
Robert K. Wysocki

Effective Software
Project Management

01_596365 ffirs.qxd 2/15/06 10:24 PM Page iii

File Attachment
C1.jpg

01_596365 ffirs.qxd 2/15/06 10:24 PM Page ii

Effective Software
Project Management

01_596365 ffirs.qxd 2/15/06 10:24 PM Page i

01_596365 ffirs.qxd 2/15/06 10:24 PM Page ii

Robert K. Wysocki

Effective Software
Project Management

01_596365 ffirs.qxd 2/15/06 10:24 PM Page iii

Effective Software Project Management

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Robert K. Wysocki

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9636-0
ISBN-10: 0-7645-9636-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QX/QT/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Depart-
ment, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically dis-
claim all warranties, including without limitation warranties of fitness for a particular purpose. No war-
ranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the pub-
lisher is not engaged in rendering legal, accounting, or other professional services. If professional assis-
tance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Website is referred to in this work as a citation and/or a potential source of further information does not
mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this
work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993
or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data

Wysocki, Robert K.

Effective software project management / Robert K. Wysocki.

p. cm.

Includes index.

ISBN-13: 978-0-7645-9636-0 (paper/website)

ISBN-10: 0-7645-9636-5 (paper/website)

1. Computer software—Development—Management. I. Title.

QA76.76.D47W97 2006

005.3’068—dc22

2005034341

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates, in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is
not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

01_596365 ffirs.qxd 2/15/06 10:24 PM Page iv

www.wiley.com

A B O U T T H E A U T H O R

v

Robert K. Wysocki, Ph.D., has over 40 years experience as a project manage-
ment consultant and trainer, information systems manager, systems and man-
agement consultant, author, training developer, and provider. He has written
14 books on project management and information systems management. One
of his books, Effective Project Management: Traditional, Adaptive, Extreme, Third
Edition (Wiley, 2003), has been a best-seller and is recommended by the Project
Management Institute for the library of every project manager. He has over 30
publications in professional and trade journals and has made more than 100
presentations at professional and trade conferences and meetings. He has
developed more than 20 project management courses and trained over 10,000
project managers.

From 1963 to 1970 he was a systems consultant for one of the world’s largest
electronics components manufacturers. In that capacity he designed and
implemented several computer-based manufacturing and quality control sys-
tems. From 1970 to 1990 he held a number of positions in both state supported
and private institutions in higher education as MBA Director, Associate Dean
of Business, Dean of Computers and Information Systems, Director of Acade-
mic Computing, CIO, and Senior Planner.

In 1990, he founded Enterprise Information Insights, Inc. (EII), a project man-
agement consulting and training practice specializing in agile project
management methodology design and integration, project support office estab-
lishment, the development of training curriculum, and the development of a
portfolio of assessment tools focused on organizations, project teams, and
individuals. His client list includes AT&T, Aetna, Babbage Simmel, BMW,
British Computer Society, Boston University Corporate Education Center,
Computerworld, Converse Shoes, the Czechoslovakian Government, Data
General, Digital, Eli Lilly, Harvard Community Health Plan, IBM, J. Walter
Thompson, Ohio State University, Peoples Bank, Sapient Corporation, The
Limited, The State of Ohio, Travelers Insurance, TVA, the U.S. Coast Guard
Academy, Wal-Mart, and several others.

01_596365 ffirs.qxd 2/15/06 10:24 PM Page v

He is a Senior Consultant at the Cutter Consortium where he is an active
member of the Agile Project Management Practice. He has consulted widely in
agile project management with such companies as Sapient, Wells Fargo, Wal-
Mart, Blue Cross Blue Shield of Massachusetts, the TVA, and others. He is vice-
president and president elect of APLN, a member of ASAPM and the Agile
Alliance. He also serves as advisor to Project Summit and Business Analyst
World. He is a member of the Project Management Institute, the American
Society of Training & Development, and the Society of Human Resource Man-
agement. He is past association vice president of AITP (formerly DPMA). He
earned a B.A. in Mathematics from the University of Dallas, and an M.S. and
Ph.D. in Mathematical Statistics from Southern Methodist University.

E f f e c t i v e S o f t w a r e P r o j e c t M a n a g e m e n tvi

01_596365 ffirs.qxd 2/15/06 10:24 PM Page vi

C R E D I TS

vii

Executive Editor
Bob Elliott

Senior Development Editor
Kevin Kent

Production Editor
Pamela Hanley

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher

Richard Swadley

Vice President and Executive
Publisher

Joseph B. Wikert

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Denny Hager
Jennifer Heleine
Stephanie D. Jumper
Alicia B. South

Quality Control Technician
Joe Niesen

Media Development Coordinator
Laura Atkinson

Proofreading and Indexing
TECHBOOKS Production Services

01_596365 ffirs.qxd 2/15/06 10:24 PM Page vii

01_596365 ffirs.qxd 2/15/06 10:24 PM Page viii

C O N T E N TS

ix

Foreword xxxi

Introduction xxxiii

Part One The Evolving State of ESPM 1

Chapter 1 The Changing Landscape of Software Development 3
What Is a Software Development Project? 5

Examples of Two Software Development Projects 5

What Is Software Development Project Management? 7
What Are the Characteristics of the Software to Be Developed? 8

Quadrant 1: Goal and Solution Are Clearly Specified 9
Quadrant 2: Goal Is Clearly Specified but Solution Is Not 10
Quadrant 3: Goal and Solution Are Not Clearly Specified 11
Quadrant 4: Goal Is Not Clearly Specified but the Solution Is 11

What Software Development Approach Is Appropriate
for Building the Software? 11

Quadrant 1: Goal and Solution Are Clearly Specified 12
Quadrant 2: Goal Is Clearly Specified but Solution Is Not 12
Quadrant 3: Goal and Solution Are Not Clearly Specified 12
Quadrant 4: Goal Is Not Clearly Specified but the Solution Is 13

What Project Management Approach Is Appropriate
for Managing the Software Development Process? 13

The Complexity/Uncertainty Domain of SDPM 14
Requirements 15
Flexibility 15
Adaptability 16
Change 17

Risk Versus the Complexity/Uncertainty Domain 17
Team Cohesiveness Versus the Complexity/

Uncertainty Domain 18
Communications Versus the Complexity/Uncertainty Domain 19
Customer Involvement Versus the Complexity/

Uncertainty Domain 20
The Customer’s Comfort Zone 21
Ownership by the Customer 22
Customer Sign-Off 22

02_596365 ftoc.qxd 2/15/06 10:18 PM Page ix

Specification Versus the Complexity/Uncertainty Domain 22
Change Versus the Complexity/Uncertainty Domain 24
Business Value Versus the Complexity/Uncertainty Domain 25

Balancing Staff, Process, Technology 26
Staff-Driven Environments 30
Process-Driven Environments 31
Technology-Driven Environments 32

Discussion Questions 33

Chapter 2 SDPM Roadmap 35
The Contemporary Software Development Landscape 36

Linear 37
Characteristics of Linear SDPM Strategy Projects 39
Strengths 40
Weaknesses 41

Incremental 42
Characteristics of Incremental SDPM Strategy Projects 44
Strengths 45
Weaknesses 46

Iterative 47
Characteristics of Iterative SDPM Strategy Projects 50
Strengths 50
Weaknesses 51

Adaptive 52
Characteristics of Adaptive SDPM Strategy Projects 54
Strengths 54
Weaknesses 55

Extreme 56
Characteristics of Extreme SDPM Strategy Projects 57
Strengths 57
Weaknesses 58

A Generic Template for Discussing SDPM Strategies 58
Discussion Questions 59

Part Two Linear ESPM 61

Chapter 3 Linear SDPM Strategy 63
The Linear SDPM Strategy 64

Scope Phase 64
Plan and Launch Phases 64
Monitor and Control Phases 65
Close Phase 65

Types of Linear SDPM Strategies 65
Standard Waterfall Model 65
Variation to the Standard Waterfall Model 66
Rapid Development Waterfall Model 69

Discussion Questions 75

C o n t e n t sx

02_596365 ftoc.qxd 2/15/06 10:18 PM Page x

Chapter 4 The Linear SDPM Scoping Phase 77
Solution Definition 78

Defining the Problem 78
Determining Causes 79
Generating Ideas for Solutions 79
Prioritizing Ideas 79

Requirements Gathering 80
Defining and Managing Customer Requirements 81
Gathering Customer Requirements 81
What Are Requirements? 81
What Kinds of Requirements Are There? 82

Functional Requirements 83
Non-Functional Requirements 83
Global Requirements 84
Constraints 84

Customer Sign-Off on Requirements 87
Customer Willingly Signs Off 87
Customer Unwilling to Sign Off 88

Project Overview Statement 89
Ensuring That a Linear SDPM Strategy Is Correct 90
Discussion Questions 91

Chapter 5 The Linear SDPM Planning Phase 93
Work Breakdown Structure Template 94

Rapid Development Waterfall Model 94

Dependency Diagramming 97
Rapid Development Waterfall Model 98

Cohesion and Coupling 99
Creating Independent Deliverables Sets 100

Project Scheduling 101
Standard Waterfall Model 101
Rapid Development Waterfall Model 101

Resource Requirements 101
Standard Waterfall Model 101
Rapid Development Waterfall Model 102

Discussion Questions 102

Chapter 6 The Linear SDPM Launching Phase 103
Team Leadership Model 104

Hierarchical Leadership Model 104
Team Leader Model 104

Organizing the Linear SDPM Strategy Project Team 105
Authority 105

Standard Waterfall 106
Rapid Development Waterfall 106

Responsibility 106

Contents xi

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xi

RASCI Matrix 107
Developing a Team Development Plan 107

Team Meetings 108

Managing Concurrent Swim Lanes 109
Discussion Questions 109

Chapter 7 The Linear SDPM Monitoring and Controlling Phase 111
Project Review Sessions 112

Linear SDPM Strategy for the Standard Waterfall Model 113
Linear SDPM Strategy for the Rapid Development Waterfall 113

Scope Change Management 115
Standard Waterfall 115
Rapid Development Waterfall 116
Protecting the Linear SDPM Strategy Project

Against the Impact of Scope Change 116
Management Reserve 116
Creating a Scope Bank 117
Changing SDPM Strategies 117

Milestone Trend Charts 118
Discussion Questions 120

Chapter 8 The Linear SDPM Closing Phase 121
Requirements Validation 121
Acceptance Test Procedures 122
Customer Sign-Off 123

Ceremonial Acceptance 123
Formal Acceptance 124

The Closing Phase 124
Deployment Strategies 124
Project File 125

Lessons Learned 125
Discussion Questions 126

Chapter 9 The Linear SDPM Strategy Summary 127
Comparing and Contrasting the SDPM Models 127
Points to Remember 128

Risk Situations 128
Schedule Slippages 128
Rework 129
Resource Contention 129

Change Intolerance 129
Team Structure 130

Discussion Questions 131

C o n t e n t sxii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xii

Part Three Incremental ESPM 133

Chapter 10 Incremental SDPM Strategy 135
The Incremental SDPM Strategy 136

Scope Phase 137
Plan and Launch Phases 137
Monitor and Control Phases 137
Close Phase 138

Types of Incremental SDPM Strategies 138
Staged Delivery Waterfall Model 138
Feature-Driven Development 139

Discussion Questions 144

Chapter 11 The Incremental SDPM Scoping Phase 145
The Scoping Phase of an Incremental SDPM Strategy 146
The Scoping Phase of the Incremental SDPM Strategy

for the Staged Delivery Waterfall Model 147
Developing the Project Overview Statement of the Project 147
Defining the Number and Duration of Each Increment 149
Identifying the Functionality to Be Released in Each Increment 150
Planning to Build a Deliverables-Based Work Breakdown

Structure 150
Assuring the Integrity of the Dependency Structure

Between Deliverables 150
Allocating Management Reserve 150

The Scoping Phase of the Incremental SDPM Strategy
for the Feature-Driven Development Model 151

Forming the Modeling Team 151
Conducting a Domain Walkthrough 151
Studying Documents 153
Developing Small Group Models 153
Developing a Team Model 153
Refining the Overall Object Model 153
Writing Model Notes 154

The Role of the RBS 154
In the Staged Delivery Waterfall Model 154
In the Feature-Driven Development Model 155

The Role of the Precedence Diagram 155
In the Staged Delivery Waterfall Model 155
In the Feature-Driven Development Model 156

Discussion Questions 156

Chapter 12 The Incremental SDPM Planning Phase 157
The Planning Phase of an Incremental SDPM Strategy 158

Decomposing the Requirements Breakdown Structure 159
Sequencing the Development Work 160

Contents xiii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xiii

The Planning Phase of an Incremental SDPM Strategy
for the Staged Delivery Waterfall Model 161

Building the Complete WBS 162
Estimating Task Duration 162
Estimating Resource Requirements 163
Building the Precedence Diagram 163
Allocating Functions and Features to Determine

Number of Stages 163
Creating the Initial Project Schedule 165

The Planning Phase of an Incremental SDPM Strategy
for the Feature-Driven Development Model 165

Modeling the Solution 166
Building the Feature List and Assembling Feature Sets 166
Developing the Feature Plan 167

Feature Sets Built Sequentially 167
Feature Sets Built Concurrently and Sequentially 167

Discussion Questions 167

Chapter 13 The Incremental SDPM Launching Phase 169
The Launching Phase of an Incremental SDPM Strategy 170

Handling Scope Change 170
Comprehensive Increment Plan 171
Increment by Increment Plan 171

Increment Handoffs 172
Scheduling Resources 172
Scheduling Increments 172

The Launching Phase of an Incremental SDPM Strategy
for the Staged Waterfall Model 173

Handling Scope Change 173
Comprehensive Increment Plan 173
Increment by Increment Plan 174

Increment Handoffs 174
Scheduling Resources 174
Scheduling Increments 175

The Launching Phase of an Incremental SDPM Strategy
for the Feature-Driven Development Model 175

Scope Changes Can Be Affected by Precedence Relationships 175
Features Not Yet Developed May Render Scope Change

Requests Unnecessary 176

Discussion Questions 176

Chapter 14 The Incremental SDPM Monitoring and Controlling Phase 177
The Monitoring and Controlling Phase

of an Incremental SDPM Strategy 178

C o n t e n t sxiv

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xiv

Project Review Sessions 179
Incremental SDPM Strategy for the Staged Delivery

Waterfall Model 180
Incremental SDPM Strategy for the Feature-Driven

Development Model 180

Scope Change Management 183
Protecting the Incremental SDPM Strategy Project

Against the Impact of Scope Change 183
Management Reserve 184
Change to an Iterative SDPM Strategy 184

Discussion Questions 184

Chapter 15 The Incremental SDPM Closing Phase 185
The Closing Phase of the Incremental SDPM Strategy 185
Incremental SDPM Strategy for the Closing Phase

of the Staged Delivery Waterfall Model 186
Acceptance Criteria 187

Incremental Acceptance Criteria 188
Project Completion Acceptance Criteria 188

Lessons Learned 188
Increment Lessons Learned 188
Project Completion Lessons Learned 189

Incremental SDPM Strategy for the Closing Phase
of the Feature-Driven Development Model 189

Acceptance Criteria 191
Incremental Acceptance Criteria 191
Project Completion Acceptance Criteria 191

Lessons Learned 192
Increment Lessons Learned 192
Project Completion Lessons Learned 192

Discussion Questions 193

Chapter 16 The Incremental SDPM Strategy Summary 195
Comparing and Contrasting the SDPM Models 196
Points to Remember 196

Risk Situations 196
Risk of Project Closure 196
Risk of Team Changes 197
Risk of Changing Priority 197
Risk of Schedule Slippages 197
Risk of Rework 197
Risk of Resource Contention 198

Change Intolerance 198
Team Structure 199

Discussion Questions 199

Contents xv

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xv

Part Four Iterative ESPM 201

Chapter 17 Iterative SDPM Strategy 203
The Iterative SDPM Strategy 204

Scope Phase 204
Plan and Launch Phases 205
Monitor and Control Phases 205
Close Phase 205

Types of Iterative SDPM Strategies 206
Evolutionary Development Waterfall Model 206
SCRUM 209

Idea Is Proposed 210
Developing and Prioritizing a List of Functionality 210
Sprint Planning Meeting 210
Demo Sprint Functionality 210

Rational Unified Process 212
Inception 212
Elaboration 212
Construction 212
Transition 212

Dynamic Systems Development Method 214

Discussion Questions 217

Chapter 18 The Iterative SDPM Scoping Phase 219
The Scoping Phase of an Iterative SDPM Strategy 220
The Scoping Phase of the Iterative SDPM Strategy

for the Evolutionary Development Waterfall Model 220
Gathering Requirements 221
Generating the RBS 221
Defining the Functions and Features of the Initial Solution 222
Determining the Number and Time Box for the Iterations 223

The Scoping Phase of the Iterative SDPM Strategy
for the SCRUM Model 223

Idea Creation 224
Gathering Requirements 224
Defining the Required Functions 225
Prioritizing Functions 225

The Scoping Phase of the Iterative SDPM Strategy
for the Rational Unified Process Model 225

Establishing a Business Model 226
Describing the Core Requirements Through a Function and

Feature List 226
Gathering a Documented List of All Use Cases That Flow

from the Functions and Features List 226
Crafting a High-Level Outline of the Phases and Iterations 226

The Scoping Phase of the Iterative SDPM Strategy
for the Dynamic Systems Development Method 227

C o n t e n t sxvi

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xvi

Outlining the Plan to Build a Deliverables-Based WBS 228
Building a Quick Prototype 228
Defining Business Processes Affected by This Project 228
Prioritizing the Functionality 228
Developing the Dependency Structure Between Functionality 228

Discussion Questions 228

Chapter 19 The Iterative SDPM Planning Phase 229
The Planning Phase of an Iterative SDPM Strategy 230
The Planning Phase of an Iterative SDPM Strategy

for the Evolutionary Development Waterfall Model 231
Identifying Those Functions Where Features May Be Missing 231
Prioritizing the Functions That Are Missing Features 232
Allocating Functions to Iterations 232
Creating the Project Schedule for This Iteration 233

The Planning Phase of an Iterative SDPM Strategy
for the SCRUM Model 233

Current Product Backlog 234
Prioritized Backlog 234
Sprint Backlog 234

The Planning Phase of an Iterative SDPM Strategy
for the Rational Unified Process Model 234

Overall Plan 235
Iteration Duration and Number 236
Assigning Deliverables to Iterations 236
Tracking Project Performance 236

Iteration Plan 236

The Planning Phase of an Iterative SDPM Strategy
for the Dynamic Systems Development Method 237

Outlining the Project Plan 238
Identifying and Prioritizing Functionality 238
Documenting Architectural Specifications 238

Discussion Questions 238

Chapter 20 The Iterative SDPM Launching Phase 239
The Launching Phase of an Iterative SDPM Strategy 240

Processing Scope Change Requests 240
Handling Solution Handoffs 241
Handling Solution Rollout 242
Scheduling Iterations 242

The Launching Phase of an Iterative SDPM Strategy
for the Evolutionary Development Waterfall Model 242

Processing Scope Change Requests 243
Handling Solution Handoffs 244
Handling Solution Rollout 244
Scheduling Iterations 244

Contents xvii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xvii

The Launching Phase of an Iterative SDPM Strategy
for the SCRUM Model 245

The Launching Phase of an Iterative SDPM Strategy
for the Rational Unified Process Model 246

The Launching Phase of an Iterative SDPM Strategy
for the Dynamic Systems Development Method 246

Discussion Questions 248

Chapter 21 The Iterative SDPM Monitoring and Controlling Phase 249
The Monitoring and Controlling Phase

of an Iterative SDPM Strategy 250
Project Progress Reporting 251
Discovery of New/Revised Features 252
Processing Scope Change Requests 254

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Evolutionary Development
Waterfall Model 255

The Monitoring and Controlling Phase of an
Iterative SDPM Strategy for the SCRUM Model 256

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Rational Unified Process Model 257

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Dynamic Systems Development
Method 258

Discussion Questions 260

Chapter 22 The Iterative SDPM Closing Phase 261
The Closing Phase of the Iterative SDPM Strategy 262
Iterative SDPM Strategy for the Closing Phase

of the Evolutionary Development Waterfall Model 263
Iteration Lessons Learned 264
Project Completion Lessons Learned 265

Lessons Learned About Working with This Customer 265
Lessons Learned About the Evolutionary Development

Waterfall Model 265

Iterative SDPM Strategy for the Closing Phase
of the SCRUM Model 266

Sprint Planning Meeting Lessons Learned 266
Sprint Lessons Learned 267
Project Completion Lessons Learned 268

Iterative SDPM Strategy for the Closing Phase
of the Rational Unified Process Model 268

C o n t e n t sxviii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xviii

Iterative SDPM Strategy for the Closing Phase
of the Dynamic Systems Development Method 269

Solution Accepted 269
Revise Solution Design 270
Revise Functional Model 271
Repeat Business Study 271

Discussion Questions 271

Chapter 23 The Iterative SDPM Strategy Summary 273
Traditional Versus Agile Projects 274
Traditional Versus Agile Project Managers 274
Traditional Versus Agile Teams 275
Traditional Versus Agile Project Planning 276
Traditional Versus Agile Scope Change Management 276
Discussion Questions 277

Part Five Adaptive ESPM 279

Chapter 24 Adaptive SDPM Strategy 281
The Adaptive SDPM Strategy 281

Scope Phase 283
Plan and Launch Phases 283
Monitor and Control Phases 283
Close Phase 284

Types of Adaptive SDPM Strategies 284
Adaptive Project Framework 284

The Adaptive Scope Triangle 285
Definition of an Adaptive Project 286
What Is the Adaptive Project Framework? 286
APF Core Values 287
An Overview of the APF 289

Adaptive Software Development 295
Speculate 296
Collaborate 296
Learn 296

Discussion Questions 298

Chapter 25 The Adaptive SDPM Scoping Phase 301
The Scope Phase of an Adaptive SDPM Strategy 302
The Scoping Phase of the Adaptive SDPM Strategy

for the Adaptive Project Framework Model 303
Overview of the Adaptive SDPM Scoping Phase 304
What Is the Version Budget and Timebox? 305

Contents xix

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xix

The Scoping Phase of the Adaptive SDPM Strategy
for the Adaptive Software Development Model 305

Project Vision Statement 306
Project Data Sheet 306
Project Mission Profile 306
Project Specification Outline 307

Discussion Questions 307

Chapter 26 The Adaptive SDPM Planning Phase 309
The Planning Phase of an Adaptive SDPM Strategy 309
The Planning Phase of an Adaptive SDPM Strategy

for the Adaptive Project Framework Model 311
Completing a Project Overview Statement 312
Reviewing Known Parts of the RBS 312
Determining Cycle Length 313
Determining Number of Cycles 314
Prioritizing Known Functionality 314
Determining the Functionality to Be Built 314
Determining the Probative Initiatives to Be Taken 314
Creating the WBS for the Functionality and

Probative Initiatives to Be Done 316
Estimating Task Duration 316
Creating a Resource Managed Cycle Schedule 316

The Planning Phase of an Adaptive SDPM Strategy
for the Adaptive Software Development Model 316

The Project Initiation Phase 318
Project Timebox 318
Optimal Number of Cycles and the Timebox for Each 318
Objective Statement for Each Cycle 318
Assign Primary Components to Cycles 319
Assign Technology Support and Components to Cycles 319
A Project Task List 319

Discussion Questions 319

Chapter 27 The Adaptive SDPM Launching Phase 321
The Launching Phase of an Adaptive SDPM Strategy 322

Processing Scope Change Requests 323
Handling Solution Handoffs 324
Handling Solution Rollout 324
Scheduling Iterations 324

The Launching Phase of an Iterative SDPM Strategy
for the Adaptive Project Framework Model 325

The Launching Phase of an Adaptive SDPM Strategy
for the Adaptive Software Development Model 326

Discussion Questions 327

C o n t e n t sxx

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xx

Chapter 28 The Adaptive SDPM Monitoring and Controlling Phase 329
The Monitoring and Controlling Phase

of an Adaptive SDPM Strategy 329
Project Progress Reporting 331
Discovery of New/Revised Functions 331
Discovery of New/Revised Features 331
Processing Scope Change Requests 331

The Monitoring and Controlling Phase of an Adaptive
SDPM Strategy for the Adaptive Project Framework
Model 332

Customer Checkpoint 333
Questions to Be Asked During the Customer Checkpoint 333
Output from the Customer Checkpoint 336

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Adaptive Software Development
Model 337

Discussion Question 338

Chapter 29 The Adaptive SDPM Closing Phase 339
The Closing Phase of the Adaptive SDPM Strategy 339
Iterative SDPM Strategy for the Closing Phase

of the Adaptive Project Framework Model 341
The Just Completed Cycle 342
The Final Cycle 343

Adaptive SDPM Strategy for the Closing Phase
of the Adaptive Software Development Model 343

The Just Completed Cycle 344
The Final Cycle 345

Discussion Question 345

Chapter 30 The Adaptive SDPM Strategy Summary 347
Traditional Versus Adaptive Projects 348
Traditional Versus Adaptive Project Managers 349
Traditional Versus Adaptive Teams 350
Traditional Versus Adaptive Project Planning 350
Traditional Versus Adaptive Scope Change Management 351
Discussion Question 352

Part Six Extreme ESPM 353

Chapter 31 Extreme SDPM Strategy 355
The Extreme SDPM Strategy 356

Scope Phase 356
Plan and Launch Phases 357

Contents xxi

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxi

Monitor and Control Phases 357
Close Phase 358

Types of Extreme SDPM Strategies 358
INSPIRE 358

INitiate 360
SPeculate 362
Incubate 364
REview 365

The Flexible Model 367
Visionate 367
Speculate 367
Innovate 368
Reevaluate 368
Disseminate 368

Discussion Questions 369

Chapter 32 The Extreme SDPM Scoping Phase 371
The Scoping Phase of an Extreme SDPM Strategy 372
The Scoping Phase of the Extreme SDPM Strategy

for the INSPIRE Model 373
The Scoping Phase of the Extreme SDPM Strategy

for the Flexible Model 375
Sponsor’s Vision 375
Collective Vision 376

Scoping Meeting Held 376
Probable Future Scenarios Identified 377
Three-Sentence Project Skinny Agreed To 377
Project Boundaries Agreed To 377
Program Breakdown Structure Agreed To 377
Project Imperatives Agreed To 377
Product Vision Agreed To 377
Project Win Conditions Agreed To 378
Benefits Map Drafted 378
Wow! Factor Identified 378
Project Uncertainty Profile Updated 378

Discussion Question 379

Chapter 33 The Extreme SDPM Planning Phase 381
The Planning Phase of an Extreme SDPM Strategy 382
The Planning Phase of an Extreme SDPM Strategy

for the INSPIRE Model 384
Next Cycle Functionality 384
Next Cycle Probative Initiatives 384
Validation of Next Cycle Length 385

C o n t e n t sxxii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxii

The Planning Phase of an Extreme SDPM Strategy
for the Flexible Model 385

Step 1: Review and Update the Collective Vision 386
Step 2: Review the Project Uncertainty Profile 386
Step 3: Decompose the Project into a Set of Deliverables 386
Step 4: Estimate the Size of Each Deliverable 386
Step 5: Estimate the Effort to Produce Each Deliverable

in Person Days 387
Step 6: Select a Development Life Cycle 387
Step 7: Schedule the Deliverables 387
Step 8: Agree on Timeboxes 387
Step 9: Assess Technical and Support Requirements 387
Step 10: Assess Team Requirements 388
Step 11: Identify Development Tools 388
Step 12: Produce a Risk Management Grid 388

Discussion Questions 388

Chapter 34 The Extreme SDPM Launching Phase 389
The Launching Phase of an Extreme SDPM Strategy 390
The Launching Phase of an Extreme SDPM Strategy

for the INSPIRE Model 391
The Launching Phase of an Extreme SDPM Strategy

for the Flexible Project Model 392
Discussion Question 393

Chapter 35 The Extreme SDPM Monitoring and Controlling Phase 395
The Monitoring and Controlling Phase

of an Extreme SDPM Strategy 396
Project Progress Reporting 397
Processing Scope Change Requests 398

The Monitoring and Control Phase of an Extreme
SDPM Strategy for the INSPIRE Model 399

SPeculate Phase 399
Incubate Phase 400
REview Phase 400

The Monitoring and Controlling Phase of an Extreme
SDPM Strategy for the Flexible Model 401

What Are the Results to Date Versus Your Original Goal? 401
Has the Project Priority Changed? 401
How Do You Intend to Realign with the Original Goal? 402

Discussion Question 402

Chapter 35 The Extreme SDPM Closing Phase 403
The Closing Phase of the Extreme SDPM Strategy 403

New Probative Initiatives 405
Extended Probative Initiatives 405
Abandoned Probative Initiatives 406

Contents xxiii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxiii

Iterative SDPM Strategy for the Closing Phase
of the INSPIRE Model 406

Lessons Learned 407
Solution Types 407

Acceptable Solution 407
Unacceptable Solution 408

Extreme SDPM Strategy for the Closing Phase
of the Flexible Model 408

Deployment of the Solution 409
Lessons Learned 409
Benefits and Recognition 409
Benefits Tracked and Harvested 409

Discussion Question 410

Chapter 37 The Extreme SDPM Strategy Summary 411
Traditional Versus Extreme Projects 412
Traditional Versus Extreme Project Managers 412
Traditional Versus Extreme Teams 413
Traditional Versus Extreme Project Planning 413
Traditional Versus Extreme Scope Change Management 414
Discussion Question 415

Part Seven In Summary 417

Chapter 38 Where Are You? 419
The Perspective of the Enterprise 420
From the Perspective of the Customer 421
From the Perspective of the Project Manager 422
From the Perspective of the Development Team 423
Tracking Where You Are 424

Process Tracking 424
Practice Tracking 427
Project Tracking 431

Milestone Trend Charts 431
Earned Value Analysis 435
Performance Indices 441
Adapting to Accommodate Milestone Trend Charts and

Earned Value 442
Other Warning Signs 446

Discussion Question 447

Chapter 39 Where Do You Want To Go and How Can You Get There? 449
Where Do You Want To Go? 450

Review POS 451

C o n t e n t sxxiv

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxiv

Gather Requirements 452
Completeness 453
Clarity 453

Assess State of Solution Completeness 453
Choose SDPM Strategy 454

The Enterprise Environment 454
The Sponsor 454
Your Experience with the Customer 455
The Skill/Competency/Experience Level

of the Project Team 455
The Physical Location of the Project Team 455
The Criticality of the Project 456

Continuously Monitor the Project 456

How Will You Get There? 456
Assess Process Effectiveness 457
Determine Process Goals 457
Prioritize Process Goals 458
Select Process for Improvement 458
Identify Improvement Initiatives 458
Launch Improvement Projects 458
Compare Results against Goals 459

Discussion Questions 459

Appendix A What’s on the Web Site? 461
Pizza Delivered Quickly (PDQ) Case Study

(MS Word File) 461
Figures Master File 462

Appendix B Bibliography 463
The Changing SDPM Landscape 464
Traditional Project Management 464
Agile Project Management 468
Putting It All Together 470

Appendix C The Project Overview Statement 473
Parts of the POS 474

Stating the Problem/Opportunity 474
Establishing the Project Goal 475
Defining the Project Objectives 475
Identifying Success Criteria 475
List Assumptions, Risks, and Obstacles 477

Attachments 478

Appendix D Requirements Gathering 479
Conditions of Satisfaction 480

Business Outcomes 482
Milestone Reviews 482

Contents xxv

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxv

The Volere Process 483
Gathering Customer Requirements 483

What Are Requirements? 483
What Kinds of Requirements Are There? 483
Refining the Product Definition 485
Managing Changing Requirements 486

Volere Requirements Process 486
Start 487
Trawl for Knowledge 487
The Shell 492
Description 495
Rationale 495
Source 495
Fit Criteria 496
Dependencies 496
Conflicts 496
Quality Check 496
Analyzing the Specification 497

Reusability 498

Appendix E The Work Breakdown Structure 499
Generating the WBS 501

Top-Down Approach 501
Team Approach 502
Sub-team Approach 502

Bottom-Up Approach 503
Intermediate WBS for Large Projects 504

Six Criteria to Test for Completeness in the WBS 504
Start/Completion Is Measurable 505
Start/End Events Are Clearly Defined 505
Activity Has a Deliverable 505
Time and Cost Are Easily Estimated 505
Activity Duration Is Within Acceptable Limits 506
Work Assignments Are Independent 506

Approaches to Building the WBS 506
Noun-Type Approaches 507
Verb-Type Approaches 507
Organizational Approaches 507

Noun-Type Approaches 507
Verb-Type Approaches 508
Other Approaches 509

Geographic 509
Departmental 509
Business Function 509

Appendix F Estimation 511
Estimating Time, Cost, and Resource Requirements 511

Resource Loading versus Task Duration 512

C o n t e n t sxxvi

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxvi

Variation in Task Duration 512
Varying Skill Levels 513
Unexpected Events 513
Efficiency of Work Time 513
Mistakes and Misunderstandings 513
Common Cause Variation 513

Six Methods for Estimating Task Duration 513
Similarity to Other Tasks 514
Historical Data 514
Expert Advice 515
Delphi Technique 515
Three-Point Technique 516
Wide-Band Delphi Technique 517

Estimation Precision 517

Appendix G The Project Network Diagram 519
Constructing the Software Development

Project Schedule 520
The Project Network Diagram 520
Building the Precedence Network Diagram 520
Dependencies 522

Finish to Start 523
Start to Start 523
Start to Finish 523
Finish to Finish 524

Creating an Initial Project Network Schedule 524
The Early Schedule 525
The Late Schedule 526

Critical Path Calculation 527
Slack 527

Near-Critical Path 528

Analyzing the Initial Project Network Diagram 528
Schedule Compression 529

Appendix H The Resource Schedule 531
Building the Resource Schedule 532
Examples of a Resource Schedule 532

Appendix I Organizing the Project Team 537
Problem Solving 538

Step 1: Delineate the Opportunity and Define the Problem 538
Step 2: Compile the Relevant Data 539
Step 3: Generate Ideas 539
Step 4: Evaluate and Prioritize Ideas 539
Step 5: Develop the Implementation Plan 540

Contents xxvii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxvii

Decision Making 540
Directive 540
Participative 540
Consultative 540

Conflict Resolution 542
Avoidant 542
Combative 543
Collaborative 543

Consensus Building 543
Brainstorming 544

Appendix J Project Performance Reporting 545
Monitoring and Controlling Software Development

Project Progress 546
Progress Reporting System 546
Types of Project Status Reports 546

Current Period Reports 546
Cumulative Reports 547
Exception Reports 547
Stoplight Reports 547
Variance Reports 548

Measuring Variances 549
Catch Deviations from the Curve Early 549
Dampen Oscillation 549
Allow Early Corrective Action 549
Determine Weekly Schedule Variance 550
Determine Weekly Effort (Person Hours/Day) Variance 550

How and What Information To Update 550
Determine a Set Period of Time and Day of Week 550
Report Actual Work Accomplished During This Period 551
Record Historical and Re-estimate Remaining

(In-Progress Work Only) 551
Report Start and Finish Dates 551
Record Days of Duration Accomplished and Remaining 551
Report Resource Effort (Hours/Day) Spent and Remaining

(In-Progress Work Only) 551
Frequency of Gathering and Reporting Project Progress 552
Variances 553

Positive Variances 553
Negative Variances 553

Graphical Reporting Tools 554
Gantt Charts 554
Milestone Trend Charts 555
Earned Value Analysis (a.k.a. Cost Schedule Control) 556

Level of Detail 558
Activity Manager 558
Project Manager 558
Senior Management 559

C o n t e n t sxxviii

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxviii

Project Status Meetings 559
What Is a Project Status Meeting? 559
Who Should Attend? 559
When Are They Held? 560
What Is Their Purpose? 560
What Is Their Format? 561

Problem Management Meetings 562
Change Management 562

Project Change Request 563
Project Impact Statement 564

It Can Be Accommodated within the Project Resources
and Timelines 564

It Can Be Accommodated but Will Require an Extension
of the Deliverable Schedule 564

It Can Be Accommodated within the Current Deliverable
Schedule but Additional Resources Will Be Needed 564

It Can Be Accommodated but Additional Resources and
an Extension of the Deliverable Schedule Will Be Required 564

It Can Be Accommodated with a Multiple Release Strategy
and Prioritizing of the Deliverables across the
Release Dates 564

It Cannot Be Accommodated without a Significant Change
to the Project 565

Problem Escalation 566
Project Manager–Based Strategies 566
Resource Manager–Based Strategies 567
Customer-Based Strategies 567
The Escalation Strategy Hierarchy 567

No Action Required (Schedule Slack Will Correct
the Problem) 568

Examine FS Dependencies for Schedule Compression
Opportunities 568

Reassign Resources from Non-Critical Path Activities
To Correct the Slippage 568

Negotiate Additional Resources 568
Negotiate Multiple Release Strategies 568
Request Schedule Extension from the Customer 569

Appendix K Business Process Flow Diagramming 571
What Is a Business Process? 572

Characteristics of Business Processes 573
Process Effectiveness 574
Process Efficiency 574

Streamlining Tools 575
Bureaucracy Elimination 575
Duplication Elimination 575
Value-Added Assessment 575
Simplification 575
Process Cycle-Time Reduction 575

Contents xxix

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxix

Error Proofing 576
Upgrading 576
Simple Language 576
Standardization 576
Supplier Partnership 577
Big Picture Improvement 577

What Is a Business Process Improvement Project? 577
Indicators of Needed Improvement 579

Business Process Diagramming 579
Business Process Flow Diagram Formats 580
Context Diagrams 583
Business Process Work Flow Diagrams 584

Documenting the “As Is” Business Process 585
Envisioning the “To Be” State 586
Defining the “As Is” to “To Be” Gap 586

Index 587

C o n t e n t sxxx

02_596365 ftoc.qxd 2/15/06 10:18 PM Page xxx

F O R E W O R D

xxxi

The Declaration of Interdependence (that Bob Wysocki, I, and others co-authored)
documents the fundamental principles that underlie an agile-adaptive approach to
project management. (See www.apln.org for the complete Declaration.) Two of
these principles, are particularly relevant to this book:

■■ We improve effectiveness and reliability through situationally specific
strategies, processes, and practices.

■■ We expect uncertainty and manage for it through iterations, anticipation,
and adaptation.

No two people are alike. No two teams are alike. No two projects are alike. Yet
many organizations and project managers attempt to “standardize” projects,
essentially trying again and again and again to pound square pegs into round
holes. I’ve watched team after team attack high-risk, high-uncertainty projects
with meticulously laid out plans that were complete and utter fantasy. Fur-
thermore, most team members knew that the plan was fantasy, but if you have
only square pegs, you use square pegs.

Bob introduces us to square, round, triangular, and polygonal pegs—just the
right one for specific situations. But even better, he helps us figure what kinds
of holes we have. It’s one thing to have a principle that says “situationally spe-
cific,” but what are the situations? How many do we have? What are the key
characteristics that define a “situation” for a project manager? Bob introduces
us to a simple but powerful concept to guide practitioners in defining holes
(the situation) and then presents us with a suite of pegs (solutions) that fit each
type of hole.

Bob defines project situations using a four-quadrant analysis of the certainty, or
uncertainty, of both ends and means. With some projects the ends, the business
objectives and specific software requirements that enable us to meet the objec-
tives, are fairly well known. On others, they are ill defined in the beginning and
have to evolve over the life of the project as more is learned. Some projects may
utilize a well-understood and proven technology, while others employ bleeding
edge, state-of-the-art technology. When square peg project managers meet
uncertainty, they try to pound out that uncertainty with a detail plan—but in
reality that meticulous plan is nothing more than a superstition about the future.

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxi

However, when the objectives, requirements, and technology are well known,
we should be able to plan the project with some assurances that we can meet the
plans for scope, schedule, and cost.

To differentiate projects using a slightly different analogy, when both ends and
means are well known, we can utilize a traditional Plan-Do strategy in which
we lay out the plan and then execute the steps. When both ends and means are
not well known, the strategy could better be described as Envision-Explore.
We lay out a rough plan, but we assume that significant changes will occur as
we learn more during the project. The problem that many square-peg project
managers fail to grasp is that many, if not most, high-risk and high-uncertainty
issues cannot be “planned” away—they can only be “executed” away. You
have to experiment with different options in order to attack uncertainty.

So the certainty-uncertainty of both ends and means provides us with a frame-
work for identifying holes—specific situations. Bob next turns to the pegs—
strategies that fit certain problems—strategy options that are absolutely critical
in managing the variety of projects that organizations undertake today.

It is important to recognize that strategies and practices are separate things.
Some people incorrectly think a particular practice is “agile,” while another is
“traditional.” However, good practices can be used in either a traditional or an
agile project (daily team meetings, for example). The critical factor in project
management is strategy—the specific model of delivery one chooses to utilize.

Here again Bob elevates us from the simplistic—traditional or agile solutions—
to a wider, richer strategy selection. He identifies four uniquely different
strategies—Linear & Incremental, Iterative, Adaptive, and Extreme—and then
provides us with the characteristics, advantages, and weaknesses of each.

In particular, Bob spends the bulk of the book delving into the latter three
strategies—Iterative, Adaptive, and Extreme—because as the Declaration of
Interdependence principle states, “We expect uncertainty and manage for it
through iterations, anticipation, and adaptation.” Today, when more and more
projects occupy the uncertainty of ends and means category (and the highest
valued ones also), newer Adaptive and Extreme strategies are needed. Bob not
only identifies these strategies, but defines them in enough detail that practi-
tioners can effectively utilize them.

If you are tired of trying to stuff square pegs in round holes, if you are having
trouble with projects where uncertainty and high risk create floundering pro-
jects, then this is the book you need to read.

Jim Highsmith
Flagstaff, Arizona
November 2005

F o r e w o r dxxxii

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxii

I N T R O D U C T I O N

xxxiii

. . . Global 2000 companies will merge their SDLC (sys-
tems development life cycle) and PM (project manage-
ment) strategies to develop domain specific “ILDEs”
(integrated lifecycle and development environments) . . .
how dysfunctional large companies are if they run
Project Management Institute (PMI) guidance in their
Project Management Office (PMO) whilst running
Rational Unified Process (RUP) as their SDLC in the IT
organization. . . . The most competitive companies will
be the ones who merge the two schools of thought to
deliver optimal value and efficiency by eliminating dys-
functional competitiveness between the project manage-
ment process and the software lifecycle process.

Adapted from Melinda-Carol Ballou “Coordinating Project and
Software Life-cycle Processes,” META Group, November 2003, by
David J. Anderson in a private communication

We are experiencing the convergence of two disciplines that will result in the cre-
ation of yet another discipline. The two disciplines are software development
and project management. It is a convergence that is being formed out of neces-
sity. We call this new discipline effective software project management (ESPM). It is
the topic of this book.

Why Another Book on Software Project Management?

Modern project management is about 50 years old. It grew out of the engi-
neering discipline as a management approach for construction projects. Con-
current with this development, the computer emerged as a primitive tool for
businesses. The concurrent growth of project management, the computer as a
commercial tool, and software development brought the need for all three to
be merged into a discipline to support the enterprise. Today, that need is even
more visible for several reasons:

■■ The discipline of project management is faced with major challenges espe-
cially in its ability to support advances in the software development arena

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxiii

■■ There is a need to bring together a unified body of knowledge on project
management for the software developer

■■ The practices of project management and software development need to
mature into a strategic partnership to lead the formation of processes for
the contemporary enterprise

■■ There is a need for a practical “how to” book that combines in a balanced
framework the best practices from systems development life cycles
(SDLC) and project management life cycles (PMLC)

These are the driving forces that led me to write this book. There is no book in
the market that treats both of these topics in the integrated fashion and to the
balanced depth as does this book.

What Is This Book About?

The literature abounds with books on information technology project manage-
ment but they give passing treatment to how project management processes
are applied to specific systems development methodologies. Similarly, there
are a variety of books on specific systems development methodologies that do
not provide in-depth treatment of project management as it relates to the sys-
tems development methodology. The missing piece is a book that gives equal
treatment to project management as applied to specific systems development
methodologies. Filling that gap is what this book is all about.

What Is the Purpose of This Book?

There are three purposes for this book:

■■ To be a professional reference for software professionals—The major soft-
ware development models are discussed in this book along with the specific
application of project management best practices to the management of
those projects. In one place, software professionals can find everything they
need to successfully manage their software development projects. In other
words, this book is one-stop-shopping for the software development project
manager.

■■ To give project management consultants a single source for software
development project management principles and practices—For project
management consultants whose clients are in the information technology
business this book should be a constant companion. This book is a single
source of in-depth application of project management best practices to the
various needs of the information technology client.

I n t r o d u c t i o nxxxiv

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxiv

■■ To be a textbook for students of computer information systems and pro-
ject management—The companion book is Effective Project Management:
Traditional, Adaptive, Extreme, Third Edition (Wiley, 2003). It was an experi-
ment to write a book for both the professional reference market and the
academic market. That experiment was a success as sales to the profes-
sional market continue to be healthy, and our new readers in the academic
world adopt the book for their credit and non-credit courses at the under-
graduate and graduate level. The book has been adopted in over 50 col-
leges and universities at the undergraduate, graduate, and continuing
education markets. A number of training providers are also using the
book as a supplement to their course materials. Our expectation is that
this book will enjoy similar success in the academic market.

Who Should Read This Book?

The book is written both as a comprehensive reference for professional soft-
ware development project managers and aspiring software development pro-
ject managers and as a textbook for undergraduate and graduate students of
computers and information systems and project management. It is my hope
that this book will become a de facto source for all your software development
project manager tool, template, and process needs. Anyone who aspires to suc-
cessfully manage software development projects or successfully manage those
who manage software development projects is a targeted reader. Specifically,
the target markets are listed in the following sections, and how this book
serves the needs of those markets is briefly discussed.

Seasoned Project Managers
You might have a varied and successful career as a project manager, perhaps
serving the needs of the software developer. In this book I bring together in
one reference a number of best practices in software development project
management. If you are a project manager who is looking for an introduction
to the management of software development projects, this book will serve that
purpose. It is both introductory and advanced and will have a long and useful
lifetime for you.

Frustrated Project Managers
Perhaps you have a history of less than stellar performance in the management
of software development projects. In many cases you have tried unsuccessfully
to adapt your current toolbox of management practices with limited success.
You are no doubt looking for more, and this book is just the place. In this book,

Introduct ion xxxv

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxv

a number of best project management practices are adapted to the specific man-
agement requirements of various types of software development projects.

“Wanna Be” Project Managers
If you are new to software development project management, this book pro-
vides a solid foundation as well as the more advanced topics for the special man-
agement needs of more complex software development projects. This book is a
fast-track introduction and an in-depth treatment of all you need to launch and
grow a successful career as a software development project manager.

Occasional Project Managers
This book is a ready reference for those you project managers who haven’t
mastered the more complex types of software development project manage-
ment situations and need a reference that is “recipe oriented.” Your need is for
guidance from day one to day last in software development projects. This book
is an excellent fit for you.

Project Management Consultants and
Software Development Consultants

As a consultant, you don’t often have the luxury of searching for that seldom
needed solution. For you, this book is the reference for every viable integration
of software development and project management. This is your “one-stop
shopping” source.

Software Developers
Many software developers have depended on the systems development life
cycle as a substitute for many parts of the project management life cycle. In
many cases, the results have been less than expected. In this book, you will
find a practical solution to the integration of software development and project
management best practices. The result is to gain the skills and competencies to
work smarter, not harder.

Software Development Managers
If you are a software development manager, by integrating project manage-
ment best practices into the software development life cycle you will have a
repeatable framework within which to better manage you business unit. This
book contains a number of such management aids to meet your specific needs.

I n t r o d u c t i o nxxxvi

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxvi

Project Management Instructors and Trainers and
Software Development Instructors and Trainers

Because this book is applications-oriented, it can serve as a complete reference
and support text for your project management and software development
classes and training sessions. Each chapter contains a number of thought pro-
voking discussion questions. Answers to the discussion questions can be
found by contacting the author at rkw@eiicorp.com. See the companion
Web site for this book at www.wiley.com/go/espm for more support mate-
rials as well.

Computer Information Systems Students
The integration of software development and project management is
inevitable, and this book aims to be the de facto book on the topic. If you are a
serious student of ESPM, you will want this book in your library.

Students
Whether you are an independent learner or are taking credit or non-credit
course work in software development and project management, this book has
something for you and may prove indispensable. It can serve as the primary
text or as a supplemental reference text in courses in software development or
software project management.

How Will You Benefit from Reading This Book?

In one place, the software developer can learn how project management best
practices can support the effective completion of their project.

In one place, the project manager can see the connections between their disci-
pline and effective software development.

In total, the software developer as project manager can reliably and repeatedly
deliver software development projects.

How Is This Book Organized?

The book is organized into seven parts. Parts II through VI are structured to be
as parallel as possible to facilitate finding, interpreting, and comparing infor-
mation on different types of software development projects and their project
management infrastructures.

Introduct ion xxxvii

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxvii

NOTE
As you read through the following introduction to how the book is organized, don’t
be put off if you don’t recognize all the terms or concepts mentioned. All these ideas,
processes, and models are explained thoroughly as you progress through the book.

Part I: The Evolving State of ESPM
This introductory part provides a survey of both the project management land-
scape and the software development landscape. Both have been evolving inde-
pendently of one another. The project management landscape is dotted with
approaches that have not met the expectations of customers and clients. The fail-
ure rates of projects are beyond reasonable expectations, but little seems to have
been done to reduce the unacceptably high failure rates. At the same time the
software development landscape is dotted with a myriad of approaches for
every conceivable type of software development situation. Some succeed while
others fail. There seems to be a gap between the two situations. That gap is the
lack of an integrated approach to software development project management.

The literature is filled with books that have a strong focus on software devel-
opment with only brief treatment of project management. This book fills that
gap. It gives equitable treatment to both topics and integrates them at a depth
and breadth previously not available in the literature.

The underlying structure of this book is based on the certainty to uncertainty
continuum, which is unique to this book. All software development models
can be arrayed on this continuum. The linear models of Part II lie at the cer-
tainty end of this continuum. Parts III through VI discuss models that fall
along this continuum from the certainty end to the uncertainty end.

Part I consists of two chapters.

Chapter 1: The Changing Landscape of Software Development

This chapter provides the conceptual foundation for the entire software devel-
opment project management (SDPM) discipline. It categorizes projects based
on the extent of goal clarity and solution clarity. It defines a four quadrant
model as the basis of a discussion of risk, team cohesion, communications, cus-
tomer involvement, change, specification, and business value.

Chapter 2: SDPM Roadmap

This chapter presents a high-level overview of the five SDPM strategies and
the specific models that can be found in each strategy. For each strategy, I dis-
cuss the characteristics, strengths, and weaknesses.

I n t r o d u c t i o nxxxviii

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxviii

Part II: Linear ESPM
Linear approaches to software development started with the definition of the
Waterfall model. While the Waterfall model was designed to move sequen-
tially from idea through deployment it was an approach that afforded no look-
ing back. Once a phase was completed and approved, it was not visited again.
That works as long as requirements are clearly and completely documented
and there are no change requests from the client.

Part II has seven chapters.

Chapter 3: Linear SDPM Strategy

The introductory chapter in each of Parts II through VI defines the software
project management life cycle of the project types covered in that part. There
will be some variation to the Scope, Plan, Launch, Monitor/Control, and Close
Phases because of the nature of the software development process being man-
aged. The Linear SDPM type projects consist of the Standard Waterfall and
Rapid Development Waterfall models.

Chapter 4: The Linear SDPM Scoping Phase

Because of the nature of Linear software development projects, requirements
are completely and clearly identified and documented. A brief document
called the Project Overview Statement is prepared and signed off by client and
project manager.

Chapter 5: The Linear SDPM Planning Phase

Across all software development project types, the Planning Phase can run
from very formal to very informal. Despite that, all of the tools, templates, and
processes will be evident in some part of the Planning Phase. The focus here
will be on the WBS, scheduling, and resource requirements.

Chapter 6: The Linear SDPM Launching Phase

Regardless of the software development approach being taken, the team needs
to figure out how they are going to work together and establish the rules that
will govern the engagement. The unique aspect of the Rapid Development
Waterfall model is the use of concurrent development paths. These are called
“swim lanes” and are a central focus in this chapter.

Introduct ion xxxix

03_596365 flast.qxd 2/15/06 10:24 PM Page xxxix

Chapter 7: The Linear SDPM Monitoring and Controlling Phase

The project work is underway. The focus in this chapter is on measuring pro-
ject progress and performance. Part of that includes project review sessions
and scope change management.

Chapter 8: The Linear SDPM Closing Phase

Through the acceptance procedures, the client will validate that requirements
have been met, and it is time to deploy the software to the users. Lessons
learned will be a big part of the closing activities, as will the celebration of suc-
cess by the team.

Chapter 9: The Linear SDPM Strategy Summary

Each part ends with a chapter that compares and contrasts the models pre-
sented. In this chapter I discuss risk, change tolerance of the models, and team
structures.

Part III: Incremental ESPM
The next set of variations that I cover involves Incremental models. Here, the
full functionality is introduced in chunks. Deliverables are put into production
status in sequence—each chunk adding more functionality than the last so that
the system grows. In addition to getting business value earlier, the client may
discover improvements that can be incorporated into later chunks. Whereas
the Linear models are change intolerant, the Incremental models at least allow
for some change.

Part III has seven chapters.

Chapter 10: Incremental SDPM Strategy

The Incremental SDPM is nothing more than a string of Linear SDPMs. Each
Linear chunk adds another piece to the solution until eventually the complete
solution emerges. Other than that, the only other difference is that partial solu-
tions are put into production earlier and business value accrues. The Linear
SDPM strategy deploys all functionality at the end of the project. Another way
of looking at the difference is that the Linear model is the Incremental model
with only one increment. The Staged Delivery Waterfall and the Feature-
Driven Development model are the two variations discussed in Part III.

I n t r o d u c t i o nxl

03_596365 flast.qxd 2/15/06 10:24 PM Page xl

Chapter 11: The Incremental SDPM Scoping Phase

The Scoping Phase of the Incremental model and the Linear model are the same.
Requirements are gathered and documented the same way. That means that the
choice of Linear or Incremental can be postponed until requirements are gath-
ered. Any concern that requirements may not be complete and clear may lead
you to decide on using the Incremental model rather than the Linear model.

Chapter 12: The Incremental SDPM Planning Phase

Planning for the Incremental model requires a strategy for chunking the func-
tionality into separate and dependent chunks. Each chunk should have enough
functionality content to make it a useful partial solution that can be put into pro-
duction status while waiting for the addition of the next chunk. The Function/
Feature Breakdown Structure is introduced as an aid to chunking.

Chapter 13: The Incremental SDPM Launching Phase

The project team may change at each increment, which is not the case with the
Linear model. That places some additional burdens on each team. They will
have to ensure a clean hand-off from team to team as the project moves from
increment to increment.

Chapter 14: The Incremental SDPM Monitoring and
Controlling Phase

Within each increment, the monitoring and controlling activities are the same
as with the Linear model. The major area of concern is scope change manage-
ment. Scope changes approved in one increment may affect later increments,
and that needs to be accounted for in the scope change management process.

Chapter 15: The Incremental SDPM Closing Phase

The Closing Phase within each increment is the handoff activity from one team
to another. That handoff will require some documentation different than if it
were a Linear model.

Chapter 16: The Incremental SDPM Strategy Summary

There are only three points of comparison and contrast here. The first deals
with introducing interim releases at each increment as compared to one for the
Linear model, the second with the scope change management process, and the
third with the handoff between increments.

Introduct ion xli

03_596365 flast.qxd 2/15/06 10:24 PM Page xli

Part IV: Iterative ESPM
The differences between the Incremental model and the Iterative model are
vast. The Iterative model is used when functionality, requirements, and fea-
tures are only partially known at the outset, and it is up to the model chosen to
clarify that information. In Iterative ESPM the solution as it is known at each
iteration is built and deployed. It is used and then modified in the next itera-
tion. This process continues until the required solution is built.

Part IV has seven chapters.

Chapter 17: Iterative SDPM Strategy

An iteration is defined here as a development cycle that adds more functionality
and/or features to an incomplete solution in order to have it converge on a com-
plete solution. While iteration is easy to define, it has a number of variations that
you will have to take into account. For example, you can iterate on any of the fol-
lowing requirements: design, functionality, features, usability, or code. There are
four models that fit into the Iterative SDPM strategy group: Dynamic Systems
Development Method (DSDM), Evolutionary Systems Development, Rational
Unified Process (RUP), and SCRUM (not an acronym but a term used in rugby).

Chapter 18: The Iterative SDPM Scoping Phase

The major departure here from the previous two types of software develop-
ment projects is the absence of a complete specification of requirements. The
remaining three types of software development projects all have this in com-
mon but at different levels of incompleteness. These three types are collec-
tively called “agile software development” and they are managed using “agile
project management” approaches. The Iterative SDPM strategy is the first of
the three I will discuss. Requirements gathering is by definition not something
that can be completely done at the outset in an Iterative SDPM strategy. You
can complete only part of it and will have to depend on the software develop-
ment approach you take and the project management infrastructure to identify
the remaining requirements. In other words, this and the next two SDPM
strategies are characterized by processes of learning and discovery.

Chapter 19: The Iterative SDPM Planning Phase

All of the Iterative software development approaches depend on “just-in-time
planning.” Only the next iteration will be planned, and it will be planned at
the completion of the immediately preceding iteration.

I n t r o d u c t i o nxlii

03_596365 flast.qxd 2/15/06 10:24 PM Page xlii

Chapter 20: The Iterative SDPM Launching Phase

The team leadership models and team operating rules are very different for
Iterative SDPM projects as compared to those you have studied so far. Even
within the group of Iterative SDPM models, the leadership and team operating
rules differ widely.

Chapter 21: The Iterative SDPM Monitoring and
Controlling Phase

The further out you go in terms of uncertainty in the project the less formal you
are in terms of project status reporting. Written reports become quite rare in the
uncertain project environment. In these types of projects you are primarily look-
ing for signs that the project is converging to an acceptable solution.

Chapter 22: The Iterative SDPM Closing Phase

Each iteration will have its own Closing Phase. It includes activities with the
client to decide how to go forward (or even if to go forward) to the next itera-
tion and what the next iteration will contain.

Chapter 23:The Iterative SDPM Strategy Summary

There are considerable differences between the four models that fall in the Iter-
ative SDPM category. In this chapter, I present those differences and discuss
selection strategies.

Part V: Adaptive ESPM
In this part I present two software development project management
approaches to those projects whose goal is clear but whose solution is not. In
informal surveys the vast majority of respondents confirm that adaptive
approaches should be used in more than 75 percent of the software develop-
ment projects. Unfortunately, many software developers try to adapt linear
approaches when they clearly are a bad fit. The result is the high failure rate
that accompanies such projects. The most notable difference between Iterative
and Adaptive approaches is meaningful customer involvement. While a cer-
tain level of involvement is needed for Iterative approaches, that involvement
increases dramatically as you transition to Adaptive ESPM.

Part V has seven chapters.

Introduct ion xliii

03_596365 flast.qxd 2/15/06 10:24 PM Page xliii

Chapter 24: The Adaptive SDPM Strategy

The Adaptive SDPM strategy is conceptually very different than the Iterative
SDPM strategy. First there is the recognition that the solution is only partially
known and must be discovered and integrated as the project work commences.
Users of The Iterative SDPM strategy may not have to deal with that situation.
While both life cycles are iterative, the role of the customer in the latter is direc-
tion setting where it is not in the Iterative ESPM life cycle. There are two models
that follow the Adaptive SDPM strategy: Adaptive Project Framework (APF)
and Adaptive Software Development (ASD). APF is a robust model in that it
isn’t limited to software development, as is ASD. This chapter also discusses two
variations to APF—business case justification and prototyping—and how APF
can be embedded in other SDPM models.

Chapter 25: The Adaptive SDPM Scoping Phase

Scoping an Adaptive SDPM project is often a high-level activity. Because the
solution is not known or at best partially known, scoping at a detailed level is
something that happens over the cycles of the project. That means that require-
ments gathering and planning are also just-in-time activities.

Chapter 26: The Adaptive SDPM Planning Phase

As you move further into the uncertainty domain, Adaptive processes become
lighter. By that I mean less documentation and formality are part of the project
management approach. The transition is away from non–value-added work to
value-added work. The Adaptive project is on an aggressive timeframe with
frequent changes. Daily face-to-face team meetings take the place of internal
status reports. Much more of a team aura pervades the project. The WBS
becomes a just-in-time activity; dependency diagrams and formal project
schedules give way to small team scheduling at the whiteboard. The critical
path is meaningless in Adaptive project management.

Chapter 27: The Adaptive SDPM Launching Phase

In Adaptive SDPM, it is important that the team be solid and effective. Roles
and responsibilities must be clearly understood. Team leadership becomes
more of a coordinating activity because there will be any number of subteams
working on some small aspect of the software system. Team leadership may
change as the project transitions from phase to phase.

I n t r o d u c t i o nxliv

03_596365 flast.qxd 2/15/06 10:24 PM Page xliv

Chapter 28: The Adaptive SDPM Monitoring and Controlling
Phase

The major difference here compared to the previous life cycles is that change is
an integral part of the life cycle. It is not an add-on. It is a necessity. The solu-
tion will not be discovered unless change is driving the process.

Chapter 29: The Adaptive SDPM Closing Phase

At the completion of each iteration of an Adaptive SDPM project there is a
checkpoint with the customer. This is a go/no go stage-gate for the project.
There is a quality check on what has been done so far and a planning activity
as newly discovered requirements, functionality, and features are integrated
into the prioritization scheme and plans for the next iteration are formulated.

Chapter 30: The Adaptive SDPM Strategy Summary

The two models discussed in this part are compared and contrasted, and I dis-
cuss when to use them and when not to use them.

Part VI: Extreme ESPM
In Part VI, you have reached the models that deal with situations in which
very little is known about the goal and perhaps nothing about the solution.
Several ideas may be floating around as to what might generate a solution, but
you may have little evidence to support those contentions. Think of it as a pure
R&D situation, and you won’t be far off the mark.

Part VI has seven chapters.

Chapter 31: Extreme SDPM Strategy

The life cycle looks much like the Adaptive SDPM life cycle. The difference
comes as you look inside each of the phases. Part VI covers several extreme-
type models including INSPIRE and extreme programming.

Chapter 32: The Extreme SDPM Scoping Phase

In most cases scoping involves setting the boundaries of the project in terms of
time and cost, cycle length, and other general parameters.

Introduct ion xlv

03_596365 flast.qxd 2/15/06 10:24 PM Page xlv

Chapter 33: The Extreme SDPM Planning Phase

Planning is just-in-time and not very detailed. The team and its subteams are
left to direct their part of the project as they see fit. There are few standards
because these would tend to stifle creativity.

Chapter 34: The Extreme SDPM Launching Phase

These are the activities that get the team started on the next iteration. There
may be hand offs as new teams come into the picture to replace the previous
cycle’s team.

Chapter 35: The Extreme SDPM Monitoring and
Controlling Phase

Just as in the Adaptive SDPM, this is an informal process that is carried out
among the team in its daily meetings. Customer involvement is very high and
so little can be done that will stray from the project directives. Constant redi-
rection and replanning is evident, even within an iteration.

Chapter 36: The Extreme SDPM Closing Phase

There are two Closing stages here. One is the Closing activities that pertain to
the just completed iteration. The other is the Closing Phase that pertains to the
project itself. The iteration closing activities consist of a review of what has
been completed, an evaluation of whether or not the deliverables are converg-
ing on a solution, and a consideration of what should be done in the next iter-
ation (assuming there is a next iteration). The project closing activities include
the standard tasks: business value verification, post-implementation audit,
and lessons learned.

Chapter 37: The Extreme SDPM Strategy Summary

The two models discussed in this part are compared and contrasted, and I dis-
cuss when to use them and when not to use them.

Part VII: In Summary
This is a comprehensive look back at the models in each of the SDPM strate-
gies. I include an overall comparison, discuss the challenges yet to be faced,
and offer suggestions of how you might approach each of the models.

Part VII has two chapters.

I n t r o d u c t i o nxlvi

03_596365 flast.qxd 2/15/06 10:24 PM Page xlvi

Chapter 38: Where Are You?

This is a closer look at the status of software development project manage-
ment, its strengths and weaknesses, and the challenges yet to be faced.

Chapter 39: Where Do You Want to
Go and How Can You Get There?

This is an attempt to envision an end state for software development project
management and a plan to get there.

Appendixes
In addition to the chapters, you have two appendixes that can help direct you to
further information and resources. Appendix A, “What’s on the Web Site,”
explains what you will find if you surf to the Web site that’s associated with this
book at www.wiley.com/go/espm. Then, in Appendix B, “Bibliography,” you
will find a list of related materials for further reading.

Following these two appendixes are a number of appendixes that contain intro-
ductory materials for those who want to refresh their knowledge of the basics of
project management. These appendixes include “The Project Overview State-
ment,” “Requirements Gathering,” “Work Breakdown Structure,” “Estimation,”
“The Project Network Diagram,” “The Resource Schedule,” “Organizing the
Project Team,” “Project Performance Reporting,” and “Business Process Flow
Diagramming.”

What Are the Features of the Book?

This book is written in the same style and standards as my previous best-
selling book: Effective Project Management: Traditional, Adaptive, Extreme, Third
Edition (Wiley, 2003). This means the book has the following features:

■■ It is practice- and applications-oriented.

■■ It is readable.

■■ It provides intriguing and useful discussion questions.

■■ It makes figures and tables available for teacher/instructor use.

Practice- and Applications-Oriented
While all of my previous books have been grounded in concepts and princi-
ples, they all are practice- and applications-oriented. I’ve tried to maintain the

Introduct ion xlvii

03_596365 flast.qxd 2/15/06 10:24 PM Page xlvii

research tradition in all that I write and at the same time spare you the task of
translating theory to practice. At the same time I try to provide comparisons of
different approaches to a problem so that you always know which approach to
take and why. I will warn you of the traps. My vision is that you will have my
books opened to the pages that discuss the “how to” aspects of a tool, tem-
plate, or process as you are trying to implement them in your project.

Readable
In keeping with the practice and applications orientation, my writing style is
conversational. I want you to feel like we are sitting across from one another
having a conversation about some issue or topic. What I try to avoid is giving
you a tome to read just to get a few nuggets of information. I am not verbose.
I don’t have the time to write all those words, and you don’t have (or want) to
spend the time to read them.

Discussion Questions for Instructors
The third edition of Effective Project Management: Traditional, Adaptive, Extreme
departed somewhat from the second edition in that I tried to make that edition
more appealing to the academic market while not sacrificing the professional
market that had already been established with the second edition. By all mea-
sures that approach was successful, and the same style will be used here.

Each chapter ends with a few discussion questions that might be used by instruc-
tors to create some dialog with the class or might be used for written assign-
ments. These are not your favorite “list the ten causes of the Civil War” type
questions, but rather they are questions that I hope will be thought provoking.
There are no right answers, although there are plenty of wrong answers. An
answer file has been created for instructors. Just e-mail me at rkw@eiicorp
.com, identify yourself as a legitimate instructor or faculty member, and I’ll send
you the answer file. I’d love to hear from you and hear how you are using the
book and its materials.

Files of Figures and Tables
For the benefit of instructors and others who might want to use the figures and
tables from the text, I have prepared files containing all of that information. All
I ask is that you give the proper attributions for the source of your materials.

I n t r o d u c t i o nxlviii

03_596365 flast.qxd 2/15/06 10:24 PM Page xlviii

What’s on the Web Site?

A registered Web site has been built for readers of this book. There you will
find the files of figures and tables previously mentioned. This Web site may be
accessed at www.wiley.com/go/espm.

How Should You Read This Book?

Front to back would be a straightforward approach to reading this book and
would support the needs of the academic market. The typical credit course
might cover the book from Chapter 1 through Chapter 39. However, if you or
your students need some background in project management, the appendixes
can be quickly reviewed.

However, if you have more specific needs, each part can be read and refer-
enced independently of any other part. Each part is targeted to a specific
model type to accommodate the reference and application needs of the profes-
sional market. Each part is self-contained so that the practicing professional
need refer only to the part appropriate to their project application. There is no
need to read the entire book if your need is for a specific strategy.

Summary

My intent with this book is to bring together a breadth and depth of materials
on software development life cycles and the project management tools, tem-
plates, and processes to support them. I have integrated the two disciplines. As
far as I know this is the first book that can make that claim. I’ll let you be the
judge as to whether or not I have met that objective and provided you with a
unique reference book on the new and emerging discipline of software devel-
opment project management. Good luck and may all your software develop-
ment projects be effective and successful!

Introduct ion xlix

03_596365 flast.qxd 2/15/06 10:24 PM Page xlix

03_596365 flast.qxd 2/15/06 10:24 PM Page l

PA RTONE

The Evolving State of ESPM

No one would argue that software development has undergone a major change
in the past decade. On what seems to be a continuous basis you are bom-
barded with the latest and greatest models, tools, templates, and processes.
You may be confused and wonder which of these, if any, make any sense.
Should you use this one or that one or maybe the same one for all software
development projects?

In this part I will lay the groundwork for what proposes to be the introduction
of a new discipline—one that fully integrates software development life cycles
and project management life cycles. This is the first attempt at defining such a
discipline. Much remains to be done. But at least I can lay claim to trying to
bring some order out of the seeming chaos faced by software developers and
their project management partners.

04_596365 pt01.qxd 2/15/06 10:20 PM Page 1

04_596365 pt01.qxd 2/15/06 10:20 PM Page 2

Installing Custom Controls 3

The Changing Landscape of
Software Development
We’re trying to change the habits of an awful lot of
people. That won’t happen overnight but it will bloody
well happen.

John Akers, CEO
IBM

C H A P T E R 1

3

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the software development landscape

◆ Know the definition of software development project management strategy

◆ Understand the four quadrants of the software development landscape

◆ Know what project management approach is compatible with each
quadrant

◆ Explain the relationship of complexity and uncertainty and the software
development project management landscape

◆ Know how risk, team cohesion, communications, customer involvement,
change, specification, and business value are affected by the
complexity/uncertainty domain

◆ Explain the importance of balancing people, process, and technology in the
organization

◆ Explain staff-driven, process-driven, and technology-driven environments

05_596365 ch01.qxd 2/15/06 10:21 PM Page 3

The software project management landscape is ever-changing. It is defined by
no less than five interdependent variables: the characteristics of the software
project itself, the software development life cycle, the project management life
cycle, the profile of the project team, and the technology that supports the
whole. While this may seem overwhelming, it isn’t. I’ll explore the complexi-
ties of this multidimensional landscape with you and show you how to obtain
and sustain an effective presence in this changing landscape.

Software development processes and modern project management processes
are both about 50 years old. Both are adolescents. Both are trying to earn a seat
at the corporate strategy table. Both are sure that they can contribute to the
success of their enterprise. Unfortunately, both have a reputation for failing to
live up to expectations. Both are struggling, and both face tremendous odds
against making any positive impressions.

The equation that says you must strike a balance between people, process, and
technology holds the clue as to where you should look. People are smart. Of
that there is no doubt. How many times have you heard an executive say, “Just
put five of our smart people together in a room, and they will solve any prob-
lem you can give them.” That may be true, but I don’t think anyone would bet
the future of their enterprise on the continuing heroic efforts of the anointed
few. Technology is racing ahead faster than any organization can absorb, so that
can’t be the problem. Process is the only thing left, and it is to process that you
turn in this book. But it isn’t just your normal everyday processes that have
your attention. It is the integration of software development processes and proj-
ect management processes that will demand your attention throughout this
book. The result of that integration will be a type of discipline—effective soft-
ware project management (ESPM). This book is about the concepts and princi-
ples of ESPM and its application to real software development problems.

Despite their brief history, software development and project management
practitioner groups have never taken the pains to seriously integrate what
they have learned with one another. Software developers use their systems
development life cycle as a surrogate for project management. Traditional
project managers are locked into the construction and engineering mindset
that initially defined and continues to define the project management disci-
pline. The impact of the construction and engineering practices on project
management continues to be a roadblock to the further development of project
management in the software development discipline. As a result, most soft-
ware developers dismiss most project managers as incapable and irrelevant to
meeting their needs. What is needed is to have traditional project managers
think openly and creatively about how to effectively serve their customers and
deliver business value as their prime directive.

That suggests a fresh approach to managing software development projects. I
hope to do that in pages that follow. But right now that that doesn’t mean

C h a p t e r 14

05_596365 ch01.qxd 2/15/06 10:21 PM Page 4

creating new tools, templates, or processes. What we have now is sufficient.
What we do not have is the awareness, skills, and creativity to integrate proj-
ect management life cycles (PMLC) and software development life cycles
(SDLC), and the courage to stay the course in implementation of the resulting
integrations.

In this book, I take the position that the characteristics of the software develop-
ment project drive your choice as to the project management tools, templates,
and processes that should be used. This is not a recipe book to be blindly fol-
lowed. Rather, it is a book that teaches you how to create a recipe. In other
words, one of my objectives is to help you think like a great project manager.

What Is a Software Development Project?

Several types of software development projects are within the scope of this
book. They range from repeatable projects that have been done many times
before to projects that are cutting edge problem solving projects. Each presents
its own special challenge to the developer. The example given below will be
the staging area for exploring effective approaches to software development
project management (SDPM).

DEFINITION: SOFTWARE DEVELOPMENT
PROJECT

A software development project is a complex undertaking by two or more persons
within the boundaries of time, budget, and staff resources that produces new or en-
hanced computer code that adds significant business value to a new or existing busi-
ness process.

Although this is a restrictive definition, it does define the types of software
development projects that are addressed in this book. The criteria for these
projects are that they have the potential of adding significant business value
and are not trivial undertakings. These development projects will have signif-
icant business value, be highly visible, be of moderate to high complexity, and
were needed yesterday.

Examples of Two Software Development Projects
I’ve crafted a hypothetical case study that will be a referent as I apply the SDPM
strategies presented in this book. I hope that this will help you further align
yourself with using the models and approaches that this book addresses. I’ll
incorporate more details to the case study as needed. Any resemblance to past or
present companies is strictly coincidental. The case study is purely hypothetical
and written to illustrate the use of the concepts and principles in this book.

The Changing Landscape of Software Development 5

05_596365 ch01.qxd 2/15/06 10:21 PM Page 5

C h a p t e r 16

Introducing the Case Study

Pizza Delivered Quickly (PDQ) is a 40-store local chain of eat-in and home deliv-
ery pizza stores. Recently PDQ has lost 30 percent of sales revenue due mostly to
a drop in their home delivery business. They attribute this solely to their major
competitor who recently promoted a program that guarantees 30-minute delivery
service from order entry to home delivery. PDQ advertises one-hour delivery. PDQ
currently uses computers for in-store operations and the usual business functions
but otherwise is not heavily dependent upon software systems to help them
receive, process, and deliver their customers’ orders. Pepe Ronee, their Manager
of Information Systems, has been charged with developing a software application
to identify “pizza factory” locations and create the software system needed to
operate them. In commissioning this project, Dee Livery, their president, said to
pull out all the stops. She further stated that the future of PDQ depends on this
project. She wants the team to investigate an option to deliver the pizza unbaked
and “ready for the oven” in 30 minutes or less or deliver it pre-baked in 45 min-
utes or less.

These pizza factories would not have any retail space. Their only function
would be to receive orders, and prepare and deliver the pizzas. The factory loca-
tion nearest the customer’s location will receive the order from a central ordering
facility, and process and deliver the order within 30 or 45 minutes of order entry,
depending on whether the customer orders their pizza ready for the oven or
already baked.

There are two software development projects identified here:

◆ The first is a software system to find pizza factory locations.

◆ The second is a software system to support factory operations.

Clearly the first is a very complex application. It will require heavy involvement
by a number of PDQ managers. The goal can be clearly defined but even at that
the solution will not be at all obvious. The second focuses on routine business
functions and should be easily defined. Off-the-shelf commercial software may
be a big part of the final solution to support factory operations.

These are obviously very different software development projects requiring
very different approaches. The pizza factory location system will be a very sophis-
ticated modeling tool. The requirements, functionality, and features are not at all
obvious. Some of the solution can probably be envisioned, but clearly the whole
solution is elusive at this early stage. Exactly how it will do modeling is not
known at the outset. It will have to be discovered as the development project is
underway. The operations system can utilize commercial off the shelf (COTS)
order entry software, which will have to be enhanced at the front end to direct
the order to the closest factory and provide driving directions for delivery and
other fulfillment tasks on the back end. The requirements, functionality, and fea-
tures of this system may be problematic.

05_596365 ch01.qxd 2/15/06 10:21 PM Page 6

As the case study unfolds in later chapters, you will see that this simple yet real-
istic case study is rich with learning opportunities. I expect to draw heavily on
it for practical illustrations of the concepts and principles presented here.

What Is Software Development Project Management?

Now that you have a clear idea of what a software development project is, it’s
important to clearly define what software development project management is.

DEFINITION: SDPM
Software development project management is the discipline of assessing the charac-
teristics of the software to be developed, choosing the best fit software development
life cycle, and then choosing the appropriate project management approach to ensure
meeting the customer needs for delivering business value as effectively and effi-
ciently as possible.

At the risk of cluttering up your vocabulary, I have coined a phrase that
reflects the thinking process that I follow to craft a management approach to
software development. The definition that follows is unique to this book but
important to add to your vocabulary. From now on, any use of the term SDPM
strategy refers to the definition given here.

DEFINITION: SDPM STRATEGY
A SDPM strategy is an integration of a software development life cycle and a project
management life cycle into a customer-facing approach that will produce maximum
business value regardless of the obstacles that may arise.

I want you to think of SDPM as an emerging discipline. It is new, although the
two components that define it are not new. What is new is the integration of
those components to produce an effective SDPM environment. The SDPM
strategy for making this happen will be developed in this book.

The title of this section poses a question that is not trivial and certainly not a
rhetorical question. I know several project managers that would like to have a
working definition of exactly what constitutes software development project
management. And further to the point, they would like to know how to do it.
This book is a first attempt, but certainly not the last, to answer both questions.
My expectations for the effective management of software development pro-
jects lie not only in the answer to these questions but also in the answer to
three questions that are more operationally focused:

The Changing Landscape of Software Development 7

05_596365 ch01.qxd 2/15/06 10:21 PM Page 7

■■ What are the characteristics of the software to be developed?

■■ What software development approach is appropriate for building the
software?

■■ What project management approach is appropriate for managing the cho-
sen software development process?

The questions are meant to be answered in the order listed. Each one is depen-
dent on the answers to the previous questions. Furthermore, in execution all
three are dependent upon one another. Compare this to the situation where
both the software development approach and the project management
approach are fixed. Given those two constraints, what do you want us to
develop? Do you operate like a solution out looking for a problem? Wouldn’t
you rather let the characteristics of the problem drive your choices for solution
approach? I would hope so. That is the focus of this book.

What Are the Characteristics of the Software to Be Developed?
When I think of the software development landscape, I think of it in very sim-
ple terms. I see it as a two-dimensional grid like the one shown in Figure 1-1.

The first dimension relates to the goal of the software development project.
The goal is either clearly specified (therefore known) or it is not clearly speci-
fied (therefore not known). It’s an all or nothing situation. The boundary
between clear and not clear is more conceptual that actual. The same is true of
the second dimension, which relates to the solution or how you expect to reach
the goal. That also has two categories. The solution is either clearly specified
(and therefore known) or it is not clearly specified (and therefore not known).
If you intersect these two dimensions as shown in the figure, then you have
defined a four-category classification of software development projects. This
classification is simple but inclusive of every software development project.
That is, every software development project that ever has been or ever will be
must fall into one and only one of these four categories.

Figure 1-1: The software development landscape

Solution

Goal

Clear

Clear

Not Clear

Not Clear

C h a p t e r 18

05_596365 ch01.qxd 2/15/06 10:21 PM Page 8

Why is this important? First and foremost, the characteristics of the software to
be developed will play an important role in determining the model that will be
used. Each of these quadrants presents the development team with a number
of decisions regarding how to go forward. The next sections briefly examine
each quadrant and the salient aspects of clarity or lack thereof with respect to
goal and solution.

Quadrant 1: Goal and Solution Are Clearly Specified

How could it be any better than to clearly know the goal and the solution? This
is the best of all possible worlds, but it is also the least likely to occur in today’s
fast-paced, continuously changing business world. Software development
projects that fall into this quadrant are familiar to the organization. Perhaps
similar projects have been done several times before. There are no surprises.
The client has clearly specified the goal and how to reach that goal. Little
change is expected. A variety of approaches is in use for such software devel-
opment projects. They are all of the design-build-test-implement variety or
some variation of the linear concept implied by these approaches. Such pro-
jects also put the team on familiar technology grounds. The hardware, soft-
ware, and telecommunications environments are familiar to the team. They
have used them repeatedly and have developed a skilled and competent
developer bench to handle such projects.

The limiting factors in these plan-driven approaches are that they are change-
intolerant, are focused on delivering according to time and budget constraints,
and rely more on compliance to plan than on delivering business value. The
plan is sacred, and conformance to it is the hallmark of a successful project team.

Because of the times we live in, these approaches are rapidly becoming
dinosaurs. At least the frequency of their application is diminishing rapidly.
They are giving way to a whole new collection of approaches that are more
customer-focused and deliver business value rather than adhere to a schedule
and budget plan.

In addition to a clearly defined goal and solution, software development pro-
jects that correctly fall into this quadrant have several identifying characteris-
tics as briefly identified here.

Low Complexity

Other than the fact that the project really is simple, this will often be attribut-
able to the fact that the software development project rings of familiarity. It
might be a straightforward application of established business rules and there-
fore take advantage of existing designs and coding. To the developer it might
look like a cut-and-paste exercise. In such cases integration and testing will be
the most challenging phases of the development project.

The Changing Landscape of Software Development 9

05_596365 ch01.qxd 2/15/06 10:21 PM Page 9

You can still find situations where the project is complex but still well-defined.
However, these are rare.

Well-Understood Technology Infrastructure

A well-understood technology infrastructure is one that is stable and has been
the foundation for many software development projects in the past. That
means that the accompanying skills and competencies to work with the tech-
nology infrastructure are well-grounded in the development teams.

Low Risk

The total environment for development projects in this quadrant is that it is
known. All that could happen to put the project at risk has occurred in the
past, and you have well-tested and well-used mitigation strategies in place.
Experience has rooted out all of the mistakes that could be made. The cus-
tomer is confident that it has done a great job identifying requirements, func-
tions, and features, and they are not likely to change. Except for acts of nature
and other unavoidable events, the project is protected from avoidable events.
You find few unanticipated risks in software development projects in this
quadrant.

Experienced and Skilled Developer Teams

Past projects have been good training grounds for the teams. They have had
opportunities to learn or to enhance their skills and competencies.

NOTE
I’ll have much more to say about teams in the chapters that discuss the Launch Phase
of each SDPM strategy. They are a critical success factor in all software development
projects. As the characteristics of the software to be developed changes, so also does
the profile of the team that can be most effective in developing that software.

Quadrant 2: Goal Is Clearly Specified but Solution Is Not

You have a host of incremental, iterative, and adaptive approaches to SDPM that
can be used when the goal is clearly defined, but how to reach the goal—the
solution—is not. As you give some thought to where your projects would fall in
this landscape, consider the possibility that many if not most of them are really
these types of projects. If that is the case, shouldn’t you also be considering using
an approach to managing these projects that accommodates the goal and solu-
tion characteristics of the project rather than trying to force fit some other
approach that was designed for projects with much different characteristics?

C h a p t e r 110

05_596365 ch01.qxd 2/15/06 10:21 PM Page 10

I contend that the adaptive and iterative class of projects is continuously grow-
ing. I make it a practice at all “rubber chicken” dinner presentations to ask
about the frequency with which the attendees encounter Quadrant 2 projects.
With very small variance they say that at least 75 percent of all their projects
are Quadrant 2 projects. Many of them try to adapt Quadrant 1 solutions to
Quadrant 2 projects and meet with very little success. The results have ranged
from mediocre success to outright failure. Quadrant 2 projects present a differ-
ent challenge and need a different approach. For years I have advocated that
the approach to the project must be driven by the characteristics of the project.
To reverse the order is to court disaster. With the addition of the Quadrant 2
approaches discussed in Parts IV, V, and VI of this book, I cover the project
landscape with a full complement of approaches for every conceivable type of
project.

Quadrant 3: Goal and Solution Are Not Clearly Specified

Quadrant 3 extends to the remotest boundaries of project types. Quadrant 3
projects are those projects whose goal and solution cannot be clearly defined.
What little planning is done just in time, and the project proceeds through sev-
eral iterations until it converges on an acceptable goal and solution. If instead
there isn’t any prospect of convergence, the customer might pull the plug and
cancel the project at any time and look for alternative approaches.

Quadrant 4: Goal Is Not Clearly Specified but the Solution Is

The fourth category represents projects whose goals are not known but whose
solutions are. This is an impossible situation. It would be equivalent to
solutions out looking for problems. Nevertheless, we all have had experiences
working with professional services organizations that practice such approaches.
They advocate a one-size-fits-all approach, which has never shown to be very
successful. I have always discouraged a one-size-fits-all approach with my
clients. Most see the wisdom in adopting this position.

What Software Development Approach Is Appropriate
for Building the Software?

The characteristics of the software development project will play an important
role in determining the software development model to be used. Here I give a
generic description of the model characteristics. In Chapter 2 I peel back the
onion to the next level of detail and present the five classes of software devel-
opment approaches. That sets the stage for a detailed discussion of the soft-
ware development approaches in each of the five classes, which is the topic of
Part II through Part VI of the book.

The Changing Landscape of Software Development 11

05_596365 ch01.qxd 2/15/06 10:21 PM Page 11

Quadrant 1: Goal and Solution Are Clearly Specified

Because all of the information that could be known about this development
project is known and is considered stable, the appropriate development model
is the one that gets to the end as quickly as possible. Based on the require-
ments, desired functionality, and specific features, a complete project plan can
be developed. It specifies all of the work needed to meet the requirements, the
schedule of that work, and the staff resources needed to deliver to the planned
work. Quadrant 1 projects are clearly plan-driven projects. Their success is
measured by compliance and delivery to that plan.

Quadrant 2: Goal Is Clearly Specified but Solution Is Not

As the solution moves from one that is clearly specified toward one that is not
clearly specified, you move through a number of situations that require differ-
ent handling. For example, suppose only some minor aspects of the solution
are not known—features, perhaps; how would you proceed? An approach that
includes as much of the solution as is known at the time should work quite
well. That approach would allow the customer to examine, in the sense of a
production prototype, what is in the solution in an attempt to discover what is
not in the solution but should be. At the extreme, when very little is known
about the solution, development projects are higher risk than those where a
larger part of the solution is known. A solution is needed, and it is important
that a solution be found. How would you proceed? What is needed is an
approach that is designed to learn and discover the solution. Somehow that
approach must start with what is known and reach out to what is not known.
The anchor to this approach is that the goal is clearly specified.

Quadrant 3: Goal and Solution Are Not Clearly Specified

If goal clarity is not possible at the beginning of the project, the situation is
much like a pure research and development project. Now how would you pro-
ceed? In this case you use an approach that clarifies the goal and contributes to
the solution at the same time. The approach must embrace a number of con-
current probes that accomplish both. The concurrent probes might be the most
likely ones that can accomplish goal clarification and the solution set at the
same time. Depending on time, budget, and staff resources, these probes
might be pursued sequentially or concurrently. Alternatively, the probes might
eliminate and narrow the domain of feasible goal/solution pairs. Clearly
Quadrant 3 projects are an entirely different class of projects and require a dif-
ferent approach to be successful.

C h a p t e r 112

05_596365 ch01.qxd 2/15/06 10:22 PM Page 12

Quadrant 4: Goal Is Not Clearly Specified but the Solution Is

Here is that nonsense quadrant again. You have the solution; now all you need
is to find the problem. This is the stuff that academic articles are often made of.
Post your solution and hope somebody responds with a problem that fits it. It
has happened. Take the 3M Post-it Note saga, for example. The product sat on
the shelf for several years before someone stumbled onto an application. The
rest is history.

In summary, you have to answer the first of the three questions posed earlier:
“What are the characteristics of the software to be developed?” Because the
landscape has been defined in terms of four categories, it should be easy to
identify the quadrant that the development project belongs to. If there is any
doubt about the quadrant, err on the side of choosing a higher numbered
quadrant. I’ll have more to say on that strategy throughout the book.

What Project Management Approach Is Appropriate
for Managing the Software Development Process?

Now that the first question has been answered and you know what quadrant
the project lies in, you can answer the second question, “What project man-
agement approach is appropriate for managing software development pro-
jects in this quadrant?” As you move through the quadrants from clarity to
lack of clarity, the project management processes you use must track with the
needs of the project. As a general word of advice as you move through the
quadrants, remember that “Lots is bad, less is better, and least is best.” In other
words, don’t burden the project manager and team with needless planning
and documentation that will just hinder their efforts. As my colleague Jim
Highsmith has said to me conversationally: “The idea of enough structure, but
not too much, drives agile managers to continually ask the question, ‘How lit-
tle structure can I get away with?’ Too much structure stifles creativity. Too lit-
tle structure breeds inefficiency.” Quadrant 1 projects are plan-driven,
process-heavy, and documentation-heavy. As you move to Quadrants 2 and 3
projects, heaviness gives way to lightness. Plan-driven gives way to value-
driven, rigid process gives way to adaptive process, and documentation is
largely replaced by tacit knowledge that is shared among the team members.
These are some of the characteristics of the many approaches that fall in the
agile project management taxonomy. Several approaches fall under the umbrella
of agile. Each is discussed in detail in Part II through Part VI.

I’ve always felt that the project manager must see value in a project management
process before she is willing to use it. Burdening the project manager with what

The Changing Landscape of Software Development 13

05_596365 ch01.qxd 2/15/06 10:22 PM Page 13

they perceive as a lot of non-value-added work is counterproductive and to be
avoided. This becomes more significant as you move from Quadrant 1 to 2 to 3.
Furthermore, project managers will resist, and you will get a token effort at com-
pliance. My overall philosophy is that the less non-value-added time and work
that you encumber your project managers with the better off you will be. Replac-
ing non-value-added work with value-added work increases the likelihood of
project success. Time is a precious (and scarce) resource for every software
development project. You need to resist the temptation to add work that doesn’t
directly contribute to the final deliverables. Up to a point the project manager
should determine what is a value add to their project processes and documenta-
tion. Make it their responsibility to decide what to use and when to use it. This
is the mark of a successful manager of project managers—that they make it pos-
sible for the project manager to be successful and then stay out of their way.

Project management methodologies include a number of tools, templates, and
processes and the rules for their use. The process of integrating those tools,
templates, and processes into software development processes is actually
quite straightforward to define. It isn’t quite that simple as far as implementa-
tion is concerned and that is what motivated me to write this book. In this
book, you will learn how to do that integration effectively and how to deal
with the various demons that raise their heads during that implementation.

The Complexity/Uncertainty Domain of SDPM

Each quadrant of the software development project landscape has different
profiles when it comes to risk, team, communications, customer involvement,
specification, change, business value, and documentation. In this section, you
examine the changing profile of each domain as you move from quadrant to
quadrant.

Complexity and uncertainty are positively correlated with one another. As
software development projects become more complex, they become more
uncertain. That follows from at least four other relationships, as commented
on in the next four sections.

In the Quadrant 1 models you know where you are going, and you know pre-
cisely how you are going to get there. It’s all in the requirements, functionality,
and features. Your plan reflects all of the work, the schedule, and the resources
that will get you there. No complexity here. As soon as you move away from a
clearly specified solution and are in Quadrant 2, the world is no longer as kind
to you as it was while you were in Quadrant 1. The minute you have uncer-
tainty anywhere in the project complexity goes up. You have to devise a plan
to fill in the missing pieces. There will be some added risk—you might not find
the missing piece, or when you do, you find that it doesn’t fit in with what you

C h a p t e r 114

05_596365 ch01.qxd 2/15/06 10:22 PM Page 14

already have built—go back two steps, undo some previous work, and do the
required rework. The plan changes. The schedule changes. A lot of the effort
spent earlier on developing a detailed plan has gone to waste. By circumstance
it has become non-value-added work. If you had only known.

As less and less of the solution is known, the realities of non-value-added
work become more and more a factor. Time has been wasted. Quadrant 2 mod-
els are better equipped to handle this uncertainty and the complexity that
results from it. The models are built on the assumption that the solution has to
be discovered. Planning becomes less of a one-time task done at the outset to a
just-in-time task done as late as possible. You have less and less reliance on a
plan and more reliance on the tacit knowledge of the team. That doesn’t reduce
the complexity, but it does accommodate it. So even though complexity
increases as you move from Quadrant 1 to 2 to 3, you have a way to deal with
it for the betterment of your customer and your sanity as a project manager.

Requirements

As project complexity increases, the likelihood of nailing requirements
decreases. This follows logically from the fact that the human brain can retain
in memory only about seven pieces of information. The dimensions of com-
plexity are likely to far exceed that constraint. In a complex software product
the extent of the number of requirements, functionality, and features can be
staggering. Some will conflict with each other. Some will be redundant. Some
will be missing. Many of these might not become obvious until well into the
design, development, and even integration-testing tasks.

Flexibility

As project complexity increases, so does the need for process flexibility.
Increased complexity brings with it the need to be creative and adaptive. Nei-
ther is comfortable in the company of rigid processes. Quadrant 2 projects are
easily compromised by being deluged with process, procedure, documenta-
tion, and meetings. Many of these are unrelated to a results-driven approach.
They are the relics of plan-driven approaches. Along with the need for
increased flexibility in Quadrant 2 and 3 projects is the need for increased
adaptability. Companies that are undergoing a change of approach that recog-
nizes the need to support not just Quadrant 1 projects but also Quadrant 2 pro-
jects are faced with a significant and different cultural and business change.
For one, the business rules and rules of the project engagement will radically
change. Expect resistance.

Flexibility here refers to the project management process. If you are using a
one-size-fits-all approach, you have no flexibility. The process is the process is
the process. Not a very comforting situation if the process gets in the way of

The Changing Landscape of Software Development 15

05_596365 ch01.qxd 2/15/06 10:22 PM Page 15

commonsense behaviors and compromises your ability to deliver value to
your customer. Wouldn’t you rather be following a strategy that allows you to
adapt to the changing situations?

Quadrant 1 development projects generally follow a traditional project man-
agement methodology. The plan is developed along with a schedule of deliv-
erables and other milestone events. A formal change management process is
part of the game plan. Progress against the planned schedule is tracked, and
corrective actions are put in place to restore control over schedule and budget.
A nice neat package isn’t it? All is well until the process gets in the way of
product development. For example, if the business situation and priorities
change and result in a flurry of scope change requests to accommodate the
new business climate, an inordinate amount of time is then be spent process-
ing change requests at the expense of value-added work. The schedule slips
beyond the point of recovery. The project plan, having changed several times,
becomes a contrived mess. Whatever integrity there was in the initial plan and
schedule is now lost among the changes.

Quadrant 2 is altogether different. Project management is really nothing more
than organized commonsense. So when the process you are using gets in the
way, you adapt. The process is changed to maintain focus on doing what
makes sense to protect the creation of business value. Unlike Quadrant 1
processes, Quadrant 2 processes expect and embrace change as a way to a bet-
ter solution and as a way to maximize business value within time and budget
constraints. That means choosing and continually changing the SDPM strat-
egy to increase the business value that will result from the project. Realize that
to some extent scope is a variable in these types of SDPM strategies.

Quadrant 3 projects are even more dependent upon flexible approaches.
Learning and discovery takes place throughout the project, and the team and
customer must adjust how they are approaching the project on a moment’s
notice.

Adaptability

The less certain you are of project requirements, functionality, and features, the
more need you will have to be adaptable with respect to process and proce-
dure. Adaptability is directly related to the extent to which the team members
are empowered to act. The ability of the team to adapt increases as empower-
ment becomes more pervasive. Remember to make it possible for the team
members to be productive and stay out of their way. Don’t encumber the team
members with the need to get sign-offs that have nothing to do with deliver-
ing business value. Pick them carefully and trust them to act in the best inter-
est if the customer.

C h a p t e r 116

05_596365 ch01.qxd 2/15/06 10:22 PM Page 16

Change

As complexity increases so does the frequency and need to receive and process
change requests. A plan-driven software development project is not designed
to effectively respond to change. Change upsets the order of things as some or
all of the project plan is affected. Resource schedules are compromised. The
more that change has to be dealt with, the more time is spent processing and
evaluating the changes. That time is lost to the project. It should have been
spent on value-added work. Instead it was spent processing change requests.

You spend so much time developing your project plan for your Quadrant 1
project that the last thing you want is to have to change it. But that is the real-
ity in Quadrant 1 projects. Scope change always seems to add more work. Did
you ever receive a scope change request from your customer that asked you to
take something out? Not too likely. The reality is that the customer discovers
something else they should have asked for in the solution. They didn’t realize
that or know that at the time. That leads to more work, not less. The call to
action is clear—choose Quadrant 1 models when specifications are as stable as
can be. The architects of the Quadrant 2 and 3 models knew this and so
designed approaches that expected change and were ready to accommodate it.
You’ll see that in more detail in Parts 2 through 6 of the book.

Risk Versus the Complexity/Uncertainty Domain
Risk increases as you move from Quadrant 1 to 2 to 3. In Quadrant 1 you
clearly know the goal and the solution and can build a definitive plan for get-
ting there. The exposure to risks associated with product failure is low. The
focus can then shift to process failure. A list of candidate risk drivers would
have been compiled over past similar projects. Their likelihood, impact, and
the appropriate mitigations is known and documented. Like a good athlete,
you have anticipated what might happen and know how to act if it does.

As the software development project takes on the characteristics of Quadrant 2,
two forces come into play. First, the SDPM strategy becomes more flexible and
lighter. The process burden lessens as more attention is placed on delivering
business value than on conformance to a plan. At the same time, the product
risk increases, as illustrated in Figure 1-2. Risk increases in relation to the
extent to which the solution is not known. On balance that means more effort
should be placed on risk management as the software development project
moves through Quadrant 2 and looks more like a Quadrant 3 project. You will
have less experience with these risks because they are specific to the product
being developed. In Quadrant 3, risk is the highest because you are in a
research and development environment. Process risk is almost nonexistent

The Changing Landscape of Software Development 17

05_596365 ch01.qxd 2/15/06 10:22 PM Page 17

because the ultimate in flexibility has been reached in this quadrant, but product
risk is extremely high. You will have numerous product failures because of the
highly speculative nature of Quadrant 3 projects, but that is okay. Those fail-
ures are expected to occur. Each product failure gets you that much closer to a
functional solution, if such solution can be found within the operative time
and budget constraints. At worst those failures eliminate one or more paths of
investigation and so narrow the range of possible solutions.

Team Cohesiveness Versus the Complexity/
Uncertainty Domain

In Quadrant 1 the successful team doesn’t really have to be a team at all. You
assemble a group of specialists and assign each to their respective tasks at the
appropriate times. Period. The plan is sacred, and the plan guides them
through their task. It tells them what they need to do, when they need to do it,
and how they know they have finished their task. They are a group of special-
ists. They each know their discipline and are brought to the team to apply their
discipline to a set of specific tasks. When they have met their obligation, they
often leave the team to return later if needed. Period.

The situation quickly changes as the project is a Quadrant 2 or 3 project. First
of all, you have a gradual shift of the team makeup from a team of specialists
to a team of generalists. The team takes on more of the characteristics of a self-
directed team. They become self-sufficient and self-directing as the project
moves from a Quadrant 2 to a Quadrant 3 project. Quadrant 1 teams are not
co-located. They don’t have to be. Quadrant 2 and 3 teams are co-located.
Research has shown that co-location adds significantly to the successful com-
pletion of the project. Figure 1-3 reflects this shift from a loosely formed team
to one that is tightly coupled.

Figure 1-2: The Risk domain

Solution

Goal

Clear

Clear Ris
k

Not Clear

Not Clear

C h a p t e r 118

05_596365 ch01.qxd 2/15/06 10:22 PM Page 18

Figure 1-3: The Team Cohesiveness domain

Communications Versus the Complexity/Uncertainty Domain
Lack of timely and clear people-to-people communications has been shown to
be the single most frequent reason for project failure. I include both written
and verbal communications media in making that statement. Figure 1-4
reflects my thinking.

As you move in the direction of increased complexity and heightened uncer-
tainty, communication requirements increase and change. When complexity
and uncertainty are low, the predominant form of communications is written.
Status reports, change requests, meeting minutes, issues reporting, problem
resolution, project plan updates, and other written reports are commonplace.
As uncertainty and complexity increase, written communications give way to
verbal communication. The burden of plan-driven approaches is lightened,
and the communications requirements of value-driven approaches take over.

Figure 1-4: The Communications domain

Solution

Goal

Clear

Clear

Not Clear

Not Clear

Com
m

un
ica

tio
ns

Com
m

un
ica

tio
ns

Solution

Goal

Clear

Clear

Not Clear

Not Clear

Te
am

 co
he

siv
en

es
s

Te
am

 co
he

siv
en

es
s

The Changing Landscape of Software Development 19

05_596365 ch01.qxd 2/15/06 10:22 PM Page 19

Value-driven communications approaches are the derivatives of meaningful
customer involvement where discussions generate status updates and plans
going forward. Because projects that are high in complexity and uncertainty
depend on frequent change, they have a low tolerance of written communica-
tions. In these project situations, the preparation, distribution, reading, and
responding to written communications is viewed as non-value-added work. It
is to be avoided and the energy spent on value-added work.

Customer Involvement Versus the Complexity/
Uncertainty Domain

Consider for a moment a project from your experience where you were most
certain of the goal and the solution. You would be willing to bet your first-born
that you had nailed requirements and that they would not change. Yes, that
type of project might just be a pipe dream, but give me the benefit of the doubt.
For such a project you might ask: Why do I need to have my customer
involved except for the ceremonial sign-offs at milestone events? A fair ques-
tion and ideally you wouldn’t need their involvement. How about a project at
the other extreme where the goal is very illusive and no solution would seem
to be in sight? In such cases the complete involvement of the customer, as a
team member perhaps, would be indispensable. What I have painted here are
the extreme cases in Quadrant 1 and Quadrant 3.

Quadrant 1 projects are team-driven projects. Customer involvement is usually
limited to answering clarification questions as they arise and giving sign-offs
and approvals at the appropriate stages of the project life cycle. It would be accu-
rate to say that customer involvement in Quadrant 1 projects is reactive and pas-
sive. But all that changes as you move into Quadrant 2 projects. The customer
must now take a more active role in Quadrant 2 projects than was their role in
Quadrant 1 projects. For Quadrant 3 projects, meaningful customer involvement
is essential. In fact, the customer should take on a proactive role. The project goes
nowhere without that level of commitment from the customer. Figure 1-5
reflects the gradual shift from passive to very active across the project domain.

Figure 1-5: The Customer Involvement domain

Solution

Goal

Clear

Clear

Not Clear

Not Clear

Cus
to

m
er

 in
vo

lve
m

en
t

Cus
to

m
er

 in
vo

lve
m

en
t

C h a p t e r 120

05_596365 ch01.qxd 2/15/06 10:22 PM Page 20

Finding the solution to a software development project is not an individual
effort. In Quadrant 1, the project team under the leadership of the project man-
ager is charged with finding the missing parts of the solution. In some cases
the customer is passively involved, but for the most part the team solves the
problem. The willingness of the customer to even get passively involved
depends on how you have dealt with them so far in the project. If you bothered
to include them in the planning of the project, they might have some sympa-
thy and help you out. But don’t count on it. Beginning with Quadrant 2 and
extending through Quadrant 3, you find more and more reliance on meaning-
ful customer involvement. In your effort to maintain a customer-focus and
deliver business value, you are dealing with a business problem not a technol-
ogy problem. You have to find a business solution. Who is better equipped to
help than the customer? After all, you are dealing with their part of the busi-
ness. Shouldn’t they be the best source of help and partnership in finding the
solution? This involvement is so critical that without it you have no chance of
being successful with Quadrant 3 projects.

Meaningful customer involvement can be a daunting task for at least the three
reasons cited in the subsections that follow.

The Customer’s Comfort Zone

The customer has been trained ever since the 1950s to take up a passive role.
That training went well, and now you have to retrain them. In many instances
their role was more ceremonial than formal. They didn’t understand what
they were approving but had no recourse but to sign. The sign-off at milestone
events was often a formality because the customer didn’t understand the
techie-talk, was afraid not to sign off because of the threat of further delays,
and didn’t know enough about development to know when to ask questions
and when to push back. Now you are asking them to step into a new role and
become meaningfully engaged in the software development life cycle. Many
are not poised to take up that responsibility. That responsibility is ratcheted up
a notch as the project moves further into Quadrant 2 toward Quadrant 3, with
less and less known about the solution. The project team is faced with a criti-
cal success factor of gaining meaningful customer involvement throughout the
SDLC and PMLC. In Quadrant 3 their involvement is even more proactive and
engaging. Quadrant 3 projects require that the customer take a co-leadership
role with the project manager to keep the project moving forward and adjusted
in the direction of increasing business value.

At the same time, the customer’s comfort zone is growing. He or she has
become smarter. It is not unusual to find a customer who was once more tech-
nically involved. They go to conferences where presentations often include
technical aspects. They know how to push back. They know what it takes to

The Changing Landscape of Software Development 21

05_596365 ch01.qxd 2/15/06 10:22 PM Page 21

build software solutions. They’ve built some themselves using spreadsheet
packages and other applications tools. That has two sides. They can be sup-
portive, or they can be obstacles to progress.

Ownership by the Customer

Establishing ownership by the customer of the project product and process is
critical. I often ensure that there is that ownership by organizing the project
team around co-managers—one from the provider side and one from the cus-
tomer side. These two individuals are equally responsible for the success of the
project. That places a vested interest squarely on the shoulders of the customer
manager. This sounds really good, but it is not easily done. I can hear my cus-
tomers saying, “This is a technology project, and I don’t know anything about
technology. How can I act in a managerial capacity?” The answer is simple,
and it goes something like this: “True, you don’t have a grasp of the technol-
ogy involved, but that is a minor point. Your real value to this endeavor is to
keep the business focus constantly in front of the team. You can bring that
dimension to the team far better than any one of the technical people on the
team. You will be an indispensable partner in every decision situation faced in
this project.” This ownership is so important that I have postponed starting
customer engagements because the customer can’t send a spokesperson to the
planning meeting. When they do, you have to be careful that they don’t send
you a weak representative who wasn’t busy at the time or who doesn’t really
understand the business context of the project. Maybe there’s a reason that
person wasn’t busy.

Customer Sign-Off

This is often the most anxiety-filled task that you ever ask of your customer.
Some customers think that they are signing their lives away when they
approve a document or a deliverable. You are going to have to dispel that per-
ception. This world is one of constant change, high-speed, and high risk.
Given that, how could anyone reasonably expect that what works today will
work tomorrow? Today’s needs might not even come up on the radar screen
next week. No matter how certain you are that you have nailed the require-
ments, you wouldn’t expect them to remain static for the length of the project.
It simply won’t happen. That means that you had better anticipate change as a
way of life in SDPM.

Specification Versus the Complexity/Uncertainty Domain
What does this mean? Simply put, it advises you that the choice of SDPM strat-
egy should be based on an understanding of the confidence you have that the
specifications have been completely and clearly defined and documented and

C h a p t e r 122

05_596365 ch01.qxd 2/15/06 10:22 PM Page 22

that scope change requests will not arise from any shortcomings in the specifi-
cations documents. As that specification certainty diminishes, your best choices
lie in the iterative strategies that populate Quadrant 2—those that allow the
solution to become more specific and complete as the project commences or
that allow you to discover the solution as the project commences. Finally, if you
have very little confidence that you have clearly and completely documented
the specifications, then your SDPM strategy takes on the flavor of the research
and development strategies that populate Quadrant 3. Figure 1-6 reflects this
shift in understanding about specification clarity and completeness.

Figure 1-6: The Lack of Specificity domain

The SDPM strategies that require a high level of specification certainty tend to
be change intolerant. Consider the situation where a significant change
request comes early in the project life cycle. That could render much of the
planning work obsolete. A large part of it will have to be done over. That con-
tributes to the non-value-added work time of the SDPM strategy you have
chosen. If changes like that are to be expected, an SDPM strategy that is more
tolerant and supportive of change should be chosen. The non-value-added
work could have been greatly diminished or removed altogether.

If you look inside the specifications document, you can find more detailed infor-
mation that might help you decide on the best software development model.
Specifications are composed of requirements, functions, and features. These
array themselves in a hierarchical structure much like that shown in Figure 1-7.

Uncertainty at the requirements level has more impact on choice of software
development approach than does uncertainty at the functionality level, which
has more impact than that at the features level. Despite all of these efforts, you
still have changes on any of those fronts that could have significant impact on
our best efforts. That’s life.

Solution

Goal

Clear

Clear

Not Clear

Not Clear

La
ck

 o
f S

pe
cif

ica
tio

n

La
ck

 o
f S

pe
cif

ica
tio

n

The Changing Landscape of Software Development 23

05_596365 ch01.qxd 2/15/06 10:22 PM Page 23

Figure 1-7: The requirements, functionality, and features breakdown structure

Change Versus the Complexity/Uncertainty Domain
The less you know about requirements, functionality, and features, the more
you have to expect change. In Quadrant 1 you know everything there is to
know about requirements, functionality, and features for this development
project. The assumption, then, is that there will be little or no internal forces for
change during the development project. Externally, however, that is not the
case. Actions of competitors, market forces, and technological advances can
cause change, but that is present in every project and can only be expected. The
best the enterprise can do is maintain a position of flexibility in the face of such
unpredictable but certain events. Figure 1-8 reflects the frequency of change as
projects move across the landscape.

Quadrant 2 is a different story altogether. Any change in this quadrant comes
about through the normal learning process that takes place in any software
development project. When the customer has the opportunity to examine and
experiment with a partial solution, he or she will invariably come back to the
developers with suggestions for other requirements, functionality, and fea-
tures that should be part of the solution. These suggestions can be put into one
of two categories: either they are “wants” or they are “needs.”

“Wants” might be little more than the result of a steak appetite on a baloney
budget. It is up to the project manager to help the customer defend their want
as a true need and hence get it integrated into the then solution. If they fail to

Project goal
& solution

Requirement
#1

Function
#1.2

Function
#1.3

Function
#1.1

Sub-function
#1.1.1

Sub-function
#1.1.2

Sub-function
#1.1.3

Requirement
#1

Function
#n.2

Function
#n.3

Function
#n.1

Feature
#1.1.1.1

Feature
#1.1.1.2

Feature
#1.1.1.3

Feature
#1.1.1.4

Feature
#n.3.1

Feature
#n.3.2

Feature
#n.3.3

Feature
#n.3.4

C h a p t e r 124

05_596365 ch01.qxd 2/15/06 10:22 PM Page 24

do that, their suggestion should be relegated to a wish list. Wish lists are sel-
dom revisited. If, on the other hand, they demonstrate its value and hence
transfer it to a true need, it is up to the project manager to accommodate that
new requirement, functionality, or feature into the solution set. It might have
to be prioritized in the list of all needs.

In Quadrant 3 you have a further reliance on change to affect a good business-
valued product. In fact, Quadrant 3 projects require change in order to have
any chance at finding a successful solution. Change is the only vehicle that will
lead to a solution.

Business Value Versus the Complexity/Uncertainty Domain
This domain would seem to be trivial. After all, aren’t all projects designed to
deliver business value. These projects were commissioned based on the busi-
ness value they would return to the enterprise. This is all true. However, tra-
ditional project approaches focus on meeting the plan-driven parameters:
time, cost, scope. When originally proposed the business climate was such that
the proposed solution was the best that could be had. In a static world that
condition would hold. Unfortunately, the business world is not static, and the
needs of the customer aren’t either. Bottom line, what will deliver business
value is a moving target. Quadrant 1 development projects aren’t equipped
with the right stuff to deliver business value.

It follows then that Quadrant 1 projects deliver the least business value and
that business value increases as you move from Quadrant 1 to Quadrant 2 to
Quadrant 3. Figure 1-9 illustrates that point quite clearly. At the same time,
however, as you move from quadrant to quadrant, risk increases and that
means that higher-valued projects need to be commissioned as you move
across the quadrants. Remember that the expected business value of a project
is the product of (1-risk) and value. Risk here is expressed as the probability of
failure and the probability of success is therefore (1-risk).

Figure 1-8: The Change domain

Solution

Goal

Clear

Clear

Not Clear

Not Clear

Cha
ng

e

Cha
ng

e

The Changing Landscape of Software Development 25

05_596365 ch01.qxd 2/15/06 10:22 PM Page 25

Figure 1-9: The Business Value domain

What does this mean? Simple—whatever SDPM strategy you adopt for the
project, it must be one that allows redirection as business conditions change.
The more uncertainty present in the development project, the more you need to
be able to redirect to take advantage of changing conditions and opportunities.

As projects move through Quadrants 1 to 2 to 3, they become more customer-
facing. The focus changes from conformance to plan to delivery of business
value. The Quadrant 1 models focus on conformance to plan. If they also hap-
pen to deliver maximum business value it would be more the result of an acci-
dent than the result of a clairvoyant project plan. The focus on delivery of
business value is apparent in all of the Quadrant 2 and 3 models. It is designed
into the models.

Balancing Staff, Process, Technology

In this book, I adopt the model shown in Figure 1-10. Staff, or rather the skill
and competency profile of the project team, drives the choice software devel-
opment process and project management process to be employed, and
together staff and process drive the choice of technology infrastructure to be
employed. This is critical to forming the environment in which the project
work will be undertaken. These three factors together form the SDPM strategy.

Figure 1-10: Achieving balance in the SDPM environment

Staff drives SDPM Strategy drives Technology Infrastructure

Solution

Goal

Clear

Clear

Not Clear

Not Clear

Bu
sin

es
s v

alu
e

Bu
sin

es
s v

alu
e

C h a p t e r 126

05_596365 ch01.qxd 2/15/06 10:22 PM Page 26

This balance is achieved by first assessing the available staff resources as com-
pared to the skill and competencies needed for the project. The chosen project
team then determines the SDPM strategy that best meets the needs of the proj-
ect and aligns with the team’s capacity to deliver. Knowing that, the team can
now select the technology infrastructure that best supports the team’s capacity
to deliver using the chosen SDPM strategy. That technology infrastructure
includes software choices (programming languages and other support soft-
ware, hardware, data communications hardware, and so on).

The balance achieved by these choices is represented by the triangle shown in
Figure 1-11. It shows the three coordinates (staff, process, and technology).
Those coordinates are constrained to the inside of the triangle because there is
a linear constraint on the metric that measures each coordinate. In this exam-
ple the sum total of the assessed values of each coordinate is 200.

The notation requires some explanation. The three letters (S, P, and T) denote
the following: S is for staff, P denotes SDPM strategy, and T denotes technol-
ogy. The ordering of the three letters is meaningful. The proximity of each ver-
tex to the data point determines the ordering. For example, in Figure 1-11 the
current state is closest to the Process vertex, next closest to the Technology ver-
tex, and furthest from the Staff vertex. That results in the labeling PTS. All of
the data points that have that property fall in the zone labeled PTS.

By the time this book is published, a beta version of the assessment tool will be
available. The assessment tool consists of twenty questions, each with three
possible answers. A question is answered by distributing ten points across the
three possible responses with the highest point value given to the response
that most represents the situation being assessed. The questions are asked
twice—once for describing the current state of the environment and once for
describing the ideal state of the environment. Figure 1-11 displays a possible
result.

Knowing the current state and the ideal, or desired, end state, you can develop
a plan that will migrate the organization to its desired end state. Figure 1-12
summarizes what some of those migration strategies might look like

The Changing Landscape of Software Development 27

05_596365 ch01.qxd 2/15/06 10:22 PM Page 27

Figure 1-11: The current versus ideal SDPM environment

Note that the migrations are between neighboring zones only. For example, if
the current state is zone TPS and the desired zone is SPT, then the migrations
would be from zone TPS to TSP to STP to SPT.

Please contact me for further information on how you can learn more about
the beta version. My e-mail address is rkw@eiicorp.com.

Now you’ll take a look at the various driver sequences and what happens
when this balance is compromised.

200

200 200

current state

ideal state

0

0

0

STAFF

TECHNOLOGYPROCESS

SPT
ZONE

STP
ZONE

TSP
ZONE

PST
ZONE

PTS
ZONE

TPS
ZONE

C h a p t e r 128

05_596365 ch01.qxd 2/15/06 10:22 PM Page 28

Figure 1-12: Migration strategies

In this situation technology may have
constrained the formation of project
management processes because there was
little or no input from staff. To correct this
situation staff could be empowered to
improve project management processes.
This may result in some reversals or prior
technology decisions.

Comments on the Transition

Even though technology might be a
constraint, staff has had an opportunity to
define project management processes.
Staff needs to be empowered to make
decisions regarding the appropriate
technology as it relates to project
management processes.

In this situation the staff are in a enviable
position. The remaining task is to create a
more balanced relationship between
process and technology. That will require
slow changes so that the technology
environment is adjusted to provide better
support for project management processes.

There may be good coherence between
project management processes and the
technology to support it but it would have
happened without much priority given to
the role of staff. That situation can begin to
change by commissioning the staff to work
on technology improvement initiatives. This
may result in reversing prior decisions.

This is a strong starting position. Project
management processes are a high priority
for the organization. Technology has been
implemented to support both process and
staff. The remaining step is to move staff
into a higher priority position for further
enhancement of the project management
environment and the technical support of it.

To
Zone

From
Zone

TSPTPS

STPTSP

SPTSTP

PSTPTS

SPTPST

The Changing Landscape of Software Development 29

05_596365 ch01.qxd 2/15/06 10:22 PM Page 29

Staff-Driven Environments
Figure 1-13 illustrates the two people-driven environments that might be
encountered.

In the first case (denoted by the star) staff drives SDPM strategy, and together
staff and SDPM strategy drive technology. This should be the ideal state for all
organizations. It is clear that by using this model you are leveraging the skill
and competency capacity of your team and the characteristics of the project to
decide how to approach the project from an SDPM perspective. The team
should make that decision. The technology platform that they choose to use
will take advantage of and build on the earlier decisions on SDPM strategy.

In the second case (denoted by the circle) staff drives technology, and together
staff and technology drive process. The only problem with this model is that
the choice of SDPM strategy will be constrained by the earlier decision on tech-
nology infrastructure. If the earlier decision on technology infrastructure is
reversible, then the second case really morphs into the first case.

Figure 1-13: Staff-driven environments

200

200 200

0

0

0

STAFF

TECHNOLOGYPROCESS

SPT
ZONE

STP
ZONE

TSP
ZONE

PST
ZONE

PTS
ZONE

TPS
ZONE

C h a p t e r 130

05_596365 ch01.qxd 2/15/06 10:22 PM Page 30

Process-Driven Environments
Figure 1-14 illustrates the two process-driven environments that might be
encountered.

In the first case (denoted by the star) choice of SDPM strategy drives staff, and
together staff and SDPM strategy drive the choice of technology infrastruc-
ture. This case reminds me of organizations that might have only one SDPM
strategy—a one-size-fits-all approach. In an iterative, adaptive, or extreme
world, that can spell disaster. I have long advocated a project classification rule
that puts the decision on SDPM strategy in the hands of the project team where
it should be. To reverse the order is to put the organization in Quadrant 4—a
solution out looking for a problem.

