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Georges-Köhler-Allee 52, 79110 Freiburg i. Br., Germany

v



This page intentionally left blank



To my family, for their love and support.
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Preface

t has been a great pleasure to be asked to write the preface for the book
based on Kristian Kersting’s thesis. There is no doubt in my mind that this is a
remarkable and outstanding piece of work.

In his thesis Kristian has made an assault on one of the hardest integration prob-
lems at the heart of Artificial Intelligence research. This involves taking three dis-
parate major areas of research and attempting a fusion among them. The three areas
are: Logic Programming, Uncertainty Reasoning and Machine Learning. Every one of
these is a major sub-area of research with its own associated international research
conferences. Having taken on such a Herculean task, Kristian has produced a series of
widely published results which are now at the core of a newly emerging area: Proba-
bilistic Inductive Logic Programming. The new area is closely tied to, though strictly
subsumes, a new field known as “Statistical Relational Learning” which has in the last
few years gained major prominence in the American Artificial Intelligence research
community.

Within his thesis Kristian makes several major contributions, many of which have
already been published in refereed conference and journal papers. Firstly, Kristian
introduces a series of definitions which circumscribe the new area formed by extend-
ing Inductive Logic Programming to the case in which clauses are annotated with
probability values. This represents a new and powerful framework which supersedes
a number of influential papers and research areas in Artificial Intelligence. Secondly,
Kristian introduces Bayesian Logic Programs (BLPs). These represent an elegantly
defined lifting of Judea Pearl’s Bayesian networks to the logic programming level.
Since Kristian’s introduction of BLPs, a number of results indicate that BLPs gen-
eralise many previously defined representations, not the least of which are Bayesian
networks, Logic Programs, Probabilistic Relation Models and Stochastic Logic Pro-
grams. Next Kristian investigates the approach of Learning from proofs. This is an
interesting new learning framework which is the first to go beyond the two standard
semantic frameworks of Inductive Logic Programming.

Kristian then looks at the problem of upgrading HMMs to logical HMMs. Hidden
Markov Models (HMMs) are one of the most widely used machine learning tech-
nologies in Statistical Linguistics and Bioinformatics, and allow the representation of
probabilistic finite automata. Kristian has upgraded standard HMMs to allow rela-
tional descriptions to be included within the description of the automata. The three
standard HMM estimation algorithms are also upgraded. He has demonstrated the
power of such representations using biological predictive modelling problems, and
shown performance increases over alternative approaches.

Kristian next considers the issue of upgrading Fisher Kernels to Relational Fisher

ix

kernels. Fisher kernels have been widely used within statistics and more recently
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K. Kersting
IOS Press, 2006
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in support vector machines. Building on his previous approaches involving lifting
propositional representations Kristian shows how relations can be usefully included
within this context. The approach was empirically tested on protein fold prediction
and shown to have high predictive accuracy relative to logical HMMs.

Lastly, Kristian introduces Markov decision programs. As a final demonstration
of his general approach Kristian shows how temporal descriptions involving action
can be introduced by lifting Markov decision processes to logical Markov decision
programs. Kristian demonstrates how these can be learned using relational reinforce-
ment algorithms which he tests empirically in a Blocks World setting.

In summary, this thesis represents an extremely powerful and wide-ranging study
which has made strong contributions right across the intellectual landscape. Both
Kristian and his thesis supervisor Luc De Raedt, should be highly commended for
this important contribution.

London, July 2006 Stephen H. Muggleton



Acknowledgments

orking on the Ph.D. has been a wonderful and often overwhelming ex-
perience. It is hard to say whether is has been grappling with the topic itself which
has been the real learning experience, or grappling with how to write papers and
proposals, give talks, work in a group, stay up until the birds start singing, and stay
focus ...

In any case, I am indebted to many people for making the time working on my
Ph.D. an unforgettable experience.

First of all, I am deeply grateful to my advisor Luc De Raedt. To work with you
has been a real pleasure to me, with heaps of fun and excitement. You have been a
steady influence throughout my Ph.D. career; you have oriented and supported me
with promptness and care, and have always been patient and encouraging in times
of new ideas and difficulties; you have listened to my ideas and discussions with
you frequently led to key insights. Your ability to select and to approach compelling
research problems, your high scientific standards, and your hard work set an example.
I admire your ability to balance research interests and personal pursuits. Above all,
you made me feel a friend, which I appreciate from my heart.

Furthermore, I am very grateful to my external reviewer Stephen H. Muggleton,
for insightful comments both in my work and in this thesis, for his support, and for
many motivating discussions.

In addition, I have been very privileged to get to know and to collaborate with
many other great people who became friends over the last several years. I learned a
lot from you about life, research, how to tackle new problems and how to develop
techniques to solve them. Niels Landwehr has been a pleasure to work with. Your
technical excellence and tremendous grasp of experimental issues had a great impact
on me. Over the last few years, Tapani Raiko has been a faithful friend and co-author.
Thank you for teaching me so much in our joint research on logical hidden Markov
models. I have greatly enjoyed the opportunity to work with Thomas Gärtner, whose
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Abstract

Statistical relational learning addresses one of the central questions of artificial intel-
ligence: the integration of probabilistic reasoning with first order logic representation
and machine learning. Recently, this questions has received a lot of attention. Sev-
eral statistical relational learning approaches have been developed in related, but
different areas including machine learning, statistics, databases, and reasoning under
uncertainty.

This thesis starts from an inductive logic programming perspective and firstly de-
velops a general framework for statistical relational learning: probabilistic inductive
logic programming. Based on this foundation, the thesis shows how to incorporate the
logical concepts of objects and relations among these objects into Bayesian networks.
As time and actions are not just other relations, it afterwards develops approaches
to probabilistic inductive logic programming over time and for making complex de-
cision in relational domains. More specifically, Bayesian networks are upgraded to
Bayesian logic programs, hidden Markov models to logical hidden Markov models;
and Markov decision processes to Markov decision programs. Furthermore, it will be
shown that statistical relational learning approaches naturally yield kernels for struc-
tured data. The resulting approaches will be illustrated using examples from genetics,
bio-informatics, and classical planning domains.
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Overture

After motivating and overviewing the thesis, the overture introduces the framework
of probabilistic inductive logic programming: an inductive logic programming view on
statistical relational learning.
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§ 1

Introduction

... in which statistical relational learning is illustrated, the thesis’ inductive
logic programming perspective on statistical relational learning is motivated,
and the thesis’ outline and main contributions are presented ...

1.1 Statistical Relational Learning

One of the central open questions of artificial intelligence is concerned with combining
expressive knowledge representation formalisms such as relational and first-order logic
with principled probabilistic and statistical approaches to inference and learning, cf.
Figure 1.1. The fields of knowledge representation and inductive logic programming
stress the importance of relational and logical representations that provide the flex-
ibility and modularity to model large domains. They also highlight the importance
of making general statements, rather than making statements for every single aspect
of the world separately. The fields of statistical learning and uncertainty in artificial
intelligence emphasize that agents that operate in the real world must deal with uncer-
tainty. An agent typically receives only noisy or limited information about the world;
actions are often non-deterministic; and an agent has to take care of unpredictable
events. Probability theory provides a sound mathematical foundation for inference and
learning under uncertainty. Machine learning, in general, argues that an agent needs
to be capable of improving its performance through experience. Thus, the combina-
tion of expressive knowledge representation with probabilistic approaches to inference
and learning is needed in order to face the challenges of real-world applications, which
are complex and heterogeneous. Consider for example intelligent transportation sys-
tems. The U.S. Department of Transportation estimates that congestion costs the
country about $100 billion a year in lost productivity [Euler and Robertson, 1995].
For the 1991-1995 period, the U.S. Congress has therefore provided $827.6 million for
the Intelligent Transportation Systems (ITS) program. The aim of the ITS program
is to improve (reducing congestion, pollution etc.) travel on mass transit and high-
ways by using advanced computer, communications, and sensor. One approach is to
seek to reduce the number of single-occupancy-vehicles and to investigate instant ride
sharing.

Example 1.1 (Online Ride Sharing Service 1, adapted from [Resnick, 2003]) Xenia
is new to instant ride-sharing. She is twenty-four and is trying to save money. Fur-
1 For instance, the Seattle Smart Traveler project seeks to reduce the number of single-

occupancy-vehicles and investigates instant ride sharing. In 2006, a ride sharing pilot
project based on cell phones will be launched at the Frankfurt airport. The project is
part of the ’Partner für Innovation’ initiative of the German Federal Ministry of Educa-
tion and Research (BMBF), several universities such as the Technical University Braun-
schweig, and companies such as Deutsche Lufthansa and Deutsche Post. For some ex-
isting ride sharing services, see for example www.ridenow.org, www.erideshare.com, and
www.rideshareonline.com.

3
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Statistical Relational Learning 

Probability

Logic Learning

Figure 1.1. Statistical relational learning combines probability, logic, and learning.

thermore, it is such a hassle to park at the hospital where she works as a medical
doctor. She often starts working very early in the morning and stays late at work,
so she never joined a carpool. Instead, she decided to try an instant carpool system.
She was a little worried about taking rides with strange men, so she set her profile
to only accept rides from women, or from men who have a long history of previous
rides without any complaints. She also has talked to some of her friends who also
used the system. She logs onto the website and enters her profile, her address and her
destination address. She also enters the list of friends who also use the systems.

The first morning, she is a little bit nervous. She walks out the door and calls
the number she had pre-programmed into her cell phone. The systems tracks her
progress as she walks down the main street and tells her that a green Opel Corsa is
just three blocks away. After she accepts the profile of the driver — one of her friends
also drove with the driver several times — her cell phone calls the driver and the
car pulls up. The driver is a forty-something woman, smartly dressed with a white
lab coat on the passenger seat. Sure enough, Xenia jumps in the back of the car. The
driver asks Xenia what she does at the hospital and soon they discover that the driver
and Xenia’s boss are good friends, and the driver tells a humorous story about her
boss. As they pull into a choice parking space at the hospital parking lot, reserved
for multiple-occupant-vehicles, the driver smiles and says, ’You saved me 5 minutes
driving around and around in this lot. Thanks! Maybe I will drive you again some
time, but my schedule is very irregular so I am not sure when.’

’Thank you!’ says Xenia as they walk off in different directions. As she walks away,
she calls the ride sharing system again from her cell phone and presses a button to
indicate that she arrived safely, that she would be happy to ride with that driver
again, and that she recommends her to other passengers. ◦

The ride sharing scenario is characterized by the presence of uncertainty, missing
information and complex relations. There are persons, drivers, clients, parking lots,
places, etc. In other words, there are multiple entities and types of entities. There
is temporal information such as time of day, spatial information extracted from geo-
graphic databases such as streets, and personal constraints such as profiles, addresses
or locations of people. The system guides people’s choices of which driver to choose,
i.e., the system requires machine learning to estimate users’ preferences. That guid-
ance is personalized, i.e., it is not only based on information (profile, feedback) from
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a single person but also gathered from other people related in some way to the per-
son (such as friends). People share rides or they walk down streets, which in turn
connect places. In other words, there are multiple relations among the entities, which
may change over time. The system should take advantage of information about a
user’s current location. It should infer when a driver brakes the optimal drive to the
destination address in a way that may indicate that he has made an error, such as
failing to turn left or right at a crossing. The system has to robustly track people even
in the presence of total loss of cell phone signals and other sources of noise. It may
predict the destination of users or provide the user with possible rides next to her
current location when she is likely to need a ride. In other words, there is uncertain
and missing information.

Most traditional artificial intelligence and machine learning systems, however, are
able to handle either uncertainty or rich relational structures but not both. Statistical
learning, reinforcement learning, and data mining methods have traditionally been
developed for data in attribute-value form only. As Heikki Mannila points out in his
foreword to [Džeroski and Lavrač, 2001], data is represented in matrix form: columns
represent attributes, and rows represent examples. Indeed, matrices are simple and
efficient matrix operations can be used. In turn, a matrix form makes it possible to
devise efficient algorithms. Many — if not most — real-world data sets, however,
are not in matrix form. Applications contain several entities and relationships among
them. Inductive logic programming and relational learning have been developed for
coping with this type of data. They do not, however, handle uncertainty in a principled
way.

It is therefore not surprising that there has been a significant interest in inte-
grating statistical learning with first order logic and relational representations. Eisele
[1994] has introduced a probabilistic variant of Comprehensive Unification Formalism
(CUF). In a similar manner, Muggleton [1996] and Cussens [1999] have upgraded
stochastic grammars towards stochastic logic programs. Sato [1995] has introduced
probabilistic distributional semantics for logic programs. Taskar et al. [2002] have
upgraded Markov networks towards relational Markov networks, and Domingos and
Richardson [2004] towards Markov logic networks. Another research stream includes
Poole’s [1993] independent choice Logic, Ngo and Haddawy’s [1997] probabilistic-
logic programs, Jäger’s [1997] relational Bayesian networks, and Pfeffer’s [2000] and
Getoor’s [2001] probabilistic relational models, and has investigated logical and rela-
tional extensions of Bayesian networks. This newly emerging research field is known
under the name of statistical relational learning and probabilistic logic learning, see [De
Raedt and Kersting, 2003] for an overview, and may be briefly defined as follows:

Definition 1.2 (Statistical Relational Learning) Statistical relational learning deals
with machine learning and data mining in relational domains where observations may
be missing, partially observed, and/or noisy. ◦
Instead of giving a probabilistic characterization of logic programming such as [Ng
and Subrahmanian, 1992], this line of research stresses the machine learning aspect.

Employing relational and logical abstraction within statistical learning has two
advantages. First, variables, i.e., placeholders for entities allow one to make abstrac-
tion of specific entities. Second, unification allows one to share information among
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entities. Thus, instead of learning regularities for each single entity independently,
statistical relational learning aims at finding general regularities among groups of en-
tities. The learned knowledge is declarative and compact, which makes it much easier
for people to understand and to validate. Although, the learned knowledge must be
recombined at run time using some reasoning mechanism such as backward chaining
or resolution, which bears additional computational costs, statistical relational models
are more flexible, context-aware, and offer — in principle — the full power of logical
reasoning. Moreover, in many applications, there is a rich background theory avail-
able, which can efficiently and elegantly be represented as sets of general regularities.
This is important because background knowledge often improves the quality of learn-
ing as it focuses learning on relevant patterns, i.e., restricts the search space. While
learning, relational and logical abstraction allow one to reuse experience: learning
about one entity improves the prediction for other entities; it might even general-
ize to objects, which have never been observed before. Thus, relational and logical
abstraction can make statistical learning more robust and efficient. This has been
proven beneficial in many fascinating real-world applications in citation analysis, web
mining, web navigation, web search, natural language processing, robotics, computer
vision, social network analysis, bio- and chemo-informatics, electronic games, and ac-
tivity recognition. For instance, Liao et al. [2005] applied Taskar et al.’s relational
Markov networks to a problem related to the ride sharing service, namely learning
and inferring transportation routines.

1.2 Our Approach: The ILP Perspective

Whereas most of the existing works on statistical relational learning have started
from a statistical and probabilistic learning perspective and extended probabilistic
formalisms with relational aspects, we will take a different perspective, in which we
will start from inductive logic programming (ILP) and will study how inductive logic
programming formalisms, settings and techniques can be extended to deal with prob-
abilities. This also explains the title of the thesis, ’An Inductive Logic Programming
Approach to Statistical Relational Learning’.

ILP 2 is a research field at the intersection of machine learning and logic pro-
gramming [Muggleton and De Raedt, 1994]. It aims at a formal framework as well
as practical algorithms for inductively learning relational descriptions (in the form of
logic programs) from examples and background knowledge. However, it does not ex-
plicitly deal with uncertainty such as missing or noisy information. Dealing explicitly
with uncertainty makes probabilistic ILP more powerful than ILP and, in turn, than
traditional attribute-value approaches. Moreover, there are several benefits of an ILP
approach to statistical relational learning. First of all, classical ILP learning settings
— as we will argue — naturally carry over to the probabilistic case. The probabilistic
ILP settings make abstraction of specific probabilistic relational and first order logical
representations and inference and learning algorithms yielding — for the first time —
general statistical relational learning settings. Second, many ILP concepts and tech-
niques such as more–general–than, refinement operators, least general generalization,
2 ILP is often also called multi-relational data mining (MRDM) [Džeroski and Lavrač, 2001].
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and greatest lower bound can be reused. Therefore, many ILP learning algorithms such
as Quinlan’s FOIL and De Raedt and Dehaspe’s Claudien can easily be adapted.
Third, the ILP perspective highlights the importance of background knowledge within
statistical relational learning. The research on ILP and on artificial intelligence in gen-
eral has shown that background knowledge is the key to success in many applications.
Finally, an ILP approach should make statistical relational learning more intuitive to
those coming from an ILP background and should cross-fertilize ideas developed in
ILP and statistical learning.

1.3 Contributions and Outline of the Thesis

The foundations of the thesis are laid in Chapter 2 of the Overture, in which we for-
malize our ILP view on statistical relational learning called probabilistic inductive
logic programming. After briefly reviewing logic programming concepts, we will
sketch inductive logic programming and show how it can be extended to deal with
probabilities. The contributions are a novel ILP learning setting called learning
from proofs, the notation of a probabilistic covers relation, and, based on it,
three different learning settings, namely, probabilistic learning from entailment,
from interpretations, and from proofs.

Building on this foundations, the remainder of the thesis falls naturally into three
parts with one intermezzo, each introducing a particular probabilistic ILP framework.

Part I introduces Bayesian logic programs. After briefly reviewing Bayesian
networks, the representation language of Bayesian logic programs and their semantics
are introduced in Chapter 3. Bayesian logic programs tightly integrate definite logic
programs with Bayesian networks and, hence, define probability distributions over
first-order interpretations. The key idea underlying Bayesian logic programs is to
establish a one-to-one mapping between ground atoms and random variables, and
between the immediate consequence operator and the dependency relation. In doing
so, Bayesian logic programs combine the advantages of both definite clause logic and
Bayesian networks: notions of objects and relations, a separation of quantitative and
qualitative aspects of the world, and a graphical representation. We contribute several
extensions of the basic Bayesian logic programming framework, which was originally
introduced in [Kersting, 2000], namely a graphical representation for Bayesian
logic programs, methods to handle purely logical predicates and aggregate
functions. Then, in Chapter 4, we present the first algorithm for automatically
inducing Bayesian logic programs from interpretations called Scooby. This
includes a definition for the likelihood of a Bayesian logic program, methods for
estimating the parameters of a Bayesian logic program, and an algorithm for
searching the space of candidate Bayesian logic programs called Scooby.
Bayesian logic programs and parts of Scooby have been implemented within the
Balios system, which is briefly described after Chapter 4.

Many real world applications such as sequence analysis in bioinformatics require
to model probability distributions over sets of sequences and trees. Bayesian logic
programs, however, provide a general probabilistic ILP framework and are not cus-
tomized for modeling the evolution of the environment over time. Indeed, discrete time
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can be considered as yet another relation. This view, however, does not heal the curse
of dimensionality: the set of possible state trajectories grows exponentially over time.
In Part II, we introduce a novel probabilistic ILP over time approach called logi-
cal hidden Markov model. Logical hidden Markov models extend hidden Markov
models to deal with sequences of structured symbols in the form of logical atoms.
They employ logical atoms as structured (output and state) symbols. Variables in
the atoms allow one to make abstraction of specific symbols. Unification allows one
to share information among states. The contributions are the representation lan-
guage and a definition of the distribution defined by a logical hidden Markov
model in Chapter 5. Solutions to the three basic inference tasks: evaluation, most
likely state sequence, maximum parameter estimation including a definition
of the likelihood of a logical hidden Markov model are contributed in Chapter 6.
Part II concludes by presenting the first structural expectation-maximization
algorithm for automatically inducing logical hidden Markov model from
sequences of observations called sagEM in Chapter 7. This includes a defini-
tion of the expected likelihood of a logical hidden Markov model given another
model and an algorithm for searching the space of candidate logical hidden
Markov models.

For Bayesian logic programs and logical hidden Markov models, we develop meth-
ods for estimating the joint distribution P(Z) of some random variables Z. Many real
world applications, however, are classification problems: One tries to estimate the
dependence P(Y |X) of a target variable Y ∈ Z on some observation X = Z\{Y }. Al-
though classification problems can be solved with generative models it is well-known
that the predictive performance of generative models estimated from a finite set of ex-
amples is often lower than that of discriminative classifiers. The Intermezzo in Chap-
ter 8 describes one of the first discriminative (probabilistic) inductive logic
programming approaches: relational Fisher kernels. Relational Fisher kernels
combine generative probabilistic ILP frameworks with discriminative learners. The
key idea is to employ the gradient of the log likelihood of a probabilistic ILP model
such as a Bayesian logic program or a logical hidden Markov model with respect to
its parameters as features of a discriminative learner. The gradient captures the gen-
erative process rather than just the posterior probabilities. Thus, relational Fisher
kernels employ relational and logical abstraction within discriminative learning. The
contributions are methods to compute the gradients of Bayesian logic pro-
gram and logical hidden Markov models. Relational Fisher kernels are among
the first links established between statistical relational learning and kernel methods.

Finally, in Part III, we extend the capabilities of probabilistic ILP agents towards
decision-theoretic planning. We provide the first convergence results for rela-
tional reinforcement learning. To do so, we introduce Markov decision pro-
grams, their representation language and a definition of the Markov decision process
they induce in Chapter 9. Markov decision programs combine Markov decision pro-
cesses with logic programming to reason efficiently with relational and logical axioms
describing uncertain actions. Then, in Chapter 10, we introduce abstract policies
and — based on them — a general scheme generalized relational policy itera-
tion. We define abstract policies and present a general scheme for learning abstract
policies, called generalized relational policy iteration (GRPI). Then, in the fol-



lowing, two GRPI approaches are presented: a relational extension of temporal
difference learning, called RTD(λ), for the evaluation of a fixed abstract policies
and a relational value iteration approach based on the first fully automated rela-
tional value update operator called ReBel. For both, convergence results are
presented.

The Finale summarizes and concludes the thesis in Chapters 11 and 12. Possible
future lines of research are discussed in Chapter 13. In the Appendix, we describe the
logical hidden Markov models used in some experiments.

1.4 Citations to Previously Published Work

Some of this material has been published previously in workshop and conference
papers, journal articles, and book chapters. The material in Chapter 2 appeared in [De
Raedt and Kersting, 2004], which in turn was inspired on [De Raedt and Kersting,
2003]. It also includes elements of [Landwehr et al., 2005, De Raedt et al., 2005]. The
material in Chapter 3 is based largely on [Kersting and De Raedt, 2005], which in
turn developed from [Kersting, 2000, Kersting et al., 2000, Kersting and De Raedt,
2001b]. Chapter 4 initially appeared in [Kersting and De Raedt, 2001a,c], which were
integrated in [Kersting and De Raedt, 2002]. It also includes material from [Fischer
and Kersting, 2003]. The description of the Balios system builds on [Kersting and
Dick, 2004]. The material in Chapters 5 and 6 is based on [Kersting et al., 2006],
which in turn evolved from [Kersting et al., 2002, Raiko et al., 2002, Kersting et al.,
2003b]. The material in Chapter 7 initially appeared in [Kersting et al., 2003a]. It later
appeared in [Kersting and Raiko, 2005]. Some of the material in Chapter 8 can also be
found in [Kersting and Gärtner, 2002, 2004, Dick and Kersting, 2006]. The material
in Chapters 9 and 10 is based largely on [Kersting and De Raedt, 2003, 2004, Kersting
et al., 2004]. The material in Appendix A is taken from [Kersting et al., 2006].

In the remainder of the thesis, the corresponding publications of a chapter (re-
spectively section) are mentioned in a footnote marked by ’∗’ at the beginning of the
chapter (respectively section).

§ 2

Probabilistic Inductive Logic Programming *

... in which logical concepts and notations are defined and it is demonstrated
how inductive logic programming (ILP) can be extended with probabilistic
methods ...

Probabilistic inductive logic programming aims at a formal framework for statistical
relational learning. It extends inductive logic programming (ILP) [Muggleton and
De Raedt, 1994] to explicitely deal with uncertainty. Before introducing probabilistic

* Builds mainly on [De Raedt and Kersting, 2004].

9
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parent(jef,paul). nat(0).

parent(paul,ann). nat(s(X)) :- nat(X).

grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

Figure 2.1. Two logic programs, grandparent and nat.

inductive logic programming, we briefly review the basic of logic programming and
inductive logic programming.

2.1 Logic Programming Concepts

To introduce logic programs, consider Figure 2.1, containing two programs, grand-
parent and nat. Formally speaking, we have that grandparent/2, parent/2, and
nat/1 are predicates (with their arity, i.e., number of arguments listed explicitly).
Furthermore, jef, paul and ann are constants and X, Y and Z are variables. All
constants and variables are also terms . In addition, there exist structured terms such
as s(X), which contains the functor s/1 of arity 1 and the term X. Constants are often
considered as functors of arity 0. A first order alphabet Σ is a set of predicate sym-
bols, constant symbols and functor symbols. Atoms are predicate symbols followed
by the necessary number of terms, e.g., parent(jef, paul), nat(s(X)), parent(X, Z),
etc. Literals are atoms nat(s(X)) (positive literal) and their negations not nat(s(X))
(negative literals). We are now able to define the key concept of a definite clause.
Definite clauses are formulas of the form

A :−B1, . . . , Bm
where A and the Bi are logical atoms and all variables are understood to be universally
quantified. For instance, the clause c

c ≡ grandparent(X, Y) :−parent(X, Z), parent(Z, Y)

can be read as X is the grandparent of Y if X is a parent of Z and Z is a parent of Y. We
call grandparent(X, Y) the head(c) of this clause, and parent(X, Z), parent(Z, Y) the
body(c). In the remainder of the thesis, we will refer to definite clauses as clauses.
Clauses with an empty body such as parent(jef, paul) are facts. A (definite) clause
program (or logic program for short) consists of a set of clauses. In Figure 2.1,
there are thus two logic programs, one defining grandparent/2 and one defining
nat/1. The set of variables in a term, atom, conjunction or clause E, is denoted as
Var(E), e.g., Var(c) = {X, Y, Z}. A term, atom or clause E is ground when there is
no variable occurring in E, i.e. Var(E) = ∅. A clause c is range-restricted when
all variables in the head of the clause also appear in the body of the clause, i.e.,
Var(head(c)) ⊆ |V ars(body(c)).

A substitution θ = {V1/t1, . . . , Vn/tn}, e.g. {Y/ann}, is an assignment of terms
ti to variables Vi. Applying a substitution θ to a term, atom or clause e yields the
instantiated term, atom, or clause eθ where all occurrences of the variables Vi are
simultaneously replaced by the term ti, e.g. cθ is
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c′ ≡ grandparent(X, ann) :−parent(X, Z), parent(Z, ann) .

A substitution θ is the most general unifier mgu(a, b) of atoms a and b if and only
if a = bθ and for each substitution θ′ such that a = bθ′, there exists a substitution γ
such that θ′ = θγ.

A clause c1 θ-subsumes 3 a clause c2, denoted as c2 �θ c1, if and only if
{head(c2)θ} ∪ body(c2)θ ⊂ {head(c1)} ∪ body(c1). For instance, p(X) : − q(X) sub-
sumes p(X) : − q(X), r(Y). θ-subsumption is reflexive and transitive, but not antisym-
metric as p(X) : − q(X) and p(X) : − q(X), q(Y) show. Thus, θ-subsumption defines a
pre-order on the set of clauses, i.e., a partially ordered set of equivalence classes. We
say that a clause is reduced if it does not θ-subsume any of its subclauses. Every
equivalence class contains a reduced clause that is unique up to variable renaming. The
set of equivalence classes forms a lattice, i.e., two clauses have a unique least upper
bound and a greater lower bound under θ-subsumption. The least general general-
ization (least upper bound) of two conjunctions (clauses) under (θ-)subsumption is
called lgg and is the least general conjunction (clause) that is subsumed by both con-
junctions (clauses). The greatest lower bound (glb) of two conjunctions (clauses)
A and B is the most general conjunction (clause) that is subsumed by both A and B.

The Herbrand base of a logic program P , denoted as hb(P ), is the set of all
ground atoms constructed with the predicate, constant and function symbols in the
alphabet of P .

Example 2.1 The Herbrand bases of the nat and grandparent logic programs are
hb(nat) = {nat(0), nat(s(0)), nat(s(s(0))), ...} and

hb(grandparent) = {parent(ann, ann), parent(jef, jef),
parent(paul, paul), parent(ann, jef), parent(jef, ann), ...,
grandparent(ann, ann), grandparent(jef, jef), ...}.

◦
A Herbrand interpretation for a logic program P is a subset of hb(P ). A Herbrand
interpretation I is a model of a clause c if and only if for all substitutions θ such that
body(c)θ ⊆ I holds, it also holds that head(c)θ ∈ I. The interpretation I is a model
of a logic program P if I is a model of all clauses in P . A clause c (logic program
P ) entails another clause c′ (logic program P ′), denoted as c |= c′ (P |= P ′), if and
only if, each model of c (P ) is also a model of c′ (P ′). Clearly, if clause c (program P )
θ-subsumes clause c′ (program P ′) then c (P ) entails c′ (P ′), but the reverse is not
true.

The least Herbrand model LH(P ), which constitutes the semantics of the logic
program P , consists of all facts f ∈ hb(P ) such that P logically entails f , i.e. P |= f .
Various methods exist to compute the least Herbrand model. We merely sketch its

computation through the use of the immediate consequence operator TP . The

3 The definition of θ-subsumption also applies to conjunctions of literals, as these can also
be defined as set of literals.
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operator TP is the function on the set of all Herbrand interpretations of P such that
for any such interpretation I we have

TP (I) = {Aθ |there is a substitution θ and a clause A : −A1, . . . , An in P such
that Aθ: −A1θ, . . . , Anθ is ground and for i = 1, . . . , n : Aiθ ∈ I}.

Now, it can be shown that the least Herbrand model of a logic program P is the least
fixpoint of TP . That is, let I0 = ∅ and In+1 = TP (In) for n = 0, 1, 2, . . ., then the least
Herbrand model of P is the Im with smallest m ≥ 0 such that Im+1 = Im. In case of
functor-free, range-restricted clauses, the least Herbrand model can be obtained using
the following procedure:

1: Initialize LH := ∅
2: repeat
3: LH := TP (LH)
4: until LH does not change anymore

That is, initialize LH to the empty set, and then add all ground facts head(c)θ to LH
for which there exists a clause c ∈ P and a substitution such that body(c)θ ⊆ LH.
Such ground facts are called immediate consequences of body(c)θ. Repeat this
last step until a fixpoint 4 is reached (i.e.LH does not change any more).

Example 2.2 At this point, the reader may want to verify that LH(grandparent) =
{parent(jef, paul), parent(paul, ann), grandparent(jef, ann)} and LH(nat) =
hb(nat). ◦
All ground atoms in the least Herbrand model are provable. Proofs are typically
constructed using the SLD-resolution procedure: given a goal :-G1, G2 . . . , Gn and a
clause G:-L1, . . . , Lm such that G1θ = Gθ, applying SLD resolution yields the new goal
:-L1θ, . . . , Lmθ, G2θ . . . , Gnθ . A successful refutation, i.e., a proof of a goal is then a
sequence of resolution steps yielding the empty goal, i.e. :- . Failed proofs do not end
in the empty goal.

Example 2.3 The atom grandparent(jeff, ann) is true because of

:-grandparent(jeff, ann)
:-parent(jeff, Z), parent(Z, ann)
:-parent(paul, ann)
:-

◦
Resolution is employed by many theorem provers (such as Prolog). Indeed, when

given the goal grandparent(jeff, ann), Prolog would compute the above successful
resolution refutation and answer that the goal is true.

For a detailed introduction to logic programming, we refer to [Lloyd, 1989], for a
more gentle introduction, we refer to [Flach, 1994], and for a detailed discussion of
Prolog, see [Sterling and Shapiro, 1986].
4 For definite clause programs, this fixpoint always exist, is unique, and is the least Herbrand

model.
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2.2 Inductive Logic Programming (ILP) and its Settings

Inductive logic programming is concerned with finding a hypothesis H (a logic pro-
gram, i.e. a definite clause program) from a set of positive and negative examples Pos
and Neg.

Example 2.4 (Adapted from Example 1.1 in [Lavrač and Džeroski, 1994]) Consider
learning a definition for the daughter/2 predicate, i.e., a set of clauses with head
predicates over daughter/2, given the following facts as learning examples

Pos daughter(dorothy, ann).
daughter(dorothy, brian).

Neg daughter(rex, ann).
daughter(rex, brian).

Additionally, we have some general knowledge called background knowledge B, which
describes the family relationships and sex of each person:

mother(ann, dorothy). female(dorothy). female(ann).
mother(ann, rex). father(brian, dorothy). father(brian, rex).

From this information, we could induce H

daughter(C, P) : − female(C), mother(P, C).
daughter(C, P) : − female(C), father(P, C).

which perfectly explains the examples in terms of the background knowledge, i.e., Pos
are entailed by H together with B, but Neg are not entailed. ◦

More formally, ILP is concerned with the following learning problem.

Definition 2.5 (ILP Learning Problem) Given a set of positive and negative exam-
ples Pos and Neg over some language LE , a background theory B, in the form of a
set of definite clauses, a hypothesis language LH , which specifies the clauses that are
allowed in hypotheses, and a covers relation covers(e, H, B) ∈ {0, 1}, which basically
returns the classification of an example e with respect to H and B, find a hypothesis
H in H that covers (with respect to the background theory B) all positive examples
in Pos (completeness) and none of the negative examples in Neg (consistency). ◦

The language LE chosen for representing the examples together with the covers re-
lation determines the inductive logic programming setting De Raedt [1997]. Various
settings have been considered in the literature [De Raedt, 1997]. In the following, we
will formalize learning from entailment [Plotkin, 1970] and from interpretations [Helft,
1989, De Raedt and Džeroski, 1994]. We further introduce a novel, intermediate set-
ting, which we call learning from proofs. It is inspired on the seminal work by Shapiro
[1983].
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2.2.1 Learning from Entailment

Learning from entailment is by far the most popular ILP setting and it is addressed by
a wide variety of well-known ILP systems such as FOIL [Quinlan and Cameron-Jones,
1995], Progol [Muggleton, 1995], and Aleph [Srinivasan, 1999].

Definition 2.6 (Covers Relation for Learning from Entailment) When learning from
entailment, the examples are definite clauses and a hypothesis H covers an example
e with respect to the background theory B if and only if B ∪H |= e, i.e., each model
of B ∪ H is also a model of e. ◦
In many well-known systems, such as FOIL, one requires that the examples are ground
facts, a special form of clauses. To illustrate the above setting, consider the following
example inspired on the well-known mutagenicity application [Srinivasan et al., 1996].

Example 2.7 Consider the following facts in the background theory B, which de-
scribe part of molecule 225.

molecule(225). bond(225, f1 1, f1 2, 7).
logmutag(225, 0.64). bond(225, f1 2, f1 3, 7).
lumo(225,−1.785). bond(225, f1 3, f1 4, 7).
logp(225, 1.01). bond(225, f1 4, f1 5, 7).
nitro(225, [f1 4, f1 8, f1 10, f1 9]). bond(225, f1 5, f1 1, 7).
atom(225, f1 1, c, 21, 0.187). bond(225, f1 8, f1 9, 2).
atom(225, f1 2, c, 21,−0.143). bond(225, f1 8, f1 10, 2).
atom(225, f1 3, c, 21,−0.143). bond(225, f1 1, f1 11, 1).
atom(225, f1 4, c, 21,−0.013). bond(225, f1 11, f1 12, 2).
atom(225, f1 5, o, 52,−0.043). bond(225, f1 11, f1 13, 1).
. . .

ring size 5(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
hetero aromatic 5 ring(225, [f1 5, f1 1, f1 2, f1 3, f1 4]).
. . .

Consider now the positive example mutagenic(225). It is covered by H

mutagenic(M) : − nitro(M, R1), logp(M, C), C > 1.

together with the background knowledge B, because H ∪ B entails the exam-
ple. To see this, we unify mutagenic(225) with the clause’s head. This yields
mutagenic(225) : − nitro(225, R1), logp(225, C), C > 1. Now, nitro(225, R1) unifies
with the fifth ground atom (left-hand side column) in B, and logp(225, C) with the
fourth one. Because 1.01 > 1, we found a proof of mutagenic(225). ◦

2.2.2 Learning from Interpretations

The learning from interpretations setting [De Raedt and Džeroski, 1994] upgrades
boolean concept-learning in computational learning theory [Valiant, 1984].
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Definition 2.8 (Covers Relational for Learning from Interpretations) When learning
from interpretations, the examples are Herbrand interpretations and a hypothesis H
covers an example e with respect to the background theory B if and only if e is a
model of B ∪ H. ◦
Recall that Herbrand interpretations are sets of true ground facts and they completely
describe a possible situation.

Example 2.9 Consider the interpretation I, which is the union of B

B = {father(henry, bill), father(alan, betsy), father(alan, benny),
father(brian, bonnie), father(bill, carl), father(benny, cecily),
father(carl, dennis), mother(ann, bill), mother(ann, betsy),
mother(ann, bonnie), mother(alice, benny), mother(betsy, carl),
mother(bonnie, cecily), mother(cecily, dennis), founder(henry),
founder(alan), founder(ann), founder(brian), founder(alice)}

and

C = {carrier(alan), carrier(ann), carrier(betsy)} .

The interpretation I is covered by the clause c

carrier(X) : − mother(M, X), carrier(M), father(F, X), carrier(F).

because I is a model of c, i.e., for all substitutions θ such that body(c)θ ⊆ I, it holds
that head(c)θ ∈ I. ◦

The key difference between learning from interpretations and learning from entail-
ment is that interpretations carry much more — even complete — information. Indeed,
when learning from entailment, an example can consist of a single fact, whereas when
learning from interpretations, all facts that hold in the example are known. Therefore,
learning from interpretations is typically easier and computationally more tractable
than learning from entailment, cf. [De Raedt, 1997].

2.2.3 Learning from Proofs

Because learning from entailment (with ground facts as examples) and interpreta-
tions occupy extreme positions with respect to the information the examples carry,
it is interesting to investigate intermediate positions. Ehud Shapiro’s [1983] Model
Inference System (MIS) fits nicely within the learning from entailment setting where
examples are facts. However, to deal with missing information, Shapiro employs a
clever strategy: MIS queries the users for missing information by asking them for the
truth-value of facts. The answers to these queries allow MIS to reconstruct the trace
or the proof of the positive examples. Inspired by Shapiro, we define the learning from
proofs setting.
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s([the,turtles,sleep],[])

np(pl,[the,turtles,sleep],[sleep]) vp(pl,[sleep],[])

iv(pl,[sleep],[])

t([sleep],sleep,[])

{}

n(pl,[turtles,sleep],[sleep])

t([turtles,sleep],turtles,[sleep])

{}

s(pl,[the,turtles,sleep],[turtles,sleep])

t([the,turtles,sleep],the,[turtles,sleep])

{}

Figure 2.2. A proof tree, which is covered by the definite clause grammar in Example 2.12.
Symbols are abbreviated.

Definition 2.10 (Covers Relation for Learning from Proofs) When learning from
proofs, the examples are ground proof-trees and an example e is covered by a hypoth-
esis H with respect to the background theory B if and only if e is a proof-tree for
H ∪ B. ◦
At this point, there exist various possible forms of proof-trees. Here, we will — for
reasons that will become clear later — assume that the proof-tree is given in the form
of a ground and-tree where the nodes contain ground atoms. More formally:

Definition 2.11 (Proof Tree) A tree t is a proof-tree for a logic program T if and
only if t is a rooted tree where for every node n ∈ t with children(n) satisfies the
property that there exists a substitution θ and a clause c ∈ T such that n = head(c)θ
and children(n) = body(c)θ. ◦

Example 2.12 Consider the following definite clause grammar.

sentence(A, B) :- noun_phrase(C, A, D), verb_phrase(C, D, B).
noun_phrase(A, B, C) :- article(A, B, D), noun(A, D, C).
verb_phrase(A, B, C) :- intransitive_verb(A, B, C).
article(singular, A, B) :- terminal(A, a, B).
article(singular, A, B) :- terminal(A, the, B).
article(plural, A, B) :- terminal(A, the, B).
noun(singular, A, B) :- terminal(A, turtle, B).
noun(plural, A, B) :- terminal(A, turtles, B).
intransitive_verb(singular, A, B) :- terminal(A, sleeps, B).
intransitive_verb(plural, A, B) :- terminal(A, sleep, B).
terminal([A|B],A,B).

It covers the proof tree shown in Figure 2.2 ◦
Proof-trees contain — as interpretations — a lot of information. Indeed, they contain
instances of the clauses that were used in the proofs. Therefore, it may be hard for the
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user to provide this type of examples. Even though this is generally true, there exist
specific situations for which this is feasible. Indeed, consider tree banks such as the
UPenn Wall Street Journal corpus [Marcus et al., 1994], which contain parse trees.
These trees directly correspond to the proof-trees we talk about. Another example
is explanation-based learning (EBL) [Ellman, 1989, Mooney and Zelle, 1994]. It uses
an existing domain theory to deductively explain an example (explanation step) in
terms of a proof-tree and variablizes the explanation, i.e., generalizes the proof as far
as possible while maintaining it’s correctness (generalization step).

2.2.4 Inductive Logic Programming Techniques

Given the different learning settings, there are — broadly speaking — three types of
ILP approaches. One can start from short clauses, iteratively adding literals to their
bodies as long as they do not become to overly general (top-down approaches); one can
start from long clauses, iteratively removing literals until they would become overly
general (bottom-up approaches); or, one can follow an hybrid approach mixing top-
down and bottom-up searches. Hybrid approaches are usually employed for multiple
predicate learning [De Raedt et al., 1993] and theory revision [Wrobel, 1996].

Basically, in top-down approaches, hypotheses are generated in a pre-determined
order, and then tested against the examples. More precisely, they start with the most
general hypothesis, i.e., clauses of the form daugther(C, P) : − true where all ar-
guments are distinct variables. After seeing the first example contradicting the hy-
pothesis, i.e., after seeing the first negative example, the hypothesis is specialized by
selecting a clause, which is then is specialized typically in three ways: by applying
a substitution, by adding a literal, i.e., an atom or its negation to the body, and
by adding a new clause which in turn is specialized. For instance, we can consider
daugther(C, P) : − female(C) and daugther(C, P) : − mother(P, C) for further inves-
tigations. Several possibilities (and successive specializations) have to be tried before
one finds a clause that covers some positive examples but no negative ones such as
daugther(C, P) : − female(C), mother(P, C). Because some positive examples are still
not covered, we add a new, maximally general clause to the hypothesis and essentially
iterate the process as before until all positive examples are covered and no negative
example. To employ the background knowledge B, it will be convenient — for the
purpose of this thesis — to view the background knowledge B as a logic program
(i.e. a definite clause program) that is provided to the inductive logic programming
system and fixed during the learning process. The hypothesis H together with the
background theory B should cover all positive and none of the negative examples.

Top-down approaches are for instance often employed by ILP systems that learn
from entailment. More precisely, these systems often employ a separate-and-conquer
rule-learning strategy [Fürnkranz, 1999]. In an outer loop of the algorithm, they follow
a set-covering approach [Mitchell, 1997] in which they repeatedly search for a rule
covering many positive examples and none of the negative examples. They then delete
the positive examples covered by the current clause and repeat this process until
all positive examples have been covered. In the inner loop of the algorithm, they
typically refine a clause by unifying variables, by instantiating variables to constants,
and/or by adding literals to the clause. ILP systems that learn from interpretations
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work in a similar fashion as those that learn from entailment. There is, however, one
crucial difference and it concerns the generality relationship, see Definition 2.15: When
learning from entailment, G is more general than S if and only if G |= S, whereas
when learning from interpretations, when S |= G. Another difference is that
learning from interpretations is well suited for learning from positive examples only.
For this case, a complete search of the space ordered by θ-subsumption is performed
until all clauses cover all examples [De Raedt and Dehaspe, 1997].

While top-down approaches successively specialize a very general starting hypoth-
esis, bottom-up approaches successively generalize a very specific hypothesis. This
is basically done by deleting literals (or clauses), by turning constants into variables
and/or bounded variables into new variables. Reconsider for instance the learning
from proofs setting. By analogy with the learning of tree-bank grammars, one could
turn all the proof-trees (corresponding to positive examples) into a set of ground
clauses, which would constitute the initial theory. This theory can then be gener-
alized by taking the least general generalization (under θ-subsumption) of pairwise
clauses. Of course, care must be taken that the generalized theory does not cover
negative examples. For more details, we refer to Section5 2.4.4.

Thus, ILP approaches iteratively modify the current hypothesis syntactically and
test it against the examples and background theory. The syntactic modifications are
done using so-called refinement operators [Shapiro, 1983, Nienhuys-Cheng and de
Wolf, 1997], which make small modifications to a hypothesis.

Definition 2.13 (Refinement Operator) A refinement operator ρ : H �→ 2H takes an
hypothesis H ∈ H and gives back a syntactically modified version H ′ ∈ H of H. ◦
For clauses, generalization and specialization operators ρg and ρs are usually em-
ployed, which just basically add a literal, unify variables, and ground variables respec-
tively which delete a literal, anti-unify variables, and replace constants with variables.

Example 2.14 Specializations of the clause daughter(C, P) : − female(C) include

daughter(C, ann) : − female(C), mother(C, ann) by grounding variables,
daughter(C, C) : − female(C), mother(C, C) by unifying variables,
daughter(C, P) : − female(C), mother(C, P) by adding a literal.

Generalizations of daughter(C, rex) : − female(C), mother(C, rex) include

daughter(C, P) : − female(C), mother(C, P) by turning constants into variables,
daughter(C, P) : − female(C), mother(C, P) by anti-unifying variables,
daughter(C, P) : − female(C) by deleting a literal.

◦
5 To the best of the author’s knowledge (but see [Shapiro, 1983, Bergadano and Gunetti,

1996] for ILP systems that learn from traces), no ILP system has been developed to learn
from proof-trees.
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Refinement operators ρ on clauses can straightforwardly be extended to logic pro-
grams H by defining ρ(H) = H \ {c} ∪ {ρ(c)}. Based on refinement operators, ILP
systems traverse the hypothesis space H, which consists of all logic programs over
LH , according to some generality notation.

Definition 2.15 (More–General–Than Relation) A hypothesis G is more general
than a hypothesis S if all examples covered by S are also covered by G. ◦

Several generality frameworks have been proposed including inverse implication,
inverse resolution and inverse entailment. In practice, however, the large majority of
ILP systems uses Plotkin’s [1970] framework of θ-subsumption, see Section 2.1. This
is due to better computational properties of θ-subsumption. Entailment between
clauses is undecidable, whereas θ-subsumption is decidable (but NP-complete). The
evaluation on the examples is done using the covers relation, which basically returns
the classification covers(e, H, B) ∈ {0, 1} of an example e with respect to H and
B. Indeed, using the covers relation suffers from several problems such as plateaus,
i.e., hypotheses with the same coverage, noise, and overfitting 6. Thus, using the
covers relation only is inefficient except for relatively restricted induction problems.
To overcome the problem, ILP system typically resort to a heuristic function score
to direct search. Several heuristics have been developed including Laplace estimates,
MDL-based measures, and Bayesian approaches. In addition, ILP systems usually
include a stopping criterion that is related to the significance of the heuristic score.

It should be stressed that ILP is a difficult problem. Practical ILP systems fight
the inherent complexity of the problem by imposing all sorts of constraints, mostly
syntactic in nature. Such constraints include language and search biases, and are some-
times summarized as declarative biases, see [Nédellec et al., 1996] for an overview.
Essentially, the main source of complexity in ILP steams from the variables in the
clauses. In top-down systems, the branching factor of the specialization operator in-
creases with the number of variables in the clauses. Introducing types for predicates
can rule out main potential substitutions and unifications.

Example 2.16 The type definition type(father(person, person)) specifies that
both argument of atoms over father/2 have to be persons. ◦

Furthermore, one can put a bound in the number of distinct variables that can occur
in clauses. Mode declarations are another well-known ILP devise. They are used to
describe input-output behaviour of predicate definitions.

Example 2.17 We might specify mode(daugther(+,−)) and mode(father(−,+)),
meaning that the + arguments must be instantiated, whereas the − arguments will
be bounded to the answer. ◦
6 In general, a model can suffer from either underfitting or overfitting. A model that is

not sufficiently complex can fail to fully detect the underlying rule of a complicated data
set, leading to underfitting. A model that is too complex may fit the noise, not just the
underlying rule, leading to overfitting and, for instance, wild predictions.
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Refinement operators can also be used to encode a language bias, since they can be
restricted to generate only a subset of the language LH . For instance, refinement oper-
ators can easily be modified to generate only constant-free and function-free clauses.
Other methods use a kind of grammar construction to explicitly declare the range
of acceptable clauses, see e.g. Cohen [1994]. Lookaheads are an example of a search
bias. In some cases, an atom might never be chosen by our algorithm because it will
not — in itself — result in a better score. However, such an atom, while not use-
ful in itself, might introduce new variables that make a better coverage possible by
adding another atoms later on [Quinlan, 1991] 7. It is usually solved by allowing the
algorithm to look ahead in the search space. Instead of considering refinements with
a single atom, one considers larger refinements consisting of multiple atoms [Blockeel
and De Raedt, 1997].

2.3 Probabilistic ILP Settings

Let us now extend the inductive logic programming settings to the probabilistic
case. When working with probabilistic ILP representations, there are essentially two
changes:

(1) clauses in H and B are annotated with probabilistic information, and
(2) the covers relation becomes probabilistic.

A probabilistic covers relation softens the hard covers relation employed in traditional
ILP and is defined as the probability of an example given the hypothesis and the
background theory.

Definition 2.18 (Probabilistic Covers Relation) A probabilistic covers relation
takes as arguments an example e, a hypothesis H and possibly the background theory
B, and returns the probability value P(e | H,B) between 0 and 1 of the example e
given H and B, i.e., covers(e, H, B) = P(e | H,B) . ◦
Here, we use the following probability notations. With x, we denote a (random) vari-
able. Furthermore, x denotes a state and X (resp. x) a set of variables (resp. states).
We will use P to denote a probability distribution, e.g., P(x), and P to denote a
probability value, e.g., P (x = x) and P (X = x) .

Using the probabilistic covers relation of Definition 2.18, our first attempt at a
definition of the probabilistic ILP learning problem is as follows.

Preliminary Definition 2.19 (Probabilistic ILP Learning Problem) Given a
probabilistic-logical language LH and a set E of examples over some language LE ,
find the hypothesis H∗ in LH that maximizes P(E | H∗, B). ◦
Under the usual i.i.d. assumption, i.e., examples are sampled independently from
identical distributions, this results in the maximization of

P(E | H∗, B) =
∏
e∈E

P(e | H∗, B) =
∏
e∈E

covers(e, H∗, B) .

7 This effect has also been observed when learning Bayesian networks [Xiang et al., 1996].
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Similar to the ILP learning problem, the language LE selected for representing the
examples together with the probabilistic covers relation determines different learning
setting. Guided by Definition 2.19, we will now introduce three probabilistic ILP
settings, which extend the purely logical ones sketched before. Afterwards, we will
refine Definition 2.19 in Definition 2.26.

2.3.1 Probabilistic Learning from Interpretations

In order to integrate probabilities in the learning from interpretations setting, we need
to find a way to assign probabilities to interpretations covered by an annotated logic
program. In the past few years, this issue has received a lot of attention and various
different approaches have been developed such as probabilistic-logic programs [Ngo
and Haddawy, 1997], probabilistic relational models [Pfeffer, 2000], relational Baysian
networks Jäger [1997], and Bayesian logic programs [Kersting, 2000, Kersting and De
Raedt, 2001b]. Here, we focus on Domingos and Richardson’s [2004] Markov logic
networks (MLNs) as the probabilistic ILP system. Bayesian logic programs will be
discussed in detail in Part I.

Markov logic networks combine Markov networks [Pearl, 1991], which represent
probability distributions over propositional interpretations, with first order logic. The
idea underlying Markov logic networks is to view logical formulas as soft constraints
on the set of possible worlds, i.e., interpretations: if a world violates one formula, it is
less probable but not necessarily impossible as in classical logic. The fewer formulas
a world violates, the more probable it is. In a Markov logic network, this is realized
by associating a weight with each formula that reflects how strong the constraint is.
More precisely, a Markov logic network consists of weighted first-order predicate logic
formulae H = {C1, C2, . . . , Cm}. The weights wC of a formula C specify a bias for
ground instances to be true in a logical model. Consider the following example taken
from [Richardson and Domingos, 2005].

Example 2.20 Friends-smokers is a small Markov logic network that calculates the
probability of a person P having lung cancer ca(P) based whether or not a person or
her friends fr(P, P′) smokes sm(P) respectively sm(P′). This can be encoded using the
following Markov logic formulas:

1.5 : ∀X : sm(X) ⇒ ca(X)
1.1 : ∀X, Y : fr(x; y) ⇒ (sm(X) ⇔ sm(Y))

◦
For a given finite domains (roughly speaking a finite set of constants) D =
{d1, d2, . . . , dn}, the Markov logic network defines a probability distribution over in-
terpretations I over domain D and the relations occurring in the Markov logic network
via

P (I|H,B) =
1

Z(I)

∏
C∈H∪B

enC(I)·wC =
1

Z(I)

∏
C∈H∪B

φC(I)nC(I) (2.1)

where nC(I) is the number of true groundings of C in I, φC(I) = ewC , and B is a
possible background theory.
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friends(anna,bob)

friends(anna,anna) friends(bob,bob)smokes(anna) smokes(bob)

friends(bob,anna)

cancer(anna)
cancer(bob)

Figure 2.3. The Markov network induced by the friends-smoker Markov logic network
assuming anna and bob as constants.

Markov logic networks can be viewed as proving templates for constructing Markov
networks. Given a set D constants, the nodes correspond to the ground atoms in the
Herbrand base of the corresponding set of formulas C and there is an edge between
two nodes if and only if the corresponding ground atoms appear together in at least
one grounding of one formula Ci.

Example 2.21 Assuming anna and bob as constants, the friends-smoker Markov
logic network induces the Markov network in Figure 2.3. ◦
Note that given different sets of constants, the Markov logic network will produce
different Markov networks. From Equation (2.1), we can see that an example e consists
of a logical part, which is a Herbrand interpretation of the annotated logic program,
and a probabilistic part, which is a partial state assignment of the random variables
occurring in the logical part. To see this, consider the following example.

Example 2.22 A possible example I in the friends-smokers domain is

{friends(anna, bob) = true, friends(bob, anna) = true, friends(anna, anna) =?,
friends(bob, bob) = true, smokes(anna) = false, smokes(bob) =?,
cancer(anna) =?, cancer(bob) = false}

where ? denotes an unobserved state. ◦
The covers relation for e can now be computed using any Markov network inference
engine based on Equation (2.1).

2.3.2 Probabilistic Proofs

To define probabilities on proofs, ICL [Poole, 1993], PRISMs [Sato, 1995, Sato and
Kameya, 2001], and stochastic logic programs [Eisele, 1994, Muggleton, 1996, Cussens,
2001] attach probabilities to facts (respectively clauses) and treat them as stochas-
tic choices within resolution. Relational Markov models [Anderson et al., 2002] and
logical hidden Markov models, which we will introduce in Part II, can be viewed as
a simple fragment of them, where heads and bodies of clauses are singletons only,
so-called iterative clauses. We will illustrate probabilistic learning from proofs using
stochastic logic programs. For a discussion of the close relationship among stochastic
logic programs, ICL, and PRISM, we refer to [Cussens, 2005].
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Stochastic logic programs are inspired on stochastic context free grammars [Abney,
1997, Manning and Schütze, 1999]. The analogy between context free grammars and
logic programs is that

• grammar rules correspond to definite clauses,
• sentences (or strings) to atoms, and
• productions to derivations.

Furthermore, in stochastic context-free grammars, the rules are annotated with prob-
ability labels in such a way that the sum of the probabilities associated to the rules
defining a non-terminal is 1.0 .

Eisele and Muggleton have exploited this analogy to define stochastic logic pro-
grams. These are essentially definite clause programs, where each clause c has an
associated probability label pc such that the sum of the probabilities associated to
the rules defining any predicate is 1.0 (though Cussens [1999] considered less restricted
versions as well).

