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Preface

The conventional product development process employs a design-build-test philosophy. The
sequentially executed process often results in a prolonged lead time and an elevated product cost.
The e-Design paradigm presented in the Computer Aided Engineering Design series employs IT-
enabled technology, including computer-aided design, engineering, and manufacturing (CAD/CAE/
CAM) tools, as well as advanced prototyping technology to support product design from concept to
detailed designs, and ultimately manufacturing. This e-Design approach employs virtual proto-
typing technology to support a cross-functional team in analyzing product performance, reliability,
and manufacturing costs early in the product development stage and in conducting quantitative
trade-offs for design decision making. Physical prototypes of the product design are then produced
using rapid prototyping (RP) technique mainly for design verification. The e-Design approach
holds potential for shortening the overall product development cycle, improving product quality,
and reducing product cost. The Computer Aided Engineering Design series intends to provide
readers with a comprehensive coverage of essential elements for understanding and practicing the
e-Design paradigm in support of product design, including design method and process, and
computer-based tools and technology. The book series consists of four books: Product Design
Modeling using CAD/CAE, Product Performance Evaluation using CAD/CAE, Product
Manufacturing and Cost Estimating using CAD/CAE, and Design Theory and Methodology using
CAD/CAE. Product Design Modeling using CAD/CAE discusses virtual mockup of the product that
is first created in the CAD environment. The critical design parameterization that converts the
product solid model into parametric representation, enabling the search for better designs, is an
indispensable element of practicing the e-Design paradigm, especially in the detailed design stage.
The second book, Product Performance Evaluation using CAD/CAE, focuses on applying
numerous CAE technologies and software tools to support evaluation of product performance,
including structural analysis, fatigue and fracture, rigid body kinematics and dynamics, and failure
probability prediction and reliability analysis. The third book, Product Manufacturing and Cost
Estimating using CAD/CAE, introduces CAM technology to support manufacturing simulations and
process planning, RP technology, and computer numerical control machining for fast product
prototyping, as well as manufacturing cost estimate that can be incorporated into product cost
calculations. The product performance, reliability, and cost calculated can then be brought together
to the cross-functional team for design trade-offs based on quantitative engineering data obtained
from simulations. Design trade-off is one of the key topics included in the fourth book, Design
Theory and Methodology using CAD/CAE. In addition to conventional design optimization
methods, the fourth book discusses decision theory, utility theory, and decision-based design.
Simple examples are included to help readers understand the fundamentals of concepts and
methods introduced in this book series.

In addition to the discussion on design principles, methods, and processes, this book series offers
reviews on the commercial off-the-shelf software tools for the support of modeling, simulations,
manufacturing, and product data management and data exchanges. Tutorial style lessons on using
commercial software tools are provided together with project-based exercises. Two suites of engi-
neering software are included: they are Pro/ENGINEER-based, including Pro/MECHANICA Struc-
ture, Pro/ENGINEER Mechanism Design, and Pro/MFG; and SolidWorks-based, including
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SolidWorks Simulation, SolidWorks Motion, and CAMWorks. These tutorial lessons are designed to
help readers gain hands-on experiences to practice the e-Design paradigm.

The book you are reading, Product Design Modeling using CAD/CAE, is the first book of the
Computer Aided Engineering Design series. The objective of Product Design Modeling is to provide
readers with fundamental understanding in product modeling principles and modern engineering tools
for solid and assembly modeling, and apply the principles and software tools to support practical
design applications. In Chapter 1, a brief introduction to the e-Design paradigm and tool environment
is given. Following this introduction, important topics in product design modeling, including
geometric and solid modeling, assembly modeling, design parameterization, and product data
management and data exchange are discussed.

Chapter 2 focuses on geometric modeling, in which general geometric modeling techniques and
methods commonly employed in CAD are discussed. Fundamentals in geometric modeling, such as
mathematic representation of parametric curves and surfaces, continuity, and geometric trans-
formations are presented to provide readers a basic understanding in geometric modeling. The goal of
this chapter is to help readers understand how geometric entities, such as curves and surfaces are
created in CAD, which is critical to understand the theories and methods that support part modeling
in CAD.

Chapter 3 offers basic knowledge on the theories of solid modeling in CAD. Basic solid modeling
theories, including constructive solid geometry and boundary representation (B-Rep), are briefly
presented. The goal of this chapter is to help readers understand how solid parts are created in CAD
and the theories and methods that support part modeling in CAD.

Chapter 4 provides a brief discussion on product assembly in CAD, which involves both modeling
and analysis of the articulated assemblies for support of product design. In CAD, an assembly is
created by defining relative position and orientation of parts, whereas a kinematic model is created by
specifying kinematic constraints between parts. Both are important for engineers to create functional
assemblies in CAD to support product design. The goal of this chapter is to help readers understand
how solid parts are put together that perform desired functions in CAD and the theories and methods
that do the tricks.

Chapter 5 is the key chapter of this book, in which design parameterization concept and method are
discussed for the support of capturing design intents in the parts and assembly of the product model. A
set of guidelines are presented for the designers to parameterize solid models at sketch, part, and
assembly levels in order to properly capture design intents. The goal of the chapter is to provide design
parameterization concept, methods, and guidelines that support designers to explore product design
alternatives in the context of e-Design paradigm.

After learning how parts and assemblies are created in CAD, we discuss how to manage product
data to support product design in Chapter 6. In addition, data exchange between CAD systems, which
is one of the major issues encountered in product design using e-design paradigm, is discussed to offer
readers practical approaches in dealing with such issues.

In addition to theories and methods, two companion projects are included: Project S1 Solid
Modeling with SolidWorks and Project P1 Solid Modeling with Pro/ENGINEER. These projects
offer tutorial lessons that should help readers to learn and be able to use the respective software
tools for support of solid modeling, assembly modeling, design parameterization, and model
translations for practical applications. Example files needed for going through the tutorial lessons
are available for download at the book’s companion site. The goal of the projects is to help readers

x Preface



become confident and competent in using CAD tools for creating adequate product models to
support product design.

Product Design Modeling should serve well for a half semester (8 weeks) instruction in engineering
colleges of general universities. Typically, a 3-h lecture and 1-h laboratory exercise per week are
desired. This book (and the book series) aims at providing engineering senior and first-year graduate
students a comprehensive reference to learn advanced technology in support of engineering design
using IT-enabled technology. Typical engineering courses that the book serves include computer-aided
design, engineering design, integrated product and process development, concurrent engineering,
design and manufacturing, modern product design, computer-aided engineering, as well as senior
capstone design. In addition to classroom instruction, this book should support practicing engineers
who wish to learn more about the e-Design paradigm at their own pace.
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Conventional product development employs a design-build-test philosophy. The sequentially executed
development process often results in prolonged lead times and elevated product costs. The proposed
e-Design paradigm employs IT-enabled technology for product design, including virtual prototyping
(VP) to support a cross-functional team in analyzing product performance, reliability, and manu-
facturing costs early in product development, and in making quantitative trade-offs for design decision
making. Physical prototypes of the product design are then produced using the rapid prototyping (RP)
technique and computer numerical control (CNC) to support design verification and functional pro-
totyping, respectively.

e-Design holds potential for shortening the overall product development cycle, improving product
quality, and reducing product costs. It offers three concepts and methods for product development:

• Bringing product performance, quality, and manufacturing costs together early in design for
consideration.

• Supporting design decision making based on quantitative product performance data.
• Incorporating physical prototyping techniques to support design verification and functional

prototyping.

1.1 Introduction
A conventional product development process that is usually conducted sequentially suffers the
problem of the design paradox (Ullman 1992). This refers to the dichotomy or mismatch between the
design engineer’s knowledge about the product and the number of decisions to be made (flexibility)
throughout the product development cycle (see Figure 1.1). Major design decisions are usually made in
the early design stage when the product is not very well understood. Consequently, engineering
changes are frequently requested in later product development stages, when product design evolves
and is better understood, to correct decisions made earlier.

FIGURE 1.1 The Design Paradox.
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Conventional product development is a design-build-test process. Product performance and reli-
ability assessments depend heavily on physical tests, which involve fabricating functional prototypes
of the product and usually lengthy and expensive physical tests. Fabricating prototypes usually
involves manufacturing process planning and fixtures and tooling for a very small amount of pro-
duction. The process can be expensive and lengthy, especially when a design change is requested to
correct problems found in physical tests.

In conventional product development, design and manufacturing tend to be disjointed. Often,
manufacturability of a product is not considered in design. Manufacturing issues usually appear when
the design is finalized and tests are completed. Design defects related to manufacturing in process
planning or production are usually found too late to be corrected. Consequently, more manufacturing
procedures are necessary for production, resulting in elevated product cost.

With this highly structured and sequential process, the product development cycle tends to be
extended, cost is elevated, and product quality is often compromised to avoid further delay. Costs and
the number of engineering change requests (ECRs) throughout the product development cycle are
often proportional according to the pattern shown in Figure 1.2. It is reported that only 8% of the total
product budget is spent for design; however, in the early stage, design determines 80% of the lifetime
cost of the product (Anderson 1990). Realistically, today’s industries will not survive worldwide
competition unless they introduce new products of better quality, at lower cost, and with shorter lead
times. Many approaches and concepts have been proposed over the years, all with a common goaldto
shorten the product development cycle, improve product quality, and reduce product cost.

A number of proposed approaches are along the lines of virtual prototyping (Lee 1999), which is a
simulation-based method that helps engineers understand product behavior and make design decisions
in a virtual environment. The virtual environment is a computational framework in which the geo-
metric and physical properties of products are accurately simulated and represented. A number of
successful virtual prototypes have been reported, such as Boeing’s 777 jetliner, General Motors’
locomotive engine, Chrysler’s automotive interior design, and the Stockholm Metro’s Car 2000
(Lee 1999). In addition to virtual prototyping, the concurrent engineering (CE) concept and meth-
odology have been studied and developed with emphasis on subjects such as product life cycle design,
design for X-abilities (DFX), integrated product and process development (IPPD), and Six Sigma
(Prasad 1996).

FIGURE 1.2 Cost/ECR versus Time in a Conventional Design Cycle.
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Although significant research has been conducted in improving the product development process
and successful stories have been reported, industry at large is not taking advantage of new product
development paradigms. The main reason is that small and mid-size companies cannot afford to
develop an in-house computer tool environment like those of Boeing and the Big-Three automakers.
On the other hand, commercial software tools are not tailored to meet the specific needs of individual
companies; they often lack proper engineering capabilities to support specific product development
needs, and most of them are not properly integrated. Therefore, companies are using commercial tools
to support segments of their product development without employing the new design paradigms to
their full advantage.

The e-Design paradigm does not supersede any of the approaches discussed. Rather, it is simply a
realization of concurrent engineering through virtual and physical prototyping with a systematic and
quantitative method for design decision making. Moreover, e-Design specializes in performance and
reliability assessment and improvement of complex, large-scale, compute-intensive mechanical sys-
tems. The paradigm also uses design for manufacturability (DFM), design for manufacturing and
assembly (DFMA), and manufacturing cost estimates through virtual manufacturing process planning
and simulation for design considerations.

The objective of this chapter is to present an overview of the e-Design paradigm and the sample
tool environment that supports a cross-functional team in simulating and designing mechanical
products concurrently in the early design stage. In turn, better-quality products can be designed and
manufactured at lower cost. With intensive knowledge of the product gained from simulations, better
design decisions can be made, breaking the aforementioned design paradox. With the advancement of
computer simulations, more hardware tests can be replaced by computer simulations, thus reducing
cost and shortening product development time. The desirable cost and ECR distributions throughout
the product development cycle shown in Figure 1.3 can be achieved through the e-Design paradigm.

A typical e-Design software environment can be built using a combination of existing computer-
aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM)
as the base, and integrating discipline-specific software tools that are commercially available for
specific simulation tasks. The main technique in building the e-Design environment is tool integration.
Tool integration techniques, including product data models, wrappers, engineering views, and design
process management, have been developed (Tsai et al. 1995) and are described in Design Theory and
Methods using CAD/CAE, a book in The Computer Aided Engineering Design Series. This integrated
e-Design tool environment allows small and mid-size companies to conduct efficient product devel-
opment using the e-Design paradigm. The tool environment is flexible so that additional engineering
tools can be incorporated with a lesser effort.

In addition, the basis for tool integration, such as product data management (PDM), is well
established in commercial CAD tools and so no wheel needs to be reinvented. The e-Design paradigm
employs three main concepts and methods for product development:

• Bringing product performance, quality, and manufacturing cost for design considerations in the
early design stage through virtual prototyping.

• Supporting design decision making through a quantitative approach for both concept and detail
designs.

• Incorporating product physical prototypes for design verification and functional tests via rapid
prototyping and CNC machining, respectively.
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In this chapter, the e-Design paradigm is introduced. Then components that make up the paradigm,
including knowledge-based engineering (KBE) (Gonzalez and Dankel 1993), virtual prototyping, and
physical prototyping, are briefly presented. Designs of a simple airplane engine and a high-mobility
multipurpose wheeled vehicle (HMMWV) are briefly discussed to illustrate the e-Design paradigm.
Details of modeling and simulation are provided in later chapters.

1.2 The e-Design paradigm
As shown in Figure 1.4, in e-Design, a product design concept is first realized in solid model form by
design engineers using CAD tools. The initial product is often established based on the designer’s
experience and legacy data of previous product lines. It is highly desirable to capture and organize
designer experience and legacy data to support decision making in a discrete form so as to realize an
initial concept. The KBE (Gonzalez and Dankel 1993) that computerizes knowledge about specific
product domains to support design engineers in arriving at a solution to a design problem supports

FIGURE 1.3 (a) Cost/ECR versus e-Design Cycle Time; (b) Product Knowledge versus e-Design Cycle Time.

1.2 The e-Design paradigm 5



the concept design. In addition, a KBE system integrated with a CAD tool may directly generate a
solid model of the concept design that directly serves downstream design and manufacturing
simulations.

With the product solid model represented in CAD, simulations for product performance, reliability,
and manufacturing can be conducted. The product development tasks and the cross-functional team are
organized according to engineering disciplines and expertise. Based on a centralized computer-aided
design product model, simulation models can be derived with proper simplifications and assumptions.
However, a one-way mapping that governs changes from CAD models to simulation models must be
established for rapid simulation model updates (Chang et al. 1998). The mapping maintains consis-
tency between CAD and simulation models throughout the product development cycle.

Product performance, reliability, and manufacturing can then be simulated concurrently.
Performance, quality, and costs obtained from multidisciplinary simulations are brought together for
review by the cross-functional team. Design variablesdincluding geometric dimensions and material
properties of the product CAD models that significantly influence performance, quality, and costd
can be identified by the cross-functional team in the CAD product model. These key performance,
quality, and cost measures, as well as design variables, constitute a product design model. With such
a model, a systematic design approach, including a parametric study for concept design and a trade-
off study for detail design, can be conducted to improve the product with a minimum number of
design iterations.

The product designed in the virtual environment can then be fabricated using rapid prototyping
machines for physical prototypes directly from product CAD solid models, without tooling and
process planning. The physical prototypes support the cross-functional team for design verification and
assembly checking. Change requests that are made at this point can be accommodated in the virtual
environment without high cost and delay.

FIGURE 1.4 The e-Design Paradigm.
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The physics-based simulation technology potentially minimizes the need for product hardware
tests. Because substantial modeling and simulations are performed, unexpected design defects
encountered during the hardware tests are reduced, thus minimizing the feedback loop for design
modifications. Moreover, the production process is smooth since the manufacturing process has been
planned and simulated. Potential manufacturing-related problems will have been largely addressed in
earlier stages.

A number of commercial CAD systems provide a suite of integrated CAD/CAE/CAM capabilities
(e.g., Pro/ENGINEER and SolidWorks�). Other CAD systems, including CATIA� and NX, support
one or more aspects of the engineering analysis. In addition, third-party software companies have made
significant efforts in connecting their capabilities to CAD systems. As a representative example, CAE
and CAM software companies worked with SolidWorks and integrated their software into SolidWorks
environments such as CAMWorks�. Each individual tool is seamlessly integrated into SolidWorks.

In this book, Pro/ENGINEER and SolidWorks, with a built-in suite of CAE/CAM modules, are
employed as the base for the e-Design environment. In addition to their superior solid modeling
capability based on parametric technology (Zeid 1991), Pro/MECHANICA� and SolidWorks Simu-
lation support simulations of nominal engineering, including structural and thermal problems.
Mechanism Design of Pro/ENGINEER and SolidWorks Motion support motion simulation of me-
chanical systems. Moreover, CAM capabilities implemented in CAD, such as Pro/MFG (Parametric
Technology Corp., www.ptc.com), and CAMWorks, provide an excellent basis for manufacturing
process planning and simulations. Additional CAD/CAE/CAM tools introduced to support modeling
and simulation of broader engineering problems encountered in general mechanical systems can be
developed and added to the tool environment as needed.

1.3 Virtual prototyping
Virtual prototyping is the backbone of the e-Design paradigm. As presented in this chapter, VP consists
of constructing a parametric product model in CAD, conducting product performance simulations and
reliability evaluations using CAE software, and carrying out manufacturing simulations and cost
estimates using CAM software. Product modeling and simulations using integrated CAD/CAE/CAM
software are the basic and common activities involved in virtual prototyping. However, a systematic
design method, including parametric study and design trade-offs, is indispensable for design decision
making.

1.3.1 Parameterized CAD product model
A parametric product model in CAD is essential to the e-Design paradigm. The product model evolves
to a higher-fidelity level from concept to detail design stages (Chang et al. 1998). In the concept design
stage, a considerable portion of the product may contain non-CAD data. For example, when the gross
motion of the mechanical system is sought, the non-CAD data may include engine, tires, or trans-
mission if a ground vehicle is being designed. Engineering characteristics of the non-CAD parts and
assemblies are usually described by engineering parameters, physics laws, or mathematical equations.
This non-CAD representation is often added to the product model in the concept design stage for a
complete product model. As the design evolves, non-CAD parts and assemblies are refined into solid-
model forms for subsystem and component designs as well as for manufacturing process planning.

1.3 Virtual prototyping 7

http://www.ptc.com


A primary challenge in conducting product performance simulations is generating simulation
models and maintaining consistency between CAD and simulation models through mapping. Chal-
lenges involved in model generation and in structural and dynamic simulations are discussed next, in
which an airplane engine model in the detail design stage, as shown in Figure 1.5, is used for
illustration.

1.3.1.1 Parameterized product model
A parameterized product model defined in CAD allows design engineers to conveniently explore
design alternatives for support of product design. The CAD product model is parameterized by
defining dimensions that govern the geometry of parts through geometric features and by establishing
relations between dimensions within and across parts. Through dimensions and relations, changes can
be made simply by modifying a few dimensional values. Changes are propagated automatically
throughout the mechanical product following the dimensions and relations. A single-piston airplane
engine with a change in its bore diameter is shown in Figure 1.6, so as illustrating change propagation
through parametric dimensions and relationships. More in-depth discussion of the modeling and
parameterization of the engine example can be found in Product Design Modeling using CAD/CAE,
a book in The Computer Aided Engineering Design Series.

1.3.1.2 Analysis models
For product structural analysis, finite element analysis (FEA) is often employed. In addition to
structural geometry, loads, boundary conditions, and material properties can be conveniently defined in
the CAD model. Most CAD tools are equipped with fully automatic mesh generation capability. This

FIGURE 1.5 Airplane Engine Model: (a) CAD Model and (b) Model Tree.
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capability is convenient but often leads to large FEA models with some geometric discrepancy at the
part boundary. Plus, triangular and tetrahedral elements are often the only elements supported. An
engine connecting rod example meshed using Pro/MESH (part of Pro/MECHANICA) with default
mesh parameters is shown in Figure 1.7. The FEAmodel consists of 1,270 nodes and 4,800 tetrahedron
elements, yet it still reveals discrepancy to the true CAD geometry. Moreover, mesh distortion due
to large deformation of the structure, such as hyperelastic problems, often causes FEA to abort

FIGURE 1.6 Design Change Propagation: (a) Bore Diameter[ 1.3 in.; (b) Bore Diameter Changed to 1.6 in.;

(c) Relations of Geometric Dimensions.
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prematurely. Semiautomatic mesh generation is more realistic; therefore, tools such as MSC/Patran�

(MacNeal-Schwendler Corp., www.mscsoftware.com) and HyperMesh� (Altair� Engineering, Inc.,
www.altair.com) are essential to support the e-Design environment for mesh generation.

In general, p-version FEA (Szabó and Babu�ska 1991) is more suitable for structural analysis in
terms of minimizing the gap in geometry between CAD and finite element models, and in lessening the
tendency toward mesh distortion. It also offers capability in convergence analysis that is superior to
regular h-version FEA. As shown in Figure 1.7c, the same connecting rod is meshed with 568
tetrahedron p-elements, using Pro/MECHANICAwith a default setting. A one-way mapping between
changes in CAD geometric dimensions and finite element mesh for both h- and p-version FEAs can be
established through a design velocity field (Haug et al. 1986), which allows direct and automatic
generation of the finite element mesh of new designs.

Another issue worth considering is the simplification of 3D solid models to surface (shell) or curve
(beam) models for analysis. Capabilities that semiautomatically convert 3D thin-shell solids to surface
models are available in, for example, Pro/MECHANICA and SolidWorks Simulation.

1.3.1.3 Motion simulation models
Generating motion simulation models involves regrouping parts and subassemblies of the mechanical
system in CAD as bodies and often introducing non-CAD components to support a multibody dynamic
simulation (Haug 1989). Engineers must define the joints or force connections between bodies,
including joint type and reference coordinates. Mass properties of each body are computed by CAD
with the material properties specified. Integration between Mechanism Design and Pro/ENGINEER,
as well as between SolidWorks Motion (Chang 2008) and SolidWorks, is seamless. Design changes
made in geometric dimensions propagate to the motion model directly. In addition, simulation tools,
such as Dynamic Analysis and Design Systems (DADS) (LMS, www.lmsintl.com/DADS) and
communication and data systems integration, are also integrated with CAD with proper parametric
mapping from CAD to simulation models that support parametric study. As an example, the motion
inside an airplane engine is modeled as a slider-crank mechanism in Mechanism Design, as shown in
Figure 1.8.

A common mistake made in creating motion simulation models is selecting improper joints to
connect bodies. Introducing improper joints creates an invalid or inaccurate model that does not

FIGURE 1.7 Finite Element Meshes of a Connecting Rod: (a) CAD Solid Model, (b) h-version Finite Element Mesh,

and (c) p-version Finite Element Mesh.
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simulate the true behavior of the mechanical system. Intelligent modeling capability that automatically
specifies joints in accordance with assembly relations defined between parts and subassemblies in solid
models is available in, for example, SolidWorks Motion.

1.3.2 Product performance analysis
As mentioned earlier, product performance evaluation using physics-based simulation in the computer
environment is usually called, in a narrow sense, virtual prototyping, or VP. With the advancement of
simulation technology, more engineering questions can be answered realistically through simulations,
thus minimizing the needs for physical tests. However, some key questions cannot be answered for
sophisticated engineering problemsdfor example, the crashworthiness of ground vehicles. Although
VP will probably never replace hardware tests completely, the savings it achieves for less sophisticated
problems is significant and beneficial.

1.3.2.1 Motion analysis
System motion simulations include workspace analysis (kinematics), rigid- and flexible-body
dynamics, and inverse dynamic analysis. Mechanism Design and SolidWorks Motion, based on
theoretical work (Kane and Levinson 1985), mainly support kinematics and rigid-body simulations
for mechanical systems. They do not properly support mechanical system simulation such as a
vehicle moving on a user-defined terrain. General-purpose dynamic simulation tools, such as DADS
(www.lsmintl.com) or Adams� (www.mscsoftware.com), are more desirable for simulation of general
mechanical systems.

1.3.2.2 Structural analysis
Pro/MECHANICA supports linear static, vibration, buckling, fatigue, and other such analyses, using
p-version FEA. General-purpose finite element codes, such as MSC/Nastran� (MacNeal-Schwendler
Corp., www.mscsoftware.com) and ANSYS� (ANSYS Analysis Systems, Inc., www.ansys.com) are
ideal for the e-Design environment to support FEA for a broad range of structural problemsdfor

FIGURE 1.8 Engine Motion Model: (a) Definition and (b) Schematic View.
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example, nonlinear, plasticity, and transient dynamics. Meshless methods developed in recent years
(for example, Chen et al. 1997) hold promise for avoiding finite element mesh distortion in large-
deformation problems. Multiphase problems (e.g., acoustic and aero-structural) are well supported
by specialized tools such as LMS� SYSNOISE (Numerical Integration Technologies 1998).
LS-DYNA� (Hallquist 2006) is currently one of the best codes for nonlinear, plastic, dynamics,
friction-contact, and crashworthiness problems. These special codes provide excellent engineering
analysis capabilities that complement those provided in CAD systems.

1.3.2.3 Fatigue and fracture analysis
Fatigue and fracture problems are commonly encountered in mechanical components because of
repeated mechanical or thermal loads. MSC Fatigue� (MacNeal-Schwendler Corp., www.mscsoftware.
com), with an underlying computational engine developed by nCode� (www.ncode.com) is one of
the leading fatigue and fracture analysis tools. It offers both high- and low-cycle fatigue analyses.
A critical plane approach is available in MSC Fatigue for prediction of fatigue life due to general
multiaxial loads.

Note that the recently developed extended finite element method (XFEM) supports fracture
propagation without re-meshing (Moës et al. 2002). XFEM was recently integrated in ABAQUS�.
Also note that additional capabilities, such as thermal analysis, computational fluid dynamics (CFD)
and combustion, can be added to meet specific needs in analyzing mechanical products. Integration of
additional engineering disciplines are briefly discussed in Section 1.3.4.

1.3.2.4 Product reliability evaluations
Product reliability evaluations in the e-Design environment focus on the probability of specific failure
events (or failure mode). The failure event corresponds to a product performance measure, such as the
fatigue life of a mechanical component. For the reliability analysis of a single failure event, the failure
event or failure function is defined as (Madsen et al. 1986)

gðXÞ ¼ ju � jðXÞ (1.1)

where

j is a product performance measure
ju is the upper bound (or design requirement) of the product performance
X is a vector of random variables.

When product performance does not meet the requirementdthat is, when ju � jðXÞ, the event fails.
Therefore, the probability of failure Pf of the particular event g(X) � 0 is

Pf ¼ P½gðXÞ � 0� (1.2)

where P[•] is the probability of event •.
Given the joint probability density function fX(x) of the random variables X, the probability of

failure for a single event of a mechanical component can be expressed as

Pf ¼ P½gðXÞ � 0� ¼
Z Z

gðXÞ�0

.

Z
fXðxÞdx: (1.3)
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The probability of failure in Eq. 1.3 is commonly evaluated using the Monte Carlo method or the first-
or second-order reliability method (FORM or SORM) (Wu and Wirsching 1984, Yu et al. 1998).

Once the probabilities of several failure events in subsystems or components are computed, system
reliability can be obtained by, for example, fault-tree analysis (Ertas and Jones 1993). No general-
purpose software tool for reliability analysis of general mechanical systems is commercially avail-
able yet. Numerical evaluation of stochastic structures under stress (NESSUS�) (www.nessus.swri.
org), which is currently in development can be a good candidate for incorporation into the e-Design
environment. With the probability of failure, critical quality design criteria, such as mean time between
failure (MTBF), can be computed (Ertas and Jones 1993).

Two main challenges exist in reliability analysis: One, realistic distribution data are difficult to
acquire and often are not available in the early stage; and two, failure probability computations are
often expensive. The first challenge may be alleviated by employing legacy data from previous product
lines. Approximation techniques (e.g., Yu et al. 1998) can be employed to make the computation
affordable even for an individual failure event within a mechanical component.

1.3.3 Product virtual manufacturing
Virtual manufacturing addresses issues of design for manufacturability (DFM) (Prasad 1996) and
design for manufacturing and assembly (DFMA) (Boothroyd et al. 1994) early in product develop-
ment. In the e-Design paradigm, DFM and DFMA are performed by conducting virtual manufacturing
and assembly using, for example, Pro/MFG. DFM and DFMA of the product are verified through
animations of the virtual manufacturing and assembly process.

Pro/MFG is a Pro/ENGINEER module supporting the virtual machining process, including mill-
ing, drilling, and turning. By incorporating part design and also defining workpieces, workcells,
fixtures, cutting tools, and cutting parameters, Pro/MFG automatically generates a toolpath (see
Figure 1.9a), which simulates the machining process (Figure 1.9b), calculates machining time, and
produces cutter location (CL) data. The CL data can be post-processed for CNC codes. In addition,
casting, sheet metal, molding, and welding can be simulated using Pro/CASTING, Pro/SHEETME-
TAL, Pro/MOLD, and Pro/WELDING, respectively.

With such virtual manufacturing process planning and animation, manufacturability of the product
design can, to some extent, be verified. The DFMA tool (Boothroyd et al. 1994) developed by
Boothroyd Dewhurst, Inc., assists the cross-functional team in quantifying product assembly time and
labor costs. It also challenges the team to simplify product structure, thereby reducing product as well
as assembly costs.

One of the limitations in using virtual manufacturing tools (e.g., Pro/MFG) is that chip
formation (Fang and Jawahir 1996), a primary consideration in computer numerical control (CNC),
is not incorporated into the simulation. In addition, machining parameters, such as power con-
sumption, machining temperature, and tool life, which contribute to manufacturing costs are not yet
simulated.

1.3.4 Tool integration
Techniques developed to support tool integration (Chang et al. 1998) include parameterized product
data models, engineering views, tool wrappers, and design process management. Parameterized
product data models represent engineering data that are needed for conducting virtual prototyping of
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the mechanical system. The main sources of the product data model are CAD and non-CAD models.
The product data model evolves throughout the product development cycle as illustrated in
Figure 1.10.

Engineering views allow engineers from various disciplines to view the product from their own
technical perspectives. Through engineering views, engineers create simulation models that are
consistent with the product model by simplifying the CAD representation, as needed adding non-
CAD product representation and mapping. Tool wrappers provide two-way data translation and
transmission between engineering tools and the product data model. Design process management
provides the team leader with a tool to monitor and manage the design process. When a new tool of an
existing discipline, for example ANSYS for structural FEA, is to be integrated, a wrapper for it must
be developed. Three main tasks must be carried out when a new engineering discipline, say
computational fluid dynamics (CFD), is added to the environment. First, the product data model must
be extended to include engineering data needed to support CFD. Second, engineering views must be
added to allow design engineers to generate CFD models. Finally, wrappers must be developed for
specific CFD tools.

FIGURE 1.9 Virtual Machining Process: (a) Engine CasedMilling Toolpath; (b) Milling Simulation; (c) Connecting

RoddDrilling Toolpath; (d) Drilling Simulation.
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1.3.5 Design decision making
Product performance, reliability, and manufacturing cost that are evaluated using simulations can be
brought to the cross-functional team for review. Product performance and reliability are checked
against product specifications that have been defined and have evolved from the beginning of the
product development process. Manufacturing cost derived from the virtual manufacturing simula-
tions can be added to product cost. The cross-functional team must address areas of concern
identified in product performance, reliability, and manufacturability, and it must identify a set of
design variables that influence these areas. Design modifications can then be conducted. In the past,
quality functional deployment (QFD) (Ertas and Jones 1993) was largely employed in design
modification to assign qualitative weighting factors to product performance and design changes.
e-Design employes a systematic and quantitative approach to design modifications (for example,
Yu et al. 1997).

1.3.5.1 Design problem formulation
Before a design can be improved, design problems must be defined. A design problem is often
presented in a mathematical form, typically as

Minimize 4ðbÞ (1.4a)

FIGURE 1.10 Hierarchical Product Models Evolved Through the e-Design Process.
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Subject to

jiðbÞ � ju
i i ¼ 1; m (1.4b)

PfjðbÞ � Pu
fj

j ¼ 1; n (1.4c)

blk � bk � buk k ¼ 1; p (1.4d)

where

4(b) is the objective (or cost) function to be minimized
ji(b) is the ith constraint function that must be no greater than its upper bound ju

i
Pfj(b) is the jth failure probability index that must be no greater than its upper bound Pu

fj
b is the vector of design variables
bk
l and bk

u are the lower and upper bounds of the design variable bk, respectively.

Note that in e-Design design variables are usually associated with dimensions of geometric features
and part material properties in the parameterized CAD models. The feature-based design parameters
serve as the common language to support the cross-functional team while conducting parametric study
and design trade-offs.

1.3.5.2 Design sensitivity analysis
Before quantitative design decisions can be made, there must be a design sensitivity analysis (DSA)
that computes derivatives of performance measures, including product performance, failure proba-
bility, and manufacturing cost, with respect to design variables. Dependence of performance measures
on design variables is usually implicit. How to express product performance in terms of design var-
iables in a mathematical form is not straightforward. Analytical DSA methods combined with nu-
merical computations have been developed mainly for structural responses (Haug et al. 1986) and
fatigue and fracture (Chang et al. 1997). DSA for failure probability with respect to both deterministic
and random variables has also been developed (Yu et al. 1997). In addition, DSA and optimization
using meshless methods have been developed for large-deformation problems (Grindeanu et al. 1999).
More details about the analytical DSA for structural responses also referred to Haug et al. (1985).

For problems such as motion and manufacturing cost, where premature or no analytical DSA
capability is available, the finite difference method is the only choice. The finite difference method is
expressed in the following equation:

vj

vbj
z

jðbþ DbjÞ � jðbÞ
Dbj

(1.5)

where Dbj is a perturbation in the jth design variable. With sensitivity information, parametric study
and design trade-offs can be conducted for design improvements at the concept and detail stages,
respectively.

1.3.5.3 Parametric study
A parametric study that perturbs design variables in the product design model to explore various design
alternatives can effectively support product concept designs. The parametric study is simple and easy to
perform as long as the mapping between CAD and simulationmodels has been established. The mapping
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supports fast simulation model generation for performance analyses. It also supports DSA using the
finite difference method. The parametric study is possible for concept design because the number of
design variables to perturb is usually small. A spreadsheet with a proper formula defined among cells is
well suited to support the parametric study. The use of Microsoft Excel is illustrated in Figure 1.11.

1.3.5.4 Design trade-off analysis
With design trade-off analysis, the design engineer can find the most appropriate design search
direction for the design problem formulated in Eq. 1.4, using four possible algorithms:

• Reduce cost.
• Correct constraint neglecting cost.
• Correct constraint with a constant cost.
• Correct constraint with a cost increment.

As a general rule, the first algorithm, reduce cost, can be chosen when the design is feasible; in
other words, all constraint functions are within the desired limits. When the design is infeasible,
generally one may start with the third algorithm, correct constraint with a constant cost. If the design
remains infeasible, the fourth algorithm, correct constraint with a cost incrementdsay 10%dmay

FIGURE 1.11 Spreadsheet for Parametric Study and Design Trade-offs.
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be appropriate. If a feasible design is still not found, the second algorithm, correct constraint
neglecting cost, can be selected. A quadratic programming (QP) subproblem can be formulated to
numerically find the search direction that corresponds to the algorithm selected.

An ε-active constraint strategy (Arora 1989), shown in Figure 1.12, can be employed to support
design trade-offs. The constraint functions in Eq. 1.4 are normalized by

yi ¼ ji

ju
i

� 1 � 0; i ¼ 1;m (1.6)

When yi is between CT (usually 0.03) and CTMIN (usually 0.005), it is activedthat is,
ε ¼ jCT j þ CTMIN, as illustrated in Figure 1.12. When yi is less than CT, the constraint function is
inactive or feasible. When yi is larger than CTMIN, the constraint function is violated. A QP sub-
problem can be formulated to find the search direction numerically corresponding to the option
selected. For example, the QP subproblem for the first algorithm (cost reduction) can be formulated as

Minimize cTd þ 0:5 dTd

Subject ATd � y

bL � bðkÞ � d � bU � bðkÞ
(1.7)

where

c ¼ ½c1; c2;.; cn1þn2�T ; ci ¼ v4=vbi

d is the search direction to be determined.

Aij ¼ vPyi=vbj; b ¼ ½b1; b2;.bn�T

k is the current design iteration.
The objective of the design trade-off algorithm is to find the optimal search direction d under a

given circumstance. Details are discussed in Design Theory and Methods using CAD/CAE, a book in
The Computer Aided Engineering Design Series.

1.3.5.5 What-if study
After the search direction d is found, a number of step sizes a can be used to perturb the design
along the direction d. Objective and constraint function values, represented as ji, at a perturbed design

FIGURE 1.12 ε-Active Constraint Strategy.
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b þ ad can be approximated using the first-order sensitivity information of the functions by Taylor
series expansion about the current design b without going through simulations; that is,

jiðbþ adÞzjiðbÞ þ
vji

vb
ad: (1.8)

Note that since there is no analysis involved, the what-if study can be carried out very efficiently. This
allows the design engineer to explore design alternatives more effectively.

Once a satisfactory design is identified, after trying out different step sizes a in an approximation
sense, the design model can be updated to the new design and then simulations of the new design can
be conducted. Equation 1.8 also supports parametric study, in which the design perturbation db is
determined by engineers based on sensitivity information. To ensure a reasonably accurate function
prediction using Eq. 1.8, the step sizes must be small so that the perturbation vji=ðvbÞðadÞ is, as a rule
of thumb, less than 10% of the function value ji(b).

1.4 Physical prototyping
In general, two techniques are suitable for fabricating physical prototypes of the product in the design
process: rapid prototyping (RP) and computer numerical control (CNC) machining. RP systems, based
on solid freeform fabrication (SFF) technology (Jacobs 1994), fabricate physical prototypes of the
structure for design verification. The CNC machining fabricates functional parts as well as the mold or
die for mass production of the product.

1.4.1 Rapid prototyping
The Solid Freeform Fabrication (SFF) technology, also called Rapid Prototyping (RP), is an additive
process that employs a layer-building technique based on horizontal cross-sectional data from a 3D
CAD model. Beginning with the bottom-most cross-section of the CAD model, the rapid prototyping
machine creates a thin layer of material by slicing the model into so-called 2½ D layers. The system
then creates an additional layer on top of the first based on the next higher cross-section. The process
repeats until the part is completely built. It is illustrated using an engine case in the example shown in
Figure 1.13. Rapid prototyping systems are capable of creating parts with small internal cavities and
complex geometry.

Most important, SFF follows the same layering process for any given 3D CAD models, so it
requires neither tooling nor manufacturing process planning for prototyping, as required by conven-
tional manufacturing methods. Based on CAD solid models, the SFF technique fabricates physical
prototypes of the product in a short turnaround time for design verification. It also supports tooling for
product manufacturing, such as mold or die fabrications, through, for example, investment casting
(Kalpakjian 1992).

Note that there are various types of SFF systems commercially available, such as the SLA� 7000
and Sinterstation� by 3D Systems (Figures 1.14a and 1.14b). In this chapter, the Dimension 1200 sst�

machine (www.stratasys.com), as shown in Figure 1.14c, is presented. More details about it as well as
other RP systems will be discussed in Product Manufacturing and Cost Estimating using CAD/CAE,
a book in The Computer Aided Engineering Design Series.
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FIGURE 1.13 SFF: Layered Manufacturing: (a) 3D CAD Model, (b) 2-1/2D Slicing, and (c) Physical Model.

FIGURE 1.14 Commercial RP systems: (a) 3D Systems’ SLA 7000, (b) SinterStation 2500, (c) Stratasys Inc.’s

Dimension 1200 sst.

Sources: (b) 3D Systems Corporation, USA; (c) Stratasys Ltd.
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The CAD solid model of the product is first converted into a stereolithographic (STL) format
(Chua and Leong 1998), which is a faceted boundary representation uniformly accepted by the in-
dustry. Both the coarse and refined STL models of an engine case are shown in Figure 1.15. Even
though the STL model is an approximation of the true CAD geometry, increasing the number of
triangles can minimize the geometric error effectively. This can be achieved by specifying a smaller
chord length, which is defined as the maximum distance between the true geometric boundary and the
neighboring edge of the triangle. The faceted representation is then sliced into a series of 2D sections
along a prespecified direction. The slicing software is SFF-system dependent.

The Dimension 1200 sst employs fused deposition manufacturing (FDM) technology. Acrylonitrile
butadiene styrene (ABS) materials are softened (by elevating temperature), squeezed through a nozzle
on the print heads, and laid on the substrate as build and support materials, respectively, following the
2D contours sliced from the 3D solid model (Figure 1.16). Note that various crosshatch options are

FIGURE 1.15 STL Engine Case Models: (a) Coarse and (b) Refined.

FIGURE 1.16 Crosshatch Pattern of a Typical Cut-out Layer: (a) Overall and (b) Enlarged.
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available in CatalystEX� software (www.dimensionprinting.com), which comes with the rapid pro-
totyping system.

The physical prototypes are mainly for the cross-functional team to verify the product design and
check the assembly. However, they can also be used for discussion with marketing personnel to
develop marketing ideas. In addition, the prototypes can be given to potential customers for feedback,
thus bringing customers into the design loop early in product development.

1.4.2 CNC machining
The machining operations of virtual manufacturing, such as milling, turning, and drilling, allow de-
signers to plan the machining process, generate the machining toolpath, visualize and simulate
machining operations, and estimate machining time. Moreover, the toolpath generated can be con-
verted into CNC codes (M-codes and G-codes) (Chang et al. 1998, McMahon and Browne 1998) to
fabricate functional parts as well as a die or mold for production.

For example, the cover die of a mechanical part is machined from an 8 in. � 5.25 in. � 2 in. steel
block, as shown in Figure 1.17a. The cutter location data files generated from virtual machining are
post-processed into machine control data (MCD)dthat is, G- and M-codes, for CNC machining, using
post-processor UNCX01.P11 in Pro/MFG. In addition to volume milling and contour surface milling,
drilling operations are conducted to create the waterlines. A 3-axis CNC mill, HAAS VF-series
(HAAS Automation, Inc. 1996), is employed for fabricating the die for casting the mechanical part
(Figure 1.17b).

FIGURE 1.17 Cover Die Machining: (a) Virtual and (b) CNC.
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1.5 Example: simple airplane engine
A single-piston, two-stroke, spark-ignition airplane engine (shown in Figure 1.5) is employed to
illustrate the e-Design paradigm and tool environment. The cross-functional team is asked to develop a
new model of the engine with a 30% increment in both maximum torque and horsepower at 1,215 rpm.
The design of the new engine will be carried out at two interrelated levels: system and component.
At the system level, the performance measure is the power output; at the component level, the
structural integrity and manufacturing cost of each component are analyzed for improvement. Note
that only a very brief discussion is provided in this introductory chapter. The computation and
modeling details are discussed in later chapters and Product Design Modeling using CAD/CAE, a book
in The Computer Aided Engineering Design Series.

1.5.1 System-level design
Power is proportional to the rotational speed of the crankshaft (N), the swept volume (Vs), and the
brake mean effective pressure (Pb) (Taylor 1985):

Wb ¼ Pb Vs N: (1.9)

The effective pressurePb applied on top of the piston depends on, among other factors, the swept volume
and the rotational speed of the crankshaft. The pressure is limited by the integrity of the engine structure.

Design variables at the system level include bore diameter (d46:0) and stroke, defined as the
distance between the top face of the piston at the bottom and top dead-center positions. In the CAD
model, the stroke is defined as the sum of the crank offset length (d6:6) and the connecting rod length
(d0:10), as shown in Figure 1.18. To achieve the requirement for system performance, these three

FIGURE 1.18 Engine Assembly with Design Variables at the System Level.
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design variables are modified as listed in Table 1.1. The design variable values were calculated
following theory and practice for internal combustion engines (Taylor 1985). Details of the compu-
tation can be found in Silva (2000).

The solid models of the entire engine are automatically updated and properly assembled using the
parametric relations established earlier (refer to Figure 1.6b). The change causes Pb to increase from
140 to 180 lbs, so the peak load increases from 400 to 600 lbs. The load magnitude and path applied to
the major load-carrying components, such as the connecting rod and crankshaft, are therefore altered.
Results from motion analysis show that the system performs well kinematically. Reaction forces
applied to the major load-carrying components are computeddfor example, for the connecting rod
shown in Figure 1.19. The change also affects manufacturing time for some components.

1.5.2 Component-level design
Structural performance is evaluated and redesigned to meet the requirements. In addition, virtual
manufacturing is conducted for components with significant design changes. Build materials (volume)
and manufacturing times constitute a significant portion of the product cost. In this section, the design
of the connecting rod is presented to demonstrate the design decision-making method discussed.

Because of the increased load transmitted through the piston and the increased stroke length, the
connecting rod can experience buckling failure during combustion. In addition, because changes in
stroke length, stiffness, and mass vary, the natural frequency of the rod may be different. Moreover,
load is repeatedly applied to the connecting rod, potentially leading to fatigue failure. Structural FEA
are conducted to evaluate performance. In addition, virtual manufacturing is carried out to determine
the machining cost of the rod.

Because of the increment of the connecting rod length (d0:10) and the magnitude of the external
load applied (see Figure 1.20), the rod’s maximum von Mises stress increases from 13,600 to 18,850
psi and the buckling load factor decreases from 33 to 7. The first natural frequency is 1,515 Hz. The
machining time estimated for the connecting rod is 13.2 minutes using hole-drilling and face-milling
operations (shown earlier in Figure 1.9d).

1.5.3 Design trade-off
The design trade-off method discussed in Section 1.3.5 is applied to the components, with significant
changes resulting from the system-level design. Only the design trade-off conducted for the connecting
rod is discussed.

Performance measures for the connecting rod, including buckling load factor, fatigue life, natural
frequency, volume, and machining costs (time), are brought together for design trade-off. Three design

Table 1.1 Changes in Design Variables at the System Level

Design Variable Current Value (in.) New Value (in.) Change (in.) % Change

Bore diameter (d46:0) 1.416 1.6 0.164 11.6

Crank length (d6:6) 0.5833 0.72 0.1567 26.9

Connecting rod length (d0:10) 2.25 2.49 0.24 10.7
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FIGURE 1.20 Engine Connecting Rod: (a) Original Design; (b) Changes at the System Level; (c) Changes at the

Component Level.

FIGURE 1.19 Dynamic Load Applied to the Connecting Rod.
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variables, f32, f31, and d7, are identified, as shown in Figure 1.20b. The objective is to minimize
volume and manufacturing time subject to maximum allowable von Mises stress, operating frequency,
and minimum allowable buckling load factor. The engine is designed to work at 21 kHz, and the
minimum allowable buckling load factor for the connecting rod is assumed to be 10.

Sensitivity coefficients for performance and cost measures with respect to design variables are
calculated (refer to Figure 1.11) using the finite difference method. Design trade-offs are conducted
followed by a what-if study. When a satisfactory design is found, the solid model of the rod is updated
for performance evaluation and virtual manufacturing. This process is repeated twice when all the
requirements are met. The design change is summarized in Tables 1.2 and 1.3, which show that the
machining time is maintained and a small volume increment is needed to achieve the required
performance.

Table 1.2 Changes in Design Variables at the Component Level

Design Variable Current Value (in.) New Value (in.) % Change

Diameter of the large hole (f32) 0.50 0.55 10

Diameter of the small hole (f31) 0.334 0.32728 �2.01

Thickness (d7) 0.25 0.31484 25.9

Table 1.3 Changes in Performance Measures at the Component Level

Performance Measure Current Value New Value % Change

VM stress 18.9 ksi 10.5 ksi �44.4

Buckling load factor 7.1 14.2 100

Volume 0.438813 in.3 0.5488 in.3 25.1

Machining time 13.2 min 13.2 min 0

Natural frequency 1515 Hz 1840 Hz 21.5

FIGURE 1.21 Physical Prototypes of Engine Parts.
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1.5.4 Rapid prototyping
When the design is finalized through virtual prototyping, rapid prototyping is used to fabricate a
physical prototype of the engine, as shown in Figure 1.21. The prototype can be used for design
verification as well as tolerance and assembly checking.

1.6 Example: High-mobility multipurpose wheeled vehicle
The overall objective of the high-mobility multipurpose wheeled vehicle (HMMWV) design is to
ensure that the vehicle’s suspension is durable and reliable after accommodating an additional armor
loading of 2,900 lb. A design scenario using a hierarchical product model (see Figure 1.10) that
evolves during the design process is presented in this section.

In the preliminary design stage, vehicle motion is simulated and design changes are performed to
improve the vehicle’s gross motion. At this stage, the dynamic behavior of the HMMWV’s suspension
is simulated and designed. The specific objectives of the preliminary design are to avoid the problem of
metal-to-metal contact in the shock absorber due to added armor load, and to improve the driver’s
comfort by reducing vertical acceleration at the HMMWV driver’s seat.

By modifying the spring constant to improve the HMMWV suspension design at the preliminary
design stage, the load path generated in HMMWV dynamics simulation is affected in the suspension
unit. In the detail design stage, the objective is to assess and redesign the durability, reliability, and
structural performance of selected suspension components affected by the added armor load that result
in changes in load path and load magnitude.

Note that only a very brief discussion is provided in this introductory chapter. The computation and
modeling details are discussed in later chapters.

1.6.1 Hierarchical product model
In this particular case, a hierarchical product model is employed to support the HMMWV’s design. In
all models, nonsuspension parts, such as instrument panel, seats, and lights, are not modeled.
Important vehicle components, such as engine and transmission, are modeled using engineering
parameters without depending on CAD representation. A low-fidelity CAD model consisting of 18
parts (Figure 1.22) is created using Pro/ENGINEER to support the preliminary design. This model has
accurate joint definition and fairly accurate mass property, but less accurate geometry. The goal of the

FIGURE 1.22 HMMWV CAD Model for Preliminary Design.
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low-fidelity model is to support vehicle dynamic simulation. It is created using substantially less effort
compared to that required for the detailed model.

The detailed product model, consisting of more than 200 parts and assemblies (Figure 1.23), is
created to support the detail design of suspension components. The detailed model is derived from the
preliminary model by (1) breaking an entity into more parts and assemblies (e.g., the gear hub as-
sembly, shown in Figure 1.24) to simulate and design detailed parts, and (2) refining the geometry of
mechanical components to support structural FEA (e.g., the lower control arm, shown in Figure 1.25).

1.6.2 Preliminary design
The HMMWV is driven repeatedly on a virtual proving ground, as shown in Figure 1.26, with a
constant speed of 20 MPH for a period of 23 seconds. A dynamic simulation model, shown in
Figure 1.27, is first derived from the low-fidelity CAD solid model of the HMMWV (refer to
Figure 1.22). A more in-depth discussion of the HMMWV vehicle dynamic model is provided in
Chapter 3.

FIGURE 1.23 HMMWV CAD Model for Detail Design.

FIGURE 1.24 HMMWV gear hub Assembly Models: (a) Preliminary and (b) Detailed.
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FIGURE 1.25 HMMWV Lower Control Arm Models: (a) Preliminary and (b) Detailed.

FIGURE 1.26 HMMWV Dynamic Simulation.

FIGURE 1.27 HMMWV Dynamic Model.
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Using DADS, severe metal-to-metal contact is identified within the shock absorber, caused by the
added armor load and rough driving conditions, as shown in Figure 1.28. The spring constant is
adjusted to avoid any contact problems; it is increased in proportion to the mass increment of the added
armor to maintain the vehicle’s natural frequency. This design change not only eliminates the contact
problem (see Figure 1.28) but also reduces the amplitude of vertical acceleration at the driver’s seat,
which improves driving comfort (see Figure 1.29). However, the change alters the load path in the
components of the suspension subsystemdfor example, the shock absorber force acting on the control
arm increases about 75%, as shown in Figure 1.30.

FIGURE 1.28 Shock Absorber Operation Distance (in inches).

FIGURE 1.29 HMMWV Driver Seat Vertical Accelerations (in./sec2).
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1.6.3 Detail design
Simulations are carried out for fatigue, vibration, and buckling of the lower control arm (Figure 1.30);
reliability of gears in the gear hub assembly (refer to Figure 1.24b); the spring of the shock absorber
(see Figure 1.23); and the bearings of the control arm (see Figure 1.30).

Using ANSYS, the first natural frequency of the lower control arm is obtained as 64 Hz,
which is far away from vehicle vibration frequency, eliminating concern about resonance. The
buckling load factor is analyzed using the peak load at time 10.05 seconds in the 23-second simu-
lation period. The result shows that the control arm will not buckle even under the most severe load.
Therefore, the current design is acceptable as far as buckling and resonance of the lower control arm
are concerned.

Results obtained from fatigue analyses show that fatigue life (crack initiation) of the lower
control arm degrades significantlydfor example, from 6.61Eþ09 to 1.79Eþ07 blocks (one
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block is 20 seconds) at critical areas (see Figure 1.31b)dbecause of the additional armor load and
change of load path. Therefore, the design must be altered to improve control arm durability.
Reliability of the bearing, gear, and spring at a 99% fatigue failure rate is 2.18Eþ07, 3.36Eþ06, and
1.27Eþ02 blocks, respectively. Note that the fatigue life of the spring at the required reliability is
not desirable.

1.6.4 Design trade-off
Eleven design parameters, including geometric dimensions (d1 and d2 in Figure 1.32a), material
property (cyclic strength coefficient K0 of the lower control arm), and thickness of the control arm sheet
metal (t1 to t7 in Figure 1.32b) are defined to support design modification.

A global design trade-off that involves changes in more than one component is conducted first.
Geometric design parameters d1 and d2 are modified to reduce loads applied to the control arm,
bearing, spring, and gears in the gear hub so that the durability and reliability of these components
can be improved. Changes in d1 and d2 affect not only the lower control arm but also the upper
control arm and the chassis frame. Sensitivity coefficients of loads at discretized time steps (a total
of 10 selected time steps) with respect to parameters d1 and d2 are calculated using a finite dif-
ference method. Sensitivity coefficients can be displayed in bar charts (see Figure 1.33a) to guide
design modifications. Awhat-if study is carried out with a design perturbation of 0.6 and 0.3 in. for d1
and d2, respectively, to obtain a reduction in loads. An example of the what-if results is shown in
Figure 1.33b.

A local design trade-off that involves design parameters of a single component is carried
out for the lower control arm. Thickness design parameters t1 to t7 and the material design
parameter K0 are modified to increase the control arm’s fatigue life. Fatigue life at ten nodes of its
finite element model in the critical area is measured. Sensitivity coefficients of control arm fatigue
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FIGURE 1.31 HMMWV Lower Control Arm Models: (a) Finite Element and (b) Fatigue Life Prediction.
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life at these nodes with respect to the thickness and material parameters are calculated. A design
trade-off method using a QP algorithm is employed because of the large number of design param-
eters and performance measures involved. An improved design obtained shows that with a 0.6%
weight increment, fatigue life at the critical area increases about ten times: from 1.79 Eþ07 to 1.68
Eþ08 blocks.

A dynamic simulation is performed again with the detailed model and modified design to ensure
that the metal contact problem, encountered in the preliminary design stage, is eliminated as a result of
model refinement and design changes in the detail design stage. The global design trade-off reduces
the load applied to the shock absorber spring. This reduction significantly increases the spring fatigue
life to the desired level.
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FIGURE 1.33 Sensitivity of Load on the Spherical Joint of Control Arm w.r.t d2 at 10 Time Steps (a) Design

Sensitivity Display and (b) What-if Study.

34 CHAPTER 1 Introduction to e-Design



1.7 Summary
In this chapter, the e-Design paradigm and software tool environment were discussed. The e-Design
paradigm employs virtual prototyping for product design and rapid prototyping and computer
numerical control (CNC) for fabricating physical prototypes of a design for design verification and
functional tests. The e-Design paradigm offers three unique features:

• The VP technique, which simulates product performance, reliability, and manufacturing costs;
and brings these measures to design.

• A systematic and quantitative method for design decision making for the parameterized product
in solid model forms.

• RP and CNC for fabricating prototypes of the design that verify product design and bring
marketing personnel and potential customers into the design loop.

The e-Design approach holds potential for shortening the overall product development cycle, improving
product quality, and reducing product costs. With intensive knowledge of the product gained from
simulations, better design decisions can be made, thereby overcoming what is known as the design
paradox. With the advancement of computer simulations, more hardware tests can be replaced by
them, reducing cost and shortening product development time. Manufacturing-related issues can be
largely addressed through virtual manufacturing in early design stages. Moreover, manufacturing
process planning conducted in virtual manufacturing streamlines the production process.

Questions and exercises

1.1. In this assignment, you are asked to search and review articles (such as in Mechanical
Engineeringmagazine) that document successful stories in industry that involve employing the
e-Design paradigm and/or employing CAD/CAE/CAM technology for product design.
• Briefly summarize the company’s history and its main products.
• Briefly summarize the approach and process that the company adopted for product

development in the past.
• Why must the company make changes? List a few factors.
• Which approach and process does the company currently employ?
• What is the impact of the changes to the company?
• In which journal, magazine, or website was the article published?

1.2. In this chapter we briefly discussed rapid prototyping technology and the Dimension 1200 sst
machine. The sst uses fused deposition manufacturing technology for support of layer
manufacturing. Search and review articles to understand the FDM technology and machines
that employ such technology other than the Dimension series.
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Sources

Adams: www.mscsoftware.com
ANSYS: www.ansys.com
CAMWorks: www.camworks.com
CatalystEX: www.dimensionprinting.com
LMS DADS: http://lsmintl.com
Dimension sst: www.stratasys.com
HAAS VF-Series: www.haascnc.com
HyperMesh: www.altairhyperworks.com
LS-DYNA: www.lstc.com
MSC/Nastran, MSC/Patran: www.mscsoftware.com
nCode: www.ncode.com
NESSUS: www.nessus.swri.org
Pro/ENGINEER, Pro/MECHANICA, Pro/MFG, Pro/SHEETMETAL, Pro/WELDING, etc.:
www.ptc.com
SLA-7000, Sinterstation: www.3dsystems.com
SolidWorks Motion, SolidWorks Simulation: www.solidworks.com
SYSNOISE 5.0: www.lmsintl.com/SYSNOISE
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Virtual prototyping is becoming a cornerstone in modern product development. In e-Design, product
design is first realized in computer-aided design (CAD) solid model form as parts and assemblies.
The CAD solid model describes a geometric shape and physical properties that are essential for
support of the product design, particularly product performance evaluation, virtual manufacturing,
and cost estimating. The CAD solid model must be also properly parameterized in order for
the design team to explore design alternatives for better product performance and hopefully lesser
cost.

Most CAD software employs a geometric modeling kernel, such as Parasolid or ACIS, which is the
library of core mathematical functions that define and store three-dimensional (3D) solid objects, for
support of product modeling. In solid modeling, geometry is formed as a combination of constituent
solid objects (more specifically solid features), which are created mostly by sketching a two-
dimensional (2D) profile, composed of line or curve entities and protruding the profile for a solid
object. While protruding the profile for a solid object, the trace of the line or curve entities forms
boundary surfaces that wrap the solid object.

Therefore, before getting into the solid modeling and CAD theories, it is indispensable for
readers to acquire a fundamental knowledge in curves and surfaces, which are often referred to as
geometric modeling. This chapter focuses on introducing basic topics in geometric modeling,
including curves, surfaces, and geometric transformations that are required for transforming
geometric entities to meet specific needs. We assume readers who have used CAD software for
creating solid models, but have no or little background in geometric modeling (and CAD theory).
Therefore, instead of focusing on the use of CAD software, we focus more on understanding the
selected topics in geometric modeling (and CAD theories in the next chapter). These topics are
essential and relevant for readers to gain more in-depth understanding in behind-the-scenes op-
erations while using CAD software. For a more comprehensive discussion on geometric modeling,
readers are referred to excellent books, such as Mortenson (2006).

In this chapter, we provide fairly thorough discussions on parametric representations for the basic
curves and surfaces that are widely employed in geometric modeling. Such curves and surfaces include
Hermit curve, Coons patch, Bézier curves and surfaces, B-spline curves and surfaces, and nonuniform
rational B-spline (NURB) curves and surfaces that are considered to be the most versatile and general
form for representing geometric entities. We also discuss surfaces generated by protruding
sketch profiles in CAD, such as cylindrical, ruled, revolved, sweep, and loft. In addition, we discuss
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geometric transformations, including scaling, translation, and rotation, which are commonly employed
to manipulate geometric entities to meet specific modeling needs.

This chapter is essentially a prelude to the subjects that are more directly relevant to product design
modeling, such as CAD theories, parameterization, product data exchanges, and so forth, which are
discussed next in this book. Overall, the objective of this chapter is to provide an introduction to the
parametric representations for curves and surfaces that help readers understand how the geometric
models are defined mathematically.

2.1 Introduction
Geometric modeling is in general considered as a branch of applied mathematics and computational
geometry that studies methods and algorithms for the mathematical description of shapes that
represent geometry of objects. Geometric modeling has been an important and interesting subject for
many years from the purely mathematical and computer science viewpoint, and also from the
standpoint of engineering and various other applications, such as CAD/CAM (computer-aided
manufacturing), entertainment, animation, and multimedia. Our interest is certainly in CAD/CAM,
especially product modeling in CAD, in which objects are constructed by first creating curves and
surfaces before reaching a solid model. Geometric modeling is indeed the backbone of a CAD system.
It deserves our attention because understanding geometric modeling technique is a key step in learning
CAD, especially for understanding its behind-the-scenes operations. With a solid background in
geometric modeling, it should be easier for you to learn to use CAD software, avoid potential pitfalls,
and be able to diagnose problems encountered in solid modeling.

Before getting into the discussion, a few points must be kept in mind. First, geometric modeling is
only a means, not the goal, in engineering. In engineering design, analysis, and manufacturing,
product geometry with an adequate level of details must be available. This is especially true in the
e-Design paradigm, in which product design is refined with significant geometric details as the
development process gets into later stages. Geometric modeling provides the fundamental means in
representing design with the needed level of details that supports engineering design in various
stages.

This chapter attempts to help you understand how modeling is carried out on a computer. To
support creating geometric models on a computer, computational algorithms must be implemented
on computer systems. Traditional mathematical methods learned in high school mathematical
courses are based upon continuous functions, and computer systems do not generally work this
way; they are discrete beasts. Thus, in the early 1970s, it was recognized that we could not
represent curves by a general continuous function but must represent them as discrete entities. It is
the reduction of these continuously defined mathematical objects to a more discrete representation
that has motivated the field of geometric modeling. In any case, the mathematical representations
of curves and surfaces are essential, to say the least.

This chapter focuses on the discussion of mathematical representations of curves and surfaces, as
well as the transformation of these geometric entities for various modeling purposes, such as scaling,
rotation, and translation. We provide fairly thorough discussions on parametric representations for the
most basic and popular curves and surfaces in Sections 2.2 and 2.3, respectively. Such curves and
surfaces include the Hermit curve, Coons patch, Bézier curves and surfaces, B-spline curves and
surfaces, and NURB curves and surfaces, which are considered to be the most versatile and general
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forms for representing geometric entities. In addition to the basic surfaces, we include surfaces
generated by CAD in Section 2.4. In CAD, we sketch a profile and protrude it for a surface (or solid).
The protrusion capabilities commonly available in CAD include extrusion, blend (or loft), revolve, and
sweep. The mathematical representations of these surfaces are presented together with Matlab scripts
that graph them for visualization. We also include the discussion of geometric transformations in
Section 2.5. Finally, in Section 2.6, we include case studies that showcase the applications of geo-
metric modeling to practical applications, which include curve fitting and surface skinning techniques,
and applications of the techniques to practical modeling examples.

2.2 Parametric curves
Typically, in high school mathematics or trigonometry, a curve is presented as a graph of a function
f(x), as shown in Figure 2.1a. As x is varied, y¼ f(x) is computed by the function f, and the pair of
coordinates (x,y) sweeps out the curve. This is called the explicit form of the curve representation.

In addition to the explicit form, a geometric curve can be presented in an implicit form as F(x,y)¼
0. For example, a circle of radius r and center at (a,b) in a Cartesian coordinate system x–y, shown in
Figure 2.1b, can be written as

Fðx; yÞ ¼ ðx� aÞ2 þ ðy� bÞ2 � r2 ¼ 0: (2.1)

In addition to a circle, a number of basic Conic curves shown in Figure 2.2 are commonly found in
describing geometry of mechanical parts. They are all quadratic functions in two variables represented
in the Cartesian coordinate system as an implicit form. As shown in Figure 2.2, the graph of them is
always a conic section.

Is CAD using such mathematical forms, either the explicit form y¼ f(x) or the implicit form
F(x,y)¼ 0, to represent curves (or surfaces) and carry out computations internally? The answer is
generally no.

From a design perspective, such forms are inadequate in several ways. If we take the circle shown
in Figure 2.1b as an example, the implicit form is inconvenient for computing points on the curve. For
example, consider a circle defined as F(x,y)¼ (x� 1)2þ(y� 2)2� 12¼ 0. If one chooses x¼ 3, then
(y� 2)2þ 3¼ 0 does not have a real solution for y, implying that the vertical line x¼ 3 does not
intersect with the circle. Also, the implicit form may not be a single-valued function when there is a
solution. As shown in Figure 2.3a, the curve is not single-valued along lines that are inside the circle

x

y = f(x)

(a) (b)

x

y r

(a, b)

FIGURE 2.1 A Curve Representation. (a) An Explicit Function y[ f(x). (b) An Implicit Form F(x,y)[ 0.
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and are parallel to the y axis. Also, it is cumbersome to transform, such as to rotate geometric curves
represented in such forms. For example, as shown in Figure 2.3b, writing an explicit or implicit
function for the 90�-circular arc that is rotated a –a angle along the y-axis is not straightforward, to say
the least.

CAD relies on parametric forms to describe curves and surfaces. What is a parametric curve? Is the
equation we are familiar with, (x� a)2þ (y� b)2¼ r2, representing a circle shown in Figure 2.1b, a
parametric curve? The answer is no. What about representing the same circle in a polar coordinate
system? For example, a circle of radius r and center point (a,b) can be written in a polar coordinate
form as the following:

x ¼ aþ r cosq

y ¼ bþ r sinq; and q˛ ½0; 2p�
(2.2)

Is Eqn (2.2) parametric? Yes, it is one of the parametric forms, in which x and y are decoupled and are
separately represented in respective trigonometric functions in terms of the common parameter q. In
this case, the angle varying between 0 and 2p.

In general, a parametric curve that lies on an x–y plane is defined by two functions, x(u) and y(u),
which use the parameter u. x(u) and y(u) are coordinate functions since because their values

x

The circle has two
values along this line

(a) (b)
x2 + y2 = r2

F(x, y, z) = ?α

r x

y

z

y = f(x)

FIGURE 2.3 A Circle of Radius r and Center at (a,b). (a) In a Cartesian Coordinate System. (b) In a Polar

Coordinate System.
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Hyperbola
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parabola

hyperbola

x2 + y2 = a2

y2 = 4ax

x2 y2

a2 b2
+ = 1

x2 y2

a2 b2
– = 1

FIGURE 2.2 Conic Curve Representations.

2.2 Parametric curves 43



represent the coordinates of points on the curve. As u varies, the coordinates (x(u), y(u)) sweep out
the curve.

In general, CAD deals primarily with polynomial or rational functions (made by dividing one
polynomial by another) and less on trigonometric functions like those in Eqn (2.2). For example, the
circle can also be given by allowing u to vary from �N to þN in the following functions:

xðuÞ ¼ 2u

1þ u2

yðuÞ ¼ 1� u2

1þ u2

(2.3)

Both Eqns (2.2) and (2.3) yield circles, so how do they differ? It is the curve parameterization. The
motion of the point (x(u), y(u)) is different, even if the paths (the circles) are the same.

A good physical model for parametric curves is that of a moving particle. The parameter u rep-
resents time. At any time u, the position of the particle is (x(u), y(u)). Two paths (or parametric curves)
may be identical even though the motion (or parameterization) is different.

