bed reactor to 
construct a model which gives predictions consistent with the accumulated experience. 
For example, Ranade (1998) used an analogy between dense bubbling beds and bub
ble column reactors to simulate key issues regarding gas distributor and solids entry 
configuration in a FCC regenerator (as discussed in Chapter 9). Some of the recent 
applications of CFD models to reactor engineering of fluidized beds are discussed in 
the following section. 
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FIGURE 12.18 Comparison of simulated bubbling fluidization of Geldart group A particles with
experimental data (from Ferschneider and Mege, 1996).



394 CHAPTER 12 FLUIDIZED BED REACTORS 

Superbee Superbee 
frictional stress frictional stress 
t = 0.15 s t = 5.0 s 

FOU FOU 
frictional stress frictional stress 
t = 0.15 s t = 5.0 s 

FIGURE 12.19 Influence of discretization schemes on bubble shape (from Syamlal, 1998). Contours 
of void fractions (white: more gas). Superbee: QUICK with superbee limiters FOU: First order upwind. 

12.3. APPLICATIONS TO REACTOR ENGINEERING 

General issues in reactor engineering are discussed in Chapter 1. Many of these 
issues are also discussed in Chapters 10 and 11 with reference to stirred tank and 
bubble column reactor. These discussions are also applicable to the engineering of 
fluidized bed reactors. As mentioned repeatedly in this book, it is first necessary 
to evolve a ‘wish list’ for the reactor to quantify demands on the reactor. Suitable 
reactor configurations and modes of operation can then be evolved. Krishna (1994) 
discussed a systematic approach for the selection of appropriate reactor and mode of 
operation. Available modeling tools can then be used to short-list the most promising 
configurations. Classical reaction engineering models give useful information about 
the overall behavior of the reactors. Usually two-phase or three-phase models are 
used to simulate bubbling fluidized bed reactors (Kunii and Levenspiel, 1991). These 
models are also extended to simulate turbulent beds. Grace et al. (1999) developed a 
generalized bubbling turbulent (GBT) bed model based on a probabilistic approach. 
Usually plug flow is assumed to simulate the behavior of riser reactors. An approach 
analogous to GBT can also be developed for the fast-fluidization regime in riser 
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FIGURE 12.20 Simulations of bubbling fluidization of Geldart group B particles (from van Wachem 
et al., 1998). 

reactors. Through these developments in reactor modeling, it is becoming evident 
that unless the influence of the complex hydrodynamics of fluidized bed reactors is 
accounted for, it is not possible to develop a comprehensive model which can be 
used for reactor engineering purposes. CFD models can provide information about 
such complex hydrodynamics of fluidized bed reactors. It may not be efficient to 
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FIGURE 12.21 Comparison of simulated (constant viscosity or granular model) and experimentally 
observed bubble frequency (Pressure 0.8 Mpa, from Enwald et al., 1999). 

develop a comprehensive CFD model to simulate an entire reactor operation. Insight 
gained through application of CFD models may, however, lend significant help in 
engineering decision making. Two examples of the application of CFD-based models 
to enhance the performance of fluidized bed reactors are discussed in Chapter 9. Here 
we illustrate the potential by describing more applications from published literature. 

Use of CFD models to understand mixing and mal-distribution issues in an oxy-
chlorination reactor was discussed in Chapter 9. Samuelsberg (1994) used a two-fluid 
model with kinetic theory of granular flows to simulate a bubbling fluidized bed 
carrying out oxi-chlorination reactions. They simulated only a two-dimensional slice 
of the oxi-chlorination reactor. The internal heat transfer tubes were modeled as a 
porous block (volume blockage 0.75) assuming a constant bed-to-wall heat transfer 
coefficient. The simulated spatial distribution of ethylene di-chloride (EDC) is shown 
in Fig. 12.22. The highly dynamic behavior of bubbling beds is clearly evident from 
this figure. It can also be seen that the most significant EDC formation takes place 
in the bottom part of the reactor. Though this model employs a strongly simplified 
representation of a full-scale oxy-chlorination reactor and internal heat exchanger, it 
provides much more detailed information than conventional design and development 
models. The possibility of hot spot formation and interaction of gas mal-distribution 
on reactor performance can be understood using such a computational model. A 
discrete particle model was used by Kaneko et al. (1999) to understand similar issues 
in a bubbling polymerization reactor. This model was used to understand differences 
between porous and perforated plate gas distributors in terms of reactor performance 
and hot-spot formation. A sample of their results is shown in Fig. 12.23. It can be seen 
that simulations indicate the possibility of formation of a dead zone for the perforated 
distributor. The temperature of gas in such a dead zone may increase significantly 
during the course of the reaction. 
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FIGURE 12.22 Simulated spatial distribution of ethylene di-chloride (from Samuelsberg, 1994). 

CFD-based models have also been used to simulate the performance of riser 
reactors (Theologos and Markatos, 1993; Theologos et al., 1997; Gao et al., 1999). 
Gao et al. (1999) developed a three-dimensional two-phase turbulent flow model to 
simulate a FCC riser reactor. A thirteen-lump kinetic model was used to simulate 
cracking reactions taking place in the FCC riser. The computational flow model 
was first verified by comparing predicted results with the published experimental 
data of Bader et al. (1988) and Yang (1991). A sample of their results is shown in 
Fig. 12.24. It can be seen that their computational model was able to capture key flow 
characteristics of gas and solid phase quite adequately. This is crucial for extending 
the use of computational flow models for reactor engineering. Gao et al. (1999) then 
used this computational model to simulate the industrial riser reactor. In such a reactor, 
feed is usually introduced at the bottom of the riser via multiple nozzles. Conventional 
one-dimensional riser models cannot account for radial variation of catalyst and feed 
concentrations. The CFD-based three-dimensional model of Gao et al. (1999) could 
capture such radial as well as axial variations. Local fluid dynamics near feed nozzles 
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FIGURE 12.23 Influence of gas distributor on particle and gas temperatures (simulations of ethylene 
polymerization, 14000 particles, u = 3umf , t = 6.25, from Kaneko et al., 1999). 
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is strongly affected by high velocity jets, leading to lower gasoline yields. Their 
computational model could correctly capture the performance of two commercial 
riser reactors. As observed in many commercial risers, the yield of gasoline attains a 
maximum at a certain height within the riser and then declines due to overcracking. 
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Several operational modifications are proposed to avoid such overcracking. Gao et al. 
(1999) demonstrated application of their computational model to evaluate a reaction-
terminating technique to eliminate overcracking. In this technique, water is injected 
into a riser reactor at a suitable height. The injected water reduces the temperature and 
thus, reduces overcracking. Various alternatives were evaluated by Gao et al. (1999) 
and the performance of their simulation is shown in Fig. 12.25. It can be seen that the 
detailed computational flow model coupled with an appropriate reaction model was 
able to identify the most promising operational strategy to enhance gasoline yield. 
Theologos et al. (1999) also included feed atomization effects in their CFD model 
of a FCC riser reactor. This model was able to simulate feed vaporization and the 
influence of feed droplet sizes on the vaporization zone. They, however, used a rather 
simplified kinetic scheme (3-lump model) to represent cracking reactions. 

Even if the detailed chemistry is not incorporated in the flow model, computa
tional flow models can be used to resolve such hardware related-issues as configuration 
of feed nozzles, reactor internals, erosion due to solids particles and so on. Gustavs
son and Almstedt (2000) applied a two-fluid model to understand the erosion of heat 
exchanger tubes immersed in bubbling fluidized beds. The simulation results provide 
detailed information about how bubble passage, wake impact and wake passage affect 
local fluid dynamics around cooling tubes and thereby affect erosion. Predicted results 
qualitatively agree with the experimental evidence. Such CFD-based models allow 
extrapolation of bench- and pilot-scale data to larger scales and cold flow simulation 
data to actual operating conditions (high temperatures, high pressures). In general, the 
computational flow models can be used (1) to understand the basic phenomena and 
(2) to simulate the influence of complex reactor hardware (feed nozzles, distributor, 
internals and so on) on the performance of industrial reactors. Invariably, it will be 
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FIGURE 12.25 Evaluation of operating strategy to enhance gasoline yield (from Gao et al., 1999). 
Unit II: Standard operation of riser reactor: Cases 1–3 represent water injected at a riser height of 
11.4 m. Case 1: Tregen = 602.3◦C, catalyst flux = 9.93 kg s−1. Case 2: Increased (3.5%) temperature of 
regenerated catalyst. Case 3: Increased (20%) catalyst flux. 
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necessary to use a hierarchy of modeling tools as discussed in Chapter 9 to achieve 
the reactor engineering objectives. A reactor engineer has to ensure that the compu
tational model contains adequate basic physics, that the numerical implementation is 
well within set tolerances, and that simulations capture all the relevant flow features. 
Judicious use of such computational flow models will greatly reduce the burden on 
experimental studies and will lead to better-engineered configurations of fluidized 
bed reactors. 