This framework allows ones to assign probabilities to proofs for a given predicate
q given a stochastic logic program H ∪B in the following manner. Let Dq denote the
set of all possible ground proofs for atoms over the predicate q. For simplicity reasons,
it will be assumed that there is a finite number of such proofs and that all proofs are
finite (but again see [Cussens, 1999] for the more general case). Now associate to each
proof tq ∈ Dq the probability

vt =
∏
c

pnc,t
c

where the product ranges over all clauses c and nc,t denotes the number of times
clause c has been used in the proof tq. For stochastic context free grammars, the
values vt correspond to the probabilities of the production. However, the difference
between context free grammars and logic programs is that in grammars two rules of the
form n → q, n1, ..., nm and q → q1, ..., qk always ’resolve’ to give n → q1, ..., qk, n1, ..., nm
whereas resolution may fail due to unification. Therefore, the probability of a proof
tree t in Dq, i.e., a successful derivation is

P (t | H,B) =
vt∑

s∈Dq
vs

. (2.2)

The probability of a ground atom a is then defined as the sum of all the probabilities
of all the proofs for that ground atom.

P (a | H,B) =
∑

s∈Dq
s is a proof for a

vs . (2.3)

Example 2.23 Consider a stochastic variant of the definite clause grammar in Ex-
ample 2.12 with uniform probability values for each predicate. The value vu of the
proof (tree) u in Example 2.12 is vu = 1

3 · 1
2 · 1

2 = 1
12 . The only other ground proofs

s1, s2 of atoms over the predicate sentence are those of

sentence([a, turtle, sleeps], [])
and sentence([the, turtle, sleeps], []) .
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Both get the value vs1 = vs2 = 1
12 . Because there is only one proof for each of the

sentences,

P (sentence([the, turtles, sleep], [])) = vu =
1
3

.

◦
For stochastic logic programs, there are at least two natural learning settings.

Motivated by Equation (2.2), we can learn them from proofs. This makes struc-
ture learning for stochastic logic programs relatively easy, because proofs carry a lot
information about the structure of the underlying stochastic logic program. Further-
more, the learning setting can be considered as an extension of the work on learning
stochastic grammars from proof-banks. It should therefore also be applicable to learn-
ing unification based grammars. We will present a probabilistic ILP approach within
the learning from proofs setting in Section 2.4.4.

On the other hand, we can use Equation (2.3) as covers relation and, hence, employ
the learning from entailment setting. Here, the examples are ground atoms entailed
by the target stochastic logic program. Learning stochastic logic programs from atoms
only is much harder than learning them from proofs because atoms carry much less
information than proofs. Nevertheless, this setting has been studied by Cussens [2001]
and by Sato and Kameya [2001], who solves the parameter estimation problem for
stochastic logic programs respectively PRISM programs, and by Muggleton [2000a,
2002], who presents an approach to structure learning of stochastic logic programs:
adding one clause at a time to an existing stochastic logic program. In the following
section, we will introduce the probabilistic learning from entailment. Instead of con-
sidering stochastic logic programs, however, we will study a Näıve Bayes framework,
which has a much lower computational complexity.

2.3.3 Probabilistic Learning from Entailment

In order to integrate probabilities in the entailment setting, we need to find a way
to assign probabilities to clauses that are entailed by an annotated logic program.
Since most ILP systems working under entailment employ ground facts for a single
predicate as examples, and the authors are unaware of any existing probabilistic
ILP formalisms that implement a probabilistic covers relation for definite clauses as
examples in general, we will restrict our attention to assign probabilities to facts for
a single predicate. It remains an open question as how to formulate more general
frameworks for working with entailment.

More formally, let us annotate a logic program H consisting of a set of clauses of
the form p ← bi, where p is an atom of the form p(V1, ..., Vn) with the Vi different
variables, and the bi are different bodies of clauses. Furthermore, we associate to each
clause in H the probability values P(bi | p); they constitute the conditional probability
distribution that for a random substitution θ for which pθ is ground and true (resp.
false), the query biθ succeeds (resp. fails) in the knowledge base B. 8 Furthermore,
we assume the prior probability of p is given as P(p), it denotes the probability that
8 The query q succeeds in B if there is a substitution σ such that B |= qσ.
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for a random substitution θ, pθ is true (resp. false). This can then be used to define
the covers relation P(pθ | H,B) as follows (we delete the B as it is fixed):

P(pθ | H) = P(pθ | b1θ, ..., bkθ) =
P(b1θ, ..., bkθ | pθ) × P(pθ)

P(b1θ, ..., bkθ)
(2.4)

For instance, applying the näıve Bayes assumption yields

P(pθ | H) =
∏

i P(biθ | pθ) × P(pθ)
P(b1θ, ..., bkθ)

(2.5)

Finally, since P (pθ | H) + P (¬pθ | H) = 1 , we can compute P (pθ | H) without
P (b1θ, ..., bkθ) through normalization.

Example 2.24 Consider again the mutagenicity domain and the following annotated
logic program:

(0.01, 0.21) : mutagenetic(M) ← atom(M, , , 8, )
(0.38, 0.99) : mutagenetic(M) ← bond(M,, A, 1), atom(M, A, c, 22, ), bond(M, A,, 2)

We denote the first clause by b1 and the second one by b2. The vectors on the left-hand
side of the clauses specify P (biθ = true | pθ = true) and P (biθ = true | pθ = false)
respectively. The covers relation (assuming the Näıve Bayes assumption) assigns prob-
ability 0.97 to example 225 because both features fail for θ = {M ← 225}. Hence,

P ( mutagenetic(225) = true,b1θ = false, b2θ = false)
= P ( b1θ = false | mutagenetic(225) = true )

· P ( b2θ = false | mutagenetic(225) = true )
· P ( mutagenetic(225) = true )

= 0.99 · 0.62 · 0.31 ≈ 0.19

and P ( mutagenetic(225) = false, b1θ = false, b2θ = false) = 0.79 · 0.01 · 0.68 ≈
0.005 . This yields

P ( muta(225) = true | b1θ = false, b2θ = false}) =
0.19

0.19 + 0.005
≈ 0.97 .

◦

2.4 Probabilistic ILP: A Definition and Example Algorithms

Guided by Definition 2.19, we have introduced several probabilistic ILP settings for
statistical relational learning. The main idea was to lift traditional ILP settings by
associating probabilistic information with clauses and interpretations and by replacing
ILP’s deterministic covers relation by a probabilistic one. In the discussion, we made
one trivial but important observation:

Observation Derivations might fail.



26 §2 Probabilistic Inductive Logic Programming

The probability of a failure is zero and, consequently, failures are never observable.
Only succeeding derivations are observable, i.e., the probabilities of such derivations
are greater zero. As an extreme case, recall the negative examples Neg employed in
the ILP learning problem definition 2.2. They are supposed to be not covered, i.e.,
P (Neg|H,B) = 0 .

Example 2.25 Reconsider Example 2.4. Rex is a male person; he cannot be the
daughter of ann. Thus, daughter(rex, ann) was listed as a negative example. ◦
Negative examples conflict with the usual view on learning examples in statistical
learning. In statistical learning, we seek to find that hypothesis H∗, which is most
likely given the learning examples:

H∗ = arg max
H

P (H|E) = arg max
H

P (E|H) · P (F )
P (E)

with P (E) > 0 .

Thus, examples E are observable, i.e., P (E) > 0. Therefore, we refine the preliminary
probabilistic ILP learning problem definition 2.19. In contrast to the purely logical
case of ILP, we do not speak of positive and negative examples anymore but of possible
and impossible ones.

Definition 2.26 (Probabilistic ILP Problem) Given a set E = Ep ∪ Ei of possible
and impossible examples Ep and Ei (with Ep ∩ Ei = ∅) over some example language
LE , a probabilistic covers relation covers(e, H, B) = P (e | H,B), a probabilistic
logical language LH for hypotheses, and a background theory B, find a hypothesis
H∗ in LH such that H∗ = arg maxH score(E,H, B) and the following constraints hold:
∀ ep ∈ Ep : covers(ep, H

∗, B) > 0 and ∀ ei ∈ Ei : covers(ei, H
∗, B) = 0. The scoring

function is some objective score, usually involving the probabilistic covers relation of
the possible examples such as the observed likelihood

∏
ep∈Ep

covers(ep, H
∗, B) or

some penalized variant thereof. ◦
The probabilistic ILP learning problem of Definition 2.26 unifies ILP and statistical
learning in the following sense: using a deterministic covers relation (,which is either
1 or 0) yields the classical ILP learning problem, see Definition 2.2, whereas sticking
to propositional logic and learning from possible examples, i.e., P (E) > 0, only
yields traditional statistical learning. It furthermore makes abstraction of many
particular kinds of problems. In density estimation, the joint probability distribution
of some random variables is estimated, whereas in classification and regression the
dependency of a discrete respectively continuous target variable given the value of
some other variables is estimated. Furthermore, several types of learning can be
distinguished. In supervised learning, the training examples contain information
about all variables including the target variable. In reinforcement learning, the
training examples contain only indirect target information such as the classifier did
well or not. Finally, in unsupervised learning, no values of the target variable are
observed. Another important distinction is whether all the random variables variables
are observed, or whether some of them are hidden, e.g., they are specified in the
background knowledge and never observed. We also formulated the learning problem
as a ’point estimation’ problem, i.e., the goal is to find a single best hypothesis
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H∗, because we will focus on this setting in this thesis. In general, one could also
consider Bayesian learning, where the goal is to return a posterior distribution over
hypotheses. Finally, learning might refer to the structure, i.e., the underlying logic
program of the hypothesis, the parameters, or both.

To come up with algorithms solving probabilistic ILP learning problems, say for
density estimation, one typically distinguishes two subtasks because H = (L, λ) is
essentially a logic program L annotated with probabilistic parameters λ:

(1) Parameter estimation where it is assumed that the underlying logic program L is
fixed, and the learning task consists of estimating the parameters λ that maximize
the likelihood.

(2) Structure learning where both L and λ have to be learned from the data.

Below, we will sketch basic parameter estimation and structure learning techniques,
and illustrate them for each setting. In the remainder of the thesis, we will then
discuss selected probabilistic ILP approaches for learning from interpretations and
probabilistic learning from traces in detail. A more complete survey of learning prob-
abilistic logic representations can be found in [De Raedt and Kersting, 2003] and in
the related work sections of this thesis.

2.4.1 Parameter Estimation

The problem of parameter estimation is thus concerned with estimating the values
of the parameters λ of a fixed probabilistic program H = (L, λ) that best explains
the examples E. So, λ is a set of parameters and can be represented as a vector. As
already indicated above, to measure the extent to which a model fits the data, one
usually employs the likelihood of the data, i.e. P (E | L, λ), though other scores or
variants could be used as well.

When all examples are fully observable, maximum likelihood reduces to frequency
counting. In the presence of missing data, however, the maximum likelihood estimate
typically cannot be written in closed form. It is a numerical optimization problem,
and all known algorithms involve nonlinear optimization The most commonly adapted
technique for probabilistic logic learning is the Expectation-Maximization (EM) al-
gorithm [Dempster et al., 1977, McLachlan and Krishnan, 1997]. EM is based on the
observation that learning would be easy (i.e., correspond to frequency counting), if
the values of all the random variables would be known. Therefore, it estimates these
values, maximizes the likelihood based on the estimates, and then iterates. More
specifically, EM assumes that the parameters have been initialized (e.g., at random)
and then iteratively performs the following two steps until convergence:

(E-Step) On the basis of the observed data and the present parameters of the model,
it computes a distribution over all possible completions of each partially observed
data case.

(M-Step) Treating each completion as a fully observed data case weighted by its
probability, it computes the improved parameter values using (weighted) fre-
quency counting.

The frequencies over the completions are called the expected counts.
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2.4.2 Structure Learning

The problem is now to learn both the structure L and the parameters λ of the proba-
bilistic program H = (L, λ) from data. Often, further information is given as well. As
in ILP, the additional knowledge can take various different forms, including a language
bias that imposes restrictions on the syntax of L, and an initial hypothesis (L, λ) from
which the learning process can start.

Nearly all (score-based) approaches to structure learning perform a heuristic search
through the space of possible hypotheses. Typically, hill-climbing or beam-search is
applied until the hypothesis satisfies the logical constraints and the score(H,E) is no
longer improving. The steps in the search-space are typically made using refinement
operators, see Definition 2.13.

At this points, it is interesting to observe that the logical constraints often require
that the possible examples are covered in the logical sense. For instance, when learn-
ing stochastic logic programs from entailment, the possible example clauses must be
entailed by the logic program, and when learning Markov logic networks, the pos-
sible interpretations must be models of the underlying logic program. Thus, for a
probabilistic program H = (LH , λH) and a background theory B = (LB , λB) it
holds that ∀ep ∈ Ep : P (e|H,B) > 0 if and only if covers(e, LH , LB) = 1, where LH

(respectively LB) is the underlying logic program (logical background theory) and
covers(e, LH , LB) is the purely logical covers relation, which is either 0 or 1.

Let us now sketch for each probabilistic ILP setting one learning approach.

2.4.3 Learning from Probabilistic Interpretations

The large majority of statistical relational learning techniques proposed so far fall
into the learning from interpretations setting including parameter estimation of prob-
abilistic logic programs [Koller and Pfeffer, 1997], learning of probabilistic relational
models [Getoor et al., 2002], parameter estimation of relational Markov models Taskar
et al. [2002], learning of object-oriented Bayesian networks [Bangsø et al., 2001], learn-
ing relational dependency networks [Neville and Jensen, 2004], and learning logic
programs with annotated disjunctions [Vennekens et al., 2004, Riguzzi, 2004]. Also
learning Bayesian logic programs, which we will address in Part I, falls into this set-
ting. Here, we will illustrate the structure learning of clausal Markov logic networks.

Kok and Domingos [2005] proposed a beam-search based approach for learning
clausal Markov logic networks from possible examples only. A clausal Markov logic
program, see Section 2.3.1, consists of weighted clauses, i.e., disjunction of literals. The
clauses without associated weights constitute a clausal program L, and the weights
the parameters λ. Starting with some initial clausal Markov logic network H = (L, λ),
the parameters maximizing score(L, λ, E) are computed. Then, refinement operators
generalizing respectively specializing L are used to to compute all neighbours of L in
the hypothesis space. Literals are added and deleted, and signs of literals are flipped.
Each neighbour is scored, yielding new hypotheses (L′, λ′). To speed-up scoring, Kok
and Domingos employ a variant of the pseudo-log-likelihood

n∑
l=1

log P (Xl = xl|MBx(Xl))
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where x is the Herbrand base, xl is the lth ground atom’s truth value, and MBx(Xl) is
the state of Xl’s Markov blanket 9 in the data. The b best ones with score(L′, λ′, E) >
score(L, λ, E) are kept. On these b best ones, the refining and scoring process is
iteratively applied again until no new clauses improve the score or a maximal number
of literals is reached. The clause with highest score in all iterations is added to H, and
the process is continued until no improvement in score of the current best hypothesis
is obtained.

2.4.4 Learning from Probabilistic Proofs*

Given a training set E containing ground proofs as examples, one possible approach
to learning from possible proofs only combines ideas from the early ILP system
Golem [Muggleton and Feng, 1992] that employs Plotkin’s [1970] least general gen-
eralization (LGG) with bottom-up generalization of grammars and hidden Markov
models [Stolcke and Omohundro, 1993]. The resulting algorithm employs the likeli-
hood of the proofs score(L, λ, E) as the scoring function. It starts by taking as L0

the set of ground clauses that have been used in the proofs in the training set and
scores it to obtain λ0. After initialization, the algorithm will then repeatedly select
a pair of clauses in Li, and replace the pair by their LGG to yield a candidate L′.
The candidate that scores best is then taken as Hi+1 = (Li+1, λi+1), and the process
iterates until the score no longer improves. One interesting issue is that strong logical
constraints can be imposed on the LGG. These logical constraints directly follow from
the fact that the example proofs should still be valid proofs for the logical component
L of all hypotheses considered. Therefore, it makes sense to apply the LGG only to
clauses that define the same predicate, that contain the same predicates, and whose
(reduced) LGG also has the same length as the original clauses 10.

Preliminary results with a prototype implementation are promising. In one exper-
iment, we generated from the target stochastic logic program

1 : s(A,B) ← np(Number,A,C), vp(Number,C,B).
1/2 : np(Number,A,B) ← det(A, C), n(Number,C,B).
1/2 : np(Number,A,B) ← pronom(Number,A,B).
1/2 : vp(Number,A,B) ← v(Number, A,B).
1/2 : vp(Number,A,B) ← v(Number, A,C), np(D, C,B).
1 : det(A, B) ← term(A, the, B).
1/4 : n(s,A,B) ← term(A,man,B).
1/4 : n(s,A,B) ← term(A, apple,B).
1/4 : n(pl,A,B) ← term(A,men, B).
1/4 : n(pl,A,B) ← term(A, apples, B).
1/4 : v(s,A,B) ← term(A, eats, B).
1/4 : v(s,A,B) ← term(A, sings, B).
1/4 : v(pl,A,B) ← term(A, eat,B).
1/4 : v(pl,A,B) ← term(A, sing, B).

9 In a Markov network, the Markov blanket of a node is its set of neighbouring nodes.
* Builds on [De Raedt et al., 2005].

10 In general, the length (number of literals) of the LGG of m (ground) clauses of length at
most n is nm, see [Muggleton and Feng, 1992].
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Figure 2.4. Experimental results on learning stochastic logic programs from proofs. (a) A
typical learning curve. (b) Final log-likelihood averaged over 4 runs. The error bars show
the standard deviations.

1 : pronom(pl,A,B) ← term(A, you,B).
1 : term([A|B],A,B) ←

(independent) training sets of 50, 100, 200, and 500 proofs. For each training set, 4
different random initial sets of parameters were tried. We ran the learning algorithm
on each data set starting from each of the initial sets of parameters. The algorithm
stopped when a limit of 200 iterations was exceeded or a change in log-likelihood
between two successive iterations was smaller than 0.0001.

Figure 2.4 (a) shows a typical learning curve, and Figure 2.4 (b) summarizes the
overall results. In all runs, the original structure was induced from the proof-trees.
Moreover, already 50 proof-trees suffice to rediscover the structure of the original
stochastic logic program. Further experiments with 20 and 10 samples respectively
show that even 20 samples suffice to learn the given structure. Sampling 10 proofs, the
original structure is rediscovered in one of five experiments. This supports that the
learning from proof trees setting carries a lot information. Furthermore, our methods
scales well. Runs on two independently sampled sets of 1000 training proofs yield
similar results: −4.77 and −3.17, and the original structure was learned in both cases.
More details can be found in [De Raedt et al., 2005].

Other statistical relational learning frameworks that have been developed within
the learning from proofs setting are relational Markov models [Anderson et al., 2002]
and logical hidden Markov models. The later one will be addressed in Part II.

2.4.5 Probabilistic Learning from Entailment*

Probabilistic learning from entailment has been investigated for learning stochastic
logic programs [Muggleton, 2000a,b, Cussens, 2001, Muggleton, 2002] and for parame-
ter estimation of PRISM programs [Sato and Kameya, 2001, Kameya et al., 2004] from
possible examples only. Here, we will illustrate a promising, alternative approach with
less computational complexity, which adapts FOIL [Quinlan and Cameron-Jones,

* Builds on [Landwehr et al., 2005].
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Figure 2.5. Cross-validated accuracy results of nFOIL on ILP benchmark data sets. For
Mutagenesis r.u., leave-one-out cross-validated accuracies are reported because of the
small size of the data set. For all other domains, 10-fold cross-validated results are given.
mFOIL [Lavrač and Džeroski, 1994] and Aleph [Srinivasan, 1999] are standard ILP algo-
rithms. 1BC2 [Flach and Lachiche, 2004] is a first order logical variant of Näıve Bayes. For
1BC2, we do not test significance because the results on Mutagenesis are taken from [Flach
and Lachiche, 2004]. Diterpene is a multiclass problem but mFOIL has been developed
for two-class problems only. Therefore, we do not report results for mFOIL on Diterpene.

1995] with the conditional likelihood as described in Equation (2.5) as the scoring
function score(L, λ, E). This idea has been followed with nFOIL, see [Landwehr et al.,
2005] for more details.

Given a training set E containing positive and negative examples (i.e. true and
false ground facts), this algorithm stays in the learning from possible examples
only to induce a probabilistic logical model to distinguish between the positive and
negative examples. It computes Horn clause features b1, b2, . . . in an outer loop.
It terminates when no further improvements in the score are obtained, i.e, when
score({b1, . . . , bi}, λi, E) < score({b1, . . . , bi+1}, λi+1, E), where λ denotes the max-
imum likelihood parameters. A major difference with FOIL is, however, that the
covered positive examples are not removed. The inner loop is concerned with in-
ducing the next feature bi+1 top-down, i.e., from general to specific. To this aim
it starts with a clause with an empty body, e.g., muta(M) ←. This clause is then
specialized by repeatedly adding atoms to the body, e.g., muta(M) ← bond(M, A, 1),
muta(M) ← bond(M, A, 1), atom(M, A, c, 22, ), etc. For each refinement b′i+1 we then
compute the maximum-likelihood parameters λ′

i+1 and score({b1, . . . , b
′
i+1}, λ′

i+1, E).
The refinement that scores best, say b′′i+1, is then considered for further refine-
ment and the refinement process terminates when score({b1, . . . , bi+1}, λi+1, E) <
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Probabilistic learning from ...

... entailment. ... interpretations. ... proofs or traces.

Figure 2.6. The level of information on the target probabilistic program provided by proba-
bilistic ILP settings: shaded parts denote unobserved information. Learning from entailment
provides the least information. Only roots of proof tree are observed. In contrast, learning
from proofs or traces provides the most information. All ground clauses and atoms used in
proofs are observed. Learning from interpretations provides an intermediate level of infor-
mation. All ground atoms but not the clauses are observed.

score({b1, . . . , b
′′
i+1}, λ′′

i+1, E). As Figure 2.5 shows, nFOIL performs well compared
to other ILP systems on traditional ILP benchmark data sets. mFOIL and Aleph,
two standard ILP systems, were never significantly better than nFOIL (paired sam-
pled t-test, p = 0.05). nFOIL achieved significantly higher predictive accuracies than
mFOIL on Alzheimer amine, toxic, and acetyl. Compared to Aleph, nFOIL achieved
significantly higher accuracies on Alzheimer amine and acetyl (paired sampled t-test,
p = 0.05). For more details, we refer to [Landwehr et al., 2005].

2.5 Conclusions

We have defined the formal framework of probabilistic ILP for statistical relational
learning and presented three learning setting settings: probabilistic learning from en-
tailment, from interpretations, and from proofs. They differ in their representation
of examples and the corresponding covers relation. We have also sketched how these
settings combine and generalize ILP and statistical learning.

At present, it is still an open question as to what the relation among these
different settings is. It is, however, apparent that they provide different levels of
information about the target probabilistic program, cf. Figure 2.6. Learning from
entailment provides the least information, whereas learning from proofs or traces
the most. Learning from interpretations occupies an intermediate position. This
is interesting because learning is expected to be even more difficult as the less
information is observed. Furthermore, the presented learning settings are by no
means the only possible settings for probabilistic ILP. Examples might be weighted,
e.g., by probabilities, and proofs might be partially observed only.
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In the remainder of the thesis, we will go — in detail — through a number of
selected probabilistic ILP frameworks, define their representation languages and se-
mantics, design probabilistic ILP learning algorithms, and evaluate them.
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Part I

Probabilistic ILP over Interpretations

Bayesian networks provide an elegant formalism for representing and reasoning about
uncertainty using probability theory. They are a probabilistic extension of proposi-
tional logic and, hence, inherit some of the limitations of propositional logic, such
as the difficulties to represent objects and relations. Bayesian logic programs are
an extension of Bayesian networks to overcome these limitations. They tightly inte-
grate definite logic programs with Bayesian networks and, hence, define probability
distributions over first-order interpretations. The key idea underlying Bayesian logic
programs is to establish a one-to-one mapping between ground atoms and random
variables, and between the immediate consequence operator and the dependency re-
lation. In doing so, Bayesian logic programs combine the advantages of both definite
clause logic and Bayesian networks: notions of objects and relations, a separation of
quantitative and qualitative aspects of the world, and a graphical representation.

In this Part, we formally introduce Bayesian logic programs, their representation
language, their semantics, and a graphical representation in Chapter 3. Afterwards, in
Chapter 4, the structure selection problem for Bayesian logic programs is addressed.
More precisely, the learning from interpretations setting from inductive logic program-
ming is combined with score-based techniques for learning Bayesian networks and the
problem of parameter estimation is reduced to the corresponding problem of (dy-
namic) Bayesian networks. We also briefly describe Balios, the engine for Bayesian
logic programs.
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§ 3

Bayesian Logic Programs *

... in which, after reviewing Bayesian networks, Bayesian logic programs are
introduced, their semantics are defined, and several extensions of the basic
framework are discussed: a graphical representation for Bayesian logic pro-
grams, effective treatment of logic atoms, and aggregate functions ....

Bayesian networks [Pearl, 1991] are one of the most important, efficient and ele-
gant frameworks for representing and reasoning with probabilistic models. They have
been applied to many real-world problems in diagnosis, forecasting, automated vi-
sion, sensor fusion, and manufacturing control [Heckerman et al., 1995b]. A Bayesian
network specifies a joint probability distribution over a finite set of random variables
and consists of two components: (1) a qualitative or logical one that encodes the local
influences among the random variables using a directed acyclic graph, and (2) a quan-
titative one that encodes the probability densities over these local influences. Despite
these interesting properties, Bayesian networks also have a major limitation: they are
essentially propositional representations.

Example 3.1 Imagine the task of modeling the localization of genes/proteins. When
using a Bayesian network, every gene is a single random variable. There is no way
of formulating general probabilistic regularities among the localizations of the genes
such as the localization L of gene G is influenced by the localization L′ of another gene
G′ that interacts with G. ◦

The propositional nature and limitation of Bayesian networks are similar to those of
traditional attribute-value learning techniques, which have motivated work on upgrad-
ing these techniques within ILP. This in turn also explains the interest in upgrading
Bayesian networks towards using first order logical representations.

Bayesian logic programs unify Bayesian networks with logic programming, which
allows one to overcome the propositional character of Bayesian networks and the
purely ’logical’ nature of logic programs. From a knowledge representation point of
view, Bayesian logic programs can be distinguished from alternative frameworks by
having both logic programs (i.e. definite clause programs, which are sometimes called
’pure’ Prolog programs) as well as Bayesian networks as an immediate special case.
This is realized through the use of a small but powerful set of primitives. Indeed,
the underlying idea of Bayesian logic programs is to establish a one-to-one mapping
between ground atoms and random variables, and between the immediate consequence
operator and the direct influence relation. Therefore, Bayesian logic programs can also
handle domains involving structured terms as well as continuous random variables.

* Builds on [Kersting et al., 2000, Kersting, 2000, Kersting and De Raedt, 2005].
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mc_dorothy

bt_dorothy

pc_dorothy

mc_ann pc_ann mc_brian pc_brian

bt_ann
bt_brian

Figure 3.1. The graphical structure of a Bayesian network modeling the inheritance of
blood types within a particular family.

3.1 The Propositional Case: Bayesian Networks

In this section, we first introduce the key concepts and assumptions underlying
Bayesian networks. For a full and detailed treatment of Bayesian networks, we re-
fer to [Pearl, 1991, Cowell et al., 1999, Jensen, 2001]. In the next section, we will then
show how Bayesian networks and logic programs are combined in Bayesian logic pro-
grams. As running example, we will use an example from genetics, which is inspired
by Friedman et al. [1999]:

Example Domain I (Blood Type Domain) The blood type domain is a genetic
model of the inheritance of a single gene that determines a person’s X blood type bt(X).
Each person X such as ann, dorothy, and brian has two copies of the chromosome
containing this gene, one, mc(Y), inherited from her mother m(Y, X), and one, pc(Z),
inherited from her father f(Z, X). Occasionally, a person is unavailable for testing,
and yet because of the clarification of crime, test of paternity, allocation of (frozen)
semen etc. it is often necessary that a blood type of the person be estimated. A blood
type can still be derived for that person through an examination and analysis of the
types of family members. ◦

A Bayesian network [Pearl, 1991] is an augmented, directed acyclic graph, where
each node corresponds to a random variable xi and each edge indicates a direct in-
fluence among the random variables. It represents the joint probability distribution
P(x1, . . . , xn) over a fixed, finite set {x1, . . . , xn} of random variables. Each random
variable xi possesses a finite set S(xi) of mutually exclusive states.

Example 3.2 Figure 3.1 shows the graph of a Bayesian network modeling our
blood type example for a particular family. The family relationship, which is taken
from Jensen’s stud farm example [1996], forms the basis for the graph. The net-
work encodes, e.g., that Dorothy’s blood type is influenced by the genetic infor-
mation of her parents Ann and Brian. The set of possible states of bt(dorothy)
is S(bt(dorothy)) = {a, b, ab, 0}; the set of possible states of pc(dorothy) and
mc(dorothy) are S(pc(dorothy)) = S(mc(dorothy)) = {a, b, 0}. The same holds for
ann and brian. The direct predecessors of a node x, the parents of x are denoted by
Pa(x). For instance, Pa(bt(ann)) = {pc(ann), mc(ann)}. ◦
A Bayesian network stipulates the following conditional independence assumption.
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Independence Assumption 3.3 (Bayesian Networks) Each node xi is condition-
ally independent of any subset A of nodes that are not descendants of xi given a joint
state of Pa(xi), i.e. P(xi | A,Pa(xi)) = P(xi | Pa(xi)). ◦
Example 3.4 In the blood type Bayesian network of the last example, bt(dorothy)
is conditionally independent of bt(ann) given a joint state of its parents
{pc(dorothy), mc(dorothy)}. ◦
Any pair (xi,Pa(xi)) is called the family of xi denoted as Fa(xi), e.g. bt(dorothy)’s
family is (bt(dorothy), {pc(dorothy), mc(dorothy)}) . Because of the conditional
independence assumption, we can write down the joint probability density as
P(x1, . . . , xn) =

∏n
i=1 P(xi | Pa(xi)) by applying the independence assumption 3.3 to

the chain rule expression of the joint probability distribution. Thereby, we associate
with each node xi of the graph the conditional probability distribution P(xi | Pa(xi)),
denoted as cpd(xi).

Example 3.5 The conditional probability distributions in our blood type domain
are:

mc(dorothy) pc(dorothy) P(bt(dorothy))
a a (0.97, 0.01, 0.01, 0.01)
b a (0.01, 0.01, 0.97, 0.01)
· · · · · · · · ·
0 0 (0.01, 0.01, 0.01, 0.97)

(similarly for ann and brian) and

mc(ann) pc(ann) P(mc(dorothy))
a a (0.98, 0.01, 0.01)
b a (0.01, 0.98, 0.01)
· · · · · · · · ·
0 0 (01, 0.01, 0.98)

(similarly for pc(dorothy)). Further conditional probability tables are associated with
the apriori nodes, i.e., the nodes having no parents:

P(mc(ann)) P(mc(ann)) P(mc(ann)) P(mc(ann))
(0.38, 0.12, 0.50) (0.38, 0.12, 0.50) (0.38, 0.12, 0.50) (0.38, 0.12, 0.50)

◦

3.2 The First-Order Case

The logical component of Bayesian networks essentially corresponds to a proposi-
tional logic program. This has already been observed by Haddawy [1994] and Langley
[1995]. Langley, for instance, does not represent Bayesian networks graphically but
rather uses the notation of propositional definite clause programs. Consider the pro-
gram in Figure 3.2. It encodes the structure of the blood type Bayesian network in
Figure 3.1. Observe that the random variables in this notation correspond to logi-
cal atoms. Furthermore, the direct influence relation corresponds to the immediate
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pc(ann).

pc(brian).

mc(ann).

mc(brian).

mc(dorothy) :- mc(ann), pc(ann).

pc(dorothy) :- mc(brian), pc(brian).

bt(ann) :- mc(ann), pc(ann).

bt(brian) :- mc(brian), pc(brian).

bt(dorothy) :- mc(dorothy), pc(dorothy).

Figure 3.2. A propositional clause program encoding the structure of the blood type
Bayesian network in Figure 3.1.

consequence operator. Now, imagine another totally separated family, which could be
described by a similar Bayesian network. The graphical structure and associated con-
ditional probability distribution for the two families are controlled by the same inten-
sional regularities. But these overall regularities cannot be captured by a traditional
Bayesian network. So, we need another way to represent these overall regularities.

3.2.1 Representation Language

We upgrade the propositional clauses encoding the structure of the Bayesian network
to proper first order clauses. This idea leads to the central notion of a Bayesian clause.

Definition 3.6 (Bayesian Clause) A Bayesian (definite) clause c is an expression of
the form A | A1, . . . , An where n ≥ 0, the A, A1, . . . , An are Bayesian atoms (see below)
and all Bayesian atoms are (implicitly) universally quantified. When n = 0, c is called
a Bayesian fact and expressed as A. ◦

The differences between a Bayesian clause and a logical clause are:

(1) the atoms p(t1, . . . , tl) and predicates p/l are Bayesian, which means that they
have an associated (finite11) set S(p/l) of possible states, and

(2) we use ’|’ instead of ’:−’ to highlight the conditional probability distribution.

For instance, consider the Bayesian clause c bt(X)|mc(X), pc(X) where S(bt/1) =
{a, b, ab, 0} and S(mc/1) = S(pc/1) = {a, b, 0}. Intuitively, a Bayesian predicate p/l
generically represents a set of random variables. More precisely, each Bayesian ground
atom g over p/l represents a random variable over the states S(g) := S(p/l). For
example, bt(ann) represents the blood type of a person named Ann as a random vari-
able over the states {a, b, ab, 0}. Apart from that, most logical notions carry over to
Bayesian logic programs. So, we will speak of Bayesian predicates, terms, constants,
substitutions, propositions, ground Bayesian clauses, Bayesian Herbrand interpreta-
tions etc. For the sake of simplicity we will sometimes omit the term Bayesian as long
11 For the sake of simplicity we consider finite random variables, i.e. random variables having

a finite set S of states. However, because the semantics rely on Bayesian networks, the
ideas easily generalize to discrete and continuous random variables (modulo the well-known
restrictions for Bayesian networks).
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as no ambiguities arise. We will assume that all Bayesian clauses c are range-restricted,
i.e., Var(head(c)) ⊆ Var(body(c)). Range restriction (see 2.1) is often imposed in the
database literature; it allows one to avoid the derivation of non-ground true facts.
As already indicated while discussing Figure 3.2, a set of Bayesian clauses encodes
the qualitative or structural component of the Bayesian logic programs. More pre-
cisely, ground atoms correspond to random variables, and the set of random variables
encoded by a particular Bayesian logic program corresponds to its least Herbrand
domain. In addition, the direct influence relation corresponds to the immediate con-
sequence.

In order to represent a probabilistic model we also associate with each Bayesian
clause c a conditional probability distribution cpd(c) encoding P(head(c) | body(c)),
cf. Figure 3.3. To keep the exposition simple, we will assume that cpd(c) is represented
as a table. More elaborate representations such as decision trees or rules would be
possible too. The distribution cpd(c) generically represents the conditional probability
distributions associated with each ground instance cθ of the clause c.

In general, one has several clauses that may even make conflicting statements on
conditional probability distributions.

Example 3.7 Consider clauses c1 ≡ bt(X) | mc(X) and c2 ≡ bt(X) | pc(X) and assume
corresponding substitutions θi that ground the clauses ci such that head(c1θ1) =
head(c2θ2). In contrast to bt(X)|mc(X), pc(X), they specify cpd(c1θ1) and cpd(c2θ2),
but not the desired distribution P(head(c1θ1) | body(c1) ∪ body(c2)). ◦
So called combining rules are the standard solution to obtain the distribution required.

Definition 3.8 (Combining Rule) A combining rule is a function that maps finite
sets of conditional probability distributions {P(A | Ai1, . . . , Aini) | i = 1, . . . , m}
onto one (combined) conditional probability distribution P(A | B1, . . . , Bk) with
{B1, . . . , Bk} ⊆ ⋃m

i=1{Ai1, . . . , Aini}. ◦
We assume that for each Bayesian predicate p/l there is a corresponding combining
rule cr(p/l), such as noisy or (see e.g.[Jensen, 2001]) or average. The latter assumes
n1 = . . . = nm and S(Aij) = S(Akj), and computes the average of the distributions
over S(A) for each joint state over

⊗
j S(Aij), see also the next Section 3.2.2.

By now, we are able to formally define Bayesian logic programs.

Definition 3.9 (Bayesian Logic Program) A Bayesian logic program B consists of
a (finite) set of Bayesian clauses. For each Bayesian clause c there is exactly one
conditional probability distribution cpd(c), and for each Bayesian predicate p/l there
is exactly one combining rule cr(p/l). ◦
A Bayesian logic program encoding our blood type domain is shown in Figure 3.3.

3.2.2 Declarative Semantics

Intuitively, each Bayesian logic program represents a (possibly infinite) Bayesian net-
work, where the nodes are the atoms in the least Herbrand model of the Bayesian
logic program. These declarative semantics can be formalized using the annotated
dependency graph.
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m(ann, dorothy).
f(brian, dorothy).
pc(ann).
pc(brian).
mc(ann).
mc(brian).

mc(X)|m(Y, X), mc(Y), pc(Y).
pc(X)|f(Y, X), mc(Y), pc(Y).
bt(X)|mc(X), pc(X).

mc(X) pc(X) P(bt(X))
a a (0.97, 0.01, 0.01, 0.01)
b a (0.01, 0.01, 0.97, 0.01)
· · · · · · · · ·
0 0 (0.01, 0.01, 0.01, 0.97)

m(Y, X) mc(Y) pc(Y) P(mc(X))
true a a (0.98, 0.01, 0.01)
true b a (0.01, 0.98, 0.01)
· · · · · · · · · · · ·
false a a (0.33, 0.33, 0.33)
· · · · · · · · · · · ·

Figure 3.3. The blood type Bayesian logic program encoding our genetic domain. For
each Bayesian predicate, the identity function is the combining rule. The conditional
probability distributions associated with the Bayesian clauses bt(X)|mc(X), pc(X) and
mc(X)|m(Y, X), mc(X), pc(Y) are represented as tables. The other distributions are correspond-
ingly defined. The Bayesian predicates m/2 and f/2 have as possible states {true, false}.

Definition 3.10 (Dependency Graph) The dependency graph DG(B) is that di-
rected graph whose nodes correspond to the ground atoms in the least Herbrand
model LH(B). It encodes the direct influence relation over the random variables
in LH(B): there is an edge from a node x to a node y if and only if there exists
a clause c ∈ B and a substitution θ, s.t. y = head(cθ), x ∈ body(cθ) and for all ground
atoms z in cθ : z ∈ LH(B). ◦

Example 3.11 Figures 3.4 and 3.5 show the dependency graph for our blood type
program. Here, mc(dorothy) directly influences bt(dorothy). Defining the influence
relation as the transitive closure of the direct influence relation, mc(ann) influences
bt(dorothy) . ◦

To define the semantics of Bayesian logic programs using the dependency graph, we
note that the Herbrand base HB(B) constitutes the set of all random variables we
can talk about. However, only those atoms that are in the least Herbrand model
LH(B) ⊆ HB(B) will appear in the dependency graph. These are the atoms that
are true in the logical sense, i.e., when the Bayesian logic program B is interpreted
as a logical program. They are the so-called relevant random variables, the random
variables over which a probability distribution is well-defined by B. The atoms not
belonging to the least Herbrand model are irrelevant. Now, to each node x in DG(B)
we associate the combined conditional probability distribution, which is the result of
applying the combining rule cr(p/n) of the corresponding Bayesian predicate p/n to
the set of cpd(cθ)’s where head(cθ) = x and {x} ∪ body(cθ) ⊆ LH(B).

Example 3.12 Consider the Bayesian logic program

cold.
flu.
malaria.

fever | cold.
fever | flu.
fever | malaria.
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m(ann,dorothy).

f(brian,dorothy).

pc(ann).

pc(brian).

mc(ann).

mc(brian).

mc(dorothy) | m(ann, dorothy),mc(ann),pc(ann).

pc(dorothy) | f(brian, dorothy),mc(brian),pc(brian).

bt(ann) | mc(ann), pc(ann).

bt(brian) | mc(brian), pc(brian).

bt(dorothy) | mc(dorothy),pc(dorothy).

Figure 3.4. The grounded version of the blood type Bayesian logic program of Figure 3.3
where only clauses c with head(c) ∈ LH(B) and body(c) ⊂ LH(B) are retained. It (directly)
encodes the Bayesian network as shown in Figure 3.5. The structure of the Bayesian network
coincides with the dependency graph of the blood type Bayesian logic program.

where all Bayesian predicates have true and false as states, and noisy or as combining
rule. The program specifies three conditional probability distributions for fever which
are combined by the combining rule. In the dependency graph

cold

fever

flu

malaria

noisy or {P(fever|flu),P(fever|cold),P(fever|malaria)} is associated with
fever, which is defined as on page 444 in [Russell and Norvig, 1995]. ◦
Thus, if DG(B) is acyclic and not empty, and every node in DG(B) has a finite
indegree then DG(B) encodes a (possibly infinite) Bayesian network, because the least
Herbrand model always exists and is unique. Consequently, the following independence
assumption holds:

Independence Assumption 3.13 (Dependency Graph) Each node x is indepen-
dent of its non-descendants given a joint state of its parents Pa(x) in the dependency
graph. ◦
For instance the dependency graph of the blood type program as shown in Figures 3.4
and 3.5 encodes that the random variable bt(dorothy) is independent from pc(ann)
given a joint state of pc(dorothy), mc(dorothy). Using this assumption the following
Theorem [taken from Kersting and De Raedt, 2001c] holds:

Theorem 3.14 (Semantics) Let B be a Bayesian logic program. If

(1) LH(B) �= ∅,
(2) DG(B) is acyclic, and
(3) each node in DG(B) is influenced by a finite set of random variables

then B specifies a unique probability distribution PB over LH(B). ◦
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mc(dorothy)

bt(dorothy)

pc(dorothy)

mc(ann) pc(ann) mc(brian) pc(brian)

bt(ann) bt(brian)

m(ann,dorothy) f(brain,dorothy)

Figure 3.5. The structure of the Bayesian network represented by the grounded blood type
Bayesian logic program in Figure 3.4. The structure of the Bayesian network coincides with
the dependency graph. Omitting the dashed nodes yields the original Bayesian network of
Figure 3.1.

Proof sketch: To see this, note that the least Herbrand LH(B) always exists, is unique
and countable. Thus, DG(B) exists and is unique, and due to condition (3) the
combined probability distribution for each node of DG(B) is computable. Further-
more, because of condition (1) a total order π on DG(B) exists, so that one can
see B together with π as a stochastic process over LH(B). An induction argument
over π together with condition 2 allows one to conclude that the family of finite-
dimensional distributions of the process is projective (cf. Bauer [1991]), i.e. , the joint
probability distribution over each finite subset S ⊆ LH(B) is uniquely defined and∑

y P(S, x = y) = P(S). Thus, the preconditions of Kolmogorov’s theorem [Bauer,
1991, page 307] hold, and it follows that B given π specifies a probability distribu-
tion P over LH(B). This proves the theorem because the total order π used for the
induction is arbitrary. ��

A program B satisfying the conditions (1)–(3) of Theorem 3.14 is called well-defined.
A well-defined Bayesian logic program B specifies a joint distribution over the random
variables in the least Herbrand model LH(B). As with Bayesian networks, the joint
distribution over each self-contained 12, finite set I ⊆ LH(B) can be factored to

P(I) =
∏

x∈I
P(x|Pa(x))

where the parent relation Pa is according to the dependency graph.
The blood type Bayesian logic program in Figure 3.3 is an example of a well-defined

Bayesian logic program. Its grounded version is shown in Figure 3.4. It essentially
encodes the original blood type Bayesian network of Figures 3.1 and 3.2. The only
differences are the two predicates m/2 and f/2, which can be in one of the logical
states true and false. Using these predicates and an appropriate set of Bayesian facts
(the ’extension’) one can encode the Bayesian network for any family. This situation
is akin to that in deductive databases, where the ’intension’ (the clauses) encodes the
overall regularities and the ’extension’ (the facts) the specific context of interest. By
interchanging the extension, one can swap contexts (in our case, families).

12 A set I is self-contained if ∀x ∈ I : Pa(x) ⊆ I where the parent relation Pa is according
to the dependency graph.
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3.2.3 Procedural Semantics

Clearly, any (conditional) probability distribution over random variables of the
Bayesian network corresponding to the least Herbrand model can — in principle — be
computed. As the least Herbrand model (and therefore the corresponding Bayesian
network) can become (even infinitely) large, the question arises as to whether one
needs to construct the full least Herbrand model (and Bayesian network) to be able
to perform inferences. Here, inference means the process of answering probabilistic
queries.

Definition 3.15 (Probabilistic Query) A probabilistic query to a Bayesian logic pro-
gram B is an expression of the form

?- q1, . . . , qn |e1 = e1, . . . ,em = em

where n > 0, m ≥ 0. It asks for the conditional probability distribution

P(q1, . . . , qn | e1 = e1, . . . , em = em)

of the query variables q1, . . . , qn where {q1, . . . , qn, e1, . . . , em} ⊆ HB(B). ◦
To answer a probabilistic query, one fortunately does not have to compute the com-
plete least Herbrand model. It suffices to consider the so-called support network.

Definition 3.16 (Support Network) The support network N of a random variable
x ∈ LH(B) is defined as the induced subnetwork of

{x} ∪ {y | y ∈ LH(B) and y influences x} .

The support network of a finite set {x1, . . . , xk} ⊆ LH(B) is the union of the networks
of each single xi. ◦
Example 3.17 For instance, the support network for bt(dorothy) is the Bayesian
network shown in Figure 3.5. The support network for bt(brian) is the subnetwork
with root bt(brian), i.e.

mc(brian) pc(brian)

bt(brian)

◦
That the support network of a finite set X ⊆ LH(B) is sufficient to compute P(X)
follows from the following Theorem [taken from Kersting and De Raedt, 2001c]:

Theorem 3.18 (Support Network) Let N be a possibly infinite Bayesian network,
let Q be nodes of N and E = e, E ⊂ N , be some evidence. The computation of
P(Q | E = e) does not depend on any node x of N , which is not a member of the
support network N(Q ∪ E). ◦
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Proof sketch: In order to prove the theorem we only have to show that
N({Q1, . . . , Qn}∪E) is sufficient to compute p(X1, . . . , Xl) for any set {X1, . . . , Xl},
l > 0, of random variables in N({Q1, . . . , Qn} ∪ E). The theorem follows then from
the definition of conditional probability density:

P(Q1, . . . , Qn | E = e) =
P(Q1, . . . , Qn,E = e)

P (E = e)
.

We proceed in a similar way to the proof of Theorem 3.14. Let π be a total order
of the nodes in N . Let T be a (non-empty) index set, H(T ) be the set of all non-
empty, finite subsets of T , and (An)n∈T be the sequence of random variables in N
in ascending order to π. Analogously to the proof of Theorem 3.14 we can prove by
induction that N specifies a projective family of probability measure. Now, the set
{Q1, . . . , Qn}∪E corresponds to A(H) for some H ∈ H(T ), and the set {X1, . . . , Xl}
corresponds to A(L) for some L ∈ H(T ). In order to compute p(X1, . . . , Xl) we
consider the completion

C(L) = {D ∈ N | D influences some Xi ∈ A(L)}
of A(L) (resp. C(H) of A(H)). The set C(H) equals per definitionem the set of
nodes of N({Q1, . . . , Qn}∪E). Therefore, we have A(L) ⊂ C(H) and, hence, C(L) ⊂
C(H). As in the proof of Theorem 3.14, the probability densities over C(H) (resp.
C(L)) are specified by a unique Bayesian network N(H) (resp. N(L)). It consists
of all random variables in C(H) (resp. C(L)) and of all edges between nodes in N ,
which are random variables in C(H) (resp. C(L)). Since N specifies a projective
family of probability measures, N(L) is a subnetwork of N(H). That means the
computation of p(X1, . . . , Xl) only depends on nodes and edges in N(H). But N(H) is
per definitionem the support network N({Q1, . . . , Qn}∪E). This proves the theorem.

��
To compute the support network N({q}) of a single variable q efficiently, let us look
at logic programs from a proof theoretic perspective. From this perspective, a logic
program can be used to prove that certain atoms or goals (see end of Section 2.1)
are logically entailed by the program. The set of all proofs of :-bt(dorothy) captures
all information needed to compute N({bt(dorothy)}). More exactly, the set of all
ground clauses employed to prove bt(dorothy) constitutes the families of the support
network N({bt(dorothy)}). For :-bt(dorothy), they are the ground clauses shown in
Figure 3.4. To build the support network, we only have to gather all ground clauses
used to prove the query variable and have to combine multiple copies of ground clauses
with the same head using corresponding combining rules. To summarize, the support
network N({q}) can be computed as follows:

1: Compute all proofs for :-q.
2: Extract the set S of ground clauses used to prove :-q.
3: Combine multiple copies of ground clauses h|b ∈ S with the same head h

using combining rules.

Example 3.19 Applying this to :-bt(dorothy) yields the support network as shown
in Figure 3.5. ◦
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dorothy|mc dorothy, pc dorothy with associated conditional probability table.

The method can easily be extended to compute the support network for
P(Q | E = e) . We simply compute all proofs of :-q, q ∈ Q, and :-e, e ∈ E . The
resulting support network can be fed into any (exact or approximative) Bayesian
network engine to compute the resulting (conditional) probability distribution of the
query. To minimize the size of the support network, one might also apply Schachter’s
Bayes’ Ball algorithm [1998].

3.3 Extensions of the Basic Framework

So far, we described the basic Bayesian logic programming framework and defined the
semantics of Bayesian logic programs. Various useful extensions and modifications are
possible. In this section, we will introduce a graphical representation and will discuss
aggregate functions and the efficient treatment of logical atoms. At the same time, we
will also present further examples of Bayesian logic programs such as hidden Markov
models [Rabiner, 1989] and probabilistic grammars [Manning and Schütze, 1999].

3.3.1 Graphical Representation

Bayesian logic programs have so far been introduced using an adaption of a logic pro-
gramming syntax. Bayesian networks are, however, also graphical models and owe at
least part of their popularity to their intuitively appealing graphical notation [Jordan,
1999]. Inspired on Bayesian networks, we develop in this section a graphical notation
for Bayesian logic programs.

In order to develop a graphical representation for Bayesian logic programs, let
us first consider a more redundant representation for Bayesian networks: augmented
bipartite (directed acyclic) graphs as shown in Figure 3.6. In a bipartite graph, the set
of nodes is composed of two disjoint sets such that no two nodes within the same set
are adjacent. There are two types of nodes, namely (1) gradient gray ovals denoting
random variables, and (2) black boxes denoting local probability models. There is a
box for each family Fa(xi) in the Bayesian network. The incoming edges refer to
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Person
mc(Person) pc(Person) P(bt(Person))

a a (0.97, 0.01, 0.01, 0.01)
b a (0.01, 0.01, 0.97, 0.01)
· · · · · · · · ·

0 0 (0.01, 0.01, 0.01, 0.97)
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mc
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Person

f(Father, Person) mc(Father) pc(Father) P(pc(Person))
true a a (0.98, 0.01, 0.01)
true b a (0.01, 0.98, 0.01)
· · · · · · · · · · · ·

false a a (0.33, 0.33, 0.33)
· · · · · · · · · · · ·

Father

R1

mc

ann
P(mc(ann))

(0.38, 0.12, 0.50)

Figure 3.7. Graphical representation of the blood type Bayesian logic program. On the right-
hand side, some local probability models associated with Bayesian clause nodes are shown,
e.g., the Bayesian clause R7 pc(Person)|f(Father, Person), mc(Father), pc(Father) with as-
sociated conditional probability distribution. For the sake of simplicity, not all Bayesian
clauses are shown.

the parents Pa(xi); the single outgoing edge points to Xi. Each box is augmented
with a Bayesian network fragment specifying the conditional probability distribution
P(xi|Pa(xi)).

Example 3.20 In Figure 3.6, the fragment associated with R9 specifies the condi-
tional probability distribution of P(bt(dorothy)|mc(dorothy), pc(dorothy)). ◦
Interpreting this as a propositional Bayesian logic program, the graph can be viewed
as a rule graph known from database theory. Ovals represent Bayesian predicates, and
boxes denote Bayesian clauses. More precisely, given a (propositional) Bayesian logic
program B with Bayesian clauses Ri ≡ hi|bi1 , . . . , bim , there are edges from from Ri

to hi and from bij to Ri . Furthermore, to each Bayesian clause node, we associate the
corresponding Bayesian clause as a Bayesian network fragment. Indeed, the graphical
model in Figure 3.6 represents the propositional Bayesian logic program of Figure 3.4.

In order to represent first order Bayesian logic programs graphically, we have to
encode Bayesian atoms and their variable bindings in the associated local probability
models. Indeed, logical terms can naturally be represented as trees.

Example 3.21 The term t(s(1, 2), X) corresponds to the tree

1
s

X

t 2

◦
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hidden/1

R3

obs/1

R2R1

R3

hidden
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Time

R2

hidden hidden

TimeR1

hidden

0 next

Figure 3.8. A Bayesian logic program modeling a hidden Markov model. The functor next/1
is used to encode the discrete time. The clausal representation is given in the text.

Logical variables such as X are encoded as white ovals. Constants and functors such
as 1, 2, s, and t are represented as white boxes. Bayesian atoms are represented as
gradient gray ovals containing the predicate name such as pc. Arguments of atoms
are treated as placeholders for terms. They are represented as white circles on the
boundary of the ovals (ordered from left to right). The term appearing in the argument
is represented by an undirected edge between the white oval representing the argument
and the ’root’ of the tree encoding the term (we start in the argument and follow the
tree until reaching variables).

Example 3.22 Consider the Bayesian logic program in Figure 3.7. It models the
blood type domain. The graphical representation conveys the meaning of the Bayesian
clause R7: the paternal genetic information pc(P) of a person P is influenced by the
maternal mc(F) and the paternal pc(F) genetic information of the P’s father F. ◦
As another example, consider Figure 3.8, which illustrates the use of functors to rep-
resent dynamic probabilistic models. More precisely, it shows a hidden Markov model
(HMM) [Rabiner, 1989]. HMMs are extremely popular for analyzing sequential data.
Application areas include computational biology, user modeling, speech recognition,
empirical natural language processing, and robotics. At each Time, the system is in
a state hidden(Time). The apriori probability of being in some state is quantified
by the Bayesian fact R1 hidden(0) . The time-independent probability of being in
some state at time next(Time) given that the system was in a state at TimePoint
is captured in the Bayesian clause R2 hidden(next(Time)) | hidden(Time) . Here,
the next time point is represented as functor next/1 . In HMMs, however, we do
not have direct access to the states hidden(Time). Instead, we measure some prop-
erties obs(Time) of the states. The measurement is quantified in Bayesian clause R3
obs(Time) | hidden(time) . The dependency graph of the Bayesian logic program
directly encodes the well-known Bayesian network structure of HMMs:

hidden(0)

obs(next(next(0)))

hidden(next(next(0)))

obs(next(0))

hidden(next(0))

obs(0)

...
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Figure 3.9. The blood type Bayesian logic program distinguishing between Bayesian (gra-
dient gray ovals) and logical atoms (solid gray ovals).

3.3.2 Logical Atoms

Reconsider the blood type Bayesian logic program in Figure 3.7. The mother/2 and
father/2 relations are not really random variables but logical ones because they are
always in the same state, namely true, with probability 1 and can depend only on
other logical atoms. These predicates form a kind of logical background theory. There-
fore, when predicates are declared to be logical, one need not represent them in the
conditional probability distributions. Consider the blood type Bayesian logic program
in Figure 3.9. Here, mother/2 and father/2 are declared to be logical. Consequently,
the conditional probability distribution associated with the definition of, e.g., pc/1
takes only pc(Father) and mc(Father) into account but not f(Father, Person). It is
applied only to those substitutions for which f(Father, Person) is true, i.e., in the
least Herbrand model. This can efficiently be checked using any Prolog engine. Fur-
thermore, one may omit these logical atoms from the induced support network. More
importantly, logical predicates provide the user with the full power of Prolog. In the
blood type Bayesian logic program of Figure 3.9, the logical background knowledge
defines the founder/1 relation as

founder(Person):-\+(mother( , Person); father( , Person)).