In general, a planar or spatial curve P(u) can be represented in parametric forms, respectively, as
follows:

PðuÞ ¼ �PxðuÞ; PyðuÞ
�
1�2

; u˛ ½0; 1�; and

PðuÞ ¼ �PxðuÞ; PyðuÞ; PzðuÞ
�
1�3

; u˛ ½0; 1�
(2.4)

where u is the parameter, usually in [0,1]. Parametric curves are suitable for modeling curves in CAD.
As shown in Eqn (2.4), coordinates of the curves x and y (and z) are decoupled and represented
independently by their respective functions, usually explicit, in terms of a single parameter u. When a u
value is specified, the coordinates of the curve can always be evaluated using Eqn (2.4). Also, the curve
transformations can be easily taken care of by transforming characteristic points of the curve instead of
the functions, which will be discussed more in Section 2.5.

In this section, we discuss parametric curves, both polynomial and rational. We will start with a
simple straight line, quadratic curves, cubic curves, B-splines, and then rational curves. We assume
spatial curves. Planar curves can be easily obtained by removing Pz(u) (the z-component) of the curve
equations. Some of the detailed derivations are either left as exercises or presented in appendices.

2.2.1 Straight line
A straight line shown in Figure 2.4 can be defined in a parametric form as a linear function of u as

PðuÞ ¼ �PxðuÞ; PyðuÞ; PzðuÞ
�
1�3

¼ ð1� uÞP0 þ uP1; u˛ ½0; 1� (2.5)

where P0¼ [P0x, P0y, P0z]1�3 and P1¼ [P1x, P1y, P1z]1�3 are the start and end points of the line,
respectively. When u is 0, P(u)¼ P(0)¼ P0, and when u¼ 1, P(u)¼ P(1)¼ P1.

Note that Eqn (2.5) can be derived in a more formal way. For a straight line, its coordinates can be
represented by a liner function in u, in which u˛ [0,1]:

PxðuÞ ¼ a1xuþ a0x
PyðuÞ ¼ a1yuþ a0y
PzðuÞ ¼ a1zuþ a0z

(2.6)

44 CHAPTER 2 Geometric Modeling



x

y
u = 1

u = 1

u = 0

z

y

x

P1x

P1

P0
P1y

P0x

P0

P1

P0y
u = 0

u u

(a) (b)

FIGURE 2.4 A Straight Line Defined by Its Start and End Points. (a) Planar. (b) Spatial.

where a1x, a1y, a1z, a0x, a0y, and a0z are unknown coefficients to be determined by the locations of start
and end points P0 and P1. Rewriting Eqn (2.6) in a matrix form, we have

PðuÞ ¼ ½ u 1 �1�2

�
a1x a1y a1z
a0x a0y a0z

�
2�3

¼ U1�2 A2�3 (2.7)

where matrix A contains the unknown coefficients.
By plugging u¼ 0 and u¼ 1 into Eqn (2.7), we have respectively P(0)¼ P0¼ [0 1] A, and P(1)¼

P1¼ [1 1] A.
By rewriting the above equations in a matrix form, we have�

Pð0Þ
Pð1Þ

�
2�3

¼
�
P0

P1

�
2�3

¼
�
0 1
1 1

�
2�2

A2�3 (2.8)

where P0 and P1 must be known in order to define the straight line. From Eqn (2.8), the matrixA can be
obtained by

A ¼
�
0 1
1 1

��1�
P0

P1

�
¼
��1 1

1 0

��
P0

P1

�
: (2.9)

Hence, from Eqn (2.7), we have

PðuÞ ¼ UA ¼ ½ u 1 �
��1 1

1 0

��
P0

P1

�
¼ ð1� uÞP0 þ uP1 (2.10)

where (1� u) and u are so-called basis functions associated with the characteristic points (in this case,
the start and end points P0 and P1) of the straight line. The parametric curve equations for other
polynomials can be derived in the same way.

2.2.2 Quadratic curves
A quadratic curve can be created by three distinct pointsdP0, P1, and P2, as shown in Figure 2.5a.
Such a curve is called spline curve. In addition to a spline curve, a quadratic curve can be defined by
two end points and a vector (Figure 2.5b), and by three control points forming a control polygon that
encloses a Bézier curve (shown in Figure 2.5c), among others.
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FIGURE 2.5 Quadratic Curves Defined by (a) Three Distinct Points (Spline Curve), (b) Two End Points and a

Vector, and (c) Three Control points (Bézier Curve).

Similar to Eqn (2.7), a quadratic curve can be written in the following parametric form:

PðuÞ ¼ � u2 u 1
�
1�3

2
4 a2x a2y a2z
a1x a1y a1z
a0x a0y a0z

3
5
3�3

¼ U1�3A3�3 (2.11)

where matrix A contains 9 (3�3) unknown coefficients.

2.2.2.1 Spline curvedthree points
For a quadratic spline curve, we assume the three distinct points are P0¼ P(0), P1¼ P(½), and
P2¼ P(1). Note that P1 does not have to be located at u¼½.

By plugging u¼ 0, u¼½, and u¼ 1 into Eqn (2.11), we have respectively P(0)¼ P0¼ [0 0 1] A,
P(½)¼ P1¼ [¼½ 1] A, and P(1)¼ P2¼ [1 1 1] A.

By rewriting the above equations in a matrix form, we have2
66664

Pð0Þ
P
�
1 =

2

�
Pð1Þ

3
77775
3�3

¼
2
4P0

P1

P2

3
5
3�3

¼

2
664
0 0 1

1

4

1

2
1

1 1 1

3
775A3�3 (2.12)

where P0, P1, and P2 are known. The matrix A can be obtained by

A ¼

2
6664
0 0 1

1

4

1

2
1

1 1 1

3
7775
�12
64
P0

P1

P2

3
75 ¼

2
64

2 �4 2

�3 4 �1

1 0 0

3
75
2
64
P0

P1

P2

3
75: (2.13)

Hence from Eqn (2.11), we have

PðuÞ ¼ UA ¼ � u2 u 1
�24 2 �4 2

�3 4 �1
1 0 0

3
5
2
4P0

P1

P2

3
5 ¼ UNsGs ¼ BsGs (2.14)
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whereNs is a constant 3�3 matrix for any given quadratic spline curve for which P1 is at u¼½, and Bs

is the 1�3 vector of the basis functions (also called blending functions); that is,

BsðuÞ ¼ UNs ¼ � u2 u 1
�264

2 �4 2

�3 4 �1

1 0 0

3
75

¼ �2u2 � 3uþ 1; �4u2 þ 4u; 2u2 � u
� ¼ �Bs

0ðuÞ
�
; Bs

1ðuÞ
�
; Bs

2ðuÞ
� (2.15)

which are plotted in Figure 2.6a. Note that the superscript s denotes a spline curve.
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Therefore, Eqn (2.14) can be rewritten as

PðuÞ ¼ BsGs ¼ �2u2 � 3uþ 1; �4u2 þ 4u; 2u2 � u
�
2
664
P0

P1

P2

3
775

¼ Bs
0ðuÞP0 þ Bs

1ðuÞP1 þ Bs
2ðuÞP2:

(2.16)

EXAMPLE 2.1
Given three points, P0¼ [0,1], P1¼ [1,2], and P2¼ [2,0], derive the parametric equation and graph the spline curve
formed by them.

Solutions
Using Eqn (2.16), we have

PðuÞ ¼ BsGs ¼ �2u2 � 3uþ 1; �4u2 þ 4u; 2u2 � u
�
2
6664
0 1

1 2

2 0

3
7775

¼ �2u; �6u2 þ 5uþ 1
�
:

The spline curve is graphed in Matlab with script is shown below.
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2.2.2.2 Two points and a vector
A quadratic curve can also be defined by its start and end points plus a vector, either at the start or the
end point. For example, the curve shown in Figure 2.5b is defined by two points P0 and P1 at start and
end of the curve and a tangent vector P1,u at its end point. From Eqn (2.11), the tangent vector P1,u is
defined as

P1;u ¼ vPðuÞ
vu

����
u¼1

¼ vðUAÞ
vu

����
u¼1

¼ vU

vu

����
u¼1

A ¼ ½ 2u 1 0 �ju¼1 A ¼ ½ 2 1 0 �A (2.17)

Following the same steps as before, we have2
4 P0

P1

P1;u

3
5
3�3

¼
2
4 0 0 1
1 1 1
2 1 0

3
5A3�3 (2.18)

where P0, P1, and P1,u are known. The matrix A can be obtained by

A ¼
2
4 0 0 1
1 1 1
2 1 0

3
5�124 P0

P1

P1;u

3
5 ¼

2
4 1 �1 1
�2 2 �1
1 0 0

3
5
2
4 P0

P1

P1;u

3
5: (2.19)

Hence from Eqn (2.11), we have

PðuÞ ¼ UA ¼ � u2 u 1
�24 1 �1 1

�2 2 �1
1 0 0

3
5
2
4 P0

P1

P1;u

3
5 ¼ UNvGv ¼ BvGv (2.20)

where Nv is a constant 3�3 matrix for any given quadratic curve defined by the end points and a
tangent vector at the end, and Bv is the 1�3 vector of the basis functions; that is,

BvðuÞ ¼ UNv ¼ � u2 u 1
�264

1 �1 1

�2 2 �1

1 0 0

3
75

¼ �u2 � 2uþ 1; �u2 þ 2u; u2 � u
� ¼ �Bv

0ðuÞ; Bv
1ðuÞ; Bv

2ðuÞ
� (2.21)

which are plotted in Figure 2.6b. Note that the superscript v denotes a curve with a tangent vector.
Therefore, from Eqn (2.20), we have

PðuÞ ¼ BvGv ¼ �u2 � 2uþ 1; �u2 þ 2u; u2 � u
�24P0

P1

P2

3
5

¼ Bv
0ðuÞP0 þ Bv

1ðuÞP1 þ Bv
2ðuÞP1;u:

(2.22)

Note that the geometric shape of the curve is controlled by the tangent vector in addition to its start and
end points. The basis function associated with the tangent vector Bv

2ðuÞ is negative for u˛ [0,1],
indicating that when the vector size increases, the curve is “pushed” backward, as to be shown in
Example 2.2.
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EXAMPLE 2.2
Given two points and a tangent vector at the end point, P0¼ [0,1], P1¼ [1,2], and P1,u¼ [2,�7], derive the
parametric equation and graph the curve formed by them. Also, graph the curve by changing the tangent vector to
P1,u¼ [3,�10.5].

Solutions
Using Eqn (2.22), we have

PðuÞ ¼ BvGv ¼ �u2 � 2uþ 1; �u2 þ 2u; u2 � u
�264

0 1

2 0

2 �7

3
75

¼ �2u; �6u2 þ 5uþ 1
�
:

Using the tangent vector of a larger size, the curve (Curve 2) becomes

PðuÞ ¼ BvGv ¼ �u2 � 2uþ 1; �u2 þ 2u; u2 � u
�264

0 1

2 0

3 �10:5

3
75

¼ �u2 þ u; �9:5u2 þ 8:5uþ 1
�
:

The curves are graphed in Matlab with script shown below. It is clearly shown in the figure that when the vector size
increases in Curve 2, the curve is “pushed” backward (in this case, upward and to the left).

2.2.2.3 Bézier curve
The Bézier curve, originally developed by Pierre Bézier in the 1970s, has become one of the most
commonly used curves for geometricmodeling. As shown in Figure 2.6c, unlike a spline curve, a Bézier
curve is defined by control points that do not necessarily stay on the curve. The control points form a
control polygon (or characteristic polygon) that determines the shape of the curve. More specifically,
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in general, only the first and last control points stay on the curve; in fact, in this case they coincide with
the start and end points of the curve, respectively. The curve is also tangent to the first and last line
segments of the control polygon, which provides the designer with direct control of the geometric
shape of the curve at the ends. In addition to controlling the tangent vectors of the curves at ends,
changing the control point locations alters the shape of the curve, as illustrated in Figure 2.5c, in which
the control point P1 is moved to a new location P1

0. Figure 2.7 also illustrates this point, in which
control point P20 is relocated.

Mathematically, a Bézier curve is defined as

PðuÞ ¼
Xn
i¼0

PiBi;nðuÞ; u˛ ½0; 1� (2.23)

where Pi is the ith control point, n is the polynomial order of the curve, and Bi,n(u) is the corresponding
basis function, called the Bernstein polynomial, defined as

Bi;nðuÞ ¼ Cðn; iÞuið1� uÞn�i; u˛ ½0; 1�: (2.24)

C(n,i) is the Binomial coefficient defined as

Cðn; iÞ ¼ n!

i!ðn� iÞ! ¼
	
n
i



: (2.25)

Note that we assume u0¼ 1, including when u¼ 0, and 0!¼ 1, in Eqns (2.24) and (2.25), respectively.
For a quadratic Bézier curve, n¼ 2, and the curve is defined by three control points. From

Eqn (2.24), the basic functions of a quadratic curve can be derived as follows:

B0;2ðuÞ ¼ ð1� uÞ2
B1;2ðuÞ ¼ 2uð1� uÞ
B2;2ðuÞ ¼ u2

(2.26)
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FIGURE 2.7 The Geometric Shape of a Cubic Bézier as Determined by Its Control Polygon.
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which are plotted in Figure 2.6c. Note that the sum of all three basis functions is 1dthat is,P2
i¼0 Bi;2ðuÞ ¼ 1, implying that the basis functions form a partition of unity. The partition of unity is a

very important property when utilizing Bernstein polynomials in geometric modeling. In particular, for
any set of control points P0, P1,., Pn, in a two- or three-dimensional space and for any u in [0,1], the
expression of Eqn (2.23) is a convex combination of the set of points P0, P1,., Pn. Note that a convex
combination is a linear combination of vectors (e.g., in this case, control points in Bezier curve), where
all coefficients are nonnegative and sum up to 1. In geometric modeling, a curve of convex combi-
nation implies the convex hull (or convex envelop) property, which ensures that the curve lies within
the convex hull of the control points (that is, the control polygon).

It can be shown for a given n that the Bernstein polynomials Bi,n(u) satisfy the following:

1. 0� Bi,n(u)� 1 for u˛ [0,1], and

2.
Xn
i¼0

Bi;nðuÞ ¼ 1

It is apparent that a Bézier curve, written in Eqn (2.23), is a convex combination of the control points;
therefore the curve lies within the convex hull of the control points.

A quadratic Bézier curve shown in Eqn (2.23) can be explicitly written as

PðuÞ ¼ P2
i¼0

PiBi;2ðuÞ ¼ P0B0;2ðuÞ þ P1B1;2ðuÞ þ P2B2;2ðuÞ

¼ P0ð1� uÞ2 þ P1ð2uð1� uÞÞ þ P2u
2; u˛ ½0; 1�:

(2.27)

Note that Eqn (2.27) can also be written in a matrix form, similar to those of Eqns (2.14) and (2.20), as

PðuÞ ¼ � u2 u 1
�
2
664

1 �2 1

�2 2 0

1 0 0

3
775
2
664
P0

P1

P2

3
775 ¼ UNBGB ¼ BBGs (2.28)

where NB is a constant 3�3 matrix for any given quadratic Bézier curve, and BB is the 1�3 vector of
the basis functions; in this case, they are Bernstein polynomials.

EXAMPLE 2.3
Given three control points, P0¼ [0,1], P1¼ [1,3.5], and P2¼ [2,0], derive the parametric equation and graph the
Bézier curve formed by them.

Solutions
Using Eqn (2.28), we have

PðuÞ ¼ BBGB ¼
h
ð1� uÞ2; 2uð1� uÞ; u2

i
2
6664
0 1

1 3:5

2 0

3
7775

¼ �2u; �6u2 þ 5uþ 1
�
:
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EXAMPLE 2.3eCONT’D

Control 

polygon

As shown in Examples 2.1–2.3, all three curves represented in their respective forms are identical,
which implies that the same curve can be represented in different forms. This is because all forms are
representing a quadratic curve, which is a second-order polynomial function. Mathematically, they are
all identical; therefore, we have the following:

PðuÞ ¼ UA ¼ UNsGs ¼ UNvGv ¼ UNBGB: (2.29)

Equation (2.29) implies that curves can be transformed into various forms to meet different modeling
requirements. For example, a quadratic spline curve can be converted to a two point and a vector form,
as well as a Bézier curve as, respectively,

Gv ¼ Nv�1

NsGs (2.30a)

and

GB ¼ NB�1

NsGs: (2.30b)

The same is true for converting a two point and a vector or a Bézier curve to other forms.

EXAMPLE 2.4
Given a spline curve formed by three points, P0¼ [0,1], P1¼ [1,2], and P2¼ [2,0], convert the curve into two points
with a vector form and then a Bézier curve.

Continued
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EXAMPLE 2.4eCONT’D

Solutions
Using Eqns (2.30a) and (2.30b), we have

Gv ¼ Nv�1

NsGs ¼

2
64
0 0 1

1 1 1

2 1 0

3
75
2
64

2 �4 2

�3 4 �1

1 0 0

3
75
2
64
0 1

1 2

2 0

3
75 ¼

2
64
0 1

2 0

2 �7

3
75

in which Gv contains the end points and tangent vector of the quadratic curve, and

GB ¼ NB�1

NsGs ¼

2
64

1 �2 1

�2 2 0

1 0 0

3
75
�1264

2 �4 2

�3 4 �1

1 0 0

3
75
2
64
0 1

1 2

2 0

3
75 ¼

2
64
0 1

1 3:5

2 0

3
75

in which GB contains the three control points of the quadratic Bézier curve.

2.2.3 Cubic curves
Similar to Eqn (2.11), a cubic curve can be written in the following parametric form:

PðuÞ ¼ � u3 u 1
�
1�4

2
666664

a3x a3y a3z

a2x a2y a2z

a1x a1y a1z

a0x a0y a0z

3
777775
4�3

¼ U1�4A4�3 (2.31)

where matrix A contains 12 (4�3) unknown coefficients.

2.2.3.1 Spline curvedfour points
For a cubic spline curve, we assume the four distinct points are P0¼ P(0), P1¼ P(1/3), P1¼ P(2/3),
and P3¼ P(1), as shown in Figure 2.8a. Note that P1 and P2 can be at locations other than u¼ 1/3
or 2/3.

1
3u =

2
3u =

y
x

P0
P0u = 0 u = [0, 1]

u = 0
u = 1

u = 1

P1

P1

P1

P0

P2

P3

P1, u

P0, u

P2

P3
(a) (b) (c)

z
y

x

z
y

x

FIGURE 2.8 Cubic Curves Defined by (a) Four Distinct Points (Spline Curve), (b) End Points and End Vectors (Hermit

Cubic Curve), and (c) Four Control Points (Bézier Curve).
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Following the same idea as the quadratic curves, we plug u¼ 0, u¼ 1/3, u¼ 2/3, and u¼ 1 into
Eqn (2.31) to yield 2

6664
Pð0Þ

Pð1=3Þ
Pð2=3Þ
Pð1Þ

3
7775
4�3

¼

2
6664
P0

P1

P2

P4

3
7775
4�3

¼

2
6664

0 0 0 1

1=27 1=9 1=3 1

8=27 4=9 2=3 1

1 1 1 1

3
7775A4�3 (2.32)

where P0, P1, P2, and P3 must be known in order to define the curve. The matrix A can be obtained by

A ¼

2
6664

0 0 0 1

1=27 1=9 1=3 1

8=27 4=9 2=3 1

1 1 1 1

3
7775
�12
6664
P0

P1

P2

P4

3
7775 ¼

2
6664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
7775
2
6664
P0

P1

P2

P4

3
7775: (2.33)

Hence, from Eqn (2.32), we have

PðuÞ ¼ UA ¼ � u3 u2 u 1
�
2
6664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
7775
2
6664
P0

P1

P2

P4

3
7775 ¼ UNsGs ¼ BsGs

(2.34)

where Ns is a constant 4�4 matrix for any given cubic spline curve, and Bs is the 1�4 vector of the
basis functions (also called blending functions); that is,

BsðuÞ ¼ UNs ¼ � u3 u2 u 1
�
2
6664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
7775

¼ �� 9=2u3 þ 9u2 � 11=2uþ 1; 27=2u3 � 45=2u2 þ 9u;

�27=2u3 þ 18u2 � 9=2uþ 1; 9=2u3 þ 9=2u2 þ u
�

¼ �Bs
0ðuÞ; Bs

1ðuÞ; Bs
2ðuÞ; Bs

3ðuÞ
�

(2.35)

which are plotted in Figure 2.9a. Therefore, from Eqn (2.34), we have

PðuÞ ¼ BsGs ¼ �Bs
0ðuÞ; Bs

1ðuÞ; Bs
2ðuÞ; Bs

3ðuÞ
�
2
6664
P0

P1

P2

P4

3
7775

¼ Bs
0ðuÞP0 þ Bs

1ðuÞP1 þ Bs
2ðuÞP2 þ Bs

3ðuÞP3:

(2.36)
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FIGURE 2.9 Basis Functions for Cubic Parametric Curves. (a) Four-point Spline Curve. (b) Hermit Cubic Curve. (c)

Cubic Bernstein Polynomials.
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EXAMPLE 2.5
Given three points, P0¼ [0,1], P1¼ [1,2], P2¼ [2,0], and P3¼ [4,�1], derive the parametric equation and graph
the spline curve formed by them.

Solutions
Using Eqn (2.36), we have

PðuÞ ¼ BsGs ¼ � �9=2u3 þ 9u2 � 11=2uþ 1; 27=2u3 � 45=2u2 þ 9u;

�27=2u3 þ 18u2 � 9=2uþ 1; 9=2u3 þ 9=2u2 þ u
�
2
6664
0 1

1 2

2 0

4 �1

3
7775

¼ �9=2u3 � 9=2u2 þ 4u; 18u3 � 63=2u2 þ 23=2uþ 1
�
:

The cubic spline curve is graphed in Matlab with script as shown below.

2.2.3.2 Hermit cubic curve (two end points and two end vectors)
Similar to the quadratic curve, a cubic curve can also be defined by its start and end points plus tangent
vectors at the start and end points, as shown in Figure 2.8b, in which the tangent vectors P0,u and P1,u

are at the start end points, respectively. This is called a Hermit cubic curve or curve of geometric
format. Note that from Eqn (2.34), the tangent vectors P0,u and P1,u are defined as

P0;u ¼ vPðuÞ
vu

ju¼0 ¼
vðUAÞ
vu

ju¼0 ¼
vU

vu
ju¼0A ¼ � 3u2 2u 1 0

���
u¼0

A ¼ ½ 0 0 1 0 �A

P1;u ¼ vPðuÞ
vu

ju¼1 ¼
vðUAÞ
vu

ju¼1 ¼
vU

vu
ju¼1A ¼ � 3u2 2u 1 0

���
u¼1

A ¼ ½ 3 2 1 0 �A:
(2.37)
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Following the same steps as before, we have

A ¼

2
6664
0 0 0 0

1 1 1 1

0 0 1 0

3 2 1 0

3
7775
�126664

P0

P1

P0;u

P1;u

3
7775 ¼

2
6664

2 �2 1 1

�3 3 �2 �1

0 0 1 0

1 0 0 0

3
7775
2
6664

P0

P1

P0;u

P1;u

3
7775: (2.38)

Hence from Eqn (2.32), we have

PðuÞ ¼ UA ¼ � u3 u2 u 1
�
2
6664

2 �2 1 1

�3 3 �2 �1

0 0 1 0

1 0 0 0

3
7775
2
6664

P0

P1

P0;u

P1;u

3
7775 ¼ UNvGv ¼ BvGv (2.39)

where Nv is a constant 4�4 matrix for any given cubic curve defined by the end points and vectors, and
Bv is the 1�4 vector of the basis functions called cubic Hermit functions; that is,

BvðuÞ ¼ UNv ¼ � u3 u2 u 1
�
2
6664

2 �2 1 1

�3 3 �2 �1

0 0 1 0

1 0 0 0

3
7775

¼ �2u3 � 3u2 þ 1; �2u3 þ 3u2 þ 1; u3 � 2u2 þ u; u3 � u2
�

¼ �Bv
0ðuÞ; Bv

1ðuÞ; Bv
2ðuÞ; Bv

3ðuÞ
�

(2.40)

which are plotted in Figure 2.9b. Therefore, from Eqn (2.39), we have

PðuÞ ¼ BvGv ¼ �2u3 � 3u2 þ 1; �2u3 þ 3u2 þ 1; u3 � 2u2 þ u; u3 � u2
�
2
664

P0

P1

P0;u

P1;u

3
775

¼ Bv
0ðuÞP0 þ Bv

1ðuÞP1 þ Bv
2ðuÞP0;u þ Bv

3ðuÞP1;u:

(2.41)

Similar to the quadratic curve, the geometric shape of the Hermit cubic curve is controlled by the
tangent vectors in addition to its start and end points. The basis function Bv

2ðuÞ, which is associated
with the tangent vector at the start point of the curve, is positive for u˛ [0,1], indicating that when the
size of the tangent vector P0,u increases, the curve is “pulled” forward. On the other hand, the basis
function Bv

3ðuÞ is negative for u˛ [0,1], indicating that when the size of the vector P1,u increases, the
curve is “pushed” backward similar to that of the quadratic curve.

EXAMPLE 2.6
Given two points and two vectors, P0¼ [0,0], P1¼ [1,1], P0,u¼ [2,0], and P1,u¼ [2,0], derive the parametric
equation and graph the Hermit cubic curve formed by them. Graph the curve by changing the tangent vector from
P0,u¼ [2,0] to P0,u¼ [4,0], and restore the original curve shape, and then change P1,u¼ [2,0] to P1,u¼ [4,0].
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EXAMPLE 2.6eCONT’D

Solutions
Using Eqn (2.41), we have Curve 1:

PðuÞ ¼ BvGv ¼ �2u3 � 3u2 þ 1; �2u3 þ 3u2 þ 1; u3 � 2u2 þ u; u3 � u2
�
2
664
0 0

1 1

2 0

2 0

3
775

¼ �2u3 � 3u2 þ 2u; �2u3 þ 3u2
�
:

Changing the tangent vector P0,u¼ [2,0] to P0,u¼ [4,0], the curve becomes Curve 2:

PðuÞ ¼ BvGv ¼ �2u3 � 3u2 þ 1; �2u3 þ 3u2 þ 1; u3 � 2u2 þ u; u3 � u2
�
2
664
0 0

1 1

4 0

2 0

3
775

¼ �4u3 � 7u2 þ 4u; �2u3 þ 3u2
�
:

Go back to Curve 1 and change the tangent vector P1,u¼ [2,0] to P1,u¼ [4,0]. The curve becomes Curve 3:

PðuÞ ¼ BvGv ¼ �2u3 � 3u2 þ 1; �2u3 þ 3u2 þ 1; u3 � 2u2 þ u; u3 � u2
�
2
664
0 0

1 1

2 0

4 0

3
775

¼ �4u3 � 5u2 þ 2u; �2u3 þ 3u2
�
:

The curves are graphed in Matlab with the script shown below. Curve 2 clearly shows that when the vector size at the
start point of the curve increases, the curve is “pulled” forward. On the other hand, Curve 3 shows that when the
vector size increases at the end point of the curve, the curve is “pushed” backward.

Curve 2

Curve 3

Curve 1
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2.2.3.3 Bézier curve
Following the discussion of the quadratic Bézier curve, a cubic Bézier curve consists of four control
points. It can be derived as

PðuÞ ¼ � u3 u2 u 1
�
2
6664
�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

3
7775
2
6664
P0

P1

P2

P3

3
7775 ¼ UNBGB ¼ BBGs (2.42)

where NB is a constant 4�4 matrix for any given cubic Bézier curve, and BB¼ [B0,3(u), B1,3(u),
B2,3(u), B3,3(u)] is the 1�4 vector of the basis functions (Bernstein polynomials), as plotted in
Figure 2.9c. Derivation of the basis functions is left as an exercise. One interesting point is that when a
control point is added to the same location of existing one, the Bézier curve gets closer to the control
polygon, as illustrated in Figure 2.10.

EXAMPLE 2.7
Given four control points, P0¼ [0,0], P1¼ [1,3], P2¼ [2,�2], and P3¼ [3,0], compute the parametric equation and
graph the Bézier curve formed by them.

Solutions
Using Eqn (2.42), we have

PðuÞ ¼ �u3 u2 u 1
�
2
6664
�1 3 �3 1

3 �6 3 0

�3 3 0 0

1 0 0 0

3
7775
2
6664
0 0

1 3

2 �2

3 0

3
7775 ¼

h
3u; 15u3 � 24u2 þ 9u

i
:

Bézier curve

Control polygon
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2.2.4 Continuities
In geometric modeling, curves are joined with smooth transitions at the junction. As illustrated in
Figure 2.11, when joining two curves, the end points must coincide; that is, PA

1 ¼ PB
0 , in which PA

1 is
the end point of curve A and PB

0 is the start point of curve B. This is so-called C0-continuity. In order to
maintain smoothness, the slope of the curves must be continuous across the junctions. For example, the
tangent vectors of Hermit cubic curves shown in Figure 2.11a must be collinear (G1-continuity) or
identical (C1-continuity) at the junction; that is, PA

1;u ¼ CPB
0;u (Cs 0) or PA

1 ¼ PB
0 , respectively. Also,

for the Bézier curves shown in Figure 2.11b, the line segments of the respective control polygons must
be either collinear (G1-continuity) or identical (C1-continuity); that is, PA

2 P
A
3 ¼ CPB

0P
B
1 (Cs 0) or

PA
2 P

A
3 ¼ PB

0P
B
1 , respectively.

1 point at x

2 points at x
3 points at x

P0

x

Pn

Pn–1

FIGURE 2.10 Increasing the “Pull” with Coincident Points at x.

Bezier

PA
0, u

PB
0, u

PB
1, u

PA
1, uP0

A P0
A

P3
A

P1
A

P1
A P2

A

P0
B

P0
B

P2
B

P1
B P3

B

P1
B

Curve A

Curve B

(a) (b)

FIGURE 2.11 Curve Continuity. (a) Joining Two Hermit Cubic Curves. (b) Joining Two Bézier Curves.
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2.2.5 B-spline curves
In general, the parametric curves discussed so far reveal several important characteristics. First, the
polynomial order of the curve increases as more points are added. For example, three points form a
quadratic spline curve, and four points form a cubic spline curve. Similarly, the polynomial order of a
Bézier curve is determined by the total number of control points minus one. The issue with high-order
polynomial curves is that as the polynomial order increases, there is a possibility that the curve may
oscillate, which is undesirable for geometric modeling. Another characteristic of the curves we dis-
cussed so far is that when a point (or a tangent vector) is moved, the entire curve is affected. This is so-
called global control, which may not be ideal when a designer only intends to alter the geometric shape
of a part in a local area. Moreover, as shown in Section 2.4, conditions must be imposed at the curve
junctions in order to maintain the desired geometric smoothness.

A better alternative that alleviates the above less-desirable characteristics is the B-spline curve. The
power of B-spline curves is that designer can create with ease a very complex curve that is smoothly
connected. The number of control points and the polynomial order are defined separately. In other words,
adding a control point does not increase the polynomial order of the curve. In addition, when a control
point is relocated, only a portion of the curve is affected, which is referred to as local control. One most
important characteristic of the B-spline curve is that the entire curve is smooth. The derivative up to the
(p� 1)th order is continuous, where p is the polynomial order of the curve. That is, for a cubic B-spline
curve, its curvature (involving a second-order derivative) is continuous throughout the curve.

2.2.5.1 Nonuniform B-spline curves
A B-spline curve, more specifically nonuniform B-spline curve, can be defined mathematically as

PðuÞ ¼
Xn
i¼0

PiNi;kðuÞ; u˛ ½0; ðnþ 1Þ � ðk� 1Þ� (2.43)

where nþ 1 is the number of control points, p¼ k� 1 is the polynomial order, and Ni,k(u)’s are the
basis functions, which are defined recursively as

Ni;kðuÞ ¼ ðu� tiÞNi;k�1ðuÞ
tiþk�1 � ti

þ ðtiþk � uÞNiþ1;k�1ðuÞ
tiþk � tiþ1

(2.44)

and

Ni;1ðuÞ ¼
(
1; ti � u � tiþ1

0; elsewhere:
(2.45)

Note that t is called knots in Eqns (2.44) and (2.45), which is defined as

ti ¼

8>><
>>:

0; i < k

i� kþ 1; k � i � n:

n� kþ 2; i > n

(2.46)

There are nþ kþ 1 knots. Note that we defined 0/0h 0 in Eqn (2.44).
We will use a quadratic B-spline curve example shown in Figure 2.12 to illustrate some of the

important characteristics of the B-spline curves. In this example, six control points are given. They are
P0¼ [1,0], P1¼ [0,1], P2¼ [0,2], P3¼ [1,4], P4¼ [1,6], and P5¼ [�3,8]. Therefore, for this curve,
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n¼ 5, k¼ 3, u˛ [0, (5þ 1)�(3� 1)¼ 4], and we have nþ kþ 1¼ 5þ 3þ 1¼ 9 knots. These knots
are defined, according to Eqn (2.46), as

t0;1;2 ¼ 0

t3 ¼ 1

t4 ¼ 2

t5 ¼ 3

t6;7;8 ¼ 4:

(2.47)

Note that t0,1,2¼ 0 and t6,7,8¼ 4 are repeated knots, and t3¼ 1, t4¼ 2, and t5¼ 3 are nonrepeated.
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FIGURE 2.12 Quadratic B-spline Curve. (a) A Curve Defined by Six Control Points. (b) Geometric Shape of the Curve

Altered Locally by Relocating a Control Point P1[ [0,1] to P1
0 [ [L2,1]. (c) Quadratic Basis Functions.
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The basis functions, according to Eqns (2.44) and (2.45), can be derived as follows (for details, see
Appendix A):

N0;3ðuÞ ¼ ð1� uÞ2; 0 � u � 1 (2.48a)

N1;3ðuÞ ¼

(
1

2
uð4� 3uÞ; 0 � u � 1

1

2
ð2� uÞ2; 1 � u � 2

(2.48b)

N2;3ðuÞ ¼

8>><
>>:

1

2
u2; 1 � u � 2

1

2

�� 2u2 þ 6u� 3
�
; 2 � u � 3

1

2
ð3� uÞ2; 3 � u � 4

(2.48c)

N3;3ðuÞ ¼

8>>><
>>>:

1

2
ðu� 1Þ2; 1 � u � 2

1

2

�� 2u2 þ 10u� 11
�
; 2 � u � 3

1

2
ð4� uÞ2; 3 � u � 4

(2.48d)

N4;3ðuÞ ¼

(
1

2
ðu� 2Þ2; 2 � u � 3

1

2

�� 3u2 þ 20u� 32
�
; 3 � u � 4

(2.48e)

N5;3ðuÞ ¼ ðu� 3Þ2; 3 � u � 4: (2.48f)

Hence from Eqn (2.43), the B-spline curve can be written as

PðuÞ ¼ P5
i¼0

PiNi;kðuÞ

¼ P0N0;3ðuÞ þ P1N1;3ðuÞ þ P2N2;3ðuÞ þ P3N3;3ðuÞ þ P4N4;3ðuÞ þ P5N5;3ðuÞ

¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1� uÞ2P0 þ 1

2
uð4� 3uÞP1 þ 1

2
u2P2; 0 � u � 1

1

2
ð2� uÞ2P1 þ 1

2

�� 2u2 þ 6u� 3
�
P2 þ 1

2
ðu� 1Þ2P3; 1 � u � 2

1

2
ð3� uÞ2P2 þ 1

2

�� 2u2 þ 10u� 11
�
P3 þ 1

2
ðu� 2Þ2P4; 2 � u � 3

1

2
ð4� uÞ2P3 þ 1

2

�� 3u2 þ 20u� 32
�
P4 þ 1

2
ðu� 3Þ2P5; 3 � u � 4

(2.49)
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There are several important observations:

1. As illustrated in Eqn (2.49), there are actually four piecewise quadratic B-spline curve segments
joined with C1-continuity at the nonrepeated knots, that is, at t3¼ 1, t4¼ 2, and t5¼ 3. You may
want to verify the statement regarding the C1-continuity by taking derivatives of the curve
segment equations and plugging in respective u values at the junctions.

2. The B-spline curve starts and ends at the first and last control points, respectively, and is tangent to
the first and the last line segments of the control polygon, respectively, similar to that of a Bézier
curve.

3. The knot t3¼ 1 (where u¼ 1) is the midpoint of the line segment P1P2 of the control polygon,
which is also the junction of the first and second B-spline curve segments, P1(u) and P2(u),
respectively. The same is true for other nonrepeated knots. For a quadratic B-spline curve, its
curve segments touch the midpoint of their respective line segments of the control polygon, and
are tangent to the line segments at the contact points. Note that this is only true for quadratic
curves. Increasing the polynomial order of a B-spline curve results in “pulling” the curve away
from its control polygon, as illustrated in Figure 2.13 with a quadratic and a cubic B-spline
curves.

4. As revealed in Eqn (2.49), the four curve segments are controlled by their respective control
polygons. For example, curve segment 1, P1(u) with u˛ [0,1], is controlled by polygon P0P1P2;
curve segment 2, P2(u) with u˛ [1,2], is controlled by polygon P1P2P3; and so on. Therefore,
when a control point is relocated, for example, moving control point P1¼ [0,1] to P1

0 ¼ [�2,1],
as shown in Figure 2.12b, instead of the entire curve, only curve segments 1 and 2 are affected.
This local-control characteristic is desirable for fine-tuning the local geometric shape for part
design.

P1

k =
 3

k 
= 

2

k =
 4

P2
P5

P0

P1(u), u ∈[0, 1]

P2(u), u ∈[1, 2]
P3(u), u ∈[2, 3]

P4(u), u ∈[3, 4]

P2

P1

P3

P4

P3

P4P0

cubic

u = 3 (t5)

u = 2 (t4)
u = 1 (t3)

u = 4 (t6, t7, t8)

u = 0 (t0, t1, t2)
x

y

(a) (b)

FIGURE 2.13 B-spline Curves Being “Pushed” Away from the Control Polygon When Increasing Their Polynomial

Order. (a) k[ 2 Linear, k[ 3 Quadratic, and k[ 4 Cubic Curves. (b) Quadratic and Cubic B-spline Curves

Defined by the Same Set of Control Points.
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5. The B-spline curve and Bézier curve are identical when (nþ 1)� (k� 1)¼ n� kþ 2¼ 1,
implying there is only one curve segment in the B-spline curve. In this case, n¼ k� 1; that is,
the n and k are coupled and the polynomial order of the curve (k� 1) equals n, which is the
number of control points minus 1. As discussed before, adding control points to a Bézier curve
increases its polynomial order. However, adding control points to a B-spline curve increases
number of curve segments (and hence the parameter u domain) while keeping the same
polynomial order. This is one of the most desirable characteristics of the B-spline curve in
geometric modeling.

6. As illustrated in Figure 2.12c, the six basis functions are symmetric in pairs. For example, N0,3(u)
and N5,3(u), and N1,3(u) and N4,3(u) are symmetric. N3,3(u) and N4,3(u) are not only symmetric,
but their geometric shape is in fact identical. The basis functions N3,3(u) and N4,3(u) are referred
to as uniform, which are employed to construct uniform B-spline curves to be discussed next. The
remaining four basis functions are nonuniform. Uniform or nonuniform basis functions stem
from the spans of the knots. As shown in Eqn (2.44), the basis functions are defined recursively,
with the lowest-order functions, step functions, defined in Eqn (2.45). All basis functions are
strongly influenced by knots. As illustrated in Eqn (2.47), three knots repeat at 0 and another three
repeat at 4. The spans between consecutive knots are nonuniform; that is, some are 0 (between the
repeated knots) and some are 1. According to Eqn (2.45), basis functions N0,1¼N1,1¼N6,1¼
N7,1¼ 0 due to the zero-span between repeated knots. As shown in Figure 2.14, such zero-span
affects basis functions all the way to N0,3(u), N1,3(u), N4,3(u), and N5,3(u), which are called
nonuniform. B-spline curves constructed by using the basis functions, including nonuniform
ones, are called nonuniform B-spline curves. One important characteristic of a nonuniform
B-spline curve is that the curve starts and ends at the first and last control points, and it is tangent
at the respective end control points to the control polygon.

7. Similar to the Bernstein polynomials, the sum of all basis functions is 1; that is,
Pn

i¼0 Ni;kðuÞ ¼ 1,
implying that the basis functions form a partition of unity. In addition, 0�Ni,k(u)� 1; therefore,
the convex hull property prevails, which ensures that the curve lies within the convex hull of
the control points, just like a Bézier curve.

t0 = 0 Knot span
N0, 1=0

N0, 2=0
N0, 3

N1, 3

N2, 3

N3, 3

N4, 3

N5, 3

N1, 2

N2, 2

N3, 2

N4, 2

N5, 2

N6, 2=0

N1, 1=0

N2, 1

N3, 1

N4, 1

N5, 1

N6, 1=0

N7, 1=0

0

Non-
uniform

Non-
uniform

Uniform

0

1

1

1

1

0

0

t1 = 0

t2 = 0

t3 = 1

t4 = 2

t5 = 3

t6 = 4

t7 = 4

t8 = 4

FIGURE 2.14 Uniform and Nonuniform Basis Functions Stem from the Uniform and Nonuniform Spans between

Neighboring Knots.
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2.2.5.2 Uniform B-spline curves
A uniform B-spline curve is constructed by only using the uniform basis functions. As discussed in the
earlier example, the basis functions N2,3(u) and N3,3(u), shown in Eqns (2.48c) and (2.48d), respec-
tively, are uniform. A B-spline curve constructed only by using such functions is called a uniform
B-spline curve. By closely examining Eqns (2.48c) and (2.48d), the uniform basis functions can be
generalized for quadratic curves as the following:

Ni;3ðuÞ ¼

8>>>>>>>><
>>>>>>>>:

1

2
ð�uþ iÞ2

1

2
½ðu� iþ 2Þð�uþ iÞ þ ð�uþ iþ 1Þðu� iþ 1Þ�; u˛ ½i� 1; i�:

1

2
ðu� iþ 1Þ2

(2.50)

A B-spline curve segment can then be constructed as

PiðuÞ ¼ 1

2
ð�uþ iÞ2Pi�1 þ 1

2
½ðu� iþ 2Þð�uþ iÞ þ ð�uþ iþ 1Þðu� iþ 1Þ�Pi

þ 1

2
ðu� iþ 1Þ2Piþ1; u˛ ½i� 1; i�: (2.51)

By replacing u with uþ i� 1 in Eqn (2.51) to eliminate the i in the parentheses on the right hand side
of Eqn (2.51), we have

PiðuÞ ¼ 1

2
ð1� uÞ2Pi�1 þ 1

2

�� 2u2 þ 2uþ 1
�
Pi þ 1

2
u2Piþ1; u˛ ½0; 1�; i˛ ½1; n� 1� (2.52)

where nþ 1 is the total number of control points. Note that a set of nþ 1 control points defines n� 1
quadratic uniform B-spline curve segments by using Eqn (2.52).

It is apparent that Eqn (2.52) is more desirable for constructing uniform B-spline curves because
the index i is removed in the basis functions and the u domain is converted back to [0,1]. Another
advantage of Eqn (2.52) is that it can be written in a matrix form, similar to those discussed before; that
is,

PiðuÞ ¼ � u2 u 1
� 1
2

2
4 1 �2 1
�2 2 0
1 1 0

3
5
2
4Pi�1

Pi

Piþ1

3
5 ¼ U1�3M

3
3�3

2
4Pi�1

Pi

Piþ1

3
5; u˛ ½0; 1�; i˛ ½1; n� 1�

(2.53)

whereM3 is a constant 3�3 matrix. Note that a 4�4 M4 matrix can be derived by following the same
steps (left as an exercise) for a cubic uniform B-spline curve:

PiðuÞ ¼ � u3 u2 u 1
�
1�4

M4
4�4

2
664
Pi�1

Pi

Piþ1

Piþ2

3
775 ¼ U1�4M

4
4�4

2
664
Pi�1

Pi

Piþ1

Piþ2

3
775; u˛ ½0; 1�; i˛ ½1; n� 2�

(2.54)
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where

M4
4�4 ¼

1

6

2
664
�1 3 �3 1
3 �6 3 0
�3 0 3 0
1 4 1 0

3
775: (2.55)

EXAMPLE 2.8
Use the same six control points as before, P0¼ [1,0], P1¼ [0,1], P2¼ [0,2], P3¼ [1,4], P4¼ [1,6], and P5¼
[�3,8] to construct a quadratic uniform B-spline curve like the one shown below. Note that curve segment P1(u)
does not start from the control point P0 and curve segment P4(u) does not end at the last control point P5. All
neighboring curve segments join at their respective nonrepeated knots and are tangent to the control polygon at
these knots.

P5 P4(u), u ∈[0, 1]

P3(u), u ∈[0, 1]

P2(u), u ∈[0, 1]

P1(u), u ∈[0, 1]

P0

P4

P3
P2

y

P1

Solutions
Using Eqn (2.53), the following equations describe the respective four curve segments:

P1ðuÞ ¼ � u2 u 1
�1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

P0

P1

P2

3
7777775
¼ �u2 u 1

�1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

1 0

0 1

0 2

3
7777775
¼
"
1

2
u2 � uþ 1

2
; uþ 1

2

#

P2ðuÞ ¼ � u2 u 1
�1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

P1

P2

P3

3
7777775
¼ �u2 u 1

�1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

0 1

0 2

1 4

3
7777775
¼
"
1

2
u2;

1

2
u2 þ uþ 3

2

#
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EXAMPLE 2.8eCONT’D

P3ðuÞ ¼ � u2 u 1
� 1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

P2

P3

P4

3
7777775
¼ � u2 u 1

� 1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

0 2

1 4

1 6

3
7777775
¼
"
� 1

2
u2 þ uþ 1

2
; 2uþ 3

#

P4ðuÞ ¼ � u2 u 1
� 1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

P3

P4

P5

3
7777775
¼ � u2 u 1

� 1
2

2
6666664

1 �2 1

�2 2 0

1 1 0

3
7777775

2
6666664

1 4

1 6

�3 8

3
7777775
¼
�
� 2u2 þ 1; 2uþ 5

�

The curves are graphed in Matlab with the script shown below.

Control 
polygon

Uniform 
B-spline 
curve

2.2.5.3 Closed uniform B-spline curves
The curve shown above is an open B-spline curve, in which the start and end control points do not
coincide. Uniform B-spline curves are well suited for modeling part geometry of a smooth closed
profile. In this case, its control polygon must be closed, which can be achieved by simply aligning the
first and the last control points. For example, the six control points shown in Figure 2.15 form a closed
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control polygon by connecting control points P5 back to P0. A quadratic uniform B-spline curve can be
constructed by using Eqn (2.53) as

PiðuÞ ¼ U1�3M
3
3�3

2
64
Pði�1Þmodðnþ1Þ
PðiÞmodðnþ1Þ
Pðiþ1Þmodðnþ1Þ

3
75; u˛ ½0; 1�; i˛ ½1; nþ 1� (2.56)

in which “mod” is the remaining operator. For example, if i¼ 6 and n¼ 5, then (i – 1)mod(nþ 1)¼
5 mod 6¼ 5; (i) mod(nþ 1)¼ 6 mod 6¼ 0; and (iþ 1)mod(nþ 1)¼ 7 mod 6¼ 1. Therefore, from
Eqn (2.56), the sixth curve segment shown in Figure 2.15 can be found as

P6ðuÞ ¼ U1�3M
3
3�3

2
64
Pð6�1Þmodð5þ1Þ
Pð6Þmodð5þ1Þ
Pð6þ1Þmodð5þ1Þ

3
75 ¼ U1�3M

3
3�3

2
64
P5

P0

P1

3
75:

The mod operator is simply introduced to manage the index of the control points as well as adding
curve segments to form a closed loop.

Similarly, for cubic curves, we have

PiðuÞ ¼ U1�4M
4
4�4

2
66664
Pði�1Þmodðnþ1Þ
PðiÞmodðnþ1Þ
Pðiþ1Þmodðnþ1Þ
Pðiþ2Þmodðnþ1Þ

3
77775; u˛ ½0; 1�; i˛ ½1; nþ 1�: (2.57)

The following example illustrates the characteristics of the closed uniform B-spline curves in more
detail, using both quadratic and cubic curves.

P3

P3(u)

P2(u)
P1(u)

P6(u)

P4(u)

P5(u)

y

P4

P5

x
P0

P1

P2

FIGURE 2.15 A Closed Control Polygon of Six Control Points that Encloses Six Closed Uniform B-spline Curve

Segments.
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EXAMPLE 2.9
Use the four control points, P0¼ [1,0], P1¼ [2,1], P2¼ [1,2], and P3¼ [0,1], which form a closed control polygon,
to construct both a quadratic and a cubic uniform B-spline curve, similar to those shown below.

(     )

P3

P2

P2(u)

P1(u)

P3(u)

P4(u)

u = 0

u = 0

u = 0

u = 0

The closed quadratic uniform B-spline curve

x

u = 1

u = 1

u = 1

u = 1

y

P1

P0

P3

P2
P1(u)

u = 0

The closed cubic uniform B-spline curve

x

u = 1

y

P1

P0

5–
3

, 1

5–
3(    )1,

Using Eqn (2.56) for a quadratic curve, we have

P1ðuÞ ¼ � u2 u 1
� 1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
P0

P1

P2

3
77775 ¼ � u2 u 1

� 1
2

2
66664

1 �2 �1

�2 2 0

1 1 0

3
77775

2
66664
1 0

2 1

1 2

3
77775 ¼

�
� u2 þ uþ 3

2
; uþ 1

2

�

P2ðuÞ ¼ � u2 u 1
� 1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
P1

P2

P3

3
77775 ¼ � u2 u 1

� 1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
2 1

1 2

0 1

3
77775 ¼

�
� uþ 3

2
;�u2 þ uþ 3

2

�

P3ðuÞ ¼ �u2 u 1
�1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
P2

P3

P0

3
77775 ¼ �u2 u 1

�1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
1 2

0 1

1 0

3
77775 ¼

�
u2 � uþ 1

2
;� uþ 3

2

�

P4ðuÞ ¼ �u2 u 1
�1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
P3

P0

P1

3
77775 ¼ �u2 u 1

�1
2

2
66664

1 �2 1

�2 2 0

1 1 0

3
77775

2
66664
0 1

1 0

2 1

3
77775 ¼

�
uþ 1

2
; u2 � uþ 1

2

�

Continued
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EXAMPLE 2.9eCONT’D

The curve is graphed in Matlab with the script shown below.

Control 
polygon

Quadratic B-
spline curve

Now, we use Eqn (2.57) for a cubic curve.

P1ðuÞ ¼ � u3 u2 u 1
�
M4

2
6666664

P0

P1

P2

P4

3
7777775
¼ � u3 u2 u 1

� 1
6

2
6666664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
7777775

2
6666664

1 0

2 1

1 2

0 1

3
7777775
¼
�
1

3
u3 � u2 þ 5

3
; �1

3
u3 þ uþ 1

�

P2ðuÞ ¼ � u3 u2 u 1
�
M4

2
6666664

P1

P2

P3

P0

3
7777775
¼ � u3 u2 u 1

� 1
6

2
6666664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
7777775

2
6666664

2 1

1 2

0 1

1 0

3
7777775
¼
�
1

3
u3 � uþ 1;

1

3
u3 � u2 þ 5

3

�

P3ðuÞ ¼ � u3 u2 u 1
�
M4

2
6666664

P2

P3

P0

P1

3
7777775
¼ � u3 u2 u 1

� 1
6

2
6666664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
7777775

2
6666664

1 2

0 1

1 0

2 1

3
7777775
¼
�
� 1

3
u3 þ u2 þ 1

3
;

1

3
u3 � uþ 1

�

P4ðuÞ ¼ � u3 u2 u 1
�
M4

2
6666664

P3

P0

P1

P2

3
7777775
¼ � u3 u2 u 1

� 1
6

2
6666664

�1 3 �3 1

3 �6 3 0

�3 0 3 0

1 4 1 0

3
7777775

2
6666664

0 1

1 0

2 1

1 2

3
7777775
¼
�
� 1

3
u3 þ uþ 1; �1

3
u3 þ u2 þ 1

3

�
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EXAMPLE 2.9eCONT’D

The curve is graphed in Matlab with the script shown below.

Cubic B-
spline curve

Control 
polygon

As shown in this example, unlike the quadratic B-spline curve, the cubic curve does not contact the control
polygon, as also indicated in Figure 2.13. The cubic B-spline is composed of four curve segments. How smooth is
the cubic curve? Is the continuity C1 or C2 at the junctions of the curve segments? What are the Cartesian
coordinates of the junction points of curve segments? For example, for curve segment 1, what are the locations of its
start and end points? This is left as an exercise. The cubic curve looks much like a circle: Is it a true circle?

2.2.6 NURB curves
Can a B-spline curve represent a true circle? The answer is no. The polynomial order of a B-spline
curve is finite. For a cubic curve, its polynomial order is 3; for a true circle, its polynomial order is
infinite. Why infinite? As discussed in Section 2.2.2.1, a true circle on a plane can be represented in a
polar coordinate system as

x ¼ aþ r cos q; and y ¼ bþ r sin q; q˛ ½0; 2p�: (2.58)

A Taylor series expansion for the trigonometry functions above, such as sin q, is

sin q ¼ q� q3

3!
þ q5

5!
� q7

7!
þ. ¼

XN
n¼1

ð�1Þn�1q2n�1

ð2n� 1Þ! (2.59)

which is a function of an infinite polynomial order.
A parametric curve that is capable of representing geometric entities, such as a circle or any other

conic curves, is NURB, which is one of the most versatile and general curves employed for geometric
modeling.
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Mathematically, a NURB curve is defined as

PðuÞ ¼

Pn
i¼0

hiPiNi;kðuÞ
Pn
i¼0

hiNi;kðuÞ
; u˛ ½0; ðnþ 1Þ � ðk� 1Þ� (2.60)

where Ni,k(u)’s are the basis functions of the B-spline curve (discussed previously), Pi is the ith control
point, hi is the weight associated with the control point Pi, and nþ 1 is the total number of control
points.

Note that when all the weights are in unity (i.e., hi¼ 1), the NURB curve is no longer rational; in
fact, it degenerates to a B-spline curve because the sum of the B-spline basis functions in the

denominator of Eqn (2.60) is 1; i.e.,
Pn
i¼0

hiNi;kðuÞ ¼
Pn
i¼0

Ni;kðuÞ ¼ 1.

In addition, the weights hi play a significant role in determining the geometric shape of the NURB
curve. For example, for a quadratic NURB of n¼ 2 and k¼ 3 shown in Figure 2.16a, we set
h0¼ h2¼ 1, and vary h1. When h1¼ 0, the curve becomes a straight line connecting P0 and P2. When
h1 is increased with a positive value, the curve is “pulled” closer to the control polygon. A negative h1
value is “pushing” the curve to the opposite of the control polygon. Note that the convex hull property
does not hold if h1< 0.

Now, is it possible to find a value for the weight h1 that allows the quadratic NURB curve enclosed
by the control polygon to analytically represent a 90� circular arc of radius 1? The answer is yes (e.g.,
see Figure 2.16b). Let’s take a look at the NURB curve in Example 2.10.

EXAMPLE 2.10
Use the three control points, P0¼ [0,1], P1¼ [1,1], and P2¼ [1,0] shown in Figure 2.16b, which form a control
polygon to construct a quadratic NURB curve that represents a 90-degree circular arc of radius 1 analytically.

Solutions
Any conic (including circles) can be parameterized in terms of rational quadratic functions. Hence, an arc of a conic
has a NURB representation (Piegl and Tiller, 1987). It is shown mathematically in Appendix B that when using a
quadratic NURB curve enclosed by a control polygon P0P1P2 to represent a circular arc, the weight h1 is determined
as h1¼ sin a, where a is the angle of P0P1O shown in Figure 2.16b. Therefore, for this example, the angle a is 45�;
therefore, h1 ¼ sin a ¼ 1ffiffiffi

2
p , and the NURB curve can be written using Eqn (2.60) as

PðuÞ ¼

P2
i¼0

hiPiNi;3ðuÞ

P2
i¼0

hiNi;3ðuÞ
¼ h0P0N0;3ðuÞ þ h1P1N1;3ðuÞ þ h2P2N2;3ðuÞ

h0N0;3ðuÞ þ h1N1;3ðuÞ þ h2N2;3ðuÞ

¼
ð1Þ½0 1�ð1� uÞ2 þ 1ffiffiffi

2
p ½1 1�2uð1� uÞ þ ð1Þ½1 0�u2

ð1Þð1� uÞ2 þ 1ffiffiffi
2

p 2uð1� uÞ þ ð1Þu2
:
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EXAMPLE 2.10eCONT’D

And in component form, we have

PxðuÞ ¼
ffiffiffi
2

p
uð1� uÞ þ u2

ð1� uÞ2 þ
ffiffiffi
2

p
uð1� uÞ þ u2

PyðuÞ ¼ ð1� uÞ2 þ
ffiffiffi
2

p
uð1� uÞ

ð1� uÞ2 þ ffiffiffi
2

p
uð1� uÞ þ u2

:

The NURB curve and a true circular arc are graphed in Matlab with the script shown below.

2.3 Parametric surfaces
Aparametric surface is a surface in theEuclidean spaceR3, which is defined by parametric equations with
two parameters (u,w). Parametric representation is probably the most general way to specify a surface.
The curvature and arc length of curves on the surface, surface area, differential geometric invariants such
as the first and second fundamental forms, Gaussian, mean, and principal curvatures can all be computed
from a given parameterization. Due to their generality, parametric surfaces are widely adopted in
geometric modeling for support of product design and manufacturing, among many other applications.

P0

(a) (b)
P1

P0

r = 1
a

y

x

P1

P2

P2

h1 >> 0 P0  = [0, 1]
P1  = [1, 1]
P2  = [1, 0]

h1 > 0

h1 < 0

h1 = 0

O

FIGURE 2.16 Quadratic NURB Curve. (a) Effect of the Weight h1 to the Geometric Shape of the Curve. (b) Repre-

senting a 90-degree circular arc.
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In this section, we discuss several parametric surfaces that are commonly found in geometric
modeling. In the next section (Section 2.4), we focus on CAD-generated surfaces represented in
parametric form.

2.3.1 Parametric representation
Similar to parametric curves, a parametric surface in space can be written in the following parametric
form:

Sðu;wÞ ¼ �Sxðu;wÞ; Syðu;wÞ; Szðu;wÞ�1�3
; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.61)

where u and w are the parametric coordinates of the surface. Usually, these parametric coordinates
range between 0 and 1.

2.3.1.1 Bicubic surface patch
A bicubic surface patch can be defined in terms of cubic polynomials as

Sðu;wÞ ¼
X3
i¼0

X3
j¼0

aiju
iwj

¼ a33u
3w3 þ a32u

3w2 þ a31u
3wþ a30u

3 þ a23u
2w3 þ a22u

2w2 þ a21u
2w

þ a20u
2 þ a13uw

3 þ a12uw
2 þ a11uwþ a10uþ a03w

3 þ a02w
2 þ a01w

þ a00; ðu;wÞ˛ ½0; 1� � ½0; 1�

(2.62)

where aij is a 1�3 vector; that is, aij¼ [aijx, aijy, aijz]. Hence, for example, the x-component of a
parametric surface is

Sxðu;wÞ ¼
X3
i¼0

X3
j¼0

aijxu
iwj

¼ a33xu
3w3 þ a32xu

3w2 þ a31xu
3wþ a30xu

3

þ a23xu
2w3 þ a22xu

2w2 þ a21xu
2wþ a20xu

2

þ a13xuw
3 þ a12xuw

2 þ a11xuwþ a10xu

þ a03xw
3 þ a02xw

2 þ a01xwþ a00x

¼ �
u3 u2 u 1

�
2
666664

a33x a32x a31x a30x

a23x a22x a21x a20x

a13x a12x a11x a10x

a03x a02x a01x a00x

3
777775

2
666664

w3

w2

w

1

3
777775

¼ U1�4Ax4�4
WT

4�1; ðu;wÞ˛ ½0; 1� � ½0; 1�

(2.63a)
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where Ax is a 4�4 matrix of 16 coefficients, which are to be determined. Similarly,

Syðu;wÞ ¼
�
u3 u2 u 1

�
2
66664
a33y a32y a31y a30y

a23y a22y a21y a20y

a13y a12y a11y a10y

a03y a02y a01y a00y

3
77775

2
66664
w3

w2

w

1

3
77775

¼ U1�4Ay4�4
WT

4�1; ðu;wÞ˛ ½0; 1� � ½0; 1�

(2.63b)

and

Szðu;wÞ ¼
�
u3 u2 u 1

�
2
66664
a33z a32z a31z a30z

a23z a22z a21z a20z

a13z a12z a11z a10z

a03z a02z a01z a00z

3
77775

2
66664
w3

w2

w

1

3
77775

¼ U1�4Az4�4
WT

4�1; ðu;wÞ˛ ½0; 1� � ½0; 1�:

(2.63c)

Similarly to Eqn (2.63), Eqn (2.62) can be written in a matrix form as

Sðu;wÞ ¼ � u3 u2 u 1
�
2
66664
a33 a32 a31 a30

a23 a22 a21 a20

a13 a12 a11 a10

a03 a02 a01 a00

3
77775

2
66664
w3

w2

w

1

3
77775

¼ U1�4A4�4�3W
T
4�1; ðu;wÞ˛ ½0; 1� � ½0; 1�

(2.64)

whereA is a 4�4�3 matrix of 48 coefficients (or a tensor of order 2), which are to be determined. Note
that in Eqn (2.64), the sizes of vectors and matrix do not match; thus, the multiplications cannot be
actually carried out. We simply use the equation to describe the parametric surface in a more compact
form. When performing multiplications, the x-, y-, and z-components of the surface equations in Eqn
(2.61) must be carried out separately (e.g., like that of Eqn (2.63a) for the x-component of the surface).

2.3.1.2 16-Point format
A bicubic surface patch can be created by 16 distinct points arranged in a 4�4 matrix form, as shown
in Figure 2.17a. Similar to the cubic spline curve, these points are assumed at the 0, 1/3, 2/3, and 1
locations of the parametric coordinates u and w; hence, the surface equation can be written as

Sðu;wÞ ¼ UNsGsNsTWT; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.65)

where

Ns ¼

2
664

�9=2 27=2 �27=2 9=2
9 �45=2 18 �9=2

�11=2 9 �9=2 1
1 0 0 0

3
775 (2.66)
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which is identical to that of the cubic spline curve, and

Gs ¼

2
664
P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

3
775
4�4�3

¼

2
666666666666664

Pð0; 0Þ P

	
0;
1

3



P

	
0;
2

3



Pð0; 1Þ

P

	
1

3
; 0



P

	
1

3
;
1

3



P

	
1

3
;
2

3



P

	
1

3
; 1




P

	
2

3
; 0



P

	
2

3
;
1

3



P

	
2

3
;
2

3



P

	
2

3
; 1




Pð1; 0Þ P

	
1;
1

3



P

	
1;
2

3



Pð1; 1Þ

3
777777777777775
4�4�3

(2.67)

which is defined by the Cartesian coordinates of the 16 points.

2.3.1.3 Coons patch
ACoons patch (named after Steven Anson Coons, 1912–1979) is a bicubic parametric surface formed by
four corner points, eight tangent vectors (two vectors in the u and w directions, respectively, at each of
the four corners), and four twister vectors at the respective four corner points, as shown in Figure 2.17b.

Mathematically, a Coons patch is defined as

Sðu;wÞ ¼ U Nv GvNvTWT; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.68)

where

Nv ¼

2
664

2 �2 1 1
�3 3 �2 �1
0 0 1 0
1 0 0 0

3
775 (2.69)
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FIGURE 2.17 Bicubic Surface Patches as Defined by (a) 16 Distinct Points; (b) Corner Points, Tangents Vectors, and

Twist Vectors (Coons Patch); and (c) 16 Control Points (Bézier Surface Patch).
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which is identical to that of the Hermit cubic curve (two point and two vector format), and

Gv ¼

2
664

P00 P01 P00;w P01;w

P10 P11 P10;w P11;w

P00;u P01;u P00;uw P01;uw

P10;u P11;u P10;uw P11;uw

3
775
4�4�3

(2.70)

where P00¼ S(0,0), P01¼ S(0,1), P10¼ S(1,0), and P11¼ S(1,1) are the four corner points; P00,u¼ vS/
vuju¼w¼0, P01,u, P10,u, and P11,u are the tangent vectors in the u direction at the four corner points;
P00,w¼ vS/vwju¼w¼0, P01,w, P10,w, and P11,w are the tangent vectors in the w direction at the four
corner points; and P00,uw¼ v2S/vuvwju¼w¼0, P01,uw, P10,uw, and P11,uw are the twister vectors at the
four corner points.

Note that a twister vector represents changes of tangent vector in u (or w) direction at a corner point
along a boundary curve in the w (or u) direction. For example, P10,uw¼ v/vw(vS/vu)ju¼1, w¼0¼ vP10,u/
vw is the derivative of the tangent vector along the u direction at P10 with respect to w (i.e., along
boundary curve 3 shown in Figure 2.17b). Geometrically, this twister vector represents the changes of
the tangent vector P10,u along boundary curve 3, as shown in Figure 2.17b. The same twister vector can
also be interpreted as P10,uw¼ v/vu(vS/vw)ju¼1, w¼0¼ vP10,w/vu, which is the derivative of the tangent
vector along the w direction at P10 with respect to u, representing the changes of the tangent vector
P10,w along boundary curve 4. Also, the first two rows of the matrix Gv are boundary curves 1 and 3,
respective; and columns 1 and 2 are boundary curves 4 and 2, respectively.

C0-continuity of composite Coons patches can be imposed by joining their neighboring boundary
edges. For example, to ensure C0-continuity across the two patches A and B, the patches depicted in
Figure 2.18a must have

SAð1;wÞ ¼ SBð0;wÞ; or PA
10 ¼ PB

00;P
A
11 ¼ PB

00; P
A
10;w ¼ PB

00;w; and PA
11;w ¼ PB

00;w: (2.71)

For G1-continuity, the tangent vectors across the joining boundary of the surfaces must be collinear;
that is,

SA;uð1;wÞ ¼ CSB;uð0;wÞ; or PA
10;u ¼ CPB

00;u;P
A
11;u ¼ CPB

00;u; P
A
10;uw ¼ CPB

00;uw; and PA
11;uw

¼ CPB
00;uw;Cs0: (2.72)
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FIGURE 2.18 Continuity of Composite Coons Patches. (a) C0-continuity. (b) G1- or C1-continuity.
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For C1-continuity, the constant C¼ 1.
The Coons patch is popular for support of geometric modeling. One key characteristic of the patch

is that its geometric shape can be controlled or adjusted by not only altering the corner points, but also
the tangent vectors and twister vectors. By imposing required properties on these vectors, we can
designate a Coons patch to represent specific surfaces. For example, a cylindrical surface shown in
Figure 2.19 can be represented by a Coons patch, which is illustrated next.

In CAD, a cylindrical surface is created when we extrude a sketch profile in the depth (or extrusion)
direction. In geometric modeling, a cylindrical surface can be thought of as sweeping a straight line
along a path curve, as shown in Figure 2.19a, in which the path curve P(u) is assumed as a cubic curve,
and the straight line is along the w direction, defined by a vector r. A Coons patch that represents this
cylindrical surface is shown in Figure 2.19b, in which boundary curve 4 is the path curve and boundary
curve 1 is the straight line.