12.4. SUMMARY 

Regimes of gas–solid flows in fluidized bed reactors have been discussed briefly. Two 
types of computational flow models, (1) discrete particle models and (2) granular 
flow models, are then discussed. Application of these models to fast-fluidized bed 
reactors (riser reactors) and bubbling/turbulent bed reactors has been discussed in 
detail. Recent computational work in this area has been reviewed. The importance of 
numerical issues such as grid refinement and discretization schemes have been high
lighted with the help of examples. Some applications of computational flow models 
for reactor engineering of fluidized bed reactors were then discussed. Judicious use 
of computational models, coupled with other reaction engineering tools, will be use
ful to qualitatively grade different configurations and can greatly assist engineering 
decision-making processes. These models can substantially reduce the burden on 
experimental studies by providing efficient interpolation and extrapolation tools. Fur
ther work on parallelizing multifluid CFD codes will be necessary to carry out next 
generation, three-dimensional simulations of industrial fluidized bed reactors. 
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13

FIXED BED AND OTHER 
TYPES OF REACTORS 

Three major generic types of reactor, stirred, bubble column and fluidized bed reactors 
have been discussed in the previous three chapters. In this chapter, we briefly cover the 
other major generic reactor type, the fixed bed reactor. Apart from these four major 
reactor types, several special types of reactors are also used in practice. Newer reactor 
types are being invented to optimally carry out new processes (catalytic converters, 
chemical vapor deposition reactors, microreactors, membrane reactors and so on). It 
is not possible to cover all these types in detail in a single book. A brief review of some 
recent applications of CFD models to other types of reactor is included in this chapter. 
The review is not an exhaustive one but rather, is indicative of possible applications of 
computational flow modeling to different types of reactor. The general methodology of 
applying computational flow models to reactor engineering applications as discussed 
in this and preceding chapters may be extended to any other reactor type. 

13.1. FIXED BED REACTORS 

In a fixed bed reactor, gas phase reactions are generally carried out using a stationary 
bed of solid catalyst. In a typical reactor, suitable screens support the bed of cata
lyst particles, through which the gas phase flows. Gaseous reactants adsorb on the 
catalyst surface, reactions occur on this surface and reaction products desorb back 
to the gas phase. Two major types of fixed bed reactor are the conventional axial 
flow fixed bed reactor and the radial flow fixed bed reactor. These types are shown 
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(b)(a) 

FIGURE 13.1 Types of fixed bed reactors. (a) Axial flow fixed bed reactor: Up or down flow, single 
or multi-stage, with or without inter-stage cooling, single or multi-tubular. (b) Radial flow fixed bed 
reactor: Radially inward or outward flow, straight or reverse flow (direction of inlet and outlet is same 
or opposite to each other). 

schematically in Fig. 13.1. These reactors can be operated in various different modes 
as shown in this figure. The choice of reactor type depends on several issues includ
ing intrinsic reaction rate, heat of reaction, influence of external transport resistance 
on selectivity, molar change during the reaction, and so on. Several commercially 
important processes such as steam reforming (of methane or naptha), water gas shift 
reaction, methanol from synthesis gas, oxidation of sulfur dioxide, isomerization of 
xylenes, ammonia synthesis, alkylation of benzene, hydro de-waxing, reduction of 
nitrobenzene to aniline, manufacture of tetra-hydrofuran and butanediol from maleic 
anhydride, butadiene from ethanol, and so on, are carried out in fixed bed reactors. 

Reaction engineering models for fixed bed reactors are well developed 
(Levenspiel, 1972). Generally, fixed bed reactors are modeled as plug flow or axial 
dispersed plug flow type models. All issues such as by-passing or channeling of gas 
while flowing through the catalyst bed is usually treated using a lumped parameter 
approach. Computational fluid dynamic models can make substantial contributions to 
enhancing our understanding of such complex flow behavior within the catalyst bed. 
If intrinsic reaction rates are fast, interphase heat and mass transfer characteristics 
become important design parameters. Accurate prediction of such interphase trans
port coefficients will require information about local fluid dynamics around catalyst 
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pellets. It is very difficult to obtain such information under operating conditions. 
Computational flow models can be used to predict local fluid dynamics, from which 
the desired interphase transport coefficient values can be accurately estimated. These 
models can also be used to evaluate the influence of internals (bed supports, heat 
exchanger coils, gas distributors etc.) on flow distribution within the bed. Thus, com
putational fluid dynamics based models can make substantial contributions to linking 
actual hardware configuration with reactor performance. To illustrate possible appli
cations of CFD models to fixed bed reactors, here we discuss an example of capacity 
enhancement of a radial fixed bed reactor (Ranade, 1997). Some recent publications 
on CFD models for fixed bed reactors are briefly reviewed to point out recent trends 
and the scope for using CFD models. 

13.1.1. Radial Flow Fixed Bed Reactors 

Radial flow fixed bed reactors were developed to handle large gas flow rates with 
minimum pressure drop and are most suitable for processes in which fluids need to be 
contacted with solid particles at high space velocity (Chang and Calo, 1981). Radial 
flow fixed bed reactors are used for a variety of processes including catalytic synthesis 
of ammonia, xylene isomerization and desulphurization. 

The fluid dynamics of radial flow reactors (RFR) is very complex and involves 
severe changes in flow directions. In RFRs, feed enters parallel to the reactor axis 
either through the center pipe or the annulus and then flows radially through an annu
lar catalyst basket (Fig. 13.1). It has been shown by Chang and Calo (1981) that 
perfect radial flow always results in the highest conversion. Axial flow through the 
bed, if present, decreases the conversion efficiency because it mixes fluids of differ
ent ages within the bed (similar to backmixing). Flow mal-distribution is, therefore, 
one of the most important variables controlling the performance of radial flow fixed 
bed reactors. Obviously, the capacity enhancement exercise for RFR must focus on 
elimination or minimization of flow mal-distribution. The flow modeling tools and 
methodology discussed earlier can lead to useful insights and can be used to evaluate 
various design solutions to minimize flow mal-distribution as discussed below. The 
discussion is organized in four sub-sections covering the major steps in the application 
of computational flow modeling to reactor engineering (problem definition, develop
ment of a suitable flow model, mapping the model onto a solver and application for 
process optimization). 

Problem definition 

The typical radial flow fixed bed reactor configuration shown in Fig. 13.1b is consid
ered here. The reactor configuration is axis symmetric. Details of reactor construction 
are shown in Fig. 13.2 (only half of the reactor is shown since it is symmetric). The 
annular catalyst bed is supported by permeable cylindrical screens (inner and outer) 
and impermeable top and bottom cover plates. The top cover plate also comprises of 
a shroud as shown in Fig. 13.2. Such a shroud is generally provided to compensate 
for possible shrinkage in catalyst bed height with time. Reactants are fed to the reac
tor from the top end. The flow changes direction after hitting the cover plate. The 
feed enters the catalyst bed from the annular space between the catalyst bed and the 



406 CHAPTER 13 FIXED BED AND OTHER TYPES OF REACTORS 

reactor shell. The product stream exits through the outlet located at the bottom of the 
central pipe. 

Because of the shroud in the cover plate, the active catalyst bed is limited to the 
annular zone A shown in Fig. 13.2. The extent of flow mal-distribution within the 
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FIGURE 13.2 Details of considered radial flow fixed bed reactor (from Ranade, 1997). 
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active catalyst bed is essentially governed by the throughput, configuration details 
causing severe changes in the flow direction and the resistance offered by the support 
screens and the catalyst bed. It may be possible to control the resistance of the catalyst 
bed to some extent, by appropriately selecting the pellet size. However, the design 
of support screens and the overall configuration are the most important parameters 
governing fluid dynamics and, thereby, performance of the RFR under considera
tion. Designs of radial fixed bed reactors generally rely on conventional reaction 
engineering models (Chang and Calo, 1981). However, to realize the best possible 
operation and to enhance the performance of these reactors, a detailed knowledge 
of fluid dynamics and the extent of mal-distribution, is essential. Here we illustrate 
possible applications of CFD models to capacity enhancement of a typical radial flow 
fixed bed reactor. 

For a radial flow fixed bed reactor, capacity enhancement will involve the 
following two aspects: 

•	 assessment of fluid dynamics of the existing RFR configuration and identifi
cation of the scope for eliminating any flow mal-distribution; 

•	 exploration of the possibility of loading more catalyst by increasing the volume 
of active catalyst bed. This may be achieved by eliminating the shroud and 
filling the catalyst up to the top cover plate (zone B in Fig. 13.2) and also by 
filling the catalyst up to the bottom of the reactor (zone C in Fig. 13.2). 