Here, \+ denotes negation, the symbol represents an anonymous variable, which is
treated as new, distinct variable each time it is encountered, and the semicolon denotes
a disjunction. The rest of the Bayesian logic program is essentially as in Figure 3.3.
Instead of explicitly listing pc(ann), mc(ann), pc(brian), mc(brian) in the extensional
part we have pc(P)|founder(P) and mc(P)|founder(P) in the intensional part.

The full power of Prolog is also useful to elegantly encode dynamic probabilistic
models. Figure 3.10 (a) shows the generic structure of an HMM where the discrete
time is now encoded as next/2 in the logical background theory using standard Prolog
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Figure 3.10. Two dynamic Bayesian logic programs. (a) The generic structure
of a hidden Markov model more elegantly represented as in Figure 3.8 using
next(X, Y) : −integer(Y), Y > 0, X is Y− 1.. (b) A probabilistic context-free grammar over
{anbn}. The logical background theory defines terminal/3 as terminal([A|B], A, B).

predicates:

next(X, Y):-integer(Y), Y > 0, X is Y− 1.

Prolog’s predefined predicates (such as integer/1) avoid a cumbersome representa-
tion of the dynamics via the successor functor 0, next(0), next(next(0)), . . . Imagine
querying ?- obs(100) using the successor functor,

?- obs(next(next(. . . (next(0)) . . .))) .

Whereas HMMs define probability distributions over regular languages, probabilis-
tic context-free grammars (PCFGs) [Manning and Schütze, 1999] define probability
distributions over context-free languages. Application areas of PCFGs include e.g. nat-
ural language processing and computational biology. For instance, mRNA sequences
constitute context-free languages.
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Example 3.23 Consider e.g. the following PCFG

1.0 : terminal([A|B], A, B).
0.3 : sentence(A, B):-terminal(A, a, C), terminal(C, b, B).
0.7 : sentence(A, B):-terminal(A, a, C), sentence(C, D), terminal(D, b, B).

defining a distribution over {anbn} . The grammar is represented as probabilistic defi-
nite clause grammar where the terminal symbols are encoded in the logical background
theory via the first rule terminal([A|B], A, B) . ◦
Recall from Section 2.3.2 that a PCFG defines a stochastic process with
leftmost rewriting, i.e., refutation steps as transitions. Words, say aabb,
are parsed by querying ?- sentence([a, a, b, b], []). The third rule yields
?- terminal([a, a, b, b], a, C), sentence(C, D), terminal(D, b, []). Applying the
first rule yields ?- sentence([a, b, b], D), terminal(D, b, []) and the second rule
?- terminal([a, b, b], a, C), terminal(C, b, D), terminal(D, b, []). Applying the first
rule three times yields a successful refutation. The probability of a refutation is the
product of the probability values associated with clauses used in the refutation; in
our case 0.7 · 0.3. The probability of aabb then is the sum of the probabilities of all
successful refutations. This is also the basic idea underlying Muggleton’s stochastic
logic programs [1996], which we also encountered in Section 2.3.2.

Figure 3.10 (b) shows the {anbn} PCFG of Example 3.23 represented as a Bayesian
logic program. Its underlying logic program coincides with the definite clause grammar
shown in Example 3.23. In contrast to the PCFGs representation, which associate a
single probability value only with each clause, we associate a complete conditional
probability distribution

P(sentence(A, B)| terminal(A, a,C), terminal(C, b, B))
(0.3, 0.7)

P(sentence(A, B)| terminal(A, a,C), sentence(C, D), terminal(D, b, B))
(0.7, 0.3) true
(0.0, 1.0) false

where logical atoms are written in italic. For the query ?- sentence([a, a, b, b], []), the
following Bayesian network

sentence([a,a,b,b],[])sentence([a,b,b],[b])

is induced where we omitted logical nodes.

3.3.3 Aggregate Functions

An alternative to combining rules are aggregate functions. As an example, consider
the university domain due to Getoor et al. [2001].
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Figure 3.11. The Bayesian logic program for the university domain. Octagonal nodes denote
aggregate predicates and atoms.

Example 3.24 The university domain contains professors, students, courses, and
course registrations. Objects in this domain have several descriptive attributes such
as intelligence/1 and rank/1 of a student/1. A student will typically be registered
in several courses; the student’s rank depends on the grades she receives in all of them.
So, we have to specify a probabilistic dependence of the student’s rank on a multiset
of course grades of size 1, 2, and so on. ◦
In this situation, the notion of aggregation is more appropriate than that of a combin-
ing rule. Using combining rules, the Bayesian clauses would describe the dependence
for a single course only. All information of how the rank probabilistically depends on
the multiset of course grades would be ’hidden’ in the combining rule. In contrast,
when using an aggregate function, the dependence is interpreted as a probabilistic
dependence of rank on some deterministically computed aggregate property of the
multiset of course grades. The probabilistic dependence is moved out of the combin-
ing rule.

To model this, we introduce aggregate predicates. They represent deterministic
random variables, i.e., the state of an aggregate atom is a function of the joint state
of its parents.

Example 3.25 The Bayesian logic program shown in Figure 3.11 encodes the uni-
versity domain. Here, avgGrade/1 is an aggregate predicate, denoted as a octagonal
node. As combining rule, the average of the parents’ states is deterministically com-
puted, cf. Bayesian clause R5. In turn, the student’s rank/1 probabilistically depends
on her averaged rank, cf. R6. ◦



The use of aggregate functions is inspired by probabilistic relational models [Pfeffer,
2000]. As we will show in the related work section, using aggregates in Bayesian logic
programs, it is easy to model probabilistic relational models.

§ 4

Learning Bayesian Logic Programs *

... in which the problem of learning Bayesian logic programs from data is de-
fined, solution techniques for structure learning and for parameter estimation
are presented and experimentally evaluated ...

So far, we have assumed that there is an expert who provides both the structure
and the conditional probability distributions of the Bayesian logic program. This is
not always easy. Extracting knowledge from a human expert and representing that
knowledge has been proven to be an difficult and labor intensive effort [Forsyth, 1994]
and is also known as the knowledge acquisition bottleneck. Often, there is even no-one
possessing the necessary expertise or knowledge. Instead of an expert, however, we
may have access to data and a machine learning algorithm that automatically induces
Bayesian clauses from the given data.

4.1 The Learning Setting: Probabilistic Learning from
Interpretations

Learning Bayesian logic programs from data falls into the probabilistic learning from
interpretations setting, which we have introduced in Section 2.3.1. To see why this is
the case, let us analyze the types of data generated by Bayesian logic programs.

Let B be a Bayesian logic program B consisting of a set of intensional clauses
I and extensional facts E. According to the semantics, the Bayesian logic program
specifies a probability distribution over the possible states of the random variables
in the LH(B). Thus, a data case generated by a Bayesian logic program consists of
two components: a logical one, which is a Herbrand interpretation of the underlying
logic program, and a probabilistic one, which is an assignment of states to the random
variables of the interpretation. By analogy with the traditional Bayesian network
learning setting [Heckerman, 1995], we do not require that the assignment of states
to random variables is complete, i.e. certain states could be unobserved.

Example 4.1 Example data cases are

D1 = {m(cecily, fred) = true, f(henry, fred) = true, pc(cecily) = a,

pc(henry) = b, pc(fred) =?, mc(cecily) = b, mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},
* Builds on [Kersting and De Raedt, 2001a,c, 2002, Fischer and Kersting, 2003].

54
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D2 = {m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?, mc(brian) = a, mc(dorothy) = a, pc(dorothy) = a,

pc(brian) =?, bt(ann) = ab, bt(brian) =?, bt(dorothy) = a},
where ’?’ stands for an unobserved state. ◦
Notice that — for ease of writing — we merged the two components of a data case
into one. Indeed, the logical part RandVar(Di) of a data case Di is a Herbrand inter-
pretation, e.g.,

RandVar(D1) = {m(cecily, fred), f(henry, fred), pc(cecily),
pc(henry), pc(fred), mc(cecily), mc(henry),
mc(fred), bt(cecily), bt(henry), bt(fred)},

RandVar(D2) = {m(ann, dorothy), f(brian, dorothy), pc(ann),
mc(ann), mc(brian), mc(dorothy), pc(dorothy),
pc(brian), bt(ann), bt(brian), bt(dorothy)},

At this point, it is important to realize that these two Herbrand interpretations cor-
respond to two different extensions.

Example 4.2 Indeed, it holds that RandVar(D1) = LH(I ∪ E1) and
RandVar(D2) = LH(I ∪ E2), where I could be

mc(X) | m(Y,X),mc(Y),pc(Y).
pc(X) | f(Y,X),mc(Y),pc(Y).
bt(X) | mc(X),pc(X).

and the Ei could be :

E1 = {m(cecily, fred), f(henry, fred), pc(cecily), pc(henry),
mc(cecily), mc(henry)},

E2 = {m(ann, dorothy), f(brian, dorothy), pc(ann), pc(brian)
mc(ann), mc(brian)},

◦
It is required that each of the given Herbrand interpretations Di is a model for the
set of intensional clauses I. This condition has been called logical validity. It holds
whenever LH(D ∪ I) = D. At this point, the reader may want to verify that this
condition holds for the two Herbrand interpretations RandVar(Di) specified above
and I. The reader should also observe that the logical part of a data case is a complete
model of the target Bayesian logic program such as the data cases D1 and D2 (see
above) and not a partial one13. This is motivated by 1) the analogy with Bayesian
13 Partial models specify the truth-value of some of the elements in the Herbrand base.

Working with partial models in the logical sense would amount to having incomplete
knowledge of the set of relevant random variables in data cases. This is akin to the serious
problem of detecting hidden variables in the context of Bayesian network learning [Kwoh
and Gillies, 1996, Elidan and Friedman, 2001] and to multiple predicate learning [De Raedt
et al., 1993] and even predicate invention [Stahl, 1993] in ILP.
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network learning and 2) the problems with learning from partial models in ILP. First,
data cases as they have been used in Bayesian network learning are the propositional
equivalent of the data cases that we introduced above. Second, it is well-known that
learning from partial models is harder than learning from complete models, see e.g. [De
Raedt, 1997]. These two points also clarify why the semantics of the set of relevant
random variables coincides with the least Herbrand model and at the same time why
we do not restrict the set of states of Bayesian predicates to {true, false}.

We are now able to formally define the notion of a data case for Bayesian logic
programs:

Definition 4.3 (Data Case) A data case D for an intensional Bayesian logic program
B consists of a logical part, which is a Herbrand interpretation RandVar(D) such
that RandVar(D) = LH(B ∪ RandVar(D)), and a probabilistic part, which is a
partially observed joint state of RandVar(D), i.e., an assignment of states to some of
the random variables in RandVar(D). ◦

There is one further logical constraint to take into account while learning Bayesian
logic programs. It is concerned with the acyclicity requirement (cf. property 2 in
Theorem 3.14) imposed on Bayesian logic programs. It is therefore required that for
each data case D the induced Bayesian network over LH(B ∪ RandVar(D)) is acyclic.

By now, we can instantiate the probabilistic ILP learning setting in Definition 2.26
for learning Bayesian logic programs.

Definition 4.4 (Learning Problem) Given a set D = {D1, . . . , Dm} of data cases,
which are sampled i.i.d., a set H of sets of Bayesian clauses (according to some
syntactic language bias), a scoring function scoreD : H �→ R, and a combining
rule for each Bayesian predicate, find a hypothesis H∗ ∈ H such that for all
Di ∈ D : LH(H∗ ∪RandVar(Di)) = RandVar(Di), H∗ is acyclic on the data, and H∗

maximizes scoreD. ◦
Thus, we investigate the learning of Bayesian logic programs from possible interpre-
tations only.

The hypothesis space H to be explored consists of intensional Bayesian logic pro-
grams, i.e. finite sets of Bayesian clauses to which conditional probability distributions
are associated. As score, we will use the likelihood, which will be defined in Section 4.3,
but other scores such as minimum description length variants are also possible. Fi-
nally, the syntactic bias L1 that we will employ in the experimental section is as
follows:

Specifiction 4.5 (Syntactic Bias L1) The clauses contained in H are range-
restricted, constant-free and contain only predicate symbols that occur in one of the
data cases. The bodies consist of at most three atoms. Furthermore, each predicate
is defined by a single clause. ◦

Example 4.6 For the syntactic bias L1, legal clauses for the Bayesian predicate
mc/1 include mc(X)|m(X, X); mc(X)|m(Y, X); mc(X)|m(X, Y); mc(X)|mc(X); . . . ; mc(X)|pc(X);
. . .; mc(X)|m(X, X), mc(X); mc(X)|m(Y, X), mc(Y); mc(X)|m(X, Y), mc(Y); and so on. ◦
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Following the general approach for solving the probabilistic ILP learning problem
described in Section 2.4, the problem of learning Bayesian networks can be divided into
two subproblems: parameter estimation and structure learning. The next two sections
deal with structure learning and parameter estimation, respectively, for Bayesian logic
programs.

4.2 Scooby – Structural learning of intensional Bayesian logic
programs

Scooby (structural learning of intensional Bayesian logic programs), cf. Algo-
rithm II.1, is an algorithm for solving the learning problem. Roughly speaking,
Scooby performs a heuristic search using traditional ILP refinement operators on
clauses, cf. Definition 2.13. The hypothesis currently under consideration is evaluated
using some score as heuristic. The hypothesis that scores best is selected as the final
hypothesis.

We will illustrate how Scooby works for the special case of Bayesian networks.
It turns out that for the special case of Bayesian networks, Scooby coincides with
well-known and effective score-based techniques for learning Bayesian networks [Heck-
erman, 1995]. In a next step, we will show that Scooby works for first order Bayesian
logic programs, too. For the sake of readability, we will — in this section — assume
that there exists a method to estimate the parameters of a Bayesian logic program
with a fixed structure using the scoring function. Algorithms to realize this for the
likelihood function will be introduced in Section 4.3. Finally, we will discuss the basic
principles only. Extensions are possible and will be discussed in Section 4.2.3.

Let us first explain who Scooby works on Bayesian networks.

4.2.1 The Propositional Case: Bayesian Networks

Let X = {X1, . . . , Xn} be a fixed set of random variables. The set X corresponds
to the least Herbrand model {x1, . . . , xn} of an unknown propositional Bayesian logic
program representing a Bayesian network. The probabilistic dependencies among the
relevant random variables are unknown, i.e. the propositional Bayesian clauses are
unknown. Therefore, we will employ such a propositional Bayesian logic program as
a candidate and estimate its parameters. Assume the data cases D = {D1, . . . , Dm}
look like

{m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = a,

mc(ann) =?, mc(brian) =?, mc(dorothy) = a, mc(dorothy) = a,

pc(brian) = b, bt(ann) = a, bt(brian) =?, bt(dorothy) = a},
which is a data case for the Bayesian network in Figure 3.1. (Note, that — in
this example — the atoms have to be interpreted as propositions). Each H in the
hypothesis space H is a Bayesian logic program consisting of n propositional clauses:
for each Xi ∈ X a single clause c with head(c) = xi and body(c) ⊆ {x1, . . . , xn} \ {xi}.
To traverse H we specify two refinement operators ρg : H �→ 2H and ρs : H �→ 2H,
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Figure 4.1. (1) The use of refinement operators during structural search for Bayesian net-
works. We can add (ρs) a proposition to the body of a clause or delete (ρg) it from the
body. (2) The use of refinement operators during structural search within the framework of
Bayesian logic programs. We can add (ρs) an atom to the body of a clause or delete (ρg)
it from the body. Candidates crossed out in (1) and (2) are illegal because they are cyclic.
Other refinement operators are reasonable such as adding or deleting logically valid clauses.

that take a hypothesis and modify it to produce a set of possible candidates. In the
case of Bayesian networks, the operator ρg(H) deletes a Bayesian proposition from
the body of a Bayesian clause ci ∈ H, and the operator ρs(H) adds a Bayesian
proposition to the body of ci (cf. Figure 4.1). The search algorithm performs a
greedy, informed search in H based on scoreD.

As a simple illustration of Scooby for learning Bayesian networks we con-
sider a greedy hill-climbing algorithm incorporating scoreD(H) := LL(D, H), the log-
likelihood of the data D given a candidate structure H. This means that we compute
for each fixed candidate structure the maximum likelihood parameters. We pick an
initial candidate H ∈ H as starting point and score it. This means, we compute those
parameters of the conditional probability distributions associated with clauses in H
that maximize the likelihood LL(D, H). The fully unconnected Bayesian network, i.e.,
the set of propositions, would be an obvious starting point. Then, we use ρg(H) and
ρs(H) to compute the legal “neighbours” (candidates being acyclic) of H in H and
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Algorithm II.1: A simplified skeleton of a greedy algorithm Scooby(H,D)
for structural learning of intensional Bayesian logic programs). Note that we
have omitted the initialization of the conditional probability distributions asso-
ciated with Bayesian clauses with random values. The operators ρg and ρs are
generalization and specialization operators.

input : H, a (valid) Bayesian logic program; D, a finite set of data cases
output: a modified Bayesian logic program

repeat1

H ′ := H2

foreach H ′′ ∈ ρg(H ′) ∪ ρs(H
′) do3

if H ′′ is (logically) valid on D then4

if the Bayesian network induced by H ′′ on the data is acyclic then5

if scoreD(H ′′) > scoreD(H) then6

H := H ′′
7

8

9

10

11

until scoreD(H ′) = scoreD(H)12

return H13

score them. All neighbours are valid (see below for a definition of validity). For in-
stance, replacing pc(ann) with pc(ann)|pc(brian) gives such a “neighbour”. We take
that H ′ ∈ ρg(H) ∪ ρs(H) that yields the best improvement in score. This process is
continued until no further improvement in score is obtained.

4.2.2 The First Order Case: Bayesian Logic Programs

Let us now explain how Scooby works in the first order case. The key differences
with the propositional case are (1) that some Bayesian logic programs will be logically
invalid, and (2) that the traditional first order refinement operators must be used.
Let us discuss both differences in turn.

Logically Valid Hypotheses: Difference (1) is the most important one, because it
determines the legal candidate Bayesian logic programs. To account for this difference,
two modifications to the traditional Bayesian network algorithm are needed.

The first modification concerns the initialization phase. There we must start from
a logically valid and acyclic Bayesian logic program. Such a program can be computed
using a Claudien like procedure [De Raedt and Bruynooghe, 1993, De Raedt and
Dehaspe, 1997]. CLAUDIEN is an ILP-engine that computes a set C of logically
valid clauses from a set of data cases. Furthermore, all clauses in C will be maximally
general (w.r.t. θ-subsumption), and Claudien will compute all such clauses (within
the language bias L). This implies that none of the clauses in C can be generalized
without violating the logical validity requirement or the language bias L.
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Example 4.7 Consider again the data cases

D1 ={m(cecily, fred) = true, f(henry, fred) = true, pc(cecily) = a,

pc(henry) = b, pc(fred) =?, mc(cecily) = b, mc(henry) = b,

mc(fred) =?, bt(cecily) = ab, bt(henry) = b, bt(fred) =?},
D2 ={m(ann, dorothy) = true, f(brian, dorothy) = true, pc(ann) = b,

mc(ann) =?, mc(brian) = a, mc(dorothy) = a, pc(dorothy) = a,

pc(brian) =?, bt(ann) = ab, bt(brian) =?, bt(dorothy) = a},

The fact bt(X) is not allowed according to our language bias (it is not range-restricted).
The clause bt(X)|mc(X), pc(X) is valid but not maximally general because the atom
pc(X) can be deleted without violating the logical validity requirement. Any hy-
pothesis including m(X, Y)|mc(X), pc(Y) would be logically invalid because Cecily is
not the mother of Henry. Examples of maximally general clauses are mc(X)|m(Y, X),
pc(X)|f(Y, X), bt(X)|mc(X), bt(X)|pc(X) etc. ◦
Roughly speaking, Claudien works as follows (for a detailed discussion we refer to [De
Raedt and Dehaspe, 1997]). It keeps track of a list of candidate clauses Q, which is
initialized to the maximally general clause (with respect to the given syntactic bias
L). It repeatedly deletes a clause c from Q, and tests whether c is valid on the data. If
it is, c is added to the final hypothesis, otherwise, all maximally general specializations
of c (with respect to L) are computed. and added back to Q. This process continues
until Q is empty and all relevant parts of the search space have been considered.

The clauses C generated by Claudien can be used to form an initial hypothesis.
In the experiments presented below, for each predicate, we selected one of the clauses
generated by Claudien for inclusion in the initial hypothesis such that the valid
Bayesian logic program was also acyclic on the data cases (see below).

Example 4.8 An initial hypothesis is e.g. the program H0

mc(X) | m(Y, X).
pc(X) | f(Y, X).
bt(X) | mc(X).

◦
The second modification is concerned with pruning away those candidate Bayesian

logic programs that are logically invalid. This is realized by the first if-condition in
the loop. The second if-condition tests whether cyclic dependencies are induced on
the data cases. This can be performed in time O(s · r3) where r is the number of
random variables of the largest data case in D and s is the number of clauses in H.
To realize this, we build the Bayesian networks induced by H over each RandVar(Di)
by computing the ground instances for each clause c ∈ H for which the ground atoms
are members of RandVar(Di). Thus, ground atoms not appearing as a head atom
of a valid ground instance, are apriori nodes, i.e. nodes with an empty parent set.
This takes O(s · r3

i ). Then, we test in O(ri) whether a topological order of the nodes
in the induced Bayesian network exists. If it does, the Bayesian network is acyclic.



§4.2 Scooby – Structural learning of intensional Bayesian logic programs 61

Figure 4.2. Support network induced by the initial hypothesis H0 (see text) over the data
cases D1 and D2. The gray region indicates random variables, which have been generated
by the Bayesian clauses. Random variables out of the gray region have not been generated
by the Bayesian clauses; they are asserted as extensional facts.

Otherwise, it is cyclic. In total, the run time is O(m · s · r3) = O(s · r3) because the
given data set is fixed. Figure 4.2 shows the support network induced by the initial
hypothesis on D1 and D2.

Use of ILP Refinement Operators: Difference (2) is the employment of refine-
ment operators traditionally used in ILP, cf. Definition 2.13. It is a simple consequence
of working with first order clauses instead of propositional one to encode dependen-
cies. For the language bias considered in our experiments, we use the two refinement
operators ρs : 2H �→ H and ρg : 2H �→ H. The operator ρs(H) adds constant-free
atoms to the body of a single clause c ∈ H, and ρg(H) deletes constant-free atoms
from the body of a single clause c ∈ H. Other refinement operators such as deleting
and adding logically valid clauses, instantiating variables, and unifying variables are
possible, too, cf. [Nienhuys-Cheng and de Wolf, 1997]. Figure 4.1 shows the different
refinement operators for the first order case and the propositional case for learning
Bayesian networks. Instead of adding (deleting) propositions to (from) the body of a
clause, they add (delete) according to our language assumption constant-free atoms.
Consequently, they add multiple edges into or delete multiple edges from the un-
derlying support network. Furthermore, Figure 4.1 shows that using the refinement
operators each hypothesis (within our language bias) can — in principle — be reached.

Finally, we need to mention that although the maximally general clauses are the
most interesting ones from the logical point of view, this is not necessarily the case
from the probabilistic point of view.

Example 4.9 For the data cases D1 and D2, the initial candidate H0

mc(X) | m(Y, X).
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pc(X) | f(Y, X).
bt(X) | mc(X).

will probably not obtain the best possible score. The reason is that the blood type
does not depend on the genetical information of the father, cf. Figure 4.2. ◦

4.2.3 Discussion and Possible Extensions

The algorithm presented serves as a basic approach for learning Bayesian logic pro-
grams from data. Various extensions and modifications based on ideas developed
either ILP or Bayesian networks learning, are possible and often straightforward. Ob-
vious modifications include tabu search, where the k recently visited hypothesis are
avoided during search, beam search, where we keep track of the k best hypotheses
rather than just the best one, random restarts when getting stuck, and simulated an-
nealing, where refinements are evaluated in random order [Russell and Norvig, 1995].
More interesting modifications are concerned with lookahead, background knowledge,
and improved scoring functions. Let us briefly address the latter two ones.

We have discussed lookaheads and background knowledge already for ILP in
Section 2.2. Lookaheads apply without modifications. Background knowledge for
Bayesian logic programs consists of a fixed Bayesian logic program B. One can then
search for the candidate H∗, which is together with B acyclic on the data such that
for all

Di ∈ D : LH(B ∪ H∗ ∪ RandVar(Di)) = RandVar(Di) ,

and B ∪ H∗ scores best on the data D according to scoreD. This is particularly
interesting to specify deterministic knowledge as in ILP and to specify hidden variables
as in learning Bayesian networks. Alternatively, one might also fix the structure of
some of the clauses only, but not necessarily their parameters.

Using the likelihood directly as scoring function, score-based algorithms for learn-
ing Bayesian networks prefer fully connected networks. To overcome this problem,
more advanced scoring functions have been developed. One of these is the minimum
description length (MDL) score, which trades off the fit to the data with the complex-
ity of the network. In the context of learning Bayesian networks, the whole Bayesian
network is encoded to measure compression [Lam and Bacchus, 1994]. In the context
of learning logic programs, other compression measures have been investigated such
as the average length of proofs [Srinivasan et al., 1994]. For Bayesian logic programs,
an integration of both measures seems appropriate.

Finally, we wish to stress that within Scooby one could also learn predicate
definitions consisting of more than one clause. The refinement operator would then
need to be also modified such that for a clause c ∈ H ′ with head predicate p another
(valid) clause c′ (e.g. computed by Claudien) with head predicate p may also be
added or deleted. However, using these operations, the log-likelihood score is not an
appropriate score anymore.

Example 4.10 Recall the fever example 3.12 where fever depends probabilistically
on cold, flu, and malaria. More precisely,fever is the noisy-or of cold, flu, and
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malaria. We can represent this hypothesis in two different ways: first, as a single
Bayesian clause c where cpd(c) encodes noisy-or and, second, as three clauses with
noisy-or as combining rule (as done in Section 3.2.2). Both representations will yield
the same likelihood. ◦
Again, MDL measures that give a penalty for longer description length of the hypoth-
esis are promising candidates in this direction.

4.3 Parameter Estimation

So far, we have assumed that there is an algorithm that finds the optimal parameters
of a candidate program given the data. In this section, we show how to learn this
quantitative component, i.e. the conditional probability distributions, of Bayesian
logic programs. The learning problem can be stated as follows

Definition 4.11 (Parameter Estimation Problem) Given a set D = {D1, . . . , Dm}
of data cases 14, a set H of Bayesian clauses, which is logically valid and acyclic
on the data, a combining rule for each Bayesian predicate, and a scoring function
scoreD : H �→ R, find the parameter values of H that maximize scoreD. ◦
We will concentrate on the classical maximum likelihood estimation (MLE) approach.

4.3.1 Maximum Likelihood Estimation

Maximum likelihood is a classical method for parameter estimation. The likelihood is
the probability of the observed data as a function of the unknown parameters with
respect to the current model. Let B be a Bayesian logic program consisting of the
Bayesian clauses c1, . . . , cn, and let D = {D1, . . . , Dm} be a set of data cases. The
parameters

cpd(ci)jk = P (uj | uk),

where uj ∈ D(head(ci)) and uk ∈ D(body(ci)), affecting the associated conditional
probability distributions cpd(ci) constitute the set λ =

⋃n
i=1 cpd(ci). The version of

B where the parameters are set to λ is denoted by B(λ), and as long as no ambiguities
occur we will not distinguish between the parameters λ themselves and a particular
instance of them.

Now, the likelihood L(D,λ) is the probability of the data D as a function of the
unknown parameters λ:

L(D,λ) := PB(D | λ) = PB(λ)(D). (4.1)

14 Given a well-defined Bayesian network B, the logical part of a data case Di can also be a
partial model only if we only estimate the parameters and do not learn the structure, i.e.
RandV ar(Di) ⊆ LH(B). The given Bayesian logic program will fill in the missing random
variables.
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Thus, the search space H is spanned by the product space over the possible values of
λ(ci) and we seek to find the parameter values λ∗ that maximize the likelihood, i.e.

λ∗ = max
λ∈H

PB(λ)(D).

Usually, B specifies a distribution over a (countably) infinite set of random variables
namely LH(B) and hence we cannot compute PB(λ)(D) by considering the whole
dependency graph. But as we have argued in Section 3.2.3 it is sufficient to consider
the support network (see Definition 3.16 N(λ) of the random variables occurring in
D to compute PB(λ)(D). Thus, using the monotonicity of the logarithm, we seek to
find

λ∗ = max
λ∈H

log PN(λ)(D) (4.2)

where PN(λ) is the probability distribution specified by the support network N(λ) of
the random variables occurring in D. Equation (4.2) expresses the original problem in
terms of the maximum likelihood parameter estimation problem of Bayesian networks:

Observation A Bayesian logic program together with data cases induces a Bayesian
network over the variables of the data cases.

This is not surprising because the learning setting is an instance of the probabilistic
learning from interpretations, see Section 2.3.1. More important, due to the reduction,
all techniques for maximum likelihood parameter estimation within Bayesian networks
are in principle applicable. We only need to take the following issues into account:

(1) Some of the nodes in N(λ) are hidden, i.e., their values are not observed in D.
(2) We are not interested in the conditional probability distributions associated to

ground instances of Bayesian clauses, but in those associated to the Bayesian
clauses themselves.

(3) Not only L(D,λ) but also N(λ) itself depends on the data, i.e. the data cases
determine the subnetwork of DG(B) that is sufficient to calculate the likelihood.

The available data cases may not be complete, i.e., some values may not be ob-
served. For instance in medical domains, a patient rarely gets all of the possible tests.
In presence of missing data, the maximum likelihood estimate typically cannot be
written in closed form. Unfortunately, it is a numerical optimization problem, and
all known algorithms involve nonlinear, iterative optimization and multiple calls to
a Bayesian inference procedures as subroutines, which are typically computationally
infeasible. For instance the inference within Bayesian network has been proven to
be NP-hard [Cooper, 1990]. Typical ML parameter estimation techniques (in the
presence of missing data) are the Expectation-Maximization (EM) algorithm and
gradient-based approaches. We will now discuss both approaches in turn.

4.3.2 Gradient-based Approach

We will adapt Binder et al.’s [1997] solution for dynamic Bayesian networks based
on the chain rule of differentiation. For simplicity, we fix the current instantiation of



§4.3 Parameter Estimation 65

the parameters λ and, hence, we write B and N(D). Applying the chain rule to (4.2)
yields

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ s.t.
support(ciθ)

∂ log PN (D)
∂ cpd(ciθ)jk (4.3)

where θ refers to grounding substitutions and support(ciθ) is true iff {head(ciθ)} ∪
body(ciθ) ⊂ N . Assuming that the data cases Dl ∈ D are independently sampled
from the same distribution we can separate the contribution of the different data
cases to the partial derivative of a single ground instance cθ:

∂ log PN (D)
∂ cpd(ciθ)jk

=
∂ log

∏m
l=1 PN (Dl)

∂ cpd(ciθ)jk
by independence

=
m∑

l=1

∂ log PN (Dl)
∂ cpd(ciθ)jk

by log
∏

=
∑

log

=
m∑

l=1

∂PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)
. (4.4)

In order to obtain computations local to the parameter cpd(ciθ)jk we introduce the
variables head(ciθ) and body(ciθ) into the numerator of the summand of (4.4) and
average over their possible values, i.e.,

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

( ∑
j′,k′

PN (Dl,head(ciθ) = uj′ ,body(ciθ) = uk′)
)

Applying the chain rule yields

∂PN (Dl)
∂ cpd(ciθ)jk

=
∂

∂ cpd(ciθ)jk

( ∑
j′,k′

PN (Dl | head(ciθ) = uj′ ,body(ciθ) = uk′)

· PN (head(ciθ) = uj′ ,body(ciθ) = uk′)
)

=
∂

∂ cpd(ciθ)jk

( ∑
j′,k′

PN (Dl | head(ciθ) = uj′ ,body(ciθ) = uk′)

· PN (head(ciθ) = uj′ | body(ciθ) = uk′)

· PN (body(ciθ) = uk′)
)

(4.5)

where uj ∈ D(head(ci)), uk ∈ D(body(ci)) and j, k refer to the corresponding entries
in cpd(ci), respectively cpd(ciθ). In (4.5), cpd(ciθ)jk appears only in linear form.
Moreover, it appears only when j′ = j, and k′ = k. Therefore, (4.5) simplifies two

∂PN (Dl)
∂ cpd(ciθ)jk

= PN (Dl | head(ciθ) = uj ,body(ciθ) = uk)·PN (body(ciθ) = uk). (4.6)
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Substituting (4.6) back into (4.4) yields
m∑

l=1

∂ log PN (Dl)/∂ cpd(ciθ)jk

PN (Dl)

=
m∑

l=1

PN (Dl | head(ciθ) = uj ,body(ciθ) = uk) · PN (body(ciθ) = uk)
PN (Dl)

=
m∑

l=1

PN (head(ciθ) = uj ,body(ciθ) = uk | Dl) · PN (Dl) · PN (body(ciθ) = uk)
PN (head(ciθ) = uj ,body(ciθ) = uk) · PN (Dl)

=
m∑

l=1

PN (head(ciθ) = uj ,body(ciθ) = uk | Dl)
PN (head(ciθ) = uj | body(ciθ) = uk)

=
m∑

l=1

PN (head(ciθ) = uj ,body(ciθ) = uk | Dl)
cpd(ciθ)jk

.

Combining all these, (4.3) can be rewritten as

∂ log PN (D)
∂ cpd(ci)jk

=
∑

subst. θ with
support(ciθ)

en(cijk | θ,D)
cpd(ciθ)jk

(4.7)

where

en(cijk | θ,D) := en(head(ciθ) = uj ,body(ciθ) = uk | D)

:=
m∑

l=1

PN (head(ciθ) = uj ,body(ciθ) = uk | Dl)
(4.8)

are the so-called expected counts of the joint state head(ciθ) = uj ,body(ciθ) = uk

given the data D.
Equation (4.7) shows that

PN (head(ciθ) = uj ,body(ciθ) = uk | Dl)

is all what is needed. This can essentially be computed using any standard Bayesian
network inference engine. This is not surprising because (4.7) differs from the one for
Bayesian networks given in [Binder et al., 1997] only in that we sum over all ground
instances of a Bayesian clause holding in the data. To stress this close relationship, we
rewrite (4.7) in terms of expected counts of clauses instead of ground clauses. They
are defined as follows:

Definition 4.12 (Expected Counts of Bayesian Clauses) The expected counts of a
Bayesian clauses c of a Bayesian logic program B for a data set D are defined as

en(cijk | D) := en(head(ci) = uj ,body(ci) = uk | D)

:=
∑

subst. θ with
support(ciθ)

en(head(ciθ) = uj ,body(ciθ) = uk | D) . (4.9)

◦
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Algorithm II.2: A simplified skeleton of the algorithm for adaptive Bayesian
logic programs estimating the parameters of a Bayesian logic program.

input : B, a Bayesian logic program; associated cpds are parameterized by λ; D, a
finite set of data cases

output: a modified Bayesian logic program

λ ←InitialParameters1

N ←SupportNetwork(B,D)2

repeat3

Δλ ← 04

set associated conditional probability distribution of N according to λ5

foreach Dl ∈ D do6

set the evidence in N from Dl7

foreach Bayesian clause c ∈ B do8

foreach ground instance cθ s.t. {head(cθ)} ∪ body(cθ) ⊂ N do9

foreach single parameter cpd(cθ)jk do10

Δ cpd(c)jk ← Δ cpd(c)jk + (∂ log PN (Dl)/∂ cpd(cθ)jk)11

12

13

14

Δλ ←ProjectionOntoConstraintSurface(Δλ)15

λ ← λ + α · Δλ16

until Δλ ≈ 017

return B18

Reading (4.7) in terms of definition 4.12 proves the following proposition:

Proposition 4.13 (Partial Derivative of Log-Likelihood) Let B be a Bayesian logic
program with parameter vector λ. The partial derivative of the log-likelihood of B with
respect to cpd(ci)jk for a given data set D is

∂LL(D,λ)
∂ cpd(ci)jk

=
en(cijk | D)
cpd(ci)jk

. (4.10)

◦
Equation (4.10) can be viewed as the first-order logical equivalent of the Bayesian
network formula. A simplified skeleton of a gradient-based algorithm employing
(4.10) is shown in Algorithm II.2.

Before showing how to adapt the EM algorithm, we have to explain two points,
which we have left out so far for the sake of simplicity: Constraint satisfaction and
decomposable combining rules.

In the problem at hand, the gradient ascent has to be modified to take into ac-
count the constraint that the parameter vector λ consists of probability values, i.e.
cpd(ci)jk ∈ [0, 1] and

∑
j cpd(ci)jk = 1 . Following Binder et al. [1997], there are two

ways to enforce this:
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(1) Projecting the gradient onto the constraint surface (as used to formulate the
Algorithm II.2), and

(2) reparameterizing the problem.

In the experiments, we chose the reparameterization approach because the new pa-
rameters automatically respect the constraints on cpd(ci)jk no matter what their
values are. More precisely, we define the parameters β with βijk ∈ R such that

cpd(ci)jk =
eβijk∑
l e

βilk
(4.11)

where the βijk are indexed like cpd(ci)jk. This enforces the constraints given above,
and a local maximum with respect to the β is also a local maximum with respect to
λ, and vice versa. The gradient with respect to β can be found by computing the
gradient with respect to λ and then deriving the gradient with respect to β using the
chain rule of derivatives. More precisely, the chain rule of derivatives yields

∂LL(D,λ)
∂βijk

=
∑
i′j′k′

∂LL(D,λ)
∂ cpd(ci′)j′k′

· ∂ cpd(ci′)j′k′

∂βijk
(4.12)

Since ∂ cpd(ci′)j′k′/∂βijk = 0 for all i �= i′, and k �= k′, (4.12) simplifies to

∂LL(D,λ)
∂βijk

=
∑
j′

∂LL(D,λ)
∂ cpd(ci)j′k

· ∂ cpd(ci)j′k

∂βijk

The quotient rule yields

∂LL(D,λ)
∂βijk

=
∑
j′

{
∂LL(D,λ)
∂ cpd(ci)j′k

·
(

∂e
β

ij′k
∂βijk

· ∑l e
βilk

)
−

(
eβij′k · ∂

P
l eβilk

∂βijk

)
(∑

l e
βilk

)2

}

=

{∑
j′

(
∂LL(D,λ)
∂ cpd(ci)j′k

· ∂e
β

ij′k
∂βijk

· ∑l e
βilk

)}
(∑

l e
βilk

)2 −

{∑
j′

(
∂LL(D,λ)
∂ cpd(ci)j′k

· eβij′k · ∂
P

l eβilk

∂βijk

)}
(∑

l e
βilk

)2

Because ∂eβij′k/∂βijk = 0 for j′ �= j and ∂eβijk/∂βijk = eβ
ijk, this simplifies to

∂LL(D,λ)
∂βijk

=

(
∂LL(D,λ)
∂ cpd(ci)jk

· eβijk · ∑l e
βilk

)
(∑

l e
βilk

)2 −
∑

j′

(
∂LL(D,λ)
∂ cpd(ci)j′k

· eβij′k · eβilk

)
(∑

l e
βilk

)2
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(∑ )
To further simplify the partial derivative, we note that ∂LL(D,λ)/∂ cpd(ci)jk can be
rewritten as

∂LL(D,λ

∂ cpd(ci)jk
=

en(cijk | D)
cpd(ci)jk

=
en(cijk | D)

eijk
P

l eβijk

=
en(cijk | D)

eβijk
·
(∑

l
eβijk

)
by substituting (4.11) in (4.9). Using the last equation, (4.13) simplifies to

∑ ∑
Using once more (4.11), the following proposition is proven:

Proposition 4.14 (Partial Derivative of Log-Likelihood of an Reparameterized
BLP) Let B be a Bayesian logic program reparameterized according to (4.11). The
partial derivative of the log-likelihood of B with respect to βijk for a given data set D
is

∂LL(D,λ)
∂βijk

= en(cijk | D) − cpd(ci)jk

∑
j′ en(cij′k | D) . (4.14)

◦
Equation (4.14) shows that the partial derivative can be expressed solely in terms of
expected counts and original parameters. Consequently, its computational complexity
is linear in (4.10).

We assumed decomposable combining rules.

Definition 4.15 (Decomposable Combining Rule) Decomposable combining rules
can be expressed using a set of separate, deterministic nodes in the support network
such that the family of every non-deterministic node uniquely corresponds to a ground
Bayesian clause, as shown in Figure 4.3. ◦
Most combining rules commonly employed in Bayesian networks such as noisy or or
linear regression are decomposable (cp. [Heckerman and Breese, 1994]). The definition
of decomposable combining rules directly imply the following proposition.

Proposition 4.16 For each node x in the support network n there exist at most one
clause c and a substitution θ such that body(cθ) ⊂ LH(B) and head(cθ) = x. ◦

∂ cpd(ci)j′k
·eβij′k

}
(4.13)

∂ cpd(ci)jk
·
(∑

l
eβilk

)
−

∑
j′

∂LL(D,λ)

l e
βilk

2 ·
{

∂LL(D,λ)
=

eβijk

l e
βilk

·
j′ en(cij′k | D) .

eβij′k
·
(∑

l
eβilk

)
·eβij′k

}

= en(cijk | D) − eβijk

eβijk
·
(∑

l
eβilk

)2

−
∑

j′
en(cij′k | D)(∑

l e
βilk

)2 ·
{

en(cijk | D)

∂βijk

=
eβijk

∂LL(D,λ)
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... ... ...

hnh1

b11 b1k1 blklbl1

h

Figure 4.3. The scheme of decomposable combining rules. Each rectangle corresponds to
a ground instance cθ ≡ hi|b1i, . . . , bki of a Bayesian clause c ≡ h|b1, . . . , bk. The node h is a
deterministic node, i.e., its state is deterministic function of the parents joint state.

Thus, while the same clause c can induce more than one node in N , all of these nodes
have identical local structure: the associated conditional probability distributions (and
so the parameters) have to be identical, i.e.,

∀ substitutions θ : cpd(cθ) = cpd(c) .

Example 4.17 Consider the nodes bt(ann), mc(ann), pc(ann) and bt(brain),
mc(brain), pc(brian). Both families contribute to the conditional probability dis-
tribution associated with the clause defining bt(X). ◦
This is the same situation as for dynamic Bayesian networks where the parameters
that encode the stochastic model of state evolution appear many times in the net-
work. However, gradient methods might be applied to non-decomposable combining
functions as well. In the general case, the partial derivatives of an inner function has
to be computed. For instance, Binder et al. [1997] derive the gradient for noisy or
when it is not expressed in the structure. This seems to be more difficult in the case
of the EM algorithm, which we will now devise.

4.3.3 Expectation-Maximization (EM)

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977] is another
classical approach to maximum likelihood parameter estimation in the presence of
missing values. The basic observation of the Expectation-Maximization algorithm is
as that

if the states of all random variables are observed, then learning would be easy.

Assuming that no value is missing, Lauritzen [1995] showed that maximum likelihood
estimation of Bayesian network parameters simply corresponds to frequency counting
in the following way. Let n(a | D) denote the counts for a particular joint state
a of variables A in the data, i.e. the number of cases in which the variables in A
are assigned the evidence a. Then the maximum likelihood value for the conditional
probability value P (X = x|Pa(X) = u) is the ratio

n(X = x,Pa(X) = uk | Dl)
n(Pa(X) = uk | Dl)

. (4.15)
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However, in the presence of missing values, the maximum likelihood estimates typ-
ically cannot be written in closed form. Therefore, the Expectation-Maximization
algorithm iteratively performs the following two steps:

(E-Step) Based on the current parameters λ and the observed data D the algorithm
computes a distribution over all possible completions of each partially observed
data case. Each completion is then treated as a fully-observed data case weighted
by its probability.

(M-Step) A new set of parameters is then computed based on Equation (4.15) taking
the weights into accounts.

Lauritzen [1995] showed that this idea leads to a modified Equation (4.15) where the
expected counts

en(a|D) :=
m∑

l=1

PN (a | Dl) (4.16)

are used instead of counts. Again, essentially any Bayesian network engine can be
used to compute P (a|Dl).

To apply the EM algorithm to parameter estimation of Bayesian logic programs,
we assume decomposable combining rules. Thus,

• each node in the support network was “produced” by exactly one Bayesian clause
c, and

• each node derived from c can be seen as a separate “experiment” for the condi-
tional probability distribution cpd(c).

Formally, due to the reduction of our problem at hand to parameter estimation within
the support network N , the update rule becomes

cpd(ci)jk ← en(ci|D)
en(body(ci)|D)

=
en(head(ci),body(ci)|D)

en(body(ci)|D)
(4.17)

where en(·|D) refers to the first order expected counts as defined in Equation (4.9).
Note that the summation over data cases and ground instances is hidden in en(·|D).
Equation (4.17) is similar to the one already encountered in Equation (4.10) for com-
puting the gradient.

4.3.4 Gradient vs. EM

As one can see, the EM update rule in equation (4.17) and the corresponding equa-
tion (4.7) for the gradient ascent are very similar. Both rely on computing expected
counts. They differ mainly in the way the expected counts are weighted. When the
estimated probability is zero, this will dominate the evaluation of the Bayesian logic
program. To avoid this difficulty one can adopt solutions to this problem well-known
for the propositional case such as m-estimates (see e.g. [Mitchell, 1997]) or BDeu
priors [Heckerman et al., 1995a]. However, gradient-based methods should be less
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sensitive to informative priors than EM, because the EM uses the current parame-
ters “only” to compute the expected counts, whereas gradient-based methods weight
the expected counts by the current parameters. Thus, gradient-based approaches up-
date the parameters in a more conservative manner by propagating the initial set of
parameters through the iterations.

The comparison between EM and (advanced) gradient techniques like conjugate
gradient is not yet well understood. Both methods perform a greedy local search,
which is guaranteed to converge to stationary points. They both exploit expected
counts, i.e., sufficient statistics as their primary computation step. However, there are
important differences.

The EM is easier to implement because it does not have to enforce the constraint
that the parameters are probability distributions. It converges much faster than simple
gradient, and is somewhat less sensitive to starting points. (Conjugate) gradients esti-
mate the step size (see below) with a line search involving several additional Bayesian
network inferences compared to EM.

On the other hand, gradients are more flexible than EM, as they allow one to learn
non-multinomial parameterizations using the chain rule for derivatives [Binder et al.,
1997] or to choose other scoring functions than the likelihood [Jensen, 1999].

Furthermore, although the EM algorithm is quite successful in practice due to
its simplicity and fast initial progress, it has been argued (see e.g. [Jamshidian and
Jennrich, 1997, McLachlan and Krishnan, 1997] and references in there) that the EM
convergence can be extremely slow, and that more advanced second-order methods
should in general be favored to EM. In the context of Bayesian networks,Thiesson
[1995], Bauer et al. [1997], and Ortiz and Kaelbling [1999a] investigated acceleration
of the EM algorithm. All approaches rely on conventional (gradient-based) optimiza-
tion techniques viewing the change in values in the parameters at an EM iteration as
generalized gradient 15 (see [Ortiz and Kaelbling, 1999b] for a nice overview). Gradient
ascent yields parameterized EM, and conjugate gradient yields conjugate gradient EM
(CGEM). Although accelerated EMs can be significantly faster than EM, they all re-
quire more computational efforts than the basic EM. One reason is that they perform
in each iteration a line search to choose an optimal step size. There are drawbacks of
doing a line search. First, a line search introduces new problem-dependent parameters
such as stopping criterion. Second, the line search involves several likelihood evalu-
ations, which are NP-hard for Bayesian networks. Thus, the line search dominates
the computational costs resulting in a disadvantage of the accelerated EM compared
to the EM, which does one likelihood evaluation per iteration. The computational
extra costs have to be amortized over the long run to gain a speed-up. Therefore,
we we introduced in [Fischer and Kersting, 2003] a novel acceleration of EM called
scaled CGEM (SCGEM), which overcomes the expensive line search. It evaluates the
likelihood as often as the EM per iteration, namely once. SCGEM adopt the ideas
underlying scaled conjugate gradients (SCGs), which are well-known from the field
of learning neural networks [Møller, 1993]. SCG employs an approximation of the
Hessian of the scoring function to quadratically extrapolate the minimum instead of
doing a line search. Then, a Levenberg-Marquardt approach [Luenberger, 1984] scales

15 Generalized gradients perform regular gradient techniques in a transformed space.
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Figure 4.4. CEPH/French 12 (upper pedigree) and CEPH/French 17 (lower pedigree).
Boxes denote males, circles denote females. A small number is the person’s id within the
pedigree, whereas a large number is the person’s global id within the CEPH database.

the step size. SCGEM adopts the scaling mechanism for maximization and applies it
to the expected information matrix. We refer to [Fischer and Kersting, 2003] for more
details.

Finally, though we focused here on parameter estimation, methods for computing
the gradient of the log-likelihood with respect to the parameters of a probabilistic
model can also be used to employ generative models within discriminative learners
such as SVMs. In the context of probabilistic ILP, this yields relational kernel meth-
ods, which we will introduce in Section 8.

4.4 Experimental Evaluation

Scooby is intended as a generic framework for learning Bayesian logic programs.
As such, it leaves several issues open. These include: the actual language bias (and
corresponding refinement operator), the scoring function, possible pruning methods,
etc. Nevertheless, in order to show the validity of our framework, we report on some
experiments that prove that the principles underlying Scooby work.

More specifically, we implemented Scooby in Sicstus Prolog 3.9.0. The experi-
ments were run on a Pentium-IV 2.8 GHz Linux machine with 2.1 GB main memory.
The implementation features a beam-search using the log-likelihood of the data as
score, lookaheads, simple mode declarations, and the specification of extensional back-
ground knowledge. The chosen syntactic language bias is L1, cf. end of Section 4.1.
The implementation has an interface to the Netica API (http://www.norsys.com)
for Bayesian network inference and maximum likelihood estimation. To perform the
maximum likelihood estimation, we implemented the EM algorithm and adapted the
scaled conjugate gradient (SCG) as implemented in Bishop and Nabney’s Netlab
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# beam size 1 2 3
# data cases 20 30 50 20 30 50 20 30 50

miss rate 0.0 - - + + + + + + +
miss rate 0.2 - - - - + + + + +

Table 4.1. The results of the blood type experiments. A ’+’ indicates that Scooby scored
the original, intensional Bayesian clauses of the bloodtype program best; a ’-’ indicates that
Scooby learned other clauses.

library (http://www.ncrg.aston.ac.uk/netlab/, see also [Bishop, 1995]) with an
upper bound on the scale parameter of 2 · 106. For each score evaluation, the param-
eters were initialized randomly. To avoid zero entries in the conditional probability
tables, m-estimates (m = 1) were used, see [Cestnik, 1990, Mitchell, 1997]. We used a
simple, typical stopping criterion, which stopped when a change in log-likelihood was
less than 10−3 from one iteration to the next.

Two experiments focusing on a different aspect of Bayesian logic programs,
were performed. The first experiment was concerned with the question whether our
Scooby could learn the structure of the bloodtype program from examples. The sec-
ond experiment shows how Scooby can learn a probabilistic concept for the Bongard
problem domain that is frequently used in ILP. Applications of Bayesian logic pro-
grams to important real-life data sets such as the KDD Cup 2001 data set on protein
localization and web-page classification can be found in Chapter 8.3 on relational
Fisher kernels.

4.4.1 Genetic Domain

The goal in the first experiment was to learn a global, descriptive model for our
genetic domain, i.e. to learn the intensional Bayesian clauses of the bloodtype pro-
gram. To do so, we used the CEPH (Centre d’Etude du Plymorphisme Humain)
pedigrees16 [Dausset et al., 1990], version 9.0, of all Amish, French and Venezue-
lan families (CEPH family numbers: 2, 12, 17, 21, 23, 28, 35, 37, 45, 66, 102, 104, 884).
These CEPH pedigrees are large and nuclear, i.e., they consist of two parents and
their common offsprings. However, most of the CEPH pedigrees include all four as-
sociated grandparents, too. Figure 4.4 shows two CEPH pedigrees. We assumed all
pedigrees to be independent, and extracted all structurally different pedigrees. This
yielded 7 structurally different pedigrees. These 7 pedigrees were encoded together in
one family (with 7 different components). Furthermore, the predicates m/2 and f/2
were declared to be logical. Recall from the end of Section 3.2.2 that logical predi-
cates are specified by explicitly listing all true ground facts. The advantage is that
one does not need to to consider the associated conditional probability distributions
for such predicates. Lookahead declarations were used only for the predicates m/2 and
f/2. These specified that when an atom for these predicates was added, say m(X, Y),
one should also consider the refinements m(X, Y), p(X) and m(X, Y), p(Y) for all possible

16 A pedigree is a record of a line of ancestors.
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positive

negative

Figure 4.5. A Bongard problem consisting of 12 scenes, six positive ones and six negative
ones. The goal is to discriminate between the two classes.

predicates p/1. Finally, with each Bayesian predicate, the average combining rule was
associated.

We randomly sampled 20, 30, and 50 data cases (each representing a family)
with both 0.0 and 0.2 values missing at random. This simulates 140, 210 and 350
(respectively) independent pedigrees for both miss rates because each independent
family consists of 7 pedigrees. Then, we ran Scooby on each data case with beam
sizes 1, 2, and 3. The results are summarized in Table 4.1 where a + indicates that
Scooby scored the original, intensional Bayesian clauses of the bloodtype program
best; a - indicates that Scooby learned other clauses. As one can see, when the beam
size and the number of data cases used is large enough, Scooby is able to learn all
original clauses. In all negative cases, Scooby re-discovers

pc(X) | f(X,Y), mc(Y), pc(Y).
bt(X) | mc(X), pc(X).

but fails to find the correct definition of mc/2. It learned either mc(X)|pc(X)
or mc(X)|pc(X), father(Y, X), mc(Y). Thus, the first experiment clearly shows that
Scooby is able to induce the structure of some simple Bayesian logic programs from
data.

4.4.2 Bongard Domain

The Bongard problems (due to the Russian scientist M. Bongard) are well-known
problems within ILP, cf. [Van Laer and De Raedt, 2001]. Consider Figure 4.5. Each
example or scene consists of
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# data cases
miss rate 100 300

0.0 + +
0.2 - +

Table 4.2. Further results of the Bongards experiments. A ’+’ indicates that Scooby scored
the original, intensional Bayesian clauses best; a ’-’ indicates that Scooby learned other
clauses.

• a variable number of geometrical objects such as triangles, rectangles and circles
etc. (predicate obj/2 with D(obj) = {triangle, circle}), each having a number of
different properties such as color, orientation, size etc., and

• a variable number of relations between objects such as in (predicate in/2 having
states true, false), leftof, above etc.

The usual task that has been addressed in the context of the Bongard problems
within the field of ILP is that of classification, i.e. that of finding a set of rules, which
discriminates the positive from the negative examples (represented by class/1 over
the states pos,neg). The popularity of the Bongard problems as a benchmark for ILP
can be explained by the fact that they are very similar to real-world problems in
e.g., the field of computational chemistry, where essentially the same representational
problems arise. Indeed, in these problems, examples are molecules and are composed
of several atoms with specific properties. Furthermore, there exist relations among
the atoms, such as the bonds and possibly functional groups.

The purpose of our second experiment is to show that Scooby can learn proba-
bilistic concepts from examples. A probabilistic concept is one that assigns a probabil-
ity distribution to the possible classes. So, instead of classifying examples as positive
or negative, a probabilistic concept would assign a probability of p to the positive class
and of 1-p to the negative one. Notice that probabilistic concept-learning is beyond
the scope of traditional ILP systems. A further difficulty with traditional ILP arises in
the case of missing values. The equivalent of missing values in the usual ILP setting
is that some of the facts describing the examples have an unknown truth-value, a
problem that has not received much attention in the ILP literature.

The experiment was set up as follows. We randomly sampled 100 and 300 data
cases with miss rates of 0.0, and 0.2. Each data set consisted of equally many scenes
of 2, 4, 6 or 8 objects. An object was with probability 0.3 a circle and with probability
0.7 a triangle. We assumed the objects to be ordered, i.e., object o1 can only be in
o2, o2 can only be in o3, etc. The probability of each single object to be in another
object was 0.5. The probabilistic concept to be learned is specified by the following
Bayesian clause:

obj(E, A) in(A, B) obj(E, B) P(class(E))

triangle true triangle (0.7, 0.3)
triangle true circle (0.7, 0.3)

. . . . . . . . . . . .
triangle false triangle (0.1, 0.9)

. . . . . . . . . . . .
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Figure 4.6. Balios. (a) Graphical representation of the university Bayesian logic program.
(b) Textual representation of Bayesian clauses with associated conditional probability dis-
tributions. (c) Computed support network and probabilities for a probabilistic query.

where noisy or is associated with class/1. The class of each example in the data
set was then sampled from the probability distribution that the above Bayesian logic
program assigns to each of the two classes.