The matrix Gv that defines the cylindrical surface is written in Eqn (2.73), in which the first two
rows defines the straight boundary edges 1 and 3, respectively; and the first two columns are boundary
curves 4 and 2, respectively. In fact, the first column of matrix Gv is the path curve P(u), and the first
row is the straight line that sweeps along the path curve. Note that all twister vectors are 0 because
tangent vectors are not varying along any of the boundary edges.

Gv ¼

2
66664

P0 P2 P2 � P0 P2 � P0

P1 P1 þ P2 � P0 P2 � P0 P2 � P0

P0;u P0;u 0 0

P1;u P1;u 0 0

3
77775
4�4�3

(2.73)

2.3.1.4 Bézier surface
Mathematically, a Bézier surface (or patch) is defined as

Sðu;wÞ ¼
Xn
i¼0

Xm
j¼0

PijBi;nðuÞBj;mðwÞ; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.74)
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P0, u

P1, u
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P1+(P2–P0)

P2–P0

(b)
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w

FIGURE 2.19 Representing a Cylindrical Surface Using a Coons Patch. (a) Cylindrical Surface. (b) Coons Patch

Representing the Cylindrical Surface.
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where Bi,n(u) and Bj,m(w) are Bernstein polynomials of order n and m, respectively, in u and w; and Pij

is the control point of the ith row at the jth location in the (nþ 1)�(mþ 1) control point matrix. Note
that n does not have to be equal to m, implying that the polynomial orders of the Bézier surface along
the u and w direction do not have to be identical.

As a special case, a bicubic Bézier surface is defined by 16 control points arranged in a 4�4 matrix
form that forms a control polyhedron, as shown in Figure 2.17c. From Eqn (2.74), a bicubic Bézier
surface is then defined as

Sðu;wÞ ¼
X3
i¼0

X3
j¼0

PijBi;3ðuÞBj;3ðwÞ; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.75)

which can also be written in a matrix (or tensor) form as

Sðu;wÞ ¼ U NB GBNBT

WT; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.76)

where

NB ¼

2
664
�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3
775 (2.77)

which is identical to that of the cubic Bézier curve, and

GB ¼

2
66664
P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

3
77775
4�4�3

(2.78)

which consists of the 16 control points arranged in a 4�4 matrix form.

2.3.2 B-spline surface
Similar to a Bézier surface, a B-spline surface is defined by basis functions and the control polyhedron
as

Sðu;wÞ ¼
Xn
i¼0

Xm
j¼0

PijNi;kðuÞNj;[ðwÞ; ðu;wÞ˛ ½0; n� kþ 2� � ½0;m� [þ 2� (2.79)

where Ni,k(u) and Nj,[(w) are the same basis functions as those of the B-spline curves and Pij is the
control point of the ith row at the jth location in the (nþ 1)�(mþ 1) matrix. In Eqn (2.79), the
polynomial orders of the basis functions Ni,k(u) and Nj,[(w) are k� 1 and [� 1, respectively. Note that
k does not have to be equal to [, implying that the polynomial orders of the B-spline surface along the u
and w directions do not have to be identical.

Depending on the choice of the basis functions (e.g., uniform or nonuniform and polynomial
orders), numerous types of surfaces can be adequately modeled using B-spline surfaces, as illustrated
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in Figure 2.20. The three surfaces in Figure 2.20a are open–open (i.e., open in both u and w directions)
and the two in Figure 2.20b are open-close (open in the w direction and closed in u direction). The
surface on the left in Figure 2.20a employs nonuniform basis functions in the u direction, and the
surface in the middle employs uniform basis functions. In both surfaces, a straight line is assumed in
the w direction. The surface on the right assumes uniform basis functions in both the u and w di-
rections. Both are quadratic. Both surfaces in Figure 2.20b assume a quadratic B-spline curve in the u
direction. The surface on the left assumes a straight line along the w direction, and the one on the right
employs nonuniform quadratic basis functions.

Similar to the B-spline surfaces, a NURB surface can be defined as

Sðu;wÞ ¼

Pn
i¼0

Pm
j¼0

hijPijNi;kðuÞMj;[ðwÞ
Pn
i¼0

Pm
j¼0

hijNi;kðuÞMj;[ðwÞ
; ðu;wÞ˛ ½0; n� kþ 2� � ½0;m� [þ 2�: (2.80)
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FIGURE 2.20 Various Types of B-spline Surfaces. (a) Open–open (Left: Nonuniform; Middle: Uniform in the u Di-

rection; Right: Uniform in both u and w Directions). (b) Open-close: Open in the w Direction and Closed in the u

Direction (Left: Linear in w Direction, Right: Quadratic in w Direction).
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The major difference between a NURB and a B-spline surface is that the NURB surface is able to
represent regular surfaces, such as a sphere, ellipsoid, and so on, just like that of NURB curves being
able to represent Conic curves, such as circle or ellipse.

2.4 CAD-generated surfaces
With the knowledge of basic geometric modeling discussed in Sections 2.2 and 2.3, we are moving
one step further to discuss surfaces generated by CAD. In CAD, we sketch an open profile and protrude
it for a surface or protrude a closed profile for a solid feature. The protrusion capabilities commonly
available in CAD include extrusion, blend (or loft), revolve, and sweep, as illustrated in Figure 2.21.

From a geometric modeling perspective, extruding a profile curve generates a cylindrical surface
(Figure 2.21a). Sweeping a profile along a path curve leads to a sweep surface (Figure 2.21b).
Revolving a sketch profile along an axis produces a surface of revolution (or revolved surface), as
shown in Figure 2.21c. Lofting two parallel sketch profiles without guide curves yields a ruled surface.
Lofting more than two parallel sketch profiles (or two profiles with guide curves shown in
Figure 2.21d) creates a loft surface.

In this section, we discuss mathematic representations for the parametric surfaces generated by the
four types of protrusion discussed.

2.4.1 Cylindrical surfaces
As discussed earlier, in geometric modeling, a cylindrical surface can be considered as sweeping a
straight line along a path curve P(u), as shown in Figure 2.22a. Mathematically, such a surface can be
written in a parametric form as

Sðu;wÞ ¼ PðuÞ þ wr; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.81)

(b)(a) (c)

(d)

Sketch profile

Extrusion 
direction

Sketch profile

Sweep path (or 
trajectory)

Revolve axis

Sketch profiles

Guide curves

Sketch profile

FIGURE 2.21 Protrusion of a Profile for Surface or Solid. (a) Extrusion. (b) Sweep. (c) Revolve. (d) Loft (or blend).
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in which u and w are the parametric coordinates of the surface, and r is the vector of the straight line.
Note that the vector r can also be written as r¼ P2� P0, where P0 and P2 are the start and end point of
the straight line, respectively. Note that the curve P(u) and the straight line are in space in general.
Certainly, a same cylindrical surface can be generated by extruding the curve P(u) along the straight
line. If curve P(u) is part of a sketch profile in CAD, as shown in Figure 2.22b, when the sketch is
extruded, a cylindrical surface is generated, representing the boundary geometry of a solid feature. In
this case, the straight line is always perpendicular to the sketch plane where the curve P(u) resides. The
same equation in 2.81 represents the cylindrical surface.

The following example illustrates more details in constructing the mathematical representation for
a cylindrical surface. We also include a Matlab script to graph the surface. Note that instead of using a
Matlab surface graph function (e.g., surface(x,y,z)) to plot the surface, we use plot3(x,y,z) to plot
points and line segments that show a surface with mesh. We hope such graphs offer you more insights
in understanding the mathematic representation of parametric surfaces.

EXAMPLE 2.11
Find the parametric equation of the cylindrical surface generated by extruding a cubic spline curve on the xey plane
along the z-direction for 5 units, as shown below. Note that the four points that form the cubic spline curve are given
as P0¼ [0,0,0], P1¼ [1,2.5,0], P2¼ [2,1,0], and P3¼ [4,2,0].
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Curve 1y u ∈ [0, 1]
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w = 1z

x
w

r
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P1r

Cylindrical
surface

Extrusion
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Cylindrical surface

y

xz

P(u)S (u, w)

P(u): path curve

Straight
Line

w = 0

w = 1

(a) (b)

u = 0

u = 1
u

u

ui
w

w

FIGURE 2.22 Cylindrical Surface. (a) Sweeping Straight Line along a Path Curve P(u). (b) Extruding Curve P(u)

along a Straight Line Perpendicular to the Sketch Curve P(u).
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EXAMPLE 2.11eCONT’D

Solutions
Using Eqn (2.34), the parametric equation for the curve P(u) can be written as

PðuÞ ¼ UNs Gs ¼ � u3 u2 u 1
�
2
66664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
77775

2
66664
0 0 0

1 2:5 0

2 1 0

4 2 0

3
77775

¼ �4:5u3 � 4:5u2 þ 4u;29:5u3 � 47:25u2 þ 20u;0
�
; u˛ ½0;1�:

The extrusion vector r is
r¼ [0, 0, 5].
Therefore, from Eqn (2.81), the parametric equation of the cylindrical surface is

Sðu;wÞ ¼ PðuÞ þ rw ¼
h
4:5u3 � 4:5u2 þ 4u;29:5u3 � 47:25u2 þ 20u;5w

i
; ðu;wÞ˛ ½0;1� � ½0;1�:

The surface is graphed in Matlab with the script shown below.
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2.4.2 Ruled surfaces
A ruled surface is defined by two path curves on the opposite sides of the surface, in which the trace of
a straight line with its start and end points pass through the respective path curves with the same
parametric value generates a ruled surface, as illustrated in Figure 2.23a. The simplest of all ruled
surfaces are plane, cone, and cylindrical surfaces. In addition, a surface with boundaries formed by
four straight lines that are not coplanar is not a flat surface but a ruled surface, as shown in
Figure 2.23b. In this case, both path curves P(u) and Q(u) are straight lines, which are not necessarily
co-planar.

Given two distinct curves P(u) andQ(u) as shown in Figure 2.24a, a ruled surface is constructed by
joining two points of the same u value (e.g., u�) on the curves P(u) and Q(u), respectively, with a
straight line; and sweeping the straight line along the two path curves with the same u value. Because
the line connecting the two points of the same u value (such as u�) respectively on curves P(u) and
Q(u) is a straight line, this straight line can be written as

Sðu�;wÞ ¼ ð1� wÞ Pðu�Þ þ wQðu�Þ; w˛ ½0; 1�: (2.82a)
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Path curve P(u)
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w
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w

Straight line Q(u)

Straight line P(u)

(a) (b)

FIGURE 2.23 Ruled Surfaces. (a) General Ruled Surface Formed by Two Path Curves P(u) and Q(u). (b) Ruled

Surface Formed by Two Straight Lines P(u) and Q(u) that are not Co-planar.

u = 0

(a) (b)

u = 0

w

u u

ui

ui

u = 1

u = 1

Q(u) d(uk)

P (u)

uk

d(ui)

d(uj)

uj
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FIGURE 2.24 Ruled Surfaces. (a) General Ruled Surface Formed by Two Path Curves P(u) and Q(u). (b) the same

ruled surface generated by sweeping a non constant vector d(u) [ Q(u) L P(u) along the path curve P(u).

86 CHAPTER 2 Geometric Modeling



Because Eqn (2.82a) is true for any u in [0,1], it can be generalized as a ruled surface by setting u˛
[0,1] (i.e., removing the superscript � for the parameter u in Eqn (2.82a)) as

Sðu;wÞ ¼ ð1� wÞ PðuÞ þ wQðuÞ; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.82b)

which can also be rewritten as

Sðu;wÞ ¼ PðuÞ þ wðQðuÞ � PðuÞÞ ¼ PðuÞ þ w dðuÞ; ðu;wÞ˛ ½0; 1� � ½0; 1� (2.82c)

which indicates that the same ruled surface can be generated by sweeping a nonconstant vector d(u)¼
Q(u)� P(u) along the path curve P(u), as shown in Figure 2.24b.

The following example shows more details in constructing parametric equations for a ruled surface.
Again, a Matlab script is included to graph the surface.

EXAMPLE 2.12
Find the parametric equation of the ruled surface generated by two path curves of cubic spline curves. Curve P(u) is
the same as that of Example 2.11 and resides on the xey plane. Curve Q(u) is resides on a plane that is parallel to
xey plane and offset 5 units along the z-direction, as shown below. Note that the four points that form the cubic
spline curve Q(u) are given as Q0¼ [0,2,5], Q1¼ [1,1,5], Q2¼ [2,2.5,5], and Q3¼ [4,1,5].

y

z

x

P0
P1

Q0

w = 1

u
w

u

u = 1Q3

Q2
Q1

2
3

w = 0

u = 1
2
3

1
3

1
3

Solutions
Using Eqn (2.34), the parametric equation for curve Q(u) can be written as

QðuÞ ¼ UNsGs ¼ �u3 u2 u 1
�
2
66664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
77775

2
66664
0 2 5

1 1 5

2 2:5 5

4 1 5

3
77775

¼ �4:5u3 � 4:5u2 þ 4u;24:75u3 þ 36u2 þ 12:25uþ 2:5;0
�
; u˛ ½0;1�:

Continued
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EXAMPLE 2.12eCONT’D

Therefore, from Eqn (2.82b), the parametric equation of the ruled surface is

Sðu;wÞ ¼ ð1� wÞPðuÞ þ w QðuÞ ¼ ð1� wÞ�4:5u3 � 4:5u2 þ 4u;29:5u3 � 47:25u2 þ 20u;0
�

þw
�
4:5u3 � 4:5u2 þ 4u;24:75u3 þ 36u2 þ 12:25uþ 2:5; 0

�
; ðu;wÞ˛ ½0;1� � ½0;1�:

The surface is graphed in Matlab with the script shown below.

2.4.3 Loft (or blend) surfaces
In CAD, when we loft a solid or surface feature using more than two sketch profiles, we generate a loft
(or blend) surface, instead of a ruled surface. For example, a loft surface can be constructed by lofting
three curves P(u), Q(u), and R(u) on three respective parallel sketch planes along the w direction, as
shown in Figure 2.25a. If we assume that the curve Q(u) is located at w¼ 1/2 of the loft surface, then
any curve along the w direction that is formed by a fixed u value at the three respective curves; for
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example, u�, shown in Figure 2.25, is a quadratic spline curve formed by P(u�), Q(u�), and R(u�), just
like that of Eqn (2.14); i.e.,

CðwÞ ¼ �w2 w 1
�264

2 �4 2

�3 4 �1

1 0 0

3
75
2
64
Pðu�Þ
Qðu�Þ
Rðu�Þ

3
75 ¼ W1�3N

s
3�3

2
64
Pðu�Þ
Qðu�Þ
Rðu�Þ

3
75; w˛ ½0; 1�: (2.83)

Note that Eqn (2.83) is true for all u values in [0,1]; therefore, the parametric equation of the loft
surface can be written as

Sðu;wÞ ¼ �w2 w 1
�264

2 �4 2

�3 4 �1

1 0 0

3
75
2
64
PðuÞ
QðuÞ
RðuÞ

3
75 ¼ W1�3N

s
3�3

2
64
PðuÞ
QðuÞ
RðuÞ

3
75; ðu;wÞ˛ ½0; 1� � ½0; 1�:

(2.84)

Following the same fashion, a surface that lofts from four curves shown in Figure 2.25b can be written
as follows, assuming that the four curves are located along the w direction of the loft surface at w¼ 0,
1/3, 2/3, and 1, respectively:

Sðu;wÞ ¼ �w3 w2 w 1
�
2
6666664

�9=2 27=2 �27=2 9=2

9 �45=2 18 �9=2

�11=2 9 �9=2 1

1 0 0 0

3
7777775

2
6666664

PðuÞ
QðuÞ
RðuÞ
TðuÞ

3
7777775

¼ W1�4N
s
4�4

2
66664
PðuÞ
QðuÞ
RðuÞ
TðuÞ

3
77775; ðu;wÞ˛ ½0; 1� � ½0; 1�:

(2.85)

(a) (b)

P(u)

Qo

u*

u*

u*
u = 1

Q(u)

T(u)

R(u)

u*

w P(u)

u

u

u w

u

w
u

Ro

Po

u R(u)

Q(u)
u

FIGURE 2.25 Loft Surfaces. (a) Quadratic along the w Direction by Lofting Three Curves. (b) Cubic along the w

Direction by Lofting Four Curves.
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The following example shows more detail in constructing parametric equations for a loft surface with
three curves.

EXAMPLE 2.13
Find the parametric equation of the loft surface generated by lofting three curves on respective parallel
planes (parallel to the xey plane) with uniformed space of 5 units, as shown below. The cubic spline curves
P(u) and Q(u) are the same as that of Example 2.12. Curve R(u) is a straight line defined by R0¼ [0,1,10] and
R1¼ [4,1,10].

Solutions
Using Eqn (2.10), the parametric equation for the straight line R(u) can be written as

RðuÞ ¼ ð1� uÞR0 þ uR0 ¼ ð1� uÞ½0;1;10� þ u½4;1;10� ¼ ½4u;1;10�:

Cubic spline
curve Q(u)

5

5

Straight line R(u)

Cubic spline
curve P(u)

x

y

z

Therefore, from Eqn (2.84), the parametric equation of the loft surface is

Sðu;wÞ ¼ �w2 w 1
�
2
66664

2 �4 2

�3 4 �1

1 0 0

3
77775

2
66664
4:5u3 � 4:5u2 þ 4u; 29:5u3 � 47:25u2 þ 20u; 0

4:5u3 � 4:5u2 þ 4u; 24:75u3 þ 36u2 þ 12:25uþ 2:5; 0

4u; 0; 10

3
77775

¼ �2w2 � wþ 1;�4w2 þ 4w; 2w2 � w
�
2
66664
4:5u3 � 4:5u2 þ 4u; 29:5u3 � 47:25u2 þ 20u; 0

4:5u3 � 4:5u2 þ 4u; 24:75u3 þ 36u2 þ 12:25uþ 2:5; 0

4u; 0; 10

3
77775; ðu;wÞ˛ ½0; 1� � ½0; 1�:

The surface is graphed in Matlab with the script shown below on the next page.
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EXAMPLE 2.13eCONT’D

2.4.4 Revolved surfaces
In CAD, when we sketch a profile and revolve it along an axis, the trace of the profile forms a revolved
surface or surface of revolution. How do we represent the revolved surface in a parametric form?
Consider the curve P(u) on the x–z plane, shown in Figure 2.26a. If we revolve the curve along the
z-axis counter clockwise for an angle of p/2 and pick just one point on the curve (e.g., P(u�)), to follow
its trace, we will see that the trace of the point is a quarter circle (see Figure 2.26b in iso-view and
viewed from the top, shown in Figure 2.26c) with center point O and radius Px(u

�). The quarter circle is
located on a plane that is parallel with x–y plane, but is elevated at a height Pz(u

�), which is the
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z-component of the curve P(u) at u = u�, as shown in Figures 2.26a and b. Therefore, the parametric
equation of the quarter circle can be written as

PðwÞ ¼ ½Pxðu�Þcos w; Pxðu�Þsin w; Pzðu�Þ�;w˛ ½0;p=2� (2.86)

Because the above equation is true for any point u˛ [0,1] on the curve P(u), the trace of the curve
creates a revolved surface written as

Sðu;wÞ ¼ ½PxðuÞcos w; PxðuÞsin w; PzðuÞ�; u˛ ½0; 1�;w˛ ½0;p=2�: (2.87)

The following two examples show more details in constructing parametric equations for a revolved
surface.

EXAMPLE 2.14
Find the parametric equation of the revolved surface generated by revolving a cubic spline curve P(u), which is
identical to that of Example 2.11 on the xez plane shown below with respect to the z-axis counterclockwise for a p/2
angle.

z

y

x

P(u)

(a)

z

u = 1
P(u)

u*

u

u = 0 r = Px(u*)

u*

P(u)

u* u = 0
oo

o

x

y

y = r sin w

Trace of P(u*)

r
w

x = r cos w

u

y

z

x
x

Pz(u*)

Px(u*)

(b) (c)

Pz(u*)

FIGURE 2.26 Surface of Revolution. (a) Sketch Profile P(u) in Front View. (b) Revolved Surface in Iso-view. (c) Top

View of the Trace on the Curve P(u
�
).

92 CHAPTER 2 Geometric Modeling



EXAMPLE 2.14eCONT’D

Solutions
Using Eqn (2.87), the parametric equation for the revolved surface can be written as

Sðu;wÞ ¼ ½PxðuÞcos w;PxðuÞsin w;PzðuÞ�

¼ ��4:5u3 � 4:5u2 þ 4u
�
cos w;

�
4:5u3 � 4:5u2 þ 4u

�
sin w;29:5u3 � 47:25u2 þ 20u

�
;u˛ ½0;1�;

w˛
h
0;p=2

i
:

The surface is graphed in Matlab with the script shown below.
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EXAMPLE 2.15
Find the parametric equation of the revolved surface generated by revolving the quarter circle of radius 1 on the xez
plane shown below with respect to the z axis for a p/2 angle.

P(u)

y

x

u

z

pz(u) = sin u

px(u) = cos u

u = 1

u = 0

Solutions
Using Eqn (2.87), the parametric equation for the revolved surface can be written as

Sðu;wÞ ¼ ½PxðuÞ cos w;PxðuÞ sin w;PzðuÞ�
¼ ½cos u cos w; cos u sin w; sin u�; u˛ ½0;1�;w˛ ½0;p=2�:

The surface is graphed in Matlab with the script shown below. Note that the circular arc P(u) can also be represented
in a NURB form, such as by using equation of Example 2.10. This is left as an exercise.
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2.4.5 Sweep surfaces
The trace of moving a profile curve P(u) along a path (or trajectory) curve Q(w) is a sweep surface
S(u,w). For example, moving the straight line P(u) along the path curve Q(w) shown in Figure 2.27
generates a sweep surface S(u,w).

In CAD, we create a profile on a sketch plane and a path curve on a plane that is perpendicular with
the profile sketch, and then we sweep the profile along the path to create a sweep solid feature or
a sweep surface. If the path curve is a straight line, the sweep surface generated is nothing but a
cylindrical surface. If the path curve is a circular arc, the resulting sweep surface is a surface
of revolution. Therefore, both cylindrical and revolved surfaces can be considered as special cases of
sweep surface. For sweeping a curve P(u) along a straight line, the orientation of the curve P(u) is not
changing. While sweeping a curve P(u) along a circular arc, the curve orientation is constantly
changing in order to ensure that the curve P(u) is always perpendicular to the path curve Q(w). If the
path curveQ(w) is a general parametric curve, how can we orient the path curve P(u) properly so that it
is always perpendicular to the path curve? This is an important characteristic of a sweep surface and
requires our attention. The trick is attached a smoothly-varying coordinate system, a so-called Frenet
frame, at any given location along the path curve Q(w).

A Frenet frame is defined by three independent direction vectors for a spatial curve. The vectors are
(i) a normalized tangent vector, t(w), defined as

tðwÞ ¼ normalized

	
vQðwÞ
vw



¼ Q;wðwÞ��Q;wðwÞ

��; (2.88a)

(ii) a normalized binormal vector, defined as

bðwÞ ¼ normalized
�
Q;wðwÞ �Q;wwðwÞ

� ¼ Q;wðwÞ �Q;wwðwÞ��Q;wðwÞ �Q;wwðwÞ
��; (2.88b)

and (iii) a normalized normal vector, defined as

nðwÞ ¼ normalizedðbðwÞ � tðwÞÞ ¼ bðwÞ � tðwÞ
kbðwÞ � tðwÞk: (2.88c)

u = 1

u = 0
u

w = 0
w

u

P(u) Q(w)n
x

w = 1

S(u, w) [0, 1, 0]

w*
θ

θ

y

x

(a) (b)

y
t

b

z ∂Q(w)
∂w

Path curve Q(w) 

Profile curve P(u) 

w

FIGURE 2.27 Sweep Surface Generated by Sweeping Profile Curve P(u) along Path Curve Q(w). (a) The Frenet

Frame (t, b, n). (b) Top View of the Sweep Surface.
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The Frenet coordinate system (or frame) (t, b, n) varies smoothly, as we move along the path curve
Q(w), as long as the curve is second-order differentiable; that is, Q,ww(w) exists for all w. Using the
smoothly varying Frenet frame, the trace of the profile curve P(u) at any given w value along the path
curve (hence the sweep surface) can be determined by placing P(u) on the normal plane (spanned by
vectors b and n), placing the start point of P(u) on the path curve Q(w), aligning Px(u) with vector n,
and aligning Pz(u) with vector b.

Mathematically, the parametric equation for a sweep surface, generated by sweeping a planar
profile P(u) along a path curve Q(w) in space, can be defined as

Sðu;wÞ ¼ QðwÞ þ RðwÞ ðsðwÞ PðuÞÞ; u˛ ½0; 1�;w˛ ½0; 1� (2.89)

where R(w) is a rotation matrix that rotates the profile curve P(u) so that its x- and z-components align
with vectors n and b, respectively; and s(w) is a scale factor that scales the profile curve.

Note that in most sweep features in CAD, the scale factor is set to unity, and the path curve is
usually a planar curve. For example, in Figure 2.27a, the path curveQ(w) is sketched on the x–y plane.
In this subsection, we assume that the path curve is placed on a plane that is perpendicular to that of the
profile curve in order to simplify the mathematical equations of the sweep surface. Viewing from the
top, as shown in Figure 2.27b, it is apparent that in order to keep the profile curve P(u) perpendicular
with the path curve Q(w) at any given w value (e.g., w� in Figure 2.27b), the profile curve P(u) must
rotate an q angle clockwise along the z-axis. The q angle can be calculated as

qðwÞ ¼ cos�1
�½ 0 1 0 � $ tTðwÞ�: (2.90)

The rotation matrix is then obtained as

TðqÞ ¼
2
4 cos q sin q 0

�sin q cos q 0

0 1 1

3
5: (2.91)

At the given value w¼w�, the profile curve P(u) is rotated clockwise with an q angle clockwise along
the z-axis, and then moved to the location of Q(w�); that is,

P0ðuÞ ¼
h
TðqÞ PðuÞT

iT þQðw�Þ; u˛ ½0; 1� (2.92)

which is true for w˛ [0,1]. Hence, the parametric equation of the sweep surface can be written as

Sðu;wÞ ¼
h
TðqÞ PðuÞT

iT þQðwÞ; u˛ ½0; 1�;w˛ ½0; 1�: (2.93)

The following example shows more details in constructing parametric equations for a simple sweep
surface.

EXAMPLE 2.16
Find the parametric equation of the sweep surface generated by sweeping a straight line along a cubic Bézier curve
shown below on the next page. The straight line is formed by connecting P0¼ [0,0,0] and P1¼ [�5,0,5]; and the
four control points of the cubic Bézier curve are Q0¼ [0,0,0], Q1¼ [0,5,0], Q2¼ [7.5,5,0], and Q3¼ [7.5,0,0].
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EXAMPLE 2.16eCONT’D

P1 = [–5, 0, 5]

y

w
u

Q1 = [0, 5, 0]

Q2 = [7.5, 5, 0]

Q3 = [7.5, 0, 0]
x

P0 = [0, 0, 0] = Q0 

z

Solutions
From Eqns (2.10) and (2.42), the parametric equations of the straight line and the cubic Bézier curve can be
written, respectively, as

PðuÞ ¼ ð1� uÞ½0;0;0� þ u½ � 5;0;5� ¼ ½ � 5u;0;5u�
and

QðwÞ ¼ �w3 w2 w 1
�
2
664
�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3
775
2
664
Q0
Q1
Q2
Q3

3
775 ¼ �w3 w2 w 1

�
2
664
�1 3 �3 1
3 �6 3 0
�3 3 0 0
1 0 0 0

3
775
2
664

0 0 0
0 5 0
7:5 5 0
7:5 0 0

3
775

¼
h
� 15w3 þ 22:5w2;�15w2 þ 15w;0

i
:

The normalized tangent vector of the path curve Q(w) is

tðwÞ ¼ Q;wðwÞ��Q;wðwÞ�� ¼
�� 45w2 þ 45w;30wþ 15;0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��45w2 þ 45w

�2 þ ð30wþ 15Þ2 þ 02

q
and the rotation angle q can be obtained as

q ¼ cos�1
�½0 1 0 �,tT� ¼ cos�1

0
BBBBBBB@
½0 1 0 �,

2
66666664

�45w2 þ 45wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��45w2 þ 45w
�2 þ ð30wþ 15Þ2 þ 02

q

�30wþ 15ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��45w2 þ 45w
�2 þ ð�30wþ 15Þ2 þ 02

q

0

3
77777775

1
CCCCCCCA

¼ cos�1

0
B@ �30wþ 15ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��45w2 þ 45w

�2 þ ð�30wþ 15Þ2 þ 02

q
1
CA:

Now, rotating the curve P(u) an q angle clockwise along the z-axis, we have

TðqÞPðuÞT ¼
2
4 cos q sin q 0
�sin q cos q 0

0 1 1

3
5
2
4�5u

0
5u

3
5 ¼

2
4�5u cos q

5u sin q
5u

3
5:

Continued
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EXAMPLE 2.16eCONT’D

Hence, from Eqn (2.93), the sweep surface can be obtained as

Sðu;wÞ ¼
h
TðqÞ PðuÞT

iT þ QðwÞ
¼ ½ � 5u cos q;5u sin q;5u� þ �� 15w3 þ 22:5w2;�15w2 þ 15;0

�
¼ �� 5u cos q� 15w3 þ 22:5w2;5u sin q� 15w2 þ 15;5u

�
; u˛ ½0;1�;w˛ ½0;1�:

The surface is graphed in Matlab with the script shown below.
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2.5 Geometric transformations
In geometric modeling, geometric entities, such as curves and surfaces, need to be constantly trans-
formed for numerous purposes. The Euclidean transformations are the most commonly used trans-
formations. A Euclidean transformation is a translation, a rotation, or a mirror. Euclidean transformations
preserve length and anglemeasure.Moreover, the shape of a geometric entitywill not change.That is, lines
transform to lines, planes transform to planes, circles transform to circles, and ellipsoids transform to
ellipsoids. Only the position and orientation of the object will change.

Another transformation, called affine transformation, is a generalization of Euclidean trans-
formation. Under affine transformations, lines transform to lines; however, circles may become
ellipses. Length and angle are not preserved. Essentially, an affine transformation is any trans-
formation that preserves collinearity (i.e., all points lying on a line initially still lie on a line
after transformation) and ratios of distances (e.g., the midpoint of a line segment remains the
midpoint after transformation). Although an affine transformation preserves proportions on lines, it
does not necessarily preserve angles or lengths. Geometric contraction, expansion, dilation,
reflection, rotation, shear, similarity transformations, spiral similarities, and translation are all affine
transformations, as are their combinations.

In this subsection, we discuss only the most basic transformations, including scaling, translation,
and rotation. Note that by combining a number of transformations, a more sophisticated trans-
formation, such as mirror or rotating along an arbitrarily axis, can be carried out.

Transformation of a parametric curve or surface can be accomplishedby transforming its characteristic
points, such as control points of Bézier or B-spline curves or surfaces, as well as tangent vectors (e.g.,
Hermit cubic curves), and twister vectors (e.g., the Coons patch). Mathematically, applying an affine (or
Euclidean) transformation to a geometric entity, such as a B-spline curve P(u), can be expressed as

P0ðuÞ ¼ T PðuÞ ¼ T

 Xn
i¼0

PiNi;kðuÞ
!

¼
Xn
i¼0

ðTPiÞNi;kðuÞ ¼
Xn
i¼0

P0
iNi;kðuÞ (2.94)

where T is the affine transformation matrix, Pi
0 are the transformed characteristic points (in this case,

control points), and the curve P0(u) is the transformed B-spline curve. In this section, we assume all
curves and points are in column vector form.

Affine transformation is powerful and uniform mathematically. It is ideal for support of geometric
transformations. To understand affine transformations, we need to first discuss homogeneous
coordinates.

2.5.1 Homogeneous coordinates
Every point (x,y) in a 2D Cartesian plane has a corresponding set of homogeneous coordinates (hx, hy,
h) in the 3D projective space (also called the homogeneous space). When h¼ 1, (hx, hy, h) becomes
(x, y, 1), projecting (hx, hy, h) point to the h¼ 1 plane, as illustrated in Figure 2.28a. Therefore,
representing planar curves on a 2D Cartesian plane is a special case of the more general homogeneous
coordinates.

Also, every point in the 3D Cartesian space (x, y, z) has a corresponding set of homogeneous co-
ordinates (hx, hy, hz, h) in the four-dimensional (4D) projective space (again, called the homogeneous
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space). As illustrated in Figure 2.28b, when h¼ 1, (hx, hy, hz, h) becomes (x, y, z, 1), which projects the
point (hx, hy, hz, h) to the h¼ 1 sphere. Again, representing spatial curves and surfaces in 3D Cartesian
space (h¼ 1) is a special case of the more general homogeneous coordinates.

Note that geometric transformations can be handled more effectively in the homogeneous co-
ordinates than ordinary Cartesian coordinates, which is illustrated in the following example.

Let Pi, i¼ 0, n, be (nþ 1) control points of a B-spline curve in the 4D homogeneous space with the
same h; that is,

Pi ¼ ½ hxi hyi hzi h �T1�4: (2.95)

Again, all points, such as Pi, are represented in column vector form.
In homogeneous coordinates, the transformation matrix for an affine transformation can be defined

by a 4�4 matrix as

T ¼

2
6664
A B C M

D E F N

G H I O

J K L S

3
7775 (2.96)

in which the 3�3 matrix

2
4A B C
D E F
G H I

3
5 defines the scaling and rotation transformations, the 3�1

column vector [M N O]T determines the geometric translation, and the scalar [S] specifies the uniform
global scaling. Note that the 1�3 row vector [J K L] is usually set to [0 0 0].

With this transformation matrix defined in Eqn (2.95), an affine transformation of points Pi, i¼ 0,
n, can be obtained as

P0
i ¼ T Pi; for i ¼ 0; n (2.97)

h

(xa, ya, 1)

(hxa, hya, h)

h = 1

h = 1
y

x

z
(hxa, hya, hza, h)

(xa, ya, za, 1)

plane

sphere

(a) (b)

y

x

FIGURE 2.28 Homogeneous Coordinates. (a) Two-dimensional. (b) Three-dimensional.
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where

P0
i ¼

�
x0i y

0
i z

0
i 1
�T
is the point Pi ¼ ½ xi yi zi 1 �Tafter transformation:

2.5.2 Scaling
The transformation matrix for scaling a geometric entity is defined as

Ts ¼

2
666664

A 0 0 0

0 E 0 0

0 0 I 0

0 0 0 1

3
777775 (2.98)

where A, E, and I are the scaling factors for x, y, and z-coordinates, respectively, as illustrated in
Figure 2.29a. The rectangle of size a�b defined by four corner points P0 P1 P2 P3 is scaled to be of size
Aa�Eb, defined by the transformed corners points P0

0 P1
0 P2

0 P3
0, as shown below.

�
P0
0 P0

1 P0
2 P0

3

�
s
¼ Ts½P0 P1 P2 P3 � ¼

2
666664

A 0 0 0

0 E 0 0

0 0 I 0

0 0 0 1

3
777775

2
666664

P0x P1x P2x P3x

P0y P1y P2y P3y

P0z P1z P2z P3z

1 1 1 1

3
777775

¼

2
666664

A 0 0 0

0 E 0 0

0 0 I 0

0 0 0 1

3
777775

2
666664

0 a a 0

0 0 b b

0 0 0 0

1 1 1 1

3
777775 ¼

2
666664

0 Aa Aa 0

0 0 Eb Eb

0 0 0 0

1 1 1 1

3
777775

(2.99)

Note that the four points P0, P1, P2, and P3 can be control points of a parametric curve, such as a cubic
Bézier curve. In this case, the same procedure shown above applies, as illustrated in Figure 2.29b.

P3′
y

P2′

P1′

Eb

x

Aa

P2
P3

P0 P1

b
a

(a)

P0′

P3′
y

P2′

P1′

Eb

x

Aa
Scaled Bezier Curve

P2
P3

P0 P1

b
a

(b)

P0′

FIGURE 2.29 Scaling Transformations. (a) Scaling a Rectangle. (b) Scaling a Cubic Bézier Curve.
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The 4�4 transformation matrix for a uniform global scaling can be defined as

Tg
s ¼

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 S

3
7775 (2.100)

where S is the scale factor. If we scale the rectangle shown in Figure 2.29a with a scale factor S,
the rectangle of size a�b defined by four corner points P0 P1 P2 P3 becomes a/S�b/S, as shown
below.

�
P0
0 P0

1 P0
2 P0

3

�
s
¼ T

g
s ½P0 P1 P2 P3 � ¼

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 S

3
7775
2
6664
P0x P1x P2x P3x

P0y P1y P2y P3y

P0z P1z P2z P3z

1 1 1 1

3
7775

¼

2
6664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 S

3
7775
2
6664
0 a a 0

0 0 b b

0 0 0 0

1 1 1 1

3
7775 ¼

2
6664
0 a a 0

0 0 b b

0 0 0 0

S S S S

3
7775

(2.101)

Note that the matrix

2
664
0 a a 0
0 0 b b
0 0 0 0
S S S S

3
775 is in the 4D homogeneous coordinates, which can be brought

back to the Cartesian coordinates by dividing the entries by S; that is,

�
P0
0 P0

1 P0
2 P0

3

�
s
¼

2
666664
0

a

S

a

S
0

0 0
b

S

b

S

0 0 0 0

1 1 1 1

3
777775: (2.102)

2.5.3 Translation
The transformation matrix for translating a geometric entity is defined as

Tt ¼

2
6664
1 0 0 M

0 1 0 N

0 0 1 O

0 0 0 1

3
7775 (2.103)
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where M, N, and O are the translation factors for the x-, y-, and z-coordinates, respectively,
as illustrated in Figure 2.30a. The rectangle of size a�b defined by four corner points P0 P1 P2 P3 is
translated to a new location, defined by the transformed corner points P0

0 P1
0 P2

0 P3
0, as shown below.

�
P0
0 P0

1 P0
2 P0

3

�
t
¼ Tt½P0 P1 P2 P3 � ¼

2
664
1 0 0 M
0 1 0 N
0 0 1 O
0 0 0 1

3
775
2
664
P0x P1x P2x P3x
P0y P1y P2y P3y
P0z P1z P2z P3z
1 1 1 1

3
775

¼

2
664
1 0 0 M
0 1 0 N
0 0 1 O
0 0 0 1

3
775
2
664
0 a a 0
0 0 b b
0 0 0 0
1 1 1 1

3
775 ¼

2
664
M aþM aþM M
N N bþ N bþ N
0 0 0 0
1 1 1 1

3
775

(2.104)

Note that, like before, the four pointsP0, P1, P2, and P3 can be control points of a parametric curve, such as
a cubic Bézier curve. In this case, the same procedure shown above applies, as illustrated in Figure 2.30b.

2.5.4 Rotations
The transformation matrix for rotating a geometric entity on the x–y plane, such as a point P shown in
Figure 2.31a, along the z-axis at a positive angle q can be written as

Trz ¼

2
664
cos q �sin q 0 0
sin q cos q 0 0
0 0 1 0
0 0 0 1

3
775: (2.105a)

Similarly, the matrices for rotating along the y- and x-axes, shown in Figures 2.31b and c, respectively,
can be written as

Try ¼

2
664
cos q �sin q 0 0
0 1 0 0

sin q cos q 0 0
0 0 0 1

3
775 (2.105b)

P3′y P2′

P2
P3

P0 P1

P1′
b

a x x

(a) (b)

P0′

P3′y P2′

P2P3

P0 P1

P1′
b

a

P0′

M M

N N

FIGURE 2.30 Geometry Translation. (a) Translating a Rectangle. (b) Translating a Cubic Bézier Curve.
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and

Trx ¼

2
6664
1 0 0 0

0 cos q �sin q 0

0 sin q cos q 0

0 0 0 1

3
7775: (2.105c)

Is the order of rotation transformations interchangeable? For example, is TrxðaÞTryðbÞ ¼
TryðbÞTrxðaÞ? The answer is generally no, unless the rotation angles a and b are infinitesimally small.
Another important property worth mentioning is that these rotation transformation matrices shown in
Eqns (2.105a–c) are orthogonal; that is,

ATA ¼ I (2.106a)

where matrix A is the rotation part of the transformation matrix; that is,

Tr ¼

2
664

0
A 0

0
0 0 0 1

3
775:

In addition, the determinant of the matrix A is 1; that is,

jAj ¼ 1 (2.106b)

2.5.5 Composite transformations
On many occasions, a geometric transformation is accomplished by multiple transformations. For
example, rotating a rectangle shown in the figure of Example 2.17 at a point other than the origin of the
Cartesian coordinate system requires first translating the entity to a location where the rotating point
coincides with the origin of the coordinate system. After rotating the entity with respect to the origin,
the rotated entity must be translated back to its original location. Such a transformation is called a

z(a) (c)

x
θ

P
P´

P´

P´

P

P
y

z z

x
x

y
y

θ
θ

(b)

FIGURE 2.31 Rotation Transformations. (a) Rotating a Point along the z-axis. (b) Rotating a Point along the y-axis.

(c) Rotating a Point along the x-axis.
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composite transformation. The 4�4 transformation matrix Tc for a composite transformation consists
of multiplications of individual transform matrices in a prescribed order. In general, the order is not
interchangeable.

EXAMPLE 2.17
Find the composite transformation matrix that rotates the rectangle shown below at the point S¼ [3,2]T, a 30�
angle counterclockwise. Note that the corner points of the rectangle are P1¼ [1,1]T, P2¼ [2,1]T, P3¼ [2,3]T and
P4¼ [1,3]T.

(1, 3) (2, 3)

S(3, 2)

x

y

(2, 1)(1, 1)

Solutions
There are three individual transformations involved. They are translating (�3,�2), rotating a 30� angle along the z-
axis, and translating (3,2), as shown below. Note that because the transformation takes place on the xey plane, we
omit entities relevant to z-component in the transformation matrices.

(1, 3)y (2, 3)
1
0
0

0
1
0

–3
–2
1

(2, 1)

x

(1, 1)

(–2, 1) (–1, 1)

S(0, 0)
x

x

y y

(–1, –1)(–2, –1)

=

= S

(–0.37, –1.37)

(–2.23, –0.13)

(–1.37, 0.37)

(–1.23, –1.87)

(0.77, 1.87)

(1.77, 0.13)
x

y (1.63, 2.37)

(2.63, 0.63)

S(3, 2)

Translation

Translation

Rotation

cos 30°
cos 30°

–sin 30°
sin 30°

0 0 1

0
0

Tt
1

1
0
0

0
1
0

3
2
1

=Tt
2

Trz

The individual transformation matrices are defined as

T1t ¼
2
41 0 �3

0 1 �2

0 0 1

3
5 Trz ¼

2
4 cos 30

� �sin 30� 0

sin 30� cos 30� 0

0 0 1

3
5 T2t ¼

2
41 0 3

0 1 2

0 0 1

3
5:

Continued
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EXAMPLE 2.17eCONT’D

Therefore, the composite transformation matrix can be calculated as

Tc ¼ T2t TrzT
1
t ¼

2
664
1 0 3

0 1 2

0 0 1

3
775
2
664
cos 30� �sin 30� 0

sin 30� cos 30� 0

0 0 1

3
775
2
664
1 0 �3

0 1 �2

0 0 1

3
775 ¼

2
664
0:866 �0:5 1:40

0:5 0:866 �1:23

0 0 1

3
775:

Hence, the transformed rectangle is defined by the four transformed corner points as

P0 ¼ TcP ¼

2
664
0:866 �0:5 1:40

0:5 0:866 �1:23

0 0 1

3
775
2
664
1 2 2 1

1 1 3 3

1 1 1 1

3
775 ¼

2
664
1:77 2:63 1:63 0:77

0:13 0:63 2:37 1:87

1 1 1 1

3
775:

EXAMPLE 2.18
Mirror the isosceles triangle shown below along a 45�-axis. Note that the corner points of the triangle are
P1¼ [1,1]T, P2¼ [1,3]T, and P3¼ [3,3]T.

Solutions
This mirror transformation can be accomplished by first rotating the triangle 45� clockwise along the z-axis so that
its hypotenuse aligns with the x-axis. The triangle is then rotated along the x-axis by a 180� angle. Then, it is rotated
45� counter clockwise along the z-axis.

P3
P2

P1 P2′

P3′

P1′

(1, 3)
(3, 3)

Trz (45°)

y

rotation

45°

x

(1, 1)

45°
x

y

Trx(180°)

rotation rotation

y

45°
x

P2″

P1″

P3″ P2″′

P2″′

P3

P1

y

45°

x
2

Trz(–45°)1
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EXAMPLE 2.18eCONT’D

The composite transformation matrix, consisting of three individual rotation matrices, can be found as

Tc ¼ T2rzTrxT
1
rz ¼

2
666664

cos ð45�Þ �sin ð45�Þ 0 0

sin ð45�Þ cos ð45�Þ 0 0

0 0 1 0

0 0 0 1

3
777775

2
666664

1 0 0 0

0 cos ð180�Þ �sin ð180�Þ 0

0 sin ð180�Þ cos ð180�Þ 0

0 0 0 1

3
777775

�

2
6664
cos ð�45�Þ �sin ð�45�Þ 0 0

sin ð�45�Þ cos ð�45�Þ 0 0

0 0 1 0

0 0 0 1

3
7775

¼

2
6666666664

1ffiffiffi
2

p � 1ffiffiffi
2

p 0 0

1ffiffiffi
2

p 1ffiffiffi
2

p 0 0

0 0 1 0

0 0 0 1

3
7777777775

2
666664

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

3
777775

2
6666666664

1ffiffiffi
2

p 1ffiffiffi
2

p 0 0

� 1ffiffiffi
2

p 1ffiffiffi
2

p 0 0

0 0 1 0

0 0 0 1

3
7777777775

¼

2
666664

0 1 0 0

1 0 0 0

0 0 �1 0

0 0 0 1

3
777775:

Hence, the transformed triangle is defined by the three transformed corner points as

P0 ¼ TcP ¼

2
66664
0 1 0 0

1 0 0 0

0 0 �1 0

0 0 0 1

3
77775

2
66664
1 1 3

1 3 3

0 0 0

1 1 1

3
77775 ¼

2
66664
1 3 3

1 1 3

0 0 0

1 1 1

3
77775:

Is this the only way to perform the mirror transformation? The answer is no. You may try another composite
transformation to mirror the triangle.

2.6 Case studies
Two case studies are included in this section. They are the curve fitting and surface skinning tech-
niques, and applications of the techniques to engineering applications. We include four examples to
demonstrate the modeling technique, including integration of topology and shape optimization, human
middle ear, human tooth, and reverse engineering of an airplane tubing.

2.6.1 Curve fitting and surface skinning
In many engineering applications, discrete points extracted from a physical object often serve as a
starting point for geometric model construction. One example is tracing the histological sections of
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a biological object. Through tracing outlines of the sections, discrete points are obtained and are
employed to construct B-spline curves that represent the exterior contours of the components using a
curve fitting technique. The surface skinning technique is then employed to quilt the B-spline curves
for smooth boundary surfaces of the object using B-spline surfaces.

2.6.1.1 Curve fitting
The curve fitting technique employs the least square fitting for discrete points measured on a
preselected section of an object. The best fitting curve can be obtained by minimizing the sum of
the distance between the curve and the geometric points. Mathematically, the distance sum f is
defined as

f ¼
Xr
j¼0

��Pj � x
�
uj
���2 (2.107)

where Pj is the position vector of the jth discrete point, and rþ 1 is the total number of points captured
in the section contour; jj$jj is the norm of the vector $, x(u) is the fitting B-spline curve, and x(uj)¼
[x1(uj), x2(uj), x3(uj)] is the position vector of the fitting B-spline curve at uj, where u is the parametric
coordinate of the curve. The uj in Eqn (2.107) is defined by the length ratio of the polygon formed by
the geometric points Pj, as illustrated in Figure 2.32a. Mathematically, the values of uj can be
calculated by

u0 ¼ 0; uj ¼ ðrþ 1Þ
Xj�1

k¼0

���Pðkþ1Þmodðrþ1Þ � Pk

���.Xr
k¼0

���Pðkþ1Þmodðrþ1Þ � Pk

���; ðj ¼ 1; rÞ: (2.108)

The B-spline curve is defined as

xðuÞ ¼
Xn
i¼0

Bi Ni;kðuÞ (2.109)

(a) (b)

FIGURE 2.32 B-spline Curve Fitting. (a) Curve Fitting for Geometric Points Pj. (b) B-spline Curve with Control

Points Bi.
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where Bi is the ith control point shown in Figure 2.32b, nþ1 is the number of control points, and Ni,k(u)
is the basis function of the B-spline curve, defined recursively as

Ni;kðuÞ ¼ ðu� tiÞNi;k�1ðuÞ
tiþk�1 � ti

þ ðtiþk�uÞNiþ1;k�1ðuÞ
tiþk � tiþ1

and



Ni;1

�
u
� ¼ 1; if ti � u � tiþ1

Ni;1

�
u
� ¼ 0; otherwise

(2.110)

where [ti, tiþ1] is a knot span formed by the two consecutive knots ti and tiþ1, and k� 1 is the
polynomial order of the basis functions.

To minimize f, the derivatives of f with respect to the nþ 1 control points are set to zero. For
simplicity, considering only the [th control point, one has

df

dB[
¼
Xr
j¼0

������ 2Pj

Xn
i¼0

Ni;k

�
uj
�þ 2

Xn
i¼0

Ni;k

�
uj
� Xn

i¼0

Ni;k

�
uj
�
B[

!����� ¼ 0: (2.111)

For [¼ 0, n, the above expression can be rewritten in a matrix form as

NTNB ¼ NTP (2.112)

where N˛R(rþ1)�(nþ1), B¼R(nþ1)�3, P¼R(rþ1)�3, and

N ¼

2
664
N0;kðu0Þ N1;kðu0Þ / Nn;kðu0Þ
N0;kðu1Þ N1;kðu1Þ 1 Nn;kðu1Þ

« 1 1 «
N0;kðurÞ N1;kðurÞ / Nn;kðurÞ

3
775
ðrþ1Þ�ðnþ1Þ

(2.113)

Note that NTN is invertible if Ni,k(uj)s 0. This is true if and only if ti�kþ1< uj< tiþ1, for i¼ 0,n, and
j¼ 0,r. This implies that there must exist at least one uj in at least one knot span so that Ni,k(uj)s 0 for
all basis functions. This requirement can be achieved by adjusting the knot values of the basis func-
tions. The curve fitting error can be controlled by adjusting the polynomial order and the number of
control points. The output of the curve fitting is a set of control points and basis functions that describe
the smoothed section contour.

2.6.1.2 Surface skinning
The fitting B-spline curves discussed above are then “quilted” across sections to form an open B-spline
surface, as shown in Figure 2.33, using the surface skinning technique. Note that in this process, the
number of control points of the B-spline curves must be kept identical across sections. In addition, the
polynomial order of the basis functions and knot values of the B-spline curves must be identical in all
sections. The control points are connected to their corresponding points across sections, as shown in
Figure 2.33a, to form a control polyhedron. The enclosed B-spline surface is then constructed, as
shown in Figure 2.33b, by

xðu;wÞ ¼
Xn
i¼0

Xm
j¼0

BijNi;kðuÞ Mj;[ðwÞ; (2.114)

where nþ 1 and mþ 1 are the numbers of control points in the u- and w-parametric directions,
respectively; and k� 1 and [� 1 are the polynomial orders of the basis functions Ni,k(u) and Mj,[(w),
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respectively. Note that the B-spline surface constructed is C2-continuous in both u- and w-parametric
directions, if cubic basis functions are assumed. The control points and basis functions of the B-spline
surface can be imported into CAD software to support solid modeling.

2.6.2 Engineering applications
The first application is the integration of topology and shape optimization. Topology optimization
(Bendsoe and Sigmund, 2003) has drawn significant attention in the recent development of structural
optimization. This method has been proven effective in determining the initial geometric shape for
structural designs. The main drawback of the method, however, is that the topology optimization
always leads to a nonsmooth structural geometry, while most of the engineering applications require a
smooth geometric shape, especially for manufacturing. On the other hand, shape optimization (Chang
and Choi, 1992) starts with a smooth geometric model that can be manufactured much easier. How-
ever, the optimal shape is confined to the topology of the initial structural geometry. No additional
holes can be created during the shape optimization process. It is desirable to combine topology and
shape optimizations to support structural design effectively by taking advantage of both methods. The
curve fitting and surface skinning technique discussed in Section 2.6.1 is ideal to support integration
of topology optimization and shape optimization.

(a) (b)

FIGURE 2.33 B-spline Surface Skinning. (a) Control Polyhedron and Section Curves. (b) B-spline Surface Enclosed

by the Control Polyhedron.
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To demonstrate the technique, a tracked vehicle roadarm shown in Figure 2.34a is optimized using
topology optimization from initial shape shown in Figure 2.34b to that of Figure 2.34c (Tang and
Chang, 2001).

The optimal design is unsmooth and cannot be manufactured. Geometric points of five repre-
sentative sections (Step 2 in Figure 2.35) of the roadarm are selected and fitted with B-spline curves
(Steps 3a and 3b in Figure 2.35). Following the surface skinning method, an outer polyhedron formed
by the 6�5 control points and the enclosed B-spline surface are created (Step 4a). Similarly, an inner
B-spline surface (4�3 control points) that represents the hole in the roadarm is created (Step 4b).
These B-spline surfaces are imported into SolidWorks for solid model construction. In SolidWorks, the
outer and inner solid models are created by filling up the cavities enclosed by the outer and inner
B-spline surfaces, respectively. The final solid model is obtained by subtracting the inner solid from
the outer one (Step 5) and uniting the subtracted solid model with two end half cylinders, as shown in
Figure 2.35.

(a) (b) (c)

FIGURE 2.34 The Tracked Vehicle Roadarm Example. (a) Physical Model. (b) Initial Finite Element Model. (c)

Topologically Optimized Model.

FIGURE 2.35 Construction of B-spline Surfaces for Structural Design.
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The second example is modeling a human middle ear (Sun et al., 2002). The modeling steps start
with the histological section preparation of human temporal bone. Through tracing outlines of the
middle ear components on the sections (Figure 2.36a), a set of discrete points is obtained and
employed to construct B-spline curves that represent the exterior contours of the components using the
curve fitting technique (Figure 2.36b). The surface skinning technique is then employed to quilt the
B-spline curves for smooth boundary surfaces of the middle ear components using B-spline surfaces
(Figure 2.36c). The solid models of the middle ear components are constructed using these surfaces
and then assembled to create a complete middle ear in CAD. The geometric model constructed using
the proposed method is smooth and can be used to create finite element models for mechanics study
(Figure 2.36d).

The same modeling technique is applied to a human maxillary second molar, which is the third
example to be presented. The main purpose of constructing a geometric model for the human tooth is
to capture accurately the geometry of the critical dentino-enamel junction (DEJ), which is important
for investigating stress distribution inside the tooth. The geometric modeling started with a histological
section preparation of a human tooth (Figure 2.37a). Through tracing outlines of the tooth on the
sections, discrete points are obtained and are employed to construct B-spline curves that represent the
exterior contours and DEJ of the tooth using a least square curve fitting technique (Figure 2.37b). The
surface skinning technique is then employed to quilt the B-spline curves to create a smooth boundary
and DEJ of the tooth using B-spline surfaces (Figure 2.37c). These surfaces are respectively imported
into SolidWorks via its Application Protocol Interface (API) to create solid models, as shown in
Figure 2.37d (Chang et al., 2003).

The last example is for support of reverse engineering. An airplane tubing sample part was first
scanned using an industrial CT scanner, capturing both the interior and exterior geometry with 486,107
uniformly spaced data points (Figure 2.38). A B-spline curve fitting and surface skinning approach was
employed to convert the data points into B-spline surfaces (Chang et al., 2006). A physical model was
produced using a stereolithography apparatus and mounted to the production fixtures to verify the
accuracy of the surface model, as shown in Figure 2.38.

(a) (b) (c) (d)

FIGURE 2.36 Human Middle Ear Surface and Finite Element Analysis Models. (a) Section Image. (b) Section

Contours. (c) Surface Model. (d) Finite Element Model.
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2.7 Summary
In this chapter, we discussed basic and essential topics in geometric modeling, including parametric
representations for curves and surfaces. We discussed popular curve and surface formats, including the
most versatile and general NURB curves and surfaces, which are widely employed for geometric
modeling. We hope the discussion became directly relevant when we introduced the surfaces generated
by CAD. We also include the topic of geometric transformation in this chapter, which is essential to
understand how the geometric entities are transformed to support numerous needs in modeling.
Detailed derivations were provided in this chapter because geometric modeling serves as the foun-
dation for solid modeling in CAD, which is at the center of the e-Design paradigm. In addition to the
mathematical forms of the curves and surfaces, we include as a case study of the curve fitting and
surface skinning techniques, which are powerful for many engineering applications. We hope by now
you have a fine understanding in the basics of geometric modeling, as we move to the next chapter to

(a)

(c) (d)

(b)

FIGURE 2.37 Geometric Model Construction for a Human Tooth. (a) A Sample Section Image. (b) Section Sketch

Digitization with References. (c) Surface Model of the DEJ. (d) The Solid Model in Various Views.

FIGURE 2.38 Reverse Engineering of Airplane Engine Tubing.
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discuss solid modeling and CAD theory. With a good understanding of solid modeling, we will then
discuss CAD assembly in Chapter 4 and then move into the heart of this bookddesign parameteri-
zation for part and assembly in Chapter 5.

Appendix A Basis functions of B-spline curves and surfaces
In this appendix, we provide detailed derivations that lead to the six basis functions Ni,3(u), i¼ 0, 5, of
a quadratic B-spline curve, as stated in Eqns 2.48a–f.

Recall that the basis functions Ni,k(u) are defined recursively as

Ni;kðuÞ ¼ ðu� tiÞNi;k�1ðuÞ
tiþk�1 � ti

þ ðtiþk � uÞNiþ1;k�1ðuÞ
tiþk � tiþ1

(2.44)

and

Ni;1ðuÞ ¼


1; ti � u � tiþ1

0; elsewhere:
(2.45)

Note that t is called knots in Eqns (2.44) and (2.45), defined as

ti ¼

8><
>:

0; i < k

i� kþ 1; k � i � n

n� kþ 2; i > n

: (2.46)

There are nþ kþ 1¼ 5þ 2þ 1¼ 9 knots. Also, the knots of the curve are

t0;1;2 ¼ 0

t3 ¼ 1

t4 ¼ 2

t5 ¼ 3

t6;7;8 ¼ 4:

(2.47)

From Eqn (2.45), we have

N0;1ðuÞ ¼ N1;1ðuÞ ¼ 0

N2;1ðuÞ ¼ 1; for 0 � u � 1

N3;1ðuÞ ¼ 1; for 1 � u � 2

N4;1ðuÞ ¼ 1; for 2 � u � 3

N5;1ðuÞ ¼ 1; for 3 � u � 4

N6;1ðuÞ ¼ N7;1ðuÞ ¼ 0

(A.1)

which are step functions, also called switch functions.
Then, for k¼ 2, from Eqn (2.44) we have

Ni;2ðuÞ ¼ ðu� tiÞNi;1ðuÞ
tiþ1 � ti

þ ðtiþ2 � uÞNiþ1;1ðuÞ
tiþ2 � tiþ1

(A.2)
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and

N0;2ðuÞ ¼ ðu� t0ÞN0;1ðuÞ
t1 � t0

þ ðt2 � uÞN1;1ðuÞ
t2 � t1

¼ 0þ 0 ¼ 0

N1;2ðuÞ ¼ ðu� t1ÞN1;1ðuÞ
t2 � t1

þ ðt3 � uÞN2;1ðuÞ
t3 � t2

¼ 0þ ðt3 � uÞN2;1ðuÞ ¼ ð1� uÞN2;1ðuÞ

N2;2ðuÞ ¼ ðu� t2ÞN2;1ðuÞ
t3 � t2

þ ðt4 � uÞN3;1ðuÞ
t4 � t3

¼ uN2;1ðuÞ þ ð2� uÞN3;1ðuÞ

N3;2ðuÞ ¼ ðu� t3ÞN3;1ðuÞ
t4 � t3

þ ðt5 � uÞN4;1ðuÞ
t5 � t4

¼ ðu� 1ÞN3;1ðuÞ þ ð3� uÞN4;1ðuÞ

N4;2ðuÞ ¼ ðu� t4ÞN4;1ðuÞ
t5 � t4

þ ðt6 � uÞN5;1ðuÞ
t6 � t5

¼ ðu� 2ÞN4;1ðuÞ þ ð4� uÞN5;1ðuÞ

N5;2ðuÞ ¼
ðu� t5ÞN5;1ðuÞ

t6 � t5
þ ðt7 � uÞN6;1ðuÞ

t7 � t6
¼ ðu� 3ÞN5;1ðuÞ þ 0 ¼ ðu� 3ÞN5;1ðuÞ

N6;2ðuÞ ¼ 0:

(A.3)

These are piecewise linear functions, as shown in Figure A.1.
Now, for k¼ 3, from Eqn (2.48), we have

Ni;3ðuÞ ¼ ðu� tiÞNi;2ðuÞ
tiþ2 � ti

þ ðtiþ3 � uÞNiþ1;2ðuÞ
tiþ3 � tiþ1

(A.4)

and

Ni;3ðuÞ ¼ ðu� tiÞNi;2ðuÞ
tiþ2 � ti

þ ðtiþ3 � uÞNiþ1;2ðuÞ
tiþ3 � tiþ1

N0;3ðuÞ ¼ ðu� t0ÞN0;2ðuÞ
t2 � t0

þ ðt3 � uÞN1;2ðuÞ
t3 � t1

¼ ð1� uÞ2N2;1ðuÞ

N1;3ðuÞ ¼ ðu� t1ÞN1;2ðuÞ
t3 � t1

þ ðt4 � uÞN2;2ðuÞ
t4 � t2

¼ 1

2
uð4� 3uÞN2;1ðuÞ þ 1

2
ð2� uÞ2N3;1ðuÞ

N3;3ðuÞ ¼ ðu� t3ÞN3;2ðuÞ
t5 � t3

þ ðt6 � uÞN4;2ðuÞ
t6 � t4

¼ 1

2
ðu� 1Þ2N3;1ðuÞ þ 1

2

�� 2u2 þ 10u� 11
�
N4;1ðuÞ þ 1

2
ð4� uÞ2N5;1ðuÞ

N4;3ðuÞ ¼ ðu� t4ÞN4;2ðuÞ
t6 � t4

þ ðt7 � uÞN5;2ðuÞ
t7 � t5

¼ 1

2
ðu� 2Þ2N4;1ðuÞ þ 1

2

�� 3u2 þ 20u� 32
�
N5;1ðuÞ

N5;3ðuÞ ¼
ðu� t5ÞN5;2ðuÞ

t7 � t5
þ ðt8 � uÞN6;2ðuÞ

t8 � t6
¼ 1

2
ðu� 3Þ2N5;1ðuÞ:

(A.5)
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These are the quadratic functions shown in Figure 2.12.

Appendix B Representing conics with quadratic NURB curves
In Example 2.10, we showed that a quadratic NURB curve with three control points represents a 90�
circular arc analytically, in which we set the weights h0¼ h2¼ 1, and h1 ¼ 1ffiffi

2
p . Now this appendix, we

explain why such weights turns a NURB curve into a circular arc. We provide the explanation in a
broader sense, extending the topic to include the entire conics family. We hope that by doing so we
offer a more comprehensive explanation on this important topic.

First, in analytic geometry, a conic may be defined as a planar algebraic curve of degree 2, which is
written as an implicit equation of degree 2 as follows:

fðx; yÞ ¼ Ax2 þ 2Bxyþ Cy2 þ 2Dxþ 2Eyþ 1 ¼ 0 (B.1)

Geometrically, a conic is the locus of a point moving on the x–y plane so that its distance from a fixed
point (called the focus, point F, in Figure B.1) is proportional to its distance to a fixed line (called the
directrix, usually the y-axis). As shown in Figure B.1, the focus F is located at (k,0); any point on the
directrix, such as point D, can be represented as (0,y). The locus of the conics must satisfy the pro-
portionality e, called eccentricity, defined as

e ¼ FP

PD
: (B.2)

N1, 2 = (1–u) N2, 1 N2, 2

0

1

(t0 = t1 = t2) (t3) (t4) (t5) (t6 = t7 = t8)
1 2 3 4

u

N3, 2 N4, 2 N5, 2

FIGURE A.1 Basis Functions Ni,2(u).

y

D (0, y) P (x, y)

F

F = (k, 0), k > 0

Focus x

FIGURE B.1 Basics of Constructing a Conic Curve.
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From Figure B.1, the eccentricity e can be written as follows:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� kÞ2 þ y2

q
jxj (B.3)

Square both sides and arrange terms, which yields�
1� e2

�
x2 � 2kxþ y2 þ k2 ¼ 0: (B.4)

When e¼ 1, Eqn (B.4) becomes

�2kxþ y2 þ k2 ¼ 0 (B.5)

which is a parabola (see example in Figure B.2a). When e< 1, the coefficient of the x2 term in Eqn
(B.4) is positive, and the equation becomes�

1� e2
�
x2 � 2kxþ y2 þ k2 ¼ 0 (B.6)

which can be converted into a form

x2

s2
þ y2

t2
¼ 1 (B.7)

which represents an ellipse (see example in Figure B.2b). Equation (B.7) represents a circle when s¼ t.
When e> 1, the coefficient of the x2 term in Eqn (B.4) is negative, and the equation becomes

��e2 � 1
�
x2 � 2kxþ y2 þ k2 ¼ 0 (B.8)

which can be converted into a form

x2

s2
� y2

t2
¼ 1 (B.9)

which represents a hyperbola (see example in Figure B.2c).
With a basic understanding of conics, we proceedwith representing a conic curvewith a NURB curve.

b

a

directrix

y2 = 4ax

c

a

a
b c

c

(c)(b)(a)

x2

x

y

a2 + = 1y2

b2

x2

a2 – = 1y2

b2

FIGURE B.2 Conic Curves. (a) A Parabola. (b) An Ellipse. (c) A Hyperbola.
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First, a NURB of degree 2 defined by three noncollinear control points P0, P1, and P2, can be a
segment of a parabola, as depicted in Figure B.3a. We wish to extend this concept to define ellipse and
hyperbola segments. It is well known that a conic curve that passes through P0 and P2 and is tangent to
P0P1 and P1P2 at P0 and P2, respectively (see Figure B.3b), can be represented by an implicit equation
of degree 2 as shown in Eqn (B.1). Note that there are five unknown in Eqn (B.1): A, B, C, D, and E.
These five unknowns must be determined by five linearly independent equations. Four of these
equations can be found by plugging P0 and P2 into Eqn (B.1) and then taking the derivative of Eqn
(B.1) and applying the condition of curve tangency to line segments P0P1 and P1P2.

Each of these four equations is linear in the unknowns A, B, C, D, and E. If we could find one more
condition to generate one more needed linear equation, we will have five linear equations with five
unknowns. Solving this system of linear equations yields all five coefficients and the conic curve is
uniquely determined.

A very natural addition would be one more point. Plugging the coordinates of this point into
Eqn (B.1) will give us an equation that is similar to those for control points P0 and P2. This point
should be inside of the triangle of the three control points so that the convex hull property can be
maintained. The position of this point should also be easily changed to produce a different conic curve.
One way to do this is by allowing this point to be on the line segment joining P1 and the midpoint of
P0P2 (point M shown in Figure B.3b). In this way, moving the point X on this line segment generates
different conic curves, as shown in Figure B.3c.