It is, however, necessary to ensure that elimination of the shroud does not lead to 
flow mal-distribution by proper redesign of the screens. The support screens for the 
catalyst added in zone C also need to be properly designed to ensure uniform flow 
through the catalyst bed. It is, therefore, essential to develop a detailed flow model to 
evaluate these possibilities. 

Development of a flow model 

In order to understand the possible mal-distribution, it is essential to make an accurate 
prediction of flow in the upper region of the reactor, where severe changes in flow 
directions occur. Typical values of throughput for the RFR under consideration indi
cate that the flow is turbulent (for the specific case modeled here, feed velocity at the 
inlet was 40 m s−1). The selection of an appropriate turbulence model is, therefore, 
crucial. Anticipating recirculating flow in the upper region of the reactor with spatial 
variation of velocity and length scales of turbulence, it will be necessary to use at 
least a two-equation turbulence model. The standard k–ε model of turbulence, which 
has been tested and found to be useful for a variety of applications, may be used in 
absence of more specific information. 

The next and most important step is to characterize the resistance offered by the 
porous catalyst bed and support screens. Several correlations relating the pressure 
drop through porous beds and velocity and bed characteristics are available (Carman, 
1937; Ergun, 1952; Mehta and Hawley, 1969). The Ergun equation is one that is 
widely used to represent the resistance of a catalyst bed, and has the form: 

�P 150µ (1 − ϕ)2 1.75ρ (1 − ϕ) 
V 2 = V +	 (13.1)

L D2φ2 ϕ3 Dpφp ϕ3 
p	 p 
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where (�P/L) is the pressure drop per unit length, µ is viscosity, Dp is the equiv
alent pellet diameter, φp is sphericity, ϕ is porosity and V is superficial velocity. 
The knowledge of pellet size, shape and voidage of the bed are thus sufficient to 
characterize the resistance of the catalyst bed. Equation 13.1 may be written in a com
pact form containing two parameters namely, permeability, β, and inertial resistance 
coefficient, C: 

�P µ 1 = V + C ρV 2 (13.2)
L β 2 

For the particular case investigated here, the values of permeability, β and inertial 
resistance coefficient, C were found to be 10−8 m2 and 104 m−1, respectively. The 
resistance of the screens can be represented in terms of the contraction and expansion 
losses. The velocity heads lost during flow through screens can also be expressed 
in a form similar to that described in Eq. (13.2) by setting β to a very high value 
(1010) with an appropriate value of C. The additional resistance offered by the fixed 
bed is usually included as additional body force terms in the governing equations. 
Compressibility of the gaseous feed may be ignored if the overall pressure drop is not 
large relative to the operating pressure of the reactor (as was the case in this particular 
example). The physical properties of the feed were therefore assumed to be constant 
(viscosity as 10−5 Pa.s and density 1 kg m−3). In this exercise, since the objective 
was to evaluate possible flow mal-distribution, the development of additional specific 
sub-models for reactions or heat transfer, was not needed. 

Mapping of flow model onto CFD solver 

The geometry of the radial flow reactor was modeled and an appropriate grid generated 
using the ‘preBFC’ tool (Fluent Inc., USA). Since the reactor configuration is axis 
symmetric, axis symmetric two-dimensional geometry was considered. The porous 
media models discussed above were mapped onto a commercial CFD code, FLUENT 
(Fluent Inc., USA). Preliminary numerical experiments indicated that if the number 
of grids in the radial direction is more than 40 and in the axial direction is more 
than 100, the predicted results of pressure drop and flow mal-distribution become 
insensitive to the actual number of grids. The solution domain and grid used for all 
subsequent computations (50 grids in the radial direction and 116 grids in the axial 
direction) is shown in Fig. 13.3. 

The standard k–ε model was used to simulate the turbulence. In view of the 
expected pore size distribution of the bed, turbulence generation in the porous cata
lyst bed was suppressed. Appropriate physical properties were specified in the CFD 
solver. Standard boundary conditions were used at all the impermeable walls and reac
tor outlet. The inlet boundary condition was specified using the known throughput 
of the RFR. It is necessary to specify the turbulence characteristics of the incoming 
stream at the inlet. These were specified using information about the turbulence in 
pipe flows. The model equations with the set boundary conditions were solved using 
the well-known SIMPLE algorithm (Patankar, 1980). To solve flow through porous 
media, it is always useful to specify a reasonably good initial guess for the pressure 
drop across the catalyst bed to facilitate speedy convergence. The use of zero as an 
initial guess for pressure necessitates the use of very low under-relaxation parame
ters. A few numerical experiments were carried out to select the appropriate solution 
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FIGURE 13.3 Solution domain and computational grid for radial flow fixed bed reactor (from 
Ranade, 1997). 

parameters. Detailed optimization of the solution parameters (e.g. under-relaxation 
parameters and number of internal iterations) is difficult and often computationally 
expensive and is, therefore, not recommended unless several similar simulations need 
to be carried out. 
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Application for design and process optimization 

Detailed experimental data for the velocity and pressure profiles in the industrial RFR 
under consideration was, unfortunately, not available for validation of the computa-
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tional flow model. The available data of overall pressure drop across the bed could, 
however, be used to validate the flow model, to some extent. The predicted overall 
pressure drop across the bed (10 kPa) showed good agreement with the available data. 
In the absence of more data, this agreement was assumed to be adequate and the com
putational model was used to determine possible mal-distributions and to evaluate 
different options for capacity enhancement of the RFR under consideration. 

The flow model generates detailed predictions of the flow field within the reactor. 
This allows rigorous scrutiny of the prevailing flow structures. For the case under con
sideration, details of flow at locations involving severe changes in the flow direction 
and the extent of mal-distribution within the active catalyst bed are of interest. In the 
first phase of analysis, the influence of screen resistance on the overall flow patterns 
and the mal-distribution was studied. The predicted profiles of inward radial velocity 
at the inner screen across the catalyst bed are shown in Fig. 13.4 for different screen 
resistance values (sign of radial velocity is negative since the fluid is flowing radially 
inward). It can be seen that higher screen resistance leads to more uniform flow, which 
agrees with intuitive expectations. The existing screens (with resistance coefficients 
C2, of  2  × 105 m−1) seem to be satisfactory since the extent of non-uniformity is less 
than 10%. Contours of the stream function and a close-up of the flow field near the 
shroud and top cover plate are shown in Figs 13.5a and 13.6a, respectively. It can 
be seen that there is significant recirculation at the top end of the catalyst bed. The 
downward velocity field in the annular region between catalyst bed and reactor shell 
also exhibits some non-uniformity. 

0.0 
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Distance from the inlet, m 

FIGURE 13.4 Predicted profiles of radial velocity at different values of screen resistance (from 
Ranade, 1997). RFR configuration: catalyst in zone A, top cover plate with shroud. Screen resistance 
coefficient, C/m for + = 0.0, × =1.E5, � = 2.E5. 
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FIGURE 13.5 Predicted contours of stream function. (a) Catalyst in zone A, top cover plate with 
shroud (C = 2 × 105 m−1). (b) Catalyst in zone A, B and C, top cover plate without shroud (C = 
2 × 105 m−1 for all the screens). (c) Catalyst in zone A, B and C, top cover plate without shroud 
(C = 2 × 105 m−1 for inner screens of A and B and outer screen of A; C = 1 × 106 m−1 for outer screen 
of B; C = 5 × 104 m−1 for inner screen of zone C). 

The flow from the catalyst bed into the central pipe is more or less uniform 
(Fig. 13.4) and indicates that there is not much scope to modify existing screen 
designs to enhance the capacity of the considered radial flow fixed bed reactor. One 
must, therefore, explore the second option of removing the shroud and increasing 
the active catalyst loading by adding catalyst in zones B and C (shown in Fig. 13.2). 
Fluid dynamics of the proposed RFR with active catalyst filled in zones B and C 
along with zone A was then simulated. As a first option, support screens for zones 
B and C were specified similar to the existing support screens for zone A. Contours 
of the predicted stream function and details of flow near the top cover plate, for this 
case, are shown in Figs 13.5b and 13.6b, respectively. It can be seen that removal 
of the shroud leads to increased circulation in the upper region of the RFR. The 
predicted profile of the radial velocity at the inner edge of the catalyst bed is shown 
in Fig. 13.7 (the corresponding profile of the base case is also shown in this figure 
as a reference). It can be seen that removal of the shroud, and filling with catalyst in 
zones B and C lead to significant non-uniformity of the flow through the catalyst bed. 
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(a) 

(b) 

(c) 

FIGURE 13.6 Predicted flow field near top cover plate (see Fig. 13.5 for details of configurations 
(a), (b) and (c)). 