We ran Scooby on each data set with beam size 1. We associated noisy or with
all predicates. The obj/2 predicate was declared to be logical. The results are sum-
marized in Table 4.2, where + indicates that the structure of the learned Bayesian
logic program was correct. Thus, this experiment shows that there exist tasks (such
as probabilistic concept-learning) that are difficult (or uncommon) for traditional ILP
systems but that can be addressed with Scooby and Bayesian logic programs.

Balios – The Engine for Bayesian Logic Programs*

An engine for Bayesian logic programs featuring a graphical representation,
logical atoms, and aggregate functions has been implemented in the Balios

* Builds on [Kersting and Dick, 2004].
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system [Kersting and Dick, 2004], which is freely available for academic at
http://www.informatik.uni-freiburg.de/~kersting/achilleus/.

Balios is written in Java. It calls Sicstus Prolog to perform logical inference and
a Bayesian network inference engine (e.g. Hugin or Elvira) to perform probabilistic
inference. Balios features a GUI graphically representing Bayesian logic programs,
see Figure 4.6, computing the most likely configuration, exact (junction tree) and
approximative inference methods (rejection, likelihood and Gibbs sampling), as well
as parameter estimation methods (hard EM, EM and conjugate gradient).

Future Work

With combining rules and aggregate functions, we offered two ways for handling mul-
tiple firing Bayesian clauses. Identifying cases, in which to prefer one method over the
other one, remains an open question. One attractive alternative is to leave this ques-
tion to the learner. For instance, Uwents and Blockeel’s [2005] initiated research on
relational neural networks to learn non-trivial combinations of aggregation and com-
bining rules. Another alternative are non-parameteric approaches such as relational
probability estimation trees [Fierens et al., 2005].

Trees could also be used to represent the conditional probability distributions asso-
ciated with Bayesian clauses. We have only considered the nav̈e representation form,
namely a tabular representation. This representation is exponential in the number of
parents of a variable. As for Bayesian networks, this is a major problem when learn-
ing because the large numbers of parameters require large numbers of data cases to
be assessed reliably. This is the reason why learning methods usually prefer model
structures involving few parameters. Instead of penalizing the likelihood for complex
model structures, one can also explicitly represent the local structure of conditional
probability distributions, for instance using decision trees. This has been done for
probabilistic relational models [Getoor, 2001].

One practical issue of the structure learning of Bayesian logic programs as pre-
sented in this thesis is its computational cost. To evaluate a single neighbour, the
EM algorithm (respectively a gradient-based parameter estimation algorithm) has to
run for several iterations in order to get reasonable expected counts. Each iteration
requires a full Bayesian network inference on all data cases. Neighbours, however,
differ from the current best hypothesis only in one Bayesian clause. Most parts of the
program remain unchanged. In turn, it could be expected that the expected counts
do not change dramatically as well. This idea has been followed within the structural
EM (SEM) for learning the structure of Bayesian networks [Friedman, 1997]. SEM
takes the current model Hk and runs a parameter estimation algorithm for a while to
get reasonably completed data. It then fixes the completed data cases and uses them
to compute the maximum likelihood parameters of each neighbour H ′. SEM chooses
the neighbour with the best improvement in score as the new best hypothesis Hk+1, if
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it improves upon Hk, and iterates. SEM variants of Scooby are an interesting future
line of research.

One major drawback of Bayesian logic programs, inherited from Bayesian net-
works, is their acyclicity assumption. Consider a system for medical diagnosis. Two
symptoms of the disease cardiac tamponade are dyspnea (breathlessness) and rapid
breathing (over 20 inhalations per minute). Clearly, the two findings are related: if
a patient has cardiac tamponade and has difficulty breathing, it is likely that the
same patient is breathing rapidly trying to compensate for the air shortage. To cope
with random variables that are related only in an undirected manner, i.e., there is no
sensible cause-effect relationship, we have to resort to a trick: we add an extra con-
straint atom, which is always instantiated 17, see Jensen [2001]. Although, relational
abstraction allows to model groups of such constraint variables, using an undirected
Markov network could be more elegant as they can represent undirected probabilistic
relations with non-degenerate conditional probabilities. Indeed, there exist relational
and logical variants of Markov networks, namely Taskar et al.’s relational Markov net-
works and Domingos and Richardson’s Markov logic networks. However, no research
on hybrid languages combining the advantages of directed and undirected models has
been conducted yet. Within the Uncertainty in AI community, models with both di-
rected and undirected arcs are called chain graphs. So, research on ’chain logic graphs’
seems to be an interesting future line of research.

Finally, Bayesian logic programs view ground atoms as random variables. In do-
ing so, observations become a meta concept of the language: extensional Bayesian
facts do not encode the state of random variables (the blood type of ann is a) but
rather that random variables are relevant. In contrast, stochastic logic programs for
instance, treat ground atoms as states of random variables. Thus, observations are
part of the language but at the expense of losing the clear notation of random variable.
Indeed, this is not a hard dichotomy; a (finite) random variable x with a finite domain
S(x) = {d1, d2, . . . , dn} can be represented as a Markov chain xd1 → xd2 → . . . → xdn
encoding the mutually exclusiveness constraints among the states di. Unfortunately,
this encoding is somewhat complicated and error-prone, and continuous random vari-
ables cannot be represented. Therefore, combining both views is an interesting line for
future research. Avi Pfeffer’s IBAL provides a first step into this direction [Pfeffer,
2001].

Conclusions

We have described Bayesian logic programs, their representation language, their se-
mantics, and a query-answering process, and investigated the learning of Bayesian
logic programs from data.

17 Let A and B two random variables influencing each other quantified by R(A, B). Introduce
a new boolean variable C as a child of A and B. Now, let P (C = true|A, B) = R(A, B)
and P (C = no|A, B) = 1 − R(A, B) and enter the evidence C = yes.
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Bayesian logic programs combine Bayesian networks with definite clause logic.
The main idea of Bayesian logic programs is to establish a one-to-one mapping be-
tween ground atoms in the least Herbrand model and random variables. The least
Herbrand model of a Bayesian logic program together with its direct influence re-
lation is viewed as a (possibly infinite) Bayesian network. Bayesian logic programs
inherit the advantages of both Bayesian networks and definite clause logic, including
the strict separation of qualitative and quantitative aspects. Moreover, the strict sep-
aration facilitated the introduction of a graphical representation, which stays close to
the graphical representation of Bayesian networks.

Indeed, Bayesian logic programs can naturally model any type of Bayesian network
(including those involving continuous variables) as well as any type of “pure” Prolog
program (including those involving functors). We also demonstrated that Bayesian
logic programs can model hidden Markov models and stochastic grammars, and in-
vestigated their relationship to other first order extensions of Bayesian networks.

The framework for learning Bayesian logic programs is an instance of the proba-
bilistic learning from interpretations setting as described in Section 2.4.3. It is unifying
as it combines traditional Bayesian network learning and ILP principles. Therefore,
our framework builds upon many of the results for Bayesian network learning from
the Uncertainty in AI community, see e.g. [Heckerman, 1995], and upon many of the
results from the ILP community. Most notably, we have adapted the EM and gradient
ascent algorithms for parameter estimation, and the general structure learning mech-
anisms from the field of Bayesian networks, and the clausal discovery and learning
from interpretations settings from ILP for probabilistic learning from interpretations.

Related Work

Bayesian logic programs belong to the statistical relational learning line of research
that extends Bayesian networks. They are motivated and inspired by the formalisms
discussed in [Poole, 1993, Haddawy, 1994, Ngo and Haddawy, 1997, Jäger, 1997,
Friedman et al., 1999, Koller, 1999]. We will now investigate these relationships in
more detail. First, we will discuss related representational frameworks, then we will
discuss related learning approaches.

Representation

Here, we will relate the representation language and the semantics of Bayesian logic
programs to other SRL approaches.

Probabilistic logic programs [Ngo and Haddawy, 1995, 1997] also adapt a logic
program syntax, the concept of the least Herbrand model to specify the relevant ran-
dom variables, and SLD resolution to develop a query-answering procedure. Whereas
Bayesian logic programs view atoms as random variables, probabilistic-logic programs
view them as states of random variables. For instance,

P (burglary(Person, yes) | neighbourhood(Person, average)) = 0.4
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states that the aposteriori probability of a burglary in Person’s house given that
Person has an average neighbourhood is 0.4. Thus, instead of conditional probability
distributions, conditional probability values are associated with clauses.

Treating atoms as states of random variables has several consequences: (1) Exclu-
sivity constraints such as

false ← neighbourhood(X, average), neighbourhood(X, bad)

have to be specified in order to guarantee that random variables are always in exactly
one state. (2) The inference procedure is exponentially slower in time for building the
support network than that for Bayesian logic programs because there is a proof for
each configuration of random variable. (3) It is more difficult — if not impossible —
to represent continuous random variables. (4) Qualitative, i.e., the logical component,
and quantitative information, i.e., the probability values, are mixed. It is the separa-
tion of these components that enables a graphical representation for Bayesian logic
programs.

Probabilistic and Bayesian logic programs are also related to Poole’s framework
of probabilistic Horn abduction [1993], which later developed into the Indepen-
dent Choice Logic [Poole, 1997]. Probabilistic Horn abduction is “a pragmatically-
motivated simple logic formulation that includes definite clauses and probabilities over
hypotheses” [Poole, 1993]. It essentially associates distributions with certain atoms
while clauses are kept purely logical. Poole’s framework provides a link to abduction
and assumption-based reasoning. However, as Ngo and Haddawy point out, proba-
bilistic and therefore also Bayesian logic programs do not have as many constraints on
the representation language, represent probabilistic conditional dependencies directly
using clauses rather than indirectly using atoms, have a richer representational power,
and their independence assumption reflects the causality of the domain.

Pfeffer [2000] introduced probabilistic relational models, which are based on
the well-known entity/relationship model. In probabilistic relational models, the ran-
dom variables are the attributes. The relations between entities are deterministic,
i.e. they are only true or false. Probabilistic relational models can be described as
Bayesian logic programs.

Indeed, each attribute a of an entity type E is a Bayesian predicate a(E) and each
n-ary relation r is an n-ary logical Bayesian predicate r/n. Probabilistic relational
models consist of a qualitative dependency structure over the attributes and their as-
sociated quantitative parameters (the conditional probability densities). Getoor et al.
[2002] distinguish between two types of parents of an attribute. First, an attribute a(X)
can depend on another attribute b(X), e.g. the professor’s popularity depends on the
professor’s teaching ability in the university domain. This is equivalent to the Bayesian
clause a(X) | b(X). Second, an attribute a(X) possibly depends on an attribute b(Y) of
an entity Y related to X, e.g. a student’s grade in a course depends on the difficulty
of the course. The relation between X and Y is described by a slot or logical rela-
tion s(X, Y). Given these logical relations, the original dependency is represented by
a(X) | s(X, Y), b(Y). To deal with multiple ground instantiations of a single clause (with
the same head ground atom), probabilistic relational models employ aggregate func-
tions rather than combining rules as discussed earlier. Probabilistic relational models
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have been extended to handle dynamic environments, i.e., distributions changing over
time [Sanghai et al., 2003].

Clearly, probabilistic relational models 18 employ a more restricted logical com-
ponent than Bayesian logic programs do. It is a version of the commonly used en-
tity/relationship model, which can be represented using a (range-restricted) negation-
free Datalog program 19. Thus, they cannot employ the full power of Prolog. For in-
stance, recall the blood type example exploiting founder information, cf. Figure 3.9.
Probabilistic relational models cannot intensionally define founder/1 because this in-
volves negation. Furthermore, hidden Markov models and grammars, cf. Figure 3.10
cannot be (at least directly) represented because this involves functors. As another
example, consider the case where the classification of a molecule depends on whether
there is a path between two atoms or not. The definition of path/2 cannot be rep-
resented intensionally within a probabilistic relational model because this requires
recursion. In contrast, Bayesian logic programs have the full expressivity of definite
clause logic and, therefore, of a universal Turing machine. Indeed, general definite
clause logic (using functors) is undecidable. The functor-free fragment of definite
clause logic, however, is decidable.

Jäger [1997] introduced relational Bayesian networks, which are Bayesian net-
works where the nodes are predicate symbols. The states of these random variables are
possible interpretations of the symbols over an arbitrary, finite domain (here we only
consider Herbrand domains), i.e. the random variables are set-valued. The inference
problem addressed by Jäger asks for the probability that an interpretation contains
a ground atom. Thus, relational Bayesian networks are viewed as Bayesian networks
where the nodes are the ground atoms and have the domain {true, false}20. The key
difference between relational Bayesian networks and Bayesian logic programs is that
the quantitative information is specified by so called probability formulas. These for-
mulas employ the notion of combination functions, functions that map every finite
multiset with elements from [0, 1] into [0, 1], as well as that of equality constraints21.
Let F (cancer)(x) be noisy or{combΓ {exposed(x, y, z) | z; true} | y; true} . This for-
mula states that that for any specific organ y, multiple exposures to radiation have
a cumulative but independent effect on the risk of developing cancer of y. Thus, a
probability formula not only specifies the distribution but also the dependency struc-
ture. As a consequence and also because of the computational power of combining
rules, a probability formula is easily expressed as a set of Bayesian clauses: the head
of the Bayesian clauses is the corresponding Bayesian atom and the bodies consist of
all maximally generalized Bayesian atoms occurring in the probability formula. Now
the combining rule can select the right ground atoms and simulate the probability
formula. This is always possible because the Herbrand base is finite. E.g. the clause
cancer(X) | exposed(X,Y,Z) together with the right combining rule and associated
conditional probability distribution models the example formula.

18 Several extensions to treat existential uncertainty, referential uncertainty, and domain
uncertainty exist.

19 Datalog programs are definite clause programs without function symbols.
20 It is possible, but complicated to model domains having more than two values.
21 To simplify the discussion, we will further ignore these equality constraints here.
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Recently, Milch et al. [2004, 2005] extended Bayesian logic programs and proba-
bilistic relational models to Bayesian logic (BLOG). Every BLOG model specifies
a unique probability distribution over first-order model structures that can contain
varying and unbounded numbers of objects. The key idea is a generative process that
constructs worlds by adding objects whose existence and properties depend on those
of objects already created. Objects can either be guaranteed, meaning the extension
is fixed, or they can be generated from a distribution. Thus, BLOG overcomes the
closed world and unique name assumptions employed within Bayesian logic programs.

Carbonetto et al. [2005] introduced a nonparametric extension of BLOG. BLOG
specifies a prior over the number of objects. In many domains, however, it is unrea-
sonable for the user to suggest such a proper, data-independent prior. In contrast, in
NP-BLOG (nonparametric BLOG), Carbonetto et al. use Dirichlet processes to
cast distributions over unknown objects and their attributes. This, in turn, resolves
some difficulties in model selection and inference caused by varying numbers of objects
because it handles distributions over unbounded sets of objects.

Laskey and Costa [2005] introduced multi-entity Bayesian networks (MEBN).
MEBNs represent the world as comprised of entities that have attributes and are
related to other entities. Whereas Bayesian logic programs represent and quantify the
relations among random variables using Horn clauses, MEBNs uses so-called MFrags.
MFrags contain nodes arranged in a directed graph. Nodes represent random variables
and arcs represent direct dependency relationships; and local distributions specify
conditional probability distributions. Each node has an associated random variable
label and a parameterized list of arguments. Entity identifiers are substituted for
arguments to form instances of the random variables.

In addition to extensions of Bayesian networks, several other probabilistic models
have been extended to the first-order or relational case: Sato [1995] introduced dis-
tributional semantics in which ground atoms are seen as random variables over
{true, false}. Probability distributions are defined over the ground facts of a program
and propagated over the Herbrand base of the program using the clauses. Consider
the following PRISM program (inspired by Sato and Y.Kameya [2004]) specifying a
distribution over ground atoms of the form toss(l,n) such that l is a list of outcomes
of n coin tosses:

values(coin.[a,b]). % discrete random variable named coin
% with domain {a,b}

:- set_sw(coin,[0.6+0.4]) % distribution over {a,b}

toss(N,[A|C]) :- N>0, msw(coin,A), msw(coin,B),A==B,
N1 is N-1,test(N1,C).

toss(0,[]).

Here, msw(coin,.) implements a single stochastic coin toss resulting with probability
0.6 in a and with probability 0.4 in b. In principle, the probability of a derivation is the
product of all msw results used in the derivation. PRISM programs, however, can fail,
which in turn affects the distribution. Consider querying :- toss(2,X). The clause
head toss(N, [A|C]) unifies, and the goal msw is executed two time, i.e., values for A
and B are chosen randomly according to the distribution specified. If a respectively
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b are sampled, the goal A==B fails, so does :- toss(2,X). In turn, no observation
is generated. Therefore, the probability of a single proof is its derivation probability
normalized by the sum of all its alternative proofs. This is akin to the semantics
of stochastic logic programs [Muggleton, 1996, Cussens, 1999], which we have
discussed in Section 2.3.2. As a reminder, stochastic logic programs lift probabilis-
tic context-free grammars to the first order case by replacing production rules with
probability values with clauses labeled with probability values.

Taskar et al.’s relational Markov networks (RMN) [2002] extend Markov net-
works, see e.g. [Pearl, 1991], by providing a relational language for describing clique
structures and enforcing parameter sharing at the template level. A key concept of
RMNs are relational clique templates, which specify the structure of a Markov net-
work. A clique template C is similar to a SQL database query. It selects nodes from
a Markov network and connects them into cliques. Each clique template C is addi-
tionally associated with a potential function φC(vc) that maps values vC of random
variables to nonnegative real numbers. To perform inference and estimate parame-
ters, an RMN is unrolled into a Markov network; the connections among the nodes
are built by applying the clique templates to the data; each template C can result
in several cliques that have identical structure and share the same potential function
φC(·). The resulting Markov network factorizes the distribution as

P (x) =
1

Z(x)

∏
C∈C

∏
vC∈C

φC(vC)

where Z(x) is the normalizing partition function. Usually, the clique potentials are
represented as a log-linear combination of features

φC(vc) = ewt
C ·fC(vc)

where fC(·) defines a feature vector for clique C and wt
C is the transposed corre-

sponding weight vector. RMNs can be viewed as the undirected version of PRMs.
Whereas inference in Bayesian networks is NP hard [Cooper, 1990], inference in
Markov network is #P-complete 22 [Roth, 1998]. Therefore, one usually resorts to
approximate inference techniques such as Gibbs sampling [Geman and Geman, 1984],
where each variable is sampled in turn given its direct neighbours, and belief propaga-
tion [Yedidia et al., 2001]. In contrast to Bayesian networks, maximum aposteriori and
maximum likelihood estimates of Markov networks cannot be represented in closed
form in the fully observable case. However, as the log-likelihood is a concave function
of the weights, they can be efficiently be computed using standard gradient=based
approaches.

Recently, Domingos and Richardson [2004] introduced Markov logic networks
(MLNs), see Section 2.3.1 for a discussion, which upgrade Markov networks to the

22 #P is the class of functions f : {0, 1}n 
→ N for which there is a nondeterministic polyno-
mial time Turing machine M such that for every word w, M(w) has exactly f(w) accepting
paths. It is natural to expect that for NP complete problems the corresponding counting
problem is in #P but it is also possible to get #P problems out of problems, which are
polynomial solvable.
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first order case. Therefore, one can view MLNs as undirected version of Bayesian logic
programs. Similar to RMNs, an MLN is unrolled into a Markov network. Jäger [2005]
recently showed that MLNs can be essentially represented as RBNs and, in turn, as
Bayesian logic programs.

Neville and Jensen [2004] proposed relational dependency networks (RDNs),
which are relational upgrades of dependency networks [Heckerman et al., 2000] (DNs).
DNs approximate the joint distribution with a set of conditional probability distri-
butions, which are learned independently. More precisely, a DN is essentially a fully
connected, directed graph over a set of nodes X. With each node X, a conditional
probability distribution P(X|X\{X}) is associated. In general, a DN may not always
represent a joint distribution. Therefore, Heckerman et al. propose a Gibbs sampling
approach for approximative inference. Neville and Jensen now replace the conditional
probability distribution by relational probability trees [Neville et al., 2003] for each
predicate.

Santos Costa et al. [2003a] introduced CLP(BN), which is a constraint logic
programming (CLP) approach to define joint probability distributions over missing
values in a logic program. In general, logic variables are said to be constrained if they
are bound to one or more constraints. Here, constraints are restrictions on the set of
constants logical variables can take. CLP(BN) replaces hard constraints, which are
typically employed within CLP, by Bayesian ones. Consider the following example
within the university domain:

grade(Reg,Grade) :- reg(Reg,Course,Student),
difficulty(Course,Dif),
intelligence(Student,Int),
{Grade = grade(Reg) with p(
[a,b,c],[0.4,0.0,0.4,0.0,

0.4,0.1,0.4,0.1,
0.2,0.9,0.2,0.9],[Dif,Int])}.

This CLP(BN) rule says that a registration’s (Ref) grade Grade probabilistically
depends on the course’s difficulty Dif and on the student’s intelligence Int, which
both can take only two values. The predicate p/3 encodes the conditional probability
distribution P(Grade|Dif, Int) where the domain of Grade is [a, b, c]. For a query, say
:- grade(r2,Grade), a Bayesian network is constructed where grade(r2) depends
on diff(course) and int(student). In other words, logical variables are treated as
random variables among which a Bayesian network is constructed.

Most probabilistic ILP representation languages adapt Horn clauses. Vennekens
et al. [2004] recently introduced logic programs with annotated disjunctions
(LPADs), which are disjunctive logic programs where disjunctive heads encode prob-
ability distributions conditioned on the bodies. More precisely, a LPAD consists of a
set of rules of the form

(h1, α1) ∨ . . . ∨ (hn, αn) ← b1, . . . , bm

where the hi and bi are atoms respectively literals, and the αi are probability values
summing to 1. The meaning of such a rule is as follows: if the body is true, then atom hi
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(and only hi) is true with probability αi. The semantics is given by the grounding of a
LPAD. Each ground clause corresponds to probabilistic choice among the ground head
atoms. By choosing one possibility for each ground clause, one gets a definite clause
program. Assuming independency between the choices, one can assign a probability
to each such ground program, i.e., we multiply all probability values.

Recently, Shen and Yang [2005] adapted the view on ground atoms as random
variables taken in Bayesian logic programs to induce logically structured dynamics
Bayesian networks.

Finally, Bayesian logic programs are related — to some extent — to the BUGS
language [Gilks et al., 1994], which aims at carrying out hierarchical Bayesian mod-
eling and Bayesian inference using Gibbs sampling. It uses concepts of imperative
programming languages such as for-loops to model regularities in probabilistic mod-
els. Therefore, the relation between Bayesian logic programs and BUGS is akin to the
general relation between declarative and imperative languages. This holds in partic-
ular for relational domains such as those used in this chapter. Without the notion of
objects and relations among objects family trees are hard to represent: BUGS uses
traditional indexing to group together random variables (e.g. X1, X2, . . . all having
the same distribution), whereas Bayesian logic programs use definite clause logic.

Parameter Estimation

In the past few years, a number of techniques for learning logical and relational ex-
tensions of probabilistic representations have been developed. Most of these tech-
niques (with a few notable exceptions for probabilistic relation models, object-oriented
Bayesian networks, stochastic logic programs, and Markov logic networks, see be-
low) address the parameter estimation problem only. Furthermore, most of these ap-
proaches adapt the EM-algorithm for estimating the parameters: Koller and Pfeffer
[1997] did this for Ngo and Haddawy’s probabilistic logic programs, Cussens [2001]
for stochastic logic programs, Sato and Kameya [2001] for PRISM, Gilks et al. [1994]
for BUGS, and Langseth and Bangsø [2001] for object-oriented Bayesian networks.
Our work differs in two respects. First, we do not only adapt EM but also show how
gradient approaches can be used. As argued in Section 4.3.2, gradient ascent methods
are — in certain situations — preferable. Second, as argued above, the underlying
knowledge representation frameworks are quite different, certainly for BUGS, object-
oriented Bayesian networks, PRISM and stochastic logic programs. Therefore, the
closest work is certainly that by Koller and Pfeffer [1997]. Further parameter esti-
mation methods have been developed by Taskar et al. [2001] and Flach and Lachiche
[1999] for applications in clustering. Taskar et al. employ probabilistic relational mod-
els and Flach and Lachiche essentially apply the Näive Bayes algorithm. Taskar et al.
[2002] considered the task of discriminative learning of relational Markov models.
More precisely, they propose a gradient-based optimization method for maximizing
the conditional log-likelihood of some target variables on some observation. Later
on, Taskar et al. [2004b,a, 2005] introduced max-margin formulations and efficient
solutions based on quadratic programming techniques for the same problem.
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Structure Learning

Structure learning for probabilistic relational and logical representations has been
addressed by Getoor [2001] for probabilistic relational models, by Muggleton [2002]
(and references in there) for stochastic logic programs, by Neville and Jensen [2004] for
relational dependency networks, by Riguzzi [2004] for logic programs with annotated
disjunctions, and by Kok and Domingos [2005] for Markov logic networks.

Getoor [2001] showed how to learn the structure of probabilistic relational mod-
els [Pfeffer, 2000], which are based on the entity-relationship model, by adapting the
Structural-EM algorithm for learning Bayesian network. The Structural-EM [Fried-
man, 1998] algorithm is a variant of the standard EM algorithm for maximum like-
lihood parameter estimation for learning the structure. The key idea is that the ex-
pected counts are not computed anew for every structure that is proposed, but only
after several iterations. This leads to an improved efficiency. It should be clear that the
structural EM algorithm could straightforwardly be incorporated in our framework.
The most important differences between Getoor’s approach and ours are due to the
differences between the underlying entity-relationship model and logic programs (cf.
also above). To refine the structure of the entity-relationship model, Getoor employs
refinements that add and delete deterministic slot-chains (a kind of lookaheads) to
establish the influenced by relation, and that have been specifically designed for use
with probabilistic relational models. Whereas Getoor approaches the problem from a
Bayesian network learning side, we employ traditional ILP principles. The same holds
for structural learning of object-oriented Bayesian networks [Bangsø et al., 2001].

There is some work on learning the structure of stochastic logic programs [Mug-
gleton, 2002]. The differences between this work and ours are are those between prob-
abilistic learning from entailment and probabilistic learning from interpretations. The
former setting, as argued in Section 2.5, is expected to be harder and this also ex-
plains why structure learning for stochastic logic programs has so far been restricted to
learning missing clauses for a single predicate. More powerful settings for learning the
structure of stochastic logic programs would amount — at the logical level — to per-
form theory revision, a known hard problem in inductive logic programming [De Raedt
et al., 1993, Wrobel, 1996]. Combining this with probabilities seems even harder. For
this reason, we proposed to learn stochastic logic programs from proof-banks, see
Section 2.4.4.

Riguzzi [2004] proposed to learning logic programs with annotated disjunctions
(LPADS) from a sets of interpretations annotated with their probabilities. The learn-
ing algorithm first finds all the disjunctive clauses that are true in all interpretations,
then a probability value is associated with each disjunct in the heads, and finally it
is decided how to combine the clauses to form a LPAD by solving a constraint satis-
faction problem. Thus, this learning approach involves multiple separated steps and,
hence, is not an integrated approach.

The learning algorithm for relational dependency networks (RDNs) is elegant and
simple. Neville and Jensen [2004] just used a learning algorithm for relational proba-
bility trees [Neville et al., 2003] to independently learn a set of conditional relational
models.
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For Markov logic networks, Kok and Domingos [2005] developed a structure learn-
ing algorithm within the probabilistic learning from interpretation setting. They ba-
sically employ the traditional ILP refinement operators to traverse the hypothesis
space. Starting from a set of unit clauses, they iteratively add to or delete literals from
clauses, flip the sign of literals. To overcome the heavy computational demands of pa-
rameter estimation of Markov network, Kok and Domingos employed a weighted ver-
sion of the pseudo-log-likelihood. For more details we refer to Section 2.4.3. Recently,
variants have been developed for discriminatively learning MLNs [Singla and Domin-
gos, 2005] and for learning MLNs of relational state models evolving over time [Sanghai
et al., 2005].

Revoredo and Zaverucha [2002] and Paes et al. [2005] investigated theory revision
for Bayesian logic programs.



Part II

Probabilistic ILP over Time

Many real world applications such as language modeling in speech recognition, mu-
sic modeling, machine translation, and sequence analysis in bioinformatics, require
to model probability distributions over sets of strings, sequences, words, phrases,
and trees. Bayesian logic programs as presented in Part I, however, are not cus-
tomized for modeling the evolution of the state of the environment over time.
Indeed, discrete time can be considered as yet another Bayesian predicate, e.g.,
state(next(Time))|state(Time). This view, however, often does not heal the curse of
dimensionality, especially when states themselves are structured: the set of possible
state trajectories grows exponentially over time.

To this aim, Part II introduces logical hidden Markov models in Chapter 5. Logical
hidden Markov models can be viewed as a special-purpose probabilistic ILP approach
that reasons efficiently with sequential data. Traditional probabilistic models of se-
quences such as hidden Markov models consider sequences of flat symbols only. Many
real world sequences such as protein secondary structures and shell logs, however,
exhibit a rich internal structure. Logical hidden Markov models deal with sequences
of structured symbols in the form of logical atoms. Solutions to the central inference
problems — evaluation, most likely hidden state sequence and parameter estima-
tion — are presented in Chapter 6. Part II concludes with presenting sagEM in
Chapter 7, which is a method for selecting logical hidden Markov models from data
that combines generalized EM, which optimizes parameters, with ILP techniques for
structure search.
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§ 5

Logical Hidden Markov Models *

... in which logical hidden Markov models are introduced, their semantics are
defined, and the design choices underlying logical hidden Markov models are
discussed ...

Hidden Markov models [Rabiner and Juang, 1986] (HMMs) are extremely popular
for analyzing sequential data. Application areas include computational biology, user
modeling, speech recognition, empirical natural language processing, and robotics.
Despite their successes, HMMs have a major weakness: they handle only sequences of
flat, i.e., unstructured symbols. Yet, in many applications the symbols occurring in
sequences are structured.

Example Domain II (Unix Command Sequences) Sequences of Unix commands
tell a lot about the user herself since users tend to respond in a similar manner to
similar situations, leading to repeated sequences of actions. For instance, LATEX users
frequently run Emacs to edit their LATEX files and afterwards compile the edited file
using LATEX. The existence of command alias mechanisms in many Unix command
interpreters also supports the idea that users tend to enter many repeated sequences
of commands. Thus, Unix command sequences carry a lot information, which can be
used to automatically construct user profiles. These user profiles can subsequently be
employed to predict the next command in the sequence [Davison and Hirsh, 1998],
to suggest personalized command aliases [Jacobs and Blockeel, 2001], to classify a
command sequence into a user category [Korvemaker and Greiner, 2000, Jacobs and
Blockeel, 2001], and to detect anomalous behavior [Lane, 1999]. ◦
Example 5.1 Consider the Unix command sequence emacs lohmms.tex, ls,
latex lohmms.tex, . . .. ◦
Indeed, Unix commands are essentially structured as they are composed of their
names such as emacs, ls, xdvi, latex and their arguments such as lohmms.tex.
Traditional HMMs cannot easily deal with this type of structured sequences. Indeed,
applying HMMs requires either

• ignoring the structure of the commands (i.e., the arguments), or
• taking all possible parameters explicitly into account.

The former approach results in a serious information loss; the latter leads to a com-
binatorial explosion in the number of symbols and parameters of the HMM and as a
consequence inhibits generalization.

The above sketched problem with HMMs is akin to the problem of dealing with
structured examples in traditional machine learning algorithms as studied in the fields
of inductive logic programming [Muggleton and De Raedt, 1994] and multi-relational

* Builds on [Kersting et al., 2002, Raiko et al., 2002, Kersting et al., 2003b, 2006].
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learning [Džeroski and Lavrač, 2001]. Here, we propose an (inductive) logic program-
ming framework, logical hidden Markov models (LOHMMs), that upgrades HMMs
to deal with structure. The key idea underlying logical hidden Markov models is to
employ logical atoms as structured (output and state) symbols.

Example 5.2 Using logical atoms, the above UNIX command sequence can be rep-
resented as emacs(lohmms, tex), ls, latex(lohmms, tex), . . . ◦
There are two important motivations for using logical atoms at the symbol level. First,
variables in the atoms allow one to make abstraction of specific symbols. Second,
unification allows one to share information among states.

Example 5.3 In emacs(X.tex), latex(X.tex) the logical atom emacs(X, tex) repre-
sents all files X that a LATEX user tex could edit using emacs. Furthermore, it denotes
that the same file is used as an argument for both Emacs and LATEX. ◦

5.1 Representation Language

The logical component of a traditional HMM corresponds to a Mealy ma-
chine [Hopcroft and Ullman, 1979], i.e., a finite state machine where the output
symbols are associated with transitions. This is essentially a propositional represen-
tation because the symbols used to represent states and output symbols are propo-
sitional/flat, i.e. not structured. Many real-world domains such as Unix command
sequences, however, exhibit a rich internal structure.

The key idea underlying logical hidden Markov models is to replace these flat
symbols by abstract symbols. Consider the UNIX command shell domain. An abstract
symbol A is — by definition — a logical atom. It is abstract in that it represents the
set of all ground, i.e., variable-free atoms of A over the alphabet Σ, denoted by GΣ(A).
Ground atoms then play the role of the traditional symbols used in a HMMs.

Example 5.4 Consider the alphabet Σ1, which has as constant symbols tex, dvi,
hmm1, and lohmm1 and as relation symbols emacs/2, ls/1, xdvi/1, latex/2. Then the
atom emacs(File, tex) represents the set {emacs(hmm1, tex), emacs(lohmm1, tex)}.
We assume that the alphabet is typed to avoid useless instantiations such as
emacs(tex, tex)). ◦
The use of atoms instead of flat symbols allows us to analyze logical and structured
sequences such as emacs(hmm1, tex), latex(hmm1, tex), xdvi(hmm1, dvi).

Definition 5.5 Abstract transitions are expressions of the form

p : H O←− B

where p ∈ [0, 1], and H, B and O are atoms. All variables are implicitly assumed to be
universally quantified, i.e., the scope of variables is a single abstract transition. ◦
The atoms H and B represent abstract states and O represents an abstract output
symbol. The semantics of an abstract transition p : H O←− B is that if one is in one
of the states in GΣ(B), say BθB, one will go with probability p to one of the states in
GΣ(HθB), say HθBθH, while emitting a symbol in GΣ(OθBθH), say OθBθHθO.
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Example 5.6 Consider c ≡ 0.8 : xdvi(File, dvi)
latex(File)←−−−−−−− latex(File, tex). In

general H, B and O do not have to share the same predicate. This is only
due to the nature of our running example. Assume now that we are in state
latex(hmm1, tex), i.e. θB = {File/hmm1}. Then c specifies that there is a proba-
bility of 0.8 that the next state will be in GΣ1(xdvi(hmm1, dvi)) = {xdvi(hmm1, dvi)}
(i.e., the probability is 0.8 that the next state will be xdvi(hmm1, dvi)),
and that one of the symbols in GΣ1(latex(hmm1)) = {latex(hmm1)} ( i.e.,
latex(hmm1)) will be emitted. Abstract states might also be more complex such as
latex(file(FileStem, FileExtension), User) ◦
The above example was simple because θH and θO were both empty. The situation be-
comes more complicated when these substitutions are not empty. Then, the resulting
state and output symbol sets are not necessarily singletons.

Example 5.7 Indeed, for 0.8 : emacs(File′, dvi)
latex(File)←−−−−−−− latex(File, tex) the

resulting state set would be the set of subsumed ground states of emacs(File′, dvi),
i.e., GΣ1(emacs(File

′, dvi)) = {emacs(hmm1, tex), emacs(lohmm1, tex)}. ◦
Thus, the transition is non-deterministic because there are two possible resulting
states. We therefore need a mechanism to assign probabilities to these possible alter-
natives.

Definition 5.8 The selection distribution μ specifies for each abstract state and ob-
servation symbol A over the alphabet Σ a distribution μ(· | A) over GΣ(A). ◦
Example 5.9 To continue our example, consider the selection probability
μ(emacs(hmm1, tex) | emacs(File′, tex)) = 0.4 and the selection probability
μ(emacs(lohmm1, tex) | emacs(File′, tex)) = 0.6. Then there would be a probability
of 0.4 × 0.8 = 0.32 that the next state is emacs(hmm1, tex) and of 0.48 that it is
emacs(lohmm1, tex). ◦

Taking μ into account, the meaning of an abstract transition p : H O←− B can be
summarized as follows:

Semantics 5.10 (Abstract Transition) Let BθB ∈ GΣ(B), HθBθH ∈ GΣ(HθB) and
OθBθHθO ∈ GΣ(OθBθH). Then the model makes a transition from state BθB to HθBθH
and emits symbol OθBθHθO with probability

p · μ(HθBθH | HθB) · μ(OθBθHθO | OθBθH). (5.1)

◦
To represent μ, any probabilistic representation can - in principle - be used, e.g.
a Bayesian network or a Markov chain. Throughout the remainder of the thesis,
however, we will use a näıve Bayes approach. More precisely, we associate to each
argument of a relation r/m a finite domain domr/m

i of constants and a probability
distribution P

r/m
i over domr/m

i . Let vars(A) = {V1, . . . , Vl} be the variables occurring
in an atom A over r/m, and let σ = {V1/s1, . . . Vl/sl} be a substitution grounding A.
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Each Vj is then considered a random variable over the domain D
r/m
arg(Vj)

of the argument
arg(Vj) it appears first in. Then,

μ(Aσ | A) =
l∏

j=1

P
r/m
arg(Vj)

(sj) .

Example 5.11 In our running example, μ(emacs(hmm1, tex) | emacs(F, E)), is com-
puted as the product of P

emacs/2
1 (hmm1) and P

emacs/2
2 (tex). ◦

Thus far the semantics of a single abstract transition has been defined. A logical
hidden Markov model usually consists of multiple abstract transitions and this creates
a further complication.

Example 5.12 Consider 0.8 : latex(File, tex)
emacs(File)←−−−−−−−− emacs(File, tex) and

0.4 : dvi(File)
emacs(File)←−−−−−−−− emacs(File, User). These two abstract transitions make

conflicting statements about the state resulting from emacs(hmm1, tex). Indeed, ac-
cording to the first transition, the probability is 0.8 that the resulting state is
latex(hmm1, tex) and according to the second one it assigns 0.4 to xdvi(hmm1). ◦
There are essentially two ways to deal with this situation. On the one hand, one
might want to combine and normalize the two transitions and assign a probability
of 2

3 respectively 1
3 . On the other hand, one might want to have only one rule fir-

ing. We chose the latter option because it allows us to consider transitions more
independently, it simplifies learning, and it yields locally interpretable models. We
employ the subsumption (or generality) relation among the B-parts of the two ab-
stract transitions. Indeed, the B-part of the first transition B1 = emacs(File, tex)
is more specific than that of the second transition B2 = emacs(File, User) because
there exists a substitution θ = {User/tex} such that B2θ = B1, i.e., B2 subsumes
B1. Therefore GΣ1(B1) ⊆ GΣ1(B2) and the first transition can be regarded as more
informative than the second one. It should therefore be preferred over the second
one when starting from emacs(hmm1, tex). We will also say that the first transition is
more specific than the second one. Remark that this generality relation imposes a
partial order on the set of all transitions. These considerations lead to the strategy
of only considering the maximally specific transitions that apply to a state in order
to determine the successor states. This implements a kind of exception handling or
default reasoning and is akin to Katz’s [1987] back-off n-gram models. In back-off
n-gram models, the most detailed model that is deemed to provide sufficiently reliable
information about the current context is used. That is, if one encounters an n-gram
that is not sufficiently reliable, then back-off to use an (n − 1)-gram; if that is not
reliable either then back-off to level n − 2, etc.

The conflict resolution strategy will work properly provided that the bodies of all
maximally specific transitions (matching a given state) represent the same abstract
state. This can be enforced by requiring the generality relation over the B-parts to be
closed under the greatest lower bound (glb) for each predicate, i.e., for each pair B1, B2

of bodies, such that θ = mgu(B1, B2) exists, there is another body B (called lower
bound), which subsumes B1θ (and therefore also B2θ) and is subsumed by B1, B2,
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Figure 5.1. A logical hidden Markov model. Abstract states are represented by blue nodes.
Arrows between nodes denote abstract transition. The abstract emissions and transition
probabilities are associate with the arrows. Dotted arrows denote ’must-follow’ links; dashed
arrows the ’more-general-than’ relation.

and if there is any other lower bound then it is subsumed by B. E.g., if the body of
the second abstract transition in our example is emacs(hmm1, User) then the set of
abstract transitions would not be closed under glb.

Finally, in order to specify a prior distribution over states, we assume a finite set
Υ of clauses of the form p : H ← start using a distinguished start symbol such that
p is the probability of the logical hidden Markov model to start in a state of GΣ(H).

By now we are able to formally define logical hidden Markov models.

Definition 5.13 A logical hidden Markov model (LOHMM) is a tuple (Σ, μ, Δ, Υ )
where Σ is a logical alphabet, μ a selection probability over Σ, Δ is a set of abstract
transitions, and Υ is a set of abstract transitions encoding a prior distribution. Let B
be the set of all atoms that occur as body parts of transitions in Δ. We assume B to
be closed under glb and require

∀B ∈ B :
∑

p:H
O←−B∈Δ

p = 1.0 (5.2)

and that the probabilities p of clauses in Υ sum up to 1.0 . ◦
Logical hidden Markov models can also be represented graphically. Figure 5.1

contains an example. The underlying language Σ2 consists of Σ1 together with
the constant symbol other, which denotes a user that does not employ LATEX.
In this graphical notation, nodes represent abstract states and black tipped ar-
rows denote abstract transitions. White tipped arrows are used to represent meta
knowledge. More precisely, white tipped, dashed arrows represent the generality
or subsumption ordering between abstract states. If we follow a transition to
an abstract state with an outgoing white tipped, dotted arrow then this dot-
ted arrow will always be followed. Dotted arrows are needed because the same
abstract state can occur under different circumstances. Consider the transition
p : latex(File′, User′)

latex(File)←−−−−−−− latex(File, User). Even though the atoms in the
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Figure 5.2. Generating the observation sequence emacs(hmm1), latex(hmm1),
emacs(lohmm1), ls by the logical hidden Markov model in Figure 5.1. The command
emacs is abbreviated by em, f1 denotes the filename hmm1, f2 represents lohmm1, t denotes a
tex user, and o some other user. White solid arrows indicate selections.

head and body of the transition are syntactically different they represent the same
abstract state. To accurately represent the meaning of this transition we cannot use
a black tipped arrow from latex(File, User) to itself, because this would actually

represent the abstract transition p : latex(File, User)
latex(File)←−−−−−−− latex(File, User).

5.2 Semantics

Hidden Markov models are a special cases of logical hidden Markov models in which Σ
contains only relation symbols of arity zero and the selection probability is irrelevant.
Thus, logical hidden Markov models directly generalize hidden Markov models.

Furthermore, the graphical representation clarifies that logical hidden Markov
models are generative models. Let us explain how the model in Figure 5.1 would
generate the observation sequence emacs(hmm1), latex(hmm1), emacs(lohmm1), ls (cf.
Figure 5.2). It chooses an initial abstract state, say emacs(F, U). Since both vari-
ables F and U are uninstantiated, the model samples the state emacs(hmm1, tex)
from GΣ2 using μ. As indicated by the dashed arrow, emacs(F, tex) is more spe-
cific than emacs(F, U). Moreover, emacs(hmm1, tex) matches emacs(F, tex). Thus, the
model enters emacs(F, tex). Since the value of F was already instantiated in the
previous abstract state, emacs(hmm1, tex) is sampled with probability 1.0. Now, the
model goes over to latex(F, tex), emitting emacs(hmm1) because the abstract obser-
vation emacs(F) is already fully instantiated. Again, since F was already instantiated,
latex(hmm1, tex) is sampled with probability 1.0. Next, we move on to emacs(F′, U),
emitting latex(hmm1). Variables F′ and U in emacs(F′, U) were not yet bound; so, val-
ues, say lohmm1 and others, are sampled from μ. The dotted arrow brings us back to
emacs(F, U). Because variables are implicitly universally quantified in abstract transi-
tions, the scope of variables is restricted to single abstract transitions. In turn, F is
treated as a distinct, new variable, and is automatically unified with F′, which is bound
to lohmm1. In contrast, variable U is already instantiated. Emitting emacs(lohmm1),



§5.2 Semantics 97

the model makes a transition to ls(U′). Assume that it samples tex for U′. Then, it
remains in ls(U′) with probability 0.4 . Considering all possible samples, allows one
to prove the following theorem.

Theorem 5.14 (Semantics) A logical hidden Markov model over a language Σ
defines a discrete time stochastic process, i.e., a sequence of random variables
〈Xt〉t=1,2,..., where the domain of Xt is hb(Σ)× hb(Σ). The induced probability mea-
sure over the Cartesian product

⊗
t hb(Σ)×hb(Σ) exists and is unique for each t > 0

and in the limit t → ∞. ◦
Proof sketch: Let M = (Σ,μ, Δ, Υ ) be a logical hidden Markov model. To show that
M specifies a time discrete stochastic process, i.e., a sequence of random variables
〈Xt〉t=1,2,..., where the domains of the random variable Xt is hb(Σ), the Herbrand
base over Σ, we define the immediate state operator TM -operator and the current
emission operator EM -operator.

Definition 5.15 (TM -Operator, EM -Operator ) The operators TM : 2hbΣ → 2hbΣ

and EM : 2hbΣ → 2hbΣ are

TM (I) = {HσBσH | ∃(p : H
O←− B) ∈ M : BσB ∈ I,HσBσH ∈ GΣ(H)}

EM (I) = {OσBσHσO | ∃(p : H
O←− B) ∈ M : BσB ∈ I, HσBσG ∈ GΣ(H)

and OσBσHσO ∈ GΣ(O)}
◦

For each i = 1, 2, 3, . . ., the set T i+1
M ({start}) := TM (T i

M ({start})) with
T 1

M ({start}) := TM ({start}) specifies the state set at clock i, which forms a random
variable Yi. The set U i

M ({start}) specifies the possible symbols emitted when tran-
sitioning from i to i + 1. It forms the variable Ui. Each Yi (resp. Ui) can be extended
to a random variable Zi (resp. Ui) over hbΣ :

P (Zi = z) =
{

0.0 : z �∈ T i
M ({start})

P (Yi = z) : otherwise

Figure 5.3 depicts the influence relation among Zi and Ui. Using standard arguments
from probability theory and noting that

P (Ui = Ui | Zi+1 = zi+1, Zi = zi) =
P (Zi+1 = zi+1, Ui = ui | Zi)∑

ui
P (Zi+1, ui | Zi)

and P (Zi+1 | Zi) =
∑
ui

P (Zi+1, ui | Zi)

where the probability distributions are due to equation (5.1), it is easy to show that
Kolmogorov’s extension theorem (see [Bauer, 1991, Fristedt and Gray, 1997]) holds.
Thus, M specifies a unique probability distribution over

⊗t
i=1(Zi×Ui) for each t > 0

and in the limit t → ∞. �
This is akin to unrolling recurrent neural networks [Dean and Kanazawa, 1988] and
dynamic Bayesian networks [Williams and Zipser, 1995], and to grounding clause
programs [Lloyd, 1989].
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Z1 Z2 Z3

U1 U2 U3

...

Figure 5.3. Discrete time stochastic process induced by a logical hidden Markov model.
The nodes Zi and Ui represent random variables over hbΣ .

5.3 Design Choices

Before going on to the basic inference tasks, let us address some design choices under-
lying logical hidden Markov models: the Mealy representation of abstract transitions,
the näıve Bayes factorization of the selection distribution, and the focus on distribu-
tions over sequences of fixed length.

5.3.1 Mealy Representation

Logical hidden Markov models have been introduced as Mealy machines, i.e., output
symbols are associated with transitions.

Mealy machines fit our logical setting quite intuitively as they directly encode
the conditional probability P (O, S′|S) of making a transition from S to S′ emitting an
observation O. Logical hidden Markov models define this distribution as

P (O, S′|S) =
∑

p:H
O′←−B

p · μ(S′ | HσB) · μ(O | O′σBσH)

where the sum runs over all abstract transitions H O′←− B such that B is most specific for
S. Observations correspond to (partially) observed proof steps and, hence, provide in-
formation shared among heads and bodies of abstract transitions. In contrast, HMMs
are usually introduced as Moore machines. Here, output symbols are associated with
states implicitly assuming O and S′ to be independent. Thus, P (O, S′ | S) factorizes
into P (O | S) · P (S′ | S). This makes it more difficult to observe information shared
among heads and bodies. In turn, Moore-LOHMMs are less intuitive and harder to
understand. More precisely, it can essentially be shown that — as in the propositional
case — Mealy- and Moore-logical hidden Markov models are equivalent.

To see this, let L be a Mealy-LOHMM according to definition 5.13. In the following,
we will derive the notation of an equivalent logical hidden Markov model L′ in Moore
representation where there are abstract transitions and abstract emissions (see below).
Each predicate b/n in L is extended to b/n + 1 in L′. The domains of the first n
arguments are the same as for b/n. The last argument will store the observation to
be emitted. More precisely, for each abstract transition

p : h(w1, . . . , wl)
o(v1,...,vk)←−−−−−− b(u1, . . . , un)

in L, there is an abstract transition

p : h(w1, . . . , wl, o(v′1, . . . , v
′
k)) ← b(u1, . . . , un, )
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in L′. The primes in o(v′1, . . . , v
′
k) denote that we replaced each free 23 variables

o(v1, . . . , vk) by some distinguished constant symbol, say #. Due to this, it holds that

μ(h(w1, . . . , wl)) = μ(h(w1, . . . , wl, o(v′1, . . . , v
′
k))) , (5.3)

and L′’s output distribution can be specified using abstract emissions, which are
expressions of the form

1.0 : o(v1, . . . , vk) ← h(w1, . . . , wl, o(v′1, . . . , v
′
k)) . (5.4)

The semantics of an abstract transition in L′ is that being in some
state S′t ∈ GΣ′(b(u1, . . . , un, )) the system will make a transition into state
S′t+1 ∈ GΣ′(h(w1, . . . , wl, o(v′1, . . . , v

′
k))) with probability

p · μ(S′t+1 | h(w1, . . . , wl, o(v′1, . . . , v′k)) | σS′t ) (5.5)

where σS′t = mgu(S′t , b(u1, . . . , un, )). Due to Equation (5.3), Equation (5.5) can be
rewritten as p · μ(S′t+1 | h(w1, . . . , wl) | σS′t ) . Due to equation (5.4), the system
will emit the output symbol ot+1 ∈ GΣ′(o(v1, . . . , vk)) in state S′t+1 with probability
μ(ot+1 | o(v1, . . . , vk)σS′t+1

σS′t ) where σS′t+1
= mgu(h(w1, . . . , wl, o(v′1, . . . , v

′
k)), S

′
t+1 ).

Due to the construction of L′, there exists a triple (St , St+1 , Ot+1) in L for each triple
(S′t , S

′
t+1 , Ot+1 ), t > 0, in L′ (and vise versa). Hence,both logical hidden Markov

models assign the same overall transition probability.
L and L′ differ only in the way the initialize sequences 〈(S′t , S′t+1 , Ot+1 〉t=0,2...,T

(resp. 〈(St , St+1 , Ot+1〉t=0,2...,T ). Whereas L starts in some state S0 and makes a tran-
sition to S1 emitting O1, the Moore-LOHMM L′ is supposed to emit a symbol O0 in S′0
before making a transition to S′1. We compensate for this using the prior distribution.
The existence of the correct prior distribution for L′ can be seen as follows. In L,
there are only finitely many states reachable at time t = 1, i.e, PL(q0 = S) > 0 holds
for only a finite set of ground states S. The probability PL(q0 = s) can be computed
similar to α1(S). We set t = 1 in line 6, neglecting the condition on Ot−1 in line 10, and
dropping μ(Ot−1 | OσBσH) from line 14. Completely listing all states S ∈ S1 together
with PL(q0 = S), i.e., PL(q0 = S) : S ← start , constitutes the prior distribution of
L′.

The argumentation basically followed the approach to transform a Mealy machine
into a Moore machine, see e.g. [Hopcroft and Ullman, 1979]. Furthermore, the mapping
of a Moore-LOHMM — as introduced in the present section — into a Mealy-LOHMM
is straightforward.

5.3.2 Näıve Bayes Selection Distribution

The näıve Bayes approach for the selection distribution reduces the model complexity
at the expense of a lower expressivity: functors are neglected and variables are treated
independently. Adapting more expressive approaches is an interesting future line of
research. For instance, Bayesian networks allow one to represent factorial hidden
23 A variable X ∈ vars(o(v1, . . . , vk)) is free iff X �∈ vars(h(w1, . . . , wl)) ∪ vars(b(u1, . . . , un)).
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Markov models [Ghahramani and Jordan, 1997]. Factorial hidden Markov models can
be viewed as a special type of logical hidden Markov models, where the hidden states
are summarized by a 2 ·k-ary abstract state. The first k arguments encode the k state
variables, and the last k arguments serve as a memory of the previous joint state. μ
of the i-th argument is conditioned on the i + k-th argument. Markov chains allow
one to sample compound terms of variable, finite depth such as s(s(s(0))) and to
model e.g. misspelled filenames. This is akin to the idea of generalized hidden Markov
models [Kulp et al., 1996] in which each node may output a finite sequence of symbols
rather than a single symbol.

5.3.3 Distribution over Fixed Length Sequences

Logical hidden Markov models — as introduced here — specify a probability distribu-
tion over all sequences of a given length. Reconsider the logical hidden Markov model
in Figure 5.1. Already the probabilities of all observation sequences of length 1, i.e.,
ls, emacs(hmm1), and emacs(lohmm1)) sum up to 1. More precisely, for each t > 0 it
holds that∑

x1,...,xt

P (X1 = x1, . . . , Xt = xt) = 1.0 .

In order to model a distribution over sequences of variable length, i.e.,∑
t>0

∑
x1,...,xt

P (X1 = x1, . . . , Xt = xt) = 1.0

we may add a distinguished end state. The end state is absorbing in that whenever
the model makes a transition into this state, it terminates the observation sequence
generated.

§ 6

Three Basic Inference Problems for Logical HMMs *

... in which the basic inference algorithms for hidden Markov models are up-
graded for use in logical hidden Markov models, the benefits of logical hidden
Markov models are investigated, and logical hidden Markov models are applied
to real world data ...

As for HMMs, three inference problems are of interest. Let M be a logical hidden
Markov model and let O = O1, O2, . . . , OT , T > 0, be a finite sequence of ground
observations:

(1) Evaluation: Determine the probability P (O | M) that sequence O was generated
by the model M .

* Builds on [Kersting et al., 2002, Raiko et al., 2002, Kersting et al., 2003b, 2006].
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Figure 6.1. Trellis induced by the logical hidden Markov model in Figure 5.1. The sets of
reachable states at time 0, 1, . . . are denoted by S0, S1, . . . In contrast with HMMs, there is
an additional layer where the states are sampled from abstract states.

(2) Most likely state sequence: Determine the hidden state sequence S∗ that has
most likely produced the observation sequence O, i.e. S∗ = arg maxS P (S | O,M) .

(3) Parameter estimation: Given a set OOO = {O1, . . . ,Ok} of observation se-
quences, determine the most likely parameters λ∗ for the abstract transitions
and the selection distribution of M , i.e. λ∗ = arg maxλ P (OOO | λ) .

We will now address each of these problems in turn by upgrading the existing solutions
for HMMs. This will be realized by computing a grounded trellis as in Figure 6.1. The
possible ground successor states of any given state are computed by first selecting the
applicable abstract transitions and then applying the selection probabilities (while
taking into account the substitutions) to ground the resulting states. This two-step
factorization is coalesced into one step for HMMs.
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Algorithm II.1: Forward Procedure: A dynamic programming approach for
computing the forward probability αt(S) for a given logical hidden Markov
models M = (Σ, μ, Δ). We assume O ≡ start for each abstract transition
p : H ← start ∈ Υ . Boxed parts specify the major differences to the HMM
formula: unification and μ are taken into account.