Recall that the equation of a quadratic NURB curve is

PðuÞ ¼

X2
i¼0

hiPiNi;3ðuÞ

X2
i¼0

hiNi;3ðuÞ
¼ h0P0N0;3ðuÞ þ h1P1N1;3ðuÞ þ h2P2N2;3ðuÞ

h0N0;3ðuÞ þ h1N1;3ðuÞ þ h2N2;3ðuÞ : (B.10)

Note that moving point X has the same effect as changing the weight h1 associated with the control
point P1 of the NURB curve. Also, we assumed h0¼ h2¼ 1 to ensure the curve tangency at P0 and P2,
respectively.

(a) (b)

P1

P0 P2

P1

P0 M

X

P2

P1

P0 M

X

P2

(c)

FIGURE B.3 Representing Conic Curves Using NURB. (a) A Parabola. (b) Point X on Line Segment P1M. (c) Different

Types of Conic Curves Determined by the Position of Point X.
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If we put P0 and P2 on the opposite sides of the x-axis, with the midpoint of P0P2 being the
coordinate origin (by a simple translation followed by a rotation), we have P0¼�P2. Let the NURB
curve meet the line segment MP1 at X as shown in Figure B.3b. A simple calculation using the
quadratic NURB curve equation shown in Eqn (B.10) yields the following:

Pð0:5Þ ¼ h1
1þ h1

P1 or
Pð0:5Þ
P1

¼ h1
1þ h1

(B.11)

In other words, from Eqn (B.3b), we have the following important relationship:

MX

MP1
¼ h1

1þ h1
(B.12)

Now, for the quarter circle shown in Figure 2.16b, or any circular arc like that of Figure B4, we have

MX ¼ OX�OM ¼ r� r sin a ¼ rð1� sin aÞ

and

MP1 ¼ OP1 �OM ¼ r

sin a
� r sin a ¼ r

�
1� sin2a

�
sin a

:

From the above two equations, we have

h1
1þ h1

¼ MX

MP1
¼ sin a

1þ sin a

which implies h1¼ sin a as desired.

P0

P1

P2

O M X

a

a
r

FIGURE B.4 A Circular Arc Being Defined by a Quadratic NURB with Three Control Points.

Appendix B Representing conics with quadratic NURB curves 119



Questions and exercises

1. Verify that the functions in Eqn (2.3) are indeed representing a circle. Plot points (x(u), y(u))
using a program, such as Matlab, or write a computer program to do so.

2. Given two points, P0, P1, and a tangent vector at the start point P0,u, derive equations for a
parametric quadratic curve that passes through these two points at u¼ 0 and 1, respectively, with
tangent vector P0,u at u¼ 0.

Graph the basis functions in Matlab, make observations on the characteristics of the function,
and comment on their influence on the curve geometry.

Graph the curve for
P0¼ [0,1], P1¼ [3,2], P0,u¼ [2,�7].
In addition to the derivations, submit screen captures of Matlab graphs to show the curve and

basis functions.
3. Given three points, P0, P1, P2, and the tangent vector at the end point P2,u, derive equations for a

parametric cubic curve that passes through these three points at u¼ 0, ½, and 1, respectively,
with tangent vector P2,u at u¼ 1.

Graph the basis functions and comment on their influence on the curve geometry.
Graph the curve for:
P0¼ [0,1], P1¼ [2,0], P2¼ [3,2], P2,u¼ [2,�7].
Submit screen captures of the Matlab graph to show the curve and basis functions.

4. Continue from Problem 3. Calculate the tangent vectors of the curve at both start and end points,
following curve format conversion. Calculate the positions of the curve points at u¼ 1/3 and
2/3, following curve format conversion. Calculate the position of the interior control points P1

and P2 of the equivalent Bézier curve using curve format conversion.
5. Four control points on the x–y plane are given as follows:

P0¼ [0,0], P1¼ [1,4], P2¼ [2,�5], P3¼ [3,8].
a. Construct a Bézier curve enclosed by the control polygon formed by the four given points;
b. Graph the curve in Matlab and submit screen captures to show the curve and basis functions.

6. Show that the 4�4 M4 matrix of a cubic uniform B-spline curve defined as

PiðuÞ ¼ � u3 u2 u 1
�
1�4

M4
4�M4

2
664
Pi�1

Pi

Piþ1

Piþ2

3
775 ¼ U1�4M

4
4�4

2
664
Pi�1

Pi

Piþ1

Piþ2

3
775; u˛ ½0; 1�; i˛ ½1; n� 2�

is

M4
4�4 ¼

1

6

2
664
�1 3 �3 1
3 �6 3 0
�3 0 3 0
1 4 1 0

3
775:

7. Show that the closed uniform B-spline curve of cubic basis functions is C2-continuous.
Calculate the Cartesian coordinates of the start and end points of all curve segments of Example
2.9, both quadratic and curve B-spline curves.
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8. Derive a parametric equation for the surface of the quarter cone, using the following:

z

x

y

P0

P1

(0,0,1)

(1,0,0)

(i) Surface of revolution. Plot the surface using Matlab, and
(ii) Sweep surface. Note that

P0¼ [0,0,1], P1¼ [1,0,0].
Submit the following:

(i) Detailed equations that describe the surface of revolution and sweep surface;
(ii) Matlab scripts and screen captures of the surface plotted in Matlab.

9. Derive a parametric equation for the surface of the quarter cone shown below, using the surface
of revolution. Plot the surface using Matlab. Note that

z

x

y
P0

P1
(0,-1,0)

(1,0,0)

u

w

P0¼ [0,�1,0], P1¼ [1,0,0].
Submit the following:

(i) Detailed parametric equations that describe the surface;
(ii) Matlab script and screen capture of the surface plotted in Matlab.

10. Derive a parametric equation for a 1/8 sphere of radius 1 shown below formed by revolving a
quadratic NURB curve P(u) on the x–z plane along the z-axis.

x w

u

z

P1

P2

P0

y
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11. Derive a parametric equation for a blend surface formed by four curves. These four curves are:

(a) Straight with end points:
G0¼ [0,0,3], G1¼ [3,0,1];

(b) Spline curve with three points:
P0¼ [0,5,0], P1¼ [1,5,3], P2¼ [3,5,2];

(c) Bézier curve with four control points:
Q0¼ [0,10,1], Q1¼ [2,10,2], Q2¼ [2.5,10,0.5], Q3¼ [3,10,3].

(d) Straight line with end points:
R0¼ [0,15,3], R1¼ [3,15,1].

Also, create a solid (or surface) feature using these four curves in Pro/ENGINEER or
SolidWorks. Submit the following:
(i) Screen capture of the Pro/ENGINEER or SolidWorks model and sketch view with all four

sections;
(ii) Detailed equations that describe the surface;
(iii) Matlab script and screen capture of the surface plotted in Matlab.

12. Derive a parametric equation for a sweep surface formed by sweeping a cubic Bézier curve P(u)
on the x–z plane along a trajectory of the same curve Q(u) on the x–y plane. The control points
of these two curves are, respectively:

P0¼ [0,0,0], P1¼ [�1,0,3], P2¼ [�2,0,0.5], P3¼ [�3,0,2];
Q0¼ [0,0,0], Q1¼ [1,3,0], Q2¼ [2,0.5,0], Q3¼ [3,2,0].
Also, create a sweep solid feature using these two curves in Pro/ENGINEER or SolidWorks.

Submit the following:
(i) Screen capture of the Pro/ENGINEER or SolidWorks solid model and a sketch view of

both curves;
(ii) Detailed equations that describe the surface;
(iii) Matlab script and screen capture of the surface plotted in Matlab.
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With the basic understanding of geometric modeling discussed in Chapter 2, we are moving closer to
the core of product design modelingdthat is, solid modeling, especially feature-based parametric
solid modeling, which is the key topic to be discussed in this chapter. In recent decades, the term solid
modeling has been associated with the technology of using computer-aided design (CAD) systems to
create the shape and form of part geometry and associated physical properties with a computer for the
purpose of engineering designs. Today, CADmodels with built-in essential product design information
play a central role in e-Design.
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Solid modeling in CAD applications has evolved through a series of phases in order to improve the
geometric representation of physical artifacts or design concepts that are being developed in the en-
gineering design process. It started in early 1960s when the first wireframe computer graphic was
invented at the Massachusetts Institute of Technology (MIT) Lincoln Laboratory. In the mean time,
design automated by computer (DAC-1), the first production interactive graphics manufacturing sys-
tem,was developed byGeneralMotors. Since then,with further development, surfacemodeling became
a reality in the 1960s and solid modeling began in the 1970s, followed by feature modeling in the mid-
1980s and parametric modeling by Parametric Technology in the late 1980s. With the development of
feature modeling and parametric modeling in the 1980s, feature-based parametric solid modeling has
since become themainstreamCAD theory in support of engineering design. It is well recognized that the
most significant development appeared in the mid-1990s, in which major CAD tools were made
available in personal computers (PCs) that allowed end users in mid- and small-size companies to be
able to bring designs from the drawing board into digital form. More recently, direct modeling tech-
nology brought CAD one step further in support of engineering design by allowing designers to directly
manipulate solid models by pulling or squeezing solid features on the computer screen using a mouse.

Today, major CAD systems employ feature-based parametric modeling techniques to support
engineering designs through respective interactive user interfaces. Because solid modeling is the heart
and soul of CAD, we devote this chapter to introducing basic knowledge in solid modeling methods
and theory. This is the knowledge that readers must have in order to proceed with the study of the e-
Design paradigm and gain practical skills in practicing e-Design, in which product geometry is rep-
resented in CAD solid models throughout the product development process.

This chapter is organized with the assumption that the reader has used CAD software (e.g.,
SolidWorks, Pro/ENGINEER) for creating solid models but has no or little background in solid
modeling theory. If you are not familiar with CAD software, you are strongly encouraged to review
excellent references for tutorial lessons, such as Toogood and Zecher (2012) for Pro/ENGINEER or
Planchard and Planchard (2013) for SolidWorks. With the assumption that you are familiar with CAD
software, we offer discussion on numerous topics involved in solid modeling, with examples extracted
mostly from SolidWorks and Pro/ENGINEER.

Overall, the objectives of this chapter are (1) to provide an introduction to the basic solid modeling
theories that help readers understand how the product design is realized in CAD, and (2) to help readers
become familiar with the behind-the-scenes operations in CAD modeling so as to effectively use these
tools for design. We also provide a short discussion on commercial CAD software tools, with the hope
of offering readers guidance on selecting proper tools that are suitable for their specific needs.

3.1 Introduction
In the 1970s, nearly every engineering drawing produced in the world was done with pencil or ink on
paper. A drafter leaned on the drawing board and used a T-square ruler, protractors, a compass, and
templates to carefully sketch the lines, arcs, letters, and symbols that constitute an engineering
drawing. Any changes or mistakes required erasing and redrawing, whereas major changes often
necessitated recreation of the drawing from scratch. In manually created drawings, one of the most
challenging tasks is that a drafter must envision the intersection of solid entities, unwrap the inter-
secting curves, and sketch the curves accurately on the drawing paper. Engineering drawing has been
the backbone of product design and development for many years (Bozdoc, 2003).
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Although engineering drawing still plays an important role in product design and manufacturing in
many industrial sectors around the world, manual sketching for creating drawings has been gradually
replaced by CAD (computer-aided design) software using computers. Beginning in the 1980s, CAD
software reduced the need for draftsmen significantly, especially in small to mid-sized companies. The
software’s affordability and ability to run on personal computers in the mid-1990s allowed engineers to
do their own drafting and analytic work to some extent.

In fact, instead of just creating drawings, CAD has fundamentally changed the way design is done.
As in the manual drafting of technical and engineering drawings, the output of CAD conveys infor-
mation, such as materials, processes, dimensions, and tolerances, according to application-specific
conventions in solid models. Instead of drafting in digital form, designers use CAD to create prod-
uct models in solid model forms with adequate product data, then they create drafting if necessary.
CAD solid models offer flexibility and efficiency when making design changes; provide geometric and
physical data that support product performance evaluations using computer-aided engineering (CAE);
support virtual manufacturing, prototyping, manufacturing process planning, and product cost esti-
mating; and offer product life cycle and product knowledge repository for archiving. Most important,
product model in CAD serves as the centerpiece for e-Design.

The backbone of CAD is solid modeling. It is indispensable for designers to acquire adequate
knowledge in CAD and solid modeling in order to effectively practice e-Design in support of engi-
neering design. We introduce numerous theories and schemes that support product (or more specif-
ically, parts) representation in solid models, with a focus on feature-based parametric solid modeling,
which is the mainstream solid modeling method offered in major CAD systems. The main theme of the
chapter is understanding the behind-the-scenes operations while you are using CAD for creating solid
models. It is also important for readers to understand how CAD rebuilds solid models when a design
change is made by changing dimension values associated with solid features.

We start in Section 3.2 by introducing the basic theories of solid modeling, including constructive
solid geometry (CSG) and boundary representation (B-rep), which are the two most widely used
schemes for solid modeling. With a basic understanding of solid modeling, we discuss the main topic
of the chapter in Section 3.3dthat is, the feature-based parametric solid modeling method. In Section
3.4, we offer the practical aspects of creating solid models by discussing model construction plans. We
then provide a short overview of commercial CAD software in Section 3.5.

3.2 Basics of solid modeling
Before getting into the main topic of this chapterdfeature-based parametric solid modelingdwe
discuss a few important basic topics in solid modeling in this section. We start by discussing three basic
methods for representing solid models: wireframe, surface, and solid forms. We include the advantages
and disadvantages of each form, as well as the use of the models represented in the form for design and
manufacturing applications. We will then narrow our focus to solid modeling, for which we introduce
two major modeling methods: CSG and B-rep.

3.2.1 Wireframe models
Wireframe is the simplest and the earliest form of representing physical objects; it was first introduced
in 1963 at MIT’s Lincoln Laboratory. The wireframe form represents a shape by its characteristic
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curves (lines, arcs, splines, and so on) and points, as illustrated in Figure 3.1a. A reindeer frame
decoration, as shown in Figure 3.1b, which is displayed in residential front yards during Christmas, is a
good example of wireframe model in real-world applications. The major advantages of this method are
that it requires simple input from users and the modeling software is relatively easy to implement. One
of the examples in its applications in design and manufacturing is the two-dimensional (2D) wireframe
models in MasterCAM that supports numerical control (NC) toolpath generation for machining simple
prismatic features, such as pocket milling or profile milling (Figure 3.1c), in which all contours exist in
flat planes and only planar geometric information is required.

Although there are some applications that a wireframe model is able to support, there are major
issues involved in representing solid models in wireframe. First, it is ambiguous for representing a
solid object in a wireframe, as illustrated in Figure 3.1a, due to its inability to determine the inside or
outside of a solid object. Second, a wireframe is not able to represent objects with nonpolygonal
boundaries due to a lack of curvature information on surfaces. In addition, it is impossible to calculate
mass properties of a solid object represented in a wireframe form. Awireframe model is not capable of
supporting a finite element mesh for structural analysis of a physical object other than beam or truss
structures. Generating a toolpath on a nonpolygon surface of a solid model represented in a wireframe
is impossible due to its lack of surface geometric information.

Because of these reasons, no CAD tool uses wireframe alone to represent part geometry. Wire-
frames are only used in CAD as one of the options for visualizing solid objectsdthat is, the wireframe
modeddue to its quick response in displaying objects on the computer screen without rendering.

CNC toolpath Machining simulation 

(b)(a)

(c) Design model 
(2D wireframe)

Workpiece
(Dotted line)

FIGURE 3.1 Wireframe Models. (a) Ambiguity in Representing a Solid Object. (b) Outdoor Christmas Decoration of a

Rattan Reindeer (courtesy of http://www.brookstone.com/pre-lit-outdoor-christmas-decorations-rattan-reindeer).

(c) Supporting Toolpath Generation in MasterCAM.
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3.2.2 Surface models
A surface can be thought of as an infinitely thin shell stretched over a wireframe. In addition to lines
and points, surface models represent a shape by its surface geometry, as illustrated in Figure 3.2.
A surface model includes information about the faces and edges of a part. Modeling methods for a
surface offered in CAD include protrusions, such as extrude, sweep, loft, and revolve; interpolating
points; and knitting and trim, as shown in Figure 3.2. To represent a solid object, the surfaces must
form an airtight cavity that replicates the geometry of the object without any gap between them or any
dangling surface or line. A hot air balloon shown in Figure 3.2f, is a good example of a surface model
in real-world applications. Surfaces are commonly used to model complex, freeform (or organic)
shapes that are commonly found in applications in the automotive, aircraft, mold, and consumer goods
industries.

A surface model is good for visualizing complex surfaces and supports NC toolpath generation. As
illustrated in Figure 3.3a, a toolpath was generated on a Coons patch in MasterCAM. The surface
model is also widely used in finite element analysis (FEA) for thin-shell structures, as shown in
Figure 3.3b, in which an FEA was carried out for a surface model that represents the mid-plane of a
thin-shell solid object created in CAD. In addition, a stereolithography (STL) model, which is a
surface model consisting of triangular facets that form an airtight cavity representing a solid object, is
the de-facto standard for three-dimensional (3D) printing (also called rapid prototyping or solid
freeform fabrication). An example of the STL model is given in Figure 3.3c.

As for modeling solid objects, the surface model generally works well. However, the mass or
volume information of a solid object represented in a surface model is hard to determine, partly

(a) (c)(b)

(d) (e) (f)

Sketch profile 

Extrusion
direction

Sketch profile 

Sweep path (or 
trajectory) 

Sketch profile 

Revolve axis 

Sketch profiles 

Guide curves 
Trimmed surface 
(with Plane1) 

Untrimmed 
surface 

Plane1
(rotated 75o)

FIGURE 3.2 Creating Surface Models in Computer-aided Design. (a) Extrusion. (b) Sweep. (c) Revolve. (d) Loft

(e) Trimmed. (f) A Hot Air Balloon.
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because a surface model lacks the mathematic representation of the solid object. Additional infor-
mation must be added to a surface model in order to specify in/out and top/bottom of the physical
object that the surface model represents.

3.2.3 Solid models
Solid models contain information about the edges, faces, and the interior of the part. The mathematical
description contains information that determines whether any location is inside, outside, or on the
boundary surface. Modeling a solid object in the solid model form generally includes primitive cre-
ation and Boolean operations, surface operations, protrusion operations, pick-and-place, feature-based
modeling, and parametric modeling. It is important to note that individual CAD systems only use some
of these methods for the modeling capabilities they respectively offer.

Primitives are basic solid objects with simple mathematical surfaces, as depicted in
Figure 3.4a. These primitives can be controlled by a small number of parameters and positioned
using a transformation matrix (as discussed in Chapter 2). Boolean operations, such as union,
intersection, and difference, are used to make more complicated objects by combining the basic
objects. This method is often referred to as CSG. More about this approach will be discussed in
Section 3.2.4.

(a)

CNC toolpath Machining simulation 

(b)

Drive Surface (a Coons patch) 

Tool Containment 
Rectangle 

Workpiece 
(Dotted line) 

(c)

FIGURE 3.3 Surface Models for Support of Design and Manufacturing. (a) Toolpath and Machining Simulation in

MasterCAM. (b) FEA of a Thin-shell Structure as a Solid Model in CAD (Left), Surface Model of Mid-plane (Middle)

with Finite Element Mesh, and FEA Stress Fringe Plot (Right). (c) Engine Block as a Solid Model (Left) and

Stereolithography (STL) Model (Right).
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Surface operations trim and knit surfaces to form an airtight cavity that represents a solid object.
This method is called boundary representation or B-rep. More details of this method are discussed in
Section 3.2.4.

Protrusion operations use 2D sketch profiles to generate a 3D solid by extruding, revolving,
sweeping, and loft. Examples are shown in Figure 3.4b.

Pick-and-place operates directly on the solid model surfaces, edges, and vertices to create a desired
modification. Some examples include chamfering, rounding/filleting, drafting, and shelling, as illus-
trated in Figure 3.4c.

Feature modeling mainly supports manufacturing operations. Manufacturing features are shapes
having engineering manufacturing significance. They usually are the geometric embodiment of
machining operations, such as hole, pocket, slot, and boss, as illustrated in Figure 3.4d. Note that
feature (instead of manufacturing feature) is a generic term used by CAD users and developers to refer
to almost all kinds of geometric entities in solid modeling, sometimes including nongeometric entities,
such as datum features (including planes, axis, points, coordinate systems).

Parametric modeling manipulates parameters to control the geometric shape of a solid object.
Parameters come from dimensions in 2D profiles in sketch, dimensions on 3D solid features, and
variables in user-defined equations. If defined properly, the entire part geometry can be controlled by a
small number of key parameters. Design intents can therefore be captured through the change of the
small set of parameters. Parametric modeling supports design parameterization; therefore, it becomes
an indispensable part of the product design modeling in the context of e-Design. More about feature-
based parametric modeling is discussed in Section 3.3 as a key section of the chapter. Design
parameterization, which is an important topic of this book, is discussed in Chapter 5.

A solid model is the ultimate way to represent general objects, which are physically solid objects.
Solid models support NC toolpath generation of complex surfaces and meshing with solid elements for

FIGURE 3.4 Solid Model Construction Methods. (a) Primitives and Boolean Operations. (b) Protrusion

Operations. (c) Pick-and-place. (d) Feature Operations.
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finite element analysis. In addition, solid models are adequate for the calculation of mass properties in
support of motion simulations. Solid models also support collision and interference checking, which
are critical in assembly and kinematic analyses.

3.2.4 Major modeling schemes
As mentioned, there are several methods for constructing solid models. From a CAD user’s
perspective, protrusion and pick-and-place methods are most often employed. In terms of mathe-
matically representing a solid object, two major modeling methods, CSG and B-rep, are widely
employed by geometric modeling kernels, which are the core of CAD systems. More about kernels is
discussed in Section 3.2.5. In this subsection, we discuss these two modeling methods in greater detail
to offer readers a more in-depth understanding of CAD theory and behind-the-scenes mathematic
operations.

3.2.4.1 Constructive solid geometry
CSG is a modeling method that supports the construction of solid objects through operations on solid
primitives. CSG records both the information of operations and information of the primitives. The
major components of the CSG method are primitives and instances, as well as the Boolean set
operations and CSG tree.

3.2.4.1.1 Primitives and instances
A typical CSG system uses primitives, such as cylinders, boxes, cones, spheres, as shown in
Figure 3.4a, as well as their instances, as the building blocks for constructing solid models. The idea is
to use the primitives that can be manipulated easily in the computer system. Each individual primitive
is stored as a geometric family together with a set of parameters. An instance of the primitive family is
a scaled and/or transformed replica of its original. The scaling may be uniform or differential. It is a
method of keeping primitives in their basic minimum condition, such as unit cube and unit sphere.
For example, a cube belongs to the family of box with all three parametersdlength, width, and
heightdhaving the same value.

3.2.4.1.2 Boolean set operations and CSG tree
To construct a complex object, the CSG approach decomposes it as a compound object composed of a
number of primitives. CSG typically uses Boolean set operations, including union, difference, and
intersection, to construct objects. These are mathematical operations taken from set theory. The
primitives involved in an operation are referred to as operands.

A union of primitives gives a volume occupied by each operand minus the volume shared
(or overlapped) by them, as illustrated in Figure 3.5b, in which union operation is carried out for two
primitives P and Q (Figure 3.5a). In CAD, such a union operation is realized in many ways. For
example, in Figure 3.5b, you may sketch a profile and extrude it for Q, and extrude (both sides) a
square block from Q for P. Implicitly, union operation is employed in CAD.

Difference operations require two operands playing different roles. The base operand defines the
source volume (Q in Figure 3.5c) and the second operand defines the volume to be removed (P in
Figure 3.5c). The resulting object contains the volume of the base operand but not the second operand.
For example, the object shown in Figure 3.5c represents difference operation Q� P. In CAD, you may
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create a sketch profile and extrude it for Q, and extrude a square blind cut P to Q to yield the object
shown in Figure 3.5c.

An intersection of primitives gives a volume commons to all operands, for example, the object
shown in Figure 3.5d representing an intersection PXQ. Note that there is no direct intersection
operation in major CAD systems.

In fact, as a user, we do not see any direct Boolean operation capabilities offered by CAD systems.
However, there are capabilities for users to cut and union features as illustrated in Figure 3.5. In
general, location and orientation of primitives involved in the Boolean operations determine largely
the resulting object. A primitive or its instance is usually scaled, translated, and rotated to a prescribed
location and orientation before carrying out a Boolean operation.

As seen clearly, Boolean operations are binary, involving two (or two sets of) primitives.
The primitives involved in each operation and the sequence of operations create a so-called
CSG tree. A CSG tree, as shown in Figure 3.6 schematically, is a binary tree with leaf nodes as the
primitives and interior nodes (or branch) represent Boolean set operations. The root node represents
the final part.

The CSG tree creates a procedural model that specifies how the solid features are combined to form
the final solid model. In general, the solid model must be “evaluated” by computing intersecting curves

P

Union: P U Q Difference: Q − P Intersection: P ∩ Q

Q

(b) (c)(a) (d)

FIGURE 3.5 Boolean Operations. (a) Solid Primitives P and Q. (b) Union of P and Q. (c) Difference of P and Q.

(d) Intersection of P and Q.

Root node 

Branch nodes 

Leaf nodes 

U

∩ −

FIGURE 3.6 A Schematic of a Constructive Solid Geometry Tree.
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from the parametric surface equations of the geometric features, based on the position and orientation
of the primitives. Quantitative information, such as intersecting curves, must be generated and stored
to define and to display the solid model.

The curve intersecting two surfaces can be analytical only for basic primitives, such as a circular
cone intersecting with a plane. Conic curves, such as a circle or ellipse, are generated as a result of the
intersection, as illustrated in Figure 3.7a, which can be represented analytically. However, analytical
representations of intersecting curves are generally not available, so approximation methods must be
used. We discuss one approximation method that calculates intersecting curves of two parametric
surfaces as an example.

Consider two parametric surfaces P(u,v)¼ [Px(u,v), Py(u,v), Pz(u,v)] and Q(w,t)¼ [Qx(w,t),
Qy(w,t), Qz(w,t)], where u and v, and w and t are parametric coordinates of the two surfaces,
respectively (see Figure 3.7b). The intersecting curve is constructed by generating parametric curve
that passes through a number of intersection points.

The intersecting curve must satisfy the following equation:

Pðu; vÞ �Qðw; tÞ ¼ 0: (3.1)

There are four unknowns u, v, w, and t, but only three equations (parametric equations of Eqn (3.1) in
the x-, y-, and z-directions, respectively). Basically, the intersecting curve cannot be obtained by
solving Eqn (3.1).

One approach to construct the intersecting curve:

1. Fix a value of, for example, the u parameter of the surface P(u,v), to generate a curve on the
surface (i.e., P(uj,v)), as shown in Figure 3.7b.

u

v

P(u,v) 

w

tQ(w,t) 

ui

uj
uk

u

Pi

Pj
Pk

P

(b)(a)

FIGURE 3.7 Surface to Surface Intersection. (a) Intersecting Two Standard Primitives. (b) Intersecting Two

Parametric Surfaces.
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2. Compute the intersection points of this curve with the surface Q(w,t) by solving numerically.

P
�
uj; v

��Qðw; tÞ ¼ 0 (3.2)

We have now three equations (parametric equations of Eqn (3.2) in the x-, y-, and z-directions,
respectively), and three unknowns (v, w, and t).
3. Repeat Steps 1 and 2 for as many uj as needed. For example, if a cubic curve is desired, then four

intersecting points at u¼ 0, 1/3, 2/3, and 1 can be calculated for a cubic spline curve to
approximate the intersecting curve, as illustrated in Figure 3.7b.

As can be seen from this discussion, CSG is intuitive because the concept of solid model construction
is in some sense parallel to manufacturing operations. The solid model constructed is always valid
(except if one unions two cones only at their vertices, for example). Another advantage of the CSG is
that the solid model requires a small data set (i.e., the primitives involved and CSG tree). In general,
the CSG model is an unevaluated model, which must be “evaluated” for numerous purposes (e.g.,
display on computer screen) and calculating engineering data (e.g., mass properties). As discussed,
evaluating a CSG model can be inefficient because the process involves computations, such as cal-
culations of intersecting curves.

3.2.4.2 Boundary representation
B-rep is an important method of 3Dmodeling for solid objects. A B-rep model represents a solid object
by assembling (or gluing) surfaces to form an “airtight” boundary that encloses the 3D space occupied
by the object, as illustrated in Figure 3.8.

In B-rep, a solid model is bounded by faces, a face is bounded by edges, and an edge is bounded by
vertices. Essentially, there is a hierarchy of four levels of geometric entities: volume, face, edge, and
vertex. Face, edge, and vertex are topology entities that specify connectivity information. In addition to
topological entities, the corresponding geometric entities are surface, curve, and point that define the
shape, location, and orientation of the entities. Both geometric and topology data must be defined to
construct the solid model. Both must be stored in a database.

For example, as shown in Figure 3.9, a block is defined in a volume with its six boundary faces.
Each rectangular face is defined by its own edges to form an enclosed surface. All the surfaces are

(b)(a)

FIGURE 3.8 A Boundary Representation Model of a Solid Object. (a) Solid Model. (b) Boundary Surfaces.
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joined along the common edges of their respective neighboring faces. Every edgeda straight line in
this casedis bounded by its end points.

One advantage of the B-rep model is that the model is fully evaluated; that is, all geometric entities
are explicitly defined and are ready for display. However, a complex B-rep model requires a relatively
large database. It is less intuitive to create solid models using the B-rep method as compared with CSG
because users must deal with points, curves, and surfaces instead of primitives that are much more
relevant to physical objects. More importantly, a B-rep model constructed by a designer may be
invalid, and a B-rep model must be verified for its topology before putting it to use.

How can we (or the computer, in this case) tell if a B-rep model is topologically valid? In a to-
pologically valid model, all faces are properly “glued” to wrap the solid object airtight, all edges are
properly “joined” that fence the face, and all edges are properly bounded by end vertices. In addition,
there must be no dangling faces or edges, and no split solid object.

Which objects in Figure 3.10 are topologically valid? Apparently, objects in Figure 3.10a and b are
valid, but not Figure 3.10c. It is apparent that normal objects found in nature have the property that, at
every point on the boundary, a small enough sphere around the point is divided into two pieces: one
inside and one outside the object. This property can be easily verified for the objects in Figure 3.10a
and b. The so-called nonmanifold models break this rule. For example, in the object shown in
Figure 3.10c, a small sphere around any point on the four edges of the rectangle at the bottom face of
the cube is divided into four pieces: two inside and two outside. Essentially, the object in Figure 3.10c
is two solids “welded” along the edges of the rectangle on the bottom face. The welded edges are

Solid Faces 

Edges Vertices

FIGURE 3.9 The Boundary Representation Model of a Rectangular Block.

Solid

Solid

empty empty(c)(b)(a)

FIGURE 3.10 Examples of Manifold (a, b) and Nonmanifold (c) Objects.
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infinitely thin without a cross-sectional area, which is physically impossible. A nonmanifold object,
such as the one on Figure 3.10c, is considered to be topologically invalid.

To ensure the topological validity of a B-rep model, the number of its topological entities must
satisfy the Euler-Poincare law, which is stated as follows:

v� eþ f ¼ 2ðs� hÞ þ r (3.3)

where v, e, f, s, h, and r are the numbers of vertices, edges, faces, solids, through holes, and rings,
respectively. Note that r can be a ring or an inner loop of edges that are completely within a face.
Figure 3.11 offers an illustration for the topological entities mentioned in Eqn (3.3).

The following simple examples illustrate the law and verify the topological validity of the
respective physical objects.

EXAMPLE 3.1
Use the Euler-Poincare law to verify if the following objects are topologically valid: (a) a rectangular block with a
rectangular through hole, (b) a circular cylinder, and (c) a rectangular block with a circular through hole.

E1

Through
hole

(a) (b) (c)F1

V1

V2

F2

E2

E3

Continued

Edges

Edge loop

Faces

Vertices

FIGURE 3.11 Illustration for the Topological Entities Employed in the Euler-Poincare Law.
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EXAMPLE 3.1eCONT’D

Solutions
For part (a), we have f¼ 10 (four exterior, four interior, and two ends), v¼ 16, e¼ 24, s¼ 1, h¼ 1, and r¼ 2. From
Eqn (3.3), we have

v� eþ f ¼ 16� 24þ 10 ¼ 2

and

2ðs� hÞ þ r ¼ 2ð1� 1Þ þ 2 ¼ 2:

Therefore, part (a) is topologically valid. Physically, the block is a valid object.
For part (b), we have f¼ 3, v¼ 2, e¼ 3, and s¼ 1. Note that a silhouette edge must be added (and the

associated vertices) to a cylindrical surface when counting the number of topological entities. From Eqn (3.3),
we have

v� eþ f ¼ 2� 3þ 3 ¼ 2

and

2ðs� hÞ þ r ¼ 2ð1� 0Þ þ 0 ¼ 2:

Therefore, part (b) is topologically valid.
We are applying the same principle for part (c)dthat is, adding a silhouette edge to the circular cylindrical

surface inside the rectangular block.
Hence, for part (c), we have f¼ 6þ 1¼ 7, v¼ 8þ 2¼ 10, e¼ 12þ 3¼ 15, s¼ 1, h¼ 1, and r¼ 2. From Eqn

(3.3), we have

v� eþ f ¼ 10� 15þ 7 ¼ 2

and

2ðs� hÞ þ r ¼ 2ð1� 1Þ þ 2 ¼ 2:

Therefore, part (c) is topologically valid.

Boundary representation is essentially a local representation connecting faces, edges, and vertices. An
extension of this is to group the primitive geometric entities of the shape into logical units called
geometric features. Features are the basis of many other developments, allowing high-level “geometric
reasoning” about shape for comparison, process planning, manufacturing, etc. Feature-based modeling
is discussed next in Section 3.3.

Compared to the CSG representation, which uses only primitive objects and Boolean opera-
tions to combine them, boundary representation is more flexible and has a much richer operation
set. This makes boundary representation a more appropriate choice for CAD systems. CSG was
used initially by several commercial systems because it was easier to implement. The advent of
reliable commercial B-rep kernel systems, such as Parasolid and ACIS, has led to widespread
adoption of B-rep for CAD. B-rep kernels systems offer CAD-like operations, such as protrusion,
chamfer, blending, drafting, shelling, tweaking, and other operations. Note that most CAD systems
employ both CSG and B-rep for solid modeling, or at least the major principles of these methods.
In general, CSG keeps the relationship between features, and B-rep stores topological and
geometric data for display and computations. More about geometric modeling kernels can be seen
in Section 3.3.7.
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3.3 Feature-based parametric solid modeling
Most modern CAD software employs a methodology called feature-based parametric solid modeling
as the major interface for users to interactively create solid models. Feature-based modeling approach
is more desirable in constructing solid models, in which designers use features that correspond to
physical entities to construct solid models, instead of dealing with primitive geometric entities, such as
points, curves, and solid primitives. The features available in CAD are usually designed to relate to
how engineers think in their design and manufacturing work. The parametric modeling method allows
designers to create solid models in such a way that by varying a few parameters (e.g., geometric di-
mensions), the solid models rebuild automatically as intended (i.e., capturing design intent). For
example, a hole in the block shown in Figure 3.12a is intended to stay at the middle of the block when
the width of the block changes. To capture this design intent, first the sketch profile of the base block
must be fully defined (Figure 3.12b), with dimension d2 as a design variable that is to vary. The hole
must be placed to the profile of the base block with its width dimension (d1 in Figure 3.12c) related to
that of block width d2, as d1¼ 0.5d2. This one-way parameter assignment is essentially parametric
modeling.

In most CAD, the base block is a protrusion feature generated by extruding the sketch profile shown
in Figure 3.12b along an extrusion direction that is normal to the sketch profile. The hole is an extrude
cut feature that does not require users to sketch its profile, which is called a pick-and-place feature.

The question is how CAD software captures our design intent. How does CAD handle the sketch
profile of the block when you make a change? How does CAD rebuild the part and what are the
potential pitfalls you, as a designer, should avoid?

In this section, we intend to answer these questions. We start by revisiting “features” to have a
better understanding of the terminology so that the “feature-based modeling” becomes more vivid.
We then discuss the variational modeling method that CAD employs to support the needed calcu-
lation for determining a sketch profile. We discuss parent–child relationships, which are generated

(b)(a) (c)

d1 = 10 d2 = 20 

FIGURE 3.12 (a) The Block Example for the Illustration of Design Intent Capturing Using Feature-based Parametric

Solid Modeling Method. (b) Sketch Profile of the Base Block with Width Dimension d2 Shown. (c) Position of

the Hole by Dimension d1, Which can be Parametrically Related to Dimension d2.
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when features are added to the solid model. Finally, we discuss the parametric modeling method and
the solid modeling procedure we often exercise in CAD, in which we show how CAD rebuilds a part
by walking through the steps using a simple example. We also discuss a newly developed modeling
method called direct modeling. This section is wrapped up by a short introduction to geometric
modeling kernels.

3.3.1 Geometric features
The term “feature” implies different meanings in different engineering disciplines. This has resulted in
many ambiguous definitions for feature. A feature in computer-aided design (CAD) usually refers to a
region of a part with certain geometric or topological properties (Pratt and Wilson, 1985). These are
more precisely called geometric (or form) features. Geometric features contain both shape information
and parametric information of a region of interest. They are now ubiquitous in most current CAD
software, where they are used as the primary means of creating 3D solid models.

Another frequently used feature is the manufacturing feature, which can be defined simply as a
geometric shape and its manufacturing information to create the shape. Manufacturing features sup-
port the generation of process plans in a feature-based process planning system. Machining features
are an important subset of manufacturing features. A machining feature can be regarded as the volume
swept by a “cutting” tool, which is always a negative (subtracted) volume. Some CAM software, such
as CAMWorks, offers an automatic (manufacturing) feature recognition capability that recognizes
manufacturing features embedded in CAD solid models and generates a toolpath accordingly. There
are also tolerance features that specify deviations from the nominal form (or shape), size, or locations,
such as surface flatness, circularity, and concentricity. Finally, there is the concept of assembly feature,
which encodes the assembly method between connected components.

The features mentioned previously are highly related to part geometry. There are also non-
geometric features, such as material features that specify material composition and heat treatment for a
part.

In this subsection, we discuss geometric features from a design perspective. Instead of providing a
generic and philosophical discussion, we narrow the focus to CAD solid modeling. Nowadays, almost
everything that contributes to the construction of a solid model in CAD is called a feature. Basically,
geometric features involved in creating a solid object can be categorized into the five groups: con-
struction (or datum) features, shape (or protrusion) features, pick-and-place (or hard-coded) features,
mirror and pattern features, and thickened features, as shown in Figure 3.13. Therefore, features can be
thought of as the individual shapes that, when combined, make up the part.

Construction or datum featuresdsuch as coordinate systems, planes, axes, or pointsdare auxiliary
entities that aid solid model creation. Default construction features, including a coordinate system and

Construction (or 
datum) features 

Shape (or protrusion) 
features

Pick-and-place (or hard-
coded) features 

Mirror and pattern 
features

Thickened
features

Geometric features 

FIGURE 3.13 Classification of Geometric Features.
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three perpendicular planes (front, top, and right), are provided in CAD as starting point for part solid
modeling (and assembly).

Protrusion features (some also call them “sweep” features) are the most important set of features
that support solid modeling. Such features include extrude, sweep, loft (or blend), and revolve, in
which sketch profiles are required, as illustrated in Figure 3.14. In addition to protrusion that adds
volume, protrusion can also be used to create cut features that remove volume from existing objects.
Attributes, such as protrusion direction (one or both sides), are options offered to designers to complete
a protrusion feature conveniently.

Pick-and-place features are hard-coded features, including chamfer, fillets, rounds, draft, and holes,
which are placed on a face or an edge of existing objects without sketching a profile. Such features are
often added in the final stage of the solid modeling process.

Mirror and pattern features are created from existing features, as illustrated in Figure 3.15. Mirror
copies the selected features or all features, mirroring them about the selected plane or face
(Figure 3.15c). Pattern, as shown in Figures 3.15a and b, repeats the selected features in an array based
on a seed feature. The array can be linear (a linear pattern), a circular (a circular pattern), or following a
curve. Some CAD, such as SolidWorks, offers feature copy and paste capabilities, in which designers
can pick an existing feature (e.g., a through hole), then copy and paste it on a different face of the solid
object in a different orientation.

The thickened feature creates a solid feature by thickening one or more adjacent surfaces. For
example, the tracked vehicle roadarm surface model discussed in Chapter 2 (Section 2.7.2) was created
in B-spline surfaces, imported into SolidWorks, and then thickened for a solid model in support of
structural analysis using FEA. Note that except for the construction features, geometric features are
solid features.

(a)

Open
trajectory

Closed profile (b)

(d)(c) 4 Sketches 
Sketch Revolved cut

FIGURE 3.14 Protrusion Features. (a) Extrusion Feature. (b) Sweep Feature. (c) Revolved Cut Feature.

(d) Blend Feature.
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Among these features, protrusions are probably the most important ones in supporting designers to
create most features in solid modeling. Protrusions features (including cuts) require designers to sketch
a profile, in which a section view of the feature is defined. How does CAD support designers to create
sketch profiles interactively? How does CAD receive inputs from the designer, then formulate and
solve equations to define the sketch profile mathematically? We discuss sketch profiles in the next
subsection.

3.3.2 Sketch profiles
When we start a new part, we pick a sketch plane and create a profile. The profile is the basis for a 3D
model. We usually create a profile on one of the default construction planes (front, top, and right), or a
created plane. In sketching a profile, as a CAD user, we create an open or closed profile with lines, arcs,
and so on. ACAD system, such as SolidWorks or Pro/ENGINEER, automatically adds sketch relations
(also called sketch constraints) to relate or constrain entities; for example, a straight line connects to a
circular arc with a tangent relation at the junction point. After completing the profile, we add di-
mensions and enter proper values to adjust the profile that meets our design requirements. After
entering or modifying a dimension value, CAD is able to adjust the profile as a logical consequence of
the change. How does the CAD system do that? CAD employs the so-called variational modeling
theory in sketch mode.

3.3.2.1 Sketch relations
In this section, we use examples to illustrate the sketch relations and variational modeling technique.
We assume SolidWorks sketch mode to be more specific. Other CAD systems follow a similar
approach.

We often start the sketch profile at the origin; that is, we use the origin as the anchor for the profile.
SolidWorks (and other modern CAD systems) creates relations for the geometric entities in the profile,
based on how these entities are created. Designers add dimensions (or more relations) to make the
profile fully defined (or fully constrained).

In SolidWorks, before creating any dimensions, the geometric entities, including lines and vertices,
are either in black or (mostly) in blue color. As illustrated in Figure 3.16 with a simple example, black

Base feature Mirrored feature Base rod 
(Seed feature) 

Patterned
rods

Base cut 
(Seed feature) Patterned cuts 

(a) (b) (c)

FIGURE 3.15 Copy, Pattern, and Mirror Features. (a) Patterned Cut Features. (b) Patterned Extrusion Features.

(c) Mirrored Feature.
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indicates that the entity is fully defined. Blue indicates that the entity is not fully defined and is free to
change in certain way. You may drag a vertex or line in blue color to see how it can be changed in
SolidWorks.

When you add dimensions or relations, affected entities will change from blue to black color,
indicating they become fully defined as a result. When all the entities of the sketch are in black, the
entire sketch is fully defined. In the model tree (called Browser in SolidWorks), the (�) sign in front of
the sketch is removed. Sometimes, the sketch is overconstrained when a conflict occurs or more di-
mensions (or relations) are created than required.

Note that some CAD systems, such as Pro/ENGINEER, offer “smart” sketching tools. When
turned on, design intent is inferred, and sketch relations and dimensions are added automatically to
make the sketch profile fully defined. In some cases, line and curve entities are slightly adjusted
with imposed relations. For examples, two straight lines that are nearly perpendicular may “snap”
perpendicular with a perpendicularity relation (Figure 3.17a), and two fillets with about the same radii
may be adjusted to have equal radii with an equal radii relation added (Figure 3.17b). For more details
on the sketch relations in SolidWorks and Pro/ENGINEER, please refer to Appendix A.

30

50

100

15

x

y

Intersecting (with the origin) 

Vertical

Horizontal

(a) (b)

FIGURE 3.16 Sketch Profile as Designed (a) and with Underconstrained Relations (b).

1

3

4

2

1 and 4 aligned 
vertically 

2 and 3 
perpendicular

5 and 6 equal-
radii

5 6

(a) (b)

FIGURE 3.17 Effects of Imposed Sketch Relations to the Profile. (a) Perpendicular and Alignment Relations

were Added. (b) Equal-radii Relation was Added.
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The question is how SolidWorks knows what dimensions and relations are just right for the sketch
(i.e., to make it fully defined). How does SolidWorks figure out if your sketch is overdefined or
underdefined?

3.3.2.2 Variational modeling
CAD software employs the variational modeling theory in sketch mode. The first step involved in
variational modeling is identifying a set of characteristic points (or vertices) on the sketch profile. For
example, the sketch shown in Figure 3.16 has five characteristics points that are at the corners of the
polygon. Then, system of equations are derived that incorporate the relations and dimensions defined
on the sketch to relate the x- and y-locations of these characteristic points. The system of equations are
solved to determine the locations of the characteristic points.

In formulating the system of equations, the number of equations must be identical to the number of
unknowns and equations must be linearly independent for a unique solution. This is when a sketch is
called fully defined. When the dimension values are changed, the same system of equations is solved
again for the locations of the characteristic points.

When the number of equations is greater than the number of unknowns, we have an overdefined
sketch. When the number of equations is less than the number of unknowns, we have an underdefined
case, where a (�) sign will stay in front of the sketch in the Browser.

EXAMPLE 3.2
Determine if the following sketch profile with the relations and dimensions is fully defined. In this sketch, P1 is fixed
to the origin, and there are four relations (two horizontal and two vertical) and four dimensions. If we change the
dimension d3 from 50 to 100 and d4 from 15 to 30, what will happen to the profile? Would CAD accept such
changes and be able to regenerate the profile? If we add a dimension, such as the length of the line segment P4P5,
would the sketch profile still be fully defined?

d2=30

d3=50

d1=100

x

y

P1

P3

P4

P5

P2

V1
V2

H1

H2
d4=15

Solutions
There are five characteristic points in the sketch profile, P1, P2, P3, P4, and P5; therefore, we have 5� 2¼ 10
unknowns and we need to have 10 linearly independent equations to solve for the unknowns. The following
equations are derived from the relations and dimensions defined on the sketch.
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EXAMPLE 3.2eCONT’D

Because point P1 coincides with the origin, we have the following two equations:

Coincident : P1x ¼ 0 (1)

and

Coincident : P1y ¼ 0 (2)

The remaining equations are:

V1 : P2x� P1x ¼ 0 (3)

d1 : P2y� P1y ¼ d1 (4)

H1 : P3y� P2y ¼ 0 (5)

d2 : P3x� P2x ¼ d2 (6)

V2 : P4x� P3x ¼ 0 (7)

d3 : P3y� P4y ¼ d3 (8)

H2 : P5y� P1y ¼ 0 (9)

d4 : P5x� P1x ¼ d4 (10)

These ten equations are linearly independent. How can you tell? You may arrange these ten equations into a matrix
form and check the rank of the matrix.

If we change the dimension d3 from 50 to 100 and d4 from 15 to 30, points P4 and P5 coincide, making the
length of the line segment P4P5 zero. Most CAD software, such as SolidWorks, will not accept any line or curve entity
with zero length.

Because we have already ten linearly independent equations that solve uniquely for the ten unknowns, adding
more dimensions, such as the length dimension for the line segment P4P5, causes the profile to become
overdefined.

Now, let us take a look at a bit more complex problem, in which the profile consists of circular
arcs.

EXAMPLE 3.3
Add adequate dimensions to the following sketch profile with the given relations to make the profile fully defined. In
this sketch, P1 is fixed to the origin, and there are another eight relations, as shown below. Formulate system of
equations and solve them for the locations of the characteristics points that determine the shape of the profile.

Continued
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EXAMPLE 3.3eCONT’D

x

y

P1

P2

P3

P4

P5

P6
P7

P8

T1

T2
T3

T4

V1

H1

V2

H2

Tangent (T1)
Tangent (T2)
Tangent (T3)
Tangent (T4)
Vertical (V1)
Horizontal (H1)
Vertical (V2)
Horizontal (H2)

Solutions
There are eight characteristic points (including the arc centers); therefore, there are 8� 2¼ 16 unknowns, and we
need to have 16 linearly independent equations to solve for the unknowns. The following equations are derived from
the relations given to the profile shown above.

d1 = 30

d2 = 20

R1 = 5 R2 = 10

Fix : P1x ¼ 0; (1)

and

Fix : P1y ¼ 0 (2)

V1 : P2x� P1x ¼ 0 (3)

T1 ðand V1Þ : P4y� P2y ¼ 0 (4)

T2 : P3x� P4x ¼ 0 (5)

H1 : P5y� P3y ¼ 0 (6)

T3 ðand H1Þ : P5x� P6x ¼ 0 (7)
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EXAMPLE 3.3eCONT’D

T4 : P7y� P6y ¼ 0 (8)

V2 : P7x� P8x ¼ 0 (9)

H2 : P1y� P8y ¼ 0 (10)

We need six more equations. These six additional equations come from the dimensions we are about to add to the
profile.

If you add the four dimensions d1, d2, R1, and R2, as shown on previous page, the profile becomes fully defined.
Why? Let us take a look at the equations that the dimensions will provide.

d1 : P2y� P1y ¼ d1 (11)

R1ðT1 and T2Þ : P4x� P2x ¼ R1 (12)

P3y� P4y ¼ R1 (13)

R2ðT1 and T2Þ : P5y� P6y ¼ R2 (14)

P7x� P6x ¼ R2 (15)

d2 : P8x� P1x ¼ d2 (16)

Now we have all 16 equations identified. Among them, Eqns 1e3, and 10 are trivial; therefore, they are removed
together with the four unknowns (i.e., P1x¼ P1y¼ P2x¼ P8y¼ 0).

We assemble the remaining 12 equations for the 12 unknowns in a matrix form as follows.

ð11Þ
ð5Þ
ð13Þ
ð12Þ
ð4Þ
ð7Þ
ð6Þ
ð15Þ
ð14Þ
ð9Þ
ð8Þ
ð16Þ

2
666666666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0

0 0 1 0 �1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

�1 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 �1 0 0 0 0

0 0 �1 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 �1 0 0

0 0 0 0 0 0 �1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 �1

0 0 0 0 0 0 0 0 �1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

3
777777777777777777777775

2
666666666666666666666664

P2y

P3x

P3y

P4x

P4y

P5x

P5y

P6x

P6y

P7x

P7y

P8x

3
777777777777777777777775

¼

2
666666666666666666666664

d1

0

R1

R1

0

0

0

�R2

�R2

0

0

d2

3
777777777777777777777775

¼

2
666666666666666666666664

30

0

5

5

0

0

0

�10

�10

0

0

20

3
777777777777777777777775

The system of equation can be solved using, for example, Matlab. We are solving five cases: Case 1: d1¼ 30,
R1¼ 5, R2¼ 10, d2¼ 20 (base case); Case 2: d1¼ 60, R1¼ 5, R2¼ 10, d2¼ 20 (taller profile); Case 3:
d1¼ 30, R1¼ 5, R2¼ 5, d2¼ 20 (equal fillet radii); Case 4: d1¼ 30, R1¼ 5, R2¼ 15, d2¼ 20 (zero length
profile); and Case 5: d1¼ 30, R1¼ 5, R2¼ 25, d2¼ 20 (penetrating profile).

The Matlab script for solving the equations is shown (next page) is, followed by the resulting profiles.

Continued
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EXAMPLE 3.3eCONT’D

EDU[a ¼

2
6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 �1 0 0 0 0 0 0 0 0
0 0 1 0 �1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
�1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 �1 0 0 0 0
0 0 �1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 �1 0 0
0 0 0 0 0 0 �1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 �1
0 0 0 0 0 0 0 0 �1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

3
7777777777777777775

Case 1
EDU» c=[    30

0
5
5
0
0
0

-10
-10

0
0
20]

EDU» b=inv(a)*c

b =
30
5

35
5

30
10
35
10
25
20
25
20

Case 2
EDU» c=[    60

0
5
5
0
0
0

-10
-10

0
0
20]

EDU» b=inv(a)*c

b =
60

5
65
5

60
10
65
10
55
20
55
20

Case 3
EDU» c=[    30

0
5
5
0
0
0

-5
-5
0
0
20]

EDU» b=inv(a)*c

b =
30
5

35
5

30
15
35
15
30
20
30
20

Case 4
EDU» c=[    30

0
5
5
0
0
0

-15
-15

0
0
20]

EDU» b=inv(a)*c

b =
30

5
35
5

30
5

35
5

20
20
20
20

Case 5
EDU» c=[    30

0
5
5
0
0
0

-25
-25

0
0
20]

EDU» b=inv(a)*c

b =
30
5

35
5

30
-5
35
-5
10
20
10
20

d1
0
R1
R1
0
0
0
-R2
-R2
0
0
d2

b =
p2y
p3x
p3y
p4x
p4y
p5x
p5y
p6x
p6y
p7x
p7y
p8x

1

2

3

4

5

6
7

8

60

1

2

3

4

5

6
7

8

30

1

2

3

4

5

6 7

8 1

2

3

4

5

6
7

8 1

2

3

4

5

6 7

8
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EXAMPLE 3.3eCONT’D

A number of important points are observed from Example 3.3:

1. Solutions exist for all five cases, which is because the number of equations and number of unknowns are
identical, and the equations are linearly independent. As a result, the matrix equation is nonsingular and can
be solved for a unique solution.

2. It is apparent that if we add a dimension d3 shown below, the sketch becomes overconstrained. Now, if we add
d3 and remove d2, would the sketch be fully defined? The answer is no. Adding d3 creates a reddendum
dimension because d3 is determined by d1þR1�R2. Removing the equations contributed by d2 and adding
those contributed by d3 will make the system of equations linearly dependent; therefore, the resulting matrix
equation becomes singular.

d1 = 30

d2 = 20

R1 = 5 R2 = 10

d3 = 25

3. Cases 1e3 are regular profiles that CAD generates. For Case 4, because there is a zero-length line segment
P3P5, some CAD programs, such as SolidWorks, prompt an error message and will not generate the profile. For
Case 5, although the entities penetrate to each other, indicating a physically infeasible profile, some CAD
systems, such as Pro/ENGINEER, check the validity of the profile and prompt with a warning message;
however, others, such as SolidWorks, do not catch the problem and generate an invalid sketch profile anyway.

4. In both examples, we have all linear equations. In some cases, for instance, if angle dimensions are present,
nonlinear equations are required. In these cases, an iterative numerical method, such as Newton’s method,
may be employed for solving the nonlinear equations.

3.3.3 Parent–child relationships
Once a sketch profile is completed, a solid feature can be created by using, for example, one of the
protrusion capabilities. The first solid feature serves as the first building block, called the base feature,
in the model construction process. Follow-on features are added to the base feature or existing solid
features.

Depending on the sequence of feature construction, there is a parent–child relationship created
between solid features. For example, the part shown in Figure 3.18a consists of five solid features. The
first solid feature is the base block, which was created by extruding a sketch profile like that of
Figure 3.12b along the extrusion direction perpendicular to the sketch plane of the profile. A center
through hole was then added as a cut extrusion feature (or a pick-and-place feature), with a sketch

3.3 Feature-based parametric solid modeling 149



placed on the front face of the base block, in which the hole is placed with position dimensions referred
to the right and bottom edges of the base block, respectively. As a result, hole became a child feature of
the base block, as illustrated in Figure 3.18b. The third feature is a chamfer (a pick-and-place feature)
placed on the outside circle of the hole on the front face of the block. As a result, the chamfer is a child
feature of the hole. The fourth and fifth features are the side cut and bottom slot, respectively, as shown
in Figure 3.18b; both are child features of the base block.

In addition to parent–child relationships between solid features, a solid feature may be a child
feature of a construction feature, and vice versa. For example, the base block of Figure 3.18b is a child
feature of a default construction plane because its sketch profile was created on the plane.

Parent–child relationships are critical in the construction and rebuild of the solid model. Changes
made to the parent feature will propagate to all child features during the rebuild. On some occasions,
the part may not be rebuilt successfully due to numerous reasons, mainly because the part is not
properly parameterized. Also, operations such as deleting, suppressing, or hiding a parent feature will
affect all its child features. Therefore, it is extremely critical that designers arrange the sequence of
feature construction and the way the child feature is related to its parent feature. A desirable solid
model should have less coupled parent–child relationships between features. Solid model construction
sequence or history is critical in the feature-based modeling approach. More about the design
parameterization is discussed in Chapter 5.

3.3.4 Parametric modeling
Unlike the variational modeling technique that formulates and solves a system of equations, parametric
modeling adopts a one-way assignment approach. For example, two dimensions d0 and d1 can be

Parent Child

(a) (b)

FIGURE 3.18 The Parent–child Relationships. (a) The Block Solid Model and Feature Tree in Browser. (b) Feature

Construction Sequence in a Constructive Solid Geometry-like Tree.
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parametrically related as d0¼ d1� 2, in which d0 is a dependent parameter and d1 is an independent
parameter that is free to change.

Such “assignment”-type equations are explicit and they are solved sequentially, in which each
assigned value is computed as a function of previously assigned or computed values. Therefore,
parametric modeling is also called “unidirectional” modeling or “procedural” modeling. In the above
example, d1 must be defined first, and then d0 can be evaluated. The solid model must be rebuilt
(regenerated) by propagating the changed parameter (dimension) through all equations that involve the
parameter.

Computation in solving the explicit equation sequentially is efficient and straightforward.
However, this approach lacks flexibility in relating parameters. For example, in the variational
modeling method, d0¼ d1� 2 can be written as d0� d1� 2¼ 0, in which either d0 or d1 can be
independent.

3.3.5 Solid modeling procedure in CAD
After reviewing the solid modeling methods discussed so far, we revisit the general process of creating
solid models in CAD. In the meantime, we walk through how CAD rebuilds the part when we make a
design change, using a simple example. By going through this exercise, we hope you gain a better
understanding of the behind-the-scenes operations while using CAD for solid modeling.

In general, as illustrated in Figure 3.19, when we start a new solid model, we are given datum
features, such as datum planes and datum coordinate systems. It is in general a good idea to develop a
modeling plan before beginning the actual modeling work. More about modeling plans is discussed in
Section 3.4. At the beginning of creating a new part, we usually pick a datum plane and create a sketch
profile for the first (or base) solid feature using one of the protrusion capabilities. As discussed before,
a variational modeling technique is employed in CAD to determine the locations of characteristic
points of the sketch profile. After the base solid feature is created, we either add more solid features by
repeating the same process, sketch and make a cut feature, or place a pick-and-place feature on the
existing features. We repeat some or all steps to create more features. In the meantime, CAD records
the feature creation sequence in the model tree and parent–child relationships between features. Once a
solid model is completely created, we often make a few adjustments to make sure the solid model
accurately represents the design of the part. CAD rebuilds the part based on the changes we made by
updating features (both datum and solid features) following the feature creation sequence, one feature
at a time. For each feature, the CAD system does the following:

1. Takes the new dimension values, from user input and computation through parameter relations, to
update the sketch profile first. In the sketch profile, a variational modeling technique is exercised.
The system of equations that govern the profile of the section are solved again for the new
parameter values.

2. Rebuilds the geometric features using the new sketch profile by
a. New parameter values in the protrusion direction, including extrude, revolve, sweep, or loft;

and
b. Feature attributes, such as one side or both sides.

3. If the feature cannot be rebuilt (e.g., when an invalid geometric feature is encountered), an error
message will appear. For example, in SolidWorks, a Rebuild Errors window appears, as shown in
Figure 3.20.
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FIGURE 3.20 The Rebuild Error Message Window in SolidWorks.
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FIGURE 3.19 General Solid Model Creation Process.
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4. When this error message appears, we must read the messages carefully and identify which feature
is problematic. Once the problematic feature is identified, it is a good practice to try to figure out
what the problem was, and then undo the change to restore the dimension values, fix the problem,
and try a similar change again. In SolidWorks or Pro/ENGINEER, you may choose Edit>Undo
Change Dim (or CTLþ Z) to undo the change.

5. Find child features through the parent-child relations. Note that while rebuilding child features,
intersecting curves of feature boundary surfaces may need to be recomputed.

6. Repeat steps 1–5 until all the features are rebuilt.

In the following, we walk through the part rebuild process using the block example shown in
Figure 3.18. We first change the depth dimension of the base block (d5) from 10 to 20, as shown in
Figure 3.21. The regeneration follows the feature creation sequence, as shown in Figure 3.18b, which
is described below.

1. First feature: base block
The sketch profile is unchanged. There is no need to resolve the system of equations. Therefore,

the only action for CAD is to update the width of the base block on one side along the extrude
direction, which is the attribute of the base block.

2. Second feature: big hole
Both placement data (placement plane, placement references, and dimensions) and hole

dimension are unchanged. The hole is rebuilt following the feature attribute (i.e., through all and
one side). The intersecting curve (in this case, the circle in the back face) is computed.

3. Third feature: side cut
Check sketch profile. Is the sketch profile changed? Why and why not? The cut feature is

regenerated following the feature attribute (i.e., through all and cut directions), as

FIGURE 3.21 Change of the Depth Dimension of the Base Block from 10 to 20. (a) Solid Model before Design

Change. (b) Solid Model after Design Change.
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illustrated in Figure 3.22a. The intersecting curves of the base block and the cut features are
computed.

4. Fourth feature: chamfer
This feature is not affected because the placement edges (the circle on the front face) and the

size of the chamfer are unchanged.
5. Fifth feature: cut on the bottom face

Check the sketch profile. Is the sketch profile changed? Yes, because the rectangular profile
is defined with an offset from the exterior rectangle, as illustrated in Figure 3.22b. The system
of equations will be resolved for the four characteristic points (corner points of the rectangle)
due to the change of d5. The cut feature is regenerated following the feature attributedthat is,
blind with depth 5 and one side with the same cut direction. The intersecting curves are
computed.

If we change the width of the base block (d5) from 10 to 0.3, which feature(s) will fail to rebuild? Both
the side cut and bottom cut features will not be generated because there is not enough room for the
sketch profiles to be generated. However, CAD usually stops at the first unsuccessful feature; therefore,
in this case, the rebuild error on the side cut will be reported.

Sketch
profile

d0

d2

d1

Sketch profile 
after regeneration d0

d2

d1

d5 = 10 d5 = 20 
Bottom Face 

Blind Slot: 
Off-set 1 unit 
from the edge 
Depth 5 units 

(a)

(b)

FIGURE 3.22 Feature Rebuilds. (a) Side Cut. (b) Bottom Cut.
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3.3.6 Direct modeling
As can be seen from the discussion above, the parametric modeling approach requires the designer to
anticipate design changes and accordingly define features, add relations to sketch entities, and add
parameter relations between features. As a result, the solid model is created in such a way that a design
modification (e.g., change in a dimension value) triggers rebuild in solid features in a prescribed
manner. Feature-based parametric modeling is a structured modeling process, in which feature crea-
tion sequence or history tree masters the model rebuild process and design intent is captured implicitly
through sketch relations, parent–child relationships, and parametric relations between dimensions.

Although the feature-based parametric modeling is indispensable in support of product design in
the e-Design paradigm, capturing design intents in complex solid models is not always straightfor-
ward, to say the least. It requires the designer’s effort, considerable planning, and careful imple-
mentation in achieving such parametric solid models. In general, parametric CAD tools lack ease of
use, speed, and modeling flexibility. It requires a relatively steep learning curve and modeling effort
upfront for the designer, and the solid models created suffer from model interoperability issues; that is,
a CAD model created in software A cannot be understood or imported to software B with features and
dimensions due to the nature of “history-based” model.

The newly developed direct modeling approach provides a geometric-based modeling strategy that
gives designers the power to quickly define and edit geometry by simply clicking on the model ge-
ometry and moving it. Designers can focus on creating geometry rather than building features, adding
constraints and design intent into their models and therefore speeding up design, saving time and
development costs, and increasing productivity. The direct modeling paradigm is especially suited to
the needs of designers working with legacy and heterogeneous CAD data. The direct modeling
eliminates the need to access feature-level information to implement design changes. Designers can
easily edit, modify, and repurpose solid models from any CAD sources.

Both Pro/ENGINEER (Creo� 2.0 and higher) and SolidWorks (2012 and newer) are equipped with
direct modeling (also called direct model editing) capabilities, which is built on top of existing feature-
based parametric modeling technique. With the added direct modeling capability, designers are able to
copy, move, split, replace, offset, push, and drag geometry to create the result as desired, instead of
clicking on a dimension, entering a different value, and asking for model rebuild. In addition, with
direct modeling capability, CAD automatically imports nonnative, imported model geometry without a
model tree. The imported geometric model can be modified through direct geometry manipulation.

In general, parametric modeling is a history-based modeling method that enables design auto-
mation and creates product platforms for a product family, which are suitable for product design
strategy that is aimed to be family-based or platform-driven. On the other hand, direct modeling is a
geometry-centered and history-free approach that supports quick and easy 3D solid model construc-
tion, allows design change through direct manipulation of geometric models, and supports direct
geometry-editing from any CAD source. There are pros and cons of these two methods. They are not
exclusive but in general complement each other.

3.3.7 Geometric modeling kernels
No matter what kind of modeling method is offered by a CAD system, the core of any CAD software is
its geometric modeling kernel. The kernel is key to support underline computing and modeling
capabilities of solid objects, as well as output or export solid models, including 2D drawings, from 3D
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geometry. All commercially available solid modeling systems today are built on top of a geometric
modeling kernel (also referred to as a modeling engine or geometry library). This is the library of core
mathematical functions that defines and stores 3D solid objects in response to users’ commands. The
kernel library processes commands input through the application’s user interface, stores the results,
and submits the output to the graphics package for display, as illustrated in Figure 3.23.

Following Figure 3.23, it is commonly understood that there are two layers of information created
when designers work with CAD. The top layer records user interaction with the CAD through either
feature-based or direct modeling capabilities in the form of geometric features, including sketches,
attributes, parameters, and equations, and feature construction sequence or history tree. On the bottom
layer is the resulting geometric entities or objects. A history-based CAD system is basically recording
every function it sends to the kernel into the history tree. For example, a sketch with an extrusion
distance creates an extruded feature. Constraints control the size and position of the new feature. Then,
a Boolean function is added to specify whether the feature is added or removed from the parent ge-
ometry. The Boolean function with the feature and related parameters are passed to the kernel and the
resulting geometry is processed and revealed. This kernel function is processed every time this feature
is rebuilt. The kernel function along with its required parameters is very specific to the kernel as
discussed above. It is highly unlikely that another kernel will understand this very specific function,
and even if it did the geometrical results could be very different. This is one of the major issues to
address in solid model interoperability among CAD systems.

Some geometric modeling kernels such as ACIS (Spatial Inc.), Parasolid (Unigraphics Solutions,
Inc.), and SMLib (Solid Modeling Solutions) are licensed by their respective developers for use in
many different CAD systems. Others, such as thinkernel (think3), Granite One (Pro/ENGINEER), and
UPG2 (Varimetrix Corporation), are proprietary kernels developed exclusively for a specific CAD
system.

Apart from the underlying functionality supported, both licensed and proprietary kernels offer
distinct advantages. CAD systems that license the same kernel can directly exchange model files that
the kernel generates. For example, you can load SAT (ACIS) files directly into a CAD system that uses
the ACIS kernel. On the other hand, developers who use different kernels in their CAD systems must
write specific translators to read and write model files for import and export. Exporting and importing
parametric solid models is not straightforward. More about CAD model translation is discussed in
Chapter 6.