The high resistance offered by the support screens of zone C leads to very low flow 
through zone C and a re-circulating zone in the annular space between the catalyst 
bed and the reactor shell. The non-uniform flow through the catalyst bed also leads 
to significant re-circulation in the central pipe. Thus, mere removal of the shroud and 
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FIGURE 13.7 Predicted profiles of radial velocity at inner cylindrical screen of reactor (from Ranade, 
1997). RFR configuration (as denoted in Fig. 13.5) for + – (a), × – (b), � – (c). 

filling with catalyst in zone B and C may not lead to capacity enhancements due to 
the associated problems of mal-distribution. 

The analysis of simulated results, however, may suggest ways to redesign the 
support screens to improve the flow uniformity. In view of the role of the shroud in the 
fluid dynamics of RFR, a support screen with significantly higher resistance than the 
existing support screens may be installed in place of the shroud. To examine this, the 
resistance of the outer support screen for zone B was set to five times that for zone A. 
To facilitate more flow through zone C, the resistance of support screens for this zone 
needs to be reduced. Cover plate (screen) for zone C was, therefore, removed and the 

−1resistance of the inner support screen for the zone C was reduced to 5 × 104 m . 
Contours of the predicted streamlines and a close-up of the vector plot near the top 
cover plate are shown in Figs 13.5c and 13.6c, respectively. The corresponding profile 
of radial velocity at the inner edge of the catalyst bed is shown in Fig. 13.7. It can 
be seen that recirculation in the annular space between the catalyst bed and reactor 
shell has been eliminated by these changes. The size of the recirculating zone in the 
central pipe has also been considerably reduced. The flow non-uniformity caused by 
the removal of the shroud is more or less eliminated in this case. The flow through 
the zone C also has been considerably increased and is now of the same order as flow 
through zones A and B. Thus, the computational flow model provides quantitative 
guidelines to enhance the uniformity of the flow (in other words, enhancing the 
throughput or capacity) of the RFR under consideration. 

13.1.2. Brief Review of Modeling of Fixed Bed Reactors 

The methodology illustrated by the above example is fairly general and can be applied 
to any type of fixed bed reactor. For example, Ranade (1994) used a CFD model to 
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optimize the design of a deflector plate in an axial fixed bed reactor. Foumeny and 
Benyahia (1993) also discuss the application of CFD models to optimizing internals 
for axial flow fixed bed reactors. It should be noted that the key issue in modeling fixed 
bed reactors is correct representation of the fixed bed (of solid particles). In most cases, 
such a fixed bed of solid particles can be modeled as an isotropic or anisotropic porous 
media. Additional resistance offered by such porous media can then be modeled by 
introducing an additional momentum sink in the momentum transport equations, as 
done for the case of RFR. Accuracy of such representation obviously depends on the 
accuracy of parameters used to represent porous media, namely, permeability, β and 
inertial coefficient, C. The best option to specify adequately accurate values of these 
parameters is, of course, experimental data. 

However, it is not always possible to carry out experiments to determine values of 
these parameters, especially under the desired operating conditions of these fixed bed 
reactors (high pressure, high temperatures). In such cases, it is possible to develop 
rigorous computational models to characterize resistance of the fixed bed of solid par
ticles. In these CFD models, an array of solid particles is considered. The geometry of 
these particles is modeled rigorously with an appropriate computational grid to cover 
the entire void between the solid particles. Rigorous momentum equations can then be 
solved to understand and to simulate details of fluid dynamics around each solid parti
cle in the array. Such detailed simulations can be very educative about the small-scale 
phenomena occurring around particles in the bed and can also lead to realistic values 
of lumped parameters such as β and C under operating conditions. These detailed 
models can also be used to estimate external heat and mass transfer coefficients for 
the fixed bed flows. Logtenberg and Dixon (1998) and Logtenberg et al. (1999) devel
oped detailed flow models by considering an array of solid particles. It is possible to 
solve mass, momentum and energy transport equations by considering intra-particle 
pores, if the pores are reasonably large. Some particles are specifically designed to 
generate macropores in addition to micropores, especially for bio-chemical appli
cations involving large molecules. Knowledge of the intraparticle flow field is an 
important step in deriving predictive models of convective transport in these types of 
particles. Pfeiffer et al. (1996) simulated intraparticle flow in such macroporous (or 
gigaporous) particles. In some specialized applications, different types of fixed bed 
are used. For example, typical catalytic converters used by the automobile industry 
to reduce harmful emissions employ uniform, honeycomb like structures coated with 
active catalyst. It is better to use rigorous flow models of these intricate structures 
rather than representing them as extremely anisotropic porous media. Such detailed 
computational flow models are useful for understanding basic phenomena and may 
provide essential information to overall reactor engineering models. Such rigorous 
flow models may, however, become computationally intractable to use for large scale-
industrial reactors. It is, therefore, necessary to develop a hierarchy of CFD models to 
collect the required information for design and optimization of large-scale industrial 
reactors. 

So far, single-phase gaseous flow through fixed beds of solid particles has been 
discussed. When liquid flows through a fixed bed, it flows in the form of a film over 
solid surfaces. The flow, therefore, is entirely different than flow of gas through a fixed 
bed. In many cases, both, gas and liquid phases may flow through fixed beds. Modeling 
of these reactors involving flow of liquid over solid surfaces with a gas–liquid interface 
on the other side of the liquid film is discussed in the following section. 
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13.2. TRICKLE BED REACTORS/PACKED COLUMN REACTORS 

A variety of packed columns are used either as trickle bed reactors (co-current 
downward flow of gas and liquid over catalyst pellets) or as column reactors 
(absorber/scrubbers or catalytic distillation towers, where gas and liquid phases 
flow counter-currently over a matrix of packings). Most conventional reaction engi
neering models assume drastically simplified flow patterns and are formulated as 
one-dimensional models. Recent experimental studies have shown the rich struc
ture of multiphase flows through such equipment, which needs to be understood to 
develop reliable reactor engineering models. General volume-averaged conservation 
equations for multiphase flows are discussed in Chapter 4. These equations can also be 
applied to simulating gas–liquid flows through packed beds. It is, however, necessary 
to include appropriate closure models and models to account for bed heterogeneity in 
the overall computational model. Some recent approaches are briefly reviewed here. 

Yin et al. (2000) developed a computational model to simulate flow and mass 
transfer in randomly packed distillation columns. It is necessary to develop appropri
ate models for interphase drag and dispersion coefficients. The general approach is 
to represent the overall pressure drop for gas–liquid flows in a packed column in two 
parts, namely wet and dry: 

�p �p �p = + (13.3)
�z �z dry �z wet 

The dry pressure drop can be accounted for by volume-averaged governing equations 
using the representation shown in Eq. (13.2). Generally for packed bed operations, 
only the second term on the right-hand side of this equation (corresponding to turbulent 
contributions) is adequate to represent dry pressure drop. The parameter C2 appearing 
in this equation may be obtained by using available pressure drop correlations (Robins, 
1991). Similar to gaseous flow through a fixed bed, the additional resistance offered 
by the bed is usually represented as an additional sink in the momentum equations 
(body force term). The presence of liquid phase in the packed bed reduces space for 
the gas phase and leads to higher pressure drop. Drag force exerted on the gas–liquid 
interface also contributes to the additional pressure drop. These two contributions (wet 
pressure drop) are usually modeled as interphase drag force. Available correlations 
of wet pressure drop (Robins, 1991) may be used to obtain expressions for a suitable 
interphase momentum exchange coefficient (refer Eq. (4.27)). 

KGL = 
(�p/�z)wet (13.4)|UG − UL| 

In addition to these pressure drop models, models to represent spreading of 
liquid in packed beds because of spatial variation in flow resistance are needed. In a 
randomly packed bed, the void fraction is not uniform. This implies that some flow 
channels formed within a packed bed offer less resistance to flow than other channels 
of equal cross-sectional area. Liquid will tend to move toward channels of lower 
resistance, leading to higher liquid hold-up in such channels. Thus, even if the initial 
liquid distribution is uniform, inherent random spatial variation of the bed leads to 
non-uniform liquid flow. Yin et al. (2000) assumed that the dispersion coefficient 
for liquid phase volume fraction is linearly proportional to the adverse gradient of 
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the axial flow resistance (the higher the resistance, the lesser the tendency for liquid 
flow): 

� = −Kc∇Rz (13.5) 

where Kc is a proportionality constant and can be determined by fitting experimental 
data. Rz is axial flow resistance and can be estimated by considering the inertial term 
of the Ergun equation. The dispersion coefficient can thus be written: 

ρU2 (1 − ϕ)ρU 
� = 1.75 Kc ∇ϕ − 3.5 Kc ∇U (13.6)

Dpϕ2 Dpϕ 

The first term on the right side of this equation represents the effect of bed structure 
(spatial variation of bed void fraction, ϕ) on liquid spreading, and the second term 
implies that even for homogeneous packed beds, the liquid spreading will occur if 
the initial distribution of liquid is non-uniform. The turbulent dispersion coefficient is 
modeled conventionally using the turbulent viscosity and turbulent Prandtl number. 
Yin et al. (2000) used the value of turbulent Prandtl number as 0.01, which is much 
lower than the generally used value (nearly 1). In order to close the model equations, 
it is necessary to provide information about spatial variation of voidage in packed 
beds. Yin et al. (2000) carried out measurements of voidage distribution and used an 
empirical correlation based on their own measurements. With such a model, Yin et al. 
(2000) were able to simulate pressure drop and height equivalent to a theoretical plate 
for a column packed with Pall rings. Their simulation results were able to capture the 
influence of size of packings and gas flow rate on pressure drop adequately (Fig. 13.8). 
The CFD model was also able to adequately simulate HETP (height equivalent to a 
theoretical plate) values of Pall rings. These results are shown in Fig. 13.9. It can be 
seen that the improvement of separation efficiency with increase in pressure (lower 
HETP) was correctly captured by the CFD simulations. Thus, the computational 
models can be used to understand the influence of packings size, operating pressure 
and other design and operating issues on performance. 