S0 := {start}1

for t = 1, 2, . . . , T do2

St = ∅ /* initialize the set of reachable states at clock t*/3

foreach S ∈ St−1 do4

foreach maximally specific p : H
O←− B ∈ Δ s.t. σB = mgu(S, B) exists do5

foreach S
′ = HσBσH ∈ GΣ(HσB) s.t. Ot−1 unifies with OσBσH do6

if S′ �∈ St then7

St := St ∪ {S′}8

αt(S
′) := 0.09

αt(S
′) := αt(S

′) + αt−1(S) · p · μ(S′ | HσB) · μ(Ot−1 | OσBσH)10

11

12

13

Return P (O | M) =
P

S∈ST
αT (S)14

6.1 Evaluation

To evaluate O, consider the probability of the partial observation sequence
O1, O2, . . . , Ot and (ground) state S at time t, 0 < t ≤ T , given the model M =
(Σ, μ, Δ, Υ )

αt(S) := P (O1, O2, . . . , Ot, qt = S | M)

where qt = S denotes that the system is in state S at time t. As for HMMs,
αt(S) can be computed using a dynamic programming approach. For t = 0, we set
α0(S) = P (q0 = S | M) , i.e., α0(S) is the probability of starting in state S and, for
t > 0, we compute αt(S) based on αt−1(S′). The computations are summarized in
the forward procedure in Algorithm II.1 where we assume for the sake of simplicity
O ≡ start for each abstract transition p : H ← start ∈ Υ . Furthermore, the boxed
parts specify the major differences to the HMM formula: unification and μ are taken
into account. Clearly, as for HMMs

P (O | M) =
∑

S∈ST

αT (S)

holds.
The computational complexity of this forward procedure is

O(T · s · (|B| + o · g)) = O(T · s2) where s = maxt=1,2,...,T |St| , o is the maxi-
mal number of outgoing abstract transitions with regard to an abstract state, and
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g is the maximal number of ground instances of an abstract state. In a completely
analogous manner, one can devise a backward procedure to compute

βt(S) = P (Ot+1, Ot+2, . . . , OT | qt = S,M) .

This will be useful for solving Problem (3).

6.2 Most Likely State Sequences

Having a forward procedure, it is straightforward to adapt the Viterbi algorithm as a
solution to Problem (2), i.e., for computing the most likely state sequence. Let δt(S)
denote the highest probability along a single path at time t, which accounts for the
first t observations and ends in state S, i.e.,

δt(S) = max
S0,S1,...,St−1

P (S0, S1, . . . , St−1, St = S, O1, . . . , Ot−1|M) .

The procedure for finding the most likely state sequence basically follows the forward
procedure, Algorithm II.1. Instead of summing over all ground transition probabilities
in line 10, we maximize over them, cf. Algorithm II.2. Here, δt(S, S′) stores the
probability of making a transition from S to S′ and ψt(S′) (with ψ1(S) = start for
all states S) keeps track of the state maximizing the probability along a single path
at time t, which accounts for the first t observations and ends in state S′. The most
likely hidden state sequence S∗ can now be computed as

S∗T+1 = arg max
S∈ST+1

δT+1(S)

and S∗t = ψt(S∗t+1) for t = T, T − 1, . . . , 1 .

One can also consider problem (2) on a more abstract level. Instead of considering
all contributions of different abstract transitions T to a single ground transition from
state S to state S′ in line 10, one might also consider the most likely abstract transition
only. This is realized by replacing line 10 in the forward procedure with

αt(S′) := max(αt(S′), αt−1(S) · p · μ(S′ | HσB) · μ(Ot−1 | OσBσH)) .

This solves the problem of finding the (2′) most likely state and abstract tran-
sition sequence:

Determine the sequence of states and abstract transitions GT∗ =
S0, T0, S1, T1, S2, . . . , ST, TT , ST+1 where there exists substitutions θi with
Si+1 ← Si ≡ Ti θi that has most likely produced the observation sequence
O, i.e. GT∗ = arg maxGT P (GT | O,M) .

Thus, logical hidden Markov models also pose new types of inference problems.
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Algorithm II.2: Viterbi Algorithm: A dynamic programming approach for com-
puting the hidden state sequence S∗ that has most likely produced the obser-
vation sequence O for a given logical hidden Markov models M = (Σ,μ, Δ).
δt(S, S′) stores the probability of making a transition from S to S′ and ψt(S′)
(with ψ1(S) = start for all states S) keeps track of the state maximizing the
probability along a single path at time t, which accounts for the first t obser-
vations and ends in state S′. We assume O ≡ start for each abstract transition
p : H ← start ∈ Υ .

S0 := {start}1

for t = 1, 2, . . . , T do2

St = ∅ /* initialize the set of reachable states at clock t*/3

foreach S ∈ St−1 do4

foreach maximally specific p : H
O←− B ∈ Δ s.t.σB = mgu(S, B) exists do5

foreach S
′ = HσBσH ∈ GΣ(HσB) s.t. Ot−1 unifies with OσBσH do6

if S′ �∈ St then7

St := St ∪ {S′}8

δt(S, S
′) := 0.09

δt(S, S
′) := δt(S, S

′) + δt−1(S) · p · μ(S′ | HσB) · μ(Ot−1 | OσBσH)10

11

12

foreach S′ ∈ St do13

δt(S
′) = maxS∈St−1 δt(S, S

′)14

ψt(S
′) = arg maxS∈St−1 ψt(S, S

′)15

16

Return all δt(S
′) and ψt(S

′)17

6.3 Parameter Estimation

For parameter estimation, we have to estimate the maximum likelihood transition
probabilities and selection distributions. To estimate the former, we upgrade the well-
known Baum-Welch algorithm [Baum, 1972] for estimating the maximum likelihood
parameters of HMMs and probabilistic context-free grammars.

For HMMs, the Baum-Welch algorithm computes the improved estimate p of the
transition probability of some (ground) transition T ≡ p : H O←− B by taking the ratio

p =
ξ(T)∑

H′
O′←−B∈Δ∪Υ

ξ(T′)
(6.1)

between the expected number ξ(T) of times of making the transitions T at any time
given the model M and an observation sequence O, and the total number of times a
transitions is made from B at any time given M and O.

Basically the same applies when T is an abstract transition. However, we have to
be a little bit more careful because we have no direct access to ξ(T). Let ξt(gcl, T) be
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Algorithm II.3: The adapted Baum-Welch algorithm for re-estimating the
probabilities of abstract transitions.

/* initialization of expected counts */1

foreach T ∈ Δ do2

ξ(T) := m /* or 0 if not using pseudocounts */3

/* compute expected counts */4

for t = 0, 1, . . . , T do5

foreach S ∈ St do6

foreach max. specific T ≡ p : H
O←− B ∈ Δ s.t. σB = mgu(S, B) exists do7

foreach S′ = HσBσH ∈ GΣ(HσB) s.t. S′ ∈ St+1 ∧ mgu(Ot, OσBσH) exists do8

ξ(T) := ξ(T) + αt(S) · p · βt+1(S
′)

‹
P (O | M)·9

μ(S′ | HσB) · μ(Ot−1 | OσBσH)

10

11

12

13

the probability of following the abstract transition T via its ground instance gcl ≡ p :
GH

GO←−− GB at time t, i.e.,

ξt(gcl, T) =
αt(GB) · p · βt+1(GH)

P (O | M)
· μ(GH | HσB) · μ(Ot−1 | OσBσH) , (6.2)

where σB, σH are as in the forward procedure (see above) and P (O | M) is the proba-
bility that the model generated the sequence O. Again, the boxed terms constitute the
main difference to the corresponding HMM formula. In order to apply Equation (6.1)
to compute improved estimates of probabilities associated with abstract transitions,
we set

ξ(T) =
T∑

t=1

ξt(T) =
T∑

t=1

∑
gcl

ξt(gcl, T)

where the inner sum runs over all ground instances of T.
This leads to re-estimation method in Algorithm II.3, where we assume that the

sets Si of reachable states are reused from the computations of the α- and β-values.
In Algorithm II.3, Equation (6.2) can be found in line 7. In line 3, we set pseudocounts
as small sample-size regularizers. Other methods to avoid a biased underestimate of
probabilities and even zero probabilities such as m-estimates, see e.g. Mitchell [1997],
can be easily adapted.

To estimate the selection probabilities, recall that μ follows a näıve Bayes scheme.
Therefore, the estimated probability for a domain element d ∈ D for some domain D
is the ratio between the number of times d is selected and the number of times any
d′ ∈ D is selected. The procedure for computing the ξ-values can thus be reused.

Altogether, the Baum-Welch algorithm works as follows: While not converged,
estimate
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(1) the abstract transition probabilities, and
(2) the selection probabilities.

Since it is an instance of the EM algorithm, it increases the likelihood of the data
with every update, and according to McLachlan and Krishnan [1997], it is guaranteed
to reach a stationary point. All standard techniques to overcome limitations of EM
algorithms are applicable. The computational complexity (per iteration) is O(k · (α+
d)) = O(k · T · s2 + k · d) where k is the number of sequences, α is the complexity
of computing the α-values (see above), and d is the sum over the sizes of domains
associated to predicates. In Chapter 7, we will show how to combined the Baum-Welch
algorithm with structure search for model selection of logical hidden Markov models
using inductive logic programming refinement operators. The refinement operators
account for different abstraction levels, which have to be explored.

6.4 Advantages of Logical Hidden Markov Models

In this section, we will investigate the benefits of logical hidden Markov models:

(1) logical hidden Markov models are strictly more expressive than HMMs, and,
(2) using abstraction, logical variables and unification can be beneficial.

More specifically, with (2), we will show that

(B1) logical hidden Markov models can be — by design — smaller than their propo-
sitional instantiations, and

(B2) unification can yield better log-likelihood estimates.

6.4.1 On the Expressivity of Logical Hidden Markov Models

Whereas HMMs specify probability distributions over regular languages, logical hid-
den Markov models specify probability distributions over more expressive languages.

Theorem 6.1 For any (consistent) probabilistic context-free grammar (PCFG) G for
some language L there exists a logical hidden Markov model M s.t. PG(w) = PM (w)
for all w ∈ L. ◦
Proof sketch: Let T be a terminal alphabet and N a nonterminal alphabet. A proba-
bilistic context-free grammar (PCFG) G consists of a distinguished start symbol S ∈ N
plus a finite set of productions of the form p : X → α, where X ∈ N , α ∈ (N ∪ T )∗

and p ∈ [0, 1]. For all X ∈ N ,
∑

:X→α p = 1. A PCFG defines a stochastic process
with sentential forms as states, and leftmost rewriting steps as transitions. We denote
a single rewriting operation of the grammar by a single arrow →. If as a result of
one ore more rewriting operations we are able to rewrite β ∈ (N ∪ T )∗ as a sequence
γ ∈ (N ∪T )∗ of nonterminals and terminals, then we write β ⇒∗ γ. The probability of
this rewriting is the product of all probability values associated to productions used
in the derivation. We assume G to be consistent, i.e., that the sum of all probabilities
of derivations S ⇒∗ β such that β ∈ T ∗ sum to 1.0.
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We can assume that the PCFG G is in Greibach normal form. This follows
from Abney et al. [1999]’s Theorem 6 because G is consistent. Thus, every pro-
duction P ∈ G is of the form p : X → aY1 . . . Yn for some n ≥ 0. In or-
der to encode G as a logical hidden Markov model M , we introduce (1) for
each non-terminal symbol X in G a constant symbol nX and (2) for each ter-
minal symbol t in G a constant symbol t. For each production P ∈ G, we in-
clude an abstract transition of the form p : stack([nY1, . . . , nYn|S]) a←− stack([nX|S]),
if n > 0, and p : stack(S) a←− stack([nX|S]), if n = 0. Furthermore, we include
1.0 : stack([s]) ← start and 1.0 : end end←−− stack([]). It is now straightforward to
prove by induction that M and G are equivalent. ��
The proof makes use of functors. Without functors, logical hidden Markov models
cannot encode PCFGs. In this case, because the Herbrand base is finite, it can be
proven that there always exists an equivalent HMM.

Moreover, if functors are allowed, logical hidden Markov models are strictly more
expressive than probabilistic context-free grammars (PCFGs). They can specify prob-
ability distributions over some languages that are context-sensitive

Example 6.2 The logical hidden Markov model

1.0 : stack(s(0), s(0)) ← start

0.8 : stack(s(X), s(X)) a←− stack(X, X)
0.2 : unstack(s(X), s(X)) a←− stack(X, X)
1.0 : unstack(X, Y) b←− unstack(s(X), Y)
1.0 : unstack(s(0), Y) c←− unstack(s(0), s(Y))
1.0 : end

end←−− unstack(s(0), s(0))

defines a distribution over {anbncn | n > 0}. ◦
Finally, the use of logical variables also enables one to deal with identifiers. Iden-

tifiers are special types of constants that denote objects. Indeed, recall the UNIX
command sequence emacs lohmms.tex, ls, latex lohmms.tex, . . . from Example 5.1.
The filename lohmms.tex is an identifier. Usually, the specific identifiers do not mat-
ter but rather the fact that the same object occurs multiple times in the sequence.
Logical hidden Markov models can easily deal with identifiers by setting the selection
distribution μ to 1 for the arguments in which identifiers can occur. Unification then
takes care of the necessary variable bindings.

6.4.2 Benefits of Abstraction through Variables and Unification

Reconsider our example domain II of UNIX command sequences.

Example 6.3 Unix users often reuse a newly created directory in subsequent com-
mands such as in mkdir(vt100x), cd(vt100x), ls(vt100x). ◦
Unification should allow us to elegantly employ this information because it allows us
to specify that, after observing the created directory, the model makes a transition
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into a state where the newly created directory is used:

p1 : cd(Dir, mkdir) ← mkdir(Dir, com)
and p2 : cd( , mkdir) ← mkdir(Dir, com)

If the first transition is followed, the cd command will move to the newly created
directory; if the second transition is followed, it is not specified, which directory cd
will move to. Thus, the logical hidden Markov model captures the reuse of created
directories as an argument of future commands. Moreover, the logical hidden Markov
model encodes the simplest possible case to show the benefits of unification. At any
time, we know exactly the state we are in, and functors are not used. Therefore, we
left out the abstract output symbols associated with abstract transitions. In total,
the logical hidden Markov model U , modeling the reuse of directories, consists of
542 parameters only but still covers more than 451000 (ground) states. The complete
model can be found in the Appendix A.1.

To empirically investigate the benefits of unification, we compare U with the vari-
ant N of U where no variables are shared, i.e., no unification is used such that for
instance the first transition above is not allowed, see Appendix A.1. N has 164 pa-
rameters less than U . We computed the following zero-one win function

f(O) =

{
1 if

[
log PU (O) − log PN (O)

]
> 0

0 otherwise

leave-one-out cross-validated on Unix shell logs collected by Greenberg [1988]. Over-
all, the data consists of 168 users of four groups: computer scientists, nonprogrammers,
novices and others. About 300000 commands have been logged with an average of 110
sessions per user. We present here results for a subset of the data. We considered all
computer scientist sessions in which at least a single mkdir command appears. These
yield 283 logical sequences over in total 3286 ground atoms. The LOO win was 81.63%.
Other LOO statistics are also in favor of U :

training test
log P (OOO) log PU (OOO)

PN (OOO) log P (O) log PU (O)
PN (O)

U −11361.0 1795.3 −42.8 7.91
N −13157.0 −50.7

Thus, although U has 164 parameters more than N , it shows a better generalization
performance. A pattern often found in U was 24

0.15 : cd(Dir, mkdir) ← mkdir(Dir, com)
and 0.08 : cd( , mkdir) ← mkdir(Dir, com)

favoring changing to the directory just made. This cannot be captured in N

0.25 : cd( , mkdir) ← mkdir(Dir, com).

24 The sum of probabilities is not the same (0.15 + 0.08 = 0.23 �= 0.25) because of the use of
pseudo counts and because of the subliminal non-determinism (w.r.t. abstract states) in
U , i.e., in case that the first transition fires, the second one also fires.
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The results clearly show that abstraction through variables and unification can be
beneficial for some applications, i.e., (B1) and (B2) hold.

6.5 Real World Applications

Our intentions here are to investigate whether logical hidden Markov models can be
applied to real world domains. More precisely, we will investigate whether benefits
(B1) and (B2) can also be exploited in real world application domains. Additionally,
we will investigate whether

(B3) logical hidden Markov models are competitive with ILP algorithms that can
also utilize unification and abstraction through variables, and

(B4) logical hidden Markov models can handle tree-structured data similar to
PCFGs.

To this aim, we conducted experiments on two bioinformatics application domains:
protein fold recognition [Kersting et al., 2003b] and mRNA signal structure detec-
tion [Horváth et al., 2001]. Both application domains are multiclass problems with
five different classes each.

6.5.1 Methodology

In order to tackle the multiclass problem with logical hidden Markov models, we
followed a plug-in estimate approach. Let {c1, c2, . . . , ck} be the set of possible classes.
Given a finite set of training examples {(xi, yi)}n

i=1 ⊆ X × {c1, c2, . . . , cn}, one tries
to find f : X → {c1, c2, . . . , ck}

f(x) = arg max
c∈{c1,c2,...,ck}

P (x | M,λ∗
c) · P (c) . (6.3)

with low approximation error on the training data as well as on unseen examples.
In Equation (6.3), M denotes the model structure, which is the same for all classes,
λ∗

c denotes the maximum likelihood parameters of M for class c estimated on the
training examples with yi = c only, and P (c) is the prior class distribution.

We implemented the Baum-Welch algorithm (with pseudocounts m, see line 3) for
maximum likelihood parameter estimation using the Prolog system Yap-4.4.4. In all
experiments, we set m = 1 and let the Baum-Welch algorithm stop if the change in
log-likelihood was less than 0.1 from one iteration to the next. The experiments were
ran on a Pentium-IV 3.2 GHz Linux machine.

6.5.2 Protein Fold Recognition

Protein fold recognition is concerned with how proteins fold in nature, i.e., their three-
dimensional structures. This is an important problem as the biological functions of
proteins depend on the way they fold. A common approach is to use database searches
to find proteins (of known fold) similar to a newly discovered protein (of unknown
fold). To facilitate protein fold recognition, several expert-based classification schemes
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of proteins have been developed that group the current set of known protein structures
according to the similarity of their folds. For instance, the structural classification of
proteins [Hubbard et al., 1997] (SCOP) database hierarchically organizes proteins
according to their structures and evolutionary origin. From a machine learning per-
spective, SCOP induces a classification problem: given a protein of unknown fold,
assign it to the best matching group of the classification scheme. This protein fold
classification problem has been investigated by Turcotte et al. [2001] based on the
inductive logic programming (ILP) system PROGOL and by Kersting et al. [2003b]
based on logical hidden Markov models.

The secondary structure of protein domains25 can elegantly be represented as
logical sequences.

Example 6.4 The secondary structure of the Ribosomal protein L4 is represented as

st(null, 2), he(right, alpha, 6), st(plus, 2), he(right, alpha, 4),
st(plus, 2), he(right, alpha, 4), st(plus, 3), he(right, alpha, 4),
st(plus, 1), he(hright, alpha, 6)

Here, helices of a certain type, orientation and length
he(HelixType,HelixOrientation,Length), and strands of a certain orientation
and length st(StrandOrientation,Length) are atoms over logical predicates. ◦
The application of traditional HMMs to such sequences requires one to either ignore
the structure of helices and strands, which results in a loss of information, or to take
all possible combinations (of arguments such as orientation and length) into account,
which leads to a combinatorial explosion in the number of parameters

The results reported by Kersting et al. [2003b] indicate that logical hidden Markov
models are well-suited for protein fold classification: the number of parameters of a
logical hidden Markov model can by an order of magnitude be smaller than the number
of a corresponding HMM (120 versus approximately 62000) and the generalization
performance, a 74% accuracy, is comparable to Turcotte et al.’s [2001] result based
on the ILP system Progol, a 75% accuracy. Kersting et al., however, do not cross-
validate their results nor investigate — as it is common in bioinformatics — the
impact of primary sequence similarity on the classification accuracy. For instance, the
two most commonly requested ASTRAL subsets are the subset of sequences with less
than 95% identity to each other (95 cut) and with less than 40% identity to each
other (40 cut). Motivated by this, we conducted the following new experiments.

The data consists of logical sequences of the secondary structure of protein do-
mains. As in [Kersting et al., 2003b], the task is to predict one of the five most
populated SCOP folds of alpha and beta proteins (a/b): TIM beta/alpha-barrel (fold
1), NAD(P)-binding Rossmann-fold domains (fold 2), Ribosomal protein L4 (fold 23),
Cysteine hydrolase (fold 37), and Phosphotyrosine protein phosphatases I-like (fold
55). The class of a/b proteins consists of proteins with mainly parallel beta sheets
(beta-alpha-beta units). The data have been extracted automatically from the AS-
TRAL dataset version 1.65 [Chandonia et al., 2004] for the 95 cut and for the 40 cut.
25 A domain can be viewed as a sub-section of a protein, which appears in a number of

distantly related proteins and which can fold independently of the rest of the protein.
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Figure 6.2. Scheme of a left-to-right logical hidden Markov block model.

As in [Kersting et al., 2003b], we consider strands and helices only, i.e., coils and iso-
lated strands are discarded. For the 95 cut, this yields 816 logical sequences consisting
of in total 22210 ground atoms. The number of sequences in the classes are listed as
293, 151, 87, 195, and 90. For the 40 cut, this yields 523 logical sequences consisting
of in total 14986 ground atoms. The number of sequences in the classes are listed as
182, 100, 66, 122, and 53.

Logical Hidden Markov Model Structure: The used logical hidden Markov
model structure follows a left-to-right block topology, see Figure 6.2, to model blocks
of consecutive helices (resp. strands). Being in a Block of some size s, say 3, the
model will remain in the same block for s = 3 time steps. A similar idea has been used
by Koivisto et al. [2002, 2004] to model haplotypes. In contrast to common HMM block
models [Won et al., 2004], the transition parameters are shared within each block and
one can ensure that the model makes a transition to the next state s(Block) only at the
end of a block; in our example after exactly 3 intra-block transitions. Furthermore,
there are specific abstract transitions for all helix types and strand orientations to
model the priori distribution, the intra- and the inter-block transitions. The number
of blocks and their sizes were chosen according to the empirical distribution over
sequence lengths in the data so that the model fits well the dynamics at the beginning
and the end of protein domains. This yields the following block structure

... ... ...
1 2 19 20 27 28 40 41 46 47 61 62 76

where the numbers denote the positions within protein domains. Furthermore, note
that the last block gathers all remaining transitions. The blocks themselves are mod-
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elled using hidden abstract states over

hc(HelixType,HelixOrientation,Length,Block)
and sc(StrandOrientation,Length,Block) .

Here, Length denotes the number of consecutive bases the structure element consists
of. The length was discretized into 10 bins such that the original lengths were unifor-
mally distributed. In total, the logical hidden Markov model has 295 parameters. The
corresponding HMM without parameter sharing has more than 65200 parameters.
This clearly confirms (B1).

Results: We performed a 10-fold cross-validation. On the 95 cut dataset, the accuracy
was 76% and took approximately 25 minutes per cross-validation iteration; on the 40
cut, the accuracy was 73% and took approximately 12 minutes per cross-validation
iteration. The results validate Kersting et al.’s [2003b] results and, in turn, clearly
show that (B3) holds. Moreover, the novel results on the 40 cut dataset indicate that
the similarities detected by the logical hidden Markov models between the protein
domain structures were not accompanied by high sequence similarity.

6.5.3 mRNA Signal Structure Detection

mRNA sequences consist of bases (guanine, adenine, uracil, cytosine) and fold in-
tramolecularly to form a number of short base-paired stems [Durbin et al., 1998].
This base-paired structure is called the secondary structure of the mRNA, cf. Fig-
ures 6.3 and 6.4. The secondary structure contains special subsequences called signal
structures that are responsible for special biological functions, such as RNA-protein
interactions and cellular transport. The function of each signal structure class is based
on the common characteristic binding site of all class elements. The elements are not
necessarily identical but very similar. They can vary in topology (tree structure), in
size (number of constituting bases) and in base sequence.

The goal of our experiments was to recognize instances of signal structures classes
in mRNA molecules. The first application of relational learning to recognize the sig-
nal structure class of mRNA molecules was described in [Bohnebeck et al., 1998,
Horváth et al., 2001] where the relational instance-based learner RIBL was applied.
The dataset 26 we used was similar to the one described by Horváth et al.. It was com-
posed of 15 and 5 SECIS (Selenocysteine Insertion Sequence), 27 IRE (Iron Responsive
Element), 36 TAR (Trans Activating Region) and 10 histone stemloops constituting
five classes.

The secondary structure is composed of different building blocks such as stacking
region, hairpin loops, interior loops etc. In contrast to the secondary structure of
proteins that forms chains, the secondary structure of mRNAs forms a tree. As trees

26 The dataset is not the same as described in [Horváth et al., 2001] because we could not
obtain the original dataset. We will compare to the smaller data set used in [Horváth
et al., 2001], which consisted of 66 signal structures and is very close to our data set. On
a larger data set (with 400 structures) Horváth et al. report an error rate of 3.8% .
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can not easily be handled using HMMs, mRNA secondary structure data is more
challenging than that of proteins. Moreover, Horváth et al. [2001] report that making
the tree structure available to RIBL as background knowledge had an influence on
the classification accuracy. More precisely, using a simple chain representation RIBL
achieved a 77.2% leave-one-out cross-validation (LOO) accuracy whereas using the
tree structure as background knowledge RIBL achieved a 95.4% LOO accuracy.

We followed Horváth et al.’s experimental setup, that is, we adapted their data
representations to logical hidden Markov models and compared a chain model with a
tree model.

Chain Representation: In the chain representation (see also Figure 6.3), signal
structures are described by

single(TypeSingle,Position,Acid)
or helical(TypeHelical ,Position,Acid ,Acid) .

Depending on its type, a structure element is represented by either single/3 or
helical/4. Their first argument TypeSingle (resp. TypeHelical) specifies the type
of the structure element, i.e., single, bulge3, bulge5, hairpin (resp. stem). The ar-
gument Position is the position of the sequence element within the corresponding
structure element counted down, i.e.27, {n13(0), n12(0), . . . , n1(0)}. The maximal po-
sition was set to 13 as this was the maximal position observed in the data. The last
argument encodes the observed nucleotide (pair).

The used logical hidden Markov model structure follows again the left-to-right
block structure shown in Figure 6.2. Its underlying idea is to model blocks of consec-
utive helical structure elements. The hidden states are modelled using

single(TypeSingle,Position,Acid ,Block)
and helical(TypeHelical ,Position,Acid ,Acid ,Block) .

Being in a Block of consecutive helical (resp. single) structure elements, the model
will remain in the Block or transition to a single element. The transition to a single
(resp. helical) element only occurs at Position n(0). At all other positions n(Position),
there were transitions from helical (resp. single) structure elements to helical (resp.
single) structure elements at Position capturing the dynamics of the nucleotide pairs
(resp. nucleotides) within structure elements. For instance, the transitions for block
n(0) at position n(n(0)) were

a : he(stem, n(0), X, Y, n(0))
pa:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

b : he(stem, n(0), Y, X, n(0))
pb:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

c : he(stem, n(0), X, , n(0))
pc:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

d : he(stem, n(0), , Y, n(0))
pd:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

e : he(stem, n(0), , , n(0))
pe:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

27 nm(0) is shorthand for the recursive application of the functor n on 0 m times, i.e., for
position m.
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Figure 6.3. The chain representation of a SECIS signal structure. The ground atoms are
ordered clockwise starting with helical(stem, n(n(n(n(n(n(n(0))))))), a, u) at the lower left-
hand side corner.

In total, there were 5 possible blocks as this was the maximal number of blocks of
consecutive helical structure elements observed in the data. Overall, the logical hidden
Markov model has 702 parameters. In contrast, the corresponding HMM has more
than 16600 transitions validating (B1).

Results: The LOO test log-likelihood was −63.7, and an EM iteration took on
average 26 seconds.

Without the unification-based transitions b-d, i.e., using only the abstract transi-
tions

a : he(stem, n(0), X, Y, n(0))
pa:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0)))

e : he(stem, n(0), , , n(0))
pe:he(stem,n(0),X,Y)←−−−−−−−−−−−− he(stem, n(n(0)), X, Y, n(0))),

the model has 506 parameters. The LOO test log-likelihood was −64.21, and an EM
iteration took on average 20 seconds. The difference in LOO test log-likelihood is
statistically significant (paired t-test, p = 0.01).

Omitting even transition a, the LOO test log-likelihood dropped to −66.06, and
the average time per EM iteration was 18 seconds. The model has 341 parameters.
The difference in average LOO log-likelihood is statistically significant (paired t-test,
p = 0.001).

The results clearly show that unification can yield better LOO test log-likelihoods,
i.e., (B2) holds.

Tree Representation: In the tree representation (see Figure 6.4 (a)), the idea is
to capture the tree structure formed by the secondary structure elements, see Fig-



§6.5 Real World Applications 115

Figure 6.4. The tree representation of a SECIS signal structure.(a) The logical sequence,
i.e., the sequence of ground atoms representing the SECIS signal structure. The ground atoms
are ordered clockwise starting with root(0, root, [c]) in the lower left-hand side corner. (b)
The tree formed by the secondary structure elements.

ure 6.4 (b). Each training instance is described as a sequence of ground facts over

root(0, root,#Children),
helical(ID ,ParentID ,#Children,Type,Size),
nucleotide pair(BasePair),
single(ID ,ParentID ,#Children,Type,Size),
nucleotide(Base) .

Here, ID and ParentID are natural numbers 0, s(0), s(s(0)), . . . encoding the child-
parent relation, #Children denotes the number of children [], [c], [c, c], . . ., Type is the
type of the structure element such as stem, hairpin, . . ., and Size is a natural number
0, n(0), n(n(0)), . . . Atoms root(0, root,#Children) are used to root the topology. The
maximal #Children was 9 and the maximal Size was 13 as this was the maximal value
observed in the data.

As trees can not easily be handled using HMMs, we used a logical hidden Markov
model, which basically encodes a PCFG. Due to Theorem 6.1, this is possible. The
used logical hidden Markov model structure can be found in Appendix A.2. It pro-
cesses the mRNA trees in in-order. Unification is only used for parsing the tree. As
for the chain representation, we used a Position argument in the hidden states to
encode the dynamics of nucleotides (nucleotide pairs) within secondary structure el-
ements. The maximal Position was again 13. In contrast to the chain representation,



nucleotide pairs such as (a, u) are treated as constants. Thus, the argument BasePair
consists of 16 elements.

Results: The LOO test log-likelihood was −55.56. Thus, exploiting the tree
structure yields better probabilistic models. On average, an EM iteration took 14
seconds. Overall, the result shows that (B4) holds.

Although the Baum-Welch algorithm attempts to maximize a different objective
function, namely the likelihood of the data, it is interesting to compare logical hidden
Markov models and RIBL in terms of classification accuracy.

Classification Accuracy: On the chain representation, the LOO accuracies of all
logical hidden Markov models were 99% (92/93). This is a considerable improvement
on RIBL’s 77.2% (51/66) LOO accuracy for this representation. On the tree repre-
sentation, the logical hidden Markov model also achieved a LOO accuracy of 99%
(92/93). This is comparable to RIBL’s LOO accuracy of 97% (64/66) on this kind of
representation.

Thus, already the chain logical hidden Markov models show marked increases in
LOO accuracy when compared to RIBL [Horváth et al., 2001]. In order to achieve sim-
ilar LOO accuracies, Horváth et al. had to make the tree structure available to RIBL
as background knowledge. For logical hidden Markov models, this had a significant
influence on the LOO test log-likelihood, but not on the LOO accuracies. This clearly
supports (B3). Moreover, according to Horváth et al., the mRNA application can also
be considered a success in terms of the application domain, although this was not the
primary goal of our experiments. There exist also alternative parameter estimation
techniques and other models, such as covariance models [Eddy and Durbin, 1994] or
pair hidden Markov models [Sakakibara, 2003], which might have been used as well as
a basis for comparison. However, as logical hidden Markov models employ inductive
logic programming principles, it is appropriate to compare with other systems within
this paradigm such as RIBL.

§ 7

Learning the Structure of Logical HMMs *

... in which the structure learning problem for logical hidden Markov models
is formalized and a structural, generalized Expectation-Maximization approach
for solving the problem is presented and experimentally evaluated ...

The compactness and comprehensibility of logical hidden Markov models comes at the
expense of a more complex model selection respectively structure learning problem.
Structure selection for logical hidden Markov models is a significant problem for many
* Builds on [Kersting et al., 2003a, Kersting and Raiko, 2005].
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reasons. First, eliciting logical hidden Markov models from experts can be a labori-
ous and expensive process. Second, HMMs are commonly learned by estimating the
maximum likelihood parameters of a fixed, fully connected model. Such an approach
is not feasible for logical hidden Markov models as different abstraction levels have to
be explored. Third, logical hidden Markov models are strictly more expressive than
HMMs as shown in Theorem 6.1 and in the experiments on tree-structured mRNA
data in Section 6.5.3. Finally, parameter estimation for logical hidden Markov models
is a costly nonlinear optimization problem, so the näıve search is infeasible.

We propose sagEM 28 for selecting the structure of logical hidden Markov models
from data. sagEM adapts Friedman’s structural EM [1997]. It combines a general-
ized expectation maximization (GEM) algorithm, which optimizes parameters, with
structure search for model selection using ILP refinement operators. Thus, sagEM
explores different abstraction levels due to ILP refinement operators, and, due to a
GEM approach, it reduces the selection problem to a more efficiently solvable one.

7.1 The Learning Setting: Probabilistic Learning from Proofs

For traditional HMMs, the learning problem basically collapses to parameter estima-
tion (i.e., estimating the transition probabilities) because HMMs can be considered to
be fully connected. For logical hidden Markov models, however, we have to account
for different abstraction levels. We treat the model selection problem as an instance of
the probabilistic ILP learning problem, see Definition 2.26, for learning from possible
traces only. More precisely:

Definition 7.1 (Learning Problem) Given a set O = {O1, . . . ,Om} of possible ex-
amples independently sampled from the same distribution, a set M of logical hidden
Markov models subject to some language bias L, the distribution P (O | M) for each
M ∈ M as specified in Section 6 as probabilistic covers relation, and a scoring function
scoreO : M �→ R, find a hypothesis M∗ ∈ M that maximizes scoreO. ◦

Each example, i.e., data case Oi ∈ O is a sequence Oi = oi,1oi,2 . . . oi,Ti of ground
atoms and describes the observations evolving over time. For the sake of simplicity,
we assume that T1 = T2 = . . . = Tm.

Example 7.2 In the user modeling domain a data case could be
emacs(lohmms), ls, emacs(lohmms) . ◦
The corresponding evolution of the system’s state over time Hi = hi,0hi,1 . . . hi,Ti+1

is hidden, i.e. , not specified in Oi.

Example 7.3 Continuing our running example, we do
not know whether emacs(lohmms) has been generated by
emacs(lohmms, other) or emacs(lohmms, tex) . ◦

The hypothesis space M consists of all candidate logical hidden Markov models to
be considered during search. We assume the alphabet Σ of the logical HMMs in M to
28 German for ’say EM’
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Algorithm II.4: Näıve approach for learning the structure of logical hidden
Markov models from data.

k := 01

let Mk be some proper initial model structure2

let λk = arg maxλ scoreO(Mk, λ)3

repeat4

find a model structure Mk+1 ∈ ρ(Mk) maximizing scoreO(Mk+1, λ)5

let λk+1 = arg maxλ scoreO(Mk+1, λ)6

k := k + 17

until scoreO(Mk−1, λk−1) ≥ scoreO(Mk, λk), i.e., no improvement in score8

be given. Thus, the possible constants, which can be selected by μ are apriori known.
Each M ∈ M is parameterized by a vector λM . Each (legal) choice of λM defines a
probability distribution P (· | M,λM ) over

⊗
t hb(Σ), ie., over sequences over hb(Σ).

For the sake of simplicity, we will denote the underlying logic program (i.e., the set of
abstract transitions without associated probability values) by M and abbreviate λM

by λ as long as no ambiguities can arise. Furthermore, the syntactic bias L on the
transitions to be induced is a parameter of our framework, as usual in ILP Nédellec
et al. [1996]. For instance in the experiments, we only consider transitions that obey
the type constraints induced by the predicates.

As score, we employ a penalized log-likelihood

scoreO(M,λ) = log P (O | M,λ) − Pen(M,λ,O) . (7.1)

Here, log P (O | M,λ) is the log-likelihood of the current of model (M,λ). The higher
the log-likelihood is, the closer (M,λ) models the probability distribution induced by
the data. The second term, Pen(M,λ,O), is a penalty function that biases the scoring
function to prefer simpler models. Motivated by the minimum description length score
for Bayesian networks [Lam and Bacchus, 1994], we use the simple penalty

Pen(M,λ,O) = |Δ| log(m)/2 (7.2)

where m is the number of training examples, cf. Definition 7.1, and |Δ| is the number
of abstract transitions in M , cf. Definition 5.13. The penalty is independent of the
model parameters λ and therefore it can be neglected when estimating parameters.
We assume that each M covers all possible observation sequences (over the given
language Σ). This guarantees that all new data cases will get a positive likelihood.

7.2 A Näıve Learning Algorithm

A simple way of selecting a model structure is the greedy approach described in
Algorithm II.4. It takes as input an initial model M0 and the data O. At each stage
k it chooses a model structure and parameters among the current best model Mk and
its neighbours ρ(Mk) (see below) that have the highest score. It stops, when there is
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no improvement in score. For scoring models in lines 3 and 5, the model parameters
λ are randomly initialized.

We will now show how to traverse the hypotheses space and how to estimate
parameters for a hypothesis in order to score it. That is, we will make line 5 more
concrete.

7.2.1 Traversing the Hypotheses Space

An obvious candidate for the initial hypothesis M0 (,which we also used in our exper-
iments) is the fully connected logical hidden Markov model built over all maximally
general atoms over Σ, i.e., expressions of the form r(X1, ..., Xm), where the Xi are
different variables.

Now, to traverse the hypothesis space M, we have to compute all neighbours
of the currently best hypothesis Mk. To do so, we adapt the refinement operators
traditionally used in ILP, cf. Definition 2.13. More precisely, for the language bias L
used in the experiments in Section 7.4, we used the refinement operator ρ : M �→
2M that selects a single clause T ≡ p : H O←− B ∈ M and adds a minimal specialization

T′ ≡ p : H′ O′←− B′ of T to M (with respect to θ-subsumption). Specializing a single
abstract transition means instantiating or unifying variables, i.e., T′ ≡ T θ for some
substitution θ. In contrast to ILP, however, we have to be a little bit more careful
when adding T′ to Mk. We have to ensure that

(1) the same observation and hidden state sequences are still covered. For a similar
reason, we applied the LGG when learning stochastic logic programs, cf. Sec-
tion 2.3.2, only to clauses that define the same predicate, that contain the same
predicates, and whose (reduced) LGG also has the same length as the original
clauses. Furthermore, we have to ensure that

(2) the list of bodies B′ after adding T′ should remain well-founded, that is, for each
ground state, there is a unique maximally specific body in B′.

These conditions together guarantee that the most specific body corresponding to a
state always exists and is unique. Condition (1) can only be violated if B′ �∈ B 29. In
this case, we add transitions with B′ and maximally general heads and corresponding
observations. Now, we compute the maximal specific B′′ ∈ B that subsumes B′. If it
does not exist or B′ subsumes B′′, we stop. Otherwise, we add corresponding transitions
for the mgu of B′ and B′′. Condition (2) is established analogously. We keep the list
of bodies well-founded by adding new bodies (and therefore abstract transitions) in
a similar way as described above.

Example 7.4 Consider refining the logical hidden Markov models in Figure 7.1.

When adding ls(U)
latex(lohmm)←−−−−−−−− latex(lohmm, U) , i.e., introducing the more specific

abstract state latex(lohmm, U), further variants of the same abstract transition but
with different heads have to be added. Otherwise condition (1) would be violated
as the resulting logical hidden Markov model does not cover the same sequences as
29 Otherwise, i.e., if B′ ∈ B, B was already well-founded and remains well-founded when

adding the refined abstract transition.
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Figure 7.1. Another logical hidden Markov model.

the original one; the state latex(lohmm, U) can only be left via ls(U) and not for
instance via emacs( , U). On the other hand, we have to be careful when subsequently
adding abstract transitions for the body latex(F, tex). The problem is that we do
not know which abstract body to select in state latex(lohmm, tex). To fulfill condi-
tion (2), we need to add abstract transitions for an additional, third abstract state
latex(lohmm, tex), too. ◦

7.2.2 Parameter Estimation

The most common approach for parameter estimation of HMMs in the presence of
hidden variables and missing observations is the Baum-Welch algorithm, see Sec-
tion 6.3, which is an instance of the EM algorithm [Dempster et al., 1977, McLachlan
and Krishnan, 1997]. Because sagEM, which we will introduce in Section 7.3, builds
upon the EM algorithm, let us briefly review the basics of the EM algorithm.

In each iteration l + 1, the EM algorithm performs two steps:

(E-Step) Compute the expectation of the log-likelihood given the old model
(Mk,λk,l) and the observed data O, i.e.,

Q(Mk,λ | Mk,λk,l) = E
[
log P (O,H | Mk,λ) | Mk,λk,l

]
.

For logical HMMs, O,H is the completion of O where H denotes hidden state se-
quences, which could have generated O. The current model (Mk,λk,l) and the ob-
served data O give us the conditional distribution governing H, and E[·|·] denotes
the expectation over it. The function Q is called the expected score.

(M-Step) Maximize the expected score Q(Mk,λ | Mk,λk,l) w.r.t. λ, i.e.,

λk,l+1 = arg maxλ Q(Mk,λ | Mk,λk,l) . (7.3)
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Algorithm II.5: sagEM: A structural generalized expectation-maximization
approach for learning the structure of logical hidden Markov models from data.

let k = 01

let Mk be some proper initial model structure2

initialize λ0,0 randomly3

repeat4

let l = 05

repeat6

let λk,l+1 = arg maxλ Q(Mk, λ | Mk, λk,l)7

let l = l + 18

until convergence, i.e., no improvement in score, or l = lmax9

find model structure Mk+1 ∈ ρ(Mk) maximizing Q(Mk+1, λ | Mk, λk,l)10

let λk+1,0 = arg maxλ Q(Mk+1, λ | Mk, λk,l)11

let k = k + 112

until convergence, i.e., no improvement in score13

The näıve greedy algorithm can easily be instantiated using the Baum-Welch al-
gorithm. The problem, however, is its huge computational costs. To evaluate a single
neighbour, the Baum-Welch algorithm has to run for a reasonable number of iter-
ations in order to get reliable ML estimates of λk′

. Each iteration requires a full
logical hidden Markov model inference on all data cases. In total, the running time
per neighbour evaluation is at least O(#EM iterations · size of data) .

7.3 sagEM: A Structural Generalized EM

To reduce the computational costs, sagEM 30 adapts Friedman’s structural EM
(SEM) [1997]. That is, we take our current model (Mk, λk) and run the Baum-Welch
algorithm, i.e., the EM algorithm for a while to get reasonably completed data. We
then fix the completed data cases and use them to compute the ML parameters λk′

of
each neighbour Mk′

. We choose the neighbour with the best improvement of the score
as (Mk+1,λk+1) and iterate. Algorithm II.5 describes the approach more formally.

The hypotheses space is traversed as described earlier in Section 7.2.1, and again
we stop if there is no improvement in score. The following theorem shows that even
when the model structure changes in between two iterations of the EM algorithm,
improving the expected score Q always improves the log-likelihood as well.

Theorem 7.5 If Q(M,λ | Mk,λk,l) > Q(Mk,λk,l | Mk,λk,l) holds, then
log P (O | M,λ) > log P (O | Mk,λk,l) holds. ◦

The proof is an application of the argumentation for the monotonicity of the EM
algorithm by [McLachlan and Krishnan, 1997, Section 3.2 ff.]. To apply the algorithm

30 German for ’say EM’
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to selecting logical hidden Markov models, we will now show how to choose the best
neighbour 31 in line 10.

Let c(b, h, o) denotes the number of times the systems proceeds from ground state
b to ground state h emitting ground observation o. The expected score in line 10
simplifies to

Q(M,λ|Mk,λk,l)

= E
[
log P (O,H|M,λ)

∣∣∣Mk,λk,l
]

= E
[
log

∏
t
P (ht+1, ot+1|ht,M,λ)

∣∣∣Mk,λk,l
]

= E
[
log

∏
b,h,o

P (h, o|b,M,λ)c(b,h,o)
∣∣∣Mk,λk,l

]
= E

[∑
b,h,o

c(b, h, o) · log P (h, o|b,M,λ)
∣∣∣Mk,λk,l

]
=

∑
b,h,o

E
[
c(b, h, o)

∣∣∣Mk,λk,l
]

︸ ︷︷ ︸
=:ec(b,h,o)

· log P (h, o|b,M,λ) . (7.4)

The term ec(b, h, o) in (7.4) denotes the expected counts of making a transition from
ground state b to ground state h emitting ground observation o. The expectation is
taken according to (Mk,λk,l).

An analytical solution, however, of the M-step in line 10 seems to be difficult. In
HMMs, the updated transition probabilities are simply directly proportional to the
expected number of times they are used. In logical hidden Markov models, however,
there is an ambiguity: multiple abstract transitions (with the same body), can match
the same ground transition (b, h, o). Using ec as sufficient statistics makes the M step
nontrivial. The solution is to improve Equation (7.4) instead of maximizing it. Such
an approach is called generalized EM, see [McLachlan and Krishnan, 1997]. To do so,
we follow a gradient-based optimization technique. We iteratively perform two steps:

(1) Compute the gradient ∇λ of (7.4) with respect to the parameters of a logical
hidden Markov model, and, then,

(2) take a step in the direction of the gradient to the point λ + δ∇λ where δ is the
step-size.

For logical hidden Markov models, the gradient with respect to (7.4) consists of
partial derivatives with respect to abstract transition probabilities and to selection
probabilities.

Assume that λ is the transition probability associated with some abstract transi-
tion T. Now, the partial derivative of (7.4) with respect to some parameter λ is

∂Q(M,λ | Mk,λk,l)
∂λ

=
∑

b,h,o
ec(b, h, o) · ∂ log P (h, o | b,M,λ)

∂λ

=
∑

b,h,o

ec(b, h, o)
P (h, o | b,M,λ)

· ∂P (h, o | b,M,λ)
∂λ

(7.5)

31 For the sake of simplicity, we will not explicitly check that a transition is maximally specific
for ground states.
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The partial derivative of P (h, o | b,M,λ) with respect to λ can be computed as
follows:

| · |

∂Q(M,λ | Mk,λk,l)
∂λ

=
∑
b,h,o

(
ec(b, h, o)

P (h, o | b,M,λ)
· μ(h | head(T)θH,M) · μ(o | obs(T)θHθO,M)

)
.

The selection probability follows a näıve Bayes approach. Therefore, one can show
in a similar way as for transition probabilities that

∂Q(M,λ | Mk,λk,l)
∂λ

=
∑
b,h,o

( ec(b, h, o)
P (h, o | b,M,λ)

·
∑
T

c(λ, T, b, h, o)·

· P (T | M,λ) · μ(h | head(T)θH,M)·
· μ(o | obs(T)θHθO,M)

)
where c(λ, T, b, h, o) is the number of times that the domain element associated with
λ is selected to ground T with respect to h and o.

The described method has to be modified to take into account that λ ∈ [0, 1] and
that corresponding λ’s sum to 1.0. For our experiments, we simply follow the approach
taken for Bayesian logic programs, see Section 4.3.2, page 67, and reparameterized
the problem using

λij =
βij)

(
∑

l exp(βil))
.

This enforces the constraints given above, and a local maximum with respect to β is
also a local maximum with respect to λ, and vice versa. The gradient with respect to
the βij ’s can be found by computing the gradient with respect to the λij ’s and then
deriving the gradient with respect to β using the chain rule. The derivation follows
the same steps as for Bayesian logic programs.

7.3.1 Discussion

What are the benefits of sagEM over the näıve approach? The expected ground
counts ec(b, h, o) are used as the sufficient statistics to evaluate all the neighbours.
Evaluating neighbours is thus now independent of the number and length of the data
cases, which is an important feature for scaling up. More precisely, the running time

∂λ

∑
T
P (T | M,λ) · μ(h | head(T)θH,M) · μ(o | obs(T)θHθO,M)

= μ(h head(T)θH,M) μ(o obs(T)θHθO,M) (7.6)
∂λ

=
∂P (h, o | b,M,λ)

Substituting (7.6) back into (7.5) yields
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Figure 7.2. sagEM’s speed-up (y axis), i.e., the ratio of time per EM iteration (in sec.)
and time per sagEM’s gradient approach for evaluating neighbours. The speed-up is shown
for different sequence lengths (x axis) and for different numbers of data cases (curves).

per neighbour evaluation is basically O(#Gradient iterations · #Ground transitions)
because sagEM’s gradient approach does not perform logical hidden Markov model
inference.

The greedy approach does not always suffice. For instance, if two hidden states
are equivalent, to make them effectively differ from each other, one needs to make
them differ both in visiting probabilities of the state and in behavior in the state,
possibly requiring two steps for any positive effect. Fixing the expected counts in
sagEM worsens the problem, since changes in visiting probabilities of states do not
show up before a logical hidden Markov model inference is made. To overcome this,
different search strategies, such as beam search, can be used: Instead of a current
hypothesis, a fixed-size set of current hypotheses is considered, and their common
neighbourhood is searched for the next set.

To summarize, sagEM explores different abstraction levels due to ILP refinement
operators, and, due to a GEM approach, it reduces the neighbourhood evaluation
problem to one that is more efficiently solvable.

7.4 Experimental Evaluation

We investigate whether sagEM can be applied to real world domains. More precisely,
we are interested whether sagEM

H1 speeds-up neighbour evaluation considerably (compared to the näıve approach);
H2 finds a comprehensible model;
H3 works in the presence of transition ambiguity;
H4 can be applied to real-world domains and is competitive with standard machine

learning algorithms such as nearest-neighbour and decision-tree learners.

To this aim, we implemented sagEM using the Prolog system YAP-4.4.4. The ex-
periments were run on a Pentium-III-2.3 GHz machine. For the improvement of the
expected score, we adapted the scaled conjugate gradient as implemented in Bishop
and Nabney’s Netlab library (http://www.ncrg.aston.ac.uk/netlab/) with a maxi-
mum number of 10 iterations and 5 random restarts.
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Figure 7.3. The original hypothesis for the experiments with synthetic data.

7.4.1 Experiments with Synthetic Data

We sampled independently 10, 50, 100 sequences of length 10, 50, 100 (100 to 10000
ground atoms in total) from the logical hidden Markov model shown in Figure 7.3.
We measured the averaged running time in seconds per iteration for both the näıve
algorithm and sagEM’s gradient approach to evaluate neighbours when applied to
the logical hidden Markov model shown in Figure 7.1. The times were measured using
YAP’s built-in statistics/2. The results are summarized in Figure 7.2 showing the
ratio of running times of näıve over sagEM’s gradient approach. In some cases the
speed-up ratio was more than 400. EM’s lowest running time was 0.075 seconds (for
10 sequences of length 10). In contrast, sagEM was constantly below 0.017 seconds.
This suggests that H1 holds.

We sampled 2000 sequences of length 15 (30000 ground atoms) from the logical
hidden Markov model in Figure 7.3. There were 4 filenames and 2 users. The initial
hypothesis was the logical hidden Markov model in Figure 7.1 with randomly ini-
tialized parameters. We run sagEM on the sampled data. 32 Averaged over 5 runs,
estimating the parameters for the initial hypothesis achieved a score of −47203. In
contrast, the score of sagEM’s selected model was −26974, which was even slightly
above the score of the original logical hidden Markov model (−30521). This suggests
that H3 holds. Moreover, in all runs, sagEM included the following rules:

latex(A, B)
0.61:emacs(A)←−−−−−−−− emacs(A, B) and emacs(A, B)

0.48:emacs(A)←−−−−−−−− latex(A, B) .

These rules were not present in the initial model. This suggests that H2 holds.

7.4.2 Experiments with Real-World Data

Finally, we applied sagEM to the data set collected by Greenberg [1988]. The data
consists of 168 users of four groups: computer scientists, non-programmers, novices
and others. About 300000 commands have been logged in on average 110 sessions per
32 The näıve algorithm was no longer used for comparison due to unreasonable running times.
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Figure 7.4. The initial hypothesis for the experiments with real-world data is a minimal
structure, implying learning from scratch. C stands for command and P for parameters.
The hidden state hid(C, P, L) contains the current command C, its parameters P, and the last
command L.

user. We encoded the commands as sequences over com(C, P) where C is the command
types in by the user and P a list of parameters. For instance, cmd(ls, []), cmd(cd, [′..′])
denotes a user reading the directory, ls, and then changing to the parent directory,
cd .. We present here results for two classes: novice-1(NV) consisting of 2512 ground
atoms and non-programmers-4 (NP) consisting of 5183 ground atoms. We randomly
selected 35 training sessions (about 1500 commands, i.e., ground atoms) for each class.
On this data, we let sagEM select a model for each class independently, starting from
the initial hypothesis

1.00 : begin ←− start 1.0 : hid(C, P, X)
com(C,P)←−−−−−− begin

0.95 : hid(C′, P′, C)
com(C′,P′)←−−−−−−− hid(C, X, Y) 0.05 : end

end←−− hid(X, Y, Z),

which is graphically represented in Figure 7.4. To evaluate, we computed the plug-in
estimates, see Equation (6.3), of each model for the remaining sessions. Averaged over
five runs, the precision (0.94 ± 0.06 NV, 0.91 ± 0.02 NP) and recall values (0.67 ±
0.03 NV, 0.89±0.05 NP) were balanced and the overall predictive accuracy was 0.92±
0.01. Jacobs and Blockeel [2003] report that a kNN approach achieved a precision of
0.91 and J48 (WEKA’s implementation of Quinlan’s C4.5 decision tree learner) of 0.86
averaged over ten runs on 50 randomly sampled training examples. This suggests that
H4 holds.

The used kNN and J48 methods, however, do not yield generative models and
lack comprehensibility. sagEM’s selected models encoded e.g. “non-programmers are
very likely to type in cd .. after performing ls in some directory”. This pattern was
not present in the NV model. This suggests that H2 holds.

Future Work

The three fundamental problems of evaluating the likelihood of an observation se-
quence, estimating an optimal state sequence for observations, and learning the model
parameters, all have quadratic time complexity in the number of the Herbrand base.
Therefore, faster and approximate inference techniques have to be explored in the
future. Logical hidden Markov models over bounded depth atoms (such as functor-
free models) have a close connection to hierarchical and abstract HMMs. Therefore,
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representing them as dynamic Bayesian networks [Siddiqi and Moore, 2005] and ap-
plying variational methods [Johns and Mahadevan, 2005] are promising directions
for future research. In general, expressing logical hidden Markov models within more
expressive probabilistic ILP languages such as PRISM programs would pave the way
towards a rich toolbox of possible selection probability models including Bayesian
networks and Markov chains. Furthermore, for large-state space models, it is usually
reasonable to focus on a few high-probability transitions per state and keep track of
their exact values while approximating the rest with a constant. This approach has
been successfully applied to HMMs [Siddiqi and Moore, 2005] and is an attractive
future approach to speed up inference within logical hidden Markov models. One
might even use probability estimation trees (PET) to compactly and approximatively
represent the forward and backboard probabilities. PETs might also be used to speed
up structure learning. Instead of following a top-down hill-climbing approach using
ILP-like refinement operators, one could induce a relational PET in each iteration of
sagEM. The PET would represent the subsumption lattice among the abstract states.
A similar technique has been used to learn RMMs [Anderson et al., 2002].