The geometric modeling kernels adopted by major commercial CAD systems are summarized in
Table 3.1. In the following, we briefly introduce the two kernels that are widely employed in CAD:
ACIS and Parasolid.

ACIS is an object-oriented Cþþ geometry library that integrates wireframe, surface, and solid
modeling with both manifold and nonmanifold topology. It gives application developers a rich set of
geometric operations for constructing and manipulating complex models. These include extruding,

User
Input

CAD Interface 
(Feature-Based, Direct 

Modeling, etc.) 

Geometric Modeling 
Kernel

(CSG or B-rep) 

FIGURE 3.23 Relationship of a CAD Interface to Geometric Modeling Kernels.
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sweeping, lofting, skinning, offsetting, slicing, stitching, sectioning, fitting, and interpolating surfaces.
ACIS also offers a complete set of Boolean operations, and length, area, and mass property inquiry
functions. The ACIS kernel outputs a SAT file format that any ACIS-enabled application can read
directly.

Parasolid from Unigraphics Solutions is an exact B-rep modeler that supports solid modeling
and integrated free-form surface and sheet modeling. Parasolid’s Extreme Modeling is a set of
tightly integrated, proprietary technologies that enable modeling of complex geometry. Parasolid
comprises more than 600 object-oriented functions for applications running on Windows, UNIX,
and LINUX.

3.4 Solid model build plan
One of the objectives in creating solid models for product design using the e-Design paradigm is to
capture design intents so that design changes can be made by simply modifying a few dimension
values and rebuilding the solid models. To achieve the objective, it is important for the designer to
plan ahead and spell out detail steps in terms of the type of features, their sketch profiles, relations
and dimensions, parent–child relationships, and the feature creation sequences, including the con-
struction of datum features. This is especially true when we use a CAD system with a feature-based
parametric modeling method, which is still the mainstream technology implemented in major CAD
systems.

Why do we need to spend time in developing such a part build plan? First, we always want to
complete our work in the minimum time with the best result. If we plan ahead and think through the
best possible way to create a design in using a CAD system, we often foresee possible pitfalls and are
able to take precautions, which save us time in the end by not throwing out the problematic and
incomplete models and starting over. So, please think before you do it! Planning ahead saves you time
and makes you a better CAD user.

Let us take a look at the two examples in Figure 3.24. How should we construct the hose support
and bracket shown in Figures 3.24a and b, especially when a design change is anticipated for the
bracket, as illustrated in Figures 3.25a and b? After all, we are not just creating a part, we are creating a
quality part that is clean, organized, and well thought of.

Table 3.1 Geometric Modeling Kernels and CAD Systems

CAD Systems Software Developer Geometric Modeling Kernel

AutoCAD 2000 AutoDesk ACIS

Pro/ENGINEER PTC Granite one

I-DEAS SDRC Geomod

Unigraphics EDS Parasolid

SolidWorks Dassault systems ACIS

CATIA Dassault systems CGM (Convergence geometric modeler)

NX Siemens Parasolid
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What do we mean by a quality part? A quality part must be accurate in revealing geometric features
in support of product design and manufacturing. Its feature construction sequence must be logical so
that other team members can understand the solid model. The part should have minimum number of
features. However, it does not imply that you must create complex sketches. It is a tradeoff in mini-
mizing the number of geometric features and complexity level of individual sketch profiles. Moreover,
a quality part must have minimum number of dimensions, implying as many sketch relations as
possible. Most important, a quality model must be correctly parameterized and capture design intents.
More about design parameterization is discussed in Chapter 5.

What should be included in the part construction plan? At least three things must be included:

1. Features and feature creation sequences (also include construction or datum features)
2. Sketch of each feature, including sketch plane, geometric entities, dimensions, and relations
3. Equations between dimensions as needed

FIGURE 3.24 Sample Parts for Illustrating Part Build Plan: (a) Hose Support and (b) Bracket.

FIGURE 3.25 Design Intent for the bracket shown in Figure 3.24(b). (a) Dimension Design Variable. (b) Dimension

Changed from 12 to 8.
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After a plan is jotted down on paper, it is a good idea to review it and try to optimize it before
implementing it in CAD. The plan does not have to be fancy; it does have to facilitate your work. Note
that a part construction plan is not unique. There is no “best plan”.

Let us take a look at sample the example part: hose support shown in Figure 3.24a. Usually the first
question to come to mind is how many solid features need to be created and which one the base feature
(first solid feature) should be. For this part, it seems to be logical to create the back plate as the base
feature (see Figure 3.26a). Is it a good idea to create the semicircle in the sketch of the base block? Is it
a good idea to create fillets A in the sketch? How about the holes? Is it a good idea to take the
advantage of part symmetry by focusing on only half of the part and then mirror the first half for the
remaining half? Again, there is no “correct” answer to these questions. The key principle is creating a
quality part with a minimum effort. A hand-sketched sample build plan for the hose support example is
given in Figure 3.26b for your reference.

Now, let us discuss the bracket example. The detailed dimensions are provided in Figures 3.27a
and b.

(a) (b)
Holes (2)

Fillets B (2)

Circular Cut

Fillets A (2)

Base Feature

FIGURE 3.26 Build Plan for the hose support shown in Figure 3.24(a). (a) Major Features. (b) Hand-Sketched

Sample Build Plan.

FIGURE 3.27 Sample part: bracket with Dimensions. (a) Front View. (b) Top View.
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Note that the design variable is the length dimension of the top edge (current value: 12.0, shown in
Figure 3.27b). When the design variable is changed, we expect to see the changes shown in
Figure 3.25b; that is:

1. The 45� edges of the base block remained 45�, but with their lengths changed in accordance with
new design variable value.

2. The back faces of the flaps align with the 45� edge of the base block.
3. The hole in the flaps stays in the middle with size unchanged.

How do we create such a part with the requirements described above? A sample build plan is shown in
Figure 3.28 for your reference. To a less experienced CAD user, for a part like the bracket shown in
Figure 3.24b, if you do not think ahead, you may end up with throwing away several “wrong” models
before actually creating one that works. So please think before you actually construct a solid model in
front of a computer.

3.5 Commercial CAD systems
Since the early 1960s when the first wireframe computer graphics was invented at MIT’s Lincoln
Laboratory, CAD has advanced significantly and has become the de facto design tool for the industry
around the world. The first commercial applications of CAD were in large companies of automotive
and aerospace industries, as well as in electronics. Only large corporations could afford the computers
capable of performing the calculations. Notable company projects were at GM with DAC-1 (Design
Augmented by Computer) in 1964 and at Renault–UNISURF 1971 car body design and tooling.

As computers became more affordable, the application areas have gradually expanded. The
development of CAD software for personal desktop computers was the impetus for almost universal
application in all areas of engineering. The most significant development appeared in the mid-1990s,

FIGURE 3.28 Hand-Sketched Build Plan for Sample Part: Bracket.
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in which major CAD tools were made available in PCs that allowed end users in mid- and small-size
companies to be able to bring design from drawing board into digital form.

3.5.1 General purpose codes
Several general purpose commercial CAD systems available today were developed decades ago. These
systems include the solidmodeling packages Romulus (ShapeData) andUni-Solid (Unigraphics), and the
release of the surface modeler CATIA (Dassault Systemes) in 1981. Autodesk was founded in 1982,
which led to the 2D system AutoCAD. Integrated Design and Engineering Analysis Software (I-DEAS)
was produced by Structural Dynamics Research Corporation in 1982, and used primarily in the auto-
motive industry, most notably by Ford Motor Company and General Motors. The next milestonewas the
release of Pro/ENGINEER in 1988,which heralded greater usage of feature-basedmodelingmethods and
parametric linking of the parameters of features. Also of importance to the development of CADwas the
development of the B-rep solid modeling kernels Parasolid (ShapeData) and ACIS (Spatial Technology
Inc.) at the end of the 1980s and beginning of the 1990s. This led to the release of mid-range packages
such as SolidWorks in 1995, Solid Edge (then Intergraph) in 1996, and Autodesk Inventor in 1999.
Several major mergers occurred throughout the years. SDRC was bought in 2001 by Electronic Data
Systems, which had also acquired UGSCo. (maker of Unigraphics). EDSmerged these two products into
NX. UGS was purchased by Siemens AG in 2007 and was renamed Siemens PLM Software.

All major CAD systems offer not only solid modeling capabilities, but also CAE and CAM.
Some CAD systems are equipped with in-house CAE/CAM, such as CATIA and Pro/ENGINEER.
Some CAD partners with third-party software developers and fully integrates the third-party codes to
the system; for example, CAMWorks integrated with SolidWorks. Although all major CAD systems
offer excellent solid modeling and CAE/CAM, they serve different industrial sectors with slightly
different focuses. CATIA is widely used by aerospace and automotive industry because of its superior
surface modeling capabilities. AutoDesk is popular in small and mid-size companies due to its
excellent capability in 2D drafting and its availability on PC in early years. Pro/ENGINEER serves
heavy equipment industry, such as Caterpillar, due to its pioneer parametric modeling technology and
strong CAE in the 1990s. SolidWorks became popular in almost all industrial sectors, as well as
academia, because the software is intuitive and easy to use.

Several review articles on CAD software tools, such as those offered by 10 Top Ten Reviews (cad-
software-review.toptenreviews.com), Cadalyst (www.cadalyst.com/listing/9/3d-modeling), and Wikipe-
dia (http://en.wikipedia.org/wiki/List_of_computer-aided_design_editors, and http://en.wikipedia.org/
wiki/Comparison_of_3D_computer_graphics_software), provide in-depth reviews and comparisons
among major commercial systems. Readers are strongly encouraged to take a look at these articles for a
better understanding of commercial CAD software.

3.5.2 Special codes
Besides general-purpose CAD software tools, there are at least two special codes worth mentioning.
They are Rhinoceros (www.rhino3d.com) and SpaceClaim Engineer (www.spaceclaim.com/en/
default.aspx).

Rhinoceros (Rhino) is a stand-alone, commercial nonuniform rational B-spline (NURB)-based 3D
modeling software, commonly used for industrial design, architecture, marine design, jewelry design,
automotive design, as well as the multimedia and graphic design industries. Rhino specializes in
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free-form NURB modeling. Rhino is gaining popularity due to its diversity, multidisciplinary func-
tions, low learning curve, relatively low cost, and its ability to import and export many file formats,
which allows Rhino to act as a “converter” tool between programs in a design workflow.

SpaceClaim Engineer is a 3D direct modeler. It enables engineers to easily create concepts and
prepare 3D designs for prototyping, analysis, and manufacturing without becoming experts in tradi-
tional feature-based CAD systems. SpaceClaim helps engineers interact with CAD geometry in new
ways. Without becoming a CAD expert, users can edit models, conceptualize on-the-fly, and
communicate quickly and easily with prototyping and manufacturing. Direct modeling changes the
way designers think about working with 3D solid models by letting them focus on what they are
designing. Intuitive tools such as Pull and Move let users directly select portions of the model and
move them where users want. The Combine tool slices and divides parts into pieces and lets users
merge in portions from other designs. The Fill tool cleans up small features and fills holes. Together,
these direct modeling tools let designers get job done without resorting to traditional CAD.

3.6 Summary
There is no doubt that CAD offers a better visualization of the design, easier creation of drawings once
the model is completed, and better integration with CAE and CAM for product development. We
discussed in this chapter the fundamentals in solid modeling, including CSG and B-rep, the two most
commonly employed methods for underline solid modeling in CAD. We introduced the mainstream
solid modeling techniquedfeature-based parametric solid modelingdthat is employed in major CAD
systems. We discussed key concept and theories, including variational and parametric modeling
techniques, the parent–child relationship, and feature construction sequence or history tree. Wewalked
through the steps of model rebuild in CAD using a simple example. We also briefly introduced
geometric modeling kernels and newly developed direct modeling method. In addition, we offered a
brief overview of commercial CAD systems. We hope you have gained adequate knowledge of CAD
and solid modeling techniques and understand the behind-the-scenes operations that CAD carries out
when you interact with it.

It is important to point out that although CAD becomes essential for product design, especially using
the e-Design paradigm, it has a few issues. First, CAD can be slow for conceptual design. In the early
stages, we tend to think faster than anybody could model in 3D. The direct modeling method may offer
good alternatives to this issue. Also, CADmay require a lot of computing power to handle complex parts
and assemblies. Display and rendering suchmodels can be slow andmodel rebuild due to design changes
can be too sophisticated to handle. Finally, model interchange between 3D parametric CAD systems is
still an open issue.More aboutCAD interoperability is discussed inChapter 6.We are now ready tomove
on to the next chapter to discuss the theory andmethods employed by CAD for assembly. Our goal again
is to understand the behind-the-scenes operations in CAD when we use it for creating assemblies.

Appendix A Sketch relations
Sketch relations play an important role in solid modeling. In this appendix, we offer tables that
illustrate the commonly seen relations (also called sketch constraints) in SolidWorks and Pro/
ENGINEER in Table A.1. Examples of such relations in SolidWorks are provided in Table A.2.
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Table A.1 Commonly Seen Sketch Relations (or Constraints) in Pro/ENGINEER and SolidWorks

Pro/E SolidWorks Name Entities Descriptions

H or V Horizontal or
vertical

One or more lines or two or
more points

The lines become horizontal
or vertical.

▌
▬

Alignment Two or more vertices The items are aligned
vertically or horizontally.

t Perpendicular Two lines The two items are
perpendicular to each other.

// Parallel Two or more lines The items remain parallel.

T Tangent An arc, ellipse, or spline, and a
line, or arc

The two items remain
tangent.

4 Concentric Two or more arcs, or a point
and an arc

The circles and/or arcs share
the same center point.

Coincident A point and a line, arc, or
ellipse

The point lies on the line, arc,
or ellipse.

L1 L1
R1 R1

Equal Two or more lines, or two or
more arcs

The line lengths or radii
remain equal.

/ ) N/A Symmetric A centerline and two points,
lines, arcs, or ellipses

The items remain equidistant
from the centerline, on a line
perpendicular to the
centerline.

Table A.2 Examples of Sketch Relations Seen in SolidWorks

Relations Icons Notes

Horizontal Horizontal line sketched.

Perpendicular Second line was sketched perpendicular to the first.
Sketch tool is active, so midpoint sketch snap is
displayed on line.

Parallel Two lines sketched with parallel relation.

Horizontal and tangent Tangent arc added to horizontal line.

Horizontal and coincident Second circle.
Sketch tool is active, so quadrant sketch snaps
display on the second arc.

Vertical, horizontal,
intersection, and tangent

Circle sketched with center inferred to sketch origin
(vertical).
Horizontal line intersects circle quadrant.
Tangent relation added.

Continued
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Questions and exercises

1. Are the following sketches fully defined? Why or why not? Please answer the question by
formulating equations similar to those discussed in Section 3.3.

d

T T2

V2
V1

H

R

d

R

d

T T2

V2
V1

H

2. Create a solid model shown below. Make sure your model has identical dimensions as shown.

Table A.2 Examples of Sketch Relations Seen in SolidWorksdcont’d

Relations Icons Notes

Horizontal, vertical,
and equal

Horizontal and vertical relations inferred.
Equal relation added.

Concentric Concentric relation added.

Horizontal Horizontal relation added to spline handles.
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a. Duplicate the extrusion feature to the top flat surface of the part as shown below (left).

b. Define necessary relations so that when the angle design variable changes, the copied feature
stays on the surface (above, right).

c. Submit four views, front, top, side, and isometric of the final part (including hidden lines;
angle design variable¼ 45�). Submit a screen capture that shows equation employed to
capture the angle design variable.

3. Create a solid model with a smooth loft feature using the exact dimensions shown in the sketch.
Note that there are three sections in the loft, and the distances between them are 5 units for each
pair. Note that you will have to state how guide curves if any are defined to create such a loft.

a. Define relation(s) so that modifying a single dimension can change the diameter of all arcs.
Note that the relation(s) must be implemented in the solid model and you must show screen

captures of the solid model before and after changes, with a single dimension change.
b. What is the range of the diameter dimension that you can change that results in valid solid

models?
4. Create a steering wheel solid model using the exact dimensions shown in the figures below.
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Note that the width of the spoke is 0.4; the triangle on top of the hub is an equal-lateral triangle. The
bottom sketch profile of the hub is a circle with diameter 2.5. The distance between the bottom edge of
the triangle and the origin is 0.52, and the height of the hub is 2.25 as shown below.

a. What is the outer diameter of the wheel? _________

b. Define relations and equation(s) so that when the height dimension of the spoke is changedd
for example, from 0.5 to 0.75dthe sketch profile of the spoke can be regenerated as shown.
Relations: Please show relations on the sketch with brief explanation.
Equation(s): Please list all equations and point the dimensions involved in the sketch or part.
What is the range of the outer diameter of the wheel that you can change that results in valid

solid models?
Minimum¼ ____________, Maximum: _____________

c. Please submit four views, front, top, side, and isometric of the final part (including hidden
lines).

166 CHAPTER 3 Solid Modeling



References
Bozdoc, M., 2003. The History of CAD. www.mbinfo.mbdesign.net/CAD-History.htm.
Lee, W., 1999. Principles of CAD/CAM/CAE Systems. Addison Wesley Longman, Inc.
Planchard, D.C., Planchard, M.P., 2013. Official Certified SolidWorks Professional (CSWP) Certification Guide

with Video Instruction. SDC Publications.
Pratt, M.J., Wilson, P.R., 1985. Requirements for Support of Form Features in a Solid Modeling System. CAM-I,

R-85-ASPP-01.
Toogood, R., Zecher, J., 2012. Creo Parametric 1.0 Tutorial and MultiMedia DVD. SDC Publications.

References 167

http://www.mbinfo.mbdesign.net/CAD-History.htm
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0015
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0020
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0020
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0025
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0025
http://refhub.elsevier.com/B978-0-12-398513-2.00003-8/ref0030


Assembly Modeling 4
CHAPTER OUTLINE

4.1 Introduction .................................................................................................................................170

4.2 Assembly modeling in CAD............................................................................................................172

4.2.1 Mating constraints....................................................................................................173

4.2.2 Kinematic joints.......................................................................................................178

4.3 Assembly modeling technique .......................................................................................................184

4.3.1 Transformation matrix...............................................................................................185

4.3.1.1 Coincident ..........................................................................................................186

4.3.1.2 Concentric ..........................................................................................................186

4.3.1.3 Computation of the transformation matrix ............................................................ 188

4.3.2 Degree of freedom analysis........................................................................................197

4.4 Kinematic modeling technique ......................................................................................................199

4.4.1 Mapping mating constraints to kinematic joints ..........................................................200

4.4.2 D–H representation...................................................................................................201

4.4.2.1 Open-loop system ............................................................................................... 210

4.4.2.2 Closed-loop system ............................................................................................. 214

4.4.3 Constructing the joint coordinate systems...................................................................220

4.5 Case study and tutorial example....................................................................................................226

4.5.1 Case study: virtual reality ..........................................................................................226

4.5.2 Tutorial example: a single-piston engine.....................................................................228

4.6 Summary .....................................................................................................................................229

Questions and exercises.......................................................................................................................230

References ..........................................................................................................................................231

Assembly could mean very different things to different engineers. Mechanical engineers often
consider mechanical assembly at the shop floor or assembly line, for which topics relevant to the
physical assembly of a productdsuch as manual assembly vs automatic assembly, force and mass of
parts, tools and equipment involved in assembly, tolerance analysis, and interference checkingdare
often the emphasis. Assembly process planning and assembly/disassembly are popular considerations
for industrial engineers, who are often in charge of designing and running a product assembly line.
Overall, it is essential for design engineers to acquire knowledge in these areas so that the practical
aspects of product assembly can be incorporated in product design.

These topics, although important, will not be the focus of the chapter. For those who are interested
in learning more about mechanical assembly or assembly process planning to enter this area for thesis
work, there are excellent references that provide in-depth reviews and discussions on various topics
related to mechanical assembly, such as Dawari and Sen (2007) and Whitney (2004).
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In this chapter, we focus on assembly modeling that addresses methods employed in computer-
aided design (CAD) to represent assembly. Topics such as mating constraints, degrees of freedom
(DOFs), and fully constrained vs underconstrained assemblies are included. In addition, we discuss
methods that support design changes and kinematic analysis in CAD assembly, which are the two most
common activities encountered in assembly modeling using CAD. We discuss both open-loop and
closed-loop systems. Note that the methods discussed in this chapter are mainstream methods adopted
in the CAD community; they do not necessarily represent a specific CAD system.

In addition to theoretical discussion, we include virtual reality (particularly the applications that
support product design) as a case study to illustrate and demonstrate the application of CAD assembly
for practical engineering designs. In addition, a single-piston engine assembly is employed as a tutorial
example to illustrate the detailed steps in creating the assembly using both Pro/ENGINEER and
SolidWorks. Detailed instructions for bringing up these models and steps for carrying out the assembly
discussed in this chapter can be found in Projects P1 and S1 for Pro/ENGINEER and SolidWorks,
respectively. Example models are available for download at the book’s companion website http://
booksite.elsevier.com/9780123985132.

This chapter was written with the assumption that readers are familiar with basic CAD operations
in part modeling, especially using Pro/ENGINEER or SolidWorks. If this is not the case, we encourage
you to go over examples presented in other books (e.g., Toogood and Zecher, 2012; Shih, 2013;
Lombard 2013, Reyes, 2013) before going over this chapter.

The overall objectives of this chapter are to (1) provide you with a general understanding of the
methods that support assembly modeling in CAD, (2) familiarize you with the behind-the-scenes
operations of CAD when a change is made or a part is dragged in an assembly, and (3) help you
use Pro/ENGINEER or SolidWorks for creating basic assembly models (after going through the
tutorial lessons).

4.1 Introduction
In the physical assembly of rigid parts, they are positioned (including location and orientation) relative to
one another. The positioning of parts causes some of the low-level geometric entities, such as faces, edges,
and vertices of the parts, to be in contact. The entities in contact between parts constrain the relative
motion between them because a rigid part cannot deform or penetrate through other parts in the assembly.

The position of a part in space is uniquely defined by specifying its location and orientation with
respect to some reference system. Three parameters are required to specify the location and another
three parameters are required to specify the orientation. A rigid body in space has six degrees of
freedom (DOFs) representing the allowable motions of the part. Assembly models are created by
fixing the location and orientation of individual parts relative to one another through mating con-
straints, whereas kinematic models are created by specifying the allowed motions between the parts by
defining kinematic joints.

CAD assembly has been commonly employed for product design. It is well known that the as-
sembly design has a significant impact on many downstream activities, such as production process
planning and control, tolerance analysis, and packaging. Assembly design involves the creation of
assembly models that specify the relative location and orientation of components. In the design
activity, component geometry is assembled together to create an assembly model. Mating constraints
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also called assembly mates (or placement constraints) are used to locate and orient components with
respect to one another. With a CAD assembly, basic yet essential questions in design can be readily
answered by the product assembled in CAD. For example, will the parts fit into the designated space as
an assembly? Will the components of the assembly collide or interfere in operation? Will the assembly
operate as intended?

A bathroom transport device shown in Figure 4.1, which was designed and manufactured by a
team of undergraduate students as their capstone project, is used as an example to illustrate some of
the points mentioned above. This device was created for the purpose of transporting a disabled
woman from her wheelchair to the toilet and shower seat without human assistance. It also transports
the person from the toilet or shower seat back to the wheelchair. The device is compact (to fit into a
very small bathroom), durable, and tailored to help a person to overcome a physical disability. The
design features a three-button remote control that will move the person to the toilet, shower, and back
to the wheelchair; a scissor lift with a linear actuator that provides lift; a carriage on a rail system that
carries the person to designated locations; and a body support that safely holds the person while the
system transports her to designated locations. A second actuator mounted on top of the scissor lift
provides a 90-degree rotation to the body support when the carriage is moved to the toilet so that the
user will be properly oriented on top of the toilet. A motor and a cable system are employed to pull
the carriage.

The design of the device was extremely challenging because it was made to accommodate a
severely disabled person who can only use her right hand to operate the device. The person would pull
her wheelchair to the entrance of the bathroom, right in front of the device, as shown in Figure 4.2. She
would use her right hand to move the two leg supports under her thigh, place the two arm supports
under her arms, and press a button on the remote control mounted on top of the right arm support. The
button pressing triggers the actuator of the scissor lift to contract, creating a lift to move her out of the
wheelchair. Then, a motor is activated to pull a cable that draws the carriage along the curve rail and
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FIGURE 4.1 The Bathroom Transport Device.
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transport her to the toilet or shower seat. Position sensors are mounted on top of the rail to detect the
location of the carriage and activate motor or actuators for the desired motions.

While designing the device, path mates were employed to assemble the carriage to the rail,
allowing the carriage to move along the rail. The rail and carriage are important features of the device.
The rail is a curve I-beam, created by sweeping an I-cross section sketch along an open loop curve
composed of three straight lines and two circular arcs, as shown in Figure 4.2. The carriage consists of
a base plate, two steerers, and four wheels, as shown in Figure 4.2. The wheels are sitting on the top
faces of the bottom flange of the rail. A cable connecting to a motor is pulling the steerers to move the
carriage along the rail. A universal joint under the base plate connects the body support. This assembly
model with motion animation helps verification of the design concept, facilitates communications
within the design team, and supports demonstration of the device design to the sponsors and user.

In this chapter, we start with a short and brief introduction in Section 4.2 on the mating constraints
and kinematic joints commonly offered by CAD systems. After becoming familiar with the constraints
and joints, Section 4.3 discusses a method that supports the calculation of a transformation matrix that
positions a mating part to the base part in space. This illustrates how CAD supports part assembly as
designers bring individual components into an assembly and define mating constraints. In Section 4.4,
we discuss a kinematic modeling technique, in which we introduce the conversion of a CAD assembly
to a kinematic model, the mapping of mating constraints to kinematic joints, and the mathematical
representation of a kinematic assembly in CAD. We include both open-loop and closed-loop systems.
The chapter wraps up by introducing a case study that involves applications of virtual reality tech-
nology for product design. In addition, a tutorial example of a single-piston engine is provided.

4.2 Assembly modeling in CAD
In CAD, an assembly model is created by specifying the relative location and orientation of parts.
In general, an assembly model is static, in which all parts are completely constrained (also called fully
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FIGURE 4.2 The Rail and Carriage Subsystems.
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constrained). On many occasions, the desired relative motion is required in product design to meet
certain design requirements or verify functionalities. In these cases, an assembly is underconstrained,
in which parts are allowed to move with respect to one another in order for the designer to explore or
verify the kinematic characteristics of the assembly design.

A task common to both assembly modeling and kinematic analysis is the determination of part
location and orientation satisfying certain constraints between these parts. There are two categories of
geometric assembly relationships: geometry mating and joint mating. The former is usually static,
whereas the latter allows relative motion and holds despite changes in the components’ dimensions.

In general, geometry mating constrains geometric entities between mating parts. There are usually
multiple pairs of entities constrained between the mating parts. On the other hand, joint mating
constrains the relative motion between mating parts, instead of between geometric entities. As a result,
there is one single joint between the two mating parts.

Some CAD systems, such as SolidWorks, support designers in creating an assembly model that is
underconstrained so that the kinematic characteristics of the assembly can be explored by dragging
individual parts. In other CAD systems, designers are required to complete the product assembly using
mating constraints, and then convert the assembly model to a motion model by defining kinematic
joints on top of the assembly in order to verify the kinematic characteristics of the assembly. This was
the case, for example, in SolidWorks versions before 2008. In some CAD systems, such as Pro/EN-
GINEER, designers are given choices in either selecting mating constraints or kinematic joints or a
mixed set to create the assembly model. If the assembly is intentionally created with an undercon-
strained status, components can be dragged and moved.

In Section 4.2.1, we introduce commonly employed mating constraints in CAD, especially
SolidWorks and Pro/ENGINEER. Then, in Section 4.2.2, we provide readers with a list of standard and
advanced mating constraints offered by SolidWorks for a more complete picture in terms of the kind of
mating constraints you may expect to use. We use a slider-crank mechanism as an example to go over
the assembly in both SolidWorks and Pro/ENGINEER. We also introduce kinematic joints and the
associated DOFs they constrain. This section serves as a prelude to the theoretical discussion on the
subject in Sections 4.3 and 4.4.

4.2.1 Mating constraints
There are six DOFs for each component in space: three translations and three rotations. In the geometry
mating approach, users specify the relative positions of parts by interactively defining spatial re-
lationships between the geometric elements of mating parts. The geometric elements used in geometry
mating include points, planar faces, surfaces, and axes of cylinders and holes. Commonly employed
mating constraints (or placement constraints in Pro/ENGINEER and assembly mates in SolidWorks)
include coincident-mate, mate offset, coincident-aligned, concentric (or fit), angle, parallel, and align.
These mating constraints are usually applied to the same type of geometric entities, such as a pair of
planar faces for a coincident-mate, or different entities, such as a point on a curve for a path mate.

In CAD, the first part brought into the assembly is fixed to the default datum features with all six
DOFs constrained. In Pro/ENGINEER, the first part can be assembled to the assembly datum features,
such as datum planes or the datum coordinate system, using placement constraints (e.g., by aligning
their respective coordinates). In SolidWorks, the first component is fixed by aligning the component
coordinate system with the default coordinate system provided in the assembly (also called the world
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coordinate system or WCS). The first part serves as the base part for assembling other parts. When an
existing part is brought into the assembly, there are an additional six DOFs associated with it for the
designer to work with.

Most mating constraints restrict part motion between regular surfaces, such as flat surfaces and
cylindrical surfaces. As a result, a mating part is allowed to translate or rotate along a fixed direction if
it is underconstrained. For example, the lower shaft of the crank is to be inserted into the hole of the
bearing, as shown in Figure 4.3. The bearing is fixed. The crank is assembled to the bearing using two
mating constraints, concentric (called Mate: Concentric in SolidWorks and Insert in Pro/ENGINEER)
and coincident-mate (called Mate: Coincident in SolidWorks and Mate or Align Surfaces in Pro/
ENGINEER). The concentric mating constraint eliminates two translational DOFs and two rotational
DOFs. The coincident-mate mating constraint eliminates one translational DOF and two rotational
DOFs. As a result, only one DOF, Rz, remains, as summarized in Table 4.1. SolidWorks allows de-
signers to move (rotate) the crank by simply dragging the part, according to the free DOF. The designer
is able to check the kinematics of the product in the assembly mode. In Pro/ENGINEER, such a
rotational DOF is allowed to be undefined; similarly in SolidWorks, components can be dragged to
check the kinematic behavior of the assembly.

Note that in Figure 4.3b, the coincident-mate mating constraint is more precisely called coincident
with antialigned condition. In SolidWorks, you can set the alignment condition. The alignment con-
ditions for a coincident mating constraint are either aligned, in which vectors normal to the selected
faces point in the same direction; or antialigned, in which vectors normal to the selected faces point in
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FIGURE 4.3 Mating Constraints for the Bearing and Crank Assembly. (a) Concentric, and (b) Coincident-mate.

Table 4.1 Degrees of Freedom Eliminated by the Two Mating Constraints in Figure 4.3

Tx Ty Tz Rx Ry Rz

Mate: Concentric � � � �
Mate: Coincident � � �
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opposite directions, as illustrated in Figure 4.4a. For cylindrical surfaces, the axis vector is aligned or
antialigned, as illustrated in Figure 4.4b.

The most commonly used mating constraints in Pro/ENGINEER and SolidWorks are listed in
Table 4.2. In addition, a complete list of standard mating constraints in SolidWorks with mate symbols
is provided in Table 4.3. You may expect to use these mating constraints to create an assembly in
SolidWorks and most modern CAD systems. In SolidWorks, mating constraints (standard) are imposed
to surfaces, which are physically intuitive. In Pro/ENGINEER, in addition to surfaces, some mating
constraints are applied to abstract geometric entities, such as point-on-surface and edge-on-surface
constraints. In some cases, Pro/ENGINEER and SolidWorks will not accept the mate constraints as
defined if they conflict with existing ones.

Aligned Antialigned (mate) Aligned 

(a) (b)

Antialigned 

FIGURE 4.4 Aligned and Antialigned Conditions. (a) Between Two Flat Faces, and (b) Between Two Cylindrical

Surfaces.

Table 4.2 Mating Constraints in Pro/ENGINEER and SolidWorks

Pro/ENGINEER SolidWorks Descriptions

Mate surfaces Mate: Coincident, antialigned Positions selected faces or planes so they
coincide. Antialigned implies that the two faces
or planes mate and the normal vectors of the
two faces or planes point in the opposite
directions, and aligned implies that the normal
vectors of the two faces or planes point in the
same directions.

Align surfaces Mate: Coincident, aligned

Align axes or
insert surfaces

Mate: Concentric Places the selected cylindrical surfaces so that
they share the common axis.

Orient Mate: Parallel Places the selected items so they lie in the same
direction and remain a constant distance apart
from each other.

Coordinate system Default Place the first part to the default coordinate
system in assembly.

Tangent Mate: Tangent Places the selected items in a tangent mate
(at least one item must be a cylindrical surface)
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In this chapter, we adopt SolidWorks terminologies for mating constraints, except that we use
coincident-mate instead of coincident antialigned.

In addition to standard mates, such as concentric and coincident, some CAD systems, such as
SolidWorks, offer advanced mates, as listed in (Table 4.4). Advanced mates provide additional ways
to constrain or couple movements between parts. A coupler removes one additional degree of
freedom from the kinematic model. For example, a linear coupler shown in Figure 4.5a removes one
translational DOF by coupling the respective translational DOF between components 1 and 2. Also,
path mate (one of the advanced mates in SolidWorks) allows a part to move along a curve slot, a
groove, or fluting, varying its moving direction specified by the path curve. For example, in the rail

Table 4.3 Standard Mates in SolidWorks

Standard Mates Descriptions from SolidWorks Help

Coincident Positions selected faces, edges, and planes (in combination with each other or
combined with a single vertex) so they share the same infinite plane. Positions two
vertices so they touch.

Parallel Places the selected items so they remain a constant distance apart from each other.

Perpendicular Places the selected items at a 90� angle to each other.

Tangent Places the selected items tangent to each other (at least one selection must be a
cylindrical, conical, or spherical face).

Concentric Places the selections so that they share the same center line.

Lock Maintains the location and orientation between two components.

Distance Places the selected items with the specified distance between them.

Angle Places the selected items at a specified angle to each other.

Default Places the first part to the default coordinate system in assembly.

Carriage 

Rail 

(a) (b) 

FIGURE 4.5 Examples of Advanced Mates in SolidWorks. (a) Linear Coupler, and (b) Path Mate.
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and carriage assembly of the transport device shown in Figures 4.1 and 4.2, a vertex in the carriage is
moving along the sweep curve (which can be either open- or closed-loop, composed of several
curves) of the rail, as shown in Figure 4.5b. As a result, path mate allows the carriage to move along
the curve groove of the rail, varying its moving direction specified by the path curve. In addition, the
pitch, yaw, and roll of the moving part can be defined to resemble the physical conditions. Such a
capability supports animation and kinematic analysis for a whole new set of applications that in-
volves curvilinear motion.

Some CAD systems, such as SolidWorks and Pro/ENGINEER, also offer mechanical mates, such
as cam follower, gear, hinge, rack and pinion, screw, and universal joint. These are essential for ki-
nematic analysis of the product design. More about kinematic and dynamic analysis can be found in
Chapter 3 of Product Performance Evaluation using CAD/CAE in this book series. Tutorial lessons can
be found in Projects P2 and S2 for Pro/ENGINEER and SolidWorks, respectively. More tutorial
lessons can also be found in Chang (2010).

Next, we use a slider-crank example shown in Figure 4.6 to illustrate the mating constraints
employed for the assembly in SolidWorks. We will use the same example in Section 4.2.2 to illustrate

Table 4.4 Advanced Mates in SolidWorks

Advanced Mates Descriptions

Symmetric Forces two similar entities to be symmetric about a plane or planar face.

Width Centers a tab within the width of a groove.

Path Constrains a selected point on a component to a path.

Linear/Linear coupler Establishes a relationship between the translation of one component and
the translation of another component.

Limit Allows components to move within a range of values for distance and angle
mates.

(a) (b) Piston Rod subassembly

Crank 
Bearing 

FIGURE 4.6 The Slider-Crank Example. (a) Unexploded View, and (b) Exploded View.
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the joint constraint approach for assembly as in, for example, Pro/ENGINEER. Note that model files of
both examples are available for download at the book’s companion website http://booksite.elsevier.
com/9780123985132.

The slider-crank mechanism consists of five parts and one subassembly. They are bearing, crank,
rod, pin, piston, and rod subassembly (consisting of rod and pin rigidly connected). An exploded view
of the mechanism is shown in Figure 4.6b. There are eight assembly mates, including five coincident
and three concentric, defined in the assembly.

The first three mates (Concentric1, Coincident1, and Coincident2) assemble the crank to the fixed
bearing, as shown in Figure 4.7a. As a result, the crank is completely fixed. Note that the mate
Coincident2 orients the crank to the upright position, defining the configuration of the mechanism.
Suppressing this mate will allow the crank to rotate with respect the bearing.

The next two mates (Concentric2 and Coincident3) assemble the rod to the crank, as shown in
Figure 4.7b. Unlike the crank, the rod is allowed to rotate with respect to the crank. The next two mates
(Concentric3 and Coincident4) assemble the piston to the pin, allowing the piston to rotate about the
pin. The final mate (Coincident5) eliminates the rotation by mating two planes, Plane3 of the piston
and the Plane2 of the bearing, as shown in Figure 4.7c.

At this point, the entire assembly is fully constrained. No relative motion between any components
is allowed. If we suppress Coincident2 defined between the right plane of crank and right plane of the
bearing, the crank is allowed to rotate along the z-direction of the WCS. If you drag the crank (or any
component), the entire assembly is moving, as illustrated in Figure 4.8.

4.2.2 Kinematic joints
In some CAD systems, such as Pro/ENGINEER, designers are given an option in choosing either
mating constraints between geometric entities (like those of Tables 4.2 and 4.3) or defining kinematic
joints between components.

A kinematic joint is a connection between two components that imposes constraints on their
relative movement. There are in general two kinds of jointsda lower pair and higher pair. Physically, a
lower pair joint is used to describe the connection between a pair of rigid components when the relative
motion is characterized by two common surfaces sliding over one another. Commonly employed lower
pair joints include revolute (also called hinge or pin), prismatic (also called slider or translation),
cylindrical, planar, spherical, and screw, as shown in Figure 4.9. On the other hand, higher pair joints
describe joints with points or lines, such as a cam-follower joint.

A prismatic, slider, or translational joint (Figure 4.9a) requires that a line in the moving component
(or mating part) remains colinear with a line in the fixed component (or base part), and a plane parallel
to this line in the moving component maintains contact with a similar parallel plane in the fixed
component. This restricts five DOFs on the relative movement of the linksdtwo translational and three
rotationaldwhich therefore has one translational degree of freedom.

A revolute, hinge, or pin joint (Figure 4.9b) requires a line in the moving component to remain co-
linear with a line in the fixed component, and a plane perpendicular to this line in the moving
component maintain contact with a similar perpendicular plane in the fixed component. This restricts
five DOFs on the relative movement of the partsdthree translational and two rotationaldwhich
therefore allows only one rotational degree of freedom.
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FIGURE 4.7 Assembly Mating Constraints Defined for the Slider-Crank Mechanism. (a) Mating Constraints for

Crank (exploded view), (b) Mating Constraints for Rod (exploded view), and (c) Mating Constraints for Piston
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FIGURE 4.8 Drag the Crank to Explore the Kinematic Characteristics of the Slider-Crank Mechanism in SolidWorks.
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FIGURE 4.9 Lower Pair Kinematic Joints. (a) Revolute, Hinge, or Pin, (b) Prismatic, Slider, or Translational,

(c) Cylindrical, (d) Planar, (e) Spherical or Ball, (f) Universal, and (g) Screw.
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A cylindrical joint (Figure 4.9c) requires that a line in the moving component remain co-linear with
a line in the fixed component. It is a combination of a revolute joint and a prismatic joint. This joint has
two DOFsdone translational and one rotational.

A planar joint (Figure 4.9d) requires that a plane in the moving component maintain contact with a
plane in the fixed component. This joint has three DOFsdtwo translational and one rotational.

A spherical joint, or ball joint (Figure 4.9c), requires that a point in the moving component
maintain contact with a point in the fixed component. This joint has three DOFsdall rotational.

A universal joint (Figure 4.9f) allows the rotation of one component to be transferred to the rotation
of another component. This joint is particularly useful to transfer rotational motion around corners or
to transfer rotational motion between two connected shafts that are permitted to bend at the connecting
point (such as the drive shaft in an automobile transmission system).

A screw joint (Figure 4.9g) requires cut threads in two components, so that there is a turning as well
as sliding motion between them. This joint has one degree of freedomdcoupled rotational and
translational.

The DOFs that the lower joints constrained are summarized in Table 4.5.
Next, we use the same slider-crank example discussed in Section 4.2.1 to illustrate the kinematic

joints employed for assembly in Pro/ENGINEER. Note that when using kinematic joints for assembly
in Pro/ENGINEER, designers must use less physically intuitive entities, such as axis and points, to
define joints.

Kinematically, the slider-crank example shown in Figure 4.6a is a four-bar linkage, as illustrated in
Figure 4.10 schematically. They are commonly found in mechanical systems, such as internal com-
bustion engines and oil-well drilling equipment. For the internal combustion engine, the mechanism is
driven by a firing load that pushes the piston (slider), converting the reciprocal motion into rotational
motion at the crank.

In the oil-well drilling equipment, a torque is applied at the crank. The rotational motion is con-
verted to a reciprocal motion at the slider or piston that digs into the ground. Note that in any case the
length of the crank must be smaller than that of the rod in order to allow the mechanism to operate.
This is called Grashof’s law (Erdman et al., 2001).

Table 4.5 Lower Pair Joints and the DOF Constrained

Joint Type

DOF Constrained

RemarksTranslation Rotation Total

Revolute 3 2 5 Rotates about an axis

Translational 2 3 5 Translates along an axis

Cylindrical 2 2 4 Translates along and rotates about an axis

Planar 2 1 3 Components connected by a planar joint move
in a plane with respect to each other. Rotation is
about an axis perpendicular to the plane.

Spherical 3 0 3 Rotates in any direction

Universal 3 1 4 Rotates about two axes

Screw 0.5 0.5 1 Coupled rotation and translation along one axis
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The slider-crank assembly shown in Figure 4.11a consists of four parts: crank (crank.prt), rod
(rod.prt), pin (pin.prt), and piston (piston.prt), as shown in the exploded view in Figure 4.11b. Instead
of using a bearing part as the ground, we use the assembly datum features shown in Figure 4.11c as the
ground. Datum points (such as APNT0 in assembly and PNT0 of crank shown in Figure 4.11b and

Crank
Rod
(rod and pin) 
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Ground 

Pin joint 

Pin joint 
Slider joint 

Pin joint 

FIGURE 4.10 The Schematic View of the Kinematic Model of the Slider-Crank Mechanism.
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FIGURE 4.11 The Slider-Crank Mechanism. (a) Assembled Kinematic Model, (b) Exploded View with Datum

Points for Defining Joint Locations, and (c) Assembly Datum Features Serving as the Ground Part.

182 CHAPTER 4 Assembly Modeling



datum axes (such as AA_1 of assembly shown in Figure 4.11c) created in parts and assembly will be
used to define joints between parts.

The assembly datum features shown in Figure 4.11c include datum planes, datum axes, and datum
points. Note that the datum axes AA_1 and AA_2 and datum point APNT0 will be used for creating
jointsdspecifically, the pin joint between the ground and the crank, as well as the slider joint between
the ground and the piston.

We define a pin joint (Pin1) that allows one rotational motion between the crank and the ground.
The second pin joint (Pin2) is created to allow rotation motion between the crank and the rod. After
assembling the crank and the rod, the system should have two DOFs, allowing the crank and rod to
rotate along their respective pin joints independently.

Next, the pin is assembled to the rod rigidly using placement constraints, still maintaining two
DOFs. Then, the piston is assembled to the pin by defining a third pin joint. Therefore, the piston will
be free to rotate along the common axes A_1 (pin) and A_5 (piston). The total number of DOFs now
increases to three.

Finally, the piston is assembled to the ground by defining a prismatic joint. The prismatic joint is
created by aligning two parallel axes (A_6 in piston and AA_1 in the assembly) and two datum planes
(DTM3 in piston and ASM_TOP in the assembly). The prismatic joint allows only one translational
movement between piston and grounddthat is, along the common axes without rotation. The slider-
crank mechanism is now restricted to planar motion, with three rotations (Pin1, Pin2, and Pin3) and
one translation (Slider1) motion. However, all three rotations and the translational motion are coupled
to form a closed-loop mechanism, leaving only one free DOF, which can be any one of the three
rotations or the translational motion. Note the joint symbols of Pro/ENGINEER shown in Figure 4.11a.

The total number of DOFs of the slider-crank mechanism can also be calculated as follows by using
Gruebler’s count:

3 (Bodies)� 6 (DOFs/body)� 3 (revolute joints)� 5 (DOFs/revolute)� 1 (prismatic joint)�
5 (DOFs/prismatic)¼ 18� 20¼�2.

We know that for this slider-crank mechanism there is only one DOF. However, the count yields
�2. This is because there are three redundant DOF created in the system. This is fine because the CAD
system, such as Pro/ENGINEER, filters out the redundant DOF for kinematic analysis. Joints defined
in this simulation model are summarized in Table 4.6. The pairs of datum points and datum axes

Table 4.6 Joints Defined in the Simulation Model

Ground Body Crank Rod/Pin Piston

Crank Pin1 A_1 (crank)/
AA_2 and
PNT0/APNT0

Pin2 A_2 (crank)/
A_1 (rod) and PNT1
(crank)/PNT4 (rod)

Rod/pin Pin2 A_2 (crank)/
A_1 (rod) and PNT1
(crank)/PNT4 (rod)

Pin3 A_5 (piston)/
A_1 (pin) and PNT2
(piston)/PNT0 (pin)

Piston Slider1 A_6 (piston)/
AA_1 and DTM3
(piston)/ASM_TOP

Pin3 A_5 (piston)/
A_1 (pin) and PNT2
(piston)/PNT0 (pin)
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created in the parts and the assembly for defining these four joints can be seen in the top and front
views of the mechanism, as shown in Figure 4.12.

Note that the way the joints are defined is not unique. One of the pin joints may be replaced with a
bearing joint, which describes an identical slider-crank mechanism kinematically, in which the total
DOF becomes 1.

After completing the assembly using kinematic joints, you may click the Drag Components button
at the top of the graphics window in Pro/ENGINEER, and click and drag a component to see how

parts move. You may also bring the assembly into Mechanism Design by choosing from the pull-down
menu: Applications>Mechanism, in which you may create a driver (e.g., a rotary motor) to drive the
mechanism or define a force that pushes the piston to conduct a dynamic simulation.

4.3 Assembly modeling technique
An assembly model in CAD can be created by specifying assembly constraints between parts. As
discussed in Section 4.2, there are mating constraints and joint constraints. In this section, we
discuss the technique that determines the location and orientation of a mating part in an assembly
with respect to the base part by defining mating constraints. Joint constraints will be discussed in
Section 4.4.

In most mechanical assemblies, part positioning is carried out sequentially, with only two parts (or
subassemblies) positioned at a time. Using this strategy, a smaller number of relations, and hence
constraints, must be satisfied at each stage, even for a large assembly. This can offer significant
computational advantages in comparison with a simultaneous strategy.

Part positioning in assembly involves specifying part location and orientation. It can be
expressed relative to some global reference or with respect to other parts. In either case, part
location and orientation are specified by a 4� 4 homogeneous transformation matrix. In this section,
we first discuss the transformation method and solution scheme proposed by Kim et al. (2000) in
Section 4.3.1. Then, we introduce a technique for degree of freedom analysis based on the mating
constraints in Section 4.3.2. Again, we adopt the terminologies of mating constraints defined in
SolidWorks.

(b) (a) 

FIGURE 4.12 Locations of Datum Points and Datum Axes. (a) Top View, and (b) Front View.
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4.3.1 Transformation matrix
The method we discuss in this subsection takes well-constrained mating conditions between a
base and a mating part and directly transforms them into a 4� 4 matrix that determines the
relative location and orientation of the mating part with respect to the base part. Well-constrained
mating conditions imply that mating constraints are not in conflict in positioning the mating part
to the base part.

In the example shown in Figure 4.13, a mating part (Figure 4.13b) is assembled first to the base part
(Figure 4.13a), with a concentric mate applied to the inner surface of the hole in the base part and the
cylindrical surface of the mating part (Figure 4.13c), in which axes of the hole and cylinder align and
the mating part is free to rotate and translate along the common axis. Then, a coincident-aligned is
applied to the top face of the base part and bottom face of the mating part, resulting in a fully con-
strained assembly (Figure 4.13d). To assemble the mating part to the base part, a 4� 4 matrix (similar
to that in Chapter 2), which is determined by directly computing a rotation matrix TR and a translation
matrix TL that define the relative orientation and location of the mating part, respectively, must be
calculated.

In determining the transformation matrix, we compute the rotation matrix TR first by solving a set
of linear constraint equations associated with the orientation of two mating parts. After orienting the
mating part by applying the rotation matrix TR, the translation matrix TL is calculated by solving a set
of linear constraint equations associated with location. This method is computationally very effective
because the transformation matrix for relative location and orientation of the mating part is algebra-
ically derived directly from the linear equations associated with the mating conditions. We assume that
the mating part is fully constrained.

The mating conditions considered in this subsection are concentric and coincident. We adopt the
conventions in (Kim et al. 2005), in which the superscripts b, m, mr, and ma in the following equations
indicate the base part, the mating part, the mating part after rotation, and the mating part after as-
sembly, respectively.

Coincident-aligned 

Concentric 

(a) (b) (c) (d)

FIGURE 4.13 An Example of a Two-Part Assembly. (a) Base Part, (b) Mating Part, (c) Concentric Mating

Constraint Applied to the Hole in the Base Part and the Cylindrical Surface in the Mating Part, and (d)

Coincident-aligned Applied to the Top Face of the Base Part and Bottom Face of the Mating Part, Resulting in a

Fully Constrained Assembly.

4.3 Assembly modeling technique 185



4.3.1.1 Coincident
The coincident-mate holds between two planar faces and requires the two faces to touch each other
(Figure 4.14a). The designated faces, shaded in Figure 4.14a, are the faces to be mated. Each face is
specified by its unit normal vector n and one point P on the face in terms of its local coordinate system.
This condition is accomplished by constraining the two normal vectors to be opposite to each other,
and the two points that are noncoincident to lie on the same plane at which the two faces mate. Thus,
equations of the coincident-mate constraint can be expressed as follows:

nb ¼ �nma (4.1a)

where nb ¼ ½nbx ; nby ; nbz �T and nma ¼ ½nma
x ; nma

y ; nma
z �T are also called direction vectors; and

nb
T

$
�
Pb � Pma

� ¼ 0 (4.1b)

where Pb ¼ ½Pbx ; Pby ; Pbz �T, and Pma ¼ ½Pma
x ; Pma

y ; Pma
z �T. Note that Pb and Pma must not coincide.

The coincident-aligned condition is assigned between two planar faces when they lie in the same
plane, as shown in Figure 4.14b. Equations of the coincident-aligned constraint are similar those of the
coincident-mate constraint, except that the two normal vectors nb and nm are required to be in the same
direction. Thus, a coincident-aligned constraint can be expressed mathematically by

nb ¼ nma (4.2a)

and

nb
T

$
�
Pb � Pma

� ¼ 0: (4.2b)

4.3.1.2 Concentric
The concentric condition holds between two cylindrical faces: a shaft face, and a hole face, as shown in
Figures 4.14c and d. The concentric condition is accomplished by requiring the center axes of shaft and
hole components to be parallel and a point Pm on the axis of the mating part lies on the axis of the base
part. An axis is defined by a unit direction vector and a point on it. The hole axis is specified by a point
Pb and a unit direction vector nb defined in terms of its local coordinate system. Similarly, the shaft axis
is specified by a point Pm and a unit direction vector nm in terms of its local coordinate system. Thus,
the constraint equations for concentric conditions can be written as

nb ¼ nma (4.3a)

for aligned (see Figure 4.14c), nb¼�nma for antialigned (see Figure 4.14d), and

Pma
x � Pbx
nbx

¼ Pma
y � Pby
nby

¼ Pma
z � Pbz
nbz

¼ Cs 0 (4.3b)

because vectors nb and Pma� Pb are collinear.
Equations (4.1)–(4.3) specify partially the relative rotation and translation of the mating part with

respect to the base part, associated with the respective mating constraints. We assume that the origins
of the coordinate systems of the mating and base parts coincide (not necessarily aligned), although
they are sketched separately in Figure 4.14 for clarity. This point is illustrated in Example 4.1.
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FIGURE 4.14 Assembly Mates. (a) Coincident-mate, (b) Coincident-aligned, (c) Concentric-mate, and

(d) Concentric-aligned.
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Although we only present equations for concentric and coincident mating constraints, equations of
remaining mating constraints can be derived following the same ideas presented. For examples, Eqn
(4.1a) or Eqn (4.2a) (for mate or align, respectively) is sufficient to support a parallel mating
constraint. In addition, a coincident offset constraint can be represented by using the same equation as
either Eqn (4.1a) or Eqn (4.2a) (for mate or align, respectively) for part orientation, and the following
equation for location:

nb
T

$
�
Pb � ðPma �OÞ� ¼ 0 (4.3c)

where O is the vector of the offset specified by the designer.

4.3.1.3 Computation of the transformation matrix
The relative orientation and location of the mating part with respect to the base part is represented by a
4� 4 transformation matrix. The transformation matrix can be written in homogeneous coordinates,
defined as

T ¼

2
664
R1x R1y R1z Lx

R2x R2y R2z Ly

R3x R3y R3z Lz

0 0 0 1

3
775 ¼

�
R L
0 1

�
(4.4a)

in which the 3� 3 matrix R defines the rotation transformation, and the 3� 1 column vector L¼
[Lx Ly Lz]

T determines the translation. Physically, this transformation can be viewed as a represen-
tation of a coordinate system in a fixed reference coordinate system. Each unit vector of the coordinate
frame n1, n2, and n3 is mutually perpendicular, as illustrated in Figure 4.15. With this, the trans-
formation matrix can be rewritten as

T ¼

2
664
n1x n2x n3x Lx

n1y n2y n3y Ly

n1z n2z n3z Lz

0 0 0 1

3
775 ¼

�
R L
0 1

�
: (4.4b)

With such a transformation matrix, any given vector v¼ [vx vy vz]
T defined in the mating part with

respect to its local coordinate system can be transformed to V¼ [Vx Vy Vz]
T with respect to the co-

ordinate system of the base part by the following,

x y 

z 

L 
n1

n2
n3

FIGURE 4.15 Representation of a Frame in a Frame.
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�
V
1

�
¼

�
R L
0 1

��
v
1

�
¼

�
Rvþ L

1

�
(4.5)

which clearly shows the rotational and translational portions of the transformation. Therefore, the
transformation matrix T in Eqn (4.4) can be represented by the product of a translation matrix TL and a
rotation matrix TR as

T ¼
�
I L
0 1

��
R 0
0 1

�
¼ TLTR (4.6a)

where

TR ¼
�
R 0
0 1

�
¼

2
664
R1x R1y R1z 0
R2x R2y R2z 0
R3x R3y R3z 0
0 0 0 1

3
775 (4.6b)

and

TL ¼
�
I L
0 1

�
¼

2
664
1 0 0 Lx

0 1 0 Ly

0 0 1 Lz

0 0 0 1

3
775: (4.6c)

These matrices are determined sequentially. We first derive TR from the rotational relationships be-
tween the mating parts, and then derive TL from the translational relationships between the base part
and the mating part after it is oriented by applying the rotation matrix TR.

When we are given two independent pairs of direction vectors, ðnbi ; nmi Þ; i ¼ 1; 2, from the well-
constrained mating conditions between a base part and a mating part, as shown in Figure 4.16, the
equation associated with rotation of components are expressed as

nmr
i ¼ R nmi ; i ¼ 1; 2 (4.7)

where nmr
i ¼ nbi ; i ¼ 1; 2 is for aligned and nmr

i ¼ �nbi ; i ¼ 1; 2 is for mate.

b
1n m

2n

b
2n

m
1n

y1

z1
y2

z2

x1

y1

z1

b
1n

mr
1n

x2
y2

z2

b
2n

mr
2n

x1

x2

FIGURE 4.16 Mating Conditions for Assembly Modeling.
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Here,nmr
i is a mating direction vector after themating part is reoriented by applying the rotationmatrix

TR. If n
m
3 and nmr

3 are defined as nm3 ¼ nm1 � nm2 and nmr
3 ¼ nmr

1 � nmr
2 , respectively, then, the relation

between nm3 and nmr
3 is derived as nmr

3 ¼ R nm3 . These equations are rewritten as the matrix producth
nmr
1 nmr

2 nmr
3

i
¼ R

h
nm1 nm2 nm3

i
: (4.8a)

Hence, the rotational submatrix R is obtained by

R ¼
h
nmr
1 nmr

2 nmr
3

ih
nm1 nm2 nm3

i�1
: (4.8b)

The translation submatrix L is computed algebraically by solving the equations associated with
translation after reorienting the mating part by applying the rotation matrix TR. After reorienting, the
mating direction vectors are parallel and a point on the mating part after assembly Pma, is expressed as

Pma ¼ Pmr þ L (4.9)

where Pmr is a point on the mating part after reorienting and is obtained by Pmr¼R$Pm. Thus, the
constraint equations associated with the translation of mating parts are expressed next.

First, we consider coincident-mate, in which the direction vectors of the mating parts are parallel
after reorientation. The condition requires that one point on the mating face of the mating part lies on
the mating face of the base part and they are not coincident. Thus, the translational constraint equation
for the coincident-mate is expressed, following Eqn (4.3b), as:

nb
T

$
�
Pb � Pma

� ¼ nb
T

$
�
Pb � ðPmr þ LÞ� ¼ 0: (4.10)

For concentric mate, we know that the center axes of the mating parts are parallel after repositioning;
the constraint requires that one point Pm on the axis of the mating part lies on the axis of the base part.
Thus, the translational constraint equations for the concentrate mate are expressed, following
Eqn (4.2b), as:

�
Pmr
1x þ Lx

�� Pb1x
nb1x

¼
�
Pmr
1y þ Ly

	
� Pb1y

nb1y
¼

�
Pmr
1z þ Lz

�� Pb1z
nb1z

¼ Cs 0 (4.11a)

or �
Pmr
1x þ Lx

�� Pb1x ¼ Cnb1x�
Pmr
1y þ Ly

	
� Pb1y ¼ Cnb1y�

Pmr
1z þ Lz

�� Pb1z ¼ Cnb1z:

(4.11b)

EXAMPLE 4.1
Consider the two assembly components shown in Figure 4.13. Each component is defined in its local coordinate
system, with dimensions shown on the next page. The two components are assembled by applying a concentric mate
to the inner surface of the hole in the base part and the outer surface of the cylinder in the mating part, and imposing
a coincident-aligned on the top face of the base part and the bottom face of the mating part, as discussed before.
Therefore, the vectors nb1 and nm1 align with the axes of the hole and cylinder, respectively, and the vectors nb2 and nm2
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EXAMPLE 4.1eCONT’D

are normal to the faces on the respective components, as shown below. The reference point Pb1 is at the center of the
bottom face of the hole, and point Pm1 is located at the center of the bottom face of the cylinder on the mating part.
Also, reference points Pb2 and Pm2 are located at the center of their respective mate planes, as shown in the figures
below. These points must be chosen such that they do not coincide after assembly. The table below lists the
geometric data of the vectors and reference points.

x1

y1

z1

x2

y2

z2

4 
5 

3 

1 

3 

2

2 

4 

2 

2 

2

2 
b
1n

m
1n

b
1P

m
1P

b
2n

m
2n

b
2P

m
2P

2 2

Base Part Mating Part Mating Part After Assembly

Concentric

nb1 ¼

2
6666664

1ffiffiffi
2

p

0

1ffiffiffi
2

p

3
7777775
; Pb

1 ¼
2
4 3
2
1

3
5 nm1 ¼

2
6666664

1ffiffiffi
2

p

0

1ffiffiffi
2

p

3
7777775
; Pm

1 ¼
2
41
2
1

3
5 nmr

1 ¼�nb1¼

2
6666664

� 1ffiffiffi
2

p

0

� 1ffiffiffi
2

p

3
7777775
;Pma

1 ¼
2
442
2

3
5

Coincident

nb2 ¼
2
40
0
1

3
5; Pb

2 ¼
2
41:5

2
3

3
5 nm2 ¼

2
4 0

0
�1

3
5; Pm

2 ¼
2
41
2
0

3
5 nmr

2 ¼ nb2 ¼
2
40
0
1

3
5; Pma

2 ¼
2
44
2
3

3
5

When the two direction vectors nm1 and nm2 are given, the third direction vector can be computed as

nm3 ¼ nm1 � nm2 ¼

2
6666664

1ffiffiffi
2

p

0

1ffiffiffi
2

p

3
7777775
�
2
4 0

0
�1

3
5 ¼

2
66664

0

1ffiffiffi
2

p

0

3
77775_

After normalizing it, we have nm3 ¼ ½0 1 0 �T. After applying these two mating constraints, the mating part is
assembled to the base part shown on the next page (left). The vectors and reference points after assembly are listed
in the table above.

Continued
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EXAMPLE 4.1eCONT’D

Therefore, we have

nmr
3 ¼ nmr

1 � nmr
2 ¼

2
6666664

� 1ffiffiffi
2

p

0

� 1ffiffiffi
2

p

3
7777775
�
2
40
0
1

3
5 ¼

2
66664

0

1ffiffiffi
2

p

0

3
77775_

After normalizing it, we have nm3 ¼ ½0 1 0 �T. Then the rotation matrix R can be calculated using Eqn (4.8b) as

R ¼
h
nmr
1 nmr

2 nmr
3

ih
nm1 nm2 nm3

i�1 ¼

2
6666664

� 1ffiffiffi
2

p 0 0

0 0 1

� 1ffiffiffi
2

p 1 0

3
7777775

2
6666664

1ffiffiffi
2

p 0 0

0 0 1

1ffiffiffi
2

p �1 0

3
7777775

�1

¼
2
4�1 0 0

0 1 0
0 0 �1

3
5:

x1

y1

z1

x2
y2

z2

b
2n

b
2P

mr
2n

ma
2P

ma
1P

b
1P

b
1n

mr
1n

mr
2n

ma
2P

ma
1P

mr
1n

x1

y1, y2

z1

x2

z2

Note that the rotation matrix R rotates the mating part to an orientation shown in the figure above (right). The
columns of the submatrix R represent respectively the three coordinate axes of the coordinate system in the mating
part with respect to the coordinate system of the base part. For example, the first column of the submatrix R shows
that the axis x2 is now aligned with x1 but in the opposite direction.

Now we find the translation matrix L. Using the rotation submatrix R obtained in the previous step, two points Pmr
1

and Pmr
2 on the reoriented mating part are computed first by

Pmr
1 ¼ RPm1 ¼

2
4�1 0 0

0 1 0
0 0 �1

3
5
2
41
2
1

3
5 ¼

2
4�1

2
�1

3
5

and

Pmr
2 ¼ RPm2 ¼

2
4�1 0 0

0 1 0
0 0 �1

3
5
2
41
2
0

3
5 ¼

2
4�1

2
0

3
5:
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EXAMPLE 4.1eCONT’D

Then, the translational constraint equations are derived from the mating conditions as follows. From the coincident
condition in Eqn (4.10), we have

nb
T

2 $
h
Pb2 � �

Pmr
2 þ L

�i ¼ 0; or
h
0 0 1

i8<
:
2
41:5
2
3

3
5�

0
@
2
4�1

2
0

3
5þ

2
4Lx
Ly
Lz

3
5
1
A
9=
; ¼ 0

which gives Lz¼ 3. From the concentric condition in Eqn (4.11a), we have

�
Pmr
1x þ Lx

�� Pb
1x

nb1x
¼

�
Pmr
1y þ Ly

	
� Pb

1y

nb1y
¼

�
Pmr
1z þ Lz

�� Pb
1z

nb1z
¼ Cs0

or

ð�1þ Lx Þ � 3
1ffiffiffi
2

p
¼

�
2þ Ly

�� 2

0
¼ ð�1þ Lz Þ � 1

1ffiffiffi
2

p
¼ ð�1þ 3Þ � 1

1ffiffiffi
2

p
¼ 1

1ffiffiffi
2

p
¼ C:

Hence, Lx¼ 5, and Ly¼ 0. Therefore, the translational submatrix is L ¼ [5, 0, 3]T.
Thus, the transformation matrix T for relative orientation and location of the mating part with respect to the base

part is obtained as

T ¼

2
664
R1x R1y R1z Lx
R2x R2y R2z Ly
R3x R3y R3z Lz
0 0 0 1

3
775 ¼

2
664
�1 0 0 5
0 1 0 0
0 0 �1 3
0 0 0 1

3
775_

One of the potential pitfalls in using the method discussed above for representing an assembly is that
the rotation matrix derived from Eqn (4.8b) may not be orthogonal. To carry out a valid rotation, the
rotation matrix must satisfy the two basic properties of orthogonality: RRT¼ I and jRj ¼ 1.

We use the following example to illustrate the pitfall.

EXAMPLE 4.2
Consider the same assembly as in Example 4.1 except that the length of the base part is increased from 5 to 6, as
shown in the figure on the next page. We only show side views with direction vectors to get to the points of this
example.

It is apparent that the two mating constraints are in conflict in terms of determining an orientation of the mating
part that satisfies both constraints. You may either impose a coincident-aligned on the top face of the base part and
the bottom face of the mating part (shown in the lower left figure of next page), in which the vectors nb2 and nm2 align,
or apply a concentric mate to the inner surface of the hole in the base part and the outer surface of the cylinder in the
mating part (shown in the lower right figure of next page), in which the vectors nb1 and nm1 align. It is impossible to
orient the mating part so that both sets of the normal vectors align simultaneously.

With this understanding, we will proceed with computing the rotation matrix R following the steps discussed and
then point out the pitfall.

Continued
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We first assume that both constraints are satisfied; hence, nmr
1 ¼ �nb1 and nmr

2 ¼ nb2. The table below lists the
geometric data of the vectors and reference points.

Base Part Mating Part Mating Part After Assembly

Concentric

nb
1 ¼

2
6666664

2ffiffiffiffiffiffi
13

p

0

3ffiffiffiffiffiffi
13

p

3
7777775

nm
1 ¼

2
6666664

1ffiffiffi
2

p

0

1ffiffiffi
2

p

3
7777775

nmr
1 ¼ �nb

1 ¼

2
6666664

� 2ffiffiffiffiffiffi
13

p

0

� 3ffiffiffiffiffiffi
13

p

3
7777775

Coincident

nb
2 ¼

2
4 0
0
1

3
5 nm

2 ¼
2
4 0

0
�1

3
5 nmr

2 ¼ nb
2 ¼

2
4 0
0
1

3
5

With the two direction vectors nm1 and nm2 given, the third direction vector can be computed as

nm3 ¼ nm1 � nm2 ¼

2
6666664

1ffiffiffi
2

p

0

1ffiffiffi
2

p

3
7777775
�
2
40
0
�1

3
5 ¼

2
66664

0

1ffiffiffi
2

p

0

3
77775_
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After normalizing it, we have nm3 ¼ ½0 1 0 �T.
Similarly, the third vector after assembly is

nmr
3 ¼ nmr

1 � nmr
2 ¼

2
6666664

� 2ffiffiffiffiffiffi
13

p

0

� 3ffiffiffiffiffiffi
13

p

3
7777775
�
2
40
0
1

3
5 ¼

2
66664

0

2ffiffiffiffiffiffi
13

p

0

3
77775_

After normalizing it, we have nmr
3 ¼ ½0 1 0 �T.