Figure 1-14: Process-driven environments

200

200 200

0

0

0

STAFF

TECHNOLOGYPROCESS

SPT
ZONE

STP
ZONE

TSP
ZONE

PST
ZONE

PTS
ZONE

TPS
ZONE

The Changing Landscape of Software Development 31

05_596365 ch01.qxd 2/15/06 10:22 PM Page 31

In the second case (denoted by the circle) SDPM strategy drives the choice of
technology infrastructure, and together SDPM strategy and technology infra-
structure drive the choice of staff. The die is cast early in the process and now
the organization must have an effective and timely recruiting, hiring, and pro-
fessional development plan in place to assure that project teams are staffed
with capable members. This might not be a problem, but if it is, it is a problem
that could have been avoided altogether. Why create your own problems
when there are enough of them going around?

Technology-Driven Environments
Figure 1-15 illustrates the two technology-driven environments that might be
encountered.

Figure 1-15: Technology-driven environments

200

200 200

0

0

0

STAFF

TECHNOLOGYPROCESS

SPT
ZONE

STP
ZONE

TSP
ZONE

PST
ZONE

PTS
ZONE

TPS
ZONE

C h a p t e r 132

05_596365 ch01.qxd 2/15/06 10:22 PM Page 32

In the first case (denoted by the star) the technology infrastructure drives the
choice of staff, and together staff and technology infrastructure drive the
choices for SDPM strategy. As long as the technology infrastructure doesn’t
prove to be a binding constraint on good project performance, the situation is
workable. Most organizations find themselves in this or closely related situa-
tions. Earlier technology infrastructure decisions define the world of the soft-
ware developer and to some extent the world of the project manager. In the
short-term that constraint is fixed. The staff will have been chosen to be com-
patible with that infrastructure, and that is as it should be. The last variable,
the SDPM strategy, is thus constrained to that environment. That might be no
issue at all or it might be a serious constraint.

In the second case (denoted by the circle) technology infrastructure drives the
choice of SDPM strategy, and together the technology infrastructure and
SDPM strategy drive the process choice of staff. This can be made to work. It
all depends on the earlier choices and how ready the staff is to embrace those
decisions. If staff is given the authority to adapt the SDPM strategy to the proj-
ect situation, this will work. If the SDPM strategy has been defined to accom-
modate further adaptation, the teams will have a better chance of success.

Discussion Questions

1. For years there has been debate over whether the development team should
be a team of specialists or a team of generalists. Given what you have
learned about the software development landscape, what are your thoughts
about specialists versus generalists? Does your opinion change depending
on which quadrant the project is in? Why or why not? Be specific.

2. What relationship, if any, exists between risk and business value for pro-
jects in Quadrant 1, 2, or 3?

3. Many teams have problems getting and maintaining meaningful customer
involvement. What have been your experiences—both good and bad?

4. If the frequency of scope change requests is beyond your expectations and
it has seriously compromised the project, would you ever consider chang-
ing the approach from a linear/incremental one to an iterative/adaptive
one? Why or why not? If not, how would you deal with the problem?
Be specific.

The Changing Landscape of Software Development 33

05_596365 ch01.qxd 2/15/06 10:22 PM Page 33

5. What type of organization do you work for? Is it staff-driven, process-
driven, or technology-driven?

6. What type of organization do you work for? Is it staff-driven, process-
driven, or technology-driven? What types of problems have you seen that
may be the direct result of the type of organization? How might you go
about correcting the problems?

C h a p t e r 134

05_596365 ch01.qxd 2/15/06 10:22 PM Page 34

Installing Custom Controls 35

SDPM Roadmap
In differentiation, not in uniformity, lies the path of
progress.

Louis Dembitz Brandeis, 1856-1941
U.S. Supreme Court Justice

C H A P T E R 2

35

In the previous chapter, I set the stage from the highest vantage point in the
software project landscape. In this chapter, I would like to try to move in closer
from that point to the next level of detail. In this chapter, I introduce five
generic types of development projects that span this landscape. That sets the
stage for a brief look at the models that populate each type. The details of each
of those models are covered in Parts II through VI.

At the same time, this chapter serves as a guided tour and preview of the mod-
els developed in the remaining parts and chapters of the book.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the relationship between Linear, Incremental, Iterative, Adap-
tive, and Extreme software development project management (SDPM) and
the complexity/uncertainty domain

◆ Explain the Linear, Incremental, Iterative, Adaptive, and Extreme software
development project management strategies

◆ Recognize several example models in each of the five strategy categories

◆ Be able to discuss the characteristics, strengths, and weaknesses of each of
the five strategy categories

06_596365 ch02.qxd 2/15/06 10:20 PM Page 35

The Contemporary Software Development Landscape

Software development “ain’t what it used to be.” The early days when the
waterfall model was the only act in town are gone. Structured programming
has come and gone. The role of the customer has changed from passive to
active to proactive. The processes and tools in use are far more sophisticated.
In the place of these practices are a variety of models that arise out of the need
to be fast, to be right, and to be ready to change on a moment’s notice. That
doesn’t mean throwing out the old ways to make room for the new. Rather you
can integrate the old into the new. Much can be gained from the legacies left by
your predecessors.

Additionally, to be useful, the process models must adapt to changing condi-
tions and the project must change on a moment’s notice as business conditions
change. That’s a tall order in the face of the rigidity espoused by the traditional
waterfall models you are all familiar with. In the absence of suitable alterna-
tives, developers are constantly trying to adapt the waterfall models to prob-
lems whose characteristics simply do not fit the models. The results are far less
than satisfactory and end up in outright failures in many cases. If you peel
back the onion one layer and take a closer look at the software development
landscape as described in the previous chapter, you can see what it is really
telling you that you ought to be doing.

Figure 2-1 is the foundation that will direct all of the discussions in this book.
It shows on two axes all of the significant relationships between SDPM models
(Linear, Incremental, and so on) and project landscape variables (complexity
and uncertainty). For example, if project complexity is moderately high and
the solution only partially identified, the choice of an adaptive model is
advised. To use an incremental model instead would be like putting square
pegs in small round holes. They don’t fit, and no heroic effort can make them
fit. Another example of figure’s use would tell you that if the specification cer-
tainty is low and you have chosen an incremental approach, you might be in
for trouble. Another choice (adaptive) would have been better.

I’m covering the software development landscape with five different SDPM
strategies ordered from Linear to Extreme. Within each there are a number of
software development life cycle models that are in current vogue. These are
the models that will be discussed in detail in Parts II through VI. They are
introduced here by name with a brief description to follow.

C h a p t e r 236

06_596365 ch02.qxd 2/15/06 10:20 PM Page 36

Figure 2-1: The contemporary software development landscape

Linear
The Linear SDPM strategies are found in Quadrant 1.

The Linear SDPM model is the longest lived of all the models you will be con-
sidering. Until the early 1990s this was the overwhelming choice of software
developers. Developers had few alternatives at that time. Because of its
longevity it has become habit with many developers. Even though a number
of alternatives exist today, often developers don’t consider changing. They
would rather force-fit the old when the new would be the better choice. Old
habits die hard! That is unfortunate because all of their attempts to modify the
linear approach to accommodate software development projects that don’t fit
the conditions ultimately lead to failure or sadly disappointed customers.

DEFINITION: LINEAR SDPM STRATEGY
A Linear SDPM strategy consists of a number of dependent phases that are executed
in a sequential order with no feedback loops. The complete solution is not released
until the final phase.

Figure 2-2, the Standard Waterfall model, and Figure 2-3, the Rapid Develop-
ment Waterfall model, are two examples of linear models.

Linear
&

Incremental

Iterative

uncertainty

Adaptive

Extreme
High

High
Low

Low

complexity

SDPM Roadmap 37

06_596365 ch02.qxd 2/15/06 10:20 PM Page 37

Figure 2-2: Standard Waterfall model

Although the original definition of the Waterfall approach did allow for feed-
back, the more popular interpretations do not. As the name suggests, water
flows only downhill. The Standard Waterfall model shows the sequence of
phases that define it. Once a phase is complete, the process moves to the next
phase. Phases are not repeated, and no feedback is returned to prior phases.
The linearity of this model is clear.

In cases where deadlines are tight or have changed to earlier dates in mid-proj-
ect, a modification of the Standard Waterfall model is called for. Figure 2-3
depicts the Rapid Development Waterfall model. You face several complica-
tions in adopting this alternative. They will be discussed in Part II. For now it
is sufficient to know that the development tasks are split into groups of devel-
opment tasks that can be done in parallel and concurrently. With one excep-
tion, that doesn’t change the amount of work; it just changes the schedule to
complete it sooner than would be the case in the Standard Waterfall model.
The last parallel swim lane that is complete determines the completion date of
the development project. In keeping with the Standard Waterfall model, work
always moves forward, and no feedback is returned. Other than the parallel
development effort, the two models differ only in that the Rapid Development
Waterfall model has an added task, integration testing. I’ll have more to say
about that in Part II because it does introduce some complications as well. The
linearity of this model is clear.

Idea

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

C h a p t e r 238

06_596365 ch02.qxd 2/15/06 10:21 PM Page 38

Figure 2-3: Rapid Development Waterfall model

Characteristics of Linear SDPM Strategy Projects

The characteristics of software development projects that produce a good fit
with the linear models are discussed in the following list:

■■ Clearly defined goal, solution, and requirements—Linear models are all
based on the assumption that you need to have a clear definition of what
the customer needs. That is found in clear and complete documentation
of the project goal, the requirements that the solution must meet, specific
functionality that underlies those requirements, and the particular and
detailed features of each piece of functionality.

Whether or not this characteristic is present in a project is a subjective call.
If the project is cutting-edge and highly leveraged by market conditions,
you might expect change even though you feel confident the goal, solu-
tion, and requirements have been fully and clearly documented. Such
projects might be better served with an approach that can accommodate
change. On the other hand, a project that is on familiar ground and isn’t
leveraged by market conditions might work quite well using one of the

Idea

Requirements
Gathering

System
Design

Code &
Test

Sub-Systems
Test

Code &
Test

Sub-Systems
Test

Sub-Systems
Test

Code &
Test

Sub-Systems
Test

Detailed
Design

Detailed
Design

Detailed
Design

SDPM Roadmap 39

06_596365 ch02.qxd 2/15/06 10:21 PM Page 39

linear models. Such projects would have a heavy internal focus. For exam-
ple, they might be infrastructure projects. Once defined, little change is
expected. Your confidence level in each case is quite different, and your
decision should be tempered with that information.

■■ Few scope change requests—Given the preceding preconditions the
developers do not expect to see many scope change requests. That applies
to internal changes. As far as external changes are concerned, that is
beyond their control. Those applications that can be impacted by external
factors might want to choose a different model.

■■ Routine and repetitive projects—Some development projects will have a
lot in common with development projects from the past. These past pro-
jects will be of great help. Astute organizations will have anticipated the
value of past projects and made provisions for their documentation,
archiving, and retrieval.

■■ Uses established templates—Those projects that are routine will have
built a risk and issues history with mitigation strategies and a depository
of reusable code, use cases, test data, and so on that will greatly simplify
the present project. All of these serve as templates for the present project.
That helps.

Strengths

Although the proportion of software development projects that fall into the
Linear SDPM category is clearly decreasing, Linear SDPM strategies do have a
number of strengths that encourage their use as long as the project satisfies the
necessary conditions. Some of these choices might be very appropriate given
the organization’s situation. I count among the strengths the following:

■■ The entire project is scheduled—This is important for those projects that
produce deliverables that will be used in other projects as well as those
that will share scarce staff resources with other projects that are running
concurrently.

■■ Resource requirements are known—Projects that are approved and man-
aged within a portfolio of projects will have to estimate resource require-
ments for the benefit of other projects in the portfolio. This is mandatory
for those portfolios that allocate resources across competing projects in
addition to allocating funding across projects.

C h a p t e r 240

06_596365 ch02.qxd 2/15/06 10:21 PM Page 40

■■ Does not require the most skilled resources—Development tasks can be
partitioned so that lesser skilled staff can work on the simpler tasks. This
is a useful option in situations where skilled staff resources are in short
supply. Those situations seem to be more frequent as people move from
job to job.

■■ Team members can be distributed—Again, work can be partitioned so
that individual staff can work on individual tasks wherever they might
be physically located and transfer completed work to the appropriate
team members. With proper partitioning of the development work, the
dependence between tasks can be reduced to the point where real-time
interaction between team members can be significantly reduced and
even eliminated in selected cases. The likelihood of co-locating your
team members might be low and so the Linear SDPM strategy might
be the most promising choice even if all the conditions are not met. The
trade-offs might be tolerable.

Weaknesses

On the other hand a few weaknesses come with the choice of using a Linear
SDPM strategy. The weaknesses I have identified and that are worth mention-
ing include:

■■ Plan and schedule do not accommodate change very well—The com-
plete plan and schedule provide detailed information about staff alloca-
tions and scheduled assignments. Change upsets that order and can
require significant revision. That is non-value-added work, and it eats
away at the time that can be devoted to value-added work. Plan revisions
require a recommitment of staff resources against a revised schedule.

■■ Costs too much—Simply put, all of the money is spent before you have
any deliverables against which to measure goal attainment. If the deliver-
ables do not meet requirements, you have no recourse. Money has been
spent with nothing acceptable to show for it.

■■ Takes too long—This is the companion to “costs too much.” The project
has reached the eleventh hour before any deliverables are produced. If
any changes had surfaced, it would be difficult to accommodate them
inside the time and cost constraints without sacrificing some other
requirements or functionality.

SDPM Roadmap 41

06_596365 ch02.qxd 2/15/06 10:21 PM Page 41

■■ Requires detailed plans—Linear plan-driven approaches require heavy
documentation. Documentation includes such things as:

◆ All change requests and their resolution

◆ Regular status reports

◆ An issues log and resolution

◆ A risk log and mitigation

◆ Meeting minutes

◆ Planning documents and their updates

The documentation requirements are demanding and viewed as an oner-
ous task. In practice many teams don’t devote the attention required and
documentation is done just to satisfy what seems to be a non-value-added
burden.

■■ Must follow a defined set of processes—Whether the project manage-
ment methodology is a one-size-fits-all methodology or offers options
depending on project size, complexity, duration, and so forth, it requires
compliance by the team. Project performance reports and project reviews
are often put in place to ensure that compliance.

■■ Is not focused on customer value—Plan-driven approaches focus on
delivering against the plan. That means meeting schedules and budgets.
Whenever variances from schedule and budget occur, the process requires
that corrective action steps be defined, documented, and monitored.

Incremental
Incremental SDPM strategies are also found in Quadrant 1.

DEFINITION: INCREMENTAL SDPM STRATEGY
An Incremental SDPM strategy consists of a number of dependent phases that are
repeated in sequential order with no feedback loops. Each phase releases a partial
solution.

Because Incremental SDPM strategies are found in Quadrant 1, their goal and
solution must be clearly defined and documented as a condition for using the
models described as follows. Figure 2-4, the Staged Delivery Waterfall model,
and Figure 2-5, the Feature-Driven Development model, are two examples of
incremental approaches. Both models require the complete documentation of
requirements, functionality, and features.

C h a p t e r 242

06_596365 ch02.qxd 2/15/06 10:21 PM Page 42

The Staged Delivery Waterfall model provides for the early release of chunks
of functionality so that the customer can begin to realize business value with-
out having to wait for the single release of the complete solution.

The Feature-Driven Development (FDD) model provides for the early release
of chunks of features so that the customer can begin to realize business value
without having to wait for the single release of the complete solution. It differs
from the Staged Delivery Waterfall model in that the releases consist of groups
of features that have a technical relationship to one another. You might have
several cycles of development before the customer is satisfied that the cumu-
lative features list has enough business value to be released as in the sense of
the Staged Delivery Waterfall model. FDD models might use concurrent swim
lanes, sequential phases, or some combination of the two.

Figure 2-4: Staged Delivery Waterfall model

Idea

Requirements
Gathering

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

Systems
Test

Detailed
Design

Last Stage Release

Code &
Test

Sub-System
Test

SDPM Roadmap 43

06_596365 ch02.qxd 2/15/06 10:21 PM Page 43

Figure 2-5: Feature-Driven Development model

Characteristics of Incremental SDPM Strategy Projects

Projects that otherwise would use a linear model but must deliver business
value earlier in the development life cycle can modify the model to take
advantage of incremental approach. The characteristics of software develop-
ment projects that produce a good fit with the incremental models are dis-
cussed in the following list:

■■ Same as Linear SDPM strategy projects—The same conditions that apply
to Linear SDPM strategies apply to Incremental SDPM strategies. Require-
ments, functions, and features must be clearly defined and a complete

Model the
Solution

Scope the
Solution

Build the
Features

List

Assemble
the Feature

Sets

Develop
the Feature

Plan

Design a
Feature

Set

Design a
Feature

Set

Design a
Feature

Set

Build a
Feature

Set

Build a
Feature

Set

Build a
Feature

Set

C h a p t e r 244

06_596365 ch02.qxd 2/15/06 10:21 PM Page 44

plan for their delivery must be put in place. Because the deliverables are
deployed in phases, you have some room for accommodating change.

■■ The need to release deliverables against a more aggressive schedule—
The primary reason for choosing an incremental over a linear approach is
to release business value earlier in the project life cycle. By properly defin-
ing what deliverables belong in each phase, you can build a plan to have
early releases of deliverables. This allows the business unit to go to the
market early and begin generating revenues or other business value.

You might face situations where a Linear SDPM strategy was the
approach that launched the project, but at some point in the life of the
project it became necessary to accelerate delivery and the strategy was
changed to an Incremental SDPM strategy. An at-risk project that has
fallen significantly behind schedule might be saved by changing strate-
gies. This will not come without some penalties however. Additional
planning to adjust in-process deliverables to fit a phased model will be
required.

Strengths

Incremental SDPM strategies are the first that I discuss that are customer-facing,
that is, they consider what brings value to the customer as the overarching dri-
ver for the strategies. I count among the strengths the following:

■■ Produces business value early in the development life cycle—The cus-
tomer is always anxious to get something out and on the street. The Lin-
ear SDPM strategy isn’t designed to do that. By moving some of the
Return on Investment (ROI) to the front of the development life cycle,
business value is assured.

■■ Better use of scarce resources through proper increment definition—
A scarce resource can be scheduled to work from increment to increment.
That relieves some of the resource contention and scheduling obstacles
that the Linear SDPM strategy has to deal with.

■■ Can accommodate some change requests between increments—With the
deliverables from an earlier increment deployed and in production status
you can get some early feedback on how well the product works and how
well it is received by the end users. That feedback can be integrated into
the development cycle of a later increment. While that is not the reason
why the Incremental SDPM strategy is used, it is a side benefit.

SDPM Roadmap 45

06_596365 ch02.qxd 2/15/06 10:21 PM Page 45

■■ More focused on customer value than the linear approaches—The early
release of partial solutions is more customer-facing than the one-time-only
release from the Linear SDPM strategy. The customer feels more a part of
what is taking place and has an opportunity to provide some early feed-
back to the development team. Getting comfortable with a solution one
phase at a time removes some of the anxiety around the all at once release
of the Linear SDPM strategy.

Weaknesses

On the other hand, a few weaknesses come with the choice of using an Incre-
mental SDPM strategy. The weaknesses I have identified and are worth men-
tioning include:

■■ Requires heavy documentation—An Incremental SDPM strategy is more
complex than a Linear SDPM strategy because the incremental model
development work must be partitioned so that it can be done in phases.
With rare exceptions succeeding phases are dependent upon preceding
phases. If the original decomposition and allocation of development tasks
to the phases is correct, then the approach has a good chance of succeed-
ing. If not, then you face the possibility of re-work and rendering as obso-
lete previously completed work. Changes have to be accommodated as a
result of problems that arise from previously undiscovered function, fea-
ture, and code dependencies between increments. That means documen-
tation and more of it than would be normally produced in a Linear SDPM
strategy.

■■ Follows a defined set of processes—To avoid the potential problems
identified previously, the team has to follow a rigorous and detailed set of
processes. You need a number of checks and balances and rigorous docu-
mentation of compliance.

■■ Defines increments based on function and feature dependencies—This
might seem trivial but take a closer look. Despite the team and the cus-
tomer’s due diligence, dependencies will be overlooked. Despite your
best efforts you can never be sure you got them all! In complex situations
those dependencies are often not even observable. They are discovered in
the context of development. The minimum impact is that it simply slows
the schedule. Before proceeding, you have to wait for the dependencies to
be resolved. That usually means taking a side step to build some function-
ality not planned for this increment. If you then have a domino effect to
other previously undiscovered dependencies . . . well, you get the idea.

C h a p t e r 246

06_596365 ch02.qxd 2/15/06 10:21 PM Page 46

■■ Requires more customer involvement than the linear approaches—Part
of the decomposition of functions and features to the various increments
is the need for those increments to contain sufficient business value to be
released to the customer or end user. A good and detailed process flow
diagram that shows how all of the functions and features are related from
a technical and business perspective is worth its weight in gold. That
means more documentation.

■■ Partitioning the functions and features might be problematic—This is
the last step in defining the contents of each increment. Each increment
must make sense from a technical as well as a business perspective. The
two may be at odds with one another. If to that mix you have to consider
the capacity of the team to deliver the contents of an increment, the parti-
tioning gets more complex. So you see that pay a price for releasing busi-
ness value early. The price is in terms of increased risk, more detailed
planning, more complete documentation, and more customer involve-
ment. It is a business decision that must be taken seriously.

Iterative
Iterative SDPM strategies are found in Quadrant 1 and 2.

DEFINITION: ITERATIVE SDPM STRATEGY
An Iterative SDPM strategy consists of a number of phases that are repeated in
groups with a feedback loop after each group is completed. At the discretion of the
customer, the last phase in a group might release a partial solution.

This definition allows for several types of iteration. Iteration can be on require-
ments, functionality, features, design, development, solutions, and others.

You can see four examples of iterative approaches in Figure 2-6, the Evolu-
tionary Development Waterfall model; Figure 2-7, SCRUM; Figure 2-8, the
Rational Unified Process (RUP); and Figure 2-9, the Dynamic Systems Devel-
opment Method (DSDM).

Iterative SDPM strategies definitely fall in the class of learn and discover. In
the Evolutionary Development Waterfall model, the learning and discovering
experience is obvious from Figure 2-6. With each iteration more and more of
the depth of the solution is revealed. That follows from the customer having an
opportunity to play with the “then” solution.

SDPM Roadmap 47

06_596365 ch02.qxd 2/15/06 10:21 PM Page 47

Figure 2-6: Evolutionary Development Waterfall model

Figure 2-7: SCRUM

Idea is
proposed

Product Owner
develops and

prioritizes a list
of functionality

Sprint
Planning
Meeting

Demo
Sprint

functionality

Sprint
Backlog

Scrum

Sprint

Requirements
Gathering

Idea

Systems
Design

Develop
a Version

Deliver
the Version

Incorporate
Customer
Feedback

Deliver
Final

Version

Get Customer
Feedback

C h a p t e r 248

06_596365 ch02.qxd 2/15/06 10:21 PM Page 48

SCRUM is a rugby term. It represents what appears to be a chaotic movement
of the huddled team toward the goal. Of all the development models dis-
cussed in this book, SCRUM is possibly the most customer-driven approach. It
is the customer who defines the functions and features that the team priori-
tizes into phases and builds a phase at a time. The process allows the customer
to change functions and features as more of the solution depth is uncovered
through the previous iterations.

The Rational Unified Process (RUP) is probably the most well-known of the
Iterative software development processes. It adapts quite well to a process
approach that is documentation-heavy or to one that is documentation-light.
The foundation of RUP lies in the library of reusable code, requirements,
designs, and so on. That library will have been built from previous project
experiences. That means that RUP can have a long payback period. The library
must be sufficiently populated to be useful from an ROI perspective. Four to
five completed projects might be enough to begin to see some payback.

Figure 2-8: Rational Unified Process

Requirements
Gathering

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

Sub-System
Test

Requirements
Gathering

Systems
Design

Detailed
Design

Last Stage Release

Code &
Test

Sub-System
Test

SDPM Roadmap 49

06_596365 ch02.qxd 2/15/06 10:21 PM Page 49

Figure 2-9: Dynamic Systems Development Method

Dynamic Systems Development Method (DSDM) is the Standard Waterfall
model in a gravity-free world. Feedback loops are the defining features that
separate DSDM from the Standard Waterfall model.

Characteristics of Iterative SDPM Strategy Projects

The Iterative SDPM strategy kicks in when not all of the solution is clearly
known. This strategy requires a solution that broadly covers the requirements
but might be missing some of the details. In other words, the functions are
known and are built into the solution but the details (the features) are not com-
pletely known or implemented. The missing or detailed features come to light
as the customer works with the most current solution in a prototyping sense.
As is true of other Quadrant 2 strategies, the Iterative SDPM strategy is a learn-
by-doing strategy. The use of intermediate solutions is the pathway to discov-
ering the details of the complete solution.

Strengths

The Iterative SDPM strategy departs from the Linear and Incremental strate-
gies in that the complete solution is no longer defined. What is defined is a
solution whose breadth spans the expected solution but whose depth does not.

Feasibility

Business
Study

Heavy arrows Forward Paths=
Light arrows Evolutionary Paths=

Functional
Model

Iteration

Design &
Build

Iteration

Implementation

C h a p t e r 250

06_596365 ch02.qxd 2/15/06 10:21 PM Page 50

This affords some breathing room not provided by linear and incremental
strategies. Iterative SDPM strategies do have a number of strengths that
encourage their use as long as they satisfy the necessary conditions. I count
among the strengths the following:

■■ Customer can review current solution for suggested improvements—
Over the years, I have learned that the best way to get the customer think-
ing about the solution is to show them something concrete. They don’t
respond to conceptual discussions or to diagrams on paper. They respond
to something they can hold in their hands, work with, try out, and get a
sense of how it will look and feel on the job. Prototypes were developed for
just that reason. The deliverable from an iteration is a prototype, but a very
special kind of prototype. It is a working system despite the fact that it is
not fully functioned or feature-rich. That will come with later iterations.

■■ Accommodates scope changes between iterations—Let customers try it.
If they like it, keep it. If they don’t, either fix it or remove it. For customers
who are unwilling or unable to clearly define requirements, functions, or
features, some flavor of iterative approach is the best way. In the Iterative
SDPM strategy you have the requirements and most functions and need
only to fill in the gaps to produce a complete solution. The Iterative
approach gives the customer a solid foundation on which to learn and
discover what is missing. You expect them to change their minds or add
functions or features. That is the purpose of this strategy.

■■ Adapts to changing business conditions—What the customer wants in
the solution is discovered through the iterations. Because of changing
business conditions, what the customer needs in the solution might
change. The iterative nature of this strategy provides an opportunity to
build those changing needs into the solution at the next or some succeed-
ing iteration.

Weaknesses

On the other hand, you find a few weaknesses that come with the choice of
using an Iterative SDPM strategy. The weaknesses I have identified and that
are worth mentioning include:

■■ Requires a more actively involved customer than Quadrant 1 projects—
As you move to the outreaches of Quadrant 2 and into Quadrant 3, the
customer takes on a critical role. Solutions become more evasive in the
outreaches of Quadrant 2. To find them you need to bring all of our
resources together to focus on finding a solution. That means the customer
has to be involved. Involvement is not enough; it must be meaningful

SDPM Roadmap 51

06_596365 ch02.qxd 2/15/06 10:21 PM Page 51

involvement. This is probably the hardest thing to have happen. In your
brief but turbulent history, the customer has probably never been mean-
ingfully involved. Their involvement was limited to cursory reviews of
things they didn’t really understand or sign-offs on completed deliver-
ables that they had not had a chance to try in the work place. That is not
the involvement I am calling for here. Here the customer must be a princi-
pal in the project. They must be a decision maker just as the project man-
ager is a decision maker. The customer brings the business perspective.
The project team brings the technical perspective. Both perspectives are
integral parts of the solution. Getting and sustaining that involvement is a
major challenge that is not to be treated lightly. I have had occasions in
my consulting practice where I postponed a client project because they
weren’t ready to make the needed commitment of time and involvement.
Gone are the days when the cop-out was “Oh, that’s a technology project
and I don’t understand technology. Just get it done and I’ll look at it then.”

■■ Final solution cannot be specified at the outset of the project—Up to a
point you know what will be delivered, but you cannot specify the deliv-
erables completely. They are discovered as part of the doing of the project.
And so the customer is correct in saying, “You mean I’m going to give you
one year and $10 million and you can’t tell me what I am going to get?”
Up to a point they are correct. The dilemma is that you have to do some-
thing. Remember the project is high-visibility and critical to the organiza-
tion. Under the circumstances and with what you know of the project, the
Iterative SDFPM strategy is your best hope of success. Comparing it to the
traditional way of thinking about projects is neither fair nor relevant.

Adaptive
The Adaptive SDPM strategies are found in Quadrant 2 and 3.

DEFINITION: ADAPTIVE SDPM STRATEGY
An Adaptive SDPM strategy is one that proceeds from iteration to iteration based on
very limited specification of solution. Each iteration learns from the proceeding ones
and redirects the next iteration in an attempt to converge on an acceptable solution.
At the discretion of the customer an iteration can release a partial solution.

Figure 2-10, the Adaptive Project Framework (APF), and Figure 2-11, Adaptive
Software Development (ASD), are two examples of adaptive approaches.

C h a p t e r 252

06_596365 ch02.qxd 2/15/06 10:21 PM Page 52

Figure 2-10: Adaptive Project Framework

The Adaptive Project Framework (APF)—as found in Effective Project Manage-
ment: Traditional, Adaptive, Extreme, Third Edition, by Robert K. Wysocki and
Rudd McGary (Wiley, 2003) and in Robert K. Wysocki’s Adaptive Project Frame-
work: A Common Sense Approach to Managing Complex Projects (AMS Press,
2004)—unlike most of the approaches in Quadrant 2 is not limited to software
development. Although some of its uses are beyond the scope of this book,
APF is equally at home with software development, process improvement,
product development, and research and development projects.

Figure 2-11: Adaptive Software Development

Project
Initiation

Adaptive
Cycle
Plan

Concurrent
Component
Engineering

Quality
Review

Final QA &
Release

Version
Scope

Cycle
Plan

Cycle
Build

Customer
Checkpoint

Post-Version
Review

SDPM Roadmap 53

06_596365 ch02.qxd 2/15/06 10:21 PM Page 53

Adaptive Software Development (ASD) was introduced by James Highsmith
III in Adaptive Software Development: A Collaborative Approach to Managing Com-
plex Systems (Dorset House, 2000). While his focus was on software develop-
ment, ASD can be extended to product development.

Characteristics of Adaptive SDPM Strategy Projects

The Adaptive SDPM strategy, like other adaptive approaches, is best-suited to
projects whose solution is only partially known. The degree to which the solu-
tion is known might vary over a wide range from knowing a lot but not all to
knowing very little. The less that is known about the solution, the more risk,
uncertainty, and complexity are present. To remove the uncertainty associated
with these projects, you have to discover the solution. That happens through a
continuous change process from iteration to iteration. That change process is
supposed to create a convergence on a complete solution. In the absence of
that convergence, adaptive projects are frequently cancelled and restarted in
some other promising direction.

The success of Adaptive SDPM strategies is leveraged by accommodating fre-
quent change. Change is the result of learning and discovery by the team and
most importantly by the customer. Because change will have a dramatic
impact on the project, only a minimalist approach to planning is employed.
Planning is actually done just in time. There is no wasted effort planning the
future. The future is unknown, and any effort at planning that future is viewed
as non-value-added work. All Quadrant 2 approaches minimize non-value-
added work.

Adaptive SDPM strategies can also be applied to new product development,
process improvement, and research and development projects. This is espe-
cially true of APF.

Strengths

Adaptive SDPM strategies as defined here are new. They address a class of
projects heretofore ignored in most treatises on the subject. Because of this,
they bring some unique strengths to the table. I count among the strengths the
following:

■■ Does not waste time on non-value-added work—Adaptive SDPM strate-
gies avoid wasting time and effort in every way possible. Planning is done
just in time. Because the future is unknown, any time or effort spent on
detailed planning of the unknown might be a waste of time, so it is not
done. When parts of the future are revealed, the planning associated with
that now known future is done.

C h a p t e r 254

06_596365 ch02.qxd 2/15/06 10:21 PM Page 54

■■ Provides maximum business value within the given time and cost
constraints—The customer is the driver of the Adaptive SDPM strategy.
At the completion of every iteration, the customer and the project team
review what has been done and what has been learned. That information
directs the functions and features to be added in the next iteration. That
translates into the deliverables being the best that can be produced given
time and cost constraints. The decision on what is best is the customer’s to
make, and the team merely makes it happen.

Weaknesses

On the other hand, a few weaknesses come with the choice of using an Adap-
tive SDPM strategy. The weaknesses I have identified and that are worth men-
tioning include:

■■ Must have meaningful customer involvement—Easy to say but oh-so-
difficult to implement. The customer has been trained over the decades to
be a passive member of the project. They were given sign-off opportunities
at various milestone events. Many of those turned out to be ceremonial at
best because the customer didn’t really understand the technology parts
of the solution and why certain things could or couldn’t be done the way
they requested. Now you are telling them that the old ways no longer
apply and they need to be an integral part of the project team. Most cus-
tomers would find that they are taken out of their comfort zone and into a
world they don’t really understand. Their resistance is not unexpected.

■■ Cannot identify exactly what will be delivered at the end of the
project—Variable scope flies in the face of everything you have been
taught about good project management. Write the specification, estimate
time and cost, and deliver what the customer requirements have defined.
That is a nice neat package and puts the project team in their comfort
zone. But the realities are different as you know. Requirements can’t be
defined as crisply as they once could. Functions and features aren’t fully
baked either. The only way out is to assure the customer that as the details
become known you will adjust your solution to accommodate those
changing situations and produce the best solution you can within the lim-
its that the budgeted time and money will allow. You posit that as long as
the customer can define “best value” at each iteration, you will guarantee
the best results. That might be a difficult argument and defense to sell, but
that is the best that can be done. Remember that this is a critical mission
project. It must be successfully completed. You don’t know the details but
can only work to discover them, so you don’t know what the final solu-
tion will look like. A certain amount of trust and faith is involved here. If
you and the customer can agree to work as a team and to always make the
decision that is best for the business, your chances of success improve.

SDPM Roadmap 55

06_596365 ch02.qxd 2/15/06 10:21 PM Page 55

Extreme
The Extreme SDPM strategies are found in Quadrant 3.

DEFINITION: EXTREME SDPM STRATEGY
An Extreme SDPM strategy is one that proceeds from iteration to iteration based
on very limited specification of goal and solution. Each iteration learns from the
proceeding ones and redirects the next iteration in an attempt to converge on an
acceptable goal and solution. At the discretion of the customer an iteration may
release a partial solution.

Figure 2-12, INSPIRE, is an example of an extreme approach.

At first glance you might wonder, “What is the difference between an Adap-
tive SDPM strategy and an Extreme SDPM strategy?” First, and foremost, is
goal clarity. Adaptive SDPM strategies require a clearly defined goal while the
Extreme SDPM strategies do not. That places Extreme SDPM strategies in a
research and development mode. Translated into application I would expect to
see a number of parallel investigative swim lanes in the early stages of an
Extreme SDPM strategy. The number of those parallel swim lanes decreases as
the project moves forward. The reason for the decrease is due to the elimina-
tion of several swim lanes as feasible directions for goal and solution discov-
ery. I’ll have much more to say on this in Part V.

Figure 2-12: INSPIRE

INitiate

SPeculate

Incubate

REview

C h a p t e r 256

06_596365 ch02.qxd 2/15/06 10:21 PM Page 56

Characteristics of Extreme SDPM Strategy Projects

The Extreme SDPM strategy lies at the outpost of the software development
landscape. It serves the needs of those development projects where very little
is known about the details of the development effort. Three characteristics
characterize these projects:

■■ Goal and solution not known—To be successful these projects must figure
out how to emerge from the darkness into the light. “I’ll know it when I
see it,” says it all. Unfortunately, that is not what a development team
wants to hear. It doesn’t give them any sense of feasible direction. That has
to be discovered as part of the work of the project. There are approaches
that will provide some direction. These are explored in Part VI.

■■ Critical mission projects—Obviously, the preceding comment on goal and
solution makes these projects very high risk. Failure rates will be high. So
high in fact that only critical mission projects will choose this approach. If
the organization has to find a solution, this is the only alternative.

■■ Typical of R&D projects—Any research and development project will
adopt this strategy. Those projects cannot define a solution. They can
define a number of possible solutions and depend on iterative investiga-
tions to weed out those possible solutions that seem to be dead ends. In
doing that, new possible solutions might arise and they, too, will have to
be subjected to the same iterative approaches to assess their utility. After
some time you will find evidence of some convergence to an acceptable
solution. The absence of that will usually lead to abandoning the current
approach and looking for an alternative.

Strengths

The Extreme PM strategy might be the last resort. You have reached the point
where both goal and solution are not defined enough to use any of the previous
strategies. You have nothing left. I count among the strengths the following:

■■ Keeps options open as late as possible—An Extreme SDPM strategy fre-
quently begins with a number of initiatives being pursued in parallel.
These are chosen because they represent the most likely directions in
which to find a solution. Some will prove fruitful others will not. Those
that are fruitful suggest refinements or even other related initiatives to try.
An initiative is then open for further investigation until it has been shown
to be a dead end.

SDPM Roadmap 57

06_596365 ch02.qxd 2/15/06 10:21 PM Page 57

■■ Offers an early look at a number of partial solutions—The iterations that
produce these intermediate results will be short—1 to 4 weeks is typical.
The early look gives the customer a way to evaluate the feasibility of the
project and the approaches being taken. That opens the way for an early
kill decision on the project. Time and money are saved as compared to the
linear and incremental strategies.

Weaknesses

On the other hand a few weaknesses come with the choice of using an Extreme
SDPM strategy. The weaknesses I have identified and are worth mentioning
include:

■■ May be looking for solutions in all the wrong places—So much of the
success of the Extreme SDPM strategy depends on having chosen a feasi-
ble approach or approaches. In the most complex of cases, that calls for a
healthy dose of creativity on the part of the customer and the project
team. If they are too far off target, the solution might never be found.

■■ No guarantee that any business value will result from the project—
Because of the preceding observations you have no guarantee that a solu-
tion or even a partial solution will be found. For critical mission projects
this is not a comforting feeling. Let’s face it, however; the customer and
the team might be trying to solve an unsolvable problem. You’ll see that
again in the PDQ case study example as you proceed.

A Generic Template for Discussing SDPM Strategies

At the risk of oversimplifying the complexity of software development and the
supporting project management processes, I am going to posit a template that
will be the basis of my discussion of life cycles in the remainder of this book. I
feel that this is necessary to have a basis for contrast and comparison of the
models the book covers. This also gives you a foundation for integrating the
project management life cycle. The software development life cycles will be
imbedded into the project management life cycles to provide our basis for dis-
cussing SDPM strategies. Figure 2-13 is that template.

C h a p t e r 258

06_596365 ch02.qxd 2/15/06 10:21 PM Page 58

Figure 2-13: A generic software development life cycle

The generic development life cycle is a six-phase life cycle. Each phase takes
on a different profile and set of tasks that depend on the particular type of
SDPM strategy and model being considered.

Discussion Questions

1. Consider a hypothetical situation in which a project is done following the
Waterfall model and is also done independently by another team follow-
ing the Adaptive Project Framework. Assume both teams are equally
skilled. Which approach would you expect to be completed earlier? Why?

2. Assume you work in an organization that is well-steeped in a Linear and
Incremental SDPM strategy. What arguments would you put forward to
get your organization to adopt an Iterative SDPM strategy? An Adaptive
SDPM strategy? Be specific.

Linear SCOPE DESIGN BUILD TEST DEPLOY

Iterative SCOPE DESIGN BUILD CHECK
Y

N N

Y
TEST

Incremental SCOPE DESIGN BUILD TEST DEPLOY

DEPLOY

Adaptive SCOPE DESIGN BUILD CHECK
Y

N N

Y
TEST DEPLOY

Extreme SCOPE DESIGN BUILD CHECK
Y

N N

Y
TEST DEPLOY

SDPM Roadmap 59

06_596365 ch02.qxd 2/15/06 10:21 PM Page 59

3. Assume you work in an organization that is well-steeped in Linear, Incre-
mental, and Iterative SDPM Strategies. What arguments would you put
forward to get your organization to adopt an Adaptive or Extreme SDPM
strategy? Be specific.

4. Would it be preferable to have teams specialize in one of the five strate-
gies or should each team be specialists in all five? What arguments would
you put forth to support each side of the question?

5. Can you envision a project that might use more than one of the strategies?
Why or why not? If you answered yes, give an example. Be specific.

C h a p t e r 260

06_596365 ch02.qxd 2/15/06 10:21 PM Page 60

PA RTTWO

Linear ESPM
When software developers first emerged from the primordial swamps and
started building software products, they settled on a simple and straightfor-
ward model known as the Waterfall model. It is one of several models that I am
classifying as Linear—that is, they move through a sequence of steps in a pre-
scribed order with no feedback loops. Once a step is complete the development
process moves to the next step. There is no going back for any reason. Some
software development projects meet the criteria for using such approaches.
This part discusses the generic model as well as several special cases.

07_596365 pt02.qxd 2/15/06 10:19 PM Page 61

07_596365 pt02.qxd 2/15/06 10:19 PM Page 62

Installing Custom Controls 63

Linear SDPM Strategy
A manager . . . sets objectives, . . . organizes, . . .
motivates, . . . communicates, . . . measures, . . . and
develops people. Every manager does these things—
knowingly or not. A manager may do them well or may
do them wretchedly but always does them.

Peter Drucker

C H A P T E R 3

63

Linear approaches to software development and the project management of
such projects have been around the longest of all the models I discuss in this
book. These linear approaches date back to the 1950s and 1960s when the tra-
ditional Waterfall approach and modern project management had just lit their
candles and arose out of the darkness. This chapter serves as an overview of
the Linear SDPM strategy and leaves for later chapters in this part the detailed
discussion of each phase in the life cycle of a Linear SDPM strategy.

The Linear approach is the longest lived of all the approaches I consider in this
book. Until the early 1990s this was the overwhelming choice of software devel-
opers. There were few alternatives at that time. Because of the Linear approach’s
longevity it has become habit with many developers. Even though a number of
alternatives exist today, developers don’t give second thoughts to changing.
They would rather force fit the old when the new would be the better choice.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Linear SDPM strategy

◆ Have a high-level understanding of the Standard Waterfall model and the
Rapid Development Waterfall model

08_596365 ch03.qxd 2/15/06 10:22 PM Page 63

Old habits die hard. That is unfortunate because all of their attempts to modify
the Linear approach to accommodate software development projects that don’t
fit the conditions ultimately lead to failure or sadly disappointed customers.

The Linear SDPM Strategy

The Linear SDPM strategy is the simplest and most intuitive of the five strate-
gies discussed in this book. It assumes having as nearly perfect information
about goal and solution as can reasonably be expected. The strategy is based
on that assumption and does not easily accommodate any deviations. The Lin-
ear project management life cycle consists of five phases performed in a linear
fashion. Figure 3-1 provides an overview of the Linear SDPM strategy. Chap-
ters 4–9 will explore these phases in more detail.

Scope Phase
First, note that the scoping phases for both the linear software development
life cycle and the project management life cycle are concurrent. They are also
integrated. Depending on the nature and size of the project, the scoping phase
can be anything from a few hours across the table by the customer and the
project manager to a week-long planned agenda meeting attended by the core
project team and several representatives from the customer side. For the sim-
pler case, the Conditions of Satisfaction (see Appendix D) would work quite
nicely. For the more demanding case, the week-long planned agenda meeting
might cover project scope, business case, requirements gathering, Project
Overview Statement (see Appendix C), and a high-level project schedule with
perhaps milestones identified.

Plan and Launch Phases
For the simpler case, a half-day planning session with the core team and the
customer can produce the Work Breakdown Structure (see Appendix E) and
the initial project schedule. The key to the success of this phase is meaningful
customer involvement. That idea will be stressed throughout all the models
discussed. In fact, it becomes more critical as you move toward models that are
more complex and more uncertain. For the more demanding case, the plan-
ning session might require as many as 3–5 consecutive days. It involves the
same planning team as the simpler case and produces the same deliverables.
The Launch Phase involves the entire project team. They establish the team
operating rules; make final assignments, roles, and responsibilities using the
RASCII Matrix (see Chapter 6); plan the final resource loaded schedule; and
write the appropriate work packages. Project work can then begin.

C h a p t e r 364

08_596365 ch03.qxd 2/15/06 10:22 PM Page 64

Figure 3-1: The Linear SDPM strategy

Monitor and Control Phases
The design, build, and test phases of the software development life cycle are
executed linearly against a project schedule and are monitored and controlled
for conformance to that project schedule. Schedule slippages resulting from
unforeseen events and scope changes brought on by external factors require
the team and the customer to revisit the project schedule and make the neces-
sary adjustments to bring the project back on schedule.

Close Phase
The Close Phase is started when the acceptance test criteria have been demon-
strated. The deliverables are put into production status and formal closing
activities are done. This includes a post-implementation audit to assess con-
formance to the plan and achievement of the success criteria. In many cases the
success criteria cannot be demonstrated until well after the deployment phase.
Lessons learned with respect to the deliverables and the process for creating
the deliverables are documented and posted for others to use as appropriate.

Types of Linear SDPM Strategies

Two fundamental models fall into the Linear class, the Standard Waterfall and
the Rapid Development Waterfall. Both are introduced here. In addition to the
models themselves, I have included a graphic of the Linear SDPM strategy as
applied to each. The details of those strategies are discussed in Chapters 4
through 9.

Standard Waterfall Model
Figure 3-2 was displayed in Chapter 2 and is reproduced here for easy reference.

SCOPE
Linear Software
Development
Phases

Project
Management
Phases

DESIGN DEPLOY

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

BUILD TEST

Linear SDPM Strategy 65

08_596365 ch03.qxd 2/15/06 10:22 PM Page 65

Figure 3-2: The Standard Waterfall model

The first thing to note about this version is that each phase must be complete
before the next phase can begin, and that once a phase is complete there is no
returning at some later point to revise work completed earlier. That might be
acceptable until a change is introduced at which time potential scheduling dis-
aster might result.

Figure 3-3 illustrates the Linear SDPM strategy for the Standard Waterfall
model.

Variation to the Standard Waterfall Model
A variation of the Standard Waterfall model somewhat alleviates the non-
overlap situation of the Standard Waterfall Model. It is shown in Figure 3-4.

Note the overlap between successive phases. That brief period of time where
you have concurrency between successive phases allows, for example, the
Build Phase to begin while the Design Phase is still incomplete. That time
when you have concurrency is also a time when some feedback can be given,
but it is restricted to feedback to the almost completed phase. So if early in the
Build Phase the developers come across an alternative design that makes the

Idea

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

Deploy

C h a p t e r 366

08_596365 ch03.qxd 2/15/06 10:22 PM Page 66

system more responsive or easy to code, they can inform the design team.
There is no guarantee that the design team can implement the changes and still
keep to the planned schedule, but at least that possibility exists. All of this
assumes that the design team is separate from the build team. If they are in fact
the same team, then any advantage that derives from this concurrency is lost.
What isn’t lost is the improved design that might still be implemented but
with some negative impact on the schedule. In situations in which the build
team finds a significant improvement from an alternative design, the added
design time might be offset with the reduced coding time. In those cases, you
find a distinct advantage to the revised Standard Waterfall model. It allows for
a sanity check on a phase nearing completion, and it does offer some relief,
although limited.

Figure 3-3: Linear SDPM strategy for the Standard Waterfall model

Idea

Project
Management
Phases

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

Deploy

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

Linear SDPM Strategy 67

08_596365 ch03.qxd 2/15/06 10:22 PM Page 67

Figure 3-4: A variation of the Standard Waterfall model

Figure 3-5 illustrates the Linear SDPM strategy for the variation to the Stan-
dard Waterfall model.

WARNING
There is good news and bad news associated with the variation. On the good news
side are a form of check and balance introduced and some economies of schedule.
However, those small gains can easily be overridden by the bad news. Whenever
work is compressed into a smaller window of time, several related things begin to
happen. First, you face the likelihood of resource contention as one person might be
required to work on concurrent tasks from the neighboring phases. That might be
trivial or problematic but needs to be considered in any case. Second, risk increases.
That happens because you have less time to recover from mistakes made in the
more compressed schedule. The degree of overlap is the causal factor. Small overlap
will have minimal impact on risk. As the degree of overlap increases so does risk.
Take the extreme case where the overlap is such that both design and build occur
almost in parallel. While this makes little sense and no one would even contemplate
doing it, it does illustrate the indirect correlation between schedule reduction and
risk increase. In the hypothetical situation, risk will be at a maximum. The Build

Idea

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

Deploy

C h a p t e r 368

08_596365 ch03.qxd 2/15/06 10:22 PM Page 68

Phase will have very little information from the Design Phase on which to begin
coding. That means mistakes will be made and code will have to be redone or even
scrapped as the design unfolds. So you do find a distinct trade-off between reduced
time and increased risk.

You will see this trade-off in many other models later in the book. Here, in the sim-
plest of situations, it still can be operative.

Rapid Development Waterfall Model
Figure 3-4 (and the ensuing discussion) has a lot in common with the Rapid
Development Waterfall model shown in Figure 3-6, which was introduced in
Chapter 2 and is reproduced here for ease of reference.

Figure 3-5: Linear SDPM strategy for the variation to the Standard Waterfall model

Idea

Project
Management
Phases

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

Deploy

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

Linear SDPM Strategy 69

08_596365 ch03.qxd 2/15/06 10:22 PM Page 69

Figure 3-6: Rapid Development Waterfall model

The first variation of the Standard Waterfall model is one in which the project
schedule can be compressed. That is done by creating parallel “swim lanes” of
development activity. The linearity of the process is still maintained with these
parallel swim lanes. Figure 3-6 depicts those parallel swim lanes. You need to
consider several things in creating such a development schedule. The first is
risk. By squeezing the work into a shorter timeframe the incidence of errors and
staff scheduling conflicts increases. The amount of work has not decreased; it
just must be completed in a shorter time frame. The last parallel swim lane that
is complete determines the completion date of the development project. In keep-
ing with the Standard Waterfall model, work always moves forward, and there
is no feedback. Other than the parallel development effort, the two models dif-
fer only in that the Rapid Development Waterfall model has an added task, inte-
gration testing. I’ll have more to say about that in Chapter 7 because it does
introduce some complications as well.

Idea Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-system
Test

Integration
Test Deploy

Detailed
Design

Detailed
Design

Code &
Test

Sub-system
Test

Code &
Test

Sub-system
Test

C h a p t e r 370

08_596365 ch03.qxd 2/15/06 10:22 PM Page 70

Figure 3-7 illustrates the Linear SDPM strategy for the Rapid Development
Waterfall model.

It shows the results of integrating the project management life cycle into the
Rapid Development Waterfall model. Note that the only difference as com-
pared to the Linear SDPM for the Standard Waterfall model is that the moni-
toring and control phase now extends to several parallel swim lanes of design,
code and test, and sub-system test. The last swim lane that completes deter-
mines the start of the integration test phase of the Rapid Development Water-
fall model life cycle.

Figure 3-7: Linear SDPM strategy for the Rapid Development Waterfall model

Idea Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-system
Test

Integration
Test Deploy

Detailed
Design

Detailed
Design

Code &
Test

Sub-system
Test

Code &
Test

Sub-system
Test

Project
Management
Phases

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

Linear SDPM Strategy 71

08_596365 ch03.qxd 2/15/06 10:22 PM Page 71

C h a p t e r 372

Case Study

MEMORANDUM

DATE: November 9, 2005

FROM: Dee Livery

TO: All PDQ Employees

SUBJECT: Status Report

I just wanted to update you on the company-wide business improvement project.
As you know, we hired Hype, Hype, and Morehype, a local marketing research and
planning company, to ascertain our situation in the marketplace and our business
processes. I have seen the draft of their report and wanted you to be aware of cer-
tain steps I feel are necessary and must be implemented without further delay.

Their final report will be distributed next week but I wanted you to hear from
me before copies of that report begin to circulate. First of all, they have done an
admirable job in meeting all of our major issues. They were a good choice. Here
are the salient points in their report:

From their interviews, competitor surveys, and analyses they have verified that
we do have the best pizza in our market area. We ranked higher than the competi-
tion in all categories (taste, variety, appearance, price, and quality of ingredients).
The survey also suggested that we add a selection of oven-baked sandwiches to
our menus.

From the same market survey, we were second only to our major competitor in
our home delivery service. The survey pointed out that our time to deliver and
pizza temperature at delivery were the only areas needing improvement.

The market survey also asked about delivery of unbaked pizzas. The results
were:

We would definitely use the service 28%

We would probably use the service 31%

Not sure if we would use the service 20%

We would probably not use the service 10%

We definitely would not use the service 11%

The unbaked pizza market is not served by our competitor, and we should
move immediately to take advantage of this window of opportunity.

Chapters 4 through 8 discuss the details of each of the five project manage-
ment phases as they integrate into the Linear software development life cycle.
Chapter 9 summarizes the high points of the Linear SDPM strategy.

08_596365 ch03.qxd 2/15/06 10:22 PM Page 72

Linear SDPM Strategy 73

From the analysis of our sales data over the past 30 months, we learned that our
home delivery sales began to drop a few months after our competitor moved into
the market and has continued to drop at a fairly steady pace. Over the past 18
months we have lost more than 30 percent of our revenues in the home delivery
business. That impact has hit all four of our stores about equally. Our eat-in and
carry out sales have remained steady over that same period of time.

The summary level data is shown below.

2003 2004 2005

STORE JAN/ JULY/ JAN/ JULY/ JAN/
#1 (OPENED IN 1999) JUNE DEC JUNE DEC JUNE

In $1.2M $1.3M $1.3M $1.2M $1.3M

Del $0.7M $0.5M $0.5M $0.4M $0.3M

#2 (OPENED IN 1992)

In $1.2M $1.1M $1.1M $1.1M $1.0M

Del $0.8M $0.6M $0.5M $0.5M $0.4M

#3 (OPENED IN 1975)

In $1.1M $1.0M $1.0M $0.9M $1.0M

Del $0.7M $0.9M $0.8M $0.7M $0.6M

#4 (OPENED IN 1984)

In $0.7M $0.7M $0.8M $0.9M $0.9M

Del $0.7M $0.8M $0.8M $0.6M $0.5M

ALL

In $4.2M $4.1M $4.2M $4.1M $4.2M

Del $2.9M $2.8M $2.6M $2.2M $1.8M

TOT $7.1M $6.9M $6.8M $6.3M $6.0M

Our major competitor began opening stores at the rate of one per month
beginning in January 2004. They now have 20 stores. Every PDQ store has lost
home delivery sales over that 18 month period and continues to lose sales.
In-store sales, which include take-out, have held fairly steady over the past 18
months.

Our marketing consultants have shown how an advertising campaign would
boost sales. They also suggest a discount coupon program to introduce our new
home delivery services. I like their ideas and recommend we try them out.

(continued)

08_596365 ch03.qxd 2/15/06 10:22 PM Page 73

C h a p t e r 374

Case Study (continued)

The business process improvement program has identified two problems. First,
we need to implement a preparation area where pizza ingredients are sliced,
chopped, diced, and otherwise prepared for the production line. As you know, our
kitchens are already cramped for space, so I am going to use the four pizza vans
to be that staging area. They will service the inventory needs of all four stores
from the two pizza factories. The pizza factories will have the main inventory that
supplies the pizza vans. The pizza vans will carry inventory destined for the stores
and for their own production needs. This is expected to be a continuous service.
Second, in order to make room for growth, we need to replace the ovens in all
four stores. The new ovens will be rotary ovens that occupy the same footprint as
our current ovens but can handle 50 percent more volume. I’ve had several of our
regular customers sample the pizzas baked in these new ovens. As long as we
baked the pizzas on pizza stones they didn’t notice any differences. Customers
who order unbaked pizzas will be given a complimentary pizza stone for their
future orders of unbaked pizza. The ovens are on order and will be delivered in
one month.

Our major competitor has just introduced 30-minute order entry to order deliv-
ery time. We do not have any details on how they expect to meet that goal, but
we must counter their program with one of our own.

Based on all of this information and my 30 years of successful experience in
this business, I have made an executive decision as to how we are going to pro-
ceed. The details will follow but here are the actions we are going to take:

We will open two pizza factories to add capacity to our home delivery line of
business. The four existing stores will continue to offer home delivery. Two take-
out businesses recently closed and their fully equipped properties were put on
the market with 5-year renewable leases with an option to buy at any time. One
was the German store Schnitzels-R-Us and the other was the Cambodian store
Sprouts-To-Go. Their locations are strategically located in our growing market
areas. I have signed a leasing agreement for both of those properties. They are
available immediately.

I have been informed by our long-time supplier that they are outfitting trucks
to bake pizzas for a small chain on the west coast. I talked with the owner of that
chain who said that the early sales figures exceeded their forecasts. I have asked
our vendor to customize four of these pizza vans for us. They will be delivered in
6 weeks. Two of them will operate out of our existing four stores and the other
two out of our new pizza factories. We’ll continue to use the four vans that now
service our four stores. At this time they will not be retrofitted to bake pizzas but
that option is open to us if it is deemed to be a good business decision. This will
be the pilot for further expansion of pizza factories and/or pizza vans.

08_596365 ch03.qxd 2/15/06 10:22 PM Page 74

Discussion Questions
1. What would you do if the frequency of customer scope change requests

were increasing to the point where you felt that the project was now
at risk?

2. What might you do to protect the project schedule against too frequent
customer scope change requests?

3. Suppose the team uncovered a design change that would significantly
increase the business value of the project but would render the project
schedule obsolete if introduced. How would you handle this situation?

Linear SDPM Strategy 75

We have been studying our telephone system. It needs to be replaced with a
system that receives all orders from a single number and routes them to the
appropriate store, factory, or pizza van for processing.

We need a point of sale (POS) system to handle all data collection (in-store,
pick-up, and home delivery) and analyze the collected data to help us make further
decisions about pizza factory locations and pizza vans. The network that will ser-
vice our business going forward must link all information and physical systems into
a single system. We haven’t used information technology to our advantage in the
past, but we must do so in the future if we intend to succeed in this highly compet-
itive business. I need your teams to be limited only by their own creativity.

Since all orders are routed to a store, pizza factory, or pizza van we will need a
hardware/software/communications/data system to handle all scheduling and
routing in real time.

Inventory replenishment will require an order to be routed from the store to
the appropriate pizza van for fulfillment. This order should be initiated by the
POS system since it will be constantly monitoring store inventories as a result of
orders.

We will also announce a 30-minute order entry to order delivery service as
soon as we get our pizza factories and pizza vans in operation. This will be
announced through a major advertising blitz in our markets.

I recognize that this action pre-empts the work you are now doing. Please be
assured that your work to date with the marketing consultants has been exem-
plary and solidified my thinking and made these decisions possible. Your work is
far from done and we will need to closely monitor our sales and performance to
make sure we can reach our goal of recouping and surpassing the lost revenues
from the past 18 months.

As always my door is open to all of you, and I welcome your input. We have a
significant challenge ahead of us and the business needs all of us pulling
together as a team.

08_596365 ch03.qxd 2/15/06 10:22 PM Page 75

08_596365 ch03.qxd 2/15/06 10:22 PM Page 76

Installing Custom Controls 77

The Linear SDPM Scoping Phase
Define the problem before you pursue a solution.

John Williams, CEO
Spence Corporation

C H A P T E R 4

77

The Linear Scoping Phase is the initiation of the project. It is here that the cus-
tomer and the project manager come together to define the project at the high-
est levels. The process of defining encompasses four major tasks:

■■ Solution definition

■■ Requirements gathering

■■ Customer sign-off on requirements

■■ Writing the Project Overview Statement (POS)

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Identify one or more solutions to meeting the project goal

◆ Define a functional requirement

◆ Define a non-functional requirement

◆ Define a global requirement

◆ Define a constraint requirement

◆ Understand customer sign-off concerns

◆ Prepare a Project Overview Statement

◆ Ensure that a Linear SDPM strategy is correct

09_596365 ch04.qxd 2/15/06 10:19 PM Page 77

Solution Definition

Defining the solution at the highest level of abstraction is akin to problem solv-
ing. I have used parts of the problem-solving model to get this high-level solu-
tion definition for years. It works and it is discussed here.

Defining the Problem
Many organizations have a tendency to exclude the computer folks from the
early efforts to define the solution. It is certainly true that the problem is first a
business problem to be defined and only then is it a technology problem to be
solved. However, such an approach overlooks the likelihood that synergy can
result from integrating the problem definition from both perspectives simulta-
neously. A better solution will always follow from the collaborative efforts of
the business side and the technology side.

Exactly what is the problem? The more specific we can be in making this defi-
nition, the better off we will be in later parts of the project. It is too easy to stray
from the problem. Scope creep becomes our worst enemy. A definition that is
equivalent to solving world hunger won’t work either. That leads to a very
long project and opens the possibility of changes in the business climate that
lead to scope changes in the project. Perhaps the strategy is to narrow the prob-
lem or at least narrow what you are going to do about the problem. It isn’t nec-
essary to solve the entire problem in one project. Oftentimes, a sequence of
dependent projects works better than one giant project.

For the PDQ case study, the problem statement comes from the narrative back-
ground information (which is found in full in Chapter 1). I quote:

Recently PDQ has lost 30 percent of sales revenue due mostly to a drop in their
home delivery business. They attribute this solely to their major competitor who
recently promoted a program that guarantees 30-minute delivery service from
order entry to home delivery. PDQ advertises one-hour delivery.

For our purposes the problem statement will be:

PDQ has lost 30 percent of its sales revenue primarily because of a too long
elapsed time from order entry to order delivery.

What kind of a problem is this? Is it purely an operational problem and the busi-
ness side will have to find a way to make pizzas faster? Is it purely a technology
problem and the technology side of the house will have to find a way that the
computer can provide more efficient processing of the order and its delivery? Or
might it just be a business/technology problem? Is there some way to combine

C h a p t e r 478

09_596365 ch04.qxd 2/15/06 10:19 PM Page 78

the two disciplines to produce yet a third solution? Perhaps we can dig a little
deeper into the problem and isolate some possible causes and then begin to for-
mulate a solution or solutions.

Determining Causes
I have been successful using Root Cause Analysis for this step. The major
cause is assumed to be the competition and their 45-minute fulfillment time.
Root Cause Analysis would have us ask: “Why?” Continue to ask why until it
makes no sense to ask it. The results are the root causes. It is those root causes
that become the basis for generating solution ideas. For the PDQ case study, a
Root Cause Analysis was done with the following results:

■■ PDQ is too far away from its customers.

■■ PDQ has not changed its production process since the company was
founded.

■■ PDQ has not been able to leverage technology to improve its market
position.

Generating Ideas for Solutions
This is generally a brainstorming session to get all ideas out on the table for
ultimate discussion and prioritization. To get credible results the participants
must be free to offer any ideas they think might hold promise of solving the
problem or at least part of the problem. Here are some of the ideas that came
from the brainstorming session for the case study:

■■ Assemble and bake the pizzas in trucks that continuously move about
the city.

■■ Deliver pizzas ready for the customers to bake in their own oven.

■■ Add more stores nearer the customers.

■■ Fully automate all operations wherever possible.

■■ Obtain a comprehensive computer system to run all operations.

Prioritizing Ideas
In many projects that are focused on solving a problem for the enterprise, it is
not necessary to solve the entire problem. Other proposals will address other
parts of the problem. It will be senior management’s responsibility to pick the
mix of proposals that will solve the entire problem, if it is solvable. In the case

The Linear SDPM Scoping Phase 79

09_596365 ch04.qxd 2/15/06 10:19 PM Page 79

study, the management team decided to break the project into two projects
listed as follows:

Project 1

Fully automate all operations wherever possible.

Obtain a comprehensive computer system to run all operations.

Project 2

Assemble and bake the pizzas in trucks that continuously move about the
city.

Deliver pizzas baked or ready for the customer to bake in their own oven.

Decision postponed

Add more stores nearer the customers.

The first two ideas are related and can be acted upon quickly. It looks like a
technology problem, and the team will find a technology solution. The two
ideas were put into one project and a Linear SDPM strategy was chosen. Proj-
ect 2 is far more complex. It certainly is a business problem that the project
addresses but wait. There is a technology infrastructure that is needed to
enable the business solution. The technical requirements will not be easy to
define. For those that are identified, a solution is not at all obvious. This proj-
ect will be launched after Project 1 is complete and will follow an Adaptive
SDPM strategy. For the time being, adding more stores wasn’t seen as a good
business decision. The results of Project 2 might shed more light on that idea.

Requirements Gathering

The structure that I recommend goes something like this:

Problem➪Goal➪Solution➪Requirements➪Functions➪Features

If you are reasonably certain that all features have been identified and defined,
use a Linear or Incremental SDPM strategy. If you think all functions have been
defined and some features have not been defined, use an Iterative SDPM strat-
egy. If some or most parts of the requirements (and hence of the solution) have
not been defined, use an Adaptive SDPM strategy. If the goal and solution have
not been clearly defined, use an Extreme SDPM strategy. This is the hierarchy
followed throughout the book. In this part, I will use the case study to illustrate
several concepts. The focus will be on Project 1. Project 2 will be covered in more
detail in the chapters on the Adaptive SDPM strategy (Chapters 24-30).

C h a p t e r 480

09_596365 ch04.qxd 2/15/06 10:19 PM Page 80

Defining and Managing Customer Requirements
You can go about defining and managing customer requirements in two ways.
In simpler situations, you can use Conditions of Satisfaction (COS) described
in Appendix D. COS scales up to a certain point where the complexity of the
project makes COS a poor choice and something a bit more sophisticated is
required. You might prefer to use a more structured approach to gathering cus-
tomer requirements. That would be the Volere process, which is also defined in
Appendix D.

Gathering Customer Requirements
Simply put, project teams that make a concerted effort to manage customer
requirements do so because they want to satisfy their customer needs by hav-
ing their projects succeed. Research studies find that the majority of project
failures are related in some way to changing customer requirements.

The section that follows is derived from a modified Volere requirements
process and its associated specification template. I have found this to be a best
practice. Originally designed for use in systems application development, the
process is a generic requirements gathering and specification process whose
principles can be applied to small and large projects across varied industries.
These processes are discussed in detail in Appendix D. First, we need to put a
few definitions in place.

What Are Requirements?
Requirements are the things that you should discover before starting to fully
design, build, or execute a project. Discovering the requirements during
execution/construction is so inefficient and detrimental that no competent
and right-thinking person would do so.

DEFINITION: REQUIREMENT
A requirement is something the product or service should do or produce or a quality
that it must have.

A requirement exists either because the type of product demands certain func-
tions or qualities, or the customer wants the requirements to be part of the
product/project delivery.

Project requirements start with what the customer really needs and end when
those needs are satisfied. In the end-to-end chain of specifications, you face an
ongoing danger of misunderstanding and ambiguity. This often leads to
nonessential or over-specified requirements. Figure 4-1 illustrates the point I
am trying to make.

The Linear SDPM Scoping Phase 81

09_596365 ch04.qxd 2/15/06 10:19 PM Page 81

Figure 4-1: Requirements—different perspectives

The point of all of this is—be very careful how you go about defining require-
ments. As is clear in the figure, not everybody has the same interpretation of
words commonly used. For example, in my technology training classes I used
to ask people to write down their definition of implementation. They could
define it in terms of what it included or didn’t include. The results were sur-
prising. There were as many definitions of implementation as there were peo-
ple in the class, and these were people who could hardly utter a sentence
without using the word “implementation.” Not even they knew what they
were talking about. Pity the poor customer who has to make sense out of all
this gibberish.

What Kinds of Requirements Are There?
Requirements define the product or service that is the deliverable of the proj-
ect. These requirements are the basis for changes that a customer is seeking. At
this stage, after stakeholder assessment, the project lead and the project team
are now tasked with going through the steps to establish the requirements
baseline. This process is a systematic step-by-step effort that requires dili-
gence. It will be these requirements that will be used for estimating the cost

How the customer
explained it

How the
project leader
understood it

How the analyst
designed it

How the
programmer

wrote it

How the business
consultant
described it

How the project
was documented

What operations
installed

How the customer
was billed

How it was
supported

What the customer
really needed

C h a p t e r 482

09_596365 ch04.qxd 2/15/06 10:19 PM Page 82

and time for the project. Ultimately, these requirements drive acceptance of the
product or service by the customer.

There are four types of requirements.

Functional Requirements

Functional requirements specify what the product or service must do. They are
actions that the product or service must take, such as check, calculate, record,
and retrieve.

DEFINITION: FUNCTIONAL REQUIRMENTS
Functional requirements specify what the product or service must do.

For the case study, the following is a subset of the functional requirements
identified:

■■ The computer system must report revenues and expenses by line of
business.

■■ The computer system must generate bi-weekly payroll for all employees.

■■ The computer system must track and reorder inventory automatically.

Non-Functional Requirements

Non-functional requirements demonstrate the properties that the product or
service should have to do what it must do. These requirements are the charac-
teristics or qualities that make the product or service attractive, or usable, or
fast, or reliable. Most non-functional requirements are associated with perfor-
mance criteria and are usually those requirements that establish the product or
service boundary. Non-functional requirements can sometimes be generated
by the refinement of a global requirement. Non-functional requirements are
usually associated with performance criteria that set the parameters for how a
system is to function.

DEFINITION: NON-FUNCTIONAL REQUIRMENTS
Non-functional requirements demonstrate the properties that the product or service
should have in order to do what it must do.

For the case study, the following is a subset of the non-functional requirements
identified:

■■ The computer system must use PDQ fonts.

■■ The computer system must use existing PDQ equipment wherever possible.

The Linear SDPM Scoping Phase 83

09_596365 ch04.qxd 2/15/06 10:19 PM Page 83

Global Requirements

Global requirements describe the highest level of requirements within the sys-
tem or project. Global requirements will describe properties of the system as a
whole. During the initial stages of a project, many requirements end up being
global requirements. They require the project lead and the team to refine them
through the methods of requirement generation. Global requirements is a rela-
tively new term. In the past, these have been called general requirements or
product constraints or constraining requirements. The caution with global
requirements is that in most cases they can be turned into a non-functional
requirement simply by asking the questions associated with what, why, or
how. In fact, it is wise to move a global requirement to a non-functional
requirement to focus in better on what the requirement really is.

DEFINITION: GLOBAL REQUIREMENTS
Global requirements describe the highest level of requirements within the system or
project.

For the case study the following is a subset of the global requirements identified:

■■ The computer system must be intuitive.

■■ The computer system must not require training by anyone with reason to
use it.

■■ The computer system must be scalable.

Constraints

Constraints are those requirements that, on the surface, resemble design con-
straints or project constraints. Design constraints are those pre-existing design
decisions that mandate how the final product must look or how it must com-
ply technologically. Project constraints cover the areas of budget and schedule
along with deadlines and so on. One important note here is that product con-
straints can be listed as global requirements, but project constraints are not
because they do not deal with the requirements of the product but rather the
process that delivers the product. The two are quite different.

DEFINITION: CONSTRAINTS
Constraints are those requirements that must be met by the entire product or service.

For the case study, the following is a subset of the constraints identified:

■■ The computer system must not exceed $4 million.

■■ The computer system must have a response time less than 3 milliseconds.

C h a p t e r 484

09_596365 ch04.qxd 2/15/06 10:19 PM Page 84

It is very important to realize that requirements identification and categoriza-
tion is critical to understanding the direction of the project. It is now that the
framework for the project begins to take shape.

The Linear SDPM Scoping Phase 85

Case Study

Based on the memorandum from Dee and further discussions with the customer,
the following sub-systems were identified and their requirements identified.

Sub-system #1: Order Entry—The customer enters an order.

1.1 Identify customer

1.1.1 New or returning

1.1.2 Customer history

1.1.3 Name, address, etc.

1.2 Get order

1.2.1 Products requested

1.2.2 Quantity and size ordered

1.2.3 Display options

1.2.4 Baked or unbaked

1.3 Get delivery instructions

1.3.1 Delivery location

1.3.2 Delivery options

1.3.3 Delivery time requested

1.4 Price order

1.4.1 Promotions

1.4.2 Calculate price

1.4.3 Maintain pricing table

1.5 Confirm order

1.5.1 Accept, cancel, modify

1.5.2 Payment type

1.5.3 Display order

1.6 Submit order

1.6.1 Submit order

1.6.2 Confirm order acceptance

(continued)

09_596365 ch04.qxd 2/15/06 10:19 PM Page 85

C h a p t e r 486

Case Study (continued)

Sub-system #2: Order Fulfillment—Based on current workloads, the system
decides where to prepare the order.

2.1 Choose prep location

2.1.1 Get prep location workload

2.1.2 Get order data

2.1.3 Determine location

2.2 Transmit order

2.2.1 Submit order to prep location

2.2.2 Confirm location

2.3 Send prep location data

2.3.1 Update Logistics Management Sub-system

Sub-system #3: Order Routing—Based on current workloads the system decides
how to deliver the order.

3.1 Get delivery instructions

3.1.1 Get delivery location

3.1.2 Retrieve order detail

3.2 Get workload data.

3.2.1 Get delivery queue statistics

3.2.2 Prioritize new order

3.3 Compute real-time route

3.3.1 Determine route

3.3.2 Transmit driving directions

3.3.3 Driver confirmation

3.4 Order status

3.4.1 Confirm order delivery

3.4.2 Confirm payment receipt

Sub-system #4: Logistics Management—This sub-system continuously monitors
workloads across all preparation locations and all delivery alternatives. It is used
by the Order Fulfillment and Order Routing sub-systems.

4.1 Get order entry data

4.1.1 Retrieve record

4.1.2 Update record

09_596365 ch04.qxd 2/15/06 10:19 PM Page 86

Customer Sign-Off on Requirements

You will encounter two sign-off situations.

Customer Willingly Signs Off
This is what you hope for, but be careful. The sign-off says that the customer
believes that all requirements, functions, and features have been identified and
documented. In other words, except for external events over which no one has
control, no scope change requests will be made. This is important input to
your decision to go forward with a linear strategy. Make sure you are comfort-
able that the customer really does attest to the fact that all requirements, func-
tions, and feature have been defined and documented.

The Linear SDPM Scoping Phase 87

4.2 Update prep data

4.2.1 Retrieve record

4.2.2 Update record

4.3 Update delivery data

4.3.1 Retrieve record

4.3.2 Update record

4.4 Update customer information

4.4.1 Retrieve record

4.4.2 Update record

Sub-system #5: Inventory Management—This sub-system monitors real-time
inventory levels at all locations and automatically issues replenishment orders to
the trucks to replenish location inventories and automatically re-orders inventory
from the vendor.

5.1 Update on-hand inventory

5.2 Identify reorder needs

5.2.1 Determine location for inventory reorder needs

5.3 Issue reorder

5.3.1 Confirm vendor receipt

5.4 Inform location

5.4.1 Transmit reorder

5.4.2 Display reorder

5.4.3 Confirm reorder receipt from location

5.5 Confirm inventory receipt

09_596365 ch04.qxd 2/15/06 10:19 PM Page 87

Customer Unwilling to Sign Off
First of all, the customer equates a sign-off as their approval for what has been
documented. Many have the mistaken notion that no changes will be
accepted. Obviously that is a myth. The choice of a Linear SDPM strategy
assumes there will be no scope changes, and it is designed around that fact.
The reality is that no matter how complete the requirements specification, the
customer will still make scope change requests. In so doing they need to
understand that accommodating the change request will result in scheduling
problems. That is the first reason for not signing off. The second reason for not
signing off is that they cannot attest to completeness of requirements, func-
tions, and features. That is your signal to find another approach. Either an Iter-
ative or Adaptive SDPM strategy would be preferable.

C h a p t e r 488

Case Study

Dee reviewed the requirements with the project team and signed off as follows:

◆ Sub-system #1: Order Entry—Dee approved the functions without much
discussion. The project team felt that this sub-system was fairly straightfor-
ward and felt confident that they could develop the code without incident.

◆ Sub-system #2: Order Fulfillment—Dee was comfortable with all of the
requirements except 2.1.3 Determine location. While the rest of the sub-
system development could take place as usual, the developers felt that
some other approach to coming to closure with the determination of the
best location to prepare the order would have to be developed. Just how
they were going to approach that requirement would be dealt with at a
later time.

◆ Sub-system #3: Order Routing—While both the customer and the developers
knew that some type of Global Positioning System (GPS) would be employed,
they all knew that the problem was far more complex than the technology
they would employ. They could define what the end product would have to
do but weren’t at all confident that they knew how to attain it. A creative
approach would surely be needed.

◆ Sub-system #4: Logistics Management—This sub-system was just a data-
base that housed all the current operational data and would have to be
constantly updated. Both parties were comfortable with the requirements
and expected development to take place rather routinely. There were no
outstanding concerns from either Dee or the developers.

◆ Sub-system #5: Inventory Management—This was the simplest of the five
sub-systems. There was even the possibility of acquiring a commercial off-
the-shelf solution that could be easily modified.

09_596365 ch04.qxd 2/15/06 10:19 PM Page 88

Project Overview Statement

One of the deliverables from the solution definition and requirements gathering
exercises is the Project Overview Statement (POS). The details of generating this
document are given in Appendix C. This document will serve as the baseline for
the project as it goes forward to the Planning Phase. Figure 4-2 shows POS for
the case study.

Figure 4-2: POS for the PDQ case study

PROJECT
OVERVIEW
STATEMENT

Project Name

Operations Rebirth

Problem/Opportunity
PDQ has lost 30% of its sales revenue due primarily to a too long

elapsed time from order entry to order delivery.

Goal
Implement a comprehensive computer system to automate all

operations.

Objectives

Project Lead(s)

Pepe Ronee

Project No.

2006-01

Date

1/12/06

Date

1/16/06

Approved By

Dee Livery

Prepared By

Pepe Ronee

Implement a computer system that automates all business operations.

Implement a computer system that is intuitive and requires no training by
the users.

1.

2.

Implement a computer system that is scalable.3.

The rate of operations execution will decrease by at least 14% from
current for all operations no later than 3 months after implementation.

2.

Implement a computer system that monitors and automatically reorders
inventory.

4.

Assumptions, Risks, Obstacles
All current employees will accept the new system.

All current employees will evaluate the new system as an improvement in
operations over the current one.

1.

2.

The total cost of the new system will be lsess than $4M for the first 3
years.

3.

Success Criteria
The rate of operational errors will decrease by at least 8% from current
levels no later than 3 months after implementation.

1.

The Linear SDPM Scoping Phase 89

09_596365 ch04.qxd 2/15/06 10:19 PM Page 89

Ensuring That a Linear SDPM Strategy Is Correct

The decision that a Linear SDPM strategy is the correct decision for the project
is as much art as it is science. From the science perspective you must have all
positive data supporting the decision. The first thing you want to think about
is the requirements sign-off. Obviously you must have customer sign-off.
Without that it is a done deal, and some other strategy should be chosen. With
that sign-off you still might not be clear on the decision to adopt a Linear SDPM
strategy. For example, if you got some pretty strong signals that the customer
was a bit reluctant to sign off, you need to dig into that and try to find out the
reasons. Suppose you do that and are comfortable with what you learned. You
are still not ready to make the decision. The next step is to validate that the
project will not be affected by any exogenous factors. Projects that involve
building software for commercial purposes will be highly affected by changes
in the business environment, such as actions by your competitors. For these
projects you might want to give some strong consideration to another strategy.
The Iterative or Adaptive strategies might be better choices. Erring on the side
of adopting a more complex or uncertain strategy is always safe. Erring on the
side of adopting a less complex or more certain strategy can have negative
results. Projects that have an internal focus only are likely candidates for the
Linear SDPM strategy. If you do choose that strategy and it turns out that there
are too many scope change requests, you always have the option of switching
to a more complex or uncertain strategy. Again the Iterative or Adaptive would
be good choices. Both of these strategies have a number of specific models
from which to choose.

WARNING
I have encountered organizations, usually large ones, where the business side of
the enterprise works on scoping tasks independent of the technical side of the
enterprise. True, the early stages of project definition are from the perspective of the
business of the enterprise, and technical people are not seen as necessary. But that
doesn’t last very long. There is no substitute for having the business and technical
people collaborate on problem definition and solution. In fact, many of today’s
systems-related projects are such that the problem definition and the solution come
about in parallel. One informs the other. That won’t happen without a collaborative
effort. If your methodology does not involve both business and technical people
together as soon as possible in the project life cycle as possible, you may have a
problem.

C h a p t e r 490

09_596365 ch04.qxd 2/15/06 10:19 PM Page 90

Discussion Questions

1. The customer was eager to sign off, and you were comfortable that the
requirements, functions, and features had been completely defined and
clearly documented. But that has changed. The customer is requesting
scope changes at an increasing rate, and you do not see any convergence
in their actions. You are thinking about changing the strategy to an Itera-
tive SDPM strategy. What considerations would you have to make?

The Linear SDPM Scoping Phase 91

09_596365 ch04.qxd 2/15/06 10:19 PM Page 91

09_596365 ch04.qxd 2/15/06 10:19 PM Page 92

Installing Custom Controls 93

The Linear SDPM Planning Phase
Let all things be done decently and in order.

1 Corinthians 14:40

C H A P T E R 5

93

The output from the Scoping Phase is a Project Overview Statement (POS) and
a clearly defined requirements document. Using these documents as input to
the Planning Phase, you develop a plan following accepted principles and
practices of Traditional Project Management. With the design, build, and test
phases as the highest level of decomposition in the WBS a complete decompo-
sition down to the task level is done. To complete the Planning Phase, esti-
mates of task duration and resource requirements are made, and an initial
project schedule is put together.

So, the requirements have been specified and the choice made to follow the
Linear SDPM strategy. Now what?

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand when to use alternative forms of the work breakdown structure

◆ Decompose a deliverables-based Work Breakdown Structure (WBS) for the
Rapid Development Waterfall model

10_596365 ch05.qxd 2/15/06 10:23 PM Page 93

Work Breakdown Structure Template

There are several approaches to building a complete WBS. A popular choice is
the deliverables-based approach recommended in the Project Management
Institute (PMI) Project Management Body of Knowledge (PMBOK) standards.
While you could certainly take that approach in the Linear SDPM strategy, it will
almost certainly overcomplicate the project. The approach I am recommending
for the Linear SDPM strategy is to have the first-level breakdown be design,
build, test, and implement, or some variation of it. The second and following
levels of decomposition could then be a deliverables-based approach within
each of the major phases of the particular linear model you are using. There is no
point in making the WBS structure any more complicated than it needs to be. By
following this approach, the opportunity to use templates from past projects
increases significantly. Figure 5-1 is an example template for a Waterfall model.

The template can be modified for a specific project. The real value in this
approach is that you can leverage all past experiences of projects that used this
template. That extends to task duration estimation, dependency diagram-
ming, estimation of resource requirements, and even a complete risk manage-
ment plan. As another side benefit, you could use the template as a structure
for archiving estimated and actual task duration. That becomes a good foun-
dation for future task duration estimating.

Rapid Development Waterfall Model
The template might be useful here, but another approach to building the WBS
might even be more useful. Because you know the project work will be
divided into concurrent swim lanes with each swim lane working on a differ-
ent part of the deliverables, doesn’t it make sense to build a deliverables-based
WBS? Of course it does; that’s a no-brainer. So the first-level WBS should be
the major deliverables. From there you can follow one of two alternatives. You
might further partition the deliverables into subdeliverables and then consider
functions and features as the next lower levels of the WBS. Alternatively, you
might decompose the major deliverables into functions and features.

C h a p t e r 594

10_596365 ch05.qxd 2/15/06 10:23 PM Page 94

Figure 5-1: WBS for a Waterfall model

The deliverables-based WBS lends itself to the creation of concurrent swim
lanes much better than the design-build-test-implement WBS structure. One of
the benefits will be in building the dependency diagram, which is the topic of
the next section of this chapter.

Here is a hybrid that you might want to consider. I have used this structure
many times and have always been satisfied with the results. It gives the proj-
ect manager an intuitively obvious basis on which to manage the entire proj-
ect. Figure 5-2 shows the WBS that combines the design-build-test-implement
structure with the deliverables-based structure.

SYSTEMS DEVELOPMENT PROJECT

Definition

State objectives

Clarify request

Establish objectives

Identify key issues

Define requirements

Choose SDM

Get approval

Obtain current doc.

Define new reqmts

Functional

Identify interfaces

Design I/O

Spec audits/controls

Confirm specs

Technical

Define pgm specs

Prepare system flow

Convert data

Get approval

Build integration test plan

ImpletmentationDesign

Programming

Source code
Construct code

Conduct unit test

JCL

Documentation

Get approval

Installation

Testing

Training

Cut-over

Get approval

Operation

Operate system

Review

Audit

Get approval

Conduct operations training

Conduct user training

Construct JCL

Conduct system test

Complete financial analysis

Analyze risks

Establish plan

Review performance

Finalize test plan

Conduct test
Create test data

Finalize plan

Cut-over to production
Convert data

The Linear SDPM Planning Phase 95

10_596365 ch05.qxd 2/15/06 10:23 PM Page 95

Figure 5-2: WBS hybrid for the Rapid Development Waterfall model

Note that all I have done is embed the deliverables-based WBS in the level one
build activity. The hybrid is better aligned with the Linear SDPM strategy for
the Rapid Development Waterfall model. The illustration of that was given in
Chapter 3 and is repeated here as Figure 5-3 for easier reference.

PROJECT
GOAL

ImplementSystems
Build

Systems
Design

Integration
Test

Requirements
Gathering

Deliverables
Set #2

Deliverables
Set #1

Deliverables
Set #3

BuildDetailed
Design Test BuildDetailed

Design Test

BuildDetailed
Design Test

C h a p t e r 596

10_596365 ch05.qxd 2/15/06 10:23 PM Page 96

Figure 5-3: Linear SDPM strategy for the Rapid Development Waterfall model

Dependency Diagramming

The dependency diagram is built using the lowest level of decomposition in
the WBS. In this book, tasks define these lowest level decompositions. For the
Standard Waterfall model, the straightforward application of dependency dia-
gramming does the job quite nicely. See Appendix G for a quick refresher if
you need it. The Rapid Development Waterfall model presents a rather differ-
ent set of problems, as discussed in the next section.

Idea Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-system
Test

Integration
Test Deploy

Detailed
Design

Detailed
Design

Code &
Test

Sub-system
Test

Code &
Test

Sub-system
Test

Project
Management
Phases

Rapid
Development
Waterfall
Software
Development
Process

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

The Linear SDPM Planning Phase 97

10_596365 ch05.qxd 2/15/06 10:23 PM Page 97

Rapid Development Waterfall Model
The first thing you have to do is partition the deliverables into sets of deliver-
ables that can be worked on concurrently. Obviously, dependencies between
deliverables sets will have to be taken into account to construct these sets of
deliverables. You want to avoid as many cross–deliverable set dependencies as
possible. Ideally you would want none. A few dependency diagram configu-
rations are worth discussing. Two simple cases are illustrated in Figures 5-4
and 5-5.

Figure 5-4 illustrates a situation where there are design dependencies across
two deliverables sets. Detailed Design #2 is dependent upon Detailed Design
#1. The net effect of this is to push deliverables set #2 work out to the date
when Detailed Design #1 is complete and the Build of Deliverables set #2 out
to the date when the Build for Deliverables set #3 is complete. Because final
Integration Testing can’t start until the last deliverables set is built and tested,
you might want to add resources to the swim lane that will complete last in
order to protect against a too long delay in Integration Testing.

The structure illustrated in Figure 5-4 should be done repeatedly until the deliv-
erables sets produce a dependency diagram that produces swim lanes that are as
independent of one another as possible. The less dependency between deliver-
ables sets, the less risk you have in the Linear SDPM strategy for the Rapid
Development Waterfall model than you have in the Linear SDPM strategy for
the Standard Waterfall model. Risk containment is important in any project
where there are concurrent swim lanes in the plan. The aggressive nature of
strategies such as the Rapid Development Waterfall model introduces risk by its
very nature.

Figure 5-4: Deliverables dependency diagram relationships

Requirements
Gathering

Systems
Design

Integration
Test 123

Detailed
Design 1 Build 1 Test 1

Detailed
Design 3 Build 3 Test 3

Detailed
Design 2 Build 2 Test 2

C h a p t e r 598

10_596365 ch05.qxd 2/15/06 10:23 PM Page 98

Cohesion and Coupling

To minimize the problems associated with cross–deliverable set dependencies
you turn to the concept of cohesion and coupling. Cohesion is a conceptual mea-
sure of the degree to which two or more entities are related to one another. Cou-
pling is a conceptual measure of the dependency that exists between two entities.
If the entities are deliverables sets, then you have the following as a principle to
strive to attain: you should define the deliverables sets so that cohesion is maxi-
mized within a set and the coupling is minimized between any pair of sets. Fig-
ure 5-5 is an example of this condition. Here each deliverables set can be
developed independently of any other (a property of minimal coupling) and the
deliverables within a set can be developed together (a property of maximum
cohesion). This is the best of all possible worlds in the Linear SDPM strategy for
the Rapid Development Waterfall model. Achieving it might not happen very
often, but nevertheless you should strive to get as close as possible.

WARNING
Define the deliverables sets so that cohesion is maximized within a set and the cou-
pling is minimized between any pair of sets.

Figure 5-5 depicts a situation where Detailed Design #1 is the predecessor of all
other Detailed Design activities. In other words all deliverables are dependent
on Detailed Design for Deliverable Set #1. This is a fairly straightforward situ-
ation once Detailed Design #1 is completed.

In this example, once the Detailed Design #1 activity is complete, all three swim
lanes are free of any cross–deliverable set dependencies. Except for any
resource constraints that might affect the scheduling across swim lanes, each
swim lane can be scheduled independent of any other swim lane. In deciding
how deliverables should be grouped, your first concern will be to minimize
cross–deliverable set dependencies. The next section covers this in greater detail.

Figure 5-5: Maximum cohesion and minimum coupling

Requirements
Gathering

Systems
Design

Integration
Test 123

Detailed
Design 2 Build 2 Test 2

Detailed
Design 3 Build 3 Test 3

Detailed
Design 1 Build 1 Test 1

The Linear SDPM Planning Phase 99

10_596365 ch05.qxd 2/15/06 10:23 PM Page 99

Creating Independent Deliverables Sets

There isn’t any algorithm that I know of that will do the job of grouping deliv-
erables into sets that are as independent of one another as possible. I use a trial
and error approach that seems to give suitable results. Figure 5-6 provides an
example.

Figure 5-6 is the initial schedule for our example project. This would be the net-
work diagram if you were to follow the Standard Waterfall model using a deliv-
erables-based WBS. The final deliverables are the set (A5, B5, . . . G5). A6, D6,
and F6 are integration tasks, as is the END task. Most network diagrams, regard-
less of the WBS from which they were built, will have patterns much like the
example. There will be naturally occurring swim lanes based solely on the
predecessor/successor relationships that exist among the tasks. If you examine
this network diagram, you can group the deliverables into sets that are as inde-
pendent of one another as possible. Clearly, tasks C1 and D1 are critical to the
grouping decisions. If you schedule C1 and D1 early in the project, then you can
create two sets of independent deliverables. One set will comprise A, B, and C.
The other set will comprise D, E, F, and G. Within each one of those sets you can
schedule based only on resource availability. The more resources you have at
your disposal, the more independent set of deliverables you can create. The
example is simple, yet it will apply in many situations. Try it.

Figure 5-6: Creating independent deliverable sets

F1

G1

D1START END

E1

B1

C1

A1

F2

G2

D2

E2

B2

C2

A2

F3

G3

D3

E3

B3

C3

A3

F4

G4

D4

E4

B4

C4

A4

F5

G5

D5

E5

B5

A6

C5

A5

D6

F6

C h a p t e r 5100

10_596365 ch05.qxd 2/15/06 10:23 PM Page 100

Project Scheduling

Scheduling is rather straightforward for both models. However, you do need
to consider a few minor differences and points.

Standard Waterfall Model
In the Linear SDPM for the Standard Waterfall model, the skills required in the
team change from architects to developers to test technicians as the project
moves through its life cycle. Because you have no feedback loops or scope
change requests, the architects can move on to other projects once they have
finished their work on a project that follows the Linear SDPM model. Their
deliverables (design documents) are handed off to the developers.

Rapid Development Waterfall Model
Because of the likelihood that you will have dependencies between deliver-
ables sets, the schedules of each concurrent development swim lane will be
related. Resource contention will restrict the flexibility you have in scheduling
tasks that require the same skills and competencies.

Resource Requirements

These two models have a number of similarities and a number of differences
as well when it comes to resource requirements and scheduling.

The Linear SDPM strategy does not require co-located teams and does not
require highly skilled experts. That affords some latitude when assigning and
scheduling team members. You find some differences, however, when consid-
ering the Linear SDPM for the Standard Waterfall model versus the Linear
SDPM for the Rapid Development Waterfall model.

Standard Waterfall Model
The sequential structure of the Standard Waterfall model and the fact that you
have no feedback loops means that different skill sets are needed along the
project timeline. Once the architects have completed their design work and it
has been approved, they can be assigned to other projects. You might
encounter resource contention problems only if the architects are assigned to
more than one project at a time. Some collaboration and joint scheduling will
have to be done between the affected project managers.

The Linear SDPM Planning Phase 101

10_596365 ch05.qxd 2/15/06 10:23 PM Page 101

Rapid Development Waterfall Model
For the Rapid Development Waterfall model the situation is a bit more com-
plicated. Fortunately you have the advantage of being in control of the cross
dependency set schedules. Figure 5-4 illustrates one such situation where
cross dependency set scheduling conflicts might arise. Consider the three
detailed design activities. If you had but one architect on the project, their time
would have to be concurrently spent across three detailed design activities.
The scheduling conflict centers on the scheduling of Detailed Design #3 to not
conflict with Detailed Design #1 or its successor Detailed Design #2. Because of
the architect resource constraint, you might be required to sequence the three
detailed design activities in series rather than in parallel. The same situation
can occur as you schedule the build and test activities. Will you be limited to
one resource for each of these activities and hence be forced to schedule each
of them in series rather than in parallel? Furthermore, what happens when
schedule slippage occurs in one of the swim lanes? That will further aggravate
an already conflict-ridden schedule. The bottom line here is that by choosing
to follow a Linear SDPM for the Rapid Development Waterfall model instead
of the Standard Waterfall model you affect two things.

■■ On the positive side you bring product to market sooner and hence return
on the business investment.

■■ On the negative side you increase project risk through the added possibil-
ity of resource contention.

One way out is to add resources to the Rapid Development Waterfall model
team as compared to the Standard Waterfall model team.

Discussion Questions

1. You are Pepe Ronee, and you have run the Linear SDPM strategy Scoping
Phase by the book. But you have this gnawing feeling that what Dee Liv-
ery, the client, wants is not what she needs. Within the context of the Lin-
ear SDPM strategy what could you do?

C h a p t e r 5102

10_596365 ch05.qxd 2/15/06 10:23 PM Page 102

Installing Custom Controls 103

The Linear SDPM Launching Phase
When a team outgrows individual performance and
learns team confidence, excellence becomes reality.

Joe Paterno, Football Coach
Penn State University

C H A P T E R 6

103

Linear SDPM strategy projects are by-the-book projects. That is, most if not all
of the processes and templates will be established and will have been used
many times over. These projects have little to offer in the way of surprise, at
least until you discover that you really should have chosen another strategy.

The Launching Phase gets the full project team identified. Rules are estab-
lished for how they will operate. There are two major tasks in this phase.

■■ The first is to line up the skills and competencies of the team with the spe-
cific needs of the project.

■■ The second is to align the project schedule with the team members’
availabilities.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Choose between the Hierarchical and Team Leader models for your Linear
SDPM strategy

◆ Apply the RASCI Matrix to the Linear SDPM strategy

◆ Establish the appropriate team meeting rules

◆ Manage concurrent swim lanes

11_596365 ch06.qxd 2/15/06 10:29 PM Page 103

In the Linear and Incremental SDPM strategies, teams might not be co-located,
so the scheduling aspect is not all that straightforward. The details for the Lin-
ear SDPM strategy will be discussed in this chapter.

Team Leadership Model

In terms of leadership models, the Hierarchical Leadership or Team Leader
models are the preferred choice. Small projects that are following the Linear
SDPM strategy and have unusually low levels of uncertainty and complexity
lend themselves to the Hierarchical Leadership model. Communications
between the project manager and individual team members will be very com-
mon with little need for cross–team member communications. As complexity
and uncertainty increase, the better choice becomes the Team Leader Model.
Complexity and uncertainty introduce the need for more decision making and
problem solving, which requires interaction among the team members.

The choice as to which leadership model makes the most sense is often a per-
sonal one rather than one based on project characteristics.

Hierarchical Leadership Model
While this model might seem somewhat dated and not at all in keeping with
worker empowerment and self-determination, it does have an application in
the simpler Linear SDPM strategy projects. However, I believe in minimalist
overhead, especially when it comes to management. In the simpler cases it
tends to be the micromanagement and non-value-added work time that
plagues many projects. This happens often as a result of the direct communi-
cations between project manager and team member. The team member
receives all her assignments directly from the project manager and reports all
results back to the project manager. Micromanagement is a temptation that
many project managers cannot avoid. Projects all have aggressive delivery
dates, and you shouldn’t be adding useless baggage in the way of manage-
ment oversight, meetings, and status reports of all descriptions. So watch out
for those pitfalls if you choose this model.

WARNING
The Hierarchical Leadership model encourages micromanagement so be careful.

Team Leader Model
As projects take on more complexity and uncertainty, the need for inter-team
collusion and collaboration increases. The Hierarchical Leadership model

C h a p t e r 6104

11_596365 ch06.qxd 2/15/06 10:29 PM Page 104

gives way to the Team Leader model. Whereas the Hierarchical Leadership
model was obviously hierarchical the Team Leader model is not. Team members
are treated more as equals with the team leader making decisions based on each
member’s input unlike in the Hierarchical Leadership model. This structure is
more in keeping with contemporary thought on worker empowerment.

WARNING
When using this model, the project manager has to make sure he or she is in the
loop on any exchanges that take place between team members. The last things you
want as project manager are surprises. Include in your operating rules some mecha-
nism that assures that you stay in the loop.

Organizing the Linear SDPM Strategy Project Team

Now that you have identified the individuals who will become the project
team, it is time to make them function as a team. Remember right now that
they are a herd of cats; they are not yet a team. First, I want to share a few
words on authority and responsibility; then I will address several procedural
matters that the team has to discuss and agree on.

Authority
Authority and responsibility go hand in hand. To have one and not the other
makes no sense. How often have you been in situations where you were
responsible for making a certain thing happen but had no authority over the
resources needed to make it happen or no authority to make and carry out a
decision? To be effective, the project manager must have authority over the
project. It is his or her job to get the project done on time, within budget, and
according to specification. That authority is often delegated, but it is the pro-
ject manager who is ultimately responsible.

The major difficulty that project managers have is that the project team is not
their line responsibility. Team members are assigned based on their expertise
but report to other managers. This means that the project manager will have to
exercise the best leadership skills and diplomacy to get the job done. The key
is in the project planning activities that schedule resources to windows of time.
It is here that the resource manager makes the commitment of people
resources. Honoring that commitment within the time allotted reduces the
incidence of problems. If the project manager remembers to keep the resource
managers involved and aware of all project changes, negotiations will proceed
better when circumstances warrant.

The Linear SDPM Launching Phase 105

11_596365 ch06.qxd 2/15/06 10:29 PM Page 105

Standard Waterfall

For the Hierarchical Leadership model or Team Leadership model, all author-
ity rests with the project manager. None is vested in the team members. With
that authority goes the accountability for the project deliverables. When using
a Linear SDPM strategy, you should prefer one of these leadership models, but
do not default to this structure without good reason.

Rapid Development Waterfall

As a minimum, the project manager must vest authority for each swim lane in
a team member. Because the team members might not be highly skilled, that
choice is an important one. Lacking the appropriately skilled team members,
the project manager might want to employ the Hierarchical Leadership model.

Responsibility
There is no question where the responsibility lies. This cannot be delegated. The
project manager assigns activity management responsibility to team members.
They are then responsible for completing their assigned activity within its
scheduled window of time and for producing the activity deliverables on time
according to specification. It is the project manager, however, who is ultimately
responsible for completing the project as expected. In conveying this sense of
responsibility to each team member, the project manager must exercise sound
leadership and management skills. He or she will do this by maintaining a con-
sistent level of interest in and communication with each of the activity man-
agers, by involving them and engaging them in planning, change management
deliberations, and problem resolution. He or she will keep everybody on the
team informed of project status.

The Linear SDPM strategy has an interesting property that is not shared by
other strategies. The early analysis and design phases are staffed by the most
senior and most experienced members of the IT unit. As you move from analy-
sis and design into development, the developers tend to be less senior and less
experienced than those who worked in the analysis and design phases. As you
move from programming into testing, you often find the least experienced and
least skilled members. And finally the maintenance team members are often
the most junior members of the IT unit. New hires are often assigned here as a
way to get up to speed with the current applications. Apply this concept as
you choose your staff. Know where you should enlist the more senior mem-
bers and where you have the luxury of stepping down to less experienced
team members. This may offer you some negotiating room with the resource
managers that are supplying your team members.

C h a p t e r 6106

11_596365 ch06.qxd 2/15/06 10:29 PM Page 106

RASCI Matrix
Regardless of the SDPM strategy you have chosen, it is necessary that you set
up a roles and responsibility matrix. The more disparate the location of the
team members, the more important this matrix. Once established, every team
member should have one posted at their work station. Figure 6-1 illustrates a
simple example.

Note that each deliverable has a team member who is assigned the responsi-
bility of delivering it. Also, each integration has a person responsible for see-
ing the integration through to completion. Post the RASCI Matrix in a spot that
is frequented by the team. Posting it in the team war room would be ideal.

Developing a Team Development Plan

Your team has been assembled, and you have assessed each member on all of the
characteristics important to achieving balance, on their skills, and on their com-
petencies. Unfortunately, the picture is not very pretty. In several areas the team
is noticeably weak. While your job as project manager is not necessarily to be a
career or professional development manager of your team members, you still
have to get the project done, and the imbalance on the team is a barrier to your
success. Identify the high-risk areas that are not offset by a balanced team that
can deal with those types of risks. As part of your risk management plan, put a
development plan in place for selected members of the team.

Figure 6-1: Example of a RASCI Matrix

TASK PEPE ALAN BETH CARL DEE EARL FRAN GAIL

Project Mgr R S A

Deliverable A

Deliverable B

Deliverable C

Deliverable D

Deliverable E

Deliverable F

Deliverable G

Deliverable A6

Deliverable D6

Deliverable F6

Deliverable A7

R = Responsible A = Approval S = Support for the R C = Coach I = Informed

I R I

I C I R

I C I R

I I R C

I I C

I I R

I I C R

I R I

I I R C

I I R

I R I

The Linear SDPM Launching Phase 107

11_596365 ch06.qxd 2/15/06 10:29 PM Page 107

Once you have assessed the strengths and weaknesses of each team member
you can assign tasks according to the team profile. For example, suppose you
have a team member whose interpersonal skills are marginal and one whose
interpersonal skills are excellent. Any negotiations with the customer should
be assigned to the person with the excellent interpersonal skills. Suppose
another team member does not have good planning skills. You might have
them shadow someone on the team who does have good planning skills. By
observation they should begin to pick up those skills.

Team Meetings
Team meetings are held for a variety of reasons, including problem definition
and resolution, scheduling work, planning, discussing situations that affect
team performance, and decision making. The project manager defines team
meetings in terms of the following:

■■ Frequency—How often should the team meet? Too frequently and pre-
cious work time is lost. Too infrequently, and the window of opportunity
for having a meeting to deal with problems that might have arisen will
be closed and the project manager risks losing management control over
the project. Meeting frequency varies as the length and size of the project
varies. There is no formula for frequency. The project manager must sim-
ply make a judgment call.

■■ Length

■■ Meeting dates

■■ Submission/preparation/distribution of the agenda—Project teams
fortunate enough to have a project administrative assistant can have
that person receive agenda items and prepare and distribute the agenda.
Otherwise, the assignment should be rotated to each team member. The
project manager might want to set up a template agenda so that each
team meeting covers essentially the same general topics.

■■ Who calls the meeting—A team member can serve as meeting coordina-
tor. Just as agenda preparation can be circulated around to each team
member so can the coordination responsibility. Coordination involves
reserving a time, place, and equipment.

■■ Who is responsible for recording and distributing the minutes—As with
the previous two duties noted in this list, the project manager should estab-
lish a rotation among the team members for recording and distributing the
meeting minutes. Make no mistake—meeting minutes are an important
part of project documentation. As the evidence of discussions of problem
situations and change requests, the actions taken, and the rationale for those

C h a p t e r 6108

11_596365 ch06.qxd 2/15/06 10:29 PM Page 108

actions, when confusion arises in the project and clarifications are needed,
the meeting minutes can settle the issue. Recording and distributing the
minutes are important responsibilities and should not be treated lightly.

As the preceding list implies, the entire team needs to participate in and
understand the rules and structure of the meetings that take place over the life
of the project. Different types of team meetings, with perhaps different rules
governing their conduct and format, might occur.

As the chosen SDPM strategy moves from Linear through Incremental
through Iterative and to Adaptive and Extreme, the frequency of team meet-
ings will increase and the formality of those meetings will decrease. But more
on that throughout several later chapters.

Managing Concurrent Swim Lanes

The Linear SDPM strategy for the Standard Waterfall model has but one swim
lane, so it doesn’t have many of the problems that accompany the Linear
SDPM strategy for the Rapid Development Waterfall model. Because the
major phases are linear, scheduling problems arise when one phase is delayed
for whatever reason. The delay is passed forward to the next phase where
there is an expectation that the delay will somehow be nullified. Maybe, but
most likely not. More likely, it will be passed forward again until the life cycle
has run its course and the project completes late.

If there are any additional scheduling problems with the Linear SDPM strategy,
it will be with the Rapid Development Waterfall model. Delays in the Linear
SDPM strategy for the Rapid Development Model cause the same scheduling
difficulties as delays do in the Linear SDPM strategy for the Standard Waterfall
plus a few more. When a delay occurs in one of the swim lanes and that swim
lane has downstream tasks that are predecessors to tasks in other swim lanes the
scheduling slippage on the home swim lane now spreads to the dependent
swim lane(s). The results can be catastrophic. Because various types of skilled
resources are working in parallel, their cross–swim lane schedules are highly
dependent upon one another. A slippage in just one swim lane can reverberate
through the entire project.

Discussion Questions

1. You are Pepe Ronee, and you have just met your full team for the first time.
It is not what you expected. There are 15 inexperienced members and only
2 experienced developers. You do not have the option of replacing any of
them. Within the context of the Linear SDPM strategy what could you do?

The Linear SDPM Launching Phase 109

11_596365 ch06.qxd 2/15/06 10:29 PM Page 109

11_596365 ch06.qxd 2/15/06 10:29 PM Page 110

Installing Custom Controls 111

The Linear SDPM Monitoring and
Controlling Phase
If two lines on a graph cross, it must be significant.

Ernest F. Cooke
University of Baltimore

C H A P T E R 7

111

Because the Linear SDPM strategy is a plan-driven strategy, conformance to
plan is of the utmost importance. That calls for a structured project performance
reporting system. Such reporting will mostly be electronic or hardcopy reports
distributed on a scheduled basis, in versions for immediate managers, senior
managers, customers, and other stakeholders. Reports within the team will usu-
ally be electronic. A high-level reporting will take place at milestone events,
which typically line up at the completion of each of the design, build, and test
phases.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Discuss the role of project reviews in the Linear SDPM strategy life cycle

◆ Implement strategies to protect the project form scope change requests

◆ Understand the role of the scope bank and management reserve and when
to use them.

◆ Adapt milestone trend charts to the Linear SDPM strategy

12_596365 ch07.qxd 2/15/06 10:28 PM Page 111

Project Review Sessions

At milestone events, a project review should be held. The purpose of these
review sessions is to ascertain the performance of the project against the proj-
ect plan. A typical review session will be attended by three or more senior proj-
ect managers who do not have a vested interest in the project being reviewed,
by a manager from the Project Management Office (if there is a PMO), the proj-
ect manager of the project being reviewed, and any other persons who are
associated with the project being reviewed and who the project manager feels
would have valid input. These are serious sessions. In them the project man-
ager must review the project plan and the status of the plan; if there are prob-
lems, there should be a presentation of them, their cause, and the fix that is in
place. At the next project review it is expected that the project manager will
update the reviewers as to the outcome of the fix. The reviewers have three
purposes in mind for these sessions:

■■ Compliance to the established project management processes—The
project manager must show how that has been achieved or establish a
rationale for whatever departure from the process was taken and why it
was taken.

■■ To review status against plan—They will be looking for variances that
might foreshadow problems or continuing trends that need the attention
of the project team.

■■ To offer suggestions and strategies to address any issues raised in the
previous two paragraphs—If such are offered, it will be incumbent on the
project manager to either reject them with good reason or adopt them and
report the outcome at the next project review.

Both the Standard Waterfall and the Rapid Development Waterfall offer sev-
eral milestone events at which these sessions can take place.

WARNING
Reviews can often present unexpected problems. It is easy to politicize reviews. They
provide a forum for others to jockey for positions of power or set the stage for their
own self-serving purposes. Reviews can expose hidden problems in the enterprise
that others would just as soon keep hidden. Thus, the review becomes a formality
without any real reason for being done. In some organizations, reviews are intimi-
dating. The project manager is raked over the coals, many times for problems out-
side his or her scope of authority and control. Finally, however, a review can present
a significant opportunity to share lessons learned. Don’t miss the opportunity.

C h a p t e r 7112

12_596365 ch07.qxd 2/15/06 10:28 PM Page 112

Linear SDPM Strategy for the Standard Waterfall Model
Refer to Figure 7-1; the project reviews should come at the completion of each
major phase in the software development process.

That would mean project reviews should come at the milestone events where
sign-off has been obtained for Systems Design, Detailed Design, Code and
Test, and Systems Test.

Linear SDPM Strategy for the Rapid Development Waterfall
Refer to Figure 7-2; the project reviews should come at the completion of each
phase in the software development process.

Figure 7-1: The Linear SDPM strategy for the Standard Waterfall model

Idea

Project
Management
Phases

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Systems
Test

Deploy

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

The Linear SDPM Monitoring and Controlling Phase 113

12_596365 ch07.qxd 2/15/06 10:28 PM Page 113

Figure 7-2: The Linear SDPM strategy for the Rapid Development Waterfall model

That would mean project reviews should come at the milestone events where
sign-off has been obtained for Systems Design and Integration Test. Other
reviews might be scheduled for the concurrent swim lanes to ensure those
efforts are moving along according to the plan.

When a project becomes distressed, it is common practice to schedule addi-
tional project reviews with the purpose of correcting the problem and restor-
ing the project.

The target is to bring all the swim lanes to completion on schedule so as not to
delay the start of integration testing. The latest-to-complete swim lane drives
the start of integration testing.

Idea Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-system
Test

Integration
Test Deploy

Detailed
Design

Detailed
Design

Code &
Test

Sub-system
Test

Code &
Test

Sub-system
Test

Project
Management
Phases

Rapid Development
Waterfall Software
Development Process

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

C h a p t e r 7114

12_596365 ch07.qxd 2/15/06 10:28 PM Page 114

WARNING
Be prepared to move resources from one swim lane to another in order to bring the
latest swim lane to completion as early as possible. However, these reassignments
are not without their price. Every reassignment adds a bit of transition and ramp up
time to the tasks that are inherited by the resource you have moved. The most tal-
ented and adaptive of your team members should be the ones you consider for
these reassignments.

Scope Change Management

Why have this section in this chapter since you assume requirements, func-
tions, and features are completely and clearly defined and documented? Well,
things aren’t always what they seem to be. Even though your assumption
holds, the world doesn’t stand still for you. The business world changes and
some of those changes can affect your project. So despite the fact that you
weren’t expecting any changes, you shouldn’t be overly concerned that they
will happen. These changes will generally have more of an impact on the Lin-
ear SDPM strategy for the Standard Waterfall model than for the Linear SDPM
strategy for the Rapid Development Waterfall model. The next sections discuss
just why this is so.

WARNING
The customer has a very different view of change than does the developer. Customers
tend to view change as simpler than the developer. They don’t see the system ramifi-
cations for what appears to be a very simple request. Developers, on the other hand,
see all sorts of ghosts and goblins in even the simplest of requests. The request can
indirectly have an impact on all uses of the variables or parameters that are directly
affected. The design is compromised and must be revised. The database design and
layout is affected because of longer character strings resulting from the change
request, and so on.

Standard Waterfall
A change at any point will have reverberations that will be felt all through to
the end of the project life cycle. The later the change appears in the life cycle,
the more impact it can have. First of all, consider the trivial case. The change is
to some design or development work that has been scheduled but not yet been
done. The impact will be to adjust the schedule going forward and perhaps re-
align some of the team members to the new work. You have time to adjust the
schedule so that the impact on the completion date might be minimal or none

The Linear SDPM Monitoring and Controlling Phase 115

12_596365 ch07.qxd 2/15/06 10:28 PM Page 115

at all. The worst case is where the change has an impact on design or develop-
ment work that has already been done. That means rework as some of the work
completed earlier will no longer be viable and has to be replaced.

Rapid Development Waterfall
As mentioned earlier a change at any point can have reverberations through
perhaps only one swim lane as long as that swim lane is not a predecessor of
any other swim lane. In those cases consider yourself as having dodged a bul-
let. More likely, however, is the case where the change-impacted swim lane is
a predecessor to other swim lanes. You now have a scheduling problem to
resolve. It can be particularly complex if the resources are aggressively sched-
uled across several impacted swim lanes.

Protecting the Linear SDPM Strategy Project
Against the Impact of Scope Change

To protect against the impact of scope change I would like to call to your atten-
tion to two different strategies. The first is what I call “management reserve.”
The second strategy is to change to either an Incremental or Iterative SDPM
strategy. The next sections take a look at each one.

Management Reserve

Management reserve is not a new idea. It has been around for several decades.
You first saw an example of it in your departmental budgets and later in your
project budgets. Simply put it means to allocate a small percentage of your
total budget to any unforeseen expenses that might arise but that could not be
forecasted at planning time. That percentage was generally a figure in the
range of 7–12 percent of the total budget that would be added to the budget as
a contingency. If it wasn’t spent, it was returned to the budgeting authority.
The analog for the project schedule is to allocate that same percentage to the
schedule. Add up all the labor time estimated for the project and take, say, 10
percent of that figure. Put that in a task at the end of the project. That moves
the scheduled completion date out by as many days as are in the management
reserve task. The name of that task will be “management reserve.” This is to be
used for all of those unforeseen schedule slippages or adjustments resulting
from scope change requests that are approved. In some enterprises it is also
used for the time spent analyzing scope change requests. As project manager,
you treat management reserve as a resource available to you in emergency
situations—like scope change. Your objective as project manager is not to spend

C h a p t e r 7116

12_596365 ch07.qxd 2/15/06 10:28 PM Page 116

that time, in which case you will bring the project in earlier than estimated. Now
isn’t that a novel idea?

If you have trouble selling the idea of management reserve to your manage-
ment, try the Scope Bank approach that follows.

Creating a Scope Bank

On the surface this looks like management reserve in disguise with one signifi-
cant difference. At project-planning time, establish a bank and deposit some
number of hours in that bank. The purpose of the Scope Bank is to have sched-
ule time available for processing scope change requests and absorbing any
schedule impacts. The same 10 percent that we used for management reserve
can be used for the Scope Bank deposit. The Scope Bank 10 percent has a bit dif-
ferent cast to it than the management reserve 10 percent. The project manager is
willing to assume that the 10 percent of time in the Scope Bank can be absorbed
into the project schedule without adversely affecting the schedule. In other
words, it can be absorbed into the project plan. That is critical to the success of
this approach. As scope changes arise, the balance in the Scope Bank Account
covers all processing time. Once the balance reaches zero, the customer must
make a deposit before they can make a withdrawal. They make a deposit by
substituting development time for lesser priority functions or features.

If you have trouble selling the Scope Bank approach, your last protection against
scope change will be to change SDPM strategies.

Changing SDPM Strategies

If you had assumed there would be no changes or that, if there were, they
would have minimal impact and you didn’t fare too well with that assump-
tion, then one last option is to move on to a strategy that is a bit more support-
ive, a bit more favorable to the actual project. For minor infractions of the “no
change” assumption, consider changing the project approach to the Incremen-
tal SDPM strategy, and for more serious infractions consider changing the
project approach to the Iterative SDPM strategy.

This will not be an easy sell to management, especially if the project has already
slipped behind schedule because of too frequent scope change requests. Face it;
you chose the wrong strategy at the beginning. Maybe you didn’t have the
background information you needed and what you did have led you to a deci-
sion that seemed correct at the time. The worst thing to do is continue on your
present course. Bite the bullet and make your case to the customer and senior
management, but do it positively. Show how what has happened is for the

The Linear SDPM Monitoring and Controlling Phase 117

12_596365 ch07.qxd 2/15/06 10:28 PM Page 117

greater good of the deliverables but could not have been foreseen at the begin-
ning of the project. Sell the customer and senior management on the long-term
benefits of the change.

Incremental SDPM Strategy

Although the Incremental SDPM strategy is a Linear strategy and bound by the
same conditions as other Linear strategies, you can bend the rules a bit and
accommodate change. Here is how that would be done. First of all, you need to
package the deliverables into increments and develop these packages one at a
time in some prioritized sequence. You can read about that in Chapters 10–16.
Once you have defined the increments, you must gain customer approval for
this change of project approach. (That might not be an easy task, by the way.)

Iterative SDPM Strategy

If a change to the Incremental SDPM strategy wasn’t radical enough to protect
the project from scope change requests, you’ll have to take the next step and
change to the Iterative SDPM strategy. This change is fairly straightforward.
The primary change will be in the accommodation of scope change requests
between iterations. That was not part of the Incremental approach. It will obvi-
ously affect the completion date of the project, but that is the price you pay for
accommodating the discovery of new features for inclusion in the solution. A
more detailed discussion of this strategy is the topic of Part IV of this book.

WARNING
The Linear SDPM strategy is a formal strategy. It defines phases that must be done
in a prescribed order with no feedback. There are no variations that waver from this
linearity requirement. A problem arises then when it is discovered during the course
of the project that there is a better way of doing something or there is a piece of
functionality that could be done more effectively if adjusted properly. All well and
good, but the formality of the Linear process prohibits that from happening. It must
be left to the next release of the deliverables and business value is lost or at best
postponed to later.

Milestone Trend Charts

Among the several reporting tools you might typically use, I would like to illus-
trate how the milestone trend chart can be used for the Linear SDPM strategy for
the Rapid Development Waterfall model. See Appendix J if you need a refresher
on milestone trend charts. Chapter 38 also has some specific applications of
milestone trend charts. Figure 7-3 is the preferred way to track progress in a
Rapid Development Waterfall project.