Finally, many interesting real-world applications are composed of multiple inter-
acting processes, and thus merit a compositional representation of two or more ran-
dom variables. This is typically the case for systems that have structure both in
time and space. With a single state variable, Markov models and, in turn, logical
Markov models are ill-suited for tackling these problems. Coupling multiple logical
hidden Markov models or factorial variants of logical hidden Markov models with a
distributed state space representation could capture these interactions. Another limit
of the current framework of logical hidden Markov models are the restrictive from of
selection distribution. More expressive selection distributions such as Bayesian net-
works or Markov chains, even encoded as neural networks, could be explored in the
future. Furthermore, logical hidden Markov models are trained in an unsupervised
manner. In many fields such as bioinformatics and computational linguistics, how-
ever, the task is to label each element of a given sequence. As an example, consider
the task of labeling the words in a sentence with their corresponding part-of-speech
(POS) tags. Each word is labeled with a tag indicating its appropriate part of speech.
Thus, we are faced with a sequential supervised learning problem. Promising candi-
dates are relational and logical variants of input-output HMMs and of conditional
random fields. Recently, Gutmann [2005] applied conditional random fields to logical
sequences. The idea is to represent cliques using logical regression trees. On a similar
data set as we used in our protein fold classification task, Gutmann’s method achieved
a cross-validated accuracy of about 88%.

Conclusions

Logical hidden Markov models, a new formalism for representing probability distribu-
tions over sequences of logical atoms, have been introduced and solutions to the three
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central inference problems (evaluation, most likely state sequence and parameter es-
timation) have been provided. Experiments have demonstrated that unification can
improve generalization accuracy, that the number of parameters of a logical hidden
Markov model can be an order of magnitude smaller than the number of parameters
of the corresponding HMM, that the solutions presented perform well in practice and
also that logical hidden Markov models possess several advantages over traditional
HMMs for applications involving structured sequences. Furthermore, a model selec-
tion method for logical hidden Markov models called sagEM has been introduced.
sagEM fits the probabilistic learning from traces setting and combines generalized
EM, which optimizes parameters, with structure search for model selection using ILP
refinement operators. Experiments show sagEM’s effectiveness.

Related Work

Logical hidden Markov models combine two different research directions. On the one
hand, they are a framework for statistical relational learning respectively probabilistic
ILP over time. On the other hand, they are related to several extensions of HMMs
and probabilistic grammars.

Within statistical relational learning, most attention has been devoted to devel-
oping highly expressive formalisms, such as e.g. PCUP [Eisele, 1994], PCLP [Riezler,
1998], SLPs [Muggleton, 1996], PLPs [Ngo and Haddawy, 1997], RBNs [Jäger, 1997],
PRMs [Friedman et al., 1999], PRISM [Sato and Kameya, 2001], BLPs [see Part I],
DPRMs [Sanghai et al., 2003], and MLNs [Domingos and Richardson, 2004, Sanghai
et al., 2005], see also Section 5 for more details. Moreover, only Sanghai et al. [2003,
2005] considered dynamic processes. Logical hidden Markov models can be seen as an
attempt towards downgrading such highly expressive frameworks. Indeed, applying
the main idea underlying logical hidden Markov models to non-regular probabilistic
grammars, i.e., replacing flat symbols with atoms, yields — in principle — stochastic
logic programs [Muggleton, 1996]. As a consequence, logical hidden Markov models
represent an interesting position on the expressiveness scale. Whereas they retain most
of the essential logical features of the more expressive formalisms, they seem easier
to understand, adapt and learn. This is akin to many contemporary considerations
in ILP.

In the second type of approaches, the underlying idea is to upgrade HMMs
and probabilistic grammars to represent more structured state spaces. Hierarchical
HMMs [Fine et al., 1998], abstract HMMs [Bui et al., 2002], factorial HMMs [Ghahra-
mani and Jordan, 1997], and HMMs based on tree automata [Frasconi et al., 2002]
decompose the state variables into smaller units. In hierarchical HMMs, states emit
sinlge symbols and abstract states emit strings of symbols. The strings emitted by
abstract states are themselves governed by sub-HHMMs, which are called recursively.
When the sub-HHMM is finished, i.e., the string is produced by a sequence of states,
control is returned to wherever it was called from. The hierarchy has a bounded depth
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Related Work 129

so that hierarchical HMMs are less expressive than probabilistic context free gram-
mars (PCFGs). Abstract HMMs apply the idea of hierarchical HMMs to explain the
interaction between behaviors, or policies, at different levels of abstractions. Murphy
and Paskin [2002] have shown how to interpret abstract HMMs as hierarchical HMMs.
In factorial HMMs, states are be factored into k state variables, which depend on one
another only through the observation; and in tree based HMMs, the represented prob-
ability distributions are defined over tree structures. The key difference with logical
hidden Markov models is that these approaches do not employ the logical concepts
of variables and unification. Both are essential because variables allows one to group
states together — thus, for instance in contrast to hierarchical HMMs, abstract states
are not governed by logical HMMs and functors allow hierarchies of unlimited depth —
and unification allows one to share knowledge between abstract states via abstract
transitions. As our experimental evidence shows, sharing information among abstract
states by means of unification can lead to more accurate model estimation. The same
holds for relational Markov models (RMMs) [Anderson et al., 2002] to which logical
hidden Markov models are closely related. In RMMs, states can be of different types,
with each type described by a different set of variables. The domain of each variable
can be hierarchically structured. The main differences between logical hidden Markov
models and RMMs are that RMMs neither support variable binding nor unification
nor hidden states.

The equivalent of HMMs for context-free languages are PCFGs. Like HMMs, they
do not consider sequences of logical atoms and do not employ unification. Neverthe-
less, there is a formal resemblance between the Baum-Welch algorithms for logical
hidden Markov models and for PCFGs. In case that a logical hidden Markov model
encodes a PCFG both algorithms are identical from a theoretical point of view. They
re-estimate the parameters as the ratio of the expected number of times a transition
(resp. production) is used and the expected number of times a transition (resp. pro-
duction) might have been used. The proof of Theorem 6.1 assumes that the PCFG
is given in Greibach normal form33 (GNF) and uses a pushdown automaton to parse
sentences. For grammars in GNF, pushdown automata are common for parsing. In
contrast, the actual computations of the Baum-Welch algorithm for PCFGs, the so
called Inside-Outside algorithm [Baker, 1979, Lari and Young, 1990], is usually for-
mulated for grammars in Chomsky normal form34. The Inside-Outside algorithm can
make use of the efficient CYK algorithm [Hopcroft and Ullman, 1979] for parsing
strings.

An alternative to learning PCFGs from strings only is to learn from more struc-
tured data such as skeletons, which are derivation trees with the nonterminal nodes
removed [Levy and Joshi, 1978]. Skeletons are exactly the set of trees accepted by
skeletal tree automata (STA). Informally, an STA, when given a tree as input, pro-
cesses the tree bottom up, assigning a state to each node based on the states of
that node’s children. The STA accepts a tree iff it assigns a final state to the root

33 A grammar is in GNF iff all productions are of the form A ← aV where A is a variable, a
is exactly one terminal and V is a string of none or more variables.

34 A grammar is in CNF iff every production is of the form A ← B, C or A ← a where A, B and
C are variables, and a is a terminal.
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Figure 7.1. (a) Each atom in the logical sequence mkdir(vt100x), mv(new∗, vt100x),
ls(vt100x), cd(vt100x) forms a tree. The shaded nodes denote shared labels among the
trees. (b) The same sequence represented as a single tree. The predicate con/2 represents
the concatenation operator.

of the tree. Due to this automata-based characterization of the skeletons of deriva-
tion trees, the learning problem of (P)CFGs can be reduced to the problem of an
STA. In particular, STA techniques have been adapted to learning tree grammars
and (P)CFGs [Sakakibara, 1992, Sakakibara et al., 1994] efficiently.

PCFGs have been extended in several ways. Most closely related to logical hidden
Markov models are unification-based grammars, which have been extensively studied
in computational linguistics. Examples are (stochastic) attribute-value grammars [Ab-
ney, 1997], probabilistic feature grammars [Goodman, 1997], head-driven phrase struc-
ture grammars [Pollard and Sag, 1994], and lexical-functional grammars [Bresnan,
2001]. For learning within such frameworks, methods for undirected graphical models
are used; see [Johnson, 2003] for a description of some recent work. The key difference
to logical hidden Markov models is that only nonterminals are replaced with struc-
tured, more complex entities. Thus, observation sequences of flat symbols instead of
sequences of atoms are modelled. Goodman’s probabilistic feature grammars are an
exception. They treat terminals and nonterminals as vectors of features. No abstrac-
tion is made, i.e., the feature vectors are ground instances, and unification can not be
employed. Therefore, the number of parameters that needs to be estimated becomes
easily very large, data sparsity is a serious problem. Goodman applied smoothing to
overcome the problem.

Logical hidden Markov models are generally related to (stochastic) tree au-
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tomata, see e.g. [Carrasco et al., 2001]. Reconsider the Unix command sequence
mkdir(vt100x), mv(new∗, vt100x), ls(vt100x), cd(vt100x). Each atom forms a tree,
see Figure 7.1 (a), and, indeed, the whole sequence of atoms also forms a (degen-
erated) tree, see Figure 7.1 (b). Tree automata process single trees vertically, e.g.,
bottom-up. A state in the automaton is assigned to every node in the tree. The state
depends on the node label and on the states associated to the siblings of the node.
They do not focus on sequential domains. In contrast, logical hidden Markov models
are intended for learning in sequential domains. They process sequences of trees hori-
zontally, i.e., from left to right. Furthermore, unification is used to share information
between consecutive sequence elements. As Figure 7.1 (b) illustrates, tree automata
can only employ this information when allowing higher-order transitions, i.e., states
depend on their node labels and on the states associated to predecessors 1, 2, . . . levels
down the tree.

Finally, sagEM is related to more advanced HMM model selection methods. Model
merging [Stolcke and Omohundro, 1993] starts with the most specific model consistent
with the training data and generalizes by successively merging states. For abstract
transitions, however, the most general ones can be considered to be the most infor-
mative ones. Therefore, successive state splitting [Ostendorf and Singer, 1997] refines
hidden states by splitting them into new states. In both cases, the authors do not
employ Friedman’s SEM.
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Intermezzo

Exploiting Probabilistic ILP in Discriminative
Classifiers

Many real world applications can be regarded as classification problems: One tries to
estimate the dependence P(Y |X) of a class variable Y on some features X, based on
a finite set of observations x for which the value y of the class variable is known. In
Parts I and II, we developed generative probabilistic ILP approaches, which estimate
the full joint distribution P(X, Y ) – hence generative – by learning the class prior
distribution P(Y ) and the class-conditional feature distribution P(X|Y ). The required
posterior distribution is then obtained using Bayes’ rule:

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=

P (X = x|Y = y) · P (Y = y)∑
y′ P (X = x|Y = y) · P (Y = y′)

.

It is, however, well-known that the classification performance of generative models
estimated from a finite set of observations is often lower than that of discrimina-
tive classifiers, which estimate P(Y |X) directly. Roughly speaking, the reason is that
discriminative classifiers do not have to explain the values of the X features during
learning.

One approach to improve the classifications performance based on generative mod-
els is to combine them with discriminative learners. Fisher kernels [Jaakkola and
Haussler, 1999] were developed to combine generative models with a currently very
popular class of learning algorithms, kernel methods. The key idea is to use the gra-
dient of the log likelihood of the generative model with respect to its parameters
as features because this captures the generative process rather than just the poste-
rior probabilities. This Intermezzo showes that Fisher kernels naturally generalize to
relational domains.
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§ 8

Relational Fisher Kernels *

... in which, after briefly reviewing discriminative learning and kernel meth-
ods, Fisher kernels for interpretations and logical sequences are designed, and
experiments show that these relational Fisher kernels can considerably improve
the predictive performance of their probabilistic counterparts ...

From a machine learning perspective, many real world applications can be regarded
as classification problems: One tries to estimate the dependence of a target variable
Y on some observation X, based on a finite set of observations x for which the value
y of the target variable is known. More formally, the classification problem can be
defined as follows:

Definition 8.1 (Classification Problem) Given a finite set of training examples
{(xi, yi)}m

i=1 ⊆ X × Y , where X is the feature space and Y = {y1, y2, . . . , yn} is
the set of possible classes, find a function f : X → Y with low approximation error
on the training data as well as on unseen examples. ◦

Example 8.2 Consider the KDD Cup 2001 localization of genes/proteins
task [Cheng et al., 2002]. For every protein/gene, one wants to predict the localiza-
tion of a protein/gene based on the features of the protein/gene and of proteins/genes
interacting with the protein/gene. As another example from computational biology,
recall the protein fold recognition logical hidden Markov models from Chapter 6, where
one tries to understand how proteins fold up in 3D space. Usually, for every protein
with unknown structure one aims at finding the most similar protein (fold) with
known structure in a database. ◦

Recall that it is common to use the plug-in estimate for classification when using
generative35 models such as logical hidden Markov models (see e.g. Section 6.5) or
Bayesian logic programs:

f(x) = arg max
yi∈Y

P (X = x, Y = yi|λ∗)
P (X = x|λ∗)

(8.1)

= arg max
yi∈Y

P (X = x|Y = yi,λ
∗) · P (Y = yi|λ∗) , (8.2)

where λ∗ are the maximum likelihood parameters of the given generative model. The
maximum likelihood parameters are usually estimated using the EM algorithm. The
predictive performance, however, of the plug-in estimate is often lower than that of
discriminative classifiers.

* Builds on [Kersting and Gärtner, 2002, 2004, Dick and Kersting, 2006].
35 They are called generative because they model the full joint probability distribution

P(X, Y )by estimating P(X|Y ) and P(Y ). Consequently, they can be used to sample,
i.e., generate examples.
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Definition 8.3 (Discriminative Learner) A discriminative learner estimates the clas-
sification function f : X → Y of Definition 8.1 directly without representing the full
joint probability distribution P(X, Y ). ◦
To improve the classification accuracy of generative models, different kernel functions
have been proposed to make use of the good predictive performance of kernel meth-
ods such as support vector machine (SVM) [Schölkopf and Smola, 2002]. The most
prominent of these kernel functions is the Fisher kernel [Jaakkola and Haussler, 1999,
Jaakkola et al., 1999]. The key idea there is to use the gradient of the log likelihood
of the generative model with respect to its parameters as features. The motivation
to use this feature space is that the gradient of the log-likelihood with respect to the
parameters of a generative model captures the generative process rather than just the
posterior probabilities.

Fisher kernels have successfully been applied in many learning problems where the
instances are described in terms of attribute-value vectors. So far, however, they have
not been applied to relational data. As the term ’statistical relational learning’ already
says and as argued before, many real-world exhibit relational structure. Therefore, we
suggest in this Intermezzo relational Fisher kernels.

Definition 8.4 (Relational Fisher Kernel) Relational Fisher kernels are the family of
kernel functions k obtained by using the gradient Ux = ∇λ log P (X = x | λ∗,M) of
the log likelihood of a statistical relational learning model with respect to the model’s
parameters as features. ◦
We will experimentally show the benefits of relational Fisher kernels. More precisely,
we will show that the predictive accuracy of Bayesian logic programs and logical
hidden Markov models can considerably be improved using Fisher kernels and SVMs.

Before reviewing kernel methods in the next section, we would like to stress that,
although we focus here on classification, methods for computing the gradient of the
likelihood with respect to the parameters of probabilistic-logical models are of general
interest as they can be used to devise fast gradient-based methods and accelerated
EM algorithms for parameter estimation, see for instance [Salakhutdimov et al., 2003,
Fischer and Kersting, 2003].

8.1 Kernel Methods and Probabilistic Models

Support vector machines [Schölkopf and Smola, 2002] are one kernel method that can
be applied to binary supervised classification problems. Being on one hand theoreti-
cally well founded in statistical learning theory, they have on the other hand shown
good empirical results in many applications.

The characteristic aspect of this class of learning algorithms is the formation of
hypotheses by linear combination of positive-definite kernel functions ‘centered’ at
individual training examples. It is known that such functions can be interpreted as
the inner product in a Hilbert Space. The solution of the support vector machine is
then the hyperplane in this Hilbert space that separates positive and negative labeled
examples, and is at the same time maximally distant from the convex hulls of the
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positive and the negative examples. Conversely, every inner product in a linear space
is a positive-definite kernel function.

Fisher kernels are derived from a generative probability model of the domain.
More precisely, every learning example is mapped to the gradient of the log likelihood
of the generative model with respect to its parameters. The kernel is then the inner
product of the examples’ images under this map. The motivation to use this feature
space is that the gradient of the log-likelihood with respect to the parameters of a
generative model captures the generative process of a sequence better than just the
posterior probabilities.

Given a parametric probability model M with parameters λ = (λ1, . . . , λn)�,
maximum likelihood parameters λ∗, and output probability P (X = x | λ,M), the
Fisher score mapping Ux is defined as

Ux = ∇λ log P (X = x | λ∗,M)

=
(

∂ log P (X = x | λ∗,M)
∂λ1

, . . . ,
∂ log P (X = x | λ∗,M)

∂λn

)�
.

The Fisher information matrix is the expectation of the outer product of the Fisher
scores over P (X = x | λ,M), more precisely,

Jλ = Ex

[∇λ log P (x | λ,M)
] [∇λ log P (x | λ,M)

]�
.

Given these definitions, the Fisher kernel is defined as

k(x,x′) = U�
x J−1

λ∗Ux′

=
[∇λ log P (X = x | λ∗,M)

]�
J−1

λ∗
[∇λ log P (X = x′ | λ∗,M)

]
. (8.3)

In practice often the role of the Fisher information matrix Jλ is ignored, yielding
the kernel k(x,x′) = U�

x Ux′ . In the remainder of the Intermezzo we will follow this
habit mainly to reduce the computational complexity. Learning algorithms using the
Fisher kernel can be shown to perform well if the class variable is contained as a
latent variable in the probability model. Jaakkola and Haussler [1999] have shown
that under this condition (such as instances independently sampled from identical
distributions) kernel machines using the Fisher kernel are asymptotically at least as
good as choosing the maximum a posteriori class for each instance based on the
model. Our experiments will indicate that the same holds in the case of relationally
structured instances.

8.2 Fisher Kernels for Interpretations and Logical Sequences

According to Equation (8.3), it is sufficient to compute the gradient of the log like-
lihood of a data case with respect to the parameters λ of a probabilistic ILP model
in order to devise a Fisher Kernel. In the following, we will derive Fisher kernels for
interpretations respectively for logical sequences based on Bayesian logic programs
respectively logical hidden Markov models. Nevertheless, we would like to stress the
schematic nature of relational Fisher kernels. Any other probabilistic ILP framework
appropriate for the type of data at hand can be used.
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8.2.1 Fisher Kernels for Interpretations

Fisher kernels for interpretations can be devised using Bayesian logic programs. In
Section 4.3.2, we have shown how to compute their gradient. As a reminder, consider
a Bayesian program M consisting of Bayesian clauses ci with cpd(ci)jk = P (uj | uk)
where uj ∈ D(head(c)) and uj ∈ D(body(c)), and a single data case D. The cpd(ci)jk’s
constitute the parameter vector λ of M . Assuming decomposable combining rules, see
Section 4.3.2, the partial derivative of the log-likelihood with respect to a parameter
λ of λ is

∂ log P (D|λ,M)
∂λ

=
∑

subst. θ with
support(ciθ)

PN (head(ciθ) = uj ,body(ciθ) = uk | D)
cpd(ciθ)jk

(8.4)

where PN denotes the probability distribution of the support network induced by M
for data case D. Note that, in contrast to parameter estimation, we do not reparam-
eterize the Bayesian logic program.

In many cases, it is difficult — if not impossible — to devise a generative Bayesian
logic program specifying a probability distribution, which sums up to one over all
possible instances, say proteins. For example in our experiments, examples are partly
specified within the logical background knowledge. Consequently, their probabilities
do not sum up to one and Equation (8.4) is sensitive to the number of contributing
ground clauses. Normalizing (8.4) with respect to the number of contributing ground
clauses, i.e., to compute

1
|{θ| support(ciθ)}|

∑
subst. θ with
support(ciθ)

PN (head(ciθ) = uj ,body(ciθ) = uk | D)
cpd(ciθ)jk

. (8.5)

worked well in our experiments.

Equation (8.5) is all we need to devise Fisher kernels for interpretations. Therefore,
we will now turn over to Fisher kernels for logical sequences. To highlight that the
method can also be used for parameter estimation of logical hidden Markov models,
we will derive the gradient of the likelihood of multiple observation sequences. The
Fisher kernel is the special case of a single observation sequence only.

8.2.2 Fisher Kernels for Logical Sequences

Let M be a logical hidden Markov models with parameters λ and O = {O1, . . . , Om}
be a set of ground observation sequences. A single ground observation sequence Oi

consists of a sequence oi1, oi2, . . . , oiTi
of ground atoms. For the sake of simplicity, we

assume that T1 = T2 = . . . = Tm and that the Oi are independently sampled from
identical distributions (iid). Due to the iid assumption, it holds that

∂ log P (O | λ,M)
∂λ

=
m∑

k=1

∂ log P (Ok | λ,M)
∂λ

=
m∑

k=1

1
P (Ok | λ,M)

· ∂P (Ok | λ,M)
∂λ︸ ︷︷ ︸
(∗)

.
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The key step to derive the gradient formula is to rewrite the likelihood P (Ok | λ,M)
of a single observation sequence Ok in the following way:

P (Ok | λ,M) =
∑
s∈St

P (ok1, . . . , okt, st = s | λ,M) · P (okt+1, . . . , okTk | st = s,λ,M)

=
∑
s∈St

αt(s) · βt(s) (8.6)

where αt(s) is the forward probability of state s and βt(s) is the backward probability
of state s for Ok. The term St denotes the set of hidden states the system can be in
at time t.

The parameter vector λ defines the set of parameters for all abstract transitions
and for all selection distributions in the logical hidden Markov model. We will show
now how to compute the partial derivatives (∗) for transition probabilities and for
selection probabilities μ separately.

Abstract Transitions Let λij be an abstract transition probability, i.e., a proba-
bility value associated to the jth abstract transition

T ≡ λij : H O←− B

of the ith abstract body B in B. Due to the chain rule it holds

∂P (Ok | λ,M)
∂λij

=
T+1∑
t=0

∂P (Ok | λ,M)
∂αt(sH)

× ∂αt(sH)
∂λij

. (8.7)

Due to Equation (8.6), the first term in the sum of Equation (8.7) is simply

∂P (Ok | λ,M)
∂αt(sH)

= βt(sH) (8.8)

because αt(sH) appears only in linear form. The partial derivative of αt(sH) w.r.t. λij

in Equation (8.7) can be deduced from the forward procedure in Section 6.1:

∂αt(sH)
∂λij

=
∑

sB∈St−1

ξ(T, sB, sH, okt−1) · αt−1(sB) · μ(sH | HσsB) · μ(okt−1 | OσsBσsH) ,

where okt−1 is the t − 1-th observation symbol of the k-th observation sequence Ok,
ξ(T, sB, sH, okt−1) indicates that 1) B is maximally specific for sB, 2) sH unifies with H,
and 3) okt−1 unifies with O, and σcodt are the corresponding MGUs.

Selection Distribution Now, let λij be a selection probability value. Let r/n be
a predicate with domains D1, . . . , Dn, where Di = {di1, . . . , dimi

}. Furthermore, as-
sume that the the selection distribution for r is specified by λij = P (Di = dij).
Equations (8.7) and (8.8) remain the same. The term ∂αt(s)/∂λij is zero whenever
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dij was not selected to “ground” Hσb or Oσbσh. Because, the selection distribution
follows a näıve Bayes scheme and ∂xm

∂x = m · xm−1 = m · xm

x , this yields:

∂αt(sH)
∂λij

=
∑

sB∈St−1

∑
T≡p:H

O←−B∈Δ
ξ(T, sB, sH, okt−1) · cij(sB, sH, okt−1)·

· αt−1(sB) · p · μ(sH | HσsB) · μ(okt−1 | OσsBσsH)
λij

, (8.9)

where cij(T, sB, s, okt−1) denotes the number of times, the domain element dij has been
selected in order to ground sB, s, and okt−1 when following abstract transition T.

8.2.3 Constraint Satisfaction

For parameter estimation of logical hidden Markov models, we have to take into ac-
count that the parameter vector consists of probability values. The same approaches
as for Bayesian logic programs can be followed, see Section 4.3.2.

By now, we have everything together that is needed to compute the gradient of the
log likelihood of Bayesian logic programs and of logical hidden Markov models with
respect to their parameters, i.e., to compute relational Fisher kernels for interpreta-
tions and for logical sequences. In the next section, we will experimentally evaluate
them.

8.3 Experimental Evaluation

Having described how to compute the gradient of the log likelihood of Bayesian logic
programs and logical hidden Markov models with respect to their parameters, we are
now ready to experimentally evaluate relational Fisher kernels. Our intention here is
not to achieve high accuracies — although in some experiments this is the case —
but rather to investigate the extent to which relational Fisher kernels are competitive
with plug-in estimates:

Q Do relational Fisher kernels considerably improve the predictive accuracies of their
probabilistic baselines with plug-in estimates?

We will split Q into two parts:

Qa Do SVMs with Fisher kernels based on Bayesian logic programs considerably im-
prove the predictive accuracies of Bayesian logic programs with plug-in estimates?

Qa Do SVMs with Fisher kernels based on logical hidden Markov models considerably
improve the predictive accuracies of logical hidden Markov models with plug-in
estimates?

To investigate Qa and Qb, we compare results achieved by Bayesian logic programs
respectively logical hidden Markov models alone with results achieved by Bayesian
logic programs respectively logical hidden Markov models combined with Fisher ker-
nels and SVMs.
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Figure 8.1. (a) A collective data set, i.e., a graph of connected individuals each described
by a set of local features. (b) Data set broken into subgraphs centered around individuals.
Each subgraph consists of an individual and all its direct neighbours. Individuals can appear
in multiple fragments such as g.

8.3.1 Fisher Kernels for Interpretations

The experiments for Qa took place in two different domains: protein localization and
web page classification. Both data sets are collective [Chakrabarti et al., 1998] or net-
worked [Macskassy and Provost, 2004] data sets, i.e., relational data where individual
examples are interconnected, such as web pages (connected through hyperlinks) or
gene (connected through interactions). This contrasts with traditional relational do-
mains such as molecules where each individual example is a graph of connected parts.
Traditionally, machine learning methods treat examples as independent, i.e., the clas-
sification task is treated as a local optimization problem. In contrast, within collective
classification tasks, the class membership of one individual may have an influence on
the class membership of a related individual. Thus, learners developed for this task
should treat the classification problem as a global optimization problem

There is a wide range of possible models that one can apply to the two tasks. We
selected a set of models that we felt represented the main idea underlying a variety of
collective learners [Chakrabarti et al., 1998, Neville and Jensen, 2000, Getoor et al.,
2002, Lu and Getoor, 2003, Macskassy and Provost, 2004] who globally combine local,
propositional Näıve Bayes classifiers. Relational Fisher kernels based on Bayesian logic
programs, however, are not designed for collective classification 36. They assume each
individual example as a graph of connected parts. Therefore, we apply the following
trick. While learning in a collective way, we consider only individuals together with
their direct neighbours at classification time, cf. Figure 8.1. For any individual without
any neighbours, we used a copy of the individual as neighbour. This is akin to iterative
classifiers [Neville and Jensen, 2000, Macskassy and Provost, 2004], which also treat
each individual together with all its direct neighbours as a single data case.

We investigated collective Näıve Bayes models and relational Fisher kernels derived
from them as described above together with SVMs. The SVM algorithm used in our
experiments was Weka’s [Witten and Frank, 2005] implementation of Platt’s [1998]

36 Taking the whole graph at classification time would essentially yield the same feature
vector for each individual because the data does not change.
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Figure 8.2. Localization Bayesian logic program. The Bayesian clauses NB1, . . . , NB17 en-
code a Näıve Bayes over local features of genes Gene. Clause D encodes the prior distribution
over localization for each gene. Clause C2 aggregates the localizations of all neighbouring
genes of Gene in neighbours(Gene). The mode of the localizations is used as aggregate func-
tion. Finally, clause C1 implements a mutual influence among localization(Gene) and the
aggregated localization of interacting genes, neighbours(Gene).

sequential minimal optimization (SOM) algorithm using polynomial kernels. To re-
duce the number of features of the local Näıve Bayes models, we performed Weka’s
greedy subset evaluation with default parameters on the training set. That is, we
start with an empty feature set for the Näıve Bayes and add one feature on each iter-
ation. If we have added all features or there is no improvement in score of the Näıve
Bayes from adding any further features, the search stops and returns the current set
of features. To score feature subsets, we used 10-fold cross-validated classification ac-
curacy of the Näıve Bayes on the training set. Finally, both classification tasks are
multiclass problems. In order to tackle multiclass problems with SVMs, we followed
a round robin approach [Fürnkranz, 2002]. That is, each pair of classes is treated as
a separate classification problem. The overall classification of an example instance is
the majority vote among all pairwise classification problems.

Protein Localization The KDD Cup 2001 [Cheng et al., 2002] focused on data from
life science. One data set, which we used in our experiments, is from genomics. The
data consists of 1243 genes of one particular but unknown type of organism. Each
gene encodes a protein, which occupies a particular position in some part of a cell.
For each gene, information on the class, the phenotype, i.e., its characteristics, the
complex it belongs to etc. are given. Furthermore, the graph of interactions among
the genes is provided. The task was to predict the localization locallization(Gene)
of a gene/protein gene(Gene). It is assumed that each gene/protein has only one



§8.3 Experimental Evaluation 143

localization. In general, it can have more than one. This yields a multiclass problem
with 16 different classes. 381 of the 1243 genes are withheld as test set.

Figure 8.2 shows the Bayesian logic program used in the experiments. We listed
the genes as ground atoms over gene/1 in the logical background knowledge. They
were used to encode the prior localization, cf. Bayesian clause D. The feature selection
yielded 26 features for the local Näıve Bayes describing the genes, which we encoded
as Bayesian clauses NB1, . . . ,NB26. So far, the Bayesian logic program encodes the
simple, non-collective Näıve Bayes model we used in the experiments. To model the
collective nature of the data set, we enriched the Näıve Bayes model as follows. We
encoded each interaction as a logical ground atom over direct neighbour/2, i.e., we
omitted the originally given quantification of the interactions. Because interactions
are bidirectional, i.e., undirected, we additionally defined the symmetric closure

neighbour(GeneA, GeneB) : − direct neighbour(GeneA, GeneB);
direct neighbour(GeneB, GeneA).

as logical background. The localizations of the direct neighbours of a Gene are ag-
gregated in clause C2 into a single value neighbours(Gene) using the mode of the
interactions. To establish a mutual influence among the localizations of a gene and
its neighbours, we introduced a boolean random variable interaction(Gene), which
has neighbours(Gene) and localization(Gene) as parents, cf. clause C1. Setting
the evidence for interaction(Gene) always to be true guarantees that both parents
are never d-separated, hence, they are probabilistic dependent.

On the test set, the relational Fisher kernel achieved an accuracy of 72.89%,
whereas the collective Näıve Bayes only achieved 61.66%, and outperformed Hayashi
et al.’s KDD Cup 2001 winning nearest-neighbour approach that achieved a test set
accuracy of 72.18% [Cheng et al., 2002].

Web Page Classification This dataset is based on the WebKB Project [Craven
et al., 2000]. It consists of sets of web pages from four computer science depart-
ments, with each page manually labeled into 7 categories: course, department, fac-
ulty, project, staff, student or others. We excluded pages in the ’other’ category from
consideration and put them into the background knowledge. This yielded a multiclass
problem with 6 different classes, 877 web pages, and 1516 links among the web pages.

Figure 8.3 shows the Bayesian logic program used in the experiments. It essen-
tially follows the idea underlying the Bayesian logic program for the localization task,
cf. Figure 8.2. The feature selection yielded 67 local for the local Näıve Bayes model
(clauses NB1, . . . ,NB67. Whereas gene interaction is undirected, links among web
pages are directed. There are incoming and outcoming links on a web page. We mod-
eled their influences on the class membership of a web pages separately. The atom
neighbours from(Page) (neighbours to(Page)) aggregates the class memberships of
all pages that have a link to Page (that Page links to) using mode as aggregate func-
tion. Again, we took care that class(Page) and the aggregated class memberships of
linked pages mutually influence each other, i.e., we introduced isLinked from(Page)
and isLinked to(page), whose evidence is always yes.
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Figure 8.3. WebKB Bayesian logic program. The Bayesian clauses NB1, . . . , NB67 encode
a Näıve Bayes over local features of genes web pages, page(Page). Clause D encodes the
prior distribution over class for each Page. Clause C2 aggregates the class memberships of
all web pages to which Page provides a link. Clause C4 aggregates the class memberships
of all web pages, which link to Page. In both cases, the mode of the class memberships is
used as aggregate function. Finally, clauses C1 and C3 implement a mutual influence among
class(Page) and the aggregated class memberships of linked pages.

We performed a leave-one-university-out cross-validation. The experimental re-
sults are summarized in Figure 8.4. The Fisher kernels achieved an accuracy of 75.28%,
which is significantly higher (two-tailed t-test, p = 0.05) than the collective Näıve
Bayes’ accuracy of 62.34%. For comparison, the performance of the collective Näıve
Bayes is in the range of Getoor et al.’s [2002] probabilistic relational model with link
anchor words. The Fisher kernel outperforms the probabilistic relational model with
the best predictive accuracy Getoor et al. report on. It takes structural uncertainty
over the link relationship of web pages into account and achieved with 68% its highest
accuracy on the Washington hold-out set. Thus, Qa is affirmatively answered.

8.3.2 Fisher Kernels for Logical Sequences

The experiments took place in the two bioinformatics domains already used to evalu-
ate logical HMMs in Section 6.5: Protein fold recognition and mRNA signal structure
detection. Both problems are multiclass problems with 5 different classes each. In
order to tackle the multiclass problem with SVMs, we create for each class a binary
classification problems, treating instances of this class as positive and all other in-
stances as negative (one-against-all). As all binary classification problems consist of



§8.3 Experimental Evaluation 145

Figure 8.4. Leave-one-university-out accuracies on the WebKB data. Both collective clas-
sifiers used the same Bayesian logic program. The mean difference between collective Náıve
Bayes and relational Fisher kernel in test accuracy was 12.94%.

the same instances and the SVMs on each classification problem were trained with the
same parameters, the resulting models are comparable. That is, to create a multiclass
classification we compare the numerical output of the binary support vector machines
on each test instance, and assign the class corresponding to the maximal numerical
output. The SVM algorithm used in our experiments was SVM-light [Joachims, 2002].

mRNA Signal Structure Detection This experiment is concerned with identify-
ing subsequences in mRNA that are responsible for biological functions. In contrast to
secondary structures of proteins that form chains (see next experiment), the secondary
structures of mRNAs form tree structures. As trees can not easily be handled using
HMMs, mRNA secondary structure data is more interesting than that of proteins.

The logical hidden Markov models we used are essentially the tree-structured log-
ical HMMs used in the experiments reported in Section 6.5.3. The only difference
is a lower number of copies for lengths in the sequence model, cf. Figure A.1 in Ap-
pendix A.2, namely 4. The leave-one-out cross-validated error of the plug-in estimates
increased from 1% to 4.3%. Nevertheless, the error rate of 4.3% could be reduced to
2.2% by using Fisher kernels. As the dataset is rather small, we used leave-one-out
error estimation and did not further optimize the SVM parameters. That is, we used
a linear kernel and let SVM-light choose the default complexity constant. More pre-
cisely, the Fisher kernels managed to resolve two misclassifications, one of IRE and
one of SECIS. The result improves the error rate of 4.6% reported in Horváth et al.
[2001]. This is an affirmative answer to Question Qb.

Protein Fold Recognition This experiment is concerned with how proteins fold
up in nature. This is an important problem, as the biological functions of proteins
depend on the way they fold up. A common approach to protein fold recognition is to
start from a protein with unknown structure and search for the most similar protein
(fold) with known structure in the database. This approach has been followed in
Section 6.5.2. Here, we will also compare Fisher kernels to the results earlier reported
in Kersting et al. [2003b], where logical hidden Markov models with plugin estimates
had been used. Notice that the number of parameters of the logical hidden Markov
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Figure 8.5. Precision and recall values of logical hidden Markov models and relational
Fisher kernels for the protein fold classification task.

model structure used were by an order of magnitude smaller than the number of an
equivalent HMM (120 vs. approx. 62000).

Here, we will compare to earlier results reported in [Kersting et al., 2003b],
which are less elaborated and, hence, better show the benefit of using Fisher ker-
nels. The data consists of logical sequences of the secondary structure of protein
domains. The task is to predict one of five SCOP [Hubbard et al., 1997] folds
for 2187 test sequences given a logical HMM trained on 200 training sequences
per fold. As this dataset is lager we were able to perform a proper parameter
selection. We first performed a leave-one-out error estimation in the training set
to choose the parameter of a Gaussian kernel function. Of the tested parameters
(γ ∈ {10−1, 10−2, 10−3, 10−4, 10−5}), γ = 10−3 clearly performed best over all bi-
nary problems. We then fixed this parameter and optimized the complexity constant.
Of the tested parameters (C ∈ {10−1, 100, 10−1, 102}), C = 100 clearly performed
best over all binary problems (testing larger values was not necessary, as we already
achieved 0 unbounded support vectors).

Using Fisher kernels with the same logical hidden Markov as in [Kersting et al.,
2003b] and the above described SVM parameters, we were able to reduce the error
rate of the plugin estimate of 26% to an error rate of 17.4%. The logical hidden
Markov models in Section 6.5.2 achieved a (cross-validated) error rate of 24% on a
similar data set. The precision and recall values (precision/recall) were well balanced
within each class as Figure 8.5 show. Finally, the F1-scores were higher on average,
see Figure 8.6. The F1-score is the harmonic average of the precision and recall values:
F1 = (2 · Precision · Recall)/(Precision + Recall) . This is an affirmative answer to
question Qb.

8.4 Future Work and Conclusions

The research on kernel and discriminative, probabilistic ILP has just started and
is in its infancy. In the last years, a number of powerful kernel-based machines
such as support vector machines, kernel Fisher discriminant and kernel PCA have
been proposed and proven to be relevant in practice. Choosing the appropriate
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Figure 8.6. F1-scores of logical hidden Markov models [Kersting et al., 2003b] and relational
Fisher kernels for the protein fold classification task.

kernel is the major step for their application and should take as much as possible
the available domain background knowledge into account. As Frasconi et al. [2005]
point out, this is a major difficulty because real-valued functions are inappropriate
as a knowledge representation language. Thus, they suffer — even more than
Bayesian networks and hidden Markov models — from their non-declarative nature.
Here, relational and first-order logical languages provide a natural alternative. The
work on relational Fisher kernels provides only a first step to embed knowledge
into kernel methods. We believe that there is a lot space for future research,
For instance, stochastic versions of Passerini et al.’s [2005] trace kernels could be
considered. The idea of trace kernels is to use visitor programs to generate proof
trees of the examples, which exploit the available background knowledge, while set
kernels [Shawe-Taylor and Cristianini, 2004] employ these proof trees for learning.
Furthermore, other learning tasks could benefit from probabilistic relational kernels
including regression, clustering, ranking, and novelty detection. Replacing the visitor
program by a stochastic or Bayesian logic program is an obvious choice. One might
also explore the connection between string and Fisher kernels [Saunders et al., 2003]
for sequences of logical atoms. ’Logical string’ kernels would be particularly interest-
ing because subsumption for logical sequences is polynomial [Lee and De Raedt, 2004].

So far, Fisher kernels have been considered for flat data and for sequences of
logical atoms only. In this Intermezzo, Fisher kernels for interpretations and for logical
sequences have been introduced and experimentally investigated. They consider a
discriminative setting for probabilistic ILP. The experimental results show that Fisher
kernels can handle interpretations and logical sequences. More importantly, relational
Fisher kernels can improve considerably the predictive performance of Bayesian logic
programs and logical hidden Markov models.

8.5 Related Work

Discriminative learning has recently started to receive attention within statistical re-
lational learning. To the best of our knowledge, Taskar et al. [2002, 2004a, 2005]
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and Singla and Domingos [2005] are the only ones who aim at discriminative (proba-
bilistic) models for structured data. In contrast to relational Fisher kernels, however,
Taskar et al. [2002] and Singla and Domingos [2005] do not explore kernel functions
but gradient-based optimization of the conditional likelihood P(y|x). Furthermore,
the work by Taskar et al. [2002, 2004a, 2005] considers relational variants of Markov
networks instead of Bayesian networks. Recently, Landwehr et al. [2005] and Davis
et al. [2005] tightly integrated Näıve Bayes with ILP techniques focusing on discrimi-
native objective functions such as conditional likelihood, accuracy and area under the
precision-recall curve.

Indeed, there has been a lot interest in kernels for structured data in the kernel
community. For an overview, we refer to [Gärtner, 2003, 2005]. In principle, there are
two ways to apply support vector machines to structured data: Using syntax-driven
and model-driven kernel functions.

An integral part of many syntax-driven kernels for structured data is the decom-
position of an object into a set of its parts and the intersection of two sets of parts.
The kernel on two objects is then defined as a measure of the intersection of the two
corresponding sets of parts. In the case that the sets are finite or countable sets of
vectors it is often beneficial to sum over all pairwise kernels on the elements. This
idea of intersection and cross-product kernels is reflected in most work on kernels
for structured data, from the early and influential technical reports [Haussler, 1999,
Watkins, 1999], through work on string kernels, kernels for higher order terms [Gärt-
ner et al., 2004], and tree kernels [Collins and Duffy, 2001], to more recent work on
graph kernels [Gärtner et al., 2003, Kashima et al., 2003].

An alternative to syntax-driven kernel functions are model-driven kernel functions
like Fisher kernel. Based on the idea of maximizing the posterior probability estimated
by the optimal logistic regressor in the extracted feature space, Tsuda et al. [2002a]
introduced the so-called TOP kernel function. The TOP kernel function is the scalar
product between the posterior log-odds of the model and the gradient thereof. The
posterior log-odds is defined as the difference in the logarithm of the probability of
each class given the instance. A similar approach has been applied to speech recog-
nition [Smith and Gales, 2002]. Marginalized kernels [Tsuda et al., 2002b] have later
been introduces as a generalization of Fisher kernels. Here, a kernel over both the
hidden and the observed data is assumed to be given. Then, the marginalized ker-
nel for the visible data is obtained by taking the expectation with respect to hidden
variables.



Part III

Making Complex Decisions in Relational Domains

In this final part, we extend the capabilities of probabilistic ILP agents towards
decision-theoretic reasoning. Such an agent begins within some knowledge of the world
and of its own actions. It uses probabilistic ILP techniques to maintain a relational
description of the world as new percepts arrive, and to deduce a course of actions
that will achieve its goal. Due to uncertainties, it is not known what will happen in
the future when actions are applied, i.e., actions are not guaranteed to achieve goals.
Therefore, agents need ways to weighting up the utilities of goals and the likelihood
of achieving these goals. Thus, relational decision-theoretic approaches can also be
viewed as special-purpose probabilistic ILP approaches that reason efficiently with
relational and logical axioms describing uncertain actions.

More precisely, Part III introduces Markov decision programs which combine
Markov decision processes with logic programming in Chapter 9. Then, in Chap-
ter 10, the generalized relational policy iteration scheme for solving Markov deci-
sion programs is developed. Following this scheme, two reinforcement learning ap-
proaches are devised: relational TD(λ), a model-free approach, and relational value
iteration, a model-based approach employing a relational Bellman backup operator,
called ReBel. Convergence issues are addressed, and experimental results are pre-
sented as well.
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§ 9

Markov Decision Programs *

... in which Markov decision processes are reviewed, the framework of Markov
decision programs (MDPrgs) that combines Markov decision processes with
logic programming is introduced, and the semantics of Markov decision pro-
grams are defined ...

The ability of animals to learn appropriate actions in response to particular stimuli
on the basis of associated rewards or punishment is a focus of behavioral psychology.
In instrumental conditional, the actions of the animal determine what reinforcement
is provided. Learning about stimuli or actions solely on the basis of the rewards and
punishments associated with them is called reinforcement learning (RL) [Sutton and
Barto, 1998]. It is the problem faced by an agent that must learn optimal behavior
through trial-and-error interactions with a dynamic environment. More precisely, an
agent acts in an environment and occasionally receives some reward based on the state
the agent is in and the action(s) the agent took. The agent’s learning task is to find
a policy for action selection that maximizes its reward over the long term. This task
requires not only choosing those actions that are associated with high rewards in the
current state but also looking ahead by choosing actions that will lead the agent to
more lucrative parts of the state space. Thus, in contrast to discriminative learning,
see Definition 8.1, reinforcement learning is minimally supervised because agents are
not told explicitly the actions to take in particular situations, but must work this out
for themselves on the basis of the rewards they receive. Consider for instance an agent
in a simulated blocks world.

Example 9.1 The blocks world agent must learn to use its hand to remove blocks on
some block a so that block a may be lifted. Only when block a is clear, i.e., no other
block is on top of a, the agent receives a positive reward. Nevertheless, the agent has
to decide on the utility of taking actions in each states of the world. ◦
Many fascinating reinforcement learning techniques have been developed over the
last few decades. Most of them use traditional statistical techniques and dynamic
programming methods to estimate the utility of taking actions in states of the world.
In particular, most techniques assume propositional representations, which essentially
amounts to enumerate all unique configurations of blocks. It might then be possible
to learn, for example, that taking action action234 in state state42 is worth 6.2 and
leads to state state654321. Propositional representations are simple (a single ground
atom represents an entire state) and learning can be implemented using simple look-
up tables. These look-up tables, however, can be intractably large, i.e., propositional
representations easily explode. For instance for 4 blocks, there are 73 states, for 7
blocks 37, 663 states, and for 10 blocks, there are already 58, 941, 091 states. Indeed,
propositional states and actions can also be described using conjunctions of ground
atoms.
* Builds on [Kersting and De Raedt, 2003, 2004, Kersting et al., 2004].
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Example 9.2 The conjunction cl(c), on(c, b), on(b, a), block(a), block(b), block(c)
describes that there is no block on top of block c, block c is on block b, and block b
is on a. ◦
Though this representation affords some opportunities for generalization, we must still
refer to objects by name (e.g., block(a) and block(b)). This prevents generalization
over several states and actions such as on(X, b), block(X), block(b).

Thus, reinforcement learning suffers from the same propositional nature and lim-
itations, which we already encountered for Bayesian networks and logical hidden
Markov models in Part I respectively Part II: no general situations and actions, i.e.,
no general regularities can be described. It is therefore not surprising that there has
been an increased attention for dealing with relational representations and objects in
reinforcement learning, see e.g. [Džeroski et al., 2001, Finney et al., 2002, Driessens,
2004]. Many of these works have taken a practical perspective and have developed sys-
tems and experiments that operate in relational worlds. At the heart of these systems
there is usually a function approximator (often a logical regression tree inducer) that
is able to learn a function assigning values to sets of states or to sets of state–action
pairs. So far, however, a theory that explains why this approach works seems to be
lacking.

Here, we will provide a first step towards a theory of relational reinforcement
learning. Markov decision processes (MDPs) provide the theoretical foundations for
traditional reinforcement learning, decision-theoretic planning, and other sequential
decision-making tasks of interest to researchers and practitioners in artificial intelli-
gence and operational research. Therefore, we will introduce a novel representation
formalism, called Markov decision programs (MDPrgs), that combines Markov deci-
sion processes with logic programming. Markov decision programs are a flexible and
expressive framework for defining MDPs that are able to handle structured objects
as well as relations. They share several advantages with the other probabilistic ILP
frameworks presented in this thesis. First, logical expressions (in the form of clauses,
rules or transitions) may contain variables and as such make abstraction of many
specific grounded states and transitions. Second, unification allows to elegantly share
knowledge among sets of states. This allows one to compactly represent complex do-
mains. Furthermore, because of this abstraction, the number of parameters (such as
rewards and probabilities) is significantly reduced. This in turn allows one – in prin-
ciple – to speed up and simplify the learning because one can learn at the abstract
rather than at the ground level. For Markov decision processes, such a framework
making abstraction through the use of logic programming concepts has been missing.
Boutilier et al. [2001] reported on combining MDPs with Reiter’s situation calculus.
However, it is more complex, and Boutilier et al. did not consider model-free rein-
forcement learning techniques. The same holds for combinations of MDPs with the
fluent calculus [Großmann et al., 2002, Karabaev and Skvortsova, 2005].

9.1 Markov Decision Processes

We will introduce Markov decision programs using examples from the blocks
world [Slaney and Thiébaux, 2001], which is one of the standard planning domains.
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Example Domain III (Blocks World) The domain consists of a surface, called the
floor, on which there are blocks. Blocks may be on the floor or on top of other blocks.
They are said to pile up in stacks, each of which is on the floor. Valid relations are
on(X, Y), i.e., block X is on Y, and cl(Z), i.e., block Z is clear. To model the floor,
we follow a common approach. It is a set of blocks that cannot be on top of other
blocks. At each time, the agent can move a clear (and movable) block X onto another
clear block Y. The move(X, Y, Z) action is probabilistic, i.e., it may not always succeed.
For instance, with probability p1 the action succeeds, i.e. X will be on top of Y. With
probability 1 − p1, however, the action fails. More precisely, with probability p2 the
block X remains at its current position, and with probability p3 (with p1 + p2 +p3 = 1)
it falls on some clear block Z.

The blocks world has been a standard example in the literature on planning over
the last decades and has extensively been used as a benchmark for domain-independent
planning techniques and systems. Recently, the international planning competition
(IPC-04) established a probabilistic planning track for the first time [Littman and
Younes, 2004]. Half of the test problems were from blocks world. ◦

A natural formalism to treat the utilities and uncertainties of the blocks
world are Markov decision processes. A Markov decision process (MDP) is a
tuple M = (S, A,T, λ). Here, S is a set of system states such as z ≡
cl(a), on(a, b), on(b, floor), block(a), block(b) describing the blocks world consist-
ing of two blocks a and b where a is on top of b. The agent has available a finite set
of actions A(z) ⊆ A for each state z ∈ S, which cause stochastic state transitions,
for instance, move(a, floor) moving a on the floor. For each z, z′ ∈ S and a ∈ A(z)
there is a transition T in T, i.e., z′

p:r:a←−−− z. The transition denotes that with proba-
bility P (z, a, z′) := p action a causes a transition to state z′ when executed in state
z. For instance z′ ≡ cl(a), cl(b), on(a, floor), on(b, floor), block(a), block(b). For
each z ∈ S and a ∈ A(z) it holds

∑
z′∈S P (z, a, z′) = 1. The agent gains an expected

next reward R(z, a, z′) := r for each transition. Often, rewards are associated with
states only, i.e., the agent gains a reward when entering a state, denoted as R(z) := r.
In the blocks world we could have R(z′) = 10. If the reward function R is proba-
bilistic (mean value depends on the current state and action only) the MDP is called
nondeterministic, otherwise deterministic. We only consider MDPs with stationary
transition probabilities and stationary, bounded rewards. A (stationary) determinis-
tic policy π : S �→ A is a set of expressions of the form a ← z for each z ∈ S where
a ∈ A(z), e.g. move(a, floor) ← cl(a), on(a, b), on(b, floor), block(a), block(b). It
denotes a particular course of actions to be adopted by an agent, with π(z) := a be-
ing the action to be executed whenever the agent is in state z. We assume an infinite
horizon and also that the agent accumulates the rewards associated with the states
it enters.

Suppose now that the sequence of rewards after step t is rt+1, rt+2, rt+3, . . . The
agent’s goal is to maximize the expected reward E[R] for each step t. Typically,
future rewards are discounted by 0 ≤ λ < 1 so that the expected return basically
becomes

∑∞
k=0 λk · rt+k+1. To achieve this, most techniques employ value functions.

More precisely, given some MDP M = 〈S, A, T,R〉, a policy π for M , and a discount
factor γ ∈ [0, 1], the state value function V π : S → R represents the value of being
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in a state following policy π with respect to the expected reward. In other words,
the value V π(z) of a state z is the expected return starting from that state, which
depends on the agent’s policy π. A similar state-action value function Qπ : S×A → R

can be defined. The value Qπ(z, a) of taking action a in state z under policy π is the
expected return starting from that state, taking that action, and thereafter following
π. Using the value functions, policies can be partially ordered. A policy π′ is better
than or equal to another policy π, π′ ≥ π, if and only if ∀s ∈ S : V π′

(s) ≥ V π(s).
Thus, a policy π∗ is optimal, i.e., it maximizes the expected return for all states if
π∗ ≥ π for all π′. Optimal value functions are denoted V ∗ and Q∗. Bellman’s [1957]
optimality equation states:

V ∗(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (9.1)

From this equation, basically all model-based and model-free methods for solving
MDPs can be derived. For example, the well-known exact and model-based solution
technique of value iteration (VI) is obtained from (9.1) by turning it into an update
rule:

Vt+1(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γVt(s′)] = max
a

Qt+1(s, a). (9.2)

Based on Equation (9.2), the VI algorithm can be stated as follows:

starting with a value function V0 over all states, we iteratively update the
value of each state according to (9.2) to get the next value functions Vt (t =
1, 2, 3, . . .).

VI is guaranteed to converge in the limit towards V ∗, i.e. the Bellman optimality
equation (9.1) will hold for each state in the limit.

As an example for a model-free approach consider temporal difference (TD) learn-
ing methods. TD methods do not require a model of the environment’s dynamics; in-
stead they directly learn from experience. Like VI, TD methods bootstrap estimates,
i.e., they update estimates based in part on already learned estimates. Starting with
some initial value function V0, at time t + 1 TD methods immediately make an up-
date using the observed reward and the current estimate Vt. The simplest TD method,
known as TD(0), uses the following update rule

Vt+1(z) = Vt(z) + α[rt+1 + γVt(z′) − Vt(z)] (9.3)

Traditional MDPs as well as their solution methods such as VI (9.2) and
TD(0) (9.3) are essentially propositional in that each state must be represented using
a separated proposition. Therefore, they are severely limited in expressiveness and do
not really capture the structure of the underlying class of problems. Recall that in the
blocks world there are already 58, 941, 091 states for ten blocks. A further consequence
is that is hard to generalize policies across domains with similar properties, such as
domains with a different number of blocks world states and/or tasks. Markov deci-
sion programs (MDPrgs) — which we will introduce in the next section — combine
relational logic with MDPs. Using MDPrgs, it becomes possible to generalize such
policies even for those cases where the states may posses a varying number of objects
(blocks) and relations (on/2, cl/1) among them.
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9.2 Representation Language

The logical component of a Markov decision process is essentially propositional because
the state and action symbols employed are flat. Inspired by the idea of logical HMMs,
cf. Part II, the key idea underlying Markov decision programs (MDPrgs) is to replace
these flat symbols by abstract symbols. In contrast to logical HMMs, however, an
abstract state is not a single atom only but a conjunction of atoms.

Definition 9.3 An abstract state is a conjunction Z of logical atoms, i.e., a logical
query. ◦
An abstract state Z represents a set S(Z) of states. More formally, a state is a
Herbrand interpretation, i.e., a set of ground facts and Z represents the set S(Z) of
states, which are subsumed by Z.

Example 9.4 Reconsider the blocks world state z ≡ cl(a), cl(b), on(b, c). An ab-
stract state Z is, e.g., cl(X). It represents all states that are subsumed by Z, i.e., all
interpretations in which there exists an X that is clear. For instance, z is subsumed
by Z. ◦
We can now introduce the basic ingredients of Markov decision programs, namely,
abstract actions, abstract rewards, and integrity constraints.

Definition 9.5 An abstract action37 is a finite set of abstract transitions Hi
pi:A←−−− B

where A is an atom representing the name and the arguments of the action and B is
an abstract state denoting the preconditions of A, Hi is the i-th possible outcome of
A, and

∑
i pi = 1. ◦

We assume that vars(A) ⊆ (vars(Hi) ∪ vars(B)). The semantics of the action defini-
tion are as follows:

Semantics 9.6 (Abstract Action) If state b is subsumed by B with substitution θ,
i.e., b �θ B, then taking action Aθ in b will result in [b \ Bθ] ∪ Hiθ with probability
pi/|θ| where |θ| is the number of possible substitutions θ such that b �θ B. ◦
In particular, if the preconditions are fulfilled, all outcomes are possible.

Example 9.7 As an illustration, consider

on(X, Y), cl(X), cl(Z),
X �= Y, Y �= Z, X �= Z

0.9:move(X,Y,Z)←−−−−−−−−− cl(X), cl(Y), on(X, Z),
X �= Y, Y �= Z, X �= Z

cl(X), cl(Y), on(X, Z),
X �= Y, Y �= Z, X �= Z.

0.1:move(X,Y,Z)←−−−−−−−−− cl(X), cl(Y), on(X, Z),
X �= Y, Y �= Z, X �= Z.