Then the rotation matrix R can be calculated using Eqn (4.8) as

R ¼
h
nmr
1 nmr

2 nmr
3

ih
nm1 nm2 nm3

i�1 ¼

2
6666664

� 2ffiffiffiffiffiffi
13

p 0 0

0 0 1

� 3ffiffiffiffiffiffi
13

p 1 0

3
7777775

2
6666664

1ffiffiffi
2

p 0 0

0 0 1

1ffiffiffi
2

p �1 0

3
7777775

�1

¼

2
66666664

�2
ffiffiffi
2

p
ffiffiffiffiffiffi
13

p 0 0

0 1 0

1� 3
ffiffiffi
2

p
ffiffiffiffiffiffi
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If we rotate the two direction vectors of the mating part before assembly, we have

nmr
1 ¼ Rnm1 ¼

2
66666664

�2
ffiffiffi
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13

p 0 0

0 1 0

1� 3
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3
7777775
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13
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13

p

3
7777775

which is �nb1, as it should be, and

nmr
2 ¼ Rnm2 ¼

2
66666664

�2
ffiffiffi
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13

p 0 0

0 1 0
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3
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0
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5 ¼

2
40
0
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which is nb2. Everything seems to be working fine mathematically. However, we know at the beginning that
such a transformation is impossible physically. What is the problem? Let us take a look at the transformation
matrix R. First,

RRT ¼

2
66666664

�2
ffiffiffi
2

p
ffiffiffiffiffiffi
13

p 0 0

0 1 0

1� 3
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s I

Continued
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EXAMPLE 4.2eCONT’D

and

jRj ¼

2
66666664

�2
ffiffiffi
2

p
ffiffiffiffiffiffi
13

p 0 0

0 1 0

1� 3
ffiffiffi
2

p
ffiffiffiffiffiffi
13

p 0 �1

3
77777775
¼ 0:7845s1:

Therefore, the rotation submatrix R is not orthogonal.
The problem with a nonorthogonal rotation matrix is that it does not perform the rotation correctly. For example,

if we rotate the vectors that represent respectively axes x2 and z2 using the submatrix R, we have

nmr
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¼ Rnmx2 ¼
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66666664
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These two vectors are nonperpendicular:

nmr
x2
$nmr
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¼
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13

p 0 1� 3
ffiffiffi
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p
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13

p

3
75
2
40
0
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3
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ffiffiffi
2

p
ffiffiffiffiffiffi
13

p s0

which is wrong, to say the least.

This orthogonality properties of a rotation matrix can be easily verified by computer. When the
properties are not satisfied, the mating constraints are in conflict, and CAD prompts an error message.

In practice, a product assembly must be properly parameterized so that a desired design intent is
captured without invoking any conflict between mating constraints. In this example, there are two
obvious possibilities. One intent is keeping the slope of the mating surfaces as 45�, as shown in
Figure 4.17b. In this case, the width of the top edge of the base part must be related to that of the bottom

edge, such as dbtop ¼ dbbottom � 2, where dbtop and dbbottom are the widths of the top and bottom edges of

the base part, respectively. The second intent, as illustrated in Figure 4.17b, allows the slope of the
mating surfaces to vary. In this case, the widths of the top and bottom edges of the base part must be

related to the bottom edge of the mating part, such as dmbottom ¼ dbbottom � dbtop, where dmbottom is the

width of the bottom edge of the mating part.
The assembly modeling approach discussed is capable of supporting both cases, as long as there is

no conflict between the mating constraints. For the first intent shown in Figure 4.17a, the
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transformation matrix can be calculated following the same steps shown in Example 4.1, in which

points Pb
1 is relocated according to the dimension dbbottom. The resulting transformation matrix is

identical to that of Example 4.1, except for Lx, which is determined by the dimension dbbottom.

As for the second intent shown in Figure 4.17b, vectors nb1 and n
m
1 as well as points Pb

1 and P
m
1 must

be calculated, based on the change of dimension dbbottom. This is left as an exercise.

4.3.2 Degree of freedom analysis
In the mating constraint method, designers specify the relative positions of parts by interactively
defining spatial relationships between the geometric features of mating parts. These mating constraints
are applied to the same type of mating features, such as a pair of planar faces. Each of the geometry
mating constraints has a pair of direction vectors, called principal vectors, which characterize the
mating geometric entities. For example, the principal vectors are two outbound unit vectors that are
normal to the mating planes for the coincident-mate and coincident-aligned constraints, and two unit
vectors parallel to the mating axis direction for the concentric constraint. The principal vectors are
antialigned for coincident-mate, whereas they are aligned for coincident-aligned.

Using these mating geometric features and principal vectors, we can determine the remaining
DOFs for a pair of mating parts. For example, the two-part assembly shown in Figure 4.13 is assembled
using concentric and coincident-aligned constraints as discussed. After imposing the concentric
constraint between the hole in the base part and the cylindrical surface of the mating part, the two unit
vectors parallel to the mating axis direction align, creating one common principal vector. At this point,
the mating part is allowed to rotate along the direction of the principal vector, as shown in Figure 4.13c.
After imposing the coincident-aligned constraint between the top face of the base part and bottom face
of the mating part, the two outbound unit vectors normal to the faces for the coincident-aligned
constraints point in the same principal vector direction. These two principal vectors are not in par-
allel and are called independent. Imposing both mating constraints eliminates the rotation degree of
freedom of the mating part. In general, one independent principal vector (IPV) allows one rotational
DOF, and two or more IPVs eliminate all rotational DOF, as summarized in Table 4.7.

Note that for the bearing and crank example shown in Figure 4.3, there are two mating constraints
imposed, concentric between the hole of the bearing and the cylindrical surface of the lower shaft of
the crank, and a coincident-mate between the two opposite faces of the two components. These two
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FIGURE 4.17 Illustration of Design Intents. (a) Slope of the Mating Surface Kept at 45�, and (b) Slope of the Mating

Surface Varying.
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mating constraints form two principal vectors that are parallel, counting as one IPV, therefore allowing
one rotational DOF according to Table 4.7.

Using the intersection mating geometry (IMG) of mating components, we can also compute the
translational DOF as shown in Table 4.8. For example, a coincident-aligned constraint yields a face
IMG (Figure 4.18a), therefore allowing translational movement in two directions on the face. A line

Table 4.8 Translational DOF Analysis

Intersection Mating
Geometry TDOF

Plane T2

Line T1

Point T0

Table 4.7 Rotational DOF Analysis

Number of Independent
Principal Vectors RDOF

0 R3

1 R1

2 or more R0

(a) (b) 
b
ipv ipvn mn

imgF
b
ipv1
n m

ipv1
n

b
ipv2
n

m
ipv2
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imgL

(c) 
b
ipv1
n

m
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n

b
ipv2
n

m
ipv2
n
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FIGURE 4.18 Examples of DOF Analysis. (a) One IPV and a Face IMG, (b) Two IPVs and a Line IMG, and (c) One IPV

and a Point IMG.
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IMG illustrated in Figure 4.18b as an example allows one translational DOF along the line, which is
formed by intersecting two faces normal to the two respective IPV: nipv1 and nipv2 in Figure 4.18b.
Figure 4.18c illustrates a case of point IMG, in which no translational movement is allowed. The point
IMG is identified by intersecting the IPV (nipv1 in Figure 4.18c) and the plane normal to the other IPV,
nipv2.

4.4 Kinematic modeling technique
The approach discussed in Section 4.3 sequentially positions the mating part with respect to the
base part such that the given mating constraints are satisfied. The method is powerful and general. It
is also capable of regenerating the assembly model after a design change is made as long as the
mating constraints after the change are not in conflict. On top of that, the major advantage of the
approach is that it solves the equations sequentially without dealing with a system of constraint
equations simultaneously, as do many other methods proposed in the literature (e.g., Lee and
Andrews, 1985).

However, this method requires that an assembly does not contain any closed-loop or under-
constrained states, thus requiring that the mating part be positioned with respect to the base part
whose position is determined. Such a limitation prevents the approach from dealing with two
issues that are commonly encountered in product design involving assemblies. First, when a
design change takes place, such as changing the dimensions of the crank and connecting rod for
the slider-crank mechanism shown in Figure 4.19, the location and orientation of the individual
parts are to be determined. Only when the location and orientation of the individual parts are
determined can the method discussed in Section 4.3 be employed to calculate the transformation
matrices for individual parts in the assembly. The second issue is that if the assembly is under-
constrained, when a part in the assembly is moved, parts in the assembly must be repositioned
according to how the parts are assembled. This is illustrated in Figure 4.20 using the slider-crank
example.

These two common issues are discussed in this section. We discuss how to extract the kinematic
information from mating constraints, construct a kinematic model, and carry out kinematic analysis
that determines the location and orientation of individual parts in the assembly. There are several
methods proposed for converting the mating constraints to kinematic joints. These include a mating

(a) (b) (c) 

d3:2 = 10 
d3:2 = 8 

d2:0 = 3 d2:0 = 4 

FIGURE 4.19 Design Changes in the Slider-Crank Assembly. (a) Dimensions d2:0 and d3:2, (b) d2:0 Changed to 4,

and (c) d3:2 Changed to 10. All Assume a Stationary Slider.
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relation-based method (e.g., Kim and Lee, 1989; Kim and Wu, 1990) and a contact condition based
method (e.g., Sinha et al., 2002). There are also many methods developed for kinematic analysis of
mechanisms (Dawari and Sen, 2007), including approaches based on configuration space (e.g.,
Joskowicz, 1990; Lozano-Pérez, 1983; Kim et al., 2003), screw theory (e.g., Adams et al., 1999),
ports (e.g., Singh and Bettig, 2004), and features (e.g., Eng et al., 1999).

Before getting into the discussion, a few basic terminologies are mentioned. An assembly may be
thought of as a set of rigid bodies connected by joints. A rigid body can be a single part or a subas-
sembly, in which no relative motion is allowed between parts. These bodies are called links. An as-
sembly of links and joints creates a kinematic chain, in which links are interconnected in a way to
provide a desired output motion in response to an input motion. A mechanism is a kinematic chain in
which at least one link has been grounded or attached to the frame of reference.

In this section, we first introduce the method proposed by Kim and Lee (1989) that maps mating
constraints to kinematic joints, in which the joint information is automatically extracted from the
mating relations for each link. Then, in Section 4.4.2, we discuss the Denavit–Hartenberg (D–H)
representation, which is commonly employed to represent kinematic models in robotics applications.
We then discuss, in Section 4.4.3, how to construct joint coordinate systems using mating constraints
from the CAD assembly to construct a kinematic model. We discuss both open and closed-loop
systems.

4.4.1 Mapping mating constraints to kinematic joints
As discussed in Section 4.2.2, joint constraints impose certain restrictions on the way the components
can be assembled, and also on the way they move relative to one another. Each of the joint constraints
is related to the rigid-body motion of a mating part and has DOFs associated with it.

As discussed in Section 4.3.2, counting the number of IPVs and types of intersections of the IMG,
we are able to determine the remaining DOFs for a pair of mating parts. More precisely, one IPVallows
one rotational DOF, and two or more IPVs eliminate all rotational DOFs, as summarized in Table 4.7.
Moreover, as shown in Table 4.8, a face IMG allows two translational DOFs (Figure 4.18a), a line IMG
allows one translational DOF (Figure 4.18b), and a point IMG allows no translational movement
(Figure 4.18c).

Also, by reviewing the description of kinematic joints discussed in Section 4.2.2, an example of
DOF analysis in Figure 4.18b shows a prismatic joint before and after applying two coincident-aligned
constraints. The base and mating parts of the prismatic joint take two planar faces, respectively, as

(a) (b) 

 = 180o
 = 45oθ

θ

FIGURE 4.20 Crank Rotated in the Slider-Crank Assembly. (a) q[ 45�, and (b) q[ 180�.
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IMGs. Each component has two IPVs and the line IMG; therefore, the joint has zero rotational DOFs
and one translational DOF after assembly.

In addition to the case of Figure 4.18b, in which two coincident-aligned constraints are applied,
cases such as two coincident-mates, one mate and one align, and one concentric and one mate (or
align), as shown in Figure 4.21a, map to a prismatic joint.

The example shown in Figure 4.18c presents a revolute joint before and after applying one
concentric and one coincident-aligned (or coincident-mate) constraints. Each component has one IPV.
The point IMG is determined by interesting the axis (concentric) and the mate plane (coincident-
aligned or coincident-mate), as illustrated in Figure 4.21b. As a result, the mating part is allowed to
rotate along the axis (or IPV), resulting in a revolute joint.

With the discussion above, not only the number of DOFs can be determined by counting the
number of IPV and checking the type of IMG between two mating parts, but also the type of joint
between the two components can be determined. The mapping between mating constraints and ki-
nematic joints is provided in Table 4.9. Figures 4.21c–e illustrate the mapping between mating con-
straints and kinematic joints of planar, cylindrical, and spherical joints, respectively.

4.4.2 D–H representation
After converting mating constraints to kinematic joints, the next step is to construct a kinematic model
mathematically. We discuss a modeling approach that is commonly employed in robotics applications.

In robotics applications, most joints are associated with one actuator, either translational or rota-
tional. Therefore, it is commonly assumed that all joints have only a single degree of freedom (Craig,
1989). Note that the assumption does not involve any real loss of generality because joints with
multiple DOFs, such as a spherical joint (three rotational DOFs), can always be thought of as a
succession of single DOF joints with zero-length links in between. This point is further illustrated in
Example 4.4.

With the assumption that each joint has a single DOF, the action of each joint can be described by a
single real numberdthat is, the angle of rotation in the case of a revolute joint or the displacement in
the case of a prismatic joint. The objective of the kinematic analysis is to determine the cumulative
effects of the entire set of joint variables.

An open loop mechanism with n joints has nþ 1 links, as illustrated in Figure 4.22a schematically,
because each joint connects two links. We number the joints from 1 to n, and we number the links from
0 to n, starting from the ground link 0. By this convention, joint i connects link i� 1 to link i. We
consider the location of joint i to be fixed with respect to link i� 1. For example, Joint 2 is fixed to Link
1 in Figure 4.22a. When joint i is actuated, link i moves. Again, link 0 (the first link) is fixed and does
not move when the joints are actuated.

Note that in general link n is not connected back to the base link 0, which is called open-loop.
Figure 4.22b shows a closed-loop system, in which link n connects back to link 0 (or any link be-
tween 0 and n� 2).

With the ith joint, we associate a joint variable, denoted by qi. In the case of a revolute joint, qi is the
angle of rotation; in the case of a prismatic joint, qi is the joint displacement.

To construct a kinematic model, we rigidly attach a coordinate system to each link at the joint. In
particular, we attach xi–yi–zi to link i with an origin Oi at joint iþ 1. We call this coordinate system Ci,
defined by its origin Oiwith three axes xi–yi–zi. This means that whatever motion the joint imposes, the
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FIGURE 4.21 Illustration of Mapping between Mating Constraints and Kinematic Joints. (a) Prismatic,

(b) Revolute, (c) Planar, (d) Cylindrical, and (e) Spherical Joints.
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location of each point on link i is constant when expressed in the ith coordinate frame. Furthermore,
when joint i is actuated, link i and its attached frame Ci experience a resulting motion. The frame C0,
which is attached to the ground link, is referred to as the inertial frame. Note that On of link n (or end
link), in which the axes xn–yn–zn of the coordinate system Cn are attached, is usually located at a point
of interest in design. In robotics applications, Cn is called the end-effector.

The transformation matrix similar to that of Section 4.3 can be employed to express the location
and orientation of individual links. For example, matrix Ti�1

i defines the location and orientation of
link i with respect to link i� 1 or relating coordinate system of Ci with respect to Ci�1. More spe-
cifically, the matrix transforms a given vector vi¼ [vix, viy, viz]

T in the ith link back to the coordinate
system of the (i� 1)th link vi�1¼ [vi�1x, vi�1y, vi�1z]

T in a homogeneous coordinate system:

�
vi�1

1

�
¼ Ti�1

i

�
vi
1

�
(4.12)

Table 4.9 The Mapping between Mating Constraints and Kinematic Joints

Joint DOF Number of IPVs IMGs Mating Constraints

Prismatic T1R0 2 Line Two coincident-mates, 2 coincident,
coincident-mate and coincident-
aligned, or coincident-mate (or align)
and concentric

Revolute T0R1 1 Point Coincident-mate and concentric, or
coincident-aligned and concentric

Planar T2R1 1 Plane Coincident-mate, or coincident-aligned

Cylindrical T1R1 1 Line Concentric

Spherical T0R3 0 Point Point coincident
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Joint 1 
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FIGURE 4.22 Schematic Representation of Kinematic Mechanism. (a) Open-loop and (b) Closed-loop.
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in which Ti�1
i is a homogeneous transformation matrix like that of Section 4.3. The assumption that all

joints are either revolute or prismatic implies that Ti�1
i is a function of only a single joint variable,

namely qi; that is,

Ti�1
i ¼ Ti�1

i ðqiÞ (4.12a)

in which

Ti�1
i ¼

�
Ri�1
i Li�1

i
0 1

�
: (4.12b)

Now the homogeneous transformation matrix that expresses the location and orientation of Cj with
respect to Ci is denoted by Ti

j, which can be written as

Ti
j ¼ Ti

iþ1T
iþ1
iþ2.T

j�2
j�1T

j�1
j ; assuming i < j: (4.13)

Note that the following equations are valid because the homogeneous transformation matrices are
orthogonal:

Ti
j ¼ I; if i ¼ j; and (4.14a)

Ti
j ¼

�
T
j
i

	�1
: (4.14b)

By plugging Eqn (4.12b) into Eqn (4.13), we have

Ti
j ¼

�
Ri
j Li

j
0 1

�
(4.15a)

where

Ri
j ¼ Ri

iþ1R
iþ1
iþ2.Rj�1

j (4.15b)

which represents the orientation of the coordinate system Cj relative to coordinate system Ci, and

Li
j ¼ Li

j�1 þ Ri
j�1L

j�1
j (4.15c)

denoting the location of the coordinate system Cj relative to coordinate system Ci.
By the manner in which we have rigidly attached the various coordinate systems to the corre-

sponding links, it follows that the position of any point on the end link (Link n), when expressed in
coordinate system Cn, is a constant independent of the configuration of the mechanism. Then the
location and orientation of the end link in the inertial frame are given by

T0
n ¼ T0

1ðq1ÞT1
2ðq2Þ.Tn�1

n ðqnÞ: (4.16a)

Note that in general link n is not connected back to the base link 0; therefore, Eqn (4.16) represents an
open-loop kinematic system. For a closed-loop system, link n usually connects back to link 0. In this
case, Eqn (4.16a) becomes

I ¼ T0
1ðq1ÞT1

2ðq2Þ.Tn�1
n ðqnÞTn

0ðq0Þ (4.16b)

in which the matrix Tn
0 ¼ ðT0

nÞ�1 is multiplied from the right on both sides of Eqn (4.16a).
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It is possible to simplify the transformation matrices by introducing conventions to represent a
joint mathematically. In robotics applications, a commonly used convention for selecting frames of
reference is the D–H convention (Denavit and Hartenberg, 1955; Hartenberg and Denavit, 1965).
Following this convention, a considerable amount of streamlining and simplification in the mathe-
matical representation of the kinematic model can be achieved. In this convention, each homoge-
neous transformation matrix Ti�1

i is represented as a product of four basic transformation matrices;
that is,

Ti�1
i ¼ RzðqiÞTzðdiÞTxðaiÞRxðaiÞ (4.17a)

where

RzðqiÞ ¼

2
664
cqi �sqi 0 0
sqi cqi 0 0
0 0 1 0
0 0 0 1

3
775 (4.17b)

TzðdiÞ ¼

2
664
1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

3
775 (4.17c)

TxðaiÞ ¼

2
664
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

3
775 (4.17d)

RxðaiÞ ¼

2
664
1 0 0 0
0 cai �sai 0
0 sai cai 0
0 0 0 1

3
775: (4.17e)

Note that the four parameters qi, di, ai, and ai, illustrated in Figure 4.23, are associated with link i and
joint i, and are generally named joint angle (qi), link offset (di), link length (ai), and link twist (ai),
respectively. Also, in Eqns (4.17b and e), the short-hand notations, such as cqi¼ cos qi, sai¼ sin ai,
are employed.

As an example, the system shown in Figure 4.23 consists of four links (0, 1, 2, and 3) and three
joints. Note that Joints 1 and 2 are revolute, and Joint 3 is a prismatic joint. q1 and q2 are the joint
angles of the revolute joints 1 and 2, respectively. a1 and a2 are the link lengths of Links 1 and 2,
respectively. a1 and a2 are the link twists of Links 1 and 2, respectively. d2 is the offset between
coordinate systems C1 and C2 (not necessarily a joint offset in this case). d3 is the joint offset of the
prismatic joint (Joint 3). Note that in this system, link lengths a1 and a2, offset d2, and link twists a1
and a2 are constant.
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Plugging Eqns (4.17b–e) into Eqn (4.17a), we have

Ti�1
i ¼

2
664
cqi �sqicai sqisai aicqi
sqi cqicai �cqisai aisqi
0 sai cai di
0 0 0 1

3
775 ¼

�
Ri�1
i Li�1

i
0 1

�
(4.18a)

where

Ri�1
i ¼

2
4 cqi �sqicai sqisai
sqi cqicai �cqisai
0 sai cai

3
5 (4.18b)

and

Li�1
i ¼

2
4 aicqi
aisqi
di

3
5 (4.18c)

in whichRi�1
i and Li�1

i are the rotation and translation matrices, respectively. In other words,Ri�1
i and

Li�1
i orient and locate Link i with respect to Link i� 1.
Because the matrix Ti�1

i ðqiÞ is a function of a single variable qi, as defined in Eqn (4.11), three of
the four parameters in each individual transformation matrices are constant. Only one parameter is
allowed to vary. It is apparent that for a revolute joint, joint angle qi is the variable; for a prismatic joint,
link offset di is the only variable. For the system shown in Figure 4.23, joint angles q1 and q2 and the
joint offset d3 are variables.

One important note to make is that although the choices of coordinate systems are not unique, they
have to be chosen carefully. If the coordinate systems chosen satisfy the following two conditions, then
there exist unique numbers qi, di, ai, and ai such that Eqn (4.17a) can be determined (Spoong et al.,
2005):

(1) The axis xi is perpendicular to the axis zi�1, and
(2) The axis xi intersects the axis zi�1.
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FIGURE 4.23 Illustration of Parameters: Joint Angle, Link Offset, Link Length, and Link Twist.
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Not that the choice of the origin of the coordinate system is less restrictive in general.
The coordinate systems defined for the links of the example shown in Figure 4.23 satisfy the

conditions. A more important convention in choosing coordinate systems is to assign zi to be the axis of
actuation for joint iþ 1. For example, the axis z1 in Figure 4.23 is assigned at the actuation direction
(axis of rotation) of the revolute joint, Joint 2.

To completely defined a coordinate system, we need the origin and axis x; then, the remaining
y-axis can be determined by the right-hand rule. We will use examples to illustrate the construction of
coordinate systems momentarily. For the time being, we assume coordinate systems for a given
kinematic model have been created, and we discuss the measurement of the four parameters: joint
angle (qi), link offset (di), link length (ai), and link twist (ai).

• Joint angle qi is the required rotation of xi�1-axis about the zi�1-axis to become parallel to the
xi-axis. For example, q1 in Figure 4.23 is the rotation angle of x0 about the z0-axis to become
parallel to x1-axis.

• Joint distance di is the distance between the xi�1 and xi axes along the zi�1-axis. Joint distance is
also called link offset. For example, d3 in Figure 4.23 is the distance between x2 and x3 about the
z2-axis.

• Link twist ai is the required rotation of the zi�1-axis about the xi-axis to become parallel to the
zi-axis. For example in Figure 4.23, a1 is the required rotation of the z0-axis about the x1-axis to
become parallel to the z1-axis, which is �90� in this case.

• Link length ai is the distance between zi�1 and zi axes along the xi-axis. Note that ai is the
kinematic length of link i. For example, in Figure 4.23, a1 is the distance between z0 and z1 axes
along the x1-axis.

Apparently, the location of the origin of a coordinate system could affect link offset di and link
length ai.

Once the link parameters are identified, a table that lists link parameters for the system can be
created. For example, the table for the system shown in Figure 4.23 can be created as below, with
which transformation matrices can be written readily using Eqn (4.18a).

Note that link parameters a1, a2, a1, a2, and d2 in Table 4.10 are constant.
The following example provides further illustration on the calculation of the transformation

matrices. In Examples 4.3 and 4.4, we assigned coordinate systems that satisfy the two conditions
mentioned above. In later examples, we illustrate the rules of specifying origin and x-axis of individual
coordinate systems for both open- and closed-loop assemblies.

Table 4.10 List of Link Parameters for the System Shown in Figure 4.23

Link qi di ai ai

1 q1 0 a1 a1¼�90�

2 q2 d2 a2 a2¼ 90�

3 0 d3 0 0
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EXAMPLE 4.3
Consider a planar two-bar system shown below, which consists of two revolute joints and three links.

2

x2

y2

O2

2

x0

y0

O0

x1

y1

O1

1

1

Note that joint axes zi, i¼ 0, 2, are normal to the page, and all coordinate systems assigned satisfy the two
conditions stated above. The base frame C0 is fixed to Link 0 as shown. Calculate the transformation matrix for
Link 2 with respect to Link 0; that is, T02.

Solutions
We first create a table that lists link parameters for the system as shown below.

Link qi di ai ai

1 q1 0 a1¼ ‘1 0

2 q2 0 a2¼ ‘2 0

From Eqn (4.18a), we have

T01 ¼

2
66664

cq1 �sq1 0 ‘1cq1

sq1 cq1 0 ‘1sq1

0 0 1 0

0 0 0 1

3
77775; and T12 ¼

2
66664

cq2 �sq2 0 ‘2cq2

sq2 cq2 0 ‘2sq2

0 0 1 0

0 0 0 1

3
77775:

Therefore, from Eqn (4.16a), we have

T02 ¼ T01T
1
2 ¼

2
66664

cq12 �sq12 0 ‘1cq1 þ ‘2cq12

sq12 cq12 0 ‘1sq1 þ ‘2sq12

0 0 1 0

0 0 0 1

3
77775

where cq12¼ cos (q1þ q2), and sq12¼ sin(q1þ q2).
Note that the first two entries of the last column of T02 are the x and y components of the origin O2 referring to the

base frame; that is,

O2x ¼ ‘1 cos q1 þ ‘2 cosðq1 þ q2Þ

O2y ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ:
The rotation part of T02 defines the orientation of the coordinate system C2 relative to the base frame.
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We mentioned earlier that a joint of multiple DOFs, such as a spherical joint of three rotational DOFs,
can always be thought of as a succession of single DOF joints with zero-length links in between. We
derive the transformation matrix for a spherical joint in the following example.

EXAMPLE 4.4
A spherical joint shown below (left) is defined by three joint axes, z0, z1, and z2, which intersect at point O.
Physically, the spherical joint connects Link A to Link 0 (base part). This spherical joint can be thought of as a
succession of revolute joints with zero-length links in between, as illustrated in the figure below (right).

z0

z1

z2

O 
O 

z1 1
z2

3

2

Link A 

Link 0 
z0, x2

x1

x0

y0 Link 1 

Link 2 

Link 3 
θ

θ

θ

Derive a transformation matrix for the spherical joint.

Solutions
We first define the coordinate systems for the links, as shown above (right), satisfying the two conditions. Based on
the coordinate systems, we have three joint angles, q1, q2, and q3, and two twist angles, a1 and a2, which are
nonzero. Note that a1¼�90� and a2¼ 90�, according to the way that angles are measured as stated earlier.

We create a table that lists link parameters as below.

Link qi di ai ai

1 q1 0 0 �90�

2 q2 0 0 90�
3 q3 0 0 0

From Eqn (4.18a), we have

T01 ¼

2
66664

cq1 0 �sq1 0

sq1 0 cq1 0

0 �1 0 0

0 0 0 1

3
77775; T

1
2 ¼

2
66664

cq2 0 sq2 0

sq2 0 �cq2 0

0 1 0 0

0 0 0 1

3
77775; and T23 ¼

2
66664

cq3 �sq3 0 0

sq3 cq3 0 0

0 0 1 0

0 0 0 1

3
77775

Therefore, from Eqn (4.16a), we have

T03 ¼ T01T
1
2T

2
3 ¼

2
666664

cq1cq2cq3 � sq1sq3 �cq1cq2sq3 � sq1cq3 cq1sq2 0

sq1cq2cq3 þ cq1sq3 �sq1cq2sq3 þ cq1cq3 sq1sq2 0

�sq2cq3 sq2sq3 cq2 0

0 0 0 1

3
777775
:

Note that T03 ¼ T0A, which transforms the rotation of Link A back to the base link 0.
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So far in the examples we discussed, all coordinate systems assigned satisfy the two important con-
ditions. For an assembly model created by using kinematic joints in CAD, these coordinate systems
can be created systematically. We use the slider-crank example shown in Figure 4.11 to illustrate the
details. We first discuss open-loop system, in which we remove the prismatic joint between the slider
and the ground. Then we discuss closed-loop system by resuming the prismatic joint.

4.4.2.1 Open-loop system
First, as discussed earlier, the z-axis of a joint aligns with the joint actuation direction. For a revolute
joint, the z-axis aligns with the axis of rotation. Hence, the z-axes for all the three revolute joints are
determined and illustrated in Figure 4.24a. Note that the positive direction of the z-axis is determined
by Pro/ENGINEER internally, depending on the orientation of the datum axes selected for the indi-
vidual joints. Users may flip the positive direction of a joint. In this example, the joint directions were
adjusted to be pointing in the same direction as shown.

Next, the origin of individual coordinate systems associated with joints can be assigned at the
datum points that were employed for defining the joints or at the intersection of joint axis and the
mating faces. For example, for the first pin joint Pin1, the origin O0 is located where datum points

ASM_DEF_CSYS

(b) (a) 

z0 (Pin1) 

z1 (Pin2) 

z2 (Pin3) 

(d) (c) 
O1 (PNT1 of crank 
and PNT4 of rod) 

ASM_DEF_CSYS
O0 (APNT0, and 
PNT0 of crank) O0 (APNT0, and 

PNT0 of crank) 

O1 (PNT1 of crank 
and PNT4 rod) 

O2 (PNT0 of pin and 
PNT2 of piston) 

O1

x1

z1y1

x0

O0 z0

y0

O2

O3

y2

z2, z3

x2

y3

x3

Z 
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X 

O3 (coincides with O2) 

O2 (PNT0 of pin and 
PNT2 of piston) 

O3 (coincides with O2) 

FIGURE 4.24 Determining the Coordinate Systems: (a) Z-axes, (b) Coordinate Systems, (c) Origins of the

Coordinate Systems (top view), and (d) Origins of the Coordinate Systems (front view).
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PNT0 (crank) and APNT0 coincide, as illustrated in Figures 4.24c and d. Similarly, O1 (PNT1 of crank
and PNT4 of rod), and O2 (PNT0 of pin and PNT2 of piston) can be located. For O3, because there is no
datum point involved, O3 can be located at any point along z3; for example, locating O3 to coincide
with O2, as shown in Figure 4.24b.

Now, we set the base coordinate system C0. Because the origin O0 and axis z0 are determined, all
we need is to determine axis x0; axis y0 can then be determined by the right-hand rule. Choosing axis x0
is arbitrary for an open-loop system. For convenience, we may choose it to align with that of the global
coordinate system (ASM_DEF_CSYS shown in Figures 4.24c and d as long as the x-axis of the global
coordinate system is not parallel to the axis z0. The x0 axis is determined as shown in Figure 4.24b;
hence, the y0 axis and the coordinate system C0 are determined.

After setting the base coordinate system C0, we are now ready to assign x-axes for the remaining
coordinate systems. There are three possible cases we considered. We discuss only Case A for the time
being, which is relevant to the current open-loop example. If the axes zi and zi�1 are parallel (such as z1
and z0, and z2 and z1 shown in Figure 4.24a), the axis xi is chosen to be directed from Oi toward zi�1, or
as the opposite of this vector. In this example, we choose the latter: x1 is chosen to be directed from O1

toward the z0-axis, but in the opposite direction, as shown in Figure 4.24b. Similarly, x2 can be
determined the same way. This is Case A, which is all we need for this open-loop example. More cases
are discussed in the next example, closed-loop.

The coordinate system C3 is added with its origin coinciding with that of C2 and rotates q3 angle
along the axis z2, so that x3-axis is parallel to x0 for the time being, as shown in Figure 4.24b. Again, the
coordinate system C3 is called the end-effector in robotics applications.

Note that the approach of determining coordinate systems discussed above is systematic and
general, which satisfy the two conditions mentioned above and can be implemented into computer.
Once the individual coordinate systems are determined, the transformation matrices of the kinematic
model can be created following the same approach discussed earlier.

We illustrate the calculation of the transformation matrices for the open-loop system in the
following example.

EXAMPLE 4.5
Calculate the transformation matrices for the slider-crank mechanism shown in Figure 4.24b. The top and front
views of the mechanism are sketched below with coordinate systems shown.

x0

z0, z1

O0, O1

O2 O3

x2

z2

x3

z3

y1

O0

x0

y0

θ1

O1

x1

y1

x3

y3

x2

y2

O2 O3

θ3

θ2

s

Continued
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EXAMPLE 4.5eCONT’D

Solutions
We first create a table that lists link parameters for the system as below.

Link qi di ai ai

Crank (1) q1 0 a1¼ ‘1 0

Rod (2) q2 d2¼�s a2¼ ‘2 0
Slider (3) q3 0 0 0

Note that although the rod does not involve any prismatic joint, its origin O2 is offset a�s amount (constant) from O1

along the z1-axis.
From Eqn (4.18a), we have

T01 ¼

2
66664

cq1 �sq1 0 ‘1cq1

sq1 cq1 0 ‘1sq1

0 0 1 0

0 0 0 1

3
77775; T

1
2 ¼

2
66664

cq2 �sq2 0 ‘2cq2

sq2 cq2 0 ‘2sq2

0 0 1 �s

0 0 0 1

3
77775; and T23 ¼

2
66664

cq3 �sq3 0 0

sq3 cq3 0 0

0 0 1 0

0 0 0 1

3
77775:

Therefore, from Eqn (4.16a), we have

T03 ¼ T01T
1
2T

2
3 ¼

2
666664

cq123 �sq123 0 ‘1cq1 þ ‘2cq12

sq123 cq123 0 ‘1sq1 þ ‘2sq12

0 0 1 �s

0 0 0 1

3
777775

where cq123¼ cos (q1þ q2þ q3), and sq123¼ sin (q1þ q2þ q3).

Note that the first three entries of the last column of T03 are the x-, y-, and z-components of the origin O3 referring
to the base frame; that is,

O3x ¼ ‘1 cos q1 þ ‘2cosðq1 þ q2Þ

O3y ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ

O3z ¼ �s:

In addition, the rotation part of T03 defines the orientation of the coordinate system C3 relative to the base
frame C0.

If we add a parallel mating constraint (called the align-oriented constraint in Pro/ENGINEER) be-
tween the horizontal plane (DTM3) of the piston and the datum plane ASM_TOP, as shown in
Figure 4.25, the piston is allowed to translate on the x0–y0 plane, but it is not allowed to rotate. In this
case, the rotation part of the of T0

3 becomes an identify matrix; that is,

cosðq1 þ q2 þ q3Þ ¼ 1; and sinðq1 þ q2 þ q3Þ ¼ 0:
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Hence

q1 þ q2 þ q3 ¼ 0ðor 180�Þ:

In this case, the system is no longer an open-loop.
In the following example, we illustrate the usage of the transformation matrices, in particular, to

calculate the joint parameters in order to determine the configuration of the assembly.

EXAMPLE 4.6
We continue with Example 4.5 and assume that q1¼ 90�, ‘1¼ 3, and ‘2¼ 8. The vertical distance between the
piston and the inertia frame is h¼ 1, as shown in the figure below. Determine the configuration of the assembly by
calculating parameters q2, q3, and the distance between the piston and the base frame s0, as shown in the figure
below.

O0

x0

y0

1

O1

x1

y1

1

2

2

s0

h

x3

y3

x2

y2

O2 O3 3

θ

θ

θ

Solutions
The vertical position of the piston is given as h¼ 1, then

O3y ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ ‘1 þ ‘2 sinð90þ q2Þ ¼ h:

Continued

DTM3 (piston) 

ASM_TOP 

Two planes in 
parallel 

DTM3 (piston) 

ASM_TOP 

Two planes in parallel 

(b) (a) 

FIGURE 4.25 Parallel Mating Constraint Added Between Two Planes: (a) Iso-View, and (b) Front View.
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EXAMPLE 4.6eCONT’D

The angle q2 can be solved as

q2 ¼ sin�1

�
h � ‘1
‘2

�
� 90� ¼ sin�1

�
1� 3

8

�
� 90� ¼ �105� or 105�

giving two possible configurations, q2¼�105� shown above, and q2¼ 105�, where the piston is positioned to the
left of the crank (see figure below).

Then the x-position of the slider can be found as

s0 ¼ O3x ¼ ‘1 cos q1 þ ‘2 cosðq1 þ q2Þ ¼ ‘2 cosðq1 þ q2Þ ¼ 8 cosð90� � 105�Þ ¼ �7:73:

Note that s0¼ 7.73, indicating the configuration shown above, and the configuration of s0¼�7.73 is shown below.
If the parallel mating constraint is present, the angle q3 can be calculated as
q3¼�(q1þ q2)¼�(90� � 105�)¼ 15� (see figure on previous page) or �195� (see figure below).

O0

x0

y0

1

1

O1
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x3

y3

x2
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2

3θ

θ

θ

4.4.2.2 Closed-loop system
Now, we resume the prismatic joint and discuss the slider-crank mechanism as a closed-loop system.

For a closed-loop system, the x-axis of the base coordinate system C0 cannot be determined
arbitrary in general. For the time being, we assume a closed-loop system, in which the last link n is
connected back to the ground link 0. The x0-axis must be determined as if link 0 is connected to link
ndthat is, determined by axes z0 and zn following the same rule as any other joints as discussed above.

For the slider-crank example, the slider is connected back to the ground via a prismatic joint, and
the z-axis aligns with its translational direction. With the z-axes of the three revolute joints shown
before, the z-axes for all the four joints are determined and illustrated in Figure 4.26a. The origins of
coordinate systems associated with joints are identical to those of the open-loop example, except for
O3. O3 is assigned to datum point PNT4 because the axis A_6 that defines the translational direction
of the prismatic joint passes PNT4. Note that in this case, O3 is offset s from O2 along z2-axis.

Next, we set the x-axis for the coordinate systems C1 and C2 as before (Case A). However, for
coordinate system C3, the axis z3 is not in parallel with z2; instead, they intersect. For cases where zi
intersects zi�1 (Case B), xi is chosen normal to the plane formed by zi and zi�1 (with positive chosen
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arbitrarily). Hence, x3 is determined by pointing (for example) upward, and y3 is also determined by
the right-hand rule as shown in Figure 4.26b.

Now, the slider connects back to the ground, and we must determine the x-axis of the coordinate
system C0. Because axis z3 intersects z0, we have Case B. Hence, x0 is determined pointing (for
example) upward, and y0 is also determined by the right-hand rule as shown in Figure 4.26b.

Note that in both Cases A and B, zi and zi�1 are coplanar. If zi and zi�1 are not coplanar
(Case C), for example, axes z1 and z0 shown in Figure 4.23, then there exists a line segment
perpendicular to both zi and zi�1 such that it connects both axes and it has a minimum length. The line
containing this common normal to zi and zi�1 defines xi, and the axis yi is determined to form a right-
hand frame.

Note that the approach of determining coordinate systems discussed above is systematic and
general, which satisfy the two conditions mentioned above and can be implemented into the com-
puter. Once the coordinate systems of individual coordinate systems are determined, the trans-
formation matrices of the kinematic model can be created following the same approach discussed
earlier. Calculation of the transformation matrices for the slider-crank mechanism is illustrated in the
following example.
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FIGURE 4.26 Determining the Coordinate Systems: (a) Z-axes, (b) Coordinate Systems, (c) Origins of the

Coordinate Systems (top view), and Origins of the Coordinate Systems (front view).

4.4 Kinematic modeling technique 215



EXAMPLE 4.7
Calculate the transformation matrices for the slider-crank mechanism shown in Figure 4.26b. The top and front
views of the mechanism are sketched below with coordinate systems shown.

z0, z1

O0, O1
O2

O3 z3

z2

x2

y3

y1, y0

2

O1

x1

y1

O0

x0
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1
3

x2

y2

O2 z3

x3

O3

θ

θ

θ

Solutions
We first create a table that lists link parameters for the system as below.

Link qi di ai ai

Crank (1) q1 0 a1¼ ‘1 0

Rod (2) q2 d2¼�s a2¼ ‘2 0
Slider (3) q3 d3¼ s 0 90�
Ground (0) 0 d0 0 �90�

Note that in this example, q1, q2, q3, and d0 are variables.
From Eqn (4.18a), we have

T01 ¼

2
6664
cq1 �sq1 0 ‘1cq1

sq1 cq1 0 ‘1sq1

0 0 1 0

0 0 0 1

3
7775; T12 ¼

2
6664
cq2 �sq2 0 ‘2cq2

sq2 cq2 0 ‘2sq2

0 0 1 �s

0 0 0 1

3
7775; T23 ¼

2
6664
cq3 0 sq3 0

sq3 0 �cq3 0

0 1 0 s

0 0 0 1

3
7775; and

T03 ¼

2
6664
cq3 0 sq3 0

sq3 0 �cq3 0

0 1 0 d0

0 0 0 1

3
7775

Therefore, from Eqn (4.16b), we have

I ¼ T01T
1
2T

2
3T

3
0 ¼

2
664
cq123 �sq123 0 ‘1cq1 þ ‘2cq12 þ d0sq123
sq123 cq123 0 ‘1sq1 þ ‘2sq12 � d0cq123
0 0 1 0
0 0 0 1

3
775 ¼

2
664
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3
775:

Hence,

cq123 ¼ cosðq1 þ q2 þ q3Þ ¼ 1; and sq123 ¼ sinðq1 þ q2 þ q3Þ ¼ 0;

‘1 cos q1 þ ‘2 cosðq1 þ q2Þ ¼ 0

‘1 sin q1 þ ‘2 sinðq1 þ q2Þ � d0 ¼ 0:
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EXAMPLE 4.7eCONT’D

Assuming q1¼ 0�, ‘1¼ 3, and ‘1¼ 8; we solve q2, q3 and d0 from the above equations as follows:

q2 ¼ cos�1

��‘1 cos q1
‘2

�
� q1 ¼ cos�1

��3

8

�
� 0 ¼ 112:0� or � 112:0�

which again gives two possible configurations, q2¼�112� shown above, and q2¼ 112� where the piston is posi-
tioned to the left of the crank (see figure below).

Now the location of the piston can be found as follows:

d0 ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ 3ð0Þ þ 8 sinð � 112:0Þ ¼ �7:416:

Note that d0¼�7.416, indicating the configuration shown above, and the configuration of d0¼ 7.416 is shown
below. The sign of the link parameter d0 is determined by the positive direction of the z3 axis.

The angle q3 can be calculated as
q3¼�(q1þ q2)¼�(�112�)¼ 112� (see figure on previous page) or �112� (figure below).
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O33

2

θ

θ

θ

Now, let us go over the scenarios discussed at the beginning of this section. First, we change the di-
mensions of the crank and connecting rod for the slider-crank mechanism, as shown in Figure 4.19, and
determine the location and orientation of the individual parts. We only take one set of link parameter
values that result in a configuration with piston on the right to simplify the discussion.

EXAMPLE 4.8
Change the lengths of the crank and rod to 4 and 10, respectively; and calculate the parameters that determine the
location and orientation of individual parts. First for Part A, we assume that the angle q1 is q1¼ 0. Then, in Part B,
we assume the distance d0 is a constant d0¼ 7.416.

Solutions
For Part A, we assume q1¼ 0

�
, ‘1¼ 4, and ‘2¼ 10; we solve q2, q3, and d0 from the above equations as follows:

‘1 cos q1 þ ‘2 cosðq1 þ q2Þ ¼ 0

‘1 sin q1 þ ‘2 sinðq1 þ q2Þ � d0 ¼ 0:

Continued
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EXAMPLE 4.8eCONT’D

Solve for q2 from the first equation,

q2 ¼ cos�1

��‘1 cos q1
‘2

�
� q1 ¼ cos�1

��4

10

�
� 0 ¼ �114�:

We take only one value q2¼�114� for discussion, indicating the configuration where the piston is on the right of the
crank, as shown below.

With this, we solve for d0

d0 ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ 4ð0Þ þ 10 sinð � 114Þ ¼ �9:165:

The figures below, left and right, show the assembly before and after changes, respectively.

2 = 8 

1 = 3 

2 = 10 

1 = 4 

Now, for Part B, we assume the distance d0 is a constant; that is, d0¼�7.416. Note that we add a negative sign
to the d0 value in order to keep it consistent with the given configuration. With ‘1¼ 4 and ‘2¼ 10, we solve q1, q2,
and q3 as follows.

‘1 cos q1 þ ‘2 cosðq1 þ q2Þ ¼ 4 cos q1 þ 10 cosðq1 þ q2Þ ¼ 0

‘1 sin q1 þ ‘2 sinðq1 þ q2Þ � d0 ¼ 4 sin q1 þ 10 sinðq1 þ q2Þ þ 7:416 ¼ 0:

The above nonlinear coupled equations can be solved using, for example, Matlab. For example, the Matlab script
shown below (in italic) generates two sets of results.

½q1; q2� ¼ solveð04�cosðq1Þ þ 10�cosðq1 þ q2Þ ¼ 00;04�sinðq1Þ þ 10�sinðq1 þ q2Þ ¼ �7:4160;0Rea‘0; trueÞ:

They are:

Set 1: q1 ¼ 0:51078 ¼ 29:3� and q2 ¼ �2:4380 ¼ �139:7�

Set 2 : q1 ¼ 2:6308 ¼ 150:7�ðor� 29:3�Þ and q2 ¼ 2:4380 ¼ 139:7�

which results in two configurations shown on the next page. The figure on the left shows the mechanism before
design changes. The one in the middle indicates the configuration of the solutions of Set 1. The one on the right
results from Set 2.
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EXAMPLE 4.8eCONT’D

2 = 8 

1 = 3 

1 = 3 

2 = 10 

d0 = –7.416

2= –139.7o

1= 29.3o

d0 = –7.416

2= 139.7o

1= –29.3o

θ

θ θ

θ

Now, we rotate the crank and reposition the parts in the assembly of the slider-crank example. This is
illustrated in the next example. Again, we are only taking one set of link parameter values, which result
in the configuration of the piston on the right, to simplify the discussion.

EXAMPLE 4.9
Change the angle q1 to 45� (Part A) and then 180� (Part B) as shown below, and calculate the parameters that
determine the location and orientation of individual parts.

 = 180o
 = 45oθ

θ

Solutions
We solve q2 and d0 as follows, assuming ‘1¼ 3 and ‘2¼ 8, and q1¼ 45� (Part A).

‘1 cos q1 þ ‘2 cosðq1 þ q2Þ ¼ 0

‘1 sin q1 þ ‘2 sinðq1 þ q2Þ � d0 ¼ 0

Solve for q2, with q1¼ 45�,

q2 ¼ cos�1

��‘1 cos q1
‘2

�
� q1 ¼ cos�1

��3 cos 45�

8

�
� 45� ¼ �150:4� and 60:4�

which indicates two respective configurations of the mechanism. We take only one value q2¼�150.4� for dis-
cussion, indicating the configuration where the piston is on the right of the crank.

Now, we solve for d0:

d0 ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ 3 sinð45Þ þ 8 sinð45� 150:4Þ ¼ �5:59

which shows the configuration in the figure above (left).

Continued
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EXAMPLE 4.9eCONT’D

Now, we solve for q2, with q1¼ 180� (Part B).

q2 ¼ cos�1

��‘1 cos q1
‘2

�
� q1 ¼ cos�1

��3 cos 180�

8

�
� 180� ¼ �112�

Again, the angles indicate two respective configurations of the mechanism. Like before, we take only one value,
q2¼ 112�, for discussion. Now, we solve for d0:

d0 ¼ ‘1 sin q1 þ ‘2 sinðq1 þ q2Þ ¼ 3 sinð180Þ þ 8 sinð180þ 112Þ ¼ �7:416:

4.4.3 Constructing the joint coordinate systems
The discussion presented in Section 4.4.2 assumes that the kinematic joints have been well defined in
the assembly. This assumption is true if designers use CAD software, such as Pro/ENGINEER, and
define kinematic joints using geometric entities such as datum axis, datum points, and so on. These
datum entities can be used to determine the z-axis and origin of individual coordinate systems,
construct transformation matrices, and solve for the location and orientation for individual links.

However, in most CAD systems, designers use mating constraints, instead of kinematic joints, to
create assemblies. How do we construct transformation matrices and solve these equations for the
location and orientation of individual parts? The missing link is the z-axis and the origin of the co-
ordinate systems. If the information can be extracted from mating constraints, the same approach
discussed in Section 4.4.2 can readily take over the remaining steps in positioning individual com-
ponents in the assembly. Can the required information be extracted from mating constraints? The
answer is yes. In this subsection, we introduce a method proposed by (Kim et al., 2001 and Kim.et.al.,
2004).

In Section 4.3, we learned that the type of joints embedded in the CAD assembly can be determined
by counting the number of IPVs and the type of IMG revealed in the mating constraints between the
two mating parts. In this section, we discuss how to extract information from mating constraints and
joint types in order to determine the z-axis and origin of the coordinate systems.

First, for a prismatic joint (Figure 4.27a) that was formed by for example two coincident-aligned
constraints, the direction of the joint axis is determined by the direction in which the joint moves. For
example, this joint axis can be determined by

nt ¼ nmr
ipv1

� nmr
ipv2

or nt ¼ nbipv1 � nbipv2 : (4.19)

The origin of the coordinate system can be determined, for example, by intersecting a line formed byPma
1

and nmr
ipv1

dthat is, LðPma
1 ; nmr

ipv1
Þdand a plane that is normal to nmr

ipv1
and passes point

Pma
2 dthat is, PðPma

2 ; nmr
ipv1

Þ, as shown in Figure 4.27a. The z-axis of the prismatic joint is aligned with
the moving axis and starts from the origin O. A similar arrangement can be made for other combi-
nations of mating constraints that yield a prismatic joint.

For a revolute joint, the origin of the coordinate system O can be set at point of Pimg, and the z-axis
aligns with the moving axis, say nmr

ipv1
, as shown in Figure 4.27b.

For a planar joint, the origin can be set at Pma
1 , and the z-axis can be any vector on the plane, as

shown in Figure 4.27c.
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FIGURE 4.27 Determination of the Origin and z-axis of a Kinematic Joint. (a) Prismatic Joint, (b) Revolute Joint,

(c) Planar Joint, (d) Cylindrical Joint, and (e) Spherical Joint.
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For a cylindrical joint, the origin can be set at Pma
1 , and the z-axis aligns with nmr

ipv1
, as shown in

Figure 4.27d.
For a spherical joint, the origin can be set at Pimg (Figure 4.27e), and the z-axis can be arbitrarily

chosen, for example, to align with the z-axis of the global coordinate system.
Note that the origin can also be placed at the origin of the local coordinate system of the base or

mating part assigned by the CAD system.
In the following, we use the same slider-crank example to illustrate the steps of identifying z-axis

and coordinate systems of joints from mating constraints. We first assume an open-loop system by
removing the two coincident-aligned constraints: Coincident3 between the piston and rod, and
Coincident4 between the piston and bearing shown in Figure 4.7c. Note that if we add a parallel
constraint between piston and bearing (Plane3@piston and Plane2@bearing), as shown in
Figure 4.28a, the mechanism is like that of example shown in Figure 4.25 and is no-longer open-loop.
We assume the assembly is underconstrained by suppressing the mating constraint Coincident2 be-
tween Plane3 of the crank and Plane3 of the bearing, as shown in Figure 4.7a.

In this example, the bearing is fixed to the inertial frame and is considered as a ground link, as
shown in Figure 4.28a. The initial configuration of the crank and rod is shown in Figure 4.28b. We
assume the same mating constraints for this example, as shown in Figure 4.7. We first illustrate the
steps of determining IPV and IMG of each mating constraints, and the corresponding joints they
represent. Then, we determine the z-axis and origin of the joint coordinate systems for each joints. A
kinematic model, represented in the D–H convention, can be constructed and the transformation
matrices that position and orient the links can be computed using approach discussed in Section 4.4.2.

The first two mates (Concentric1 and Coincident1) assemble the crank to the fixed bearing, as
shown in Figure 4.29a. According to Figure 4.27b, a revolute joint is extracted with the rotation axis z0
pointing along a direction that aligns with nmr

ipv1
. Moreover, the origin of the coordinate system is

located at the Pimg. As a result, the origin O0 is determined at the center of the hole of the bearing on the
mating surfaces, as shown in Figure 4.29b. The x0 and y0 axes are chosen conveniently, such as to align
with the WCS, to form a right-hand frame.

(a) (b) 

Link 0: bearing 
(ground link) 

Link 1: crank 

Link 2: rod 

Link 3: piston 

Plane2@bearing 

Plane3@piston 

FIGURE 4.28 The Open-Loop Slider-Crank Example. (a) The Assembly in Iso-view, and (b) The Default Configuration

of the Crank, Rod, and Piston (front view).
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The next two mates (Concentric2 and Coincident3) assemble the rod to the crank, as shown in
Figure 4.30a. Again, a revolute joint is extracted, with the rotation axis z1 pointing along a direction
that aligns with nmr

ipv1
. Similarly, the origin O1 is located at Pimg, which is determined at the intersection

of the axis of the upper shaft and the back face of the crank (i.e., on the mating surfaces between the
rod and the crank), as shown in Figure 4.30b. The coordinate system C1 can be determined following

Concentric1 
(bearing, 
crank) 

Coincident1 
(bearing, 
crank) 

mr
ipv1
n

(Bearing: 
back face) x0

y0

z0O0

(a) (b) 

b
ipv1
n Pimg

FIGURE 4.29 Joint Origin and z-axis for the Revolute Joint between Bearing and Crank. (a) Mating Constraints,

IPV and IMG, and (b) Coordinate System for the Revolute Joint.

Concentric2 
(crank, rod) 

Coincident3 
(crank, rod) 

(Crank: 
back face) 

(a) 

x1

y1

z1O1

(b) 

mr
ipv1
n b

ipv1
n

(c) 

Pimg

x0

z0

O0

x1z1
O1

s1

1
x0

y0

z0O0

FIGURE 4.30 Joint Origin and z-axis for the Revolute Joint between Crank and Rod. (a) Mating Constraints, IPV

and IMG, (b) Coordinate System of the Revolute Joint, and (c) Top View Showing the Offset s1 between the Origins.
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the approach discussed earlier. The coordinate system C1 aligns with C0, except that it is offset along
the x0 direction by the amount that equals the length of the crank ‘1 and along the z0-direction by an
amount s1, as shown in Figure 4.30c. Similar to the crank, the rod is allowed to rotate with respect to
the crank.

Now, we assemble the piston to the rod by adding Concentric2 and Coincident3 constraints, as
shown in Figure 4.31a. These two mating constraints create a revolute joint with the rotation axis z2
pointing along a direction that aligns with nmr

ipv1
. Similarly, the origin O1 is located at Pimg, which is

determined at the center of the circle at the midplane of the pin (on the mating surfaces between the
rod and the piston), as shown in Figure 4.31b. The coordinate system C2 aligns with C1, except that it
is offset along the x1 direction by the amount that equals the length of the rod ‘2 and along the
z1-direction by an amount s2, as shown in Figure 4.31c. The piston is allowed to rotate with respect to
the rod.

Next, we add a coordinate system C3 to the piston, as the end-effector, with its origin coinciding
with that of C2 and z-axis aligning with that of C2. The coordinate system C3 rotates a q3 angle along
the z3-axis, as shown in Figure 4.31d. Note that in Figure 4.31d, the position of the piston is lowered to
simply better show the coordinate systems C2 and C3 as well as the rotation angle q3.

As a result, the table of link parameters for this open-loop system is created, as shown in Table 4.11.
The transformation matrix for the mechanism can be constructed similar to that of Example 4.5, except
that in the current example, we have d2¼�s1 and d3¼�s2 (instead of d2¼�s and d3¼ 0).
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FIGURE 4.31 Coordinate Systems C2 and C3. (a) Mating Constraints, IPV and IMG, (b) Coordinate Systems in

Iso-view, (c) Coordinate Systems in Top-view with Offsets s1 and s2, and (d) Coordinate Systems in Front-view.
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Now, we discuss the closed-loop system. A prismatic joint is extracted by the mating constraints
Coincident4 and Coincident5, in which the translational axis z3 aligns with Limg formed by intersecting
Front Plane@rod and Plane3@piston (or Plane2@piston and Plane3@bearing), as shown in
Figure 4.32a. For convenience, we pick the z3-axis pointing to the right as positive, and place the origin
of the coordinate system at the same location as O2, as shown in Figure 4.32b. Because the axis z3 is not
in parallel with z2, instead, they intersect; x3 is determined pointing upward, and y3 is also determined
by the right-hand rule.

Table 4.11 Link Parameters for the Open-Loop System of the Slider-Crank Mechanism

Link qi di ai ai

Crank (1) q1 0 a1¼ l1 0

Rod (2) q2 d2¼�s1 a2¼ l2 0

Slider (3) q3 d3¼�s2 0 0

(a) (b) 
Coincident4 (front Plane@rod, 
Plane2@piston) 

Coincident5 (Plane2@bearing, 
Plane3@piston) 

imgL  and z-axis 

(d) 
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FIGURE 4.32 Determining the Coordinate Systems. (a) Z-axes, (b) Coordinate Systems, (c) Origins of the

Coordinate Systems (top view), and (d) Origins of the Coordinate Systems (front view).
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Now, the slider connects back to the ground. We must determine the x-axis of the coordinate system
C0. Just like that of the example shown in Figure 4.26, x0 is determined to be pointing upward, and y0 is
also determined by the right-hand rule as shown in Figure 4.32b. The coordinate systems determined
are shown in the top and front views in Figure 4.32c and d, respectively. Table 4.12 lists the link
parameters for this closed-loop system. The transformation matrix for the mechanism can be con-
structed similar to that of Example 4.7, except that in the current system, we have d2¼�s1 and
d3¼�s2, as shown in Table 4.12.

4.5 Case study and tutorial example
In this section, a case study and a tutorial example are presented. The case study presents briefly the
applications of virtual reality technology to engineering design. The purpose of the case study is to
showcase some of the interesting applications of CAD assembly to support engineering design. A
single-piston engine is included as the tutorial example. Step-by-step instructions for creating the
assembly model of the single-piston engine are given in Projects S1 and P1. Model files are available
for download on this book’s companion website (http://booksite.elsevier.com/9780123985132).

4.5.1 Case study: virtual reality
Virtual reality is the term used to describe a three-dimensional, computer-generated environment that
can be explored and interacted with by a person. That person becomes part of this virtual world or is
immersed within this environment and whilst there, is able to manipulate objects or perform a series of
actions. One of the major development in virtual reality is CAVE (CAVE Automatic Virtual Envi-
ronment), in which the person is fully immersed within it. CAVE takes the form of a cube-like space in
which images are displayed by a series of projectors. Some systems enable the person to experience
additional sensory input, such as sound or video, which contributes to the overall experience. A main
feature of the CAVE system is interaction. The combination of interaction and total immersion is
known as telepresence, in which a person can literally lose themselves within the virtual environment.
Interaction takes place using a variety of input devices, such as a joystick, a wand or, more commonly,
a haptics device (e.g., data glove). This enables the person to interact with objects, for example, by
pulling, twisting, or gripping by means of touch. The ability to do this is known as haptics. An example
of such a system is shown in Figure 4.33, in which a person wearing 3D eyeglasses and holding a
virtual-reality controller steps into a room-sized, computer-generated version of a bathroom and

Table 4.12 Link Parameters for the Closed-Loop System of the Slider-Crank Mechanism

Link qi di ai ai

Crank (1) q1 0 a1¼ l1 0

Rod (2) q2 d2¼�s1 a2¼ l2 0

Slider (3) q3 d3¼�s2 0 90�

Ground (0) 0 d0 0 �90�
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interacts with medicine cabinet items and other moveable objects to simulate how patients self-
administer health care at home (Taylor, 2012).

Virtual reality engineering includes the use of 3D modeling tools and visualization techniques as
part of the design process. This technology enables engineers to view their project in 3D and gain a
greater understanding of how it works. Plus they can spot flaws or potential risks before imple-
mentation. This also allows the design team to observe their project within a safe environment and
make changes as necessary. What is important is the ability of virtual reality to depict fine-grained
details of an engineering product to maintain the illusion. This means high-end graphics, video
with a fast refresh rate, and realistic sound and movement. Automotive companies, such as Ford, uses
CAVE (Figure 4.34a) to evaluate many aspects of the product design, including visibility, instrument
reach, ergonomics, and roominess before building a physical prototype (Engine Technology
International, 2012). GM also uses CAVE to interact with the layout of the interior (Figure 4.34b), in

FIGURE 4.33 An Example of CAVE System. (Figure courtesy of www.news.wisc.edu/21313.)

(a) (b)

FIGURE 4.34 Applications of CAVE for Engineering Design. (a) Design Evaluation of Vehicle Assembly at Ford

(courtesy of www.enginetechnologyinternational.com/news.php?NewsID[41760), and (b) Automotive Interior

Design Evaluation at GM (courtesy of www.parents.com/blogs/dadabase/2011/11/03/nostalgia/rise-of-the-

dadmobile-the-chevy-traverse/).
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which a designer wearing virtual reality glasses enters a small three-walled room where the proposed
interior design on the vehicle is projected. The designer is immersed into the virtual interior of a
vehicle that has not been built physically.

Virtual reality has been adopted by the military (this includes all three servicesdarmy, navy, and
air force), where it is used for mainly training purposes. This is particularly useful for training soldiers
for combat situations or other dangerous settings where they have to learn how to react in an
appropriate manner. For example, a parachuting simulation can help train soldiers without flying them
to 15,000 ft in the sky (Figure 4.35a). Avirtual reality simulation enables them to do so but without the
risk of death or a serious injury. They can re-enact a particular scenario, such as engagement with an
enemy in an environment in which they experience this, but without the real-world risks. Virtual reality
has also been quickly adopted by gaming industry. For example, the Excalibur Hotel and Casino in Las
Vegas installed the first public Virtusphere, a human-sized hamster ball that lets players move through
virtual worlds by walking, running, or crawling inside it (Duffy, 2010).

4.5.2 Tutorial example: a single-piston engine
The engine example consists of four major components: case, propeller, connecting rod, and piston,
as shown in Figure 4.36. In both SolidWorks and Pro/ENGINEER, the assembly of the example is
organized as three subassemblies (case_asm, propeller_asm, and connectingrod_asm) and one part
(piston). The case_asm is fixed. The propeller_asm is assembled to case_asm using concentric and
coincident-mate constraints, as shown in Figure 4.37a. The propeller is free to rotate along the
x-direction. The connectingrod_asm is assembled to the propeller (at the crankshaft) using concentric
and coincident-mate, as shown in Figure 4.37b. The connecting rod is free to rotate relative to the
propeller (at the crankshaft) along the x-direction. Finally, the piston is assembled to the connecting
rod (at pin) using a concentric mate, as shown in Figure 4.37c. The piston is also assembled to the case
using another concentric mate. This mate restricts the piston movement along the y-direction, which
in turn restricts the top end of the connection rod to move vertically.

(a) (b) 

FIGURE 4.35 Examples of Employing Virtual Reality for Other Applications. (a) Military Training (courtesy of www.

vrs.org.uk/virtual-reality-military/index.html), and (b) The First Public Virtusphere (courtesy of http://www.popsci.

com/gadgets/article/2010-06/human-sized-hamster-ball-lets-you-play-virtual-worlds).
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4.6 Summary
In this chapter, we discussed assembly modeling that supports CAD to represent an assembly. Topics
such as mating constraints, DOFs, and fully constrained vs underconstrained assemblies were dis-
cussed. We presented methods that support design changes and kinematic analysis in CAD assembly,
which are the two most common activities encountered in assembly modeling using CAD. In addition
to theoretical discussion, we included virtual reality as a case study that illustrated the application of
CAD assembly for practical engineering designs. In addition, a single-piston engine assembly was
introduced as a tutorial example.

Propeller 

Piston 

Connecting rod 

Engine case 

FIGURE 4.36 The Single-Piston Engine Example.

Concentric2 

Coincident2 

connectingrod_asm 

Concentric3 
Concentric4 

Concentric1 

propeller_asm  

Coincident1  

case_asm  

(a) (b) (c) 

FIGURE 4.37 Assembly Mating Constraints Defined for the Engine Example. (a) Mates between Case and

Propeller, (b) Mates between Propeller and Rod, and (c) Mates between Case and Rod.
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After going over this chapter, we hope you have a fine understanding of the behind-the-scenes-
operations when you work on CAD assembly models. By this time, you should know how CAD
determines the location and orientation of individual parts that constitute the assembly. In addition,
how CAD handles design changes and supports kinematic analysis when you drag a component should
be clear. You should know what is fully constrained and what is underconstrained while you are
creating an assembly. When you encounter an error message, such as constraints in conflict, you should
know precisely the internal algorithm that makes this call. We hope this chapter has been useful to you
in obtaining a general understanding of the methods employed for assembly modeling in CAD,
becoming familiar with the behind-the-scenes operations in CAD, and most importantly, making you
more confident as a designer in creating and handling CAD assemblies in support of product
development.

Questions and exercises

1. Calculate the transformation matrix for the example shown in Figure 4.17b, assuming that the
dimension dbbottom is changed to 6.

2. Calculate the transformation matrix for the example shown below. The base part (left) is a
2� 2� 2 cube with the top right corner removed and a blind hole of diameter 0.5 drilled. The
position of the hole is also shown. The mating part (shown below, center) is a tetrahedral block
with a short cylinder, which simply complements the cut-out portion of the base part. Two mating
constraints, concentric and coincident-aligned, are employed to create an assembly shown
below (right).
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y1
z1

x2

y2

z2

0.5 

2
1 2
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3

x1

y1
z1

x2
y2

z2

Concentric 

Coincident-aligned 

3. Define coordinate systems and calculate the transformation matrix for the single-piston engine
mechanism shown on the next page (left). There are four joints, a pin joint (Pin1) between the
propeller and case, the second pin joint (Pin2) between the connecting rod and the crankshaft
(propeller), a third pin between the piston and the piston pin (mounted on the connecting rod), and
a slider joint between the piston and the case. Kinematically, the system is a planar four-bar
linkage shown on the next page (right), consisting of four links: crank, rod, slider, and ground.
Note that the lengths of the rod and crank are 2.25 and 0.58333, respectively.
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4. Continue with Problem 3 and answer the following questions by formulating and solving the
equations involved.
a. If q1¼ 0�, calculate all link parameters that determine the configurations of the system.
b. Change the lengths of the crank and rod to 1 and 3, respectively; and calculate the parameters

that determine the location and orientation of individual parts. First (Part A), we assume that
the angle q1 is q1¼ 0. Then, in Part B, we assume the piston is stationary.

c. Change the angle q1 to 45� (Part A) and then 180� (Part B), and calculate the parameters that
determine the configurations of the system.