C h a p t e r 7118

12_596365 ch07.qxd 2/15/06 10:28 PM Page 118

Figure 7-3: Using milestone trend charts in a Rapid Development Waterfall project

3

2

1

On Schedule A

Weeks Early

Weeks Late

1

2

3

3

2

1

On Schedule B

Weeks Early

Weeks Late

1

2

3

3

2

1

On Schedule C

Weeks Early

Weeks Late

1

2

3

3

2

1

On Schedule D

Weeks Early

Weeks Late

Project Week

4 8 12 16 20 24 28

1

2

3

The Linear SDPM Monitoring and Controlling Phase 119

12_596365 ch07.qxd 2/15/06 10:28 PM Page 119

This project has three concurrent swim lanes that may have cross–swim lane
dependencies. Milestone trend charts do not show any cross–swim lane depen-
dencies, but that does not compromise the usefulness of the charts. In this case,
for example, the first three panels show the status of each swim lane with
respect to completing on schedule. The fourth panel shows the status of all the
swim lanes with respect to being completed on schedule. Looking at Figure
7-3, you can see that Swim Lane A has slowly drifted behind schedule and is
now two weeks behind schedule. Because it has two weeks of slack in its
schedule, it has exceeded that and placed the project one week late. Swim Lane
B, which is on the critical path, has returned to on-schedule status as of the
most recent report date. Its completion drives the beginning of the integration
test activities. Because it is on schedule, some other swim lane must be the rea-
son for the project schedule slippage. Swim Lane C is another story. It has
trended down for four consecutive report periods and that is what would have
triggered a closer look at the reason why and what might be done to return the
project to an on-schedule status. Also, if you are tracking status using the bot-
tom panel, then the four consecutive reporting periods with a trend in the
same direction is your clue that there is a problem and some action will be
required. Because the integration test activity will be started one week late, the
culprit must be one or more of the swim lanes. It happens that both Swim Lane
A and Swim Lane C will be late. Swim Lane A will be two weeks late, but it has
only one week of slack. It will push integration testing out one week beyond
its scheduled start. Similarly, Swim Lane C will be three weeks late and it has
only two weeks of slack. It will also push integration testing out one week
beyond its scheduled start. Swim Lane B is on schedule, so it will not likely
have any resources that can be reassigned to bring Swim Lanes A and C back
on schedule. You have 12 weeks remaining before the integration testing is
scheduled to start. A solution will have to be found within that time frame.

Discussion Questions

1. There are too many scope change requests, and they are taking away from
project work time to the point where the schedule is now in jeopardy. You
did not include management reserve time or a Scope Bank at the begin-
ning of the project. Is it too late to introduce them now? Which one do you
think would have a better chance of gaining senior management support
and the support of the customer? Do you have another suggestion for pro-
tecting the project schedule?

C h a p t e r 7120

12_596365 ch07.qxd 2/15/06 10:28 PM Page 120

Installing Custom Controls 121

The Linear SDPM Closing Phase
We cannot afford to forget any experiences, even the
most painful.

Dag Hammerskjold
Secretary of the United Nations

C H A P T E R 8

121

Once the customer has signed off that the requirements have been satisfacto-
rily met, the Closing Phase begins.

Requirements Validation

Requirements validation should be done by comparing the actual features and
functions against the planned features and functions. All of this would have
been documented in an acceptance test procedure developed and approved by
the customer and the project manager during the Planning Phase. As long as
that document is kept current, the validation involves nothing more than

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the significance of the customer sign-off

◆ Structure the acceptance test procedure for meaningful closure

◆ Discuss the four deployment strategies

◆ Understand the dilemma posed by documentation

◆ Know why lessons learned is so important

13_596365 ch08.qxd 2/15/06 10:26 PM Page 121

demonstrating that all items on the acceptance test procedure list have been
checked off. If the document has not been kept current, validation becomes a
shooting contest, and the customer usually wins. Because the Linear SDPM
strategy is based on the assumption of clearly defined and documented require-
ments, validation should be straightforward. But that doesn’t mean it should not
be a formal process from initial definition through to final acceptance.

There must be some assurance throughout the project life cycle that the current
requirements are in fact what the customer expects. It sounds like it should be
simple and straightforward, but that is far from reality. It all depends on what
you—the project manager and project team—have done to ensure alignment
between what the customer expects and what you are delivering. The first step
to this assurance is to have the customer meaningfully involved throughout
the project life cycle. That means frequent touch-points with the customer. At
those touch-points, both of you should be verifying that the previously agreed
requirements are still valid. The customer should sign off as part of project ini-
tiation that the requirements list was completely and clearly defined and doc-
umented and that it wasn’t expected to change. Despite all of the due diligence
that might have been done, in 40+ years of practicing project management I
have never had a project that didn’t have a requirements change somewhere
along the project life cycle.

The Conditions of Satisfaction (see Appendix D for a refresher) is the key. You
should have used them during project initiation. Now use them again as a rou-
tine part of your project reviews. Verify that they are the same or have
changed. If they have changed, revise the project plan accordingly.

Acceptance Test Procedures

This should always be a collaborative effort by the project team and the cus-
tomer. The acceptance test procedure is written collaboratively with the cus-
tomer and the project team participating. Constructing test data might be an
individual or a collaborative effort. The customer will have some testing to do
with their end users to ensure that the system is “friendly” and responds as
expected. The project team will have some testing to do with the technical team
to ensure performance is as expected and that the system is technically sound.

As part of every project review and every change request you must revisit the
acceptance test procedures. I recall a situation several years ago that taught me
a lesson about change that I have never forgotten. I was the CIO, and the situa-
tion involved one of my junior programmers and a customer who was never
satisfied. In fact, it was common knowledge that our Information Systems Divi-
sion wasn’t numbered among their friends. A manager from that customer’s

C h a p t e r 8122

13_596365 ch08.qxd 2/15/06 10:26 PM Page 122

department ran into a junior programmer in the hallway one day and inno-
cently asked: “John, I forgot to tell you in our requirements gathering session
yesterday that we also need to see that sales activity report broken down by
product line within sales territory and we need it reported monthly.”

Before responding, John thought to himself: This is a great opportunity to win
some points with this manager. I’m going to be in here on Saturday doing
some clean-up work on the very code that he is talking about. I can take care
of his request in a matter of an hour or so. So John responded, “No problem,
I’ll take care of that in a matter of a few days. Don’t worry about forgetting to
mention it in the meeting. I’ll cover you.” The manager nodded and walked
off. John felt great. He figured he had scored a lot of points with that manager
and would be forever in his good favor. John was so excited about his little vic-
tory that he forgot to make any mention of the change in the acceptance test
procedure. The testing people never picked up on it either, so it went unno-
ticed in the requirements documentation until test time. The message here is
that every change request must be treated as a major request until proven
otherwise. That means it must be processed through a formal change request
process and the appropriate decisions and followup actions taken.

Customer Sign-Off

Customer sign-off can be ceremonial or formal, as described in the following
sections.

Ceremonial Acceptance
Ceremonial acceptance is an informal acceptance by the customer. It does not
have an accompanying sign-off for completion or acceptance. It simply hap-
pens. Two situations fall under the heading of ceremonial acceptance.

■■ In the first situation the customer must accept the project as complete at
the deadline date, whether or not the project meets specification. For
example, if the project was to plan and conduct a conference, the confer-
ence will happen whether or not the project work has been satisfactorily
completed. When it comes to software, there is no ceremonial acceptance.
The acceptance follows a very formal process. If the deliverable doesn’t
meet the criteria it is not accepted and returned for further work

■■ In the second situation a project deliverable requires little or no checking
to see if specifications have been met—for example, planning and taking a
vacation. Often there will be a brief description of desired features of the
vacation, but in the end, whatever is planned is accepted. The acceptance
is very informal.

The Linear SDPM Closing Phase 123

13_596365 ch08.qxd 2/15/06 10:26 PM Page 123

Formal Acceptance
Formal acceptance occurs in those cases involving an acceptance procedure,
either written by the customer or in many cases, especially computer applica-
tions development projects, written as a joint effort by the customer and
appropriate members of the project team. Typically this done very early in the
life of the project—during project planning is a good time. This acceptance
procedure requires that the project team demonstrate compliance with every
feature in the customer’s performance specification. A checklist is used and
requires a feature-by-feature sign-off based on performance tests. These tests
are conducted jointly and administered by the customer and appropriate
members of the project team. The checklist is written in such a fashion that
compliance is either demonstrated or not demonstrated by the test. It must not
be written in such a way that interpretation is needed to determine whether
compliance has been demonstrated.

The Closing Phase

Closing a project is often the most overlooked of the phases of the project life
cycle. You have another project waiting for you, and you are behind schedule.
Your current project is finished, and there is nothing you can do about it any
longer. It seems hard to devote any time to a completed project when you have
a new one staring you in the face.

Both Linear SDPM strategies have the same closing activities. Once require-
ments have been validated and the acceptance test procedures met, the project
enters the formal part of the Closing Phase. There is the sign-off by the customer
that the project can truly enter the closing activities.

Deployment Strategies
The deliverables are deployed into production status. For both the Linear
SDPM strategy for the Standard Waterfall model and the Linear SDPM strat-
egy for the Rapid Development Waterfall model there will be only one deploy-
ment. All deliverables are put into production status at one time. For cases
where you have multiple releases, you can refer to the Iterative, Adaptive, and
Extreme SDPM strategies later in the book. Deployment in the Linear SDPM
strategy can happen following one of four different strategies.

■■ Phased Approach—The Phased Approach decomposes the deliverable
into meaningful chunks and implements the chunks in the appropriate
sequence. This approach would be appropriate in cases where resource
limitations prevent any other approach from being used.

C h a p t e r 8124

13_596365 ch08.qxd 2/15/06 10:26 PM Page 124

■■ Cut-Over Approach—The Cut-Over Approach replaces the old deliver-
able with the new deliverable in one action. To use this approach the test-
ing of the new system must have been successfully completed in a test
environment that is exactly the same as the production environment.

■■ Parallel Approach—In cases where the new system might not have been
completely tested in an environment exactly like the production environ-
ment, this approach will make sense. It allows the new system to be com-
pared with the old system on real live data.

■■ By Business Unit Approach—Like the phased approach, this approach
is chosen when resource constraints prohibit a full implementation at
one time.

Project File
For the Linear SDPM strategies, the project file will contain all of the informa-
tion collected during the course of the project. Typical documents found in the
project file include meeting minutes, scope change requests and actions, prob-
lems and their resolution, risk issues, system documentation, final project
report, and lessons learned.

WARNING
Documentation ranks right up there in popularity with root canals. Analysts, archi-
tects, developers, and testing folks do not look forward to having to produce docu-
mentation. The temptation to do a sloppy job and get it over with is a strong driver
for many. Yet the Linear SDPM strategy depends heavily on having clear and com-
plete documentation.

Lessons Learned

Lessons learned are part of the post-implementation audit. I mention it here
because there are some issues around the strategy that you chose that you
should consider. What did you do to verify that the requirements were clearly
defined and completely documented? Was it a process? Were there forms with
questions that the customer was required to answer? Was it an open discus-
sion between you and the customer? Did you miss any physical signs that
were really a valid signal that things weren’t exactly as they were represented?
Maybe you made some wrong choices for this project, but if you paid atten-
tion, the signs were there and you shouldn’t repeat the error the next time.

What you did that ended up being the wrong choice is just as valuable a lesson
learned as your having chosen an action that turned out to be right. Given the

The Linear SDPM Closing Phase 125

13_596365 ch08.qxd 2/15/06 10:26 PM Page 125

same situation on another project, would you do the same thing or would you
take a lesson from the past and choose some other course of action? Most peo-
ple will have a hard time documenting an action that didn’t work as expected.
That’s too bad because often that is the most valuable information, especially
if you can articulate why the action might not have worked. Why take chances
on repeating an action and expecting a different outcome? Someone once said
that was the definition of insanity.

Discussion Questions

1. Management will always pressure you to get to the next project before
you have closed the books on the current project. How would you sell the
practice of lessons learned to senior management?

C h a p t e r 8126

13_596365 ch08.qxd 2/15/06 10:26 PM Page 126

Installing Custom Controls 127

The Linear SDPM Strategy
Summary
Experience is not what happens to you; it is what you
do with what happens to you.

Aldous Huxley
English novelist and critic

C H A P T E R 9

127

You’ve now spent the last five chapters exploring the Linear SDPM strategy
and, in particular, looking at variations for the Standard Waterfall model and
the Rapid Development Waterfall model. In this summary chapter I’ll discuss
a few major points regarding both models and draw some conclusions about
their further use and adaptation.

Comparing and Contrasting the SDPM Models

The two models are the same in that both the goal and solution are clearly
defined and documented. That is the entry criteria for using these two models.
If you know ahead of time that these criteria will be compromised, you have

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand risk and how it affects the Linear SDPM strategies

◆ Understand scope change and how it affects the Linear SDPM strategies

◆ Understand team structure and how it affects the Linear SDPM strategies

◆ Know why there is a communications gap built into the Linear SDPM strategy

14_596365 ch09.qxd 2/15/06 10:26 PM Page 127

better choices for strategies. Software development projects for the consumer
would be examples where change might be inevitable as a result of changing
market conditions over which we have no control. Software development pro-
jects for internal consumption and where no external factors are operative are
good candidates for both models. You might choose one of the two models
over the other solely because of deadlines. The more aggressive the deadline,
the more likely you would opt for the Linear SDPM strategy for the Rapid
Development model. The scarcer the resources, the more likely you would opt
for the Linear SDPM strategy for the Standard Waterfall model.

Points to Remember

As I look back at the chapters in this part, I want to emphasize a few key points
that you need to consider as you deliberate on the strategy to use in your
project.

Risk Situations
Risk in the Linear SDPM strategy is minimal as compared to the other classes
of projects I discuss later in the book. For the Linear SDPM strategy for the
Standard Waterfall, the only risk specific to the strategy is the risk that you
have not completely defined and clearly documented all requirements. I’m
excluding exogenous factors because you have no control over them. They are
going to happen regardless of the strategy you have adopted. But if you have
chosen the wrong strategy and internal factors result in scope change requests,
that is a different matter. So what are the consequences of that risk? Three sig-
nificant ones are worth calling to your attention.

Schedule Slippages

This is probably the least costly of the three. You are going to add more work
to accommodate added scope. The thinking project manager will present the
customer with two alternatives.

■■ Keep the same schedule by reprioritizing requirements, removing the
lowest priority one, and replacing it with the new scope request.

■■ Add the new scope request and move the schedule out far enough to
accommodate it.

There is a third alternative, but that requires major surgery on the project plan.
Briefly put, you change the approach to an Incremental one, release the current
functionality for the first increment, add the new scope request, and integrate

C h a p t e r 9128

14_596365 ch09.qxd 2/15/06 10:26 PM Page 128

it into the second increment. All of this assumes that dependencies are behav-
ing and the currently built functionality has business value to the customer.
This might have additional risk associated with it that results from the added
complexity and the fact that the team is being taken out of its comfort zone.

Rework

Next in terms of impact would be those scope change requests that render pre-
viously completed work obsolete or no longer needed. The time invested in
the now obsolete work is lost and cannot be recovered. Some additional work
needs to be done to back out the now obsolete functionality and replace it with
the new. This is obviously more costly than the previous situation. If this
added work is significant, you might want to give some thought to changing
the approach to the Incremental, as was an option in the preceding situation.

Resource Contention

This problem seems to plague every project except the simplest ones, regard-
less of how you approach it. For the Linear SDPM strategy for the Standard
Waterfall model, the problem occurs in two places:

■■ If you need to re-engage the architects to revise the design completed
and approved earlier—Their availability could be problematic.

■■ If you need to reassign developers to accommodate the scope change—
This is where the schedule will be affected. Their workload will almost
always be increased and result in a schedule extension.

If you are following the Linear SDPM strategy for the Rapid Development
model, the two reasons are intensified. The design change can have an impact on
all of the swim lanes if it affects any dependency relations across swim lanes.
The added developer time will have to fit into an already complex resource
schedule.

Change Intolerance
I keep finding reasons to come back to change and its relationship to linear
models, but it is the bane of all linear models. I don’t need to repeat those argu-
ments, but it is instructive to put that foremost on your mind as you go about
deciding what strategy makes sense for your project. If you have any suspi-
cions that change will be a factor in your project, do not use a Linear strategy.
Period. If you have any suspicion that the customer has doubts about what has
been defined and documented for requirements, do not use a Linear strategy.
Period. Other strategies will serve you better and give the project a better
chance at succeeding.

The Linear SDPM Strategy Summary 129

14_596365 ch09.qxd 2/15/06 10:26 PM Page 129

In the face of all these signals to choose another strategy, what if you go ahead
and still choose a Linear strategy? Maybe you had no choice given your envi-
ronment and the team that you have been given. In that case, recall that we
talked about the Scope Bank and management reserve. Use either or both of
them. They might be your saving strategy.

Team Structure
It seems like all I have to summarize with are cautions and warnings about
pending disaster. Well I’ve saved the positive news for last. Linear SDPM
strategies are the least demanding on team strength and capacity. As you move
into the Incremental and Iterative and beyond strategies, you lose that positive
aspect. Team strength, capacity, generalist skills and competencies, and co-
location become the requirements for success of the approach. But more on
that later. For the Linear SDPM strategy for the Standard Waterfall model, you
will have the maximum freedom in team member skills, experiences, and team
structure. A few well-chosen senior architects and senior developers might be
all that you need to be successful. You will, of course, depend on them to rally
the rest of the team. They will be your team leaders in both the design and
development phases.

WARNING
Communications among the team members has always been a problem with Linear
SDPM strategies. The “throw it over the wall” structure is the culprit. Each phase of
the software development life cycle is worked on by team members with different
skills. For example, once the business systems analysts finish their work, they docu-
ment it and “throw it over the wall” to the systems analysts who finish their work,
document it, and “throw it over the wall” to the system architects, and so on. Rather
than depend on one-on-one communications, these team members rely on the writ-
ten documentation that they pass forward. There are several opportunities for this
type of communications to run into problems without anyone even realizing it.

The Standard Waterfall model variation introduced in Chapter 3 can reduce the
problem somewhat. Recall that that figure presented a variation of the Standard
Waterfall by having successive phases overlap one another. By having the overlap,
you have an opportunity to have one-on-one communications to handle any points
of confusion, but that is only if those points of confusion are discovered during the
period of overlap.

Knowing the potential problems that can occur is a forewarning that the hand-off
between phases might be modified to have some type of review or joint meeting
between the affected team members so that the potential problem might be short-
circuited.

C h a p t e r 9130

14_596365 ch09.qxd 2/15/06 10:26 PM Page 130

Discussion Questions

1. Your management isn’t too keen on the idea of management reserve or
the Scope Bank. It has never been presented as a logical alternative to the
scheduling problems that run amok in your organization. Create a logical
argument and presentation to convince your management to let you test
the idea on a couple of pilot projects. Give some thought to what’s in it
for them.

The Linear SDPM Strategy Summary 131

14_596365 ch09.qxd 2/15/06 10:26 PM Page 131

14_596365 ch09.qxd 2/15/06 10:26 PM Page 132

PA RTTHREE

Incremental ESPM
The models discussed in this part must meet the same criteria as in the Linear
approach. In the Linear approach the software product is deployed at the end
of the development life cycle. In the Incremental approach market conditions
require early release of product. To accommodate that, the incremental
approach decomposes the software product into chunks of code—each one
having some business value. These chunks are released as they are built.
Finally the end product is fully released at the end of the development cycle,
just as would be the case for the Linear approach.

15_596365 pt03.qxd 2/15/06 10:31 PM Page 133

15_596365 pt03.qxd 2/15/06 10:31 PM Page 134

Installing Custom Controls 135

Incremental SDPM Strategy
I find the great thing in this world is, not where we
stand, as it is in what direction we are moving.

Oliver Wendell Holmes
American physician and popular writer

C H A P T E R 10

135

The first variation from the linear models of Part II is the Incremental model,
which is discussed in this part. Incremental models arise out of the customer’s
need to deliver partial functionality at intermediate points along the software
development timeline. For a variety of business reasons, customers cannot
wait until the end of the development cycle to get their glimpse of the product
and begin to derive business value. Market forces have put them in a position
where they need to generate business value early. In many cases it might sim-
ply be a positioning strategy. They want to get to the market first and establish
an early position for themselves.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Incremental SDPM strategy

◆ Have a high-level understanding of the Staged Delivery Waterfall model and
the Feature-Driven Development model

16_596365 ch10.qxd 2/15/06 10:32 PM Page 135

The Incremental SDPM strategy is accomplished by “chunking” the function-
ality and features into meaningful parts so that each part offers marketable
business value. Several increments might be defined so that the released prod-
uct grows in functionality over time.

The Incremental SDPM Strategy

Incremental approaches must meet the same requirements as linear approaches.
The goal and the solution must both be clearly defined. An incremental
approach is chosen so that results can be delivered in stages over the life of the
project. Figure 10-1 illustrates the generic Incremental SDPM strategy. Later in
this chapter, I adapt it to the Staged Delivery Waterfall model and the Feature-
Driven Development model.

Situations will arise where business value needs to be delivered early and often.
In these cases the total solution is decomposed into “chunks” of deliverables.
Each chunk provides enough functionality to be of business value in a produc-
tion sense. These chunks are released sequentially until all functionality has
been released to production status. These sequential releases offer opportunities
to modify functionality in future increments.

Because Incremental SDPM strategies are found in Quadrant 1, their goal and
solution must be clearly defined and documented as a condition for using the
models described below. Figure 10-2 (Staged Delivery Waterfall model) and
Figure 10-4 (Feature-Driven Development model) are two examples of incre-
mental approaches. Both models require the complete documentation of
requirements, functionality, and features.

For projects that otherwise would use a linear model but must deliver business
value earlier in the development life cycle, you can modify the model to take
advantage of an Incremental approach.

Figure 10-1: Incremental SDPM strategy

SCOPE
Incremental
Software
Development
Phases

Project
Management
Phases

DESIGN DEPLOY

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

BUILD TEST

C h a p t e r 10136

16_596365 ch10.qxd 2/15/06 10:32 PM Page 136

Scope Phase
As in the case of the Linear SDPM strategy, this is an integrated activity with
the Scope Phase from the software development life cycle and the project man-
agement life cycle. You have one added task, however. The decision to deploy
the deliverables in increments adds some complexity to the scoping activities.
The increments must be defined. That definition has two parts:

■■ The first is the definition of deliverables sets that have business value.

■■ The second, which is not independent of the first, is to sequence the deliv-
erables sets so that no technical dependencies are violated.

Plan and Launch Phases
The Plan Phase is more complex for the Incremental SDPM strategy than it is
for the Linear SDPM strategy. The difference is due to resource scheduling. In
the Linear SDPM strategy, a particular resource (say, the developers) can do
their programming work and move on to other projects. In the Incremental
SDPM strategy their work is not done contiguously. It comes in chunks. If the
schedule for an early increment slips, it affects the resource schedule for all
subsequent increments. In most cases the development resources will have
already made commitments to other projects and might not have the flexibil-
ity required to meet the new schedule demands of the revised project. The
complexity now extends to more than one project, as decisions have to be
made regarding the relative priorities of the affected projects.

Monitor and Control Phases
The Monitor and Control Phases for the Incremental SDPM strategy are a bit
more complex than in the case of the Linear SDPM strategy, for two reasons:

■■ First is the scheduling and resource management of the increments. The
resource schedules have to be considered as fixed and any slippages have
to be recovered within the given schedules.

■■ Second, as the customer uses the deliverables from an increment, they will
undoubtedly discover other features they would have liked to include in
the original scope but didn’t have in mind at the time. Only by using the
released deliverables did the customer discover the new features. The
assumption that led to choosing this strategy was that such discoveries
wouldn’t happen. All functions and features were defined up front—or so
it was assumed. Nevertheless, this situation will occur and you must deal
with it.

You might want to include some portion of the typical close activities as each
increment is deployed. That would be done as part of the monitoring and control

Incremental SDPM Strategy 137

16_596365 ch10.qxd 2/15/06 10:32 PM Page 137

phase, however. It would involve an acceptance test procedure to cover the deliv-
erables deployed at the end of each increment. That leaves open the possibility
that a deliverable set might not meet the acceptance criteria and cause some revi-
sions to be made in subsequent increments. The same risk is present whenever
the customer or end user has an opportunity to work with a partial solution and
give feedback to the developers. Changes will be suggested if you have given the
customer an opportunity to do so. You have been warned, so be ready.

Close Phase
The Close Phase is exactly the same as in the case of the Linear SDPM strategy,
in that it involves demonstrating acceptance test criteria, putting deliverables
into production status, and performing formal closing activities, including a
post-implementation audit to assess conformance to the plan and achievement
of the success criteria. This will occur after the last increment has been deployed.

Types of Incremental SDPM Strategies

Incremental SDPM strategies are little more than the variation you would
expect when the Linear SDPM strategies are not as responsive to business con-
ditions as the customers would want them. The motivation for adopting an
incremental approach is to deliver business value earlier than would be the
case with linear approaches. In some cases this early introduction gives the
enterprise an opportunity to test market new products and perhaps make
modifications in later increments. Two types of strategies deserve mention in
this context. They are introduced here at a high level and detailed in the chap-
ters of this part that follow.

Staged Delivery Waterfall Model
The Staged Delivery Waterfall model provides for the early release of chunks
of functionality so that the customer can begin to realize business value with-
out having to wait for the single release of the complete solution.

Figure 10-2 is adapted from Steve McConnell’s book Software Project Survival
Guide (Microsoft Press, 1998).

This model works well in those situations where it is to your advantage to
deliver business value early. If that is the case, you should prioritize the func-
tionality to phases to deliver maximum business value. The stages could be long
or short depending on the needs of the client. The other reason for adopting this
model is to give you some breathing room in case the early releases give the
client a reason to suggest changes. In other words, you are protecting yourself
against requirements not having been completely defined and agreed to.

C h a p t e r 10138

16_596365 ch10.qxd 2/15/06 10:32 PM Page 138

Figure 10-2: Staged Delivery Waterfall model

Figure 10-3 illustrates the Incremental SDPM strategy for the Staged Delivery
Waterfall model.

Within each of the stages, the linearity of the Standard Waterfall model is
clearly present. This makes the integration rather straightforward. The only
difference between the staged model and the standard model is the intermedi-
ate release of incomplete but functioning deliverables.

Feature-Driven Development
Feature-Driven Development (FDD) first appeared in Java Modeling in Color
with UML by Peter Coad, Eric Lefebvre, and Jeff DeLuca (Prentice Hall PTR,
1999). A more comprehensive treatment of FDD can be found in A Practical
Guide to Feature Driven Development by Stephen R. Palmer and John M. Felsing
(Prentice Hall PTR, 2002).

Idea

Requirements
Gathering

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

Systems
Test

Deploy

Detailed
Design

Last Stage Release

Code &
Test

Systems
Test

Deploy

Incremental SDPM Strategy 139

16_596365 ch10.qxd 2/15/06 10:32 PM Page 139

Figure 10-3: Incremental SDPM strategy for the Staged Delivery Waterfall model

The high-level process view of FDD is shown in Figure 10-4. Note that the
solution must be known in order to use FDD effectively. A model of the solu-
tion is developed and used to create the functional Work Breakdown Structure
(WBS). The functional WBS contains a very detailed list of features. The fea-
tures list is grouped into similar features and prioritized for development.
FDD iterates on the design and building of the groups of features.

Much like the Rapid Development model, FDD prioritizes parts of the solu-
tion. But this time it is features-driven. With the addition of features code to
the solution, the solution grows in terms of business value. Intermediate pro-
duction solutions can be released as part of this approach. As in the Rapid
Development model, you can have multiple design/build swim lanes running
concurrently in the Feature-Driven Development model.

Detailed
Design

First Stage Release

Code &
Test

Systems
Test

Deploy

Detailed
Design

Last Stage Release

Code &
Test

Systems
Test

Deploy

Idea Requirements
Gathering

Systems
Design

Project
Management
Phases

Staged
Delivery
Waterfall
Software
Development
Phases

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

C h a p t e r 10140

16_596365 ch10.qxd 2/15/06 10:32 PM Page 140

Fi
gu

re
 1

0-
4:

Fe
at

ur
e-

D
riv

en
 D

ev
el

op
m

en
t m

od
el

M
od

el
 t

he
So

lu
tio

n

Sc
op

e
th

e
So

lu
tio

n

Bu
ild

 t
he

Fe
at

ur
es

Li
st

A
ss

em
bl

e
th

e
Fe

at
ur

e
Se

ts

D
ev

el
op

th
e

Fe
at

ur
e

Pl
an

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
ep

lo
y?

Bu
ild

 a
Fe

at
ur

e
Se

t

Bu
ild

 a
Fe

at
ur

e
Se

t

In
te

gr
at

io
n

Te
st

In
te

gr
at

io
n

Te
st

In
te

gr
at

io
n

Te
st

Bu
ild

 a
Fe

at
ur

e
Se

t

D
ep

lo
y?

D
ep

lo
y?

16_596365 ch10.qxd 2/15/06 10:32 PM Page 141

FDD provides for the early release of chunks of features so that the customer
can begin to realize business value without having to wait for the single
release of the complete solution. It differs from the Staged Delivery Waterfall
model in that the releases consist of groups of features that have a technical
relationship to one another. Several cycles of development might occur before
the customer is satisfied that the cumulative features list has enough business
value to be released as in the sense of the Staged Delivery Waterfall model.
FDD models might use concurrent swim lanes, sequential phases, or some
combination of the two.

Figure 10-5 illustrates the integration of the project management life cycle into
the Feature-Driven Development life cycle.

WARNING
Resist the temptation to use the increments to solve the problem. That is not the
purpose. You must have a clearly defined goal as well as a clearly defined solution to
use these approaches. If the solution is not clearly defined, iterative and adaptive
approaches will serve you better.

C h a p t e r 10142

16_596365 ch10.qxd 2/15/06 10:32 PM Page 142

Fi
gu

re
 1

0-
5:

In
cr

em
en

ta
l S

D
PM

 s
tr

at
eg

y
fo

r
th

e
Fe

at
ur

e-
D

riv
en

 D
ev

el
op

m
en

t m
od

el

M
od

el
 t

he
So

lu
tio

n

Sc
op

e
th

e
So

lu
tio

n

Bu
ild

 t
he

Fe
at

ur
es

Li
st

A
ss

em
bl

e
th

e
Fe

at
ur

e
Se

ts

D
ev

el
op

th
e

Fe
at

ur
e

Pl
an

D
es

ig
n

Fe
at

ur
e

Se
t

D
es

ig
n

Fe
at

ur
e

Se
t

D
es

ig
n

Fe
at

ur
e

Se
t

D
ep

lo
y?

Bu
ild

Fe
at

ur
e

Se
t

Bu
ild

Fe
at

ur
e

Se
t

Te
st

Te
st

Te
st

Bu
ild

Fe
at

ur
e

Se
t

D
ep

lo
y?

N NN

Y Y Y
D

ep
lo

y?

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es

Fe
at

ur
e-

dr
iv

en
D

ev
el

op
m

en
t

So
ft

w
ar

e
D

ev
el

op
m

en
t

Ph
as

es

C
LO

SE
SC

O
PE

PL
A

N
M

O
N

IT
O

R
&

C
O

N
TR

O
L

LA
U

N
C

H

16_596365 ch10.qxd 2/15/06 10:32 PM Page 143

C h a p t e r 10144

Discussion Questions
1. How would you go about the task of decomposing the project into mean-

ingful business chunks? Speak to the rules you might employ.

2. You have completed the first few increments and released deliverables to
the customer. The customer is now coming to you with changes to what
has been released. These changes make sense but will cause your project
to go off schedule if integrated into the future increments. What would
you do?

16_596365 ch10.qxd 2/15/06 10:32 PM Page 144

Installing Custom Controls 145C H A P T E R 11

145

The Incremental SDPM
Scoping Phase
I find the great thing in this world is, not where we
stand, as it is in what direction we are moving.

Oliver Wendell Holmes
American physician and writer

The first variation from the Linear SDPM strategy is the Incremental SDPM
strategy, which is discussed in this part of the book. Incremental models arise
out of the customer’s need to deliver partial functionality at intermediate
points along the systems development time line. For a variety of business rea-
sons, the customer cannot wait until the end of the development cycle to get
their glimpse of the product and begin to derive business value. Market forces
have put them in a position where they need to generate business value early.
In many cases it may simply be a positioning strategy. They want to get to the
market first and establish an early position for themselves.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Scoping Phase of the Incremental SDPM strategy

◆ Conduct the Scoping Phase of the Staged Delivery Waterfall model

◆ Conduct the Scoping Phase of the Feature-Driven Development model

◆ Understand the role of the WBS in defining project increments

◆ Scope the Incremental plan

17_596365 ch11.qxd 2/15/06 10:31 PM Page 145

The Incremental SDPM strategy is accomplished by “chunking” the function-
ality and features into meaningful parts so that each part offers marketable
business value. Several increments might be defined so that the released prod-
uct grows in functionality over time.

The Scoping Phase of an Incremental SDPM Strategy

Basically there is no difference between a Linear and an Incremental SDPM strat-
egy except for the way the deliverables are deployed. Both strategies require a
completely documented requirements specification. Given that condition, both
strategies are somewhat intolerant of scope change. Unfortunately, they know it
will happen, but they proceed on the assumption that it won’t.

As you know, in a Linear SDPM strategy the deliverables are first deployed
after all integration testing has been successfully completed and the customer
signs off on the acceptance test procedure. The deliverables then move to the
implementation stage and are put into production status. The project is com-
pleted. The customer doesn’t see any of the solution until they see all of the
solution. There is no chance to “try it out” before they buy it. Their only hope
is that the developers understood their needs and delivered according to those
needs. The customer isn’t looking for any surprises.

In the Incremental SDPM strategy, things are quite different. You still have the
same degree of confidence that the requirements are completely defined and
documented. The Incremental strategy is scope change–intolerant just like the
Linear strategy. The only changes expected are those that emanate from out-
side the project itself. For example, market changes that compromise the busi-
ness value of the current scope must be addressed, and change is necessary in
order to counter those market changes. Changes that arise because of some
shortfall on the part of the customer or project team during requirements gath-
ering should not occur. These conditions are the same for both Linear and
Incremental SDPM strategies.

NOTE
Despite the fact that the Incremental SDPM strategy is scope-change intolerant, it
does have a way of accommodating scope change that the Linear SDPM strategy
does not. More on that issue can be found in Part II, in which the Linear SDPM strat-
egy is discussed.

The differences between Linear SDPM strategy and an Incremental SDPM
strategy begin in the Scope Phase. The differences are generated out of the
need for the customer to release partial solutions to the market to gain an early
market advantage. “The early deployer catches the customer”—to adapt a

C h a p t e r 11146

17_596365 ch11.qxd 2/15/06 10:32 PM Page 146

well-known aphorism to the situation at hand. Getting to market in this fash-
ion is not without its problems, however. The early feedback from the market
will undoubtedly bring with it suggestions for change to the solution. This sit-
uation cannot occur in the Linear SDPM strategy, because there is only one
deployment. That is not to say that this is wrong; it is just a fact of business life.
When employing an Incremental SDPM strategy, knowing that change is a
likely result of the early deployment, the project team needs to be ready for
whatever countermeasures make sense. The project plan will have to have
some way of accommodating change without completely upsetting the project
plan for later increments.

The Scoping Phase of the Incremental SDPM Strategy
for the Staged Delivery Waterfall Model

Figure 11-1 (which is the same as Figure 10-3) illustrates the project manage-
ment process superimposed on the Staged Delivery Waterfall Model. Note that
the project management Scoping Phase includes both the Idea Generation and
the Requirements Gathering Phases of the Staged Delivery Waterfall Model.

In this section, you will see exactly how those phases integrate to form the
Incremental SDPM strategy for the Staged Waterfall Model. The activities that
take place in the Scoping Phase of an Incremental SDPM strategy are:

■■ Developing the Project Overview Statement (POS) of the project

■■ Defining the number and duration of each increment

■■ Identifying the functionality that will be released in each increment

■■ Planning to build a deliverables-based Work Breakdown Structure (WBS)
that supports the release strategy

■■ Assuring the integrity of the dependency structure between deliverables

■■ Allocating management reserve in each increment after the first to accom-
modate processing and incorporating change requests

These topics are discussed in the subsections that follow.

Developing the Project Overview Statement of the Project
The initial meeting of the customer and the project manager is one where the
project is defined at a very high level. At this high level, the customer and the
project manager come to closure on what the project constitutes. It is docu-
mented and signed by them as the first official statement of what the project
involves. (Refer to Appendix C for a refresher on what the POS contains.) The
same exercise will be part of every SDPM strategy.

The Incremental SDPM Scoping Phase 147

17_596365 ch11.qxd 2/15/06 10:32 PM Page 147

Fi
gu

re
 1

1-
1:

In
cr

em
en

ta
l S

D
PM

 s
tr

at
eg

y
fo

r
th

e
St

ag
ed

 D
el

iv
er

y
W

at
er

fa
ll

m
od

el

D
et

ai
le

d
D

es
ig

n

Fi
rs

t
St

ag
e

Re
le

as
e

C
od

e
&

Te
st

Sy
st

em
s

Te
st

D
ep

lo
y

D
et

ai
le

d
D

es
ig

n

La
st

 S
ta

ge
 R

el
ea

se

C
od

e
&

Te
st

Sy
st

em
s

Te
st

D
ep

lo
y

Id
ea

Re
q

ui
re

m
en

ts
G

at
he

rin
g

Sy
st

em
s

D
es

ig
n

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es

St
ag

ed
D

el
iv

er
y

W
at

er
fa

ll
So

ft
w

ar
e

D
ev

el
op

m
en

t
Ph

as
es

C
LO

SE
SC

O
PE

PL
A

N
M

O
N

IT
O

R
&

C
O

N
TR

O
L

LA
U

N
C

H

17_596365 ch11.qxd 2/15/06 10:32 PM Page 148

Defining the Number and Duration of Each Increment
This will be more market-driven than technology-driven. The customer will
have certain objectives in mind that led to the choice of an Incremental SDPM
strategy. These must be supported by the decision as to the number and dura-
tion of each increment. The project team should let the customer take the lead
on the initial determination of number and length. As the project plan unfolds,
these numbers will probably change as the realities of function and feature
dependency is accounted for.

A number of companies will operate with a quarterly, semi-annual, or even
annual release schedule. To the extent possible, the increments may have to con-
form to this structure. The difficulty arises where there are several systems
dependent upon the one system following an Incremental SDPM strategy. The
solution is to appoint a person who will be responsible for ensuring the integrity
of the interface of each system dependent upon the incremental project. The case
study provides a good example of this dependency (see Figure 11-2).

If the Order Entry sub-system is developed following an Incremental
approach, there will be some parts of it that are needed by the Order Submit,
Logistics, and Inventory Management sub-systems for their development to
begin. The scheduling of the Order Entry sub-systems development incre-
ments should take these dependencies into account.

Figure 11-2: An example of system dependencies

Order
Entry

1

Order
Submit

2

Logistics
4

Routing
3

Inv
Mgmt

5

The Incremental SDPM Scoping Phase 149

17_596365 ch11.qxd 2/15/06 10:32 PM Page 149

Identifying the Functionality to Be Released in Each Increment
This is a very high-level look at the project scope. Using the Requirements
Breakdown Structure (RBS), the customer in collaboration with the project
team can allocate functionality to increments. Each increment must contain
sufficient functionality to have enough business value to justify the increment.
At the same time, each increment must preserve the dependency structure,
which will usually result in more functionality being placed in an increment
than was originally identified. A good practice is to be conservative in what
you allocate to an increment until the dependency structure is accounted for. A
high-level dependency chart can help in the allocation exercise. The next two
topics support this activity.

Planning to Build a Deliverables-Based
Work Breakdown Structure

A deliverables-based WBS is the only approach that makes sense for an Incre-
mental SDPM strategy. The reason is that the deliverables will be the very
functionality that the customer expects to see in each Incremental release.
Since the WBS was built from the RBS the deliverables will be easily attached
to the RBS. Refer to Appendix E for a more detailed description of the deliver-
ables-based WBS.

Assuring the Integrity of the Dependency
Structure Between Deliverables

This is most important. One of the major schedule risks in an Incremental
SDPM strategy is discovering a function or feature dependency that is not
accounted for in the incremental structure and sequencing. That happens more
often than you might think. For example, this happens if you are developing
the functions and features assigned to the second increment only to discover
that the first increment did not include functions or features needed to develop
and release functions or features assigned to the second increment. That obvi-
ously has major scheduling impacts.

Allocating Management Reserve
Despite all your efforts to protect the integrity of the plan, you will have scope
changes. Allocating management reserve at the end of each increment sched-
ule will buy protection against schedule risks. That management reserve could
be some percentage of the total duration planned for this increment. A per-
centage in the range of 5–15 is common. Your management objective is to not
spend that reserve but have it on hand for scope changes that are justified for
that increment.

C h a p t e r 11150

17_596365 ch11.qxd 2/15/06 10:32 PM Page 150

The Scoping Phase of the Incremental SDPM Strategy
for the Feature-Driven Development Model

Figure 11-3 illustrates the project management process superimposed on the
Feature-Driven Development Model. The resulting Incremental SDPM strat-
egy for the Feature-Driven Development Scoping Phase is quite different from
the Staged Delivery Waterfall Scoping Phase. Staged Delivery is more focused
on the customer’s need to get to market early, whereas Feature-Driven Devel-
opment is more focused on the technical architecture of the solution. The Scop-
ing Phase of a Feature-Driven Development SDPM strategy consists primarily
of collaborative sessions with the customer to model the solution and the solu-
tion approach.

In addition to preparing the Project Overview Statement, you perform seven
other tasks in sequence to produce an acceptable model of the solution. These
are drawn from Stephen R. Palmer and John M. Felsing’s A Practical Guide to
Feature-Driven Development (Prentice Hall PTR, 2002). They are briefly
described in the subsections that follow.

Forming the Modeling Team
The project manager assembles a team comprised of a number domain experts
who know and understand the business area being modeled and program-
mers who understand the development environment in which the project will
be done. The membership of the modeling team may change as needs dictate.
The domain experts represent the customer. They may be from the customer
areas, or they may be business process analysts assigned to a customer area
but reporting through an IT unit.

Conducting a Domain Walkthrough
This is a high-level overview of the business being modeled. It is conducted by
one or more domain experts who have the broadest understanding of the busi-
ness area. This places the business units in a leadership position in the process
and also creates ownership on their part. Furthermore, it helps establish a lan-
guage for communications. Any opportunity for the customer to talk about the
project from their perspective or the developer to do the same will increase the
level of understanding that each has of the other’s area. That helps not only in
gaining a better understanding of the other’s area but also in establishing a
common language for communicating. This is definitely a win-win situation,
so don’t miss an opportunity to engage the other in such conversations.

The Incremental SDPM Scoping Phase 151

17_596365 ch11.qxd 2/15/06 10:32 PM Page 151

Fi
gu

re
 1

1-
3:

In
cr

em
en

ta
l S

D
PM

 s
tr

at
eg

y
fo

r
th

e
Fe

at
ur

e-
D

riv
en

 D
ev

el
op

m
en

t m
od

el

M
od

el
 t

he
So

lu
tio

n

Sc
op

e
th

e
So

lu
tio

n

Bu
ild

 t
he

Fe
at

ur
es

Li
st

A
ss

em
bl

e
th

e
Fe

at
ur

e
Se

ts

D
ev

el
op

th
e

Fe
at

ur
e

Pl
an

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
es

ig
n

a
Fe

at
ur

e
Se

t

D
ep

lo
y?

Bu
ild

 a
Fe

at
ur

e
Se

t

Bu
ild

 a
Fe

at
ur

e
Se

t

In
te

gr
at

io
n

Te
st

In
te

gr
at

io
n

Te
st

In
te

gr
at

io
n

Te
st

Bu
ild

 a
Fe

at
ur

e
Se

t

D
ep

lo
y?

D
ep

lo
y?

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es

Fe
at

ur
e-

dr
iv

en
D

ev
el

op
m

en
t

So
ft

w
ar

e
D

ev
el

op
m

en
t

Ph
as

es

C
LO

SE
SC

O
PE

PL
A

N
M

O
N

IT
O

R
&

C
O

N
TR

O
L

LA
U

N
C

H

17_596365 ch11.qxd 2/15/06 10:32 PM Page 152

NOTE
One of the major problems in the business/technical interface is the language bar-
rier. Throughout this book and for every strategy discussed, I make every effort to
suggest ways to solidify the customer/technical relationship.

Studying Documents
All of the relevant documents that describe and document the business area
provide the foundation elements for the project. These may be business
process flow documents, requirements documents, and the RBS for the system
to be developed. If a Conditions of Satisfaction was conducted, the documen-
tation from that exchange and the deliverable (the POS) are part of the study
documents.

Developing Small Group Models
Depending on the size of the development effort, this step may be integrated
into the team model activity. If this step is done, it will produce a number of
domain models that are presented to the whole team for consideration and
selection. The purpose of the small groups is to generate models. These mod-
els will serve to identify alternative solutions from which a final model, that is,
solution, will be crafted by the modeling team.

Developing a Team Model
The team model is developed from the domain models presented. A single
model may be chosen or a hybrid formed from iterations on the presented
models. In any event, a single model emerges from this activity. If the small
group modeling exercise was done, the team model should represent the col-
lective thinking of the modeling team and be the best solution they could
devise.

Refining the Overall Object Model
This step may be used to improve on the selected model through an iterative
process. Like it or not, the initial model will not be the final model. Each incre-
ment adds another opportunity for the development team and especially
the customer to find and recommend improvements. As long as there is a good
business case for the change, it should be accommodated in some future
increment.

The Incremental SDPM Scoping Phase 153

17_596365 ch11.qxd 2/15/06 10:32 PM Page 153

Writing Model Notes
The documentation consists of notes on models considered but not used as
well as technical documentation on the object model chosen. This documenta-
tion will often consist of object classes, constraints on those classes, and busi-
ness process diagrams.

The Role of the RBS

The architecture of the RBS is the key to successful increment development
and deployment for an Incremental SDPM strategy. The RBS is a deliverables-
based structure of the requirements, functions, and features (see Figure 11-4).
The focus will obviously be on the features that are defined by the RBS. The
RBS is assumed to be a complete accounting of all features that define the solu-
tion. This is important because the balance of the systems development life
cycle depends on that completeness. The requirements, the roots of the RBS,
are seldom completely identified, and many would argue that they can never
be completely defined because that would require a crystal ball (to predict
market changes) and perfect solution knowledge on the part of the customer.
Neither of those conditions exists. Still, in any case, you have to proceed on an
assumption of completeness if you are to use an Incremental SDPM strategy.

The RBS can be generated from a series of Use Cases that define the solution or
from some other approach to generating requirements. In either case, to use
the Incremental SDPM strategy you must complete the RBS.

In the Staged Delivery Waterfall Model
For the Staged Delivery Waterfall model, the RBS is used as input to making an
initial pass at defining the contents of each increment in the development
effort. Each increment must have sufficient business value to be a valid incre-
ment in the eyes of the customer. The number of increments as well as their
durations will be determined based on the RBS and later on by the precedence
diagram.

The RBS should be viewed as any other WBS. It must be a complete WBS.
Therefore the completeness criteria apply (see Appendix E for a discussion of
the completeness criteria). That means that the feature-level decomposition
may need to be further decomposed to reach the task level. The schedule for
each increment will be built from this level of detail.

C h a p t e r 11154

17_596365 ch11.qxd 2/15/06 10:32 PM Page 154

Figure 11-4: The Requirements Breakdown Structure

In the Feature-Driven Development Model
For the Feature-Driven Development model, the lowest level of decomposi-
tion in the RBS identifies all of the features that will define the complete solu-
tion to the development project. These are known in the Scoping Phase and
will guide the scoping of the project plan.

The Role of the Precedence Diagram

From the RBS, the team can develop the precedence diagram at the function or
at the feature level. This shows how functions or features are dependent upon
one another as either predecessors or successors. The objective here is to
decide on groupings of functions/features in the successive increments of the
Staged Delivery approach or the Feature-Driven Development approach. The
next two subsections take a quick look at each approach and how the prece-
dence diagrams can be used.

In the Staged Delivery Waterfall Model
Because each successive stage is dependent upon all previous stages, it is nec-
essary that all precedence relationships be preserved. That is, whatever func-
tions/features are needed to build the current stage deliverables will have
been built in some preceding stage. In practice this is easier said than done,
especially in larger projects, where some dependencies are so elusive that they
can be discovered only during testing.

Solution

Requirement 1 Requirement n

Function
1.1

Function
1.2

Function
1.3

Function
n.1

Function
n.2

Function
n.3

Subfunction
1.2.1

Subfunction
1.2.2

Subfunction
1.2.3

Feature
1.2.1.1

Feature
1.2.1.2

Feature
1.2.1.3

Feature
1.2.1.4

Feature
n.3.1

Feature
n.3.2

Feature
n.3.3

Feature
n.3.4

The Incremental SDPM Scoping Phase 155

17_596365 ch11.qxd 2/15/06 10:32 PM Page 155

In the Feature-Driven Development Model
For this approach you find the precedence diagram serving another role. Fea-
ture sets are groupings of features based on technical relationships. Further-
more, the feature sets should be defined with minimal coupling and maximum
cohesion in mind. This is critical because the building and testing of feature
sets can occur concurrently as well as sequentially. Ideally each feature set
would be independent of any other feature set, and the problem would go
away. But that does not happen, which means that feature sets need to be
scheduled in increments to preserve any cross feature set dependencies.

Discussion Questions

1. The major weakness of Incremental approaches is that they encourage the
customer to submit scope change requests. Many of these will be legiti-
mate because of external factors, but many will simply result because cus-
tomers have seen a partial solution working and now have an idea about
how it might be improved. Any scope change request can have significant
impact on the resource schedule of future increments. What might you do
to reduce unfavorable impact?

2. The Scoping Phase of the Incremental SDPM strategy is a critically impor-
tant part of the project life cycle. If you were asked to plan a three-day
scoping exercise, what would your plan include? Prepare a detailed and
timed agenda. Be sure to include the customer as a major player in that
scoping exercise.

C h a p t e r 11156

17_596365 ch11.qxd 2/15/06 10:32 PM Page 156

Installing Custom Controls 157

The Incremental SDPM
Planning Phase
The cautious seldom err.

Confucius
Chinese philosopher and teacher

C H A P T E R 12

157

There is a great deal of similarity between the Linear and Incremental SDPM
Strategies in the Scoping Phase. Here in the Planning Phase, you begin to see
the differences between the two. Everything that is done in the Planning Phase
for the Linear SDPM strategy is done in the Planning Phase for the Incremen-
tal SDPM strategy. Those differences relate to the deployment of functionality,
and that is a major difference between the two. The deployment of functional-
ity is a planning function and is governed by two variables:

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand why you should use a deliverables form of the WBS

◆ Be able to decompose a deliverables-based WBS for the Rapid Develop-
ment Waterfall model

◆ Understand the planning phase of an Incremental SDPM strategy for the
Staged Delivery Waterfall model

◆ Understand the planning phase of an Incremental SDPM strategy for the
Feature-Driven Development model

18_596365 ch12.qxd 2/15/06 10:30 PM Page 157

■■ The first is the grouping of functionality and the assignment of those
groups to increments. The groups are formed so as to have business value.
Also, the groups must have internal cohesion and minimal coupling to
other groups.

■■ The second is the sequencing of those increments.

The sequencing output from the Scope Phase is a Project Overview Statement
(POS) and a clearly defined requirements document. Using these documents
as input to the Planning Phase, you develop a plan that follows accepted prin-
ciples and practices of traditional project management. With the design, build,
and test phases as the highest level of decomposition in the Work Breakdown
Structure (WBS), you perform a complete decomposition down to the task
level. To complete the Planning Phase, you make estimates of task duration
and resource requirements and put together an initial project schedule.

Once the requirements have been specified, you make the choice whether or
not to follow the Incremental SDPM strategy.

The Planning Phase of an Incremental SDPM Strategy

In addition to having all of the activities associated with planning a Linear
SDPM strategy, an Incremental SDPM strategy also includes the definition of
what development work will take place in each increment. This is significant
task, for it involves two concurrent and dependent activities:

■■ Decomposing the Requirements Breakdown Structure (RBS) into mini-
mally coupled and maximally cohesive sets of requirements, functions,
and features

■■ Sequencing the development work in order to preserve the dependency
relationships between the requirements, functions, and features in each
increment

In addition, it would be useful if each increment had sufficient business con-
tent to warrant its deployment. If not, the completion of the next increment
would be the next opportunity to deploy the then partial solution. The cus-
tomer would probably prefer to have deployable content at the completion of
each increment.

C h a p t e r 12158

18_596365 ch12.qxd 2/15/06 10:30 PM Page 158

Decomposing the Requirements Breakdown Structure
Figure 11-4 is reproduced here as Figure 12-1 for ease in understanding the fur-
ther decomposition and gathering of functions and features into deployable
increments.

There are three ways to proceed with the decomposition and gathering activ-
ity: by requirements, by functions, or by features. For example, you could
build an example using the requirements approach. Suppose there are 12
requirements and they have been grouped as shown in the right-hand panel of
Figure 12-2.

Requirements are first gathered using any of the approaches described in
Appendix D. As indicated, in this case you have gathered 12 requirements. In
the second step, the customer prioritizes the requirements with respect to their
business value. In the third step the customer groups the prioritized require-
ments so that each group has sufficient business value to be deployed. In this
example, you could have as many as four increments. The actual number of
increments may change as a result of imposing the dependency relationships.
Determining the actual number of increments is the topic of the next section.

Figure 12-1: The Requirements Breakdown Structure

Solution

Requirement 1 Requirement n

Function
1.1

Function
1.2

Function
1.3

Function
n.1

Function
n.2

Function
n.3

Subfunction
1.2.1

Subfunction
1.2.2

Subfunction
1.2.3

Feature
1.2.1.1

Feature
1.2.1.2

Feature
1.2.1.3

Feature
1.2.1.4

Feature
n.3.1

Feature
n.3.2

Feature
n.3.3

Feature
n.3.4

The Incremental SDPM Planning Phase 159

18_596365 ch12.qxd 2/15/06 10:30 PM Page 159

Figure 12-2: Requirements prioritization and grouping

Sequencing the Development Work
Continuing with the example illustrated in Figure 12-2, your next step would
be to build the dependency diagram for the 12 requirements. That is shown in
Figure 12-3.

In order to honor the dependency diagram and hold to the requirements pri-
oritizations, you will have two increments.

■■ The first consists of building Group B initially and then following it with
Group A. The first deployment will be the Group B and A requirements.

■■ The second increment consists of building Group D and then Group C.
The second deployment will be the Group D and C requirements.

If you define the increments based only on the dependencies between require-
ments, you would have no fewer than four increments:

■■ First increment—Requirements 4, 5, 10, and 11

■■ Second increment—Requirements 7, 1, 9, and 6

■■ Third increment—Requirements 8, 3, and 2.

■■ Fourth increment—Requirement 12.

Requirement #01

Requirement #02

Requirement #03

Requirement #04

Requirement #05

Requirement #06

Requirement #07

Requirement #08

Requirement #09

Requirement #10

Requirement #11

Requirement #12

Requirement #04

PRIORITIZED

Requirement #07

Requirement #10

Requirement #01

Requirement #05

Requirement #09

Requirement #12

Requirement #03

Requirement #08

Requirement #11

Requirement #06

Requirement #02

Requirement #04Group A

Group B

Requirement #07

Requirement #10

Requirement #01

Requirement #05

Group C

Requirement #09

Requirement #12

Group D

Requirement #03

Requirement #08

Requirement #11

Requirement #06

Requirement #02

GROUPED

C h a p t e r 12160

18_596365 ch12.qxd 2/15/06 10:30 PM Page 160

Figure 12-3: Requirements dependency diagram

This approach to decomposition and sequencing scales very well so that, if
you choose to decompose to the function or feature level, the same steps work
just fine. The one constant through any of these three approaches is to proceed
based on customer priorities rather than dependencies. That way you ensure
business value as soon as possible. Using the dependency approach by itself
does not necessarily result in deployable increments. Increments may have to
be piggybacked to ensure business value in a deployment.

The Planning Phase of an Incremental SDPM Strategy
for the Staged Delivery Waterfall Model

Figure 12-4 is the Planning Phase of the Incremental SDPM strategy for the
Staged Delivery Waterfall model.

Requirement
Group A #4

Requirement
Group A #7

Requirement
Group C #8

Requirement
Group A #10

Requirement
Group A #1

Requirement
Group C #3

Requirement
Group B #5

Requirement
Group B #9

Requirement
Group D #2

Requirement
Group C #12

Requirement
Group D #11

Sequence:
Increment #1: Group B then Group A
Increment #2: Group D then Group C

Requirement
Group D #6

The Incremental SDPM Planning Phase 161

18_596365 ch12.qxd 2/15/06 10:30 PM Page 161

Figure 12-4: Planning Phase of an Incremental SDPM strategy for the Staged Delivery
Waterfall model

For planning the Incremental SDPM strategy for the Staged Delivery Waterfall
model, you would know all of the planning input. The RBS would have been
generated during the Scoping Phase and is all of the input needed to build a
complete project plan. There are six major tasks that you need to do to gener-
ate the project plan. They are:

■■ Building the complete WBS

■■ Estimating task duration

■■ Estimating resource requirements

■■ Building the precedence diagram

■■ Allocating functions and features to determine number of stages

■■ Creating the initial project schedule

Each of these tasks is briefly described in the following subsections.

Building the Complete WBS
The RBS is the only input needed here. The RBS is a deliverables-based WBS
and needs only to be further decomposed to the task level. Each feature is
therefore decomposed until it satisfies the completion criteria. See Appendix E
for details.

Estimating Task Duration
Features are rather primitive deliverables and the clock time needed to build
them should be easy to estimate. Features are likely to have been defined for
other projects. If they are not exactly the same, they will be fairly similar and
so estimation of duration should be rather straightforward.

Requirements
Gathering

Systems
Design

Staged Delivery
Planning Phase

Project
Management
Phases

Plan

C h a p t e r 12162

18_596365 ch12.qxd 2/15/06 10:30 PM Page 162

Estimating Resource Requirements
This will be a relatively simple task because the estimate is covering a single
feature. The required skill sets by position title is sufficient.

Building the Precedence Diagram
This task and the next are where the planning team and the customer will earn
their wages. The precedence diagram should be built at the feature level. In some
cases the function level may work, but the risk is that the stages will not be as
easily defined and may end up containing far more features than a feature-level
approach would have generated. The extra work of generating a feature-level
precedence diagram will result in a more effective and efficient project plan.

Allocating Functions and Features to Determine
Number of Stages

The precedence diagram is the only input needed for this task. A close inspec-
tion of the precedence diagram will highlight streams of dependent tasks that
should be allocated to the same stage. While not necessary, allocating depen-
dent tasks to the same stage increases the cohesion within the stage to which
they are assigned. Figure 12-5 gives a generic example of what you might
expect to see in a typical dependency diagram.

Figure 12-5 is the dependency diagram for the case study. The tasks are
defined as follows:

S0 Start

S1 RBS for the Order Entry Sub-system

S2 RBS for the Order Routing Sub-system

S3 RBS for the Order Fulfillment Sub-system

S4 Design the Customer Profile Sub-system

S5 Design the Order Taking Sub-system

S6 Design Order Routing Sub-system

S7 Design Order Fulfillment Sub-system

S9 Design Integration

S10 Coding of the Order Entry Sub-system

S11 Coding of the Order Routing Sub-system

S12 Coding of the Order Fulfillment Sub-system

S13 Integration Testing

S14 System Testing

The Incremental SDPM Planning Phase 163

18_596365 ch12.qxd 2/15/06 10:30 PM Page 163

Fi
gu

re
 1

2-
5:

A
ty

pi
ca

l d
ep

en
de

nc
y

di
ag

ra
m

 s
ho

w
in

g
st

re
am

s
of

 d
ep

en
de

nt
 ta

sk
s

S3
S7

S7 S7

S7 S7

S7 S7

S0
S2

S6
S9

S6 S6

S1
0

S1
0

S6 S6

S1
1

S1
1

S6 S6

S1
0

S1
3

S1
3

S1
4

S1
0

S1
0

S1

S1
2

S1
2

S1
2

S1
2

S1
2

S4 S5
S5S4 S4

S1
1

S1
1

S5
S5

S4
S4

S4
S4

S8

18_596365 ch12.qxd 2/15/06 10:30 PM Page 164

When you consider the dependency diagram, you have several ways to allo-
cate these development streams to stages. For example:

■■ Stage 1—S4, S5, and S8

■■ Stage 2—S6 and S7

■■ Stage 3—S9

■■ Stage 4—S10 (deploy Order Entry Sub-system)

■■ Stage 5—S11 and S13 (deploy Order Routing Sub-system)

■■ Stage 6—S12, S13, and S14 (deploy Order Fulfillment Sub-system)

Creating the Initial Project Schedule
Once you have the stages laid out, you have a plan for scheduling the design
team in sequence. For instance, the example stages at the end of the previous
section lay out schedule the design team in sequence for the project—once a
design team has finished the design of say the Order Entry Sub-system, they
can move to the Order Routing Sub-system and then to the Order Fulfillment
Sub-system. If the systems design bench strength is sufficient, you might
choose to approach all three design streams concurrently.

CROSS-REFERENCE
The option of working on streams concurrently is discussed in Chapter 19.

In the Incremental SDPM strategy for the Staged Delivery Waterfall model the
major scheduling problem is to keep the dependency relationships consistent
between stages. By first examining the dependency diagrams for the entire
project, you can allocate tasks to stages to preserve those relationships. That
will be fairly straightforward. The only other consideration will be to allocate
enough tasks to a stage so that a deployable partial solution can be generated
from the stage. If that is not a consideration, there should be no other issues to
deal with.

The Planning Phase of an Incremental SDPM Strategy
for the Feature-Driven Development Model

Figure 12-6 is the Planning Phase of the Incremental SDPM strategy for the
Feature-Driven Development model.

The Incremental SDPM Planning Phase 165

18_596365 ch12.qxd 2/15/06 10:30 PM Page 165

Figure 12-6: Planning Phase of an Incremental SDPM strategy for the Feature-Driven
Development model

Four major activities make up the SDPM Planning Phase of an Incremental
SDPM strategy for the Feature-Driven Development model:

■■ Modeling the solution

■■ Building the feature list

■■ Assembling the feature sets

■■ Develop the feature plan

They are briefly described in the following subsections.

Modeling the Solution
The project manager assembles the modeling team, which comprises domain
experts (customers) and developers. Under the direction of a Chief Architect
(who is an experienced object modeler) a walkthrough of the project scope is
conducted. Domain areas to be included in the final solution are identified, and
small subteams are commissioned to model each domain in turn. From among
the models submitted for each domain, a single model is chosen; it might be one
of the suggested models or a hybrid of the submitted models. After a model of
each domain is developed, a consolidation produces the overall model solution.
This model may be updated later in the life cycle of the project.

Building the Feature List and Assembling Feature Sets
The RBS is the recommended approach to building the feature list. The domains
identified in the modeling activity are the starting point. Each domain is decom-
posed into the functionality needed to satisfy the overall solution. Functionality

Scope the
Solution

Feature-Driven
Development
Plan Phase

Project
Management
Phases

Plan

Model the
Solution

C h a p t e r 12166

18_596365 ch12.qxd 2/15/06 10:31 PM Page 166

can then be decomposed into major feature sets and each feature set further
decomposed into the minor features that compose that set.

Developing the Feature Plan
The deliverable here is the sequencing of features sets based on the technical
dependency relationships between feature sets. You need to consider two sep-
arate scenarios: Feature sets built sequentially and feature sets built concur-
rently and sequentially.

Feature Sets Built Sequentially

The only issue here is to make sure that, for a given feature set, all of the pre-
decessor features have already been built in a previous increment. For rela-
tively large projects this is not a trivial task. The downside is to reach a spot in
one increment only to realize that a feature that is needed has not been previ-
ously built. Err on the side of giving due consideration to this sequencing task.

Feature Sets Built Concurrently and Sequentially

Sequencing is done as discussed previously. To that complexity you have to
factor in concurrent feature set design and build activities. It will usually hap-
pen that concurrent feature sets will not be technically independent of one
another. Therefore there will be some degree of coupling between feature sets
that are being concurrently designed and built. The schedules of each of these
parallel swim lanes will have to account for those dependencies.

Discussion Questions
1. You are Pepe Ronee and are planning an Incremental SDPM strategy for

the Staged Delivery model. You have this gnawing feeling that the cus-
tomer will discover scope changes as a result of working with the solution
delivered from an earlier increment. Is there a strategy that you might
adopt in the planning phases to minimize the adverse impacts of scope
changes? What about after the project has started and scope change
requests arise? How would you deal with that eventuality?

The Incremental SDPM Planning Phase 167

18_596365 ch12.qxd 2/15/06 10:31 PM Page 167

18_596365 ch12.qxd 2/15/06 10:31 PM Page 168

Installing Custom Controls 169C H A P T E R 13

169

The Incremental SDPM
Launching Phase
Efficiency and economy imply employment of the right
instrument and material as well as their right use in the
right manner.

Louis Dembitz Brandeis
U.S. Supreme Court Justice

All of the Launching Phase discussion for the Linear SDPM strategy situation
applies to the Incremental SDPM strategy and will not be repeated here (you
can read more about the Launching Phase for a Linear SDPM strategy in
Part II). Incremental SDPM strategy projects follow the same procedures as by-
the-book projects, except they repeat those procedures several times over the
life of the project. Within a single repetition, all of the launching activities done
in the Linear SDPM strategy are done in the Incremental SDPM strategy. How-
ever, you do have some additional considerations, and they arise out of the

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the complications added to the Launch Phase when using an
Incremental SDPM strategy

◆ Plan for scope change requests

◆ Anticipate and mitigate resource scheduling situations

◆ Anticipate and mitigate increment scheduling changes

◆ Understand the launch activities of the Incremental SDPM strategy for the
Staged Delivery Waterfall model

◆ Understand the launch activities of the Incremental SDPM strategy for the
Feature-Driven Development model

19_596365 ch13.qxd 2/15/06 10:30 PM Page 169

repetitive nature of the Incremental project. This chapter identifies those addi-
tional considerations and discusses how they are handled in the Launching
Phase of Incremental SDPM Strategies for both the Staged Waterfall model and
the Feature-Driven Development model.

The Launching Phase of an Incremental SDPM Strategy

Four tasks must be done in the Launch Phase of an Incremental project that are
not done in the Launch Phase of a Linear project. They are as follows:

■■ Handling scope change

■■ Handling increment handoffs

■■ Scheduling resources

■■ Scheduling increments

These are discussed in the subsections that follow.

Handling Scope Change
This is not a discussion of the scope change management process. That has
already been defined. Rather, this is a discussion of how to handle a scope
change request. You no doubt recall that an Incremental SDPM strategy project
is one in which all of the requirements have been defined and minimal changes
are expected. In fact, the Incremental SDPM strategy is rather change-intolerant,
as you know from earlier discussion in this book. Yet, at the same time, choos-
ing an Incremental approach brings with it the encouragement of scope change.
The customer works with and experiences the functionality in each increment,
and they will undoubtedly find other things they would have liked in the
release if they had only realized it. The current increment gives them the boost
they needed to realize the improvement and to make the scope change request
to have it implemented in a future increment. This behavior is not unexpected.
The fragile nature of requirements gathering will undoubtedly leave some
gaps. The customer simply cannot envision everything they need in the solu-
tion. It is probably a reasonable request, so what do you do with it?

First of all, don’t change the current increment plan to accommodate the scope
change request. Instead, complete the project impact statement. Leave the
implementation of the scope change request for the next or some later incre-
ment. As you look forward to the Iterative, Adaptive, and Extreme SDPM
strategies, this same logic will apply. All scope change requests are put in the
priority list for consideration in a future increment or iteration. Increments are
too short to consider changing once they have begun. Leave change integra-
tion for a later cycle.

C h a p t e r 13170

19_596365 ch13.qxd 2/15/06 10:30 PM Page 170

The solution to handling scope change requests lies back in the Planning
Phase. There are two planning situations to consider: a comprehensive incre-
ment plan and an increment-by-increment plan.

Comprehensive Increment Plan

The comprehensive increment plan includes the scheduling and resource
loading of every increment. In anticipation of scope change requests from the
just-completed increment, include a scope bank in the next increment to
accommodate scope change requests so that each increment has a scope bank
to handle scope change requests from the previous increments. For example,
the scope bank for Increment 2 would be some percentage of the total labor
estimated for Increment 1. Something like 10–15 percent would be sufficient.
That allows some tine in Increment 2 to process scope change requests that
arise from the customer as they experience Increment 1 functionality. If that
time is not used to process scope change requests it can be used to give the cus-
tomer some time to work with the just released increment in preparation for
the next increment.

Increment by Increment Plan

This project plan schedules only one increment at a time. The schedule for
Increment 2 is built at the completion of Increment 1. The customer has a nar-
row window of time within which to exercise the Increment 1 functionality
before they have to commit to any scope change requests to be accommodated
in Increment 2 or some later increment.

You need to be aware of four risks to this approach. They are listed in the sub-
sections that follow and briefly described.

Customer Delays

The customer may not be as responsive to the increment release as you would
like them to be. They need time to digest what you have given them. They may
have questions for clarification, or they may want to get feedback from others
in their organization. All of this adds to the quality of the final solution, but it
does insert delays into the project and the start of the next increment.

Unavailability of Resources

In a resource-constrained organization, the increment-by-increment plan risks
the loss of one or more resources that could have been committed had a com-
prehensive increment plan been used. This may cause delays in getting the
next increment launched.

The Incremental SDPM Launching Phase 171

19_596365 ch13.qxd 2/15/06 10:30 PM Page 171

Loss of Priority

Some other project may be given a higher priority than yours and have first
choice on resources. That will bring further delays to the planning and starting
of your next increment.

Senior Management Delays

In the time between increments, when the customer is getting familiar with the
just released functionality and you are beginning to plan for the next increment,
senior management might have a change of heart with respect to your project.
You could find yourself working on some other short-term project or task with
the promise that once finished you can return to your current project.

Increment Handoffs
There is no guarantee that the team who worked on the just completed incre-
ment will work on the next or any other increment for this project. This is espe-
cially true if you are using the increment-by-increment plan approach.
Priorities of other projects and resource availability determine whether or not
you can retain the same team from increment to increment. Because of the like-
lihood of staffing changes between increments you must have clear documen-
tation describing the just completed increment so that the new team members
can pick up where their predecessors left off. In effect what is needed is an
“increment notebook.” This is not much different than a project notebook
except it applies only to an increment of a project that is not yet complete. It
should also be a cumulative notebook. All previous increments will be docu-
mented for all teams to follow.

Scheduling Resources
Scheduling a resource for a continuous effort on a task is far less complicated
than scheduling a resource for several discontinuous efforts on the same or dif-
ferent tasks. In the case of an incremental project, that resource will work on a
task in increment 1 and then work on a same-skill task in increment 2 and so
on. The resource manager will prefer to know when the resource will be
needed over the entire project rather than just one increment at a time.

Scheduling Increments
The project plan for the Incremental SDPM strategy probably includes the
complete schedule of all increments and the resources as well. That is certainly
one approach and the one that would seem to make the most sense. Resource
managers want to know when they have to commit their staff to projects.

C h a p t e r 13172

19_596365 ch13.qxd 2/15/06 10:30 PM Page 172

Alternatively, the project plan might include commitments only for the first
increment. It has to do with the volatility of the organization, the length of the
increment, and the depth and breadth of the resource pool.

The Launching Phase of an Incremental SDPM Strategy
for the Staged Waterfall Model

The Launching Phase of an Incremental SDPM strategy for the Staged Water-
fall model deals with all four of the considerations stated previously for the
generic Incremental situation.

Handling Scope Change
First, you have to assume that scope change requests are inevitable. No matter
how much effort was spent on requirements gathering and documentation,
you will face changes. For projects that affect infrastructure only, you may
have fewer scope change requests. For those that have an external impact on
markets, customers, and competition, many scope change requests are possi-
ble. For infrastructure projects, the requirements are generally the result of
internal business processes and, hence, are better defined. They tend to be sta-
ble in comparison to projects that are externally focused. The externally
focused projects are subject to the whims of the market, which are constantly
changing. That tells you something about which planning approach you
should choose. In other words, infrastructure projects respond well to Linear
approaches, whereas externally facing projects should follow an approach that
offers more flexibility, that is, Incremental approaches.

Comprehensive Increment Plan

The comprehensive plan schedules all increments. What is to be built in each
increment, the resource schedule, and expected completion date of the incre-
ment are put in place for all increments. If accommodations have been made
via a scope bank, the impact of unexpected scope change requests can be held
to a minimum. With infrastructure projects there will be more stability in the
requirements and, hence, less change through discovery. That certainty means
that little time will be wasted in building the complete and comprehensive
plan. If there is some doubt about that stability, an increment-by-increment
plan might be the better choice.

The Incremental SDPM Launching Phase 173

19_596365 ch13.qxd 2/15/06 10:30 PM Page 173

Increment by Increment Plan

For those projects that affect or are affected by external factors, the increment-
by-increment plan may be the better choice. That follows from the fact that
between increments adjustments can be made and accommodated into the
plan going forward. By building that plan on an increment-by-increment basis
there is less wasted time (the result of plans that are never followed because of
scope changes). The risk is that in between increments the priorities of the
organization can change and resources could get reassigned. That puts the
continuation of the project to the next increment at great risk. The organization
might decide that the functionality in the just completed increment is suffi-
cient and the business can get along for a while with the current solution.

Increment Handoffs
The safe assumption to make is that a new team will continue with the next
increment. Because availability is often treated as a skill, you might also
assume that the new team will not be up to speed on the project and may not
be the best mix of skills to take on the next increment. Anything that can be
passed on to them is helpful. These situations obviously put the project at
great risk.

NOTE
This is one of the major weaknesses of the Incremental SDPM strategy as compared
to the Linear SDPM strategy. The Incremental SDPM strategy requires considerably
more documentation than does the Linear SDPM strategy, regardless of the model
being used.

Scheduling Resources
The project manager needs to work closely with all resource providers to make
sure that the resources committed to each increment are in fact committed. That
means having a strong communications plan in place with periodic reminders
of those commitments. Any change in the project plan resulting from slippages
should be communicated to the resource managers. Manage expectations to the
best of your ability. Keep the resource managers and customers fully aware of
any compromises to the plan. If you have chosen to use a comprehensive plan,
this is critical. If you have chosen to use an increment-by-increment plan, keep
those involved in the current increment fully aware of your status. There
should be no surprises. This advice is particularly important for any project
that is done in cycles but applies equally well to all projects.

C h a p t e r 13174

19_596365 ch13.qxd 2/15/06 10:30 PM Page 174

Scheduling Increments
The major drawback to the comprehensive plan is the amount of rework that
the plan must undergo. Any schedule change in the current increment will
most likely affect all future increments. That translates into non-value-added
work for all of the detailed increment planning. Projects are almost always on
aggressive schedules, and you should avoid non-value-added work whenever
possible. That is certainly the case with the Staged Delivery Waterfall model
using the Incremental SDPM strategy. Choose your approach carefully; both
have advantages and disadvantages, and only you can determine which
approach might help you avoid the waste of non-value-added work.

The Launching Phase of an Incremental SDPM Strategy
for the Feature-Driven Development Model

The Launching Phase of the Incremental SDPM strategy for the Feature-
Driven Development model has all of the issues of the Staged Delivery Water-
fall model and then some. The sequential increments can have concurrent
swim lanes within the same increment. That makes life more difficult for the
project manager for at least the following reasons:

■■ Scope changes can be affected by precedence relationships.

■■ Features not yet developed may render scope change requests unnecessary.

These difficulties are discussed in the subsections that follow.

Scope Changes Can Be Affected by Precedence Relationships
Scope changes do not necessarily align themselves to feature sets. By experi-
encing a feature set that has been completed, the customer may identify a
needed change that has nothing to do with the feature set they experienced.
Customers think in terms of functions and the features that support them.
They do not think in terms of feature sets. Feature sets are not natural occur-
rences to customers. Therefore, their scope change request may be unrelated to
the feature set from which the request emanated. Instead, it may be related to
another feature set not yet developed, and therefore, it cannot be implemented
until that feature set on which the change depends is built. The unfortunate
thing about this situation is that it may not make any sense to the customer.
The burden of an explanation is on the shoulders of the project team and prob-
ably the project manager.

The Incremental SDPM Launching Phase 175

19_596365 ch13.qxd 2/15/06 10:30 PM Page 175

Features Not Yet Developed May Render Scope Change
Requests Unnecessary

Feature sets are formed of features that are technically related to one another.
Often the features in a feature set are related to a single function, but that is not
a requirement. Furthermore, those features may not represent all of the fea-
tures for the specific piece of functionality. What that means is a scope change
based on the customer’s experience could be based on an incomplete function
whose feature set is not representative of all the features associated with that
specific piece of functionality. Later feature sets might complete the function-
ality and might also contain the very scope change request that the customer
has submitted. The customer wasted their time, but didn’t realize it at the time
because they did not have all the necessary information they needed. Further,
the project team wasted their time completing the project impact statement for
the scope change request. The situation is confusing and should not have hap-
pened, but it is unavoidable.

Discussion Questions
1. You are Pepe Ronee, and you have run the Incremental SDPM strategy by

the book. But you have this gnawing feeling that what Dee wants is not
what she needs. Within the context of the Incremental SDPM strategy
what could you do?

C h a p t e r 13176

19_596365 ch13.qxd 2/15/06 10:30 PM Page 176

Installing Custom Controls 177C H A P T E R 14

177

The Incremental SDPM Monitoring
and Controlling Phase
My experience of the world is that things left to
themselves don’t get right.

Thomas Henry Huxley
English biologist

Like the Linear SDPM strategy, the Incremental SDPM strategy is plan-driven.
Conformance to plan, schedule, and budget is of the utmost importance. That
calls for a structured project performance reporting system, mostly electronic
or hardcopy reports distributed on a scheduled basis to a targeted group of

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the Incremental SDPM strategy

◆ Discuss the role of project reviews in the Incremental SDPM strategy

◆ Implement strategies to handle the Incremental project from scope change
requests

◆ Understand the role of the Scope Bank and management reserve and when
to use them

◆ Adapt milestone trend charts to the Incremental SDPM strategy

◆ Understand the Incremental SDPM strategy for the Staged Delivery Water-
fall model

◆ Understand the Incremental SDPM strategy for the Feature-Driven Develop-
ment model

20_596365 ch14.qxd 2/15/06 10:27 PM Page 177

stakeholders. You will have versions for immediate managers, senior man-
agers, customers, and other stakeholders. Reports within the team are usually
electronic, especially as the team size grows and the team is dispersed around
the country or the world. A higher level reporting takes place at milestone
events, which typically line up at the completion of each of the increments.
These reporting venues may be formal presentations to the stakeholders and
customers. Most should contain a formal project review, as discussed in the
Linear SDPM strategy models. For larger projects, the milestone events may be
the completion of the design, build, and test phases within each increment.
This chapter spends some time discussing reporting at all levels.

The Monitoring and Controlling Phase
of an Incremental SDPM Strategy

Figure 14-1 illustrates the Monitoring and Controlling Phase of an Incremental
SDPM strategy.

Note first that the Monitoring and Controlling Phase of an Incremental SDPM
strategy is two-pronged. The first prong focuses on the Design Phase, which is
a one-time phase. Design was scheduled and resourced as part of the Planning
Phase and the Monitoring and Controlling Phase reports against that schedule,
resource usage, and budget. The second prong focuses on the Build, Test, and
Deploy Phases. Here again the focus of the Monitoring and Controlling Phase
is to report against that schedule, resource usage, budget, and deliverables.

Figure 14-1: The Monitoring and Controlling Phase of an Incremental SDPM strategy

Incremental
Software
Development
Phases

Project
Management
Phases

DESIGN DEPLOY

MONITOR
&

CONTROL

BUILD TEST

C h a p t e r 14178

20_596365 ch14.qxd 2/15/06 10:27 PM Page 178

Project Review Sessions

Within each increment there will be a number of milestone events, as was the
case for the linear approach, which has only one increment. At each incre-
ment’s milestone events, a project review should be held. The purpose of these
review sessions is to ascertain the performance of the project against the incre-
ment’s plan. A typical review session will be attended by three or more senior
project managers who do not have a vested interest in the project being
reviewed, by a manager from the Project Management Office (if there is a
PMO), the project manager of the project being reviewed, and any other per-
sons who are associated with the project being reviewed and who the project
manager feels would have valid input. Because there will be incremental
deliverables in each increment, these are serious sessions. In them the project
manager must review the increment plan and the status of the plan. If there are
problems, you should have a presentation of them, their cause, and the fix that
is in place. Because later increments depend on the successful completion of
the present increment, it is critical to the success of the project that delays
within an increment do not occur. Just the need to reschedule resources in later
increments because of slippages in the present increment is enough to encour-
age maintenance of the plan. At the next project review it is expected that the
project manager will update the reviewers as to the outcome of the fix. The
reviewers have three purposes in mind for these sessions.

■■ Compliance to the established project management processes—The
project manager must show how that has been achieved or establish a
rationale for whatever departure from the process was followed and why
it was followed. In the incremental approach there will be more occasions
to depart from process than was the case in the linear approach. That fol-
lows from the brevity of each increment and its focus on a subset of the
deliverables. The needs of an increment will often be a subset of the needs
of the entire project.

■■ To review status against plan—They will be looking for variances that
might foreshadow problems or continuing trends that need the attention
of the project team. The incremental approach is far more complex than
the linear approach and hence these variances should have closer scrutiny
than in the linear approach. The complexity follows from the series of
increments that are dependent upon one another. That situation does not
exist in the linear approach.

The Incremental SDPM Monitoring and Controlling Phase 179

20_596365 ch14.qxd 2/15/06 10:27 PM Page 179

■■ To offer suggestions and strategies to address any issues raised in the
previous two paragraphs—If such are offered, it will be incumbent on the
project manager to either reject them with good reason or adopt them and
report the outcome at the next project review.

WARNING
Reviews in the Incremental approach, just as in the Linear approach, can often
present unexpected problems. It is easy to politicize reviews. They provide a forum
for others to jockey for positions of power or set the stage for their own self-serving
purposes. In the incremental approach these can generate problems in later incre-
ments. Reviews can expose hidden problems in the enterprise that others would just
as soon keep hidden. Thus, the review becomes a formality without any real reason
for being done. In some organizations reviews are intimidating. The project manager
is raked over the coals, many times for problems outside his or her scope of author-
ity and control. Finally and ultimately, a review can and should present a significant
opportunity to share lessons learned. Don’t miss the opportunity.

Incremental SDPM Strategy for the Staged Delivery
Waterfall Model

When you are using the Incremental SDPM strategy for the Staged Delivery
Waterfall model (see Figure 14-2), the project reviews should come at the com-
pletion of each major phase in the software development process.

That would mean project reviews should come at the milestone events within
each increment where sign-off has been obtained for Detailed Design, Code
and Test, and Systems Test.

Incremental SDPM Strategy for the Feature-Driven
Development Model

When you are using the Incremental SDPM strategy for the Feature-Driven
Development model (see Figure 14-3), the project reviews should come at the
completion of each phase in the software development process.

That would mean project reviews should come at the milestone events within
each feature set development where sign-off has been obtained for Feature Set
Design, Build, and Integration Test. Other reviews may be scheduled for the
concurrent swim lanes to ensure those efforts are moving along according to
the plan.

C h a p t e r 14180

20_596365 ch14.qxd 2/15/06 10:27 PM Page 180

Figure 14-2: The Incremental SDPM strategy for the Staged Delivery Waterfall model

When a project becomes distressed, scheduling additional project reviews
with the purpose of correcting the problem and restoring the project is com-
mon practice. The target is to bring all the swim lanes to completion on sched-
ule so as not to delay the start of integration testing. The latest-to-complete
swim lane drives the start of integration testing.

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

System
Test

Deploy

Detailed
Design

Last Stage Release

Code &
Test

System
Test

Deploy

Staged
Delivery
Waterfall
Model
Development
Phases

Project
Management
Phases

MONITOR
&

CONTROL

The Incremental SDPM Monitoring and Controlling Phase 181

20_596365 ch14.qxd 2/15/06 10:27 PM Page 181

Fi
gu

re
 1

4-
3:

Th
e

Li
ne

ar
 S

D
PM

 s
tr

at
eg

y
fo

r
th

e
Fe

at
ur

e-
D

riv
en

 D
ev

el
op

m
en

t m
od

el

Bu
ild

 t
he

Fe
at

ur
es

Li
st

A
ss

em
bl

e
th

e
Fe

at
ur

e
Se

ts

D
ev

el
op

th
e

Fe
at

ur
e

Pl
an

D
es

ig
n

Fe
at

ur
e

Se
t

D
es

ig
n

Fe
at

ur
e

Se
t

D
es

ig
n

Fe
at

ur
e

Se
t

D
ep

lo
y?

Bu
ild

Fe
at

ur
e

Se
t

Bu
ild

Fe
at

ur
e

Se
t

Te
st

Te
st

Te
st

Bu
ild

Fe
at

ur
e

Se
t

D
ep

lo
y?

N NN

Y Y Y
D

ep
lo

y?

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es

Fe
at

ur
e-

D
riv

en
D

ev
el

op
m

en
t

Ph
as

es

M
O

N
IT

O
R

&
C

O
N

TR
O

L

20_596365 ch14.qxd 2/15/06 10:27 PM Page 182

WARNING
Be prepared to move resources from one swim lane to another to bring the latest
swim lane to completion as early as possible. These reassignments are not without
their price. Every reassignment adds a bit of transition and ramp-up time to the tasks
that are inherited by the resource you have moved. The most talented and adaptive
of your team members should be the ones you consider for these reassignments.

Scope Change Management

Why have this section in this chapter given that you assume requirements,
functions, and features are completely and clearly defined and documented
just as in the case of linear strategies? Well, things aren’t always what they
seem to be. Even though your assumption holds, the world doesn’t stand still
for you. The business world changes and some of those changes can affect
your project. So despite the fact that you weren’t expecting any changes, you
shouldn’t be overly concerned that they will happen. The material that follows
addresses just why this is so.

WARNING
The customer has a very different view of change than does the developer. Cus-
tomers tend to view change as simpler than the developer. They don’t see the system
ramifications to what appears to be a very simple request. Developers, on the other
hand, see all sorts of ghosts and goblins in even the simplest of requests. The
request can indirectly affect all uses of the variables or parameters that are directly
affected. The design is compromised and must be revised. The database design and
layout is affected because longer character strings result from the change request,
and so on.

Protecting the Incremental SDPM Strategy Project Against the
Impact of Scope Change

There are two different strategies that I discussed in the Linear approach in
Chapter 7 that apply to the incremental approach as well. The first is manage-
ment reserve. The second is to change to an Iterative SDPM strategy. I want to
take a look at each one.

The Incremental SDPM Monitoring and Controlling Phase 183

20_596365 ch14.qxd 2/15/06 10:27 PM Page 183

Management Reserve

In the Linear approach, management reserve was a task added to the end of
the project to accommodate additional time for contingencies. In the Incre-
mental approach, the same idea applies except the additional time is added at
the end of each increment. If it is needed, it is available. If not, it is unspent,
and the project moves to the next increment where another management
reserve is defined. Management reserve is not cumulative through the project.
It applies only to the increment in which it is defined. Otherwise, it works exactly
as was explained in Chapter 7.

Change to an Iterative SDPM Strategy

Although the Incremental SDPM strategy can accommodate a certain amount
of change, there is a limit. At some point you may experience so much change
that it begins to negatively affect the plans for future increments. That is a sign
that a further change in approach is called for. The preferred change would be
an approach that accommodates change. That would be the Iterative SDPM
strategy, which is discussed in Chapters 17–23. The Iterative approach expects
change as a result of less-than-complete descriptions of the features of the
solution. Some are missing, and that is the reason for choosing this approach.
As each increment unfolds, the customer discovers something that was miss-
ing from the initial requirements gathering exercise. That gives rise to a scope
change request. In the Incremental approach, that creates scheduling prob-
lems. In the iterative approach, that is expected.

WARNING
Pay careful attention to the frequency and trend in scope change requests. If they
are increasing in number, you may have chosen the wrong approach. If they are
occurring at a constant rate for any period of time, you may have chosen the wrong
approach. Consider a change to an Iterative SDPM strategy.

Discussion Questions
1. There are too many scope change requests and they are taking away from

project work time to the point where the Incremental schedule is now in
jeopardy. You did not include management reserve time or a scope bank
at the beginning of any increment. Is it too late to introduce them now? If
not, how would you go about introducing these ideas? Be specific. Do you
have any other suggestions for protecting the project schedule?

C h a p t e r 14184

20_596365 ch14.qxd 2/15/06 10:27 PM Page 184

Installing Custom Controls 185C H A P T E R 15

185

The Incremental SDPM
Closing Phase
We cannot afford to forget any experiences, even the
most painful.

Dag Hammerskjold
Secretary of the United Nations

Once the customer has signed off that the requirements have been satisfactorily
met, the closing phase begins. That sounds like a simple transition but is it?

The Closing Phase of the Incremental SDPM Strategy

Figure 15-1 illustrates the Closing Phase of the Incremental SDPM strategy.
First note that there are really two parts to the Closing Phase:

■■ Closure with respect to each of the increments

■■ Closure with respect to the completed project

There are some similarities between these two but some important differences
as well.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Closing Phase of the Incremental SDPM strategy

◆ Have a working knowledge of the Closing Phase of the Incremental SDPM
strategy for the Staged Delivery Waterfall model

◆ Have a working knowledge of the Closing Phase of the Incremental SDPM
strategy for the Feature-Driven Development model

21_596365 ch15.qxd 2/15/06 10:28 PM Page 185

Figure 15-1: The Closing Phase of the Incremental SDPM strategy

The similarities center on requirements satisfaction at the completion of each
increment. Remember that the functionality and features allocated to each
increment were those that had sufficient business value to the client to be
released to the market and its buying public.

Requirements validation should be done on an increment-by-increment basis
by comparing the actual features and functions against the planned features
and functions. All of this would have been documented in an increment accep-
tance test procedure developed and approved by the customer and the project
manager during the planning phase. As long as that document is kept current,
the validation entails nothing more than demonstrating that all items on the
acceptance test procedure list for that increment have been checked off. If the
document has not been kept current, then validation becomes a shooting con-
test and the customer usually wins. Because the Incremental SDPM strategy is
based on the assumption of clearly defined and documented requirements,
validation should be straightforward. But that doesn’t mean it should not be a
formal process from initial definition through to final acceptance. Regardless
of the due diligence with which requirements were gathered and documented,
there will be changes. Those changes will be brought on by the customer and
the end user using the solution deployed in an earlier increment and suggest-
ing change. That is just a reality that you have to live with and be prepared to
have happen.

Incremental SDPM Strategy for the Closing Phase of
the Staged Delivery Waterfall Model

Figure 15-2 illustrates the Closing Phase of the SDPM strategy for the Staged
Delivery Waterfall model.

Here the dynamics of closing are clearly shown. As you can see, at each incre-
ment there is a formal “closing of the increment.” The two critical parts of that
closing are the acceptance criteria and the lessons learned. These are discussed
in the sections that follow.

Incremental
Software
Development
Phases

Project
Management
Phases

DEPLOY

CLOSE

BUILD TEST

C h a p t e r 15186

21_596365 ch15.qxd 2/15/06 10:28 PM Page 186

Figure 15-2: The Closing Phase of the SDPM strategy for the Staged Delivery Waterfall
model

Acceptance Criteria
There are two types of acceptance criteria: incremental acceptance criteria and
project completion acceptance criteria.

Incremental Acceptance Criteria

The closing of the increment involves the validation that the acceptance criteria
have been met for that increment and the integration of the new functionality

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

System
Test

Deploy

Detailed
Design

Last Stage Release

Code &
Test

System
Test

Deploy

Staged
Delivery
Waterfall
Model
Development
Phases

Project
Management
Phases

CLOSE

The Incremental SDPM Closing Phase 187

21_596365 ch15.qxd 2/15/06 10:28 PM Page 187

with the then deployed solution completed. Also, the original acceptance cri-
teria for the just completed increment may have been modified with scope
change requests coming from earlier increments that were added to the just
completed increment. That may be a lot to take in, but it highlights the fact that
there are a lot of moving parts in these increments and that good process man-
agement is required to stay on top of the situation.

Project Completion Acceptance Criteria

Project completion acceptance criteria include the same considerations applic-
able to incremental acceptance criteria, so the preceding discussion applies
here equally as well. This increment just happens to be the last increment. All
of the approved scope change requests should have been reflected in the
updated acceptance criteria from all previous increments. This requires a good
tracking system for submitted and approved scope change requests. Depend-
ing on the volume of such requests, tracking and resolving all such requests
could prove challenging.

Lessons Learned
Just as there are two types of acceptance criteria, there are also two types of
lessons learned to discuss: increment lessons learned and project completion
lessons learned.

Increment Lessons Learned

Some typical examples of lessons learned that I have experienced in incre-
ments from completed projects include:

■■ Don’t get too aggressive in the features and functions you will include in
the increment. Err on the side of too little rather than too much.

■■ Make sure that the customer will be satisfied deploying the functions and
features included in an increment before committing to deliver it.

■■ Double check that the features and functions included in the coming
increment have all of their predecessor functions and features already
deployed or built.

The project benefits from these increment lessons learned. At the completion
of each increment, the customer and the developers should take stock of
what happened in terms of process and how it could be improved for the next

C h a p t e r 15188

21_596365 ch15.qxd 2/15/06 10:28 PM Page 188

increment. This is entirely separate from any discussion about the deliverables
from the increment. Process improvement between increments is vital to the
long-term prospects for the project. For teams that are newly formed, this is
critical. A team composed of members who have not worked together before
has a lot to learn to be effective. The possibility of using the just completed
increment as a learning opportunity should not be overlooked. The just-
completed increment has considerable learning opportunities if you just look
for them. These lessons learned will be a reference of the working relationship
with your customer, giving you an opportunity to tailor your processes to
match the practices and culture of your customer. That opportunity doesn’t
come along every day. Take advantage of the situation to improve your rela-
tionship with your customer as you go.

Project Completion Lessons Learned

Some typical examples of lessons learned that I have experienced in incre-
ments from completed projects include:

■■ Plan for more increments rather than fewer increments.

■■ Increments should be kept short (4–6 weeks is a good choice).

■■ Make sure the customer has sufficient time between increments to evalu-
ate the solution to date. Changes may be needed and rushing into the next
increment is not advisable.

The next project benefits from these project completion lessons learned. Again
the focus of the lessons learned is on process not product. For example, the
process that resulted in your choice of an Incremental SDPM strategy for the
project may have been flawed. Maybe there were some signals that you
ignored that turned out to be significant data for your decision. What were
those signals and how should they be documented? How should they be rec-
ognized? The project completion lessons learned are what help you to make
better decisions about what strategies to apply to future projects (future pro-
jects with the same customer, let’s hope).

Incremental SDPM Strategy for the Closing Phase
of the Feature-Driven Development Model

Figure 15-3 illustrates the Closing Phase of the SDPM strategy for the Feature-
Driven Development model.

The Incremental SDPM Closing Phase 189

21_596365 ch15.qxd 2/15/06 10:28 PM Page 189

Figure 15-3: The Closing Phase of the SDPM strategy for the Feature-Driven Development
model

The Feature-Driven Development model and the Staged Delivery Waterfall
model have some similarities, but they have some key differences as well, dif-
ferences that do affect the acceptance criteria and lessons learned in the Clos-
ing Phase. Two key differences are as follows:

■■ Deployment doesn’t necessarily happen with the completion of each fea-
ture set.

■■ Customers will not necessarily relate to feature sets as enthusiastically as
they do with increments from the previous strategy.

Both of these change how you approach both acceptance criteria and the
lessons learned when working within the Feature-Driven Development
model, as is discussed in the next sections.

Develop
the Feature

Plan

Design
Feature

Set

Design
Feature

Set

Design
Feature

Set

Deploy?

Build
Feature

Set

Build
Feature

Set

Test

Test

Test

Build
Feature

Set

Deploy?

N

N

N

Y

Y

Y
Deploy?

Project
Management
Phases

Feature-
Driven
Development
Phases

CLOSE

C h a p t e r 15190

21_596365 ch15.qxd 2/15/06 10:28 PM Page 190

Acceptance Criteria
As was the case with the Staged Delivery Waterfall model, there are two types
of acceptance criteria: incremental acceptance criteria and project completion
acceptance criteria. Incremental acceptance criteria focus on the expected look
and feel of the feature set deliverables rather than any perceived business
value. The project completion acceptance criteria, on the other hand, focus on
delivered business value. And although the two types of acceptance criteria
may be named the same under each model, how each manifests in process is
different.

Incremental Acceptance Criteria

The Incremental SDPM strategy for the Staged Delivery Waterfall produces a
partial solution deployment at the completion of each increment. The cus-
tomer, who chose the functionality in each increment, can see and feel what
they got and comment on its acceptability from a business perspective. That is
not necessarily the case with the Incremental SDPM strategy for the Feature-
Driven Development model. Feature sets are defined based on the technical
affinity of the features and not on any consideration of the business value of
the feature set. The customer may not be able to judge the acceptability of a
feature set simply because it doesn’t relate to anything that has meaning to
them. In those cases it is not advisable to deploy such feature sets. Rather, a
combination of feature sets may show business value that the customer can
relate to and use to decide on deployment or not. The acceptance criteria for
each increment then become far more subjective in this strategy than in the
previous one because the customer cannot relate the feature set deliverables to
any specific business value. The acceptance criteria are based more on how a
feature or function appears in the application than it does in any business con-
text that the customer could envision.

Project Completion Acceptance Criteria

This looks and feels just like the Closing Phase of the Linear SDPM strategy,
and it should. They are identical. An acceptance criterion would have been
documented during planning and revised as change requests are submitted
and approved. While in the Incremental SDPM strategy for the Feature-Driven
Development model individual feature sets may not be deployed, the cus-
tomer can still identify scope changes they wish to see implemented. As those
are approved, the acceptance criteria will be updated accordingly.

The Incremental SDPM Closing Phase 191

21_596365 ch15.qxd 2/15/06 10:28 PM Page 191

Lessons Learned
As was the case with the Incremental SDPM strategy for the Staged Delivery
Waterfall, when you use the Incremental SDPM strategy for the Feature-
Driven Development model, you have two types of lessons learned to discuss.
But the lessons learned in the Feature-Driven Development model are applic-
able in different ways from those you might learn using the Stage Delivery
Waterfall.

Increment Lessons Learned

While the Incremental SDPM strategy for the Staged Delivery Waterfall model
is very customer-centric and customer-facing, the same cannot be said for the
Incremental SDPM strategy for Feature-Driven Development. This is neither
good nor bad, but it does mean that lessons learned in the Incremental SDPM
strategy for Feature-Driven Development will be focused on the processes
used by the developers and how those might be improved rather than focused
on improving the customer relationship. Lessons learned from one increment
can be passed forward to the next and subsequent increments to improve the
overall process. New teams will find this a meaningful benefit if approached
with an open mind. If the new teams can position themselves to be very open
to new ideas, their learning experiences from increment to increment are the
best form of training and development they can expect. The learning is in
the context of an actual project rather than some theoretical construct in the
classroom.

Project Completion Lessons Learned

Future projects that follow the Incremental SDPM strategy for Feature-Driven
Development model will benefit from your project having documented the
lessons learned across the entire project. But take note: for some organizations,
the gap between the business side and the technology side is wide, and the
Incremental SDPM strategy for the Feature-Driven Development model does
little to reduce that gap. The increments are technology-driven, whereas the
increments for the Incremental SDPM strategy for the Staged Delivery Water-
fall model are customer-driven. Therefore, the lessons that are learned using
the Incremental SDPM strategy for Feature-Driven Development model are
most important, and anything that happened during the just completed proj-
ect that can help reduce that gap between the business and technology sides of
an organization should be taken seriously and concerted attempts made to
implement those lessons in future projects.

C h a p t e r 15192

21_596365 ch15.qxd 2/15/06 10:28 PM Page 192

Discussion Questions
1. You have completed the first of five increments and the customer is

requesting all manner of scope changes. Some changes are minor word-
smithing, but other requests are for changes in features. You will be able
to absorb these in later increments, but what would you do with future
such requests in later increments?

The Incremental SDPM Closing Phase 193

21_596365 ch15.qxd 2/15/06 10:28 PM Page 193

21_596365 ch15.qxd 2/15/06 10:28 PM Page 194

Installing Custom Controls 195C H A P T E R 16

195

The Incremental SDPM
Strategy Summary
People who produce good results feel good about
themselves.

Kenneth H. Blanchard
Chairman, Blanchard Training and Development

You’ve spent the last five chapters getting to know the Incremental SDPM
strategy and in particular looking at variations around the Staged Delivery
Waterfall model and the Feature-Driven Development model. In this sum-
mary chapter, I’ll discuss a few major points regarding both models and draw
some conclusions about their further use and adaptation.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand risk and how it affects the Incremental SDPM strategies

◆ Understand scope change and how it affects the Incremental SDPM
strategies

◆ Understand team structure and how it affects the Incremental SDPM
strategies

◆ Know why there is a communications gap built into the Incremental SDPM
strategy

22_596365 ch16.qxd 2/15/06 10:34 PM Page 195

Comparing and Contrasting the SDPM Models

The two models (Staged Delivery Waterfall model and the Feature-Driven
Development model) are the same in that both the goal and solution are clearly
defined and documented. That is the necessary criteria for using either of these
two Incremental models. Where the two approaches differ relates to the need
to get deliverables into the users’ hands. Whether the user is internal to the
company or external, there are business reasons to get intermediate solutions
into their hands. That is the sole motivation for using an Incremental model
instead of a Linear model—to get those intermediate solutions. That is on the
positive side of the ledger. On the negative side is the fact that by deploying
intermediate solutions you encourage the customer and the end users to sug-
gest changes. These cannot be ignored even though they send disruptive
waves coursing through the project schedule and resource plan.

Points to Remember

Looking back at the chapters in this part, I want to drive home a few messages
that you need to consider as you deliberate on the strategy to use in your
project.

Risk Situations
As you move into projects that are more complex and less certain, you will see
that risk takes on more importance. Risk in the Incremental SDPM strategy is
slightly more pronounced than in the Linear SDPM strategy. First of all, the
same risks that apply in the Linear SDPM strategy also apply in the Incremental
SDPM strategy, but there are some new ones as well. There are six that deserve
some discussion. They are briefly described in the following subsections.

Risk of Project Closure

The time between the end of one increment and the beginning of the next can
seem like an eternity if your organization is in any state of unrest. You have
just completed an increment and deployed its deliverables. Everybody is
thrilled with your accomplishments. In fact, they have become so enamored
with what you have delivered that future increments are at risk. Senior man-
agers are toying with the idea of ending your project on the high note and
moving the resources to other ventures. Too bad.

C h a p t e r 16196

22_596365 ch16.qxd 2/15/06 10:34 PM Page 196

Risk of Team Changes

The time between two successive increments can seem like an eternity for
another reason somewhat related to the first but not as drastic. Your team has
excelled. They have done such a great job in a difficult situation that others up
the food chain have taken notice. There is another project (perhaps of higher
priority) that is in trouble and could use someone with exactly the skills and
competencies of one or more of your team members. I don’t have to tell you
what happens. That gap between increments is just the opportunity that a
senior manager can grasp onto. Your prized team member(s) are moved and
replaced with less skilled developers.

Risk of Changing Priority

This is a good news/bad news situation. On the good news side, you get a
higher priority, and now those resources that you have fought so valiantly for
are a bit easier to come by and to hold onto once you have them. You now
enjoy some leverage in negotiations that you didn’t have before the priority
change came along. Don’t get too comfortable with your newfound power. It
can go the other way just as easily. On the bad news side, you get a lower pri-
ority. Now all of the great things that you enjoyed with the higher priority van-
ish, and you are left with the need for more diplomacy and tact as you
negotiate with others of more power and leverage.

Risk of Schedule Slippages

Have you ever encountered the situation where one or more of your team
members are assigned to a small task between increments? I have, and I’m
always fearful of the word “small.” Somehow my definition and the other
party’s aren’t the same. Now all resource scheduling that I had worked so hard
to put in place is at risk. Furthermore, all of the other risk probabilities are now
heightened. My project is now exposed.

Risk of Rework

Now that you have given your customer and end users a look at an interme-
diate solution, they want changes. It is inevitable so be ready for it. You can
always build some contingency time into your schedule as a partial mitigation
for new work, but accounting for rework in that contingency is a different mat-
ter. I often put aside 10 percent of the total labor of the planned work as a con-
tingency for the time I will need for approved scope change requests. Should

The Incremental SDPM Strategy Summary 197

22_596365 ch16.qxd 2/15/06 10:34 PM Page 197

there be another percentage put aside for rework? I don’t do that, but perhaps
it is worth considering. The deal with your customer is that if you don’t spend
it, you give it back. I’m very cautious about holding something out there that
encourages change, so I tend to play it close to the vest. In any case, it is worth
discussing with the customer and the development team.

Risk of Resource Contention

As I said in an earlier chapter, this problem seems to plague every project, with
the exception of the simplest ones, regardless of how you approach it.

■■ For the Incremental SDPM strategy for the Staged Delivery Waterfall
model, the problem of resource contention isn’t of significance except for
that which occurs between projects. But that is nothing new. You deal
with that all the time, and the fact that you are engaged in an Incremental
SDPM strategy with the Staged Delivery model doesn’t change the situa-
tion at all.

■■ For the Incremental SDPM strategy for the Feature-Driven Development
model, resource contention is exactly the same as in the case of the Linear
SDPM strategy for the Rapid Development Waterfall model. Parallel swim
lanes of feature set development invariably require concurrent use of a
scarce resource. Staggered scheduling is the only strategy worth consider-
ing. Even then, you have to prioritize the swim lanes when there is con-
tention for those scarce resources. If there are dependencies across feature
sets, then you have yet another contention to work around. Nothing is
simple when there are concurrent swim lanes, so just get used to the
challenges.

Change Intolerance
I have discussed how the Linear and Incremental SDPM strategies are change
intolerant. You chose them as your strategy because requirements were
assumed complete and clearly documented. Change requests were not
expected to be much of an issue. You don’t need to repeat those arguments, but
it is instructive to put that foremost on your mind as you go about planning
the increments in your project. I religiously put a task called “management
reserve” in my project plan. It is a task that ends the project. Its duration is
equal to 10 percent of the total labor estimated for the project. I make it visible
to the customer. I manage it. I don’t want to spend it if I can help it. It’s just
good commonsense project management. Management reserve is time. Con-
tingencies in your budget are dollar reserves for the unexpected. Dollars or
time, it makes no difference. You treat them both the same.

C h a p t e r 16198

22_596365 ch16.qxd 2/15/06 10:34 PM Page 198

Team Structure
It seems like all I have to summarize with are cautions and warnings about
pending disaster. Well, I’ve saved the positive news for last. As is the case with
Linear SDPM strategies, Incremental SDPM strategies are the least demanding
on team strength and capacity. Incremental SDPM strategies can work quite well
with junior technical staff. As in the Linear SDPM strategies, case co-location is
not a requirement. About the only difference between Linear and Incremental
models is that Incremental models should strive for continuity across incre-
ments. If you suspect that that will be a problem, your risk response plan should
include more documentation for the handoff than you would entertain if there
were to be team continuity across increments.

WARNING
Communications across the team members has always been a problem with Incre-
mental SDPM strategies. “Throw it over the wall” to the team working on the next
increment is just asking for trouble. The handoff between increments should have
some overlap if that is at all possible. Bringing new team members into the project
at some mid-increment point is risky if it hasn’t been planned for.

Discussion Questions
1. Despite your best efforts at discouraging scope change requests for your

Incremental project, the customer continues to submit them. Some are
well thought out; some are not. Consider postponing action until the last
increment. What are the advantages and disadvantages of such a strat-
egy? Would you do it? If not, what alternative would you recommend?

The Incremental SDPM Strategy Summary 199

22_596365 ch16.qxd 2/15/06 10:34 PM Page 199

22_596365 ch16.qxd 2/15/06 10:34 PM Page 200

PA RTFOUR

Iterative ESPM
The Iterative approach is your first departure from the comfortable world of
the Linear and Incremental approaches. Here you step out into the unknown.
For the first time you encounter a project whose goal is known and clearly
documented, but whose solution is not. The desired functionality is known
and documented but some of the features behind that functionality are only
vaguely known and may not even all be identified. They must be discovered,
and it is only by doing the project that that discovery will take place. While this
may seem like a minor difference and not worthy of a new approach, such is
not the case. These types of projects bring to the project manager quite a num-
ber of risks and issues. How to handle them in the most effective and efficient
way is the subject of this part.

23_596365 pt04.qxd 2/15/06 10:36 PM Page 201

23_596365 pt04.qxd 2/15/06 10:36 PM Page 202

Installing Custom Controls 203C H A P T E R 17

203

Iterative SDPM Strategy
I never did anything worth doing by accident, nor did
any of my inventions come by accident; they came by
work.

Thomas Alva Edison
American inventor and entrepreneur

On the certainty/uncertainty line, the models that lie to the right of the incre-
mental models are those that we have defined as iterative models. These mod-
els have been proposed to address the difficulty many project managers face
when they try to clearly define requirements. There are four such models, and
they all are similar in that the requirements are not fully explored and it is the
project itself that helps in that further exploration.

Iterative approaches are used when you have an initial version of the solution
but they are known to fall short in terms of features and perhaps functions.
The iterative cycles are designed to uncover the missing pieces of the solution.
Think of the Iterative SDPM strategy as a variant of production prototyping.
The intermediate solutions are production ready, but they might not be
released to the end user until the final version is ready. The intermediate ver-
sions give the customer something to work with as they attempt to learn and
discover additional needed features.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Iterative SDPM strategy

◆ Have a high-level understanding of the Evolutionary Development Waterfall
model, SCRUM, Rational Unified Process, and the Dynamic Systems Devel-
opment Method

24_596365 ch17.qxd 2/15/06 10:39 PM Page 203

The Iterative SDPM Strategy

The definition of the Iterative SDPM strategy allows for several types of itera-
tion. Iteration can be on requirements, functionality, features, design, develop-
ment, solutions, and others. Figure 17-1 is the generic model of the Iterative
SDPM strategy. There are several models that I discuss that follow this generic
framework.

The Iterative SDPM strategy kicks in when not all of the solution is clearly
known. This strategy requires a solution that broadly covers the requirements
but might be missing some of the details. In other words, the functions are
known and will be built into the solution through a number of iterations but
the details (the features) are not completely known at the beginning of the
project. The missing or detailed features will come to light as the customer
works with the most current solution in a prototyping sense. As is true of other
Quadrant 2 strategies (goal is clearly defined but solution is not), the Iterative
SDPM strategy is a learn-by-doing strategy. The use of intermediate solutions
is the pathway to discovering the intimate details of the complete solution.

Scope Phase
The Scope Phase takes on a bit more complexity than in the previous strate-
gies. In the Iterative SDPM Strategy, you move into waters where the complete
solution is not known. In this book, iterative strategies deal with cases where
you are reasonably certain that you have completely defined functionality but
not necessarily the features that accompany that functionality. Each iteration is
going to discover additional functionality by having the customer and end
user spend some time working with the then solution. Presumably those new-
found features are then prioritized and added to one of the future iterations.
That game plan suggests that iterations be kept short.

Figure 17-1: Iterative SDPM strategy

SCOPE
Iterative
Software
Development
Phases

Project
Management
Phases

DESIGN

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

BUILD TEST CHECK DEPLOY

C h a p t e r 17204

24_596365 ch17.qxd 2/15/06 10:39 PM Page 204

Plan and Launch Phases
Planning is done at two levels in the Iterative SDPM strategy. The initial Plan
Phase develops a high-level plan without much detail. The reason is that the full
detail is not known at the initial stage. The functionality is known, and its design
and development can be planned across any number of iterations. In some cases
all the functionality will be designed and developed in the first iteration. Later
iterations then drill down to possible areas for further identification and devel-
opment of features. This is probably the most efficient of all the design develop
alternatives you might consider. Yet another strategy would be to develop the
high-risk parts of the system first. That removes one of the major variables that
could adversely affect the project if left to a later iteration.

Within each iteration you might have concurrent swim lanes—each develop-
ing a different piece of functionality or expanding on its features. The deter-
mining factor is the resource pool from which you are drawing your team
members. If you need to compress the development timeframe, you can struc-
ture the project much like you would in the Linear SDPM strategy when you
moved from the Standard Waterfall model to the Rapid Development Water-
fall by adding concurrent swim lanes, each developing a different part of the
solution.

Monitor and Control Phases
In the Iterative SDPM strategy, the Monitor and Control Phase begins to
change. Because of the speculative nature of the iterative strategy, much of the
heavy documentation and status reporting gives way to more informal report-
ing. Much of that formalism becomes non-value-added work and begins to
burden the team with tasks that do not bring them any closer to the final solu-
tion. You will want to be careful to not overload the architects and developers
with those types of tasks. Let them remain relatively free to pursue the creative
parts of the project.

Close Phase
The Close Phase for the Iterative SDPM strategy is similar to the Close Phase
for the preceding strategies in that there are customer-specified criteria that
must be met in order for the project deliverables to be considered complete.
Those criteria were specified during the planning phase and updated as scope
change requests were approved and integrated into the solution. The only dif-
ference is that the project might end (time and or money used) and there might
still be features not integrated into the solution. These are noted in the final
report and are to be considered whenever the next version of the solution will
be commissioned.

Iterative SDPM Strategy 205

24_596365 ch17.qxd 2/15/06 10:39 PM Page 205

Lessons learned take on an additional dimension. What did the team and the
customer learn about doing projects following the Iterative SDPM strategy?
How can the approach be improved for the next such project?

Types of Iterative SDPM Strategies

Several models fit into my strict definition of the Iterative class. However,
most interpretations would have a broader membership in the Iterative class
than I have here. Those models that are iterative by my definition are Evolu-
tionary Waterfall model, SCRUM, Rational Unified Process (RUP), and
Dynamic Systems Development Method (DSDM). Each of these models and
methods has tight or loose definitions depending on who provides the defini-
tion. If the definition is loose, then these models range over more than just the
Iterative class. Some of them will take on the characteristics of the Adaptive
class, which is the subject of later chapters in this book.

Evolutionary Development Waterfall Model
In this approach, the project begins much like the Standard Waterfall model. A
complete systems design is developed based on clearly defined requirements.
The systems design component reflects the requirements in the design. As the
features and functions needed to deliver the requirements are developed, they
will change. Few changes are expected to the original requirements. The WBS
for the current version is created along with duration, cost, and resource
requirements. This model closely resembles the production prototype approach
that was quite popular in the past.

It should be obvious that the meaningful involvement of the client is critical to
the success of this model. The client works with a version of the system and
provides feedback to the project team as further enhancements and changes to
features and functions are discovered. This process continues as version after
version is put in place. At some point, the client is satisfied that all require-
ments have been met. Also note that this model always presents the client with
a production-ready version of the system. Succeeding versions merely add to
the features and functions.

Iterative SDPM strategies definitely fall in the class of learn and discover. In
the Evolutionary Development Waterfall model the learning and discovering
experience is obvious from Figure 17-2. With each iteration, more and more of
the depth of the solution is revealed. That follows from the customer and
developers having an opportunity to play with the then solution.

C h a p t e r 17206

24_596365 ch17.qxd 2/15/06 10:39 PM Page 206

Figure 17-2: Evolutionary Development Waterfall model

Figure 17-2 illustrates the Evolutionary Development Waterfall model, the
final variation of the Waterfall models. It handles those cases where the solu-
tion is known to a certain level of detail. The final features that completely
define the solution are what are missing. Through a sequence of partial solu-
tions the complete solution is discovered.

The discovery of additional features is a process that fully engages the cus-
tomer in meaningful exchanges with the developers. Both customer and devel-
opers work with the prototypes—sometimes independently and sometimes in
collaboration. Collaboration usually follows periods where they work indepen-
dently. The collaboration would be done in an effort to decide how to go for-
ward with new or redefined features in the next and subsequent iterations.

Figure 17-3 illustrates the Iterative SDPM strategy for the Evolutionary Devel-
opment Waterfall model.

The Evolutionary Development Waterfall model reaches some distance into
Quadrant 2 because it can embrace learning and discovery as a way to uncover
the complete solution. Its integration with the project management life cycle is
rather straightforward, as you will see in Chapters 18 through 23.

Requirements
GatheringIdea

Systems
Design

Develop
a Version

Deliver
the Version

Incorporate
Customer
Feedback

Deliver
Final

Version
Get Customer

Feedback

Iterative SDPM Strategy 207

24_596365 ch17.qxd 2/15/06 10:39 PM Page 207

Fi
gu

re
 1

7-
3:

Ite
ra

tiv
e

SD
PM

 s
tr

at
eg

y
fo

r
th

e
Ev

ol
ut

io
na

ry
 D

ev
el

op
m

en
t W

at
er

fa
ll

m
od

el

Re
q

ui
re

m
en

ts
G

at
he

rin
g

Id
ea

Sy
st

em
s

D
es

ig
n

D
ev

el
op

a
Ve

rs
io

n

D
el

iv
er

th
e

Ve
rs

io
n

In
co

rp
or

at
e

C
us

to
m

er
Fe

ed
ba

ck

D
el

iv
er

Fi
na

l
Ve

rs
io

n
G

et
 C

us
to

m
er

Fe
ed

ba
ck

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es
C

LO
SE

SC
O

PE
PL

A
N

M
O

N
IT

O
R

&
C

O
N

TR
O

L
LA

U
N

C
H

24_596365 ch17.qxd 2/15/06 10:39 PM Page 208

SCRUM
SCRUM is a term taken from rugby. A scrum involves the team as a unit moving
the ball down field in what would appear to be an ad hoc manner. Of all the iter-
ative approaches, SCRUM would seem to define a chaotic development envi-
ronment. The SCRUM software development team is self-directed, operates in
successive one-month iterations, holds daily team meetings, continuously offers
the client demos of the current solution, and adapts its development plan at the
end of each iteration. For a complete discussion on SCRUM and software devel-
opment, refer to Ken Schwaber and Mike Beedle’s Agile Software Development
with SCRUM (Prentice Hall, 2001).

Of all the development models discussed in this book, SCRUM is clearly the
most customer-driven approach. It is the customer who defines the functions
and features that the team prioritizes into phases and builds a phase at a time.
The process allows the customer to change functions and features as more of
the solution depth is uncovered through the previous iterations. Depending
on the working definition you are using for SCRUM, SCRUM might be a strict
application of the Iterative class as defined herein or it might border on the
adaptive class discussed later in the book.

The SCRUM process flow is shown in Figure 17-4, while the sections that fol-
low explain the parts of the flow.

Figure 17-4: The SCRUM process flow

Idea is
proposed

Product Owner
develops and

prioritizes a list
of functionality

Sprint
Planning
Meeting

Demo
Sprint

functionality

Sprint
Backlog

Sprint

Iterative SDPM Strategy 209

24_596365 ch17.qxd 2/15/06 10:39 PM Page 209

Idea Is Proposed

The original idea for the system might be vague. It might be expressed in the
form of business terms. A function level description can be developed as part
of the scooping phase but not to the depth of detail that the customer requires.
It is not likely to be expressed in system terms.

Developing and Prioritizing a List of Functionality

The Product Owner is responsible for developing this list, which is called the
Product Backlog. It helps the team understand more detail about the idea and
helps them form some ideas about how to approach the project.