(9.4)

which moves block X on Y with probability 0.9. With probability 0.1 the action fails,
i.e., the state does not change. Applied to the above state z the action tells us that
move(a, b, c) will result in z′ ≡ cl(a), on(a, b), on(b, c) with probability 0.9 and with
probability 0.1 we stay in z. ◦
37 For the sake of simplicity, we consider cost-free actions. The framework can be adapted

to the case of action costs. Note also that the meaning of abstract action here differs from
that sometimes used in the context of hierarchical RL, see e.g. [Dietterich, 2000].
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This type of action definition implements a kind of probabilistic STRIPS opera-
tor [Hanks and McDermott, 1994].

The model R of abstract rewards specifies the rewards generated by entering
abstract states. In our framework, it will also coincide with our initial abstract state
value function V0.

Definition 9.8 An abstract state value function V is a finite list of value rules of the
form c ← B were B is an abstract state and c ∈ R. ◦
Abstract state value functions typically consist of a set of multiple values rules. They
are applied to ground states. In order to avoid conflicting value rules for a single
ground state, we apply a similar conflict resolution technique as for logical HMMs, cf.
Section 5.1. We assume the value rules to be totally ordered and do assign the first
matching value rule such as in Prolog 38

Example 9.9 As an illustration, consider R = V0 with 10.0 ← on(a, b) and
0.0 ← true. It assigns 0 to z but 10 to z′. Using true in the last value rule assures
that all states are assigned a value. ◦
We will also employ abstract action-state value functions, which are similar to abstract
state value functions and of which an example can be found in Section 10.4.2.

Definition 9.10 An abstract state action value function Q is a finite set of Q-rules
of the form c : A ← B were B is an abstract state, A is an action and c ∈ R. ◦
We apply the same conflict resolution technique as for abstract state value functions.

To summarize, rewards are specified over queries, i.e., existentially quantified goals.
Although these are simple, they are expressive enough to specify many interesting
problems studied by the (relational) RL community such as shortest-path problems.
Here, the goal is to reach certain (abstract) states. When a goal state is entered, the
process ends. In RL, episodic tasks are encoded using absorbing states. We encode
them by artificial deterministic rules of the form

absorbing ← on(a, b),

which denotes that all states that are subsumed by on(a, b) transition only to them-
selves and generate only zero rewards. For example, z is not absorbing but z′ is.

Finally, we need a way to enforce the integrity constraints imposed by our
domain. For instance, in the move definition above we employed symmetry of �=. This
can be modeled by a set C of integrity constraints. Each integrity constraint is a Horn
clause.

Example 9.11 In the blocks world, no block can be free if there is a block on top
of it and no block can be on itself. This can be expressed using the constraints
false ← on(X, Y), cl(Y) and X �= Y ← on(X, Y). ◦
38 In [Kersting et al., 2004], we proposed to assign the maximal value c of all matching value

rules c ← B to a state as value. This corresponds to totally ordering the rules according
to decreasing values.
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A C

move(A,floor,_)

move(A,C,_)
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move(A,floor,_)
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stacks of 
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(a) (b)

Figure 9.1. The two underlying patterns of the blocks world for stacking. (a) There are at
least two stacks of height > 0. (b) There is only one stack left (the goal state). The serrated
cuts indicate that A (resp. C) can be on top of some other block or on the floor, which is
denoted by the anonymous variable .

The completion of an abstract state Z is the least fixpoint of C ∪ {Z}, i.e., all facts
deducible from C ∪ {Z}.
Example 9.12 The state on(a, b) does not encode that a is not b. Using the rules
above, this state is completed to on(a, b), a �= b. ◦
Furthermore, if the completion includes false, the state does not satisfy the con-
straints, i.e., it is an illegal state. To deal with integrity constraints, we also have to
adapt our notations of action definitions and generality. Action definitions are now
constrained so that they cannot lead to illegal states. Furthermore, we employ the in-
tegrity constraints as a background theory and use Buntine’s generalized subsumption
framework [1988] to test for subsumption.

By now we are able to formally define logical Markov decision programs.

Definition 9.13 (Markov Decision Program) A Markov decision program 39 is a
tuple M = (Σ,A,R,C) where Σ is a first-order alphabet, A is a set of abstract
actions, R is an abstract reward model, and C is a set of integrity constraints. ◦

Before giving the semantics of Markov decision programs, let us further illustrate
Markov decision programs.

Example 9.14 The goal of the stack task in the blocks world is to move all blocks on
one single stack. For the sake of simplicity, we again assume that all variables denote
different objects. The move action and integrity constraints remain unchanged. The
abstract reward model, however, changes to

0.0 ← cl(X), cl(Y), on(X, U), on(Y, V).
10.0 ← true.

This reward model is governed by the underlying patterns of the blocks world, which
are shown in Figure 9.1. Two abstract states (the artificial absorbing state excluded)

39 In [Kersting and De Raedt, 2003, 2004], we also used the term logical Markov decision
processes (LOMDPs). In this thesis, we use the term Markov decision programs to stress
their logic programming character.
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together with the order in which they occur cover all possible state action patterns in
the blocks world. Furthermore, stack is an episodic task, i.e., it ends when reaching
the goal state. Therefore, we use absorbing ← cl(X), not(cl(Y), X �= Y). Similar, we
can easily encode the unstack goal:

0.0 ← cl(X), on(X, Y), on(Y, Z).
10.0 ← true.

with the absorbing state absorbing ← not(on(X, Y), on(Y, Z)). ◦
Note that we have not specified the number of blocks. The Markov decision program
represents all possible blocks worlds using only 6 abstract transitions, i.e. 12 proba-
bility and reward parameters, whereas the number of parameters of a propositional
system explodes, e.g., for 10 blocks there are 58, 941, 091 states.

9.3 Semantics

In principle, a Markov decision program M induces a Markov decision process M .
To see this, assume a countably finite set of constants. Let hba

Σ ⊂ hbΣ be the
set of all ground atoms built over abstract action names, and let hbs

Σ ⊂ hbΣ be the
set of all ground atoms built over non-action names. Now, construct M from M as
follows. The countable state set S consists of all finite subsets of hbs

Σ . The set of
actions A(Z) ⊂ hba

Σ for state Z ∈ S consists of all actions applicable in Z, i.e., those
actions where the preconditions are fulfilled. We have that |A(Z)| < ∞ holds because
Z is finite. The probability P (Z, a, Z ′) of a transition in T from Z to another state Z ′

after performing an action a is the probability p associated to the unique abstract
transition matching Z, a, and Z ′ normalized by the number of transitions of the form
Z ′′ a←− Z in T. If there is no abstract transition connecting Z and Z ′, the probability
is zero. The bounded rewards R(Z, a, Z′) are constructed in a similar way but are not
normalized.

Thus, assuming a finite transition model for each ground state Z ∈ hbs(Σ), i.e.,
|{Z ′|P (Z, a, Z′) > 0} < ∞ the induced MDP M is discrete and from Theorem 6.2.5
in [Puterman, 1994] it follows:

Corollary 9.15 A Markov decision program M = (Σ,A,R,C) specifies a discrete
Markov decision process M = (S, A,T), for which an optimal policy exists, if (*) the
transition model for each ground state Z ∈ hbs(Σ) is finite. ◦
In other words, there exists an optimal policy (over ground states) for every Markov
decision program fullfilling (*). Interesting cases are functor-free programs, in which
no functors occur in abstract transitions, and range-restricted programs (abstract

transitions Hi
pi:A←−−− B fullfill vars(Hi) ⊂ vars(B)) with a finite set of possible starting

states. Furthermore, Markov decision programs generalize finite (state set) Markov
decision processes, which are typically investigated within reinforcement learning be-
cause every finite Markov decision process is a propositional Markov decision program,
in which all relation symbols have arity 0.



Markov decision programs, are strictly more expressive than finite Markov decision
Processes as the blocks world tasks for any number of blocks show. This is not due
to the use of negation but due to logical abstraction and unification.

Example 9.16 Typical blocks world tasks such as cl(a) and on(a, b) do not require
negation to encode their reward models:

10.0 ← cl(a). respectively 10.0 ← on(a, b).
0.0 ← true.

We avoid the use of negation by sorting the rules into decreasing order of values. ◦
We will call such Markov decision programs decreasingly ordered, negation-free Markov
decision programs. They are defined as follows:

Definition 9.17 (Decreasingly ordered, negation-free Markov decision programs) In
decreasingly ordered, negation-free Markov decision programs, value rules are ordered
so that their values decrease, and negation is not used to define value rules, absorbing
states, and decision rules. ◦
Still, decreasingly ordered, negation-free Markov decision programs generalize finite
Markov decision processes because any Markov decision process over a finite set of
states is a decreasingly ordered, negation-free Markov decision program. There are
only finitely many rewards, which can be ordered appropriately. Furthermore, because
there are only finitely many states, transitions can be specified without negation.
Therefore, blocks world tasks such as unstack and stack for finitely many blocks 40

can be encoded as decreasingly ordered, negation-free Markov decision programs.
Moreover, tailored exact solution techniques can be developed as we will show in
Section 10.4. For the general case, this is still an open question. In the following
section, however, we will develop a model-free technique for computing approximative
solutions of general Markov decision processes and prove its convergence.

§ 10

Solving Markov Decision Programs *

... in which abstract policies are defined, generalized relational policy iteration
(GRPI) as a general scheme for learning abstract policies is presented, and
two GRPI approaches are introduced, experimentally evaluated and used to
establish convergence results for relational reinforcement learning ...

A solution of a Markov decision process is a policy, mapping states to actions, that
determines states transitions that maximize the expected future reward. As Corol-
lary 9.15 states, each Markov decision program M specifies a discrete Markov decision
40 Such blocks worlds have been considered in the probabilistic planning track of the inter-

national planning competition 2004.
* Builds on [Kersting and De Raedt, 2003, 2004, Kersting et al., 2004].
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process M , which is solvable. Because a solution for M should also be a solution for
M, the existence of an optimal policy π for M is guaranteed: π is simply the optimal
policy of M . Indeed, this policy is extensional or propositional in the sense that it
specifies for each ground state separately which action to execute. In turn, specify-
ing such policies for Markov decision programs with large state spaces is cumbersome
and learning them will require much effort. This motivates the introduction of abstract
policies.

10.1 Abstract Policies

Many value functions have a rich internal structure. Reconsider the learning agent
from the introduction.

Example 10.1 The agent must learn to use its hand to remove blocks on some block
a. The optimal value function would assign the same value, say 8.1, to all states where
there is some block on top of a such as cl(c), on(c, a) or cl(d), on(d, a), cl(b), on(b, e).
Thus, we can compress the propositional value function by using value rules such as
8.1 ← cl(X), on(X, a). The same holds for policies. Instead of specifying for each
state separately the optimal action, we compress them into move(X, floor, a) ←
cl(X), on(X, a). ◦
More formally, abstract policies π intentionally specify the action to take for sets of
states, i.e., for an abstract state.

Definition 10.2 An abstract policy π over Σ is a finite set of decision rules of the
form a ← L, where a is an abstract action and L is an abstract state. We assume a
to be applicable in L, i.e., vars(a) ⊆ vars(L) . ◦
The meaning of a single decision rule a ← L is as follows:

Semantics 10.3 (Decision Rule) If the agent is in a state Z such that a ≤θ L, then
the agent performs action aθ with probability 1/|θ|, i.e., uniformly with respect to
number of possible instantiations of action a in Z. ◦
Usually, however, π consists of multiple decision rules. We apply the same conflict
resolution technique as for abstract state value functions. This means we assume a
total order ≺π among the decision rules in π and use the first matching decision rule
such as in Prolog.

Example 10.4 Consider the following unstack-stack abstract policy:

〈1〉 move(A, floor, B) ← on(A, B), on(C, D), on(E, floor),cl(A), cl(C), cl(E).
〈2〉 move(A, floor, B) ← on(A, B), on(C, D), cl(A), cl(C).
〈3〉 move(E, A, floor) ← on(A, B), on(E, floor), cl(A), cl(E).
〈4〉 move(A, B, floor) ← cl(A), cl(B).
〈5〉 stop ← on(A, B), cl(A).

where the start action adds the absorbing propositions, i.e., it encodes that we enter
an absorbing state. We have omitted the absorbing state in front and statements that



§10.1 Abstract Policies 161

Figure 10.1. The decision rules of the unstack-stack policy. In the figure, the decision rules
are ordered from left to right, i.e., a rule fires only if no rule further to the left fires.

variables refer to different blocks. For instance in state z (see before), only decision
rule 〈3〉 fires.

The policy, which is graphically depicted in Figure 10.1 and is interesting for
several reasons. First, it is close to the unstack-stack strategy, which is well known in
the planning community [Slaney and Thiébaux, 2001]. Basically, the strategy amounts
to first putting all blocks on the table and then building the goal state by stacking
all blocks from the floor onto one single stack. No block is moved more than twice.
Second, it perfectly generalizes to all other blocks worlds, no matter how many blocks
there are. Finally, it cannot be learned in a propositional setting because here the
optimal, propositional policy would encode the number of states and the optimal
number of moves. ◦
Due to the conflict resolution, abstract policies induce a partition of the state space
and, hence, their semantics can be stated in terms of (ground) policies.

Proposition 10.5 Any abstract policy π specifies a nondeterministic policy π at the
level of ground states. A (stationary) nondeterministic policy π maps a state to a
distribution over actions. ◦
Proof Let L = {L1, . . . , Lm} be the set of bodies in π (ordered with respect to ≺π).
We call L the abstraction level of π and assume that it covers all possible states of
the Markov decision program. This together with the total order guarantees that L
forms a partition of the states. The equivalence classes [L1], . . . , [Lm] induced by L
are inductively defined by [L1] = S(L1) and [Li] = S(Li) \

⋃i−1
j=1[Lj ] for i ≥ 2, where

S(Li) denote the set of states covered by the abstract state Li. Because we choose
uniformly among all instances of an action, the proposition holds. ��
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Figure 10.2. Generalized policy iteration as illustrated in [Sutton and Barto, 1998]. Opti-
mal policies are computed by two interacting processes. Policy evaluation makes the value
function consistent with the current policy, and policy improvement makes the policy greedy
with respect to the current value function. greedy denotes the greedy policy computed from
the current value function.

The crucial question for Markov decision programs and for relational reinforcement
learning is therefore, how one can learn abstract policies?

10.2 Generalized Relational Policy Iteration

According to Sutton and Barto [1998], almost all MDP solvers and reinforcement
learning systems follow the so called generalized policy iteration (GPI) scheme shown
in Figure 10.2. It consists of two interacting processes: policy evaluation and policy
improvement. Here, evaluating a policy refers to computing the value function of the
current policy, and policy improvement refers to computing a new policy based on
the current value function. For instance, the greedy policy with respect to the state
action value function is π(s) = arg maxa Qπ(s, a).

Indeed, GPI assumes a fixed level of abstraction. Consequently, it cannot directly
be applied to learn abstract policies because — similar to learning the structure of
logical HMMs, see Section 7 — learning abstract policies requires exploring different
abstraction levels.

Example 10.6 Reconsider the unstack-stack abstract policy from Example 10.4. To
eventually learn this policy from scratch, several abstract policies have to be explored
such as the policy which has the additional decision rule

〈0〉 move(A, floor, B) ← on(A, B), on(C, D), on(D, floor), on(E, floor),
cl(A), cl(C), cl(E).

or the policy where decision rule 〈1〉 is missing. ◦
Therefore, we interleave GPI with the additional process of policy refinement, which
makes small modifications to an abstract policy. Thus, the resulting generalized re-
lational policy improvement (GRPI) scheme iteratively modifies the current abstract
policy syntactically, evaluates it, and improves it, as illustrated in Figure 10.3. To
modify an abstract policy, one can apply ILP techniques such as refinement opera-
tors, which we reviewed in Section 2.2.
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Figure 10.3. Generalized relational policy iteration, which accounts for different abstraction
levels. It is an upgrade of generalized policy iteration for traditional reinforcement learning
as in Figure 10.2. greedy denotes the greedy policy computed from the current value function,
see [Sutton and Barto, 1998].

Example 10.7 Continuing our last example, the unstack-stack policy may be gener-
alized by deleting decision rule 〈1〉. It may also be refined by adding the specialized
variant 〈0〉 of decision rule 〈1〉. ◦
One can, however, do even better.

When a model of the environment’s dynamics, i.e., a Markov decision program is
known, it can be used to score different refinements (e.g., measuring the influence of
a refinement of one state on the remaining states [Munos and Moore, 1999, Kim and
Dean, 2003]) or to model-driven compute the best level of abstraction directly. We
will develop such a model-driven GRPI approach in Section 10.4 when introducing
the relational Bellman update operator ReBel. ReBel uses Bellman’s update opera-
tor (9.2) to evaluate abstract policies and the greatest-lower-bound and θ-subsumption
for clauses, see Section 2.2, to refine abstract policies.

In the model-free case, i.e., when no Markov decision program is given, the agent
can employ the experience she already has, i.e., the states visited to compute and
evaluate different abstract levels. This approach is followed by Džeroski et al. [2001]
within RRL-RT. RRL-RT interleaves the policy evaluation and policy refinement
processes. Starting from some initial abstraction level, RRL-RT induces a logical
regression tree [Blockeel and De Raedt, 1998] from episodes/traces of states (i.e.,
interpretations) where the states are weighted by their currently expected rewards.
The learned logical regression tree is an approximation of the abstract state(-action)
value function and is used to compute a new policy (policy improvement). Based on
this new policy, RRL-RT generates new episodes to improve its current approximation
of the value function. RRL-RT iterates these steps until convergence. Thus, RRL-RT
can be viewed as an instance of GRPI.

Empirically, RRL-RT has been shown to work well on a wide range of domains such
as blocks world, Tetris, and Digger. In the next Section, we will provide a first step in
explaining why it works well. More precisely, we will focus on the relational evaluation
problem, see Definition 10.8 in the next section, within GRPI approaches and prove
convergence for a relational variant of TD(λ). The learning setting employed is that
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of probabilistic learning from proofs when we view sequences as proofs. One can also
use the probabilistic learning from interpretations setting because the agent observes
sequences of interpretations. The convergence result presented is, to the best of our
knowledge, the first in the context of relational reinforcement learning. Thus, we will
make a first step into the direction of a theory of relational reinforcement learning.

10.3 Model-free Relational TD(λ)

The relational evaluation problem considers how to compute the state-value function
V π for an arbitrary abstract policy π. In this Section, we will focus on model-free ap-
proaches. Model-free approaches do not know the reward and the transition functions
in advance when computing the value of an abstract policy from experiences.

Definition 10.8 (Relational Policy Evaluation Problem) Given an abstract policy
π, find the state-value function V π from experiences 〈St, at, St+1, rt〉 only, where
action at leads from state St to state St+1 receiving reward rt. ◦
In contrast to traditional model-free approaches, maintaining values for all states of
the underlying MDP M is not feasible.

10.3.1 The Algorithm

The basic idea to come up with a relational evaluation approach is to define the ex-
pected reward of a state Li of an abstraction level L = {L1, . . . , Lm} to be the average
expected value for all the states in [Li]. This is a good model because if we examine
each state in [Li], we make contradictory observations of rewards and transition prob-
abilities. The best model is the average of these observations given no prior knowledge
of the model. To prove convergence 41, we reduce the “abstract” evaluation problem
to the evaluation problem for the underlying MDP M = (S, A,T, λ) with state aggre-
gation (see e.g. [Gordon, 1996, Singh et al., 1995, Kim and Dean, 2003]) with respect
to [L1], . . . , [Lm]. For ease of explanation, we will focus on a TD(0) approach 42, see
e.g. [Sutton and Barto, 1998]. Results for general TD(λ) can be obtained by applying
Tsitsiklis and Van Roy’s [1997] results.

Algorithm III.1 sketches relational TD(0). Given some experience following an
abstract policy π, RTD(0) updates its estimate V̂ of V . If the estimated is not changing
considerably, cf. line 12, the algorithm stops. If an absorbing state is reached, cf.
line 11, If a nonabsorbing state is visited, cf. line 4, then it updates its estimate, cf.
line 9, based on what happens after that visit, cf. lines 6–8. Instead of updating the
estimate at the level of states, RTD(0) updates its estimate at the abstraction level
L of π.
41 It has been experimentally shown that (already model-based) reinforcement learning with

function approximation does not converge in general, see e.g. [Boyan and Moore, 1995].
Fortunately, this does not hold for averagers, which we employ here.

42 A similar analysis can be done for model-based approaches. Gordon [1996] showed that
value iteration with an averager as function approximator converges within a bounded
distance from the optimal value function of the original MDP.
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Algorithm III.1: Relational TD(0) where α is the learning rate and V̂ (L) is
the approximation of V (L).

Let π be an abstract policy with abstraction level L1

Initialize bV0(L) arbitrarily for each L in L2

repeat3

Pick a ground state Z of the underlying MDP M4

repeat5

Choose action a in Z based on π as described in Section 10.1, i.e., (1) select6

first decision rule a ← L in π that matches according to ≺π, (2) select aθ
uniformally among induced ground actions
Take aθ, observe r and successor state Z′ as described in Section 9.2, i.e.,7

(1) select with probability pi the i-th outcome of aθ, (2) compute Z′ as
[b \ Bθ] ∪ Hiθ
Let L′ in L be the abstract state first matching Z′ according to ≺π

8

bV (L) := bV (L) + α · (r + λ · bV (L′) − bV (L))9

Set Z := Z′
10

until Z is terminal, i.e., absorbing11

until converged or some maximal number of episodes exceeded12

10.3.2 Proof of Convergence

To show convergence, it is sufficient to reduce RTD(0) to TD(0) with soft state ag-
gregation [Singh et al., 1995]. The basic idea of soft state aggregation is to cluster
the state space, i.e., to map the state space S into clusters c1, . . . , ck. Each state s
belongs to a cluster ci with a certain probability P (ci|s). The value function then is
computed at the level of clusters rather than states. Relational TD(0) is a special case
of soft state aggregation. To see this recall that the abstraction level L partitions the
state space S. Thus, one can view the abstract states in L as clusters where each state
Z ∈ S belongs to only one cluster [Li], i.e., P ([Li] | Z) = 1 if Z ∈ S(Li); otherwise
P ([Li] | Z) = 0. Furthermore, the state set S and the action set A of the underlying
MDP M are finite, and the agent follows a nondeterministic policy. Therefore, the
assumptions of the following Theorem are fulfilled.

Theorem 10.9 TD(0) with soft state aggregation applied to M while following an
abstract policy π converges with probability one to the solution of the following system
of equations:

V ([Li]) =
∑
Z∈S

Pπ(Z | [Li])

⎡⎣Rπ(Z) + λ
∑

Lj∈L
Pπ(Z, [L]j)V ([Lj ])

⎤⎦ (10.1)

for all Li in L. ◦

Proof sketch: The theorem is a direct reformulation of Corollary 2 in [Singh et al.,
1995] in terms of the partition induced by the abstract policy π. ��



166 §10 Solving Markov Decision Programs

From Theorem 10.9, it follows that RTD(0) applied to a Markov decision program M
while following an abstract policy π at abstraction level L converges with probability
one to the solutions of the system of equations (10.1).

Note that for arbitrary abstraction levels, despite that Theorem 10.9 shows that
RTD(0) learning will find solutions, the error in the (ground) state space will not be
zero in general. Equation (10.1) basically states that an abstract policy π induces a
process L over [L1], . . . , [Lm] whose transition probabilities and rewards for a state
[Li] are averages of the corresponding values of the covered ground states in M , see
also [Kersting and De Raedt, 2003]. Therefore, the process L appears to a learner to
have a non-Markovian nature.

Example 10.10 Consider the following Markov decision program with actions

1: q 1.0:a1←−−−p, q 2: ∅ 1.0:a2←−−−p and 3: p 1.0:a3←−−−true,

abstract reward model

0.0 ← p, q

1.0 ← p

0.0 ← true

and the abstraction level L = {p, q, true} . Here, the values for [q] and [true] are
the same in L as the next state is the same, namely [p]. The underlying MDP M ,
however, assigns different values to both as the following traces show:

q
1.0:a3−−−→p, q, 0.0 1.0:a1−−−→q, 0.0 . . . and true

1.0:a3−−−→p, 1.0 1.0:a2−−−→true, 0.0 . . .

where the bold numbers denote the rewards. ◦

Nevertheless, RTD(0) converges at the level of L and can generalize well even for
unseen ground states due to the abstraction.

To summarize, Theorem 10.9 shows that temporal-difference evaluation of an ab-
stract policy converges. Different policies, however, will have different errors in the
ground state space. In the context of GRPI, Theorem 10.9 suggests to use refine
heuristically the abstraction level to reduce the error in the ground state space. This
is akin to the approach taken in RRL-RT, which reads as follows:

(1) Because each logical regression tree induces a finite abstraction level, temporal-
difference evaluation of a fixed regression tree converges.

(2) Relational node/state splitting (based on the state sequences encountered so far)
is used to heuristically reduce the error in the ground state space.

Theorem 10.9, however, assumes that each state is infinitely often visited. This is of
course an unrealistic assumption. To investigate how well relational TD(0) performs
in practice, we conducted a series of experiments.
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10.3.3 Experimental Evaluation

The experiments put the following hypotheses to test:

H1 RTD(0) can converge in finite time for finite abstraction levels in practice
H2 Using RTD(0), abstract policies can be compared.
H3 RTD(0) works for actions with multiple outcomes.
H4 Relational policy refinement is needed.
H5 Variance can be used as a heuristic state-splitting criterion.

Our task was to evaluate abstract policies within the blocks world. In contrast to the
similar experiments reported by Džeroski et al. [2001] on RRL-RT, we exclusively use
the standard predicates on, cl, and bl. Džeroski et al. also needed to make use of
several background knowledge predicates such as above, height of stacks as well as
several directives to the first-order regression tree learner. Another difference to our
approach is that RRL-RT induces the relevant abstract states automatically using a
regression tree learner. Our goal, however, was not to present an overall GRPI system.

We implemented RTD(0) using the Prolog system YAP-4.4.4. All experiments
were run on a 3.1 GHz Linux machine and with a discount factor λ of 0.9 and
a learning rate α of 0.015. We randomly generated 100 blocks world states for 6
blocks, for 8 blocks, and for 10 blocks using the procedure described by Slaney and
Thiébaux [2001]. This set of 300 states constituted the set Start of starting states in
all experiments. Note that for 10 blocks a traditional MDP would have to represent
58, 941, 091 states of which 3, 628, 800 are goal states. The result of each experiment
is an average of five runs of 5000 episodes, where for each new episode we randomly
selected one state from Start as starting state. For each run, the value function
was initialized to zero. Note that in all experiments, the abstract policies and value
functions apply no matter how many blocks there are.

Experiment 1: Our task was to evaluate the unstack-stack abstract policy for
the stack Markov decision program introduced above. The results are summarized in
Figure 10.4 (a) and clearly show that hypothesis H1 holds. The learning curves show
that the values of the abstract states converged and, hence, RTD(0) converged. Note
that the value of abstract state 〈5〉 remained 0. The reason for this is that, by accident,
no state with all blocks on the floor was in Start. Furthermore, the values converged
to similar values in all runs. The values basically reflect the nature of the policy. It is
better to have a single stack than multiple ones. The total running time for all 25000
episodes was 67.5 seconds measured using YAP’s build-in statistics(runtime, ).

Experiment 2: In reinforcement learning, policy improvement refers to comput-
ing a new policy based on the current value function. In a relational setting, the
success of, e.g., computing the greedy policy given an abstract value function de-
pends on the granularity of the value function. For instance, based on the last value
function, it is not possible to distinguish between move(A, floor, ) and move(A, B, )
as actions in decision rule 〈1〉 because both would get the same expected values. To
overcome this, one might refine the abstraction level (see experiment 5) or evaluate
different policies at the same abstraction level. In this experiments, we evaluated a
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Figure 10.4. Relational TD(0)’s learning curves on the evaluation problem (a) for the
unstack-stack policy and (b) for the modified unstack-stack policy. The predicted values are
shown as a function of the number of episodes. These data are averages over 5 runs; the
error bars show the standard deviations.

Figure 10.5. Relational TD(0)’s learning curves on the evaluation problem for the unstack-
stack policy where (a) the actions of the underlying Markov decision program have multiple
outcomes and (b) the underlying Markov decision program encoded the unstack problem.
The predicted values are shown as a function of the number of episodes. These data are
averages over 5 runs; the error bars show the standard deviations.

modified ’unstack-stack’ policy in the same way as in the first experiment. It dif-
fers from the ’unstack-stack’ policy in that we do not perform move(A, floor, B) but
move(E, A, floor) in the decision rule 〈1〉. The total running time of all 25, 000 episodes
increased to 97.3 seconds as the average length of an episode increased. The computed
values are summarized in Figure 10.4 (b). Interestingly, the values of abstract states
〈1〉 and 〈2〉 dropped from approximately 5 to approximately −4. It is less interesting
to pile blocks if there are more than one on piles of height at least 2 left. Furthermore,
it becomes more interesting to pile blocks on the only pile of blocks left; the value of
〈3〉 increased. Selecting the decision rules with the highest values from both policies
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Figure 10.6. Learning curves for RTD(0) on the evaluation problem for the on(a,b) policy
where the underlying Markov decision program encoded the on(a,b) goal. The predicted
values are shown as a function of the number of episodes. These data are averages over
5 runs; the error bars show the standard deviations; only states with a non zero value are
shown (note that we used a finite set of starting states only). (a) Policy restricted to 〈a〉−〈e〉
and 〈l〉. (b) All decision rules 〈a〉 − 〈l〉.

results in the original ’unstack-stack’ policy. Thus, the unstack-stack is preferred over
modified one. This shows that hypothesis H2 holds.

Experiment 3: We reran the first experiment where the underlying Markov
decision program now encoded that move has multiple outcomes. For action
move(A, floor, C), block A may fall on C, and for action move(A, C, floor) the block
A may fall on the floor. Again, RTD(0) converged as Figure 10.5 (a) shows. This
shows that hypotheses H3 holds.

Experiment 4: We reran the first experiment, i.e., we evaluated the unstack-
stack policy, but now the underlying Markov decision program encoded the unstack
problem. Again, RTD(0) converged as Figure 10.5 (b) shows. The running time over
all 25000 episodes, however, increased to 317.7 seconds as the underlying Markov
decision program was more complex. This shows that hypothesis H1 holds.

Experiment 5: RTD(0) can also be used when there are costs associated with
actions. To experimentally validate this, we finally investigated action costs with
on(a, b) as goal. The underlying Markov decision program was

absorb
1.0:20:stop←−−−−−−− on(a, b).

on(A, floor), cl(A), on(C, D),
cl(C), cl(B)

0.9:−1:move(A,floor,B)←−−−−−−−−−−−−−−− on(A, B), cl(A),on(C, D), cl(C).

on(A, C), cl(A), on(C, D), cl(B)
0.9:−1:move(A,C,B)←−−−−−−−−−−−− on(A, B), cl(A), on(C, D), cl(C).

on(A, floor), cl(A), cl(B)
1.0:−1:move(A,floor,B)←−−−−−−−−−−−−−−− on(A, B), cl(A).

where the second number on the arrow are the immediate costs of taking an action.
Furthermore, we assumed that all variables denote different objects and we omitted
absorb. If the transition probabilities do not sum to 1.0 then there is an additional
abstract transition for staying in the current abstract state. Following the same ex-
perimental setup as in the first experiment but using a step size α = 0.5, we evaluated



170 §10 Solving Markov Decision Programs

two different policies, namely 〈a〉 − 〈e〉, 〈l〉 and 〈a〉 − 〈l〉 where

〈a〉 stop ← on(a, b).
〈b〉 move(a, b, B) ← cl(a), cl(b), on(a, B).
〈c〉 move(b, floor, a) ← cl(b), on(a, C), on(b, a).
〈d〉 move(A, floor, a) ← cl(b), cl(A), on(a, C), on(A, a).
〈e〉 move(A, floor, b) ← cl(a), cl(A), on(a, C), on(A, b).
〈f〉 move(A, floor, b) ← cl(A), on(a, D), on(b, a), on(A, b).
〈g〉 move(b, floor, D) ← cl(b), on(a, C), on(b, D), on(D, a).
〈h〉 move(a, floor, C) ← cl(a), on(a, C), on(C, b).
〈i〉 move(a, floor, D) ← cl(A), on(a, D), on(A, b).
〈j〉 move(A, floor, D) ← cl(b), cl(A), on(a, C), on(A, D), on(D, a).
〈k〉 move(A, floor, D) ← cl(a), cl(A), on(a, C), on(A, D), on(D, b).
〈l〉 move(A, floor, D) ← cl(A), on(A, D).

In both cases, RTD(0) converged as Figure 10.6 shows. The running time over all
25000 episodes was 4.85 seconds (〈a〉 − 〈e〉, 〈l〉) and 6.7 seconds (〈a〉 − 〈l〉). In both
experiments, state 〈l〉 was exceptional. It obeyed a higher variance than the other
states. The reason is that it acts as a kind of ”container” state for all situations,
which are not covered by the preceding abstract states. In the refined policy, all
added states showed low variances. Thus, we may iterate and refine 〈l〉 even more.
The experiments show that hypotheses H1, H4, and H5 hold and supports the
variance-based state-splitting approach taken in RRL-RT [Džeroski et al., 2001].

Model-free approaches such as RTD(λ) tackle a difficult problem: estimating value
functions without a model of the environment. A model of the environment should
yield more efficient solution techniques. In the next section, we will show that this is
indeed the case. To the expense of a less expressive language, namely that of decreas-
ingly ordered, negation-free Markov decision programs (see Definition 9.17), we will
develop an exact value iteration method.

10.4 Model-based Relational Value Iteration based on ReBel

In traditional MDPs and reinforcement learning, as discussed in Section 9.1, the Bell-
man backup operator (9.2) is one of the central concepts. We will now develop a re-
lational Bellman backup operator, called ReBel, and, based on it, a relational value
iteration algorithm. We focus here on decreasingly ordered, negation-free Markov de-
cision programs because their restrictive language allows us to devise ReBel. More
expressive language call for more complex solution techniques. For instance, Boutilier
et al. [2001] employed the situation calculus; although their work is certainly elegant
and principled, due to the complexity of the language, they neither report on a com-
plete implementation nor present automated experiments. Only recently, Sanner and
Boutilier [2004, 2005] fully implemented Boutilier et al. approach using more difficult,
mathematical techniques.

More formally, we investigate the following problem.
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Definition 10.11 (Model-Based State Value Function Estimation Problem) Given
a Markov decision program with abstract reward model R, i.e., initial abstract state
value function V0, find the next abstract state value functions Vt, t = 1, 2, . . . ◦
Although, we consider here decreasingly ordered, negation-free Markov decision pro-
grams, we will refer to them — for the sake of brevity — as Markov decision programs
for the remaining of the section.

The main idea is to upgrade Bellman’s traditional backup operator in Equa-
tion (9.2). Basically, Equation (9.2) iteratively updates state values based on value
approximations of succeeding states. Therefore, we iterate over the following three
steps:

(1) Regress all preceding abstract states from Vt.
(2) Compute Qt+1 over the regressed states based on the value approximations Vt of

their succeeding abstracts states.
(3) Compute Vt+1 by maximizing over Qt+1.

Let us now discuss each step in turn in more details.

10.4.1 Regression

Let Vt be the current abstract state value function and consider some abstract action,
say move. For a single Bellman backup, all abstract states S, which lead to a condition,
i.e., abstract state S′ in Vt when taking action move have to be computed. Thus, we
have to reason from post- to preconditions.

Example 10.12 Consider S ≡ (
cl(a), cl(b), on(a, c), on(b, d)

)
(inequality con-

straints omitted) together with the move definition in Equation (9.4). The first out-
come of move(a, b, c) can lead from S to the abstract state S′ ≡ on(a, b). ◦
Thus, we have to compute the weakest preconditions for the outcomes of an abstract
action such as move and an abstract state S′.

Definition 10.13 All abstract states S, which lead to S′ when following some action
rule Hi

pi:A←−−− B, constitute the so called weakest precondition wpi(A,S′) of the i-th
outcome of A. ◦

Example 10.14 The abstract state S ≡ (
cl(a), cl(b), on(a, c), on(b, d)

)
from the

last example lies in the weakest precondition of S′, i.e., S ∈ wp1(move(X, Y, Z), S′) but
it does not lie in wp2(move(X, Y, Z), S′). ◦

To compute the weakest precondition wp1(move(X, Y, Z), S′) we can assume that we
“moved” from S to S′. Thus,

(1) the preconditions of the action (rule) are fulfilled in S, and
(2) S′ is partially caused by the first outcome of the action.
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Algorithm III.2: WeakestPre returns the weakest precondition wpi of action

rule Hi
pi:A←−−− B and abstract state S′ given a set of integrity constraints C. We

omitted the constraint that only legal and completed abstract states are inserted
in wpi.

initialize wpi to be the empty list1

foreach S′′ ⊆ S′ and P ⊆ Hi do2

foreach θ = mgu(S′′, P ) or S′′ == ∅ ∧ P == Hi, i.e., θ = ∅ do3

S := (S′θ \ Pθ) ∪ Bθ4

for all pairs (l, l′) ∈ {(l, l′) | l ∈ (S′θ \ Pθ) ∧ l′ ∈ Hiθ ∪ Bθ} do5

if mgu(l, l′) exists then6

add l �= l′ to S7

8

add all simplifications of S to wpi9

10

return wpi11

As an illustration of 2), reconsider S′ ≡ on(a, b). There are basically two situations.
First, move caused on(a,b). That means, we have been in abstract state

S1 ≡ (
cl(a), cl(b), on(a, Z), a �= b, a �= Z, b �= Z

)
and moved X = a on Y = b. Second, move did not cause on(a,b). This means,
we moved X on Y but not a on b. Therefore, we have been in abstract state

T ≡ (
cl(X), cl(Y), on(X, Z), on(a, b), X �= Y, X �= Z, Y �= Z

)
,

which satisfies that we did not move a on b, i.e., on(X, Y) �= on(a, b), and that we did
not move a from b away, i.e., on(X, Z) �= on(a, b). These two constraints C guarantee
that applying move(X, Y, Z) in T preserves on(a, b). The definition of T ∧ C simplifies
to S2 ≡ (

T∧X �= a
)
, S3 ≡ (

T∧X �= a ∧ Z �= b
)
, S4 ≡ (

T∧Y �= b ∧ X �= a
)
, and S5 ≡(

T∧Y �= b ∧ Z �= b
)
. The abstract state S2, S3, S4, and S5 are completed (see end of

Section 9.2) to the same abstract state, namely

S6 ≡ (
cl(A), cl(B), on(a, b), on(A, C)

)
where all variables and constants are mutually different.

Putting everything together, the abstract states S1 and S6 together logically define
the weakest precondition of move and S′, i.e., wp1(move(X, Y, Z), S′) ≡ (

S1 ∨ S6

)
.

So far, we considered a single effect only, namely on(a, b). The method Weakest-
Pre in Algorithm III.2 treats the general case of multiple (combined) effects that
are or that are not caused by taking some abstract action such as move. Consider
S′ ≡ (

on(a, b), on(c, d)
)
. Moving a block on some other block can have caused

either on(a, b) or on(c, d), or neither of them. Assume that neither of them was
caused, i.e., S′′ is empty and P = H1. The MGU θ is the empty substitution and
S ≡ (

on(a, b), on(c, d), cl(X), cl(Y), on(X, Z)
)

(inequality constraints omitted) is a pos-
sible preimage. Because we know that move did not cause on(a, b), on(c, d), it holds

on(X, Z) �= on(a, b)∧ on(X, Z) �= on(c, d)∧ on(X, Y) �= on(a, b)∧ on(X, Y) �= on(c, d) .
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Algorithm III.3: QRules returns the Q-rules of an action A given the reward
model R, the current value function Vt and a discount factor γ. Note that Ã
denotes the action head, where we keep the substitution made by wpi. We also
assume that only legal and completed abstract states g are inserted in Qrules.

initialize Qrules to the empty set.1

foreach action rule Hi
pi:A←−−− B for A do2

foreach v ← V in Vt do3

partialQ := {q̃ : Ã ← S | S ∈ wpi(A, V )}4

if S is absorbing then5

q̃ := R(S)6

else7

q̃ := R(S) + pi · γ · Vt(V )8

if Qrules �= ∅ then9

Qrules := partialQ10

else11

newQ := ∅12

for all pairs q′ : Ã′ ← S′ ∈ Qrules and q′′ : Ã′′ ← S′′ ∈ partialQ do13

if G := glb(Ã ← S′, Ã′′ ← S′′) exists then14

add q : G to newQ with q = q′ + q′′15

16

Qrules := newQ17

18

19

return Qrules20

Thus we add X �= a, X �= c to S. The abstract state S ∧ X �= a, X �= c is a legal abstract
state. The case that the action caused some effects is covered by the “mgu(S′′, P )
exists” condition. It is treated analogously.

10.4.2 Computing Abstract State Action Values

Given the regressed abstract states and the current abstract state value function Vt,
we now compute an abstract state-action value function Qt+1 according to Algo-
rithm III.3. To do so, we follow a two steps approach:

(A) We treat each outcome of an action A as though it would be a single action and
compute its abstract state action value.

(B) Then, we combine the values of all outcomes to an abstract state action value
for A, cf. lines 12–17. For the sake of brevity, we will not state constraints in the
examples as long as no ambiguities are caused.

For step (A), consider again the first outcome of move. The weakest precondition
was wp1(move(X, Y, Z), S′) ≡ S1 ∨ S6. Because S6, is absorbing, we assign an abstract
state action value of 10 for taking action move, i.e., 10 : move(X, Y, Z) ← S6 . The
value of S1, however, is dependent on Vt(S′), i.e. in our example V0. Assuming a
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discount factor of 0.9, this yields R(S) + p1 · 0.9 · V0(S′) = 0 + 0.9 · 0.9 · 10 = 8.1 , i.e.,
8.1 : move(a, b, Z) ← S1 . Doing the same for all other rules in V0 results in:

〈a〉 10 : move(X, Y, Z)← cl(X), cl(Y), on(a, b), on(X, Z)
〈b〉 8.1 : move(a, b, Z)← cl(a), cl(b), on(a, Z)
〈c〉 0.0 : move(X, Y, Z)← cl(X), cl(Y), on(X, Z)

For the second outcome of move, step (A) leads to:

〈d〉 1.0 : move(a, X, b)← cl(a), cl(X), on(a, b)
〈e〉 1.0 : move(X, Y, Z)← cl(X), cl(Y), on(a, b), on(X, Z)
〈f〉 0.0 : move(X, Y, Z)← cl(X), cl(Y), on(X, Z)

For step (B), we note that each of these rules describes situations such as if we are in
a state then we can get some value for achieving the i-th outcome of action A. This
information has to be combined to an abstract state action values for A. To do so,
we select a rule from 〈a〉 − 〈c〉, say 〈b〉, and a rule from 〈d〉 − 〈f〉, say 〈f〉, and check
whether we can be in both abstract states at the same time and whether we can apply
the same action. In other words, we compute the greatest lower bound (glb) of the
logical clauses underlying both value rules, see Section 2.2. If the glb exists and it is
a legal state, then it is inserted as a new rule, cf. line 15.

In general, computing the glb has high computational costs but the costs can be
reduced when assuming that the variables of an action A are the variables occurring
in the body and heads of the action’s outcomes, i.e., vars(A) = (vars(Hi) ∪ vars(B)).
In this case, the glb exists only if the actions unify. Thus, we first unify the actions
— if possible — and then compute the glb of the resulting bodies, which typically
have a much lower number of variables.

The value of the new rule is the sum of values of the combined rules. For 〈b〉 and
〈f〉 this yields

8.1 : move(a, b, X) ← cl(a), cl(b), on(a, X).

In contrast, 〈b〉 and 〈d〉 do not result in a new rule.
In our blocks world example, QRules yields the following abstract state action

value function when applied to V0, move and absorbing:

〈1〉 10 : absorbing ← on(a, b)
〈2〉 10 : move(X, Y, Z) ← cl(X), cl(Y), on(a, b), on(X, Z)
〈3〉 8.1 : move(a, b, X)← cl(a), cl(b), on(a, X)
〈4〉 0.0 : move(X, Y, Z)← cl(X), cl(Y), on(X, Z)

Note that we have sorted the Q-rules in descending order only for the sake of read-
ability.

10.4.3 Computing Abstract State Values

The set of Q-rules enables one to compute the next abstract state value function Vt+1.
In contrast to the traditional case, Q-rules, i.e., values of abstract state action pairs,
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Algorithm III.4: VRules returns the value functions Vt+1 given the Q-rules
computed from Vt for all actions.

initialize Vt+1 to the empty set of V -rules1

sort Qrules in decreasing order of Q-values2

while Qrules not empty do3

remove top element d : A ← B of Qrules4

if no other rule d : A′ ← B′ in Qrules exists such that B′ subsumes B then5

add d ← B to Vt+16

remove all rules d′′ ← B′′ from Qrules such that B′′ is subsumed by B7

8

return Vt+19

can overlap such as Q-rules 〈1〉 and 〈2〉. To compute abstract state values we make
use of the fact that Vt+1(S) = maxA Qt+1(S, A) due to Equation (9.2).

In general, any value-preserving transformation can be applied. Here, we use a
simple separate-and-conquer rule learning approach where the rules to learn and the
examples to learn from coincide, see VRules in Algorithm III.4. We search for a
Q-rule m having a maximal Q-value among Qrules, cf. lines 2 and 4, separate the
covered Q-rules, cf. lines 4 and 7, and recursively conquer the remaining Q-rules by
selecting more rules until no Q-rules remain, cf. line 3. The main difference is that
we select m and add it to Vt+1 only if there is no other Q-rule left in Qrules with the
same value whose body subsumes the body of m, cf. line 5. In our running example,
we start with rule 〈1〉. Because it is not subsumed by any other rule having the same
value, we add 10 ← on(a, b) to V1 and, because it subsumes 〈2〉, we remove 〈2〉 from
Qrules. The remaining highest valued rule is 〈3〉, and we iterate. After completing,
this yields the new value function V1 (constraints listed again):

10 ← on(a, b), a �= b.
8.1 ← cl(a), cl(b), on(a, X), a �= b, a �= X, b �= X.

0 ← cl(X), cl(Y), on(X, Z), X �= Y, X �= Z, Y �= Z.

10.4.4 ReBel: Relational Bellman Backup Operator

To summarize, the general scheme of ReBel is:

1) Compute the weakest precondition of each action outcome for each abstract state
in Vt using WeakestPre.

2a) Assign to each resulting abstract state–action outcome pair computed in 1) a
Q-value (QRules), and

2b) combine them using the glb.
3) Maximize the Q-rules to compute Vt+1 using VRules.

Note that in 2b), if there are n > 1 many outcomes of an action, then the Q-
values of the n-th outcome are combined with already combined Q-values of the
n − 1 previous outcomes. Thus, there are n − 1 many combinations per action. This
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k=3,4,...,10

Figure 10.7. Blocks World Experiment cl(a): Abstract state value function for the
cl(a) goal after 10 iterations. Inequality constraints are omitted; all variables and constants
denote different blocks. Fi can be a block or a floor block. The abstract state value function
applies to any number of blocks. Values are rounded to the second digit. States structurally
different from the depicted ones get value 0.0 .

may produce many rules. To overcome this, one can adapt the procedure VRules in
Algorithm III.4 for maximizing Q-rules to compressing Q-rules: if we are in a state
with different currently combined values for compatible actions, then we select only
the higher one. This is safe because the higher valued Q-rule subsumes the lower
valued one. Therefore, it would have been selected in any case later on.

Formally, this Bellman backup requires an infinite number of iterations to converge
to V ∗, cf. Section 10.4.5. In practice, we stop when the abstract value function changes
by only a small amount.

10.4.5 Experiments

In this section we empirically validate ReBel. We implemented ReBel with com-
pressing Qrules in the Prolog system YAP version 4.4.4. and we used the supplemented
constraint handling rules library [Frühwirth, 1998]. In all experiments we assume a dis-
count factor of 0.9 and a goal reward of 10, i.e., in all other states we receive 0 reward.
Only goal states are absorbing. Experiments were run on a 3.1 GHz Linux machine.
The running times were estimated using YAP’s build-in statistics(runtime, ·). We
focused on standard examples known from the relational RL literature.

Blocks World Experiment cl(a): We consider cl(a) as goal in our probabilistic
blocks world setting. The experiment shows that even on simple problems ReBel is
not guaranteed to converge on the structural level.

Figure 10.7 shows the abstract state value function after 10 iterations. It took
ReBel roughly 1 minute to iterate ten times. Figure 10.7 highlights that states that
are one step further away from the goal get the same value. The value, however, is
lower because of the additional block on top of the stack of a. Thus, because the
number of blocks is not restricted, value iteration will never stop.

Proposition 10.15 Abstraction does not guarantee convergence of relational value
iteration in infinite domains because an infinite number of abstract states can be re-
quired. ◦
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Figure 10.8. Blocks World Experiment on(a, b): Parts of the abstract value function
for on(a, b) after 10 iterations (values rounded to the second digit). Inequality constraints
are omitted; all variables and constants denote different blocks. Fi can be a block or a floor
block. The abstract state value function applies for any number of blocks. States more than
10 steps away from the goal get value 0.0.

This is interesting, because infinite state spaces easily arise when relational represen-
tations are used and relational abstraction was hoped to be a solution. Nevertheless,
relational value iteration can converge even for infinite domains as our third experi-
ment will show.

Blocks World Experiment on(a, b): We consider the goal on(a, b) in a de-
terministic blocks world because it is reported to be a hard problem for model-free
relational RL (RRL) approaches [Džeroski et al., 2001, Driessens and Ramon, 2003].
For instance, Driessens and Ramon [2003] report that on average the learned policies
did not reach optimal performance even for 5 blocks.

Using the same experimental set-up as in our first experiment but a deterministic
move action, ReBel computed V10 in less than 12 minutes. The abstract value func-
tion is partially shown in Figure 10.8. Because the move action is deterministic, V10

is optimal for 10 blocks (more than 58 million ground states). The optimal policy can
directly be extracted by computing the maximizing Q-rules for each abstract state. In
our example, this results in removing the top elements from the stacks on top of a and
b. However, to compactly represent this strategy, one needs to define the predicate
ontop, which was not present ReBel’s experiments but in the experiments Driessens
and Ramon [2003] reported on. The policy based on ReBel is optimal no matter how
many blocks there are.

Blocks World Experiment with Multiple Outcomes: We investigate the
move action having three possible outcomes: dropping the block on the intended one
with probability 0.8, dropping it on some other block with probability 0.1, or staying
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in the current state with probability 0.1. The abstract state value functions for on(a, b)
with a discount factor 0.9 and a goal reward of 10 after three iterations was:

(1) 10.00 ← on(a, b), a �= b
(2) 8.73 ← cl(a), cl(b), cl(A), on(a, B), a �= b, a �= A, a �= B, b �= A, b �= B, A �= B
(3) 7.41 ← cl(b), cl(A), cl(B), on(a, C), on(b, a), a �= b, a �= A, a �= B, a �= C, b �= A,

b �= B, b �= C, A �= B, A �= C, B �= C
(4) 7.05 ← cl(b), cl(A), cl(B), on(a, C), on(A, a), a �= b, a �= A, a �= B, a �= C, b �= A,

b �= B, b �= C, A �= B, A �= C, B �= C
(5) 7.05 ← cl(a), cl(A), cl(B), on(a, C), on(A, b), a �= b, a �= A, a �= B, a �= C, b �= A,

b �= B, b �= C, A �= B, A �= C, B �= C
(6) 4.72 ← cl(A), cl(B), cl(C), on(a, D), on(b, a), on(A, b), a �= b, a �= A, a �= B, a �= C,

a �= D, b �= A, b �= B, b �= C, b �= D, A �= B, A �= C, A �= D, B �= C, B �= D, C �= D
(7) 4.12 ← cl(b), cl(A), cl(B), on(a, C), on(b, D), on(D, a), a �= b, a �= A, a �= B, a �= C,

a �= D, b �= A, b �= B, b �= C, b �= D, A �= B, A �= C, A �= D, B �= C, B �= D, C �= D
(8) 4.12 ← cl(a), cl(A), cl(B), on(a, C), on(C, b), a �= b, a �= A, a �= B, a �= C, b �= A,

b �= B, b �= C, A �= B, A �= C, B �= C
(9) 3.73 ← cl(A), cl(B), cl(C), on(a, D), on(A, b), on(C, a), a �= b, a �= A, a �= B, a �= C,

a �= D, b �= A, b �= B, b �= C, b �= D, A �= B, A �= C, A �= D, B �= C, B �= D, C �= D
(10) 3.73 ← cl(b), cl(A), cl(B), on(a, C), on(A, D), on(D, a), a �= b, a �= A, a �= B, a �= C,

a �= D, b �= A, b �= B, b �= C, b �= D, A �= B, A �= C, A �= D, B �= C, B �= D, C �= D
(11) 3.73 ← cl(a), cl(A), cl(B), on(a, C), on(A, D), on(D, b), a �= b, a �= A, a �= B, a �= C,

a �= D, b �= A, b �= B, b �= C, b �= D, A �= B, A �= C, A �= D, B �= C, B �= D, C �= D
(12) 0.00 ← cl(A), cl(B), cl(C), on(A, D), A �= B, A �= C, A �= D, B �= C, B �= D, C �= D

Observe the exceptional values for states where on(b, a) is true. This is due to the
second outcome of the move action. For instance, for the state in line (3), both the first
and the second outcome take the agent to the same state, namely where cl(a), cl(b)
holds. In other words, we have a probability of 0.9 of getting to the state in line (2).
Therefore, we get a slightly higher value than in the states listed in lines (4) and (5).
For the latter ones, the second outcome does not lead to the same states as the first
outcome. It might happen that we drop block A on top of b (by accident). Therefore,
we only have a probability of 0.8 to reach the state in line (2). This phenomenon
occurs later on again, see line (6).

Load-Unload Experiment: Our final experiment considers the logistics domain,
which Boutilier et al. [2001] solved semi-automatically. The domain consists of cities,
trucks and boxes. Boxes can be loaded onto and unloaded from trucks, and trucks can
be driven between cities. The predicate on(B, T) denotes that a box B is on the truck
T, bin(B, C) denotes that a box B is in some city C and tin(T, C) denotes that a truck
T is in city C. The actions that can be performed are: load(B, T) and unload(B, T)
specifying how a box B can be loaded onto or loaded from a truck T and drive(T, C)
specifying that the truck T is driven to city C. The actions in this domain have prob-
abilistic effects. The probability of failing a load or unload action, i.e., staying in
the current state, depends on whether it rains or not, denoted by rain. The action
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bin(b, p). 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
tin(A, p), on(b, A), not rain. 8.100 8.829 8.895 8.901 8.901 8.901 8.901 8.901 8.901 8.901
tin(A, p), on(b, A), rain. 6.300 8.001 8.460 8.584 8.618 8.627 8.629 8.630 8.630 8.630
tin(A, B), on(b, A), not rain. 7.290 7.946 8.005 8.010 8.011 8.011 8.011 8.011 8.011
tin(A, B), on(b, A), rain. 5.670 7.201 7.614 7.726 7.756 7.764 7.766 7.767 7.767
tin(A, B), bin(b, B), not rain. 5.905 6.968 7.111 7.128 7.130 7.131 7.131 7.131
tin(A, B), bin(b, B), rain. 3.572 5.501 6.282 6.563 6.658 6.689 6.699 6.702
tin(A, B), bin(b, C), not rain. 5.314 6.271 6.400 6.416 6.417 6.418 6.418
tin(A, B), bin(b, C), rain. 3.215 4.951 5.654 5.907 5.993 6.020 6.029
tin(A, B). 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 10.1. Load-Unload Experiment: The t-th column shows the abstract state value function after the t-th iteration. When no
value is given, the abstract state has value 0.0. Bold numbers highlight changing values from one iteration to the next one.



specification is as follows (we omit the failing specifications for the sake of brevity):

bin(B, C), tin(T, C), R
pr:unload(B,T)←−−−−−−−− on(B, T), tin(T, C), R

on(B, T), tin(T, C), R
pr:load(B,T)←−−−−−−− bin(B, C), tin(T, C), R

tin(T, C′), C �= C′
1.0:drive(T,C′)←−−−−−−−−− tin(T, C)

where the probability pr is 0.9 if R is rain and 0.7 if R is not rain. To correctly
handle the explicit negation we used for rain, we provided false ← rain, not rain
as constraint. The goal in this domain is to get some box b in p where p stands for
Paris, i.e., in bin(b, p) we get a reward of 10.