5. Conduct a case study in the application of virtual reality (or CAVE) technology for engineering
design that was not included in Section 4.5. In your one-page report, please include the following:
a. Name of the company or organization
b. Source of the information (article, paper, magazine, website, YouTube, etc.)
c. What is the nature of the application? What kind of equipment is employed to support such an

application? What is the value added to the company or organization by employing the virtual
reality technology?
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Design changes are frequently encountered in the product development process. The complexity of
the design change is multiplied when the product design involves large-scale assemblies with multiple
engineering disciplines. Very often, a simple change in one part may propagate to its neighboring
parts, therefore affecting the entire product assembly. Both parts and assembly must be regenerated (or
rebuilt) for a valid product model. At the same time, the regenerated product model must satisfy the
geometric design requirements and meet the designer’s expectations.

When a product is being developed in a virtual environment, the design changes are often
implemented first by altering the geometry of the product represented in solid models using
a computer-aided design (CAD) tool. If the product solid model is not parameterized properly, the
changes in geometry often lead to invalid parts or assembly. At the part level, the changes may yield a
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solid model with invalid solid features if it is not properly parameterized. In this case, the entire
product assembly is in vain. Even when individual parts of the product are regenerated correctly, parts
may still penetrate to their neighboring parts or leave excessive gaps between them, if the solid model
is not properly parameterized at the assembly level.

In this chapter, the fundamental principles of design parameterization for parts and assembly will be
discussed. A set of guidelines will be presented for designers to parameterize solid models in order to
capture design intents more effectively. These guidelines, which are provided at both part and assembly
levels, support designers in successfully conducting product design in the e-Design environment.

A number of simple examples are included to explain concepts and methods. A slider-crank
mechanism and its crankshaft are employed to illustrate and demonstrate the practicality of guide-
lines developed for both Pro/ENGINEER and SolidWorks. In addition, a single-piston airplane engine
and a high-mobility multipurpose wheeled-vehicle (HMMWV) suspension are presented as case
studies to demonstrate the parameterization method for practical applications. Note that in this chapter,
parts and assembly are created in respective CAD tools. Issues of solid model translations between
CAD systems will be addressed in Chapter 6. CAD models of the examples employed in this chapter
can be found on the book’s companion site. More detailed instructions for bringing up these models and
steps for carrying out studies described in this chapter can be found in Projects P1 and S1 of the book.

Overall, the objectives of the chapter are to (1) introduce fundamental principles of design
parameterization for designers to capture design intents at both part and assembly levels, and (2) offer
practicing guidelines and illustrations for designers to facilitate the construction of parametric solid
models. Note that the guidelines provided in this chapter may be used to support design practice for
your project team and can be extended as needed.

5.1 Introduction
After intensive research and development in recent decades, the feature-based parametric modeling
technique has become a reality (Lee, 1999; Zeid, 1991). This technique has been widely adopted in the
mainstream CAD tools, such as Pro/ENGINEER, SolidWorks, SolidEdge, Unigraphics, CATIA, and
even Mechanical Desktop of AutoCAD. With such a technique, designers are able to create parts
through solid features and assemble parts or subassemblies for a complete product digital mockup in
the CAD environment. In addition, the designer is able to define design variables by relating di-
mensions of the part features and create assembly mating constraints between parts to parameterize the
product model through the parametric modeling technique. With the parameterized product model,
the designer can make a design change simply by changing geometric dimension values and asking the
CAD software to automatically regenerate the parts that are affected by the change, and hence the
entire assembly.

For example, the bore diameter of an engine case is defined as the design variable, as shown in
Figure 5.1a. When the diameter is changed from 1.2 in. to 1.6 in., the engine case is regenerated first
by properly updating its solid features that are affected by the change. As shown in Figure 5.1b, the
engine case becomes wider and the distance between the two exhaust manifolds is larger, just to name
a few. At the same time, the change propagates to other parts in the assembly, including the piston,
piston pin, cylinder head, cylinder sleeve, cylinder fins, and crankshaft, as illustrated in Figure 5.1b.
More important, the parts stay intact, maintaining adequate assembly mating constraints, and the
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change does not induce interference nor leave excessive gaps between parts. With such parametric
models, designers are given tremendous freedom to explore design alternatives efficiently and accu-
rately. In addition, this parametric technology supports the cross-functional team in conducting
parametric studies and designing trade-offs in the e-Design environment (Chang et al., 1999). More
about parametric study and design trade-off methods are discussed in the fourth book of the Computer-
Aided Engineering Design series: Design Theory and Methods Using CAD/CAE.

We start in Section 4.2 by introducing design intents in product solid models. With the under-
standing of design intents, we discuss the two design axioms in Section 4.3 that form the basis of the
design parameterization methods. In Sections 4.4 and 4.5, we offer guidelines for design parameter-
ization at part and assembly levels, respectively. Section 4.6 includes two case studies, an airplane
engine and an HMMWV suspension, which demonstrate the application of parameterization method
and guidelines to practical examples.

5.2 Design intents
In a broader scope, design intent (DI) is a realization of design requirements (DR) in the shape of the
product solid model. In the context of the e-Design paradigm, design intent is defined as the geometric
shape of parts and/or configuration of the product assembly that the designer desires to attain while
changing dimension values of the product solid model in CAD for better design alternatives.

In practice, design intents are derived from design requirements, satisfying physical requirements
through the geometric shape of the product solid model. These design intents must be implemented in
CAD for the purpose of exploring design alternatives that reveal better product performance and meet
the design requirements.

While exploring design alternatives, changes are realized in CAD by modifying geometric
dimension values and regenerating (or rebuilding) the product solid models automatically. In order to
capture the DI, the product solid model must be properly constructed and parameterized.
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head
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sleeve 

Cylinder fins 
Bore diameter 

Crankshaft

Case 
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FIGURE 5.1 An Exploded View of a Single-piston Engine with a Bore Diameter of 1.2 in. (a) and a Bore Diameter

of 1.6 in. (b).
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Design intent for a single part can be captured by properly creating individual solid features and
carefully relating dimensions within or between features so that when a dimension value is changed,
the solid features affected by the change can be regenerated or rebuilt successfully. The geometric
dimensions that can be changed independently to capture design intents are called design variables
(DVs). The relationships between DR, DI, and DV are shown in Figure 5.2a. Figure 5.2b depicts an
uncoupled design, in which one design requirement is realized in two DIs. DI1 is implemented in CAD
in such a way that one design variable DV1 (an independent dimension) affects the DI. On the other
hand, DI2 is captured by two design variables, DV2 and DV3. A change in DV1 does not affect DI2,
and changes in DV2 or DV3 do not affect DI1. Figure 5.2c illustrates a coupled design intent, in which
a change in DV2 affects both DIs.

In general, an uncoupled design is much more desirable than coupled one. In some cases, a coupled
design intent may be decoupled by adding more DIs and/or DVs, which will be illustrated later in
Section 5.3. The design requirements depicted in Figures 5.2b and c are decoupled. It is possible that
DRs may be coupled, in which one DI may affect both DRs. Note that in this chapter, we focus more on
capturing DIs and less on DRs, except for the slider-crank example to be discussed in Section 5.3.1.

To illustrate more, we use a block with a hole, which is shown in Figure 5.3, as an example. This
part consists of a base extrusion block and a through hole. The design intent derived from the design
requirement is to keep the hole right at the center of the block while varying its size. It is apparent that
the DI is uncoupled because it is the only DI being considered.

To capture the intent for this simple example, relations between dimensions must be created be-
tween the hole’s center point and the size of the block. As shown in Figure 5.3, the relations are
d1¼ d2/2, and d3¼ d4/2, where d2 (block width) and d4 (block height) are design variables.

Before defining the relations, a rectangular profile was first created in the sketch before extruding
the base block feature. In the rectangular profile, several sketch relations were imposed so that the size
of the block can be determined by the width and height dimensions only (i.e., d2 and d4). The sketch
relations specify that the top and bottom edges of the rectangle are horizontal, the left and right edges
are vertical, and one of the corner points is anchored to the coordinate system of the sketch plane. As a
result, the sketch relations and dimensions fully constrain the profile in the sketch. Once the base block
is extruded, the center hole can be created as, for example, an extruded cut feature. Details about the
sketch and sketch relations were discussed in Chapter 3.

Note that it is important to also capture the upper and lower limits of a design variable. In general,
these limits must ensure a design that is always physically meaningful. In addition, the limits must

DR 
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DR 

(a) (b) (c)

DI1 DI2
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DR 

DI1 DI2

DV1 DV2 DV3

FIGURE 5.2 Illustration of the Relationships between Design Requirement (DR), Design Intent (DI), and Design

Variables (DV). (a) Relationship between DR, DI, and DV. (b) Uncoupled Design Intent. (c) Coupled Design Intent.
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ensure that a valid solid model can be regenerated in CAD. For the example shown in Figure 5.3, the
lower limits of the width (d2) and height (d4) must be greater than the hole diameter ‘d’ for a
physically meaningful design. However, if the concern is simply about the solid model regeneration,
both variables should at least be greater than zero.

At the assembly level, DI is captured by defining adequate mating constraints and relating di-
mensions across parts so that a change in dimension value can be propagated to all parts affected. The
parts affected must be regenerated successfully; at the same time, they must maintain proper positions
and orientations with respect to one another without violating any mating constraints nor revealing part
penetration or excessive gaps between them. Moreover, the regenerated solid model must meet the
designer’s expectations. The bracket assembly shown in Figure 5.4 illustrates these points.

The bracket assembly consists of four parts: bracket, bushing, shaft, and arm. Mating constraints,
such as concentric and surface mate, are defined to assemble the parts. In addition, one relation is
defined to relate the shaft diameter and inner diameter of the hole in the bushing to ensure that the
assembly is properly retained when the shaft size is changed. The relation is defined as

fd1:2 ¼ fd3 :4þ 0:01 (5.1)

d1 

d2 

d3 

d4 

d

FIGURE 5.3 The Example of a Block with a Center Hole.
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Shaft
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FIGURE 5.4 The Bracket Assembly Example. (a) Unexploded View. (b) Exploded View.
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where fd1:2 is the diameter of the hole in the bushing, fd3:4 is the outer diameter of the shaft, and
0.01 is the prescribed clearance between them. Note that in Eqn (5.1), fd1:2 becomes a dependent
dimension and fd3:4 stays independent.

5.3 Design axioms
As mentioned earlier, a set of guidelines for design parameterization will be presented. These
guidelines were developed following two important axioms from Suh (1990):

Axiom 1: The Independence Axiom (maintains the independence of design intent)
Axiom 2: The Information Axiom (minimizes the information content of the design intent)

Axiom 1 implies that changing the DV values has an effect only on the referent DI. In other words, it is
desirable to create uncoupled DIs whenever possible. Because DIs are derived from design objectives,
Axiom 1 is often exercised to address coupled design objectives in practice.

Axiom 2 states that the amount of information (usually number of DVs) that is available to the
designer for making design changes must be minimized for each DI.

5.3.1 Independence axiom
Generally speaking, the independence axiom is easier to comply with than that of the information
axiom. Often the challenge lies in deriving uncoupled design intents from (sometimes) coupled design
objectives or potentially conflict design requirements. It may not always be possible to create
uncoupled DI. When coupled DIs are unavoidable, additional DIs (sometimes DVs) may have to be
added in order to resolve or alleviate the conflict. In this case, the DIs are referred to as decoupled. A
decoupled DI is less desirable, it is simply an unavoidable compromise.

An uncoupled design is always superior to a coupled or decoupled one. This is because that the DIs
in the uncoupled design can be attended much easier, especially for complex design problem with
large-scale assembly, because the effect of individual DVon the referent DI is completely separated.
Moreover, an uncoupled design often carries less information for the designer to attend.

A simple example of an uncoupled design is shown in Figure 5.5a. The design of a plate with an
orifice used to measure flow rates. The design requirement is simply positioning the hole inside the
plate for a physically viable design. We assume two DIs in this case:

DI1: position of the orifice (i.e., d0 and d1), which keep the orifice completely inside the plate.
DI2: height of the plate (i.e., d2), which is sufficiently large to enclose the orifice.

The design in Figure 5.5a is uncoupled because perturbation in the value of d0 and d1 that defines the
position of the hole has no effect on the height of the plate.

The same plate example may be created as a coupled design, where the height of the block is
determined by the sum of the two DVs, d1 and d3, as shown in Figure 5.5b. Perturbing d1 not only
alters the orifice position, but it also affects the height of the plate. For the two DIs to remain inde-
pendent, they need to be referenced to a datum that is not a DV, such as the dimensions shown in
Figure 5.5a, where the bottom edge of the plate serves as the datum. Both solid models in Figures 5.5a
and b are valid. The solid model in Figure 5.5a provides the designer with a clearer perspective on how
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each DVaffects its own DI. Although the solid model in Figure 5.5b is valid, it does not comply with
the independence axiom; therefore, its use in the design process may be cumbersome.

A slider-crank example shown in Figure 5.6 is presented to further illustrate the issues involved in
the design parameterization. This slider-crank mechanism consists of four parts: crankshaft, con-
necting rod, piston pin, and piston. Two design requirements are defined in this example:

DR1: Horizontal velocity of the piston increases 20% when the crankshaft is driven at the same
angular velocity.
DR2: Weight of the mechanism reduces 5%.

It is first assumed that both DRs are realized by the stroke of the mechanism.
DI1: Stroke of the mechanism, which is realized by the lengths of the crankshaft and connecting

rod. Moreover, the first design requirement can be realized, for example, by increasing the length of the
crankshaft d2:0 (or the length of the connecting rod d3:2), as shown in Figure 5.6b. The dimension d2:
0 becomes the DVof the first design intent. However, changing the DValso affects the second design
requirementdthe weight of the mechanism. In this case, these two design requirements are coupled.

DI1(a) (b)

d0 

DI2
d2 

DI1
d1 

DI2
d3 

DI1
&
DI2
d1 

DI1
d0 

FIGURE 5.5 Illustration of Design Intents (DIs). (a) Uncoupled DIs. (b) Coupled DIs.
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Connecting 
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Piston
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FIGURE 5.6 The Slider-crank Mechanism. (a) Unexploded View. (b) Exploded View.
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In order to reduce the coupling effect, a second DI can be defined that, for instance, reduces the
width of the connecting rod:

DI2: Width of the connecting rod.
This will help achieve the second design requirement or alleviate the effect of the change in d2:0 on

the second design requirement, the weight. Adding the second DI helps to decouple the design
requirement and, therefore, better comply with the independence axiom.

In particular, it is desirable for the designer to change only the value of the DV d2:0 while exploring
design alternatives for the first DI. This is what Axiom 2 (information axiom) asks. The crankshaft
must be properly parameterized (more to be discussed in Section 5.4.3) in order to capture the length
design variable. When the DV is changed, the change must be propagated to the affected parts. The
remaining parts must be kept unchanged, and the entire assembly must be maintained intact, as
illustrated in Figure 5.7.

5.3.2 Information axiom
The second axiom, the information axiom, can be primarily addressed in the sketch of the solid feature.
A bracket example created in Pro/ENGINEER is shown in Figure 5.8. The bracket profile consists of
two horizontal and three vertical line segments, two perpendicular line segments, two quarter circular
arcs, and two circles. By using the Intent Manager of Pro/ENGINEER (Toogood and Zecher, 2012),
the profile is fully constrained with ten dimensions and a number of sketch relations, including vertical
(V), horizontal (H), tangent (T), concentric (4), and vertical alignment ( ▌) (see Figure 5.8a). The
symbols of the geometric constraints that appear in Figure 5.8a were explained in Chapter 3.

Note that the information contents of the profile shown in Figure 5.8a are not minimized. Assume
that a DI is to keep the profile symmetric with respect to its middle horizontal line. In order to capture
the symmetry DI, entities must be related. For examples, the radii of the two circular arcs, the radii of
the circles, and lengths of the two vertical line segments must be changed simultaneously. Keeping the
sketch profile as it is and creating dimension relations to capture the DI is complex and unnecessary.
A better option is to add sketch relations to properly parameterize the profile. While adding sketch
relations, redundant or conflict dimensions will be removed by CAD automatically.

As shown in Figure 5.8b, two equal radii constraints (R1–R1 and R2–R2), three equal lengths
constraints (L1–L1, L2–L2, and L3–L3), and a perpendicular constraint (t) are added. As a result, the
symmetry DI is properly captured and the number of dimensions is reduced to five, as shown in

d3:2 = 10 

d2:0 = 4 d2:0 = 3 

d3:2 = 8 

(a) (b) (c)

FIGURE 5.7 Changes of the Length of the Design Variables. (a) Design Variables d2:0 and d3:2. (b) d2:0 Changes

to 4. (c) d3:2 Changes to 10.
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Figure 5.8b. Changes in any of the dimensions yield a symmetric sketch with respective to its middle
horizontal line. Note that the profile in Figure 5.8b is simpler and complies better with the information
axiom.

The profile shown in Figure 5.8b can also be created in SolidWorks because similar sketching
capabilities and sketch relations are available in SolidWorks sketch mode. Typical sketch relations in
both Pro/ENGINEER and SolidWorks were summarized in Appendix A in Chapter 3.

In addition to the sketch profile, relations in Pro/ENGINEER or equations in SolidWorks can be
added to relate dimensions between features. When new features are created by copying, mirroring, or
patterning existing features, additional dimensions may be assigned as dependent to those of the
original feature in order to reduce the information contents, if it is consistent with the DI to capture.

5.4 Design parameterization at the part level
Design parameterization must be carried out at both part and assembly levels. At the part level, sketch
relations and dimensions must be defined to fully constrain the sketch profile of each solid feature and
to capture the design intent. In addition, the geometry of the part will be regenerated following certain
rules that were established when the part was created. In this section, the general modeling capabilities
and the modeling procedure in CAD will be briefly reviewed. Guidelines for design parameterization
at the part level will be presented, followed by examples.

5.4.1 Profile in sketch
A general solid modeling procedure in Pro/ENGINEER and SolidWorks was discussed in Chapter 3.
The solid modeling procedure usually starts with defining datum features, such as datum planes, datum

Middle
center line 

Perpendicular

Aligned
Vertically 

Equal Radii 
R2–R2

Equal
Lengths
L2–L2

(a) (b)

FIGURE 5.8 Minimization of Information Contents. (a) Information not Minimized. (b) Information Minimized.
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coordinate systems, and datum axes, which serve as the references to facilitate solid feature creations.
One of the datum planes is usually chosen to sketch a two-dimensional profile that is protruded to
create the first (or base) solid feature.

A build plan that describes the design intents, solid features, and sketch profiles with relations and
dimensions is highly recommended. As discussed in Chapter 3, a build plan is especially useful for the
beginners to develop before creating any solid features.

In sketch, geometric entities, such as lines, arcs, and splines, are drawn as vectors for a single open
or closed profile that can be protruded for a surface or solid feature or making a cut. A set of char-
acteristic points is created for these vector entities. As discussed in Chapter 3, the profile is determined
by the x- and y-positions of the characteristic points. In both Pro/ENGINEER and SolidWorks, sketch
relations, such as a concentric of circular arcs or parallel of lines, are generated automatically when
these entities are drawn. The designer may define additional dimensions and sketch relations that fully
constrain the profile if needed. Note that it is necessary to fully constrain the sketch profile in order to
avoid unexpected errors while conducting design changes.

In general, the range of design variables is critical. When a profile dimension in a solid model is
changed, the solid featuremaybecomephysically invalid. For a complex solidmodel, this problemmaynot
be easy to detect. Determining the proper range of design variables that ensure valid solid features in
advance is critically important for part parameterization. Note that finding the range for design changes is
often conducted on a case-by-case basis. When more than one dimension is involved, the complexity of
determiningproper ranges for design changes ismultiplied. Example 5.1 is presented to illustrate the point.

EXAMPLE 5.1
In the sketch profile shown in Figure 5.8b, 11 characteristic points are created; therefore, 22 equations must be
generated to determine their locations. As shown in the figure, geometric relations, including equal radii,
concentric, perpendicular, and alignment, are imposed. As a result, four dimensions can be changed independently.
In this example, we will focus on changing the height dimension (current value: H¼ 10.00), as circled in the figure
below. What will be the width W of the sketch if the height dimension H is increased from 10 to 12? What are the
upper and lower limits of the height dimension H?

W =  

H =  
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EXAMPLE 5.1eCONT’D

Solutions
The first thing to ask is how the other entities will change when we vary the height dimension H. Because the equal
length constraint L3 is imposed on the bottom and left edges, changing H will affect the arc radius R1 because the
total width of the profile (current value W¼ 8) is retained.

In addition, the circles are concentric with the circular arcs; when the radius R1 is changed, these two circles will
move accordingly. Will the circles be pulled toward or pushed away from the arcs when the height dimension value
increases? This question can be answered by the following equations.

H ¼ L3 þ 2R1

W ¼ L3 þ R1

Hence, R1¼H�W. Currently, H is 10 and W is 8; therefore, R1 is 2. When H is increased from 10 to 12, R1

becomes 4; that is, the circles are pushed away from the arcs, as shown in the figure below (Case A). Note that H
cannot be set equal toW because it yields a zero-radius R1, which is invalid and will not be accepted by CAD. When
H is less thanW, the radius will become negative; the profile will be regenerated as shown below (Case B), which is
physically invalid. In addition, the height dimension cannot be too large. A largeH value may cause the circles to run
across the two 45� perpendicular edges, as shown in Case C. Therefore, the valid range of the height dimension is
between 8 and 12.3, if W is kept unchanged.

Case A Case B Case C 

Note that the lower limit ofH can be determined byH¼WþR1. BecauseW is 8 and R1 is greater than 0,Hmust
be greater than 8. How can the upper limit of the height H (which is 12.3) be determined? This is left as an exercise
(hint: see Case C).

When the width dimensionW is also considered for a change, the range ofW depends on the currentH value. IfH
is 12, the upper limit of W is 12. What will be the lower limit of W? (Again, this question is left as an exercise.) In
general, defining the range of simultaneous changes for more than two design variables is not straightforward.
Usually, all but one design variable is changeable.
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5.4.2 Solid features in part
When the first feature is protruded, parametric surfaces (Zeid, 1991; Mortenson, 2006) that
represent the boundary of the solid feature are generated by CAD. After that, the designer may
create additional datum, sketches, and protrusion features using options such as extrusion, sweep,
revolve, and blend, as discussed in Chapter 3. The designer may also cut the existing features;
generate chamfers or rounds; or copy, mirror, and/or pattern the existing features to create additional
features.

When additional features are created, a model tree or feature tree is generated by CAD following
the feature creation sequence. Boolean operations are employed to union or subtract the features from
the previous ones according to their definitions. At the same time, the intersection curves between
boundary surfaces are calculated to evaluate the Boolean operations and display the features. This is
essentially the constructive solid geometry (CSG) method.

Note that in general the intersecting curves are approximated by interpolating a number of inter-
section points using B-spline or nonuniform rational basis spline curves (Zeid, 1991). The evaluated
geometry and topology of boundary faces, edges, and vertices are stored in the CAD database for
display. This is the boundary representation (B-rep) method. When features are being created, the
designers can define relations in Pro/ENGINEER (or equations in SolidWorks) to relate feature di-
mensions to capture DIs. In this process, independent and dependent dimensions will be created to
define a one-way relation. The independent dimensions become DVs. This is so-called unidirectional,
procedural, or parametric modeling (McMahon and Browne, 1998).

Once all the features are created and relations are established, the part solid model is completely
defined. When a design change is conducted by changing the DV values, the solid model will be
regenerated in Pro/ENGINEER (or rebuilt in SolidWorks) by updating features (both datum and solid
features) following the model tree, one at a time. Pro/ENGINEER or SolidWorks carries out steps
(discussed in Chapter 3) to update individual features.

Note that Pro/ENGINEER and SolidWorks employ the concepts of both CSG and B-rep for solid
modeling. In general, CSG keeps the relationship between features, whereas B-rep stores topological
and geometric data for display and computations.

If the DIs are not properly captured in features and relations, the regeneration may lead to an
undesirable or an invalid solid model. It is strongly recommended, especially for journeyman de-
signers, that the designer creates a model build plan (with details of features, dimensions, and re-
lations) before creating any features in CAD.

5.4.3 Guidelines for design parameterization
Based on the previous discussions, a set of guidelines for part parameterization is established in
Table 5.1. These guidelines are separately listed according to the two axioms and the steps in solid
modeling. Note that these guidelines are by no means complete. Readers may add more guidelines to
suit their needs. These guidelines are not entirely objective. Some may be modified. The crankshaft
example of the slider-crank mechanism is employed as an example to illustrate some of these
guidelines.

The crankshaft is created in both Pro/ENGINEER and SolidWorks in the following sequence:
three default datum planes (DTM1, 2, 3 or Front, Top, Right), a default coordinate system (CS0), a
base extrusion feature, the lower extrusion feature, and the upper extrusion feature, as illustrated in
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Table 5.1 Guidelines for Part Parameterization

Independence Axiom (1) Information Axiom (2)

Datum (D) D1a: A solid model should always start with the default datum
features (i.e., three orthogonal datum planes)
and the default coordinate system.
D1b: Additional datum features should be referenced to the
default datum features instead of geometric entities (e.g., an
edge) of a solid feature whenever possible.

D2a: Never duplicate datum features.

Sketch (S) S1a: A sketch should be created on a default datum plane if
possible (instead of on a face of an existing solid feature) in
order to minimize parentechild coupling between solid
features.
S1b: Dimensions on a sketch should be created by using
datum features as references instead of geometric entities
(e.g., an edge) of a solid feature whenever possible.
S1c: A design variable (DV) should never be referenced
to another geometric dimension (unless the design intent
requires it).

S2a: One characteristic point of the sketch profile should be
anchored to default datum features (e.g., intersection of two
datum planes).
S2b: A face and a geometric entity of an existing feature can be
chosen as the sketch plane and the anchor point, respectively,
only for the purpose of capturing a design intent (DI).
S2c: Geometric entities on a sketch profile should be aligned
to datum features or existing entities to minimize the number of
dimensions.
S2d: Sketch relations should be defined as much as possible
to reduce the number of dimensions.
S2e: The information contents should be minimized by using
symmetry constraint.
S2f: Relations between dimensions must be added not only to
minimize the information content but also to capture the DI. It is
desirable to define fewer relations by adding more sketch
relations.
S2g: Redundant and zero-valued dimensions should never be
defined.
S2h: Range of the design variables should be determined in
advance.

Solid
features
(F)

F1a: A solid feature should be decoupled from existing solid
features by referencing only to default datum features
whenever possible.

F2a: Use attribute of the solid feature instead of addition
dimension to define the feature; for example, a through hole
should not be created with an extrusion cut with a depth
dimension of larger value.
F2b: The amount of information in solid features that have one
or more planes of symmetry can be minimized using pattern,
copy, and mirror.

Parts (P) P1a: After the solid model is built, the designer should only
have access to dimensions that form a DI (i.e., only to the
DVs).
P1b: Relate dimensions directly to the DV to avoid loop or
chain relations.

P2a: Define relations between dimensions of different features
to capture the design intent.
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Figure 5.9. Note that in both Pro/ENGINEER and SolidWorks, datum planes and coordinate systems
are given for each part by default. They will be used as references for sketches and features (Guideline
D1a). To simplify the presentation, only Pro/ENGINEER model will be discussed. The steps in
SolidWorks are similar.

The base extrusion feature is created by sketching its profile on DTM3 (Guideline D1a) and
extruding 0.5 unit along the normal direction of DTM3. The sketch is drawn using two semicircles and
two straight-line segments, with the dotted lines (representing DTM1 and DTM2) shown in Figure 5.9
as the references (Guidelines S1b). With the center points of the semicircles aligned with the refer-
ences and various sketch relations (see Figure 5.10), only three dimensions are needed to completely
define the sketch: the radii of the semicircles and the vertical distance between the center points
(Guideline S2a, S2c, and S2d). Because the minimal number of dimensions is employed for the sketch,
the crank length design variable can be easily captured in the base feature.

There are six characteristic points generated in the profile, as shown in Figure 5.10. Hence, it
requires 12 independent equations to uniquely determine the positions of the characteristic points. This
profile consists of six sketch relations, as listed in Figure 5.10, and three dimensions. These 12
equations can be formulated by employing the sketch relations and dimensions, as shown in
Figure 5.10. Note that in this case, these equations are linear; hence, they can be solved by matrix
operations. When a design variable is changed in the sketch, the same set of equations is solved for the
new positions, hence updating the profile.

Protrude 
0.5 

Upper
semi- 
circle 

Lower
semi- 
circle 

References 
(Dotted lines) 

Extrude 0.5 

Datum planes and  
datum coordinate system 

Protrude 0.8 

Base 
extrusionUpper

extrusion
Lower
extrusion

DTM2
DTM2

DTM3

0.60

DTM1

0.45

3.00

DTM1

DTM3

y z
CS0

0.90

0.70

FIGURE 5.9 Feature Creation Steps of the Crankshaft.
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As shown in Figure 5.9, the lower extrusion feature is created by drawing a circle of diameter 0.9
with its center point concentric with that of the lower semicircle of the base feature (Guideline S2b)
and extruding 0.5. Similarly, the upper extrusion feature is created by drawing a circle of diameter 0.7
with its center point concentric with that of the upper semicircle of the base feature (Guideline S2b)
and extruding 0.8 in the opposite direction.

By imposing the alignment and concentric rules, the crankshaft is properly parameterized, yet the
number of dimensions in the crankshaft solid model is minimized. The change of crank length can be
realized by simply modifying the dimension d2:0, as shown in Figure 5.11. The base extrusion feature
is updated according to its sketch shown in Figure 5.10. The lower extrusion feature is unchanged
because its center point is concentric with the lower semicircle of the base feature. The upper extrusion
feature is pushed upward because its center point is concentric to the upper semicircle of the base

Implicit constraints: 
C1: p1 aligned with references (x- and y-axes); 
C2: p3 aligned with reference (x-axes); 
C3: p4 aligned with reference (y-axes); 
C4: p1 and p2 aligned horizontally; 
C5: p4 and p5 aligned horizontally;  
C6: p4 and p6 aligned horizontally. 

Variational equations: 
p1x = 0 (C1); p4x−p1x = 0 (C3); 
p1y = 0 (C1); p4y−p1y = sd8; 
p2y−p1y = 0 (C4); p5y−p4y = 0 (C5); 
p1x−p2x = sd6;  p4x−p5x = sd7; 
p3x−p1x = sd6;  p6x−p4x = sd7; 
p3y−p1y = 0 (C2); p6y−p4y = 0 (C6).

p1
x

y

p2 p3

p4p5 p6

References 

FIGURE 5.10 Variational Equations for the Sketch Profile.

d2:0=4 
d2:0=3 

(a) (b)

FIGURE 5.11 Design Intent Captured as d2:0[ 3 (a) and d2:0[ 4 (b).
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feature and the center point moves up due to the references chosen. The change is propagated to
features in the crankshaft through a model tree (or a CSG tree) established following the feature
creation sequence and Boolean operations, as shown in Figure 5.12.

5.5 Design parameterization at the assembly level
Before reading this section, you are encouraged to review Chapter 4 for the mating constraints
employed in Pro/ENGINEER and SolidWorks that support assembly modeling. With the under-
standing of the mating constraints, we discuss the guidelines for assembly developed following the two
axioms. The slider-crank example is used to illustrate the assembly capabilities and design parame-
terization in both CAD tools.

5.5.1 Guidelines for design parameterization
Similar to the part level, the DIs in assembly can be uncoupled, coupled, and decoupled. The uncoupled
design is again always superior to the others, according to the independent axiom. However, uncoupled
DIs may not be always possible in practical applications. In general, it is required that the designer
decouple the coupled DIs by adding DVs that alleviate the coupling effect, as discussed previously.

The information axiom at the assembly level can be exercised by adding relations or equations for
dimensions across parts. For example, the diameter of a shaft must be related to that of the hole it
inserts into to reduce the number of DVs and capture the DIs. Note that, at the assembly level, in

Union

Union

FIGURE 5.12 The Constructive Solid Geometry Tree.
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addition to complying with the two axioms, mating constraints and datum features must be properly
defined to capture DIs.

A set of guidelines for assembly is listed in Table 5.2. Again, more guidelines may be added, and
some of the guidelines stated in Table 5.2 may be subjective. The slider-crank assembly is employed to
illustrate these guidelines in Section 5.5.2.

In addition to the guidelines stated above, the following are useful tips:

• Fix mate errors as soon as they occur. Adding mates never fixes earlier mate problems.
• If a component is causing problems, it is often easier to delete all its mates and recreate them

instead of diagnosing each one.
• Whenever possible, fully define the position of each part in the assembly, unless you need the part

to move to visualize the assembly motion.
• Assemblies with many available degrees of freedom (dof) take longer to solve, have less predictable

behavior when you drag parts. Drag components to check their remaining degrees of freedom.

5.5.2 Slider-crank assembly in Pro/ENGINEER
At the assembly level, the intent is to orient the crankshaft vertically and align the piston and piston pin
horizontally with the center point of the lower shaft of the crankshaft, as shown in Figures 5.13a and b.

Table 5.2 Guidelines for Assembly Parameterization

Independence Axiom (1) Information Axiom (2)

Datum (D) D1a: An assembly should always start
with the default datum features (i.e., three
orthogonal datum planes) and the default
coordinate system.
D1b: Additional datum features should be
referenced to the default datum features
whenever possible.

D2a: Never duplicate datum features.

Mating
constraints (C)

C1a: Whenever possible, mate all
components to one or two fixed
components or references. Long chains
of components take longer to solve and
are more prone to mate errors.
C1b: Do not create loops of mates. They
lead to mate conflicts when you add
subsequent mates.
C1c: Drag components to test their
available degrees of freedom and see if
the design intent is captured.

C2a: Avoid redundant mates. Although
SolidWorks allows some redundant
mates, these mates take longer to solve
and make the mating scheme harder to
understand and diagnose if problems
occur.
C2b: Eliminate all degrees of freedom
(dof), except the dof needed for kinematic
analysis.

Assembly
dimensions (A)

A1a: Define relations across parts
to capture DI.

A2a: Minimize the number of dimensions
and relations while assembling parts. The
assembly options that require defining
more dimensions and relations should
only be used when the new dimension
is a DV.
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Three assembly datum planes and a datum coordinate system are given by default. The crankshaft is
assembled by properly aligning its datum planes with the assembly datum planes for a vertical
orientation, as shown in Figure 5.13a (Guideline D1a). In order to assemble the rod, two additional
datum planes are created in the assembly. ADTM4 is created by offsetting ADTM2 3 units upward, as
shown in Figure 5.13b (Guideline D1b). The datum plane ADTM5 is created by rotating ADTM4 with
an angle d1:1¼ sin�1(3/8). Note that ADTM5will be used to orient the rod (Guideline D1b). The rod is
assembled to the crankshaft by three mating constraints: axis alignment, surface mate, and surface
alignment, as shown in Figure 5.14.

In addition, the vertical position of ADTM4 and the rotation angle of ADTM5, which determine the
configuration of the assembly, will be related to the crankshaft and rod lengths through the following
equations:

d0 :1 ¼ d2 :0 (5.2)

d1:1 ¼ sin�1ðd2 :0=d3 :2Þ: (5.3)

Note that Eqn (5.2) defines a relation that moves the datum plane ADTM4 up or down according to the
crank length (d2:0). Eqn (5.3) defines the trigonometric relation of angle d1:1 to the design variables
d2:0 (crank length) and d3:2 (rod length). Dimension d1:1 actually rotates ADTM5 according to the
changes of d2:0 and d3:2. This is how the slider-crank mechanism is parameterized. These equations

ADTM1 

ADTM4 ADTM5

d3:2 = 8 (rod length) 

d2:0 = 3 
(crank)

d0:1 = 3 
(distance)

d1:1 

ADTM2 

ADTM1 

ADTM4 
ADTM5 

d0:1 = 3 
(distance)

d1:1 

ADTM2 

(a) (b)

FIGURE 5.13 Parameter Relations. (a) Crankshaft. (b) Assembled Slider-crank Mechanism.
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FIGURE 5.14 Assembly Mating Constraints Defined for Rod.
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define two independent design variables (i.e., d2:0 and d3:2) by relating four dimensions in assembly.
Therefore, the information contents of the first design intent are minimized (Guideline A2a). Details
about this assembly are available in the tutorial lesson P1.3.

Note that the way that the slider-crank mechanism is parameterized, as discussed above, is
not unique. They are presented for the purpose of illustrating some of the guidelines listed in
Table 5.2. Other ways of parameterizing this mechanism exist. For example, instead of offsetting
ADTM2 for ADTM4 with a dimension d0:1, a datum axis can be created by intersecting ADTM1 and
ADTM3, then ADTM5 can be created by rotating ADTM1 along the datum axis. By doing so,
dimension d0:1 can be removed, and Eqn (5.2) is not necessary, thus further reducing the information
contents.

5.5.3 Slider-crank assembly in SolidWorks
The slider-crank mechanism is assembled in SolidWorks in a slightly different way. Because one of the
objectives in SolidWorks assembly is to conduct kinematics analysis of the mechanism, as illustrated
in Figure 5.15a, a bearing part is introduced and is fixed in the assembly, as shown in Figure 5.15b.
Moreover, no additional datum plane is needed to orient the rod because its orientation will be
determined by SolidWorks when the crankshaft rotates.

The crankshaft is assembled to bearing using Concentric and Coincident constraints, leaving one
rotational dof (please refer to Figure 4.7a in Chapter 4 for details). The connecting rod and piston pin
are assembled in a similar way, also leaving one rotational dof for each part assembled (please see
Figure 4.7b). The piston is assembled using one Concentric and two Coincident constraints, as
shown in Figure 5.16. Note that the second Coincident constraint that coincides with Plane3 of the
piston and Plane2 (horizontal plane) of the bearing confines the movement of the piston horizontally.
When the length of the crankshaft or rod is changed, the assembly will be rebuilt, as shown in
Figure 5.17, according to the trigonometric equation (see Figure 5.17d), with the distance d between
the piston and the crankshaft fixed temporarily:

a ¼ sin�1

�
d2 :02 þ d2 � d3 :22

2� d2 :0� d

�
: (5.4)

Connecting
Rod

Crankshaft

Piston

Piston Pin 

Bearing

(a) (b)

FIGURE 5.15 Slider-crank Assembly in SolidWorks. (a) Kinematic Analysis. (b) Exploded View.
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5.6 Case studies
Two case studies are presented to demonstrate the parameterization method for practical applications,
including a single-piston airplane engine and a HMMWV suspension. Parameterization at both the part
and assembly levels are discussed.

Coincident 

Coincident 

Concentric

Plane2

Plane3

Plane2

Plane1

FIGURE 5.16 Mating Constraints Defined for the Piston.
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FIGURE 5.17 Change of Length Design Variables in SolidWorks. (a) Design Variables d2:0 and d3:2. (b) d2:

0 Changes to 4. (c) d3:2 Changes to 10. (d) Trigonometric Relation of the Assembly Dimensions.
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5.6.1 Single-piston engine
Solid models of a single-piston airplane engine were created in Pro/ENGINEER, as shown in Figures
5.1 and 5.18. The models, consisting of 18 parts, were first created by a third party without adequate
parameterization. Even though this original model is geometrically valid, it is not properly parame-
terized. As a result, any simple change will lead to invalid features, parts, and hence assembly.

Moreover, the amount of information the model carries is sometimes excessive or, in other cases,
incomplete. A typical example of the use of excessive information is shown in Figure 5.19a, in which
redundant dimensions are founded. For instances, d45 and d22 both specify the depth of the inner hole
of the horizontal cylinder of the case, and fd44 and fd21 refer to the diameter of the same hole. In
addition, as shown in Figure 5.19b, there are several dimensions with zero value as circled, which must
be removed.

FIGURE 5.18 The Single-piston Engine. (a) Unexploded View. (b) Section View.

Exhaust

Manifolds
(a) (b)

FIGURE 5.19 Excessive Information in the Original Model. (a) Redundant Dimensions. (b) Dimensions with Zero

Value.
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The DIs of the engine design are defined as:

DI1: The stroke length, composed of the crankshaft length d6:10 (10 represents crankshaft in
engine assembly), as shown in Figure 5.20a.
DI2: The volume above the piston at top dead center position, composed of the bore diameter d46:
0, and the length of the connecting rod d0:14, as shown in Figures 5.20c and b, respectively.

Modifications to all 18 parts in the original model were carried out in order to comply with Axioms 1
and 2 at both the part and assembly levels. A typical example, the engine case, is presented to illustrate
how the guidelines are followed at the part level. Note that changes in any of the three DVs will affect
the engine case. The objective is to parameterize the case so that d46:0 can be changed independently,
and changes in d6:10 and d0:14 will propagate to the engine case correctly.

5.6.1.1 Part level: engine case
Independence Axiom: Three default orthogonal datum planes are kept in the case solid model
(Guideline D1a). Redundant datum planes that coincide with the three default datum planes are deleted
(Guideline D2a). For example, DTM1 and DTM4 coincide with each other, and DTM4 is deleted.
Before deleting DTM4, all the features that were referenced to DTM4 must be redefined by referring
them to DTM1 (Guideline D2b).

Also, a design variable should be referred to nonchanging features, such as datum planes
(Guideline S1c). In the engine case, the bore is created as a hole with its axis intersected by DTM1 and
DTM3, as shown in Figure 5.21a. Consequently, the design variable d46:0 is not dependent on other
dimensions, but refers to the nonchanging datum features.

The dimensions that are not DVs should not be available to the designer. However, they should be
updated automatically via relations (Guideline P2a). Neither d21 nor d22 are DVs. The depth of the
hole d22:0 is related to the bore diameter d46:0, and the diameter of the hole d21:0 depends on the
length of the crankshaft d6:10. The relations and the modified solid model of the case are shown in
Figure 5.22.

Information Axiom: Redundant and zero-value dimensions must be eliminated (Guideline S2g). In
the engine case, both the depth and the diameter of the hole were redundantly defined in the original
model, as shown in Figure 5.19a. Even though d44 and d21 have the exact same value, they belong to
two different features. Dimension d44 is eliminated by aligning the circle defined by d44 to the circle

φd46:0 

d0:14 

d6:10 

(a) (b) (c)

FIGURE 5.20 Design Variables Defined for the DIs. (a) Crankshaft. (b) Connecting Rod. (c) Engine Case.
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defined by d21 (Guideline S2c). A similar problem arises for dimensions d45 and d22. Dimension d45
is eliminated by resorting to alignment (Guideline S2c). In addition, all the zero-value dimensions are
removed because they do not compose any of the DIs (Figure 5.19b).

The air inlet is defined as a through hole, instead of a hole with depth up-to-surface (Guideline
F2b). Consequently, it will always be a through hole when a design change is committed. Also, copy
and mirror are used in the creation of one of the exhaust manifolds (Guideline F2a), as shown in
Figure 5.21a. It is desired that both manifolds maintain the same dimensions. In the original model,

(a) (b) Air inlet 

Up to This Surface Patterned Holes 

Bore axis Patterned
group
features 

FIGURE 5.21 Engine Case. (a) Datum Planes. (b) Air Inlet (Section View).

d40:0=d46:0/2+0.208 
d0:0=d40:0-0.002 
d1:0=d40:0+0.125 
d22:0=d1:0+d0:0-0.208 

d21:0=2×d6:10+0.83 

φd46:0 

d0 d1 

d40 

FIGURE 5.22 Relations Defined in the Engine Case.
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they were defined independently. In this case, one design change must be implemented twice, which is
unnecessary and error-prone. The same guideline is applied to pattern the three holes on top of the case
(see Figure 5.21a). In addition, the group of extrusion, round, and hole features, as shown in
Figure 5.21a, is patterned for additional three instances. Furthermore, the dimensions are properly
related (see Figure 5.22) to capture the DIs (Guideline P1a).

5.6.1.2 Assembly level: engine
The other 17 parts are also parameterized following the guidelines at part level for the two DIs. At the
assembly level, guidelines are followed for assembling the 18 parts.

Independent Axiom: Default assembly datum features, including the three orthogonal datum planes
and coordinate system, are used as references (Guideline D1a). Proper mating constraints are
employed to assemble all 18 parts without looping (Guideline C1b).

Information Axiom: Only two rotational dof (between connecting rod and piston pin and between
crankshaft and connecting rod) are kept for kinematic analysis. All the other dof are eliminated
(Guideline C2b). Dimensions are related across the parts (e.g., d21:0 in Figure 5.22) to minimize the
contents of the DIs (Guideline A2a). Moreover, relations are created for the length of the piston pin,
diameter of the piston, and the bore diameter of the case. The DIs are properly captured at the assembly
level, as illustrated in Figure 5.1.

5.6.2 HMMWV suspension
The HMMWV solid model, discussed in Chapter 1, was initially created in Pro/ENGINEER and then
converted to SolidWorks, partially for testing the process of solid model conversion between CAD
systems. There are more than 200 parts and assemblies (see Figure 5.23a). The suspension is modeled
in detail (Figure 5.23b) such that the main characteristics of the vehicle performance can be captured
accurately in motion simulation. A more detailed view on the front right suspension quarter is shown in
Figure 5.24a.

A dynamic simulation model was created for dynamic simulation on a bumpy 100 ft� 100 ft terrain,
as shown in see Figure 5.24b. The vehicle vibrates significantly towards the later stages of the simulation
due to the bumpy road conditions. The overall design goal was to optimize the vehicle dynamic char-
acteristics (Chang and Joo, 2006).

(b)(a)

FIGURE 5.23 HMMWV CAD Model. (a) Vehicle Assembly. (b) Suspension Assembly.
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The vehicle track and wheelbase shown in Figure 5.25 are the two primary design variables defined
for HMMWV suspension. In order to support HMMWV design optimization, the suspension assembly
must be parameterized in CAD (in this case, SolidWorks). The design parameterization must be
conducted at both part and assembly levels.

5.6.2.1 Track design variable
For the track design variable, two parts are involved: differential (Figure 5.26a) and steering rack
(Figure 5.26b). The geometry of both parts is simple, and their width dimensions are to be related to
capture the track design variable. The outer width of the differential d2@sketch1, as shown in
Figure 5.26a, is chosen as an independent dimension. All the geometric features in the differential will
be changed according to d2@sketch1 following the relations defined in Table 5.3. The relations show

Revolute Joint 

Spherical Joint 

Revolute Joint 
Chassis
Frame 

Wheel Hub 

Lower Control Arm

Translational 
Joint 

Spherical Joint 

Steering 
Rack

(b)(a)

FIGURE 5.24 HMMWV Dynamic Simulation Model. (a) Front-right Suspension. (b) Vehicle Motion Simulation.

Track: 77.4 in. 

Wheelbase: 
128.6 in. 

Differential 

Front 

Steering Rack 

FIGURE 5.25 Track and Wheel Base Design Variables.
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that d1@sketch2, d1@sketch3, and d1@sketch4 will be changed according to d2@sketch1. In addi-
tion, d2@sketch3, d2@sketch2, and d2@sketch4 are fixed. Note that in the equations of Table 5.3,
dimensions shown on the left hand side of the equal sign become dependent.

For the steering rack shown in Figure 5.26b, dimension d1@sketch1 is chosen as independent, and
d6@sketch1 will be changed with the same amount as d1@sketch1, as defined by the first equation

(a)

                          Top view                                                       Bottom view 
(b) 

Top view  Bottom view

d1@sketch1 

d6@sketch1 
d2@sketch1 
= 7.5 in.

d1@sketch10 

d6@sketch10 d3@sketch10 = 0.53033 in.

d1@sketch4

d2@sketch4 
= 3.0 in.

d2@sketch1 

d1@sketch2 

d2@sketch3 
= 2.0 in. 

d2@sketch2 = 5.0 in. 

d2@sketch1 

d1@sketch3 

FIGURE 5.26 Design Parameterization for Track Design Variable at the Part Level. (a) Design Parameterization

for the Differential. (b) Design Parameterization for the Steering Rack.

Table 5.3 Relations Defined for the Differential

Equations Design Intents

d1@sketch2¼ d2@sketch1e2�d2@sketch3 d2@sketch1 is independent, d2@sketch3¼ 2.0, and is fixed.

d1@sketch3¼ d2@sketch1e2�d2@sketch2 d2@sketch1 is independent, d2@sketch2¼ 5.0, and is fixed.

d1@sketch4¼ d2@sketch1e2�d2@sketch4 d2@sketch1 is independent, d2@sketch4¼ 3.0, and is fixed.
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listed in Table 5.4. Dimensions d1@sketch10 and d6@sketch10 are related to d1@sketch1 and d6@
sketch1 via the last two equations shown in Table 5.4, respectively, with a fixed wall thickness of d3@
sketch10¼ 0.53033 in.

At the assembly level, mating constraints are defined for the differential and both frame rails, as
shown in Figure 5.27a. First, the side faces of the differential and frame are assembled using surface

Table 5.4 Relations Defined for the Steering Rack

Equations Design Intents

d6@sketch1¼ d1@sketch1�2�d2@sketch1 d1@sketch1 is independent, d2@sketch1¼7.5 in.,
and is fixed

d1@sketch10¼ d1@sketch1�2�d3@sketch10 d1@sketch1 is independent, wall thickness d3@
sketch10¼ 0.53033 in. fixed

d6@sketch10¼ d6@sketch1�2�d3@sketch10 Wall thickness d3@sketch10¼ 0.53033 in. fixed.

(a)    (b)

(c)

Surface Coincident 

Surface Coincident 
Point Coincident 

Point 
Coincident 

Point 
Coincident 

Point Coincident

Front 

Concentric 

Concentric 

Surface 
Coincident 

Surface  
Coincident

Tie Rod 

Tie Rod 

Front 

d1@sketch1@steering_rack.Part 

Front d2@sketch1@diff.Part 

FIGURE 5.27 Design Parameterization for Track Design Variable at the Assembly Level. (a) Mating Constraints

Defined between the Differential and Frame. (b) Mating Constraints Defined between Steering Rack and Tie-rods.

(c) Relation between Widths of the Differential and Steering Rack.
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coincident (mate) constraints. In addition to surface coincident constraints, point coincident con-
straints are added between the corner points of the differential and points on the top edge of the frame
rails. The steering rack is assembled to the tie-rod on each side by using concentric (axis alignment)
and surface coincident (mate) constraints, as shown in Figure 5.27b.

Next, the relationship between the width of the differential and width of the steering rack is
defined at assembly level, as shown in Figure 5.27c. The relationship between dimensions d1@
sketch1 in the steering rack and d2@sketch1 in the differential is defined as d1@sketch1@steer-
ing_rack.Part¼ d2@sketch1@diff.Part, so that widths of the steering rack and differential change
simultaneously. Therefore, d2@sketch1@diff.Part represents the track design variable which is
independent. Note that d1@sketch1@steering_rack.Part and d2@sketch1@diff.Part have the same
numerical value.

5.6.2.2 Wheelbase design variable
Defining the wheelbase design variable is straightforward. It involves changing the length of the two
center frame rails at the same time (Figure 5.28a). The center frame rails are assembled to the rear
frame using surface coincident constraints as well as point coincident constraints at the end faces of the
frame (Figure 5.28b). Similar constraints are defined for assembling the center frame rails to the front
frame. A relation d1@sketch5@right_frame.Part¼ d1@sketch3@left_frame.Part is defined to cap-
ture the wheelbase design variable represented by d1@sketch3@left_frame.Part. As a result, when
d1@sketch3@left_frame.Part is increased, the rear portion of the vehicle gets pushed backwards, and
vice versa. Note that when the track or wheelbase design variable is changed, both mass properties and
joint locations of the HMMWV vehicle model are altered, therefore varying the vehicle dynamic
performance. In this case, both the track and wheelbase design variables are called global design
variables.

(a)   (b)

d1@sketch3
@left_frame.Part 

d1@sketch5
@right_frame.Part 
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Front Frame Rails
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Point 
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FIGURE 5.28 Design Parameterization for the Wheelbase Design Variable. (a) Relation between Two Center Frame

Rails. (b) Mating Constraints Defined for the Center and Rear Frame.
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5.6.2.3 Design change
The change of HMMWV suspension geometry due to the change of these two design variables is
shown in Figure 5.29. The suspension is properly parameterized. The parameterized HMMWV model
was employed to search for a design that optimizes the dynamic characteristics of the suspension
(Chang and Joo, 2006).

5.7 Summary
In this chapter, solid modeling and assembly techniques implemented in Pro/ENGINEER and Sol-
idWorks were discussed. Usually in e-Design, a design change is first realized by modifying geometric
dimension values in CAD and automatically regenerating or rebuilding the solid models. To capture a
product DI in CAD, the product solid model must be properly created and parameterized. With this
understanding, a design parameterization method that supports the capture of design intents has been
introduced.

Design intent for a single part can be captured by properly creating individual solid features and
carefully relating dimensions within or among features. Consequently, when a dimension value is
changed, the solid features affected by the change can be regenerated or rebuilt successfully. At the
assembly level, DI is captured by defining adequate mating constraints and relating dimensions across
parts so that a change in dimension value can be propagated to all parts affected. The parts affected
must be regenerated successfully; at the same time; they must maintain proper positions and orien-
tations with respect to one another without violating any assembly mating constraints nor revealing
part penetration or excessive gaps. Moreover, the regenerated solid model must meet the designer’s
expectations.

Design parameterization guidelines based on the independent and information axioms have been
introduced. These guidelines will facilitate the creation of parametric solid models that support design
engineers in exploring design alternatives in the e-Design environment.

(a)    (b)

d1@sketch3= 
50.69 in. 

Track: 77.4 in. 
Wheelbase: 
128.6 in. 

d1@sketch1=21.68 in. 

Track: 81.2 in. 

d1@sketch3= 
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d1@sketch1=25.52 in. 

Wheelbase: 
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FIGURE 5.29 HMMWV Suspension at Initial Design (a) and Optimal Design (b).
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Questions and exercises

1. Show how the upper limit of the height dimension H ¼ 12.3 in Example 5.1 is determined based
on the geometry of the sketch profile. If H is set to 12, determine the upper and lower limits of the
width design variable W.

2. Use the given three parts (link1, link2, and link3) to create an assembly like the one shown
below.

Required configuration:

• Link1 must be vertical;
• Link2 must be horizontal, and the shaft on link2 must insert to the top hole in link1.
• The two shafts of link3 must insert to the middle hole of link1 and slot of link2.

(i) Show/explain what mating constraints you employed for this assembly.
(ii) Define the vertical location of the middle hole of link1 as the design variable, as shown in the

next figure, and find the following:

Design variable 

Link1 

Link2 

Top hole 

Middle hole 

Link3 

Slot
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Upper bound of the design variable without interference (showing how you reached the answer):
___________________

Lower bound of the design variable without interference (showing how you reached the answer):
___________________

References
Chang, K.H., Joo, S.-H., July 2006. Design parameterization and tool integration for CAD-based mechanism

optimization. Advances in Engineering Software 37, 779–796.
Chang, K.H., Silva, J., Bryant, I., December 1999. Concurrent design and manufacturing for mechanical systems.

Concurrent Engineering Research and Applications (CERA) Journal 7 (4), 290–308.
Lee, K., 1999. Principles of CAD/CAM/CAE Systems. Addison Wesley Longman, Inc. ISBN: 0-201-38036-6.
McMahon, C., Browne, J., 1998. CADCAM, second ed. Addison-Wesley. ISBN: 0-201-17819-2.
Mortenson, M.E., 2006. Geometric Modeling, third ed. Industrial Press.
Suh, N.P., 1990. The Principles of Design, Oxford Series on Advanced Manufacturing. Oxford University Press,

New York, NY.
Toogood, R., Zecher, J., 2012. Creo Parametric 1.0 Tutorial and MultiMedia DVD. SDC Publication.
Zeid, I., 1991. CAD/CAM Theory and Practice. McGraw-Hill, Inc. ISBN: 0-07-072857-7.

References 263

http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0010
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0010
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0015
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0015
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0020
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0025
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0030
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0035
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0035
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0040
http://refhub.elsevier.com/B978-0-12-398513-2.00005-1/ref0045


Product Data Management 6
CHAPTER OUTLINE

6.1 Introduction......................................................................................................................267

6.2 File management ..............................................................................................................269

6.2.1 Ad-hoc methods ............................................................................................270

6.2.2 PDM approach ..............................................................................................272

6.3 Fundamentals of PDM........................................................................................................274

6.3.1 Engineering data models ................................................................................275

6.3.1.1 Product data model ................................................................................. 275

6.3.1.2 Process data model ................................................................................. 279

6.3.2 Basic functions of PDM systems .....................................................................280

6.3.2.1 User functions......................................................................................... 281

6.3.2.2 Utility functions ....................................................................................... 282

6.3.3 Benefits of PDM systems................................................................................283

6.3.4 Impact to industry .........................................................................................284

6.4 PDM Systems ...................................................................................................................285

6.4.1 Systems offered by CAD vendors .....................................................................286

6.4.1.1 AutoDesk� ProductStream� of Autodesk Inventor .................................... 286

6.4.1.2 ENOVIA Smarteam of CATIA.................................................................... 286

6.4.1.3 Windchill by PTC ..................................................................................... 287

6.4.1.4 TeamCenter by Siemens UGS NX ............................................................ 287

6.4.1.5 SolidWorks Enterprise PDM ..................................................................... 288

6.4.2 Systems offered by non-CAD vendors...............................................................288

6.4.2.1 SofTech ProductCenter� PLM.................................................................. 288

6.4.2.2 Arena Cloud PLM .................................................................................... 288

6.5 Product data exchange......................................................................................................289

6.5.1 Data exchange options ...................................................................................291

6.5.2 Direct model translations ...............................................................................292

6.5.2.1 Importing Pro/ENGINEER parts to SolidWorks .......................................... 292

6.5.2.2 Importing Pro/ENGINEER assembly to SolidWorks.................................... 294

6.5.2.3 Importing SolidWorks parts to Pro/ENGINEER .......................................... 295

6.5.2.4 Importing SolidWorks assembly to Pro/ENGINEER.................................... 296

6.5.2.5 Data exchange between CAD and CAE/CAM ............................................ 296

6.5.3 Neutral file exchange .....................................................................................297

6.5.3.1 IGES ....................................................................................................... 297

6.5.3.2 STEP (ISO 10303) ................................................................................... 297

6.5.4 Third-party translators....................................................................................298

CHAPTER

Product Design Modeling using CAD/CAE. http://dx.doi.org/10.1016/B978-0-12-398513-2.00006-3

Copyright © 2014 Elsevier Inc. All rights reserved.
265

http://dx.doi.org/10.1016/B978-0-12-398513-2.00006-3


6.5.4.1 Proficiency .............................................................................................. 298

6.5.4.2 TransMagic ............................................................................................. 298

6.5.5 Solid feature recognition ................................................................................299

6.6 Case studies.....................................................................................................................301

6.6.1 SolidWorks Workgroup PDM ...........................................................................302

6.6.2 Integrated testbed using Windchill ..................................................................303

6.6.3 Tool integration for e-Design...........................................................................305

6.6.3.1 CAD and base definition .......................................................................... 306

6.6.3.2 Disciplines and views............................................................................... 307

6.6.3.3 Engineering tool wrappers........................................................................ 309

6.6.3.4 Design process management ................................................................... 309

6.6.3.5 Design collaboration ................................................................................ 310

6.7 Summary ..........................................................................................................................310

Appendix A IGES file structure and data format.....................................................................................311

Start section .................................................................................................311

Global section ...............................................................................................312

Directory entry section ...................................................................................312

Parameter data section ..................................................................................315

Terminate section..........................................................................................316

Appendix B Step data structure and applications protocols ...................................................................316

Questions and exercises.......................................................................................................................319

References ..........................................................................................................................................319

Product data management (PDM) is the technology and associated software systems that support the
management of both engineering data and process information during the product development phase
and beyond. Engineering data management involves organizing, structuring, storing, and tracking the
product information created by a design team while conducting engineering and product development
activities. PDM aims at providing product design teams with the right data and information at the right
time for making proper design decisions. There are significant benefits offered by PDM, such as
interdisciplinary collaborations, reduction of product development time, reduction of the complexity
in information access, and improvement of project management.

PDM is an essential subject in e-Design and a broad topic in scope. To focus the discussion, this
chapter is organized with an emphasis on engineering practice and aimed at providing practicing
engineers and engineering students with a brief introduction to the topic, as well as a fine under-
standing of the use of PDM systems to support engineering design. We narrow our scope with more
emphasis on product design and less on product life cycle management (PLM). PLM is sometimes
interchangeable with PDM. However, PLM is a subject of substantially larger scale. In general, PDM
focuses on managing product design data as it relates to the product development phase, whereas PLM
centers on reengineering product development and manufacturing processes as they relate to product
life cycles. PDM is a design-focused technology that increases efficiencies within existing product
development processes by improving the management of product design data. PLM, on the other hand,
is a strategic, process-centered approach that leverages PDM and other technologies to manage
product life cycles, remake processes, and increase output. As a result, PLM aims at improving
productivity across the enterprise rather than in a single department or a specific process (Dassault
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Systèmes, 2010). For a complete discussion of PLM, readers are referred to textbooks such as Stark
(2011). In this chapter, our discussion stays mainly within the scope of the e-Design paradigm
introduced in Chapter 1.

In addition to the discussion of PDM, we include in this chapter a highly practical and important
issue in PDMdproduct data exchange, or more specifically, solid model translations between het-
erogeneous or dissimilar computer-aided design (CAD) systems (also called the interoperability
issue). Solid model translations between heterogeneous CAD systems are still an ongoing research
topic. We introduce the means currently available, as well as their strengths and shortfalls. Among
the possible approaches, solid feature recognition (FR) has been one of the most recent de-
velopments; it provides the best possible support to address the interoperability issues within the
context of e-Design. We provide a brief discussion on the underlying technology and present ex-
amples in the tutorial lessons of Projects S1 and P1 for SolidWorks and Pro/ENGINEER,
respectively.

Overall, the objectives of this chapter are: (1) to provide a brief overview on PDM that introduces
students to this research area and helps practicing engineers gain an understanding of PDM, (2) to
present an overview of PDM software systems so that readers may explore options for software se-
lections when an opportunity comes, (3) to discuss product data exchange and help readers understand
the interoperability issue and available means for addressing it, and (4) to offer tutorial lessons that
support readers in properly handling the CAD model translation issues.

6.1 Introduction
As discussed in Chapter 1, the e-Design paradigm and tool environment supports a cross-functional
team for product design and development. One of the key advantages of e-Design is the intensive
product data and knowledge gained in the early design stage that support better design decision-
making, thus breaking the Ullman’s design paradox.

In general, the amount of product data generated during the design phase is substantial. The
data have the characteristics of being tentative and iterative, and intermediate with heterogeneous
formats and complex relationships. Moreover, the product data often evolve along the design cycle
because product development often takes significant time, especially for a complex system. The
design logics and tools may vary with the development of science and technology, which leads to
the revisions of data, files, and parameters. The product design team is often geographically
distributed, which adds to the complexity in the management and access of product data and
information. Therefore, the efficient organization and management of the massive product data
becomes essential in support of product development in general, particularly when using the e-
Design paradigm.

PDM is the technology and associated software systems that support the management of both
engineering data and process information during the product development phase and beyond. PDM
involves organizing, structuring, storing, and tracking the product information created by the product
design team as they carry out engineering and development activities. With the explosion of engi-
neering knowledge and advancement in computer-aided software tools for engineering design, PDM
becomes indispensable in product development and is essential in ensuring an effective and efficient
product development process. Overall, PDM aims at providing the product design team with the right
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data and information at the right time, and more importantly in the right form, for carrying out en-
gineering assignments and making proper design decisions.

In the early 1980s, many large corporations, often the original equipment manufacturers
(OEMs), realized their efficiency was severely downgraded by paper-based systems. With no
commercially available systems at that time, they had no choice but to develop their own data
management solutions. In the late 1980s, a number of software companies started to realize the
potential market of efficient data management systems and began to introduce the first generation
of commercial PDM systems (Liu and Xu, 2001). The majority of those vendors at the time were
already involved in the CAD/computer-aided engineering (CAE)/computer-aided manufacturing
(CAM) software market, so PDM development was a natural extension of their products and service
to existing customers. They focused on developing data management solutions and added PDM to
their product lines (Hepplemann, 1998). Since the late 1990s, the focus has been shifted to the
improvement of the product life cyclesdthat is, the PLMdwith an aim at improving productivity
across the enterprise rather than in a single department or a specific process. Also, the on-premises
software from the early years has been gradually replaced with the new, alternative deployment-and-
use model: the so-called cloud-based or Software as a Service (SaaS), which typically uses the
Internet to remove the need for the user to install any software on premises. Such software offers
benefits, such as running software remotely, which can result in considerable cost savings because of
reduced staffing, maintenance, and other factors.

PDM systems are increasingly being used in industrial applications for long-term archival of
product information, as well as to enhance collaboration and communication throughout the design
process, support distributed design teams through advanced document sharing, track changes in
product information, and control design documents (ranging from requirements information to CAD).
The adoption of PDM systems has caused a change in how design processes are managed and how
individual designers collaborate. Additionally, companies are pushing the limits of currently available
PDM software, resulting in continual development and new application domains. For example,
commercial software vendors have integrated PDM systems with other design support tools, included
automated workflow management and suites of CAD/CAM/CAE tools, and refined and developed new
functionality (Caldwell and Mocko, 2008).

Today, PLM is primarily used in the automotive and aerospace industries, as well as in the ma-
chinery industry (Lee et al., 2008; Abramovici and Sieg, 2002). For examples, GM credits PLM
initiatives with decreasing time-to-market from 48 to 18 months (Tang and Qian, 2008). Automotive
industry leaders such as Autoliv, Eaton, Honda, and Johnson Controls are driving success by using the
MatrixONE solutions (Tang and Qian, 2008). Regarding the importance of PLM to the automotive
industry, Reale and Burkett concluded that ‘‘the smarter the car, the more automakers need PLM’’
(Tang and Qian, 2008, p. 288). Among many successful stories, we include two of the most notable in
Section 6.3.4 to illustrate a few insights.

Although PLM is meant to manage product information throughout the entire life cycle of a
product, an international study revealed that the adoption of PLM is still mainly limited to product
design (Abramovici and Sieg, 2002). Today, PLM is an active research topic, especially in supply
chain integration and the integration of business process into the overall product life cycle develop-
ment. Nevertheless, in practice, PDM and PLM are often interchangeable, particularly from a product
development perspective.
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In practice, product data is largely embedded in files. Many student teams may not have access to
full-range PDM or PLM systems and must reply on ad-hoc approaches for file management. We
include a number of commonly employed approaches to support file management in Section 6.2.1. We
also include a case study in Section 6.6.1 to illustrate the use of SolidWorks Workgroup PDM, a mid-
range PDM system, which is commonly available to students.

If you work with multiple CAD systems, you might need to translate solid models from one CAD
system to another for numerous purposes. You may need to bring parts from CAD system A to CAD
system B in order to conduct Finite Element Analysis (FEA), generate a machining toolpath, or
perform other engineering activities. You may be given an assignment to bring in parts and sub-
assemblies from other CAD systems to the major CAD software your company is using in order to
generate a complete product model in the designated CAD system. In industry, the OEM integrates and
communicates with their suppliers, during which they may encounter the issue that the CAD models
created by suppliers may not be compatible with the major CAD system used by the OEM. CADmodel
translation (also called interoperability among CAD systems) is a practical and essential issue in
product data integration for engineering design. The question is how to handle CAD model trans-
lations. What are the available options? How practical are these options? Therefore, in addition to
discussing the PDM, we address this practical and important interoperability issue encountered in
product data exchangedthat is, CAD model translations between heterogeneous (or dissimilar) sys-
tems that employ different geometric kernels.