Sprint Planning Meeting

This is an 8-hour meeting with two distinct 4-hour parts. In the first part, the
Product Owner presents the prioritized Product Backlog to the team. This is
the opportunity for the team to ask questions to clarify each piece of function-
ality. In the second part, the team commits to the functionality it will try to
deliver in the first Sprint. The team then spends the remaining 4 hours devel-
oping the high-level plan as to how it will accomplish the Sprint. The work to
be done is captured in the Sprint Backlog. The Sprint Backlog is the current list
of functionality that is not yet completed for the current Sprint.

Demo Sprint Functionality

At the end of the Sprint, the team demos the solution to the client; functional-
ity is added or changed, and the Product Backlog is updated and reprioritized
for the next Sprint. This entire process continues until the Product Backlog is
empty or the client is otherwise satisfied that the current Sprint version is the
final solution.

SCRUM has often been characterized as a methodology that does not require
a project manager. In fact, the position of project manager does not exist, but
the role does. It is subsumed primarily into the team with some responsibility
resting on the shoulders of the SCRUM Master. Figure 17-5 illustrates the Iter-
ative SDPM strategy for SCRUM.

SCRUM has been characterized as organized chaos and it does seem quite dis-
organized at first glance. There really doesn’t need to be a person with the title
of “project manager.” The entire team, which is self-managed and self-
directed, fills the role of project manager, but not in an overt manner. You will
see that the role of project manager is shared across the team members as we
explore this integration in Chapters 18–23.

C h a p t e r 17210

24_596365 ch17.qxd 2/15/06 10:39 PM Page 210

Fi
gu

re
 1

7-
5:

Ite
ra

tiv
e

SD
PM

 s
tr

at
eg

y
fo

r
SC

R
U

M

Id
ea

 is
p

ro
p

os
ed

Pr
od

uc
t

O
w

ne
r

de
ve

lo
p

s
an

d
p

rio
rit

iz
es

 a
 li

st
of

 fu
nc

tio
na

lit
y

Sp
rin

t
Pl

an
ni

ng
M

ee
tin

g

D
em

o
Sp

rin
t

fu
nc

tio
na

lit
y

Sp
rin

t
Ba

ck
lo

g
Sp

rin
t

Pr
oj

ec
t

M
an

ag
em

en
t

Ph
as

es

SC
RU

M
So

ft
w

ar
e

D
ev

el
op

m
en

t
Pr

oc
es

s

C
LO

SE
SC

O
PE

PL
A

N
M

O
N

IT
O

R
&

C
O

N
TR

O
L

LA
U

N
C

H

24_596365 ch17.qxd 2/15/06 10:39 PM Page 211

Rational Unified Process
The Rational Unified Process (RUP) is a completely documented process for
building a software system in an iterative fashion. An extensive library of
books and Internet resources is available on the topic. A good starting point is
the book by Stefan Bergstrom and Lotta Raberg entitled Adopting the Rational
Unified Process: Success with the RUP (Addison-Wesley, 2004).

The essential concepts of RUP are:

■■ Inception

■■ Elaboration

■■ Construction

■■ Transition

Inception

The Inception Phase has as its objective the definition and concurrence of all
the stakeholders as to the scope of the software development project. The
scope is bounded by a number of use cases that define the functions that the
software system must perform. An initial systems architecture is developed
using these critical use cases. Cost, schedule, and risk are also estimated as a
preparation for the Elaboration Phase.

Elaboration

The Elaboration Phase is the engineering phase of a RUP project. It is here that
the details of the problem and its solution are formed and an architecture is
finalized. That permits more refined estimates of time, cost, and risk. Proto-
types are often built as an aid to the design considerations, more detailed func-
tionality, and features.

Construction

The current design is turned into a working system. If this phase has been
repeated, the most recent designs are integrated into the current solution and
a more enhanced solution is turned over to the client.

Transition

The Transition Phase turns over a solution that the customer can put into pro-
duction. It need not be a complete solution, but it does have sufficient business
value to be released to the end user. Later minor enhancements will be made
to integrate features defined but not integrated.

C h a p t e r 17212

24_596365 ch17.qxd 2/15/06 10:39 PM Page 212

All four of these phases are embedded within each of the stages and not explic-
itly shown in Figure 17-6. I’ll expand on these in Chapters 18–23.

RUP is probably the most well known of the iterative software development
processes. It adapts quite well to a process approach that is documentation-
heavy or to one that is documentation-light. The foundation of RUP lies in the
library of reusable code, requirements, designs, and so on. That library will
have been built from previous project experiences, which means that RUP can
have a long payback period. The library must be sufficiently populated to be
useful from a Return on Investment (ROI) perspective. Four to five completed
projects might be enough to begin to see some payback.

Figure 17-7 illustrates the Iterative SDPM strategy for RUP.

Figure 17-6: Rational Unified Process—process model

Requirements
Gathering

Systems
Design

Detailed
Design

First Stage Release

Code &
Test

Sub-System
Test

Requirements
Gathering

Systems
Design

Detailed
Design

Last Stage Release

Code &
Test

Sub-System
Test

Iterative SDPM Strategy 213

24_596365 ch17.qxd 2/15/06 10:39 PM Page 213

Figure 17-7: Iterative SDPM strategy for RUP

RUP ranges widely over the project landscape. When complexity and uncer-
tainty are low but the solution is not fully defined, RUP is a heavy process. It
requires considerable documentation especially for code reuse. On the other
hand, an organization that has considerable RUP experiences behind it can
deploy a lighter version of RUP. You’ll see the flexibility of RUP in the discus-
sions in Chapters 18–23.

Dynamic Systems Development Method
Dynamic Systems Development Method (DSDM) is what the Standard Water-
fall model would look like in a zero-gravity world. Feedback loops are the
defining features that separate DSDM from the Standard Waterfall model.
DSDM is an iterative model, but it can be used in situations where even less of
the solution is specified. The feedback loops help guide the client and the proj-
ect team to a complete solution. The business case is included as a feedback
loop so that even the fundamental basis and justification of the project can be
revisited.

Requirements
Gathering

RUP
Software
Development
Phases

Systems
Design

Detailed
Design

N

Y

Code &
Test

Sub-System
Test

First Stage Release

Deploy

Requirements
Gathering

Systems
Design

Detailed
Design

N

Y

Code &
Test

Sub-System
Test

Last Stage Release

Deploy

Project
Management
Phases

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

C h a p t e r 17214

24_596365 ch17.qxd 2/15/06 10:39 PM Page 214

Figure 17-8 highlights the DSDM method and the following lists the nine key
principles of DSDM as indicated in Jennifer Stapleton’s DSDM: Dynamic Sys-
tems Development Method (Addison-Wesley, 1997).

■■ Active client involvement is imperative.

■■ DSDM teams must be empowered to make decisions.

■■ The focus is on frequent delivery of products.

■■ Fitness for business purpose is the essential criterion for acceptance of
deliverables.

■■ Iterative and incremental development is necessary to converge on an
acceptable business solution.

■■ All changes during development are reversible.

■■ Requirements are baselined at a high level.

■■ Testing is integrated throughout the life cycle.

■■ A collaborative and cooperative approach between all stakeholders is
essential.

Figure 17-8: Dynamic Systems Development Method

Feasibility

Business
Study

Heavy arrows = Forward Paths
Light arrows = Evolutionary Paths

Functional
Model

Iteration

Design &
Build

Iteration

Implementation

Iterative SDPM Strategy 215

24_596365 ch17.qxd 2/15/06 10:39 PM Page 215

Note that the characteristics in the list are quite similar to those I have identi-
fied as good practices throughout the book.

The distinguishing feature of the DSDM is the incremental release and imple-
mentation of a production system at the end of each cycle (see Figure 17-9).
Note that iterations around Design and Build and Functional Model iterations
all follow an implementation phase. DSDM delivers business value to the
client as part of its overall process design. Other approaches might do the
same as a variation, but DSDM does it as part of the design of the approach
itself.

WARNING
Iterative approaches have often been misused. However, the Iterative approaches
are suffering more from an informal use of terminology than from misuse. That’s
why in this book the Iterative class includes models that work effectively in discover-
ing small parts of the solution (features for the most part) rather than in discovering
major gaps in functionality. Those projects are better served with one of the adaptive
models.

Figure 17-9: Iterative SDPM strategy for DSDM

Feasibility

Business
Study

Heavy arrows = Forward Paths
Light arrows = Evolutionary Paths

Functional
Model

Iteration

Design &
Build

Iteration

Implementation

Project
Management
Phases

DSDM
Software
Development
Process

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

C h a p t e r 17216

24_596365 ch17.qxd 2/15/06 10:39 PM Page 216

Discussion Questions
1. What sort of Iterative approach would you take if your customer isn’t

willing or able to participate? What are the strengths and/or weaknesses
of your choice?

2. What sort of Iterative approach would you take if your customer gets so
involved with the project that it is adversely affecting the team’s produc-
tivity? What are the strengths and/or weaknesses of your choice?

Iterative SDPM Strategy 217

24_596365 ch17.qxd 2/15/06 10:39 PM Page 217

24_596365 ch17.qxd 2/15/06 10:39 PM Page 218

Installing Custom Controls 219

The Iterative SDPM Scoping Phase
To improve is to change, to be perfect is to change
often.

Winston Churchill
British Prime Minister, writer, and soldier

C H A P T E R 18

219

The Scoping Phase of the Iterative SDPM strategy is the beginning of the pro-
ject life cycle for these types of systems development projects. In this phase,
you establish the parameters for the project and prepare a high-level plan for
how you are going to approach the project. While you did the same for the
Incremental SDPM strategy, you’ll find significant differences for the Iterative
project. Project uncertainty has increased as a result of gaps between what you
know to be the solution and what actually is the solution. Those gaps have to
be discovered and removed through the conduct of the project itself. Therein
lies the increase in complexity that comes with Iterative SDPM projects.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Scoping Phase of the Iterative SDPM strategy

◆ Conduct the Scoping Phase of the Evolutionary Waterfall model

◆ Conduct the Scoping Phase of the SCRUM model

◆ Conduct the Scoping Phase of the Rational Unified Process (RUP) model

◆ Conduct the Scoping of the Dynamic Systems Development Method

25_596365 ch18.qxd 2/15/06 10:38 PM Page 219

The Scoping Phase of an Iterative SDPM Strategy

On the surface, Iterative strategies appear quite similar to Incremental strate-
gies. Both have sequentially released pieces of the solution, but a fundamental
difference exists between the strategies.

■■ In the Incremental SDPM strategy, a part of the known solution is released
in each increment.

■■ In the Iterative SDPM strategy, the known solution is released in each
increment.

So, at the end of an iteration in the Iterative SDPM strategy, the complete solu-
tion as you know it at the time is released. The customer decides whether or
not that release adds enough business value since the last release and should
be released to the end user. The customer may find a number of business rea-
sons for either releasing or not releasing. They are discussed in Chapter 22.

The Scoping Phase of the Iterative SDPM Strategy
for the Evolutionary Development Waterfall Model

Figure 18-1 illustrates the project management Scoping Phase integrated with
the Idea and Requirements Gathering Phases of the Iterative SDPM strategy
of the Evolutionary Development Waterfall model. This is the last variation of
the Standard Waterfall Model I discuss. The Scoping Phase here is quite similar
to the Scoping Phase of the Linear SDPM strategy for the Standard Waterfall
model and the Scoping Phase of the Incremental SDPM strategy for the Staged
Delivery Waterfall model. All three strategies begin with an idea that is further
described and documented through a requirements gathering exercise. The
major difference with the Iterative SDPM strategy for the Evolutionary Devel-
opment Waterfall is that the features list is not complete, and so the strategy
requires a number of iterations around the known solution to discover those
missing features.

In addition to preparing the Project Overview Statement (POS), you perform
four other scoping tasks once you are in the Scoping Phase for the entire pro-
ject. They are as follows:

■■ Gathering requirements

■■ Generating the Requirements Breakdown Structure (RBS)

■■ Defining the functions and features of the initial solution

■■ Determining the number and time box for the iterations

These are discussed in the following subsections.

C h a p t e r 18220

25_596365 ch18.qxd 2/15/06 10:38 PM Page 220

Figure 18-1: The Project Management Scoping Phase integrated with the Idea and
Requirements Gathering Phases of the Evolutionary Development Waterfall model

Gathering Requirements
Requirements gathering can follow any one of the approaches discussed in
Appendix D. The choice of which to use is a subjective call of the project man-
ager based on the comfort level of the customer. In any case, a list of require-
ments is gathered. At the completion of that exercise, the assessment of the
attributes of the requirements list may lead the team to choose the Iterative
SDPM strategy for this project. They reach this decision based on the fact that
they are able to generate a complete function list but not a complete features
list. In other words, some of the functions are completely defined through the
features that describe them. In other cases some of the functions are only par-
tially defined through the feature lists that accompany them. The project will
have to be planned so as to discover the missing features.

As you may have realized by now, the milestone event defined by the comple-
tion of requirements gathering brings the customer and the team to a decision
point. They must decide which SDPM strategy makes the most sense at this
point in the life cycle of the project. Depending on the status of the features list
as the project commences, that decision could be changed. For example, if the
team and customer should reach a point where all features have been identi-
fied, they may change their strategy to one that better supports the now
changed characteristics of the project. In this chapter, I discuss what happens
when not all the features have been defined.

Generating the RBS
The trick here is to pay attention to the customer as this exercise is underway.
Their comfort level with each function and then each feature of each function
is a clue to where there may be holes in the features list. Those potential holes

Idea

Evolutionary
Development
Waterfall
Model Phases

Project
Management
Phases

SCOPE

Requirements
Gathering

The Iterative SDPM Scoping Phase 221

25_596365 ch18.qxd 2/15/06 10:38 PM Page 221

will be your guide to structuring the iterations. For example, you might look
for some of the following specific signs or behaviors on the part of the cus-
tomer as indicators of incompleteness:

■■ They have taken a passive role rather than an active role in discussing
some of the details of a function or feature.

■■ They do not offer any feature details for an identified function.

■■ You have suggested a function or feature and they are not contributing
any further discussion.

■■ They are not excited about a function or feature you have suggested.

■■ They continually need you to clarify a point you have made.

Any of these behaviors would suggest that the associated function or feature is
not complete.

On the other hand, you might look for some of the following specific signs or
behaviors on the part of the customer as indicators of completeness:

■■ They display an excitement and constant stream of ideas as to what the
solution should contain.

■■ They always add to your thoughts with added functions or features.

■■ They have a high level of interest in the discussion of a specific function
or feature.

■■ They contribute a number of “what if” suggestions for discussion.

You will want to expose those holes in the current solution so that the cus-
tomer has a chance to fill them. The customer will not respond if those holes
are buried in the solution. Make them visible for discussion and resolution.

Defining the Functions and Features of the Initial Solution
The requirements should be complete, as should the function list.

■■ For the functions deemed completely defined, plan to build those into the
initial solution. These are not likely to change over later iterations.

■■ For the functions that are not likely to be complete, plan on building an
intermediate solution that exposes the missing features.

Keep in mind that you are building a solution that contains all of the known
features and functions. Also keep in mind that your major objective in this ini-
tial solution and all later solutions is to discover what is missing.

C h a p t e r 18222

25_596365 ch18.qxd 2/15/06 10:38 PM Page 222

On the other hand, you might want to consider an alternative approach. Those
functions that have missing features along with any predecessor functions
might define the initial solution. In this approach you have decided to focus
directly on those areas where further solution definition is needed. This is an
aggressive approach to finding the complete solution but it helps keep the cus-
tomer focused on the gaps. This approach has some drawbacks, however.
Having the complete solution to review may cause you to identify other areas
that were not identified as missing from the function/features list. Keep in
mind that anything you present to the customer for review and consideration
will almost always result in their discovering other features and even func-
tions that they would like to see in the solution.

Determining the Number and Time Box for the Iterations
The architecture of the plan includes a number of iterations and time boxes. If
possible, estimate how many iterations and what their duration will be. This is
not necessary, but it does help with resource scheduling and testing. The first
iteration is likely to be longer if you are building the known solution. And it is
likely to be shorter if you focus on the functions whose features are not com-
pletely defined. In either case, preplanning the number and duration of the
iterations can be an aid to better management control over the project.

The Scoping Phase of the Iterative SDPM Strategy
for the SCRUM Model

Figure 18-2 illustrates the project management Scoping Phase integrated with
the Idea and Functionality List Phases of the Iterative SDPM strategy of the
SCRUM model. The resulting Iterative SDPM strategy for the SCRUM Scoping
Phase is quite different than that of other Iterative SDPM Scoping Phases. The
primary difference is in the role of the customer. In this model, called the
“Product Owner,” the customer is the lead individual in defining require-
ments, functions, and features. The customer takes a more proactive role in the
development life cycle. Before launching into SCRUM you should verify that
the customer can fill this role. Many cannot, and the last thing you want to do
is take them out of their comfort zone and place them in a threatening position.
If you are fixed on using the SCRUM model, you may need to support the
Product Owner in fulfilling their tasks.

The Iterative SDPM Scoping Phase 223

25_596365 ch18.qxd 2/15/06 10:38 PM Page 223

Figure 18-2: The Project Management Scoping Phase integrated with the Idea and
Functionality List Phases of the SCRUM model

In addition to preparing the Project Overview Statement, four other tasks are
part of the SCRUM scoping phase. They are:

■■ Idea creation

■■ Gathering requirements

■■ Defining the required functions

■■ Prioritizing functions

These are each described in the following subsections.

Idea Creation
The Product Owner (customer) initiates the process of defining a new or
enhanced system. The high-level description takes the form of a POS, which
the Product Owner initiates. As needed, a Conditions of Satisfaction (COS)
might be done in conjunction with the Product Owner to ensure a well-defined
project statement is delivered and agreed to by both parties.

Gathering Requirements
Any one of the approaches defined in Appendix D may be used. Because the
customer will take a more proactive role, one or more of the approaches may
be preferred. My choices in priority order would be user stories, business
process design, and use cases.

Idea is
proposed

SCRUM
Software
Development
Process Phases

Project
Management
Phases

SCOPE

Product Owner
develops and

prioritizes a list
of functionality

C h a p t e r 18224

25_596365 ch18.qxd 2/15/06 10:38 PM Page 224

Defining the Required Functions
The RBS is the deliverable from this activity. These functions (or sub-functions
for larger projects) define the Product Backlog, the prioritized list of functions
and features previously identified by the customer that have not yet been inte-
grated into the solution. The contents of the Product Backlog evolve as func-
tionality is released and the learning and discovery of additional functions
takes place.

Prioritizing Functions
Creating a prioritized list of functions is generally done on the basis of busi-
ness value. This metric may be as simple as MoSCoW (an acronym that defines
the following prioritization schema: M = must have, S = should have, C =
could have, W = wouldn’t it be nice if we could have) or be based on a
weighted criteria model. Your preference should be for customer-driven
approaches.

The Scoping Phase of the Iterative SDPM Strategy
for the Rational Unified Process Model

Figure 18-3 illustrates the project management Scoping Phase integrated with
the Business Modeling and Requirements Gathering Phases of the Iterative
SDPM strategy of the RUP model. The RUP model is essentially an Incremen-
tal type approach where each increment includes a complete Standard Water-
fall model, but that is where the similarity ends. The purpose, content, and
characteristics of each increment are what establish RUP as an Iterative rather
than an Incremental approach.

Figure 18-3: The Project Management Scoping Phase integrated with the Business
Modeling and Requirements Gathering Phases of the Rational Unified Process model

Business
Modeling

RUP
Software
Development
Process
Phases

Project
Management
Phases

SCOPE

Requirements
Gathering

The Iterative SDPM Scoping Phase 225

25_596365 ch18.qxd 2/15/06 10:38 PM Page 225

The Scoping Phase is embedded in the RUP Inception and consists of the fol-
lowing tasks:

■■ Establishing a business model

■■ Describing the core requirements through a function and feature list

■■ Gathering a documented list of all use cases that flow from the functions
and features list

■■ Crafting a high-level outline of the phases and iterations

The following is a description of each task that makes up the Inception Phase.

Establishing a Business Model
This is a bounding task; in it you define the “as is” business model and if
appropriate the “to be” business model. Either or both of these become the
framework within which the project is further defined and executed. From the
business model, the functions and features are defined.

Describing the Core Requirements Through a Function and
Feature List

Each business process step is the source of functions and features. These may
be existing functions and features or those that are being added to the “as is”
model to create the “to be” model. See Appendix D for examples.

Gathering a Documented List of All Use Cases That Flow
from the Functions and Features List

Use cases are the primary driver of RUP. See Appendix D for a discussion of
requirements gathering using use cases. The use cases are assigned to itera-
tions on the basis of priorities and dependencies and become the basis on
which the detailed plan and schedule for each iteration are developed.

Crafting a High-Level Outline of the Phases and Iterations
This outline, once crafted, is a scope of the plan. Obviously, it will change as
you go, but for now it is the intended approach to this project.

C h a p t e r 18226

25_596365 ch18.qxd 2/15/06 10:38 PM Page 226

The Scoping Phase of the Iterative SDPM Strategy
for the Dynamic Systems Development Method

Figure 18-4 illustrates the project management Scoping Phase integrated with
the Feasibility and Business Study Phases of the Iterative SDPM strategy of the
DSDM. Note that the Scoping Phase incorporates both the Feasibility and
Business Study Phases of DSDM and that it is iterative, as was shown in the
last chapter in Figure 17-9.

The activities that take place in the Scoping Phase of an Iterative SDPM strat-
egy for the DSDM Feasibility Study and the Business Study are as follows:

■■ Feasibility Study

■■ Outlining the plan to build a deliverables-based WBS

■■ Building a quick prototype

■■ Business Study

■■ Defining business processes affected by this project

■■ Prioritizing the functionality

■■ Developing the dependency structure between functionality

These topics are discussed in the following subsections.

Figure 18-4: The Project Management Scoping Phase integrated with the Idea and
Requirements Gathering Phases of the Dynamic Systems Development Method

Feasibility

DSDM
Software
Development
Process Phases

Project
Management
Phases

SCOPE

Business
Study

The Iterative SDPM Scoping Phase 227

25_596365 ch18.qxd 2/15/06 10:38 PM Page 227

Outlining the Plan to Build a Deliverables-Based WBS
This is a high-level plan that outlines the approach to be taken. It is a valida-
tion that what is needed can actually be built.

Building a Quick Prototype
This is optional and should be used at the discretion of the project manager. Its
value to the project is to determine technical feasibility. In those cases where
the business processes are well defined and understood, a prototype may not
add any value to the feasibility study. On the other hand, if the purpose of the
project is to develop a new business process, the prototype may be needed to
put forth a visible rendition of the solution as further validation of feasibility
and understanding. Customers often find this invaluable.

Defining Business Processes Affected by This Project
Sessions facilitated by an experienced business process expert are called for
here. This both bounds the project and provides a graphical depiction of the
project boundary expressed in the form of business processes. For the pur-
poses of both new business process design and business process improve-
ment, an “as is” version and a “to be” version should be described.

Prioritizing the Functionality
A deliverable from the facilitated sessions should also be a prioritization of the
functions and features to be built. The prioritization should take into account
both the business value of each function and feature and the technical rela-
tionships between them.

Developing the Dependency Structure Between Functionality
As part of the prioritization exercise, the technical dependencies between
functions and features must also be preserved. So if the build activities are
sequenced on the basis of prioritizations, they should also be sequenced on the
basis of dependencies.

Discussion Questions
1. What criteria would you use to determine whether you should introduce

the known solution at each iteration or introduce only that part of the
solution where there are suspected gaps in features? Be specific.

C h a p t e r 18228

25_596365 ch18.qxd 2/15/06 10:38 PM Page 228

Installing Custom Controls 229

The Iterative SDPM Planning Phase
You can never plan the future by the past.

Edmund Burke
English statesman, orator, and writer

C H A P T E R 19

229

This is the first of three SDPM Strategies where the planning phase focuses on
projects for which the features are not completely known (Iterative SDPM
strategy); or the features and functions are not completely known (Adaptive
SDPM strategy); or the features, functions, and goal are not completely known
(Extreme SDPM strategy). You can take several approaches to these three situ-
ations. In this chapter, I discuss the Planning Phase of four different iterative
models: the Evolutionary Development Waterfall model, SCRUM, the Ratio-
nal Unified Process, and the Dynamic Systems Development Method.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Planning Phase of the Iterative SDPM strategy for the Evolu-
tionary Development Waterfall model

◆ Understand the Planning Phase of the Iterative SDPM strategy for the
SCRUM model

◆ Understand the Planning Phase of the Iterative SDPM strategy for the Ratio-
nal Unified Process model

◆ Understand the Planning Phase of the Iterative SDPM strategy for the Dy-
namic Systems Development Method

26_596365 ch19.qxd 2/15/06 10:38 PM Page 229

The Planning Phase of an Iterative SDPM Strategy

The primary focus of any Iterative, Adaptive, or Extreme SDPM strategy is to
discover a complete and acceptable solution beginning with a partial solution.
The indication that this is the situation you find yourself in comes when you
and/or the customer know that functions or features are missing because the
current solution just doesn’t feel right to the customer. Working together with
the customer, the project team will plan the iterations to discover those miss-
ing features. The Iterative SDPM strategy has two variations: Iterate on the
complete solution or iterate on those parts of the solution requiring additional
features.

Figure 19-1 illustrates the parts of the project management Planning Phase and
the iterative planning phase.

Suppose that based on the results of the requirements gathering phase, you
reach the conclusion that the solution that suggests itself is not going to meet
customer needs. There is something missing from the requirements documen-
tation. It could be any number of things. The most likely scenario is that the
requirements list is not complete. Second, the requirements may not be com-
pletely defined. That points you to missing features, and that is the focus of the
four iterative SDPM Strategies discussed in this chapter. The challenge is to
plan a project where you do not know the complete solution but must discover
it during through the iterative nature of the four strategies that make up the
Iterative SDPM strategy.

Figure 19-1: The Planning Phase for the Iterative SDPM strategy

SCOPE

Iterative
Software
Development
Phases

Project
Management
Phases

PLAN

DESIGN

C h a p t e r 19230

26_596365 ch19.qxd 2/15/06 10:38 PM Page 230

The Planning Phase of an Iterative SDPM Strategy
for the Evolutionary Development Waterfall Model

Figure 19-2 is the Planning Phase of the Incremental SDPM strategy for the
Evolutionary Development Waterfall model.

For planning the Iterative SDPM strategy for the Evolutionary Development
Waterfall model, the Requirements Breakdown Structure (RBS) is not com-
plete. There are some features missing from the current solution. The objective
of this strategy is to plan each iteration so that the missing features can be dis-
covered and integrated into the solution finally producing a complete solu-
tion. There are four major tasks that need to be done to generate the project
plan for this strategy. They are:

■■ Identifying those functions where features may be missing

■■ Prioritizing the functions that are missing features

■■ Allocating functions to iterations consistent with the features dependency
structure

■■ Creating the project schedule for this iteration

While this is the more organized approach to Evolutionary Development, it is
not the only one. As an alternative, you may simply build the solution with the
core features and functions that you know will be in the final solution, let the
customer interact with that solution, take suggestions for improvement, inte-
grate them into the solution, and start the process over again. This continues
until the customer is happy, you run out of time, or you exhaust the budget.
While this may get to the final and acceptable solution, it can lead to scope
creep and ineffective use of programmer time. A more structured approach,
which offers some time-saving alternatives and is my recommendation, is to
follow the four tasks identified in the preceding list. Each of these tasks is
briefly described in the following subsections.

Identifying Those Functions Where Features May Be Missing
Using the solution with the core functions and features, have the customer
identify those functions that do not produce an acceptable solution. Have the
customer tell you what features are acceptable, which are not, and what might
be done to correct the anomaly. Do this for every function in the core system.

The Iterative SDPM Planning Phase 231

26_596365 ch19.qxd 2/15/06 10:38 PM Page 231

Figure 19-2: Planning Phase of an Iterative SDPM strategy for the Evolutionary
Development Waterfall model

Prioritizing the Functions That Are Missing Features
Ask the customer to prioritize those functions needing improvement based on
their importance in the final solution. This is a business decision that the cus-
tomer should be making under the advice of the development team. The
MoSCoW model might work here.

Allocating Functions to Iterations
There are two approaches that will do the job:

■■ Iteration on the whole solution—This is the most common approach. It
works well as it does not overlook any areas of functionality. Even those
that were not targeted for improvement are included. That’s the upside.

But there is a downside. The downside is that it encourages scope creep.
Customers invariably find something that escaped their notice during
requirements gathering that needs to be integrated into the solution. That’s
okay, but it does divert the developers from their primary mission—
find an acceptable and complete solution.

■■ Iteration on the targeted functions—This approach is typically faster than
the iteration on the whole solution approach. The reason is that the code
for the targeted functions can be isolated from the rest of the code, worked
on concurrently, and then integrated to produce the next version of the
solution. This keeps the team and the customer focused on the high-priority
functions and reduces the likelihood of scope creep. That’s the upside. But
there is a downside. The downside is that the concurrent swim lanes (one
for each function) require a deeper bench of developers. If that is not a
binding constraint, the recommendation is to use this approach.

Requirements
Gathering

Planning Phase
of the Iterative
SDPM Strategy
for the Evolutionary
Waterfall Model

Project
Management
Phases PLAN

Systems
Design

C h a p t e r 19232

26_596365 ch19.qxd 2/15/06 10:38 PM Page 232

Creating the Project Schedule for This Iteration
Once the deliverables have been identified for the coming iteration, you can
develop a schedule. If the iteration is on the whole solution, the task is not any
different than building a project schedule for a Linear or Incremental strategy.
If the iteration is on the targeted functions, the task is a bit more complex. For
skill sets that are used across the functions, a scheduling problem and a
resource dependency is created across swim lanes. That dependency arises
from the need to not double schedule a resource for work in two different
swim lanes at the same time.

The Planning Phase of an Iterative SDPM Strategy
for the SCRUM Model

Figure 19-3 is the Planning Phase of the Iterative SDPM strategy for the SCRUM
model.

The Planning Phase of an Iterative SDPM strategy for the SCRUM model is
iterative itself. After a demo of each solution, the planning process repeats
itself. The Sprint Planning Meeting is an 8-hour meeting with a specific set of
deliverables. There are three deliverables from this meeting. They are:

■■ Current Product Backlog

■■ Prioritized Backlog

■■ Sprint Backlog

Figure 19-3: Planning Phase of an Iterative SDPM strategy for the SCRUM model

Sprint
Planning
Meeting

SCRUM
Software
Development
Process

Project
Management
Phases

Demo
Sprint

Functionality

PLAN

The Iterative SDPM Planning Phase 233

26_596365 ch19.qxd 2/15/06 10:38 PM Page 233

The first two deliverables are produced by the Product Owner and the
SCRUM Team in the first 4 hours of the Sprint Planning Meeting. The last
deliverable is produced by the SCRUM Team in the second 4 hours of the
Sprint Planning Meeting. All three deliverables are briefly described in the fol-
lowing subsections.

Current Product Backlog
The customer (the Product Owner in SCRUM terminology) is responsible for
creating the list of functions and features the final solution should contain.
This list may change in future iterations as a result of the Product Owner par-
ticipating in a demo of the solution.

Prioritized Backlog
The Product Owner with the collaboration of the SCRUM team prioritizes the
functions and features in the current Product Backlog. There is no prescribed
method for completing this prioritization, but it is based on criteria supplied
by the Product Owner. MoSCoW would do just fine. The SCRUM Team iden-
tifies the features and functions it believes could be implemented in the 30-day
Sprint to follow.

Sprint Backlog
The SCRUM Team has a prioritized list of the functions and features they have
estimated can be built in the coming Sprint. For the last half of the Sprint Plan-
ning Meeting they put a high-level plan together as to how they intend to com-
plete the work that has been assigned to the coming Sprint. That plan contains
a list of the tasks that have to be done in order for the Sprint Backlog to be com-
pleted. The RBS is helpful to this planning task. By further decomposing the
functions and features in the Sprint Backlog they can define specific tasks that
can be taken as work assignments by the SCRUM Team. Any sequencing of
appropriate tasks can be denoted in the plan.

The Planning Phase of an Iterative SDPM Strategy
for the Rational Unified Process Model

Figure 19-4 is the Planning Phase of the Incremental SDPM strategy for the
Rational Unified Process model.

C h a p t e r 19234

26_596365 ch19.qxd 2/15/06 10:38 PM Page 234

Figure 19-4: Planning Phase of an Iterative SDPM strategy for the Rational Unified
Process model

There are two levels of plan that need to be constructed for the Iterative SDPM
strategy for the Rational Unified Process model.

■■ An overall plan, a high-level phase plan that covers all iterations

■■ A low-level iteration plan that looks inside each iteration

The overall plan is done once at the beginning of the project as part of the ini-
tial requirements gathering phase. The iteration plan is done right after the
completion of the requirements gathering phase in each iteration.

Overall Plan
The overall plan is a brief description of the framework of the project. It speci-
fies the duration and number of iterations, how to choose the deliverables for
each iteration, and how to track project performance (all of which are
described in the following subsections). The best time to prepare this plan is at
the end of the initial requirements gathering phase.

RUP
Software
Development
Process
Phases

Project
Management
Phases

PLAN

Requirements
Gathering

Sub-System
Test

The Iterative SDPM Planning Phase 235

26_596365 ch19.qxd 2/15/06 10:38 PM Page 235

Iteration Duration and Number

For most cases, an iteration will last from 2–6 weeks. As project size and team
size increase, the length of an iteration also increases. The important thing to
keep in mind is to maintain the meaningful involvement of the customer. That
is difficult to do if the iterations are 3 months long. In the early stages of a pro-
ject, it is best to keep the iterations as short as possible while building customer
involvement. Once you are confident that the customer is committed and
involved, you can begin to lengthen the iterations. Whatever duration you
decide on, you must be able to fit them into the overall project time box. For
example, if iteration duration has been set at 4 weeks and the project time box
is 1 year, then you can plan to have 13 iterations. As the project work com-
mences you will find reason to lengthen or shorten the next iteration. Later
iterations will have to be adjusted to make up the slack or the deficit.

Assigning Deliverables to Iterations

In the overall plan, you should assign deliverables to the first iteration only.
The choice is usually one made by the customer with the advice of the team.
The choice is usually one of creating (or adding) the most business value pos-
sible within the duration of the coming iteration.

Tracking Project Performance

Any number of metrics can be tracked.

■■ The percentage of identified requirements that have been successfully
implemented. (Keep in mind that the total number of requirements identi-
fied changes with each iteration as a result of learning and discovery in
previous iterations.)

■■ The number of requirements/functions/features completed in an itera-
tion divided by the number of requirements/functions/features planned.

■■ The number of scope change requests submitted per iteration.

■■ The trend over time of any of the preceding metrics.

Iteration Plan
Each iteration begins with an updating of the requirements list from all previous
iterations. This means that the list of unfulfilled requirements grows and its pri-
orities realign. That is why any detailed planning beyond the next iteration
doesn’t make sense. Armed with the updated and prioritized list of unfulfilled
requirements, the customer and the project team will plan the next iteration.
This plan is not unlike the detailed plan you create for a Linear SDPM strategy.

C h a p t e r 19236

26_596365 ch19.qxd 2/15/06 10:38 PM Page 236

There will be a Work Breakdown Structure (WBS) (an updated RBS would be
good to have for this exercise), task duration estimates, precedence diagrams,
and a project schedule.

The Planning Phase of an Iterative SDPM Strategy
for the Dynamic Systems Development Method

Figure 19-5 is the Planning Phase of the Iterative SDPM strategy for the
Dynamic Systems Development Method.

Planning is done in two separate phases of the Iterative SDPM strategy for the
Dynamic Systems Development Method.

■■ In the Feasibility Study Phase, there is a one-time planning activity to out-
line the project plan at a high level.

■■ During the Business Study Phase, additional information was gathered
and used to update the Outline Plan.

The Business Study Phase can be repeated a number of times. That comes
about when additional business functionality is discovered during the
Implementation Phase that could not be handled in the current iteration
and will have to be handled in a later iteration.

Figure 19-5: Planning Phase of an Iterative SDPM strategy for the Dynamic Systems
Development Method

Feasibility

DSDM
Software
Development
Process

Project
Management
Planning
Phase

PLAN

Implementation

Business
Study

The Iterative SDPM Planning Phase 237

26_596365 ch19.qxd 2/15/06 10:38 PM Page 237

Outlining the Project Plan
The Outline Plan is an additional check on the feasibility of the project. The
Outline Plan focuses on the development aspects of the project. The question
to be answered is “Is the development of this solution likely to be successful?”
or in other words, “Can we do what we say we are going to do?” A further
question is, “Is the Dynamic Systems Development Method the appropriate
approach for this project?”

Identifying and Prioritizing Functionality
This is the first deliverable from the Business Study Phase. First a business
process model is developed. It focuses on the processes to be automated or
improved. Usually this is done in facilitated workshops under the leadership
of an experienced facilitator. From the processes to be automated or improved,
a list of functional development efforts is compiled and prioritized. The prior-
itization is needed so that the most important functions will be worked on first
and the less valuable ones left for later in the project. Function groups may be
formed as a first pass at iterative planning. Technical dependencies between
functions may alter the grouping and the sequencing. For the most part, the
higher priority functions are developed earlier with dependent functions
developed scheduled accordingly.

Documenting Architectural Specifications
Using the functionality to be developed, the technical team members begin the
design of the architecture that supports the high-priority functionality. This
will change based on later discoveries, but at least it gives a starting point for
later and more detailed architecture designs.

Discussion Questions
1. Compare and contrast each of the Iterative SDPM strategies with respect

to extent of customer involvement, efficient use of time, support of scope
change requests, and use of scarce resources. Rank each Iterative model
based on each comparative variable. Is any one of the models a clear
choice?

2. How might project characteristics affect your choice of an Iterative model?

3. How might customer involvement affect your choice of an Iterative model?

4. Refer back to Figure 11-2. Which sub-systems would you develop using
an Iterative approach? Specify which Iterative approach you would use
and why.

C h a p t e r 19238

26_596365 ch19.qxd 2/15/06 10:38 PM Page 238

Installing Custom Controls 239

The Iterative SDPM
Launching Phase
The purpose of organizations is to exploit the fact that
many decisions require the participation of many indi-
viduals for their effectiveness.

Kenneth J. Arrow
Nobel laureate in economics

C H A P T E R 20

239

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the complications added to the Launching Phase when using an
Iterative SDPM strategy

◆ Know how to plan for scope change requests

◆ Anticipate and mitigate resource scheduling situations

◆ Anticipate and mitigate iteration scheduling changes

◆ Know how to launch an Iterative SDPM strategy for the Evolutionary Water-
fall Development model

◆ Know how to launch an Iterative SDPM strategy for the SCRUM model

◆ Know how to launch an Iterative SDPM strategy for the Rational Unified
Process model

◆ Know how to launch an Iterative SDPM strategy for the Dynamic Systems
Development Method

All of the Launching Phase discussion for the Linear and Incremental SDPM
strategy situations apply to the Iterative SDPM strategy and will not be repeated
here (you can see discussions of Linear and Incremental Launching Phases in
Parts II and III). Iterative SDPM strategy projects follow the same procedures as
by-the-book projects, except they repeat those procedures several times over the

27_596365 ch20.qxd 2/15/06 10:37 PM Page 239

life of the project. Within a single repetition all of the launching activities that are
done in the Linear and Incremental SDPM strategies are done in the Iterative
SDPM strategy. However, you do have some additional considerations, ones
that arise because the Iterative approaches all produce the current but incom-
plete solution at each iteration. Over a series of iterations, the complete solution
emerges. This chapter identifies those additional considerations of the Iterative
approach and discusses how they are handled in the Launching Phase of Itera-
tive SDPM Strategies for the Evolutionary Waterfall model, the SCRUM model,
the Rational Unified Process model, and the Dynamic Systems Development
Method.

The Launching Phase of an Iterative SDPM Strategy

Figure 20-1 highlights the Launching Phase of an Iterative SDPM strategy.

An Iterative SDPM strategy differs in principle from an Incremental SDPM
strategy in one important way—in the Iterative SDPM strategy each iteration
presents the customer with the complete solution. The Incremental SDPM
strategy, on the other hand, presents the customer with a portion of the known
solution at each increment. While scope change requests are the bane of the
Linear or Incremental SDPM strategies, they are the fuel of the Iterative SDPM
strategy. You face four tasks that must be done in the Launch Phase of an Iter-
ative project that are not done or are done differently in the Launch Phase of a
Linear or Incremental project. They are as follows:

■■ Processing scope change requests

■■ Handling solution handoffs

■■ Handling solution rollout

■■ Scheduling iterations

These are discussed in the subsections that follow.

Processing Scope Change Requests
The Iterative SDPM strategy is the first of three strategies covered in this book
for which scope change requests are vital. The partial solution cannot evolve to
a complete and acceptable solution in the absence of scope changes. Scope
changes are the redirecting force that keeps the solution converging on the
needs of the customer and of the business. Scope change requests come about
as the customer responds to the solution; they request added or changed fea-
tures based on their direct experiences using the solution. Also, some itera-
tions result in a release of a partial solution to the end users, and some scope
change requests come about as a response to the true end user experience.

C h a p t e r 2 0240

27_596365 ch20.qxd 2/15/06 10:37 PM Page 240

Figure 20-1: The Launching Phase of an Iterative SDPM strategy

Because iterations are of short duration, it is best to integrate scope changes as
part of the next iteration’s planned functionality. When they are received, the
project impact statement can be developed, but any action can be postponed
until the appropriate iteration. Interrupting the work flow in the current itera-
tion is too disruptive and that is why a postponement makes the most sense.

Convergence on the final and acceptable solution is an important characteris-
tic of all Iterative strategies. The frequency and number of scope change
requests over time is a good measure of the progress of the search for an
acceptable solution. The number of scope change requests submitted between
each iteration is an easy metric to track. That number may increase for the first
few iterations, but then should begin to decrease. If it doesn’t, that is a good
indicator of trouble. You might want to spend some time with the customer
and try to discover the reasons for the anomalies.

Handling Solution Handoffs
As in the Incremental project, you have no guarantee that the team who
worked on the just completed iteration can work on the next or any other iter-
ation. Early in the project where the solution is not well-defined or developed,
a switch of team members is not too likely. Late in the project, however, the
senior management team might decide that the current solution is good
enough and further work can be postponed—not good music to the ears of the
customer or the project team. They have worked hard to get the solution to
where it is and would like to see the project come to a successful and complete
conclusion. In any case, documenting the solution is a good strategy. That doc-
umentation should also speak to the additional revisions that were planned or
identified but not yet implemented. Because the customer and the team may

SCOPE

Iterative
Software
Development
Phases

Project
Management
Phases

LAUNCH

DESIGN

The Iterative SDPM Launching Phase 241

27_596365 ch20.qxd 2/15/06 10:37 PM Page 241

not know when the solution reaches a point where it can be stabilized and fur-
ther work postponed, they will have to document the solution starting at some
iteration where there is sufficient value and the project is at risk of cancellation.

Handling Solution Rollout
Solution rollout occurs for one of two reasons.

■■ The first is the obvious business value that can accrue for getting a solu-
tion, even a partial solution, out to the end user. It means an earlier return
on investment for the enterprise—a hard deal to pass up!

■■ The second reason is to get feedback on the solution with the hopes of dis-
covering missing features and otherwise improving the business value of
the final solution. Sounds good, but you have a price to pay. You get feed-
back from the early adopters of the software solution, and you must pay
attention to their input. Because the project is still under development, the
only response to the end user has to come from the team that is simultane-
ously doing development. As the end user experiences the current but
incomplete solution, he or she will have a myriad of suggestions to pass
on to the development team. All suggestions must be addressed in some
manner, which will require the development team to spend time analyz-
ing the suggestions, fitting them into the current solution (if that makes
sense), and finally prioritizing them for development and integration into
the solution.

Scheduling Iterations
The customer needs some time between iterations to practice with the partial
solution produced in the just completed iteration. From that practice come
suggestions for additions and changes that are added to the scope change
requests already on file. This becomes the input to the planning phase for the
next iteration.

The Launching Phase of an Iterative SDPM Strategy
for the Evolutionary Development Waterfall Model

The Launching Phase of an Iterative SDPM strategy for the Evolutionary
Waterfall model has all four of the considerations stated in the previous sec-
tion for the generic Iterative situation. Figure 20-2 highlights the Launching
Phase of an Iterative SDPM strategy for the Evolutionary Development Water-
fall model.

C h a p t e r 2 0242

27_596365 ch20.qxd 2/15/06 10:37 PM Page 242

Figure 20-2: The Launching Phase of an Iterative SDPM strategy for the Evolutionary
Development Waterfall model

Keep in mind that the Evolutionary Development Waterfall model embraces a
wide range of situations depending on the extent to which the solution is com-
plete. The more features that are missing from the solution, the more time you
will need to allocate to the customer as they work with deliverables from pre-
vious iterations. The number and frequency of scope change requests is a func-
tion of the degree to which the solution is incomplete. Initially you might
expect a higher frequency of scope change requests. As you near the final and
complete solution, the number and frequency of scope change requests should
begin to diminish. If that is not the pattern, you have a serious problem to con-
tend with—the solution is diverging instead of converging to completeness.
The customer should sense this before you do, but it does require some cor-
rective action. Remember, the customer and your team are on a journey of dis-
covery and may need the time to reflect, discuss, and propose additional
features or modifications to those already implemented. It is important at
Launch time to establish the rules of the engagement. In addition to those tasks
established for the Linear and Incremental models, I have previously noted in
this chapter that four tasks are unique to an Iterative SDPM strategy; this holds
true if you use the Evolutionary model. Those four, which are applicable in the
Evolutionary Development Waterfall model, are listed and described in the
subsections that follow.

Processing Scope Change Requests
Scope change requests in the Iterative approach, unlike those in the Linear or
Incremental approaches, are necessary if a solution is to be found. As the cus-
tomer experiences the current solution, they will have several suggestions for

Requirements
Gathering

Evolutionary
Waterfall
Development
Model Phases

Project
Management
Phases

LAUNCH

Systems
Design

The Iterative SDPM Launching Phase 243

27_596365 ch20.qxd 2/15/06 10:37 PM Page 243

change and addition to the solution. These are the input that is necessary for
that solution to emerge. Treat every one as though it were gold. Give them seri-
ous consideration and feedback to the customer about further changes that
might improve their request. These scope changes are the foundation on
which additional conversations should be held and even more functions and
features discovered.

Handling Solution Handoffs
Similar to the Incremental approach, the Iterative approach may be subject to
changes in team membership between iterations. For the Iterative approach
this is far more serious a change than it was for the Incremental approach. The
reason is that the solution is not fully known in the Iterative approach as com-
pared to the Incremental approach. That puts an added burden on the team
and especially the project manager to document the solution to date as well as
to document ideas not yet integrated into the solution, and to maintain a fluid
and seamless handoff to the new team members. The Iterative approach deals
with far more complex projects than does the Incremental approach and that
also adds to the challenge of affecting a good handoff.

And so you see one of the major weaknesses of the Iterative SDPM strategy as
compared to the Incremental SDPM strategy. The Iterative SDPM strategy
requires considerably more documentation than does the Incremental SDPM
strategy regardless of the model being used.

Handling Solution Rollout
As was the case for the Incremental approach, the Iterative approach requires
the project manager to work closely with all resource providers to make sure
that the resources committed to each iteration are in fact committed. A strong
communications plan is needed with periodic reminders of those commit-
ments. Any change in the project plan due resulting from slippages should be
communicated to the resource managers. There should be no surprises.

Scheduling Iterations
The major advantage of the Iterative approach over the Incremental approach
is that the Iterative approach is not subject to rework. The solution unfolds as
new features and functions are discovered and integrated into the solution.
The plan comes together in a just-in-time way rather than developed com-
pletely at the beginning of the project. The Iterative approach does not have
any re-planning to worry about.

C h a p t e r 2 0244

27_596365 ch20.qxd 2/15/06 10:37 PM Page 244

The Launching Phase of an Iterative SDPM Strategy
for the SCRUM Model

Figure 20-3 illustrates the Launching Phase of an Iterative SDPM strategy for
the SCRUM model.

SCRUM departs from the other models in the Iterative SDPM strategy in that
it is a customer-driven model. The Product Owner (the customer) generates
the Product Backlog List and participates in a Sprint Planning Meeting at the
beginning of each iteration. At that meeting, the updated Product Backlog is
discussed and a decision made as to what is to be developed in the next Sprint.
The Sprint Team spends the last half of the Sprint Planning Meeting deciding
how to produce the agreed upon deliverables.

Figure 20-3: The Launching Phase of an Iterative SDPM strategy for the SCRUM model

Sprint
Planning
Meeting

Demo
Sprint

functionality

Sprint
Backlog

Sprint

Project
Management
Phases

SCRUM
Software
Development
Process

LAUNCH

The Iterative SDPM Launching Phase 245

27_596365 ch20.qxd 2/15/06 10:37 PM Page 245

The Launching Phase is a project team activity. They have agreed with the cus-
tomer as to what is to be built in this Sprint and have put together a prelimi-
nary plan as to how they will accomplish it. In the Launching Phase they need
to establish (or re-establish) the rules of the engagement. SCRUM teams are
typically a small team of subject matter experts (SMEs). If they have worked
together before, the rules of the engagement have been crafted in earlier pro-
jects and are merely reconfirmed here. If they have not worked together
before, their first pass at the rules of the engagement is probably subject to
change as they learn each other’s work styles and habits. Trust must be built
up among the team. Each team member operates pretty much independently
of the others. They are self-directed as is the team self-directed. Many would
argue that a project manager isn’t needed in such a SCRUM team. That is a
defensible position to take. In some situations, the SCRUM Master, who is
charged with ensuring that the team follows and practices the principles of
SCRUM, may act as project manager but only in a coaching or facilitating role.

The Launching Phase of an Iterative SDPM Strategy
for the Rational Unified Process Model

The Launching Phase of an Iterative SDPM strategy for the Rational Unified
Process model is highlighted in Figure 20-4.

The Iterative SDPM strategy for the Rational Unified Process is a chain of iter-
ations so that each iteration includes the entire project life cycle. Launching is
therefore repeated at each new iteration. In some cases, establishing the rules
of the engagement may be trivial and nothing more than a validation of the
rules of the engagement as defined in the previous iteration. This will happen
with teams that are experienced working with one another. In other cases,
launching may be a bit more formal. Such would be the case with a team that
is new or a team whose members may have changed since the last iteration.
New teams can learn from the previous iteration how to improve the rules of
the engagement. In other words, they can iterate on how best to conduct the
business of the team.

The Launching Phase of an Iterative SDPM Strategy
for the Dynamic Systems Development Method

The Launching Phase of an Iterative SDPM strategy for the Dynamic Systems
Development Method is highlighted in Figure 20-5.

C h a p t e r 2 0246

27_596365 ch20.qxd 2/15/06 10:37 PM Page 246

Figure 20-4: The Launching Phase of an Iterative SDPM strategy for the Rational Unified
Process model

As you can see, the Launching Phase of an Iterative SDPM strategy for the
Dynamic Systems Development Method can be iterative itself. That will hap-
pen if the current Implementation Phase concludes that the Business Study
Phase must be repeated. That can dramatically alter the project going forward.
The current solution might be scrapped, and a new one might take its place.
That means a new team, or at least some new team members, so the Launch-
ing Phase must be repeated. As in the case of the Rational Unified Process, that
Launching Phase might just consist of a re-validation of the previous itera-
tion’s rules of the engagement. However, with a new team, the Launching
Phase is a definition of the rules of the engagement.

Requirements
Gathering

RUP
Software
Development
Process
Phases

First Stage Release

Project
Management
Phases LAUNCH

Systems
Design

Requirements
Gathering

Last Stage Release

Systems
Design

The Iterative SDPM Launching Phase 247

27_596365 ch20.qxd 2/15/06 10:37 PM Page 247

Figure 20-5: The Launching Phase of an Iterative SDPM strategy for the Dynamic Systems
Development Method

Discussion Questions
1. You are Pepe Ronee and you have run the Iterative SDPM strategy by the

book. But you have this gnawing feeling that what Dee wants is not what
she needs. Within the context of the Iterative SDPM strategy, what could
you do?

2. Referring to the case study, how would you prepare your new team to
adopt an Iterative approach?

Business
Study

DSDM
Software
Development
Process
Phases

Project
Management
Phases LAUNCH

Implementation

Functional
Model

Iteration

Heavy arrows = Forward Paths
Light arrows = Evolutionary Paths

C h a p t e r 2 0248

27_596365 ch20.qxd 2/15/06 10:37 PM Page 248

Installing Custom Controls 249

The Iterative SDPM Monitoring
and Controlling Phase
Method is much, technique is much, but inspiration is
even more.

Benjamin Nathan Cardozo
U.S. Supreme Court Justice

C H A P T E R 21

249

All of the Monitoring and Controlling discussion for the Linear and Incremen-
tal SDPM strategy situations apply to the Iterative SDPM strategy and will not
be repeated here. Iterative SDPM strategy projects follow the same procedures
as by-the-book projects, except they repeat those procedures several times
over the life of the project. Within a single repetition, all of the Monitoring and
Controlling activities done in the Linear and Incremental SDPM strategies are

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the Monitoring and Controlling Phase of the Iterative SDPM
strategy

◆ Discuss the role of project reviews in the Iterative SDPM strategy

◆ Implement strategies to handle the Iterative project scope change requests

◆ Understand the Iterative SDPM strategy for the Evolutionary Waterfall De-
velopment model

◆ Understand the Iterative SDPM strategy for the SCRUM model

◆ Understand the Iterative SDPM strategy for the Rational Unified Process
model

◆ Understand the Iterative SDPM strategy for the Dynamic Systems Develop-
ment model

28_596365 ch21.qxd 2/15/06 10:35 PM Page 249

done in the Iterative SDPM strategy. But you do face some additional consid-
erations. They arise because the Iterative approaches all produce the current
but incomplete solution at each iteration. Over a series of iterations, the com-
plete solution emerges. In this chapter, I identify those additional considera-
tions and discuss how they are handled in the Monitoring and Controlling
Phase of Iterative SDPM strategies for the Evolutionary Waterfall model, the
SCRUM model, the Rational Unified Process model, and the Dynamic Systems
Development Method

The Monitoring and Controlling Phase
of an Iterative SDPM Strategy

Figure 21-1 highlights the Monitoring and Controlling Phase of an Iterative
SDPM strategy.

As noted in a previous chapter, the Iterative SDPM strategy differs in principle
from an Incremental SDPM strategy in one important way. In the Iterative
SDPM strategy each iteration presents the customer with the complete solu-
tion. The Incremental SDPM strategy, on the other hand, presents the customer
with a portion of the known solution at each increment. Monitoring the devel-
opment of a known solution is quite different from monitoring the develop-
ment of a partially unknown solution.

■■ Known solution—The monitoring can be based on the degree to which
the solution is completely developed. The plan will reflect the complete
solution and how it will be developed over time and at what cost. A num-
ber of metrics can be used, as can earned value analysis (see Appendix J
for the details of earned value analysis). The focus on these metrics will be
the extent to which the actual progress aligns with the planned progress—
in other words, on the process.

■■ Partially unknown solution—Process metrics will not work. The focus on
the deliverables will have to be the basis for the metric. Features planned
for the next iteration compared to features delivered would be the basis of
most metrics that apply in the Iterative SDPM strategy. There are three
topics to discuss relative to those metrics. They are:

■■ Project progress reporting

■■ Discovery of new/revised features

■■ Processing scope change requests

These are discussed in the subsections that follow.

C h a p t e r 2 1250

28_596365 ch21.qxd 2/15/06 10:35 PM Page 250

Figure 21-1: The Monitoring and Controlling Phase of an Iterative SDPM strategy

Project Progress Reporting
Iterative SDPM Strategies focus on delivering business value, not on meeting
time, cost, and task parameters specified in the project plan. Therefore,
progress reporting focuses on the number of deliverables planned versus the
number actually delivered as an indicator of iteration success. Progress against
the overall solution can be measured by the trend in the cumulative number of
scope change requests. A trend that is increasing at an increasing rate indicates
a lack of convergence on the final solution. This is depicted in Figure 21-2 by
Project A. For this trend, the process of learning and discovery is still active.
The final solution may still be some distance off. On the other hand, a trend
that is increasing at a decreasing rate is suggestive of an intermediate solution
that is converging on the final solution. The final solution may be near. This is
depicted in Figure 21-2 by Project B.

Of the two, Project A may be suggestive of a project that is out of control. If the
project is one in which the customer is not at all sure of the current solution or
if the current solution lacks considerable definition, then the increasing rate of
growth may be describing a project that is wandering around and not likely to
converge on an acceptable solution. If the behavior persists beyond a reason-
able number of iterations, it would be worth doing an analysis to determine
whether the project is drifting out of control or whether it can be expected to
settle into a converging pattern. It may be drifting out of control because the
initial solution was not only missing features, but also had some of its func-
tions poorly defined or implemented. This may indicate that an Adaptive
SDPM strategy would have been a better choice for the project. Project B is
indicative of a healthy project. Solid learning and discovery are taking place
and the customer is gaining in confidence that a final solution is not far off.
This should reassure the project team that the Iterative SDPM strategy was the
proper choice.

Iterative
Software
Development
Phases

Project
Management
Phases

DESIGN

MONITOR
&

CONTROL

BUILD TEST CHECK DEPLOY

The Iterative SDPM Monitoring and Controlling Phase 251

28_596365 ch21.qxd 2/15/06 10:35 PM Page 251

Figure 21-2: Divergent and convergent trends

Discovery of New/Revised Features
Another useful metric for an Iterative SDPM strategy is the number of new/
revised features in each iteration. Figure 21-3 shows three typical patterns.

■■ Project A shows a project whose discovery and learning is growing at a
healthy rate for the first several iterations, flattens for a few iterations, and
then begins to tail off later in the project indicative of a project nearing its
completion.

■■ Project B displays rather erratic behavior. The number of new/revised fea-
tures starts at a high level and persists at that level for several iterations.
This team is having trouble coming to acceptable closure on most features.

■■ Project C never really gets its act together. It is possible that only a few
minor features need revision and that not much in the way of new fea-
tures are needed and that the initial solution might be very close to the
final solution. Certainly, the customer would know whether or not this is
the case. Barring that, however, what is this curve telling us? Most likely
there is a problem with customer involvement.

Separately tracking the frequency of new features and revised features may be
informative. Figure 21-4 shows some typical patterns.

0
1 82

Cumulative
Number of
Scope
Change
Requests

53 64 7

5

10

15

20

25

30

35

Project A

Project B

40

45

50

C h a p t e r 2 1252

28_596365 ch21.qxd 2/15/06 10:35 PM Page 252

Figure 21-3: Frequency of new/revised features by iteration

Figure 21-4: Patterns of new or revised features by iteration

0
1 82

Number of
New or
Revised
Features

53 64 7

5

10

15

20

25

30

35

New
features

Revised
features

40

45

50

0
1 82

Number of
New and
Revised
Features

53 64 7

5

10

15

20

25

30

35

Project A

Project B

40

45

50

Project C

The Iterative SDPM Monitoring and Controlling Phase 253

28_596365 ch21.qxd 2/15/06 10:35 PM Page 253

Notice that the frequency of total features and new features follows a pattern
that has been associated with the healthy project. The frequency increases,
plateaus, and then begins to decrease. Such a project looks healthy. But look
more closely at the companion pattern for revised features. It holds steady or
is increasing. This means that the customers are continually changing their
minds about the new features that have been added. Some of the changes are
probably for features that have already been changed one or more times. There
is no evidence that there is closure on the part of the customer for new features
already implemented. While this project is getting close to a final solution as
far as new features are concerned, the customer is not at all satisfied with those
features. In other words, the project is not healthy. Perhaps the solution lies in
doing a better job of specifying the details of new features before they are inte-
grated into the then current solution.

Processing Scope Change Requests
The Iterative SDPM strategy is the first of three for which scope change
requests are vital. The partial solution cannot evolve to a complete and accept-
able solution in the absence of scope changes. Scope changes are the redirect-
ing force that keeps the solution converging on the needs of the customer and
of the business. Scope change requests come about as the customer responds
to the solution. They request added or changed features based on their direct
experiences using the then solution. Some iterations result in a release of a par-
tial solution to the end users, and some scope change requests come about as a
response to the true end user experience. Since iterations are of short duration,
it is best to integrate them as part of the next iteration’s planned functionality.
When they are received, the project impact statement can be developed, but
any action should be postponed until the appropriate iteration. Interrupting
the work flow in the current iteration is too disruptive and that is why a post-
ponement makes the most sense.

Convergence on the final and acceptable solution is an important characteris-
tic of all Iterative strategies. As discussed earlier in the chapter, the frequency
and number of scope change requests over time is a good measure of the
progress of the search for an acceptable solution. The number of scope change
requests submitted between each iteration is an easy metric to track. That
number may increase for the first few iterations but then should begin to
decrease. If it doesn’t, that is a good indicator of trouble. You might want to
spend some time with the customer and try to discover the reasons for the
anomalies.

C h a p t e r 2 1254

28_596365 ch21.qxd 2/15/06 10:35 PM Page 254

The Iterative SDPM Monitoring and Controlling Phase 255

Scope change requests can come at any time during an iteration, and they
should. Whenever the customer or a team member identifies a change that
they believe will add to the business value of the solution, they should docu-
ment it with a scope change request. These will be collected and held until the
end of the iteration and then prioritized for the build phase of a future iteration
along with all other features not yet integrated into the solution.

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Evolutionary Development
Waterfall Model

The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Evolutionary Waterfall model has all three of the considerations stated in the
previous section for the generic Iterative SDPM strategy. Figure 21-5 highlights
the Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Evolutionary Development Waterfall model.

Figure 21-5: The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Evolutionary Development Waterfall model

Systems
Design

Evolutionary
Development
Waterfall
Software
Development
Phases

Project
Management
Phases

Develop
a Version

Deliver
the Version

Incorporate
Customer
Feedback

Deliver
Final

Version
Get Customer

Feedback

MONITOR
&

CONTROL

28_596365 ch21.qxd 2/15/06 10:35 PM Page 255

First note that Systems Design is a systems development phase that is not part
of the iterations that define this SDPM strategy. Systems Design is done once
with all of the functions having been identified and a number of features also
identified for each function. While the systems design may be high level in
some aspects, it is relatively complete at the outset. The iterations then focus
on further refinement of existing features or the identification of new features.
As noted previously in the chapter, the number and frequency of scope change
requests is an indicator of the degree to which the solution is incomplete.
Tracking the number or cumulative number of scope change requests over
time is a recommended metric. Initially you might expect a higher frequency
of scope change requests. As you near the final and complete solution, the
number and frequency of scope change requests should begin to diminish. If
that is not the pattern, you have a serious problem to contend with. The solu-
tion is diverging instead of converging to completeness. The customer should
sense this before you do, but it does require some corrective action. Remember,
the customer and your team are on a journey of discovery and may need the
time to reflect, discuss, and propose additional features or modifications to
those already implemented.

The Monitoring and Controlling Phase of an
Iterative SDPM Strategy for the SCRUM Model

Figure 21-6 illustrates the Monitoring and Controlling Phase of an Iterative
SDPM strategy for the SCRUM model.

The focus of monitoring and control here is the status of the Sprint Backlog.
When created, the Sprint Backlog contains the features that the team had
planned to build and integrate in 30 days. The nature of a SCRUM is to have the
team of subject matter experts (SME) focus on development and not be ham-
pered with a lot of non-value-added work—such as formal reporting. In addition
to the features metrics introduce earlier in this chapter, one additional, simple
metric is of value to those who simply must have some measure of progress. In
the Sprint Planning Meeting, the team should have provided individual esti-
mates of the duration (or labor) needed for each feature in the coming Sprint.
Compare that to the actual duration (or labor) expended. The ratio of cumulative
actual to cumulative estimated gives some measure of efficiency. Additionally,
the percentage of the Sprint Backlog completed (as measured by the hours of
duration) compared to the percentage of working hours expended gives some
measure of the status of the Sprint Backlog. If that metric is too cumbersome to
be useful, you might simply take the percentage of features completed divided
by the percentage of Sprint days expended. If that ratio is greater than 1, you are
ahead of schedule. If that ratio is less than 1, you are behind schedule. This is a
crude measure, but it substitutes for more formal and rigorous metrics.

C h a p t e r 2 1256

28_596365 ch21.qxd 2/15/06 10:35 PM Page 256

Figure 21-6: The Monitoring Phase of an Iterative SDPM strategy for the SCRUM model

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Rational Unified Process Model

The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Rational Unified Process (RUP) model is highlighted in Figure 21-7.

RUP can be a heavy or light process. On the heavy side you have formal use
case documentation, formal systems, and detailed design documents. These
are revised and updated as each iteration is completed. On the light side, you
can take a more tacit approach to use cases with much of the documentation
being understood among the team members. Use cases often are the infra-
structure on which the solution is built, and the library of use cases can be the
documentation depository.

The total number of use cases implemented compared to the total number to
be implemented is the simplest metric for measuring status and progress of
the SDPM strategy for the Rational Unified Process model. Presumably the use
cases have been prioritized and developed in priority order in accordance with
the dependency relationships among the use cases.

Sprint
Planning
Meeting

Demo
Sprint

functionality

Sprint
Backlog

Sprint

Project
Management
Phases

SCRUM
Software
Development
Phases

MONITOR
&

CONTROL

The Iterative SDPM Monitoring and Controlling Phase 257

28_596365 ch21.qxd 2/15/06 10:35 PM Page 257

Figure 21-7: The Monitoring Phase of an Iterative SDPM strategy for the Rational Unified
Process model

Within an iteration, a use case itself can be used as the metric to measure
progress. Each use case has a number of features aligned with it. The number
of features implemented as a percentage of the total number of features in the
use case is a quick measure.

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Dynamic Systems Development
Method

The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Dynamic Systems Development method is highlighted in Figure 21-8.

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-System
Test

Project
Management
Phases

RUP
Software
Development
Phases

MONITOR
&

CONTROL

C h a p t e r 2 1258

28_596365 ch21.qxd 2/15/06 10:35 PM Page 258

Figure 21-8: The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Dynamic Systems Development Method

As you can see, the Monitoring and Controlling Phase of an Iterative SDPM
strategy for the Dynamic Systems Development Method can be iterative itself.
That will happen if the current Implementation Phase concludes that the Func-
tional Model Phase must be repeated. That can dramatically alter the project
going forward. The current model must be revised; in fact, it might be
scrapped and a new one might take its place. That would be a rather drastic
turn of events. The more likely result is a partial redesign of the functional
model. This comes about as a result of having to eliminate some functionality
from the solution in order to meet an aggressive implementation date. If that
functionality is deemed necessary for the complete solution, the Functional
Model Phase is repeated. Similarly, the Design and Build Iteration Phase is
repeated if some of the details of the design had to be left out in order to meet
an aggressive implementation date.

Functional
Model

Iteration

Design &
Build

Iteration

Project
Management
Phases

DSDM
Software
Development
Phases

Heavy arrows = Forward Paths
Light arrows = Evolutionary Paths

MONITOR
&

CONTROL

Implementation

The Iterative SDPM Monitoring and Controlling Phase 259

28_596365 ch21.qxd 2/15/06 10:35 PM Page 259

The metrics used to track the likelihood of completing both the functional
model specifications and the detailed design features can be adapted from the
metrics defined previously for the Evolutionary Development Waterfall
model.

Discussion Questions
1. Project A in Figure 21-2 reflects the performance of your Iterative approach.

Obviously, there are too many scope change requests, and the project is
not converging on an acceptable solution. What action might you take to
resolve the dilemma?

C h a p t e r 2 1260

28_596365 ch21.qxd 2/15/06 10:35 PM Page 260

Installing Custom Controls 261

The Iterative SDPM Closing Phase
We cannot afford to forget any experiences, even the
most painful.

Dag Hammerskjold
Secretary of the United Nations

C H A P T E R 22

261

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Closing Phase of the Iterative SDPM strategy

◆ Have a working knowledge of the Closing Phase of the Iterative SDPM strat-
egy for the Evolutionary Development Waterfall model

◆ Have a working knowledge of the Closing Phase of the Iterative SDPM strat-
egy for the SCRUM model

◆ Have a working knowledge of the Closing Phase of the Iterative SDPM strat-
egy for the Rational Unified Process model

◆ Have a working knowledge of the Iterative SDPM strategy for the Dynamic
Systems Development Method

Once the customer has signed off that the requirements have been satisfactorily
met, the Closing Phase begins. That sounds like a simple transition, but is it?

29_596365 ch22.qxd 2/15/06 10:36 PM Page 261

The Closing Phase of the Iterative SDPM Strategy

Figure 22-1 illustrates the Closing Phase of the Iterative SDPM strategy. Note
that there are really two parts to the Closing Phase just as there were in the
Incremental SDPM strategy:

■■ Closure with respect to each of the iterations

■■ Closure with respect to the completed project

Of course, there are some similarities between the Closing Phases of an Itera-
tive SDPM strategy and Incremental SDPM strategy, but you find some key
differences as well.

The similarities center on requirements satisfaction at the completion of each
iteration. In the Incremental SDPM strategy, these closings were pretty much
routine because all requirements had been clearly and completed defined and
documented up front. That is not so in the Iterative SDPM strategy. Here many
of the iterations have integrated new/revised functions and/or features, and
their acceptance is not at all assured. Some iterations may close with some
functions and/or features excluded from the acceptance only to be reworked
in a later iteration. In other words the Closing Phase of an Iterative SDPM
strategy contains some unknowns as compared to the Closing Phase of an
Incremental SDPM strategy, which has largely been identified much earlier in
the project.

When compared, the next iteration in both strategies shows similar differ-
ences. In an Incremental SDPM strategy, the deliverables in the next iteration
were planned well in advance and, one hopes, have not changed. In an Itera-
tive SDPM strategy, the deliverables for the next iteration are planned at the
beginning of the iteration. In other words, it is just-in-time planning. In an Iter-
ative SDPM strategy you have to anticipate changes in direction for the project
going forward. Whatever was learned in the just completed iteration may redi-
rect the project for the next iteration. Also keep in mind that that redirection
may not be permanent. The next iteration may result in yet another change of
direction for the project. That is the nature of the Iterative SDPM strategy. It is
a process of continuous learning and discovery. That is also characteristics of
the Adaptive and Extreme SDPM strategies, which are discussed in detail in
Parts V and VI of this book.

C h a p t e r 2 2262

29_596365 ch22.qxd 2/15/06 10:36 PM Page 262

Figure 22-1: The Closing Phase of the Iterative SDPM strategy

Iterative SDPM Strategy for the Closing Phase of the
Evolutionary Development Waterfall Model

Figure 22-2 illustrates the Closing Phase of the SDPM strategy for the Evolu-
tionary Development Waterfall model.

Figure 22-2: The Closing Phase of the SDPM strategy for the Evolutionary Development
Waterfall model

Systems
Design

Develop
a Version

Deliver
the Version

Incorporate
Customer
Feedback

Deliver
Final

Version
Get Customer

Feedback

CLOSE

Iterative
Software
Development
Phases

Project
Management
Phases

CLOSE

BUILD TEST CHECK DEPLOY

The Iterative SDPM Closing Phase 263

29_596365 ch22.qxd 2/15/06 10:36 PM Page 263

The Evolutionary Development Waterfall is not structured to deploy partial
solutions at the close of each iteration, although that is not excluded from the
model. Formally there is only one close and that is when the customer is satis-
fied and the final version can be released. That close is identical to the Linear
SDPM strategy situation. The customer can opt for an intermediate release but
probably only for the purposes of getting outside opinions about functions
and features from selected affected groups. The model does not include a for-
mal deployment of intermediate solutions to the end user as in the case of the
Incremental SDPM strategy.

For the Iterative SDPM strategy, there are two types of lessons learned to
discuss.

Iteration Lessons Learned
Each project that follows the Evolutionary Development Waterfall model pre-
sents the development team with a need to learn to work with the customer.
Every iteration presents the development team with information to help it to
work more effectively and efficiently with their customer team. Even if the
development team has worked with the customer team on previous projects,
the combination of project type and customer type is still a unique experience.
For each project, some customers will naturally take a proactive role in the pro-
ject while others will be more reactive. Both are acceptable behaviors. The
important factor is that the involvement is meaningful. The importance of this
behavior grows as you move further out in the agile landscape to the Adaptive
and Extreme projects.

At the completion of each iteration, the customer and the developers should
take stock of what happened in terms of process and how it could be improved
for the next iteration. Here are a few questions that might help that improve-
ment effort:

■■ Are both parties satisfied that they were able to provide input to the
solution?

■■ Was each party listened to by the other party?

■■ Did each party feel free to offer new or novel ideas?

■■ Is there a synergy between the two parties?

■■ Does each party feel that there is progress toward an acceptable solution?

■■ Is the entire team working more effectively than earlier in the project?

■■ What tasks could have been done better? How?

■■ What tasks are working well and should be retained?

C h a p t e r 2 2264

29_596365 ch22.qxd 2/15/06 10:36 PM Page 264

Project Completion Lessons Learned
Two points are worth mentioning here.

Lessons Learned About Working with This Customer

Every customer group is going to be different. What works with one may not
with another. Accordingly, for each customer group you should build a file of
dos and don’ts. What are the strengths of working with this customer? What
are the weaknesses and how were they mitigated? You will find all of this
information useful in later projects, but so will other teams that may have an
opportunity to work with your customer group.

You might want to give the customer a chance to input into this process. Per-
haps a survey by an outside person—the Project Management Office (PMO),
for example—would provide valuable information on how the development
team could have improved how it worked with the customer. Such a survey
can be very simple. The following questions might help improve the process
for the next project:

■■ How did the development team bring us into the project?

■■ Was our involvement real or contrived? How could it have been
improved?

■■ Did the development team help us understand the alternatives? How?

■■ Did the development team understand out business problem? How could
they have done a better job?

Lessons Learned About the Evolutionary Development
Waterfall Model

On a more global basis, the development team should be looking for ways to
improve the Evolutionary Development Waterfall model. This would benefit
any team that chooses to use this model. As you know, these types of projects
require active and meaningful involvement by the customer. Just how to attain
and sustain that involvement is valuable information for any team that follows
with this customer or any other customer. Record your successes and your fail-
ures and find a way to share that information.

The Iterative SDPM Closing Phase 265

29_596365 ch22.qxd 2/15/06 10:36 PM Page 265

Iterative SDPM Strategy for the Closing Phase
of the SCRUM Model

Figure 22-3 illustrates the Closing Phase of the SDPM strategy for the SCRUM
model.

The SCRUM model is customer-driven. At the completion of each sprint, the
customer (“Product Owner” in SCRUM terminology) interacts with the cur-
rent version of the solution through a demo of it. New features and functions
may be identified at that time and added to the Product Backlog to be priori-
tized by the Product Owner. The deliverables from each iteration are not
processed through any formal type of Closing Phase. That is reserved for what
becomes the final version of the solution. The final version is the last version
completed before either the budget has been expended or the time box for the
project has run out. The Closing Phase is formal to the extent that the Product
Owner accepts the current solution as the solution that can be released to the
end users. There are no formal acceptance criteria for the Closing Phase of the
Iterative SDPM strategy for the SCRUM Model. Sprints continue until the
product is releasable by the Product Owner. Once deemed releasable, the prod-
uct then goes through another SCRUM project to turn it into a releasable
product.

During the project, there are two types of lessons learned to discuss: the Sprint
Planning Meeting and the Sprint itself. At the completion of the project, there
are additional lessons learned.

Sprint Planning Meeting Lessons Learned
The Sprint Planning Meeting affords an opportunity for the Product Owner to
meet with the Sprint Team. The input to this meeting is the newly prioritized
Product Backlog. Together with the Product Owner, the Sprint Team decides
how far down that prioritized list they can reasonably be expected to produce
deliverables in the next 30-day Sprint. The interaction between the Product
Owner and the Sprint Team is the interaction that provides learning opportu-
nities. What might those be? A couple key learning opportunities are as
follows:

■■ How do you negotiate changes in priority to preserve function or feature
dependencies?

■■ How do you avoid over-committing the size of the next Sprint Backlog?

C h a p t e r 2 2266

29_596365 ch22.qxd 2/15/06 10:36 PM Page 266

Figure 22-3: The Closing Phase of the SDPM strategy for the SCRUM model

Sprint Lessons Learned
Beginning with the Sprint Planning Meeting, the Sprint Team has to decide
how it can accomplish the Sprint Backlog in the allotted 30-day time box. This
can range from a formal to an informal plan. As the team moves from sprint to
sprint, it learns how best to create their plan. For newly formed teams this can
be a painful experience. A good SCRUM Master is invaluable in helping the
team reach an acceptable level of proficiency. The major obstacle in gaining
that proficiency is for the team to accept the responsibility for its success or
failure. Fifteen-minute daily team meetings are a good way to practice becom-
ing a team. Each team member should be encouraged to share exactly where
they are in the work that they have taken on. Team members must be encour-
aged to raise their hands and acknowledge that they are behind and need help.
When that begins to happen, it is a sign that the group is morphing into a team.
How to make that happen is the lesson learned.

Sprint
Planning
Meeting

Demo
Sprint

functionality

Sprint
Backlog

Sprint

CLOSE

The Iterative SDPM Closing Phase 267

29_596365 ch22.qxd 2/15/06 10:36 PM Page 267

Project Completion Lessons Learned
As discussed earlier in the chapter, future projects that follow the Iterative
SDPM strategy for the SCRUM model can benefit from your project having
documented the lessons learned across the entire project. Include the Product
Owner in gathering data for that documentation. The SCRUM model can be a
very effective approach for those projects that meet the criteria for a SCRUM
approach. The more experiences that can be shared across the organization,
the better for all concerned.

Iterative SDPM Strategy for the Closing Phase of the
Rational Unified Process Model

Figure 22-4 illustrates the Closing Phase of the SDPM strategy for the Rational
Unified Process model.

Figure 22-4: The Closing Phase of the SDPM strategy for the Rational Unified Process
model

Requirements
Gathering

Systems
Design

Detailed
Design

Code &
Test

Sub-System
Test

CLOSE

C h a p t e r 2 2268

29_596365 ch22.qxd 2/15/06 10:36 PM Page 268

The Rational Unified Process model is a very popular Iterative approach. Its
success in the organization depends heavily upon the documentation legacy
that has been created from past projects that followed the RUP approach. That
legacy commonly includes libraries of reusable code, but it can also contain
libraries of reusable Work Breakdown Structures (WBSs) and use cases. There-
fore the Closing Phase of the Iterative SDPM strategy for the Rational Unified
Process model consists of assuring the appropriate documentation has been
added to the reusable libraries. This is no small task. Just wanting to build a
reusable library doesn’t mean it will happen. Special training is needed to
translate project-specific artifacts to reusable library artifacts. That makes the
Rational Unified Process model documentation-heavy if the organization
intends to realize a return on its investment.

One could successfully argue that a Rational Unified Process project never
ends. Technically speaking, they would be correct because implementation is
followed by transition to a continuous improvement project. In fact, a Rational
Unified Process Project ends when the sponsor is no longer willing to support
the project or some hard deadline has been reached.

Iterative SDPM Strategy for the Closing Phase of the
Dynamic Systems Development Method

Figure 22-5 illustrates the Closing Phase of the SDPM strategy for the Dynamic
Systems Development Method.

The Closing Phase for the SDPM strategy for the Dynamic Systems Develop-
ment Method is the most inclusive of the Iterative SDPM Strategies presented
in this chapter. The complexity arises in deciding which of several alternatives
should be undertaken in light of what has happened so far on the develop-
ment of the solution. As part of the closure on the Implementation Phase, an
evaluation of the current solution takes place. The result of that evaluation is
to decide how, if at all, the project should go forward. There are four possibili-
ties, as discussed in the following subsections.

Solution Accepted
The evaluation concludes that the acceptance criteria have been satisfactorily
met and the project work is complete. No further action is required.

The Iterative SDPM Closing Phase 269

29_596365 ch22.qxd 2/15/06 10:36 PM Page 269

Figure 22-5: The Closing Phase of the SDPM strategy for the Dynamic Systems
Development Method

Revise Solution Design
The evaluation concludes that the acceptance criteria have not been success-
fully met but that modifications to the current design could be made that
would make the then revised solution acceptable. Usually this is the result of
having to delete some minor feature or function because of time or budget
constraints. This feedback loop to the Design and Build Iteration is to simply
add in the deleted feature or function, bringing the solution into compliance
with the original acceptance criteria. This action is similar to any Iterative
deliverables that fails to meet the acceptance criteria and calls for some
rework—for example, one or more features or functions may not meet the cus-
tomer needs as reflected in the acceptance criteria.

Functional
Model

Iteration

Feasibility

Business
Study

Design &
Build

Iteration

Heavy arrows = Forward Paths
Light arrows = Evolutionary Paths

Implementation

CLOSE

C h a p t e r 2 2270

29_596365 ch22.qxd 2/15/06 10:36 PM Page 270

Revise Functional Model
This evaluation can have serious consequences. The functional model has
failed to meet the acceptance criteria. This is often because of the limits of time
or budget that resulted in part of the designed functionality being deleted from
the implemented solution. This feedback loop is undertaken to integrate that
deleted functionality into the solution, thus meeting the original acceptance cri-
teria. This action could have serious budget and schedule ramifications.

Repeat Business Study
This is usually the result of a discovery during development of some additional
functionality that was not part of the original functional model. It could not be
included in the current solution because of time and/or budget considerations.
Its inclusion after implementation means that the business study would have to
be repeated to validate the inclusion of the discovered functionality.

Discussion Questions
1. You have completed the first few iterations and the customer seems very

satisfied with the progress to date. Not too much in the way of added fea-
tures are surfacing. There are two possibilities:

a. The first is that all business value has already been identified during
requirements gathering and there will not be any added features forth-
coming. You might as well switch to a Linear SDPM strategy for the
remainder of the project.

b. The customer hasn’t really bought into the Iterative approach you
are taking and that is the reason there have been few scope change
requests. Give them some time and encouragement and they will
become more comfortable with the approach.

What would you do and why?

2. Refer to the Routing sub-system in the case study: How would you
deploy a working solution that is acceptable as the initial version but
clearly needs to be improved? Are there some functions that should
be part of the initial version and other functions that might be better
assigned to a later version? Consider the time needed to affect a complete
solution versus the time needed to roll out an initial solution.

The Iterative SDPM Closing Phase 271

29_596365 ch22.qxd 2/15/06 10:36 PM Page 271

29_596365 ch22.qxd 2/15/06 10:36 PM Page 272

Installing Custom Controls 273C H A P T E R 23

273

The Iterative SDPM Strategy
Summary
We generally need someone to show us things which
should be apparent to the eyes of all.

Francisco Algarotti
Italian writer and scientist

The Iterative SDPM strategy is our first entry into the world of the agilist. To
the traditionalist, this is a strange world in that many of the basic premises that
their project world is based on do not hold true in the agile world. This closing
chapter of Part IV discusses some of those differences in an attempt to morph
the thinking of the staunch traditionalists.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Compare traditional versus agile projects

◆ Understand the fundamental differences between traditional and agile
project managers

◆ Understand the fundamental differences between traditional and agile
project teams

◆ Compare traditional to agile project planning

◆ Know the impact of scope change management on traditional and agile
projects

30_596365 ch23.qxd 2/15/06 10:34 PM Page 273

Traditional Versus Agile Projects

Traditional projects are clearly defined and their requirements, functions, and
features well documented and understood. Despite the fact that this specificity
is unlikely to happen, this leads the project manager into the development of a
complete project plan with all resources scheduled to tasks and tasks sched-
uled to specific time frames.

Agile projects do not have a complete requirements document in place and can
discover it only by doing the project. This leads the project manager to shy
away from speculation and develop a plan only for the known requirements.
This just-in-time planning approach is driven by the discovery and learning of
missing or mis-specified functions and features. The solution unfolds through
the iterations that define the agile approaches to projects. Agile projects tend to
be high risk compared to traditional projects. The inability of the customer and
the development team to completely and clearly define requirements is a clue
that something is different and needs to be treated differently. The unknowns
are the factors driving the risk higher.

In the end, the traditional and agile approaches converge on the same set of
artifacts. They just arise at different points in time along the project life cycle.
There is one major difference between the two sets of artifacts. The traditional
approach would have identified and planned for a number of deliverables that
either changes after being deployed or were never done at all. On the other
hand, the agile approaches would have planned only what was finally deliv-
ered. There is a distinct absence of waste in the agile project as a result.

Traditional Versus Agile Project Managers

Traditional project managers manage against the budget, schedule, and scope.
To the traditionalist, the metrics follow directly from the project plan. A bud-
get and a timeline have been established, and the work needed to deliver
against the scope has been determined. The natural approach is to manage
against that plan. That means establishing metrics that measure variance from
budget and/or timeline, establish trip wires that define out-of-control situa-
tions or the presence of distressed projects, initiate the necessary root cause
analyses, and implement the necessary corrective action. None of this has any-
thing to do with meeting client needs or the delivery of business value to the
customer. It would not be unusual to complete a project that finished within
the time frame and budgetary limitations only to find that the customer is not
satisfied.

C h a p t e r 2 3274

30_596365 ch23.qxd 2/15/06 10:34 PM Page 274

Agile project managers manage against the deliverables and business value.
The focus is entirely different. While the budget and timeline are certainly
important, they are not the most important. Would you rather satisfy the cus-
tomer but be a week late or 5 percent over budget. Or would you rather be
within budget and timeline but have an unsatisfied customer? Where is the
real business value? Probably in the former situation, but definitely not in the
latter.

What does all of this say about the project managers of traditional versus agile
projects? The traditional project manager is trained to deliver process. They
work to reduce risk and preserve the constraints of time and money on the
project. The agile project manager is trained to deliver product. To a certain
extent, they embrace as the means to discovery and learning how to maximize
the value they deliver to their customer.

Traditional Versus Agile Teams

The traditional projects can work with distributed teams of specialists and
junior technical staff. The junior technical team members work under the
direct supervision of the more senior members of the team. Because of this
relationship, it is not necessary for the traditional team members to be co-
located. That is always the desirable situation, but in the traditional project
it is not a necessity. These teams can be effective if they are dealing with a
well-defined project and can proceed on the basis of functional requirements
documents.

Agile projects should have co-located teams of senior technical staff. As you
move out to the adaptive and extreme projects, the team composition becomes
more senior and in less need for supervision. Co-location is an important fac-
tor in the success of the agile project. That is not always possible in today’s
organization but should be sought whenever practical. These teams can be
effective if they have really committed to the project and are willing to work in
the absence of detailed documentation. They are forced to draw upon their
own creativity and interact with their fellow team members. They are called
upon to have a commitment to the project that goes beyond any commitment
asked of the traditional team members.

The differences between the two types of teams are considerable.

The Iterative SDPM Strategy Summary 275

30_596365 ch23.qxd 2/15/06 10:34 PM Page 275

Traditional Versus Agile Project Planning

To the traditionalist, planning is something you do once at the very beginning
of the project. For the traditional project manager resources are scheduled and
committed against a project plan and then managed to conformance with that
plan. Any variances from the plan are corrected as needed.

Having a complete plan sounds great, but is it worth the effort? Every change
request that is approved requires some modification to the plan. The modifi-
cation almost always requires some rescheduling, negotiating with resource
managers to adjust commitments, and finally documenting and communicat-
ing the changes to all affected parties. If you cost out the changes, you can see
that time was spent on parts of the plan that are no longer needed. That time
spent was wasted time—non-value-added time to the agilest.

To the agilist, planning is something you do just-in-time and continuously
through the project. The agilest does not speculate on the future as does the
traditionalist. Change can render that time wasted time and that is a no-no to
the agilest. Just-in-time planning is the only thing that makes sense to the
agilest. For the agile project manager the only meaningful metric is business
value delivered as measured against business value planned, and corrections
are made as necessary.

Traditional Versus Agile Scope Change Management

Scope change is the bane of the traditional project manager. Every scope
change request brings with it the work needed to generate the project impact
statement as the deliverable from having processed the change request. That
can be substantial, especially if there is a high frequency of scope change
requests. Someone on the team has to process that scope change request, and
that takes away from the time they would otherwise spend doing the produc-
tive work of the project.

Scope change is a necessary ingredient for the agile project manager to be
successful.

WARNING
Spend the time to understand the project, the customer, the business environment,
the enterprise, and the resource pool before you make the decision as to the best
SDPM strategy.

C h a p t e r 2 3276

30_596365 ch23.qxd 2/15/06 10:34 PM Page 276

Discussion Question
1. Your organization has been a staunch promoter of the traditional

approaches to project management and systems development. However,
senior management is not at all satisfied with the results. Project failure
rates are too high and customers never seem to be satisfied with the results.
Senior management is open to the contemporary practices of agile project
management and has asked you to lead a project to integrate agile
approaches into the company’s project management processes. What are
your concerns, and how would you approach such a project?

The Iterative SDPM Strategy Summary 277

30_596365 ch23.qxd 2/15/06 10:34 PM Page 277

30_596365 ch23.qxd 2/15/06 10:34 PM Page 278

PA RTFIVE

Adaptive ESPM
This is your second step into the unknown. All of the conditions that applied
in the Iterative approach apply here, but there is more. Even less of the solu-
tion is known in this approach. Not only are features missing or vague, but
also are many of the functions that drive the solution. It is fair to say that the
Adaptive approach handles software development projects where the solution
is just not known. It must be learned and discovered through iterations. This is
a common situation. Unfortunately not too many software developers realize
that, or they do but they proceed with their tried and true approaches any-
ways. They are a failure on its way to happen. The Adaptive approaches dis-
cussed in this part are designed for exactly the situation where the solution is
not known but has to be learned.

31_596365 pt05.qxd 2/15/06 10:36 PM Page 279

31_596365 pt05.qxd 2/15/06 10:36 PM Page 280

Installing Custom Controls 281

Adaptive SDPM Strategy
It is a mistake to look too far ahead. Only one link of
the chain of destiny can be handled at a time.

Winston Churchill

There is no data on the future.

Laurel Cutler
Vice Chairman, FCB/Leberf Katz Partners

C H A P T E R 24

281

The Adaptive models accommodate a higher level of uncertainty and com-
plexity than the Iterative models. In that sense they fill a void between the Iter-
ative and Extreme models. Keep in mind that solution discovery is the focus of
these models. Each iteration in the Adaptive models must address not only
task completion for newly defined functions and features but also solution
definition through function and feature discovery.

The Adaptive SDPM Strategy

This is the first approach you encounter where the solution is not known. It
might be totally unknown or partially unknown. Unlike the Iterative approach
where some depth of the solution is not known (features, for example), the
adaptive approach is missing both depth and breadth of the solution. Fig-
ure 24-1 depicts the Adaptive SDPM strategy for those models that meet the
conditions of an incomplete solution due to missing features and functions.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Adaptive SDPM strategy

◆ Have a high-level understanding of the Adaptive Project Framework and
Adaptive Software Development models

32_596365 ch24.qxd 2/15/06 11:02 PM Page 281

Figure 24-1: Adaptive SDPM strategy

The models that lie between the iterative and extreme models are called adap-
tive models. The two that you will study here are the Adaptive Project Frame-
work (APF) and the Adaptive Software Development (ASD) models. In both
models the goal is clearly defined but the solution to reach that goal is not.
These are processes that thrive on learning, discovery, and change. In APF you
start from the known and journey into the unknown. In time, and with enough
cycles, you hope that a solution will emerge. ASD is a more formal process
focusing strictly on software development. In that sense APF is a more robust
model.

The Adaptive SDPM strategy, like other adaptive approaches, is best suited to
projects whose solution is only partially known. The degree to which the solu-
tion is known might vary over a wide range from knowing a lot but not all to
knowing very little. The less that is known about the solution, the more risk,
uncertainty, and complexity will be present. To remove the uncertainty associ-
ated with these projects the solution has to be discovered. That will happen
through a continuous change process from iteration to iteration. That change
process is supposed to create a convergence on a complete solution. In the
absence of that convergence, Adaptive projects are frequently cancelled and
restarted in some other promising direction.

The success of Adaptive SDPM strategies is leveraged by accommodating fre-
quent change. Change is the result of learning and discovery by the team and,
most important, by the customer. Because change will have a dramatic impact
on the project, only a minimalist approach to planning is employed. Planning
is actually done just in time. No effort is wasted on planning the future. The
future is unknown, and any effort at planning that future will be viewed as
non–value-added work. All Quadrant 2 (the goal is clearly defined but the
solution is not) approaches minimize non–value-added work.

SCOPE
Adaptive
Software
Development
Process

Project
Management
Phases

DESIGN

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

BUILD TEST CHECK DEPLOY
Y

N

C h a p t e r 2 4282

32_596365 ch24.qxd 2/15/06 11:02 PM Page 282

Adaptive SDPM strategies can also be applied to new product development,
process improvement, and research and development projects. This is espe-
cially true of APF.

Scope Phase
The Scope Phase in the Adaptive SDPM strategy is a high-level scoping activ-
ity because not much is known about the solution (requirements, functions,
and features). They have to be discovered and learned through iteration much
like the Iterative SDPM strategy. In that strategy, however, you know a lot
about the solution; it was just some of the features that you weren’t so sure
about. For the Adaptive situation, the scoping activities merely set the bound-
aries and the high-level parameters that will be the foundation on which we
proceed to learn and discover. As part of the Scope Phase deliverables, you
will document requirements, as you know them; functionality, as you know it;
and features, if you know any. In addition, you will specify the number of
cycles and cycle length for the first cycle. Compared to the Iterative strategy,
the Adaptive strategy requires intimate involvement with the customer. As
you will see, customers have more of a directive role in the project than in the
three strategies discussed previously in the book. Without their meaningful
involvement, the project has little chance of success.

Plan and Launch Phases
Planning at this point in the Adaptive SDPM strategy is high-level planning.
Because not too much is known about the solution, planning cannot be done to
any level of specificity. Rather, the planning involves structuring what is
known about the solution. That will cover prioritizing what little functionality
you were able to define in the Scope Phase.

The Launch Phase will be the same as we discussed in the previous strategies.
The launch activities will include establishing team operating rules, decision
making processes, conflict management strategies, team meetings, and prob-
lem solving approaches. The only difference will be defining the approach that
will be used to establish subteams to work on concurrent development tasks.

Monitor and Control Phases
As you move from the Iterative SDPM strategies to the Adaptive SDPM strate-
gies, you find a marked shift from formality to informality when it comes to
these phases. That move to informality makes room for the marked increase in

Adaptive SDPM Strategy 283

32_596365 ch24.qxd 2/15/06 11:02 PM Page 283

creativity that the team is called upon to deliver. Creativity and formality are
not comfortable bedfellows. You need to give the team and the customer the
best opportunity you can to be successful and that means relaxing the need for
status reporting and controlling of the schedule. The nature of these projects is
that they are focused on delivering value rather than being focused on meet-
ing time and cost criteria.

As Figure 24-1 illustrates, the monitor and control functions pertain to the
cycle spanned by design and check. As part of that control function the team
collects whatever learning and discovery took place and records it in the Scope
Bank. All change requests go into the Scope Bank as well. No changes are
implemented within a cycle. All changes and other learning and discovery are
reviewed at the check point. The review results in placing newly discovered
functions and features into a priority list for consideration at the next or some
future cycle.

Close Phase
The Close Phase produces the typical artifacts: lessons learned, validation of
success criteria, and so forth. In addition to those, you might have items left in
the Scope Bank that were not included in any cycle build. These are to be doc-
umented and held for the next version of the solution.

Types of Adaptive SDPM Strategies

The two models included in these strategies cover those situations where the
solution is not known. It might be that very little of the solution in terms of
functionality and accompanying features can be identified at the outset of the
project. The project management methodology that is integrated with the soft-
ware development life cycle must be capable of discovering the unknowns
and transforming them into the known. In other words, the solution will
emerge as part of the project work.

Adaptive Project Framework
The Adaptive Project Framework (APF), which I discuss at great length in my
book Effective Project Management: Traditional, Adaptive, Extreme, Third Edition
(Wiley, 2003), unlike most of the approaches in Quadrant 2, is not limited to
software development. Although it is beyond the scope of this book to discuss,
APF is equally at home with software development, process improvement,
product development, and research and development projects.

C h a p t e r 2 4284

32_596365 ch24.qxd 2/15/06 11:02 PM Page 284

APF is an approach that spans the gap between Traditional Project Manage-
ment (TPM), which includes both the Linear and Incremental SDPM strate-
gies, and Extreme Project Management (xPM), which includes the Extreme
SDPM strategies. APF and xPM are also called agile project management—a term
that is more inclusive of the contemporary approaches to software develop-
ment. APF applies in those cases where what is needed is clearly defined but
how to produce it isn’t as obvious. Clearly the traditional approach won’t
work when the solution is not known. For the traditional approach to work
you need a detailed plan, and if you don’t know how you will get what is
needed, you can’t generate the Work Breakdown Structure (WBS). So how can
you generate a detailed plan? What about the extreme approach? I’m guessing
that the “agilists” would argue that any one of the agile approaches would do
just fine, and probably you could use one of them and do quite well. Unfortu-
nately, many of them ignore the fact that you know what is needed. It’s a
given. Why not use an approach that has designed in the fact that you know
what is needed? In a number of informal surveys the respondents report that
at least 70 percent of their projects met the conditions of the APF project, but
they were approaching them using a modified version of a TPM approach.
Unfortunately many of these well-meaning attempts ended in failure. The vast
majority of their projects are a closer fit with APF than either TPM or xPM.

The Adaptive Scope Triangle

Figure 24-2 helps interpret this for us in the form of a scope triangle. The fun-
damental concept underlying APF is that scope is variable and within speci-
fied time and cost constraints, APF maximizes business value by adjusting
scope at each iteration. It does this by making the client the central figure in
deciding what constitutes that maximum business value. At each iteration, the
client has an opportunity to change the direction of the project based on what
was learned from previous iterations. This constant adjustment means that an
APF project’s course is constantly corrected to ensure the delivery of maxi-
mum business value. In other words, change is embraced not avoided. Plan-
ning takes on a whole new meaning in APF. Initial planning is done at a high
level and is component- or functional-based. TPM planning is activity- and
task-based. In APF, planning at the micro level is done within iterations. It
begins with a mid-level component or function based WBS and ends with a
micro-level activity and task-based WBS. I like to think of it as just-in-time
planning. The underlying strategy to APF planning is not to speculate on the
future; it’s a waste of time. “When in doubt—leave it out.” At each iteration, plan
for what you know to be factual. So, planning is done in chunks where each
chunk represents work that requires only a few weeks to complete.

Adaptive SDPM Strategy 285

32_596365 ch24.qxd 2/15/06 11:02 PM Page 285

Figure 24-2: The APF Scope Triangle

Definition of an Adaptive Project

Consider the following working definition of an adaptive project:

An adaptive project consists of a number of cycles each comprising a sequence
of unique, complex, and connected activities that must be completed within fixed
time and budget constraints, and deliver maximum business value.

Note how the definition differs from how you would define a traditional pro-
ject. In particular, take note of two significant differences at this time:

■■ An adaptive project consists of a number of cycles. That is not the case
with a traditional project.

■■ The adaptive project is successfully completed when maximum business
value has been delivered. The traditional project would state “according
to specification.” The burden with the traditional project is clearly on the
shoulders of the client. They must define what “specification” means.
APF, on the other hand, is a collaborative approach. Both the client and
the project team define success.

What Is the Adaptive Project Framework?

For those businesses that have only recently realized the pain of not having a
project management process in place and are struggling to adapt traditional
practices advocated by the Software Engineering Institute (SEI) and PMI to

Cost

Ti
m

e

Scope and Quality

Resource Availability

C h a p t e r 2 4286

32_596365 ch24.qxd 2/15/06 11:02 PM Page 286

nontraditional projects, or the extreme practices advocated by the agilists, I say
STOP WASTING YOUR TIME! It’s time to pay attention to the signals coming
from the business environment and discover how projects can succeed given
the fast-paced, constantly changing, and high-quality demands of the new
business model. The project survival strategy that you are going to explore is
what I am calling Adaptive Project Framework (APF). This is definitely not
your father’s project management. I don’t even use the word “management.”
APF represents a shift in thinking about projects and how they should be run.
Consider the following characteristics of APF:

■■ Thrives on change rather than avoiding it

■■ Continuously adapts to the project situation

■■ Adopts traditional and extreme tools and processes

■■ Based on the principle that you learn by doing

■■ Seeks to get it right every time

■■ Client-focused and client-driven

■■ Grounded in a set of immutable core values

■■ Ensures maximum business value

■■ Squeezes out all non–value-added work

■■ It works—100 percent of the time!

APF Core Values

You might have noticed that one of the characteristics of APF mentioned in the
previous section is that APF is grounded in a set of immutable core values.
This means that APF is more than just a framework; it represents an entirely
new way of thinking about clients, how best to serve them, and how to add
significant business value to the enterprise at the same time. Through its core
values APF establishes a collaborative environment within which the client
and the development team can work effectively to create business value for the
enterprise. This way of thinking is embodied in six core values:

■■ Client-focused—The phrases “walk in the shoes of the client” and
“always do what is right for the client” express what it means to be client-
focused. This is the most important of the core values. The needs of the
client must always come first as long as they are within the bounds of eth-
ical business practices. This can never be compromised. More than simply
keeping it in mind, being client-focused must be obvious through your
interactions with one another and with your clients. And it doesn’t mean
a passive acceptance of whatever the client might request. Client-focused
also means that you have clients’ best interests at heart, obligating you to

Adaptive SDPM Strategy 287

32_596365 ch24.qxd 2/15/06 11:03 PM Page 287

challenge ideas, wishes, and wants whenever you believe challenge is
called for. We want to do the right things for the right reasons and to
always act with integrity.

■■ Client-driven—Engage the client in every way that you can. You want
them to have significant meaningful involvement, to have the sense that
they are determining the direction that the project is taking. Remember,
it’s their money, and they have the right to choose how it will be spent.
At the extreme, this would mean having the client take on the role and
responsibilities of the project manager. This will not happen very often
but look for opportunities to make it happen. More likely is the situation
of co-project managers—one from the client and you. In this effective
arrangement a clear and established co-ownership exists and you both
share equally in the success and failure of the project. Research tells us
that this is a key to successful implementation. We say that this is a key
factor to successful projects.

■■ Incremental results early and often—Deliver a working application to
the client as early as possible, especially in cases where the real solution
for the client has not yet surfaced despite all best efforts. The functionality
of the first iteration of the application will be very limited but it should
deliver business value and give the client an early feel for what the final
deliverables will be. Giving the client an opportunity to work with some-
thing concrete is always better than asking them to react to some vague
concept. If we can put something in front of the client early in the project
and repeat it often, they get a sense of belonging and ownership—they
become engaged in the project. You should clearly sense their engagement
very early in the project. That’s important. In later iterations we can
lengthen the cycle and not risk losing the client’s interest.

■■ Continuous questioning and introspection—When you build a solution
iteratively you have more chances for creativity, more opportunity to
adjust as better and more valuable features or functions are discovered.
The client and the project team should always be looking for improve-
ments in the solution or the functionality offered, both as the cycle build
proceeds and as they look back at previous cycles. All of this learning and
discovery comes together in the Client Checkpoint Phase, where the client
and the project team propose, discuss, and approve changes in a spirit of
openness. Neither party should be afraid to offer or challenge an idea or
the real value of some present or future deliverable. Teams and clients
should understand that if anyone of them has an idea and doesn’t share it,
it’s dereliction of duty.

■■ Change is progress to a better solution—One of my colleagues is often
heard saying: “You’re always smarter tomorrow than you are today.” He
is referring to improving estimates over time but his comment applies to

C h a p t e r 2 4288

32_596365 ch24.qxd 2/15/06 11:03 PM Page 288

APF as well. APF starts with the client and you coming to a definition of
what is needed and what will be delivered. Your efforts will be good and
in earnest, but remember all you have done to this point is take the best
guess you can as to what will be done. That guess might turn out to be
very good but that is not important. What is important is that working
with the deliverables from the first cycle gives both parties a better picture
of what should be delivered and, because of their experiences with early
deliverables, makes them smarter as they move to uncover the solution
going forward in the next cycle.

■■ Don’t speculate on the future—Someone once said: “If you don’t know
the future, why waste time planning for it?” APF strips out all non–value-
added work. Planning is done just in time. It focuses on what is known
about the solution, not on what is not known. It discovers a new function
or feature and then plans how to build and integrate it into the solution.
When in doubt, leave it out. APF is designed to spend the client’s money
on business value not on non–value-added work.

An Overview of the APF

Figure 24-3 is a graphic portrayal of how the APF is structured. The next five
short sections dig deeper into each of the five phases of APF shown in the fig-
ure: Version Scope, Cycle Plan, Cycle Build, Client Checkpoint and Post-
Version Review.

Figure 24-3: Adaptive Project Framework

Version
Scope

Cycle
Plan

Post-Version
Review

Cycle
Build

Client
Checkpoint

Adaptive SDPM Strategy 289

32_596365 ch24.qxd 2/15/06 11:03 PM Page 289

Version Scope

The Version Scope (see Figure 24-4) is the kick-off of an APF project. A rough
idea of the needs is documented, and a high-level plan constructed as to how
the project will go forward. The Version Scope might be completed in a matter
of hours, or it might take several days. It all depends on the level of complex-
ity and uncertainty present in the project.

Figure 24-4: Adaptive Project Framework (Version Scope)

Version
Scope

Cycle
Plan

Post-Version
Review

Deliverables

• Conditions of Satisfaction
• Project Overview Statement
• Prioritized functionality
• Mid-level WBS & dependencies
• Cycle length and # of cycles

Cycle
Build

Client
Checkpoint

C h a p t e r 2 4290

32_596365 ch24.qxd 2/15/06 11:03 PM Page 290

Cycle Plan

The Cycle Plan (see Figure 24-5) will be repeated a number of times before this
project is complete. Each Cycle Plan begins with a decision as to what func-
tionality from the prioritized list will be developed during the coming cycle.
Cycle length generally falls within a 2–6 week period. Many of the planning
tools used in a TPM project are used in this phase.

Cycle Build

The functionality to be built in this cycle is input and a detailed plan put
together for the cycle. It is usually a whiteboard, sticky note, marking pen type
of plan. The Cycle Build ends when the timebox expires, not before and not
after. Any tasks not complete are reconsidered and reprioritized in the next
cycle plan (see Figure 24-6).

Figure 24-5: Adaptive Project Framework (Cycle Plan)

Version
Scope

Cycle
Plan

Post-Version
Review

Deliverables

• Low-level WBS for this cycle
• Dependencies and schedule
• Partition activities to subteams
• Subteams develop micro plans

Cycle
Build

Client
Checkpoint

Adaptive SDPM Strategy 291

32_596365 ch24.qxd 2/15/06 11:03 PM Page 291

Figure 24-6: Adaptive Project Framework (Cycle Build)

Client Checkpoint

The Client Checkpoint Phase (see Figure 24-7) is a critical review that takes
place after every Cycle Build is completed. The client and provider perform a
quality review of the functionality produced in the just competed cycle. It is
compared against the overall goal of maximum business value, and adjust-
ments are made to the high-level plan and the next cycle work as appropriate.
Clients and project teams take all they have learned during the cycle and con-
sider it along with the functionality that had originally been assigned to the
coming cycle. The result is a revised prioritization of functionality for the
coming cycle.

Version
Scope

Cycle
Plan

Post-Version
Review

Deliverables

• Whatever functionality
can be built before the
cycle timebox expires

Cycle
Build

Client
Checkpoint

C h a p t e r 2 4292

32_596365 ch24.qxd 2/15/06 11:03 PM Page 292

Figure 24-7: Adaptive Project Framework (Client Checkpoint)

Post-Version Review

In the Version Scope Phase, you and the client develop measurable business
outcomes that are the rationale on which the project is undertaken in the first
place. These outcomes are, in essence, success criteria in that the project is con-
sidered a success if, and only if, these outcomes are achieved. Accordingly, the
main focus of the Post-Version Review is to check how you did with respect to
the success criteria, to document what you learned that will be useful in the
next version—how well APR worked on this project, how well the team used
APF—and to begin thinking about the functionality for the next version (see
Figure 24-8).

Version
Scope

Cycle
Plan

Post-Version
Review

Deliverables

• Quality review of completed
functionality

• Adjust next cycle functionality
and timebox

Cycle
Build

Client
Checkpoint

Adaptive SDPM Strategy 293

32_596365 ch24.qxd 2/15/06 11:03 PM Page 293

Figure 24-8: Adaptive Project Framework (Post-Version Review)

Figure 24-9 illustrates the Adaptive SDPM strategy for APF.

You might recall that beginning in Quadrant 2 of the software development
landscape you are engaged with projects where the solution is not known.
This is not the Iterative situation discussed in the previous part of the book
where some of the features of the solution were not known. Here the solution
itself is not known. That translates into a project management life cycle that is
not as directive as the Linear, Incremental, and Iterative classes. The five
phases of the project management are still present but not at the level previ-
ously encountered. Here more of the formality and documentation gives way
to the tacit behavior of the team.

Version
Scope

Cycle
Plan

Post-Version
Review

Deliverables

• Check on business outcomes

• Lessons learned to improve
next version

• Lessons learned to improve APF

Cycle
Build

Client
Checkpoint

C h a p t e r 2 4294

32_596365 ch24.qxd 2/15/06 11:03 PM Page 294

Figure 24-9: Adaptive SDPM strategy for APF

Adaptive Software Development
The second model I want to take a look at as an Adaptive SDPM strategy is
ASD. Adaptive Software Development (ASD) is fully described in a book by
James A. Highsmith III titled Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems (Dorsett House, 2000). ASD has three
phases: Speculate, Collaborate, and Learn. The description that follows is a
brief adaptation of his presentation.

These three phases are shown in Figure 24-10.

Version
Scope

APF Software
Development
Process

Project
Management
Phases

Cycle
Plan

Post-Version
Review

Cycle
Build

Client
Checkpoint

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

Adaptive SDPM Strategy 295

32_596365 ch24.qxd 2/15/06 11:03 PM Page 295

Figure 24-10: The three phases of ASD

Speculate

Unlike the linear TPM, ASD is an adaptive approach. The Speculate Phase is
nothing more than a guess at what the final goal and solution might look like.
It might be correct, or it might be far from the mark. It really doesn’t make
much difference in the final analysis because the self-correcting nature of ASD
will eventually lead the team to the right solution. “Get it right the last time”
is all that matters.

Collaborate

A Speculate Phase has been completed, and it is time to take stock of where the
team and client are with respect to a final solution. What great “ahas” did the
team and the client discover?

Learn

What was learned from the just completed phase and how might that redirect
the team for the next phase?

You might have noticed in Figure 24-10 that each of these three phases encom-
passes different activities. The following list takes a brief tour inside each of
these three phases and explains the activities that go on there.

Project
Initiation

Adaptive
Cycle
Plan

Speculate Collaborate Learn

Learning
Loop

Final QA &
Release

Concurrent
Component
Engineering

Quality
Review

C h a p t e r 2 4296

32_596365 ch24.qxd 2/15/06 11:03 PM Page 296

■■ Project Initiation—The objective of the Project Initiation Phase is to
clearly establish project expectations among the sponsor, the client, the
core project team, and any other project stakeholders. This would be a
good place to discuss, agree upon, and approve the Project Overview
Statement (POS). For a project of some size (more than 6 months) it might
be a good idea to hold a kick-off meeting, which can last two to three
days. During that time requirements can be gathered and documented
and the POS written.

■■ Adaptive Cycle Plan—Other deliverables from the kick-off meeting
might include the project timebox, the optimal number of cycles and the
timebox for each, and objective statements for each cycle.

Every cycle begins with a plan. These plans are high-level. Functionality
is assigned to subteams, and the details are left to them to establish.
This is at odds with TPM, which requires organized management over-
sight against a detailed plan. ASD is light when it comes to management
processes.

■■ Concurrent Component Engineering—Several concurrent swim lanes are
established for each functionality component. Each subteam is responsible
for some part of the functionality.

■■ Quality Review—This is the time for the client to review what has been
completed to date and revise accordingly. New functionality might
emerge; functionality is reprioritized for consideration in later cycles.

■■ Final QA and Release—At some point the client declares the require-
ments met and there is a final acceptance test procedure and release of the
product.

Unlike APF, ASD focuses exclusively on software development. Figure 24-11
shows the integration of the project management life cycle into the ASD life
cycle.

WARNING
Adaptive models can accommodate quite a wide range of situations where some or
even all of the solution cannot be defined. While the majority of projects will fall
into this class, do not be too quick to make that judgment. Consider the project and
what is known about the goal and solution. Perhaps an Adaptive model is the best
choice. Even if that is the starting model, continue to ask whether it is the most ap-
propriate model. As the project matures and more of the solution becomes evident,
it might make sense to switch to one of the other models in the Linear, Incremental,
or Iterative class.

Adaptive SDPM Strategy 297

32_596365 ch24.qxd 2/15/06 11:03 PM Page 297

Figure 24-11: Adaptive SDPM strategy for ASD

Discussion Questions

1. The project has been progressing smoothly and according to plan when
the customer manager changes. The new manager isn’t willing to have his
people participate at the level of the prior manager, and you feel that this
will seriously affect the project. What actions would you take and why?

Project
Initiation

ASD Software
Development
Process Phases

Project
Management
Phases

Adaptive
Cycle
Plan

Final QA &
Release

Concurrent
Component
Engineering

Quality
Review

Learning
Loop

CLOSESCOPE PLAN
MONITOR

&
CONTROL

LAUNCH

C h a p t e r 2 4298

32_596365 ch24.qxd 2/15/06 11:03 PM Page 298

2. All of the ideas that are suggested come from the team and not from the
customer. You feel that the final product will not be as good as it could
have been because of that. How would you address this situation
and why?

3. Refer to the case study: Which sub-systems would you develop using APF
and why?

Adaptive SDPM Strategy 299

32_596365 ch24.qxd 2/15/06 11:03 PM Page 299

32_596365 ch24.qxd 2/15/06 11:03 PM Page 300

Installing Custom Controls 301

The Adaptive SDPM Scoping Phase
“Invention breeds invention.”

Ralph Waldo Emerson
American essayist and poet

C H A P T E R 25

301

The next strategy variation is to move from the Iterative SDPM strategy to the
Adaptive SDPM strategy, which is discussed in this part of the book. Adaptive
models arise out of the customer’s inability to completely define requirements
and obviously the features that accompany them. As is the case with the Itera-
tive SDPM strategy, the customer may not be able to identify some of the fea-
tures associated with known functionality. To find a complete solution, the
customer will have to be more intimately involved throughout the entire pro-
ject life cycle than has been the case in all previous strategies. With few excep-
tions, the projects that fall into the Adaptive models are new systems
development projects.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Scoping Phase of the Adaptive SDPM strategy

◆ Conduct the Scoping Phase of the Adaptive Project Framework

◆ Conduct the Scoping Phase of the Adaptive Software Development model

◆ Understand the role of the WBS in defining Adaptive project iterations

◆ Scope the Adaptive plan

33_596365 ch25.qxd 2/15/06 10:52 PM Page 301

The Scope Phase of an Adaptive SDPM Strategy

Projects that follow an Adaptive SDPM strategy are those for which a complete
Requirements Breakdown Structure (RBS) cannot be defined at the outset and
the customer and project team knows it. The situation might be characterized
somewhat along the lines of Figure 25-1.

There is a cloud that covers the solution. The objective of the Adaptive SDPM
strategy is to move the cloud and discover what lies behind it—in other words,
to learn and discover what constitutes the full solution. The Adaptive SDPM
strategy must accommodate not only the development of the known parts of
the solution but also discovery of the unknown parts of the solution. Imple-
menting the known parts of the solution is much like we discussed in the
Incremental and Iterative SDPM strategies. Discovering the unknown parts of
the solution will require a tight collaboration of the customer with the project
team. It will look much like the pure R&D effort of the Extreme SDPM strategy.
Probative ideas will be investigated in one or more cycles. Some will be
rejected. Some will open up directions for further probes in later cycles. And
some will result in more of the solution being uncovered and then imple-
mented in later cycles. To do this effectively and efficiently is a challenge. The
Scoping Phase will lay out the approach at a very high level.

Figure 25-1: The initial RBS for an Adaptive SDPM strategy

Function
1.3

Solution

Function
1.1

Function
1.2

Requirement 1

Feature
1.2.1.3

Feature
1.2.1.1

Feature
1.2.1.2

Feature
1.2.1.4

Subfunction
1.2.1

Subfunction
1.2.3

Subfunction
1.2.2

C h a p t e r 2 5302

33_596365 ch25.qxd 2/15/06 10:52 PM Page 302

Projects that adopt an Adaptive approach are obviously high-risk projects. The
fact that there isn’t an obvious solution may mean that an acceptable solution
might not be found. Therefore, the types of projects that lend themselves to
Adaptive approaches would, by nature, be critical mission projects for which
a solution must be found if possible. The future of the business may well rest
on finding this acceptable solution.

The Scoping Phase of the Adaptive SDPM Strategy
for the Adaptive Project Framework Model

Figure 25-2 illustrates the integration of the project management Scoping
Phase and the APF Version Scope Phase. This Adaptive SDPM Scoping Phase
for the APF model is the beginning of an APF project. It is done once for every
APF project. There are two major parts to it: a defining part and a planning
part. The defining part can effectively be completed by two parties: a requestor
and a provider. These may each be single individuals or small groups that rep-
resent the two parties. In either case, the critical factor is that they not only
represent their constituency, but they speak for their constituency, and they
can make decisions and commitments for their constituency. The defining part
uses the Conditions of Satisfaction (COS) (see Appendix D). The planning part
is a high-level plan that sets the parameters for the project, that is, cycle length,
number of cycles, and high-level WBS. Keep in mind, however, that the high-
level WBS may not be the complete high-level decomposition. You can docu-
ment only what you know to be part of the solution.

Figure 25-2: Scoping Phase of the Adaptive SDPM Strategy for the Adaptive Project
Framework

Version
Scope

SCOPE

APF Software
Development
Phase

Project
Management
Phases

The Adaptive SDPM Scoping Phase 303

33_596365 ch25.qxd 2/15/06 10:52 PM Page 303

Overview of the Adaptive SDPM Scoping Phase
An APF project begins with a stated business problem or opportunity. A
request has been made to develop a solution to the stated problem or oppor-
tunity. A Project Overview Statement (POS) is generated. At this point, you are
not at all sure what kind of project that might be or how you might approach
it from a methodology perspective. There are four deliverables from the Adap-
tive SDPM Scoping Phase.

■■ The first deliverable is a documented conversation COS between the cus-
tomer and the provider(s) to define more clearly exactly what is needed
and what will be done to meet that need. In some cases an RBS will be gen-
erated to confirm that an Adaptive approach is appropriate for this project.

■■ The second deliverable from this phase is a prioritized list of the function-
ality that has been requested and agreed to in the COS. Both parties recog-
nize that this list will change, but at this point in the project the list reflects
the best thinking of both parties based on the information available.

■■ The third deliverable from this phase is the mid-level Requirements
Breakdown Structure (RBS). For our purposes, a mid-level RBS is an RBS
that shows a one level decomposition of each known requirement. Gener-
ally, such an RBS would have a two- or three-level decomposition. The
number of levels is not important. What is important is to have at least
one level of decomposition for each known requirement. At this point any
more RBS detail would be speculative and not considered useful.

■■ The fourth deliverable is the setting of the number of cycles and cycle
timebox. The first cycle timebox is set to the estimate of the time required
to complete the functionality assigned to that timebox. Subsequent time-
boxes will be adjusted as well.