It must be noted that the porosity and its distribution in a packed bed are the 
key parameters in determining the flow distribution within the bed. In recent years, 
numerous attempts have been carried out to provide quantitative information about 
porosity distribution (Mueller, 1991; Borkink et al., 1992; Bey and Eigenberger, 
1997). Mean porosity and its distribution are determined largely by particle size, 
shape, surface properties and method of packing. Generally, cross-sectional averaged 
porosity along the height of the bed is distributed randomly. The longitudinally aver
aged radial porosity profile exhibits a maximum near the wall. Recently, Jiang et al. 
(2000a, 2000b) considered such random distributions of porosity within the bed and 
developed a method to generate random distribution of bed porosity while satisfying 
the constraints on mean porosity and longitudinal averaged radial porosity profiles. 
A sample of random porosity distribution generated by their method is shown in 
Fig. 13.10. Such randomly distributed bed porosity may give more realistic results 
than assuming mean porosity all over the bed. It must be noted that the porosity distri
bution observed in a packed bed will be obviously dependent on scale of observation. 
It has been experimentally shown that at a scale of a cluster of particles, porosity has 
a Gaussian distribution (Jiang et al., 2000a) while at a much smaller scale, porosity 
has a bi-modal distribution (Jiang et al., 2001). This relationship between porosity 
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FIGURE 13.8 Comparison of predicted and experimental pressure drop for three Pall rings (from 
Yin et al., 2000). 
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FIGURE 13.9 Comparison of predicted and experimental HETP values for 25.4 mm Pall rings (from 
Yin et al., 2000). 

distribution and size of bed section should be kept in mind when generating randomly 
distributed porosity within the bed. 

Closure models, similar to those used by Yin et al. (2000), can also be used to 
simulate flows in trickle bed reactors. It must, however, be noted that in a packed 
column used for separations, packing element size is around 25 mm, while in trickle 
bed reactors, the particle sizes are typically in the range 0.5 to 6 mm. For large 
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FIGURE 13.10 Computer generated 2D axis-symmetric solids volume fraction distribution (from
Jiang et al., 2000a).

particles, the gravity and inertial forces are important and the liquid distribution is
not very sensitive to the wettability of the packing surface. Closure models used by
Yin et al. (2000) to account for the gravity and inertial forces are discussed above.
Jiang et al. (2000a, 2000b) also used the Ergun equation to account for these forces.
In addition, it is necessary to account for interfacial tension and packing wettability in
the physical sub-models to simulate gas–liquid flow through a bed of smaller particles.
Based on the experimental data on liquid hold-up distribution with and without particle
pre-wetting and an empirical relationship between particle wetting factor and velocity
and pressure gradient (of Al-Dahhan and Dudukovik, 1995), Jiang et al. (2000a,
2000b) introduced an additional term representing capillary effect in their two-fluid
model. When particles are completely wetted, these additional terms reduce to zero.
These additional models are not yet sufficiently validated. It is, however, expected that



OTHER REACTORS 419 

further research along these lines will allow one to capture the influence of particle 
wetting on flow distribution within the packed beds. 

Apart from these attempts to simulate macroscale flow distribution within the 
trickle bed, some attempts at understanding microscale flow phenomena using com
putational flow models have also been carried out. Higler et al. (1999) simulated 
counter-current flow of gas and liquid through a structured packed bed reactor. They 
simulated flow of liquid through a sandwich structure. One cross-over of tubes of 
triangular section was considered in their simulations. The results were useful to 
understand residence time distribution and the influence of cross-over on this distri
bution. Simulations of microscale flow phenomena may lead to better understanding 
of flow regimes of trickle bed reactors (co-current operations) or absorption columns. 
Casey et al. (1998) reported some of the early results of simulations of film flow over 
inclined surfaces with a gas flow in the opposite direction. They were able to capture 
the onset of wavy flow. Much more work is needed in these directions to enhance 
our understanding of flooding and regime transitions in gas–liquid flows in packed 
columns. Some of the applications of computational flow modeling to other chemical 
reactors are briefly reviewed in the following section. 

13.3. OTHER REACTORS 

One textbook reactor which also has several industrial applications, is a tubular reactor. 
For example, polymerization of ethylene is carried out in a tubular reactor. Although, 
a lot of information is available on global fluid dynamics of tubular reactors, when 
reactions and fluid dynamics are intimately connected via mixing, it is necessary 
to develop a comprehensive computational flow model including chemical reactions. 
Recently Kolhapure and Fox (1999) used such a computational flow model (based on a 
multi-environment reactive mixing model) to understand the effect of micromixing on 
LDPE (low density polyethylene) polymerization in a plant-scale tubular reactor. The 
relevant model equations and necessary numerical methods are already discussed in 
earlier chapters. The study by Kolhapure and Fox (1999) shows that imperfect mixing 
of species reduces monomer conversion, increases the polydispersity index and may 
cause local hot spots (with possible degradation and adverse product quality). Apart 
from giving important physical insights, such a computational flow model can also 
be used to carry out ‘virtual experiments’ to evaluate various design alternatives to 
minimize imperfect mixing in industrial LDPE reactors. 

Another major application of computational flow modeling is for engineering 
chemical vapor deposition (CVD) reactors. Various types of CVD reactor are used 
in the microelectronics industry (Kleijn, 1991). In CVD reactors, fluid dynamics, 
transport processes and chemical reactions are again strongly interrelated and com
putational fluid dynamics based models can make substantial contributions to the 
design of industrial-scale CVD reactors. Recently, Komiyama et al. (1999) reported 
the application of computational flow models to simulate a tubular CVD reactor. The 
model was used to simulate growth rates and composition on a 5-inch wafer placed 
in a vertical, axis-symmetric, cold wall reactor. No fitting parameter was used for 
these simulations. Their predicted results are shown in Fig. 13.11a and 13.11b. It can 
be seen that CFD captured the growth rate and composition quite adequately. The 
simulation results indicate that decreasing mass transfer resistance near the wall led 
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FIGURE 13.11 Application of computational flow model to simulate single-wafer CVD reactor (from 
Komiyama et al., 1999). (a) Standard geometry, (b) evaluation of outlet configurations. 

to higher growth rate near the wall region. The computational model was further used 
to evolve a suitable reactor configuration to reduce the non-uniformity in growth rate. 
These ‘virtual’ experiments on computer indicated that changing the position of the 
reactor outlet from bottom to sidewall leads to less non-uniformities in the growth rate 
(Fig. 13.11b). Thus, these comprehensive computational flow models can be used to 
accelerate the development of better CVD reactors with minimum prototyping. 

Tubular reactors are also used to carry out some multiphase reactions. Warnecke 
et al. (1999) reported use of a computational flow model to simulate an industrial 
tubular reactor carrying out a gas–liquid reaction (propylene oxide manufacturing 
process). In this process, liquid is a dispersed phase and gas is a continuous phase. 
The two-fluid model discussed earlier may be used to carry out simulations of gas– 
liquid flow through a tubular reactor. Warnecke et al. (1999) applied such a model 
to evaluate the influence of bends etc. on flow distribution and reactor performance. 
The model may be used to evolve better reactor configurations. In many tubular 
reactors, static mixers are employed to enhance mixing and other transport processes. 
Computational flow models can also make significant contributions to understanding 
the role of static mixers and for their optimization. Visser et al. (1999) reported CFD 
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simulations of flow and heat transfer in the Sulzer SMX static mixers. Such models 
can be used to evaluate newer options to efficiently carry out industrial mixing. 