ReBel ran for less than 6 seconds to compute the results summarized in Ta-
ble 10.1. In contrast to the blocks world examples, the solution converges both at the
value level and at the structural level. For instance, consider the situation in which a
truck is in a city different from Paris and the box is there too. Then, it will take three
steps (load− drive− unload) to reach the goal state and the state value in V10 is
6.702 in case it rains. The abstract state value function applies no matter how many
trucks, boxes and cities are present.

Future Work

Our work on relational variants of Markov decision processes and on relational rein-
forcement learning leaves a lot of space for improvements. The languages of Markov
decision programs and of abstract value and policy functions are somewhat restrictive.
Negation and ∀-quantification within abstract states and value functions and using
background knowledge not only for checking for illegal states but also for describing
abstract states and value functions would significantly broaden the application per-
spective. Within generalized relational policy iteration, relational state splitting rules
specific for Markov decision processes could be employed. Other model-free and model-
based relational reinforcement learning techniques could be devised and explored. Our
convergence result for RTD(λ) considers the evaluation problem only and could be
extended to the complete generalized relational policy iteration cycle. A first step into
that direction has been provided by Ramon [2005], who proved convergence results for
RRL-TG. In general, convergence results for other relational techniques such as rela-
tional instance based regression [Driessens and Ramon, 2003] could be provided. Some
of them, however, are quite challenging. For instance, proving convergence of logical
Q-learning [Kersting and De Raedt, 2003] requires to investigate action aggregation.
A major drawback of ReBel that we have discussed is that ReBel involves in each
iteration operations over the entire set of abstract states known at that time. If the
abstract state set is very large, then even a single sweep can be prohibitively expen-
sive. Asynchronous dynamic programming approaches [Sutton and Barto, 1998] back
up the values of states in any order whatsoever, using whatever values of other states
happen to be available. In turn, they can avoid hopelessly long computations before
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improving a policy. Fischer [2005] provided a first asynchronous relational value iter-
ation approach. Fischer’s results are promising but also show a higher computational
burden. Advanced relational asynchronous approaches would also lead to a better
understanding of the connection between model-based and model-free relational re-
inforcement learning approaches.

The overall goal of relational reinforcement learning is to learn abstract policies.
Most current relational reinforcement learning techniques, including the one presented
in this thesis, are value-based. Value functions, however, can be very complex for large
problems. In the relational case, value functions can even be infinite, i.e., the values
of infinitely many abstract states have to be represented. Policies, in contrast, have
typically a simpler form. Relational, i.e. abstract policies generalize over objects and
values and — by employing background knowledge — can even be described with
a finite set of abstract states when there are infinitely abstract states with different
values. Therefore, one promising future direction is to search directly in the space of
abstract policies. In [Cocora et al., 2005], we proposed to generalize ground policies
using logical decision trees [Blockeel and De Raedt, 1998]. The experimental results
show that this approach performs better than generalizing the corresponding value
functions using relational regression trees [Mausam and Weld, 2003]. For traditional
reinforcement learning, direct search in policy space has been proven successful using
policy gradient methods [Williams, 1992, Sutton et al., 2000]. Thus, much work on
relational reinforcement learning remains to be done.

Conclusions

We have introduced the framework of Markov decision programs. Markov decision pro-
grams integrate MDPs with constraint logic programs. They allows one to compactly
and declaratively represent complex (relationally factored) MDPs. Furthermore, it
allows one to gain insights into relational reinforcement learning approaches. More
precisely, we introduced abstract policies for Markov decision programs and general-
ized relational policy iteration (GRPI), which is a general scheme for learning abstract
policies. We then devised two relational reinforcement learning methods that update
the values of relationally grouped states simultaneously. They essentially adapt the
probabilistic learning from interpretations to the reinforcement learning setting.

Both algorithms have lead to novel insights into relational MDPs and relational
reinforcement learning. First, it has been shown that value-based methods for
relational MDPs may not converge because an infinite number of abstract states
has to be represented. This implies that RRL-TG may require an infinite logical
regression tree in order to converge to exact values. Here, approximative approaches
such as the presented RTD(λ) are useful, as they allow one to cut the regression
tree at any level and to estimate the best values one can achieve at that abstraction
level. The convergence of RTD(λ) has been proven. Thus, approximation is not only
an interesting feature, but in some cases also a necessity for successful relational
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reinforcement learning. Second, we highlighted that the use of background knowledge
may also enable the learning of optimal policies. Depending on the representation
of the problem, one can or cannot learn the optimal policy. Therefore, using
background knowledge in relational MDPs is also not only an interesting feature,
but in some cases also a necessity for successful learning. In this way, we have given
an explanation for and confirmed some of the experimental insights of the early
relational reinforcement learning work.

Related Work

Relational reinforcement learning is an emerging research field. Kurt Driessens’s Ph.D.
thesis [2004] and the working notes of the two ICML workshops on relational rein-
forcement learning [Tadepalli et al., 2004, Driessens et al., 2005] give a good overview
of the field.

One of the earliest related works is probably that by Baum [1999], who reported
on solving blocks worlds with up to 10 blocks using related techniques. However,
the language is domain-dependent and is not based on logic programming. Kaelbling
et al. [2001] and Finney et al. [2002] investigated propositionalization methods in re-
lational domains. They experimentally studied the intermediate language of deictic
representations (DRs). DRs avoid enumerating the domain by using variables such as
the-block-on-the-floor. Although DRs have led to impressive results McCallum [1995],
Whitehead and Ballard [1991], Finney et al.’s [2002] results show that DR may de-
grade learning performance within relational domains. According to Finney et al.,
relational reinforcement learning such as RRL-RT Džeroski et al. [2001] is one way to
effectively learning in domains with objects and relations. The Q-function in RRL-RT
is approximated using a relational regression tree learner. Although the experimental
results are interesting, Džeroski et al. did not give a theoretical argument why RRL-
RT works. We provide some new insights on this. Several other relational learners for
function approximation have been studied within reinforcement learning [Lecoeuche,
2001, Driessens and Ramon, 2003, Gärtner et al., 2003, Driessens, 2004]. Again, these
works presented impressive empirical but no theoretical results. Other ones applied
Q-learning based on pre-specified abstract state spaces. Kersting and De Raedt [2003]
investigated pure Q-learning, Van Otterlo [2004] learned the Q-function via learning
the underlying transition model. The work on RTD(λ) complements Kersting and
De Raedt’s [2003] and Van Otterlo’s [2004] approaches as both did not provide con-
vergence proofs. Croonenborghs et al. [2004] learned partial relational models of the
world using Bayesian logic programs. These partial models are then used to speed
up a relational reinforcement learner. Similar, Zettlemoyer et al. [2005] learned prob-
abilistic STRIPS-like action definitions from observations only and evaluated them
within MDPs. Yoon et al. [2002] introduced a model-based method for upgrading
abstract policies from small RMDPs to larger ones. Fern et al. [2004] extended this
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work on upgrading learned policies for small relational MDPS (RMDPs) with approx-
imated policy iteration. Finally, Guestrin et al. [2003] specified relationally factored
MDPs based on probabilistic relational models [Friedman et al., 1999] but not in a
reinforcement learning setting. In contrast to Markov decision programs, relations do
not change over time. This assumption does not hold in many domains such as the
blocks world. Finally, the work by Dietterich and Flann [1997] is also concerned with
generalizing Bellman backups but no relational representation is used.

For model-based approaches to relational reinforcement learning, there has been
a surprising lack of research on exact solution methods. From a more general point of
view, our approach is closely related to decision theoretic regression (DTR) [Boutilier
et al., 1999]. In DTR, state spaces are characterized by a number of random vari-
ables and the domain is specified using logical representations of actions that capture
the regularities in the effects of actions. Because ‘existing DTR algorithms are all
designed to work with propositional representations of MDPs’, Boutilier et al. [2001]
proposed first order DTR (FODTR), which is a probabilistic extension of Reiter’s
situation calculus. ReBeL relates to this in that it is also a model-based exact solu-
tion method for RMDPs. One key difference with ReBel is that situation calculus is
very expressive and as a consequence it is harder to simplify the logical descriptions
of the abstract value functions and abstract states that are obtained. This may also
explain why — to the best of the author’s knowledge — that approach has not been
fully implemented and experimented with until recently [Sanner and Boutilier, 2004,
2005]. In contrast, because of the use of a simpler logical language, the simplification in
ReBel is computationally feasible. As shown in the experiments, ReBel successfully
and fully automatically implements relational value iteration. Recently, Sanner and
Boutilier [2005] proposed to represent and compute value function of FODTRs as a
linear combination of first-order basis functions and using a first-order generalization
of approximate linear programming techniques for propositional MDPs. Furthermore,
Boutilier et al. [2001] and Sanner and Boutilier [2005] assumed that the model is given
whereas we have also investigated model-free learning methods.

Großmann et al. [2002] combined MDPs with the fluent calculus. Based on this
representation language Karabaev and Skvortsova [2005] recently presented a fully
automated heuristic search algorithm called FOLAO∗ for solving models described
within Grossmann et al.’s framework. FOLAO∗ is model-based and consists of two
phases that alternate until a complete solution is found. First, it expands the best
partial policy and evaluates the states on its fringe using an admissible heuristic
function. Then it performs dynamic programming on the states visited by the best
partial policy, to update their values and possibly revise the current best partial policy.

Markov decision programs are also related to Poole’s [1997] independent choice
logic, see also the related work section of Part I. Poole, however, does not consider
the learning problem.

The idea of solving large MDP by a reduction to an equivalent, smaller MDP is
also discussed e.g. in [Dearden and Boutilier, 1997, Givan et al., 2003]. However, these
works do not investigate relational nor first order representations have. Kim and Dean
[2003] investigated model-based RL based on non-homogenous partitions of proposi-
tional, factored MDPs. Furthermore, there has been great interest in abstraction on
other levels than state spaces. Abstraction over time [Sutton et al., 1999] or primitive



184 Part III: Making Complex Decisions in Relational Domains

actions [Dietterich, 2000, Andre and Russell, 2001] are useful ways to abstract from
specific sub-actions and time. This research is orthogonal to the one pursued in this
part and could be applied to Markov decision programs in the future.



Finale

The thesis has demonstrated that by exploiting inductive logic programming, we can
develop a general framework for and several approach to statistical relational learning,
which highlight the benefits of relational and logical abstraction through variables and
unification. We will now conclude the thesis. It provides a summary of the frameworks
presented in this thesis, along with a discussion of general directions of future research.
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§ 11

Summary

Statistical relational learning addresses one of the central open questions of artificial
intelligence: the combination of relational and first-order logic with principled prob-
abilistic and statistical approaches to inference and learning. In this thesis, we first
introduced probabilistic ILP as a general framework for statistical relational learning,
and then, we presented several probabilistic ILP settings and approaches.

Probabilistic ILP views statistical relational learning from an inductive logic pro-
gramming perspective. It makes abstraction of specific probabilistic relational and first
order logical representations and inference and learning algorithms. Therefore, it can
be used for obtaining an appreciation of the differences and similarities among various
statistical relational learning frameworks and formalisms that have been contributed
to date. In particular, the distinction between learning from entailment, learning from
interpretations, and learning from proofs can be used for clarifying the relation among
the relational and logical upgrades of Bayesian networks (such as probabilistic-logic
programs, probabilistic relational models, relational Bayesian networks, Bayesian logic
programs, relational Markov models, and Markov logic networks) and probabilistic
grammars (such as PRISM, stochastic logic programs, relational Markov models, and
logical hidden Markov models). Furthermore, principles of both statistical learning
and inductive logic programming (or multi-relational data mining) are employed for
learning the parameters and structure.

The first probabilistic ILP approach we introduced, Bayesian logic programs,
considered probabilistic learning from interpretations. Bayesian logic programs treat
ground atoms as random variables and view the immediate consequence operator as
the probabilistic dependency relation. Scooby, the learning algorithm we presented,
combines methods for scoring Bayesian networks, such as EM and gradient-based
methods, with techniques employed in the inductive logic programming system Clau-
dien. The approach highlights the benefits of an inductive logic programming view
on statistical relational learning: instead of manipulating single edges, refinement op-
erators work on bunches of edges and, hence, make larger steps in the search space.
Language bias (such as types, modes, and considering constant free programs only)
further constrain the search space. Finally, declarative background knowledge can
always easily be represented and used.

Then, we considered probabilistic ILP over time. Even though time can be consid-
ered as yet another Bayesian predicate in Bayesian logic programs, such a view would
not solve the inference problem: the set of possible state trajectories grows exponen-
tially over time. Therefore, we introduced logical hidden Markov models, which deal
with sequences of logical atoms. The experimental results have shown the benefits of
logical abstraction through variables and unification: high compression in the number
of parameters with good estimation and predictive performance. The learning method
for selecting logical hidden Markov models from data combines generalized EM, which
optimizes parameters, with ILP refinement operators for structure search.

The third class of approaches that we explored addressed discriminative classifi-
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cation. We showed how to apply the generic mechanism of Fisher kernels, that is, we
showed how to exploit Bayesian logic programs and logical hidden Markov models
within discriminative classifiers such as support vector machines. For discrimination,
the resulting relational Fisher kernels have been experimentally shown to improve
upon the generative model alone with only little additional computational costs. In
principle, any attribute-value based classifier can be used but kernel methods such as
support vector machines are most naturally suited. While we have used classification
to guide the development of relational Fisher kernels, the results — as for proposi-
tional Fisher kernels — are directly applicable to other tasks such as regression and
clustering, all of which can easily exploit metric relations among the examples de-
fined by the Fisher kernel. This is a first step into the direction of discriminative,
probabilistic ILP.

The final probabilistic ILP approaches we introduced were concerned with Markov
decision programs, which employ constraint logic programming to compactly and
declaratively represent relationally structured Markov decision processes and, hence,
extend probabilistic ILP over time towards decision-theoretic reasoning and planning.
We used Markov decision programs to make first steps towards a theory of relational
reinforcement learning. We devised relational upgrades of temporal difference learning
and value iteration and proved their convergence. Furthermore, we placed them into
the general context of generalized relational policy iteration for solving relationally
structured Markov decision processes. ILP concepts such as θ-subsumption and the
greatest lower bound were used to maintain relational descriptions of the world.

For all approaches, we presented experimental results that show their practical rel-
evance and computational feasibility and that exploiting relational and logical struc-
ture for learning probabilistic models is beneficial.

§ 12

Conclusions

Relational and first order logical reasoning, probabilistic and statistical reasoning,
and machine learning are research fields on their own rights. Nowadays, they are be-
coming increasingly intertwined. A major driving force is the explosive growth in the
amount of heterogeneous data that is being collected in the business and scientific
world. Example domains include bioinformatics, transportation systems, communica-
tion networks, social network analysis, citation analysis, robotics, among others. They
provide uncertain information about relational worlds. Techniques for descriptive and
predictive machine learning tasks, for modeling dynamic environments, and for mak-
ing complex decisions within these worlds are needed and have the potential to lay
the foundation for the next generation of artificial intelligence.

Indeed, statistical relational learning is quite central to these kind of domains.
This thesis has described our attempt to approach statistical relational learning
from an inductive logic programming point of view. The main idea is to group
together similar states respectively similar random variables together using
logical atoms and queries. States of random variables are identified with ground
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atoms such as emacs(lohmms, tex) or with sets of ground atoms, i.e., interpreta-
tions such as cl(a), on(a, b), block(a), block(b). Likewise, ground atoms can also
be treated as random variables with associated sets of possible states. For instance,
carrier(ann) represents whether Ann is a carrier of a disease or not. Now, log-
ical variables allow one to make abstraction of specific symbols. Using the
logical concepts of atoms and queries, states and random variables are grouped
together because they have the same conditional probability distribution, simi-
lar state values, the same (optimal) action, or the same transition model. For
instance, carrier(Person) denotes the disease carrier probability for all persons
and cl(Block), on(Block, b) describes all blocks world situations, where there is a
clear block on top of block b. Unification allows one to share the knowledge
among states and random variables using clauses or STRIPS operators. Con-
sider carrier(Person)|mother(Mother, Person), carrier(Mother), which expresses
the influence of the mother’s chance of being a carrier on her children. probabilities,

or on(X, Y), cl(X), cl(Z)
0.9:move(X,Y,Z)←−−−−−−−−− cl(X), cl(Y), on(X, Z), which specifies moving

blocks in the blocks world. At running time, the abstract knowledge must be re-
combined using some logical inference mechanism such as backward chaining or res-
olution. This logical reasoning mechanism bears additional computational costs but it
also makes statistical relational models more flexible, context-aware, and offers the full
power of logical reasoning. Indeed, there are typically multiple clauses or STRIPS op-
erators such as carrier(Person)|father(Father, Person), carrier(Father), which
yield multiple, even conflicting informations about single states or random vari-
ables. To integrate or resolve them, combining rules, aggregate functions, preference
orders, or greatest lower bounds can be used; they basically partition the states space
(respectively the space of random variables). These partitions, in turn, are the key to
adapt statistical learning methods such as the EM and the Viterbi algorithm, tem-
poral difference learning, and value iteration: treat each group member as an
independent experiment. Finally, relational and logical abstraction induce
a structure on the hypothesis space, which can be employed using traditional
ILP principles: θ-subsumption implies a generality order among hypotheses, which
can be traversed by applying refinement operators traditionally employed within ILP.
Thus, probabilistic ILP approaches typically combine statistical learning approaches
for optimizing parameters and scoring hypotheses with structure search for model
selection using ILP principles. As it turned out in the experiments, relational and
logical abstraction indeed yield compact models and makes learning more robust.

§ 13

Future Work

Statistical relational learning is a new research field and shows many opportunities
for future research. The introduced settings for probabilistic ILP are only a first step
towards a theory of statistical relational learning. Further research on the seman-
tics of probabilistic relational and first order representations, the expressive power of
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190 §13 Future Work

alternative formalisms and primitives, scoring functions unifying statistical learning
and inductive logic programming scores, optimal refinement operators, the trade-off
between expressive power and computational cost, efficient data structures, and the
convergence and the complexity of learning could be conducted. Let us now address
some of these issues in more detail.

A theory of statistical relational learning / probabilistic ILP could be work
out in the future. A diversity of statistical relational learning approaches haven been
developed within the last ten years. No clear and generally accepted understanding of
the relative advantages and limitations of different techniques has yet emerged. One
way to gain such an understanding is to provide mappings between different statistical
relational learning approaches. Mappings naturally facilitate the transfer of techniques
developed within different frameworks. Although some mappings have been already
proposed in the literature — mainly when a new framework has been introduced,
see e.g. the related work section for Bayesian logic programs and [Kersting and De
Raedt, 2001b, Santos Costa et al., 2003a, Puech and Muggleton, 2003, Vennekens and
Verbaeten, 2003, Domingos and Richardson, 2004, Vennekens et al., 2004, Jäger, 2005,
Fierens et al., 2005] — no general framework has been developed yet. In the future, a
hierarchy among the statistical relational learning approaches could be developed that
takes the complexities of the mappings and the type of queries a framework supports
into accounts. Such complexity-hierarchies lay at the heart of theoretical computer
science. In computational complexity, for instance, the polynomial-time hierarchy has
had a major impact in many area. Equivalence notations within a particular SRL
approach but also among different ones would be interesting.

In general, discovering the common methods underlying efficient statistical re-
lational learning algorithms and identifying their computational impediments, is a
major future research issue. The speed up of statistical learning through relational
abstraction has been reported only empirically. Sample complexities results such as
relational PAC learning models could be established. Sample complexity bounds could
also be employed to prune the search space. Furthermore, in computational learning
theory, an important issue is the so-called bias-variance trade-off, which shows that a
model with a high degree of freedom may have poor generalization capabilities. Com-
bining statistical models with relational representations even increases the degrees of
freedom. It seems to be that there is a probability - structure trade-off. Right now,
no clear understanding of how much probability and how much relational and logical
expressiveness is needed. The research on inductive logic programming has already
shown that other biases such as language and search bias and background knowledge
are a key to good generalization performance. Recently, Landwehr et al. [2005] and
Davis et al. [2005] have started to explore the probability - structure trade-off. They
combined ILP system with simple types of Bayesian networks such as Näıve Bayes and
tree-augmented networks. The results are promising. Landwehr et al.’s nFOIL system
outperforms well-developed ILP systems on ILP benchmark data sets. Davis et al.’s
SAYU system outperformed Domingos and Richardson’s Markov logic networks on a
web-page classification task.

So far, general efficient data pre-processing and data structures have not
been investigated extensively. Probabilistic ILP approaches usually evaluate a large
number of probabilistic queries on the data set. The subsumption lattice among these



§13 Future Work 191

queries typically shows that these queries are very similar. As a consequence, indepen-
dent execution of all queries may involve a lot of redundant computation. Future work
could focus on reducing the running time by exploiting redundancy among queries
and data cases. One promising approach is to employ (inductive) logic programming
techniques. For instance, [Sato and Kameya, 2001, Kameya et al., 2004] have shown
that tabling of queries can greatly speed up inference within PRISM programs. The
idea of tabling is as follows. During the execution of a query, each subgoal S is regis-
tered in a table the first time it is called, and unique answers to S are added to the
table as they are derived. So far, tabling has only be applied in the context of param-
eter estimation of PRISM [Sato and Kameya, 2001]. Using tabling while structure
learning is an interesting direction for future work. One could also investigate query
packs [Blockeel et al., 2002], which structure sets of similar queries, and distribution
preserving transformations of statistical relational learning models. Such transfor-
mations have been shown to speed up the execution of queries for logical programs
considerably [Santos Costa et al., 2003b]. Alternatively, one might want to develop
relational variants of AD-trees [Moore and Lee, 1998]. AD-trees are an efficient data
structure for caching sufficient statistics, i.e., ground counts and have successfully
been used within attribute-value based machine learning. Thon [2004] adapted tries
to efficiently store pairs of ground atoms and their corresponding counts for estimat-
ing the parameters of logical Markov models. The data structure considerably reduced
the running time. A similar technique might be used to speed-up sagEM for learning
logical hidden Markov models. Recently, Sanner and McAllester [2005] proposed an
extension to ADDs, called affine ADDs, capable of compactly representing context-
specific, additive, and multiplicative structure within ADDs and applied it to Bayesian
network and MDP inference. Lifting efficient data structures to the relational case,
where some of the logical or probabilistic inference has been pre-compiled is needed
to speed up inference and, in turn, learning.

Most inference algorithms within statistical relational learning, build ground mod-
els such as a Bayesian network or a ground trellis for inference and learning. To over-
come this, advanced inference techniques could be developed. For instance, research
towards a lifting theorem for relational and logical probabilistic inference would be
useful [Poole, 2003, de Salvo Braz et al., 2005] proposed first approaches into this
direction. The work on statistical relational learning has shown that structured rep-
resentations of probabilistic models can lead to better performance. In general, such
representations might also directly lead to novel and better approximate inference
algorithm. For instance, relational abstraction might be employed within particle fil-
ters. The basic idea of particle filters is Monte Carlo simulation, in which the posterior
density is approximated by a set of particles with associated weights. Relational ab-
straction may help to reduce the number of particles. Particles are shared by states
subsumed by the same abstract state. Even (sets of) particles might be represented
relationally, for example using decision trees. There is much work remaining to be
done on inference and learning for complex dynamic models integrating temporal and
relational structure.

Many successful applications of statistical learning such as speech recognition or
computer vision call for continuous random variables. Most probabilistic ILP approach
today, however, consider random variables with categorical values and multinomial
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distributions only 43. The most common distribution for continuous variables is the
Gaussian. Exploring the world of models mixing continuous and discrete valued ran-
dom variables is expected to yield — as for Bayesian networks — a rich toolbox
for modeling complex relational models that upgrade hierarchical mixture of experts,
factor analysis, principle component analysis, and independent component analysis,
among others [Rosweis and Ghahramani, 1999]. In general, a shift from general
purpose frameworks towards particular tasks such as discriminative learning,
clustering, and semi-supervised learning is an obvious and interesting although chal-
lenging future line of research. In this context, combining probabilistic ILP within
kernel methods is an attractive research direction.

Real-Time AI systems ’are required to work continuously over extended peri-
ods of time, interface to the external environment via sensors and actuators, deal
with uncertain or missing data, focus resources on the most critical events, handle
both synchronous and asynchronous events in a predictable fashion with guaranteed
response times, and degrade gracefully’ [Musliner et al., 1995]. Statistical relational
learning already addresses many of the real-time AI issues. So far, however, any-time
algorithms for inference, learning, and decision making, which provide answers at
any point in their execution and the quality of the answer improves with an increase
in execution time, have not been developed. Furthermore, real-time heuristic search
methods, which interleave planning and plan execution and often decrease the sum
of planning and plan-execution time because gathering information early reduces the
subsequent amount of planning needed, have not been investigated. Such techniques
are likely to have great impact for instance on intelligent web technologies and elec-
tronic games.

Although there is a steady growing body of applications, we believe there is still a
good deal of work to be done on applications. Interesting application areas are web
search and mining, bioinformatics, natural language processing, among other. Smart
web technologies, for instance relational variants of Rennie and McCallum’s [1999]
reinforcement learning-based webspiders and of Shani et al.’s [2005] Markov decision
process for recommendation systems, are interesting. Relational robotics, i.e., the ap-
plication of (statistical) relational learning within robotics is another promising line
of future research. Anguelov et al. [2005] already used relational Markov networks for
segmentation of 3D scan data. Recently, In [Triebel et al., 2006], we made Anguelov
et al.’s method more robust by compressing scans using kd-trees. Relational Markov
networks have also been used to compactly represent object maps [Limketkai et al.,
2005] and to estimate trajectories of people [Liao et al., 2005]. We have proposed a
generalized relational policy iteration approach to learn relational navigation policies
for robots [Cocora et al., 2005]. Relational robotics raises also the questions of us-
ing statistical relational learning and reasoning as well as reinforcement learning in
the multi-agent context. Here, many interesting problems can be explored, such as
communication and cooperation. Agents in these contexts have often been modeled
in terms of first-order languages.

Developing further real-world applications of statistical relational learning ap-

43 Probabilistic relational models and Bayesian logic programs allow to use continuous ran-
dom variables.
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proaches and discovering their limitations is perhaps the best way to find out which
of their features and functionalities are really important.
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§ A

Models for Unix Command and mRNA Sequences *

... in which the logical hidden Markov models will be presented used to show
the benefits of variable sharing and unification and used in the tree-structured
mRNA experiments ...

A.1 Logical HMM for Unix Command Sequences

The logical HMMs described below model Unix command sequences triggered by
mkdir. To this aim, we transformed the original Greenberg data into a sequence of log-
ical atoms over com, mkdir(Dir, LastCom), ls(Dir, LastCom), cd(Dir, Dir, LastCom),
cp(Dir, Dir, LastCom) and mv(Dir, Dir, LastCom). The domain of LastCom was
{start, com, mkdir, ls, cd, cp, mv}. The domain of Dir consisted of all argument
entries for mkdir, ls, cd, cp, mv in the original dataset. Switches, pipes, etc. were
neglected, and paths were made absolute. This yields 212 constants in the domain of
Dir. All original commands, which were not mkdir, ls, cd, cp, or mv, were represented
as com. If mkdir did not appear within 10 time steps before a command C ∈ {ls, cd,
cp,mv}, C was represented as com. Overall, this yields more than 451000 ground states
that have to be covered by a Markov model.

The ’unification’ logical HMM U basically implements a second order Markov
model, i.e., the probability of making a transition depends upon the current state and
the previous state. It has 542 parameters and the following structure:

com ← start.
mkdir(Dir, start) ← start.

com ← com.
mkdir(Dir, com) ← com.

end ← com.

Furthermore, for each C ∈ {start, com} there are

mkdir(Dir, com) ← mkdir(Dir,C).
mkdir( , com) ← mkdir(Dir,C).

com ← mkdir(Dir,C).
end ← mkdir(Dir,C).

ls(Dir, mkdir) ← mkdir(Dir,C).
ls( , mkdir) ← mkdir(Dir,C).

cd(Dir, mkdir) ← mkdir(Dir,C).

cd( , mkdir) ← mkdir(Dir,C).
cp( , Dir, mkdir) ← mkdir(Dir,C).
cp(Dir, , mkdir) ← mkdir(Dir,C).

cp( , , mkdir) ← mkdir(Dir,C).
mv( , Dir, mkdir) ← mkdir(Dir,C).
mv(Dir, , mkdir) ← mkdir(Dir,C).

mv( , , mkdir) ← mkdir(Dir,C).

* The material here is taken from [Kersting et al., 2006].
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together with for each C ∈ {mkdir, ls, cd, cp, mv} and for each C1 ∈ {cd, ls} (resp.
C2 ∈ {cp, mv})

mkdir(Dir, com) ← C1(Dir,C).
mkdir( , com) ← C1(Dir,C).

com ← C1(Dir,C).
end ← C1(Dir,C).

ls(Dir,C1) ← C1(Dir,C).
ls( ,C1) ← C1(Dir,C).

cd(Dir,C1) ← C1(Dir,C).
cd( ,C1) ← C1(Dir,C).

cp( , Dir,C1) ← C1(Dir,C).
cp(Dir, ,C1) ← C1(Dir,C).

cp( , ,C1) ← C1(Dir,C).
mv( , Dir,C1) ← C1(Dir,C).
mv(Dir, ,C1) ← C1(Dir,C).

mv( , ,C1) ← C1(Dir,C).

mkdir( , com) ← C2(From, To,C).
com ← C2(From, To,C).
end ← C2(From, To,C).

ls(From,C2) ← C2(From, To,C).
ls(To,C2) ← C2(From, To,C).
ls( ,C2) ← C2(From, To,C).

cd(From,C2) ← C2(From, To,C).
cd(To,C2) ← C2(From, To,C).
cd( ,C2) ← C2(From, To,C).

cp(From, ,C2) ← C2(From, To,C).
cp( , To,C2) ← C2(From, To,C).
cp( , ,C2) ← C2(From, To,C).

mv(From, ,C2) ← C2(From, To,C).
mv( , To,C2) ← C2(From, To,C).
mv( , ,C2) ← C2(From, To,C).

Because all states are fully observable, we omitted the output symbols associated with
clauses, and, for the sake of simplicity, we omitted associated probability values.

The ’no unification’ logical HMM N is the variant of U where no variables were
shared such as

mkdir( , com) ← cp(From, To,C).
com ← cp(From, To,C).
end ← cp(From, To,C).

ls( , cp) ← cp(From, To,C).
cd( , cp) ← cp(From, To,C).

cp( , , cp) ← cp(From, To,C).
mv( , , cp) ← cp(From, To,C).

Because only transitions are affected, N has 164 parameters less than U , i.e., 378.

A.2 Tree-based logical HMM for mRNA Sequences

The logical HMM processes the nodes of mRNA trees in in-order. The structure of
the logical HMM is shown at the end of the section. There are copies of the shaded
parts. Terms are abbreviated using their starting alphanumerical; tr stands for tree,
he for helical, si for single, nuc for nucleotide, and nuc p for nucleotide pair.

The domain of #Children covers the maximal branching factor found in the data,
i.e., {[c], [c, c], . . . , [c, c, c, c, c, c, c, c, c]}; the domain of Type consists of all types
occurring in the data, i.e., {stem, single, bulge3, bulge5, hairpin}; and for Size,
the domain covers the maximal length of a secondary structure element in the data,
i.e., the longest sequence of consecutive bases respectively base pairs constituting a
secondary structure element. The length was encoded as {n1(0), n2(0), . . . , n13(0)}
where nm(0) denotes the recursive application of the functor n m times. For Base and
BasePair , the domains were the 4 bases respectively the 16 base pairs. In total, there
are 491 parameters.
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Figure A.1. The mRNA logical HMM structure. The symbol denotes anonymous vari-
ables which are read and treated as distinct, new variables each time they are encountered.
There are copies of the shaded part. Terms are abbreviated using their starting alphanumer-
ical; tr stands for tree, se for structure element, he for helical, si for single, nuc for
nucleotide, and nuc p for nucleotide pair.
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U. Bohnebeck, T. Horváth, and S. Wrobel. Term comparison in first-order similarity
measures. In D. Page, editor, Proceedings of the Eigth International Conference
on Inductive Logic Programming (ILP-98), volume 1446 of LNCS, pages 65–79,
Madison, Wisconsin, USA, July 22–24 1998. Springer.

C. Boutilier, T. Deam, and S. Hanks. Decision-Theoretic Planning: Structural As-
sumptions and Computational Leverage. JAIR, 11:1–94, 1999.

C. Boutilier, R. Reiter, and B. Price. Symbolic Dynamic Programming for First-order
MDPs. In B. Nebel, editor, Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-01), pages 690–700, Seattle, USA, 2001. Morgan Kaufmann.

J. A. Boyan and A. W. Moore. Generalization in Reinforcement Learning: Safely
Approximating the Value Function. In G. Tesauro, D. S. Touretzky, and T. K.
Leen, editors, Advances in Neural Information Processing Systems, volume 7, pages
369–376. The MIT Press, 1995. (Proceedings of NIPS-94, Denver, Colorado, USA,
1994).

J. Bresnan. Lexical-Functional Syntax. Blackwell, Malden, MA, 2001.
H. Bui, S. Venkatesh, and G. West. Policy Recognition in the Abstract Hidden Markov

Model. Journal of Artificial Intelligence Research (JAIR), 17:451–499, 2002.
W. Buntine. Generalized subumption and its applications to induction and redun-

dancy. Artificial Intelligence Journal, 36(2):149–176, 1988.
P. Carbonetto, J. Kisynski, N. de Freitas, and D. Poole. Nonparametric Bayesian

Logic. In F. Bacchus and T. Jaakkola, editors, Proceedings of the Twenty-Firstst
Conference on Uncertainty in Artificial Intelligence (UAI-05), pages 85–93, Edin-
burgh, Scotland, July 26-29 2005.

R. C. Carrasco, J. Oncina, and J. Calera-Rubio. Stochastic inference of regular tree
languages. Machine Learning Journal, 44(1/2):185–197, 2001.

B. Cestnik. Estimating probabilities: A crucial task in machine learning. In L. Aiello,
editor, Proceedings of the Ninth European Conference on Artificial Iintelligence
(ECAI-90), pages 147–149, Stockholm, Sweden, 1990. Pitmann Publishing, Lon-
don/Boston.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced Hypertext Categorization Using
Hyperlink. In L. M. Haas and A. Tiwary, editors, Proceedings of the ACM Inter-
national Conference on Management of Data (ACM-SIGMOD-98), pages 307–318.
ACM Press, June 2-4, 1998.



Bibliography 203

J. M. Chandonia, G. Hon, N. S. Walker, L. Lo Conte, P.Koehl, and S. E. Brenner.
The ASTRAL compendium in 2004. Nucleic Acids Research, 32:D189–D192, 2004.

J. Cheng, C. Hatzis, M.–A. Krogel, S. Morishita, D. Page, and J. Sese. KDD Cup
2002 Report. SIGKDD Explorations, 3(2):47 – 64, 2002.

A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. De Raedt. Learning
Relational Navigation Policies. Submitted, 2005.

W. W. Cohen. Grammatically Biased Learning: Learning Logic Programs Using an
Explicit Antecedent Description Language. Artificial Intelligence Journal, 68:303–
366, August 1994.

M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems, volume 14, pages 625–632, Vancouver, British Columbia, Canada, Decem-
ber 3-8 2001. The MIT Press.

G. F. Cooper. The Computational Complexity of Probabilistic Inference Using
Bayesian Belief Networks. Artificial Intelligence Journal, 42:393–405, 1990.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
networks and expert systems. Statistics for engineering and information. Springer-
Verlag, 1999.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. M. Mitchell, K. Nigam, and
S. Slattery. Learning to Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence Journal, 118(1–2):69–113, 2000.

T. Croonenborghs, J. Ramon, and M. Bruynooghe. Towards Informed Reinforcement
Learning. In P. Tadepalli, R. Givan, and K. Driessen, editors, Working Notes of
the ICML-2004 Workshop on Relational Reinforcement Learning, Banff, Canada,
July 8 2004.

J. Cussens. Loglinear models for first-order probabilistic reasoning. In K. Black-
mond Laskey and H. Prade, editors, Proceedings of the Fifteenth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-99), pages 126–133, Stockholm,
Sweden, 1999. Morgan Kaufmann.

J. Cussens. Parameter estimation in stochastic logic programs. Machine Learning
Journal, 44(3):245–271, 2001.

J. Cussens. Integrating by separating: Combining probability and logic with ICL,
PRISM and SLPs. Technical report, APrIL Projetc, January 2005.

J. Dausset, H. Can, D. Cohen, M. Lthrop, J.-M. Lalouel, and R. White. Centre
d’Etude du Polymorphisme humain (CEPH): Collaborative genetic mapping of the
human genome. Genomics, 6:575–577, 1990.

J. Davis, E. Burnside, I. Dutra, D. Page, and V. Santos Costa. An Integrated
Approach to Learning Bayesian Networks of Rules. In J. Gama, R. Camacho,
P. Brazdil, A. Jorge, and L. Torgo, editors, Proceedings of the Sixteenth European
Conference of Machine Learning (ECML-05), volume 3720 of LNCS, pages 84–95,
Proto, Portugal, October 3-7 2005.

B. D. Davison and H. Hirsh. Predicting Sequences of User Actions. In A. Danyluk,
T. Fawcett, and F. Provost, editors, Working Notes (WS-98-07) of the AAAI-
98/ICML-98 Workshop on Predicting the Future: AI Approaches to Time-Series
Analysis, pages 5–12, Madison, WI, USA, July 27 1998. AAAI Press.

L. De Raedt. Logical settings for concept-learning. Artificial Intelligence Journal, 95
(1):197–201, 1997.



204 Bibliography

L. De Raedt and M. Bruynooghe. A Theory of Clausal Discovery. In R. Bajcsy, editor,
Proceedings of the Thirteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-93), pages 1058–1063, Chambery, France, August 28 - September 3
1993. Morgan Kaufmann.

L. De Raedt and L. Dehaspe. Clausal Discovery. Machine Learning Journal, 26(2-3):
99–146, 1997.
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and P. Flach, editors, Proceedings of the 9th International Workshop on Inductive
Logic Programming (ILP-99), volume 1634 of LNAI, pages 92–103, Bled, Slovenia,
1999. Springer.

P. A. Flach and N. Lachiche. Naive Bayesian classification of structured data. Machine
Learning Journal, 57(3):233–269, 2004.

R. Forsyth, editor. Expert Systems: Principles and Case Studies. Chapman And Hall
Computing Series, 1994.

P. Frasconi, A. Passerini, S. H. Muggleton, and H. Lodhi. Declarative kernels. Sub-
mitted, 2005.

P. Frasconi, G. Soda, and A. Vullo. Hidden Markov Models for Text Categorization
in Multi-Page Documents. Journal of Intelligent Information Systems, 18:195–217,
2002.

N. Friedman. Learning Belief Networks in the Presence of Missing Values and Hidden
Variables. In D. H. Fisher, editor, Proceedings of the Fourteenth International
Conference on Machine Learning (ICML-97), pages 125–133, Nashville, TN, USA,
July 8-12 1997. Morgan Kaufmann.

N. Friedman. The Bayesian Structural EM Algorithm. In G. F. Cooper and S. Moral,
editors, Proceedings of the Fourteenth Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-98), pages 129–138, Madison, Wisconsin, USA, 1998. Morgan
Kaufmann.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning Probabilistic Relational
Models. In Thomas Dean, editor, Proceedings of Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI-99), pages 1300–1307, Stockholm, Sweden,
July 31 - August 6 1999. Morgan Kaufmann.

B. Fristedt and L. Gray. A Modern Approach to Probability Theory. Probability and
its applications. Birkhäuser Boston, 1997.
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Mining. Springer Verlag, 2001.



Bibliography 221

M. Van Otterlo. Reinforcement Learning for Relational MDPs. In A. Nowe,
T. Lenaerts, and K. Steehaut, editors, Proceedings of the Annual Machine Learn-
ing Conference of Belgium and the Netherlands (BeneLearn-04), Brussels, Belgium,
January 8–9 2004.

J. Vennekens and S. Verbaeten. A General View on Probabilistic Logic Programming.
In T. Heskes, P. Lucas, L. Vuurpijl, and W. Wiegerinck, editors, Proceedings 15th
Belgian-Dutch Conference on Artificial Intelligence (BNAIC-03), Kasteel Heyen-
dael, Nijmegen, The Netherlands, October 23–24 2003.

J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic Programs with Annotated
Disjunctions. In B. Demoen and V. Lifschitz, editors, Proceedings of 20th Interna-
tional Conference on Logic Programming (ICLP-04), pages 431–445, Saint-Malo,
France, September 6-10 2004.

C. Watkins. Kernels from matching operations. Technical report, Department of
Computer Science, Royal Holloway, University of London, 1999.

S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and error.
Machine Learning Journal, 7(1):45 – 83, 1991.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist re-
inforcement learning. Machine Learning Journal, 8:229–256, 1992.

R. J. Williams and D. Zipser. Gradient-Based Learning Algorithms for Recurrent Net-
works and Their Computational Complexity. In Back-propagation:Theory, Archi-
tectures and Applications, pages 433–486. Lawrence Erlbaum Associates, Hillsdale,
NJ, USA, 1995.

I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.
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Symbol Index

Overture

p/n Predicate symbol p of arity n
10

Σ First order alphabet 10
A :−B1, . . . , Bm Definite clause 10
head(c) Head of clause c 10
body(c) Body of clause c 10
Var(·) Set of all variables in a term,

atom, or clause 10

θ Substitution 10
mgu(·, ·) Most general unifier 11
� θ-subsumption 11
lgg(·, ·) Least general generalization

11
glb(·, ·) Greatest lower bound 11
hb(·) Herbrand base 11
A |= B A entails B 11
LH(·) Least Herbrand model 11

T· Immediate consequence
operator 11

H Hypothesis space 19

P Probability value 20

P Probability distribution 20
x Random variable 20
x State of random variable 20

X Set of random variables 20
x Set of states of random

variables 20

Part I

S(·) Domain of a random variable
38

Pa(·) Parents of a random variable
38

Fa(·) Family of a random variable
39

cpd(x) Conditional probability dis-
tribution associated with a
random variable 39

A |A1, . . . , An Bayesian clause 40
cpd(c) Conditional probability dis-

tribution associate with a
Bayesian clause 41

cr(p/l) Combining rule 41

H Hypothesis space 56

L Syntactic bias 56
L(D, λ) Likelihood 63
en(·) Expected counts 66

Part II

GΣ(A) set of ground atoms over Σ
92

p : H
O←− B Abstract transition 92

μ Selection distribution 93
B− parts Bodies of abstract transitions

94
p : H ←
start

probability of starting in state

H 95

Υ Prior distribution 95

Δ set of abstract transitions 95
(Σ, μ, Δ, Υ ) Logical HMM 95

TM Immediate state operator 97

EM Immediate state operator 97
P (O, S′|S) Transition-emission probability

98

λ Parameters of a logical HMM
101

λ∗ Most likely parameters 101
αt(S) Forward probability 102
βt(S) Backward probability 103
δt(S) highest probability along

a single path at time t,
which accounts for the first
t observations and ends in
state S 103

ξ(T) expected number of times of
making the transitions T at
any time 104

M Hypothesis space 117
scoreD Scoring function 118
Pen(·, ·, ·) Penalty 118
Q Expected score 120

Intermezzo

Ux Fisher score mapping 137
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Jλ Fisher information matrix
137

F1 F1 score 146

Part III

(S, A,T, λ) MDP 153

Z Abstract state 155
S(Z) Set of states covered by Z 155

Hi
pi:A←−−− B Abstract action 155

|θ| Number of substitutions such
that b �θ B 155

R Abstract reward 156

V State value function 156

c ← B Value rule 156

c : A ← B Q-rule 156
(Σ,A,R,C) Markov decision program

157

M Induced MDP 158
π Abstract policy 160
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#P 84
θ-subsumption see Logic programming

Absorbing state 156
Abstract action
– Markov decision program, 155
Abstract policy see Policy
Abstract state
– Logical hidden Markov model, 92
– Markov decision program, 155
Abstract transition
– Logical hidden Markov model, 92
– Markov decision program, 155
Aggreagte function see Bayesian logic

program
Atom see Logic programming

B-parts see Logical hidden Markov model
Background knowledge
– Bayesian logic program, 62
– Inductive logic programming, 17
– Probabilistic ILP, 26
Backward procedure see Logical hidden

Markov model
Baum-Welch algorithm see Logical hidden

Markov model
Bayesian atom see Bayesian logic program
Bayesian clause see Bayesian logic

program
Bayesian learning 27
Bayesian logic (BLOG) 82
– nonparametric (NP-BLOG), 83
Bayesian logic program 41
– Aggregate function, 52
– Bayesian atom, 40
– Bayesian clause, 40
– Bayesian predicate, 40
– Combining rule, 41
– – Decomposable 69
– Conditional probability distribution, 39,

41
– Data case, 54
– Dynamic, 49, 51
– Graphical representation, 47

– Independence assumption, 43
– Learning
– – Hypothesis space 56
– – Problem definition 56
– – Syntactic bias 56
– Logical atoms, 50
– Parameter estimation, 63
– – EM 70
– – Gradient 64
– Probabilistic Query, 45
– Semantics, 43
– – Declarative 41
– – Procedural 45
– Structure learning, 54
– Support network, 45
– Well-defined, 44
Bayesian network 38
– Independence assumption, 38
Bayesian predicate see Bayesian logic

program
Block model see Logical hidden Markov

model
Blocks world domain 153
BLOG see Bayesian logic (BLOG)
Blood type domain 38
BLP see Bayesian logic program
BUGS 86

Claudien 59
Clause see Logic programming
CLP(BN) 85
Collective
– Classification, 141
– Data, 141
Combining rule see Bayesian logic

program
Constant see Logic programming
Covers relation
– Learning from entailment, 14
– Learning from interpretations, 15
– Learning from proofs, 16
– Probabilistic, 20

Definite clause grammar 52
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Dependency graph 42
Direct influence 38, 42
Dynamic Bayesian logic program see

Bayesian logic program

EM see Expectation-Maximization
Example domains
– Blocks world, 153
– Blood type, 38
– UNIX command sequences, 91
Expectation-Maximization 70, 104
– Bayesian logic program, 70
– Generalized, 122
– Logical hidden Markov model, 104
– Probabilistic ILP, 27
– Structural, 121
Expected counts
– Bayesian logic program, 66
– Bayesian network, 71
– Logical hidden Markov model, 104
Explanation based learning 17

F1 score 146
Fact see Logic programming
Feature selection 142
Fisher information matrix 137
Fisher kernel 137
– for interpretations, 138
– for logical sequences, 138
– Relational, 137
Fisher score mapping 137
Forward procedure see Logical hidden

Markov model
Functor see Logic programming

Generality relation 94
Generalized policy iteration (GPI) 162
Generalized relational policy improvement

162
glb see Logic programming
Gradient
– Ascent, 64
– Bayesian logic program, 64
– Constraint satisfaction, 67, 123, 140
– Logical hidden Markov model, 122, 138
– Reparameterization, 67, 140
Graphical representation
– Bayesian logic program, 47
– Logical hidden Markov model, 95

Greatest lower bound see Logic program-
ming

Greedy policy see Policy

Herbrand base see Logic programming
Herbrand interpretation see Logic

programming
Hidden Markov model 49, 91, 96
– Factorial, 99
– Generalized, 100
Hill climbing see Gradient ascent

iid assumption 20
Immediate consequence operator see Logic

programming
Independence assumption
– Bayesian logic program, 43
– Bayesian network, 38
Independent Choice Logic (ICL) 81
Inductive logic programming 13
– Background knowledge, 17
– Bias
– – Declarative 19
– – Language 19
– – Search 19
– Bottom-up approach, 18
– Covers relation, see Covers relation
– Learning problem, 13
– Mode declaration, 19
– More-general-than relation, 19
– Refinement operator, 18, 20
– Top-down approach, 17
– Types, 19
Iterative classification 141

KDD cup 2001 142
Kernel Methods 136

Learning from
– Entailment, 14
– Interpretations, 14, 54
– Proofs, 15
Least general generalization see Logic

programming
Least Herbrand model see Logic

programming
lgg see Logic programming
Likelihood 20
Literal see Logic programming
Logic see Logic programming
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Logic program see Logic programming
Logic programming 10
– θ-subsumption, 11, 19
– Alphabet, 10
– Atom, 10
– Clause
– – Body 10
– – Head 10
– – Range-restricted 10
– Constant, 10
– Entailment, 11
– Fact, 10
– Functor, 10
– Goal, 12
– Greatest lower bound, 11, 94
– Herbrand base, 11
– Herbrand interpretation, 11
– Immediate Consequence Operator, 11
– Least general generalization, 11
– Least Herbrand model, 11
– Literal, 10
– Model, 11
– Most general unifier, 11
– Predicate, 10
– Program, 10
– Proof, 12
– Reduced clause, 11
– refutation, 12
– SLD-resolution, 12
– Substitution, 10
– Term, 10
– Variable, 10
Logic programs with annotated disjunctions

(LPADs) 85
Logical hidden Markov model 95
– Abstract output state, 92
– Abstract state, 92
– Abstract symbol, 92
– Abstract transition, 92
– B-part, 94
– Backward procedure, 103
– Baum-Welch algorithm, 104
– Block model, 111
– Conflict resolution, 94
– Current emission operator, 97
– Data case, 117
– end state, 100
– Forward procedure, 102
– Generative model, 96
– Graphical representation, 95

– Identifiers, 107
– Immediate state operator, 97
– Learning
– – Hypothesis space 117
– – Problem definition 117
– – sagEM 121
– – Score 118
– – Structural EM 121
– – Syntactic bias 118
– Moore representation, 98
– Most likely state and abstract transition

sequence, 103
– Most likely state sequence, 103
– Parameter estimation, 104
– – Gradient 138
– Prior distribution, 95
– Selection distribution, 93
– Semantics, 97
– Structure learning, 116
– Transition-emission probability, 98
– Viterbi algorithm, 103
Logical HMM see Logical hidden Markov

model
Logical Markov decision process (LOMDP)

157, see Markov decision program
LOHMM see Logical hidden Markov

model

m-estimates 105
Markov decision process 153
– Temporal difference (TD) learning, 154
– Value iteration, 154
Markov decision program 155, 156
– Abstract
– – Action 155
– – State 155
– – State value function 156
– – Transition 155
– Decreasingly ordered, negation-free, 159
– Generalized relational policy improve-

ment, 162
– Integrity constraints, 156
– Policy refinement, 162
– Relational TD(0), 164
– Solution techniques, 162
– State, 155
– Value iteration, 170
– – Computing abstract state action values

173
– – Computing abstract state values 174
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– – Regression 171
– Value rule, 156
Markov decision programs
– Solution techniques, 159
Markov logic networks 21, 84
Markov network 22, 84
MDP see Markov decision process
MDPrg see Markov decision program
Mealy machine 92, 98
Moore machine 98
More-general-than relation 94, see

Inductive logic programming
Most general unifier see Logic program-

ming
Most likely state and abstract transition

sequence see Logical hidden Markov
model

Most likely state sequence see Logical
hidden Markov model

mRNA
– Chain representation, 113
– Signal Structure Detection
– – Logical hidden Markov model 112
– – Relational Fisher kernel 145
– Tree representation, 114
Multi-entity Bayesian networks (MEBNs)

83

n-gram models 94
Networked data 141
nFOIL 30
NP-BLOG see Bayesian logic (BLOG)

Online ride sharing service 3

Parameter estimation
– Bayesian logic program, 63
– Logical hidden Markov model, 104
– Probabilistic ILP, 27
PCFG see Probabilistic context-free

grammar
Plug-in estimates 109, 126
Point estimation 26
Policy 159
– Abstract, 160
– – Learning 162
– Greedy, 162
– Learning, 159
– Refinement, 162
Prediacte see Logic programming

PRISM 83
Probabilistic context-free grammar 51,

106
Probabilistic covers relation see Covers

relation
Probabilistic Horn abduction 81
Probabilistic ILP 20, 25
– Expectation Maximization, 27
– Parameter estimation, 27
– Score, 26
– Structure learning, 28
– – Language bias 28
Probabilistic learning from
– Entailment, 24
– Interpretations, 21, 54, 164
– Proofs, 22, 117, 164
Probabilistic logic learning 5, see also

Probabilistic ILP
Probabilistic logic programs 80
Probabilistic relational models 81
Proof tree 16
Protein fold recognition
– Logical hidden Markov model, 109
– Relational Fisher kernel, 145
Protein localization 142
Pseudo-log-likelihood 28

Refinement operator see Inductive logic
programming

– Bayesian logic program, 57, 61
– Bayesian network, 58
– Logical hidden Markov model, 119
Reinforcement learning 151, 162
Relational Bayesian networks (RBNs) 82
Relational dependency networks 85
Relational logic see Logic programming
Relational Markov models 84
Relational reinforcement learning
– Model-based, 163
– Model-free, 163
Relational value iteration see Markov

decision program
Round robin 142

sagEM 121
Scaled conjugate gradient 72
Scooby 57
Selection distribution 93
Separate-and-conquer rule learning 17
Set-covering approach 17
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State action value function 153
State value function 153
Statistical relational learning 5, see also

Probabilistic ILP
Stochastic context-free grammar 23, see

Probabilistic context-free grammar
Stochastic logic program 23
Structural EM 121
Structure learning
– Bayesian logic program, 54
– Logical hidden Markov model, 116
– Probabilistic ILP, 28
Stud farm domain 38
Substitution see Logic programming
Subsumption see Logic programming
Support network see Bayesian logic

program
Support vector machines 136

TD see Markov decision process

Temporal difference learning see Markov
decision process

Term see Logic programming

underfitting 19
University domain 53
UNIX command sequence 125
– Domain, 91

Value iteration
– Markov decision process, 154
– Markov decision program, 170
Variable see Logic programming
VI see Value iteration
Viterbi algorithm see Logical hidden

Markov model

Web page classification 143
WebKB 143



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank



This page intentionally left blank


	Title page
	Contents
	Abstract
	Overture
	Introduction
	Statistical Relational Learning
	Our Approach: The ILP Perspective
	Contributions and Outline of the Thesis
	Citations to Previously Published Work

	Probabilistic Inductive Logic Programming
	Logic Programming Concepts
	Inductive Logic Programming (ILP) and its Settings
	Probabilistic ILP Settings
	Probabilistic ILP: A Definition and Example Algorithms
	Conclusions


	Part I: Probabilistic ILP over Interpretations
	Bayesian Logic Programs
	The Propositional Case: Bayesian Networks
	The First-Order Case
	Extensions of the Basic Framework

	Learning Bayesian Logic Programs
	The Learning Setting: Probabilistic Learning from Interpretations
	Scooby - Structural learning of intensional Bayesian logic programs
	Parameter Estimation
	Experimental Evaluation

	Balios - The Engine for Bayesian Logic Programs
	Future Work
	Conclusions
	Related Work

	Part II: Probabilistic ILP over Time
	Logical Hidden Markov Models
	Representation Language
	Semantics
	Design Choices

	Three Basic Inference Problems for Logical HMMs
	Evaluation
	Most Likely State Sequences
	Parameter Estimation
	Advantages of Logical Hidden Markov Models
	Real World Applications

	Learning the Structure of Logical HMMs
	The Learning Setting: Probabilistic Learning from Proofs
	A Naive Learning Algorithm
	sagEM: A Structural Generalized EM
	Experimental Evaluation

	Future Work
	Conclusions
	Related Work

	Intermezzo: Exploiting Probabilistic ILP in Discriminative Classifiers
	Relational Fisher Kernels
	Kernel Methods and Probabilistic Models
	Fisher Kernels for Interpretations and Logical Sequences
	Experimental Evaluation
	Future Work and Conclusions
	Related Work


	Part III: Making Complex Decisions in Relational Domains
	Markov Decision Programs
	Markov Decision Processes
	Representation Language
	Semantics

	Solving Markov Decision Programs
	Abstract Policies
	Generalized Relational Policy Iteration
	Model-free Relational TD(lambda)
	Model-based Relational Value Iteration based on ReBel

	Future Work
	Conclusions
	Related Work

	Finale
	Summary
	Conclusions
	Future Work

	Appendix
	Models for Unix Command and mRNA Sequences
	Logical HMM for Unix Command Sequences
	Tree-based logical HMM for mRNA Sequences


	Bibliography
	Symbol Index
	Index