Because I use the term Version Scope, you have probably guessed by now that
more than one version of the deliverables is expected, and if you have, you are
correct. This project will develop the first version of the solution. In later projects,
a second version may be developed based on the feedback you will have received
from users of the first version. However, you are concerned only with this ver-
sion and will not reference any future versions of the solution. Information will
be gathered during this version that will inform management about any further
enhancements they might want to consider in future versions. These are the nor-
mal releases we see in products, services and systems. While there will be simi-
larities between TPM and APF, one major difference has to do with scope. Scope
creep is the bane of the traditionalist. They put up with it because they have no
choice. They know it will happen, and they just have to make the best of it. In
APF there is no such thing as scope creep. What you do have is change brought
about by discovery and learning by the team and by the client. That change is
expected and APF is designed to handle it with ease at each Client Checkpoint.

C h a p t e r 2 5304

33_596365 ch25.qxd 2/15/06 10:52 PM Page 304

What Is the Version Budget and Timebox?
In APF the budget and timebox are fixed. Try to keep a version timebox to less
than 6 months. Any longer and you invite many of the problems that plague
the traditionalist. There are no rolling schedules. There is no going back to the
well for another budget increase. One of the objectives in an APF project is to
maximize business value under fixed time and cost constraints. Period! This is
a very different approach to the project than the traditionalist would take. As
long as the client is satisfied that the maximum business value has been
attained for the time and dollars expended, the project was successfully com-
pleted. If the client and the project team pay attention, this result can be
achieved every time. No exceptions! Unfortunately the maximum business
value they attain may not meet the success criteria, but that is an issue for the
client to deal with and should not determine the success or failure of the APF
approach. Whatever didn’t get done in this version will have to be left for the
next version or not at all. Hence, you have another reason for keeping scope to
a feasible minimum, and the timebox to less than 6 months. That will reduce
the occasion where schedules need to be extended or more dollars are needed.
It will also reduce the financial loss to the organization as compared to the tra-
ditional approach. With APF you can kill a bad project much earlier than you
can with the traditional approach and that accounts for the dollar savings.

The Scoping Phase of the Adaptive SDPM Strategy
for the Adaptive Software Development Model

Figure 25-3 illustrates the integration of the project management Scope Phase
and the Adaptive Software Development (ASD) Initiation Phase. An ASD pro-
ject begins much like an APF project. A request has been made to develop a
solution to the stated problem or opportunity.

Figure 25-3: Scoping Phase of the Adaptive SDPM strategy for the Adaptive Software
Development model

Project
Initiation

SCOPE

ASD Software
Development
Process
Phases

Project
Management
Phases

The Adaptive SDPM Scoping Phase 305

33_596365 ch25.qxd 2/15/06 10:52 PM Page 305

The primary deliverable is the mission statement. The mission statement will
establish a sense of direction for the overall project. It will be a motivator for
the project team. It will provide a framework for the team and an aid to
decision-making. There are three artifacts that a good mission statement will
provide:

■■ A project vision statement

■■ A project data sheet

■■ A project specification outline

They are described in the subsections that follow.

Project Vision Statement
The first artifact is the Project Vision Statement. This may take the form of a
brief charter statement or a full feasibility study. In either case its purpose is to
provide a framework and direction for the project.

Project Data Sheet
The second artifact is the Project Data Sheet (PDS), the document that anyone
with an interest in the project would consult for a thumbnail description of the
project. In one page the document should describe the following (this infor-
mation is drawn from Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems by James Highsmith III (Dorset House, 2000):

■■ Client

■■ Brief objective statement of the project

■■ Product benefits

■■ Client benefits

■■ Performance/quality attributes

■■ Architecture

■■ Issues/risks

■■ Major project milestones

■■ Core team members

Project Mission Profile
The third artifact is the Project Mission Profile. This document profiles the pro-
ject with respect to four variables: scope, schedule, defects, and resources. The
profile is nothing more than a prioritization of these four variables. The reason

C h a p t e r 2 5306

33_596365 ch25.qxd 2/15/06 10:52 PM Page 306

for this prioritization is to give the project team an aid to decision-making as
the project work commences. Whenever the team needs to make a decision,
they can use this prioritization to decide which of the project parameters can
be compromised. For example, suppose the prioritization lists, from most
important to least important, the variables as follows: defects, scope, schedule,
and resources. If the choice of alternatives involves compromising on schedule
versus compromising on scope, the schedule compromise would be preferred
over the scope compromise.

Project Specification Outline
The fourth artifact is the Project Specification Outline (PSO). The PSO is a doc-
ument that defines the boundary conditions of the project. It will answer ques-
tions regarding what is in and what is not in the project. In addition, it serves
three other purposes:

■■ It helps set client expectations as to what the project purports to deliver.

■■ It helps the team with top-down estimates of project size (time and cost
estimates).

■■ It is the primary input to iteration planning.

Discussion Questions
1. Both APF and ASD are designed for software development projects. APF

is also designed for projects that are not just software development–
focused but can encompass other types of projects (process improvement
and new product development). Is there any reason to prefer either one
over the other for a project where the solution is not yet fully identified?
Defend your position.

2. The Scoping Phase of the Adaptive SDPM strategy is a critically important
part of the project life cycle. If you were asked to plan a three-day scoping
exercise, what would your plan include? Prepare a detailed and timed
agenda. Be sure to include the customer as a major player in that scoping
exercise.

The Adaptive SDPM Scoping Phase 307

33_596365 ch25.qxd 2/15/06 10:52 PM Page 307

33_596365 ch25.qxd 2/15/06 10:52 PM Page 308

Installing Custom Controls 309

The Adaptive SDPM
Planning Phase
Think before you act.

Aesop
Greek fabulist

C H A P T E R 26

309

This the second of three SDPM strategies where the Planning Phase focuses on
projects for which the features are not completely known (Iterative SDPM
strategy) or the features and functions are not completely known (Adaptive
SDPM strategy) or the features, functions, and goal is not completely known
(Extreme SDPM strategy). There are several approaches to these three situa-
tions. In this chapter we discuss the Planning Phase of two different adaptive
models: Adaptive Project Framework and Adaptive Software Development.

The Planning Phase of an Adaptive SDPM Strategy

The primary focus of any Iterative, Adaptive, or Extreme SDPM strategy is to
discover a complete and acceptable know these features are missing because
the current solution just doesn’t feel right to the customer. Working together

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Planning Phase of the Adaptive SDPM strategy for the
Adaptive Project Framework model

◆ Understand the Planning Phase of the Adaptive SDPM strategy for the
Adaptive Software Development model

34_596365 ch26.qxd 2/15/06 10:51 PM Page 309

with the customer, the project team will plan the iterations to discover those
missing features. The Adaptive SDPM strategy has but one major purpose:
Iterate on the complete solution to add newly discovered functions and fea-
tures and initiate probative swim lanes to test feasibility of an idea or other-
wise attempt to discover otherwise unknown solution characteristics.

Figure 26-1 illustrates the parts of the project management Planning Phase and
the Iterative Planning Phase.

The Planning Phase of the Adaptive SDPM strategy occurs in two different
phases of the software development life cycle.

■■ It occurs at the beginning of the project at a high level. The deliverables in
this Planning Phase are the parameters that define the overall approach to
the project: the cycle length and number of cycles that are executed for the
entire project. These are initial estimates and may change as the project
progresses.

■■ The deliverables in the second Planning Phase (during Design) are
specific to the next cycle. Much of this planning activity looks like the
detailed planning that takes place in the Linear SDPM strategy. The tools
and processes that you are already familiar with from those earlier pro-
jects are used here. The deliverables are a list of functions and features to
be delivered in this cycle, the task level schedule and team assignments,
and the daily status reports through the cycle.

The next sections take a look at how the Adaptive Project Framework and the
Adaptive Software Development model accomplish project planning.

Figure 26-1: The Planning Phase for the Adaptive SDPM strategy

SCOPE
Adaptive
Software
Development
Process

Project
Management
Phases

DESIGN

PLAN

BUILD TEST CHECK DEPLOY
Y

N

C h a p t e r 2 6310

34_596365 ch26.qxd 2/15/06 10:51 PM Page 310

The Planning Phase of an Adaptive SDPM Strategy
for the Adaptive Project Framework Model

Figure 26-2 is the Planning Phase of the Adaptive SDPM strategy for the Adap-
tive Project Framework model.

For planning in the Adaptive SDPM strategy for the Adaptive Project Frame-
work model the Requirements Breakdown Structure (RBS) is not complete.
Some functions and features are missing from the current solution and that is
what led us to choose an Adaptive approach. In the case of the Iterative SDPM
strategy, only features were missing features; that is, the solution was nearly
completely defined. Only a few details of the solution had to be worked out.
Not so with the Adaptive SDPM strategy. Here parts of the solution are still
undefined and must be discovered through iteration. There can in fact be sev-
eral gaps in the solution as a result of missing functions or the user not know-
ing how to perform some of those missing functions. The objective of this
strategy is to plan each iteration so that the missing features can be discovered
and integrated into the solution, finally producing a complete solution. Five
major tasks need to be done to outline the project plan for the entire project.
They are:

■■ Completing a Project Overview Statement

■■ Reviewing the known parts of the RBS

■■ Determining the cycle length

■■ Determining the number of cycles

■■ Prioritizing known functionality

Five major tasks need to be done to outline the project plan for the next cycle.
These five tasks are repeated at each Cycle Plan Phase. They are:

■■ Determining the functionality to be built

■■ Determining the probative initiatives to be taken

■■ Creating the WBS for the functionality and probative initiatives to be done

■■ Estimating task duration

■■ Creating a resource-managed cycle schedule

All of these deliverables are briefly discussed in the subsections that follow.

The Adaptive SDPM Planning Phase 311

34_596365 ch26.qxd 2/15/06 10:51 PM Page 311

Figure 26-2: Planning Phase of an Adaptive SDPM strategy for the Adaptive Project Frame-
work model

Completing a Project Overview Statement
See Appendix C for a refresher on the five parts of the Project Overview State-
ment (POS). Figure 26-3 is an example from the case study for one of the
initiatives.

Reviewing Known Parts of the RBS
The less that is known about the solution, the more difficult it will be to plan
and successfully execute the project. Such projects will call upon all of the cre-
ativity and ingenuity that the project team and the customer can muster. You
have to progress from the known to the unknown. The less you know, the
harder it will be. In any case the known parts of the RBS are the starting point
for every APF project. If very little is known, then the first few cycles may be
nothing more than prototypes, and their purpose is to create a sensible starting
point. Whatever can be built into the solution at the beginning cycles should
be built in. These may spur other ideas just as a prototype is designed to
accomplish. In fact, you would be correct in calling the solutions at each cycle
completion prototypes. The only caveat is that they are working versions of
the known solution. So they are production prototypes.

Version
Scope

Cycle
Plan

Client
Checkpoint

APF
Software
Development
Process

Project
Management
Phases

PLAN

C h a p t e r 2 6312

34_596365 ch26.qxd 2/15/06 10:51 PM Page 312

Figure 26-3: POS example drawn from the case study

Determining Cycle Length
Cycle length should range between 2 and 6 weeks. Early cycles should be
shorter in order to fully engage the customer in the project. Once meaningful
customer involvement is assured later cycles can be lengthened. Because the

PROJECT
OVERVIEW
STATEMENT

Project Name

Pizza Oven Van

Problem/Opportunity
PDQ has lost 30% of its sales revenue due primarily to a too long

elapsed time from order entry to order delivery.

Goal
Implement a pizza oven van to minimize the order entry to order

delivery time.

Objectives

Project Lead(s)

Pepe Ronee

Project No.

2006-02

Date

4/12/06

Date

4/15/06

Approved By

Dee Livery

Prepared By

Pepe Ronee

Outfit one or more vans that can assemble, bake, and deliver pizzas.

Design and implement a computer system to receive and process phone
orders.

1.

2.

Design and implement a computer system to dispatch the pizza oven
vans in real time.

3.

The average time between order entry and home delivery will be less than
30 minutes.

2.

Assumptions, Risks, Obstacles
At least 90% of current employees will endorse the pizza oven van
business.

1.

Success Criteria
The time between order entry and home delivery will be less than 45
minutes.

The total development and operations cost of the pizza oven van line of
business will be less than $6M for the first three years.

2.

Home delivery sales will increase by 40% within 3 months of
implementation.

3.

The revenues from the home delivery business will be double the current
level within 12 months of implementation.

4.

1.

The Adaptive SDPM Planning Phase 313

34_596365 ch26.qxd 2/15/06 10:51 PM Page 313

early cycles may contain a good dose of probative initiatives, it is good strat-
egy to keep these cycles short. Probative initiatives are designed to discover
approaches that will lead to function definition and development. For that rea-
son, you want them short so you can try as many initiatives out as makes
sense.

Determining Number of Cycles
This early guess is needed to frame expectations for the team and the cus-
tomer. As each cycle is planned, its length may be changed—so also might the
number of cycles.

Prioritizing Known Functionality
Prioritization is a customer decision. It is based on delivering business value if
deployment of partial solutions is in the best interest of the enterprise.

Determining the Functionality to Be Built
The best way to go about this is to have a cycle length in mind, say 2 weeks.
Then have the team, armed with the priority list of functions and features,
indicate how far down the list they can get in 2 weeks. Keep in mind that there
are probative initiatives that are also part of the deliverables from the cycle. Err
on the side of having fewer deliverables than might be possible with a Her-
culean effort. The last thing you want is to fall short of completing the list.

Determining the Probative Initiatives to Be Taken
The best way to get the list of probative initiatives built is with a brainstorm-
ing session. Identify as many initiatives as possible, prioritize them, and select
the ones that seem most promising. These are to be short excursions, not
lengthy projects. All you want to do is narrow the list to added functions and
features needed to establish an acceptable solution. You are not out to cure
world hunger. Good enough is good enough.

As a result of these probes, you will perhaps modify some and try again. You
will find some that hold promise and can be explored to the next level of detail.
You might even be lucky and find a few that can be implemented in the next
cycle.

C h a p t e r 2 6314

34_596365 ch26.qxd 2/15/06 10:51 PM Page 314

The Adaptive SDPM Planning Phase 315

Case Study

The case study gives us some examples of initiatives to build functionality. For
the Order Entry sub-system the RBS is as follows:

◆ Function 1.1 Identify Customer

■ Feature 1.1.1 Identify new customer versus recurring

■ Feature 1.1.2 Display customer purchasing history

■ Feature 1.1.3 Display Name, Address, Phone Number

◆ Function 1.2 Get Order

■ Feature 1.2.1 Display products customer requests

■ Feature 1.2.2 Display size and quantity ordered

■ Feature 1.2.3 Display options list

■ Feature 1.2.4 Customer requests baked or unbaked

◆ Function 1.3 Get Delivery Instructions

■ Feature 1.3.1 Delivery location

■ Feature 1.3.2 Delivery options (home, pick-up, eat-in)

■ Feature 1.3.3 Requested delivery time

◆ Function 1.4 Price Order

■ Feature 1.4.1 Promotions

■ Feature 1.4.2 Calculate price

■ Feature 1.4.3 Maintain pricing table

◆ Function 1.5 Confirm Order

■ Feature 1.5.1 Accept, cancel, modify

■ Feature 1.5.2 Payment type

■ Feature 1.5.3 Display order with pricing

◆ Function 1.6 Submit Order

■ Feature 1.6.1 Submit order

■ Feature 1.6.2 Confirm order accepted

Functions 1.1 through 1.5 are fundamental to taking orders and must all be
done in the first iteration. Function 1.6 is a bit different. Feature 1.6.1 can be very
simple or very complex. To submit the order to the closest preparation location is
the simplest and might be part of the initial deployment. That would be only a
temporary decision until the actual submit order feature was fully developed. To
do that would require several iterations. Probative initiatives will be needed to
further define the submit order feature. That topic is taken up in the next case
study insert.

34_596365 ch26.qxd 2/15/06 10:51 PM Page 315

Creating the WBS for the Functionality and
Probative Initiatives to Be Done

Here is the beginning of familiar territory. These are the tools of the traditional
project manager. You already know how to use them from previous projects.

Estimating Task Duration
Remember that the cycle is only a few weeks long. These tasks are hours or
even days in duration. You should be able to estimate fairly accurately.

Creating a Resource Managed Cycle Schedule
For this deliverable, create a whiteboard schedule based on the precedence
diagram for the tasks to be done. You don’t need a software tool to do the
schedule. All of this is best done manually.

The Planning Phase of an Adaptive SDPM Strategy
for the Adaptive Software Development Model

Figure 26-4 is the Planning Phase of the Adaptive SDPM strategy for the Adap-
tive Software Development model.

C h a p t e r 2 6316

Case Study

The case study gives some examples of probative initiatives. Take a look at the
Submit Order feature. Deciding which preparation location to assign the order to
is a complex process. You need to take several variables into account: the length
of the order queue at each preparation location, the distance of the preparation
location from the delivery address, and how and when to use the mobile pizza
vans for preparation and delivery. Each of these variables acting alone must be
considered as well as interactions between the variables. The probative initiatives
are best investigated by building quick simulation models of the relevant alterna-
tives. Based on the results of those simulations a decision can be made as to
which seems most useful. That choice will lead to further probative initiatives
regarding the business rules that will govern the approach chosen. Finally, the
results of those probative initiatives will lead the development team into the
software development part of the project.

34_596365 ch26.qxd 2/15/06 10:51 PM Page 316

Figure 26-4: Planning Phase of an Adaptive SDPM strategy for the Adaptive Software
Development model

The Planning Phase of an Adaptive SDPM strategy for the Adaptive Software
Development Model is iterative itself. Each Learning Loop ends with a review
of what just happened in the previous development phase. That review iden-
tifies what is going to be built in the next cycle. The focus in the Adaptive cycle
plan is on improving the components in the current solution and introducing
new components into the solution. Unlike the traditional approaches, which
focus on tasks, the Adaptive cycle plan focuses on components, that is, on
deliverables. There are five characteristics to every Adaptive cycle according
to James Highsmith III in his book Adaptive Software Development (Dorsett
House, 2000). They are:

■■ Mission-driven—There is a specific deliverable that the project must
produce.

■■ Component-based—The approach will deliver parts of the solution in
each iteration with the entire solution delivered in the final iteration.

■■ Iterative—A number of iterations will be needed in order to create the
complete solution.

■■ Timeboxed—Each iteration is limited to a specific time frame (2–4 weeks
typical) and the entire project limited to a specific time frame (the sum of
all the iteration timeframes).

■■ Risk-driven and change-tolerant—High-risk deliverables are usually
produced early in the project and the whole approach expects and accom-
modates frequent change requests from the customer.

Adaptive
Cycle
Plan

Quality
Review

Learning
Loop

ASD Software
Development
Process Phases

Project
Management
Phases

PLAN

The Adaptive SDPM Planning Phase 317

34_596365 ch26.qxd 2/15/06 10:51 PM Page 317

These characteristics pervade all of the Adaptive and Extreme approaches
studied in this book. Highsmith defines a seven-step adaptive planning
process. The deliverables from each step are defined in the subsections that
follow.

The Project Initiation Phase
The purpose of this deliverable is to get as firm a definition of the project and
its expectations as is possible given what is currently known about the prob-
lem and its solution. To do so effectively requires the attendance and partici-
pation of stakeholders, sponsors, line of business managers, the project
manager, and at least the core team members. Highsmith recommends a week-
long kickoff, which includes Joint Applications Design (JAD) sessions and as
much planning as can be put together given what is known about the project.

Project Timebox
As in the case of an Adaptive Project Framework project, a deadline is given.
This is called the project timebox, to distinguish it from a cycle timebox. The
project timebox is a management-imposed deadline and may have little
resemblance to the actual development time required for an acceptable and
complete solution. Both dates have to be accommodated in whatever planning
is done.

Optimal Number of Cycles and the Timebox for Each
Within the project timebox some number of cycles will be planned. The total
duration of the cycles must be within the project timebox constraint. For pro-
jects that are overly aggressive, the cycles and their duration may have been
exhausted and the complete solution not yet obtained. Perhaps the agreement
from the project manager should be to deliver as much of the solution as pos-
sible (or equivalently, as much business value as possible) within the project
time-box. After all, isn’t that the most that could reasonably be expected?
Highsmith recommends 4–10 weeks as a function of project length.

Objective Statement for Each Cycle
In addition to the project statement that helps the team focus the overall pro-
ject goal, each cycle should have its own objective statement. It will help the
team and the customer keep focus and stay within scope for each cycle. While
these objectives statements can be crafted at the outset, the learning nature of
the project causes them to be altered as knowledge of the solution emerges
from completed cycles. With that in mind they should be maintained at each
Quality Review Phase.

C h a p t e r 2 6318

34_596365 ch26.qxd 2/15/06 10:51 PM Page 318

Assign Primary Components to Cycles
Primary components can be thought of as the high-level “whats” of the solu-
tion. The lower level “whats” and many of the “hows” may have to be learned.
At least this preliminary assignment helps the team with the expectations that
senior management has for this project. The rules of the assignment should
take into account such factors as business value, dependencies, risk, breadth
then depth, resource utilization, skills, and availability.

Assign Technology Support and Components to Cycles
Code development is certainly a necessary component of every software
development project, but it isn’t a sufficient component. Documentation and
infrastructure components are equally as important. The assignment of these
components to cycles should parallel their use in the emerging solution.

A Project Task List
In a fully agile-mature organization, this step is optional and in fact not
needed. Organizations in transition might use this as a crutch back into the old
world from which they are escaping. In a truly agile environment all that is
needed is to specify the “what” and leave it up to the team to decide “how.”
The “how” is an artifact from the traditionalist’s world.

Discussion Questions
1. Defend the following statement: The Adaptive Project Framework model

is a good transition strategy for traditional organizations that want to
fully implement Adaptive project management across the enterprise. The
Adaptive Software Development model is a good transition strategy for
adaptive organizations wanting to move to a fully Adaptive software
development environment.

2. Which of the two Adaptive strategies is a better choice when the solution
is almost unknown? Support your choice.

The Adaptive SDPM Planning Phase 319

34_596365 ch26.qxd 2/15/06 10:51 PM Page 319

34_596365 ch26.qxd 2/15/06 10:51 PM Page 320

Installing Custom Controls 321

The Adaptive SDPM
Launching Phase
Great people don’t equal great teams.

Tom Peters
Business writer

C H A P T E R 27

321

All of the Launching Phase discussion for the Linear, Incremental, and Itera-
tive SDPM strategy situations apply to the Adaptive SDPM strategy and will
not be repeated here (you can see Parts II, III, and IV earlier in the book for
those discussions). Adaptive SDPM strategy projects follow the same proce-
dures as by-the-book projects, except they repeat those procedures several
times over the life of the project. Within a single repetition, all of the launching
activities that are done in the Linear, Incremental, and Iterative SDPM strate-
gies are done in the Adaptive SDPM strategy. But you have to address some
additional considerations. Adaptive SDPM strategies focus on projects whose
solution is not known or only partially known. Unlike the Iterative SDPM
strategies where features are missing for the current solution, the Adaptive
SDPM strategies operate without a known solution. Not only are features

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the complications added to the Launch Phase when using an
Adaptive SDPM strategy

◆ Know how to launch an Adaptive SDPM strategy for the Adaptive Project
Framework model

◆ Know how to launch an Adaptive SDPM strategy for the Adaptive Software
Development model

35_596365 ch27.qxd 2/15/06 11:04 PM Page 321

missing, but functions are also missing. These missing functions give rise to
the Adaptive SDPM strategy. It is a learning and discovery approach in much
the same way the Iterative SDPM strategy is, but it is much more demanding
on the customer and the team. In this category of project all of the creativity
that the customer and the team can muster is required to find a solution that at
times can be very elusive. Success is no guarantee, and the risk is high.

The Launching Phase of an Adaptive SDPM Strategy

Figure 27-1 highlights the Launching Phase of an Adaptive SDPM strategy.

An Adaptive SDPM strategy differs in principle from an Iterative SDPM strat-
egy in one important way. In the Adaptive SDPM strategy each iteration pre-
sents the customer with the complete solution, as well as the results of probes
into the missing functions of the solution. The complete solution can be
deployed if it is deemed by the customer to have sufficient business value.
Most likely that will require several cycles to accomplish. The results of the
probes will be to gain further knowledge of the missing pieces and probe again
if needed to dig even deeper. Sooner or later the probes in a certain part of the
solution stop. The answer may have been found, and the team and customer
can rejoice; or the probes may be abandoned because of failure to uncover any
additional or useful information.

Four tasks must be done in the Launch Phase of an Adaptive project that are not
done or done differently in the Launch Phase of an Iterative project. They are:

■■ Processing scope change requests

■■ Handling solution handoffs

■■ Handling solution rollout

■■ Scheduling iterations

These are discussed in the subsections that follow.

Figure 27-1: The Launching Phase of an Adaptive SDPM strategy

Adaptive
Software
Development
Process

Project
Management
Phases

DESIGN

LAUNCH

BUILD TEST CHECK DEPLOY
Y

N

C h a p t e r 27322

35_596365 ch27.qxd 2/15/06 11:04 PM Page 322

Processing Scope Change Requests
The Adaptive SDPM strategy is the second of three strategies for which scope
change requests are a vital artifact.

■■ As I discuss in Part IV of this book, scope change requests are needed for
the Iterative SDPM strategy. In the search for additional features, the cus-
tomer who knows best, and their review and comment on features helps
the team improve what is already in the solution and adds or changes fea-
tures to come closer to meeting customer needs.

■■ For the Adaptive SDPM strategy, scope change requests are just as neces-
sary. The solution is not known, and the best way to find it is to engage
the customer in the investigation. Feedback from them is the most valued
deliverable in that it helps identify and further define functionality and
the accompanying features.

■■ For the Extreme SDPM strategy (the subject of Part VI of this book) scope
change requests are essential. These projects are often no different from
pure R&D projects. The customer is in the best position for guiding the
solution to an acceptable solution. Periods of diverse thinking are fol-
lowed by periods of convergent thinking, and this is what leads to accept-
able solutions. There is no other way, except for blind luck.

The partial solutions for all three strategies cannot evolve to a complete and
acceptable solution in the absence of scope changes. For the Iterative SDPM
strategy the absence of scope change requests means that a partial solution is
all that can be offered. The solution may or may not meet enough business
needs to be an acceptable solution. In both the Adaptive and Extreme SDPM
strategies, the absence of scope change requests means that no acceptable solu-
tion can be developed.

When scope change requests are received in the Adaptive SDPM strategy, the
project impact statement is often developed but no action is taken until the Client
Checkpoint Phase. Just as the Iterative SDPM strategy interrupting the workflow
in the current iteration is too disruptive: A postponement makes the most sense
in the Adaptive SDPM strategy as well.

All of this change comes to a head in a scope change request. It is the best way
to convey to the team the thinking of the customer. The customer must under-
stand that change requests are expected and embraced. The process should not
be cumbersome but should be easy to use.

The Adaptive SDPM Launching Phase 323

35_596365 ch27.qxd 2/15/06 11:04 PM Page 323

Handling Solution Handoffs
Contrary to the Incremental and Iterative SDPM strategies, adjusting the team
membership between cycles for an Adaptive SDPM strategy doesn’t make
sense. You may need to make minor adjustments because of unavailability,
but the team can orient the new member without the need for extensive cycle
documentation.

Handling Solution Rollout
Solution rollout occurs for the same two reasons in the Adaptive situation as it
does in the Iterative situation.

■■ The first is to deliver business value to the enterprise.

■■ The second is to give the client a chance for feedback of any changes or
additions they see.

There are some differences, however. The Adaptive SDPM strategy gives less
chance of a solution deployment than the Iterative SDPM strategy because not
every Adaptive cycle produces an updated solution. Some cycles may have
nothing more than probative initiatives. These are not designed to produce
deployable solutions but rather to discover parts of the solution that hereto-
fore have been missing.

Solution rollouts, if they occur in the Adaptive SDPM strategy, occur later in
the project life cycle than in the case of the Iterative SDPM strategy. An Adap-
tive SDPM strategy cycle deliverable may be deployed but not into a produc-
tion situation. The reason for that deployment is to kick-start the project by
getting input from other interested parties. If previous probative initiatives
have not met expectations, fresh eyes looking at the current solution may be a
springboard to other probative initiatives. In other words, these deployments
help get the project moving again.

Scheduling Iterations
The Customer Checkpoint is a more involved phase in the Adaptive SDPM
strategy than in the Iterative SDPM strategy. The prioritization of functionality
to be added, the consideration of the results of completed probative initiatives,
and the analysis of scope change requests are all prerequisites for the next
cycle plan.

C h a p t e r 27324

35_596365 ch27.qxd 2/15/06 11:04 PM Page 324

The Launching Phase of an Iterative SDPM Strategy for
the Adaptive Project Framework Model

The Launching Phase of an Adaptive SDPM strategy for the Adaptive Project
Framework model has all four of the considerations stated previously for the
generic Adaptive situation. Figure 27-2 highlights the Launching Phase of an
Adaptive SDPM strategy for the Adaptive Project Framework model.

Figure 27-2: The Launching Phase of an Adaptive SDPM strategy for the Adaptive Project
Framework model

The Launching Phases of the Adaptive SDPM and Iterative SDPM strategies
bear a lot of similarity. However, in the case of the Iterative models, the focus
is on discovering missing features, whereas in the Adaptive models the focus is
on discovering missing functions. That is a more challenging task. The Iterative
models know where they are going as far as defining an acceptable solution.

Version
Scope

APF Software
Development
Process

Project
Management
Phases

Cycle
Plan

Cycle
Build

Client
Checkpoint

LAUNCH

The Adaptive SDPM Launching Phase 325

35_596365 ch27.qxd 2/15/06 11:04 PM Page 325

The Adaptive models do not. That’s the challenge of Adaptive projects over the
challenge of Iterative projects.

In the search for the missing functionality and the features that further define
that functionality, the team and the customer are called upon to be collabora-
tive, open-minded, and creative. Brainstorming sessions are common during
the Client Checkpoint as probative initiatives are identified and implemented.
Options should be kept open as long as a glimmer of hope that they may
uncover something useful in reaching a solution exists.

The Launching Phase of an Adaptive SDPM Strategy for
the Adaptive Software Development Model

Figure 27-3 illustrates the Launching Phase of an Adaptive SDPM strategy for
the Adaptive Software Development model.

Figure 27-3: The Launching Phase of an Adaptive SDPM strategy for the Adaptive Software
Development model

ASD Software
Development
Process Phases

Learning
Loop

Project
Management
Phases

Adaptive
Cycle
Plan

Concurrent
Component
Engineering

Quality
Review

LAUNCH

C h a p t e r 27326

35_596365 ch27.qxd 2/15/06 11:04 PM Page 326

Note that the Launching Phase of an Adaptive SDPM strategy for the Adap-
tive Software Development model is more involved than in the case of the
Launching Phase for the Adaptive Project Framework model. The reason is
that the Learning Loop may identify technical changes that require a change of
team in preparation for the next cycle. That change is identified during the
Adaptive Cycle Plan Phase for the just completed cycle. The new team mem-
bers go through an orientation program to bring them up to speed with the
current solution and past cycle deliverables. They also need to be oriented to
the rules of the engagement as previously established by the continuing mem-
bers of the project team.

In the initial cycle, the team has established the rules of the engagement. At the
completion of the initial cycle several questions can be asked about how the
cycle went.

■■ How well did the rules work? New teams may need some adjustments to
the rules. They may have been too confining or added too much overhead
for the value received. The team will probably have some suggestions to
make the rules work for them rather than they work for the rules.

■■ How effectively did the team work as a team and not just as a group of
people? In your daily 15-minute team meetings you can tell a lot about
the progress your group has made toward becoming a true team.

■■ How often do you hear the word I or Me instead of the word We?

■■ Do team members offer to help others when the situation provides for it?

■■ Are any of your team members proactive when it comes to working with
others?

■■ How often do team members volunteer for special assignments?

In the absence of these signs, you will have a difficult time bringing an Adap-
tive project in successfully.

Discussion Question
1. You are Pepe Ronee, and you have run the Adaptive SDPM strategy by

the book. But you have just realized that the solution is nearing. You have
only a few minor points to flesh out. Should you continue using an Adap-
tive SDPM strategy or would some other strategy be more appropriate?

The Adaptive SDPM Launching Phase 327

35_596365 ch27.qxd 2/15/06 11:04 PM Page 327

35_596365 ch27.qxd 2/15/06 11:04 PM Page 328

Installing Custom Controls 329

The Adaptive SDPM Monitoring
and Controlling Phase
Celebrate what you want to see more of.

Tom Peters
Business writer

C H A P T E R 28

329

The Adaptive SDPM strategy opens a new perspective on systems develop-
ment where even less is known about requirements than in the case of projects
that rightly follow an Iterative SDPM strategy. The differences between pro-
jects that follow an Iterative approach versus those that follow an Adaptive
approach are staggering and so are the accompanying strategies.

The Monitoring and Controlling Phase
of an Adaptive SDPM Strategy

Figure 28-1 highlights the Monitoring and Controlling Phase of an Adaptive
SDPM strategy.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Monitoring Phase of the Adaptive SDPM strategy

◆ Understand the Adaptive SDPM Adaptive strategy for the Project Framework
model

◆ Understand the Adaptive SDPM strategy for the Adaptive Software Develop-
ment model

36_596365 ch28.qxd 2/15/06 10:55 PM Page 329

Figure 28-1: The Monitoring and Controlling Phase of an Adaptive SDPM strategy

First note the inclusion of the Check Phase as a very visible part of the Systems
Development Life Cycle. It was part of the Iterative SDPM strategy, but here it
takes on a different posture. Here the client is more proactively involved with
the development team. The learning and discovery that was generated in the
just completed iteration is now used to identify next steps. Those next steps
include not only integrating new functions and features but also probing with
new initiatives aimed at further learning and discovery. This proactive posture
was not as prevalent in the Iterative SDPM strategy because the discovery of
new or modified features was not as demanding as the discovery of new or
modified functionality. Much more is asked of the development team and the
client in an Adaptive SDPM strategy than in the Iterative SDPM strategy. In
the most extreme of the adaptive cases very little will be known about the solu-
tion from the standpoint of functionality. It has to be discovered. But it isn’t
going to be discovered just because you want it to be. It’s hard work and
requires all of the creativity that the client and the development team can
muster. That dedication and drive aren’t necessary ingredients of the Iterative
SDPM strategy.

As far as metrics are concerned, those that were introduced for the Iterative
SDPM strategy apply equally as well to the Adaptive SDPM strategy. How-
ever, four topics are worth discussing relative to those metrics as they apply to
the Adaptive SDPM strategy. They are:

■■ Project progress reporting

■■ Discovery of new/revised functions

■■ Discovery of new/revised features

■■ Processing scope change requests

These are discussed in the subsections that follow.

Adaptive
Software
Development
Process

Project
Management
Phases

DESIGN

MONITOR
&

CONTROL

BUILD TEST CHECK DEPLOY
Y

N

C h a p t e r 2 8330

36_596365 ch28.qxd 2/15/06 10:55 PM Page 330

Project Progress Reporting
As far as progress reporting, the Adaptive SDPM strategy is no different than
the Iterative SDPM strategy. The same types of reports that work for features
also work for functions. But there is a difference. The difference is that func-
tions come far less frequently than features. The divergence and convergence
trends that are easily seen in features are not as pronounced when reporting
the progress of functions discovery and implementation. One function may be
worth a hundred features.

One additional report may be useful. Consider the number of probative initia-
tives that are taken versus the number that yield positive results, that is, that
lead to new/revised functions. Track this ratio over time as an indicator of
team efficiency. If that trend is decreasing over time, it may indicate that no
further function discovery is likely to occur. The focus might then shift totally
to feature discovery and enhancement.

Discovery of New/Revised Functions
This is the heart of the Adaptive SDPM strategy, for it is here that the success or
failure of the effort is made. The solution is not known. Perhaps very little of the
solution is known. It must be discovered. This will be done through a series of
probative initiatives. Some will bear fruit; others will be dead ends. The proba-
tive initiatives that are proposed may be quite similar to process improvement
initiatives that you have undertaken. They are designed to uncover functional-
ity that otherwise might remain undiscovered. Don’t underestimate the chal-
lenge in these initiatives. They might be the output of a brainstorming session.
They might be based on previous successes and failures to uncover them. In
any case, the discovery of the solution is limited only by the creativity that the
client and the development team can bring to the table.

Discovery of New/Revised Features
Features follow from functions. Once a function has been identified, its fea-
tures can be found through successive versions shared with the customer.
They are in the best position to comment on the suitability of the function and
hence the features that should further enhance it.

Processing Scope Change Requests
Scope change requests can come at any time from either the customer or the
developers. Probative initiatives that bear fruit should be documented
through a scope change request. Enhancements to functions or features are

The Adaptive SDPM Monitoring and Controlling Phase 331

36_596365 ch28.qxd 2/15/06 10:55 PM Page 331

also to be documented through a scope change request. Regardless when they
arise, they are held in the scope bank until the checkpoint. This is markedly
different from the Linear or Incremental SDPM strategies where scope change
requests are handled as they arise. The dynamics that take place within an
Adaptive SDPM strategy are so complex and highly charged that interrupting
a cycle to process a scope change request will be counterproductive. Save them
for the client checkpoint. At that time they can be considered by the customer
and the development team, prioritized, and a decision made as to when and if
they will be integrated into the solution.

The Monitoring and Controlling Phase of an Adaptive
SDPM Strategy for the Adaptive Project Framework
Model

The Monitoring and Controlling Phase of an Iterative SDPM strategy for the
Adaptive Project Framework model has all four of the considerations stated in
the previous section for the generic Adaptive SDPM situation. Figure 28-2
highlights the Monitoring and Controlling Phase of an Adaptive SDPM strat-
egy for the Adaptive Project Framework (APF) model.

Figure 28-2: The Monitoring and Controlling Phase of an Adaptive SDPM strategy for the
Adaptive Project Framework model

Adaptive
Project
Framework
Software
Development
Phases

Project
Management
Phases

MONITOR
&

CONTROL

Cycle
Plan

Post-Version
Review

Cycle
Build

Client
Checkpoint

C h a p t e r 2 8332

36_596365 ch28.qxd 2/15/06 10:55 PM Page 332

In keeping with the spirit of the Adaptive Project Framework, you have a min-
imum of formal status reporting. Much of it is transmitted in the 15-minute
daily team meetings. If there is an out-of-control situation developing, it is dis-
covered early, and the necessary corrective measures are put in place. Except
in very unusual situations, a problem will not become too serious in the span
of 1 day.

Customer Checkpoint
The Customer Checkpoint Phase is a critical review that takes place after every
Cycle Build is completed. During the Cycle Build, both the client and the pro-
ject team have benefited from several discovery and learning episodes. Varia-
tions to the version functionality surface; alternative approaches to delivering
certain functionality have been suggested, and the client has learned also
through their continuous involvement with the team. All of this is recorded in
the Scope Bank and must be considered along with the functionality that had
originally been assigned to the coming cycle. The result is a revised prioritiza-
tion of functionality for the coming cycle. The most important thing to remem-
ber is not to speculate on the future. Prioritize for the next cycle only the
functionality that you are certain will be in the final solution. And don’t dis-
miss this as an easy exercise. It definitely is not that.

Questions to Be Asked During the Customer Checkpoint

You need to answer several questions during the Customer Checkpoint. These
are all in the spirit of monitoring and controlling, but their value is that they
improve the solution and the process going forward.

What Was Planned?

There are two lists:

■■ The first is the list of probative initiatives that were to be undertaken to
discover additional functions/features for eventual inclusion in the solu-
tion. Some of these will prove useful; some will not.

■■ The second list is nothing more than the prioritized functions and features
that were to be integrated into the solution.

What Was Done?

The results of the probative initiatives are reported. The functions and features
actually integrated into the solution are listed. There are often comments
accompanying the check-off because some items may not have been com-
pleted as planned. Subfunctions may have been left undone, and there may be
good reasons for it. In such cases, the Scope Bank should reflect the situation.

The Adaptive SDPM Monitoring and Controlling Phase 333

36_596365 ch28.qxd 2/15/06 10:55 PM Page 333

Again, the only questions to be answered here are the following: Did the cycle
meet its objectives? Did the cycle meet its planned functional specifications? If
no, where are the variances? The answers will provide input into planning for
the objectives of the next cycle and the functionality to be built in the next
cycle. Remember you already specified objectives and functionality for the
next cycle in the Version Scope Phase. So you have the original scope and
potential revised scope to consider as you consider what the next cycle is to
contain. TPM defines a formal change management process that can be
invoked at any time in the project. In APF the change process is imbedded in
the Client Checkpoint. The only changes accommodated in APF occur between
cycles.

What Was Learned?

This is perhaps the most important question of all. The results of the probative
initiatives suggest added functions and features or at best further directions
for investigation. Here is where the solution is morphed to provide more value
to the client. The new ideas that are generated here could not have come about
through the Traditional Project Management (TPM) approach. This is where
APF—and Extreme Project Management (xPM) in all fairness—really shine.
Both APF and xPM take their value from learning by doing.

Is the Version Scope Still Valid?

Armed with the information discussed previously, you now can ask a very
basic question: Is the version scope still valid? If yes, terrific—you are on the
right track. If not, revise accordingly. Revisions to version scope can be signif-
icant. In some cases they may be so significant that the correct business deci-
sion is to kill the current project, go back to the drawing board, and start over
again. The cost of killing an APF project is always less than the cost of killing a
TPM project.

Is the Team Working as Expected?

Real teamwork is a critical success factor in APF. Worker empowerment is
threaded throughout APF. One way to gauge—if you count the frequency of
the use of the word “I” as compared to the use of the word “We,” you will have
a pretty good metric for measuring team strength. The formula would be

Team Strength = number of Wes/(number of Is plus number of Wes)

and you want to see this number hovering around 1. The APF team needs to
work in an open and honest environment for this to happen. That means that
every team member must be forthright in stating the actual status of their pro-
ject work. To do otherwise would be to violate the trust that must exist
between and among team members. The project manager must ensure that the

C h a p t e r 2 8334

36_596365 ch28.qxd 2/15/06 10:55 PM Page 334

working environment on the project is such that team members are not afraid
to raise their hand, say they are having trouble, and ask for help. To do other-
wise would be to let your teammates down.

One of the greatest benefits from this approach is the meaningful and continu-
ous involvement of the client. They are the decision maker in all going forward
activities, and they are doing it with full knowledge of what has taken place to
date. They understand where business value can be achieved by changes in
functionality, and they are in a position to take action. APF allows the client to
engage in the project even to the level of operating as a co-project manager.
They are a constant reminder to the team of the business aspects and value of
what they are doing and what changes should be made to protect that business
value. This is a very important point to remember. It ensures that what is even-
tually built meets client needs.

The Customer Checkpoint is the bridge that links two successive cycles. The
input to the Customer Checkpoint includes:

■■ The current solution

■■ New functions/features identified from the probative initiatives under-
taken in the previous cycle

■■ Functions and features to be revised

■■ Previously identified functions/features not yet incorporated into the
solution

Most of these are documented with a scope change request. These requests are
then prioritized and the deliverables for the next cycle identified. All four of
these can be monitored through simple metrics.

For example, the metric for assessing the current solution is a simple one: Is the
current solution better than the previous solution and is it converging toward
an acceptable solution? A sustained pattern of no answers might be the signal
that the project is going nowhere and either needs to be killed or significantly
redirected. The metric for assessing new functions/features identified from
the probative initiatives could simply be the ratio of successful to unsuccessful
probative initiatives. This ratio should increase over time as more of the solu-
tion comes into focus and the whole team has learned to work together effec-
tively and efficiently. The metric for assessing the functions and features to be
revised is simply the trend over time of how that number has changed from
cycle to cycle. For a healthy project, you might expect that number to increase
for some time and then begin to decrease. Such a pattern is a sign of healthy
change as the solution moves through a stage of divergence and then finally
begins to converge on the final and acceptable solution. The metric for mea-
suring the number of functions/features not yet incorporated into a cycle will

The Adaptive SDPM Monitoring and Controlling Phase 335

36_596365 ch28.qxd 2/15/06 10:55 PM Page 335

be erratic at first as new functions and features are discovered and not acted
upon. But eventually this number should stabilize and then begin to decrease
with each cycle. In the end you would hope that the list would be empty—
assuming neither time nor budget run out before all functions and features are
integrated.

The Scope Bank has been the cumulative depository of all the ideas and pro-
posed changes that were generated during the previous cycles. Some of them
were incorporated in later cycles and some were not. In any case, the current
contents are all of the items not previously acted upon. There may be cases
where any ideas suggested several cycles back that had not been incorporated
may now be viable. That is the reason the Scope Bank is cumulative.

Output from the Customer Checkpoint

The output becomes input to the next cycle plan phase. The components of
that output are briefly described in the following subsections.

Updated Functionality List

You started this whole process with the Conditions of Satisfaction, and it is to
those Conditions of Satisfaction that you now return. The only question to be
answered here is this: Are the Conditions of Satisfaction still valid? If yes, con-
tinue on. If not, revise accordingly. These revisions are the planned functional-
ity for the next cycle.

The client and the team should spend most of a day in frank and honest con-
versation considering all of these factors and then agreeing on the functional-
ity that will be planned for the next cycle. Do not underestimate the value that
can come from the sharing of learning and discovery. That is your most impor-
tant information as it really helps both parties understand what this solution is
really all about and what should be offered as a final solution. This is no triv-
ial task.

Reprioritized Functionality List

The process that was used in the first cycle to prioritize functionality can be
repeated here. The criterion that was used to determine the priority may be the
same or different. Again, take advantage of all the learning and discovery from
the previous cycles.

Next Cycle Length

The initial estimates of functionality duration for those functions planned for
the next cycle may require a change in cycle length. Remember to be true to the
overall timebox for the version. That cannot be adjusted.

C h a p t e r 2 8336

36_596365 ch28.qxd 2/15/06 10:55 PM Page 336

The Monitoring and Controlling Phase of an Iterative
SDPM Strategy for the Adaptive Software Development
Model

Figure 28-3 illustrates the Monitoring and Controlling Phase of an Adaptive
SDPM strategy for the Adaptive Software Development model.

In these types of software development projects, real progress is hard to mea-
sure. So many deliverables are started but few will be complete, at least early
in the project life cycle. The development team is close to the action, so they
should have a good qualitative feel for progress in the absence of meaningful
quantitative metrics. To the extent possible progress should be measured both
qualitatively and quantitatively. The quantitative metrics should focus on
schedule, cost, defects, scope, and resources.

Figure 28-3: The Monitoring and Controlling Phase of an Adaptive SDPM strategy for the
Adaptive Software Development model

Adaptive
Software
Development
Phases

Project
Management
Phases

MONITOR
&

CONTROL

Adaptive
Cycle
Plan

Final QA &
Release

Concurrent
Component
Engineering

Quality
Review

Learning
Loop

The Adaptive SDPM Monitoring and Controlling Phase 337

36_596365 ch28.qxd 2/15/06 10:55 PM Page 337

At the Quality Review, the following questions should be answered:

■■ Where are we with this project with respect to the quantitative metrics?

■■ Where should we be with this project?

■■ How can we close the gap?

■■ What is the new estimate of completion?

Discussion Question
1. The probative initiatives in each cycle are discovering new functions and

features that add value to the solution and the customer seems satisfied.
But you have noticed that the number of revisions to features and func-
tions is growing steadily. In fact, there is very little that you can honestly
say has come to closure. Everything seems in a state of flux. That suggests
to you that the customer isn’t really satisfied. Could there be some other
explanation? If not, what should you do?

C h a p t e r 2 8338

36_596365 ch28.qxd 2/15/06 10:55 PM Page 338

Installing Custom Controls 339

The Adaptive SDPM Closing Phase
The unfinished is nothing.

Henri Frederic Amiel
Swiss journalist and critic

C H A P T E R 29

339

Once the customer has signed off that the requirements have been satisfactorily
met, the Closing Phase begins. That sounds like a simple transition but is it?

The Closing Phase of the Adaptive SDPM Strategy

Figure 29-1 illustrates the Closing Phase of the Adaptive SDPM strategy. Note
that there are really two parts to the Closing Phase, just as there were in the
Iterative SDPM strategy.

■■ The first is closure with respect to each of the cycles.

■■ The second is closure with respect to the completed project.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Closing Phase of the Iterative SDPM strategy

◆ Have a working knowledge of the Closing Phase of the Adaptive SDPM
strategy for the Adaptive Project Framework model

◆ Have a working knowledge of the Closing Phase of the Iterative SDPM strat-
egy for the Adaptive Software Development model

37_596365 ch29.qxd 2/15/06 10:50 PM Page 339

Obviously, there are some similarities between the Closing Phases of Iterative
and Adaptive strategies, but there are some key differences as well.

The similarities center on requirements satisfaction at the completion of each
cycle. In the Iterative SDPM strategy, these closings were focused on discover-
ing the details of features that had been identified but were not acceptable to
the customer. In the Adaptive SDPM strategy, the cycle closings were focused
on the discovery of features and functions for later integration into the solu-
tion. This highlights the major difference between the two strategies. The Iter-
ative SDPM strategy deals with known features that need change in order to
be acceptable to the customer. Each of the proposed changes can be built into
the solution and reviewed by the customer for any further changes. The Adap-
tive SDPM strategy is seeking new features and functionality that can then be
built into the solution. So the Iterative SDPM strategy cycles constantly build
onto the solution. The Adaptive SDPM strategy uses probative swim lanes as
well as swim lanes that integrate changed features into the solution. So the
Closing Phase includes not only customer evaluation of the updated solution
but also conclusions drawn from the probative swim lane—that is, do the pro-
bative swim lanes suggest any new features or functions to be added to the
solution in later cycles?

Iterative and Adaptive SDPM strategies share common planning approaches.
Both do planning just-in-time, as a follow up to the iteration and cycle Closing
Phases. The next iteration has similar properties. In an Iterative SDPM strat-
egy, the deliverables for the next iteration are planned at the beginning of the
iteration. In other words, it is just-in-time planning. In an Adaptive SDPM
strategy you have to anticipate changes in direction for the project going for-
ward. The changes in direction are the result of learning and discovery from
the probative swim lanes. Planning is still done “just-in-time.”

Figure 29-1: The Closing Phase of the Adaptive SDPM strategy

Adaptive
Software
Development
Process

Project
Management
Phases

DESIGN

CLOSE

BUILD TEST CHECK DEPLOY
Y

N

C h a p t e r 2 9340

37_596365 ch29.qxd 2/15/06 10:50 PM Page 340

With this as background, the activities in the Closing Phases become obvious.
In the Iterative SDPM strategy the Closing Phase assesses the results of the
changes to features and functions and whether there was further convergence
on an acceptable solution. That leads to the build content of the next iteration.
In the Adaptive SDPM strategy, the Closing Phase not only assesses the results
of changes to functions and features that were integrated into the solution but
also assesses the discovery and learning from the probative initiatives and
whether or not that can lead to new or revised features and functions to be
integrated into the solution in future cycles or to more probative initiatives for
the next cycle. In other words, the Adaptive SDPM strategy includes all of the
activities of the Iterative SDPM strategy plus those associated with probative
initiatives.

Iterative SDPM Strategy for the Closing Phase
of the Adaptive Project Framework Model

Figure 29-2 illustrates the Closing Phase of the SDPM strategy for the Adaptive
Project Framework model.

Figure 29-2: The Closing Phase of the SDPM strategy for the Adaptive Project Framework
model

Cycle
Plan

Post-Version
Review

Cycle
Build

Client
Checkpoint

CLOSE

The Adaptive SDPM Closing Phase 341

37_596365 ch29.qxd 2/15/06 10:50 PM Page 341

The Closing Phase of the Adaptive SDPM strategy for the Adaptive Project
Framework is entirely taken up with a Client Checkpoint. Either the Client
Checkpoint looks back at the just completed cycle and then looks forward to
the coming cycle, or the Client Checkpoint represents the end of the last cycle.

The Just Completed Cycle
Each project that follows an Adaptive Project Framework model presents the
development team with a need to learn to work with the customer. Every cycle
presents the development team with information to help it to work more effec-
tively and efficiently with their customer team. For the Adaptive SDPM strat-
egy, learning to work with the customer on the probative initiatives is a most
critical learning experience. The customer may have no previous experience
with the identification, execution, and learning through the use of probative
initiatives. Even if the development team has worked with the customer team
on previous projects, the combination of project type and customer type is still
a unique experience. For each project, some customers naturally take a proac-
tive role in the project while others are more reactive. Both are acceptable
behaviors. The important factor is that the involvement is meaningful. The
importance of this behavior grows as you move further out from the Adaptive
to the Extreme projects.

At the completion of each cycle, the customer and the developers should take
stock of what happened in terms of process and how it could be improved for
the next cycle. Here are a few questions that might help that improvement
effort:

■■ Did each party offer new or novel ideas?

■■ Did the probative initiatives suggest new features or functionality?

■■ Is there a synergy between the two parties?

■■ Does each party feel that there is progress toward an acceptable solution?

■■ Is the entire team working more effectively than earlier in the project?

■■ What tasks could have been done better? How?

■■ What tasks are working well and should be retained?

C h a p t e r 2 9342

37_596365 ch29.qxd 2/15/06 10:50 PM Page 342

The Final Cycle
The final cycle is the final Client Checkpoint. There are two points worth men-
tioning here. First, the final cycle evaluates the acceptability of the final solu-
tion and its worthiness for deployment. Presumably, the final solution can’t be
far off from whatever ideal solution the customer may have had in mind or
else the project would have been terminated in some previous cycle. Second,
the project would have taught the developers how to work with this customer
and even with any other customer group. The Adaptive SDPM strategy asks
more of the customer than the previous strategies. Whereas their involvement
could have been passive in the Linear, Incremental, and even in the Iterative
SDPM strategies, that is not acceptable in the Adaptive SDPM strategy.

You might want to give the customer a chance to give input into this process.
Perhaps a survey by an outside person—the Project Management Office
(PMO), for example—would provide valuable information on how the devel-
opment team could have improved how it worked with the customer. Such a
survey can be very simple. The following questions might help improve the
process for the next project:

■■ How did the development team bring us into the project?

■■ Was our involvement real or contrived? How could it have been
improved?

■■ Did the development team help us understand the alternatives? How?

■■ Did the development team understand our business problem? How could
they have done a better job?

Adaptive SDPM Strategy for the Closing Phase
of the Adaptive Software Development Model

Figure 29-3 illustrates the Closing Phase of the Adaptive SDPM strategy for the
Adaptive Software Development model.

The same two considerations that were discussed in the Adaptive Project
Framework model—those of the just completed cycle and those of the final
cycle—are concerns here, too.

The Adaptive SDPM Closing Phase 343

37_596365 ch29.qxd 2/15/06 10:50 PM Page 343

Figure 29-3: The Closing Phase of the Adaptive SDPM strategy for the Adaptive Software
Development model

The Just Completed Cycle
The discussion for the Adaptive Project Framework model applies for the
Adaptive Software Development model as well. The client role must be as
meaningful here as in previous strategies. The difference is that it is more tech-
nically focused than in the Adaptive Project Framework model. The reason is
that this model focuses on software development only, whereas the Adaptive
Project Framework model encompasses software as well as other deliverables.

The Quality Review Phase of the Adaptive Software Development model is
the analog of the Client Checkpoint Phase of the Adaptive Project Framework
model. Except for the technical focus of the Adaptive Software Development
Phase, the two are identical. Neither model is likely to produce a partial solu-
tion, although the Adaptive Software Development model is the more likely of
the two to produce a partial solution. This will be done for the benefit of the
customer when additional input is needed to identify new or revised features
and functions on later cycles. These are not production-ready releases.

Adaptive
Cycle
Plan

Final QA &
Release

Concurrent
Component
Engineering

Quality
Review

Learning
Loop

CLOSE

C h a p t e r 2 9344

37_596365 ch29.qxd 2/15/06 10:50 PM Page 344

The Final Cycle
This does not compare directly to the final cycle of the Adaptive Project Frame-
work model. Here the focus is more on the quality of the final solution and its
documentation. The Adaptive Project Framework model focuses more on doc-
umenting the next version features and functions. Deployment to production
is done after the final cycle.

Discussion Question
1. You have completed the first few cycles and the customer seems very sat-

isfied with the progress to date. Not too much in the way of probative ini-
tiatives is surfacing from the customer. The solution has only vaguely
been defined. There are two possibilities:

a. The customer is having difficulty thinking outside the box.

b. The customer hasn’t really bought into the Adaptive strategy you are
taking.

Because so little is known about the solution, you are convinced that the
Adaptive SDPM strategy is the correct approach. What would you do?

The Adaptive SDPM Closing Phase 345

37_596365 ch29.qxd 2/15/06 10:50 PM Page 345

37_596365 ch29.qxd 2/15/06 10:50 PM Page 346

Installing Custom Controls 347

The Adaptive SDPM
Strategy Summary
Creative people have much more confidence in their
imaginative leaps, in their intuition.

Laurel Cutler
Vice Chairman, FCB/Leber Katz Partners

C H A P T E R 30

347

The Adaptive SDPM strategy is our second entry into the world of the agilist.
The Adaptive world gets its strength from the creative spirit of the customer
and the Adaptive team working in collaboration. In fact, creativity may be the
only factor that accounts for a successful Adaptive project.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Compare Traditional versus Adaptive projects

◆ Understand the fundamental differences between the responsibilities of
Traditional and Adaptive project managers

◆ Understand the fundamental differences between Traditional and Adaptive
project teams

◆ Compare Traditional to Adaptive project planning

◆ Know the impact of scope change management on Traditional and Adaptive
projects

38_596365 ch30.qxd 2/15/06 10:57 PM Page 347

Traditional Versus Adaptive Projects

As you know, the Traditional project has clearly defined requirements, func-
tions, and features. They are completely documented and unlikely to change—
despite the fact that reality will prove otherwise and this specificity is unlikely
to happen. However, it still leads the project manager to adopt a Linear or
Incremental SDPM strategy. A complete project plan with the resource sched-
ule is followed, and the project is completed within budget, time, and scope
requirements. The success of the Traditional project hinges on the accuracy of
the original requirements document. Small adjustments can be made, but the
major direction of the project is determined at the front end. Major adjust-
ments most often result in project termination with a view toward restarting
the project with a new scope and requirements specification. That turns into a
big wasted effort of time and money resulting from the aborted attempt.

Adaptive projects do not have that degree of specificity. In fact, much of the
solution (expressed in terms of requirements, functions, and features specifi-
cation) may be unknown. The more unknowns there are, the more challenge it
will be to the creative energies of the whole team to produce a successful solu-
tion. This leads the project manager to shy away from speculation and develop
a plan only for the known requirements. That plan is very different from the
Traditional plan. For one thing, it is not a process-driven plan.

The Adaptive plan is cycle-based and just-in-time. It has two major thrusts:

■■ The plan to add/revise functions or features into the current solution—
These would have come about as part of the original solution that had not
yet been added or part of the solution discovered from earlier cycles now
ready to be added to the solution. Each cycle plan contains such additions.

■■ Learning and discovery—Here the customer and the development team
brainstorm and otherwise suggest probative initiatives to find out about
the missing parts of the solution or about feasibility of certain ideas rela-
tive to adding/revising features and functions to the solution. Some of
these initiatives will prove successful; others will not. But even those that
do not still provide additional guidance as to which directions may prove
successful. This is nothing more than a hunting expedition and should be
viewed from that perspective.

C h a p t e r 3 0348

38_596365 ch30.qxd 2/15/06 10:57 PM Page 348

Traditional Versus Adaptive Project Managers

I have already discussed the fact that Traditional project managers manage
against the budget, schedule, and scope, and I don’t need to repeat that dis-
cussion here. Simply recall that their approach is formal and based on status
meetings, performance reviews, reports, and metric tracking.

Adaptive project managers manage against the deliverables and business
value. Formality gives way to informality. With few exceptions, reports give
way to the passing of tacit knowledge between the customer and all of the
team members. Anything that does not contribute directly to the learning and
discovery process is avoided as much as possible. There will, of course, be
some reports that senior management requires. These cannot be avoided. That
allows the focus to be solely on creating deliverables and the related business
values. Anything else falls in the category of non–value-added work and is to
be avoided. Only those artifacts that lead to that discovery are relevant. It is
really at the discretion of the team as to which artifacts will be used. Bottom
line—if it doesn’t add value to your ability to manage the project, don’t use it.
Period.

What does all of this say about the project managers of Traditional versus
Adaptive projects? The Traditional project manager is trained to follow
process, and success is measured against their ability to meet budget, time,
and scope constraints. Their consistency is a strong asset. They tend to be risk-
averse. They work to reduce risk and preserve the constraints of time and
money on the project.

The Adaptive project manager, on the other hand, is trained to deliver product
and business value. They don’t worry about meeting budget and time con-
straints, as does the Traditional project manager. Time and budget are fixed
and scope is the variable. Whenever the timebox elapses or the budget runs
out, the project is finished. At that point in time, they have collaboratively pro-
duced the best business value that the two constraints permitted.

The Adaptive project manager tends to be a risk-taker as is evidenced by the
probative initiatives that they support. They depend heavily on the collabora-
tive involvement of the customer and the development team. This is obviously
based on the project manager having established a trusting relationship with
the customer and the developers. The project manager will depend on their

The Adaptive SDPM Strategy Summary 349

38_596365 ch30.qxd 2/15/06 10:57 PM Page 349

honest input and their willingness to push back if the probative initiatives just
don’t make good sense. The project manager has to make the call as to what
eventually will be in the next cycle and that call will be difficult if the customer
and the developers haven’t spoken their mind and shared their real beliefs.
Decisions are based on the extent to which they maximize the value they
deliver to their customer, and the project manager will want all the assurance
the customer and the development team can give.

Traditional Versus Adaptive Teams

As I discussed earlier, the Traditional projects can work with distributed teams
of specialists and junior technical staff. The details will not be repeated. Recall,
however, that the junior technical team members work under the direct super-
vision of the more senior members of the team. It is not necessary for the Tradi-
tional team members to be co-located. The requirements specification document
and project schedule are their guides.

Ideally, Adaptive projects should have co-located teams of senior technical
staff. When that is possible, the team should have its own team “war room.” It
is an area that they own for the duration of the project. They work side by side.
They share ideas in real time rather than by e-mail or voice mail. The walls of
their war room are covered in risks, issues, solution ideas, the updated project
schedule, and other relevant information. They hold daily 15-minute team
meetings in the war room. This is ideal but not always or often possible. When
this is not possible, adjustments have to be made. Real-time meetings are still
possible, but now some of the members are conferenced in from remote loca-
tions. The walls of the team war room are replaced by e-mails, chat rooms,
instant messaging, and shared files of status, problems, risks, and so on. Time
zones present a particular challenge. Some team members will be inconve-
nienced but even that can be rotated around by adjusting meeting times.

Little or no supervision of an Adaptive team is required or wanted for that
matter. That is important because the team needs the freedom to pursue what
they believe is in the best interest of discovery and learning and delivering
business value.

Traditional Versus Adaptive Project Planning

To the traditionalist, planning is something you do once at the very beginning
of the project. For the Traditional project manager, resources are scheduled and
committed against a project plan and then managed to conformance with that

C h a p t e r 3 0350

38_596365 ch30.qxd 2/15/06 10:57 PM Page 350

plan. Any variances from the plan are corrected as needed. Having a complete
plan sounds great, but is it worth the effort? Every change request that is
approved requires some modification to the plan. The modification almost
always requires some rescheduling, negotiating with resource managers to
adjust commitments, and finally documenting and communicating the changes
to all affected parties. If you cost out the changes, you can see that time was
spent on parts of the plan that will no longer be needed. That time spent was
wasted time—non–value-added time to the Adaptive project manager.

To the Adaptive project manager, planning is something you do just-in-time
and continuously through the project. There is no speculation of the future,
and therefore the cycle plan deals only with the coming cycle. Part of the plan
deals with integrating new or revised functions and features and part deals
with identifying probative initiatives for the next cycle. All of these are known,
and there is no speculation about what could be or might be. Time is spent on
planning those things that are known to be part of the solution.

Traditional Versus Adaptive Scope Change
Management

You already know that scope change is the bane of the Traditional project man-
ager. Every scope change request brings with it the work needed to generate
the project impact statement as the deliverable from having processed the
change request. This is non–value-added time. Depending on the extent of the
scope change request, it can render many parts of the project plan obsolete or
incorrect. The time and effort spent building those parts of the plan that are no
longer relevant was time wasted. None of this is found in the Adaptive
approaches.

You already know that scope change is the lifeblood of the Adaptive project
manager. Scope change is a necessary ingredient for the Adaptive project team
to converge on a successful solution that delivers maximum business value for
the time and money invested. The frequency of scope change requests over the
cycles can be a good bellwether for the effectiveness of the project. The fre-
quency should increase at an increasing rate over consecutive early cycles,
level off to a constant rate during the middle cycles, and finally increase at a
decreasing rate over the later cycles. As the project nears completion, scope
change requests should disappear. Any pattern significantly different from
this one is a signal of problems. Too few scope change requests means that
meaningful involvement is probably lacking. Too many scope change requests
in later cycles is probably an indicator that the solution is not converging.

The Adaptive SDPM Strategy Summary 351

38_596365 ch30.qxd 2/15/06 10:57 PM Page 351

WARNING
The Adaptive SDPM strategy is a high-risk strategy. The team must comprise sea-
soned professionals to undertake such a venture. No rookies allowed.

Discussion Question
1. Your organization has been a staunch promoter of the Adaptive

approaches to project management and systems development. However,
they are not at all satisfied with the results. Customers never seem to be
satisfied with the results either. What are your concerns, and what posi-
tive steps might you take to mitigate them?

C h a p t e r 3 0352

38_596365 ch30.qxd 2/15/06 10:57 PM Page 352

PA RTSIX

Extreme ESPM
In the Extreme approach you are at the edge of the uncertainty and complex-
ity. Not only is there no solution, but also the goal is not even clearly known.
There may be a goal—cure world hunger—but no one knows for sure if it is
even attainable. Surely something is attainable that is related to the goal, but
what is it? That has to be discovered through some Extreme approach. These
projects are unique. They are the only types of projects where the goal and the
solution are developed in parallel. One informs the other until an end is
reached. That end is either acceptable or not. Pure research and development
projects are often of this type.

39_596365 pt06.qxd 2/15/06 10:55 PM Page 353

39_596365 pt06.qxd 2/15/06 10:55 PM Page 354

Installing Custom Controls 355

Extreme SDPM Strategy
An extreme project is a complex, self-correcting venture
in search of a desired result.

Doug DeCarlo
Author and Senior Consultant
Cutter Consortium

C H A P T E R 31

355

At first glance, you might wonder what the difference is between an Adaptive
SDPM strategy and an Extreme SDPM strategy. First and foremost, the differ-
ence lies in goal clarity. Adaptive SDPM strategies require a clearly defined goal
while the Extreme SDPM strategies do not. That places Extreme SDPM strate-
gies in a research and development mode. Translated into application I would
expect to see a number of parallel investigative swim lanes in the early stages of
an Extreme SDPM strategy. The number of those parallel swim lanes decreases
as the project moves forward. The decrease occurs because several swim lanes
are eliminated as feasible directions for goal and solution discovery.

This final SDPM model type applies to those projects whose solution and goal
are not known or not clearly defined. Here you are in the world of pure
research and development, new product development, and process improve-
ment projects.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Be able to explain the Extreme SDPM strategy

◆ Have a high-level understanding of INSPIRE and the Flexible model

40_596365 ch31.qxd 2/15/06 10:52 PM Page 355

The Extreme SDPM Strategy

What do you do if what is needed is not clearly defined? What if it isn’t
defined at all? As I just indicated, when you enter the world of the Extreme
SDPM strategy, you enter the world of research and development—a world
where goals are not clearly defined and, of course, the solution is not clearly
defined either. In fact, the solution might be quite elusive. The bottom line,
however, is that the project is critically important to the enterprise. The goal
must be clarified and a solution must be found. Perhaps, you have tried to
force fit the traditional approach into these situations and found it flat out
doesn’t work. Extreme SDPM strategies are designed to handle projects whose
goal can be only fuzzily defined or really not defined at all. Figure 31-1 illus-
trates the generic relationship between the Extreme software development
process phases and the project management phases.

Building a business-to-business (B2B) Web site with no further specification is
an excellent example of a project in need of an Extreme SDPM strategy. Much
like the early stages of an R&D project, building the B2B Web site starts out
with a guess, or maybe several guesses. As the project commences, the client
reflects upon the alternatives chosen and gives some direction to the develop-
ment team. This process repeats itself over and over again. Either the partial
solution converges on a satisfactory solution or is killed along the way. In most
cases, there is no fixed budget or timeline. Obviously, the client wants it com-
pleted ASAP for as little as possible. Furthermore, the lack of a clear goal and
solution opens the project to a lot of change. Unfortunately, the nature of this
project does not lend itself to fixed time and cost constraints.

The Extreme SDPM strategy lies at the outpost of the software development
landscape. It serves the needs of those development projects where very little
is known about the details of the development effort. This section gives a high-
level overview of what constitutes Extreme SDPM strategies. As such, it is a
good starting point for the executive or manager who simply needs to become
familiar with Extreme SDPM.

Scope Phase
The Scope Phase for the Extreme SDPM strategy closely resembles the Scope
Phase of the Adaptive SDPM strategy. The difference is that much less is
known about the typical Extreme project than about the typical Adaptive pro-
ject. Keep in mind that you are in the realm of projects that look much like

C h a p t e r 3 1356

40_596365 ch31.qxd 2/15/06 10:52 PM Page 356

research and development projects. The Scope Phase should include a brain-
storming session where all possible avenues for exploration are identified.
Many of these will become concurrent swim lanes in the early cycles of the
project. The best strategy here is to leave all options open. Do not prematurely
discard an idea if it has any possibility of providing fruitful results. Some
ideas, no matter how avante garde, might lead to other ideas that do produce
results.

Plan and Launch Phases
These two phases are essentially the same as in the Adaptive SDPM strategy.
However, because the Extreme project is far more speculative than the Adap-
tive project, you can expect to have far more concurrent swim lanes early in the
project with a high mortality rate. In the case of the Adaptive project the swim
lanes are based on established requirements, functions, and features with only
a modicum of speculation in some of the swim lanes. For the Adaptive project
these are the probing swim lanes. They are trying to uncover unknown func-
tions and features. The Extreme project, on the other hand, might be nothing
more than probing swim lanes, at least at the start.

Monitor and Control Phases
Because of the highly speculative nature of Extreme projects, be prepared to
cancel swim lanes that don’t seem to be leading to any productive results. You
are basically on a fishing expedition. If something isn’t working, move on to
something that holds promise. The plan should reflect a beginning strategy
that is divergent with later cycles starting to show signs of convergence. In the
absence of that, the project might not be appropriate and should be cancelled.

Figure 31-1: Extreme SDPM strategy

Extreme
Software
Development
Process
Phases

SCOPE DESIGN BUILD CHECK

N

Y
TEST DEPLOY

Project
Management
Phases

SCOPE PLAN LAUNCH
MONITOR

&
CONTROL

CLOSE

Extreme SDPM Strategy 357

40_596365 ch31.qxd 2/15/06 10:52 PM Page 357

Close Phase
Closing the Extreme SDPM strategy project can occur in two ways. Because it
is a very speculative project, it might not be heading in a productive direction,
and it is cancelled. The funding source is not seeing any convergence and isn’t
willing to spend any more money on the direction chosen. The project might
still be worked on but from a different direction altogether. On a positive note,
the project might end because the money has run out and at least a partial
solution has been achieved. The project might continue but with new funding.

Types of Extreme SDPM Strategies

The literature doesn’t have much to offer here. I have been promoting a model
that I call INSPIRE (INitiate, SPeculate, Innovate, REview) as one approach.
Another approach, the Flexible model, is documented in a recent book by my
colleague and friend Doug DeCarlo, eXtreme Project Management: Using Leader-
ship, Principles, and Tools to Deliver Value in the Face of Volatility” (Jossey-Bass,
2004), and a brief description of it is also presented in this section.

These two strategies are discussed from the perspective of software development
but their application is more far reaching than that. Both strategies can be applied
in other areas. Pure research and development, process improvement, and new
product development are three areas where they both have been applied with
great success. That sets these two approaches apart from the other approaches
discussed earlier. They are all defined with software development as their focus.

INSPIRE
By its very nature, as a form of Extreme Project Management (xPM), INSPIRE
is unstructured. It is designed to handle projects with “fuzzy goals” or goals
that cannot be defined because of the exploratory nature of the Extreme pro-
ject. By way of example, consider the Routing sub-system in the case study. It
is truly an exploratory venture. No one has yet to build a delivery system
where the sources are moving entities. The sources are always stationary. Then
how about the goal? Exactly what is it? Delivering the pizza on time would
seem to be the goal, but could the goal also include delivery by the most effi-
cient route or maximizing the number of deliveries in a period of time? Just as
in the Adaptive SDPM strategy, the theme is that the learning and discovery
takes place between the client and the project team in each iteration and moves
the project forward toward an acceptable solution. But that solution unfolds in
parallel with the clarification of the goal.

The first model I am going to discuss is called INSPIRE. As Figure 31-2 illus-
trates, INSPIRE consists of four phases that I am calling INitiate, SPeculate,
Incubate, and REview.

C h a p t e r 3 1358

40_596365 ch31.qxd 2/15/06 10:52 PM Page 358

Figure 31-2: INSPIRE

INSPIRE is an iterative approach. INSPIRE iterates in an unspecified number
of short cycles (1- to 4-week cycle lengths are typical) in search of the solution
to a poorly specified goal. It might find an acceptable solution, or it might be
cancelled before any solution is reached. But at the start, the goal is unknown,
or at best, someone has a vague, but unspecified, notion of what the goal con-
sists of. It may be nothing more than a desired end state with no idea of how
to accomplish it or even whether it can be accomplished. As the search for a
solution unfolds, so does a clarification of the goal.

Let’s consider an example that’s not specifically software development–
related, such as an example might be to state the original goal as “Cure world
hunger.” As the project work commences, it becomes obvious that the original
goal is not feasible but curing hunger in Botswana is and so that becomes the
goal. A software development example might be to build a sub-system that
minimizes the cost of home delivery of pizza. As the project unfolds it becomes
obvious that no such closed form solution exists and some heuristic solution
may be the only possibility. All that can be expected is to reduce the cost of
home delivery by successively modifying the solution through experience.

Also, INSPIRE requires the client to be more involved within and between
cycles, whereas Adaptive SDPM strategies require client involvement between
cycles. The project team begins by choosing some investigative direction(s)
and hopes that intermediate findings and results will do two things:

■■ Provide a more informed and productive direction for the next and future
cycles

■■ Convince the funding agent the learning and discovery is potentially
rewarding so that they continue the funding support

INSPIRE does have stopping rules, but they are very different than any found
in Traditional Project Management (TPM) or even in Adaptive SDPM strate-
gies. INSPIRE has two stopping rules:

INflate

SPeculate

Incubate

REview

Extreme SDPM Strategy 359

40_596365 ch31.qxd 2/15/06 10:52 PM Page 359

■■ Success!—The project is over when an acceptable solution is found.

■■ Failure!—The project is over when the sponsor is not willing to continue
the funding because the project is not making any meaningful progress or
it is not converging on an acceptable solution. In other words, the project
is killed.

The next sections take a high-level look at the four phases of INSPIRE.

INitiate

The INitiate Phase is a mixture of selling the idea, establishing the business
value of the project, brainstorming possible approaches, forming the team,
and getting everyone on board and excited about what they are about to
undertake. It is definitely a time for team building and creating a strong work-
ing relationship with the client. During this phase, you will perform the fol-
lowing activities that you know from more traditional projects, but will
approach them in a new way:

■■ Defining the project goal—Unlike the goal of an Adaptive project, the
goal of an Extreme project is not much more than a vision of some future
state. It is not something that you can plan to achieve; it is only something
that you and the client discover along the way. That process of discovery
is exciting. It will call upon all of the creative juices that the team and the
client can muster.

At this early stage, any definition of the project goal should be that vision
of the future. It would be good at this point to discuss how the user or
client of the deliverables will use the software product. Don’t be too
restrictive, either. Forming a vision of the end state is as much a brain-
storming exercise as it is anything else. Don’t close out any ideas that may
prove useful later on.

■■ Establishing a project timebox and cost—An Extreme project is not usu-
ally constrained by a fixed timeframe or cost limit. It is best to think of the
INSPIRE time and cost parameters as something to give the project team
guidance on what the client expectations are. It is much like having the
client say: “I would like to see some results within X months, and I am
willing to invest as much as $Y to have you deliver.” The reality is that at
each REview phase, the decision to continue or abort is made. That deci-
sion isn’t necessarily tied to the time and cost parameters given earlier by
the client. In fact, if there is exceptional progress toward a solution, the
client might relax either or both of the time and cost parameters. Put
another way, if the progress to date is promising, more time and/or
money might be put at the team’s disposal.

C h a p t e r 3 1360

40_596365 ch31.qxd 2/15/06 10:52 PM Page 360

■■ Establishing the number of cycles and cycle length—In the beginning,
short cycles are advisable as new ideas are tested, and many are rejected;
proof of concept might be part of the first few cycles. Don’t commit to
complex activities and tasks early on. As the team gains a better sense of
direction, cycle length can be increased. Specifying cycle length and the
number of cycles up front merely sets expectations as to when and how
frequently the REview phase will take place. At each occurrence of a
REview phase, cycle length and perhaps the number of cycles remaining
can be changed to suit the situation. Flexibility is the key to a successful
xPM project.

■■ Prioritizing trade-offs in the scope triangle—Despite the fact that
INSPIRE is unstructured, it is important that the priorities of the variables
in the scope triangle (see Figure 31-3) be set. As project work commences
and problems arise, which variable or variables are the client and the team
willing to compromise? The five variables in a project are as follows:

■■ Scope

■■ Quality

■■ Cost

■■ Time

■■ Resource availability

Which of these is least likely to be compromised? Which would you choose to
compromise first, if the situation warranted it? The answer depends on the
type of project.

Figure 31-3: Scope triangle

Ti
m

e

Cost

Resource Availability

Scope and Quality

Extreme SDPM Strategy 361

40_596365 ch31.qxd 2/15/06 10:52 PM Page 361

SPeculate

This phase defines the beginning of a new cycle and always starts with a brain-
storming session. The input will either be a blank slate or output from the pre-
vious SPeculate-Incubate-REview cycle. In any case, the project team, client,
and final user of the software product should participate in the brainstorming
session. The objective of this session is to explore ideas and identify alternative
directions for the next Incubate phase. Because an Extreme project has a strong
exploratory nature about it, no idea should be neglected. Cycle length, deliv-
erables, and other planning artifacts are defined in the SPeculate phase as well.

Defining How the Project Will Be Done

The initial sense of direction for the team to take in the first cycle of an Extreme
project can vary considerably. A good approach is to use a Project Overview
Statement (POS) as a guide. (See Appendix C for details on the POS.) The POS
can continuously be updated to reflect the current view of the project, and its
objective statements can serve as a guide to what will be done. In later cycles,
the team and the client will have the benefit of learning and discovery from the
prior cycles.

Scenarios, Stories, and Use Cases

For your purposes, these three terms are synonymous because all can be
defined as descriptions of how a person might use the application. Because the
application may be feature-rich, there can be, and usually will be, several such
descriptions. If done correctly, these descriptions will be exhaustive of how the
application can be used and can then be prioritized and assigned to the appro-
priate development cycles. There is no practical limit to the number of such sit-
uations that are documented, but be careful not to get too aggressive with
them. Many will be speculative and not worth spending much time on.
Remember that after every iteration you and the client will be reviewing what
happened and deciding on the next ones to integrate into the solution. In the
case of technology projects, such as Web site development, the client may be
more comfortable telling you how they envision someone using the deliver-
able and what they can do at the Web site than they would be in trying to help
you write a functional specification. The advantage in using scenarios, stories,
and use cases is that the view you are building is from the user side, not from
the technology side.

Prioritizing Requirements

The collection of scenarios, stories, and use cases provides insight into the
requirements that the deliverable should meet. For the client, it is far easier to
prioritize the collection than it is to prioritize the requirements. Prioritization
is the next step in the SPeculate phase.

C h a p t e r 3 1362

40_596365 ch31.qxd 2/15/06 10:52 PM Page 362

Identifying the First Cycle Deliverables

Once the prioritization is done, it is time to decide how much of that priori-
tized list to bite off for the initial cycle. Remembering that you want shorter
cycles in the early part of the project suggests that you limit the first cycle
deliverables to what you can reasonably accomplish in a week or two.

NOTE
By taking this approach, you are keeping the client’s interest up. That is important.
Once the client has been fully engaged in the project, later cycles can be lengthened.

Because your team resources are limited, it might be better to extend the
breadth to accommodate more functions by not delving deeply into any one
function. Produce enough detail in each function in this initial cycle to get a
sense of further direction for the function. You might learn from only a shallow
look at a function that it isn’t going to be part of the final solution, which saves
you the labor that might have been spent on that function.

Go/No Go Decision

Because the initial cycle can be exploratory, the sponsor must have an oppor-
tunity to judge the soundness of the initial cycle plan and decide whether it
makes sense to proceed. It is entirely possible that the original idea of the client
cannot be delivered with the approach taken in the first cycle, and the first
cycle leads the client to the decision that the idea doesn’t make any sense after
all. The go/no go decision points will occur at the end of each cycle. Decisions
to stop a project are more likely to occur in the early cycles than in the later
cycles. One should expect later cycles to have the benefit of earlier results that
suggest that the project direction is feasible and should be continued.

Planning for Later Cycles

Later cycles will have the benefit of output from a REview phase to inform the
planning activities that will take place in the SPeculate phase that will follow.
Each REview phase will produce a clearer vision and definition of the goal.
That clearer vision translates into a redirection of the project and that trans-
lates into a new prioritized list of deliverables for the coming Incubate phase.
The revised prioritized deliverables list is taken into consideration as the team
plans what it will do in the coming Incubate phase. It is now in the same posi-
tion as it was in the very first SPeculate phase. What follows then is the assign-
ment of deliverables to subteams and the scheduling of the work that will be
done and who will do it.

Extreme SDPM Strategy 363

40_596365 ch31.qxd 2/15/06 10:52 PM Page 363

Incubate

The Incubate Phase is the INSPIRE’s version of the Cycle Build Phase in APF.
However, an important distinction exists between the INSPIRE approach and
that in APF. Although the Incubate Phase has a prioritized list of deliverables
that are to be produced in this cycle, INSPIRE still maintains the spirit of
exploration, a learning and discovery experience that might result in mid-
cycle corrections that arise from that exploration. APF, on the other hand, does
benefit from learning and discovery as it proceeds with the cycle plan, but it
does not vary from the plan. The learning and discovery are input to the Client
Checkpoint and that is where plan revisions take place.

The Incubate Phase proceeds as follows:

■■ Assigning resources—The Incubate Phase begins with an assignment of
team members to each of the deliverables that have been prioritized for
this cycle. This should be a team exercise; because of the exploratory
nature of INSPIRE cycles, team members need to express their interest in
one or more deliverables and also share their ideas with their fellow team
members. It’s a great opportunity for project managers to create a synergy
among team members with similar interests, as well as between subteams
that will be working in parallel on different deliverables.

■■ Establishing the cycle plan—With the subteams in place and with their
assignments made, the subteams can plan how they will produce the
deliverables assigned to them. A whiteboard layout can be used to show a
day-by-day schedule of what is going to be done and who is going to do it.

NOTE
Never forget that there are some differences to a cycle plan in INSPIRE. In INSPIRE,
you have to be ready for changes at any time, ready to move when you come to a
point where a change of direction makes sense. In these situations, the team needs
to collaborate with the client and decide how to go forward.

■■ Collaboratively producing deliverables—Collaboration among subteams
must occur. Because of the exploratory nature of an INSPIRE project, no
one has a lock on the solution. Even the goal is somewhat elusive. The
goal and the solution can be attained only through a solid team effort—a
collaborative effort, much like brainstorming. As Estill I. Green, VP of Bell
Telephone Laboratories, has said: “Clearly no group can as an entity cre-
ate ideas. Only individuals can do this. A group of individuals may, how-
ever, stimulate one another in the creation of ideas.”

C h a p t e r 3 1364

40_596365 ch31.qxd 2/15/06 10:53 PM Page 364

REview

The REview phase is very similar to the Client Checkpoint Phase in APF. All of
the learning and discovery from the just-completed Incubate phase is brought
together in another brainstorming session. Answers to questions such as the
following will be shared:

■■ What did we learn?

■■ What can we do to enhance goal attainment?

■■ What new ideas arose and should be pursued?

■■ What should we do in the next cycle?

■■ Have the results to date met client expectations?

■■ Is the project converging on an acceptable solution?

■■ Should the project continue?

These answers determine whether or not the project continues to the next cycle
or is cancelled (the go/no go decision point). Be prepared; INSPIRE is so
exploratory and research-based that cancellations are likely.

Revising the Project Goal

The first order of business is for the client and the project team to revisit the
goal statement that was produced during the prior REview phase. That review
is best facilitated by asking the following questions:

■■ What new information do you have from the just-completed Incubate
Phase?

■■ What approaches can you eliminate?

■■ What new discoveries suggest a change in the goal definition?

■■ Are you converging on a more clearly defined and acceptable goal
statement?

This revision of the project goal is an important step and must not be treated
lightly. The client and the team need to be very objective and open and come
to a consensus on that new goal statement. Updating the POS with the new
goal statement would be good closure to this exercise.

Reprioritizing Requirements

The second order of business is for the client and the project team to revisit
deliverables and requirements. The following questions should be asked here:

Extreme SDPM Strategy 365

40_596365 ch31.qxd 2/15/06 10:53 PM Page 365

■■ How does the new goal statement impact the deliverables list?

■■ Should some items be removed?

■■ Should new items be added?

■■ How is the functionality already embedded in the solution affected by the
revised goal statement?

The answers to these questions allow the client and the project team to repri-
oritize the new requirements. Updating the POS to reflect the changes in the
objective statements would be good closure to this exercise.

Making the Go/No Go Decision for Next Cycle

Will there be a next SPeculate-Incubate-REview cycle? Equivalently, the ques-
tion could be this: Are we converging at an acceptable rate on a clearly defined
goal and acceptable solution? The client will consider this question in the face
of the money and time already spent. Does it make business sense to continue
this project? The updated POS is the input to this decision.

Complexity and uncertainty are at their highest points in Extreme project man-
agement. The goal and obviously the solution are not clearly known at the out-
set of the project. The approach you must take is one of learning and discovery.
As such, the project management life cycle will be very light. Figure 31-4
shows the integration of the INSPIRE and project management life cycles.

Figure 31-4: Extreme SDPM strategy for INSPIRE

Extreme
Software
Development
Process

Project
Management
Phases

SCOPE PLAN LAUNCH
MONITOR

&
CONTROL

CLOSE

INflate

SPeculate

Incubate

REview

C h a p t e r 3 1366

40_596365 ch31.qxd 2/15/06 10:53 PM Page 366

Many of the artifacts visible in earlier approaches are present in an Extreme
project, but they are not as visible. There is less dependence on formal docu-
mentation and more dependence on tacit knowledge. You’ll see that as you
further explore INSPIRE in Chapters 32–37.

The Flexible Model
This model was recently defined in a comprehensive book by Doug DeCarlo,
eXtreme Project Management: Using Leadership, Principles, and Tools to Deliver
Value in the Face of Volatility” (Jossey-Bass, 2004). DeCarlo calls his model “The
Flexible model.” It is illustrated in Figure 31-5.

Note that the Flexible model is a five-phase model whereas INSPIRE was rep-
resented in four phases. The difference is the Disseminate Phase that DeCarlo
has added. The first three phases of the Flexible model are iterative, as is the
Speculate-Innovate-Reevaluate sequence. The next sections take a look at each
phase in some detail.

Visionate

This beginning phase is purposed to define what is needed, who needs it, and
why they need it. It is a collaborative and iterative exercise involving the pro-
ject manager and the sponsor. The vision that is captured by their collabora-
tion is put to later scrutiny and a collective vision emerges. The collective
version is the output from consideration by critical stakeholders, the sponsor,
and the project manager. That collective version becomes the basis for launch-
ing the project.

Speculate

Having agreed on the what, who, and why of the project, the Speculate Phase
looks into the question of what it will take to achieve the vision of the project.
This is basically a planning meeting to identify the infrastructure that will be
needed—tools, templates, resources, financial support, communications, and
so on. Again, this is an iterative and collaborative exercise. Stakeholders, the
customer, the project manager, and the core project team are all involved in
defining the environment in which the project will operate. The Speculate
Phase considers the business value that will result and answers the question:
“Is it worth it?”

Extreme SDPM Strategy 367

40_596365 ch31.qxd 2/15/06 10:53 PM Page 367

Figure 31-5: The Flexible model

Innovate

Here is where the real work of the project takes place. Think of it as the equiv-
alent of design, build, and test, and you won’t be far off the mark. The major
difference is that time is not spent on planning the last detail. Rather, the focus
is on doing and learning by doing. You will have several false starts and many
failures along the way. The goal is to get it right the last time. APF, on the other
hand, seeks to get it right every time. You never know when the plug will be
pulled and funding cut off.

Reevaluate

This is the stage-gate where the team and the customer do a quality check on
what has happened so far. The big question here is: “What is the future of the
project?” Either success or failure can be claimed here. Success might mean you
are done or that more work will be done in future cycles. Failure might mean
that the result was not worth it and the project will be killed. However, that is
not to say that a new effort, in a different direction, will not be commissioned.

Disseminate

If the project is a success, and the result worth it, the product will be deployed
to the end users. Future versions might be undertaken to add more business
value, but at least there is an acceptable product at this point.

Figure 31-6 illustrates the Extreme SDPM strategy for the Flexible model.

The details and application of this strategy will be discussed in Chapters 32–37.

WARNING
Extreme strategies are self-correcting, as mentioned in the quote that introduced
this chapter. That means that what little planning is done is done just in time. That
often leaves senior managers in a rather unsettled condition. Taking an Extreme ap-
proach means that you are entering the world of research and development project
management. The risk is high, but the importance of the project dictates that such an
approach must be taken. Good strong sponsorship will be required.

Visionate Speculate Innovate
N

Y

DisseminateReevaluate

C h a p t e r 3 1368

40_596365 ch31.qxd 2/15/06 10:53 PM Page 368

Figure 31-6: Extreme SDPM strategy for the Flexible model

Discussion Questions

1. The customer is heavily involved in the project but keeps introducing new
directions that are preventing you from converging on a solution. You feel
like the team is spinning its wheels and morale is suffering as a result.
What would you do and why?

2. Early cycles are not converging on a solution and the project seems to be
drifting out of control. How would you address this situation?

Visionate Speculate Innovate
N

Y

DisseminateReevaluate

Project
Management
Phases

Extreme
Software
Development
Phases

SCOPE PLAN LAUNCH
MONITOR

&
CONTROL

CLOSE

Extreme SDPM Strategy 369

40_596365 ch31.qxd 2/15/06 10:53 PM Page 369

40_596365 ch31.qxd 2/15/06 10:53 PM Page 370

Installing Custom Controls 371

The Extreme SDPM Scoping Phase
“Never kill an idea, just deflect it.”

3M Company saying

C H A P T E R 32

371

The final strategy variation is to move from the Adaptive SDPM strategy to the
Extreme SDPM strategy, which is discussed in this part of the book. Adaptive
models arise out of the customer’s inability to completely define requirements
and obviously the features that accompany them. As is the case when the Iter-
ative SDPM strategy is used, the customer may not be able to identify some of
the features associated with known functionality. To find a complete solution,
the customer will have to be more intimately involved throughout the entire
project life cycle than has been the case in all previous strategies. With few
exceptions, in most cases the projects that fall into the Extreme SDPM strategy
are new systems development projects. Often these will be standalone projects
rather than highly integrated into other software systems.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Explain the Scoping Phase of the Extreme SDPM strategy

◆ Conduct the Scoping Phase of the INSPIRE model

◆ Conduct the Scoping Phase of the Flexible model

41_596365 ch32.qxd 2/15/06 10:57 PM Page 371

The Scoping Phase of an Extreme SDPM Strategy

In the Extreme SDPM strategy the Requirements Breakdown Structure (RBS)
from the Adaptive SDPM strategy is modified to look like Figure 32-1. You
have very little knowledge of the goal (the solution) and very little knowledge
of the requirements, functions, or features. Hence, you have a project that is
not much different than a pure R&D project. Projects that follow an Extreme
SDPM strategy are those for which both a complete RBS cannot be defined at
the outset, and the customer and project team know it.

Figure 32-1 characterizes this by illustrating a cloud that covers the goal. So in
this case, the goal and solution are both hidden by the cloud cover. The solu-
tion is represented by the requirements, functions, and features decomposi-
tion. The objective of the Extreme SDPM strategy is to move the cloud and
discover what lies behind it—in other words, to learn and discover through
iteration what the goal really is and how it can be reached. The Extreme SDPM
strategy follows a path quite similar to the Adaptive SDPM strategy in that it
must accommodate not only the development of the known parts of the solu-
tion but also discovery of the unknown parts of the solution, while, at the same
time, defining the goal that the solution will attain. Discovering the goal and
the solution in parallel requires even a tighter collaboration of the customer
and the project team, as was the case in the Adaptive SDPM strategy. Purely
probative ideas are investigated in one or more cycles. Some are rejected. Some
open up directions for further probes in later cycles. And some result in more
of the solution being uncovered and then implemented in later cycles. To do
this effectively and efficiently is a challenge. The Scoping Phase lays out the
approach at a very high level.

Projects that follow an Extreme approach are the highest risk projects in the
project landscape. Their successful completion is critically important to the
enterprise. Like the Adaptive projects, the future of the business may well rest
on finding this acceptable solution. At the same time, they are high-reward
projects. Their successful completion may result in the introduction of a major
innovation in the product or service marketplace. The financial rewards will
be worth the effort.

C h a p t e r 3 2372

41_596365 ch32.qxd 2/15/06 10:57 PM Page 372

Figure 32-1: The initial RBS for an Extreme SDPM strategy

The Scoping Phase of the Extreme SDPM Strategy
for the INSPIRE Model

Figure 32-2 illustrates the integration of the project management Scope Phase
and the INSPIRE Initiate Phase. This Extreme SDPM Scoping Phase for the
INSPIRE Model is the beginning of the project. As you can see, the initial Scop-
ing Phase is done once for the INSPIRE project. There are two major parts to it:
a defining part and a planning part. The defining can effectively be completed
by two parties: a requestor and a provider. These may each be single individ-
uals or small groups that represent the two parties. In either case the critical
factor is that they not only represent their constituency but also speak for their
constituency and can make decisions and commitments for their constituency.

Figure 32-2: Scoping Phase of the Extreme SDPM strategy for the INSPIRE model

Extreme
Software
Development
Process

INitiate

Project
Management
Phases

SCOPE

Requires

Fundamentals

G

The Extreme SDPM Scoping Phase 373

41_596365 ch32.qxd 2/15/06 10:57 PM Page 373

An INSPIRE project begins with a business-critical need. There are five arti-
facts that are produced in the Scoping Phase of the Extreme SDPM strategy for
the INSPIRE model. They are as follows:

■■ The Project Overview Statement (POS)—The POS, which you have
encountered in all previous SDPM strategies, is the documentation you
use to sell the idea.

■■ A definition of the project goal—Because you know so little about the
goal, this definition will not be much more than a desired end state. As
the project proceeds, you will get more clarity on that end state and may
change it based on our findings. That can come about because the initial
vision of the end state turns out to not be feasible. Some compromises
might have to be made. On the other hand, you may discover that much
more than the initial end state can be done within the time and cost con-
straints. In either case, you must be flexible and open to new ideas as to
the real targeted end state. The realities of an Extreme project are that the
problem (the goal) and its solution (requirements, functions, and features)
are discovered in parallel.

■■ The timebox and cost—The specification of these is not needed for the
project to commence, but they do give the project team some boundaries
to shoot for. The customer is paying the bill, and their criteria results in a
continuance or cancellation of the project. As long as their expectations
are being met, they continue to fund the project. At any time they may
decide to cancel. That decision usually results from a lack of convergence
on a meaningful solution. They will tolerate some divergence of thinking
as a number of alternative ideas are investigated, but sooner or later they
expect to see convergence on a meaningful business solution.

■■ The establishment of the number of cycles and length of each cycle—In
the beginning, cycle length should be short—the shorter the better. That
allows for a large number of potential solution areas to be quickly investi-
gated for their feasibility. Once a candidate list of feasible solution areas
has been identified, the areas can be prioritized and worked on in more
detail to accept, reject, or modify for future cycle investigation. It’s impor-
tant not to reject ideas prematurely. In other words, keep your options
open as long as possible.

■■ Prioritization of the five variables (scope, quality, cost, time, and
resource availability) that define the scope triangle—The goal is to give
the team a sense of direction and a tool for decision-making as team mem-
bers complete their work within the cycles.

C h a p t e r 3 2374

41_596365 ch32.qxd 2/15/06 10:57 PM Page 374

The Scoping Phase of the Extreme SDPM Strategy
for the Flexible Model

Figure 32-3 illustrates the integration of the project management Scoping
Phase and the Flexible model Visionate Phase. This Extreme SDPM Scoping
Phase for the Flexible model is the beginning of the project. As you can see, the
Visionate Phase is iterative and is repeated a number of times throughout the
cycles of an INSPIRE project.

There are two parts to the Visionate Phase:

■■ The Sponsor’s Vision

■■ The Collective Vision

As Figure 32-3 shows, this is an iterative process. The Visionate Phase is focused
on answering two business questions:

■■ What is needed?

■■ Why is it needed?

Sponsor’s Vision
To get the Sponsor’s Vision you need to have a face-to-face meeting with the
sponsor. At that meeting your questions should be guided by the first three
parts of the POS. In order, you need to document:

■■ Problem/opportunity statement—What is the problem or opportunity
that has given rise to this project?

■■ Goal and objectives—What are your goals and objectives for this project;
that is, what do you expect to deliver?

■■ Success criteria—What is the quantitative business value that will result
from the successful completion of this project?

The POS would be a good way to communicate, in written document form, the
high-level description of the project. The sponsor should have an opportunity
in a second meeting to review and approve the POS.

The Extreme SDPM Scoping Phase 375

41_596365 ch32.qxd 2/15/06 10:57 PM Page 375

Figure 32-3: Scoping Phase of the Extreme SDPM strategy for the Flexible model

Collective Vision
The purpose of the collective vision is to come to closure on how the project
will commence. It is not a planning document, but merely another view of the
Sponsor’s Vision. Doug DeCarlo’s eXtreme Project Management: Using Leader-
ship, Principles, and Tools to Deliver Value in the Face of Volatility (Jossey-Bass,
2004) lists the following as the steps that lead to the Collective Vision effort:

1. Scoping meeting held

2. Probable future scenarios identified

3. Three-sentence project skinny agreed to

4. Project boundaries agreed to

5. Program breakdown structure agreed to

6. Project imperatives agreed to

7. Product vision agreed to

8. Project win conditions agreed to

9. Benefits map drafted

10. Wow! Factor identified

11. Project uncertainty profile updated

These are briefly described in the following subsections.

Scoping Meeting Held

This will be the second or third meeting with the sponsor, but in this meeting
the core team will be included for the first time. The purpose is to come to clo-
sure on the scope of the project.

Project
Management
Phases

Extreme
Software
Development
Phases

SCOPE

Visionate Speculate Innovate
N

Y

DisseminateReevaluate

C h a p t e r 3 2376

41_596365 ch32.qxd 2/15/06 10:57 PM Page 376

Probable Future Scenarios Identified

The entire team should spend some time describing the end state. It may not
be achievable, but at least the stake is put in the ground. It also gives a sense of
direction to the early stages of the project even though it may change as new
discoveries are made.

Three-Sentence Project Skinny Agreed To

The project skinny is a short and precise description of the project.

■■ The first sentence states who is doing what and for whom.

■■ The second sentence defines what the end of the project will look like. In
other words, it is the doneness criteria that must be met in order for the
project to be deemed complete.

■■ The third sentence states why the project is being done. It relates the pro-
ject to the enterprise strategy and establishes the expected business value.

Project Boundaries Agreed To

To the extent possible the boundary conditions are defined by what is within
the scope of the project and what is outside the scope of the project. Because of
the lack of clarity on what form the final solution will take, these boundary
conditions are expected to change.

Program Breakdown Structure Agreed To

Many, if not all, Extreme projects will really be a combination of several depen-
dent projects. They are collected together as a project. The Program Break-
down Structure is a graphic depiction of how those projects are related to one
another as a program.

Project Imperatives Agreed To

Among all of the requirements, which few must be part of the final solution for
the project to be deemed a success? Without these requirements the project
could not succeed.

Product Vision Agreed To

The collective understanding and agreement among sponsor and core team of
what the final solution will be is the critical deliverable from the scoping meet-
ing. Both parties agree that it will probably change, but based on their current
knowledge of the situation, this vision statement represents their best effort.

The Extreme SDPM Scoping Phase 377

41_596365 ch32.qxd 2/15/06 10:57 PM Page 377

Project Win Conditions Agreed To

DeCarlo (2004) identifies seven generic “win conditions” that are inclusive of
the win conditions for any Extreme project. They are:

■■ Quality

■■ Schedule

■■ Scope: Functions and features

■■ Resources

■■ Return on investment

■■ Customer satisfaction

■■ Team satisfaction

For a given project specific, values are assigned to each win condition. As
appropriate, they should each have quantitative and measurable values.

Benefits Map Drafted

The purpose of the benefits map is to show how the project deliverables are
related to the expected business outcome. Figure 32-4 shows an example Ben-
efits map for the PDQ case study.

Wow! Factor Identified

The term “Wow Project” speaks of a project that is so exciting and revolution-
ary that it “gets you out of bed in the morning.” You can hardly wait to get to
the office and continue working on it, which is why it is important to establish
your project as a “Wow Project.” Rather than have team members think that
they are just working on another project, wouldn’t you rather have them
thinking they are working on a groundbreaking project? That’s a no brainer!

Project Uncertainty Profile Updated

There are four primary areas of project risk: business, product, project, and
organizational. Assessing these areas early on is of great use when making the
decision to go forward with a project or not. Beyond the early assessment there
should be periodic updates of the risk assessments for each of these areas. As
more is learned about the solution, more will be known about the project
uncertainties. This update will support or not the decision to continue the pro-
ject to the next milestone event.

C h a p t e r 3 2378

41_596365 ch32.qxd 2/15/06 10:57 PM Page 378

Figure 32-4: Benefits map for the PDQ case study

Discussion Question
1. We have seen the scoping phase of five different SDPM strategies. Based

on that information how will you decide which strategy to adopt? Will
you ever encounter a situation during the project that will cause you to
change your mind and switch to a different strategy? Be specific.

Automate
order

routing

Customer
receives
order
faster

Reduces cost
of order entry
and fulfillment

Increased
sales

Assumes order
entry to order
fulfillment is a
critical variable

in ordering pizza
for home delivery

Improves the
efficiency and
effectiveness
of order entry
and fulfillment

The Extreme SDPM Scoping Phase 379

41_596365 ch32.qxd 2/15/06 10:57 PM Page 379

41_596365 ch32.qxd 2/15/06 10:57 PM Page 380

Installing Custom Controls 381

The Extreme SDPM Planning Phase
Tis best to build no castles in the air.

Fanny Burney
English novelist

C H A P T E R 33

381

This is the last of the three SDPM strategies that apply to situations where
some or all of the solution cannot be known at the outset of the project but
must be discovered through the iterations of the project. In this chapter, you
face projects where the goal isn’t even clearly definable. You think you have a
statement for the goal except you do not know if it is attainable. The fallback
position is what goal is attainable or to what degree can we solve this prob-
lem? Given that the problem is critical, how can we plan such endeavors? Such
projects are not for the faint of heart. They are high-risk and high-reward pro-
jects, and you have no choice but to attack them. In this chapter, I discuss the
planning of such projects.

The Planning Phase of an Extreme SDPM strategy is truly a just-in-time plan-
ning event.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the planning phase of the Extreme SDPM strategy for the
INSPIRE model

◆ Understand the planning phase of the Extreme SDPM strategy for the Flexi-
ble model

42_596365 ch33.qxd 2/15/06 10:46 PM Page 381

The Planning Phase of an Extreme SDPM Strategy

Simply put, you are in a project situation where you don’t know where you are
going but somehow you have to figure out how to get there as you simultane-
ously define where it is that you are going. The situation is not unlike the one
depicted in Figure 33-1.

You start out on Path 1 toward a desired goal (the solution). Along the way you
adjust the path as you gain some information that suggests the goal is not
where you thought it was. Continuing in this fashion you either kill the project
or eventually arrive at an acceptable goal—a goal that may be very different
than the one that launched the project. This is the typical Extreme project.

Now, how do you plan such a project? Most would say that it is impossible. If
you don’t really know where you are going, how could you possibly know
when you get there? That is a good question and the Extreme project manager
has an answer. As long as the customer is happy with the interim results and
is willing to continue supporting the project, you continue. At some point, the
customer either cancels the project (because of unacceptable progress or lack
of convergence on an acceptable solution) or congratulations, you are done.
The current solution is acceptable. Whatever goal is attached to that end state,
it is the true goal. And as the diagram shows, the attained goal is very differ-
ent than the desired goal but within the range of acceptable solutions.

Figure 33-1: The life cycle of an Extreme project

Project
Start

Path #1

Range of acceptable solutions

Desired Goal

Attained Goal

C h a p t e r 3 3382

42_596365 ch33.qxd 2/15/06 10:46 PM Page 382

If you look at this life cycle from another perspective, you can define the prob-
lem and the solution in concurrent swim lanes. The current solution helped
you define the current problem. As soon as you reached a point where you
solved a meaningful problem, you were done. You could have just as easily
come up with a solution outside the range of acceptable solutions or not come
up with any solution at all, in which case the project would have been deemed
a failure.

To get back to discussing just how you might plan such a project, Figure 33-2
illustrates the parts of the project management Planning Phase and the
Extreme Planning Phase.

First of all, note that the Planning Phase of the Extreme SDPM strategy is an
iterative Planning Phase. It is repeated after every checkpoint in which the cus-
tomer agrees that the project should continue. Planning, therefore, is focused
on the next cycle only. You don’t speculate and plan for the future because the
future is unknown. So planning is restricted to the next cycle, which will typi-
cally be 2–6 weeks in length.

The next sections take a look at how the INSPIRE model and the Flexible
model conduct Extreme project planning.

Figure 33-2: The Planning Phase for the Extreme SDPM strategy

Extreme
Software
Development
Process
Phases

SCOPE DESIGN BUILD CHECK

N

YN

Y

TEST DEPLOY

Project
Management
Phases

PLAN

The Extreme SDPM Planning Phase 383

42_596365 ch33.qxd 2/15/06 10:46 PM Page 383

The Planning Phase of an Extreme SDPM Strategy
for the INSPIRE Model

Figure 33-3 is the Planning Phase of the Extreme SDPM strategy for the
INSPIRE model.

Note that planning is an iterative activity in the Extreme SDPM strategy for the
INSPIRE model. Planning takes place at the beginning of the SPeculate Phase.
The input to the Planning Phase is the current solution produced in the previ-
ous cycle and any new learning or discoveries from the last iteration. Three
deliverables are produced in the Planning Phase:

■■ The functionality to be developed in the next cycle

■■ New probative initiatives for the next cycle

■■ Validation of the next cycle length

They are described in the subsections that follow.

Next Cycle Functionality
The prioritized list of functionality is updated with the discoveries and learn-
ing from the just completed cycle. A probative initiative may have uncovered
another piece of the solution in the form of new functionality or new features
for existing functionality. Functionality planned for the just completed cycle
may not have actually been completed and has to be returned to the priori-
tized list for consideration in the next cycle. In either case this new information
must be integrated into the prioritized list of functionality. The project team
identifies the functionality that it can complete in the next cycle. Some consid-
eration must be given to the business value to be created. If there is to be a
deployment of a partial solution, it must have sufficient business value, so
other functionality may be added to the next cycle list. That will probably
lengthen the cycle.

Next Cycle Probative Initiatives
The search for the unknown parts of the solution continues with the specifica-
tion of probative initiatives for the next cycle. These will be parallel swim lanes
to accompany the solution development swim lanes. Brainstorming these ini-
tiatives is the best approach I can recommend.

C h a p t e r 3 3384

42_596365 ch33.qxd 2/15/06 10:46 PM Page 384

Figure 33-3: Planning Phase of an Extreme SDPM strategy for the INSPIRE model

Validation of Next Cycle Length
Taking into consideration the new functionality to be built and the probative
initiatives, the project team either validates the cycle length or requests a
change. A very high-level plan might be required, but avoid planning the
“how.” That is left up to the team as the initial tasks in the Innovate Phase.

The Planning Phase of an Extreme SDPM Strategy
for the Flexible Model

Figure 33-4 is the Planning Phase of the Extreme SDPM strategy for the Flexi-
ble model.

Figure 33-4: Planning Phase of an Extreme SDPM strategy for the Flexible model

Project
Management
Phases

Extreme
Software
Development
Phases

PLAN

Visionate Speculate Innovate
N

Y

DisseminateReevaluate

Extreme
Software
Development
Process

Project
Management
Phases

INitiate

SPeculate

REview

PLAN

The Extreme SDPM Planning Phase 385

42_596365 ch33.qxd 2/15/06 10:46 PM Page 385

The Planning Phase of an Extreme SDPM strategy for the Flexible model is
also an iterative process. Each Development Cycle ends with a review of what
just happened in the previous cycle. The customer and the project team have
learned and discovered more details on the functions and features and sug-
gested several changes during that cycle. The customer and the project team
return to another round of Visionate and Speculate Phases as prerequisite to
the next round of solution development. In his book Extreme Project Manage-
ment: Using Leadership, Principles, and Tools to Deliver Value in the Face of Volatil-
ity” (Jossey-Bass, 2004), Doug DeCarlo defines a 12-step planning process
briefly described in the following subsections.

Step 1: Review and Update the Collective Vision
This is just a check to make sure that the collective vision has not changed and
that all parties present at the planning session are on the same page regarding
the direction the project should take.

Step 2: Review the Project Uncertainty Profile
DeCarlo has developed a Project Uncertainty Profile (PUP). It is a multipart
assessment of the risk profile of the project. It measures risk in four areas:
business, product, project, and organizational.

Step 3: Decompose the Project into a Set of Deliverables
Through iteration, the customer and the project team are expected to converge
on a solution to a goal that also comes into focus with each iteration. The
decomposition is therefore based on what the team has defined as the current
solution. The decomposition and the steps that follow it closely align with the
traditional approach to project planning. The decomposition is a deliverables-
based Work Breakdown Structure (WBS). The approach to decomposition can
follow the approach described in Appendix E.

Step 4: Estimate the Size of Each Deliverable
In this case, “size” refers to a metric that measures “bigness.” For software
development projects this could be lines of code, or function or feature point
estimates.

C h a p t e r 3 3386

42_596365 ch33.qxd 2/15/06 10:46 PM Page 386

Step 5: Estimate the Effort to Produce Each Deliverable
in Person Days

Duration is estimated in terms of elapsed time to complete. Any one of the six
approaches described in Appendix F would be appropriate. Because of the
lack of clarity on many of the deliverables, range estimates rather than point
estimates should be preferred. The three-point technique would be one such
choice.

Step 6: Select a Development Life Cycle
Depending on the characteristics of the project, a development life cycle model
is chosen. Several are described in this book. The Extreme project is an iterative
project. Therefore, a development life cycle, such as those described in the Iter-
ative and Adaptive SDPM strategies would be the ones from which a life cycle
is chosen.

Step 7: Schedule the Deliverables
A precedence diagram showing the dependency structure among the deliver-
ables is generated as input to the project schedule. The schedule covers only
what is to be developed during the coming cycle.

Step 8: Agree on Timeboxes
These are the durations of each iteration, with 2–6 weeks being typical. The
project team decides what deliverables can be generated in the allotted cycle
time for each cycle. These are tentative because ultimately the decision is
firmed up for the next cycle during the Planning Phase for that cycle.

Step 9: Assess Technical and Support Requirements
This is a sanity check on whether the team will have the support it needs at the
time it needs it. It is a partial answer to the question “Can you do it?” One
often overlooked support requirement is the testing facilities and capacity
available. Can they support the testing phase when it is needed?

The Extreme SDPM Planning Phase 387

42_596365 ch33.qxd 2/15/06 10:46 PM Page 387

Step 10: Assess Team Requirements
The skills of the core team already assigned to the project need to be compared
against the skills that are needed based on the deliverables that have been
identified. The critical question is this: “What is the gap between what you
have on the team versus what you need on the team?” The answer leads you
to the more significant question: “Can you do it?” The next question is this:
“When do you need it?” That may leave some time for skills development or
recruiting of additional team members.

Step 11: Identify Development Tools
What are the hardware, software, telecommunications, physical facility, and so
on needs that are required to support the project? What is available and what
has to be acquired? Again, this provides answers to the question: “Can you
do it?”

Step 12: Produce a Risk Management Grid
The customer and the team now have all of the information needed to assess
the “doability” of the project and the attendant risks. A detailed risk manage-
ment plan is generated. It identifies the risks, assesses their impact and likeli-
hood of occurrence, and establishes the appropriate risk mitigation actions.

Discussion Questions
1. Defend the following statement: The Flexible model is a good transition

strategy for traditional organizations that want to fully implement
Extreme project management across the enterprise. The INSPIRE model
is a good transition strategy for Adaptive organizations wanting to imple-
ment an Extreme software development environment.

2. Which of the two Extreme SDPM strategies discussed in this chapter
would be a better choice when very little is known about the solution?
Support your decision.

C h a p t e r 3 3388

42_596365 ch33.qxd 2/15/06 10:46 PM Page 388

Installing Custom Controls 389

The Extreme SDPM
Launching Phase
A community is like a ship, every one ought to be
prepared to take the helm.

Henrik Ibsen
Norwegian playwright

C H A P T E R 34

389

All of the Launching Phase discussion for the Linear, Incremental, Iterative,
and Adaptive SDPM strategy situations apply to the Extreme SDPM strategy
and will not be repeated here. (You can see Parts II, III, IV, and V earlier in the
book for those discussions.) Extreme SDPM strategy projects follow the same
procedures as by-the-book projects, except they repeat those procedures sev-
eral times over the life of the project. Within a single repetition all of the
launching activities that are done in the Linear, Incremental, Iterative, and
Adaptive SDPM strategies are done in the Extreme SDPM strategy. But you do
face some additional considerations. Extreme SDPM strategies focus on pro-
jects whose goal is not clearly specified and obviously whose solution is not
known. The goal or solution that can be obtained is discovered in parallel.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the complications added to the Launching Phase when using an
Extreme SDPM strategy

◆ Know how to launch an Extreme SDPM strategy for the INSPIRE model

◆ Know how to launch an Extreme SDPM strategy for the Flexible model

43_596365 ch34.qxd 2/15/06 11:04 PM Page 389

In fact, your initial statement of the goal may not be attainable. For example,
the goal is to cure cancer. That is an admirable goal, but it may not be realistic.
However, you are still going to work on this project because just what is real-
istic will be discovered as you attempt to do what you can to cure cancer. What
you will do and how you will do it will be discovered at the same time—for
example, the progress that has been made to date on finding a cure for cancer.
The more researchers investigate and learn about the disease, the more they
learn of its complexity and likewise the more they learn about the varied cures
for some types of cancer. One informs the other in an iterative fashion. Think
of an Extreme project as a pure R&D project, and you won’t be far off the mark.
Success is no guarantee, and the risk is very high.

The Launching Phase of an Extreme SDPM Strategy

Figure 34-1 highlights the Launching Phase of an Extreme SDPM strategy.

The interesting difference between the Extreme SDPM strategy and all other
strategies is the multiple occurrences of the Launching Phase. That does not
occur in any other strategy. The reason is that changes that result from the
Check Phase can be so extensive as to require a completely different approach
and perhaps team structure to continue to project. The Launch Phase is the
appropriate place for those revisions to be implemented.

Figure 34-1: The Launching Phase of an Extreme SDPM strategy

Extreme
Software
Development
Process
Phases

SCOPE DESIGN BUILD CHECK

N

Y
TEST DEPLOY

Project
Management
Phases

LAUNCH

C h a p t e r 3 4390

43_596365 ch34.qxd 2/15/06 11:04 PM Page 390

The Launching Phase of an Extreme SDPM Strategy
for the INSPIRE Model

The Launching Phase of an Extreme SDPM strategy for the INSPIRE model
occurs once after the INitiate Phase and then after each SPeculate Phase, as
illustrated in Figure 34-2.

The Launching Phase of the Extreme SDPM strategy for the INSPIRE model
and the Adaptive SDPM strategy for the Adaptive Project Framework model
bear a lot of similarity. In the case of the Adaptive model the focus is on dis-
covering missing functions and features and hence the complete solution,
whereas in the Extreme model the focus is on discovering the goal, missing
functions, missing features, and hence the complete goal and solution. For the
INSPIRE model, that is a challenging task. The Adaptive models know where
they are going as far as defining an acceptable solution. The Extreme models
do not. That’s the challenge of Extreme projects—setting out on a journey to
solve a problem that is not clearly specified. Obviously, launching such pro-
jects requires a team that thinks outside of the box and is not afraid to take
risks.

Figure 34-2: The Launching Phase of an Extreme SDPM strategy for the INSPIRE model

INSPIRE Model
Software
Development
Process

Project
Management
Phases

INitiate

SPeculate

REview

LAUNCH

The Extreme SDPM Launching Phase 391

43_596365 ch34.qxd 2/15/06 11:04 PM Page 391

The first part of the Launching Phase focuses on establishing the rules of the
engagement for the entire project. These are not unlike previous rules estab-
lishment for problem solving, change management, brainstorming, conflict
resolution styles, and so on, and won’t be repeated here. The one difference
that deserves some discussion is the assignment of roles and responsibilities.
This assignment task means knowing your team members and what they like
to do, don’t like to do, and what competencies and skills they bring to the
table. For example, some may relish the thought of being able to work with
customers in speculative ventures—solving problems in a collaborative way.
Others may not have the same proclivity and would rather work apart from
the customer—solving problems in their own manner. Both types are valuable
and needed. The project manager just has to have the insight and specific
knowledge of each team member to make the proper assignments.

The second part of the Launching Phase focuses on each single cycle. The pro-
ject changes as it moves from cycle to cycle. Different tasks may have a low pri-
ority in one cycle and a high priority in another. Assignments aren’t fixed for
the duration of the project either. Depending on the situation with the project,
the assignments might need to change to take advantage of a team member’s
particular skills, competencies, and preferences.

Roles need to be assigned, but this doesn’t have to be a permanent assignment
either. Managing the intake and resolution of scope change requests is one
such area. One team member can be the designated intake for all scope change
requests whether they come from the customer or from another team member.
Once logged in, the scope change request might be assigned to another team
member who will conduct the project impact statement preparation. Time in
the form of a scope bank should have been reserved for writing the project
impact statement. Once completed, the project impact statement is simply
held with other project impact statements until the Review Phase, at which
time all scope change requests are prioritized along with other functionality or
features to decide on what will be done in the next cycle.

The Launching Phase of an Extreme SDPM Strategy
for the Flexible Project Model

Figure 34-3 illustrates the Launching Phase of an Extreme SDPM strategy for
the Flexible Project model.

C h a p t e r 3 4392

43_596365 ch34.qxd 2/15/06 11:04 PM Page 392

Figure 34-3: The Launching Phase of an Extreme SDPM strategy for the Flexible Project
model

The Launching Phase of an Extreme SDPM strategy for the Flexible Project
model is a bit more structured than in the case of the INSPIRE model. It is a
two-part Launching Phase, just as the INSPIRE model has a two-part Launch-
ing Phase. The two Launching Phases are quite similar.