Catalytic converters used in the automobile industry are also a special class of 
tubular reactors. Many of these converters use monolith geometry in which uncon
verted hydrocarbons from exhaust gases are oxidized. Heat and mass transfer effects 
(including conjugate heat transfer and radiation) and flow mal-distribution are the 
crucial design issues. Detailed computational flow models can be used to understand 
these critical design issues and their influence on performance of the converter. Taylor 
(1999) developed a comprehensive CFD model to simulate heat and mass transfer in 
a monolithic catalytic converter. The models can be used to evaluate configurations 
leading to better heat transfer characteristics and therefore better converter durability 
at high temperatures. When catalyst does not deactivate rapidly, monolithic reactors 
may offer an attractive alternative to mechanically agitated slurry reactors, especially 
for fine chemicals (Cybulski et al., 1999). CFD-based models can make substantial 
contributions to enhancing selectivity and optimization of monolithic reactors. 

Apart from the conventional reactor types discussed so far, there are several spe
cial reactor types such as membrane reactors, jet loop reactors, microchannel reactors, 
furnaces and so on. It is virtually impossible to discuss or to describe these reactor 
types here. The basic principles discussed in this and previous chapters, however, 
allow the reactor engineer to identify and to address key design issues with the help 
of computational flow modeling. There is a growing trend to develop multifunctional 
reactors and compact reactors (see for example recent articles on process intensifi
cation by Green et al., 1999 and Stankiwicz and Moulijn, 2000). For such cases, 
computational flow modeling will play an even more important role and will be used 
extensively for reactor engineering. The general approach of developing a hierarchy 
of modeling tools will allow reactor engineers to extend the range of computational 
models and to realize faster reactor development. In this book, we have discussed sev
eral examples of applying such a methodology for better reactor engineering based 
on tractable CFD models. 

Computational flow models can also prove to be very useful for simulating a 
variety of reactor accessories, which may also significantly influence overall reactor 
performance. Reactor accessories may include distributors, instrumentation probes, 
safety mechanisms (vents), spargers, filters, cyclones and so on. There are several 
instances where minor problems such as clogging of the filter installed near the outlet 
nozzle, degradation (and subsequent contamination) at the relatively stagnant region 
near the instrument probes and so on, have caused unsatisfactory reactor performance. 
Computational flow models provide invaluable help to identify these problems, to 
identify the desired flow field and to evaluate various ways to realize the desired flow 
field in practice. Applications of CFD models to simulate various reactor accessories 
are increasing exponentially. This literature is not reviewed here explicitly, the general 
approach discussed in this book, however, might be used to carry out such simulations 
to enhance overall reactor performance. 

13.4. SUMMARY 

Application of a Eulerian–Eulerian approach to modeling flow in fixed bed as well 
as trickle bed reactors is discussed. A methodology of applying computational flow 
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modeling to enhance the performance of a radial flow fixed bed reactor is discussed 
with the help of an example. Realistic representation of the characteristics of the fixed 
bed (porosity distribution, degree of anisotropy and so on) is crucial for carrying 
out simulations for engineering use. Most of the current work relies on empirical 
information and pressure drop data to calibrate computational flow models of fixed 
and trickle bed reactors. Such calibrated computational flow models will be useful 
to understand issues related to mal-distribution, channeling, formation of hot spots 
etc. in these reactors. Recent work on application of computational flow models 
for other miscellaneous reactors is briefly reviewed. Computational flow models are 
being increasingly used in designing newer and specialty reactors such as chemical 
vapor deposition reactors or catalytic converters. To realize process intensification 
and performance enhancement, accurate knowledge of the underlying flow field in 
chemical reactors is essential. The approach and computational models developed in 
this book will allow the reactor engineer to harness the power of computational flow 
modeling for better reactor engineering. 
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EPILOGUE


Almost all the processes relevant to the manufacturing industry (chemical, petro
chemical, fertilizer, metallurgical, power, cement and so on) involve flow of fluids in 
some way or the other. Innovative and competitive edge in any manufacturing indus
try rests on how well these flow processes are designed and operated. In view of the 
central role of reactors in chemical process industries, there is tremendous potential 
for applying new flow modeling tools to chemical reactor engineering. Reactor engi
neering requires expertise from different fields ranging from chemistry and catalysis 
to fluid mixing and transport phenomena. Reactor engineering has to marry chemistry 
and catalysis with reactor hardware to evolve the best possible way to carry out the 
process under consideration. It is obvious that reactor engineers need to use several 
modeling tools to achieve their objectives. Computational flow modeling or CFD is 
being increasingly used for reactor engineering practice and research. In recent sym
posiums on reactor engineering (ISCRE and GLS conferences), more than 50% of the 
papers mentioned CFD. I hope that this book conveys the potential of computational 
flow modeling for reactor engineering applications and facilitates realization of this 
potential. 

I have made an attempt to provide sufficient information to understand and to 
define the specific role of computational flow modeling in reactor engineering appli
cations. Discussions on the main features of reactor engineering, computational flow 
modeling and their interrelationship will help to select appropriate models, and to 
apply these computational models to link reactor hardware to reactor performance. 
Mathematical modeling of flow processes (including turbulent flows, multiphase 
flows and reactive flows) and corresponding numerical methods to solve these model 
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equations are discussed. Implementation of these mathematical models and corre
sponding numerical methods on computer, and key issues for evaluating available 
computational tools are also discussed. The overall methodology of achieving the 
objectives of reactor engineering via computational flow modeling is discussed with 
the help of practical examples. Aspects of the application of computational flow mod
eling to four major reactor types: stirred tank reactor, bubble column reactor, fluidized 
bed reactor and fixed (or trickle) bed reactor, and some other types of reactor are dis
cussed. The selection of examples used in this book may appear somewhat biased 
since many of these are drawn from our own research and consulting experience. 
An attempt is, however, made to evolve general guidelines, which may be useful for 
solving practical reactor engineering problems. 

At this juncture, it would be useful to re-examine the lessons learnt from our 
experience of the application of computational flow modeling to reactor engineering. 
From our experience, it is extremely important to correctly: 

•	 identify and pose the problem; 
•	 analyze key issues relevant to achieving the defined objectives; and 
•	 select an appropriate modeling approach/tools which are consistent with the 

set objectives. 

For any engineering discipline, the so-called Occam’s razor always provides guide
lines for selecting appropriate methods/tools. Occam’s razor can be stated as, ‘it is 
futile to do with more, what can be done with less’. There are many instances where 
simple, conventional models may provide elegant and adequate solutions. Even if 
complete solutions are not possible with simple, conventional models, conventional 
analysis and modeling is essential to understand the problem correctly and for appro
priate formulation of the flow-modeling problem. If the time and space scale analysis 
indicates that a complete mixing assumption is more or less valid for the stirred reac
tor under consideration, it may not be necessary to use a computational flow model 
to simulate conversion obtainable in such a reactor. Conventional flow modeling and 
accumulated empirical knowledge about the equipment under consideration must be 
used to get whatever useful information that can be obtained, before undertaking 
rigorous CFD modeling. 

It is, however, important to emphasize here the maxim that says ‘one should 
always try to make things as simple as possible (following the Occam’s razor) but not 
simpler’. It may be necessary to match the complexity of the problem with complexity 
of the analyzing tool. One may try to find simple solutions to complex problems, which 
may not be right all the time! Distinguishing the ‘simple’ (keeping the essential aspects 
intact and ignoring non-essential aspects) and ‘simpler’ (ignoring some of the crucial 
issues along with the non-essential issues; akin to throwing the baby away with the 
bath water) formulations is a very important step towards finding useful solutions to 
practical problems. One should have the expertise and skill to select an appropriate 
level of complexity of the analyzing tools to suit the set objectives. This is one of the 
most important prerequisites for successful execution of reactor-engineering projects. 
In many reactor-engineering applications, detailed fluid dynamic models may become 
necessary and may substantially contribute towards performance enhancement. Thus, 
playing with problem definition (evaluating symptoms/set objectives, identifying and 
separating essential and non-essential issues, reframing problem objectives in the 
light of such analysis) and selecting an appropriate modeling approach, is one of the 
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most important tasks of a reactor engineer. More often than not computational flow 
modeling projects are likely to overrun the budget (of time and other resources) due 
to inadequate attention being paid to this initial step of the overall project. Inadequate 
attention to this step may even lead to failure in achieving the set objectives. Some of 
the examples discussed in Chapters 9 to 13 are useful to understand the importance 
of selecting an appropriate modeling approach using different sets of models. 