■■ The first part of the Launching Phase of the Extreme SDPM strategy for
the Flexible Project model consists of establishing the rules of the engage-
ment and of parameter setting decisions. This is the same as several mod-
els discussed in earlier chapters.

■■ The second part of the Launching Phase of an Extreme SDPM strategy for
the Flexible model is somewhat different than you might expect. Even
though the goal is not well defined and the solution is not known, this
model advocates a traditional planning activity as part of the Speculate
Phase. That translates into a Launching Phase that resembles the Linear
and Incremental SDPM strategies. The planning activities that take place
in the Linear, Incremental, and Flexible model are identical. The only dif-
ference is that a complete solution is known for the Linear and Incremen-
tal SDPM strategies and perhaps almost unknown in the Flexible model
situation. The tools, templates, and processes of the Linear and Incremen-
tal SDPM strategies are the same as for the Flexible model situation. While
that might seem like adding a burden of non–value-added work, it does
keep the Flexible project on a repeatable path.

Discussion Question
1. You are Pepe Ronee, and you have run the Initiating and Planning Phases

of the Extreme SDPM strategy for the INSPIRE model by the book. But
you have just realized that the team is not as confident as you in the
approach. What might you say to them to assure them of the soundness of
your approach?

Visionate Speculate Innovate

Y

N
DisseminateReevaluate

Extreme
Software
Development
Phases

Project
Management
Phases

LAUNCH

The Extreme SDPM Launching Phase 393

43_596365 ch34.qxd 2/15/06 11:04 PM Page 393

43_596365 ch34.qxd 2/15/06 11:04 PM Page 394

Installing Custom Controls 395

The Extreme SDPM Monitoring and
Controlling Phase
Nothing is more dangerous than an idea when it is the
only one you have.

Emile Chartier (Alain)
French philosopher and essayist

C H A P T E R 35

395

The Extreme SDPM strategy opens yet another new perspective on systems
development where even less is known about requirements than for those pro-
jects that follow an Adaptive SDPM strategy. The typical Extreme project will
not have a clearly defined goal or may have a goal whose feasibility is not
known. For example, curing world hunger is an admirable goal, but can it be
done? Maybe not as stated, but perhaps it can be done in certain parts of the
world. Can you do it? It’s a fair question to ask. Obviously these are high risk
projects. The difference between projects that follow an Extreme versus an
Adaptive approach is staggering and so are the accompanying strategies.
Monitoring and controlling such projects is a true challenge. You are in the
world of research and development, and in that world the monitoring of
progress is difficult at best. Some might rather say, “Let’s not get in their way.
Leave them alone so they can focus on the daunting task before them. If they

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Monitoring and Controlling Phase of the Extreme SDPM
strategy

◆ Understand the Extreme SDPM strategy for the INSPIRE model

◆ Understand the Extreme SDPM strategy for the Flexible model

44_596365 ch35.qxd 2/15/06 10:53 PM Page 395

come up with anything useful, we’ll be the first to know.” While the “leave
them alone” approach might find favor with the development team, that is not
the approach that I advocate. Still, I do advocate an approach that is minimally
invasive of the team’s work time.

The Monitoring and Controlling Phase
of an Extreme SDPM Strategy

Figure 35-1 highlights the Monitoring and Controlling Phase of an Extreme
SDPM strategy.

First note the inclusion of the Check Phase as a very visible part of the Systems
Development Life Cycle. It was part of the Adaptive and Iterative SDPM
strategies, but here it takes on a different posture. Here the client and the
development team are challenged to the limits of their creative abilities. The
learning and discovery that was generated in the just completed iteration is
used to identify next steps. Those next steps include not only a revalidation
and redirection of the project scope and the integration of new functions and
features, but also new initiatives aimed at further learning and discovery. In
other words, the scope and its achievement are defined in parallel. One feeds
on and clarifies the other. This proactive posture was not as prevalent in the
Adaptive SDPM strategy. Much more is asked of the development team and
the client in an Extreme SDPM strategy than is in the Adaptive SDPM strategy.
In the Extreme case very little will be known about the solution from the stand-
point of functionality and its accompanying features. It all has to be discov-
ered. But it isn’t going to be discovered just because you want it to be. It will be
hard work and will require all of the creativity that the client and the develop-
ment team can muster. That dedication and drive isn’t necessarily a required
characteristic of the Adaptive SDPM strategy.

Figure 35-1: The Monitoring and Controlling Phase of an Extreme SDPM strategy

Extreme
Software
Development
Process
Phases

SCOPE DESIGN BUILD CHECK

N

Y
TEST DEPLOY

Project
Management
Phases

MONITOR
&

CONTROL

C h a p t e r 3 5396

44_596365 ch35.qxd 2/15/06 10:53 PM Page 396

As far as metrics are concerned, those that were introduced for the Iterative
and Adaptive SDPM strategies apply equally as well to the Extreme SDPM
strategy. The discovery of new/revised functions and features is much like
that reported for the Adaptive SDPM strategy and won’t be repeated here.
However, two topics discussed in the Monitoring and Controlling Phase of the
Adaptive SDPM strategy are different in the Monitoring and Controlling
Phase of the Extreme SDPM strategy. They are:

■■ Project progress reporting

■■ Processing scope change requests

These are discussed in the subsections that follow.

Project Progress Reporting
In the beginning of a typical Extreme project is a period of divergence as sev-
eral probative initiatives are undertaken in an attempt to bound the solution.
At some point in time, the divergence shifts to a more convergent pattern as
the solution comes into focus. Figure 35-2 illustrates the dynamics of the typi-
cal Extreme project.

This divergence-convergence pattern is present in both the Adaptive and
Extreme SDPM strategies. In the Extreme project it is more pronounced.
Because so little is known about the goal and the solution in an Extreme pro-
ject, you would expect to see more probative initiatives in the Extreme project.
Figure 35-2 illustrates this pattern. In the first cycle, five probative initiatives
are undertaken. Two of them (B1 and C1) do not yield any favorable results
and are discontinued. The learning that took place with those two discontin-
ued initiatives is merged with A1, D1, and E1 and gives rise to six probative
initiatives in Cycle #2. At this point you have six undertakings, any one of
which may provide further clarification as to the solution. The Cycle #2 initia-
tives may contain the complete solution as defined so far or some part of the
solution that has been defined so far. The point of each of the initiatives is to
further push the boundaries of the known solution or to investigate in a “what
if” style other ideas that may result in meaningful additions or clarification of
the solution. Cycle #2 results in three initiatives being discontinued (A2, D2,
and F2). Combining all of the learning and discovery from Cycle #2 results in
seven probative initiatives undertaken in Cycle #3. This process repeats itself
for as many cycles as budget, time, or the client’s interest in continuing the
project are maintained. Finally, a single solution emerges (A6). Along with this
solution is a restatement of the scope (or goal) of the project.

The Extreme SDPM Monitoring and Controlling Phase 397

44_596365 ch35.qxd 2/15/06 10:53 PM Page 397

Figure 35-2: The divergence/convergence patterns of a typical Extreme project

The question now becomes this: “How would you monitor and control such a
project?” The last thing you would want to do is burden the team with so
much reporting that it hampers their productivity or stifles their creativity.
That says stay out of their way. On the other hand, you do want to know if
progress is being made. Depending on the nature of the project you might
need to know what percentage of the budget and/or timeline has been con-
sumed and whether there seems to be progress toward an acceptable solution.
In some cases, all you want is as much functionality as possible out of the time
and budget available for this project. The criteria may be very subjective. As
long as the sponsor feels that value is being delivered and an acceptable solu-
tion is emerging, they will continue funding. If not, the project will be aban-
doned and perhaps an entirely different approach launched.

Processing Scope Change Requests
For the Extreme project scope change becomes more of a formality than in the
case of the Adaptive or Iterative project. Scope change in an Extreme project is
more like change in a process improvement project. If the current direction is
not bearing results, kill it and move in a direction that the learning and discov-
ery suggests will be more rewarding. Cycles, or rather swim lanes in cycles, can
come and go for any valid reason. You are on a fishing expedition, and don’t
keep throwing your line in an empty hole. Continuously redirect your
resources where there is the promise of results. Extreme teams tend to move
spontaneously based on tacit knowledge rather than on any documentation.

A1

B1

C1

D1

E1

D3

E3

F3

G3

D2

E2

F2

A2

B2

C2 C3

A3

B3 A4

B4

C4

D4 B5

A5 A6

C h a p t e r 3 5398

44_596365 ch35.qxd 2/15/06 10:53 PM Page 398

The Monitoring and Control Phase of an Extreme SDPM
Strategy for the INSPIRE Model

The Monitoring and Controlling Phase of an Extreme SDPM strategy for the
INSPIRE model has all of the considerations stated previously for the generic
Extreme SDPM situation. Figure 35-3 highlights the Monitoring Phase of an
Extreme SDPM strategy for the INSPIRE model.

As is the case with the Adaptive Project Framework, there is a minimum of for-
mal status reporting in the Extreme SDPM strategy for the INSPIRE model.
The team is in constant communication with one another. Any need to change
direction or take advantage of a newly learned or discovered function or fea-
ture is immediately communicated and action taken when appropriate. Swim
lanes come and go as learning and discovery take place. This is the team at its
most agile and adaptive form.

SPeculate Phase
This is the creative piece that starts the team thinking about what to do in the
coming cycle. A review has been completed of what was done, learned, and
discovered in the just completed cycle. It’s now time for the team to put on
their thinking caps and identify what will be done in the next cycle. Think of it
as similar to the Cycle Plan Phase of the Adaptive SDPM strategy for the
Adaptive Project Framework model. The difference is that you are proceeding
on far less information about the goal and solution. You should be discussing
what you can do rather than what you should do. Depending on where you
are in the life cycle of the project, you might still be in the diverging part of the
project rather than the converging part of the project. If divergent thinking is
dominant, brainstorming is the norm. If convergent thinking dominates, then
validation should be the norm. The initiatives being considered should be
aligned with the thinking style of the times.

As for the metrics to monitor this activity, I have already discussed several in
the Iterative and Adaptive SDPM strategies. If any of them are useful in the
Extreme SDPM strategy, by all means use them. Just be careful not to overbur-
den the team with reporting requirements that do not add value to the project.
Keep the team focused on the problem, not on the history of what has been
accomplished to date.

The Extreme SDPM Monitoring and Controlling Phase 399

44_596365 ch35.qxd 2/15/06 10:53 PM Page 399

Figure 35-3: The Monitoring Phase of an Extreme SDPM strategy for the INSPIRE model

Incubate Phase
You’ve decided what you are going to do in this cycle in the SPeculate Phase.
Now you have to decide how to do it and then do it. It would be good to peri-
odically check for alignment and progress toward what you have planned to
do in this cycle. Because of the highly speculative nature of the Extreme pro-
ject, it is easy to get diverted off the planned path into efforts that have little to
do with the project but are enticing in their own right. Ventures into the great
unknown can be very mesmerizing. Stay the course as long as there is visible
progress toward the cycle objectives. Abandon any initiative that does not
meet muster. Don’t waste time fishing in an empty hole.

REview Phase
The cycle is finished, and it’s time to evaluate what has been accomplished in
the cycle and what has been learned or discovered about the solution. This is
the time to be objective about the just completed cycle. What probative initia-
tives hold the promise of adding to what is known about the solution? What
probative initiatives didn’t? What did you learn from these dead-end initia-
tives to something like the next or final solution? What new probative initiatives
are suggested by those just completed? These are the types of monitoring and
control questions that should be answered.

SPeculate

Incubate

REview

INSPIRE
Software
Development
Phases

Project
Management
Phases

MONITOR
&

CONTROL

C h a p t e r 3 5400

44_596365 ch35.qxd 2/15/06 10:53 PM Page 400

The Monitoring and Controlling Phase of an Extreme
SDPM Strategy for the Flexible Model

Figure 35-4 illustrates the Monitoring and Controlling Phase of an Extreme
SDPM strategy for the Flexible model.

In these types of projects, real progress is hard to measure. As stated earlier in
the chapter, many deliverables will have been started but few will be complete,
at least early in the project life cycle. The important parts of monitoring and
controlling are imbedded in the Reevaluate Phase. Here the discussion with the
sponsors and other stakeholders focuses on answering a few pertinent man-
agement-related questions, as indicated in the subsections that follow.

What Are the Results to Date Versus Your Original Goal?
The original goal was a statement made with little or no information as to its
feasibility. Now that you have one or more cycles completed, is the original goal
still your current goal? In many cases, the learning and discovery that have
taken place will give good reason to reconsider the goal. Perhaps you have
learned something that extends (or retracts) some of the scope in the original
goal statement. With these revisions, management has to decide whether or not
the project still makes sense and should be continued, killed, or redirected.

Has the Project Priority Changed?
The business world doesn’t stand still just because you are working on an
Extreme project. Other priorities arise that couldn’t have been imagined when
the goal was first stated and a priority assigned. Perhaps the project has
become even higher priority than when first defined. However the priority of
the project has changed, it affects the project going forward, if it is to go for-
ward at all.

Figure 35-4: The Monitoring Phase of an Extreme SDPM strategy for the Flexible model

Visionate Speculate Innovate

Y

N
DisseminateReevaluate

The Flexible
Model for
Software
Development
Phases

Project
Management
Phases

MONITOR
&

CONTROL

The Extreme SDPM Monitoring and Controlling Phase 401

44_596365 ch35.qxd 2/15/06 10:53 PM Page 401

How Do You Intend to Realign with the Original Goal?
If the original goal is fixed and for whatever reason cannot be changed, then
the team has to produce a revised project plan that demonstrates how the
realignment will take place. If the original goal changes because of what has
been learned, then the new goal with a revised plan will be expected.

The answers to the preceding three questions provide management with the
information it needs to decide on the future of the project.

Discussion Question
1. The project seems to have migrated into a permanent divergent state.

Every cycle brings with it a whole new panorama of ideas to integrate
into the solution. The scope is growing in proportion. The client is the
major factor behind this seemingly uncontrolled scope expansion. What
would you do?

C h a p t e r 3 5402

44_596365 ch35.qxd 2/15/06 10:53 PM Page 402

Installing Custom Controls 403

The Extreme SDPM Closing Phase
The most beautiful thing in the world is, precisely,
the conjunction of learning and inspiration. Oh, the
passion for research and the joy of discovery.

Wanda Landowska
Polish harpsichordist and music critic

C H A P T E R 36

403

The Extreme project ends when one of two things happens. Either the cus-
tomer is no longer willing to support the project and the project is terminated,
or the project reaches an acceptable solution. We’ll explore both of these in this
chapter and discuss the Closing Phase for the INSPIRE and Flexible models.

The Closing Phase of the Extreme SDPM Strategy

Figure 36-1 illustrates the Closing Phase of the Extreme SDPM strategy.

Chapter Learning Objectives

After reading this chapter, you will:

◆ Understand the Closing Phase of the Extreme SDPM strategy

◆ Have a working knowledge of the Closing Phase of the Extreme SDPM
strategy for the INSPIRE model

◆ Have a working knowledge of the Closing Phase of the Extreme SDPM
strategy for the Flexible model

45_596365 ch36.qxd 2/15/06 10:47 PM Page 403

Figure 36-1: The Closing Phase of the Extreme SDPM strategy

Note, first of all, that there is only one place where deployment of the solution
can take place and that is after the final check. The final check results in either
project completion or termination. Project completion occurs when the cus-
tomer is satisfied that the project has converged on an acceptable solution and
no further cycles will be launched. Solution and goal are now aligned and
clearly defined. The final goal may be very different than the original goal. For
example, the original goal might have been to cure cancer but the solution con-
verged on a cure for colon cancer—still acceptable but not the initial vision.
For another example, consider the case study.

Adaptive and Extreme SDPM strategies have very similar planning approaches.
Both do planning just-in-time as a follow up to the cycle Closing Phases that lead
to another cycle. In an Extreme SDPM strategy the deliverables for the next cycle
are planned at the beginning of the cycle. In other words, it is just-in-time plan-
ning. In an Extreme SDPM strategy, you have to anticipate changes in direction
for the project going forward. While this also happens in an Adaptive SDPM
strategy the changes of direction are not as dramatic. The reason for that is the
goal statement that is known in an Adaptive SDPM strategy but not in an
Extreme SDPM strategy. In both strategies the changes in direction are the result
of learning and discovery from the probative swim lanes of the just completed
cycle. Planning is still done just in time.

The second way that an Extreme Project can end is by termination. In these
cases, the project cycles have not been converging on an acceptable solution,
and the customer finally decides that to continue the project along the present
course would just be a waste of money and time. They pull the plug on this
approach to the project. That doesn’t change the fact that the project must be
done and be done successfully. Another approach is needed. Consider the goal
to cure cancer. The project may have been following a preventative attack with
no apparent convergence on a solution. The project might be restarted but
with another approach—perhaps an intervention attack would prove fruitful.
That is an entirely different project than the initial approach. It will require a
different team with different skills and competencies than the initial project.

SCOPE DESIGN BUILD CHECK

N

Y

N

Y
TEST DEPLOY

CLOSE

C h a p t e r 3 6404

45_596365 ch36.qxd 2/15/06 10:47 PM Page 404

With this as background, the activities in the Closing Phase become obvious.
In the Extreme SDPM strategy, the Closing Phase assesses the results of the just
completed cycle to assess the degree of divergence or convergence to an
acceptable solution. That leads to the specification of the content of the next
cycle. Measuring convergence or divergence can be done in several ways. Here
are just a few.

New Probative Initiatives
In the early cycles, the team should experience a number of new probative ini-
tiatives. In the first few cycles, these may be the result of brainstorming ses-
sions with the customer and the development team. In later cycles these are
the result of learning and discovery that sets the project off in an entirely dif-
ferent probative direction. If the project is converging on an acceptable solu-
tion, the frequency of new probative initiatives decreases and drops to zero as
the project nears its end. If this pattern is not observed, the customer will likely
terminate the project.

Extended Probative Initiatives
After a few cycles are complete, the customer and the development team
should begin to see potentially rewarding directions emerging from earlier
probative initiatives. Those probative initiatives (the parent initiatives) that
look promising suggest further exploration in the same directions. One proba-
tive initiative may suggest several variations to pursue with other probative
initiatives (the children) related to their parent initiative. If the project is con-
verging on an acceptable solution, the frequency of extended probative initia-
tives would increase early in the project and decrease as the project nears its
end. But remember that an acceptable solution is going to come from some

The Extreme SDPM Closing Phase 405

PDQ Case Study

The original goal was to reduce order entry to order delivery time to 30 minutes
maximum. A number of changes were made both to the systems and processes.
Five subsystems were designed and implemented in order to leverage technology
into the processes. The processes were changed: Two new pizza factories were
opened, and delivery trucks were equipped with ovens and GPS technology. All
of this was intended to reduce order entry to order delivery time to less than 30
minutes. What if it didn’t? Was the reduction acceptable? PDQ will use the results
even if the initial goal was not achieved. It would probably launch into a process
improvement program to drive out the excess delivery time but that is another
case study.

45_596365 ch36.qxd 2/15/06 10:47 PM Page 405

trail of extended probative initiatives. If this pattern is not observed and
instead the number of probative initiatives continues to extend with few being
abandoned, the project is most likely in a continual diverging state and should
be terminated.

Abandoned Probative Initiatives
Sooner or later, the new or extended probative initiatives will be abandoned.
This means that further investigation of these initiatives will not be produc-
tive. At some point in the project, the number of abandoned probative initia-
tives must exceed the combined number of new and extended probative
initiatives. That is an indication of convergence.

Iterative SDPM Strategy for the Closing Phase of the
INSPIRE Model

Figure 36-2 illustrates the Closing Phase of the SDPM strategy for the INSPIRE
model.

The Closing Phase of the Extreme SDPM strategy for the INSPIRE model is
entirely taken up with the decision as to how to proceed with the now com-
pleted solution. The solution may be acceptable and may then be deployed, or
it may be unacceptable and some further action may be specified. I explore
those alternatives later in this section. First, take a look at lessons learned.

Figure 36-2: The Closing Phase of the Extreme SDPM strategy for the INSPIRE model

INitiate

SPeculate

Incubate

REview

The INSPIRE
Model for
Software
Development
Phases

Project
Management
Phases

CLOSE

C h a p t e r 3 6406

45_596365 ch36.qxd 2/15/06 10:47 PM Page 406

Lessons Learned
The Extreme SDPM strategy for the INSPIRE model takes meaningful cus-
tomer involvement to the extreme (pardon the pun). Both parties must be open
and honest in offering and reacting to ideas, no matter how outlandish they
may seem. Brainstorming is a critical skill in every Extreme project. At the
completion of the project, the customer and the developers should take stock
of how well they did with respect to creativity, openness, and honesty. Here
are a few questions that might help that improvement effort:

■■ Did each party offer new or novel ideas?

■■ Is there a synergy between the two parties?

■■ Is the entire team working more effectively later in the project compared
to earlier in the project?

Solution Types
The final cycle produces a solution. As indicated earlier in the chapter, that
solution may be acceptable, requiring a decision to be made on deployment, or
the solution may be unacceptable, requiring a decision to be made on how to
go forward, if at all, with another approach.

Acceptable Solution

The entire team should be overjoyed at having reached an acceptable solution.
Remember that this was a previously undefined solution. Finding the solution
was a challenge, and the team has risen to that challenge. There is surely rea-
son for celebration.

The decision to deploy the solution must be a considered decision. If the solu-
tion is independent of other existing systems, the decision to deploy is not as
complex as the case where there are other dependent systems at stake. Best
practices would suggest that another project be commissioned. This project’s
goal would be to integrate the newly found solution into the dependent sys-
tems. This would not have been feasible with the just completed project
because the discovery of an acceptable solution was not at all assured. You
might argue that the just completed project should have taken dependencies
into account, but that is not recommended because it would divert the team’s
thinking away from its primary goal—to find an acceptable solution. The
dependent systems may have to be modified to accommodate the newly
found solution and that is work for the follow-on project.

The Extreme SDPM Closing Phase 407

45_596365 ch36.qxd 2/15/06 10:47 PM Page 407

Unacceptable Solution

You might be tempted to conclude that this project failed, but that might be a
rush to judgment. As Thomas Alva Edison put it so clearly: “I never did any-
thing worth doing by accident, nor did any of my inventions come by accident;
they came by work.” So what is he saying? I think the underlying meaning here
is to persevere. View the just completed experience as one more step on your
journey to find an acceptable solution. No matter how brief or extended the pro-
ject was, it carries with it a message that will inform the next project. What might
you do? What shouldn’t you do? What new and creative directions does it sug-
gest? Here you will face the real challenge of finding a way to reach the goal. Re-
examine the evidence in the completed project. Draw upon all of your creative
energies. Open your mind to the possibilities. Take a chance.

Extreme SDPM Strategy for the Closing Phase
of the Flexible Model

Figure 36-3 illustrates the Closing Phase of the Extreme SDPM strategy for the
Flexible model.

The Closing Phase of the Extreme SDPM for the Flexible model is embodied in
its Disseminate Phase. This phase is entered when the previous Reevaluate
Phase results in the decision that the project is now complete. There are four
artifacts in the Disseminate Phase:

■■ Deployment of the solution

■■ Lesson learned

■■ Benefits and recognition

■■ Benefits tracked and harvested

Figure 36-3: The Closing Phase of the Extreme SDPM strategy for the Flexible model

Visionate Speculate Innovate

N

Y
DisseminateReevaluate

The Flexible
Model
for Software
Development
Phases

Project
Management
Phases

CLOSE

C h a p t e r 3 6408

45_596365 ch36.qxd 2/15/06 10:47 PM Page 408

Deployment of the Solution
This artifact is the official launch of the solution. The two major questions that
need to be answered are:

■■ Is the customer satisfied with the deliverables?

■■ Are the benefits realized?

Benefits realization ties back to the original business validation and justifica-
tion studies done at the beginning of the project. The project was commis-
sioned based on the value to be delivered. Now it’s time to pay the piper and
verify that those benefits will be achieved.

Lessons Learned
This has been an important artifact in every model studied in this book.
Because this is the most challenging and difficult of all the strategies, lessons
learned deserves the most attention and due diligence you can give it. You
want to take an honest and open look at what worked, what didn’t work, and
what would be done differently the next time. The Extreme project is out on
the frontiers of project management. At this time, there are no real experts. You
are all students of the game and should be open to one another about that.
Don’t treat the post-implementation review artifact as a blaming session. It
should be a learning session. That is how you add value to the enterprise and
to your next venture into the world of the Extreme project.

Benefits and Recognition
This artifact focuses on how the team and the enterprise ensure that benefits
are realized. A plan may need to be developed and even a project launched.
The effort to get to this point and deliver an acceptable solution was enor-
mous, so to fail in benefits realization would be truly unfortunate.

Benefits Tracked and Harvested
If you don’t measure it, you can’t manage it, and if you can’t manage it, it
won’t happen. We’ve all heard this many times over. There is no denying the
truth to the statement. So establish and track one or more metrics to make sure
benefits are realized.

The Extreme SDPM Closing Phase 409

45_596365 ch36.qxd 2/15/06 10:47 PM Page 409

Discussion Question
1. You have completed the first few cycles of an Extreme SDPM strategy

for the INSPIRE model and the customer seems very satisfied with the
progress to date. Not too much in the way of probative initiatives is sur-
facing from the development team, however. There are two possibilities:

a. The team is having difficulty thinking outside the box.

b. The development team hasn’t really bought into the INSPIRE model.

Because so little is known about the goal and the solution, you are con-
vinced that the INSPIRE model is the correct approach. What would
you do?

C h a p t e r 3 6410

45_596365 ch36.qxd 2/15/06 10:47 PM Page 410

Installing Custom Controls 411

The Extreme SDPM Strategy
Summary
If I understood too clearly what I was doing, where I
was going, then I probably wasn’t working on anything
very interesting.

Peter Carruthers
Physicist

C H A P T E R 37

411

The Extreme SDPM strategy is our third and final entry into the world of the
agilist. As is the case in the Adaptive world, the Extreme world gets its
strength from the creative spirit of the customer and the Extreme team work-
ing in harmony and collaboration. Similar to the structure of the previous
summary chapters, this chapter compares and contrasts the Traditional and
the Extreme project along several lines.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Compare Traditional versus Extreme projects

◆ Understand the fundamental differences between Traditional and Extreme
project managers

◆ Understand the fundamental differences between Traditional and Extreme
project teams

◆ Compare Traditional to Extreme project planning

◆ Know the impact of scope change management on Traditional and Extreme
projects

46_596365 ch37.qxd 2/15/06 10:56 PM Page 411

Traditional Versus Extreme Projects

These two project types are at opposite ends of the landscape you have been
studying in this book. For that reason, they are as different as any two projects
could be. You know that the Traditional project is completely defined and
specified. You also know that the Extreme project will usually have very little
of this to base itself on. That translates into differences between project man-
agers, teams, planning, and scope change management, as discussed in this
chapter.

Extreme projects do not have the degree of specificity of even the Adaptive
projects. Not only will much of the solution (expressed in terms of require-
ments, functions, and features specification) be unknown, but also the goal
itself is often somewhat of a mystery. While a goal may be stated, it is not
known whether it is feasible or can be attained. If it can be attained, how will
it be attained and will it be different than originally stated? That translates into
the goal and the solution being discovered at the same time with one another.
That is remarkably different from what any Traditional project might envision.

Traditional Versus Extreme Project Managers

You have already read about the fact that Traditional project managers manage
against the budget, schedule, and scope so I won’t repeat that discussion here.
Simply recall that their approach is formal and based on status meetings, per-
formance reviews, reports, and metric tracking.

Extreme project managers manage against goal and solution discovery. Again,
think of their projects as research and development projects, and you will not
be far off the mark at understanding this unique and challenging management
environment. Formality has no place in their world. They view it as a nui-
sance. And indeed they have a point. Creativity and risk-taking are the hall-
mark of their world. Unfortunately, formality and creativity are not
compatible. The more you have of formality, the less room there will be for cre-
ativity. And so it is important that the Extreme project manager not be fettered
with producing an endless stream of reports and attending meetings that do
not add value to the team’s efforts. The best thing a project manager’s super-
visor can do is keep the rest of the organization off the project manager’s back.
Let them be free to manage and lead the Extreme project in ways that make
sense to them. They are in a high-risk situation, and all of the help and support
they can get from their management will go a long way toward a successful
outcome.

C h a p t e r 37412

46_596365 ch37.qxd 2/15/06 10:56 PM Page 412

Traditional Versus Extreme Teams

As I discussed earlier, the Traditional projects can work with distributed teams
of specialists and junior technical staff. The details will not be repeated here.
Recall, however, that the junior technical team members work under the direct
supervision of the more senior members of the team. It is not necessary for the
traditional team members to be co-located. The requirements specification
document and project schedule are their guides.

Almost without exception, Extreme projects should have co-located teams of
senior technical staff. The project is so encompassing that they should be
assigned 100 percent. You don’t want to have conflicting priorities getting in
the way. The team members must be single-purposed for the entire project. A
constant exchange of ideas is needed to fuel the Extreme engine.

Distance and time are the enemies and must be minimized wherever possible.
About the only concession is to use Instant Messaging or some equivalent for
members that are not within eyesight of one another. Like the Adaptive project
team, the Extreme project team should have a team “war room.” This is the
space where they work together and that they own for the duration of the pro-
ject. The walls of their war room are covered with the same information as in
the Adaptive project team war room, as well as additional information such as
the results of brainstorming sessions and any other ideas that have been pro-
posed. A parking lot is a good tool to use. Here would be posted any ideas that
a team member feels the team should discuss at some later point in time—like
the time between cycles.

Little or no supervision of an Extreme team is required, or wanted for that mat-
ter. They should be free to self-organize. That is important because the team
needs the freedom to pursue what they believe is in the best interest of discov-
ery and learning and delivering business value.

Traditional Versus Extreme Project Planning

Planning the Extreme project is certainly different from planning the Tradi-
tional project, and it is even different from planning the Adaptive project. I like
to think of the Extreme project plan as a high-level plan for the next cycle,
which contains a number of parallel swim lanes each defining a probative ini-
tiative. The time spent on planning for the next cycle should be minimal. Once
the deliverables for the coming cycle are identified and assigned to team mem-
bers, they may wish to do some lower-level planning for the work they are

The Extreme SDPM Strategy Summary 413

46_596365 ch37.qxd 2/15/06 10:56 PM Page 413

about to undertake. Even that plan should not be too detailed. The reason is
simple. Change is very likely. Swim lanes come and go on a moment’s notice.
Time is not wasted pursuing probative initiatives that don’t seem fruitful.
Even in mid-cycle, a probative initiative can be cancelled and written off as a
dead end. Effort is refocused on new or promising initiatives. The daily 15-
minute team meetings are the place for team members to discuss their
progress against any plan or schedule they may have put in place for their
work.

As discussed earlier, the Traditionalist planning is something you do once at
the very beginning of the project. The project plan specifies tasks, durations,
resource requirements, task dependencies, and a schedule. The project man-
ager, customer, and development team collaborate on the development of the
plan, and now the project manager is expected to deliver against that plan.
Variances are to be reported and corrected before they get out of control.

To the Extreme project manager, planning is something you do just in time and
continuously throughout the project. There is no speculation of the future, and
therefore the cycle plan deals only with the coming cycle. Part of the plan deals
with integrating new or revised probative initiatives for the next cycle. All of
these are known, and there is no speculation about what could be or might be.
Time is spent on planning those things that are known to be part of the solu-
tion. Most reporting is within the whole team where new initiatives are intro-
duced, discussed, and integrated into the existing initiatives. In some cases,
reporting does and should go outside the team to the project manager’s man-
ager or customer’s manager for resolution. However, the ability to adjust the
direction of the project must be the responsibility and authority of the whole
team.

Traditional Versus Extreme Scope Change Management

You already know that scope change is the bane of the Traditional project man-
ager. Every scope change request brings with it the work needed to generate
the project impact statement as the deliverable from having processed the
change request. Schedules need to be revised—sometimes creating significant
problems if they cannot be rescheduled to meet the new requirements within
the constraints of time and money. Negotiating the changes into the schedule
often requires numerous meetings and additional replanning. Think of all the
time that was wasted planning parts of the project that are now changed or
even eliminated from the project altogether. Think of all the time that was
wasted building out parts of the solution that are no longer needed. It is no
wonder that there’s such a high probability of failure.

C h a p t e r 37414

46_596365 ch37.qxd 2/15/06 10:56 PM Page 414

You already know that scope change is the lifeblood of the Adaptive project
manager. If possible, it is even more important to the Extreme project manager.
The Extreme project calls upon the customer, the project manager, and the
development team to be fully engaged and committed to the project.

WARNING
The Extreme SDPM strategy is high-risk. Ideally the team must be 100 percent
assigned to the project and co-located.

Discussion Question
1. Your organization has been a staunch promoter of Incremental and Itera-

tive approaches to project management and systems development. You
have been assigned a project that is clearly an Extreme project. How
would you go about convincing your customer and management that
that is the best choice of approaches? Be specific.

The Extreme SDPM Strategy Summary 415

46_596365 ch37.qxd 2/15/06 10:56 PM Page 415

46_596365 ch37.qxd 2/15/06 10:56 PM Page 416

PA RTSEVEN

In Summary
The journey is complete. A new discipline has been defined. In these two clos-
ing chapters, I look at implementation of the SDPM Strategy. That implemen-
tation is cast on the form of a continuous process improvement program. Both
process maturity and practice maturity are the foundations on which the
improvement program is based.

47_596365 pt07.qxd 2/15/06 11:05 PM Page 417

47_596365 pt07.qxd 2/15/06 11:05 PM Page 418

Installing Custom Controls 419

Where Are You?
It doesn’t matter if the cat is black or white, so long as
it catches mice.

Deng Xiaoping
Premier of China

C H A P T E R 38

419

The previous 35 chapters set out 5 different SDPM strategies for the integration
of project management and systems development approaches. To my knowl-
edge this is the first book to attempt such a treatment. By no means will this be
my last attempt. I believe there is a discipline to be developed around these
five strategies and expect to add to this humble beginning with additional
writings and editions of this book over the next few years. I further believe that
a new collaborative must be formed if significant inroads into achieving suc-
cess with projects is to be made. That collaborative is made up of customer,
project manager, project team, and the enterprise. These thoughts are explored
in this chapter and the next.

This chapter is basically an assessment of the status of systems development
project management in the contemporary business world.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand projects from the perspective of the enterprise, the customer,
the project manager, and the development team

◆ Compare and contrast the five SDPM strategies

◆ Define metrics for assessing where you are

48_596365 ch38.qxd 2/15/06 10:41 PM Page 419

The Perspective of the Enterprise

Whether the enterprise is publicly traded or privately owned, it is in business
for one reason and one reason only—to make money for its stockholders or for
its owners. When you come down to basics, they have no other reason for their
existence. The alternative is to go out of business. In making money the enter-
prise must decide how to invest its resources across the lines of business. They
can do that in a variety of ways.

An enterprise may have several portfolios: strategic, tactical, operational,
infrastructure, maintenance, and others. The focus here is on the strategic port-
folio, but much of the discussion applies similarly to the other portfolios as
well. To reach its goals and objectives for the planning horizon the enterprise
will define a number of strategic initiatives mapped to each of its goals or
objectives. Each strategy will have a certain amount of resources (money or
people) assigned depending on the priority or importance of the strategy to
the enterprise. The more resources as a percentage of the total that are allo-
cated to a particular strategy, the more important it is to the strategies of the
enterprise. These resources will be distributed to projects requesting those
resources based on some evaluation criteria. That criterion is often related to
the bottom line impact of the proposed projects. For example, the enterprise
allocates $15M to a particular strategy, and there is a total of $20M of project
proposals seeking to be funded from the $15M allocation. The enterprise
awards monies to those projects based on some criteria such as Return On
Investment (ROI). The objective of the enterprise is to maximize its return to
the business for the monies expended. All senior management cares about is
the return to the portfolio. They really don’t care about any individual project.
Projects that are distressed or are not delivering business value as promised
may be terminated or reduced in scope and some or all of the resources moved
to more promising alternatives.

All projects, whether strategic, tactical, operational, maintenance, or infra-
structure are funded on some basis like that described in the preceding para-
graph. For example, a department may be allocated funds for infrastructure
projects. It prepares a list of possible projects and based on some criteria
decides how to allocate its funds across the infrastructure projects proposed.
Some projects will be totally funded, others partially funded, and others post-
poned to a later time.

A good strategy for the project manager is to build a project plan that delivers
value early rather than late in the project life cycle. That offers some protection
against arbitrary decisions to terminate the project when it seems to be drifting

C h a p t e r 3 8420

48_596365 ch38.qxd 2/15/06 10:41 PM Page 420

and not producing business value. Projects that seem to be trending towards
the distressed category are also vulnerable to budget cuts. Because of this,
those projects would support an approach other than the Linear SDPM strate-
gies that deliver value at the end of the project rather than in increments
through the project life cycle.

From the Perspective of the Customer

Your customer wants to and expects to be number one on your list of priorities.
Many also expect to tell you what they want and then have you deliver it at
some later point in time with minimal involvement on their part. How often
have you heard, “Oh, that’s a technology project, and we don’t know much
about technology. Just do what we have asked.” That’s a signal that trouble is
just waiting to happen. The biggest challenge to many project managers and
their development teams is to engage the customer in a meaningful way over
the entire course of the project life cycle.

The more your customer has been involved with you and your team on past
projects, the more likely you are to be successful with the full spectrum of
strategies. From those previous projects, both you and the customer have
learned how to work effectively with each another. A certain level of trust,
honesty, and openness has been established. That will have a direct payoff to
the next project.

Your ability to speak the language of the customer rather than dazzling them
with your technical brilliance is the key. Keep your focus on the business not
on the technology.

As previously discussed, that level of customer involvement varies with the
adopted strategy. For Linear and Incremental SDPM strategies that involve-
ment is minimal because of the assumption that requirements, functions, and
features have been identified and fully documented. As you change adopted
strategies to the Iterative, Adaptive, and Extreme, that involvement increases.
Your actual choice of strategy depends on a number of factors, which are dis-
cussed in the next chapter. The point here is that you should avoid choosing a
strategy that requires a level of involvement of your customer that they are not
comfortable entertaining. If you know the customer from previous projects,
you should have this information. If that is not the case, my recommendation
is that you spend time up front discussing how the project should go forward.
Don’t surprise the customer with an 11th hour announcement of your approach.

Where Are You? 421

48_596365 ch38.qxd 2/15/06 10:41 PM Page 421

From the Perspective of the Project Manager

You want to do whatever you can to not waste time—your time, the time of
your team, and even the time of your customer. To do that you will do what-
ever you can to make sure you and the team understand what the customer
needs and that the customer understands what you will deliver. The less cer-
tain either party is of what will be delivered, the more your strategy should
tend towards the agile approaches (Iterative, Adaptive, or Extreme). Each of
these choices minimizes guessing as to future undefined requirements, func-
tions, or features. With guessing minimized, it minimizes wasted time due to
incorrect assumptions on the part of anyone. The project environment is char-
acterized by aggressive schedules, tight resources, and limited budgets. Any
waste that can be prevented must be prevented. And that means no guessing.

Project managers don’t want any surprises. Surprises can come from the enter-
prise, the customer, resource managers, or the development team itself.

■■ Change in the financial position of the enterprise often plays itself out in
the form of budget adjustments. Projects are an easy target because they
are not part of the operational budget of the enterprise. Budgets can be cut
by reducing project scope, extending the time line, or canceling altogether.
In anticipation of these developments, the project manager should be pre-
pared. That preparation could simply be a collaborative prioritization of
the deliverables with the customer. Supposedly, then, unexpected budget
cuts would compromise only lower priority deliverables and hence mini-
mize the negative impact on the needs of the customer.

■■ Surprises from the customer are many. You demo interim deliverables, and
they comment, “That’s not what I thought it was going to look like.” Or,
“That’s not what I wanted.” Or, “I forgot to tell you that we also need . . .”
You no doubt all heard these, so you should take steps to prevent this
from happening.

■■ Surprises from the resource managers are always bad news. It usually
comes in the form of not having a particular resource available as the sched-
ule expects. Often you don’t know this until it is too late to make adjust-
ments. A good risk management plan would have triggers, mitigations, and
contingencies in place in expectation of that resource contention situation.
You can’t do that for all team members, but you can do it for the critical and
scarce skills or for critical tasks that cannot sustain any delays. This is not an
unusual situation and should be expected in every good project plan.

■■ Surprises from the development team are varied and numerous. Most fre-
quent is the news that they are behind schedule and can’t meet a deliver-
ables deadline. That situation is very common and should be expected.

C h a p t e r 3 8422

48_596365 ch38.qxd 2/15/06 10:41 PM Page 422

But fortunately the project manager can do something to minimize the
likelihood and the problems that result from it. That means creating a
team environment that is open, honest, and trusting. Team members
should not hesitate to raise their hand and say, “I have a problem and I
need some help.” I discuss more about how to create this team environ-
ment in the next chapter.

From the Perspective of the Development Team

Developers come in all sizes, shapes, and descriptions. At the one extreme are
those who want others to do the thinking for them. They want a clear and com-
plete specification that they can work with without fear that changes will come
forth from the customer. Many of them have no interest in even talking with
the customer. At the opposite extreme are those who relate well with the cus-
tomer and want to engage collaboratively with them in crafting the best solu-
tion that money and time can buy. They don’t mind working on a complex
ill-defined project. In fact, many thrive on just such projects. In between these
two extremes is a vast gulf of variations.

As project manager you certainly know your team members and where they
are between the two extremes. The team is certain to be distributed across this
spectrum. Those who prefer to be given their assignments and minimize inter-
actions with the customer should be given roles and responsibilities that honor
their wishes. The roles and responsibilities that involve customer interaction
should be assigned to those who favor that type of relationship.

If the project strategy is either the Linear SDPM strategy or the Incremental
SDPM strategy, you can deal with teams whose members are mostly customer
averse. You should avoid choosing and agile strategy, if that is the type of team
membership you have. My past experiences in systems development are with
teams of customer-averse members. That was the nature of the business. Cus-
tomer interaction was left in the hands of, first, the systems analyst and later
the business analyst. The contemporary business analyst is supposed to know
the customer’s business, perhaps even more so than the customer themselves.
They work with the customer to develop requirements and pass those require-
ments to the developers. There is no direct contact between developers and
customers in this scenario. That has been made to work effectively in a num-
ber of companies, especially when a Linear or Incremental SDPM strategy is
chosen. As you move into the agile approaches, this model loses its effective-
ness, and direct real-time customer contact becomes essential.

Where Are You? 423

48_596365 ch38.qxd 2/15/06 10:42 PM Page 423

WARNING
The Extreme SDPM strategy is a high-risk strategy. Ideally the team must be 100
percent assigned to the proejct and co-located.

Tracking Where You Are

To quantify where you are you need to define and track several metrics. In this
section I identify several types of metrics that are in common use. This section
discusses two perspectives with respect to tracking.

■■ The first is process tracking, that is, how good is the process we are
following?

■■ The second is practice tracking. That is how well are the project teams
practicing the process?

Both of these are discussed in the subsections that follow, along with a discus-
sion of some key individual project tracking tools.

Process Tracking
The effectiveness of your project management process is assessed using a pro-
ject management maturity assessment measure. A few such assessment tools
are available. I have developed my own and used it on several client engage-
ments. It is called the Project Management Maturity Assessment (PMMA). It
consists of a number of questions that are categorized by process and maturity
level. There are 39 processes and 5 maturity levels, which generates 195 cells in
which are found 2–10 yes/no questions. A trained interviewer will usually
have to ask about 200–250 questions in order to establish the maturity level for
each of the 39 processes. A new instrument is under development that will
incorporate the most recent release of the Project Management Body of Knowl-
edge (PMBOK) Standards. Figure 38-1 is a typical report from a recent client
assessment.

The vertical scale is the maturity level as defined by the Software Engineering
Institute (SEI) in their Capability Maturity Model (CMM). The levels are:

■■ Level 1—There are some processes in place, but everyone does projects
their own way.

■■ Level 2—There is a fully documented process in place, and some teams
are using it.

C h a p t e r 3 8424

48_596365 ch38.qxd 2/15/06 10:42 PM Page 424

■■ Level 3—There is a fully documented process in place, and all teams are
using it.

■■ Level 4—The project management process is integrated into business
processes.

■■ Level 5—There is an active continuous process improvement effort in
place.

As the organization moves up to higher maturity levels, it is assumed that
higher level translates into a higher percentage of successfully completed pro-
jects. That causal relationship makes sense because project teams are following
a repeatable process and have the benefit of the learning from other teams’
experiences and from the translation of their best practices into process
improvements that all teams can benefit from. Repeatability lies at the heart of
great project management. Without it little in the way of increasing project suc-
cess can be expected to happen. Attaining Level 3 assures that repeatability.

The data is taken from a recent engagement. This client exhibits a high level of
maturity for the documentation of the beginning processes but is very weak in
many of the related processes. A look at the data from the process group per-
spective is even more illuminating. Figure 38-2 is the same data as given in Fig-
ure 38-1 but grouped by process group.

Figure 38-1: Project Management Maturity Assessment report

In
te

gr
at

ion
Sc

op
e

Tim
e

Cos
t

Qua
lity HR

Com
m

un
ica

tio
ns Ris

k

Pr
oc

ur
em

en
t

1

2

3

4

5

Process Baseline March 2005

Where Are You? 425

48_596365 ch38.qxd 2/15/06 10:42 PM Page 425

Figure 38-2: Process Group Maturity Assessment report.

The client does fairly well at initiating projects and that is not unusual. The
Planning and Execution groups are sadly lacking. Next, I want to take a look
inside the Planning group at the processes that make up the group and how
their relative maturity levels are distributed.

■■ Project Plan Development—3.00

■■ Scope Planning—4.00

■■ Scope Definition —3.00

■■ Activity Definition—2.67

■■ Activity Sequencing—2.00

■■ Activity Duration Estimating—2.00

■■ Schedule Development—2.06

■■ Resource Planning—1.50

■■ Cost Estimating—1.38

■■ Cost Budgeting—2.00

■■ Quality Planning—1.00

■■ Organizational Planning—1.14

■■ Staff Acquisition—1.22

■■ Communication Planning—2.00

In
itia

tio
n

Pla
nn

ing

Ex
ec

ut
ion

Con
tro

l

Clos
ini

g

1

2

3

4

5

Process Group Baseline March 2005

C h a p t e r 3 8426

48_596365 ch38.qxd 2/15/06 10:42 PM Page 426

■■ Risk Management Planning—1.33

■■ Risk Identification—1.00

■■ Qualitative Risk Analysis—2.00

■■ Quantitative Risk Analysis—2.00

■■ Risk response Planning—1.33

■■ Procurement Planning—3.00

■■ Solicitation Planning—2.30

This is the lowest level of maturity data aggregation that you have to work
with. It gives you the clues to where you should focus your process improve-
ment efforts, however. Anything at 2.00 or below is a good candidate for
process improvement efforts. Here, the majority of processes are below that
threshold value.

Returning to Figure 38-1 once more, you should note that along the horizontal
axis are listed the nine Knowledge Areas that comprise the Project Manage-
ment Institute (PMI) Project Management Body of Knowledge (PMBOK). In
practice the client would establish target maturity levels for each of the Knowl-
edge Areas and put a process improvement program in place to attain those
levels. The assumption is that there is a causal relationship between process
maturity levels and project success.

Practice Tracking
Having an effective process is only one side of the equation. The practice of
that process is the other side. Figure 38-3 shows the results of several inter-
views of project managers as to how they use the process. The data displayed
in the figure is the compilation for 20 interviews.

The icon, which represents the summary of all the practice maturity data,
needs some explanation. It is a statistical tool that has been in use for many
years to summarize and graphically report data. It is called a box and whisker
plot. It is interpreted as follows.

The end points of the heavy vertical line plots the range, the lowest to the high-
est assessed practice maturity for all project managers interviewed. The fur-
ther apart those two end points are, the more variation there is in the data
points—that is, the more differences there are in the way project managers use
the process. So, for example, the Scope Knowledge Area practice maturity lev-
els calculated from the interviews ranged from 1.2 to 4.2. That is a very wide
range.

Where Are You? 427

48_596365 ch38.qxd 2/15/06 10:42 PM Page 427

Figure 38-3: The Practice Maturity Level report

The rectangle represents the inter-quartile range. In English that is the middle
half of the data. So one quarter of the data points lie below the lower limit of
the inter-quartile range and one quarter of the data points lie above the upper
limit of the inter-quartile range. The remainder, half of the data points, lie
between the lower and upper limits of the inter-quartile range. The width of
the range is an indicator of how closely distributed are the data points or how
widely varied they are. When that inter-quartile variance is small, you have
more assurance that the project managers are doing pretty much the same
thing in the practice of that process. For the Scope Knowledge Area half of the
practice maturity levels fall between 1.8 and 2.9. That is a pretty wide variance,
which indicates that the project managers are doing many different things in
the practice of that process.

The shading identifies those practices that either lie entirely below or entirely
above the process maturity levels. If the inter-quartile range lies entirely below
the process maturity level, it suggests a problem with that practice area, and
practice improvement initiatives are in order. Those might take the form of
selected on- or off-the-job training, mentoring, coaching, or consulting. If the
inter-quartile range lies entirely above the process maturity level, it suggests
that best practices may be behind that increased maturity level. Again, improve-
ment initiatives to identify those best practices and integrate them into the

In
te

gr
at

ion
Sc

op
e

Tim
e

Cos
t

Qua
lity HR

Com
m

un
ica

tio
ns Ris

k

Pr
oc

ur
em

en
t

1

2

3

4

5

Practice Baseline
Practice Problem
Best Practices

C h a p t e r 3 8428

48_596365 ch38.qxd 2/15/06 10:42 PM Page 428

process are in order. If the inter-quartile range spans the process maturity
level, it is interpreted as the normal distribution of the practice maturity level
around the process maturity level, and no action is suggested. For this data
both the Integration and Scope Knowledge Areas display serious practice
maturity levels below the process levels. For the Quality and HR Knowledge
Areas further investigation might uncover best practices that can be incorpo-
rated into the process. The remaining Knowledge Areas display a typical dis-
tribution around the process level maturity values and no further action is
suggested at this time.

A few spurious data points are worth checking out. Regardless of the shape
and position of the icon relative to the process maturity level, if data points lie
above the process maturity level, they should be investigated for possible best
practices. That is the case for all of the nine Knowledge Areas.

One would think that the process maturity level would act as a glass ceiling for
the practice. You would defend that position by arguing that the practice can-
not have a maturity level higher than the process because the process defines
what the practice should be. Fortunately that is not the case. For the client
depicted in Figure 38-3 the HR Knowledge Area process maturity is about 2.1.
However, the practice area reports an average of about 2.6 except almost every
project manager interviewed reported a maturity level above the process
maturity level. As a group, they had independently changed the processes
they were using. They each might have been implementing their own
processes, but at least what they did was in excess of the process level matu-
rity. If this were a process improvement program, you would want to investi-
gate what these project managers were doing. There might be a best practice
just waiting to be discovered.

Another view of the data in Figure 38-3 proves very useful in process improve-
ment programs. Each of the Knowledge Areas can be exploded to the process
level. As one example, see Figure 38-4.

Each of the processes that make up the Scope Knowledge Area is shown with
its process and practice maturity level plotted. You already knew that the
Scope Knowledge Area was a problem from Figure 38-3, but now you can look
inside the Scope Knowledge Area at the processes that make it up and see
exactly where those problems reside. This is useful information for your
process improvement program.

You have yet one other way to look at the maturity data, and that is by process
group. When using this metric in a process improvement program, you would
prefer to see the data as shown in Figure 38-5. Here the process and practice
maturity data is grouped by process group.

Where Are You? 429

48_596365 ch38.qxd 2/15/06 10:42 PM Page 429

Figure 38-4: Process and practice maturity levels for the Scope processes

Figure 38-5: Process and practice maturity levels grouped by process group

In
itia

tio
n

Pla
nn

ing

Ex
ec

ut
ion

Con
tro

l

Clos
ing

1

2

3

4

5

Process Group Baseling March 2005
Practice Problem
Best Practices

In
itia

tio
n

Sc
op

e P
lan

nin
g

Sc
op

e D
efi

nit
ion

Sc
op

e V
er

ific
at

ion

Sc
op

e C
ha

ng
e C

on
tro

l

1

2

3

4

5

Practice Baseline
Practice Problem
Best Practices

C h a p t e r 3 8430

48_596365 ch38.qxd 2/15/06 10:42 PM Page 430

This is an interesting report. It tells you that the Planning Process Group
should be the focus of your process improvement efforts. The other four
process groups are all operating within a nominal range of the process group
maturity level.

All of these maturity level reports are produced from a Project Management
Maturity Assessment tool that I developed for my consulting practice. The
process maturity data is generated by reviewing the documentation that sup-
ports the organization’s project management processes. The practice data is col-
lected through one-on-one interviews with project managers. For the interview
data to produce any reliable conclusions, you need about 20 project managers
involved. Each interview lasts about 21⁄2 hours. Interview data is collected at the
process level and aggregated to knowledge areas and process groups. Both
of these aggregations are designed to support the design and monitoring of
process improvement programs.

Project Tracking
While a bit off the topic of process and the practice of the process, it is useful to
take a quick look at some of the metrics you might want to use to determine
your performance on a single project. This becomes important when there is a
process improvement program in place and you want to measure the impact
of process changes on actual project performance. This is not intended to be a
complete treatment of the topic but rather a brief presentation of some tools
that I have found particularly useful in measuring how well you and the team
are doing on a specific project as you try to implement the enterprise project
management processes.

Only a limited number of performance reporting tools can be used to assess
the past and future performance of projects. They are milestone trend charts
and earned value analyses. The material that follows takes a look at both of
those tools as early warning indicators of practice problems and then creates a
hybrid of the two for additional early warning indicators.

Milestone Trend Charts

Milestone trend charts are of more recent vintage having been introduced by
me in 1995 and more recently discussed in my book Effective Project Manage-
ment: Traditional, Adaptive, Extreme, Third Edition (John Wiley & Sons, 2003).

Milestones are significant events in the life of the project that you wish to track.
These significant events are zero-duration activities and merely represent that
a certain condition exists in the project. For example, a milestone event might
be that the approval of several different component designs has been given.

Where Are You? 431

48_596365 ch38.qxd 2/15/06 10:42 PM Page 431

This event consumes no time in the project schedule. It simply reflects the fact
that those approvals have all been granted. The completion of this milestone
event may be the predecessor of several build-type activities in the project
plan. Milestone events are planned into the project in the same way that activ-
ities are planned into the project. They typically have Finish-to-Start relation-
ships with the activities that are their predecessors and their successors.

Look at the milestone trend chart in Figure 38-6 for a hypothetical project. The
trend chart plots the difference between the planned and estimated date of a
project milestone at each project report period. In the original project plan the
milestone is planned to occur at the ninth month of the project. That is the last
project month on this milestone chart. The horizontal lines represent one, two,
and three standard deviations above or below the forecasted milestone date. In
the examples that follow, one standard deviation is about one month.

Any activity in the project has an expected completion date that is approxi-
mately normally distributed. The mean and variance of its completion date are
a function of the longest path to the activity from the report date. In this exam-
ple, the units of measure are one month. For this project the first project report
(at month 1) shows that the new forecasted milestone date will be 1 week later
than planned. At the second project report date (month 2 of the project) the mile-
stone date is forecasted on target. The next four project reports indicate a slip-
page to 2 weeks late, then 3 weeks late, then 4 weeks late, and finally 6 weeks late
(at month 6 of the project). In other words, the milestone is forecasted to occur 6
weeks late, and there are only 3 more project months in which to recover the
slippage. Obviously, the project is in trouble. The project appears to be drifting
out of control. Some remedial action is required of the project manager.

Certain patterns signal an out-of-control situation. These are given in Fig-
ures 38-6 through 38-10 and are described in the following subsections.

Figure 38-6: A Run up or down of four or more successive data points

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

C h a p t e r 3 8432

48_596365 ch38.qxd 2/15/06 10:42 PM Page 432

Successive Slippages

Figure 38-6 depicts a project that is drifting out of control. Each report period
shows additional slippage since the last report period. If you have decom-
posed activities down to 2 week or shorter duration tasks, then each month
there will be different tasks that are worked on. Those that are on the critical
path to the milestone event are cumulating slippages that put the milestone
event further and further out in the time line, thus creating the downward
trend. Four such successive occurrences, however minor they may seem,
require special corrective action on the part of the project manager.

Radical Change

Figure 38-7, while it does show the milestone to be ahead of schedule, reports
a radical change between two successive report periods. Activity duration
may have been grossly overestimated. You may be a data error. One other
explanation would be a scope change or technology change that resulted in
several future tasks being removed from the project. These tasks affected the
critical path leading to the milestone event and hence the wild aberration in
forecasted delivery date of the milestone event. In any case, the situation
requires further investigation.

Successive Runs above the Planned Milestone Date

Figure 38-8 is an interesting pattern. In the first month, something caused the
milestone event to be forecasted to come in 6 weeks ahead of schedule. Subse-
quent months maintained that early date but only because the project manager
was able to re-negotiate the resource schedule for each of the succeeding
months. The task duration estimates and the project plan look solid. All dates
were hit because resources were re-scheduled to the earlier dates. Barring any
radical shifts and the availability of resources over the next 2 months, the mile-
stone will probably come in 1 month early. Remember that you have negoti-
ated for a resource schedule into these 2 months and now you will be trying to
renegotiate an accelerated schedule.

Successive Runs below the Planned Milestone Date

Figure 38-9 depicts the opposite situation shown in Figure 38-8. Here the pro-
ject gets behind schedule in the first month and then stays there for the next 6
months. The project plan is good just as it was in the previous example. But the
project remains behind with no apparent attempt being made to get the mile-
stone back on schedule. The project manager has some explaining to do.

Where Are You? 433

48_596365 ch38.qxd 2/15/06 10:42 PM Page 433

Figure 38-7: A change of more than three standard deviations

Figure 38-8: Seven+ successive data points above the planned milestone date

Schedule Shift

Figure 38-10 depicts a major shift in the milestone schedule. The cause must be
isolated and the appropriate corrective measures taken. One possibility is the
discovery that a downstream activity will not be required. Perhaps the project
manager can buy a deliverable rather than build it and remove the associated
build activities from the project plan.

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

C h a p t e r 3 8434

48_596365 ch38.qxd 2/15/06 10:42 PM Page 434

Figure 38-9: Seven+ successive data points below the planned milestone date

Figure 38-10: Two successive data points outside three standard deviations from the
planned milestone date

Earned Value Analysis

Earned value (a.k.a., cost/schedule control) has been used in the federal gov-
ernment for nearly 50 years. Only recently has it been adopted by commercial
enterprises

Earned value analysis is used to measure project performance and, by tradi-
tion, uses the dollar value of work as the metric. As an alternative, resource
person hours/day can be used in cases where the project manager does not

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

Where Are You? 435

48_596365 ch38.qxd 2/15/06 10:42 PM Page 435

directly manage the project budget. Actual work performed is compared
against planned and budgeted work expressed in these equivalents. These
metrics are used to determine schedule and cost variances for both the current
period and cumulative to date. Cost or resource person hours/day are not
good objective indicators with which to measure performance or progress, but
while this is true, there are no other good objective indicators. Given this, we
are left with dollars or person hours/day, which we are at least familiar work-
ing with in other contexts. Either one by itself does not tell the whole story. You
need to relate them to one another.

The Standard S-Curve

One drawback that these metrics have is that they report history. Although
they can be used to make extrapolated predictions for the future, they primar-
ily provide a measure of the general health of the project, which the project
manager can correct as needed to restore the project to good health. These met-
rics can be used as the measure of practice success in a process and practice
improvement program

Figure 38-11 shows a standard S-curve, which represents the baseline progress
curve for the original project plan. The curve can be constructed using cumu-
lative budget data or cumulative person hours/day as reflected in the project
plan. It can be used as a reference point. You can compare your actual progress
to date against the curve and determine how well the project is doing. Again,
progress can be expressed as either dollars or person hours/day.

Figure 38-11: The standard S-curve

Progress

Time

1/3 Time - 1/4 Progress

2/3 Time - 3/4 Progress

C h a p t e r 3 8436

48_596365 ch38.qxd 2/15/06 10:42 PM Page 436

While the curve given here is a standard, it is a good idea to plot this curve for
your project plan. Comparing the standard curve with your curve can be illu-
minating, as I discuss later in this section. Simply record dollars spent over
time or labor hours spent over time. Two plots to be cautious of are shown in
the next two figures.

The Aggressive Curve

This situation (Figure 38-12) occurs when too much work is loaded in the front
end of the project. Usually this indicates a lack of proper planning up front and
a “rush to code.” This increases the risk in the project. For teams that have
worked together before this may work. For a newly formed team, this rarely
works. The team needs time to learn to be a team and that is not the time to
load them up with heavy work schedules.

The Curve to Avoid

This situation (Figure 38-13) is the reverse of the previous one. Here a lot of up
front time is spent deciding what to do, who does what, when will it be done,
how will progress be reported. In other words, no actual work is being done.
If your process is such that it forces the project team into this pattern, you
might want to go back to the drawing board and lighten the process so the
team can log in progress earlier in the project life cycle.

Measuring Earned Value

There are four popular ways to measure earned value (Figure 38-14).

Figure 38-12: The aggressive curve

Progress

Time

No ramp up - no learning time

Where Are You? 437

48_596365 ch38.qxd 2/15/06 10:42 PM Page 437

Figure 38-13: The curve to avoid

Figure 38-14: Measuring earned value

Tasks that are completed before the report date have accrued their full. Tasks
that are not scheduled to begin until some time after the report date do not
affect this report. It is only for the tasks that have passed their start date and
have not yet been completed by the report date. In other words, they are a
work in process. The four popular ways to measure earned value (and repre-
sented in Figure 38-14) are as follows:

Report date

Work in process

100 - 0 0 - 100

50-50

10 tasks complete 4 tasks not complete

10/14

Progress

Time

About 30% of the work done

70% to 80% of the time gone by

C h a p t e r 3 8438

48_596365 ch38.qxd 2/15/06 10:42 PM Page 438

■■ 100 percent when work begins on the task and 0 percent when the task
is complete—All the value is accrued when the task has been opened for
work.

■■ 0 percent when work begins on the task and 100 percent when the task
is complete—No value is accrued until the task has been successfully
completed.

■■ 50 percent when work begins and 50 percent when work is completed—
When the task is open for work, half of the value is accrued. When the
task has been successfully completed, the other 50 percent is accrued.

■■ Proportional to the number of subtasks completed—Each task has one
or more subtasks. The proportion of subtasks that have been successfully
completed is the basis for accruing value. In the example, the task has a
total of 14 subtasks, and 10 have been completed before the report date.
Therefore 10/14 of the value is accrued on the report date.

Cost Variance

By superimposing the actual progress curve to the baseline curve, you can
now see the current status versus the planned status. Figure 38-15 shows the
actual progress curve to be below the planned curve. If this represented dol-
lars, you might be tempted to believe the project is running under budget. Is
that really true?

Figure 38-15: Baseline vs. actual cost curve illustrating cost variance

Progress

Time

Baseline

Cost Variance

Update Date
Actual

Where Are You? 439

48_596365 ch38.qxd 2/15/06 10:42 PM Page 439

As it turns out, you cannot draw any conclusions about being over or under
budget from just this data. You might be over budget for the work that you did
do but under budget for the cumulative total that should have been spent by
the report date. On the other hand you might be on budget for the work that
you did, but you didn’t do all of the work that was budgeted by the report
date. Obviously you need more information before any logical conclusions can
be reached about over or under budget on the report date.

Schedule Variance

Projects rarely run significantly under budget. A more common reason for the
actual curve to be below the baseline is that the activities that should have
been done have not been and thus the dollars or person hours/day that were
planned to be expended have not been. The possible schedule variance is high-
lighted in Figure 38-16.

The curves are telling you that you should have reached a certain level of value
much earlier than you actually have. That could be indicative of a schedule
variance. But you still do not know the real situation. One curve is missing
from this picture that when added will tell the whole story.

The Whole Story

Management might react positively to the news shown in Figure 38-16, but
they might also be misled by such a conclusion. The full story is told by com-
paring both budget variance and schedule variance, shown in Figure 38-17.

Figure 38-16: Baseline vs. actual cost illustrating schedule variance

Progress

Time

Baseline

Cost Variance

Update Date

Schedule Variance

Actual

C h a p t e r 3 8440

48_596365 ch38.qxd 2/15/06 10:42 PM Page 440

Figure 38-17: The whole story

To correctly interpret the data shown in Figure 38-17, you need to add the
earned value (EV) data that was given in Figure 38-16 to produce Figure 38-17.
Comparing the EV curve with the planned value (PV) curve, you see that you
have under spent because all of the work that was scheduled has not been
completed. Comparing the EV curve to the actual cost (AC) curve also indi-
cates that you overspent for the work that was done. Clearly, management
would have been misled by Figure 38-15 had they ignored the data in Figure
38-16. Either one by itself may be telling a half-truth. In addition to measuring
and reporting history, EV can be used to predict the future status of a project.

Performance Indices

The three basic indicators (PV, AC, and EV) yield one additional level of analy-
sis for you. Schedule Performance Index (SPI) and Cost Performance Index
(CPI) are a further refinement. They are computed as shown in Figure 38-18.

Many people find these indices to be more intuitive than the three cost curves
in Figure 38-17. When tracked over time, they do reveal good insight into the
past performance of the project and provide indicators of the likely future if
trends continue.

Progress

Time

Cost Variance

Schedule
Variance

Update Date

ACWP

BCWS

BCWP

ACWP = Actual Cost (AC)
BCWS = Planned Value (PV)

BCWP = Earned Value (EV)

Where Are You? 441

48_596365 ch38.qxd 2/15/06 10:42 PM Page 441

Figure 38-18: Earned value—performance indices

Cost Performance Index

CPI is a measure of how close the project is to spending on the work per-
formed what was planned to have been spent. If you are spending less on the
work performed than was budgeted, the CPI will be greater than 1. If not, and
you are spending more than was budgeted for he work performed, then the
CPI will be less than 1.

Some managers prefer this type of analysis because it is intuitive and quite
simple to equate each index to a baseline of 1. Any value less than 1 is unde-
sirable; any value over 1 is good. These indices are displayed graphically as
trends compared against the baseline value of 1.

Schedule Performance Index

SPI is a measure of how close the project is to performing work as it was actu-
ally scheduled. If you are ahead of schedule, EV will be greater than PV, and
therefore the SPI will be greater than 1. Obviously this is desirable. On the
other hand, an SPI below 1 would indicate that the work performed was less
than the work scheduled. Not a good thing.

Adapting to Accommodate Milestone Trend Charts and Earned
Value

Both milestone trend charts and earned value can easily be accommodated
within the project life cycle. All of these metrics can be used to track practice
level improvements resulting from a process improvement program. After all,
they are where the rubber meets the road.

Cost Performance Index
CPI = EV/AC = BCWP/ACWP

Schedule Performance Index
SPI = EV/PV = BCWP/BCWS

INDEX VALUES
<1: over expended or behind schedule
>1: under budget or ahead of schedule

C h a p t e r 3 8442

48_596365 ch38.qxd 2/15/06 10:42 PM Page 442

Accommodating Earned Value

At each report date, tasks that are open for work or were scheduled to be open
for work can be in one of three situations:

■■ They are complete and hence have accrued 100 percent value.

■■ They are still open for work and hence have accrued a percentage equal to
the proportion of subtasks completed.

■■ They are still open for work, and no subtasks are completed; hence, they
have accrued 0 percent value.

Add all of the accrued value since the last report date and add that to the
cumulative project total. Display that data on the baseline S curve.

Accommodating Milestone Trend Data

At each report date, the task managers of tasks that are open for work or were
scheduled to be open for work should update the project file. The update
information will be:

■■ The task is reported as complete as of a certain date.

■■ A certain percentage of the task work is complete (same as earned value
report mentioned previously) and an updated estimate to completion is
also given.

■■ No progress is reported.

The software produces an updated project file with new forecasted dates for
the milestones you are tracking.

The presentation of the SPI and CPI data over time can be represented using
the same format as was used to report milestone trend data. Three examples
are shown below.

Figure 38-19 is a common situation. Here the project has gotten behind sched-
ule (denoted by the “S: in the figure) while at the same time being under bud-
get (denoted by the “C” in the figure). That is probably due to the fact that
work that was scheduled has not been done and hence the labor costs associ-
ated with those tasks has not incurred.

Where Are You? 443

48_596365 ch38.qxd 2/15/06 10:42 PM Page 443

Figure 38-19: A project that is under budget and behind schedule

On rare occasions you might experience the situation in Figure 38-20. The pro-
ject is ahead of schedule and under budget. Less costly ways were found to
complete the work, and the work was completed in less time than was
planned. If this should ever happen to you, relish the moment. Take whatever
kudos your customer or management care to heap on you. You deserve their
accolades. They don’t happen often.

Figure 38-21 is the worst of the worst. Nothing more need be said.

Figure 38-20: A project that is under budget and ahead of schedule

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Project Week

under budget
ahead of schedule

over budget
behind schedule

Project: BETA

1 2 3 4 5 6 7 8 9

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Project Week

under budget
ahead of schedule

over budget
behind schedule

Project: ALPHA

1 2 3 4 5 6 7 8 9

C h a p t e r 3 8444

48_596365 ch38.qxd 2/15/06 10:42 PM Page 444

Figure 38-21: A project that is over budget and behind schedule

The same approach can be used to track a project portfolio over time, as shown
in Figure 38-22.

The graph shows the SPI values of the individual projects that comprise the
portfolio. This will also be a useful graphic for summarizing the practice
changes from your process improvement program. If there is a clear trend at
the portfolio level, it is indicative of a successful transition from process to
practice.

Figure 38-22: Adapting the Life Cycle for a Project Portfolio Schedule

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Project Week
Portfolio average

ahead of schedule

behind schedule

Project: DELTA Program

1 2 3 4 5 6 7 8 9

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Project Week

under budget
ahead of schedule

over budget
behind schedule

Project: GAMMA

1 2 3 4 5 6 7 8 9

Where Are You? 445

48_596365 ch38.qxd 2/15/06 10:42 PM Page 445

Other Warning Signs

In addition to milestone trend charts and earned value, you have several other
metrics that can be defined to identify project performance trends and, hence,
can be used as a trigger for identifying distressed projects. Figure 38-23 lists
some of the more popular choices.

Figure 38-24 shows a few examples of what those warning signs might look
like.

Figure 38-23: Other warning signs

Figure 38-24: Examples of warning signs

Project is > 50% behind schedule
Project is > 33% over budget
of days late/absent per week by any team member has
increased for 4 consecutive weeks
of mistakes/misunderstandings has increased for 4 consecutive
weeks
of scope change requests has increased for 4 consecutive
weeks
of outstanding bugs has increased for 4 consecutive weeks
Meeting attendance has been decreasing for 4 consecutive weeks

CUMULATIVE PERFORMANCE METRICS...
 Increasing at an increasing rate: a problem
 Increasing at a decreasing rate: normal

Resource deviations
• Cumulative # of days late/absent by team member
• Cumulative # of mistakes/misunderstandings

Performance metrics
• Cumulative # of scope change requests
• Cumulative # of outstanding bugs over time

SITUATIONS...
 Increasing at an increasing rate: a problem
 Increasing at a decreasing rate: normal

C h a p t e r 3 8446

48_596365 ch38.qxd 2/15/06 10:42 PM Page 446

Discussion Question
1. The project is clearly suited to an Adaptive strategy, but your team does

not have the skills/competencies/customer relationship that you would
need. What would you do? Be specific.

Where Are You? 447

48_596365 ch38.qxd 2/15/06 10:42 PM Page 447

48_596365 ch38.qxd 2/15/06 10:42 PM Page 448

Installing Custom Controls 449

Where Do You Want To Go and
How Can You Get There?
First, I believed it could be done. Second, I believed that
it could be done within the time period that had been
set. Third, I was consumed with accomplishing the task.
Fourth, I told all with whom I came into contact of my
goal and asked for their help.

James E. Buerger
Publisher, Travelhost National

C H A P T E R 39

449

You’ve now come to the end of this journey through the contemporary sys-
tems development project management landscape. Much has been accom-
plished in the understanding of that landscape. You can now understand its
strengths and its weaknesses. You know that it has a significant potential for
contributing business value to the enterprise. You know how important it is
that you who are from the project management discipline and the systems
development discipline contribute to that business value, and you know how
to do that, too.

In this chapter I intend to paint a picture of the ideal end state for software pro-
ject management that I see for us and then spend some time discussing how
that future state might come about.

Chapter Learning Objectives

After reading this chapter, you will be able to:

◆ Understand the ideal SDPM end state

◆ Know the steps to follow to achieve the ideal end state

49_596365 ch39.qxd 2/15/06 11:06 PM Page 449

Where Do You Want To Go?

My goal is for 100 percent project success. Your goal should be very similar or
exactly the same. Since the latest reports give estimates of around 30 percent IT
project success, most organizations have a long ways to go to reach their goal.
In Chapter 38 you set targets for several metrics that are tracked with your pro-
jects. These become the baseline against which all improvements are mea-
sured. A target goal of 100 percent project success is a sight to set for your
enterprise, but the metrics will give you a more useful improvement measure.
Set target values for those metrics consistent with the target goal.

One hundred percent project success means that the enterprise fully embraces
and is willing to support the five SDPM strategies that have been discussed in
this book.

The ideal end state is just that—ideal—a zero defect goal that is probably not
attainable. But that shouldn’t diminish your enthusiasm or dedication to try-
ing to reach that goal. My bias is that you establish a process improvement pro-
gram where improvement is measured directly by increased levels of process
and practice maturity and indirectly by project success rates. That is not the
only way, but that is the way that I have found most effective. So think of the
journey as nothing more than a continuous process improvement program,
with the obvious emphasis on continuous. How it will end up is anybody’s
guess. But at least you will have the satisfaction of knowing that you, your cus-
tomer, and your team gave it their best effort.

There are other goals that my clients have set for their process improvement
program, and this discussion would not be complete without some mention of
them. In the first scenario the client sets a maturity level that all processes must
meet. Maturity Level 3 is often chosen as the first goal level. For them it is an
intermediate goal and may be followed by another process improvement pro-
gram to take all processes to Level 4. At Level 4 all processes are fully integrated
into the business processes. Attaining this level for an enterprise means that
project management has really become a bottom line contributor. Attainment of
that level is very difficult, however, and that is the main reason many enter-
prises choose a two-step process improvement program. That is a major step
for an enterprise at Level 3. At Level 3 all projects are following the completely
documented project management process. This establishes repeatable practices
in project management. That is a precondition to further project success.

The other scenario is to establish separate maturity level goals for each
process. This approach positions each process in terms of its overall contribu-
tion to project success and business value. From past practice data the enter-
prise knows where its pain points are with respect to project failure. By

C h a p t e r 3 9450

49_596365 ch39.qxd 2/15/06 11:06 PM Page 450

targeting on those processes the enterprise hopes to raise the likelihood of pro-
ject success thus making a significant contribution to the enterprise. It may
view some processes as not broken and hence not in need of fixing.

Figure 39-1 is a high-level schematic of the end state software development
management environment that I envision regardless of the maturity level of
the enterprise.

Despite its simple form this end state is rich in content and structure. The sec-
tions that follow examine each of the steps.

Review POS
The Project Overview Statement (POS) is the document that marks the early
beginnings of the project. It was written and approved by the customer and
the project manager. It is time to enter the planning stage, and the review of the
POS is the first collaborative task that you will engage the customer and the
development team in. You and the customer should have that alignment, but
the development team would not have had the opportunity to engage with the
customer for the purposes of extending that alignment. Regardless of the
process you followed to generate the POS you must ensure that all parties
have the same understanding of its meaning. The same word doesn’t mean the
same thing to different people. What you intend by what you say isn’t neces-
sarily what the receiving party understands you to have said. The only way to
ensure complete alignment is to talk through the document. Ask questions
about what is in and what is not in the project. Make sure the goal and objec-
tives are commonly understood. Again this happens only with face-to-face
discussion of each part of the POS. This is your best chance to establish a foun-
dation on which your team will be built. Having the customer, the project
manager, and the development team all on the same page and pulling in the
same direction is invaluable. The discussion of the initial POS is a great place
to experiment with other ideas about the project. Are there some considera-
tions that the developers see that maybe the customer or the project manager
did not see? Explore these as a prerequisite to requirements gathering. The
information you gather here will be critical input to your decision as to choice
of SDPM strategy later in the planning process.

I can’t stress enough the importance of this step. How many times have you
come to some intermediate point in a project only to find out that the customer
has a slightly different understanding about what the project will deliver?
What if that discovery is made during integration testing? These are the things
that project failures are made of, and we don’t tolerate project failures in our
ideal end state.

Where Do You Want To Go and How Can You Get There? 451

49_596365 ch39.qxd 2/15/06 11:06 PM Page 451

Figure 39-1: The ideal end state of the SDPM environment

Gather Requirements
Regardless of how you are going to approach the project, the Requirements
Breakdown Structure (RBS) is the tool of choice to deciding on the best fit
approach. How you choose to gather requirements is largely a matter of per-
sonal preference and what has worked well for your enterprise in the past. The
resulting RBS is not only a customer-facing artifact, but it is the best way to
understand the completeness and confidence you have that all of the require-
ments, functions, and features have been identified and clearly documented.
The RBS is your primary input to the process of deciding which SDPM strategy
you will choose for the project. No other project management artifact has that
level of importance in getting your project off to the correct start and assuring
its success. Your ideal end state will have the RBS as the pivotal artifact.

There are two variables of concern here:

■■ Completeness

■■ Clarity

Either one of them and usually both can be used as the criterion for choosing
the best fit SDPM strategy.

Review POS to ensure a
common understanding
between the customer,

the project manager, and
the development team

Gather requirements

Assess state
of solution

completeness

Choose SDPM strategy

Continuously monitor
project for need to

change SDPM Strategy

C h a p t e r 3 9452

49_596365 ch39.qxd 2/15/06 11:06 PM Page 452

Completeness

Completeness is a necessary condition if you choose to follow a Linear or
Incremental SDPM strategy. Easily said but difficult to know if you have met
that condition. As you go through the requirements gathering process with
your customer, try to read their body language and be observant of any verbal
clues. If you are satisfied that you have achieved completeness, that is proba-
bly the best sign that you have. If you have any doubts whatsoever, assume
you haven’t met that condition. That will lead you to choose an SDPM strategy
towards the agile side. It is better to take the safe ground than to put the pro-
ject at risk needlessly. Unless you know the customer from previous projects, it
would be risky to depend on their saying that all requirements have been iden-
tified to conclude that the requirements are complete.

Clarity

Clarity has equal weight in your decision to choose one SDPM strategy over
another. Clarity can be attained only through extensive Conditions of Satisfac-
tion type discussions between project manager and customer. Don’t cut this
effort short. It is worth the investment of time to get it as right as you can.
Don’t rush into the project until you have done your due diligence on the
choice of infrastructure for the project. You’ll want to be clear what is in and
what is not in the solution. This may mean discussing what is in and what is
not down to the function and feature level. But it is worth every minute you
spend on clarifying the requirements. Mark any part that does not meet that
litmus test. These will be your scorecard for choosing the best fit SDPM strat-
egy later in the planning process.

Assess State of Solution Completeness
If the requirements, functions, and features are complete and clearly docu-
mented, the solution is probably complete, and you are safe choosing a Linear
or Incremental SDPM strategy. On the other hand, if the requirements, func-
tions, and features are not complete and clearly documented, than neither is
the solution. But just how incomplete is the solution? There is no quantitative
metric that I know of that will answer that question. It is a judgment call on
your part. So assume that you are not convinced that you have a complete def-
inition of the solution. That means your choice of SDPM strategy falls into the
agile realm, and you need to choose from among Iterative, Adaptive, and
Extreme SDPM strategies. That choice will not be as difficult as you might
think. In the next section, you can take a look at several different variables and
how they can be used to narrow the choices.

Where Do You Want To Go and How Can You Get There? 453

49_596365 ch39.qxd 2/15/06 11:06 PM Page 453

Choose SDPM Strategy
This is where the rubber meets the road and you make a commitment to follow
a specific SDPM strategy. It is a critical decision and your best effort at due dili-
gence is required. You must take into account several variables in making this
decision. They are listed in the sections that follow and briefly discussed.

The Enterprise Environment

Constant change at the enterprise level will be the biggest obstacle to project
success. It generates instability in the project and hence raises the risk of the
project being repurposed, changed, terminated, or significantly reduced in
scope or budget. Changing priorities (and hence changing budgets), reorgani-
zations (with a likely change of sponsors or reporting managers), and budget
cuts that can create all sorts of problems with projects that are underway and
not yet complete can all have adverse effects on your project.

If what I have described sounds like your organization, what would you do to
protect your project? Maybe the more appropriate question is can you even
protect your project? The more likely you are to encounter these situations the
more you should look to a strategy that delivers value early and often. If your
project lends itself to a Linear SDPM strategy, choose an Incremental SDPM
strategy. That will deploy a partial solution early and build on it through suc-
cessive increments. Choose small increments with clear business value at each
increment. If you are going to choose an Adaptive SDPM strategy, alter it to
deliver business value at each or, if that is not possible, at most cycles.

The Sponsor

Your sponsor is your defense against the enterprise. They are the ones that
protect you from the wiles of the organization. They have a position of power
and leverage in the organization and are often your only defense when times
go bad. Your sponsor’s continuing support of the priorities of your project is a
key to project success. If you lose that during the project, your project is now
exposed to some risk of cancellation. A new sponsor may not share your
enthusiasm for the project or have other priorities to fund. Even without a
change of sponsor, a change in enterprise priorities can change your sponsor’s
priorities regarding your project. These changes may be beyond their control.

If you suspect that a change in sponsor may be in the offing, what would you
do? I would still choose the SDPM strategy that I thought was a best fit for the
project. But I would do more. Whatever documentation I could produce to sell
the benefits of the project or enhance its business case, I would be doing. These

C h a p t e r 3 9454

49_596365 ch39.qxd 2/15/06 11:06 PM Page 454

are good insurance policies against a change in sponsor, and they are also good
briefing papers for that new sponsor. If you do end up with a new sponsor,
you need to do two things

■■ First understand their priorities

■■ Second, position your project to contribute to their priorities

Your Experience with the Customer

The more your customer has demonstrated a proactive position in prior pro-
jects, the more comfortable you can be with choosing one of the agile strate-
gies. On the other hand, if the project clearly calls for an agile approach and
your customer is not aligned with such approaches, you might be exposed to
some risk if you choose an agile strategy. Spend some time with the customer.
Perhaps a workshop on the agile approach you are thinking about using
would be a good start. You can use that to gauge the customer’s willingness to
engage in such an approach. I’ve had good success with running workshops in
parallel with the project. The project becomes the vehicle for learning the
approach. In any case, some compromise may be called for, and you will just
have to take up the slack. You could be in for rough times in such situations,
but that is what they are paying you those big bucks for!

The Skill/Competency/Experience Level of the Project Team

Inexperienced project teams do not do fit well into agile approaches. Distrib-
uted teams do not do well when using agile approaches. Junior members of
the technical and development staffs need the supervision of the more senior
members of their discipline.

The Physical Location of the Project Team

Co-located or distributed are the determining factors in many choice of SDPM
strategy. The further out into the outer reaches of the agile landscape, the more
you will need an experienced co-located team. In some organizations that is
not possible. So what do you do if the project requires an Adaptive SDPM
strategy? If at all possible, bring the team together once to meet each other.
Having a face to put with a name goes a long way to building a functioning
team. The first concern should be communications. Video conferencing is best;
audio conferencing is second best; e-mail is a distant last. You’ll need to set up
a Web site for the project where all project documentation is stored and
updated. Having a project administrator keep the project files up-to-date is the
safest approach.

Where Do You Want To Go and How Can You Get There? 455

49_596365 ch39.qxd 2/15/06 11:06 PM Page 455

The Criticality of the Project

Just how important is this project to the enterprise? The less you know about
the solution and the more important it is to the enterprise, the higher the risk.
Some problems must have a solution, no matter how complete (or partial) it
might be. The more critical the project is to the enterprise the less you will
want to compromise on your choice of the best fit strategy. The other variables
will need to line up pretty closely with the choice, or the risk may become
unmanageable.

Continuously Monitor the Project
You aren’t finished with choice of SDPM strategy just because you reached a
decision early in the Planning Phase. The project will change, and you may
have to revisit your decision about SDPM strategy. There are situations where
a change is called for.

For example, you started with an Adaptive SDPM strategy and have reached
a point in the project where the remainder of the solution comes into clear
focus. There is no need to continue with the Adaptive strategy. You could just
as easily switch to a Linear or Incremental SDPM strategy. That affords you the
opportunity to deploy a partial solution and then a complete solution in a later
increment. Remember that the first priority should be to get business value in
the hands of the customer. The Adaptive SDPM strategies do not do that but
the Incremental SDPM strategies do.

For another example, suppose you chose a Linear SDPM strategy and the fre-
quency of customer scope change requests is getting out of hand. Switch to an
Iterative SDPM strategy and accommodate the scope changes more readily.
Staying with the Linear SDPM strategy just wastes the time of the develop-
ment team and eats away at their value-added work time.

How Will You Get There?

This is your continuous SDPM Process Improvement Program. Plan on spend-
ing all of your days with some level of involvement in this program. It will
never end. In the beginning there will be lots of improvement initiatives. At
some point that will level off and move more into a monitoring program, but
it will still be a continuous improvement program. Figure 39-2 is a continuous
process improvement process that I have used successfully for several years. It
fits very well the Adaptive Project Framework model. In fact, the Adaptive
Project Framework model was designed to accommodate process improve-
ment projects and programs.

C h a p t e r 3 9456

49_596365 ch39.qxd 2/15/06 11:06 PM Page 456

Figure 39-2: A continuous process improvement program process

You can see that this process answers all of the questions posed in the last
chapter and this one. Each step in this four-phase process model is discussed
in the following sections.

Assess Process Effectiveness
First of all, process in the context of this section may refer to the entire project
management process or to just one of the 44 processes that make it up. (A com-
plete description of these processes can be found in the Project Management
Institute’s publication: A Guide to the Project Management Body of Knowledge,
Third Edition, 2004.) It will be clear from the context what is being referred to.

My approach is to assess both the process and practice level maturities for the
44 processes of the entire project management process. Use that information in
conjunction with the recent history of project success and failure. Try to corre-
late reasons for failure with the individual processes. That will be the baseline
measure of where you are with respect to project success and the root causes as
defined by the 44 processes as to project failure.

Determine Process Goals
These goals should be defined with respect to the overall process and practice
maturity levels as well as the individual process level maturities (both process
ands practice). Express the goals in terms of target maturity levels for each

Where
are you?

Assess
process

effectiveness

Determine
process
goals

Prioritize
process
goals

Select process
for improvement

Identify
improvement

initiatives

Compare results
against goals

Where do
you want

to go?
How will you get there? How well

did you do?

Launch
improvement

projects

Launch
improvement

projects

Where Do You Want To Go and How Can You Get There? 457

49_596365 ch39.qxd 2/15/06 11:06 PM Page 457

process and its practice as well as target success rates at the project level. These
are quantitative measures that can be monitored as part of the overall improve-
ment initiative.

Prioritize Process Goals
You can use any number of criteria to establish these priorities (largest matu-
rity gap, most business value, low hanging fruit, and so on). I’ll assume for the
sake of this discussion that you will have established that priority order and
no more need be said about that.

Select Process for Improvement
And so with that priority list in hand you select the next process on which to
focus your improvement initiatives. Note in the diagram that this is the first step
in the iterative portion of this improvement process. You reached this step by
contributing all of the improvements you could to the then highest process on
your list. That process then moves down the list and a new process pops to the
top of the priority list. That is the process I focus on as I continue this discussion.

Identify Improvement Initiatives
This is nothing more than a brainstorming session where the process owner
and the team come together to identify all of the possible changes that could be
made to improve the process under consideration. The longer the list the bet-
ter. So don’t try to short-circuit this exercise. Let everyone express their ideas
however outlandish they may be. Once no new ideas are coming forth, con-
sider the list complete (for now at least). The next part of the step is to priori-
tize the list. There are really only two criteria to consider.

■■ The first is order the list by easiest to implement.

■■ The second (and the one I prefer) is to order the list based on maximum
likely contribution to improvement.

Launch Improvement Projects
With that list in hand and based on resource availability, start down the list. If
your resources are constrained, you might do the improvement projects one at
a time is the order of their priority. As you have more and more resources
available you might establish parallel swim lanes—one for each improvement
project.

C h a p t e r 3 9458

49_596365 ch39.qxd 2/15/06 11:06 PM Page 458

Compare Results against Goals
How did you do? Did the just completed improvement projects meet the tar-
geted maturity level goal or not? If so, move to the next process. If not, con-
tinue to work the prioritized list of improvement ideas.

WARNING
Above all, flexibility and openness are the critical success factors of successful
process impriovement programs leading towards the end state.

Discussion Questions
1. Your organization has recently embraced the agile approaches in addition

to their long time use of traditional models to project management and
systems development. You have been assigned a project that is clearly an
adaptive project. You have gathered the following information:

■■ The enterprise environment—While there is not a lot of history in the
organization on the use of Adaptive SDPM strategies, you believe the
organization will be supportive. The organization is stable, and senior
management is informed.

■■ The sponsor—The sponsor has supported you in the past, and you
are reasonably comfortable that they will support you on this project.
However, you are not sure of their understanding of an Adaptive
SDPM strategy.

■■ The customer—You have experience with this customer on several tra-
ditional projects in the past. They do what is expected of them but are
not too enthused about being directly involved in projects. They are a
bit gun shy of the Adaptive SDPM strategy. This may be due to their
never having been involved in one before and to their lack of knowl-
edge of the Adaptive SDPM strategy.

■■ The skill/competency/experience level of the project team—Your
team is solid. There is no reason for concern here. You have worked
with them on all types of projects. They tend to be the more senior
members of the development staff.

■■ The physical location of the project team—The team is co-located.

■■ The criticality of the project—The project is mission critical and a
large part of revenues depends on the success of the effort.

What SDPM strategy would you choose and why? What are some of the
possible issues that may arise, and what might you do to mitigate them?

Where Do You Want To Go and How Can You Get There? 459

49_596365 ch39.qxd 2/15/06 11:06 PM Page 459

49_596365 ch39.qxd 2/15/06 11:06 PM Page 460

Installing Custom Controls 461

What’s on the Web Site?
He who would search for pearls must dive below.

John Dryden
English poet

A P P E N D I X A

461

The Web site has been established to provide a ready source of useful infor-
mation on the book contents.

It is designed to bring you quickly to some supporting materials for your ref-
erence and further study or for your use in presentations and other learning
experiences.

The Web site can be accessed at www.wiley.com/go/espm

Pizza Delivered Quickly (PDQ) Case Study
(MS Word File)

PDQ is a new and comprehensive case study. Throughout the book I draw on
the case study for examples of the applications of the tools, templates, and
processes discussed.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Know how to find the Web site

◆ Describe what is on the Web site

50_596365 appa.qxd 2/15/06 10:48 PM Page 461

Figures Master File

This is a file that contains a printable and reproducible file for every figure
used in the text. This is made available for those who are teaching a course
from our book and for those who might find some use for the figures in their
presentations. You have my permission to imbed the figures in your slide pre-
sentations. All I ask is that you give the appropriate attributions whenever you
use one of the figures.

A p p e n d i x A462

A Note on the Answer File for Discussion Questions

Each chapter ends with a few discussion questions that might be used by instruc-
tors to create some dialog with the class or might be used for written assign-
ments. These are questions that I hope will be thought-provoking. There are no
right answers, although there are plenty of wrong answers. An answer file has
been created for instructors. Just e-mail me at rkw@eiicorp.com, identify your-
self as a legitimate instructor or faculty member, and I’ll send you the answer file.
I’d love to hear from you and hear how you are using the book and its materials.

50_596365 appa.qxd 2/15/06 10:48 PM Page 462

Installing Custom Controls 463

Bibliography
Ignorance never settles a question.

Benjamin Disraeli
English Prime Minister

Those who have read of everything are thought to
understand everything, too; but it is not always so—
reading furnishes the mind only with materials of
knowledge; it is thinking that makes what is read ours.
We are of the ruminating kind, and it is not enough to
cram ourselves with a great load of collections; unless
we chew them over again, they will not give us strength
and nourishment.

John Locke

A P P E N D I X B

463

The following books are a collection of current publications from my private
project management library. I have included only books published in the last
10 years. With a few exceptions there are titles that were published more than
10 years ago. These were written by leaders in our field or have a particularly
valuable contribution to the literature. They are classics. All of these books will
be of particular interest to professionals who have project management
responsibilities, are members of project teams, or simply have a craving to
learn about the basics of sound project management. The focus of many of the
books is systems and software development because that is our primary inter-
est, although several also treat the basic concepts and principles of project
management. I have also included books on closely related topics, which I
have found to be of value in researching and writing this book. You might find
value in them, too.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Conduct further reading and study into SDPM strategies

◆ Know the relevant literature in SDPM strategies

51_596365 appb.qxd 2/15/06 10:54 PM Page 463

For your ease in finding specific sources, I have arranged the bibliography into
four sections. The first section corresponds to Part I of the book. The second
section corresponds to the Traditional approach to project management and
includes references to the Linear and Incremental SDPM strategies. The third
section covers the agile landscape and includes references that cover the Itera-
tive, Adaptive, and Extreme SDPM strategies. The fourth part covers refer-
ences to topics discussed in Part VII.

The Changing SDPM Landscape
Barkley, Bruce T. and James H. Saylor. 1994. Customer-Driven Project Manage-

ment: A New Paradigm in Total Quality Implementation. New York, NY:
McGraw-Hill, Inc. (ISBN 0-07-003739-6)

Ibbs, C. William and Young-Hoon Kwak. 1997. The Benefits of Project Manage-
ment: Financial and Organizational Rewards to Corporations. Newtown Square,
PA: The Project Management Institute. (ISBN 1-880410-32-X)

Jensen, Bill. 2000. Simplicity: The New Competitive Advantage in A World of More,
Better, Faster. Cambridge, MA: Perseus Books. (ISBN 0-7382-0210-X)

Kerzner, Harold. 1998. In Search of Excellence in Project Management. New York,
NY: Van Nostrand Reinhold. (ISBN 0-442-02706-0)

Laufer, Alexander. 1997. Simultaneous Management: Managing Projects in A
Dynamic Environment. New York, NY: AMACOM. (ISBN 0-8144-0312-3)

Lientz, Bennet P. and Kathryn P. Rea. 1995. Project Management for the 21st
Century. New York, NY: Academic Press. (ISBN 0-12-449965-5)

Martin, Paula. 1995. Leading Project Management into the 21st Century:
New Dimensions in Project Management and Accountability. Cincinnati, OH:
MartinTate. (ISBN 0-943811-04-X)

Traditional Project Management
Baker, Sunny and Kim Baker. 1998. The Complete Idiot’s Guide to Project Manage-

ment. New York, NY: Alpha Books. (ISBN 0-02-861745-2)
Bechtold, Richard. 1999. Essentials of Software Project Management. Vienna, VA:

Management Concepts. (ISBN 1-56726-085-3)
Blaylock, Jim and Rudd McGary. 2002. Project Management: Best Practices A to

Z. Columbus, OH: PM Best Practices, Inc. (ISBN 0-9719121-0-6)
Cable, Dwayne P. and John R. Adams. 1997. Principles of Project Management.

Upper Darby, PA: Project Management Institute. (ISBN 1-880410-30-3)
Chapman, Chris and Stephen Ward. 1997. Project Risk Management: Processes,

Techniques and Insights. New York, NY: John Wiley & Sons. (ISBN
0-471-95804-2)

A p p e n d i x B464

51_596365 appb.qxd 2/15/06 10:54 PM Page 464

Conway, Kieron. 2001. Software Project Management: From Concept to Deploy-
ment. Scottsdale, AZ: The Coriolis Group. (ISBN 1-57610-807-4)

DeMarco, Tom 1997. The Deadline: A Novel about Project Management. New York,
NY: Dorset House. (ISBN 0-932633-39-0)

DeMarco, T. and T. Lister. 1999. Peopleware: Productive Projects and Teams, Second
Edition. New York, NY: Dorset House Publishing. (ISBN 0-932633-43-9)

Goodpasture, John C. 2002. Managing Projects for Value. Vienna, VA: Manage-
ment Concepts. (ISBN 1-56726-138-8)

Greer, Michael. 1996. The Project Manager’s Partner: A Step-by-Step Guide to Pro-
ject Management. Amherst, MA: HRD Press, Inc. (ISBN 0-087425-397-7)

Hallows, Jolyon. 1998. Information Systems Project Management: How to Deliver
Function and Value in Information Technology Projects. New York, NY:
AMACOM. (ISBN 0-8144-0368-9)

Harrington, H. James, et al. 2000. Project Change Management: Applying Change
Management to Improvement Projects. New York, NY: McGraw-Hill. (ISBN
0-07-027104-6)

Haugan, Gregory T. 2002. Project Planning and Scheduling. Vienna, VA: Man-
agement Concepts. (ISBN 1-56726-136-1)

Haugan, Gregory T. 2002. Effective Work Breakdown Structures. Vienna, VA:
Management Concepts. (ISBN 1-56726-135-3)

Hill, Peter R. 2001. Practical Project Estimation: A Toolkit for Estimating Software
Development Effort and Duration. Warrandyte, Victoria, Australia: Interna-
tional Software Benchmarking Standards Group. (ISBN 0-9577201-1-4)

Humphrey, Watts S. 1997. Managing Technical People. Reading, MA: Addison-
Wesley. (ISBN 0-201-54597-7)

Ireland, Lewis R. 1991. Quality Management for Projects and Programs. Upper
Darby, PA: Project Management Institute. (ISBN 1-880410-11-7)

Johnston, Andrew K. 1995. A Hacker’s Guide to Project Management. Oxford,
England: Butterworth-Heinemann Ltd. (ISBN 0-7506-2230-X)

Kerzner, Harold. 2001. Project Management: A Systems Approach to Planning,
Scheduling, and Controlling. Seventh Edition. New York, NY: John Wiley &
Sons, Inc. (ISBN0-471-39342-8)

Kliem, Ralph L. and Irwin S. Ludin. 1997. Reducing Project Risk. Hampshire,
England: Gower Publishing Limited. (ISBN 0-566-07799-X)

Kloppenborg, Timothy J. and Joseph A. Petrick. 2002. Managing Project Quality.
Vienna, VA: Management Concepts. (ISBN 1-56726-141-8)

Kyle, Mackenzie. 1998. Making It Happen: A Non-Technical Guide to Project
Management. Toronto, Canada: John Wiley & Sons, Canada Ltds. (ISBN
0-471-64234-7)

Bibliography 465

51_596365 appb.qxd 2/15/06 10:54 PM Page 465

Lambert, Lee R. and Erin Lambert. 2000. Project Management: The CommonSense
Approach. Columbus, OH: LCG Publishing. (ISBN 0-9626397-8-8)

Laufer, Alexander and Edward J. Hoffman. 2000. Project Management Success
Stories: Lessons of Project Leaders. New York, NY: John Wiley & Sons, Inc.
(ISBN 0-471-36007-4)

Levine, Harvey A. 2002. Practical Project Management: Tips, Tactics, and Tools.
New York, NY: John Wiley & Sons, Inc. (ISBN 0-471-20303-3)

Lewis, James P. 1995. Project Planning, Scheduling & Control. Chicago, IL: Irwin.
(ISBN 1-55738-869-5)

Lewis, James P. 1998. Mastering Project Management. New York, NY: McGraw-
Hill. (ISBN 0-7863-1188-6)

Lewis, James P. 2000. The Project Manager’s Desk Reference, 2nd Edition. New
York, NY: McGraw-Hill. (ISBN 0-07-134750-X)

Lientz, Bennet P. and Kathryn P. Rea. 2001. Breakthrough Technology Project
Management, Second Edition. San Diego, CA: Academic Press. (ISBN
0-12-449968-6)

Michaels, Jack V. 1996. Technical Risk Management. Upper Saddle River, NJ:
Prentice Hall. (ISBN 0-13-155756-4)

Muller, Robert J. 1998. Productive Objects: An Applied Software Project Manage-
ment Framework. San Francisco, CA: Morgan Kaufmann Publishers, Inc.
(ISBN 1-55860-437-5)

Neuendorf, Steve. 2002. Project Measurement. Vienna, VA: Management Con-
cepts. (ISBN 1-56726-140-X)

Pinto, Jeffrey K. 1998. Project Management Handbook. San Francisco, CA: Jossey-
Bass Publishers. (ISBN 0-7879-4013-5)

Pritchard, Carl L. 1998. How to Build A Work Breakdown Structure: The Corner-
stone of Project Management. Arlington, VA: ESI International. (ISBN
1-890367-12-5)

Pritchard, Carl L. 2001. Risk Management: Concepts and Guidance. Arlington, VA:
ESI International. (ISBN 1-890367-30-3)

Project Management Institute. 1997. Principles of Project Management. Upper
Darby, PA: Project Management Institute. (ISBN 1-880410-30-3)

Project Management Institute. 1997. The PMI Book of Project Management Forms.
Upper Darby, PA: Project Management Institute. (ISBN 1-880410-31-1)

Project Management Institute. 1999. Project Management Software Survey. New-
ton Square, PA: Project Management Institute. (ISBN 1-880410-52-4)

Project Management Institute. 1999. The Future of Project Management. New-
town Square, PA: Project Management Institute. (ISBN 1-880410-71-0)

Project Management Institute. 2000. A Guide to the Project Management Body of
Knowledge. Newtown Square, PA: Project Management Institute.

A p p e n d i x B466

51_596365 appb.qxd 2/15/06 10:54 PM Page 466

Project Management Institute. 2000. Project Management Experience and Knowl-
edge Self-Assessment Manual. Newtown, PA: Project Management Institute.
(ISBN 1-880410-24-9)

Project Management Institute. 2001. Practice Standards for Work Breakdown
Structures. Newtown Square, PA: Project Management Institute. (ISBN
1-880410-81-8)

Rad, Parviz F. 2002. Project Estimating and Cost Management. Vienna, PA:
Management Concepts. (ISBN 1-56726-144-2)

Royer, Paul S. 2002. Project Risk Management: A Proactive Approach. Vienna, VA:
Management Concepts. (ISBN 1-56726-139-6)

Schuyler, John. 2001. Risk and Decision Analysis in Projects, Second Edition.
Newtown Square, PA: The Project Management Institute. (ISBN
1-880410-28-1)

Schwalbe, Kathy. 2000. Information Technology Project Management. Boston, MA:
Course Technology. (ISBN 0-7600-1180-X)

Siegel, David. 1997. Secrets of Successful Web Sites: Project Management on the
World Wide Web. Indianapolis, IN: New Riders. (ISBN 1-56830-382-3)

Sodhi, Jag and Prince Sodhi. 2001. IT Project Management Handbook. Vienna,
VA: Management Concepts. (ISBN 1-56726-098-5)

TechRepublic. 2001. IT Professional’s Guide to Project Management. Louisville,
KY: TechRepublic. (ISBN 1-931490-16-3)

Toney, Frank and Ray Powers. 1997. Best Practices of Project Management Groups
in Large Functional Organizations. Upper Darby, PA: Project Management
Institute. (ISBN 1-880410-05-2)

Verzuh, Eric. 1999. The Fast Forward MBA in Project Management. New York,
NY: John Wiley & Sons, Inc. (ISBN 0-471-32546-5)

Ward, J. LeRoy. 2000. Project Management Terms: A Working Glossary. Arlington,
VA: ESI International. (ISBN 1-890367-25-7)

Whitten, Neal. 1995. Managing Software Development Projects, Second Edition.
New York, NY: John Wiley & Sons. (ISBN 0-471-07683-X)

Whitten, Neal. 2000. The EnterPrize Organization. Newtown Square, PA: The
Project Management Institute. (ISBN 1-880410-79-6)

Wysocki, Robert K., Robert Beck, Jr., and David B. Crane. 2000. Effective Project
Management, Second Edition. New York, NY: John Wiley & Sons. (ISBN
0-471-36028-7)

Yourdon, Edward. 1999. Death March: The Complete Software Developer’s Guide to
Surviving “Mission Impossible” Projects. Upper Saddle River, NJ: Prentice
Hall. (ISBN 0-13-014659-5)

Bibliography 467

51_596365 appb.qxd 2/15/06 10:54 PM Page 467

Agile Project Management
Ajani, Shaun. 2002. Extreme Project Management: Unique Methodologies–Resolute

Principles–Astounding Results. San Jose, CA: Writers Club Press. (ISBN
0-595-21335-9)

Ambler, Scott W. 2000. The Unified Process Elaboration Phase: Best Practices in
Implementing the UP. Lawrence, KS: R&D Books. (ISBN 1-929629-05-2

Ambler, Scott W. 2002. Agile Modeling: Effective Practices for Extreme Program-
ming and the Unified Process. New York, NY: John Wiley & Sons, Inc. (ISBN
0-471-20282-7)

Ambler, Scott W. and Larry L. Constantine. 2000. The Unified Process Inception
Phase: Best Practices in Implementing the UP. Lawrence, KS: CMP Books.
(ISBN 1-929629-10-9)

Ambler, Scott W. 2004. The Object Primer: Agile Model-Driven Development with
UML 2.0, Third Edition. Cambridge, United Kingdom Cambridge University
Press. (ISBN 0-521-54018-6)

Anderson, David J. 2004. Agile Management for Software Engineering: Applying
the Theory of Constraints for Business Results. Upper Saddle River, NJ: Prentice
Hall. (ISBN 0-13-142460-2)

Augustine, Sanjiv. 2005. Managing Agile Projects. Upper Saddle River, NJ: Pren-
tice Hall. (ISBN 0-13-124071-4)

Beck, Kent. 2000. Extreme Programming Explained: Embrace Change. Reading,
MA: Addison-Wesley. (ISBN 0-201-61641-6)

Beck, Kent and Martin Fowler. 2001. Planning Extreme Programming. Reading,
MA: Addison-Wesley. (ISBN 0-201-71091-9)

Bergstrom, Stefan and Lotta Raeberg. 2004. Adopting the Rational Unified Process:
Success with RUP. Boston, MA: Addison-Wesley (ISBN 0-321-20294-5)

Boehm, Barry and Richard Turner. 2004. Balancing Agility and Discipline: A
Guide for the Perplexed. Reading, MA: Addison-Wesley (ISBN 0-321-18612-5)

Chin, Gary. 2004. Agile Project Management: How to Succeed in the Face
of Changing Project Requirements. New York, NY: AMACOM. (ISBN
0-8144-7176-5)

Cockburn, Alistair. 1998. Surviving Object-Oriented Projects. Boston, MA:
Addison-Wesley. (ISBN 0-201-49834-0)

Cockburn, Alistair. 2001. Writing Effective Use Cases. Boston, MA: Addison-
Wesley. (ISBN 0-201-70225-8)

Cockburn, Alistair. 2005. Crystal Clear: A Human-Powered Methodology for Small
Teams. Boston, MA: Addison-Wesley (ISBN 0-201-69947-8)

Cohn, Mike. 2004. User Stories Applied: For Agile Software Development. Boston,
MA: Addison-Wesley. (ISBN 0-321-20568-5)

A p p e n d i x B468

51_596365 appb.qxd 2/15/06 10:54 PM Page 468

Coplien, James O. and Neil B. Harrison. 2005. Organizational Patterns of Agile
Software Development. Upper Saddle River, NJ: Prentice Hall (ISBN
0-13-146740-0)

DeCarlo, Doug. 2004. Extreme Project Management: Using Leadership, Principles,
and Tools to Deliver Value in the Face of Volatility. San Francisco, CA: Jossey
Bass. (ISBN 0-7879-7409-9)

DeGrace, Peter and Leslie Hulet Stahl. 1990. Wicked Problems, Righteous Solutions.
Englewood Cliffs, NJ: Yourdon Press Computing Series. (ISBN 0-13-590126-X)

Eckstein, Jutta. 2004. Agile Software Development in the Large: Diving into the
Deep. New York, NY: Dorset House. (ISBN 0-932633-57-9)

Fowler, Martin. 2000. Refactoring: Improving the Design of Existing Code. Boston,
MA: Addison-Wesley. (ISBN 0-201-48567-2)

Highsmith, James A. 2000. Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. New York, NY: Dorset House Pub-
lishing (ISBN 0-932633-40-4)

Highsmith, Jim. 2002. Agile Software Development Ecosystems. Boston, MA:
Addison-Wesley. (ISBN 0-201-76043-6)

Jeffries, Ron, Ann Henderson, and Chet Hendrickson. 2001. Extreme Program-
ming Installed. Boston, MA: Addison-Wesley. (ISBN 0-201-70842-6)

Kruchten, Philippe. 2000. The Rational Unified Process: An Introduction, Second
Edition. Boston, MA: Addison-Wesley. (ISBN 0-201-70710-1)

McConnell, Steve. 1996. Rapid Development. Redmond, WA: Microsoft Press.
(ISBN 1-55615-900-5)

McConnell, Steve. 1998. Software Project Survival Guide. Redmond, WA:
Microsoft Press. (ISBN 1-57231-621-7)

Newkirk, James and Robert C. Martin. 2001. Extreme Programming in Practice.
Boston, MA: Addison-Wesley. (ISBN 0-201-70937-6)

Palmer, Stephen R. and John M. Felsing. 2002. A Practical Guide to Feature-
Driven Development. Upper Saddle River, NJ: Prentice Hall. (ISBN
0-13-067615-2)

Pollice, Gary, et al. 2004. Software Development for Small Teams: A RUP-Centric
Approach. Boston, MA: Addison-Wesley. (ISBN 0-321-19950-2)

Royce, Walker. 1998. Software Project Management: A Unified Framework.
Reading, MA: Addison-Wesley. (ISBN 0-201-30958-0)

Schwaber, Ken and Mike Beedle. 2002. Agile Software Development with
SCRUM. Upper Saddle River, NJ: Prentice Hall. (ISBN 0-13-067634-9)

Stapleton, Jennifer. 2003. DSDM: Business Focused Development, Second Edition.
Boston, MA: Addison-Wesley. (ISBN 0-321-11224-5)

Succi, Giancarlo and Michele Marchesi. 2001. Extreme Programming Examined.
Boston, MA: Addison-Wesley. (ISBN 0-201-71040-4)

Bibliography 469

51_596365 appb.qxd 2/15/06 10:54 PM Page 469

Thomsett, R. 1993. Third Wave Project Management. Englewood Cliffs, NJ:
Yourdon Press Computing Series. (ISBN 0-13-915299-7)

Thomsett, Rob. 2002. Radical Project Management. Upper Saddle River, NJ:
Prentice Hall. (ISBN 0-13-009486-2)

Wake, William C. 2002. Extreme Programming Explored. Boston, MA: Addison-
Wesley. (ISBN 0-201-73397-8)

Wysocki, Robert K., 2003. Effective Project Management: Traditional, Adaptive,
Extreme, Third Edition. New York, NY: John Wiley & Sons. (ISBN
0-471-43221-0)

Putting It All Together
Block, Thomas R. and J. Davidson Frame. 1998. The Project Office. Upper Darby,

PA: Project Management Institute. (ISBN 1-56052-443-X)
Chang, Richard Y. 1994. Continuous Process Improvement. Irvine, CA: Richard

Chang Associates. (ISBN 1-883553-06-7)
Chang, Richard Y. 1995. Process Reengineering in Action. Irvine, CA: Richard

Chang Associates. (ISBN 1-883553-16-4)
Chang Richard Y. and P. Keith Kelly. 1994. Improving Through Benchmarking.

Irvine, CA: Richard Chang Associates. (ISBN 1-883553-08-3)
Chang, Richard Y. and Matthew E. Niedzwiecki. 1993. Continuous Improvement

Tools, Vol I. Irvine, CA: Richard Chang Associates. (ISBN 1-883553-00-8)
Chang, Richard Y. and Matthew E. Niedzwiecki. 1993. Continuous Improvement

Tools, Vol II. Irvine, CA: Richard Chang Associates. (ISBN 1-883553-01-6)
Cooper, Robert G., Scott J. Edgett, and Elko J. Kleinschmidt. 1998. Portfolio

Management for New Products. Reading, MA: Perseus Books. (ISBN
0-201-32814-3)

Crawford, J. Kent. 2002. The Strategic Project Office: A Guide to Improving Organi-
zational Performance. New York, NY: Marcel Dekker, Inc. (ISBN 0-8247-0750-8)

Crawford, J. Kent. 2002. Project Management Maturity Model: Providing a Proven
Path to Project Management Excellence. New York, NY: Marcel Dekker, Inc.
(ISBN 0-8247-0754-0)

Dinsmore, Paul C. 1999. Winning in Business With Enterprise Project Manage-
ment. New York, NY: AMACOM. (ISBN 0-8144-0420-0)

Dymond, Kenneth M. 1998. A Guide to the CMM: Understanding the Capability
Maturity Model for Software. Annapolis, MD: Process Transition Interna-
tional, Inc. (ISBN 0-9646008-0-3)

Dye, Lowell D. and James S. Pennypacker, (editors). 1999. Project Portfolio Man-
agement: Selecting and Prioritizing Projects for Competitive Advantage. West
Chester, PA: Center for Business Practices. (ISBN 1-929576-00-5)

A p p e n d i x B470

51_596365 appb.qxd 2/15/06 10:54 PM Page 470

Fuller, Jim. 1997. Managing Performance Improvement Projects: Preparing, Plan-
ning, Implementing. San Francisco, CA: Jossey Bass. (ISBN 0-7879-0959-9)

Graham, Robert J. and Randall L. Englund. 1997. Creating an Environment for
Successful Projects. San Francisco, CA: Jossey-Bass Publishers. (ISBN
0-7879-0359-0)

Hallows, Jolyon. 2002. The Project Management Office Toolkit: A Step-by-Step
Guide to Setting Up A Project Management Office. New York, NY: AMACOM.
(ISBN 0-8144-0663-7)

Hunt, V. Daniel. 1996. Process Mapping: How to Reengineer Your Business
Processes. New York, NY: John Wiley & Sons, Inc. (ISBN 0-471-13281-0)

Kerzner, Harold. 2001. Strategic Planning for Project Management Using A Project
Management Maturity Model. New York, NY: John Wiley & Sons, Inc. (ISBN
0-471-40039-4)

Phillips, Jack J. et al. 2002. The Project Management Scorecard: Measuring the
Success of Project Management Solutions. Boston, MA: Butterworth Heine-
mann. (ISBN 0-7506-7449-0)

Rad, Parviz F. and Ginger Levin. 2002. The Advanced Project Management Office:
A Comprehensive Look at Function and Implementation. Boca Raton, FL: St Lucie
Press. (ISBN 1-57444-340-2)

Raynus, Joseph. 1999. Software Process Improvement with CMM. Boston, MA:
Artech House. (ISBN 0-89006-644-2)

Bibliography 471

51_596365 appb.qxd 2/15/06 10:54 PM Page 471

51_596365 appb.qxd 2/15/06 10:54 PM Page 472

Installing Custom Controls 473

The Project Overview Statement
Define the problem before you pursue a solution.

Neils Bohr

A P P E N D I X C

473

NOTE
Most of the material in this chapter is an abridged version of material discussing the
Project Overview Statement (POS) from my earlier book Effective Project Manage-
ment: Traditional, Adaptive, Extreme, Third Edition (Wiley, 2003). It is presented here
for completeness so that this book may be used as a text for an introductory course
in software project management. For courses requiring more detail the earlier work
may be used as a companion text.

There needs to be a high-level description of every project. This will be a doc-
ument that should get broad distribution across the enterprise. I call that
document the Project Overview Statement. It is a one-page non-technical
description of the Opportunity/Problem, Goal, Objectives, Success Criteria,
Risks and Assumptions of the project.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Describe the Project Overview Statement

◆ Know the purpose of the Project Overview Statement

◆ Understand attachments to the Project Overview Statement

52_596365 appc.qxd 2/15/06 10:44 PM Page 473

The Requirements Document provides the input you need to generate the Pro-
ject Overview Statement (POS). The POS is a short document (ideally one page)
that concisely states what is to be done in the project, why it is to be done, and
what business value it will provide to the enterprise when completed.

The main purpose of the POS is to secure senior management approval and
the resources needed to develop a detailed project plan. It will be reviewed by
the managers who are responsible for setting priorities and deciding what pro-
jects to support. It is also a general statement that can be read by any interested
party in the enterprise. For this reason, the POS cannot contain any technical
jargon that generally would not be used across the enterprise. Once approved,
the POS becomes the foundation for future planning and execution of the pro-
ject. It becomes the reference document for questions or conflicts regarding
project scope and purpose.

Parts of the POS

The POS has five component parts:

■■ Problem/opportunity

■■ Project goal

■■ Project objectives

■■ Success criteria

■■ Assumptions, risks, obstacles

Its structure is designed to lead senior managers from a statement of fact
(problem/opportunity) to a statement of what this project will address (pro-
ject goal). Given that senior management is interested in the project goal and
that it addresses a concern of sufficiently high priority, they will read more
detail on exactly what the project includes (project objectives). The business
value is expressed as quantitative business outcomes (success criteria). Finally,
a summary of conditions that may hinder project success is identified
(assumptions, risks, obstacles). This appendix takes a look at each of these sec-
tions more closely. An example POS is given in Figure C-1.

Stating the Problem/Opportunity
The first part of the POS is a statement of the problem or opportunity that the
project addresses. This statement is fact—it does not need to be defined or
defended. Everyone in the organization will accept it as true. This is critical

A p p e n d i x C474

52_596365 appc.qxd 2/15/06 10:44 PM Page 474

because it provides a basis for the rest of the document. The POS may not have
the benefit of the project manager’s being present to explain what is written or
to defend the reason for proposing the project to the management. A problem
or opportunity statement that is known and accepted by the organization is
the foundation on which to build a rationale for the project. It also sets the pri-
ority with which management will view what follows. If you are addressing a
high-priority area or high-business-value area, your idea will get more atten-
tion and senior management will read on.

Establishing the Project Goal
The second section of the POS states the goal of the project—what you intend,
written in the language of the business, to do to address the problem or oppor-
tunity identified. The purpose of the goal statement is to get senior manage-
ment to value the idea enough to read on. In other words, they should think
enough of your idea as stated in the goal statement to conclude that it warrants
further attention and consideration.

Defining the Project Objectives
The third section of the POS comprises the project objectives. Think of objec-
tive statements as a more detailed version of the goal statements. The purpose
of the objective statements is to clarify the exact boundaries of the goal state-
ment and define the boundaries or the scope of your project. In fact, the objec-
tive statements you write for a specific goal statement are nothing more than a
decomposition of the goal statement into a set of necessary and sufficient
objective statements. That is, every objective must be accomplished in order to
reach the goal, and no objective is superfluous.

Identifying Success Criteria
The fourth section of the POS answers the question, “Why do we want to do
this project?” It is the measurable business value that will result from doing
this project. It sells the project to senior management. It is essential that the cri-
teria be quantifiable and measurable and, if possible, expressed in terms of
business value. Remember that you are trying to sell your idea to the decision
makers.

The Project Overview Statement 475

52_596365 appc.qxd 2/15/06 10:44 PM Page 475

Figure C-1: An example POS

There are only three types of success criteria.