Another important lesson is that it is beneficial and more efficient to develop 
mathematical and computational models in several stages, rather than directly work
ing with and developing a one-stage comprehensive model. For example, even if the 
objective is to simulate non-isothermal reactive flows, it is always useful to undertake 
a stage-wise development and validation of computational models. Such stages could 
be: (1) simulate laminar flow; (2) examine these results and select an appropriate 
turbulence model; carry out simulation of turbulent flow; (3) evaluate isothermal tur
bulent simulations, verify existence of key flow features (go back to step 2 if results 
are not satisfactory), try to validate quantitatively wherever possible; (4) include 
non-isothermal effects (without reactions); (5) include reactive mixing models in the 
non-isothermal turbulent models; and (6) validate and apply. Development efforts and 
simulated results from each stage enhance understanding of the flow phenomena. For 
each stage of model development, quantitative evaluation of limiting solutions (may 
be with drastic simplifications) is often useful to enhance confidence in the devel
oped computational model. The simulated results also provide information about the 
relative importance of different processes, which helps to make a judicious choice 
between ‘simple’ and ‘simpler’ representations. Such a multistage development pro
cess also greatly reduces numerical problems, as the results from each stage serve as 
a convenient starting point for the next stage. 

Apart from appropriate model formulation, it is also essential to understand the 
influence of numerical issues (grid spacing, time step, degree of convergence and so 
on) on simulation results before one can use the results obtained from a computational 
flow model for engineering applications. One must resist the temptation to use physi
cally realistic simulated results without quantitatively assessing grid dependence. This 
is true even when the objective is just to understand key flow features qualitatively. It 
is possible, in some cases, that a different grid spacing may show different key flow 
features. Sometimes it is observed that computational results obtained with a specific 
grid show good agreement with the available data. This acceptable agreement often 
encourages immediate application of the computational model to the problem under 
consideration. It must be remembered that no matter how good the agreement one 
finds between available data and results simulated on a specific grid, if the solution is 
not grid independent, the agreement is probably an artefact of the specific grid size. It 
is, therefore, necessary to make an attempt to obtain grid independent results before 
they are used for reactor engineering applications. 

In many situations, however, it may not be possible to obtain grid independent 
solutions for flow in complex industrial equipment (due to the constraints on avail
able time and computational resources). In such cases, the reactor engineer may 
still use these simulations for practical applications, provided some of the following 
precautionary steps are carried out: 

• quantitative evaluation of special cases/limiting solutions; 
• qualitative verification of key flow features; 
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•	 assessing dependence on grid spacing by extrapolating key results to zero grid 
spacing (results may not be grid independent even for the finest grid used in 
these simulations). 

Another related issue is about finding some flow features in the simulation results, 
which are not really expected from the underlying mathematical model. For example, 
the Eulerian–Eulerian simulations of a bubble column containing finite vapor space 
above the liquid pool often show a gas–liquid interface when contours of gas volume 
fraction are plotted. Usually, in such simulations, the two-fluid model and the inter
phase drag coefficients suitable for regions in which gas is dispersed in a liquid are 
used. These models are not suitable to simulate the region in which the gas phase is 
continuous. Because of this and since by its very nature, Eulerian–Eulerian simula
tions are not suitable to simulate a gas–liquid interface, results near the interface are 
highly inaccurate. It is necessary to consider these aspects before one proceeds to use 
the simulated information about the pseudo-gas–liquid interface for engineering deci
sion making. It is very important to understand the capabilities and limitations of the 
underlying mathematical model. Considerations of limiting solutions are often useful 
for this purpose. The necessity of verification and validation of computational flow 
models is repeatedly emphasized throughout this book. In many industrial applica
tions, data required for adequate validation is not available and a reactor engineer has 
to rely only on ‘indirect validation’ of some gross quantities. Reactor engineers must, 
therefore, develop their skills in assessing the quality of simulations in the absence 
of direct validation. Such skills may be acquired by studying known case studies and 
through hands-on experience of applying computational flow modeling to reactor 
engineering. If some of these issues are properly taken care of, computational flow 
modeling (CFM) may be used to provide invaluable information for reactor engi
neering applications. CFM may be the only way to realize the ‘wish list’ of a reactor 
engineer in practice. CFM may also be used to study aspects of flow which are not 
amenable to experiments (due to high temperature/pressure or corrosive conditions). 
Detailed flow modeling of industrial processes offers new possibilities for perfor
mance enhancement and innovation in the design of industrial reactors. Because of 
these unique capabilities of computational flow modeling, CFM will have tremendous 
impact on current as well as future reactor engineering practices. 

With the emergence of cheap, high speed computing platforms and the avail
ability of commercial CFD codes and support, flow modeling needs to be harnessed 
to devise the best possible reactor hardware. Some comments on future trends and 
needs may be appropriate at this juncture. Each advance in the CFD community’s 
capability to perform a particular class of computations, has led to a correspond
ing increase in the engineer’s expectations. These expectations can be translated to 
define research and developmental requirements. These requirements may be clas
sified into two categories: computational and physical. The most important areas of 
computational character, in which further work is needed, are: 

•	 cheaper ways of conducting fine-grid computations; 
•	 minimizing numerical diffusion without jeopardizing robustness; 
•	 preserving the order and flexibility in CFD codes as the complexity of their 

physical content increases. 
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Further research on problems of physical character, needs to focus primarily on the 
development of better turbulence models, better multiphase flow models and better 
reactive flow models. Recent advances in applying renormalization group (RNG) the
ory to formulate turbulence models appear to be promising. However, much work is 
needed to understand the intricacies of turbulent, multiphase flows. Recent advances 
in direct numerical simulations and database of DNS results may provide useful 
guidelines for further development of physical models. Detailed and comprehensive 
experimental programs are needed to verify the applicability of the existing and new 
models. Quality experimental data collected through such programs and close com
munication between experimentalists and those developing numerical models and 
methods are essential to advance the applicability of multiphase CFD in practice. 
Experience of applying computational flow modeling to any practical reactor engi
neering problem may suggest several areas in which further studies are needed for 
development of better physical models. In view of the wide range of reactor engineer
ing applications, it is practically impossible to make a comprehensive list of all such 
suggestions. Ranade (1995) listed some areas which need further research for better 
simulations of dispersed gas–liquid flows (in stirred and bubble column reactors). His 
list of important issues on which further work is needed may be generalized for any 
dispersed multiphase flow: 

•	 interphase momentum exchange terms/influence of dispersed phase volume 
fraction; 

•	 motion of dispersed phase particles near the wall, wall boundary conditions; 
•	 role of particle wakes on dispersion/inter-phase momentum exchange; 
•	 turbulent transport of dispersed phase particles/dependence on particle size; 
•	 turbulence modification by dispersed phase particles; 
•	 particle–particle interactions (collisions, coalescence/agglomeration, breakup); 
•	 interphase heat and mass transfer/phase change models. 

The list is merely suggestive. Complexity of reactive flows may greatly expand the list 
of issues on which further research is required. Another area which deserves mention 
here is modeling of inherently unsteady flows. Most flows in engineering equipment 
are unsteady (gas–liquid flow in a bubble column reactor, gas–solid flow in a riser 
reactor and so on). However, for most engineering purposes, all the details of these 
unsteady flows are not required to be known. Further work is necessary to evolve 
adequate representation of such flows within the CFD framework without resorting 
to full, unsteady simulations. This development is especially necessary to simulate 
inherently unsteady flows in large industrial reactors where full, unsteady simula
tions may require unaffordable resources (and therefore, may not be cost effective). 
Different reactor types and different classes of multiphase flows will have different 
research requirements based on current and future applications under consideration. 

Apart from such research requirements to enhance the capabilities of CFD tools, 
more and more studies on the application of available tools to simulate engineer
ing equipment are necessary. Accepting the limitations of knowledge of underlying 
physics and invoking model calibration whenever necessary, is mandatory to expand 
the application horizons of computational flow modeling. Such experience will pro
vide invaluable information and may guide future developments. Besides this, such 
applications will significantly enhance the current reactor engineering practice. 
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Chemical and process engineers today routinely use process simulation tools 
to design and to optimize overall plant operations. Computational flow modeling 
tools are also expected to be used as widely as process simulators in the near future. 
Currently efforts are under way to integrate CFD and process simulation tools (for 
example, CFX and Hyprotech or FLUENT and Aspen). Several attempts are also 
being made to couple CFD tools with reactor simulation tools (with automated 
information flow between CFD and other simulation tools). Advances in software 
technology and enhanced computing resources allow efficient coupling of CFD codes 
with physical and chemical property databases (or predictive tools) on one hand and 
process or reactor simulation tools on the other hand. Such seamlessly integrated 
tools will allow evaluation of changes in the reactor hardware on overall process 
performance in the near future. Such capabilities will significantly influence the 
reactor-engineering practice of tomorrow. 

Adequate attention to the key issues mentioned in this book and creative use 
of computational flow modeling will make significant contributions to enhancing 
chemical reactor engineering. The field of computational flow modeling for reactor 
engineering is evolving and being continuously updated. New advances may be assim
ilated using the framework discussed in this book. I hope that this book will stimulate 
applications of computational flow modeling to chemical reactor engineering. 



NOTATION 

A Van Driest’s constant 
AB Area of bottom surface of the computational cell attached to top surface 
Abc Projection of area of the interface between computational cell and 

impeller blade on a plane normal to the tangential velocity 
a Discretization coefficients 
apq Interfacial area per unit volume 
B Empirical constant in Eq. (3.26) 
b Discretization coefficients corresponding to outflow contributions 
Bw Blade width 
C Inertial resistance factors characterizing the porous media 
C1, C2, Cµ Parameters of k–ε model 
CD Drag coefficient 
C Concentration 
CL Empirical lift coefficient 
Cp Heat capacity 
CVM Virtual mass coefficient 
d Diameter 
D Molecular diffusion coefficient or diameter or impeller diameter 
D Also used as diffusive contributions in discretized equations 

(Chapter 6) 
DkT Thermal mass diffusion coefficient for species ‘k’ 
E Empirical constant in wall function, also used as a reciprocal of a 

characteristic micro-mixing time scale 
E(k)dk Turbulent kinetic energy contained in wave number range of k to k +dk 
e Restitution coefficient 
f Mixture fraction, Eq. (5.19) 
fB Basset force coefficient 
fL Transversal lift coefficient 
fn Eulerian quantity at node ‘n’ 
fV Virtual mass coefficient 
F External or inter-phase force or marker function 
F Also used as convective contributions in discretized equations 

(Chapter 6) 
Fki Interface coupling terms except pressure 
FSF Surface force 
G Generation of turbulent kinetic energy 
Gke Extra generation of turbulence in phase ‘k’ due to presence of other 

phases 
g Acceleration due to gravity 
gos Radial distribution function 
h Enthalpy 
H Hydrostatic head above the sparger 
iξ Unit vector in the ξ direction 
jk Diffusive flux of species k 
K Inter-phase momentum exchange coefficient 
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k Thermal conductivity of fluid or turbulent kinetic energy 
ka Wave number of dissipative eddies 
ke Wave number of energy containing eddies 
k0 Frequency factor 
kL, kT Resistance coefficients of the sparger (laminar and turbulent 

contributions) 
lT Length scale of turbulence 
LB, LP Distance between centers of two moving spheres/bubbles 
Ls Segregation length scale 
m Mass fraction 
N Impeller rotational speed in revolutions per unit time 
n Moles or surface normal, Eq. (4.6) or unit normal vector or number of 

moles of oxidizer required to burn one mole of fuel 
p Pressure 
p′ Pressure correction or fluctuating pressure 
po Total pressure at inlet boundary 
ps Static pressure in solution domain 
P Pee function given by Eq. (3.39) 
PC,sn Pressure due collision between solid phases ‘s’ and ‘n’ 
Ps Solid phase pressure 
q Flux of enthalpy 
QR Circulatory flow in the reactor 
Qpk Energy transfer between pth and kth phase 
r Radial co-ordinate 
R Reaction rate or radius 
R′ Universal gas constant 
Rep Reynolds number of particle 
Rz Axial flow resistance 
S Source or Surface of a computational cell 
Sc Mass source term 
Scm Momentum source term 
Sk Source term of ‘k’ 
SM Mass imbalance 
Spk Rate of mass transfer from pth phase to kth phase 
t Time, time scale 
T Temperature 
tDS Diffusion time scale 
tE Characteristic time for engulfment step 
u Fluctuating velocity 
uT Characteristic velocity 
U Velocity, radial velocity component 
Ui 

Uτ 

Local velocity in xi direction 
Characteristic wall velocity, 

√ 
τw/ρ 

V Superficial velocity, tangential velocity component 
Vb Effective bubble velocity in a swarm 
Vb∞ Rise velocity of a single bubble 
Vcell Volume of computational cell 
Vki Mean velocity of phase ‘k’ in direction ‘i’ 
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VR Volume of reactor 
WBLD Tangential velocity of the blade 
x, X Mole fraction or co-ordinate direction 
y Distance from wall 
yp Distance between wall and nearest node 
zrk Molar stoichiometric coefficient of component ‘r’ in reaction ‘k’ 

Greek notation 
α	 Volume fraction 
αP	 Under-relaxation parameter 
β	 Permeability of porous media 
δij	 Kronecker delta function 
	 Characteristic filter scale 
En	 Activation energy for reaction ‘n’ 
p	 Pressure drop 
ε	 Turbulent energy dissipation rate 
εrsl	 Levi-Cevita tensor 
φ	 General variable 
φp	 Sphericity 
γmj	 Rate of production of component ‘m’ due to chemical reactions 

occurring in jth environment 
�	 Effective diffusion coefficient 
ηpq	 Enhancement factor representing interaction of mass transfer and 

chemical reaction 
ϕ	 Porosity 
κ	 Coefficient of bulk viscosity or Van Karmann constant (Eq. (3.26)) or 

Local surface curvature, Eq. (4.8) 
λk	 Kolmogorov length scale where inertial sub-range ends 
λs	 Solid’s bulk viscosity 
λe	 Linear interpolation factor 
µ	 Coefficient of viscosity 
µeff	 Effective viscosity 
µs	 Solids viscosity 
ν	 Kinematic viscosity of the fluid 
νeff	 Effective kinematic viscosity of the fluid 
ω	 Vorticity 
π	 Molecular flux of momentum, Eq. (2.5) 
θs	 Granular temperature 
θ	 Parameter controlling degree of implicitness or blade angle, Eq. (9.1) 
ρ	 Density of fluid 
σ	 Surface tension or turbulent Prandlt number 
τ	 Viscous stress tensor, residence time 
τs	 Solid stress tensor 
τw	 Wall shear stress 
�	 Speculiarity coefficient 

Sum over all kk 
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Subscripts and superscripts 
0 of isolated particle in an infinite fluid 
b,B of bubble 
cell of computational cell 
C of continuous phase 
CD Complete dispersion 
D drag, of dispersed phase 
Dres resultant drag 
e east face 
ext external 
E east node 
f of fuel 
F Flooding 
g,G gravity or of gas 
i direction i, or species i 
k of species k or phase k 
kin kinetic 
km of species k in mixture 
kn of species k due to reaction n 
ls of phases l and s 
L lift or of liquid 
mb minimum bubbling 
mf minimum fluidization 
n north face 
ne north-east 
nw north-west 
N north node 
nb neighboring nodes 
o of oxidant 
p,P of central node or particle or pellet or due to pressure gradient 
ref reference 
R of reactor, reference, recirculation 
s south face or of solid 
sat saturated 
se south-east 
sw south-west 
S south node 
tip impeller tip 
top over-head (pressure) 
T turbulent 
VM virtual mass 
w west face or of wall 
W west node 
φ of variable φ 
θ of granular temperature 
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Commonly used abbreviations 
2D Two-dimensional 
3D Three-dimensional 
ASM Algebraic stress models 
CDS Central differencing scheme 
CFD Computational fluid dynamics 
CFM Computational flow modeling 
CRE Chemical reactor engineering 
CSF Continuous surface force 
CTO Catalyst to oil ratio 
CV Control volume 
DNS Direct numerical simulations 
DPM Discrete particle models 
DT Disc turbine (Rushton turbine) 
E Engulfment model 
EB Eddy break-up model 
EDD Engulfment, deformation and diffusion model 
EE Eulerian–Eulerian 
EL Eulerian–Lagrangian 
FCC Fluid catalytic cracking 
FD Finite difference 
FE Finite element 
FOU First order upwind 
FV Finite volume 
IEM Interaction by exchange with the mean 
IVP Initial value problem 
GFM Granular flow models 
KTGF Kinetic theory of granular flows 
LES Large eddy simulations 
LOR Liquid phase oxidation reactor 
MRF Multiple reference frame 
MSIP Modified SIP 
NVD Normal variable diagram 
ODE Ordinary differential equations 
PDE Partial differential equations 
PDF Probability density function 
PEA Partial elimination algorithm 
PISO Pressure implicit with splitting of operator 
PLIC Piecewise linear interface calculation 
PTD Downflow pitched blade turbine 
QUICK Quadratic upstream interpolation for convective kinematics 
RANS Reynolds-averaged Navier–Stokes equations 
RFR Radial flow fixed bed reactor 
RNG Renormalization group 
RSM Reynolds stress models 
RTD Residence time distribution 
SIMPLE Semi-implicit method for pressure linked equations 
SIMPLEC SIMPLE consistent 
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SIMPLER SIMPLE revised 
SIP 
SLD 
SLIC 
SNP 
SOR 

Strongly implicit procedure 
Sliding mesh approach 
Simple line interface calculation 
Snapshot approach 
Successive over-relaxation 

TDMA 
UD 

Tri-diagonal matrix algorithm 
User defined 

UDS 
VOF 

Upwind differencing scheme 
Volume of fluid 
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