■■ The results of the project can increase revenue, and as a part of the suc-
cess criteria that increase should be measured in hard dollars or as a per-
centage of a specific revenue number.

PROJECT OVERVIEW
STATEMENT

Project Name
Office Supply
Cost Reduction

Problem/Opportunity

Our cost reduction task force reports that office supply expenses have exceeded budget by an average of
4% for each of the last 3 years. In addition, an across the board budget cut of 2% has been announced and
there is an inflation rate of 3% estimated for the year.

Goal

To implement a cost containment strategy that will result in office supply expenses being within budget by
the end of the next fiscal year.

Objectives

 1. Establish a departmental office supply budgeting and control system.
 2. Implement a central store for office and copying supplies.
 3. Standardize the types and brands of office supplies used by the company.
 4. Increase employee awareness of copying practices that can reduce the cost of meeting their
 copying needs.

Success Criteria

 1. The total project cost is less than 4% of the current year office supply budget.
 2. At least 98% of office supply requests are filled on demand.
 3. At least 90% of the departments have office supply expenses within budget.
 4. No department office supply expense exceeds budget by more than 4%.

Assumptions, Risks, Obstacles

 1. Central stores can be operated at or below the breakeven point.
 2. Users will be sensitive to and supportive of the cost containment initiatives.
 3. Equitable office supply budgets can be established.
 4. Management will be supportive and consistent.
 5. The existing inventory control system can support the central stores operation.

Path Forward Recommendations

 1. Conduct preliminary planning based on the elements contained herein. Planning may uncover
 issues, which require further clarification in order to reach more definitive conclusions.
 2. Schecule a tentative meeting to discuss preliminary planning findings.
 3. Incorporate all comments and recommendations from meeting and receive approval to proceed to
 definitive planning.

Project No. Project Leads
PAUL BEARER

Prepared By

Olive Branch

Date

04/01/04

Approved By

Del E. Lama

Date

04/05/04

A p p e n d i x C476

52_596365 appc.qxd 2/15/06 10:44 PM Page 476

■■ The second type of success criteria is to avoid costs. Again this can be
stated as a hard dollar amount or a percentage of some specific cost. Be
careful here because oftentimes a cost reduction means staff reductions.
Staff reductions do not mean the shifting of resources to other places in
the organization. Moving staff from one area to another is not a cost
reduction.

■■ The final type of success criteria is to improve service. Here the metric is
more difficult to define. It usually is some percentage improvement in
customer satisfaction or a reduction in the frequency and/or type of cus-
tomer complaints.

NOTE
You might be familiar with the term IRACIS. It is formed from the first letter of each
of the three types of success criteria.

In some cases, it can take some creativity to identify the success criteria. For
example, customer satisfaction may have to be measured by some pre- and
post-surveys. In other cases, a surrogate might be acceptable if directly mea-
suring the business value of the project is impossible. Be careful, however, and
make sure that the decision maker buys into your surrogate measure. Also be
careful of traps such as this one: “We haven’t been getting any customer com-
plaint calls; therefore, the customer must be satisfied.” Did you ever consider
the possibility that the lack of complaint calls may be the direct result of your
lack of action responding to complaints? Customers may feel that it does no
good to complain because nothing happens to settle their complaint.

Senior management also will look at your success criteria and assign business
value to your project. In the absence of other criteria this will be the basis for
their decision whether to commit resources to complete the detailed plan. The
success criteria are another place to sell the value of your project.

List Assumptions, Risks, and Obstacles
The fifth and final section of the POS identifies any factors that can affect the
outcome of the project and that you want to bring to the attention of senior
management. Perhaps they can find ways to mitigate them. These factors can
affect deliverables, the realization of the success criteria, the ability of the pro-
ject team to complete the project as planned, or any other environmental or
organizational conditions that are relevant to the project. You want to record
anything that can go wrong. Be careful, however, to put in the POS only those
items that you want senior management to know about and in which they will
be interested. This is not the place to conduct a comprehensive risk identifica-
tion exercise.

The Project Overview Statement 477

52_596365 appc.qxd 2/15/06 10:44 PM Page 477

The project manager uses the assumptions, risks, and obstacles section to alert
management to any factors that may interfere with the project work or com-
promise the contribution that the project can make to the organization. Man-
agement may be able to neutralize their impact. On the other hand, the project
manager will include in the project plan whatever contingencies can help
reduce the probable impact and its effect on project success.

Attachments

Even though I strongly recommend a one-page POS, in some instances a
longer document is necessary. As part of their initial approval of the resources
to do detailed project planning, senior management may want some measure
of the economic value of the proposed project. They recognize that many of the
estimates are little more than a guess, but they will nevertheless ask for this
information. In my experience, I have seen two types of analyses requested
frequently:

■■ Risk analysis

■■ Financial analyses (such as the following):

■■ Return on Investment

■■ Breakeven Analysis

■■ Internal Rate of Return

■■ Cost/Benefit Analysis

A discussion of these analyses is outside the scope of this book.

A p p e n d i x C478

52_596365 appc.qxd 2/15/06 10:44 PM Page 478

Installing Custom Controls 479

Requirements Gathering
In most management problems there are too many pos-
sibilities to expect experience, judgement, or intuition
to provide good guesses, even with perfect information.

Russell L. Ackoff
Management Information Systems scientist

A P P E N D I XD

479

NOTE
Most of the material in this chapter is an abridged version of material discussing
gathering requirements from my earlier book Effective Project Management:
Traditional, Adaptive, Extreme, Third Edition (Wiley, 2003). It is presented here for
completeness so that this book may be used as a text for an introductory course in
software project management. For courses requiring more detail the earlier work
may be used as a companion text.

Gathering requirements is one of the first and major places that the project can
go wrong. This is the first opportunity to really explore what the customer
needs as opposed to what the customer thinks they want. Completeness and
clarity are paramount. There will be many cases where one or both of those

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Understand the significance of wants versus needs

◆ Describe what managing customer expectations really means

◆ Know what a requirement is and how to gather requirements

◆ Understand the role of the stakeholder in requirements gathering

53_596365 appd.qxd 2/15/06 10:50 PM Page 479

will not be possible. That situation is discussed at length throughout the book.
In this appendix the discussion is limited to the industry best practices for
requirements gathering.

Requirements gathering can be simple and straightforward or it can be com-
plex and meandering and anywhere in between. Add to that customers or
clients who can’t seem to make up their minds or are known to constantly
change their minds, and you have a significant problem to deal with.

The approaches this appendix explores for requirements gathering are Condi-
tions of Satisfaction (COS) and the Volere Process.

■■ COS works well on smaller, simpler projects. It produces a document of
understanding, which we call a Project Overview Statement (POS). COS is
a dynamic tool in that it is validated at major check points in the project,
like during project status meetings or at milestone events.

■■ COS does not scale well, so for larger more complex projects I use the Vol-
ere Process, as outlined in Mastering the Requirements Process by Suzanne
Robertson and James Robertson (Addison-Wesley, 1999).

Conditions of Satisfaction

The root cause of many problems that come up in the course of doing a project
originate in a disconnect between what the client says they want and what
they really need. The disconnect may come about because the client is swept
up in a euphoria over the technology and is so enamored with what they see
on the web, for example, that they have convinced themselves that they have
to have it without any further thought of exactly what it is they really need.
The disconnect can also come about because the client does not really know
what they need. Traditional Project Management (TPM) forces them into spec-
ifying what they want when that is the absolute wrong thing to do. If there is
any reason to believe that what the client says they want is different from what
they need, the project manager has the responsibility of sifting and sorting this
out ASAP. That is one of the reasons for the Conditions of Satisfaction (COS).

Many projects run into trouble at the very beginning. For some reason, people
have a difficult time understanding what they are saying to one another. How
often do you find yourself thinking about what you are going to say while the
other party is talking? If you are going to be a successful project manager, you
must stop that kind of behavior. An essential skill that project managers need
to cultivate is good listening skills.

A p p e n d i x D480

53_596365 appd.qxd 2/15/06 10:50 PM Page 480

Good listening skills are important in two critical stages of the project plan-
ning phase.

■■ The first, and the ideal one, occurs when a client makes a request for a
project. At this point, two parties are brought together to define exactly
what the request is and what kind of response is appropriate. The deliver-
able from this conversation is a COS.

■■ The second, and the more likely situation, occurs when you inherit what
we call the “watercooler project.” As the name suggests, these are the pro-
jects that are assigned to you when you accidentally meet your manager
at the water cooler. Up to that point, you probably had not heard of such a
project, but you now need to find out all about it ASAP.

The COS document is the result of your investigation.

For smaller simpler project situations Conditions of Satisfaction (COS) is an
effective approach to understanding what the client wants (or needs, but that’s
for a later conversation) and having the client understand what you will be
able to do for them. Figure D-1 is a simple representation of the process of
requirements gathering using COS.

The first thing to realize about COS is that to do it effectively requires good lis-
tening skills. Many have the bad habit of planning what they are going to say
while the other person is saying their piece. If that is your style, you have to
cure that habit.

Referring again to Figure D-1 I want to take a walk through a generic COS ses-
sion. The requester (the client) and the provider (the project manager) are sit-
ting across the table from one another. The requester begins to explain what
they want while the provider is listening attentively. Once the requester has
completed their request, the provider begins to explain, in their own words,
what it is they heard the requester ask for. A conversation follows in which the
provider continues to explain what they heard. The conversation continues
until the requester says, “You understand what I am asking for.” At that point
the tables are turned and the provider begins to explain what it is that can pro-
vide. Once the provider has completed that explanation the requestor beings
to repeat what they heard will be provided in their own words. That continues
until the provider says, “You understand what I can provide.”

In this simple scenario, a lot more has been accomplished than you might
think at first brush. First, both parties have made their positions known and
know that the other party understands. The positions may not be compatible
with one another but at least they are known. Secondly, the parties have begun

Requirements Gathering 481

53_596365 appd.qxd 2/15/06 10:50 PM Page 481

to establish a common language. They can talk to one another in the language
of the project they are forming and know what the other person is saying. I
consider this to be a critical success factor for any project where the two parties
have very different professional and business orientations. Their languages
are different. They have their own acronyms and code words that may not be
shared by anyone outside of their area of expertise. But now our requester and
provider have breached that gap and are talking and understanding one
another.

The remaining part of the COS session is to come to an agreement about what
will be delivered, when, how, and so on.

Business Outcomes
It is a good idea to specify within the COS what exactly will be the outcome
that demonstrates that the COS has been met. The outcomes have been called
success criteria, explicit business outcomes, and objectives. Whatever term
you use, you are referring to a quantitative metric that signals success. It is a
quantitative measure (profit, cost avoidance, improved service levels) that
defines success.

Milestone Reviews
The COS is not a static agreement. It is a dynamic agreement that becomes part
of the continual project monitoring process. Situations change throughout the
project life cycle, and so will the needs of the customer. That means that COS
will change. At every major project status review and project milestone,
review the COS. Do they still make sense? If not, change them and adjust the
project plan accordingly.

Figure D-1: Establishing the Conditions of Satisfaction.

Clarify
Request

Agree on
Response

Negotiate agreement and
write Project Overview Statement

Request Response

A p p e n d i x D482

53_596365 appd.qxd 2/15/06 10:50 PM Page 482

The Volere Process

Perhaps the most documented and complete approach to requirements gath-
ering is found in the Volere Process. You can use it as a base for the process that
I recommend to gather requirements.

Gathering Customer Requirements
Simply put, IS teams who make a concerted effort to manage customer
requirements do so because they want to satisfy their customer needs by hav-
ing their projects succeed. Research studies find that the majority of project
failures are related in some way to changing customer requirements.

This section is based on a modified Volere Requirements Process and its asso-
ciated Specification Template. I have found this to be a best practice. Originally
designed for use in systems application development, the process is a generic
requirements gathering and specification process whose principles can be
applied to small and large projects across varied industries. These processes
are discussed in detail in the next section. Before I get into those details, I need
to put a few definitions in place.

What Are Requirements?

Requirements are the things that you should discover before starting to
fully design, build, or execute a project. Discovering the requirements during
execution/construction is inefficient and detrimental.

A requirement exists either because the type of product demands certain func-
tions or qualities, or the client wants the requirements to be part of the product/
project delivery.

Project requirements start with what the customer really needs and end when
those needs are satisfied. In the end-to-end chain of specifications, there is an
ongoing danger of misunderstanding and ambiguity. This often leads to
nonessential or over specified requirements.

What Kinds of Requirements Are There?

Requirements define the product or service that is the deliverable of the pro-
ject. These requirements are the basis for changes that a customer is seeking. At
this stage, after stakeholder assessment, the project manager and the project

Requirements Gathering 483

53_596365 appd.qxd 2/15/06 10:50 PM Page 483

team are now tasked with going through the steps to establish the require-
ments baseline. This process is a systematic step-by-step effort that requires
diligence. It is these requirements that will be used for estimating the cost and
time for the project. Ultimately, these requirements drive acceptance of the
product or service by the customer.

Requirements are separated into four categories and not just considered as one
large bucket of information.

Functional Requirements

Functional requirements specify what the product or service must do. They are
actions that the product or service must take such as check, calculate, record,
and retrieve. For example,

■■ The product shall accept a scheduling date for service.

■■ The product shall accept a valid inventory warehouse identifies.

■■ The product shall confirm that the designated warehouse is the one
wanted by the product.

Non-Functional Requirements

Non-functional requirements demonstrate the properties that the product or
service should have in order to do what it must do. These requirements are the
characteristics or qualities that make the product or service attractive, or
usable, or fast, or reliable. Most non-functional requirements are associated
with performance criteria and are usually those requirements that will estab-
lish the product or service boundary. Non-functional requirements can some-
times be generated by the refinement of a global requirement. Non-functional
requirements are usually associated with performance criteria that set the
parameters for how a system is to function. For example,

■■ The product shall be colorfully packaged.

■■ The product shall have an expensive appearance.

■■ The product shall be attractive to a senior audience.

Global Requirements

Global requirements describe the highest level of requirements within the sys-
tem or project. Global requirements will describe properties of the system as a
whole. During the initial stages of a project, many requirements end up being
global requirements. They require the project manager and the team to refine
them through the methods of requirement generation. Global requirements is a
relatively new term. In the past, these have been called general requirements

A p p e n d i x D484

53_596365 appd.qxd 2/15/06 10:50 PM Page 484

or product constraints or constraining requirements. The caution with global
requirements is that in most cases, they can be turned into a non-functional
requirement simply by asking the questions associated with what, why, or
how. In fact, it is wise to move a global requirement to a non-functional
requirement in order to focus in better on what the requirement really is. For
example,

■■ The system shall have a maximum response time of 4 microseconds
regardless of the inquiry.

■■ The system shall be designed to be intuitive and require no user training.

Product/Project Constraints

Product/project constraints are those requirements that, on the surface, resem-
ble design constraints or project constraints. Design constraints are those pre-
existing design decisions that mandate how the final product must look or
how it must comply technologically. Project constraints cover the areas of bud-
get and schedule along with deadlines and so on. One important note here is
that product constraints can be listed as global requirements, but project con-
straints are not. For example,

■■ The system shall run on the existing network.

■■ The total out-of-pocket cost of the system shall not exceed $35M.

It is very important to realize that requirements identification and categoriza-
tion is critical to understanding the direction of the project. It is now that the
framework for the project begins to take shape.

Refining the Product Definition

With an agreed-upon high-level product definition and a well-understood ini-
tial scope, it is both possible and economical to invest resources in more
refined product definitions. Refining the product definition includes two key
considerations:

■■ Developing more detailed descriptions of the high-level product definition

■■ Verifying that the product will comply with stakeholder needs and
behave as described

The descriptions are often the critical reference materials for project teams.
Descriptions are best done with the audience in mind. A common mistake is to
represent what is complex to build with a complex definition, particularly
when the audience may be unable or unwilling to invest the critical thinking

Requirements Gathering 485

53_596365 appd.qxd 2/15/06 10:50 PM Page 485

necessary to gain agreement. This leads to difficulties in explaining the pur-
pose of the product to people both inside and outside of the project team.
Instead, you may discover the need to produce different kinds of descriptions
for different audiences.

Managing Changing Requirements

No matter how carefully you define your requirements, they will change. In
fact, some requirement change is desirable! It means that your team is engag-
ing your stakeholders. Accommodating changing requirements is a measure
of your team’s stakeholder sensitivity and operational flexibility—team attrib-
utes that contribute to successful projects. Change is not the enemy; unman-
aged change is. A changed requirement means more or less time has to be
spent on implementing a particular feature and a change to one requirement
may have an impact on other requirements. Managing requirement change
includes activities such as establishing a baseline, keeping track of the history
of each requirement, determining which dependencies are important to trace,
establishing traceable relationships between related items, and maintaining
version control. It is also important to establish a change control or approval
process, requiring all proposed changes to be reviewed by designated team
members. Sometimes this single channel of change control is called a Change
Control Board (CCB).

Volere Requirements Process
A graphic of the adapted Volere Requirements Process (Figure D-2) shows the
activities and how they are linked by their deliverables. The deliverables are
shown as moving from one activity to the next. This represents the concept
that the output from one activity is input to the next. This is not a hard and fast
rule, as it is usually necessary for activities to iterate and overlap before the
final product of the process is achieved.

Figure D-2: A Modified Volere Requirements Process

Project
Start

Trawl for
Knowledge

Prototype the
Requirements

Write the
Specification

Product Use
& Evolution

Analyze, Design
and Build

Requirements
Reuse

Quality
Gateway

Take Stock
of the

Specification

A p p e n d i x D486

53_596365 appd.qxd 2/15/06 10:50 PM Page 486

Start

The project start is a joint planning meeting(s) where the project principals
work together to define the project’s overall objectives. Their goal is to gather
enough facts and information to develop a project scope document (Project
Overview Statement) and gain commitment for the project from the proper
stakeholders.

Trawl for Knowledge

Once the kickoff is completed, the project manager and team (where applicable)
start mining for knowledge and data. The initial scope of work and objectives
need to be broken down into specific types of work (disciplines and technology
areas) for further detailed study. The team must query the users of the product,
system or facility in order to achieve the correct balance of functionality, con-
structability, compliance, operability, reliability and maintainability.

Trawling for knowledge involves three steps.

1. Conduct a Stakeholder Analysis

To get started on the right foot in the requirements identification part of the
baselining process, the project manager and the project team must conduct a
stakeholder analysis. The process of requirements identification should be just
that—identification and only identification. Once there has been a list of
requirements created, the team can now assess what category to put them in.
This must be done in order to prepare for effective requirements generation.

Project stakeholders are individuals or organizations that are involved in or
affected by project activities. When a company makes decisions, they often
have major implications for a number of stakeholder groups such as stock-
holders, environmental groups, government agencies, and others.

Analyzing the project stakeholders can help to identify the effects an action
can have on various groups. For example, the decision to cut a company’s con-
tribution to health insurance may make financial sense and please the stock-
holders, but the associates and their families are likely to be upset about it.
Smart companies take this into consideration before the decision is made.

Depending upon their level of influence, stakeholders can have a tremendous
impact on project development. They can help or hinder development time,
startup problems, and top management support.

There is an old saying in project management: “Never get the accountant
mad.” It makes good sense to consider the implication of angering stakehold-
ers before the deed is done. This thought process is inherent to organizations
that are truly customer focused.

Requirements Gathering 487

53_596365 appd.qxd 2/15/06 10:50 PM Page 487

A p p e n d i x D488

Project stakeholders may include internal and external groups as shown in
Tables D-1 and D-2:

Table D-1 Internal Stakeholders

GROUP IMPACT

VP/Director level management Holds tremendous control over project managers.
Authorizes the development of projects and pro-
tects teams from organizational pressures.

Team managers Control project managers “regular” responsibilities.
Can make it difficult/easy for the project manager
to perform on the project team.

Project team members Focused on the need to get the job done. Look for
customers to agree on requirements definition
process early so that project direction is more
clearly defined.

Table D-2 External Stakeholders

GROUP IMPACT

Customers Demand willingness of the project team to be flex-
ible up to the last minute.

Outside Suppliers and Can have a large impact on the final cost and com
Contractors pletion date of the project. These vendors must be

treated as important stakeholders.

Associations and other groups May include environmental or consumer organiza-
tions, or government agencies. By lobbying or ral-
lying other public support, can force their demands
on the project team.

Conflict among stakeholders is inevitable. Different variables are important to
different stakeholder groups. For example, the accountant may be concerned
only with project performance against budget. Top management’s concerns
include on-time delivery and customer satisfaction. A customer may only care
about the final product performing to their specs.

To rationalize and resolve the diverse goals and priorities of various stakehold-
ers, a considerable amount of bargaining and negotiation is necessary. Bargain-
ing and negotiation are two primary methods of resolving conflict in
organizational politics. Project implementation success is based on the project
manager’s ability to successfully bargain and negotiate with the various stake-
holders to balance their needs and the realities of the project.

Unfortunately, it is almost impossible to keep every group satisfied. If the accoun-
tant is happy that the project is progressing on budget, the customer may be dis-
satisfied that all of his/her demands have not been met. Top management may be
upset by the fact that the project is running slightly behind schedule.

53_596365 appd.qxd 2/15/06 10:50 PM Page 488

Given the nature of this conflict, it is often appropriate to have all of the stake-
holder groups slightly annoyed with the project team. If all groups are mini-
mally upset, the delicate balance between stakeholders will be maintained and
no group will be likely to take negative action against the project.

Another aspect of pleasing stakeholders is that not all stakeholders have equal
priority. In many cases, the customer is the most important stakeholder. As a
result, project managers must consider tradeoffs among the various stake-
holder groups. The project team should always consider the importance of the
stakeholder when making these tradeoff decisions.

Upon sign off on this document, a detailed planning process can begin with
the development of a Work Breakdown Structure (WBS).

2. Identify Requirements

The start of requirements identification—the systematic approach used to
develop the details associated with each of the requirements—is prefaced by a
discussion that focuses on the readiness of the requirements for the next step.
These questions center on the next stakeholder. There is a need here to double
check to make sure that nothing (as far as is known at this point) is missing. A
key question is: “Is there sufficient detail to move on?” If the answer is yes,
then it is on to generation; if no, then it is back to the stakeholders and the
source documents for more discovery.

The steps to generate requirements begin by looking at the business function
as a whole. This is quickly followed by the selection of a method or methods
for generation. This effort must be planned. While in the generation session, be
prepared with the appropriate documentation method to ensure that each
requirement is documented.

Of all the requirements gathering approaches, I recommend you choose from
among the seven discussed below. These seven are widely used methods for
generating requirements. Usually more than one method is chosen to generate
the requirements on a project. Selection of the best methods to generate poten-
tial requirements for the project is the responsibility of the project manager,
who must evaluate each method for costs, ease of implementation, and risks.
Further, selection of a particular method should be based on specific product
and project needs, as well as proven effectiveness. Certain methods have been
proven effective for specific industries and products. An example of this
would be using physical, three-dimensional modeling in product develop-
ment and construction.

Table D-3 looks at each method and provides an indication of strengths and
risks.

Requirements Gathering 489

53_596365 appd.qxd 2/15/06 10:50 PM Page 489

A p p e n d i x D490

Table D-3 Requirements Gathering Approaches

METHOD STRENGTHS RISKS

Facilitated Group Excellent for cross-functional Use of untrained facilita-
Sessions processes tors can lead to a negative

Detailed requirements can response from users
be documented and verified Time and cost of planning/
immediately executing session can be
Resolves issues with an high
impartial facilitator

Prototypes Innovative ideas can be Customer may want to
generated implement prototype
Users clarify what they want Difficult to know when to
Users identify requirements stop
that may be missed Specialized skills required
Customer focused Absence of documentation
Early proof of concept
Stimulates thought process

Interviews End user participation Descriptions may differ
High-level description of from actual detailed
functions and processes activities
provided Without structure, stake-

holders may not know
what information to
provide
Real needs ignored if
analyst is prejudiced

Observation Specific/complete descrip- Documenting and video-
tions of actions provided taping may be time con
Effective when routine suming, expensive and
activities are difficult to have legal overtones
describe Confusing/conflicting infor-

mation must be clarified
Misinterpretation of what
is observed

Requirements Reuse Requirements quickly Significant investment to
generated/refined develop archives, mainte
Redundant efforts reduced nance, and library
Customer satisfaction functions
enhanced by previous proof May violate intellectual
Quality increase rights of previous owner
Reinventing the wheel Similarity may be misun-
minimized derstood

53_596365 appd.qxd 2/15/06 10:50 PM Page 490

Requirements Gathering 491

Table D-3 Requirements Gathering Approaches

METHOD STRENGTHS RISKS

Business Process Excellent for cross-functional Implementation of
Analysis processes improvement is depen-

Visual communication dent on an organization
Verification of “what is/what open to changes
is not” Good facilitation, data

gathering, and interpreta-
tion required
Time consuming

Use Case Scenarios State of system described Newness has resulted in
before entering the system some inconsistencies
Completed scenarios used to Information may still be
describe state of system missing from scenario
Normal flow of event/ description
exceptions revealed Long interaction required
Improved customer satisfac- Training expensive
tion and design

The following bulleted list contains additional information about each of these
methods.

■■ Facilitated Group Sessions—A good facilitator can establish momentum
with a group and get quite a bit of information in short order. Have some-
one working with you to take notes or better yet record the conversations
for later offline summary.

■■ Prototypes—Prototyping has been around since the days of the pyramids.
There are production prototypes, mock prototypes, and everything in
between. They are a visual model of something. Their purpose is to put
something tangible in the hands of the customer so they can touch, feel,
and play with it. The expectation is that they will discover features and
functions that should change, be added, or be deleted. The design of the
final product can be efficiently done using this approach. But the approach
works equally well for discovering requirements. Many customers will
respond positively to prototypes. Consider them as one more tool in your
requirements gathering arsenal.

■■ Interviews—I’ve gotten the best results from one-on-one interviews and
by simply asking people to talk to me about their jobs and the pain points
they have to live with. They might also be good sources for prescriptive
suggestions. My interviews are very conversational. Questions flow quite
naturally in that mode and one leads to another without having to spend
a lot of upfront time scripting the interview sessions.

53_596365 appd.qxd 2/15/06 10:50 PM Page 491

■■ Observations—Gathering requirements by walking around and observ-
ing processes being conducted in real time will often be brutally accurate
and more reliable than someone’s recollection during an interview. You
will have to take copious notes because there will undoubtedly be ques-
tions to clarify what you are seeing. Talking to the operators will provide
candid input that might not be recalled during interviews. Exceptions to
the process will note where an interview may skip over them entirely. In
order to get a complete picture you will want to choose several different
times and days for making those observations.

■■ Requirements Reuse—From previous projects you should have built an
inventory of requirements. This inventory will often be used in conjunc-
tion with one of the other approaches to gathering requirements. As you
are conducting say interviews, you will have this inventory in mind and
reach in and pull out a similar requirement. It may turn out to be exactly
the same or sufficiently similar to the case in point so that it can be modi-
fied and used in the present project.

■■ Business Process Analysis—Books have been written on this topic.

■■ Use Cases—The basis of most adaptive and iterative systems develop-
ment processes is the use case.

3. Generate Requirements Definitions

At this stage of the requirements process, we would refer to all requirements
as “potential requirements.” The reason for this designation is that so far the
requirements have not been fully scrutinized and/or have not passed the tests
that would clear the quality gateway. Prior to inspection at a quality gateway,
they need to be documented in a consistent format.

Writing the specification refers to the task of putting together a complete
description of the product to be built. It is appropriate to think of this activity
as ‘building’ a specification—you assemble a specification during the require-
ments process rather than writing it all at once. Writing the requirements is not
really a separate activity, but is done partly during trawling when you dis-
cover the requirements and partly during the quality checks when you are
ensuring that each requirement is complete.

The Shell

In order to proceed with clarity and completeness, the requirements must be
formally documented and in a certain structure, and for this purpose, I utilize
the shell that was introduced in Robertson and Robertson’s text and adapted
for our use here.

A p p e n d i x D492

53_596365 appd.qxd 2/15/06 10:50 PM Page 492

The shell is a container for an individual requirement. When you write your
requirements, it is not sufficient to write natural language statements, as they
lack the necessary rigor. There is a collection of components necessary to make
a complete requirement. These components have been implemented in what
you call a shell.

The shell can be documented on cards (see Figure D-3) or can be automated.
Cards are convenient when trawling for requirements, but at some stage, you
will want to transfer the requirements to an automated tool. So now, look at
how the complete, formalized requirement is constructed.

As you treat each of the items that make up the requirement, consider how you
will discover it and how well it applies to your organization. For this activity, I
will assume that you are using the Volere shell, or that you are using some mech-
anism to ensure that you capture all the relevant parts of each requirement.

Start by identifying the requirement. Each requirement has three pieces of
identification: its unique number, its type, and the event(s) and/or use case(s)
that spawned the requirement.

Figure D-3: The Shell card

SHELL CARD

Requirement #: Requirement Type: Event/User Case #:

Description:

Rationale:

Source:

Fit Criteria:

Customer Satisfaction:

Customer Dissatisfaction:

Dependencies:

Conflicts:

Supporting Materials:

History:

Requirements Gathering 493

53_596365 appd.qxd 2/15/06 10:50 PM Page 493

Requirement Number

Each requirement must be uniquely identified. The reason is straightfor-
ward—it must be traceable throughout the development of the product, so it is
convenient and logical to give each requirement a unique number. I use the
term number here to mean any unique identifier, although it can be any kind of
identifier you wish. To keep this from being an onerous clerical task, I suggest
you use a simple sequential number. It is not important how you uniquely
identify the requirements as long as you identify it.

Requirement Type

The requirement type will be one of: functional, non-functional, global, or
constraint.

Attaching the type to the requirement is useful in several ways:

■■ The requirements can be sorted into type. By comparing all requirements
of one type, you more readily discover requirements that conflict with one
another.

■■ It is easier to write an appropriate fit criterion when the type of require-
ment is established.

■■ By grouping all the known requirements of one type, it becomes more
apparent if some of them are missing or duplicated.

Event/Use Case Number

The context of the work is broken into smaller pieces using the business events
as the partitioning tool. For each business event, you decide which part of the
response to that event will be carried out by the product. It is this part of the
response—the part being done by the product—that is referred to as a use case.
When you identify each use case, you identify the user or users who will inter-
face with that part of the product. Each business event is given a number for
convenient referencing. Similarly, each use case is numbered. For traceability
and change control purposes, it is useful to keep track of all requirements that
are generated by a business event. Each of your product use cases corresponds
to a business event and the product use case. If, however, you choose to clus-
ter your requirements into sub-use cases, then you will need a separate num-
bering system for your use cases. Whatever your preference, you must tag
each requirement so that you can identify which parts of the business it relates
to (business events) and which parts of the product it relates to (use cases).

A p p e n d i x D494

53_596365 appd.qxd 2/15/06 10:50 PM Page 494

NOTE
Business events are interactions with the system that are initiated by an outside en-
tity (for example a customer, an invoice receipt) that causes the system to perform
some function or functions. For example, a customer approaches a check out clerk to
pay for an item, or a shipment of ordered materials arrives at the warehouse.

During later analysis, you will analyze each business event and use case sepa-
rately. Thus, it is convenient to be able to collect all the requirements for that
part of the work. This will help you to find missing requirements, and to con-
firm the actions of a use case with its users.

Description

The description is the intent of the requirement. It is an English (or whatever
natural language you use) statement in the user’s words as to what is required.
Do not be too concerned that it may contain ambiguities (but neither should
you be sloppy with your language). The objective when you first write the
requirement is to capture what the user, or client wishes. So for the moment, a
clear statement of the user’s intentions will suffice.

Rationale

The rationale is the reason behind the requirement’s existence. It tells why the
requirement is important, and what contribution it makes to the product’s
purpose. Adding a rationale to a requirement helps you to clarify and under-
stand it. Having this justification of the requirements helps you to assess
its importance when you are testing for gold plating in the Quality Check
activity.

Source

The source is the nature of the person who raised the requirement in the first
instance, or the person to whom it can be attributed. You should attach the
source to your requirements so that you have a referral point if there are ques-
tions about the requirement, or if the requirement is rejected by the quality
gateway. The person who raises the requirement must have the knowledge
and authority appropriate for the type of requirement.

Requirements Gathering 495

53_596365 appd.qxd 2/15/06 10:51 PM Page 495

Fit Criteria

The fit criteria are quantified goals that the solution has to meet—they are
acceptance criteria. While the description of the requirements is written in the
language of the users, the fit criterion is written in a precise quantified manner
so that solutions can be tested against the requirement.

The fit criteria set the standard to which the builder constructs the product.
While they do not say how the implementation will be tested, they do provide
the goals that the tests will use when they determine if each requirement has
been met.

Dependencies

Dependencies are other requirements that have an impact on this one. For
example, there may be another requirement that will have to be changed if this
one changes, or one whose data is linked very closely to the data that this one
uses. Alternatively, there may be other requirements whose continued exis-
tence depends on the existence of this one.

Conflicts

Conflicts are other requirements that contradict this requirement, or make this
one less feasible. For example, there may be a requirement that the product has
to calculate the shortest route to the destination. There may be another that
states the product is to calculate the quickest route to the destination. There
could well be a conflict between these two if they are both considered to be the
preferred route and if conditions dictated that the shortest was not always the
quickest route.

Similarly, you may discover that a conflict between two or more requirements
exist when you design the product and begin to look at solutions. It may be
that the solution to one requirement means that the solution to the other is
impossible, or severely restricted.

Conflicting requirements are a normal part of development. Don’t be con-
cerned that conflicts between requirements appear—as long as you are able to
capture the fact that the conflict exists then you can work towards solving it.

Quality Check

This is a single gateway that every requirement must pass through before it
can become a part of the specification or scope. Every requirement must be
checked for completeness, relevance, coherency, traceability and several other
qualities before it can be added to the specification or scope.

A p p e n d i x D496

53_596365 appd.qxd 2/15/06 10:51 PM Page 496

Requirements must be completely unambiguous and must be able to be mea-
sured against the client’s expectation. If it can’t be measured, then you can’t be
sure that the project/product will meet the client’s expectations. This mea-
surement is the fit criterion, and the gateway process ensures that a fit criterion
is attached to each requirement. This also prohibits “requirements creep.” The
technology or readiness review is a form of the quality gateway. A peer review
serves as a quality gateway for the definitive project scope, schedule, and
budget.

Analyzing the Specification

The quality gateway exists to keep inaccurate requirements out of the specifi-
cation or scope; however, it deals with one requirement at a time. At the point
you feel that the specification is complete (or close to being so), you would con-
duct a specification review to uncover missing requirements, consistency, and
any unresolved conflicts between requirements (conflicting requirements).

This is also an opportunity to reassess the cost, schedule, and risk parameters
of the product/project. This should continue iteratively until all elements of
the specification or scope have been completely reviewed and approved.

At this point, there is confidence that the Requirements Specification (as writ-
ten) can now become the Requirements Baseline. The most important reason
for baselining is so that the project can proceed with the knowledge that the
baselined requirements are essentially complete and reasonably stable. When
the requirements are baselined, iterations of requirements generation have
ceased adding significant value to the product. It is an indication that, with
minor exceptions handled through change management, all requirements
have been identified. It is now that the project manager can direct the project
team to proceed with a trip toward finalization of cost and schedule estimates.

A major precursor to the decision to baseline is running the preliminary spec-
ification through a thorough analysis. This is a formal review accompanied by
a detailed analysis that focuses on the attributes the requirements have. In a
“motherhood-type” statement, good requirements have certain attributes that
make them good. Absence of attributes that can be verified and validated can
render the product or service useless or at least render it to the point where it
cannot be baselined and the project cannot go forward.

In the requirements analysis, the attributes are verified through adequate mea-
suring and testing. This is accomplished as a step-by-step process addressing
each attribute. The process is a bit time-consuming, but the value is tremendous.

Table D-4 is a list of attributes and the respective question to ask about each.

Requirements Gathering 497

53_596365 appd.qxd 2/15/06 10:51 PM Page 497

A p p e n d i x D498

Table D-4 Questions to Analyze Requirement Attributes

ATTRIBUTE QUESTION(S) TO ASK

Completeness Are the requirements essentially complete?
Are some requirements missing?

Clarity Are the requirements clear?
Are they ambiguous or imprecise?

Validity Do the requirements reflect the customer’s intentions?

Measurability Does the requirement have a fit criterion (measurement)?

Testability Can the criterion be used to test whether the requirement
provides the solution?

Maintainability Will the implementation be difficult or easy to understand or
maintain?

Reliability Can reliability and availability requirements be met?

Look and Feel Have all human factors been met (GUI, ergonomics, and so on)?

Feasibility Can the requirements be implemented?

Precedent Has a requirement similar to this been implemented before?

Scale Are the requirements large and/or complex?

Stability How often and to what degree might the requirements change?

Performance Can the performance be met on a consistent basis?

Safety Can the safety requirements be fully demonstrated?

Specifications Is the documentation adequate to design, implement and test the
system?

The actual writing of the specification is to be done using a combination of text
and graphics. This provides those who will be the next-in-line users of the
requirements with the documentation needed to go into design through to
development and test and further to implementation. Once written, the speci-
fication must go through a review before final approval.

All requirements need to be approved by the critical stakeholders, for exam-
ple, senior management, the customer, and the sponsor, before they become a
part of the requirements baseline. The project team prepares the official copy
of the specification for sign-off. The project manager must use his/her skills to
sell the baseline and get approval. It is imperative to move to the next phase.

Reusability
Gathering, documenting, and validating requirements are arduous tasks.
Once done however, the requirements can be reused in future projects. Archiv-
ing them is a must.

53_596365 appd.qxd 2/15/06 10:51 PM Page 498

Installing Custom Controls 499

The Work Breakdown Structure
Efficiency and economy imply employment of the right
instrument and material as well as their right use in the
right manner.

Louis Dembitz Brandeis, 1856-1941
U.S. Supreme Court Justice

A P P E N D I X E

499

NOTE
Most of the material in this chapter is an abridged version of Chapter 4from my ear-
lier work Effective Project Management: Traditional, Adaptive, Extreme, Third Edi-
tion (Wiley, 2003). It is presented here for completeness so that this book may be
used as a text for an introductory course in software project management. For
courses requiring more detail on these topics the earlier work may be used as a
companion text.

The foundation of the traditional approach to project management is the Work
Breakdown Structure (WBS). The WBS is a hierarchical description of the work
that must be done to complete the project as defined in the Project Overview

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Recognize the difference between activities and tasks

◆ Understand the importance of the completeness criteria to your ability to
manage the work of the project

◆ Explain the approaches to building the work breakdown structure

◆ Generate a complete work breakdown structure

54_596365 appe.qxd 2/15/06 10:44 PM Page 499

Statement (POS). With a WBS in place, the project team can go about the task
of creating a comprehensive project plan including the schedule, resource
requirements, and budget. As you will see, in many other project situations it
is not possible to build a WBS, at least not at the beginning of the project.

There are several approaches to building the WBS. There is no right answer. In
fact, the WBS is only as good as the project manager deems it to be. After all,
the project manager has to manage the project and so should be the single
individual that says the WBS is appropriate. A generic example of the WBS is
shown in Figure E-1.

To begin the discussion of the WBS, you need to be familiar with the terms
introduced in the figure.

■■ The first term is activity. An activity is simply a chunk of work. Later in
this appendix where I discuss “Six Criteria to Test for Completeness in the
WBS,” I’ll expand on this definition.

■■ The second term is task. Note that in Figure E-1, activities turn to tasks at
some level in the hierarchy. A task is a smaller chunk of work.

While these definitions seem a bit informal, they are useful for my purposes in
this appendix. The terms activity and task have been used interchangeably
among project managers and project management software packages. Some
would use the convention that activities are made up of tasks, while others
would say that tasks are made up of activities, and still others would use one
term to represent both concepts. In this appendix, I refer to higher-level work
as activities, which are made up of tasks.

I also use the term work package. The term is familiar to most professionals. In
this appendix a work package is a complete description of how the tasks that
make up an activity will actually be done. It includes a description of the what,
who, when, and how of the work.

Figure E-1: Hierarchical visualization of the Work Breakdown Structure

GOAL

ActivityActivityActivity

Activity

Work Package

Activity
.
.
.

Activity

Activity

Task #1 Task #2 Task #3 Task #n

Level #1

Level #2

Level #n

A p p e n d i x E500

54_596365 appe.qxd 2/15/06 10:44 PM Page 500

Breaking down work into a hierarchy of activities, tasks, and work packages is
called decomposition. For example, take a look at the top of the WBS in Figure
E-1. Notice that the goal statement from the POS is defined as a Level 0 activ-
ity in the WBS. The next level, Level 1, is a decomposition of the Level 0 activ-
ity into a set of activities defined as Level 1 activities. These Level 1 activities
are major chunks of work. When the work associated with each Level 1 activ-
ity is complete, the Level 0 activity is complete. For this example, that means
that the project is complete. As a general rule, when an activity at Level n is
decomposed into a set of activities at Level n+1 and the work associated with
those activities is complete, the activity at Level n, from which they were
defined, is complete.

Decomposition is important to the overall project plan because it allows you to
estimate the duration of the project, determine the required resources, and
schedule the work. The complete decomposition will be developed by using
the completeness criteria discussed later. By following those criteria, the activ-
ities at the lowest levels of decomposition will possess known properties that
allow you to meet planning and scheduling needs. The lowest level activities
that meet the six criteria are called tasks. Now you have a working definition
of activities, tasks, and work packages.

Those who have experience in software development should see the similarity
between the hierarchical decomposition and functional decomposition. In prin-
ciple, there is no difference between a WBS and a functional decomposition of
a system. The approach you will use to generating a WBS departs from the gen-
eration of a functional decomposition in that you follow a specific process with
a stopping rule for completing the WBS. I am not aware of a similar process
being reported for generating the functional decomposition of a system. Veter-
ans of software development might even see some similarity to older tech-
niques like stepwise refinement or pseudo-code. These tools do, in fact, have a
great deal in common with the techniques you use to generate the WBS.

Generating the WBS

There are two fundamental approaches that can be used to identify project
activities and tasks. The first is the top-down approach; the second is the
bottom-up approach.

Top-Down Approach
The top-down approach begins at the goal level and successively partitions
work down to lower levels of definition until the participants are satisfied that
the work has been sufficiently defined and they have reached the task level as
determined by the completion criteria.

The Work Breakdown Structure 501

54_596365 appe.qxd 2/15/06 10:44 PM Page 501

In my consulting practice, I have used two variations of the top-down
approach: the team approach and the subteam approach.

Team Approach

The team approach, while it requires more time to complete than the subteam
approach, is the better of the two. In this approach the entire team works on all
parts of the WBS. For each Level 1 activity, appoint the most knowledgeable
member of the planning team to facilitate the further decomposition of that part
of the WBS. Continue with similar appointments until the WBS is complete. This
approach allows all members of the planning team to pay particular attention to
the WBS as it is developed, noting discrepancies and commenting on them in
real time.

Sub-team Approach

When time is at a premium, the planning facilitator will prefer the subteam
approach. The first step is to divide the planning team into as many subteams
as there are activities at Level 1 of the WBS. Then follow these steps:

■■ The planning team agrees on the approach to building the first level of
the WBS.

■■ The planning team creates the Level 1 activities.

■■ The team is split into subteams with a subject matter expert leading each
subteam in further decomposition of the WBS.

■■ The subteam continues decomposition until each activity within the Level
1 activities meets the WBS completion criteria.

■■ Re-assemble as a team and report your part of the WBS to the whole team.

Note that the entire planning team decides on the approach for the first-level
breakdown. After that the group is partitioned into subteams, with each sub-
team having some expertise for that part of the WBS. It is hoped that they will
have all the expertise they need to develop their part of the WBS. If not, out-
side help may be brought in as needed. Be careful not to clutter the team with
too many people.

When the subteams have reassembled into a whole team pay close attention to
each presentation and ask yourself these questions:

■■ Is there something in the WBS that I did not expect to see?

■■ Is there something not there that I expected to see?

The focus here is to strive for a complete WBS.

A p p e n d i x E502

54_596365 appe.qxd 2/15/06 10:44 PM Page 502

As the discussion continues and activities are added and deleted from the
WBS, questions about agreement between the WBS and the POS will occur.
Throughout the exercise the POS should be posted on flip chart paper and
hung on the walls of the planning room. Each participant should compare the
scope of the project as described in the POS with the scope as presented in the
WBS. If something in the WBS appears out of scope, challenge it. Either rede-
fine the scope or discard the appropriate WBS activities. Similarly, look for
complete coverage of the scope as described in the WBS with the POS. This is
the time to be critical and carefully define the scope and work to accomplish it.
Mistakes found now, before any work is done, are far less costly and disrup-
tive than they will be if found late in the project.

The dynamic at work here is one of changing project boundaries. Despite all
efforts to the contrary, the boundaries of the project are never clearly defined
at the outset. There will always be reason to question what is in and what is not
in the project. That is all right. Just remember that the project boundaries have
not yet been formally set. That will happen once the project has been approved
to begin. Until then you are still in the planning mode, and nothing is set in
concrete.

Bottom-Up Approach
Another approach to identifying the activities in the project is to take a bottom-
up approach. This approach is more like a brainstorming session than an orga-
nized approach to building the WBS. I personally don’t recommend or use this
approach, but I have seen it work successfully in practice so I discuss it here for
the sake of completeness.

The bottom-up approach works as follows. The first steps are the same as
those for the top-down approach. Namely, the entire planning team agrees to
the first-level breakdown. The planning team is then divided into as many
subteams as there are first-level activities. Each subteam then makes a list of
the activities that must be completed in order to complete the first-level activ-
ity. To do this they proceed as follows. Someone in the subteam identifies an
activity and describes it to their teammates. If they agree that it is part of the
WBS, then the activity is written on a slip of paper and put in the middle of the
table. The process repeats itself until no new ideas are forthcoming. The sub-
team then sorts the slips into activities that seem to be related to one another.
This grouping activity should help the subteam add missing activities or
remove redundant ones. Once the subteam is satisfied it has completed the
activity list for the first-level breakdown, their work is done. Each subteam
then reports to the entire team the results of its work. Final critiques are given,
missing activities added, and redundant activities removed.

The Work Breakdown Structure 503

54_596365 appe.qxd 2/15/06 10:44 PM Page 503

While this approach has worked well in many cases, there is the danger of not
defining all activities or defining activities at too high or low a level of granu-
larity. The completeness criteria that we define later in the chapter are not
ensured through this process. My caution to you then is that you may not have
as manageable a project as you would if you followed the top-down approach.
Obviously, risk is associated with the bottom-up approach; if you do not have
to take the risk, why expose yourself to it voluntarily? Unless there is a com-
pelling reason to the contrary, I recommend the top-down approach. In my
experience there is less danger of missing part of the project work using the
top-down approach.

Intermediate WBS for Large Projects
For very large projects you may be tempted to modify the top-down approach.
While I prefer to avoid modification, difficulty in scheduling people for the
planning meeting may necessitate some modification. As project size
increases, it becomes unwieldy to build the entire WBS with the entire plan-
ning team assembled. When you are in this situation begin by following the
whole team approach and decompose the WBS down to Level 3. Assign Activ-
ity Managers to each of the Level 3 activities and adjourn the planning session.
The Level 3 Activity Managers are charged with completing the WBS for their
part of the project. They will convene a session to complete that work. The
planning facilitator will then consolidate these Level 3 WBSs into the WBS for
the entire project. The full team can be reassembled and the planning process
can continue from that point.

Six Criteria to Test for Completeness in the WBS

Developing the WBS is the most critical part of the project planning activity. If
this part is done correctly, the rest is comparatively easy. How do you know
that you’ve done this right? You will if each activity possesses the six charac-
teristics described as follows:

■■ Status/completion is measurable

■■ Start/end events are clearly defined

■■ Activity has a deliverable

■■ Time and cost are easily estimated

■■ Activity duration is within acceptable limits

■■ Work assignments are independent

A p p e n d i x E504

54_596365 appe.qxd 2/15/06 10:44 PM Page 504

If an activity does not possess all six of these characteristics, decompose the
activity and ask the questions again. As soon as an activity possesses the six
characteristics, you have no need to further decompose it. That activity can
now be called a task. As soon as every activity in the WBS possesses these six
characteristics, the WBS is defined as complete. The following sections look at
each of these characteristics in more detail.

Start/Completion Is Measurable
The project manager must be able to ask for the status of an activity at any
point in time when the activity is open for work. If the activity has been
defined properly, that question is answered easily. The answer should consist
of what has been done, how much time was required to complete the work,
how much remains, and how long it will take to complete. If that information
is not readily available, the activity needs to be further decomposed.

Start/End Events Are Clearly Defined
Each activity should have a clearly defined start and end event. Once the start
event has occurred, work can begin on the activity. The deliverable is most
likely the end event that signals work is closed on the activity. If those events
are not clearly obvious, the activity needs to be further decomposed.

Activity Has a Deliverable
The result of completing the work that makes up the activity is the production
of a deliverable. The deliverable is a visible sign that the activity is complete.
This could be an approving manager’s signature, a physical product or docu-
ment, the authorization to proceed to the next activity, or some other sign of
completion. If the activity does not result in a deliverable, the activity needs to
be further decomposed.

Time and Cost Are Easily Estimated
This is a relative characteristic. You may have very little experience or knowl-
edge of the activity in which case “easily estimated” will be very different than
the case where the activity is one that has been repeated many times and is
well understood. In any case, each activity should have an estimated time and
cost of completion. Being able to do this at the lowest level of decomposition
in the WBS allows you to aggregate to higher levels and estimate the total pro-
ject cost and the completion date. By successively decomposing activities to

The Work Breakdown Structure 505

54_596365 appe.qxd 2/15/06 10:44 PM Page 505

finer levels of granularity, you are likely to encounter primitive activities that
you have performed before. This experience at lower levels of definition gives
you a stronger base on which to estimate activity cost and duration for similar
activities.

Activity Duration Is Within Acceptable Limits
While there is no fixed rule for the duration limitation of an activity, common
practice is to set the limit at 2 weeks. Again this is a relative limit. For very long
projects some limit greater than 2 weeks will be appropriate. For a project that
will only last a few weeks, a much lower limit is appropriate. There will be
exceptions when the activity defines process work, such as will occur in many
manufacturing situations. There will be exceptions, especially for those activi-
ties whose work is repetitive and simple. For example, if you are going to build
500 widgets and it takes 10 weeks to complete this activity, you are not going
to decompose the activity into 5 activities with each one building 100 widgets.
There is no need to break the 500-widget activity down further. If you can esti-
mate the time to check one document, it does not make much difference if the
activity requires 2 months to check 400 documents or 4 two-week periods to
check 100 documents per period. The danger you avoid is longer duration
activities whose delay can create a serious project-scheduling problem.

Work Assignments Are Independent
At first brush this may seem to be a rather strange criterion, yet it may be the
most important one of all. Here’s why. It is important that each activity be
independent of other activities in the following sense. Once work has begun
on the activity, if it is independent of other activities, the work can continue
without interruption and without the need of additional input or information
until the activity is complete. This allows the project manager to schedule the
work contiguously, but it can be scheduled otherwise for a variety of reasons.
You can choose to schedule it in parts because of resource availability, but you
could have scheduled it as one continuous stream of work.

Approaches to Building the WBS

There are many ways to build the WBS. Hypothetically, if you put each member
of the planning team in a different room and ask each one to develop the project
WBS, they might all come back with different renditions. That’s all right—there
is no single best answer. The choice is subjective and based more on the project
manager’s preference than on any other requirements. However, even though

A p p e n d i x E506

54_596365 appe.qxd 2/15/06 10:44 PM Page 506

you might like the choice to be a personal one that the project manager makes
(after all, he or she is charged with managing the project, so why not allow him
or her to choose the architecture that makes that task the easiest), unfortunately
that will not work in many cases. The choice of approach must take into consid-
eration the uses to which the WBS will be put.

There are three general approaches to building the WBS:

Noun-Type Approaches
Noun-type approaches define the deliverable of the project work in terms of
the components (physical or functional) that make up the deliverable. This is
the approach currently recommended by PMI.

Verb-Type Approaches
Verb-type approaches define the deliverable of the project work in terms of the
actions that must be done to produce the deliverable. These include the
design-build-test-implement and project objectives approaches. This approach
was once recommended by PMI.

Organizational Approaches
Organizational approaches define the deliverable of the project work in terms
of the organizational units that will work on the project. This type of approach
includes the department, process, and geographic location approaches.

I have seen these approaches used in practice to create the WBS. The next sec-
tions take a look at each one in more detail.

Noun-Type Approaches

Basically, there are two noun-type approaches:

■■ Physical decomposition—In projects that involve building products, it is
tempting to follow the physical decomposition approach. Take a mountain
bike, for example. Its physical components include a frame, wheels, suspen-
sion, gears, brakes, and so on. If each component is to be manufactured, this
approach might produce a simple WBS. This type of WBS is initially attrac-
tive because it looks similar and, in fact, could be identical to a company’s
financial chart of accounts (CoA). CoAs are noun-oriented because they
account for the cost of developing things such as gears and brakes.

The Work Breakdown Structure 507

54_596365 appe.qxd 2/15/06 10:44 PM Page 507

NOTE
A CoA should not be confused with the WBS. The WBS is a breakdown of work; the
CoA is a breakdown of costs.

■■ Functional decomposition—Using the bicycle example, you can build the
WBS using the functional components of the bicycle. The functional com-
ponents include the steering system, gear-shifting system, braking system,
pedaling system, and so on. The same cautions that apply to the physical
decomposition approach apply here as well.

Verb-Type Approaches

Basically, there are two verb-type approaches:

■■ Design-build-test-implement—The design-build-test-implement
approach is commonly used in those projects that involve a methodology,
such as a software development methodology. Using the bicycle example
again, you could use a variation on the classic waterfall categories. The
categories are design, build, test, document, and implement. If you were
to use this architecture for your WBS, then the bars on the Gantt Chart
would all have lengths that correspond to the duration of each of the
design, build, test, and implement activities and hence would be shorter
than the bar representing the entire project. Most, if not all, would have
differing start and end dates. Arranged on the chart, they would cascade
in a stair-step manner, hence, the name waterfall. These are just represen-
tative categories; yours may be different. The point is that when the
detail-level activity schedules are summarized up to them, they present a
display of meaningful information to the recipient of the report.

Remember that the WBS tasks, at the lowest levels of granularity, must
always be expressed in verb form. After all, you are talking about work,
and that implies action, and that implies verbs.

■■ Objectives—The objectives approach is similar to the design-build-test-
implement approach and is used when progress reports at various stages
of project completion are prepared for senior management. Reporting
project completion by objectives gives a good indication of the deliver-
ables that have been produced by the project team. Objectives will almost
always relate to business value and will be well received by senior
management and the customer as well. There is a caveat, however. This
approach can cause some difficulty because objectives often overlap. Their
boundaries can be fuzzy. You’ll have to give more attention to eliminating
redundancies and discovering gaps in the defined work.

A p p e n d i x E508

54_596365 appe.qxd 2/15/06 10:44 PM Page 508

Other Approaches

The deployment of project work across geographic or organizational bound-
aries often suggests a WBS that parallels the organization. The project man-
ager would not choose to use this approach but rather would use it out of
necessity. In other words, the project manager had no other reasonable choice.
These approaches offer no real advantages and tend to create more problems
than they solve. I list them here only because they are additional approaches to
building the WBS.

Geographic
If project work is geographically dispersed (the U.S. space program, for exam-
ple), it may make sense from a coordination and communications perspective
to partition the project work first by geographic location and then by some
other approach at each location.

Departmental
On the other hand, departmental boundaries and politics being what they are,
you may benefit from partitioning the project first by department and then
within department by whatever approach makes sense. You benefit from this
structure in that a major portion of the project work is under the organizational
control of a single manager. Resource allocation is simplified this way. On the
other hand, you add increased needs for communication and coordination
across organizational boundaries in this approach.

Business Function
Finally, breaking the project down first by business process and then by some
other method for each process may make sense. This has the same advantages
and disadvantages as the departmental approach, but the added complication
that integration of the deliverables from each process can be more difficult
than in the former case.

Again, no single approach can be judged to be best for a given project. Our
advice is to consider each at the outset of the planning session and pick the one
that seems to bring clarity to defining the project work.

The Work Breakdown Structure 509

54_596365 appe.qxd 2/15/06 10:44 PM Page 509

54_596365 appe.qxd 2/15/06 10:44 PM Page 510

Installing Custom Controls 511

Estimation
Round numbers are always false.

Samuel Johnson
English critic

A P P E N D I X F

511

NOTE
Most of the material in this appendix is an abridged version of Chapter 5 from my
earlier work Effective Project Management: Traditional, Adaptive, Extreme, Third
Edition (Wiley, 2003). It is presented here for completeness so that this book may be
used as a text for an introductory course in software project management. For
courses requiring more detail on these topics the earlier work may be used as a
companion text.

Estimating Time, Cost, and Resource Requirements

Before you can estimate duration, you need to make sure everyone is working
from a common definition. The duration of a project is the elapsed time in
business working days required to complete the project, activity, or task. Dura-
tion is different from effort. Effort is labor hours required to complete a project,

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Explain the relationship between resource loading and activity duration

◆ Use any of the six activity duration estimation methods

55_596365 appf.qxd 2/15/06 10:54 PM Page 511

activity, or task. Effort is always less than or equal to duration. Labor hours can
be consecutive or nonconsecutive hours. It is this elapsed time that you are
interested in estimating for each task. It is the true duration of the task. For
costing purposes you are interested in the labor time (work) actually spent on
the task.

Resource Loading versus Task Duration
The duration of a task is affected by the number of resources scheduled to
work on it. I say affected by because there is not necessarily a direct linear rela-
tionship between the amount of resource assigned to a task and its duration.
For example, suppose you are responsible for completing a certain program-
ming task. You estimate that it will take 4 weeks to complete. The project man-
ager says that it must be done in 2 weeks so she will ask another programmer
to join you in the task. Will that reduce the task duration to 2 weeks?
Absolutely not. There are several reasons why the relationship is not linear.
Among the reasons are the need for person-to-person communications, decid-
ing on programming conventions, deciding who will work on what, and a
host of other reasons. In fact, the addition of a second programmer could
increase the time to write the program.

The point of this simple example is to show that there are diminishing returns
for adding more resources. You would probably agree that there is a maximum
loading of resources on a task to minimize the task duration, and that by
adding another resource you will actually begin to increase the duration. You
have reached the crash point of the task. The crash point is where adding more
resources will increase task duration. There will be many occasions when the
project manager will have to consider the optimum loading of a resource on a
task.

Variation in Task Duration
Task duration is a random variable. Because you cannot know what factors
will be operative when work is underway on a task, you cannot know exactly
how long it will take. There will, of course, be varying estimates with varying
precision for each task. One of your goals in estimating task duration is to
define the task to a level of granularity so that your estimates have a narrow
variance—that is, the estimate is as good as you can get it at the planning
stages of the project. As project work is completed, you will be able to improve
the earlier estimates of tasks scheduled later in the project. There are several
causes of variation in the actual task duration, discussed in the following sub-
sections.

A p p e n d i x F512

55_596365 appf.qxd 2/15/06 10:54 PM Page 512

Varying Skill Levels

Your strategy is to estimate activity duration based on using people of average
skills assigned to work on the activity. In actuality, this may not happen. You
may get a higher- or lower-skilled person assigned to the activity, causing the
actual duration to vary from planned duration. These varying skill levels will
be both a help and a hindrance to you.

Unexpected Events

Murphy lives in the next cubicle and will surely make his presence known, but
in what way, and at what time, you do not know. Random acts of nature, ven-
dor delays, incorrect shipments of materials, traffic jams, power failures, and
sabotage are but a few of the possibilities.

Efficiency of Work Time

Every time a worker is interrupted it takes more time to get up to the level of
productivity prior to the time of the interruption. You cannot control the fre-
quency or time of interruptions, but you do know that they will happen. As to
their effect on staff productivity, you can only guess. Some will be more
affected than others.

Mistakes and Misunderstandings

Despite all of your efforts to be complete and clear in describing the work to be
performed, you simply will miss a few times. This will take its toll in rework
or scrapping semicompleted work.

Common Cause Variation

Apart from all of these factors that can influence activity duration the reality is
that durations will vary for no reason other than the statistical variation that
arises because the duration is in fact a random variable. It has a natural varia-
tion, and nothing you do can really decrease that variation. It is there, and it
must be accepted.

Six Methods for Estimating Task Duration
Estimating task duration is challenging. You can be on very familiar ground
for some tasks and totally unfamiliar ground for others. Whatever the case,
you must produce an estimate. It is important that senior management under-
stand that the estimate can be little more than a WAG (wild a** guess). If you’re

Estimation 513

55_596365 appf.qxd 2/15/06 10:54 PM Page 513

lucky, maybe it will be a SWAG (the scientific version of a WAG). In many
projects the estimate will be improved as you learn more about the deliver-
ables from having completed some of the project work. Re-estimation and re-
planning are common. In my consulting practice, I have found six techniques
to be quite suitable for initial planning estimates. Remember you have to get it
only roughly right so don’t spend 30 minutes debating whether it is 2 days or
3 for a task that is way out in the schedule. Those six techniques are:

■■ Similarity to other tasks

■■ Historical data

■■ Expert advice

■■ Delphi technique

■■ Three-point technique

■■ Wide-band Delphi technique

The next subsections take a look at each of these techniques in more detail. By
the way, I have listed them in the order in which I would typically use them.

Similarity to Other Tasks

Some of the tasks in your WBS may be similar to tasks completed in other pro-
jects. Your or others’ recollections of those tasks and their duration can be used
to estimate the present task’s duration. In some cases, this may require extrap-
olating from the other task to this one, but in any case it does provide an esti-
mate. In most cases, using the estimates from those tasks provides estimates
that are good enough.

Historical Data

Every good project management methodology contains a project notebook
that records the estimated and actual task duration. This historical record can
be used on other projects. The recorded data becomes your knowledge base for
estimating task duration. This differs from the previous technique in that it
uses a record, rather than depending on memory.

A simple way to use that historical data is to scan the data and retrieve actual
durations of similar tasks. A simple numeric average might be good enough.
Alternatively, you might adjust the duration based on local conditions as com-
pared with those in the historical data.

Historical data can also be used in quite sophisticated ways. One of my clients
has built an extensive database of task duration history. They have recorded
not only estimated and actual duration, but also the characteristics of the task,
the skill set of the people working on it, and other variables that they found

A p p e n d i x F514

55_596365 appf.qxd 2/15/06 10:54 PM Page 514

useful. When a task duration estimate is needed they go to their database with
a complete definition of the task and, with some rather sophisticated regres-
sion models, estimate the task duration. They build product for market, and it
is very important to them to be able to estimate as accurately as possible.
Again, my advice is that if there is value-added for a particular tool or tech-
nique, use it.

Expert Advice

When the project involves a breakthrough technology or a technology that is
being used for the first time in the organization, there may not be any local
experience or even professionals skilled in the technology within the organi-
zation. In these cases, you will have to appeal to outside authorities. Vendors
may be a good source, as are non-competitors who use that technology.

Delphi Technique

The Delphi Technique can produce good estimates in the absence of expert
advice. This is a group technique that extracts and summarizes the knowledge
of the group to arrive at an estimate. After the group is briefed on the project
and the nature of the task, each individual in the group is asked to make his or
her best guess of the task duration. The results are tabulated and presented, as
shown in Figure F-1, to the group in a histogram labeled First Pass. Those par-
ticipants whose estimates fall in the outer quartiles are asked to share the rea-
son for their guess. After listening to the arguments, each group member is
asked to guess again. The results are presented as a histogram labeled Second
Pass, and again the outer quartile estimates are defended. A third guess is
made, and the histogram plotted is labeled Third Pass. Final adjustments are
allowed. The average of the third guess is used as the group’s estimate. Even
though the technique seems rather simplistic it has been shown to be effective
in the absence of expert advice.

Figure F-1: The Delphi Technique

Third Pass

Second Pass

First Pass

Estimation 515

55_596365 appf.qxd 2/15/06 10:54 PM Page 515

NOTE
This preceding description of the approach is actually a variation of the original Del-
phi Technique. The original version used a small panel of experts (say five or six)
who were asked for their estimate independently of one another. The results were
tabulated and shared with the panel, who were then asked for a second estimate. A
third estimate was solicited in the same manner. The average of the third estimate
was the one chosen. Note that the original approach does not involve any discussion
or collaboration between the panel members. In fact, they weren’t even aware of
who the other members were.

Three-Point Technique

Task duration is a random variable. If it were possible to repeat the task several
times under identical circumstances, duration times would vary. That varia-
tion may be tightly grouped around a central value, or it might be widely dis-
persed. In the first case, you would have a considerable amount of information
on that task’s duration as compared to the latter case, where you would have
very little or none. In any given instance of the task you would not know at
which extreme the duration would likely fall, but you could make probabilis-
tic statements about their likelihood in any case.

The three-point technique gives you a framework for doing just that. To use
the method you need three estimates of task duration: optimistic, pessimistic,
and most likely. The optimistic time is defined as the shortest duration one has
had or might expect to experience given that everything happens as expected.
The pessimistic time is that duration that would be experienced (or has been
experienced) if everything that could go wrong did go wrong and yet the task
was completed. Finally, the most likely time is that time usually experienced.
For this method you are calling on the collective memory of professionals who
have worked on similar tasks but for which there is no recorded history. Figure
F-2 is a graphical representation of the three-point method.

Figure F-2: The three-point method

O

O: Optimistic
P: Pessimistic
M: Most Likely

M E P

O + 4M + P
6

E =

A p p e n d i x F516

55_596365 appf.qxd 2/15/06 10:54 PM Page 516

The formula shown in the figure is the formula for calculating the estimated
duration. Note that it is a weighted average of the optimistic, pessimistic, and
most likely experiences of the expert.

Wide-Band Delphi Technique

Combining the Delphi and three-point methods results in the wide-band Del-
phi technique. It involves a panel, as in the Delphi technique. In place of a sin-
gle estimate the panel members are asked, at each iteration, to give their
optimistic, pessimistic, and most likely estimates for the duration of the cho-
sen task. The results are compiled, and any extreme estimates are removed.
Averages are computed for each of the three estimates, and the averages are
used as the optimistic, pessimistic, and most likely estimates of task duration.

Estimation Precision

A word of advice on estimating is in order. Early estimates of task duration
will not be as good as later estimates. It’s a simple fact that you get smarter as
the project work commences. Estimates will always be subject to the vagaries
of nature and other unforeseen events. You can only hope that you have
gained some knowledge through the project to improve your estimates.

In the top-down project planning model, you start out with “roughly right”
estimates with the intention of improving the precision of these estimates later
in the project. Management and the customer must be made aware that this is
your approach. Give up the habit of assuming that a number, once written, is
inviolate and absolutely correct regardless of the circumstances under which
the number was determined.

Estimation 517

55_596365 appf.qxd 2/15/06 10:54 PM Page 517

55_596365 appf.qxd 2/15/06 10:54 PM Page 518

Installing Custom Controls 519

The Project Network Diagram
In every affair consider what precedes and what
follows, and then undertake it.

Epictetus
Greek philosopher

A P P E N D I XG

519

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Construct a network representation of the project activities

◆ Understand the four types of task dependencies and when they are used

◆ Compute the earliest start (ES), earliest finish (EF), latest start (LS), and
latest finish (LF) for every task in the network

◆ Identify the critical path in the network

◆ Analyze the network for possible schedule compression

NOTE
Most of the material in this appendix is an abridged version of Chapter 6 of my
earlier work Effective Project Management: Traditional, Adaptive, Extreme, Third
Edition (Wiley, 2003). It is presented here for completeness so that this book may be
used as a text for an introductory course in software project management. For
courses requiring more detail on these topics, the earlier work may be used as a
companion text.

56_596365 appg.qxd 2/15/06 10:46 PM Page 519

Constructing the Software Development
Project Schedule

At this point in the planning of your project, you have identified the set of
tasks that must be done and estimated the duration of each task. The next step
for the planning team is to determine the order in which these tasks are to be
performed. They could certainly be performed one at a time but that would
extend the completion of the project beyond the tolerable. Your objective in
this step is to determine the minimum time to complete the project by figuring
out how to work concurrently on tasks rather than sequentially. The more con-
currency you can introduce into the schedule, the shorter will be the comple-
tion time of the project.

The Project Network Diagram
The tasks and their duration are the basic building blocks needed to construct
a graphic picture of the project. This graphic picture provides you with two
additional pieces of schedule information about the project:

■■ The earliest time at which work can begin on each task that makes up the
project

■■ The earliest expected completion date of the project

This is critical information for the project manager. It will establish the earliest
time the project can be completed. Once this is known, the required resources
and their availability will be factored in to give a more accurate picture of pro-
ject completion times.

A project network diagram is a pictorial representation of the sequence in which
the project work can be done. To establish that network diagram, you need to
impose a few simple rules. For each task ask: “What other task or tasks must
be complete before this task can be worked on?” Alternatively, you can begin
this series of questions with those tasks that can be worked on without the
need for other tasks to have been complete and then ask the question: “Now
that these tasks are complete, what tasks can be worked on?” Continue this
line of questioning, and you will establish the task dependencies needed to
construct the project network diagram.

Building the Precedence Network Diagram
The basic unit of analysis in the precedence network diagram is the task. Each
task in the network diagram is represented by a rectangle that is called a task
node. Arrows represent the predecessor/successor relationships between

A p p e n d i x G520

56_596365 appg.qxd 2/15/06 10:46 PM Page 520

tasks. Figure G-1 shows an example network diagram. Every task in the pro-
ject will have its own task node (see Figure G-2). The entries in the task node
describe the time-related properties of the task. Some of the entries describe
characteristics of the task such as its expected duration (E), while others
describe calculated values (ES, EF, LS, LF) associated with that task. I will
define these terms shortly and give an example of their use.

In order to create the network diagram using this format, you need to deter-
mine the predecessors and successors for each task. To do this, you ask “What
tasks must be complete before I can begin this task?” Here, you are looking for
the technical dependencies between tasks. Once a task is complete, it will have
produced an output, a deliverable, which becomes input to its successor tasks.
Work on the successor task requires only the output from its immediate pre-
decessor task or tasks. What is the next step? While the list of predecessors and
successors to each activity contains all the information you need to proceed
with the project, it does not represent the information in a format that tells the
story of your project. The goal will be to provide a graphical picture of the pro-
ject; in order to do that, you need to spell out a few rules first. Once you know
the rules, you can create the graphical image of the project. In this section you
will learn those rules.

Figure G-1: Format of a project network diagram

Figure G-2: Task node

ID SLACK E

ES EF

LS LF

A 2 C 2 F 5

B 3 E 3

D 1 G 4

H 2

The Project Network Diagram 521

56_596365 appg.qxd 2/15/06 10:46 PM Page 521

The network diagram is logically sequenced to be read from left to right. Every
task in the network, except the start and end tasks, must have at least one task
that comes before it (its immediate predecessor) and one task that comes after
it (its immediate successor). A task begins when its predecessors have been
completed. The start task has no predecessor and the end task has no succes-
sor. You may have to create dummy tasks with zero duration to meet these
conditions. If these conditions are met, you have what is called a connected
network. Figure G-3 gives examples of how the variety of relationships that
might exist between two or more tasks can be diagrammed.

Dependencies
A dependency is simply a relationship that exists between pairs of activities.
To say that activity A depends on activity B means that activity B produces a
deliverable that is needed in order to do the work associated with activity A.
There are four types of activity dependencies, illustrated in Figure G-4.

Figure G-3: Diagramming conventions

Figure G-4: Dependency relationships

A B

A B

A

B

A

B

FS: When A finishes, B may start

FF: When A finishes, B may finish

SS: When A starts, B may start

SF: When A starts, B my finish

A C
(a)

E

F

G

(b)

E

F

B

(c)

A p p e n d i x G522

56_596365 appg.qxd 2/15/06 10:46 PM Page 522

Finish to Start

The finish to start (FS) dependency says that Task A must be complete before
Task B can begin. It is the simplest and most risk-averse of the four types. For
example, Task A can represent the collection of data and Task B can represent
entry of the data into the computer. To say that the dependency between A and
B is finish to start means that once you have finished collecting the data you
may begin entering the data. I recommend using FS dependency in the initial
project planning session. These are the least risk prone and simplest of the four
dependency relationships. The finish to start dependency is denoted by an
arrow emanating from the right edge of the predecessor task and terminating
at the left edge of the successor task.

Start to Start

The start to start (SS) dependency says that Task B may begin once Task A has
begun. Note that there is a no-sooner-than relationship between Task A and
Task B. Task B may begin no sooner than Task A begins. In fact, they could both
start at the same time. For example, you could alter the data collection and
data entry dependency: As soon as you begin collecting data (Task A), you
may begin entering data (Task B). In this case there is an SS dependency
between Task A and B. The start to start dependency is displayed with an
arrow emanating from the left edge of the predecessor (Task A) and terminat-
ing at the left edge of the successor (Task B). We will use this dependency rela-
tionship in the section dealing with schedule compression strategies toward
the end of this appendix.

Start to Finish

The start to finish (SF) dependency is a little more complex than the FS and SS
dependencies. Here Task B cannot be finished sooner than Task A has started.
For example, suppose you have built a new information system. You don’t
want to eliminate the legacy system until the new system is operable. When
the new system starts to work (Task A), the old system can be discontinued
(Task B). The start to finish dependency is displayed with an arrow emanating
from the left edge of activity A to the right edge of activity B. SF dependencies
can be used for just-in-time scheduling between two tasks, but they rarely
occur in practice.

The Project Network Diagram 523

56_596365 appg.qxd 2/15/06 10:46 PM Page 523

Finish to Finish

The finish to finish (FF) dependency states that Task B cannot finish sooner than
Task A. For example, if I refer back to the data collection and entry example,
suppose data entry (Task B) cannot finish until data collection (Task A) has fin-
ished. In this case, Task A and B have a finish to finish dependency. The finish
to finish dependency is displayed with an arrow emanating from the right edge
of Task A and terminating at the right edge of Task B. To preserve the connect-
edness property of the network diagram, the SS dependency on the front end of
two tasks should have an accompanying FF dependency on the back end.

Creating an Initial Project Network Schedule
As stated earlier, all tasks in the network diagram have at least one predecessor
and one successor task, with the exception of the start and end tasks. If this con-
vention is followed, then the sequence is relatively straightforward to identify.

To establish the project schedule, you need to compute two schedules: the
early schedule, which you calculate using the forward pass, and the late sched-
ule, which you calculate using the backward pass.

■■ The early schedule consists of the earliest times at which a task can start
and finish. These are calculated numbers that are derived from the depen-
dencies between all the tasks in the project.

■■ The late schedule consists of the latest times at which a task can start and
finish without delaying the completion date of the project. These are also
calculated numbers that are derived from the dependencies between all of
the tasks in the project.

The combination of these two schedules gives us two additional pieces of
information about the project schedule:

■■ The window of time within which each activity must be started and fin-
ished in order for the project to complete on schedule

■■ The sequence of activities that determine the project completion date

The sequence of tasks that determine the project completion date is called the
critical path. The critical path can be defined in several ways:

■■ It is the longest duration path in the network diagram.

■■ It is the sequence of tasks whose early schedule and late schedule are the
same.

■■ It is the sequence of tasks with zero slack or float (these terms are defined
later in this appendix).

A p p e n d i x G524

56_596365 appg.qxd 2/15/06 10:46 PM Page 524

All of these definitions say the same thing: what sequence of tasks must be
completed on schedule in order for the project to be completed on schedule.

The tasks that define the critical path are called critical path tasks. Any delay in
a critical path task delays the completion of the project by the amount of delay
in that task. This is a sequence of tasks that warrants the project manager’s
special attention.

The Early Schedule

The earliest start (ES) time for a task is the earliest time at which all of its pre-
decessor tasks have been completed and the subject task can begin. The ES time
of a task with no predecessor tasks is arbitrarily set to 1, the first day on which
the project is open for work. The ES time of tasks with one predecessor task is
determined from the EF time of the predecessor task. The earliest finish (EF) of
a task is calculated as ((ES + duration) – one time unit). The ES time of tasks
having two or more predecessor tasks is determined from the latest of the EF
times of its immediate predecessor tasks. The reason for subtracting the one
time unit is to account for the fact that a task starts at the beginning of a time
unit (hour, day, and so forth) and finishes at the end of a time unit. In other
words, a one-day task, starting at the beginning of a day, begins and ends on the
same day. For example, take a look at Figure G-5. Note that Task E has two pre-
decessors, Task B and Task C. The EF for Task B is the end of day 5 and for Task
C is the end of day 4. Therefore the ES of Task E is the beginning of day 6. When
there are two or more predecessors, the ES of the successor, Task E in this case,
is calculated based on the maximum of the EF dates of the predecessor tasks.
The EF dates of the predecessors are the end of day 5 and the end of day 4. The
maximum of these is 5, and therefore the ES of Task E is the morning of day 6.
The complete calculations of the early schedule are shown in Figure G-5.

Figure G-5: Forward pass calculations

A 2 C 2 F 5

B 3 E 3

D 1 G 4

H 2

1 2 3 4 5 9

3 5 6 8

3 3 5 8

10 11

The Project Network Diagram 525

56_596365 appg.qxd 2/15/06 10:46 PM Page 525

The Late Schedule

The latest start (LS) and latest finish (LF) times of a task are the latest times at
which the task can start or finish without causing a delay in the completion of
the project. Knowing these times is valuable for the project manager, who must
make decisions on resource scheduling that can affect completion dates. The
window of time between the ES and LF of a task is the window within which
the resource for the work must be scheduled or the project completion date
will be delayed. To calculate these times, you work backward in the network
diagram. First set the LF time of the last task on the network to its calculated
EF time. Its LS is calculated as ((LF – duration) + one time unit). Again, you
add the one time unit to adjust for the start and finish of a task within the same
day. The LF time of all immediate predecessor tasks is determined by the min-
imum of the LS, minus one time unit, times of all tasks for which it is the pre-
decessor. For example, calculate the late schedule for Task E. Its only successor,
Task H, has an LS date of day 10. The LF date for its only predecessor, Task E,
will therefore be the end of day 9. In other words, Task E must finish no later
than the end of day 9, or it will delay the start of Task H and hence delay the
completion date of the project. The LS date for Task E will be, using the for-
mula, 9 – 2 + 1, or the beginning of day 7. On the other hand, consider Task C.
It has three successor tasks, Task E, Task F, and Task G. The LS dates for them
are day 7, 5, and 6, respectively. The minimum of those dates, day 5, is used to
calculate the LF of Task C, namely the end of day 4. The complete calculations
for the late schedule are shown in Figure G-6.

Figure G-6: Backward pass calculations

A 2 C 2 F 5

B 3 E 3

D 1 G 4

H 2

1 2 3 4 5 9

3 5 6 8

3 3 5 8

10 11

1 2 3 4 5 9

4 6 7 9

5 5 6 9

10 11

A p p e n d i x G526

56_596365 appg.qxd 2/15/06 10:46 PM Page 526

Critical Path Calculation
The critical path is the longest path or sequence of activities (in terms of activ-
ity duration) through the network diagram. The critical path drives the com-
pletion date of the project. Any delay in the completion of any one of the
activities in the sequence will delay the completion of the project. The project
manager pays particular attention to critical path activities. The critical path
for the example problem used to calculate the early schedule and the late
schedule in the previous sections is shown in Figure G-7.

One way to identify the critical path in the network diagram is to identify all
possible paths through the network diagram and add up the durations of the
tasks that lie along those paths. The path with the longest duration time is the
critical path. For projects of any size, this method is not feasible, and you have
to resort to the second method of finding the critical path—computing the
slack time of a task.

Slack

The second method of finding the critical path requires you to compute a
quantity known as the task slack time. Slack time (also called float) is the
amount of delay expressed in units of time that could be tolerated in the start-
ing time or completion time of a task without causing a delay in the comple-
tion of the project. Slack time is a calculated number. It is the difference
between the late finish and the early finish (LF – EF). If the result is greater
than zero, the task has a range of time in which it can start and finish without
delaying the project completion date, as shown in Figure G-8.

Figure G-7: Critical path

A 2 C 2 F 5

B 3 E 3

D 1 G 4

H 2

1 2 3 4 5 9

3 5 6 8

3 3 5 8

10 11

1 2 3 4 5 9

4 6 7 9

5 5 6 9

10 11

0 0 0

1 1

2 1

0

The Project Network Diagram 527

56_596365 appg.qxd 2/15/06 10:46 PM Page 527

Figure G-8: ES to LF window of an activity

Near-Critical Path
Even though project managers are tempted to rivet their attention on critical
path tasks, other sequences of tasks also require their attention. By way of a
general example, suppose the critical path tasks are tasks in which the project
team has considerable experience; duration estimates are based on historical
data and are quite accurate in that the estimated duration will be very close to
the actual duration. On the other hand, suppose there is a sequence of tasks
not on the critical path for which the team has little experience. Duration esti-
mates have large estimation variances. Suppose further that such tasks lie on a
path that has little total slack. It is very likely that this near-critical path may
actually drive the project completion date even though the total path length is
less than that of the critical path. This will happen if larger-than-estimated
durations occur. Because of the large duration variances this is very likely.
Obviously, this path cannot be ignored. These are tasks that we call near-critical
path. The full treatment of near-critical tasks is beyond the scope of this book. I
merely introduce it here so that you are aware that there are paths other than
critical paths that are worthy of attention.

Analyzing the Initial Project Network Diagram

After you have created the initial project network diagram, one of two situa-
tions will be present.

■■ First, the initial project completion date meets the requested completion
date. Usually this is not the case, but it does sometimes happen.

■■ The more likely situation is that the initial project completion date is later
than the requested completion date. In other words, you have to find a
way to squeeze some time out of the project schedule.

A

Duration

ES EF LF

Slack (a.k.a. Float)

A p p e n d i x G528

56_596365 appg.qxd 2/15/06 10:46 PM Page 528

You will eventually need to address two considerations: the project comple-
tion date and resource availability under the revised project schedule. Here I
proceed under the assumption that resources will be available to meet this
compressed schedule. In Appendix H I look at the resource-scheduling prob-
lem. The two are quite dependent on one another, but they must be treated
separately.

Schedule Compression
Almost without exception, the initial project calculations will result in a project
completion date beyond the required completion date. That means that the
project team must find ways to reduce the total duration of the project to meet
the required date.

To address this problem, analyze the network diagram to identify areas where
schedule compression opportunities exist. You look for pairs of tasks that
allow you to convert tasks that are currently worked on sequentially into more
parallel patterns of work. Work on the successor task might begin once the pre-
decessor task has reached a certain stage of completion. In these cases the FS
dependency is changed to a SS dependency with some delay before the suc-
cessor task can start. The design-build sequence has that property. Once you
have reached a certain stage in the design task you can often begin working on
the build part of what has just been designed. The caution, however, is that
project risk increases because we have created a potential rework situation if
changes are made in the predecessor after work has started on the successor.
Schedule compressions affect only the time frame in which work will be done;
they do not reduce the amount of work to be done. The result is the need for
more coordination and communication, especially between the tasks affected
by the dependency changes.

The Project Network Diagram 529

56_596365 appg.qxd 2/15/06 10:46 PM Page 529

56_596365 appg.qxd 2/15/06 10:46 PM Page 530

Installing Custom Controls 531

The Resource Schedule
The hammer must be swung in cadence, when more
than one is hammering the iron.

Giordano Bruno
Italian philosopher

A P P E N D I XH

531

NOTE
Most of the material in this appendix is an abridged version of Chapter 6 of my ear-
lier work Effective Project Management: Traditional, Adaptive, Extreme, Third Edi-
tion (Wiley, 2003). It is presented here for completeness so that this book may be
used as a text for an introductory course in software project management. For
courses requiring more detail on these topics the earlier work may be used as a
companion text.

Once the initial schedule meets all customer constraints for deadlines, it must
now meet the availabilities of the project team and others who will do work on
the project. Because people tend to be allocated to more than one project at a
time and also have other non-project work to do, creating a schedule that
meets the needs of all concerned parties is no small task.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Use the whiteboard to create, post, and update the resource schedule

57_596365 apph.qxd 2/15/06 10:45 PM Page 531

One hint that I can offer is to not get caught in the trap of micro-managing the
team. An example will illustrate the point. Suppose you have a task that will
require 16 hours of effort from Harry. You will be able to give him the input he
needs to do the task 2 weeks from this coming Monday. You need the task to
be complete by the end of that week. In other words, Harry has 5 working days
to complete a 2-day task. Ask Harry if he can meet your needs? Let Harry con-
sider his other workload during that week and tell you yes or no. Assuming he
says yes, do not ask him which days he expects to be working on your task. To
do that is to micro-manage.

Building the Resource Schedule

The input to building the resource schedule is the complete WBS and the project
dependency network. These are discussed in Appendixes E and G, respectively.
The team begins the creation of the micro-level schedule by taking the tasks that
make up this project and further decomposing them to the subtask level. This is
a top-down whole team exercise. The result is shown in Figure H-1.

Examples of a Resource Schedule

Once the micro-level WBS has been created (see Figure H-1), make Post-it
Notes for each of these subtasks and lay them out in a network diagram as
shown in the upper portion of Figure H-1. Note that the network diagram is
time scaled. This is important. At another spot on the whiteboard (ideally
below the network diagram and on the same time scale) lay out a grid that
shows the timeline on a daily basis across the columns and have one row allo-
cated to each resource. The resources for this example are Duffy, Ernie, and
Fran. Show all 7 days on this grid. For any workdays or half workday in this
cycle for which a resource will not be available for cycle build work, put an
“X” or some other indicator of unavailability in the corresponding cell or half
cell. Half-day units are the smallest unit of time that you are going to build this
plan around. Smaller units just create non-value-added work and begin to bor-
der on micro-management. This is your resource calendar for this project. The
lower part of Figure H-1 gives an example grid for the network diagram
shown above in Figure H-1. For this example the tasks were A, B, and C. The
subtasks, which are what you are scheduling, are A1, A2, B1, B2, C1, C2,
and C3.

A p p e n d i x H532

57_596365 apph.qxd 2/15/06 10:45 PM Page 532

Figure H-1: An Example micro-level schedule

Before you finalize the micro-level schedule, check to see if the initial schedule
and resource assignments will allow the team to complete the project within
the allotted. If the current schedule doesn’t meet the time constraint, look for
alternative resource assignments that will bring the schedule inside the time
constraint. Resources that are not assigned for periods of time will be the place
to look. They can either take over a task or help another resource complete a
task earlier than currently scheduled. What you are doing is manual resource
leveling in a way that makes more sense than the approach taken by most soft-
ware tools.

Once you have met the time constraint, you are ready to finalize the informa-
tion on the grid. For each resource, simply transfer the information to the grid
that shows what task they are working on, what day they expect to start it and
what day they expect to end it. Every morning you will have a team status
meeting at which time you compare what was completed the previous day
with what the grid had scheduled for that day. Any adjustments to the plan are
made on the grid. Resources can be moved to meet schedule delays. Since you
still have the Post-it Note network diagram on the whiteboard you will be able
to see if schedule delays will cause any other delays downstream in the plan
and adjust accordingly.

A1
3

B1
2

C1
3

B2
2

C3
1

A2
2

C2
2

Duffy

M T W

a1 a1 a1 a2

b2 b2 b2

c2c2c1 c2 c3
c3

a2

b1 b1

c1 c1

R F S S M T W R F S S

Ernie

Fran

The Resource Schedule 533

57_596365 apph.qxd 2/15/06 10:45 PM Page 533

I want to point out a few important points about Figure H-1.

■■ First, when scheduling a resource, try to keep them busy for consecutive
days. That makes it easier if you need to replace an individual on the
team.

■■ Second, notice when a resource is not busy (Duffy is available for a half-
day on Thursday of the first week. While this is early in the cycle, it may
provide a resource that can help either Ernie or Fran or help the team
recover from a slippage or a problem.

■■ Finally, note that in the second week Duffy and Ernie are available to per-
haps help Fran complete c2 when Fran is unavailable on Wednesday after-
noon. If that can be scheduled, c3 may be able to be completed early. This
means that the project would be completed ahead of schedule. Alterna-
tively, that staffing adjustment might provide a way to make up for earlier
slippages.

This grid should be permanently displayed in the Team War Room. It will be
the focal point of daily team meetings. As status is being reported, the team
can refer to this schedule and make any changes to the latter parts of the sched-
ule. The most important benefit is that this is visible and accessible to the team.
The only negative that you have to worry about is there is no backup for this
approach. The fact that the Team War Room is reserved for the exclusive use of
the team and is secure will mitigate most of the risk but not all of the risk. I
have made it a practice to have one of the team members, when they are not
otherwise busy, update an electronic version of the data posted in the Team
War Room. Because this is only for backup, it doesn’t need to be saved in a
high-powered software application. A word processor or a spreadsheet pack-
age will do just fine. I have even used Visio on occasion.

The reason that this approach works is that the project duration is short. The
example project is only 2 weeks long, but even if it were 3 or 4 weeks long, the
same approach would work. Even though I have used project management
software packages extensively, I still find this low-tech approach to be far more
intuitive than any software display. The entire team can see what is going on
and can see how to resolve scheduling problems in a very intuitive manner.
Try it.

However, this would never do well in larger projects. For one thing, the net-
work diagram would take up too much real estate and is generally not avail-
able from the software package. This doesn’t mean it can’t be generated. It
certainly can, but the labor to create it just doesn’t justify it. Resource balanc-
ing is the other side of the coin. On the whiteboard, it is easy. In a software
package, who knows what happen when you try to level resources. We want
to see the problem and the software package just doesn’t measure up.

A p p e n d i x H534

57_596365 apph.qxd 2/15/06 10:45 PM Page 534

A second example of a resource schedule extends the idea given previously to
a more sophisticated and complete schedule (Figure H-2).

I have added some other features that you might find as useful as have I. The
critical and non-critical paths are identified, as is the slack associated with the
non-critical path features. Having that information on the whiteboard sched-
ule makes it intuitive as to what needs to be done to maintain the plan.

Figure H-2: An extended resource schedule

Archie
Aaron
Bob
Carl
Carol
Donna
Ed
Fran
Gail
Harry

C.P. slack Not available or PTO X: Other assignments

M T W R F M T W R F M T W R F M T W R F

The Resource Schedule 535

57_596365 apph.qxd 2/15/06 10:45 PM Page 535

57_596365 apph.qxd 2/15/06 10:45 PM Page 536

Installing Custom Controls 537

Organizing the Project Team
When a team outgrows individual performance and
learns team confidence, excellence becomes a reality.

Joe Paterno
Football Coach, Penn State University

A P P E N D I X I

537

NOTE
Most of the material in this appendix is an abridged version of Chapter 9 of my ear-
lier work: Effective Project Management: Traditional, Adaptive, Extreme, Third Edi-
tion (Wiley, 2003). It is presented here for completeness so that this book may be
used as a text for an introductory course in software project management. For
courses requiring more detail on these topics, the earlier work may be used as a
companion text.

Every team is different. They may be coming together for the first time and not
much more that a group of people, or they may have worked on several pro-
jects in the past and are a lean, mean fighting machine. Typically they are
somewhere in between these two extremes. In any case it is the project man-
ager that must bring them together into an effective and efficient working
team.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Understand the tools of an effective team

◆ Organize the project team

58_596365 appi.qxd 2/15/06 10:49 PM Page 537

Project teams all too often fail to define and agree on the team operating rules.
These operating rules define how the team works together, makes decisions,
resolves conflicts, reports progress, and deals with a host of other administra-
tive chores.

There are several areas to consider when you create the operating rules that gov-
ern how the team conducts itself. Those areas are the subject of this appendix.

Problem Solving

Creativity and problem-solving go hand in hand. A good problem solver will
think outside the box. He or she will conceive of approaches that may have
been overlooked. The ability to think outside the box and suggest other
approaches is the territory of the creative person. As I will discuss next, each of
the learning styles relates to a different part of the problem-solving model.
That means that the team must have all learning styles represented in order to
solve problems effectively. In this section, you will see how the Learning Styles
Inventory relates to the problem-solving process.

In his work Creative Problem Solving and Opportunity Finding (Boyd and Fraser
Publishing, 1995), J. Daniel Couger points out that there are dozens of models
for problem solving. The model that seems most appropriate for business
problem solving is one put forward by Couger and shown in Figure I-1.

Couger’s process begins with an outside stimulus—an event has occurred that
creates an out-of-control situation that must be rectified. That launches a series
of actions that clarify the situation, identify and assemble relevant data, get a
number of ideas and approaches on the table, and analyze the ideas. It then
selects the idea that would appear most promising as the way to rectify the sit-
uation and return it to normal. Finally an action plan is put in place and exe-
cuted (the exit point of the model is the action itself). You will see how different
learning styles are needed to complete each step in the model. Couger identi-
fies five steps to the problem-solving process.

Step 1: Delineate the Opportunity and Define the Problem
This is a scoping step in which the team members attempt to establish a for-
mulation and definition of the problem and the desired results that a solution
to the problem will provide. It helps the team develop the boundaries of the
problem—that is, what is in scope and what is out of scope. This step is best
performed by team members who have a preference for the assimilator learn-
ing style. These individuals will look at the problem independently of any
focus on people and try to present the problem at the conceptual level and put
it into a logical framework. Their penchant for collecting and concisely report-
ing data is an early activity in this model.

A p p e n d i x I538

58_596365 appi.qxd 2/15/06 10:49 PM Page 538

Figure I-1: Couger’s creative problem-solving model

Step 2: Compile the Relevant Data
With a definition of the problem in hand the team can now identify and spec-
ify the data elements that will be needed in order to further understand the
problem and provide a foundation on which possible solutions can be formu-
lated. Again, the assimilator is well suited to this activity.

Step 3: Generate Ideas
This step typically begins with a brainstorming session. The team needs to iden-
tify as many solutions as possible. This is the time to think outside the box and
look for creative and innovative ways to approach a solution. Ideas will spawn
new ideas until the team has exhausted its creative energies. The diverger is well
suited to the activities that take place in this step. The job of this individual is to
look at the problem from a number of perspectives. Like the assimilator, the
diverger also has an interest in data and information with the purpose of gener-
ating ideas, but he or she is not interested in generating solutions.

Step 4: Evaluate and Prioritize Ideas
In this step the list of possible solutions needs to be winnowed down to the one
or two solutions that will actually be planned. Criteria for selecting the best
solution ideas need to be developed (that’s a job for the converger), metrics for
assessing advantages and disadvantages need to be developed (again, a job for
the converger), and the metrics will be used to prioritize the solutions. This is
a straightforward exercise that anyone on the team can perform. This individ-
ual has the ability to take a variety of ideas and turn them into solutions. His/
her work is not finished, however, until he/she has established criteria for
evaluating those solutions and makes recommendations for action.

Stimulus Required
Learning Style

Step One Delineate opportunity and define problem Assimilator

Step Two Compile relevant information Assimilator

Step Three Generate ideas Diverger

Step Four Evaluate and prioritize ideas Converger

Step Five Develop implementation plan Accomodator

Action

Organizing the Project Team 539

58_596365 appi.qxd 2/15/06 10:49 PM Page 539

Step 5: Develop the Implementation Plan
The solution has been identified, and it’s now time to build a plan to imple-
ment the solution. This is a whole team exercise that will draw on the team’s
collective wisdom for planning and implementation. When it is results that
you want, call on the accommodator. His or her contribution will be to put a
plan in place for delivering the recommended solution and making it happen.
The accommodator is a good person to lead this planning and implementation
exercise.

Decision Making

The first operating rule is the establishment of how the team will make deci-
sions. There are three major types of decision-making models.

Directive
In this model, the person with the authority—the project manager for the proj-
ect and the activity manager for the activity—makes the decision for all team
members. While this approach is certainly expedient, it has obvious draw-
backs. The only information available is the decision maker’s information,
which may or may not be correct or complete. An added danger is that those
who disagree or were left out of the decision may not carry it out.

Participative
In this model, everyone on the team contributes to the decision-making process.
A synergy is created as the best decision is sought. Because everyone has an
opportunity to participate, commitment will be much stronger than in the
directive approach. Obviously, there are additional benefits to team building—
empowerment of the team. Whenever possible, I recommend this participative
approach.

Consultative
This middle-ground approach combines the best of the other two approaches.
While the person in authority makes the decision, the decision is made only
after consulting with all members to get their input and ideas. This approach
is participative at the input stage but directive at the point of decision. In some
cases, when expediency is required, this approach is a good one to take.

A p p e n d i x I540

58_596365 appi.qxd 2/15/06 10:49 PM Page 540

Which model to use in a specific situation is generally a function of the gravity
and time sensitivity of the pending decision. Some organizations have con-
structed categories of decisions, with each category defined by some financial
parameters, such as the value of the decision, or by some scope parameters,
such as the number of business units or customers affected by the decision.
The person responsible for making the decision is defined for each decision
category. The more serious the category, the higher the organizational level of
the decision maker. Some decisions might be made by an individual team
member, some by an activity manager, some by the project manager, some by
the customer, and some by senior management. Yet others might require a
group decision, using either a participative or a consultative approach.

Decision making is pervasive throughout the life of the project. Consider the
following questions from Managing Project Teams by Vijay K. Verma (Project
Management Institute, 1997) that must be answered at some point in the proj-
ect life cycle:

■■ What has to be done and where? (scope)

■■ Why should it be done? (justification)

■■ How well must it be done? (quality)

■■ When is it required and in what sequence? (schedule)

■■ How much will it cost? (budget/cost)

■■ What are the uncertainties? (risk)

■■ Who would do the job? (human resources)

■■ How should people be organized into teams? (communication/interper-
sonal skills)

■■ How will you know if you have done the job? (information dissemination/
communication)

The answers to all of these questions require decisions. How will the project
team make decisions? Will it be based on a vote? Will it be a team consensus
decision? Will it be left up to the project manager? Just how will it operate?

Deciding how to decide is only a piece of the puzzle. Another piece is whether
the team can make a decision and, if not, what to do about it. In their book
Organizational Behavior in Action: Skill Building Experiences (West Publishing
Co., 1976), William C. Morris and M. Sashkin propose a six-phase model for
rational decision making. The six phases in their approach are as follows.

Organizing the Project Team 541

58_596365 appi.qxd 2/15/06 10:49 PM Page 541

■■ Phase I: Situation Definition—This phase is one of discovery for the
team and clarifying the situation to make sure that there is a shared
understanding of the decision the team faces.

■■ Phase II: Situation Decision Generation—Through brainstorming the
team tries to expand the decision space.

■■ Phase III: Ideas to Action—Metrics are devised to attach reward and
penalty to each possible decision that might be made.

■■ Phase IV: Decision Action Plan—The decision has been made, and the
development of a plan to implement it is now needed.

■■ Phase V: Decision Evaluation Planning—This is kind of a post-decision
audit of what worked and what didn’t work. Some lessons learned will be
the likely deliverable as well.

■■ Phase VI: Evaluation of Outcome and Process—The team needs to find
out if the decision got the job done and whether another attempt at the sit-
uation is needed.

Conflict Resolution

The second operating rule deals with how the team resolves conflicts. Con-
flicts arise when two or more team members have a difference of opinion,
when the customer takes issue with an action to be taken by the project team,
or in a variety of other situations involving two parties with different points of
view. In all of these examples, the difference must be resolved. Clearly conflict
resolution is a much more sensitive situation than the decision-making rule
because it is confrontational and situational, whereas the decision-making rule
is procedural and structured. Depending on the particular conflict situation,
the team might adopt one of three conflict resolution styles:

■■ Avoidant

■■ Combative

■■ Collaborative

Avoidant
Some people will do anything to avoid a direct confrontation. They agree even
though they are opposed to the outcome. This style cannot be tolerated on the
project team. Each person’s input and opinion must be sought. It is the respon-
sibility of the project manager to make sure that this happens. A simple device

A p p e n d i x I542

58_596365 appi.qxd 2/15/06 10:49 PM Page 542

is to ask each team member in turn what he or she thinks about the situation
and what he or she suggests be done about it. Often this approach will diffuse
any direct confrontation between two individuals on the team.

Combative
Some avoid confrontation at all costs; others seem to seek it out. Some team
members play devil’s advocate at the least provocation. There are times when
this is advantageous—testing the team’s thinking before making the decision. At
other times it tends to raise the level of stress and tension, when many view it as
a waste of time and not productive. The project manager knows who these team
members are and must act to mitigate the chances of these situations arising.
One technique I have used with success is to put such individuals in charge of
forming a recommendation for the team to consider. Such an approach offers
less opportunity for combative discussion because the combative team member
is sharing recommendations before others give reason for disagreement.

Collaborative
In this approach, the team looks for win-win opportunities. The approach
seeks out a common ground as the basis for moving ahead to a solution. This
approach encourages each team member to put his or her opinions on the table
and not avoid the conflict that may result. At the same time, team members do
not seek to create conflict unnecessarily. The approach is constructive, not
destructive.

The choice of conflict resolution styles is beyond the scope of this book. There
are several books on the topic that you can consult. Of particular importance
will be the variety of collaborative models that might be adopted.

Consensus Building

Consensus building is a process that a team can follow to reach agreement on
which alternative to proceed with for the item (action, decision, and so forth)
under consideration. The agreement is not reached by a majority vote, or any
vote for that matter. Rather the agreement is reached through discussion
where each participant in the discussion reaches a point where he or she has
no serious disagreement with the decision that is about to be taken. The deci-
sion will have been revised several times for the participants to reach the point
where they have no serious disagreement.

Organizing the Project Team 543

58_596365 appi.qxd 2/15/06 10:49 PM Page 543

This is an excellent tool to have in the project team tool kit. In all but a few
cases, there will be a legitimate difference of opinion as to how a problem or
issue should be addressed. There will be no clear-cut action on which all can
agree. In such situations the team must fashion an action or decision with
which no team members have serious disagreement even though they may not
agree in total with the chosen action. To use the method successfully, make
sure that everyone on the team gets to speak. Talk through the issue until an
acceptable action is identified. Conflict is good, but try to be creative as you
search for a compromise action. As soon as no one has serious objections to the
defined action, you have reached consensus. Once a decision is reached, all
team members must support it.

If the project manager chooses to operate on a consensus basis, he or she must
clearly define the situations in which consensus will be acceptable. The team
needs to know this.

Brainstorming

Brainstorming is an essential part of the team operating rules because, at sev-
eral points in the life of the project, the creativity of the team will be tested.
Brainstorming is a technique that can focus that creativity and help the team
discover solutions. There will be situations where acceptable ideas and alter-
natives have not come forth from the normal team deliberations. In such cases
the project manager might suggest a brainstorming session. A brainstorming
session is one in which the team contributes ideas in a stream-of-consciousness
mode, as described in the next paragraph. Brainstorming sessions have been
quite successful in uncovering solutions where none seemed present. The
team needs to know how the project manager will conduct such sessions and
what will be done with the output.

The method for brainstorming is simple and quick. First, assemble together
those individuals who may have some knowledge of the problem area. They
don’t need to be experts. In fact, it may be better if they are not. You need peo-
ple to think creatively and “outside the box.” Experts tend to think inside the
box. The session begins with everyone throwing any idea out on the table. No
discussion (except clarification) is permitted. This continues until no new
ideas are forthcoming. Silence and pauses are fine. Once all the ideas are on the
table, you discuss the items on the list. Look to combine ideas or revise ideas
based on each member’s perspective. In time, some solutions begin to emerge.
Don’t rush the process, and by all means test each idea with an open mind.
Remember that you are looking for a solution that no individual could identify
but that, we hope, the group is able to identify. This is a creative process, one
that must be approached with an open mind. Convention and “We’ve always
done it that way” have no place in a true brainstorming session.

A p p e n d i x I544

58_596365 appi.qxd 2/15/06 10:49 PM Page 544

Installing Custom Controls 545

Project Performance Reporting
If two lines on a graph cross, it must be important.

Ernest F. Cooke
University of Baltimore

C H A P T E R J

NOTE
Most of the material in this appendix is an abridged version of Chapter 10 from my
earlier work Effective Project Management: Traditional, Adaptive, Extreme, Third
Edition (Wiley, 2003). It is presented here for completeness so that this book may
be used as a text for an introductory course in software project management. For
courses requiring more detail on these topics, the earlier work may be used as a
companion text.

545

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Determine the appropriate reporting plan

◆ Measure and analyze variances from the project plan

◆ Know how to use milestone trend charts

◆ Understand and use cost/schedule control

59_596365 appj.qxd 2/15/06 10:48 PM Page 545

Monitoring and Controlling Software Development
Project Progress

“If you can’t measure it, you can’t manage it” (anonymous). Software devel-
opment projects are no exception. Whether they are following a tightly con-
trolled plan-driven approach or are developed following a component-driven
approach, the progress of software development projects requires some form
of performance measurement and tracking.

Progress Reporting System
Once project work is underway, you want to make sure that it proceeds
according to plan. To do this, you need to establish a reporting system that
keeps you informed of the many variables that describe how the project is pro-
ceeding as compared to the plan.

A reporting system has the following characteristics:

■■ Provides timely, complete, and accurate status information

■■ Doesn’t add so much overhead time as to be counterproductive

■■ Is readily acceptable to the project team and senior management

■■ Warns of pending problems in time to take action

■■ Is easily understood by those who have a need to know

To establish this reporting system, you will want to look into the hundreds of
reports that are standard fare in project management software packages. Once
you decide what you want to track, these software tools will give you several
suggestions and standard reports to meet your needs. Most project manage-
ment software tools allow you to customize their standard reports to meet
even the most specific needs.

Types of Project Status Reports
There are five types of project status reports. Each is discussed in the following
subsections.

Current Period Reports

These reports cover only the most recently completed period. They report
progress on those activities that were open or scheduled for work during the
period. Reports might highlight activities completed and variance between

A p p e n d i x J546

59_596365 appj.qxd 2/15/06 10:48 PM Page 546

scheduled and actual completion dates. If any activities did not progress
according to plan, the report should include a discussion of the reasons for the
variance and the appropriate corrective measures that will be implemented to
correct the schedule slippage.

Cumulative Reports

These reports contain the history of the project from the beginning to the end
of the current report period. They are more informative than the current
period reports because they show trends in project progress. For example, a
schedule variance might be tracked over several successive periods to show
improvement. Reports can be at the activity or project level.

Exception Reports

Exception reports report variances from plan. These reports are typically
designed for senior management to be read and interpreted quickly. Reports
that are produced for senior management merit special consideration. Senior
managers do not have a lot of time to read reports that tell them that every-
thing is on schedule, and there are no problems serious enough to warrant
their attention. In such cases, a one-page, high-level summary report that says
everything is okay is usually sufficient. It might also be appropriate to include
a more detailed report as an attachment for those who might wish to read
more detail. The same might be true of exception reports—that is, the one-
page exception report tells senior managers about variances from plan that
will be of interest to them while an attached report provides more details for
the interested reader.

Stoplight Reports

Stoplight reports are not really reports but are rather variation that can be used
on any of the previous report types. I believe in parsimony in all reporting.
Here is a technique you might want to try.

■■ When the project is on schedule and everything seems to be moving as
planned, put a green sticker on the top right of the first page of the project
status report. This will signal to senior managers that everything is pro-
gressing according to plan, and they need not even read the attached report.

■■ When the project has encountered a problem—schedule slippage, for
example—you might put a yellow sticker on the top right of the first page
of the project status report. That is a signal to upper management that the
project is not moving along as scheduled but that you have a get-well plan

Project Performance Reporting 547

59_596365 appj.qxd 2/15/06 10:48 PM Page 547

in place. A summary of the problem and the get-well plan may appear on
the first page, but they can also refer to the details in the attached report.
Those details describe the problem, the corrective steps that have been put
in place, and some estimate of when the situation will be rectified.

■■ Red stickers placed on the top right of the first page signal that a project is
out of control. Red reports are to be avoided at all costs. This means that
the project has encountered a problem and you don’t have a get-well plan
or even a recommendation for upper management. Senior managers will
obviously read these reports because they signal a major problem with
the project. If this should occur, you might have to find an empty box and
pack your belongings in it; your days as project manager might be num-
bered. However, on a more positive note, the red condition may be beyond
your control. For example, there is a major power grid failure on the East
Coast and a number of companies have lost their computing systems.
Your hot site is overburdened with companies looking for computing
power. Your company is one of them, and the loss of computing power
has put your project seriously behind in final system testing. There is little
you can do to avoid such acts of nature.

Variance Reports

Variance reports do exactly what their name suggests—they report differences
between what was planned and what actually happened. The report has three
columns: the planned number, the actual number, and the difference, or vari-
ance, between the two. A variance report can be in one of two formats.

■■ The first is numeric and displays a number of rows with each row giving
the actual, planned, and variance calculation for those variables in which
such numbers are needed. Typical variables that are tracked in a variance
report are schedule and cost. For example, the rows might correspond to
the activities open for work during the report period and the columns
might be the planned cost to date, the actual cost to date, and the differ-
ence between the two. The impact of departures from plan is signified by
larger values of this difference (the variance).

■■ The second format is a graphical representation of the numeric data. It
might be formatted so that the plan data is shown for each report period
of the project and is denoted with a curve of one color; the actual data is
shown for each report period of the project and is denoted by a curve of a
different color. The variance need not be graphed at all because it is
merely the difference between the two curves at some point in time. One
advantage of the graphic version of the variance report is that it can show
the variance trend over the report periods of the project while the numeric
report generally shows data only for the current report period.

A p p e n d i x J548

59_596365 appj.qxd 2/15/06 10:48 PM Page 548

Typical variance reports are snapshots in time (the current period) of the status
of an entity being tracked. Most variance reports do not include data points
that report how the project reached that status. Project variance reports can be
used to report project as well as activity variances. For the sake of the man-
agers who have to read these reports, I recommend that one report format be
used regardless of the variable being tracked. Top management can quickly
become comfortable with a reporting format that is consistent across all pro-
jects or activities within a project. It will make life a bit easier for the project
manager, too.

Measuring Variances
The next subsections go over five reasons why you would want to measure
duration and cost variances.

Catch Deviations from the Curve Early

The cumulative actual cost or actual duration can be plotted against the
planned cumulative cost or cumulative duration. As these two curves begin to
display a variance from one another, the project manager will want to put cor-
rective measures in place to bring the two curves together. This reestablishes
the agreement between the planned and actual performance. This topic is
treated in detail later in the section “Earned Value Analysis”.

Dampen Oscillation

Planned versus actual performance should display a similar pattern over time.
Wild fluctuations between the two are symptomatic of a project that is not
under control. Such a project will get behind schedule or overspent in one
period, corrected in the next, and go out of control in the next report period.
Variance reports can give an early warning that such conditions are likely and
give the project manager an opportunity to correct the anomaly before it gets
serious. Smaller oscillations are easier to correct than larger oscillations.

Allow Early Corrective Action

As just suggested, the project manager would prefer to be alerted to a sched-
ule or cost problem early in the development of the problem rather than later.
Early problem detection may offer more opportunities for corrective action
than later detection.

Project Performance Reporting 549

59_596365 appj.qxd 2/15/06 10:48 PM Page 549

Determine Weekly Schedule Variance

In my experience, I have found that progress on activities open for work
should be reported on a weekly basis. This is a good compromise on report fre-
quency and gives the project manager the best opportunity for corrective
action plans before the situation escalates to a point where it will be difficult to
recover any schedule slippages.

Determine Weekly Effort (Person Hours/Day) Variance

The difference between the planned effort and actual effort has a direct impact
on both planned cumulative cost and schedule. If the effort is less than
planned, it may suggest a potential schedule slippage if the person is not able
to increase his or her effort on the activity in the following week. Alternatively,
if the weekly effort exceeded the plan and the progress was not proportion-
ately the same, a cost overrun situation may be developing.

Early detection of out-of-control situations is also important. The longer you
have to wait to discover a problem, the longer it takes for your solution to
bring the project back to a stable condition.

How and What Information To Update
As input to each of these report types, activity managers and the project man-
ager must report the progress made on all of those activities that were open for
work during the period of time covered by the status report (in other words,
those that were to have work completed on them during the report period).
Recall that your planning estimates of activity duration and cost were based
on little or no information. Now that you have completed some work on the
activity, you should be able to provide a better estimate of the duration and
cost exposure. This reflects itself in a re-estimate of the work remaining to
complete the activity. That update information should also be provided.

The following subsections comprise a list of what should actually be reported.

Determine a Set Period of Time and Day of Week

The project team will have agreed on the day of the week and time of day by
which all updated information is to be submitted. A project administrator or
another team member is responsible for seeing that all update information is
on file by the report deadline.

A p p e n d i x J550

59_596365 appj.qxd 2/15/06 10:48 PM Page 550

Report Actual Work Accomplished During This Period

What was planned to be accomplished and what was actually accomplished
are two different things. Rather than disappoint the project manager, activity
managers are likely to report that the planned work was actually accom-
plished. Their hope is to catch up by the next report period. Project managers
need to verify the accuracy of the reported data rather than simply accept it as
accurate. Spot checking on a random basis should be sufficient. If the activity
was defined according to the completion criteria discussed in Appendix E,
verification should not be a problem.

Record Historical and Re-estimate Remaining
(In-Progress Work Only)

Two kinds of information are reported.

■■ All work completed prior to the report deadline is historical information. It
will allow variance reports and other tracking data to be presented and
analyzed.

■■ The other kind of information is future-oriented. For the most part, this
information is re-estimates of duration and cost and estimates to comple-
tion (both cost and duration) of the activities still open for work.

Report Start and Finish Dates

These are the actual start and finish dates of activities started or completed
during the report period.

Record Days of Duration Accomplished and Remaining

How many days have been spent so far working on this activity is the first
number reported. The second number is based on the re-estimated duration as
reflected in the time-to-completion number.

Report Resource Effort (Hours/Day) Spent and Remaining
(In-Progress Work Only)

Whereas the preceding numbers report calendar time, these numbers report
labor time over the duration of the activity. There are two numbers. One
reports labor completed over the duration accomplished. The other reports
labor to be spent over the remaining duration.

Project Performance Reporting 551

59_596365 appj.qxd 2/15/06 10:48 PM Page 551

Percent complete is the most common method used to record progress because
it is the way people tend to think about what has been done in reference to the
total job that has to be done. Percent complete isn’t the best method to report
progress, though, because it is a subjective evaluation. When you ask some-
one, “What percent complete are you on this activity?”, what goes through his
or her mind? The first thing he or she thinks about is most likely, “What per-
cent should I be?”, followed closely by, “What’s a number that we can all be
happy with?”

In order to calculate the percent complete for an activity, you need something
quantifiable. At least three different approaches have been used to calculate
the percent complete of an activity:

■■ Duration

■■ Resource work

■■ Cost

Each of these could result in a different percent complete! So when you say
percent complete, what measure are you referring to?

If you focus on duration as the measure of percent complete, where did the
duration value come from? The only value you have is the original estimate.
You know that original estimates often differ from actual performance. If you
were to apply a percent complete to duration, however, the only one you have
to work with is the original estimated one. Therefore this is not a good metric.

My advice is to never ask for and never accept percent complete as input to pro-
ject progress. Always allow it to be a calculation. Many software products will
let you do it either as an inputted value or as a calculated value. The calculated
value that I recommend above all others is one based on the number of tasks
actually completed in the activity as a proportion of the number of tasks that
currently define the activity. Recall that the task list for an activity is part of the
work package description. Here you count only completed tasks. Tasks that are
underway but not reported as complete may not be used in this calculation.

Frequency of Gathering and Reporting Project Progress
A logical frequency for reporting project progress is once a week, usually on
Friday afternoon. There are some projects, such as refurbishing a large jet air-
liner, where progress is recorded after each shift, three times a day. I’ve seen
others that were of such a low priority or long duration that they were
updated once a month. For most projects, start gathering the information
about noon on Friday. Let people extrapolate to the end of the work day.

A p p e n d i x J552

59_596365 appj.qxd 2/15/06 10:48 PM Page 552

Variances
Variances are deviations from plan. Think of a variance as the difference
between what was planned and what actually occurred. There are two types of
variances: positive variances and negative variances.

Positive Variances

Positive variances are deviations from plan that indicate that an ahead-of-
schedule situation has occurred or that an actual cost was less than a planned
cost. This is good news to the project manager, who would rather hear that the
project is ahead of schedule or under budget. Positive variances bring their
own set of problems, which can be as serious as negative variances. Positive
variances can allow for rescheduling to bring the project to completion early,
under budget, or both. Resources can be reallocated from ahead-of-schedule
projects to behind-schedule projects.

Not all the news is good news, though. Positive variances also can result from
schedule slippage! Consider budget. Being underbudget means that not all
dollars were expended, which may be the direct result of not having com-
pleted work that was scheduled for completion during the report period. I
return to this situation later in the “Earned Value Analysis” section of this
appendix. On the other hand, if the ahead-of-schedule situation is the result of
the project team’s finding a better way or a shortcut to completing work, the
project manager will be pleased. This may be a short-lived benefit, however.
Getting ahead of schedule is great, but staying ahead of schedule presents
another kind of problem—staying ahead of schedule. That means that to stay
ahead of schedule the project manager will have to negotiate changes to the
resource schedule. Given the aggressive project portfolios in place in most
companies, there is not much reason to believe that resource schedule changes
can be made. In the final analysis, being ahead of schedule may be a myth.

Negative Variances

Negative variances are deviations from plan that indicate that a behind-
schedule situation has occurred or that an actual cost was greater than a
planned cost. Being behind schedule or over budget is not what the project
manager or his reporting manager wants to hear. Negative variances, just like
positive variances, are not necessarily bad news. For example, you might have
overspent because you accomplished more work during the report period
than was planned. But in overspending during this period, you could have

Project Performance Reporting 553

59_596365 appj.qxd 2/15/06 10:48 PM Page 553

accomplished the work at less cost than was originally planned. You can’t tell
by looking at the variance report. More details are forthcoming on this in the
“Earned Value Analysis” section later in this appendix.

In most cases, negative time variances affect project completion only if they are
associated with critical path activities or if the schedule slippage on non-critical
path activities exceeds the activity’s total float. Variances use up the float time
for that activity; more serious ones will cause a change in the critical path.

Negative cost variances can result from uncontrollable factors such as cost
increases from suppliers or unexpected equipment malfunctions. Some nega-
tive variances can result from inefficiencies or error. I discuss a problem esca-
lation strategy to resolve such situations later in this appendix.

Graphical Reporting Tools

Senior managers may have only a few minutes of uninterrupted time to digest
your report. Respect that time. They won’t be able to fully read and under-
stand your report if they have to read 15 pages before they get any useful infor-
mation. Having to read several pages only to find out that the project is on
schedule is frustrating and a waste of valuable time.

Gantt Charts
A Gantt chart is one of the most convenient, most used, and easy-to-grasp
depictions of project activities that I have encountered in my practice. The
chart is formatted as a two-dimensional representation of the project schedule
with activities shown in the rows and time shown across the horizontal axis. It
can be used during planning, for resource scheduling, and for status reporting.
The only down side to using Gantt charts is that they do not contain depen-
dency relationships. Some project management software tools have an option
to display these dependencies, but the result is a graphical report that is so
cluttered with lines representing the dependencies that the report is next to
useless. In some cases, dependencies can be guessed at from the Gantt chart,
but in most cases they are lost.

Figure J-1 shows a representation of the Cost Containment Project as a Gantt
chart using the format that I prefer. The format shown is from Microsoft Pro-
ject 2000, but it is typical of the format used in most project management soft-
ware packages.

A p p e n d i x J554

59_596365 appj.qxd 2/15/06 10:48 PM Page 554

Figure J-1: Gantt chart project status report.

Milestone Trend Charts
Milestones are significant events in the life of the project that you wish to track.
These significant events are zero-duration activities and merely represent that
a certain condition exists in the project. For example, a milestone event might
be that the approval of several different component designs has been given.
This event consumes no time in the project schedule. It simply reflects the fact
that those approvals have all been granted. The completion of this milestone
event may be the predecessor of several build-type activities in the project
plan. Milestone events are planned into the project in the same way that activ-
ities are planned into the project. They typically have FS relationships with the
activities that are their predecessors and their successors.

Take a look at a milestone trend chart (see Figure J-2) for a hypothetical project.
The trend chart plots the difference between the planned and estimated date of
a project milestone at each project report period. In the original project plan the
milestone is planned to occur at the ninth month of the project. That is the last
project month on this milestone chart. The horizontal lines represent one, two,
and three standard deviations above or below the forecasted milestone date.
Any activity in the project has an expected completion date that is approxi-
mately normally distributed. The mean and variance of its completion date are
a function of the longest path to the activity from the report date. In this exam-
ple, the units of measure are one month. For this project the first project report
(at month 1) shows that the new forecasted milestone date will be one week
later than planned. At the second project report date (month 2 of the project)

Task A

Task B

Task C

Task D

Task E

Task F

Baseline

Task 1 2 3 4 5 6 7 8 9 10 11 12

Project Performance Reporting 555

59_596365 appj.qxd 2/15/06 10:48 PM Page 555

the milestone date is forecasted on target. The next three project reports indi-
cate a slippage to 2 weeks late, then 3 weeks late, then 4 weeks late, and finally
6 weeks late (at month 6 of the project). In other words, the milestone is fore-
casted to occur 6 weeks late, and there are only 3 more project months in which
to recover the slippage. Obviously, the project is in trouble. The project appears
to be drifting out of control and, in fact, it is. Some remedial action is required
of the project manager.

Certain patterns signal an out-of-control situation. For a complete treatment of
milestone trend charts and several examples see Chapter 38.

Earned Value Analysis (a.k.a. Cost Schedule Control)
Earned value analysis is used to measure project performance and, by tradi-
tion, uses the dollar value of work as the metric. As an alternative, resource
person hours/day can be used in cases where the project manager does not
directly manage the project budget. Actual work performed is compared
against planned and budgeted work expressed in these equivalents. These
metrics are used to determine schedule and cost variances for both the current
period and cumulative to date. Cost, or resource person hours/day are not
good objective indicators with which to measure performance or progress.
While this is true, there is no other good objective indicator. Given this you are
left with dollars or person hours/day, which you are at least familiar working
with in other contexts. Either one by itself does not tell the whole story. You
need to relate them to one another.

Figure J-2: A run up or down of four or more successive data points

Early

3

2

1

On Schedule

1

2

3

Late

Project Month

1 2 3 4 5 6 7 8 9

A p p e n d i x J556

59_596365 appj.qxd 2/15/06 10:48 PM Page 556

One drawback that these metrics have is that they report history. Although
they can be used to make extrapolated predictions for the future, they primar-
ily provide a measure of the general health of the project, which the project
manager can correct as needed to restore the project to good health.

The data displayed in Figure J-3 tells the whole story of the project status with
respect to both cost and schedule. First, I want to define the terms and then
analyze what the data is telling us. First, the BCWS curve (or cumulative bud-
get) shows how costs incur cumulatively for the labor involved in delivering
what was scheduled. In this version no capital expenditures are included.
While they could be, they usually inflate the data and make it difficult to inter-
pret. Include those costs if you wish. What was actually spent cumulatively is
plotted in the ACWP curve. With just the data reflected in these two curves
you might come to the conclusion that you are under budget. That would be
incorrect. The BCWP curve clarifies the situation. For the work that was done,
you are actually overbudget as shown by the Cost Variance. You didn’t com-
plete what was planned for the update date, but what you did do you over-
spent. The gap between the BCWS and BCWP curves tells the schedule story.
In this case you are behind schedule. The terminology has changed recently.
The legend on the bottom of the graph shows the old terminology (left of the
equal sign) and the new terminology (right of the equal sign). For a complete
discussion of earned value analysis with several examples see Chapter 38.

Figure J-3: A typical earned value analysis report

Progress

Time

Cost Variance

Schedule
Variance

Update Date

ACWP

BCWS

BCWP

ACWP = Actual Cost (AC)
BCWS = Planned Value (PV)

BCWP = Earned Value (EV)

Project Performance Reporting 557

59_596365 appj.qxd 2/15/06 10:48 PM Page 557

Level of Detail

There are always questions about the level of detail and frequency of reporting
in project status reports. Our feeling is that the more you report, the more
likely it is that someone will object or find some reason to micro-manage your
project. You can examine this issue in more detail by considering the reporting
requirements at the activity manager, project manager, and senior manager
levels.

Activity Manager
The activity manager will want the most detailed and granular information
available. After all, the activity manager is directly responsible for getting the
work done. Because he or she manages the resources that are used to complete
project work, he or she will want to know what happened, what was sched-
uled to happen, who did what (or didn’t do what), why it happened as it did,
what problems have arisen, what solutions are within reach, and what
changes need to be made. Reports that reflect very detailed information are of
use to the activity manager and the project manager but, because of their very
detail, are of little value to anyone outside of the project team.

Project Manager
The project manager is concerned with the status information of all activities
open for work during the report period. Just as is the case with activity-level
reports, there are reports for the project manager and reports from the project
manager to senior management.

Reports for the project manager present data at the activity level and show
effects on the project schedule. If project management software is used, the
posted data from the activity managers is used to update the project schedule
and produce reports on overall project status. Any slippage at the activity level
rippled through the successor activities, triggered a new activity schedule, and
recomputed project completion dates. These reports display all scheduling
information including float and resource schedule data. In effect, they become
working documents for the project manager for schedule adjustments and
problem resolution. Because these reports are at a very detailed level, they are
not appropriate for distribution beyond the project team. In many cases, they
may be for the project manager’s eyes only.

A p p e n d i x J558

59_596365 appj.qxd 2/15/06 10:48 PM Page 558

Senior Management
I recommend using a graphical exception report structure to report project sta-
tus to senior management. For many projects, reports at the activity level will
be appropriate. For large projects, either milestone-level or summary task-
level reports are more effective. Senior managers have only a few minutes to
review any single project report. Keeping a report to a single page is a good
strategy. The best report format, in my experience, is the Gantt chart. These
charts require little explanation. Activities should be listed in the order of
scheduled start date, a line designating the report date should be given and all
percent completed displayed.

If the project is sick, attach a one-page get-well plan to your report. This usu-
ally is in the form of a narrative discussion of the problem, alternative solu-
tions, recommended action, and any other details relevant to the issue at hand.

Project Status Meetings

You are no doubt overloaded with meetings. How often do you find yourself
saying, “Why am I here? What’s the purpose of this meeting?” How many
times do you attend a meeting from which no decisions were taken, no action
items identified? Doesn’t that seem like a big waste of time? Well, it is, and it
shouldn’t be tolerated. In this section I discuss project status meetings and in
the following section problem management meetings. These are the two types
of meetings you should attend, meetings with a purpose.

What Is a Project Status Meeting?
In order to keep close track of progress on the project, the project manager
needs to have information from his/her team on a timely basis. This informa-
tion will be given during a project status meeting. At a minimum you need to
have a status meeting at least once a week. On some of the major projects on
which we’ve worked, daily status meetings were the norm for the first few
weeks, and then as the need for daily information wasn’t as critical we
switched to twice a week and finally to weekly status.

Who Should Attend?
In order to use the status meetings correctly and efficiently, it’s necessary to
figure out who should be in attendance. This should be a part of your commu-
nication plan, and it’s actually very important to know who should and
shouldn’t be a part of the status meetings.

Project Performance Reporting 559

59_596365 appj.qxd 2/15/06 10:48 PM Page 559

At first your status team has a tendency to include people who are needed
only in the planning phase. If they don’t have a need to know information,
don’t make them come to a meeting and sit there without a good reason. You
are going to put out meeting minutes anyway, so those people that aren’t
needed at the actual meeting will get the minutes in any case.

One other thing about who should be in attendance. There will be times in a
status meeting when two people will get into a discussion where the other
people in the meeting aren’t needed. If this happens, ask them to do a “side-
bar” meeting so that your own status meeting can go on. A sidebar meeting is
one in which a limited number of people need to participate and these types of
meetings can be done more effectively away from your status meeting. Having
everyone in the room listen to these sidebar topics isn’t useful.

Ask the people who are going to the sidebar meeting to let you know what
happens in the meeting, particularly if what they talk about impacts the pro-
ject. If possible get a meeting summary from the people, even if it’s only a sen-
tence or two long. Get this circulated to the rest of the team with your minutes
so that everyone on the team is kept up to date.

When Are They Held?
Usually status meetings are held towards the end of the week. Whatever the
day, make sure it’s the same one time after time. People will get used to prepar-
ing information for a status meeting if they know exactly when the meeting
will occur.

What Is Their Purpose?
The reason for a status meeting is to get information to the whole team. It may
be that on large projects the participants in the status meeting are actually rep-
resentatives of their department. You can’t have all the people on a 250-person
project team come into a meeting once a week, so make sure that someone is
there to represent the rest of the people in their section. The purpose of the
meeting is to encourage free flow of information and that means being sure that
the people who need to have information to do their jobs get the information at
the status meeting. Remember once again that you are going to send out min-
utes of the meeting so that will take care of the people who aren’t in attendance.

Project size may be the determining factor, but in general I prefer a one-hour
limit. This is the maximum, and an entire hour should not be needed at every
project status meeting. Good judgment is needed here. Do not waste people’s
time.

A p p e n d i x J560

59_596365 appj.qxd 2/15/06 10:48 PM Page 560

What Is Their Format?
While the format of the status review meetings should be flexible, as project
needs dictate, certain items are part of every status meeting. I recommend that
you proceed in a top-down fashion:

1. The project champion reports any changes that may have a bearing on the
future of the project.

2. The customer reports any changes that may have a bearing on the future
of the project.

3. The project manager reports on the overall health of the project and the
impact of earlier problems, changes, and corrective actions as they impact
at the project level.

4. Activity managers report on the health of activities open or scheduled
open for work since the last status meeting.

5. Activity managers of future activities report on any changes since the last
meeting that might impact project status.

6. The project manager reviews the status of open problems from the last
status meeting.

7. Attendees identify new problems and assign responsibility for their reso-
lution (the only discussion allowed here is for clarification purposes).

8. The project champion, customer, or project manager, as appropriate, offers
closing comments.

9. The project manager announces the time and place of the next meeting
and adjourns the meeting.

Minutes are part of the formal project documentation and are taken at each
meeting, circulated for comment, revised as appropriate, distributed, and filed
in the project notebook (electronic, I hope). Because there is little discussion,
the minutes contain any handouts from the meeting and list the items assigned
for the next meeting. The minutes should also contain the list of attendees, a
summary of comments made, and assigned responsibilities.

A project administrative support person should be present at the project status
review meetings to take minutes and monitor handouts. The responsibility
might also be passed around to the project team members. In some organiza-
tions the same person is responsible for distributing the meeting agenda and
materials ahead of time for review. This is especially important if decisions
will be made during the meeting. People are very uncomfortable if they are
seeing important information for the first time, are expected to read and
understand it, and then make a decision, all at the same time.

Project Performance Reporting 561

59_596365 appj.qxd 2/15/06 10:48 PM Page 561

Problem Management Meetings

Problem management meetings provide an oversight function to identify,
monitor, and resolve problems that arise during the life of a project. Every pro-
ject has problems. No matter how well planned or managed the project is,
there will always be problems. Many problems arise just as an accident of
nature. For example, one of your key staff members has resigned just as he was
to begin working on a critical path activity. His skills are in high demand, and
he will be difficult to replace. Each day that his position remains vacant is
another day’s delay in the project. What will you do? Nevertheless, the project
manager must be ready to take action in such cases. The problem management
meeting is one vehicle for addressing all problems that need to be escalated
above the individual for definition, solution identification, and resolution.

This is an important function in the management of projects, especially large
projects. Problems are often identified in the project status meeting and
referred to the appropriate persons for resolution. A group is assembled to
work on the problem. Progress reports are presented and discussed at a prob-
lem management meeting.

Change Management

It is difficult for anyone, regardless of his or her skills at prediction and fore-
casting, to completely and accurately define the needs for a product or service
that will be implemented 6, 12, or 18 months in the future. Competition, cus-
tomer reactions, technology changes, a host of supplier-related situations, and
many other factors could render a killer application obsolete before it can be
implemented. The most frequent situation starts something like this: “Oh, I
forgot to tell you that we will also need . . .” or “We have to go to market no
later than the third quarter instead of the fourth quarter.” How often have you
heard sentences that start something like those examples? Face it—change is a
way of life in project management. Be prepared to act accordingly.

Because change is constant, a good project management methodology has a
change management process in place. In effect, the change management
process has you plan the project again. Think of it as a mini-project planning
session.

Two documents are part of every good change management process: a project
change request and project impact statement.

A p p e n d i x J562

59_596365 appj.qxd 2/15/06 10:48 PM Page 562

Project Change Request
The first principle to learn is that every change is a significant change. Adopt
that maxim and you will seldom go wrong. What that means is that every
change requested by the customer must be documented. That document might
be as simple as a memo but might also follow a format provided by the project
team. In any case, it is the start of another round of establishing Conditions of
Satisfaction. Only when the request is clearly understood can the project team
evaluate the impact of the change and determine whether the change can be
accommodated. Figure J-4 is an example of a change request form that I have
found useful.

The change request is submitted by the customer using the form shown in Fig-
ure J-4 and forwarded to the manager or managers charged with reviewing
such requests. They may either accept the change as submitted or return it to
the customer for rework and resubmission. Once the change request has been
accepted, it is forwarded to the project manager, who will perform an impact
study.

Figure J-4: Change request form

Project Name

Change Requested By

Date Change Requested

Description of Change

Business Justification

Action

Approved By Date

Project Performance Reporting 563

59_596365 appj.qxd 2/15/06 10:48 PM Page 563

Project Impact Statement
The response to a change request is a document called a project impact statement.
It is a response that identifies the alternative courses of action that the project
manager is willing to consider. The requestor is then charged with choosing
the best alternative. The project impact statement describes the feasible alter-
natives that the project manager was able to identify, the positive and negative
aspects of each, and perhaps a recommendation as to which alternative might
be best. The final decision rests with the requestor.

Six possible outcomes can result from a change request. Those are outlined in
the subsections that follow.

It Can Be Accommodated within the Project Resources and
Timelines

This is the simplest of situations for the project manager to handle. After con-
sidering the impact of the change on the project schedule, the project manager
decides that the change can be accommodated without any harmful effect on
the schedule and resources.

It Can Be Accommodated but Will Require an Extension
of the Deliverable Schedule

The only impact that the change will have is to lengthen the deliverable sched-
ule. No additional resources will be needed to accommodate the change request.

It Can Be Accommodated within the Current Deliverable
Schedule but Additional Resources Will Be Needed

To accommodate this change request the project manager will need additional
resources, but otherwise the current and revised schedule can be met.

It Can Be Accommodated but Additional Resources and an
Extension of the Deliverable Schedule Will Be Required

This change request will require additional resources and a lengthened deliv-
erable schedule.

It Can Be Accommodated with a Multiple Release Strategy
and Prioritizing of the Deliverables across the Release Dates

This situation comes up more often than you might expect. To accommodate
the change request, the project plan will have to be significantly revised, but
there is an alternative. For example, suppose that the original request was for

A p p e n d i x J564

59_596365 appj.qxd 2/15/06 10:48 PM Page 564

a list of 10 features, and they are in the current plan. The change request asks
for an additional 2 features. The project manager asks the customer to priori-
tize all 12 features. He or she will give the customer 8 of them earlier than the
delivery date for the original 10 features and will deliver the remaining 4 fea-
tures later than the delivery date for the original 10. In other words, the project
manager will give the customer some of what is requested earlier than
requested and the balance later than requested. I have seen several cases
where this compromise has worked quite well.

It Cannot Be Accommodated without a Significant Change
to the Project

These change requests are significant. They are so significant, in fact, as to ren-
der the current project plan obsolete. There are two alternatives here.

■■ The first is to deny the change request, complete the project as planned,
and handle the request as another project.

■■ The other is to call a stop to the current project, re-plan the project to
accommodate the change, and launch a new project.

An integral part of the change control process is the documentation. First, I
strongly suggest that every change be treated as a major change until proven
otherwise. To do otherwise is to court disaster. That means that every change
request follows the same procedure. Figure J-5 is an example of the steps in a
typical change process.

Figure J-5: A typical change control process

Review
change
request

Submit
change
request

Review
impact
study

Request
impact
study

Change
approved for

implementation

Rework & Resubmit

Rework & Resubmit
Reject

Reject

Project Performance Reporting 565

59_596365 appj.qxd 2/15/06 10:48 PM Page 565

The impact study involves looking at the project plan, assessing how the
change request impacts the plan, and issuing the impact study, which is for-
warded to the management group for final disposition. They may return it to
the project manager for further analysis and recommendations or reject it and
notify the customer of their action. The project manager reworks the impact
study and returns it to the management group for final disposition. If they
approve the change, the project manager will implement it into the project
plan.

Problem Escalation

Something has happened that put the project plan at risk. Late shipments from
suppliers, equipment malfunction, sickness, random acts of nature, resigna-
tions, priority changes, errors, and a host of other factors give rise to problems
that can affect deliverables, deliverable schedules, and resource schedules. The
project manager owns the problem and must find a solution.

This situation is very different for the project manager than the case of a
change request. When a change request has been made, the project manager
has some leverage with the customer. The customer wants something and
might be willing to negotiate to an acceptable resolution. That is not the case
when a problem has arisen on the project team. The project manager does not
have any leverage and is in a much more difficult position.

When the unplanned happens, the project manager needs to determine the
extent of the problem and take the appropriate corrective measures. Minor
variations from plan will occur and may not require corrective measures.
There are degrees of corrective measures available to the project manager. In
trying to resolve the problem, the project manager will begin at the top of the
following list and work down the list, examining each choice until one is
found that solves the problem.

There are three levels of escalation strategy: project manager–based, resource
manager–based, and customer-based.

Project Manager–Based Strategies
If the problem occurs within a non-critical path activity, it can be resolved by
using the free float. One example is to reschedule the activity later in its ES to
LF window or extend the duration to use some of the free float. Note that this
strategy does not affect any other activities in the project. By using total float,
you impact the resource schedule for all activities that have this one as a
predecessor.

A p p e n d i x J566

59_596365 appj.qxd 2/15/06 10:48 PM Page 566

Another approach is to continue the schedule compression techniques
employed in defining the original project plan. This can impact resource sched-
ules just as in the prior case.

The last option open to the project manager is to consider the resource pool
under his or her control. Are there resources that can be reassigned from non-
critical path activities to assist with the problem activity?

Resource Manager–Based Strategies
Once the project manager has exhausted all the options under his or her con-
trol, it is time to turn to the resource managers for additional help. This may
take the form of additional resources or rescheduling of already committed
resources. Expect to make some trade-off here. For example, you might be
accommodated now, but at the sacrifice of later activities in the project. At least
you have bought some time to resolve the downstream problem that will be
created by solving this upstream problem. If the project manager has other
projects underway, some trades across projects may solve the problem.

Customer-Based Strategies
When all else fails, the project manager will have to approach the customer.
The first strategy would be to consider any multiple release strategies. Deliv-
ering some functionality ahead of schedule and the balance later than planned
may be a good starting point. The last resort is to ask for an extension of time.
This is not as unpleasant as it may seem because the customer’s schedule may
have also slipped, and the customer may be relieved to have a delay in your
deliverable schedule, too.

The Escalation Strategy Hierarchy
Our problem escalation strategy is based on the premise that the project man-
ager will try to solve the problem with the resources he or she controls. Failing
to do that, the project manager will appeal to resource managers. As a last
resort, the project manager will appeal to the customer.

One thing to note here that is very different from the change request situation
discussed previously is the leverage to negotiate. As mentioned, the project
manager has leverage when the customer has requested a change but has no
leverage when he or she has a project problem to solve. The customer has
nothing to gain and therefore is less likely to be cooperative. In most cases, the
problem can be reduced to how to recover lost time. There are six outcomes to
this problem situation; they are covered in the following subsections.

Project Performance Reporting 567

59_596365 appj.qxd 2/15/06 10:48 PM Page 567

No Action Required (Schedule Slack Will Correct the Problem)

In this case, the slippage involved a non-critical path activity, and it will self-
correct.

Examine FS Dependencies for Schedule Compression
Opportunities

Recall that you originally compressed the schedule to accommodate the
requested project completion date by changing FS dependencies to SS depen-
dencies. The project manager will use that same strategy again. The project
schedule will have changed several times since work began, and there may be
several new opportunities to accomplish further compression and solve the
current problem.

Reassign Resources from Non-Critical Path Activities
To Correct the Slippage

Up to a point, the project manager controls the resources assigned to this pro-
ject and others that he or she manages. The project manager may be able to
reassign resources from non-critical path activities to the activities that have
slipped. These non-critical path activities may be in the same project in which
the slippage occurred, or they may be in another project managed by the same
project manager.

Negotiate Additional Resources

Having exhausted all of the resources he or she controls, the project manager
needs to turn to the resource managers as the next strategy. In order to recoup
the lost time, the project manager needs additional resources. They may come
in the form of added staff or dollars to acquire contract help.

Negotiate Multiple Release Strategies

These last two strategies involve the customer. Just as in the case of a change
request, the project manager can use multiple release strategies here to advan-
tage. An example will illustrate the strategy. The project manager shares the
problem with the customer and then asks for the customer to prioritize the fea-
tures requested in the project plan. The project manager then offers to provide
the highest-priority features ahead of their scheduled delivery date and the
remaining priorities later than the scheduled delivery date. In other words, the
project manager asks for an extended delivery schedule, but by giving the cus-
tomer something better than the original bargain, namely something ahead of
schedule.

A p p e n d i x J568

59_596365 appj.qxd 2/15/06 10:48 PM Page 568

Request Schedule Extension from the Customer

This is the final alternative. Although similar to the multiple release strategy, it
offers the customer nothing in trade. The slippage is such that the only resolu-
tion is to ask for a time extension.

The project manager tries to solve the problem by starting at the top of the list
and working down until a solution is found. By using this approach the pro-
ject manager will first try to solve the problem with resources he or she con-
trols, then with resources the resource managers control, and finally with
resources and constraints the customer controls.

Project Performance Reporting 569

59_596365 appj.qxd 2/15/06 10:48 PM Page 569

59_596365 appj.qxd 2/15/06 10:49 PM Page 570

Installing Custom Controls 571

Business Process Flow
Diagramming
I am easily satisfied with the best.

Winston Churchill
British Prime Minister

A P P E N D I XK

571

Often you will choose to start a software development project by mapping the
current (“As Is” process) business process or processes that are going to be
affected. You might also want to map the business process after the software
products are installed (“To Be” process). Both of these are excellent artifacts to
use as input to the requirements gathering process.

Business processes lie at the root of all efforts at software development and
process improvement. In this appendix I will explore business process flow
diagramming as an add-on to the other topics in this book.

Appendix Learning Objectives

After reading this appendix, you will be able to:

◆ Define a business process

◆ Define a business process improvement project

◆ Construct a business context diagram

◆ Construct a business process flow diagram

◆ Define “As Is” and “To Be” business process

◆ Identify the “As Is/To Be” gap

60_596365 appk.qxd 2/15/06 10:42 PM Page 571

From the systems development perspective the process of gathering require-
ments often begins with knowledge of the current or “As Is” business process
and ends with the “To Be” business process. That gap is filled with a new or
enhanced systems project. Having the “As Is” and the “To Be” business
process flow diagrams is an invaluable aid in the ensuing systems develop-
ment effort.

It is an ongoing dictum of today’s business that you must continuously
improve you business processes. The old saying “If it ain’t broke, don’t fix it”
no longer applies. If you aren’t improving your processes and the way that
they support your customers, you run the risk of losing market share. Your
customer should also be taking the lead in demanding process improvement.
On the other hand, they are your customers, and you should be ever watchful
for ways to improve the service they deliver to their customers.

All organizations are under pressure to improve. The pressure can come from
their customer, their competition, environmental change, or a combination of
the three. The improvements can be in their products or their processes. It is all
too often the case that the customer doesn’t give their business to the business
with the best product. If the customer finds that the business is too difficult to
deal with, the customer will decide to use second best from a supplier who is
easier to deal with.

This also applies to internal organizations. One reason for outsourcing is a
belief (frequently inaccurate) that other groups will be easier, faster, or cheaper
to deal with. Internal organizations need to counter this belief by clearly
demonstrating that they are continuously improving what they can deliver
and their methods of delivery.

What Is a Business Process?

A business process is a collection of activities that takes one or more kinds of
input from one or more different sources and produces value for the customer
(see Figure K-1). The focus of the business must be to ensure that the effort of
dealing with the process does not out-weigh the value received from complet-
ing the process.

Figure K-1: What is a business process?

Input A

Input B

Input C
Business Process

Change
of state

A p p e n d i x K572

60_596365 appk.qxd 2/15/06 10:42 PM Page 572

For example, order entry/fulfillment is a clear example of a business process.
From the customer’s viewpoint, the process starts when customer places an
order and ends when the customer receives the goods requested. There are
numerous activities in between. Credit checks may be run to confirm that the
customer can pay for the order. Inventory is accessed to confirm you have
what the customer is requesting. A typical list of activities would include:

■■ Receiving the order

■■ Logging the order

■■ Verification of completeness

■■ Customer credit check

■■ Determining the price

■■ Inventory checking

■■ Production request

■■ Order picking

■■ Order packaging

■■ Shipment

You will notice that the activity in a high-level business process might be
regarded as a process itself by the performing organization. Processes can be
decomposed into other processes until you reach the task level where some
interim component is produced. The key is to start with the customer as the
focus of the original process and define the subprocesses by their contribution
to added value.

Characteristics of Business Processes
The more you understand business processes, the more you can improve
them. To do that, you must clearly understand several characteristics of busi-
ness processes:

■■ Flow—The method for transforming input into output

■■ Effectiveness—How well customer expectations are met

■■ Efficiency—How well resources are used to produce an output

■■ Cycle time—The time taken for transformation from input to final output

■■ Cost—The expenses of the entire process

■■ Non-value-added time—The time between process steps when no work
is done on the product/service

The items are fairly self-explanatory, except for effectiveness and efficiency,
which I want to discuss in more detail.

Business Process Flow Diagramming 573

60_596365 appk.qxd 2/15/06 10:42 PM Page 573

Process Effectiveness

Process effectiveness is how well the process meets the requirements of the
end customer. It measures the quality of the process. Effectiveness is also how
well the output of the process meets the input requirements of internal cus-
tomers and how well the inputs from the suppliers meet the requirements of
the process.

The effectiveness of every process can be improved. The direct result of
increased effectiveness will lead to happier customers, improved sales, and an
increase in market share.

The first step in bringing about an improvement in process effectiveness is to
identify the most important effectiveness characteristics. Effectiveness charac-
teristics are indicators of how well the process is functioning. The goal is to be
sure that the output meets the customer requirements.

Typical lack of effectiveness indicators are:

■■ Unacceptable product and/or service

■■ Customer complaints

■■ High warranty costs

■■ Decreased market share

■■ Backlog

■■ Redoing completed work

■■ Rejected output

■■ Late output

■■ Incomplete output

During the walkthrough, the team should be constantly looking and identify-
ing effectiveness characteristics.

Process Efficiency

The achievement of process efficiency is for the primary benefit of the cus-
tomer. Typical efficiency characteristics are:

■■ Cycle time per unit of transaction

■■ Resources per unit of output

■■ True-value-added cost percentage of totals process cost

■■ Poor quality cost per unit of output

■■ Wait time per unit of transaction

A p p e n d i x K574

60_596365 appk.qxd 2/15/06 10:42 PM Page 574

During the walkthrough the team should be looking for ways to measure
efficiency.

NOTE
Cost is an extremely important aspect of the process. Every organization should be
looking for ways to control costs within their operations. The cost of a process is an
accountability issue that should be analyzed. By controlling costs, you will be able to
increase your bottom line.

Streamlining Tools
Streamlining is the trimming of waste and excess in order to improve perfor-
mance and quality. There are 11 tools to streamlining. They are defined below.

Bureaucracy Elimination

Removing unnecessary administration tasks, approvals, and paperwork.

Duplication Elimination

Removing identical activities that are performed at different parts of the
process.

Value-Added Assessment

Evaluating every activity in the business process to determine its contribution
to meeting customer requirements. Real-value added activities are the ones
that the customers would pay you to do.

Simplification

Reducing the complexity of the project.

Process Cycle-Time Reduction

Determining ways to compress cycle time to meet or exceed customer expec-
tations. Typical ways to reduce cycle time are:

■■ Serial versus parallel activities

■■ Change activity sequence

■■ Reduce interruption

Business Process Flow Diagramming 575

60_596365 appk.qxd 2/15/06 10:42 PM Page 575

■■ Improved timing

■■ Reduce output movement

■■ Location analysis

Error Proofing

Making it difficult to do the activity incorrectly. Error proofing is the process of
eliminating the opportunity to create errors. This can be accomplished many
ways. For example, you can automate a data entry process to remove the
human error factor. Everyone has a tendency to make errors; therefore, the
more you can automate a process the greater likelihood that a careless error
will not occur.

Upgrading

Making effective use of capital equipment and the working environment to
improve overall performance. Upgrading refers not only to improving your
technology or office equipment, but also to your personnel. Continuous learn-
ing is the norm in today’s business world. Organizations that provide training
and educational incentives will reap large dividends in the long run due to
increased profit and higher employee morale.

Simple Language

Reducing the complexity of the way you write and talk, making your docu-
ments easy to comprehend by all who use them. Simplifying the language of
your documentation and training manuals will increase effectiveness. Some
organizations get burdened by wordy reports and memos. Documentation
should be written in simple language to a particular audience.

Standardization

Selecting a single way of doing an activity and having all employees do the
activity that way all the time. Standardization of work procedures is important
to ensure that all current and future employees use the best ways to perform
activities related to the process. When each person is doing the activity differ-
ently, it is difficult, if not impossible, to make major improvements in the
process. Standardization is one of the first steps in improving any process. This
is accomplished by the use of procedures. These standardization procedures
should:

A p p e n d i x K576

60_596365 appk.qxd 2/15/06 10:42 PM Page 576

■■ Be realistic, based on careful analysis

■■ Clarify responsibilities

■■ Establish limits of authority

■■ Cover emergency situations

■■ Not be open to different interpretations

■■ Be easy to understand

■■ Explain each document, its purpose, and its use

■■ Define training requirements

■■ Define minimum performance standards

Supplier Partnership

The output of the process is highly dependent on the quality of the inputs the
process receives. The overall performance of any process improves when its
suppliers’ input improves.

All outputs require inputs, and in many cases these inputs come from outside
suppliers. The first step in this streamlining process is to analyze the inputs to
determine their need in the process. An organization can lower costs and
increase efficiency by eliminating inputs that are not needed. The next step is
to work with suppliers to make sure that the inputs are being delivered on
time and are of the highest quality.

Big Picture Improvement

This technique is used when the first ten streamlining tools have not provided
the desired results. It is designed to help the process improvement team look
for creative ways to drastically change the process. There comes a point in time
when you have to be willing to step back and look at the big picture of the
process. By looking at the big picture you examine the process form the per-
spective of what you would do if you abandoned the old way of doing things
and started from scratch.

What Is a Business Process Improvement Project?

The continuous improvement of business processes should be a high priority
for every contemporary organization. Every time a process is executed there is
a wealth of data and information that is produced as a by-product. This data

Business Process Flow Diagramming 577

60_596365 appk.qxd 2/15/06 10:42 PM Page 577

and information has great value in helping the process managers identify and
isolate areas where improvement can be made. A business process improve-
ment (BPI) project uses that data and information as input to programs
designed to improve the process under consideration. This is represented
graphically in Figure K-2.

The goal of a BPI project is to eliminate or at least reduce the effect resulting
from one or more process activities that are preventing the process from per-
forming up to its potential.

Figure K-2 shows that a backlog exists at a process activity. From the diagram
you might conclude that the backlog is the result of two upstream process
activities both delivering output to the single process activity and that process
activity is not staffed to handle the volume. What seems like a simple solution,
namely, add staff, might solve the backlog problem at that process activity but
create another backlog at the following step. The backlog is just transferred,
and the efficiency of the total process is not changed at all. This illustrates a
common problem—subprocess maximization that may or may not positively
affect the total process. In fact, it could reduce the efficiency of the total
process. Obviously each of the activities in a business process could make the
overall process cumbersome to deal with. The goal of business process
improvement is to eliminate (or at least reduce) the pain coming from the
activities that are doing the most damage and this also implies that there may
be one or more precursor projects that have determined the sources of pain,
confusion, and/or chaos.

Beyond a single process improvement project there is a continuous process
improvement program. These by definition do not end. They focus on a com-
plete process or process of processes. Their improvement goal is often an ideal
end state and for all practical purposes will never be reached but will be a wor-
thy goal to shoot for nevertheless.

Figure K-2: A business process improvement project

Business Process

There is a recurring backlog
at this process activity

A p p e n d i x K578

60_596365 appk.qxd 2/15/06 10:42 PM Page 578

Indicators of Needed Improvement
There are several metrics that you will need to define and track in order to dis-
cover process improvement opportunities. Some of the situations you will
want to detect are as follows:

■■ Excessive wait time between process steps

■■ Backlog at a process step

■■ Idle workstations in the business process

■■ Frequent re-work

■■ Excessive non-value-added work

■■ Errors and mistakes

■■ Frequent exception situations

For example, an order placement process might have a number of disconnects
such as:

■■ Sales reps take too long to enter orders

■■ Too many entry and logging steps

■■ The same level of credit checking is done for existing and new customers

■■ Credit checking is done before order picking

Any of the preceding is a possible process improvement project.

Business Process Diagramming

How do you diagrammatically represent a business process? You can use the
standard flowchart symbols to keep it simple and couched in symbols you are
already familiar with. Figure K-3 lists the more commonly used symbols, and
the following bulleted list explains them.
■■ Operation—This box denotes that a change has taken place. The input is

somehow changed as a result of having gone through this process.

■■ Movement—This symbol denotes the movement of output from one
process step to become the input to the next process step.

■■ Decision—This is a decision step. A question needs to be answered. The
two flows that emanate from a decision box are either Yes/True or No/
False.

■■ Inspection—Someone other than the person producing the output must
inspect it for quality, conformance, or some other tangible characteristic.
Often an approval is included as a successful inspection.

Business Process Flow Diagramming 579

60_596365 appk.qxd 2/15/06 10:42 PM Page 579

■■ Document—This denotes a paper document.

■■ Delay—This symbol denotes a wait state in a process. Usually associated
with something joining a queue and waiting for the next process step to
occur.

■■ Storage—Indicates that an item has been placed in storage and must wait
for a release before moving to the next process step. These usually repre-
sent wasted time that must be removed from a process.

■■ Annotation—Provides added detail about some process, which is needed
for clarification. It might also include the position title of the person
responsible for the process.

■■ Direction of Flow—Denotes the order of process steps.

■■ Transmission—The interrupted arrow indicates when information is to be
transmitted from one physical or virtual location to another.

■■ Connector—Used to connect flow between two separate locations. Often
used as an off-page connector.

■■ Boundaries—Denotes the initiating and closing process of a flow dia-
gram. Usually the words START or BEGIN are associated with the initiat-
ing process and STOP or END with the closing process.

Figure K-3: Standard flow charting symbols

Business Process Flow Diagram Formats

There are three common formats used to render business process flow dia-
grams. The first (Figure K-4) is the top-down and left-to-right format. It is com-
monly used in program and system flow charts. The second is the “swim-lane”

Operation Inspection Storage Transmission

Movement Document Annotation Connector

Decision Delay Direction
of Flow

Boundaries

A p p e n d i x K580

60_596365 appk.qxd 2/15/06 10:42 PM Page 580

format (Figure K-5). It identifies the actors who participate in the business
process. The third is the linear format (Figure K-6). It can be used to save space
but requires that the process being modeled is a linear process—that is, it has
no branch on condition situations.

Figure K-4 is the format software developers will be most familiar with. It
harkens back to the early days of programming and is the standard they
adopted several decades ago. It follows the logical thought patterns of the soft-
ware developer and is therefore their popular choice.

Figure K-4: The top-down left-to-right format

Figure K-5: The swim-lane format

Order
request

Order
generated

Credit
Checked

Order
entered

Order
information

Order
canceled

Notify
customer

Credit
Validated

Problem
resolved?

OK?

Notification
of

problem
Yes

Yes

No

No

Customer

Sales

Credit

Order Entry

Order
request

Order
generated

Credit
Checked

A

Order
entered

B

Order
information

Order
canceled

C

Notify
customerCredit

Validated

A

B

Problem
resolved?

C

OK?
Notification

of
problem

Yes

Yes

No

No

Business Process Flow Diagramming 581

60_596365 appk.qxd 2/15/06 10:42 PM Page 581

Fo
rw

ar
d

SR
 p

ac
ke

ts
to

 s
ec

ur
ity

co
ns

ul
ta

nt
an

d
p

ro
je

ct
co

or
di

na
to

r

Te
ch

no
lo

gy
C

on
ne

ct
io

n

Se
nd

IR
A

P
to

cu
st

om
er

Te
ch

no
lo

gy
C

on
ne

ct
io

n

O
p

en
 S

R
an

d
ga

th
er

in
fo

rm
at

io
n

fr
om

cu
st

om
er

Te
ch

no
lo

gy
C

on
ne

ct
io

n

O
p

en
se

rv
ic

e
re

q
ue

st

C
us

to
m

er

D
et

er
m

in
e

re
q

ui
re

m
en

ts
an

d
ga

th
er

in
fo

rm
at

io
n

C
us

to
m

er
O

rd
er

C
on

ne
ct

io
n

Te
ch

no
lo

gy
C

on
su

lta
nt

2
1

C
us

to
m

er

Re
vi

ew
 S

R
an

d
as

si
st

cu
st

om
er

Se
cu

rit
y

C
on

su
lta

nt

A
ss

ig
n

se
cu

rit
y

co
ns

ul
ta

nt

W
or

kf
lo

w
C

oo
rd

in
at

or

O
p

en
se

rv
ic

e
re

q
ue

st

C
us

to
m

er

Re
ce

iv
e

IR
A

P
an

d
co

m
p

le
te

C
us

to
m

er
IR

A
P

IR
A

P

Se
cu

rit
y

O
p

er
at

io
ns

C
on

su
lti

ng

4
5

3

C
us

to
m

er

D
et

er
m

in
e

if
SR

 is
si

m
p

le
 o

r
ad

va
nc

ed

Te
am

Le
ad

En
su

re
cu

st
om

er
go

t
IR

A
P

an
sw

er
s

Te
am

Le
ad

Re
vi

ew
 S

R
an

d
co

nt
ac

t
cu

st
om

er

Te
am

Le
ad

Re
ce

iv
e

SR
 a

nd
as

si
gn

to
 p

ro
je

ct
co

or
di

na
to

r

W
or

kf
lo

w
C

oo
rid

an
to

r

Re
tr

ie
ve

IR
A

P
fr

om
IS

S
p

or
ta

l
an

d
as

si
gn

to
 fi

re
w

al
l

PC

W
or

kf
lo

w
C

oo
rd

in
at

or

Po
st

co
m

p
le

te
d

IR
A

P
to

IS
S

p
or

ta
l

Se
cu

rit
y

C
on

su
lta

nt
A

ss
ig

nm
en

t
M

at
rix

Fi
re

w
al

l
Pr

oj
ec

t
C

oo
rd

in
at

or

6
7

D
et

er
m

in
e

w
he

th
er

p
ro

je
ct

re
q

ui
re

s
a

ne
tw

or
k

Te
am

Le
ad

A
ss

ig
n

SR
 t

o
a

p
ro

je
ct

co
or

di
na

to
r

Te
am

Le
ad

Im
p

le
m

en
t

Pr
oj

ec
t

C
oo

rd
in

at
or

Kn
ow

le
dg

e
M

at
rix

D
at

e
Se

rv
ic

es
to

 b
e

D
el

iv
er

ed

C
on

tin
ue

 t
o

Ph
as

e
2

Fi
gu

re
 K

-6
:

Li
ne

ar
 fo

rm
at

60_596365 appk.qxd 2/15/06 10:42 PM Page 582

Figure K-5 is the format I prefer when diagramming business processes. For
one, it is a customer-facing format. By that I mean it is intuitive to the customer
and represents their processes in a way that they can easily understand.

Figure K-6 is most economic of real estate—it uses the least amount of paper to
represent the business process. It does have one significant limitation, how-
ever; it works only for linear processes. Notice that there are no decision dia-
monds in the process.

Context Diagrams

One way to describe your process at a very high level is the context diagram.
It is a good starting point. A context diagram describes a rough process or a set
of processes. It generally has only a few components:

■■ A stick figure representing the external entity that is triggering the process

■■ A large circle representing the organization responding to the request

■■ A text block showing each organization or process acting to fulfill the
request

■■ Arrows showing the rough flow between text blocks

The context diagramming process (Figure K-7) requires that the group identify
one or more candidate processes. For example, a process might start with a
customer request/action and end with a fulfillment. The modeling activity
starts by identifying those two points. You show the process start by using an
arrow from the customer to the organization. You show the process end by
using an arrow from the organization to the customer. That gives an initial
bounding of the process, and the group can decide whether that particular
process has enough issues to spend more time diagramming. If the process
merits more discussion, the diagramming process continues by identifying the
first group to receive the request and the action sequence that the organization
goes thru to fulfill the request. Simply put, the group uses Post-it notes and
arrows to show what goes on in the organization to fulfill the request. This
should be done at a high level and the constrained area of the circle helps keep
this high level perspective.

Business Process Flow Diagramming 583

60_596365 appk.qxd 2/15/06 10:42 PM Page 583

Figure K-7: Context diagramming process

Frequently the group will make refinements as they go. The most common
refinements are a clearer identification of the customer being focused upon or
the transaction being performed. For example, “customer” might become
“existing customer” if the process is different (or should be different) for an
existing customer versus a new customer. The group can then annotate the
process with success criteria, issues, and so on.

Business Process Work Flow Diagrams

When you need to identify the actual and ideal path that any product or ser-
vice follows in order to map process quality and identify deviations and
improvement opportunities, the flow chart is another tool that can be benefi-
cial in mapping process quality and performance. It is a picture of steps in a
process, and can be used to examine the relation and sequence of steps; to
identify redundancy, unnecessary complexity, and inefficiency in a process;
and to create common understanding of the flow of the process.

Considered one of the simplest tools, the flow chart can be as basic or techni-
cally intricate as the process it’s used to illustrate. Each type of process step is
traditionally identified on the chart by a standardized geometric shape. A flow
chart illustrates a process from start to finish and should include every step in
between. By studying these charts you can often uncover loopholes, which are
potential sources of trouble. Flow charts can be applied to anything from the
travels of an invoice and the flow of materials to the steps in making a sale or
servicing a product.

Existing
customer

When
promised and

accurate

Order
Processing

Credit
Department

Fast and easy

Request for product

Product delivered
Shipping Warehousing

Organization

A p p e n d i x K584

60_596365 appk.qxd 2/15/06 10:42 PM Page 584

In process improvement, flow charts are often used to clarify how a process is
being performed or to agree upon how it should be performed. When a
process is improved, the changes should be noted on the flow chart in order to
standardize the revised flow.

Follow the steps below to create a flow chart:

1. Decide on the process to be diagrammed.

2. Define the beginning and ending steps of the process, also known as
boundaries.

3. Describe the beginning step using the Boundaries symbol.

4. Keep asking “What happens next?” and writing each of the subsequent
steps in Operations symbols below the Boundaries symbol.

5. When a decision step is reached, write a yes/no question in a diamond
and develop each path.

6. Make sure that each decision loop reenters the process or is pursued to a
conclusion.

7. Describe the ending step using the Boundaries symbol. Sometimes a
process may have more than one ending boundary.

Documenting the “As Is” Business Process
One approach to identifying those goals is to develop a clear understanding of
how the process is currently functioning (As Is) and how the process could
work in the future (To Be). Knowing the gap between the current and future is
input to a plan to change the process (that is, to remove the gap).

The “As Is” is nothing more than a picture of how things are currently work-
ing. If you were talking about a hotel, you could build a model of the workflow
associated with a guest obtaining a room, using hotel facilities, and checking
out of the hotel.

For an old hotel with no automated systems, the steps would be manual and
highly dependent upon the accuracy of individuals. Having this set of data
alone can make some areas prime candidates for improvement.

There is a tremendous temptation to skip the “As Is.” People will say they
know the process and what needs to be changed. If you skip this step, the team
doesn’t get an increased understanding of how the process really works. With-
out that real understanding, you have a very real chance of negatively impact-
ing the customer.

Business Process Flow Diagramming 585

60_596365 appk.qxd 2/15/06 10:42 PM Page 585

Envisioning the “To Be” State
This model is a picture of how the process could work. The same work may be
done, but the flow might be very different. In some cases, tasks in the “As Is”
state might be eliminated entirely. The intent of this model is to get people to
talk about how it could be. This is sometimes done by having the subject mat-
ter experts tell how they would do things if they were building a brand new
process unconstrained by the way you have always done things. This is fre-
quently referred to as the “green field” approach. Another approach is to have
people identify those areas where they would like to change the current sys-
tem to do things differently.

Defining the “As Is” to “To Be” Gap
The difference or “delta” between the “As Is” and the “To Be” shows the
opportunities for improvement. It involves building a comparison of the two
so that the differences can be categorized. Some tasks might be eliminated
entirely. Some tasks might be done faster than they were before. Some tasks
that had been sequential might be done in parallel. Others might be done to a
higher level of quality. Some opportunities for eliminating the gap might be:

■■ Eliminate some tasks

■■ Speed up some tasks

■■ Introduce parallelism

■■ Increase quality

A p p e n d i x K586

60_596365 appk.qxd 2/15/06 10:42 PM Page 586

Effective Software Project
Management

61_596365 bindex.qxd 2/15/06 10:43 PM Page 587

61_596365 bindex.qxd 2/15/06 10:43 PM Page 588

I N D E X

589

A
acceptable solution, 269, 407
acceptance criteria

Feature-Driven Development model,
191, 192

Staged Delivery Waterfall model,
187–188

acceptance test procedures and Linear
SDPM strategies, 122–123

accommodating
change request, 564–565
project tracking, 443

accuracy of estimate, 517
activity, 500
activity manager, 558
adaptability and complexity/uncer-

tainty domain, 16
Adaptive Cycle Plan phase of Adap-

tive Software Development, 297
adaptive model, 36
Adaptive Project Framework: A Common

Sense Approach to Managing
Complex Projects (Wysocki), 53

Adaptive Project Framework (APF)
adaptive project definition, 286
characteristics of, 286–287
Client Checkpoint phase of

brainstorming and, 326
monitoring and controlling phase

and, 333–336
overview of, 292–293
scheduling iterations and, 324

closing phase of, 341–343

core values of, 287–289
cycle build, 291
cycle plan, 291
description of, 52–53, 282, 284–285
launching phase of, 324–326
monitoring and controlling phase of,

332–336
planning phase of, 311–316
post-version review, 293–295
scope triangle, 285–286
scoping phase of, 303–305
structure of, 289–295
version scope, 290

Adaptive SDPM strategies
characteristics of, 54
choosing, 297
closing phase of

Adaptive Project Framework,
341–343

Adaptive Software Development,
343–345

overview of, 284, 339–341
Extreme SDPM strategies compared

to, 355, 391
Iterative SDPM strategies compared to

closing phase, 340–341
launching phase, 321–322, 325–326

launching phase of
Adaptive Project Framework,

324–326
Adaptive Software Development,

326–327
overview of, 283, 321–324

61_596365 bindex.qxd 2/15/06 10:43 PM Page 589

I n d e x590

Adaptive SDPM strategies (continued)
monitoring and controlling phase of

Adaptive Project Framework,
332–336

Adaptive Software Development,
337–338

overview of, 283–284, 329–332
overview of, 52–54, 281–283
planning phase of

Adaptive Project Framework,
311–316

Adaptive Software Development,
316–319

overview of, 229–230, 283, 340, 404
project managers, traditional versus

adaptive, 349–350
project planning, traditional versus

adaptive, 350–351
projects, traditional versus adaptive,

348
risk and, 303, 352
scope change management, tradi-

tional versus adaptive, 351
scoping phase of

Adaptive Project Framework,
303–305

Adaptive Software Development,
305–307

overview of, 283, 301–303
strengths of, 54–55
teams, traditional versus adaptive,

350
weaknesses of, 55

Adaptive Software Development:
A Collaborative Approach to
Managing Complex Systems
(Highsmith), 54, 295, 306, 317

Adaptive Software Development
(ASD)

activities of, 297
closing phase of, 343–345
description of, 52, 53–54, 282
launching phase of, 326–327

life cycle of, 297–298
monitoring and controlling phase of,

337–338
phases of, 295–296
planning phase of, 316–319
scoping phase of, 305–307

Adopting the Rational Unified Process:
Success with the RUP (Bergstrom
and Raberg), 212

aggressive curve, 437
agile project management

approaches of, 13, 285
bibliography for, 468–470

agile project managers, 274–275
agile project planning, 276
agile projects, 274
agile scope change management, 276
Agile Software Development with

SCRUM (Schwaber and Beedle),
209

agile team, 275
allocating

functions and features to determine
number of stages, 163–165

functions to iterations, 232
management reserve, 150

analyzing
project network diagram, 528–529
specification, 497–498

angering stakeholders, 487
answer file for discussion questions,

462
APF (Adaptive Project Framework)

adaptive project definition, 286
characteristics of, 286–287
Client Checkpoint phase of

brainstorming and, 326
monitoring and controlling phase

and, 333–336
overview of, 292–293
scheduling iterations and, 324

closing phase of, 341–343
core values of, 287–289

61_596365 bindex.qxd 2/15/06 10:43 PM Page 590

Index 591

cycle build, 291
cycle plan, 291
description of, 52–53, 282, 284–285
launching phase of, 324–326
monitoring and controlling phase of,

332–336
planning phase of, 311–316
post-version review, 293–295
scope triangle, 285–286
scoping phase of, 303–305
structure of, 289–295
version scope, 290

approaches
agile project management, 13
for building software, 11–13
for building WBS, 507–509
customer-driven, 209
for deployment strategies, 124–125
design-build-test-implement, 9,

94–97, 508
for generating WBS, 501–504
for managing process, 13–14
plan-driven, 9, 13, 42
value-driven, 13, 420–421

architectural specifications, document-
ing, 238

archiving requirements, 498
“As Is” business process, 572, 585, 586
ASD (Adaptive Software Develop-

ment)
activities of, 297
closing phase of, 343–345
description of, 52, 53–54, 282
launching phase of, 326–327
life cycle of, 297–298
monitoring and controlling phase of,

337–338
phases of, 295–296
planning phase of, 316–319
scoping phase of, 305–307

assessing process effectiveness, 457,
574

assessment tool, beta version of, 27

assigning
primary components and technology

support to cycles, 319
resources, 364
roles and responsibilities, 392

assuring integrity of dependency
structure between deliverables,
150

attributes of requirement, 498
author, e-mail address of, 28, 462
authority of Linear SDPM strategy

project team, 105–106
avoidant style, 542–543

B
backward pass calculations, 526
balance, achieving, 26–29
bargaining, 488
baselining, 497
Beedle, Mike (Agile Software Develop-

ment with SCRUM), 209
benefits and Flexible Model, 409
benefits map, 378, 379
Bergstrom, Stefan (Adopting the

Rational Unified Process: Success
with the RUP), 212

bibliography, 463–471
big picture improvement, 577
boundaries of project, 377
brainstorming

Client Checkpoint phase and, 326
INSPIRE model and, 384
problem solving and, 539
team operating rules and, 544

breakdown structure of program, 377
budget issues

Adaptive Project Framework and,
305

funding, 420–421
project manager and, 422

building
business-to-business Web site, 356
consensus, 543–544

61_596365 bindex.qxd 2/15/06 10:43 PM Page 591

I n d e x592

building (continued)
feature list, 166–167
project network diagram, 520–522
prototype, 228
resource schedule, 532
software, approaches for, 11–13
specification, 492
Work Breakdown Structure, 506–509

bureaucracy elimination, 575
business conditions and Iterative

models, 51
business event number, 494–495
business function approach, 509
business model, establishing, 226
business outcome, 482
business process

“As Is”, 572, 585, 586
characteristics of, 573–575
context diagrams, 583–584
definition of, 572–573
diagramming, 579–580
effectiveness of, 574
efficiency of, 574–575
flow diagram formats, 580–583
mapping, 571–572
streamlining tools, 575–577
“To Be”, 572, 586
work flow diagrams, 584–586

business process analysis, 491
business process improvement project

continuous process improvement
program and, 456–459

description of, 577–578
indicators of need for, 579

business study (DSDM)
activities of, 227
planning and, 237
repeating, 271

by business unit approach, 125
business value

Adaptive models and, 55
complexity/uncertainty domain ver-

sus, 25–26

Extreme models and, 58
Feature-Driven Development model

and, 141
Incremental models and, 45, 136
Iterative models and, 251
traditional versus adaptive project

managers, 349
business-to-business Web site, build-

ing, 356

C
case study. See Pizza Delivered

Quickly (PDQ) case study
ceremonial acceptance, 123
change. See also change management;

scope change requests
Adaptive models and, 282
complexity/uncertainty domain and,

17, 24–25
Incremental models and, 198
Linear compared to Incremental

models, 146
Linear models and, 41, 129–130
milestone trend chart and, 433
specification and, 23
as value of Adaptive Project Frame-

work, 288–289
view of by customer, 115, 183

change management. See also scope
change management

overview of, 562
project change request, 563
project impact statement, 564–566

change request form, 563
changing SDPM strategies, 117–118,

184
characteristics

of Adaptive models, 54
of Extreme models, 57
of Incremental models, 44–45
of Iterative models, 50
of Linear models, 39–40
of software to be developed, 8–11

61_596365 bindex.qxd 2/15/06 10:43 PM Page 592

Index 593

chart of accounts, 507–508
charts

flow, 584–585
Gantt, 554–555
milestone trend

accommodating, 443–447
description of, 118–120, 431–435,

555–556
trend, for Iterative SDPM strategies,

251, 252
Check Phase in Extreme SDPM

strategies, 396
Chief Architect, 166
choosing

Adaptive SDPM strategies, 297
Linear SDPM strategies, 90
strategy, 454–456

“chunking”, 136, 146
clarity criteria, 453
Client Checkpoint phase of Adaptive

Project Framework
closing phase and, 343
launching phase and, 324, 326
monitoring and controlling phase

and, 333–336
overview of, 292–293

client involvement. See customer
involvement

client-driven value of Adaptive
Project Framework, 288

client-focused value of Adaptive
Project Framework, 287–288

clients. See customers
closing phase

of Adaptive SDPM strategies
Adaptive Project Framework,

341–343
Adaptive Software Development,

343–345
overview of, 284, 339–341

of Extreme SDPM strategies
Flexible Model, 408–409
INSPIRE, 406–408
overview of, 358, 403–406

of Incremental SDPM strategies
Feature-Driven Development

model, 189–192
overview of, 138, 185–186
Staged Delivery Waterfall model,

186–189
of Iterative SDPM strategies

Dynamic Systems Development
Method, 269–271

Evolutionary Development
Waterfall model, 263–265

overview of, 205–206, 261–263
Rational Unified Process, 268–269
SCRUM, 266–268

of Linear SDPM strategies
acceptance test procedures, 122–123
customer sign-off, 123–124
overview of, 65, 124–125
requirements validation, 121–122

closure of project, risk of, 196
Coad, Peter (Java Modeling in Color

with UML), 139
cohesion, 99
Collaborate phase of Adaptive

Software Development, 296
collaborative approach, 90
collaborative style, 543
Collective Vision (Flexible Model),

376–379, 386
combative style, 543
comfort zone of customer, 21–22
communications

complexity/uncertainty domain
versus, 19–20

Incremental SDPM strategies and,
199

Linear models and, 130
location of team and, 455
team leadership models and, 104

comparing results against goals, 459
completeness criteria, 453
completion of project, 404

61_596365 bindex.qxd 2/15/06 10:43 PM Page 593

I n d e x594

complexity. See also complexity/
uncertainty domain

Extreme project management and,
366

Quadrant 1 and, 9–10
complexity/uncertainty domain

adaptability and, 16
business value versus, 25–26
change and, 17, 24–25
communications versus, 19–20
customer involvement versus, 20–22
flexibility and, 15–16
overview of, 14–15
requirements and, 15
risk versus, 17–18
specification versus, 22–24
team cohesiveness versus, 18–19

compliance to processes, 179
comprehensive increment plan, 171,

173
compressing schedule, 529, 568
Concurrent Component Engineering

phase of Adaptive Software
Development, 297

Conditions of Satisfaction
Adaptive Project Framework and,

303, 336
Linear models and, 81, 122
requirements gathering and, 480–482

conflict resolution, 542–543
conflicts, 496
consensus building, 543–544
constraints, 84–85, 485
consultative decision making, 540
context diagrams, 583–584
continuous process improvement

program, 456–459
continuous questioning and introspec-

tion value of Adaptive Project
Framework, 288

controlling phase. See monitoring and
controlling phase

corrective action, early, 549

Cost Performance Index, 441–442
cost schedule control. See earned value

analyses
costs

avoiding, 477
baseline versus actual, 439–440
business process and, 575
INSPIRE and, 360, 374
Linear models and, 41
parameters for, 360

Couger, J. Daniel (Creative Problem
Solving and Opportunity Finding),
538

coupling, 99
Creative Problem Solving and Opportu-

nity Finding (Couger), 538
critical path, 524–525
critical path calculation, 527
critical path task, 525
criticality of project and choosing

strategy, 456
cross-deliverable set dependencies,

98–99
cumulative reports, 547
current period reports, 546–547
curve to avoid, 437, 438
customer involvement. See also Project

Overview Statement (POS)
Adaptive models and, 55
complexity/uncertainty domain

versus, 20–22
Evolutional Development Waterfall

model and, 206
Incremental models and, 47
INSPIRE and, 363
Iterative models and, 51–52
Linear models and, 64
strategies and, 421
team and, 423

customer requirements. See also Volere
Process

archiving, 498
complexity/uncertainty domain

and, 15

61_596365 bindex.qxd 2/15/06 10:43 PM Page 594

Index 595

customer sign-off on, 87–88
definition of, 81–82, 483
describing core, 226
Flexible Model and, 387
functional, 83, 484
gathering

Conditions of Satisfaction, 480–482
Evolutionary Development Water-

fall model, 221
Linear models and, 80–86
overview of, 479–480
SCRUM, 224

global, 84, 484–485
identifying, 489–492
Linear models and, 39–40, 80–88
managing changing, 486
non-functional, 83, 484
prioritizing, 362, 377
reprioritizing, 365–366
types of, 82–85, 483–485, 494
uncertainty and, 23–24

customer sign-off
closing phase of Linear SDPM

strategies and, 123–124
importance of, 22
requirements and, 87–88

customer value
Incremental models and, 46
Linear models and, 42

customer-driven approach, 209.
See also SCRUM model

customers. See also customer
involvement

Adaptive SDPM strategies and, 330
choosing strategy and, 455
lessons learned about working with,

265
perspective of, 421
problem escalation and, 567
view of change by, 115, 183

cut-over approach, 125
Cycle Build phase of Adaptive Project

Framework, 291–292

cycle length
determining, 313–314, 336, 361, 374
validating, 385

cycle plan, establishing, 364
Cycle Plan phase of Adaptive Project

Framework, 291
cycles, assigning primary components

and technology support to, 319
cycle-time reduction, 575–576

D
date, planned, and milestone trend

chart, 433–434, 435
DeCarlo, Doug (eXtreme Project

Management: Using Leadership,
Principles, and Tools to Deliver
Value in the Face of Volatility), 358,
367, 376, 386

decision making, 540–542
decomposing Requirements Break-

down Structure (RBS), 159–160
decomposition, 501, 507–508
defining

business processes affected by
project, 228

customer requirements, 81
functions and features, 222–223
goal of project, 360, 374
number and duration of increments,

149
problem, 78–79, 538

delays and increment by increment
plan, 171, 172

deliverables
Adaptive models and, 55, 310
Adaptive Project Framework and,

304, 311–316
Adaptive Software Development

and, 306
assigning to iterations, 236
assuring integrity of dependency

structure between, 150
“chunks of”, 136, 146

61_596365 bindex.qxd 2/15/06 10:43 PM Page 595

I n d e x596

deliverables (continued)
dependency diagramming and,

97–100
deployment strategies and, 124–125
Flexible Model and, 386–387
Incremental models and, 45
independent sets, creating, 100
INSPIRE and, 363, 364
Iterative models and, 251
Linear compared to Incremental

models, 146
Rapid Development Waterfall model

and, 94–97
from sprint planning meeting, 233
Volere Process and, 486

deliverables-based Work Breakdown
Structure, 150

Delphi Technique, 515–516
DeLuca, Jeff (Java Modeling in Color

with UML), 139
departmental approach, 509
dependencies. See also dependency

diagramming; dependency
structure

cross-deliverable set, 98–99
project network diagram and, 521,

522–524
schedule compression and, 568
Volere process and, 496

dependency diagramming
overview of, 97
Rapid Development Waterfall model

and, 98–100
Staged Delivery Waterfall model

and, 163–165
dependency structure

between deliverables, assuring
integrity of, 150

between functionality, developing,
228

deployment strategies
Flexible Model and, 409
overview of, 124–125

description of requirement, 495
design of solution, revision to, 270
design-build-test-implement

approach, 9, 94–97, 508
development life cycle, 387
development plan for team, 107–108
development team

Adaptive models and, 330, 334–335
assigning roles and responsibilities

of team, 392
brainstorming by, 544
choosing strategy and, 455
cohesiveness of, and

complexity/uncertainty domain,
18–19

conflict resolution and, 542–543
consensus building and, 543–544
decision making and, 540–542
experience and skill of, 10
Flexible Model and, 388
forming modeling, 151
Incremental models and, 199
launch phase and, 64
Linear models and, 41, 130
micro-managing, 532
organizing, 537–538
organizing Linear SDPM strategy

project
authority, 105–106
meetings, 108–109
overview of, 105
RASCII Matrix and, 107–108
responsibility, 106

perspective of, 423–424
problem solving and, 538–540
project manager and, 422–423
risk of changes in, 197
SCRUM and, 209–211, 246
traditional

adaptive versus, 350
agile versus, 275
extreme versus, 413

61_596365 bindex.qxd 2/15/06 10:43 PM Page 596

Index 597

development tools and Flexible
Model, 388

development work, sequencing,
160–161

directive decision making, 540
discussion questions, answer file for,

462
Disseminate phase and Flexible

Model, 408–409
documentation

of architectural specifications, 238
Incremental models and, 46
Linear models and, 125
Rational Unified Process and, 269
studying, 153

domain walkthrough, conducting, 151
DSDM (Dynamic Systems Develop-

ment Method)
closing phase of, 269–271
launching phase of, 246–247
monitoring and controlling phase of,

258–260
overview of, 47, 50, 214–216
planning phase of, 237–238
scoping phase of, 227–228

DSDM: Dynamic Systems Development
Method (Stapleton), 215

duplication elimination, 575
duration

of cycle, determining, 313–314, 336,
361, 374

of increments, defining, 149
of iterations, 236
labor time over, 551–552
Linear models and, 41
as measure of percent complete, 552
Rapid Development Waterfall model

and, 70
Standard Waterfall model variation

and, 68–69
of task

estimating, 162, 316, 511–512,
513–517

resource loading versus, 512
variation in, 512–513

Dynamic Systems Development
Method (DSDM)

closing phase of, 269–271
launching phase of, 246–247
monitoring and controlling phase of,

258–260
overview of, 47, 50, 214–216
planning phase of, 237–238
scoping phase of, 227–228

E
earned value analyses

accommodating, 443
aggressive curve and, 437
cost variance, 439–440
curve to avoid, 437
measures of earned value, 437–439
overview of, 435–436, 440–441,

556–557
schedule variance, 440
standard S-curve and, 436–437

Edison, Thomas Alva (inventor), 408
Effective Project Management: Tradi-

tional, Adaptive, Extreme, Third Edi-
tion (Wysocki and McGary), 53,
284, 431, 473

effectiveness of process, assessing,
457, 574

efficiency
of business process, 574–575
task duration and, 513

effort variance, 550
e-mail address of author, 28, 462
enterprise environment and choosing

strategy, 454
enterprise, perspective of, 420–421
environments

current versus ideal, 27–28
process-driven, 31–32
staff-driven, 30
technology-driven, 32–33

61_596365 bindex.qxd 2/15/06 10:43 PM Page 597

I n d e x598

error proofing, 576
estimating task duration, 511–512,

513–517
event number, 494–495
Evolutionary Development Waterfall

model
closing phase of, 263–265
launching phase of, 242–244
monitoring and controlling phase of,

255–256
overview of, 47–48, 206–208
planning phase of, 231–233
scoping phase of, 220–223

exception reports, 547
expert advice and estimating task

duration, 515
external stakeholder, 488
Extreme Project Management, 285
Extreme Project Management: Using

Leadership, Principles, and Tools to
Deliver Value in the Face of Volatility
(DeCarlo), 358, 367, 376, 386

Extreme SDPM strategies
Adaptive SDPM strategies compared

to, 355, 391
characteristics of, 57
closing phase of

Flexible Model, 408–409
INSPIRE, 406–408
overview of, 358, 403–406

definition of, 56, 355–356
Flexible Model, 367–369
INSPIRE

Incubate phase of, 364
INitiate phase of, 360–361
overview of, 358–360
REview phase of, 365–367, 400
SPeculate phase of, 362–363, 399

launching phase of
Flexible Model, 392–393
INSPIRE, 391–392
overview of, 357, 389–390

monitoring and controlling phase of
Flexible Model, 400–402
INSPIRE, 398–400
overview of, 357, 395–398

planning phase of
Flexible Model, 385–388
INSPIRE, 384–385
overview of, 229–230, 357, 381–383,

404
project managers, traditional versus

extreme, 412
project planning, traditional versus

extreme, 413–414
projects, traditional versus extreme,

412
risk and, 57, 368, 372, 415
scope change management, tradi-

tional versus extreme, 414–415
scoping phase of

Flexible Model, 375–379
INSPIRE, 373–374
overview of, 356–357, 371–373

as self-correcting, 368
strengths of, 57–58
teams, traditional versus extreme,

413
types of, 358–369
weaknesses of, 58

F
facilitated group session, 490, 491
feasibility study (DSDM), 227
feature dependencies and Incremental

models, 46, 47
feature list, building, 166–167
feature plan, developing, 167
feature sets

assembling, 166–167
customers and, 175
scope change requests and, 176

Feature-Driven Development model
closing phase of, 189–192
launching phase of, 175–176

61_596365 bindex.qxd 2/15/06 10:43 PM Page 598

Index 599

monitoring and controlling phase of,
180–183

overview of, 42–43, 44, 139–143
planning phase of, 165–167
precedence diagram and, 155
Requirements Breakdown Structure

(RBS) and, 155
scoping phase of, 151–153
Staged Delivery Waterfall model

compared to, 196
features. See also feature sets

defining, 222–223
discovery of new/revised, 252–254,

331
identifying missing, 231
list of, 226

features breakdown structure, 24
feedback loops, 214
Felsing, John M. (Practical Guide to

Feature Driven Development),
139, 151

figures master file on Web site, 462
Final QA and Release phase of Adap-

tive Software Development, 297
financial analysis, 478
finish to finish dependency, 524
finish to start dependency, 523
fit criteria, 496
flexibility and complexity/uncertainty

domain, 15–16
Flexible Model

launching phase of, 392–393
monitoring and controlling phase of,

400–402
overview of, 367–369
planning phase of, 385–388
scoping phase of

Collective Vision, 376–379
Sponsor’s Vision, 375–376

float, 527
flow charts, 584–585
flow diagram formats, 580–583
formal acceptance, 124

format of progress status meeting, 561
forming modeling team, 151
forward pass calculations, 525
functional decomposition, 501, 508
functional model, revision to, 271
functional requirements, 83, 484
functionality

for increments, identifying, 150
initiatives to build, 314, 315–316
INSPIRE and, 384
prioritizing, 228, 238, 314

functionality level
Incremental models and, 46, 47
Iterative models and, 204
uncertainty and, 23–24

functionality list, 336
functions

allocating to iterations, 232
defining, 222–223
discovery of new/revised, 331
identifying those where features

may be missing, 231
list of, 226
prioritizing, 225, 232

funding issues, 420–421
future-oriented data, 551

G
Gantt chart, 554–555
gathering requirements

Conditions of Satisfaction, 480–482
Linear models and, 80–86
overview of, 479–480, 483–486
Volere Process

analyzing specification, 497–498
conflicts, 496
dependencies, 496
description, 495
fit criteria, 496
graphic of, 486
quality check, 496–497
rationale, 495
the shell, 492–495

61_596365 bindex.qxd 2/15/06 10:43 PM Page 599

I n d e x600

gathering requirements (continued)
source, 495
start project, 487
trawl for knowledge, 487–492

geographic approach, 509
global requirements, 84, 484–485
goal

of process, 457–458, 459
of project

as clearly specified, 9–11, 12
defining, 360, 374
description of, 8
evaluating results against, 401
Extreme models and, 57
Incremental models and, 136
Linear models and, 39–40, 64
as not clearly specified, 11, 12–13
in Project Overview Statement, 475
revising, 365

for project success, 450–451
go/no go decision points, 363, 366
Green, Estill (VP of Bell Telephone

Laboratories), 364
A Guide to the Project Management Body

of Knowledge, Third Edition (Project
Management Institute), 457

H
hierarchical decomposition, 501
hierarchical leadership model, 104
hierarchy of problem escalation

strategies, 567–569
Highsmith, James (Adaptive Software

Development: A Collaborative
Approach to Managing Complex
Systems), 54, 295, 306, 317

on structure, 13
historical data

estimating task duration and,
514–515

progress report and, 551

I
ideal end state, 450, 452
ideas

creating, 224, 539
prioritizing, 79–80, 539

identifying
functionality for increments, 150
functionality for iterations, 238
functions where features may be

missing, 231
improvement initiatives, 458
requirements, 489–492
success criteria, 475–477

increase revenue, avoid costs, improve
service (IRACIS), 476–477

increment by increment plan, 171–172,
174

increment handoffs, 172, 174, 199
increment lessons learned

Feature-Driven Development model,
192

Staged Delivery Waterfall model,
188–189

incremental acceptance criteria
Feature-Driven Development model,

191
Staged Delivery Waterfall model, 188

incremental model, 36
Incremental SDPM strategies

change and, 118, 198
characteristics of, 44–45
closing phase of

Feature-Driven Development
model, 189–192

overview of, 138, 185–186
Staged Delivery Waterfall model,

186–189
comparing and contrasting, 196
Iterative SDPM strategies compared

to, 220, 240, 250, 262

61_596365 bindex.qxd 2/15/06 10:43 PM Page 600

Index 601

launching phase of
Feature-Driven Development

model, 175–176
overview of, 137, 169–173
Staged Waterfall model, 173–175

monitoring and controlling phase of
overview of, 137–138, 177–178
project review sessions, 179–183
scope change management,

183–184
overview of, 42–44, 135–136, 145–146
planning phase of

decomposing Requirements
Breakdown Structure, 159–160

Feature-Driven Development
model, 165–167

overview of, 137, 157–158
sequencing development work,

160–161
Staged Delivery Waterfall model,

161–165
risk and, 196–198
scoping phase of

Feature-Driven Development
model, 151–153

overview of, 137, 146–147
precedence diagram and, 155
Requirements Breakdown Structure

(RBS) and, 154–155
Staged Delivery Waterfall model,

147–150
strengths of, 45–46
team structure and, 199
types of, 138–139
weaknesses of, 46–47, 174

increments, scheduling, 172–173, 175
Incubate phase of INSPIRE, 364, 400
independent deliverables sets,

creating, 100
INSPIRE (INitiate, SPeculate,

Innovate, REview)
Incubate phase of, 364
INitiate phase of, 360–361

launching phase of, 391–392
monitoring and controlling phase of,

398–400
overview of, 56, 358–360
planning phase of, 384–385
REview phase of, 365–367, 400
scoping phase of, 373–374
SPeculate phase of, 362–363, 399

internal stakeholder, 488
interviewing

project managers, 431
as requirement gathering approach,

490, 491
IRACIS (increase revenue, avoid costs,

improve service), 476–477
iteration plan for Rational Unified

Process, 236–237
iterations, scheduling, 242, 244, 324
Iterative SDPM strategies

Adaptive SDPM strategies
compared to

closing phase, 340–341
launching phase, 321–322, 325–326

change and, 118
changing to, 184
characteristics of, 50
closing phase of

Dynamic Systems Development
Method, 269–271

Evolutionary Development
Waterfall model, 263–265

overview of, 205–206, 261–263
Rational Unified Process, 268–269
SCRUM, 266–268

Dynamic Systems Development
Method, 214–216

Evolutionary Development Waterfall
model, 206–208

Incremental SDPM strategies
compared to, 250, 262

launching phase of
Dynamic Systems Development

Method, 246–247
Evolutionary Development

Waterfall model, 242–244

61_596365 bindex.qxd 2/15/06 10:43 PM Page 601

I n d e x602

Iterative SDPM strategies
launching phase of (continued)

overview of, 205, 239–242
Rational Unified Process, 246
SCRUM, 245–246

monitoring and controlling phase of
Dynamic Systems Development

Method, 258–260
Evolutionary Development

Waterfall model, 255–256
new/revised feature discovery,

252–254
overview of, 205, 249–251
project progress reporting, 251–252
Rational Unified Process, 257–258
scope change requests, 254–255
SCRUM, 256–257

overview of, 47–50, 203–204
planning phase of

Dynamic Systems Development
Method, 237–238

Evolutionary Development Water-
fall model, 231–233

overview of, 205, 229–230, 340
Rational Unified Process, 234–237
SCRUM, 233–234

project managers, traditional versus
agile, 274–275

project planning, traditional versus
agile, 276

projects, traditional versus agile, 274
Rational Unified Process, 212–214
scope change management, tradi-

tional versus agile, 276
scoping phase of

Dynamic Systems Development
Method, 227–228

Evolutionary Development
Waterfall model, 220–223

overview of, 204, 219–220
Rational Unified Process, 225–226
SCRUM, 223–225

SCRUM, 209–211
strengths of, 50–51
teams, traditional versus agile, 275
terminology and, 216
types of, 206–216
weaknesses of, 51–52

J
Java Modeling in Color with UML

(Coad, Lefebvre, and DeLuca), 139
just-in-time planning, 340

K
knowledge, trawling for, 487–492

L
landscape

bibliography for, 464
of software development, 8–11, 36–37
of software project management, 4–5

language
establishing common, 481–482
simple, 576

language barrier, 152
launching improvement project, 458
launching phase

of Adaptive SDPM strategies
Adaptive Project Framework,

324–326
Adaptive Software Development,

326–327
overview of, 283, 321–324

of Extreme SDPM strategies
Flexible Model, 392–393
INSPIRE, 391–392
overview of, 357, 389–390

of Incremental SDPM strategies
Feature-Driven Development

model, 175–176
overview of, 137, 169–173
Staged Waterfall model, 173–175

61_596365 bindex.qxd 2/15/06 10:43 PM Page 602

Index 603

of Iterative SDPM strategies
Dynamic Systems Development

Method, 246–247
Evolutionary Development Water-

fall model, 242–244
overview of, 205, 239–242
Rational Unified Process, 246
SCRUM, 245–246

of Linear SDPM strategies
managing concurrent swim lanes,

109
organizing project team, 105–109
overview of, 64, 103–104
team leadership model, 104–105

Learn phase of Adaptive Software
Development, 296

learning styles, 538
Lefebvre, Eric (Java Modeling in Color

with UML), 139
lessons learned

Evolutionary Development Waterfall
model, 264, 265

Feature-Driven Development model,
192

Flexible Model, 409
INSPIRE model, 407
Linear models and, 125
SCRUM model, 266–268
Staged Delivery Waterfall model,

188–189
leverage and negotiation, 567
library, reusable, 269
life cycle of Extreme project, 382–383
linear format, 581, 582, 583
Linear SDPM strategies

change intolerance and, 129–130
characteristics of, 39–40
choosing, 90
closing phase of

acceptance test procedures, 122–123
customer sign-off, 123–124
overview of, 65, 124–125
requirements validation, 121–122

comparing and contrasting, 127–128
Incremental strategies compared to,

157
launching phase of

managing concurrent swim
lanes, 109

organizing project team, 105–109
overview of, 64, 103–104
team leadership model, 104–105

milestone trend charts, 118–120
monitor and control phases of, 65
overview of, 37–39, 63–64
planning phase of

dependency diagramming, 97–100
overview of, 64, 93
project scheduling, 101
resource requirements, 101–102
work breakdown structure

template, 94–97
post-implementation audit, 125–126
project review sessions, 112–115
Rapid Development Waterfall

model, 37, 38–39, 69–72
reporting and, 111
risk and, 128–129
scope change management, 115–118
scoping phase of

collaborative approach to, 90
customer sign-off on requirements,

87–88
overview of, 64, 77
project overview statement, 89
requirements gathering, 80–87
solution definition, 78–80

Standard Waterfall model, 37, 38,
65–69

strengths of, 40–41
team structure and, 130
weaknesses of, 41–42

listening skills, 480–481
location of team, 455

61_596365 bindex.qxd 2/15/06 10:43 PM Page 603

I n d e x604

M
management reserve

allocating, 150
Incremental models and, 184
Linear models and, 116–117

managing
changing requirements, 486
concurrent swim lanes, 109
customer requirements, 81
process, 13–14

Managing Project Teams (Verma), 541
maturity assessment measure, 424–427
maturity levels, 450–451
McConnell, Steve (Software Project

Survival Guide), 138
McGary, Rudd (Effective Project

Management: Traditional, Adaptive,
Extreme, Third Edition), 53, 284,
431, 473

measuring variance, 549–550
meetings

problem management, 562
progress status, 559–561
of team

Flexible Model and, 376
planning, 108–109
resource schedule and, 534

metrics
for Adaptive SDPM strategies,

335–336
for Extreme SDPM strategies, 397,

399
practice tracking, 427–431
process tracking, 424–427
project tracking

earned value analyses, 435–441,
443, 556–557

milestone trend charts, 118–120,
431–435, 443–447

performance indices, 441–442
target values for, 450
warning signs, 446

micromanagement
hierarchical leadership model and,

104
of team, 532

migration strategies, 27, 29
milestone events

Evolutionary Development Waterfall
model and, 221

project review sessions and, 112–115,
179

trend charts for, 118–120, 431–435,
443–447

milestone review, 482
milestone trend charts

accommodating, 443–447
description of, 118–120, 431–435,

555–556
minutes of meeting, 561
mission profile, 306–307
mission statement, 306
mistake or misunderstanding and task

duration, 513
model for balancing staff, process, and

technology, 26
model notes, writing, 153
modeling team, forming, 151
monitoring and controlling phase

of Adaptive SDPM strategies
Adaptive Project Framework,

332–336
Adaptive Software Development,

337–338
overview of, 283–284, 329–332

of Extreme SDPM strategies
Flexible Model, 400–402
INSPIRE, 398–400
overview of, 357, 395–398

of Incremental SDPM strategies
overview of, 137, 177–178
project review sessions, 179–183
scope change management,

183–184

61_596365 bindex.qxd 2/15/06 10:43 PM Page 604

Index 605

of Iterative SDPM strategies
Dynamic Systems Development

Method, 258–260
Evolutionary Development

Waterfall model, 255–256
new/revised feature discovery,

252–254
overview of, 205, 249–251
project progress reporting, 251–252
Rational Unified Process, 257–258
scope change requests, 254–255
SCRUM, 256–257

of Linear SDPM strategies, 65,
111–120

monitoring project, 456
Morris, William C. (Organizational

Behavior in Action: Skill Building
Experiences), 541–542

N
near-critical task, 528
“needs”, 24
negative variance, 553–554
negotiation, 488, 567, 568
non-functional requirements, 83, 484
non-value-added work

Adaptive models and, 54
Adaptive Project Framework and,

288–289
replacing with value-added work,

13–14
noun-type approaches to building

Work Breakdown Structure,
507–508

number
of cycles, determining, 314, 318,

361, 374
for events and use cases, 494–495
of increments, defining, 149
of iterations, determining, 223, 236
or requirement, 494

O
object model, refining overall, 153
objective statement, 318, 475
objectives approach, 508
observation, 490, 492
organizational approaches to building

Work Breakdown Structure, 507,
509

Organizational Behavior in Action: Skill
Building Experiences (Morris and
Sashkin), 541–542

organizing
Linear SDPM strategy project team

authority, 105–106
meetings, 108–109
overview of, 105
RASCII Matrix, 107–108
responsibility, 106

team, 537–538
oscillation, dampening, 549
outline of phases and iterations, craft-

ing, 226
outline plan and DSDM, 238
overall plan for Rational Unified

Process, 235–236
overlap, degree of, 68, 130
ownership by customer, 22

P
Palmer, Stephen R. (Practical Guide to

Feature Driven Development),
139, 151

parallel approach, 125
participative decision making, 540
partnership with supplier, 577
PDQ. See Pizza Delivered Quickly

(PDQ) case study
percent complete, reporting, 552
performance indices

examples of, 441–442
warning signs and, 446

61_596365 bindex.qxd 2/15/06 10:43 PM Page 605

I n d e x606

perspective
of customer, 421
of development team, 423–424
of enterprise, 420–421
of project manager, 422–423

phased approach, 124
physical decomposition, 507
Pizza Delivered Quickly (PDQ) case

study
Adaptive Project Framework,

315–316
benefits map, 379
closing phase and, 405
customer sign-off, 88
introduction to, 6
Linear SDPM strategies and, 72–75
requirements gathering, 85–87
Routing sub-system, 358
on Web site, 461

plan-driven approaches. See also Incre-
mental SDPM strategies; Linear
SDPM strategies

description of, 9, 13
weaknesses of, 42

planning phase
of Adaptive SDPM strategies

Adaptive Project Framework,
311–316

Adaptive Software Development,
316–319

overview of, 229–230, 283, 309–310,
340, 404

of Extreme SDPM strategies
Flexible Model, 385–388
INSPIRE, 363, 384–385
overview of, 229–230, 357,

381–383, 404
of Incremental SDPM strategies

decomposing Requirements Break-
down Structure, 159–160

Feature-Driven Development
model, 165–167

overview of, 137, 157–158

sequencing development work,
160–161

Staged Delivery Waterfall model,
161–165

of Iterative SDPM strategies
Dynamic Systems Development

Method, 237–238
Evolutionary Development Water-

fall model, 231–233
overview of, 205, 229–230, 340
Rational Unified Process, 234–237
SCRUM, 233–234

of Linear SDPM strategies
dependency diagramming, 97–100
overview of, 64, 93
project scheduling, 101
resource requirements, 101–102
work breakdown structure tem-

plate, 94–97
PMBOK (Project Management Body of

Knowledge) standards, 94, 427
PMMA (Project Management Maturity

Assessment), 424–427
politicizing reviews, 180
POS (Project Overview Statement)

Adaptive Project Framework and,
304, 312

assumptions, risks, and obstacles list,
477–478

attachments to, 478
description of, 473–474
example of, 476
Flexible Model and, 375
goal statement, 475
INSPIRE and, 362, 374
Linear models and, 89
objectives statement, 475
parts of, 474
problem/opportunity statement,

474–475
reviewing, 451
Staged Delivery Waterfall model, 148

61_596365 bindex.qxd 2/15/06 10:43 PM Page 606

Index 607

success criteria identification,
475–477

Work Breakdown Structure and, 503
positive variance, 553
post-implementation audit of Linear

SDPM strategies, 125–126
Post-Version Review phase of Adap-

tive Project Framework, 293–295
A Practical Guide to Feature Driven

Development (Palmer and Felsing),
139, 151

practice tracking, 427–431
precedence diagram, 155, 163
precedence relationships and scope

changes, 175
precision of estimate, 517
prioritizing

functionality, 228, 238, 314
functions, 225, 232
ideas, 79–80, 539
process goals, 458
product backlog, 234
requirements, 362, 377

priority
loss of, 172
of project, 401
risk of changing, 197

proactive posture of Adaptive SDPM
strategies, 330

probative initiatives
abandoned, 406
determining, 314, 316
extended, 405–406
Extreme SDPM strategies and, 397
INSPIRE and, 384–385
new, 405
working with customer on, 342

problem
definition of, 78–79
escalation of, strategies for, 566–569

problem management meeting, 562
problem solving, 538–540

process effectiveness, assessing, 457
process goals

comparing results against, 459
determining, 457–458
prioritizing, 458

process improvement program
as continuous, 456–457, 572
effectiveness, assessing, 457
measuring improvement, 450, 572
phases of, 457–459

process tracking, 424–427
process-driven environments, 31–32
processes

business
“As Is”, 572, 585, 586
characteristics of, 573–575
context diagrams, 583–584
continuous process improvement

program for, 456–459
definition of, 572–573
diagramming, 579–580
effectiveness of, 574
efficiency of, 574–575
flow diagram formats, 580–583
mapping, 571–572
streamlining tools, 575–577
“To Be”, 572, 586
work flow diagrams, 584–586

compliance to, 179
Incremental models and, 46
Linear models and, 42

product constraints, 485
product definition, 485–486
product owner and product backlog,

210, 223–225, 234
production prototype approach, 206
progress reporting

Adaptive models and, 331
Extreme models and, 397–398
frequency of, 552
information for, 550–552
Iterative models and, 251–252

61_596365 bindex.qxd 2/15/06 10:43 PM Page 607

I n d e x608

progress reporting (continued)
level of detail, 558–559
measuring variance, 549–550
status meetings, 559–561
system for, 546–547
tools for, 554–557
types of status reports, 546–549
variances, 553–554

project completion acceptance criteria
Feature-Driven Development model,

191, 192
Staged Delivery Waterfall model, 188

project completion lessons learned
Evolutionary Development Waterfall

model, 265
SCRUM model, 268
Staged Delivery Waterfall model, 189

project constraints, 485
Project Data Sheet, 306
project file, 125
project impact statement, 564–566
Project Initiation phase of Adaptive

Software Development, 297, 305,
318

Project Management Institute
A Guide to the Project Management

Body of Knowledge, Third Edition,
457

Project Management Body of Knowl-
edge (PMBOK) standards,
94, 427

Project Management Maturity
Assessment

Capability Maturity Model report,
424–427

Practice Maturity Level report,
427–431

Project Management Office, 265
project managers

interviewing, 431
perspective of, 422–423
problem escalation and, 566–567
progress reporting and, 558

traditional
adaptive versus, 349–350
agile versus, 274–275
extreme versus, 412

project network diagram
analyzing initial, 528–529
building, 520–522
critical path calculation, 527
dependencies, 522–524
description of, 520

project network schedule
creating initial, 524–525
early schedule, 525
late schedule, 526

Project Overview Statement (POS)
Adaptive Project Framework and,

304, 312
assumptions, risks, and obstacles list,

477–478
attachments to, 478
description of, 473–474
example of, 476
Flexible Model and, 375
goal statement, 475
INSPIRE and, 362, 374
Linear models and, 89
objectives statement, 475
parts of, 474
problem/opportunity statement,

474–475
reviewing, 451
Staged Delivery Waterfall model, 148
success criteria identification,

475–477
Work Breakdown Structure and, 503

project planning, traditional
adaptive compared to, 350–351
agile compared to, 276
extreme compared to, 413–414

project review sessions
Incremental SDPM strategies,

179–183
Linear SDPM strategies and, 112–115

61_596365 bindex.qxd 2/15/06 10:43 PM Page 608

Index 609

project scheduling, 101, 165
project skinny, 377
project specification outline, 307
project tracking

earned value analyses, 435–441, 443
milestone trend charts, 118–120,

431–435, 443–447
performance indices, 441–442

project uncertainty profile, 386
projects, traditional

adaptive compared to, 348
agile compared to, 274
extreme compared to, 412

prototype
building, 228
as requirement gathering approach,

490, 491

Q
Quadrant 1

business value and, 25–26
change and, 24
complexity/uncertainty domain and,

14, 16
customer involvement and, 20–21
description of, 9–10, 12
Incremental SDPM strategies and, 42
Linear SDPM strategies and, 37
risk and, 17
team cohesiveness and, 18–19

Quadrant 2
Adaptive SDPM strategies and, 52
business value and, 25–26
change and, 24
complexity/uncertainty domain and,

14–15, 16
customer involvement and, 20–21
description of, 10–11, 12
Iterative SDPM strategy and, 50
iterative strategies of, 23
risk and, 17
team cohesiveness and, 18–19

Quadrant 3
Adaptive SDPM strategies and, 52
business value and, 26
change and, 25
complexity/uncertainty domain

and, 16
customer involvement and, 20–21
description of, 11, 12
Extreme SDPM strategies and, 56
risk and, 17–18
specification and, 23
team cohesiveness and, 18–19

Quadrant 4, 11, 13
quality check, 496–497
Quality Review phase of Adaptive

Software Development, 297, 338,
344

R
Raberg, Lotta (Adopting the Rational

Unified Process: Success with the
RUP), 212

Rapid Development Waterfall model
dependency diagramming and,

98–100
milestone trend charts and, 118–120
overview of, 37, 38–39, 69–72
project reviews and, 113, 114–115
resource requirements, 102
scheduling and, 101, 109
scope change and, 116
Standard Waterfall method com-

pared to, 127–128
team leadership and, 106
work breakdown structure template,

94–97
RASCII Matrix and Linear models, 64,

107–108
rational for requirement, 495
Rational Unified Process (RUP)

closing phase of, 268–269
flexibility of, 214

61_596365 bindex.qxd 2/15/06 10:43 PM Page 609

I n d e x610

Rational Unified Process (RUP)
(continued)

foundation of, 213
launching phase of, 246
monitoring and controlling phase of,

257–258
overview of, 47, 49, 212
phases of, 212–213
planning phase of, 234–237
scoping phase of, 225–226

RBS (Requirements Breakdown Struc-
ture)

Adaptive Project Framework and,
312–313

decomposing, 159–160
Evolutionary Development Waterfall

model and, 221–222
Extreme SDPM strategies and, 372,

373
ideal end state and, 452–453
Incremental models and, 150,

154–155
SCRUM and, 225

realigning with original goal, 402
reassigning resources, 568
release strategies, negotiating multi-

ple, 568
repeating business study, 271
reporting

Linear SDPM strategies and, 111
progress

Adaptive models and, 331
Extreme models and, 397–398
frequency of, 552
Gantt charts and, 554–555
information for, 550–552
Iterative models and, 251–252
level of detail, 558–559
measuring variance, 549–550
status meetings, 559–561
system for, 546–547
tools for, 554–557

types of status reports, 546–549
variances, 553–554

Project Management Maturity
Assessment (PMMA), 424–427

reprioritizing requirements, 365–366
requesting schedule extension, 569
requirements. See also Volere Process

archiving, 498
complexity/uncertainty domain

and, 15
customer sign-off on, 87–88
definition of, 81–82, 483
describing core, 226
Flexible Model and, 387
functional, 83, 484
gathering

Conditions of Satisfaction, 480–482
Evolutionary Development

Waterfall model, 221
Linear models and, 80–86
overview of, 479–480
SCRUM, 224

global, 84, 484–485
identifying, 489–492
Linear models and, 39–40, 80–88
managing changing, 486
non-functional, 83, 484
prioritizing, 362, 377
reprioritizing, 365–366
types of, 82–85, 483–485, 494
uncertainty and, 23–24

Requirements Breakdown Structure
(RBS)

Adaptive Project Framework and,
312–313

decomposing, 159–160
Evolutionary Development Waterfall

model and, 221–222
Extreme SDPM strategies and, 372,

373
ideal end state and, 452–453

61_596365 bindex.qxd 2/15/06 10:43 PM Page 610

Index 611

Incremental models and, 150,
154–155

SCRUM and, 225
Requirements Document, 474
requirements validation and Linear

SDPM strategies, 121–122
research and development projects, 57.

See also Extreme SDPM strategies
resource contention

Incremental models and, 198
Linear SDPM models and, 129

resource loading versus task duration,
512

resource manager
perspective of, 422
problem escalation and, 567

resource schedule
building, 532
examples of, 532–535
overview of, 531–532

resources
assigning, 364
bibliography, 463–471
increment by increment plan and,

171
Incremental models and, 45
Linear models and, 101–102
negotiating additional, 568
reassigning, 568
scheduling, 172, 174, 531–535
Web site, 461–462

responsibility of Linear SDPM strat-
egy project team, 106

results early and often value of Adap-
tive Project Framework, 288

reusable library, 269
reusing requirements, 490, 492, 498
revenue, increasing, 476
Review phase of INSPIRE, 365–367
review sessions

Incremental SDPM strategies,
179–183

Linear SDPM strategies and, 112–115

reviewing project overview statement,
451

revision
to functional model, 271
to project goal, 365
to solution design, 270

rework
Incremental SDPM strategies and,

197–198
Linear SDPM strategies and, 129

risk
Adaptive models and, 303, 352
of closure of project, 196
complexity/uncertainty domain ver-

sus, 17–18
Extreme models and, 57, 368, 372,

415
Flexible Model and, 378
of increment by increment plan,

171–172
Incremental models and, 196–198
Linear models and, 128–129
Quadrant 1 and, 10
Standard Waterfall model variation

and, 68–69
traditional versus adaptive project

managers and, 349–350
risk management plan, 388
roles, assigning team, 392
Root Cause Analysis, 79
routine and repetitive projects and

Linear models, 40
RUP (Rational Unified Process)

closing phase of, 268–269
flexibility of, 214
foundation of, 213
launching phase of, 246
monitoring and controlling phase of,

257–258
overview of, 47, 49, 212
phases of, 212–213
planning phase of, 234–237
scoping phase of, 225–226

61_596365 bindex.qxd 2/15/06 10:43 PM Page 611

I n d e x612

S
Sashkin, M. (Organizational Behavior in

Action: Skill Building Experiences),
541–542

scenarios, 362, 377
schedule compression, 529, 568
Schedule Performance Index, 441–442
schedule variance, 440, 550
scheduling

deliverables, 387
Evolutionary Development Waterfall

model and, 233
increments, 172–173, 175
iterations, 242, 244, 324
milestone trend chart and, 434–435
project

Linear models and, 101, 128–129
for Staged Delivery Waterfall

model, 165
project network diagram and

analyzing initial, 528–529
building, 520–522
critical path calculation, 527
dependencies, 522–524
description of, 520

project network schedule, 524–526
requesting extension, 569
resources, 172, 174, 531–535
risk of slippages in, 197
tasks, 316

Schwaber, Ken (Agile Software Develop-
ment with SCRUM), 209

scope bank, 117, 336
scope change management

Incremental models and, 183–184
Linear models and, 115–118
traditional

adaptive versus, 351
agile versus, 276
extreme versus, 414–415

scope change requests
Adaptive models and, 323, 331–332
Extreme models and, 323, 398

frequency and trend in, 184
handling, 170–172, 173–174, 175–176
Incremental models and, 45
Iterative models and, 51, 254–255,

323
Linear compared to Incremental

models, 146
Linear models and, 40
processing, 240–241, 243–244

scope creep, 304
scope triangle

Adaptive Project Framework and,
285–286

INSPIRE and, 361, 374
scoping phase

of Adaptive SDPM strategies
Adaptive Project Framework,

303–305
Adaptive Software Development,

305–307
overview of, 283, 301–303

of Extreme SDPM strategies
Flexible Model, 375–379
INSPIRE, 373–374
overview of, 356–357, 371–373

of Incremental SDPM strategies
Feature-Driven Development

model, 151–153
overview of, 137, 146–147
precedence diagram and, 155
Requirements Breakdown Structure

(RBS) and, 154–155
Staged Delivery Waterfall model,

147–150
of Iterative SDPM strategies

Dynamic Systems Development
Method, 227–228

Evolutionary Development Water-
fall model, 220–223

overview of, 204, 219–220
Rational Unified Process, 225–226
SCRUM, 223–225

61_596365 bindex.qxd 2/15/06 10:43 PM Page 612

Index 613

of Linear SDPM strategies
collaborative approach to, 90
customer sign-off on requirements,

87–88
overview of, 64, 77
project overview statement, 89
requirements gathering, 80–87
solution definition, 78–80

SCRUM model
closing phase of, 266–268
launching phase of, 245–246
monitoring and controlling phase of,

256–257
overview of, 47, 48–49, 209–211
planning phase of, 233–234
scoping phase of, 223–225

S-curve, standard, 436–437
SDPM (software development project

management)
current versus ideal environment,

27–28
definition of, 7–8
strategy, choosing, 454–456

SDPM strategy
Adaptive, 52–55
changing, 117–118
definition of, 7
Extreme, 56–58
generic template for discussing,

58–59
Incremental, 42–47
Iterative, 47–52
Linear, 37–42

senior management, 559
sequencing development work,

160–161
service, improving, 477
the shell, 492–495
sign-off by customer

closing phase of Linear SDPM
strategies and, 123–124

importance of, 22
scoping phase of Linear SDPM

strategies and, 87–88

simplification, 575
skill level and task duration, 513
slack time, 527
slippage, tracking, 433
small group models, developing, 153
software, characteristics of, 8–11
software development life cycle

Adaptive SDPM strategies and, 310
generic, 58–59

software development project
classification of, 8–11
examples of, 5–7

software development project man-
agement (SDPM)

current versus ideal environment,
27–28

definition of, 7–8
strategy, choosing, 454–456

Software Engineering Institute, Capa-
bility Maturity Model, 424–425

Software Project Survival Guide
(McConnell), 138

solution completeness, 453
solution handoffs

Adaptive models and, 324
Iterative models and, 241–242, 244

solution rollout
Adaptive models and, 324
Iterative models and, 242, 244

solution to problem
acceptable, 269, 407
Adaptive models and, 54
as clearly specified, 9–10, 11, 12, 13
description of, 8
Extreme models and, 57, 58
generating ideas for, 79
Incremental models and, 136
Iterative models and, 52
Linear models and, 39–40, 64, 78–80
modeling, 166
as not clearly specified, 10–11, 12,

204
unacceptable, 408

61_596365 bindex.qxd 2/15/06 10:43 PM Page 613

I n d e x614

solution types for INSPIRE model,
407–408

source of requirement, 495
specification

analyzing, 497–498
building, 492
complexity/uncertainty domain and,

22–24
writing, 498

Speculate phase
of Adaptive Software Development,

296
of INSPIRE, 362–363, 399

sponsor and choosing strategy,
454–455

Sponsor’s Vision (Flexible Model),
375–376

Sprint Backlog, 210, 234, 256, 267
Sprint Planning Meeting, 233, 266
staff resources, balancing with process

and technology, 27
staff-driven environments, 30
Staged Delivery Waterfall model

closing phase of, 186–189
Feature-Driven Development model

compared to, 141, 151, 196
launching phase of, 173–175
monitoring and controlling phase of,

180, 181
overview of, 42–43, 138–139, 140
planning phase of, 161–165
precedence diagram and, 155, 163
Requirements Breakdown Structure

(RBS) and, 154–155
scoping phase of, 147–150

stakeholder analysis, 487–489
Standard Waterfall model

communications and, 130
overview of, 37, 38, 65–66
project reviews and, 113
Rapid Development Waterfall model

compared to, 127–128

resource requirements, 101
scheduling and, 101
scope change and, 115–116
team leadership and, 106
variation to, 66–69

standardization, 576–577
Stapleton, Jennifer (DSDM: Dynamic

Systems Development Method), 215
start to finish dependency, 523
start to start dependency, 523
status reports, 546–549
stoplight reports, 547
stories, 362
streamlining tools, 575–577
strengths

of Adaptive models, 54–55
of Extreme models, 57–58
of Incremental models, 45–46
of Iterative models, 50–51
of Linear models, 40–41

studying documentation, 153
subteam approach to generating Work

Breakdown Structure, 502–503
success criteria, identifying, 475–477
supplier partnership, 577
swim lanes of development activity

definition of, 70
Extreme project, 383
managing, 109
reassignment to, 183
traditional versus extreme project

planning and, 413–414
swim-lane format, 580–581, 583
system dependencies, 149
Systems Design in Evolutionary

Development Waterfall model,
255–256

T
task

critical path, 525
definition of, 500
near-critical, 528

61_596365 bindex.qxd 2/15/06 10:43 PM Page 614

Index 615

task duration
estimating, 511–512, 513–517
resource loading versus, 512
variation in, 512–513

task list, 319
task node, 520–521
team

Adaptive models and, 330, 334–335
assigning roles and responsibilities

of team, 392
brainstorming by, 544
choosing strategy and, 455
cohesiveness of, and

complexity/uncertainty domain,
18–19

conflict resolution and, 542–543
consensus building and, 543–544
decision making and, 540–542
experience and skill of, 10
Flexible Model and, 388
forming modeling, 151
Incremental models and, 199
launch phase and, 64
Linear models and, 41, 130
micro-managing, 532
operating rules for, 537–538
organizing Linear SDPM strategy

project
authority, 105–106
meetings, 108–109
overview of, 105
RASCII Matrix and, 107–108
responsibility, 106

perspective of, 423–424
problem solving and, 538–540
project manager and, 422–423
risk of changes in, 197
SCRUM and, 209–211, 246
traditional

adaptive versus, 350
agile versus, 275
extreme versus, 413

team approach to generating Work
Breakdown Structure, 502

team leadership model, 104–105
team model, developing, 153
technology infrastructure, 10
technology support, assigning to

cycles, 319
technology-driven environments,

32–33
templates

for discussing SDPM strategies,
58–59

Linear models and, 40
work breakdown structure

deliverables-based, 150
Feature-Driven Development

model and, 140
Rapid Development Waterfall

model, 94–97
termination of project, 404
three-point technique, 516–517
timebox

Adaptive Project Framework and,
305

Adaptive Software Development
and, 318

Flexible Model and, 387
INSPIRE and, 360, 374
for iterations, determining, 223

time/duration
Linear models and, 41
Rapid Development Waterfall model

and, 70
Standard Waterfall model variation

and, 68–69
“To Be” business process, 572, 586
top-down left-to-right format, 580, 581
tracking

performance, 236, 441–442
practice, 427–431
process, 424–427

61_596365 bindex.qxd 2/15/06 10:43 PM Page 615

I n d e x616

tracking (continued)
project

earned value analyses, 435–441,
443, 556–557

milestone trend charts, 118–120,
431–435, 443–447

warning signs and, 446
Traditional Project Management. See

also Incremental SDPM strategies;
Linear SDPM strategies

bibliography for, 464–467
Conditions of Satisfaction and, 480
models of, 285
project managers

adaptive compared to, 349–350
agile compared to, 274–275
extreme compared to, 412

project planning
adaptive compared to, 350–351
agile compared to, 276
extreme compared to, 413–414

projects
adaptive compared to, 348
agile compared to, 274
extreme compared to, 412

scope change management
adaptive compared to, 351
agile compared to, 276
extreme compared to, 414–415

teams
adaptive compared to, 350
agile compared to, 275
extreme compared to, 413

trawling for knowledge, 487–492
trend charts

for Iterative SDPM strategies, 251,
252

milestone
accommodating, 443–447
description of, 118–120, 431–435,

555–556

U
unacceptable solution, 408
uncertainty

agile approaches and, 422
complexity/uncertainty domain

adaptability and, 16
business value versus, 25–26
change and, 17, 24–25
communications versus, 19–20
customer involvement versus,

20–22
flexibility and, 15–16
overview of, 14–15
requirements and, 15
risk versus, 17–18
specification versus, 22–24
team cohesiveness versus, 18–19

Extreme project management and,
366

upgrading, 576
use case number, 494–495
use cases

gathering documented list of, 226
INSPIRE and, 362
requirements gathering and, 491, 492

V
value. See also business value; earned

value analyses
Adaptive Project Framework and,

287–289
customer

Incremental models and, 46
Linear models and, 42

value-added assessment, 575
value-driven approaches, 13, 420–421
variance

in cost, 439–440
measuring, 549–550
negative, 553–554
positive, 553
in schedule, 440

61_596365 bindex.qxd 2/15/06 10:43 PM Page 616

Index 617

variance reports, 548–549
verb-type approaches to building

Work Breakdown Structure, 507,
508

Verma, Vijay K. (Managing Project
Teams), 541

Version Scope phase of Adaptive
Project Framework, 290, 303, 304

vision statement, 306, 377
Volere Process

analyzing specification, 497–498
conflicts, 496
dependencies, 496
description of, 81, 495
fit criteria, 496
gathering customer requirements,

483–486
graphic of, 486
quality check, 496–497
rationale, 495
the shell, 492–495
source, 495
start project, 487
trawl for knowledge, 487–492

W
“wants”, 24–25
“war room”, 350, 534
warning signs, 446
watercooler project, 481
waterfall models, 36, 37–42. See also

specific models
WBS. See Work Breakdown Structure

(WBS)
weaknesses

of Adaptive models, 55
of Extreme models, 58
of Incremental models, 46–47, 174
of Iterative models, 51–52
of Linear models, 41–42

Web site
for book, 461–462
business-to-business, building, 356

wide-band Delphi Technique, 517
“win conditions”, 378
Work Breakdown Structure (WBS)

activity duration is within limits, 506
activity has deliverable, 505
bottom-up approach to generating,

503–504
building, 506–509
deliverables-based, 150
Feature-Driven Development model

and, 140
intermediate, for large projects, 504
noun-type approaches to building,

507–508
organizational approaches to build-

ing, 509
overview of, 94, 499–501
Rapid Development Waterfall

model, 94–97
resource schedule and, 532
start/completion is measurable, 505
start/end events are defined, 505
testing for completeness in, 504–506
time and cost are estimated, 505–506
top-down approach to generating,

501–503
verb-type approaches to building,

508
work assignments are independent,

506
work flow diagrams, 584–586
work, non-value-added

Adaptive models and, 54
Adaptive Project Framework and,

288–289
replacing with value-added work,

13–14
work package, 500
“Wow Project”, 378
writing model notes, 153

61_596365 bindex.qxd 2/15/06 10:43 PM Page 617

I n d e x618

Wysocki, Robert K.
Adaptive Project Framework: A

Common Sense Approach to
Managing Complex Projects, 53

Effective Project Management:
Traditional, Adaptive, Extreme,
Third Edition, 53, 284, 431, 473

61_596365 bindex.qxd 2/15/06 10:43 PM Page 618

	Effective Software Project Management
	About the Author
	Credits
	Contents
	Foreword
	Introduction
	Why Another Book on Software Project Management?
	What Is This Book About?
	What Is the Purpose of This Book?
	Who Should Read This Book?
	How Will You Benefit from Reading This Book?
	How Is This Book Organized?
	What Are the Features of the Book?
	What’s on the Web Site?
	How Should You Read This Book?
	Summary

	Part One: The Evolving State of ESPM
	Chapter 1: The Changing Landscape of Software Development
	What Is a Software Development Project?
	What Is Software Development Project Management?
	The Complexity/Uncertainty Domain of SDPM
	Balancing Staff, Process, Technology
	Discussion Questions

	Chapter 2: SDPM Roadmap
	The Contemporary Software Development Landscape
	A Generic Template for Discussing SDPM Strategies
	Discussion Questions

	Part Two: Linear ESPM
	Chapter 3: Linear SDPM Strategy
	The Linear SDPM Strategy
	Types of Linear SDPM Strategies
	Discussion Questions

	Chapter 4: The Linear SDPM Scoping Phase
	Solution Definition
	Requirements Gathering
	Customer Sign-Off on Requirements
	Project Overview Statement
	Ensuring That a Linear SDPM Strategy Is Correct
	Discussion Questions

	Chapter 5: The Linear SDPM Planning Phase
	Work Breakdown Structure Template
	Dependency Diagramming
	Project Scheduling
	Resource Requirements
	Discussion Questions

	Chapter 6: The Linear SDPM Launching Phase
	Team Leadership Model
	Organizing the Linear SDPM Strategy Project Team
	Managing Concurrent Swim Lanes
	Discussion Questions

	Chapter 7: The Linear SDPM Monitoring and Controlling Phase
	Project Review Sessions
	Scope Change Management
	Milestone Trend Charts
	Discussion Questions

	Chapter 8: The Linear SDPM Closing Phase
	Requirements Validation
	Acceptance Test Procedures
	Customer Sign-Off
	The Closing Phase
	Lessons Learned
	Discussion Questions

	Chapter 9: The Linear SDPM Strategy Summary
	Comparing and Contrasting the SDPM Models
	Points to Remember
	Discussion Questions

	Part Three: Incremental ESPM
	Chapter 10: Incremental SDPM Strategy
	The Incremental SDPM Strategy
	Types of Incremental SDPM Strategies
	Discussion Questions

	Chapter 11: The Incremental SDPM Scoping Phase
	The Scoping Phase of an Incremental SDPM Strategy
	The Scoping Phase of the Incremental SDPM Strategy for the Staged Delivery Waterfall Model
	The Scoping Phase of the Incremental SDPM Strategy for the Feature-Driven Development Model
	The Role of the RBS
	The Role of the Precedence Diagram
	Discussion Questions

	Chapter 12: The Incremental SDPM Planning Phase
	The Planning Phase of an Incremental SDPM Strategy
	The Planning Phase of an Incremental SDPM Strategy for the Staged Delivery Waterfall Model
	The Planning Phase of an Incremental SDPM Strategy for the Feature-Driven Development Model
	Discussion Questions

	Chapter 13: The Incremental SDPM Launching Phase
	The Launching Phase of an Incremental SDPM Strategy
	The Launching Phase of an Incremental SDPM Strategy for the Staged Waterfall Model
	The Launching Phase of an Incremental SDPM Strategy for the Feature-Driven Development Model
	Discussion Questions

	Chapter 14: The Incremental SDPM Monitoring and Controlling Phase
	The Monitoring and Controlling Phase of an Incremental SDPM Strategy
	Project Review Sessions
	Scope Change Management
	Discussion Questions

	Chapter 15: The Incremental SDPM Closing Phase
	The Closing Phase of the Incremental SDPM Strategy
	Incremental SDPM Strategy for the Closing Phase of the Staged Delivery Waterfall Model
	Incremental SDPM Strategy for the Closing Phase of the Feature-Driven Development Model
	Discussion Questions

	Chapter 16: The Incremental SDPM Strategy Summary
	Comparing and Contrasting the SDPM Models
	Points to Remember
	Discussion Questions

	Part Four: Iterative ESPM
	Chapter 17: Iterative SDPM Strategy
	The Iterative SDPM Strategy
	Types of Iterative SDPM Strategies
	Discussion Questions

	Chapter 18: The Iterative SDPM Scoping Phase
	The Scoping Phase of an Iterative SDPM Strategy
	The Scoping Phase of the Iterative SDPM Strategy for the Evolutionary Development Waterfall Model
	The Scoping Phase of the Iterative SDPM Strategy for the SCRUM Model
	The Scoping Phase of the Iterative SDPM Strategy for the Rational Unified Process Model
	The Scoping Phase of the Iterative SDPM Strategy for the Dynamic Systems Development Method
	Discussion Questions

	Chapter 19: The Iterative SDPM Planning Phase
	The Planning Phase of an Iterative SDPM Strategy
	The Planning Phase of an Iterative SDPM Strategy for the Evolutionary Development Waterfall Model
	The Planning Phase of an Iterative SDPM Strategy for the SCRUM Model
	The Planning Phase of an Iterative SDPM Strategy for the Rational Unified Process Model
	The Planning Phase of an Iterative SDPM Strategy for the Dynamic Systems Development Method
	Discussion Questions

	Chapter 20: The Iterative SDPM Launching Phase
	The Launching Phase of an Iterative SDPM Strategy
	The Launching Phase of an Iterative SDPM Strategy for the Evolutionary Development Waterfall Model
	The Launching Phase of an Iterative SDPM Strategy for the SCRUM Model
	The Launching Phase of an Iterative SDPM Strategy for the Rational Unified Process Model
	The Launching Phase of an Iterative SDPM Strategy for the Dynamic Systems Development Method
	Discussion Questions

	Chapter 21: The Iterative SDPM Monitoring and Controlling Phase
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy for the Evolutionary Development Waterfall Model
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy for the SCRUM Model
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy for the Rational Unified Process Model
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy for the Dynamic Systems Development Method
	Discussion Questions

	Chapter 22: The Iterative SDPM Closing Phase
	The Closing Phase of the Iterative SDPM Strategy
	Iterative SDPM Strategy for the Closing Phase of the Evolutionary Development Waterfall Model
	Iterative SDPM Strategy for the Closing Phase of the SCRUM Model
	Iterative SDPM Strategy for the Closing Phase of the Rational Unified Process Model
	Iterative SDPM Strategy for the Closing Phase of the Dynamic Systems Development Method
	Discussion Questions

	Chapter 23: The Iterative SDPM Strategy Summary
	Traditional Versus Agile Projects
	Traditional Versus Agile Project Managers
	Traditional Versus Agile Teams
	Traditional Versus Agile Project Planning
	Traditional Versus Agile Scope Change Management
	Discussion Question

	Part Five: Adaptive ESPM
	Chapter 24: Adaptive SDPM Strategy
	The Adaptive SDPM Strategy
	Types of Adaptive SDPM Strategies
	Discussion Questions

	Chapter 25: The Adaptive SDPM Scoping Phase
	The Scope Phase of an Adaptive SDPM Strategy
	The Scoping Phase of the Adaptive SDPM Strategy for the Adaptive Project Framework Model
	The Scoping Phase of the Adaptive SDPM Strategy for the Adaptive Software Development Model
	Discussion Questions

	Chapter 26: The Adaptive SDPM Planning Phase
	The Planning Phase of an Adaptive SDPM Strategy
	The Planning Phase of an Adaptive SDPM Strategy for the Adaptive Project Framework Model
	The Planning Phase of an Adaptive SDPM Strategy for the Adaptive Software Development Model
	Discussion Questions

	Chapter 27: The Adaptive SDPM Launching Phase
	The Launching Phase of an Adaptive SDPM Strategy
	The Launching Phase of an Iterative SDPM Strategy for the Adaptive Project Framework Model
	The Launching Phase of an Adaptive SDPM Strategy for the Adaptive Software Development Model
	Discussion Question

	Chapter 28: The Adaptive SDPM Monitoring and Controlling Phase
	The Monitoring and Controlling Phase of an Adaptive SDPM Strategy
	The Monitoring and Controlling Phase of an Adaptive SDPM Strategy for the Adaptive Project Framework Model
	The Monitoring and Controlling Phase of an Iterative SDPM Strategy for the Adaptive Software Development Model
	Discussion Question

	Chapter 29: The Adaptive SDPM Closing Phase
	The Closing Phase of the Adaptive SDPM Strategy
	Iterative SDPM Strategy for the Closing Phase of the Adaptive Project Framework Model
	Adaptive SDPM Strategy for the Closing Phase of the Adaptive Software Development Model
	Discussion Question

	Chapter 30: The Adaptive SDPM Strategy Summary
	Traditional Versus Adaptive Projects
	Traditional Versus Adaptive Project Managers
	Traditional Versus Adaptive Teams
	Traditional Versus Adaptive Project Planning
	Traditional Versus Adaptive Scope Change Management
	Discussion Question

	Part Six: Extreme ESPM
	Chapter 31: Extreme SDPM Strategy
	The Extreme SDPM Strategy
	Types of Extreme SDPM Strategies
	Discussion Questions

	Chapter 32: The Extreme SDPM Scoping Phase
	The Scoping Phase of an Extreme SDPM Strategy
	The Scoping Phase of the Extreme SDPM Strategy for the INSPIRE Model
	The Scoping Phase of the Extreme SDPM Strategy for the Flexible Model
	Discussion Question

	Chapter 33: The Extreme SDPM Planning Phase
	The Planning Phase of an Extreme SDPM Strategy
	The Planning Phase of an Extreme SDPM Strategy for the INSPIRE Model
	The Planning Phase of an Extreme SDPM Strategy for the Flexible Model
	Discussion Questions

	Chapter 34: The Extreme SDPM Launching Phase
	The Launching Phase of an Extreme SDPM Strategy
	The Launching Phase of an Extreme SDPM Strategy for the INSPIRE Model
	The Launching Phase of an Extreme SDPM Strategy for the Flexible Project Model
	Discussion Question

	Chapter 35: The Extreme SDPM Monitoring and Controlling Phase
	The Monitoring and Controlling Phase of an Extreme SDPM Strategy
	The Monitoring and Control Phase of an Extreme SDPM Strategy for the INSPIRE Model
	The Monitoring and Controlling Phase of an Extreme SDPM Strategy for the Flexible Model
	Discussion Question

	Chapter 36: The Extreme SDPM Closing Phase
	The Closing Phase of the Extreme SDPM Strategy
	Iterative SDPM Strategy for the Closing Phase of the INSPIRE Model
	Extreme SDPM Strategy for the Closing Phase of the Flexible Model
	Discussion Question

	Chapter 37: The Extreme SDPM Strategy Summary
	Traditional Versus Extreme Projects
	Traditional Versus Extreme Project Managers
	Traditional Versus Extreme Teams
	Traditional Versus Extreme Project Planning
	Traditional Versus Extreme Scope Change Management
	Discussion Question

	Part Seven: In Summary
	Chapter 38: Where Are You?
	The Perspective of the Enterprise
	From the Perspective of the Customer
	From the Perspective of the Project Manager
	From the Perspective of the Development Team
	Tracking Where You Are
	Discussion Question

	Chapter 39: Where Do You Want To Go and How Can You Get There?
	Where Do You Want To Go?
	How Will You Get There?
	Discussion Questions

	Appendix A: What’s on the Web Site?
	Pizza Delivered Quickly (PDQ) Case Study (MS Word File)
	Figures Master File

	Appendix B: Bibliography
	The Changing SDPM Landscape
	Traditional Project Management
	Agile Project Management
	Putting It All Together

	Appendix C: The Project Overview Statement
	Parts of the POS
	Attachments

	Appendix D: Requirements Gathering
	Conditions of Satisfaction
	The Volere Process

	Appendix E: The Work Breakdown Structure
	Generating the WBS
	Six Criteria to Test for Completeness in the WBS
	Approaches to Building the WBS
	Noun-Type Approaches
	Verb-Type Approaches
	Other Approaches

	Appendix F: Estimation
	Estimating Time, Cost, and Resource Requirements
	Estimation Precision

	Appendix G: The Project Network Diagram
	Constructing the Software Development Project Schedule
	Analyzing the Initial Project Network Diagram

	Appendix H: The Resource Schedule
	Building the Resource Schedule
	Examples of a Resource Schedule

	Appendix I: Organizing the Project Team
	Problem Solving
	Decision Making
	Conflict Resolution
	Consensus Building
	Brainstorming

	Appendix J: Project Performance Reporting
	Monitoring and Controlling Software Development Project Progress
	Graphical Reporting Tools
	Level of Detail
	Project Status Meetings
	Problem Management Meetings
	Change Management
	Problem Escalation

	Appendix K: Business Process Flow Diagramming
	What Is a Business Process?
	What Is a Business Process Improvement Project?
	Business Process Diagramming
	Business Process Flow Diagram Formats
	Context Diagrams
	Business Process Work Flow Diagrams

	Index