In this chapter, we address two issues that are very relevant to product design. First, we provide an
overview on the practical means for file management and an introduction to PDM technology and
systems. We start by discussing file management in Section 6.2. In Section 6.3, we present the fun-
damentals of PDM, including the product and process data that PDM manages, the functionalities of
PDM, and the benefits and successful stories of PDM technology. In Section 6.4, we discuss
commercially available PDM systems. Then, in Section 6.5, we shift focus to the second issuedthe
product data exchange. We discuss the viable options and available model translators, as well as their
strengths and limitations. We include examples that outline the part and assembly model translations
between Pro/ENGINEER and SolidWorks, as well as feature recognition (FR) in both Pro/ENGINEER
and SolidWorks. In Section 6.6, we offer case studies that illustrate the practical use of PDM, including
SolidWorks Workgroup PDM.

6.2 File management
During the product development phase, a large amount of data is generated. This includes product data
and process data in the forms of files, documents, and diagrams, etc. Typical product-related data
include CAD geometry, engineering drawing, specifications, project plans, part and assembly files, bill
of materials (BOM), engineering simulation data, engineering change requests, and so forth, which are
shared throughout the product development phase by the product development team and by the
extended enterprise. The product-related data and information are stored in the forms of paper doc-
uments, digital files, and information extracted and stored in databases. In the context of e-Design,
digital files are the most common and largest in quantity, including document files such as specifi-
cations, configuration, and purchase orders; product models, such as CAD drawings, part files, and
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assembly files; CAE analysis model and result files; and manufacturing related information, such as
numerical control (NC) programs.

The management of information in modern engineering design projects is typically characterized
by the following (Caldwell and Mocko, 2008):

• A large amount of digital product information, generated by different engineering software, is
often stored in a variety of formats.

• Documents often go through several revisions during the product development phase, which may
be initiated and completed by different designers and engineers of different disciplines. Access to
documents must be controlled across members of the design team.

• Documents are highly interrelated, such that the changes in a single document may be propagated
through several other documents.

• Data sharing and design collaboration take place between design team members in distributed
locations.

Nevertheless, the most basic function of a PDM system is digital file management and sharing. In any
team design projects, large or small in scale, file management and sharing among the team members is
critical; it should be the first issue addressed at the onset of the project. PDM certainly offers excellent
capabilities in support of file management. However, in academic environments, student teams may not
have access to full-range PDM systems to support their design activities. Therefore, in this section, we
first discuss file management without a PDM and then provide a short introduction to the file man-
agement aspect of PDM systems. In Section 6.6.1, we discuss SolidWorks Workgroup PDM, which is
part of SolidWorks Premium and Professional package and is popular among engineering students.

6.2.1 Ad-hoc methods
Product information can be shared by using a variety of technologies, including email, web-based
workspaces (i.e. Google Groups, Yahoo Groups), shared network drives with file management sys-
tems, and PDM systems, to name a few. In this subsection, common ad-hoc methods are discussed for
sharing product data embedded in digital files. These methods may be useful to student teams for
exchanging product information in collaborative design projects.

Ad-hoc methods of file management work reasonably well for self-contained files, such as Word
documents and Excel spreadsheets. However, they break down quickly for more complex CAD file
management. Some of the most common methods (Buchal, 2006) include email file attachments, peer-
to-peer file sharing (e.g., Windows Messenger), removable media (CD-R or USB drive), FTP, shared
network folders, web folders, and Microsoft SharePoint.

Email file attachments, peer-to-peer file sharing, and removable media are simple and widely
employed. However, this type of management is difficult to maintain and does not fully support
multiple users accessing data from distributed systems. The main issue is that distributing a file to
multiple recipients immediately creates multiple instances of a file, with no mechanism for version
control or reconciliation. In some cases, recipients may encounter problems in reviewing files. For
example, if a CAD assembly file is sent, it may not be opened because the referenced component files
may not be located properly due to incorrect drive letter and/or folder path.

Files may be shared using standard network communication and shared file folders, such as shared
network folders, web folders, and Microsoft SharePoint. These approaches provide a simple way to
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share files within a team, either via a network or the web browser, while offering access control and
basic check-in/check-out. For example, using network folders, if a user has a file open for editing, it
becomes available as read-only to other team members. Additionally, it is possible to control file and
folder using security properties in Windows operating systems (see Figure 6.1). Access is restricted to
computers connected to aWindows LAN domain, so students with laptops or home computers may not
access the shared folder. On the other hand, anyone with an Internet connection and user account can
access web folders. Web folders provide access control and allow editing in place without down-
loading and uploading. Some software supports accessing to files via network, such as the Open from
Web Folder dialog box in SolidWorks. The assembly files and related part files are all located on the
web server, and they are accessed using a URL rather than a drive letter and network path. However,
SolidWorks web folders maintain product structure, but offer no version management or check-in/
check-out capabilities.

SharePoint is a web-based shared workspace with many collaboration tools, which provides access
control, check-in/check-out, revision management, and many other collaboration capabilities.
SharePoint is not designed to manage product structure, so files can only be opened or downloaded
individually (Caldwell and Mocko, 2008). Figure 6.2 shows a view of a SharePoint document library
containing SolidWorks part and assembly files (Buchal, 2006). It is worth noting that SharePoint
document libraries can be accessed as web folders from SolidWorks, but SharePoint version man-
agement and check-in/check-out are not integrated with SolidWorks.

Another important issue encountered by a project team without access to a PDM system is viewing
the product model. On many occasions, teammembers need to view CADmodels without the ability to
change them or to incorporate them into other models. Some viewers, developed by CAD vendors, can
open and view CAD files in their respective native formats and more; for example, NX viewer views
NX part and assembly, I-DEAS files, Parasolid, and JT files, whereas the SolidWorks viewer views
SolidWorks part and assembly and JT files. Viewers allow designers to zoom, pan, and rotate models.
Some viewers allow users to take sections with multiple section planes. Some support users to add
notes, text with leaders, and dimensions. Most viewers incorporate markups and save them as JT
format.

Network 

File folder 

File folder 

…

File server 

FIGURE 6.1 Controlled Access to Shared Network Drives.
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Many viewers support JT files, which is a three-dimensional (3D) data format developed by
Siemens PLM Software (formerly UGS) and used for product visualization, collaboration, and CAD
data exchange to some extent. JT viewer (Figure 6.3) is free for download and was recently extended to
support iPad, iPhone and iPod Touch (JT2Go), which moves mobile engineering design one step
forward.

Although ad-hoc approaches to file management support design teams in managing files and
sharing design data to some extent, they are less desirable in practice. There is not a standardized
revision system. Revisions made to documents are not structured. Changes between documents are not
explicitly captured, thus losing the evolution and refinement between documents. There is not a means
for controlling specific aspects of a file and/or contents within the file. In addition, standardized lo-
cations that are accessible by all designers may not exist.

In the next section, PDM systems are presented as a means for addressing the problems associated
with information management using a traditional file-based approach. Please note that, in general,
PDM has a lot more capabilities than just managing files.

6.2.2 PDM approach
PDM systems attempt to address file management issues by (1) structuring existing document meta-
information, (2) adding meta-information, and (3) enforcing rules for creating, accessing, sharing, and
modifying documents. Specifically, PDM syste ms provide greater control for enforcing effective

FIGURE 6.2 Document Library View in SharePoint (Buchal, 2006).
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document management practices through the use of revisions, locations, editors, owners, and much
more information about the data stored within a file. Metadata, in a digital context, is the data used for
describing the file or the content of a document. The meta-database in a PDM system controls the
document’s relation to other documents and the rules for how the system links information. The basics
of how PDM systems work in managing files are illustrated in Figure 6.4.

FIGURE 6.3 Computer-Aided Design Viewers. JT Viewer (www.plm.automation.siemens.com/en_us/products/

teamcenter/lifecycle-visualization/jt2go).

Designer Team leader Engineer 

Database or 
Data vault 

Data

Access control 

Network 

        PDM server 

Metadata 

FIGURE 6.4 Architecture of PDM Systems.
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PDM systems offer functionality at the server side and the client side. Typical PDM systems provide
controlled access to document vaults using secured login. Individual designers have controlled access
ability to check-in/check-out documents to ensure changes are not being concurrently made resulting in
document conflicts. They also support workflow management and trigger for automated document
tracking and notification to design team members. PDM systems provide a means for flagging changes
for affected team members for document review, approval, and release. They provide storage of doc-
uments in a shared location with the ability to create specialized locations for projects and groups, and
they support the query and retrieval of documents based on richer document descriptions. They also
standardize revision schemes, which is essential for data management. In addition to enabling document
sharing, PDM systems are typically integrated closely with CAD software as integrated add-ons or
stand-alone applications. More about commercial PDM systems is discussed in Section 6.4.

6.3 Fundamentals of PDM
PDM forms the product information backbone for a company and its extended enterprise, which allows
the cross-functional team to contribute throughout the product design and development phase. In
addition to file management, PDM can be viewed as a data or information integration tool connecting
different functional areas. It ensures that the right data and information are available to the right person
at the right timedand more importantly, in the right form. In addition, PDM improves communication
and collaboration between groups of diverse functions and engineering expertise in the enterprise. The
area of application of a typical PDM system is shown in Figure 6.5 (CIMdata, 1998).

Although it is highly desirable that knowledge is accessible when a design decision is to be made,
in reality, knowledge is not directly available but is obtained by interpretation of information deduced
from analysis of data. In general, data is available to an organization in the form of observations,
computational results, and factual quantities. Interpretation, abstraction, or association of this data
leads to generation of information. Finally, knowledge is obtained by experiencing and learning from
this information and putting it into action (Owen and Horváth, 2002). In fact, looking at engineering

FIGURE 6.5 Application of a PDM System in an Organization (CIMdata, 1998).
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design from a teleological point of view, it can be said that the primary function of engineering design
research should be to transform empirical or rational knowledge into a form that can be used for
practical deployment (Horváth, 2004). Design information extraction and knowledge management is
an ongoing research topic. Interested readers are referred to excellent review articles as an intro-
duction, such as Chandrasegaran et al. (2013).

Our goal in this section is to provide readers with a fundamental understanding of PDM from the
context of e-Design. In Section 6.3.1, we discuss the product data model that describes the data and its
structure to be managed in support of e-Design. In Section 6.3.2, we discuss the basic functions of a
PDM system that supports the design team in managing the product data. In Sections 6.3.3 and 6.3.4,
we present the benefits that PDM offers and the impact of PDM to industry, respectively.

6.3.1 Engineering data models
Engineering data models, which consist of product data models and process data models, provide the
engineering team with a consistent and unified engineering data set that supports engineering activities
for product development. A product data model is evolving throughout the product development
process and beyond; for example, a revolution of CAD models of a high-mobility multipurpose
wheeled-vehicle (HMMWV) throughout the design phase is shown in Figure 6.6. On the other hand, a
process data model is relatively less involved.

6.3.1.1 Product data model
In general, the size and contents of the product data can be different from one product to
another, depending on many factors, such as the nature of the product being developed, the design
process employed, and the tools and technology adopted for the product development, among others.

From the data authoring perspective, product data can be categorized into three types: documents,
files, and data or parameters. Documents are usually authored by engineers, such as product
requirement and specifications, organizational structure of the product development team, major
milestone and workflow, reports, guidelines, standards, and manuals. Documents can be in the form of
Microsoft Word, PowerPoint, Excel, or Project files, or as Adobe PDFs. In addition, pictures and
videos in numerous formats are created to support visual aid of the product in the design phase. In
e-Design, a large amount of files are created by software tools. Geometric model files, including part
and assembly files, are created by CAD and exported in other formats, such as IGES (IGES, 2001) or
STL (en.wikipedia.org/wiki/STL_(file_format)), for numerous purposes. Simulation model files are

FIGURE 6.6 HMMWV CAD Model for Concept and Detailed Designs. (a) A 15-Part Concept Model, (b) An 18-Part

Model for Intermediate Design, and (c) A Detailed Design Model with More Than 200 Parts (Chang et al., 1998).
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created for engineering analysis, such as FEA, and the result files are generated by the respective FEA
or simulation software tools. In addition, toolpath files and machining model are generated using CAM
software. Data or parameters extracted from files or documents or entered by the product development
team are stored in the database, such as the BOM of the product extracted from the CAD model of the
product.

All these documents, files, and data must be structured and organized to support the needs of
product design, including product data model and process data model. There are many different ways
to structure and organize the data, as long as the data models are logical and facilitate the product
development team in accessing product information in a timely manner. One of the most common
ways to structure and organize product data is using the BOM s. For example, a BOM of the
HMMWV is shown in Figure 6.7, in which the product is broken down into parts and subassemblies.
Each entity is given a name (and identification number) and icon that links to more data and
information.

Data can be linked by using, for example, HyperText Markup Language (HTML) for creating web
pages and other information that can be displayed in a web browser. For example, the BOM shown in
Figure 6.7 is displayed in a scrollable window (shown in Figure 6.8a with each entity name imple-
mented as a hypertext). Once clicked, its associated data are displayed in the window below. For
example, if Suspension Assembly FR is clicked, its geometry is brought into a viewer (left window)
and its properties (e.g., mass properties) appear in the right window. Engineers may pan, rotate, and
zoom in/out the model in the viewer to gain a better understanding of the model geometry and its
constituent components. In addition, right-clicking an entity brings up its associated page for more
information. For example, right clicking the HMMWV 1025 at the top of the BOM in Figure 6.8a
brings up the product development page shown in Figure 6.8b. In this page, the introductory

HMMWV 1025 

…

Suspension assembly FR 

Gear hub asssembly 

Spring (non-CAD part) 

Lower control arm 

…

Top plate 

…

Bottom plate 

FIGURE 6.7 Example of Bill of Materials for an HMMWV.
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FIGURE 6.8 Sample Web-Browser Pages of PDM of a Product Data Model. (a) HMMWV CAD Model Page, and (b)

HMMWV Product Page.
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information about the design project, such as objective and assumption, are listed, together with videos
offering visual aid to the HMMWV physical model and the test course. In addition, an overall design
process is defined and shown in the bottom half of the page. Hypertext on the left connects to other
pages, such as connecting back to the CAD model page shown in Figure 6.8a.

A typical PDM system supports such product and process data models in someway. Even without a
commercial PDM system, implementing such web pages for support of PDM is not too difficult. For
those who took courses such as engineering multimedia, creating data management pages like those of
Figure 6.8 is generally straightforward. The model viewer on the lower left portion of the CAD model
page (Figure 6.8a) can be implemented using JT Viewer (http://www.plm.automation.siemens.com/
en_us/products/teamcenter/lifecycle-visualization/jt2go) or Virtual Reality Modeling Language
(VRML; en.wikipedia.org/wiki/VRML) viewers, for example. You may publish your solid models
(part or assembly) as JT or VRML models. These files can be stored on a website or emailed as an
attachment. Anyone can view the JT or VRML files by using a free plug-in to their browser, such as
Cosmo VRML Player for Windows; view3dscene for Windows, Macintosh, and Linux; or JT viewer
for JT models.

The BOM shown in Figure 6.7 is the most basic product data model, which provides information
that helps team members gain a first-level understanding of the product being developed at a given
time. In e-Design, the product data model should support follow-up activities, including engineering
modeling and analysis, manufacturing process and machining simulations, and design trade-offs. A
BOM is just a start, and a BOM alone is not sufficient to support all design activities.

How do we proceed with the e-Design paradigm from here? There are at least three options: (1)
using commercial CAD/CAE/CAM, (2) using commercial PDM, and (3) developing one’s own tool
and information integration infrastructure. The option of using commercial CAD/CAE/CAM suite is
for those who have access and are able to depend on the engineering capabilities offered in the
software for support of engineering design. Software suites, such as SolidWorks (with SolidWorks
Motion, SolidWorks Simulation, and CAMWorks), Pro/ENGINEER (with Pro/MECHANICA
Structure, Pro/Mechanism, and Pro/MFG), or CATIA (with FEA and CAM modules) may be used for
this option. In this case, the design team may proceed from CAD to CAE and CAM in a straight-
forward fashion because the transition from CAD solid models to CAE simulation or CAM toolpath
generation is seamless. There is no need to do anything extra when going forward to carry out CAE and
CAM activities. Most PDM is taken care of by the commercial software. This option is ideal for a
small project team who is dealing with relatively smaller-scale design projects, such as capstone
design projects for senior engineering students. The design team will have to manually organize the
product data beyond the analysis phase, such as conducting design changes across disciplines. One key
condition for using the commercial CAD/CAE/CAM software is that the CAE and CAM capabilities
offered must be able to support all engineering analysis requirements for the design problem at hand. If
this is not the case (e.g., the design problem involves structural analysis of engine mounts made of
rubber and none of the CAD/CAE/CAM suites offer FEA for rubber), then an FEA code that is capable
of supporting the required analysis, such as ABAQUS (www.3ds.com/products-services/simulia/
portfolio/abaqus/overview), must be employed. In that case, the CAD model of the engine mount
must be imported into ABAQUS (or other modeling tools, such as PATRAN or Hypermesh) for mesh
generation, and loads obtained from motion analysis must be converted into a format that can be
incorporated to the FEA model in ABAQUS for analysis. This approach is suitable for a design
problem that heavily involves engineering analysis.
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The second option is using commercial PDM (or PLM) software, such as Windchill from
Parametric Technologies Corporation (PTC) (www.ptc.com), to support product data integration
without a fully integrated CAD/CAE/CAM software suite. In this case, the design team will have to
manually handle simulation model generation based on the product data embedded in the CAD solid
models. For example, in order to create a motion simulation model using, for instance, ADAMS
(www.mscsoftware.com/product/adams) or DADS (www.lmsintl.com), the design team will have to
first organize the product CAD model into subassemblies or parts as individual bodies and collect
mass properties of individual bodies with their respective coordinate systems. Then, the team will
use the mass properties provided by CAD models to create motion simulation model using ADAMS
or DADS externally to the CAD software. Some software, such as ADAMS/Car (www.mscsoftware.
com/product/adamscar), offers templates that facilitate the creation of a motion model. This
approach is suitable for a design problem that is less involved with engineering analysis and more
dependent on the design process and data integration. An example of such an application is provided
in Section 6.6.2 as a case study, in which an integrated testbed for reverse engineering using
Windchill is discussed.

The third option is developing a tool and information integration infrastructure to support product
development, in which a customized software infrastructure is implemented to integrate CAD, CAE,
and CAM software and provide design trade-off and product management capabilities to meet specific
product development needs. This is certainly not a trivial task. However, this approach offers
maximum flexibility for a cross-functional team in product development. An example of such an
application is provided in Section 6.6.3, in which a software infrastructure of tool integration for
e-Design developed a few years ago is presented.

6.3.1.2 Process data model
In general, process management in a PDM system supports the engineering team in defining,
disseminating, coordinating, and tracking design activities. The design processes are often
described and modeled in a flow chart. The modeled workflow is then executed and the PDM
system manages the actual workflow, so that the right work is done at the right time with the right
information by the right person (Lee et al., 2010). The PDM system gives notifications to control the
activities. For example, a designed part that has not been approved yet by the management will not be
manufactured.

There are two types of workflows: static and dynamic. Static workflows are fixed; once they are
modeled and started, they have to be finished according to the model. Dynamic models can be
modified easily because usually there is a visual flow chart that can be used in a drag-and-drop style.
Once a dynamic model has been started, it can be changed if the process needs to be changed while the
workflow is in progress (Qiu and Wong, 2007). Older PDM systems usually apply the schematic static
workflow, whereas the newer systems use graphical workflow modeling. After modeling the workflow,
permissions are assigned to different users, allowing them to approve, release, or modify the
documents.

As discussed earlier, a PDM system also serves as a process data management tool. A logical way
to organize process data is associating the data with the design process. In general, design process can
be defined in different levels. One task, represented in one block in the process chart of a higher level,
can be expanded into more detailed tasks in the lower-level process, as illustrated in the upper box of
the web page shown in Figure 6.9. When an entity of a task is clicked, the task-associated data is
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displayed in the window below. For example, if a top-level task is clicked, the organizational structure
of the project team that is in charge of the task is displayed in a viewer (left window) and the task
assignments, personnel, and individual assignment and responsibility are displayed in the right win-
dow. Right-clicking an email address below the name of the team member brings a Microsoft Outlook
page for sending email to the person.

6.3.2 Basic functions of PDM systems
Although there is no clear consensus in industry and academia regarding the functionality of PDM
systems, many articles refer to CIMdata (1998) and Crnkovic et al. (2003) for the common denom-
inator. According to Crnkovic et al. (2003), the functionality of PDM systems can be grouped into two
categories: user functions and utility functions. The user functions allow users to interact with the
PDM system either as a user or as an author of information. The utility functions connect to the
network infrastructure and support user functions by providing interfaces between different operating
environments.

HMMWV Design Process Page 

This page contains process model of HMMWV for overall design.  

Level 1 process 

Level 2 process 

Process in multiple levels 

Click the entity to 
bring out the task 
information in the 
window below, 
including team 
organization (left) 
and task 
information (right) 

Right click email 
address to bring up 
MS Outlook for 
sending emails 

Task description: 
Increase stiffness of 
the Suspension by 10% 

Responsibilities: 
Team Leader: Joseph 
Hardwick 
Oversee the overall 
task performance, 
resources and progress 

Team Leader

Design group CAE group CAM
CAD engineer 
Scott Berman 
(email address) 

Drafter 
Mary Smith 
(email address) 

Structure eng 
John Walter 
(email addres 

Dynamic eng 
Ian Stock 
(email addres 

FIGURE 6.9 Sample Web-Browser Page of PDM for Process Data Model.
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6.3.2.1 User functions
These user functions include data vault and document management, workflow and process manage-
ment, as well as program management.

6.3.2.1.1 Data vault and document management
The core element in a PDM system, which is closely related to document management, is vault.
Vault, from a logical point of view, is a single place where all documents are stored. Typically, it is a
computer server (or group of servers) that physically stores the documents that are encompassed by
operation of PDM. The documents in vault are accessible only by PDM users through PDM client
functions. After the document is created on a computer, the operation “check-in” is performed,
which transfers the document from the client computer to the vault. From this point on, the man-
agement of the document is seized by PDM and all further actions involving this document have to
be performed by using the PDM client functions. If a team member wants to access this document,
the operation “check-out” should be performed. Documents stored in the vault can be reviewed
without checking out. An example of document processing using a PDM system is illustrated in
Figure 6.10.

Because a PDM system usually involves many users, there will be situations when two or more
persons want the same information at the same time. A PDM system controls the access to information
and to what extent the information is available. Therefore, another important aspect of document
management in PDM is version and status. In a typical PDM system, when a document is sent to the
vault by check-in operation, it receives the status of “checked-in,” meaning that the document is ready
for next actions. The first person to access the current information, such as a Word document, checks it
out and becomes the temporary owner of the information. If another person tries to access the same
information, the information will either be blocked or made available as a read-only copy. This state is
maintained until the first person checks the original information back in again. After a cycle of pro-
cessing, the document status can be changed to “Released,” indicating that document obtained a
satisfactory status and is ready for general use. The history of changes, including dates, persons, etc.,
together with all versions that were created during such a cycle, are collected by the PDM system. An
example of the cycle is illustrated in Figure 6.11.

Vault 

Designer A 
Designer B 

Designer C 

Check-in
Check-out 

Check-in

Review 

FIGURE 6.10 Example of Document Processing in a PDM System.
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6.3.2.1.2 Workflow and process management
Workflow and process management is used to define and control the workflows and information flows,
such as engineering change procedures and release procedures. In PDM workflow management, these
processes can be modeled and managed, allowing automated distribution of the right information to
the right users. Discussion of Figure 6.9 presents a practical implementation for work and process
management.

6.3.2.1.3 Program and project management
Program management connects the product data with project data, thus allowing resource allocation
and project tracking. In this way, the projects using a specific product or part can be found. Program
and project management issues might involve planning and work performance control. Project leaders
can overview the effort and performance of a project team and check if the progress is within the time
schedule.

6.3.2.2 Utility functions
Underlying those user functions are the utility functions. They are connected to the network infra-
structure, and insulate the end user from that. The utility functions provide interfaces between different
operating environments and include communication and notification, data transport and translation,
image services, administration, and application integration.

6.3.2.2.1 Communication and notification
Within an organization, different users are interested in different information. PDM systems can
provide notification features that inform certain users when a specific event occurs (e.g., a task is
finished or the project state has changed), in addition to initiating and organizing web meetings. The
users who are to be informed about the event can be connected to roles and assignments of the in-
dividual team members. The notification is commonly sent as an email.

Check-in

Check-out 

Check-in

Release

Designer A creates 
document 

Designer B checks 
out and changes 

document (status: 
checked-out)

Designer C 
reviews and 

releases document 

FIGURE 6.11 Document Status and Versions during Processing in a PDM System.
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6.3.2.2.2 Data transport and translation
Sometimes, data need to be transported from one subgroup to another. On many occasions, data need
to be translated from one engineering tool to another. These tools may not support the same data
formats. By providing translation service, a PDM system can overcome this problem. The translation
can be performed manually or automatically. More about product data exchange and CAD model
translations is discussed in Section 6.5.

6.3.2.2.3 Image services
In the product development process, CAD and different engineering tools are used to model a product.
For easier access to the product model and information, the PDM system provides tools or add-ons
that, for instance, allow models stored in a CAD system to be viewed from the PDM system.
Model viewers discussed in Section 6.2 represent a typical scenario of the image service function in
PDM system.

6.3.2.2.4 Administration
Because PDM systems are quite extensive, they require a lot of administration. In addition to the usual
administration tasks such as installation, configuration, maintenance, user authorization, role man-
agement, and data backup, the PDM administrator defines workflows, translations, and tailors the
system for the company.

6.3.2.2.5 Tool integration
In PDM, it is important to collect all data in one location in order to avoid data inconsistency. The
integration between engineering tools and the PDM system is important to enable this. In Section 6.3.1,
three options were discussed to address the integration between CAD/CAE/CAM and the PDM system.
In Section 6.6.3, we present a software infrastructure that supports tool integration for e-Design.

6.3.3 Benefits of PDM systems
In general, organizations that successfully implement PDM can achieve multiple advantages in terms
of productivity and competitiveness. The benefits can be summarized as follows (CIMdata, 1998;
Miller, 1998).

• Collaboration between design team members. PDM software provides a virtual workspace in
which design team members can store and share documents related to projects. Additionally,
interdisciplinary collaboration between designers, marketing, and manufacturing is supported. A
PDM system can lead to collaborative development of new products, as well as improvements on
existing products.

• Reduced product development cycle time. Due to the increased collaboration with all areas of an
organization and its supply chain, as well as the easy access to product information, the product
development time can be greatly reduced. This enables organizations to respond to the market
with greater effectiveness and consistently provide their customers with new and initiative
products. In addition, when properly implemented, PDM can simplify many day-to-day user
operations by managing and automating routine tasks, such as searching for drawings, tracking
approvals, and completing status reports. This improvement dramatically decreases the user’s
non-value-added time.
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• Workflow and project management. Project management is made easier using a PDM system
because all those involved in the project have access to the same information and can work with a
common product model. A PDM system also allows project managers to track the progress of a
project more effectively and therefore ensure that the work being carried out is correct, on
schedule, and on target.

• Improved life cycle design. The information captured within PDM systems is increasing from
solely a CAD focus to include several engineering domains, and it supports easy access to
information on new product development. It allows manufacturing staff and production engineers
to access design information at a much earlier stage of the product development, hence making it
easier for problems to be identified earlier rather than later.

• Supply chain collaboration. PDM systems are considered to have a strong impact on supply chain
relationships by linking subcontractors, vendors, consultants, partners, and customers and giving
them access to the same information. PDM systems can also act as a data store for internally
developed parts and external parts available from suppliers. By using a PDM system’s database of
existing parts, a designer can eliminate duplicate work and therefore considerably reduce
development time and cost.

6.3.4 Impact to industry
As mentioned earlier, the automotive and aerospace industries are the biggest adopters of PLM. The
high degree of penetration of PLM in the automotive and aerospace industries is due to the fact that
their products have long life cycles, are very complex, and have nearly no possibility of physical
prototyping (Liu and Xu, 2001). We briefly mention two notable success stories in using PDM or PLM
for product or project development: Boeing 777 and Ford C3P; both are extracted mostly from
Caldwell and Mocko (2008).

As reported by Caldwell and Mocko (2008), Boeing began using 3D solid modeling software and a
PDM system during the design of the 777 jet aircraft. Previously, Boeing used two-dimensional (2D)
modeling software to design its airplanes, which required many stages of design of parts and sub-
systems of the airplane in order to ensure that all components fit together properly. Boeing used three
stages of mock-up before producing a final design; even with three rounds of mock-ups, the final
design would have parts with mismatched geometries. For the design of the 777 jet aircraft, Boeing
implemented a new 3D CAD system, which consisted of CATIA and Electronic Preassembly Inte-
gration (EPIC) on CATIA. These two programs helped Boeing eliminate mock-ups by allowing parts
to be designed and assembled together in the computer. This allowed Boeing to ensure that part ge-
ometries would match up properly. By converting to a 3D CAD system with assemblies, Boeing was
able to speed up its design process and eliminate many errors. Boeing also took advantage of the all-
computer design by using a PDM system. Boeing stored all of its CATIA files on the world’s largest (at
the time) grouping of IBM mainframe computers in Bellevue, Washington. This allowed companies in
Japan, the United States, and the United Kingdom who were working with Boeing to access the CAD
files at any time. These suppliers, therefore, were aware of changes made to the design very soon after
the changes were made. The implementation of this new system allowed Boeing to reduce engineering
change requests by 90%, reduce cycle time for these requests by 50%, reduce material rework by 90%,
and improve fuselage tolerances by 5000%.
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Another well-known story is the C3P initiative at Ford Motor Co. As reported by Caldwell and
Mocko (2008), Ford Motor Company implemented a PDM system worldwide in the 1990s. It was
part of a new CAD initiative that Ford called C3P, an acronym for CAD/CAM/CAE/Product In-
formation Management (PIM). PIM is a Ford-specific term for PDM. Although this project was
called C3P, Ford’s focus in this endeavor was on the PDM system. This project began in 1996; by
mid-1998, 16 vehicle programs had already begun using the new system. Ford’s plans were to use the
PDM system worldwide, so that all of its operations and suppliers accessed CAD files that were
stored in Dearborn, Michigan. Ford’s C3P program was a $200 million deal with SDRC, which
included both software and services. Before this deal, Ford had used other CAD and PDM systems,
including a PDM system developed in-house. Ford experienced the obvious improvement, which
was a faster time-to-market of its products. Engineering efficiency rose around 30–40% due to new
solid modeling capabilities. Prototype costs decreased by 40–50%, saving hundreds of millions of
dollars. Late changes were reduced by 50%, and programs were able to be completed in less than 2
years. Ford was able to extend the benefits of C3P beyond the design of the vehicle itself. They used
computer programs to analyze the solid models in order to determine a vehicle’s manufacturability
within an existing plant. In one case, Ford was able to prevent a $60 million tooling modification that
would have been required had the design not been analyzed ahead of time. Ford’s C3P program was a
success that continues today. Thus, by implementing a PDM system, Ford was able to reduce time-
to-market of new vehicles, increase engineering efficiency, reduce prototype costs, and reduce late
changes to parts.

6.4 PDM Systems
From the mid-1980s through the late-1990s, we saw the development of many capable PDM systems,
including iMAN from UG Solutions, Metaphase from SDRC, Optegra and Windchill from PTC,
MatrixOne, Pro/PDM and Pro/Intralink from PTC, ENOVIA from Dassault Systèmes, and Workgroup
PDM and Enterprise PDM from SolidWorks. Since that time, we have seen both company and product
consolidation. UG Solutions acquired SDRC, which was in turn acquired by Siemens. Their respective
products were combined to create TeamCenter. ComputerVision was acquired by PTC and their
collective products were integrated to produce Windchill. Dassault Systèmes acquired both MatrixOne
and SolidWorks. MatrixOne lives on as Enovia.

There is currently a multitude of PDM products available on the market. Their popularity is also
steadily increasing mainly due to quicker and easier implementation. Some are offered by CAD
vendors who have reinvented themselves as PLM software companies. This is meant to indicate that
they provide not just design and manufacturing software products, but services and solutions that
integrate product development into an enterprise. In most cases, a tight integration exists primarily for
the CAD system developed by the same software provider. PDM systems currently available on the
market include, among others, AutoDesk ProductStream, ENOVIA Smarteam, PTC Windchill,
Siemens UGS TeamCenter, and SolidWorks Enterprise PDM. Table 6.1 depicts some PDM systems
and the primarily supported CAD system offered by the same vendor. In addition to the PDM (or PLM)
offered by CAD vendors, there are number of popular PLM software developed by non-CAD vendors,
such as SofTech, Arena, and so forth.
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In general, systems offered by CAD vendors built their PDM with a strong connection to product
data models created in CAD. Data sharing, such as BOM built upon the model tree of the CADmodels,
is a natural approach. In addition, they facilitate engineering collaboration by taking the advantage of
the existing fully integrated CAD/CAE/CAM suite of existing software product line. However, such
systems are usually less flexible in terms of data integration or exchange with other engineering tools.
On the other hand, systems offered by non-CAD vendors are more flexible and more general. For
example, Arena Cloud PLM was developed in support of general engineering products without tying it
with any specific mechanical CAD software. However, such software often requires more effort in
creating product data. It offers strong data management capabilities but relies on external engineering
capabilities for product design.

6.4.1 Systems offered by CAD vendors
In this subsection, we briefly mention prominent commercial PDM systems offered by CAD vendors,
including AutoDesk ProductStream, ENOVIA Smarteam, Windchill, and Enterprise PDM.

6.4.1.1 AutoDesk� ProductStream� of Autodesk Inventor
AutoDesk� ProductStream� is the major software module that supports a design team in organizing,
managing, and automating key design and release management processes (AutoCAD, 2009). With this
software, the design can be reviewed and approved before releasing it to manufacturing. The software
stores and manages work-in-progress design data and related documents with data management tools
for workgroups (see sample screen in Figure 6.12a). Teammembers can accelerate development cycles
and increase their company’s return on investment in design data by driving design reuse. In addition,
AutoCAD offers Balloons and BOM, which use standards-based balloons and part lists (see
Figure 6.12b), and automatically update the BOM to seamlessly track any changes, which helps to
keep teams on schedule by reducing costly breaks in production due to incorrect part counts, iden-
tification, and ordering.

6.4.1.2 ENOVIA Smarteam of CATIA
Dassault Systèmes’ solutions for PLM include two products categories: ENOVIA and Smarteam.
ENOVIA solutions include PDM, intellectual property life cycle management, virtual product design,
collaboration solutions, and configured digital mock-up. Smarteam for life cycle and PDM enhances
and accelerates the proliferation of product knowledge and business processes across the enterprise
and product value chain with tighter CAD integrations.

Table 6.1 Available PDM Systems and the Corresponding CAD Systems

PDM System Corresponding CAD System

AutoDesk ProductStream Autodesk Inventor

ENOVIA Smarteam CATIA

PTC Windchill Pro/Engineer

Siemens UGS TeamCenter Siemens UGS NX

SolidWorks Enterprise PDM SolidWorks
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One of the key advantages of ENOVIA Smarteam is that the system provides collaborative of-
ferings focused on product development processes supporting design, engineering, and enterprise
activities (Dassault Systèmes, 2013). Design Collaboration enables dispersed design teams to work in
collaboration in a single or Multi-CAD environment, to innovate new products and to reuse existing
ones for faster time-to-market. Engineering Collaboration seamlessly combines cross-functional en-
gineering-based activities throughout the product life cycle into a unified environment for effective
data management and sharing among various organizational roles. Enterprise Collaboration provides a
PLM solution throughout and across the extended enterprise, including the value chain. Supply Chain
allows companies to leverage supply chain capabilities throughout the product life cycle and make
their suppliers an integral part of product development.

6.4.1.3 Windchill by PTC
Windchill from PTC is considered to be one of the most advanced PDM systems available. It combines
the power of client–server technologies with the implementation, manageability, and usability benefits
of the web. It provides complete support for managing and communicating information about product
structures and changes throughout the product life cycle. Windchill is built from scratch using all
modern web technologies, and it is fundamentally based upon standard Internet, web, Java, and Oracle
technologies at all levels of its architecture. Hence, Windchill claims their product to be “web-centric”
as opposed to other “web-enabled” products.

6.4.1.4 TeamCenter by Siemens UGS NX
TeamCenter connects team members throughout the life cycle with a single source of product and
process knowledge. TeamCenter’s comprehensive portfolio of end-to-end PLM solutions gives users
the flexibility to choose the right mix of solutions for product development needs.

FIGURE 6.12 AutoDesk� ProductStream�. (a) Sample Screen Shot, and (b) BOM Shown in Standards-Based

Balloons and Part Lists. Figure courtesy of http://203.53.66.237/Data/Attachments/AutoCAD%20Mechanical%

202009%20Detail_HR.pdf (AutoCAD, 2009).
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TeamCenter’s engineering process management solution allows users to integrate company’s
global engineering teams by bringing together the product designs from all sites within a single PDM
system. Team members can capture, manage, and synchronize product design data, then facilitate
engineering change, validation, and approval processes. TeamCenter supports NX, Pro/ENGINEER,
CATIAV5, AutoCAD, Inventor, Solid Edge, and SolidWorks.

6.4.1.5 SolidWorks Enterprise PDM
SolidWorks Enterprise PDM (EPDM) provides an easy way for designers to collaborate on product
designs without worrying about version control or data loss. It stores CAD models and supporting
documents in an indexed central repository that tracks versions and automates workflows to eliminate
wasteful repetition. SolidWorks Enterprise PDM simplifies the process of managing design changes
while improving product reuse by integrating within SolidWorks, AutoCAD, Autodesk Inventor, Pro/
ENGINEER, and Windows Explorer.

6.4.2 Systems offered by non-CAD vendors
In this subsection, we briefly mention commercial PDM systems that are not offered by CAD vendors,
including SofTech ProductCenter� PLM (www.softech.com) and Arena Cloud PLM (www.
arenasolutions.com).

6.4.2.1 SofTech ProductCenter� PLM
ProductCenter (sample screen capture shown in Figure 6.13) is a commercial software product that is
an integrated suite of PLM software for managing product data. The software was engineered for the
Microsoft Windows and UNIX operating systems. Along with core applications, it includes localized
and web-based services. ProductCenter is suited for managing various types of CAD/CAE/CAM data,
but it can be used for many forms of data management and product management. ProductCenter makes
the use of spreadsheets for BOM management obsolete and provides organization for parts with
various part types and attributes; in addition, all information managed can be accessed through the
ProductCenter Hierarchy Explorer. This feature helps to facilitate small to mid-size manufacturers
with a way to centralize product data, control the engineering change process, and share BOMs with
suppliers. ProductCenter can be integrated with other CAD/CAE/CAM tools to help ease the man-
agement of product data from design to manufacturing.

6.4.2.2 Arena Cloud PLM
Arena pioneered cloud PLM applications. The company’s products, including BOMControl, PartsList,
and PDXViewer, enable engineering and manufacturing teams and their extended supply chains to
speed up prototyping, reduce scrap, and streamline supply chain management. Arena cloud PLM
applications simplify the BOMs and change management for companies of all sizes, and they offer the
right balance of flexibility and control at every point in the product lifecycledfrom prototype to full-
scale production. These cloud-based applications enable manufacturers to manage BOMs, engineering
change orders, product data exchange (PDX), and other key manufacturing files securely and
efficiently.

PLM in the cloud is an internet-based system for managing a product and its associated information
from concept to end of life. PLM in the cloud is growing in popularity with manufacturers around
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the world as a way to manage the stages of product development in order to collaborate, track, and
regulate changes to the product. BOMControl (see Figure 6.14) keeps BOM data centralized,
controlled, and up-to-date, resulting in fewer errors, less scrap and rework, higher quality, and better
cost control.

6.5 Product data exchange
The frequent needs from product data exchange (PDX) encountered in product development involve
solid model translations between CAD software systems, for both part and assembly levels. In
general, for part model translation, the established approach both in theory and in practice is geo-
metric data exchange (GDE) and feature data exchange (FDE). In GDE, the boundary representation
(B-rep) of the object is translated from a source to a target CAD system (Spitzy and Rappoport,
2004). The resulting part in the target CAD system is lumped into one single entitydthat is, one single
solid feature in the model tree of the target CAD system, often called dumb geometry. Individual solid
features and parametric data of the solid model created in the source CAD system are lost in the

FIGURE 6.13 Sample Screen Shots of ProductCenter (en.wikipedia.org/wiki/ProductCenter).
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translation. On the other hand, in FDE, given a parametric history graph (or model tree) in a source
system, the goal is to construct a graph in the target system that results in similar geometry while
preserving as much parametric information as possible. FDE retains design intelligence and allows
modifications at the receiving. However, it is not always technically possible to successfully exchange
every feature. In the context of e-Design, FDE is much desirable than GDE when a design change is
anticipated for the CAD models being translated.

In assembly model translation, which is generally more involved than part translation, mating
constraints defined using geometric entities of solid features must be faithfully retained from the
source to target CAD systems. For example, a concentric mating constraint is often defined by
selecting an outer surface of a cylinder (e.g., on an extrude feature of the mating part) and an inner
surface of a hole (e.g., an extrude cut feature of the base part). As a result, translating an assembly
model, in which its constituent parts are translated using GDE approach, is fundamentally deficient
because feature information is not retained in translation. Even if features and parametric information
are retained for the constituent parts, assembly model translation may not be as successful as expected.
This is because FDE only results in similar geometry while preserving as much parametric information
as possible, implying that feature information may be altered or incomplete. Therefore, in this section,
we mainly focus on part solid model translation and only briefly mention assembly model translations
using simple examples. More details about part and assembly model translations can be found in
tutorial lessons of Projects S1 and P1 for SolidWorks and Pro/ENGINEER, respectively.

In this section, we start by introducing the viable options in support of CAD model translations in
Section 6.5.1. In Section 6.5.2, we discuss direct model translations; both part and assembly examples
are included. In Section 6.5.3, we discuss data exchange using neutral formats, including two

FIGURE 6.14 Sample Screen Shots of Arena Cloud Product Life Cycle Management (en.wikipedia.org/

wiki/ProductCenter).
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important standards for part translationdIGES and STEP. In Section 6.5.4, we briefly mention several
third-party model translation software tools. In Section 6.5.5, we discuss a newly developed tech-
nology, solid feature recognition, which offers a better alternative for FDE.

6.5.1 Data exchange options
In general, there are three practical options of translating data from one CAD system to another: direct
model translation, neutral file exchange, and third-party translators, as illustrated in Figure 6.15, in
which System A is called the source and System B is called the target system.

Major CAD systems, such as SolidWorks, Pro/ENGINEER, NX, Unigraphics, and CATIA, directly
read and/or write other CAD formats, simply by using File Open and File Save As options
(Figure 6.15a). Because most CAD file formats and geometric modeling kernels are proprietary, this
option is limited to selected CAD systems.

Another common method of translation is via an intermediate neutral format, as illustrated in
Figure 6.15b. The source CAD system exports out to this format and the target CAD system reads in
this format and converts data into its native form. Some formats are independent of the CAD vendors,
being defined by standard organizations, such as IGES (IGES, 2001) and STEP (Nell, 2001). Others,
such as VDA (en.wikipedia.org/wiki/VDA_6.1), although owned by a company, are widely used and
are regarded as quasi-industry standards.

There are a number of companies that specialize in CAD data translations and provide software
that can read one system and write the information in another CAD system format (Figure 6.15c).

FIGURE 6.15 Three Methods of Data Exchange. (a) Direct Model Translation, (b) Neutral File Exchange, and (c)

Third-Party Translators (Stokes, 1995).
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These systems have their own proprietary intermediate format, some of which will allow reviewing the
data during translation. Some of these translators work as stand-alone systems, whereas others require
one or both of the CAD systems to be installed on the translation machine, as they use code such as
application protocol interfaces (APIs) from these systems to read and write the data.

Because each CAD system has its own method of describing geometry, both mathematically and
structurally, there is always some loss of information when translating data from one CAD system to
another. The intermediate file formats are also limited in what they can describe, and they can be
interpreted differently by both the source and target systems. It is therefore important in translating
data between systems to identify what needs to be translated.

If the geometric model is required for the downstream process without anticipated design changes,
then only the geometric description of the model needs to be translated. However, there are levels of
detail. For example, is the data wireframe, surface, or solid sufficient? If a design change is anticipated,
the feature information and model tree must be preserved between systems. In addition to geometric
information, retaining the assembly structure may be required. In general, different data translation is
required for different engineering activities.

From an e-Design perspective, GDE is generally sufficient, except for parts that anticipate
changes, in which feature and parametric data must be available. When a fully integrated suite of
CAD/CAE/CAM is not available or if engineering capabilities offered by certain software tools are
not adequate, model translation is unavoidable. For example, to support motion analysis, geometry
and coordinate systems of a solid part and subassembly are sufficient to support accurate calculation
of mass properties and kinematic joint locations. To support finite element analysis, accurate solid or
surface models of the respective CAD models are usually sufficient for finite element mesh gener-
ation. For CNC toolpath generation, solid part in CAD is directly useful. For some cases, even a
surface model that represents the design surface (the part surface to which machining takes place) is
sufficient, such as when using MasterCAM. In general, GDE is sufficient to support CAE and CAM
activities.

6.5.2 Direct model translations
As the engineering capabilities offered by major CAD systems progresses, CAD models can be
translated to and from more CAD systems. In order to support model translations, a target CAD system
must be able to open the model file of the source system, parse data stored in the native format of the
source system, interpret the data, and map data entities to convert them into the format of the target
system.

In this subsection, we offer a more in-depth discussion on the subject by importing parts and as-
sembly created in Pro/ENGINEER to SolidWorks, as well as presenting examples of importing
SolidWorks parts and assembly to Pro/ENGINEER.

6.5.2.1 Importing Pro/ENGINEER parts to SolidWorks
SolidWorks offers two options for importing CAD models: importing solid features and
importing geometry. We use the gear housing shown in Figure 6.16a as an example to illustrate
both options. As shown in the Pro/ENGINEER model tree of Figure 6.16a, there are eight datum
features and 14 solid features. SolidWorks will try to import these 14 solid features from Pro/
ENGINEER.
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Using the option of importing solid features, SolidWorks translates 12 out of 14 features.
The converted model and features listed in the browser are shown in Figure 6.16b. As shown in
Figure 6.16b, there is one dangling sketch, Sketch8, representing the unrecognizable solid
feature in addition to the chamfer feature. In addition, the back plate (Extrude1 in the browser) is
recognized incorrectly. In general, SolidWorks is capable of importing some parts correctly and
completely, especially when the solid features are relatively simple (but apparently not this gear
housing part).

FIGURE 6.16 Part Import from Pro/ENGINEER to SolidWorks. (a) Gear Housing Part in Pro/ENGINEER, (b) The

Translated Solid Model and Features in SolidWorks Using Option of Importing Solid Features, and (c) The

Translated Solid Model in Solidworks Using Option of Importing Geometry.
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If we take a closer look at any of the solid features translated, such as Extrude3, the sketches (e.g.,
Sketch3 of Extrude3) of the solid features do not have complete dimensions. A (�) symbol is placed in
front of the sketch, indicating that the sketch is not fully defined.

Apparently, this translation is not satisfactory. Unfortunately, this translation represents a typical
situation you will encounter for a large majority of the parts. In many cases, it may take a lesser effort
to repair or recreate wrongly recognized or unrecognized solid features. However, when you translate
an assembly with many parts, the repairing effort could be substantial.

Importing parts using the option of importing geometry is more straightforward, which has a higher
successful probability than that of importing solid features. The model is imported as a single entity
Imported1; a dumb geometry appeared in the browser (see Figure 6.16c). As mentioned earlier, there is
no parametric solid feature with dimensions and sketch converted. However, the geometry converted
seems to be accurate. All the geometric features in Pro/ENGINEER were included in this imported
feature. This translation is considered successful. If we do not anticipate making any change to the gear
housing, this imported part is satisfactory.

6.5.2.2 Importing Pro/ENGINEER assembly to SolidWorks
We import the input gear assembly shown in Figure 6.17a using both options. As shown in the left of
Figure 6.17a (Pro/ENGINEER model tree), there are 11 parts in this assembly.

FIGURE 6.17 Assembly Import from Pro/ENGINEER to SolidWorks. (a) Input Gear Assembly in Pro/ENGINEER, (b) The

Translated Assembly in SolidWorks Using Option of Importing Solid Features, and (c) The Translated Assembly in

SolidWorks Using Option of Importing Geometry.

294 CHAPTER 6 Product Data Management



Using the option of importing solid features, parts are not completely converted, as shown in
Figure 6.17b. Major solid features are missing, such as pinion 1 (wheel_gbox_pinion_1s<1>), where
most solid features are not converted. In fact, there are only two extrude features successfully im-
ported. The remaining entities are mostly sketches. Some parts seem to be imported fine. However, the
Mates branch in the browser is completely empty, implying that no assembly mates have been
imported.

Apparently, this translation is not satisfactory. A nontrivial effort will have to be devoted to
reconstructing the solid features (therefore, solid models) as well as the final assembly.

The option of importing geometry is also more straightforward for assembly. In fact, the assembly
and all 11 parts seem to be correctly imported, as shown in Figure 6.17c. By expanding any of the part
listed in the browser, such as the gear (wheel_gbox_pinion_1s<1>), we see an imported feature listed,
as depicted in Figure 6.17c. Again, there is no solid feature converted in any of the parts. In addition,
the Mates branch is empty.

If we do not anticipate making any change to this input gear assembly, this imported assembly is
satisfactory, except it does not have any assembly mates. Assembly of all 11 parts (maybe more, for
other cases) will be a nontrivial effort. If you do not anticipate making changes in how these parts are
assembled, you may merge all 11 parts into a single part, instead of assembling those using mating
constraints.

A step-by-step detail of importing the Pro/ENGINEER part and assembly can be found in the
tutorial lesson S1.3. You may go over the lesson to learn more about the model importing capabilities
offered by SolidWorks.

6.5.2.3 Importing SolidWorks parts to Pro/ENGINEER
The capabilities of importing SolidWorks models offered by Pro/ENGINEER are primitive.
Only geometry data is imported without parametric feature information. We use a simpler
crankshaft example shown in Figure 6.18a to illustrate the translations. As shown in the SolidWorks
browser of Figure 6.18a, there are three solid features, all boss-extrudes. After opening the Solid-
Works model directly from within Pro/ENGINEER, the part is imported as one single feature
(Imported Feature ID 4), as shown in Figure 6.18b. It is a model of dumb geometry. The part is not
changeable.

(a) (b)

Imported 
geometry

FIGURE 6.18 Part Import from SolidWorks to Pro/ENGINEER. (a) Crankshaft Part in SolidWorks, and (b) The

Translated Solid Model in Pro/ENGINEER.
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6.5.2.4 Importing SolidWorks assembly to Pro/ENGINEER
We import a simple slider-crank assembly shown in Figure 6.19a from SolidWorks to Pro/ENGI-
NEER. As shown in the SolidWorks browser (left of Figure 6.19a), there are four parts in this as-
sembly. The parts are parametric and assembly mating constraints are properly defined. After opening
the SolidWorks assembly directly from within Pro/ENGINEER, the assembly is imported as four parts,
as shown in Figure 6.19b. The assembly and parts seem to be fine. However, no mating constraints are
imported properly. As a result, dragging a part (e.g., the piston) leads to a disassembled model shown
in the lower half of Figure 6.19b. In addition, individual parts are imported as models of dumb
geometry.

It is apparent that the capabilities offered by Pro/ENGINEER in importing SolidWorks models are
not desirable. More details about the step-by-step process of importing the SolidWorks part and as-
sembly discussed can be found in the tutorial lesson P1.3.

6.5.2.5 Data exchange between CAD and CAE/CAM
In addition to direct model translation between CAD systems, some CAE and CAM software reads
CAD native files directly. For example, ANSYS reads CATIA and Pro/ENGINEER files, in addition to
IGES, NX, SAT, and Parasolid. MasterCAM reads AutoCAD, Pro/ENGINEER, Rhino, SolidWorks,
Unigraphics, and CATIA, in addition to IGES, STEP, SpaceClaim, ACIS, Parasolid, and VDA. The
success rate of importing the native CAD models into CAE and CAM software is generally very good
because the translation mostly involves parts only and requires only geometric data; in general no
parametric features are involved.

FIGURE 6.19 Assembly Import from Pro/ENGINEER to SolidWorks (a) Slider-crank assembly in SolidWorks, and (b)

The translated assembly in Pro/ENGINEER.
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6.5.3 Neutral file exchange
Themost commonly employed neutral files for CADmodel translations are IGES and STEP application
protocols (APs). In addition, several geometric kernels, such as ACIS (www.spatial.com) and Parasolid
(www.eds.com/products/plm/parasolid), are becoming popular in serving as neutral formats for CAD
model translations. Other formats commonly supported, such as STL and VRML, simplify true
geometric data into faceted boundary representation for different purposes. Moreover, a data eXchange
file (DXF, en.wikipedia.org/wiki/AutoCAD_DXF) is the de facto format for drawing conversion, but
less in support of solid model translation. In this subsection, we briefly introduce IGES and STEPAPs
with more detailed file formats and data structure included in appendices. Note that practically none of
the neutral files are capable of supporting data exchange for parametric solid features.

6.5.3.1 IGES
The IGES (Initial Graphics Exchange Specification) project was started in 1979 by a group of CAD
users and vendors, including Boeing, General Electric, Xerox, ComputerVision, and Applicon, with
the support of the National Bureau of Standards (now known as NIST) and the U.S. Department of
Defense (DoD). Soon after, it was adapted and recognized by American National Standard Institute as
a standard tool format. Consequently, IGES has become an acceptable and widely used neutral format
for translator development by many CAD/CAM software vendors. After the initial release of STEP
(ISO 10303) in 1994, interest in further development of IGES declined, and Version 5.3 (1996) was the
last published standard. IGES has been used in the automotive, aerospace, and shipbuilding industries.
These part models may have to be used years after the vendor of the original design system has gone
out of business. IGES files provide a way to access this data decades later. The structure of the IGES
file, data format, and simple examples are provided in Appendix A for further reference.

6.5.3.2 STEP (ISO 10303)
The work with the ISO 10303 standard, informally called STandard for the Exchange of Product model
data (STEP), was initiated in 1984 with the goal to standardize exchange of product data between
product life cycle systems. After 10 years of work, the first parts of the STEP were published in 1994.
The standard is a very comprehensive set of specifications, covering many different product types
(electronic, electromechanical, mechanical, sheet metal, fiber composites, ships, architectural, furni-
ture etc.) and many life cycle phases (design, analysis, planning, manufacturing, etc.). Using
STEP-supporting tools, data can be exchanged by converting it from the native format of the source
CAD system to the neutral ISO 10303-11 format, also known as an EXPRESS schema. Then, the target
system imports the schema and converts it to its own native format. The EXPRESS schema defines not
only the data types but also relations and rules applying to them. This makes it possible for the target
system to validate the schema. EXPRESS is a textual and graphical data modeling language included
in the STEP standard.

The STEP format is organized as a series of documents (referred to as “parts” in STEP termi-
nology), with each part published separately. There are currently six series of STEP parts. The most
important parts from an application perspective are the 200-series, also called APs, through which
STEP meets the real world. The APs are the top parts, produced to meet specific data exchange re-
quirements for a particular application. They cover a particular application and industry domain;
hence, they are most relevant for users of STEP. AP202, AP203, and AP214 have reached the status of
an International Standard (IS) version. Other APs include AP202DIS, AP209DIS and AP214DIS
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(Draft International Standard), and AP214 CD II (Committee Draft). A complete list of APs can be
found in Appendix B.

Among the APs, AP203 (configuration-controlled 3D designs of mechanical parts and assemblies)
and AP214 (core data for automotive mechanical design processes) are the most popular and widely
supported for CAD data exchange. AP203 defines the geometry, topology, and configuration man-
agement data of solid models for mechanical parts and assemblies. This file type does not manage
colors and layers. AP214 has everything an AP203 file includes, but adds colors, layers, and geometric
dimensioning and tolerance. AP214 is considered an extension of AP203 by many users.

It is worth noting that the initial release of ISO 10303 was aimed entirely at the exchange of explicit
models, essentially a B-rep model, defined in terms of geometry, possibly with additional topological
information providing connectivity relationships between geometric entities. This is because the state
of the art was B-rep during the mid-1980s, when STEP development commenced. A B-rep model
provides a complete representation of a solid shape, but retains no details of how that shape was
created. As a result, no model tree and parametric feature information is retained using STEP for
model translation. ISO 10303-108 on parameterization and constraints for explicit geometric product
models (ISO, 2005) is a new STEP resource providing representations of parameters, explicit con-
straints, and explicit 2D sketches or profiles. More about STEP parts and APs can be found in
Appendix B.

6.5.4 Third-party translators
Neutral formats such as IGES and STEP support part geometry translation well. Third-party
translators focus on feature and parametric data translation as well as assembly. In this subsec-
tion, we briefly mention two software tools that offer better solutions to CAD model translation:
Proficiency (www.transcendata.com/products/proficiency) and TransMagic (www.transmagic.com/
products/features).

6.5.4.1 Proficiency
Proficiency is a feature-based translation solution developed by International TechneGroup Inc.
(www.iti-oh.com), headquartered in Milford, OH. Proficiency enables the transfer of design intelli-
gence between major CAD systems, such as geometry, features, sketches, manufacturing information,
metadata, assembly information, and drawings in the conversion process. Accurate and usable models
are achieved with up to 95% automation, as claimed by the software vendor.

6.5.4.2 TransMagic
TransMagic offers translators that convert CAD files from one native file format to another. During the
translation, TransMagic performs “geometry mapping”, mapping from one CAD kernel to another.
TransMagic avoids what are known as “stitching errors” by repairing geometry via techniques such as
correcting slightly overlapping or misaligned surfaces, removing duplicate control points, and
duplicate vertices. To minimize translation errors, TransMagic typicallydbut not alwaysdtranslates
directly from one native CAD kernel to another. Still, “stitching errors” (gaps and overlaps) can occur
while trying to import the file and reinterpret geometry. TransMagic is available as a stand-alone
program. It is also available as a plug-in for many CAD programs so that the Open and Save dialog
boxes are extended with TransMagic’s functionality.
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6.5.5 Solid feature recognition
Feature recognition (FR) has been an active research topic for decades. Earlier study focused on
recognizing manufacturing features, such as pockets, holes, slots, and so forth, created in CAD solid
models (Shah, 1995). This effort led to capabilities implemented in several commercial CAM software
tools, such as CAMWorks that automatically recognizes manufacturing features in SolidWorks models.

In the context of product data exchange, FR refers to recognizing geometric features embedded in a
solid model of dumb geometry. This is called solid (or geometric) FR. The geometric model can be an
IGES, STEP, or STL models exported from another CAD system, with no parametric feature
information.

Many methods have been proposed for solid FR from numerous source files, such as from STL
(Sunil and Pande, 2008), STEP (Bhandarkar and Nagi, 2000), or a B-rep model (van der Velden et al.,
2010). In this subsection, we include Venkataraman’s FR algorithm (Venkataraman et al., 2001) to
provide readers with a brief understanding of the underline technique that supports solid FR. This
method is relevant because it was recently implemented in a number of CAD systems, including
SolidWorks and CATIA, which are capable of recognizing basic features, such as extrude, revolve,
and, more recently, sweep. This capability has been applied primarily for support of solid model
translations between CAD systems with some success, in which not only geometric entities but also
parametric features are translated.

Venkataraman’s FR algorithm uses a simple four-step process: (1) simplify imported faces, (2)
analyze faces for specific feature geometry, (3) remove recognized feature and update model, and (4)
return to Step 2 until all features are recognized. The process is illustrated in Figure 6.20. The
simplification step involves surface format conversion and face merging. For instance, several con-
nected B-spline patches or triangular facets as in STL models with identical (or similar) surface normal
vectors could be combined and represented as a single planar face. The next step is to match the
simplified faces for geometry resembling a specific solid feature. That is, given a specific feature type,
the algorithm searches for the surfaces that resemble geometry associated with that feature. For
instance, a hole would be constructed from a base circle extruded a given length (Figure 6.20a),
producing a cylindrical surface. In this case, the hole would be seen as a negative feature. If an
enclosed cylindrical surface is not found, a failure error is returned. If the correct geometry is found,

FIGURE 6.20 Illustration of Venkataraman’s FR Algorithm. (a) Imported Surface Model with Hole Surface Selected,

(b) Hole Recognized and Removed, with Extruded Face of Cylinder Selected, (c) Cylindrical Extrusions Recog-

nized, with Base Block Extrusion Face Selected, and (d) All Features Recognized and Mapped to Solid Model

(Chang, 2012).
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the algorithm records the dimensions embedded in the composing surfaces (i.e., radius and depth in
this case) and continues to the next step. Once a feature is recognized, it is temporally removed from
the model. Continuing with the hole example, the hole feature would be filled, and the model would be
updated to reflect the removal (Figure 6.20b). The algorithm would then analyze the faces of the
updated part (Step 2) and continue the recognition process for the remaining features in the model
(Figure 6.20c). Once all possible features are recognized, they are mapped to a new solid model of the
part (Figure 6.20d), which is parametric with a feature tree that defines the feature regeneration
sequence.

To recognize each feature, Venkataraman’s FR algorithm abstracts a B-rep model as an attributed
face adjacency graph. The faces of the feature are represented as nodes of the graph, while the edges in
the feature are represented as lines that connect nodes of the graph. In addition, attributes are added to
nodes and lines representing the topological and geometric characteristics of the corresponding faces
and edges. For example, the blind pocket feature shown in Figure 6.21a consists of top, bottom, and
side faces, as well as numerous edges. The partial face adjacency graph and attributes (e.g., edge
convexity) are shown in Figure 6.21b. As a result, the problem of FR becomes a subgraph detection
problem in which the feature graph is matched to similar instances in a predefined feature library. This
is done by a graph matching algorithm following prescribed rules and grammars.

One of the potential issues revealed in commercial FR software is design intent recovery. For
example, the flange of a tubing would be created as a single revolve feature, where a sketch is revolved
about an axis (Figure 6.22a). However, current FR implementations are not flexible. As shown in
Figure 6.22b, without adequate user interaction, the single sketch flange may be recognized as four or
more separate features. Although the final solid parts are physically the same, their defining parameters
are not. Such a batch mode implementation is not desired in recovering meaningful design intents.

In tutorial lesson S1.4, we use a housing example, an imported part shown in the left of
Figure 6.23a, to illustrate the steps of FR using FeatureWorks of SolidWorks. The FeatureWorks
module of SolidWorks recognizes solid features on an imported object in a SolidWorks part document.
Recognized features are (almost) the same as features that are created using parametric feature-based
CAD software. Designers may edit the definition of recognized features and change their attributes and
dimension parameters. For example, the fillet radius is changed from 0.0625 to 0.15 in, as shown on
the right of Figure 6.23a. For features that are based on sketches, designers can edit the sketches to
change the geometry of the features. We introduce both the automatic and interactive options. Overall,
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FIGURE 6.21 Feature Grammars for the Class of Simple Blind Pocket. (a) The Blind Pocket Feature, and (b) Face

Adjacent Graph and Attributes.
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one possible strategy for using FeatureWorks in solid FR is to use automatic FR to recognize as many
features as possible, and then recognize the remaining features interactively.

Also in tutorial lesson P1.3, we use a very simple exampleda crankshaft, as shown in
Figure 6.23bdto illustrate the steps of FR using Pro/ENGINEER. Note that the FR capability
implemented in Pro/ENGINEER is primitive and far less useful than that of FeatureWorks. Two shafts
(extrusion features) are successfully recognized. For example, the size and location of one of the shafts
are changed, as shown on the right of Figure 6.23b. However, the crank body (the first extrusion
feature) cannot be recognized because it is considered as the base feature, which is not recognizable by
Pro/ENGINEER.

6.6 Case studies
Three case studies are presented in this section: SolidWorks Workgroup PDM, integrated testbed using
Windchill, and infrastructure of tool integration for e-Design. The case study of SolidWorks PDM
offers engineering students a quick overview about a viable solution for their needs in using PDM for
support of design projects. The second study presents a case in which Windchill was integrated to
support an engineering team working on reverse engineering projects. This case study is intended to
show readers one possible scenario of using a commercial PDM system to streamline engineering

(a) (b)Fillet size changed Size and location of 
the shaft changed 

FIGURE 6.23 Examples for Solid Feature Recognition. (a) The Housing Example Employed for Tutorial Lesson S1.4,

and (b) The Crankshaft Example Employed for Tutorial Lesson P1.3.

1. Revolve feature 2. Extrude feature added 3. Cut feature added 4. Fillets added 

(a) (b)

Profile
sketch

Axis of 
revolution 

FIGURE 6.22 Feature Recognition for a Tubing Flange. (a) A Single Revolved Feature, and (b) Four Features:

Revolve, Extrude, Cut, and Fillet (Chang, 2012).
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activities. The third case study illustrates the concept and implementation of a software infrastructure
for tool integration that supports e-Design.

6.6.1 SolidWorks Workgroup PDM
There are two PDM systems offered by SolidWorks: SolidWorks Workgroup PDM and SolidWorks
Enterprise PDM. Workgroup PDM is part of the SolidWorks Premium or Professional version and is
considered a mid-range PDM system that is intended for small engineering workgroups, usually <10
team members. Enterprise PDM offers more robust capabilities and is better suited for larger teams.
Because Workgroup PDM is part of SolidWorks, which many students may have access to, we offer a
brief discussion of the Workgroup PDM as a case study.

The Workgroup PDM application is PDM software that runs inside the SolidWorks environment or
as a stand-alone application inside SolidWorks Explorer. Workgroup PDM controls projects with
procedures for check-in, check-out, revision control, and other administration tasks. A Workgroup
PDM structure is illustrated in Figure 6.24, in which a “vault” sits at the center.

Workgroup PDM is very simple to install; installation can be completed in a few minutes by a
nonexpert. During installation, a vault location is defined. The vault can be on a local drive or on a
network server. In addition to the vault, user and administrator client software is also installed. The
PDM license is managed by the SolidWorks license server, so no additional license configuration is
required provided that SolidWorks is already installed. To support a project team, a global vault may be
located on a network server, with carefully restricted administrative rights. Only one vault can be
installed on a given computer.

Workgroup PDM associates metadata with CAD documents, Metadata is a series of text files that
contain server options (user information, revision schemes, etc.) and file information (revision history,
owner, etc.). Workgroup PDM allows management and viewing of metadata associated with both local
documents and documents in the vault.

Workgroup
PDM Vault
Workgroupuu
PDM Vault

SolidWorks Explorer 
client (Workgroup 
PDM Contributor)

Vault Admin
Internet 

Information 
Services (IIS)

SolidWorks client 
(Workgroup PDM for 

SolidWorks client)
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Programming

Workgroup 
PDM Viewers

FIGURE 6.24 SolidWorks Workgroup PDM Structure.
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When a file in the vault is opened and checked out, the file is downloaded from the vault to a local
folder. If an assembly or drawing is opened, all of the referenced files are downloaded as well.
Workgroup PDM compares the documents on the local drive to the documents in the vault, giving the
user the option to overwrite previous versions with the latest versions from the vault. A file can be
opened only by its owner. If the owner wishes to release a file for someone else to work on, he or she
releases ownership. This file can then be checked out by others. Because Workgroup PDM is a mid-
range PDM system best suited to small workgroups, it is easy to administer and use for a small team.

6.6.2 Integrated testbed using Windchill
In this case study, we present an integrated testbed that supports defense logistics centers to conduct
reverse engineering of aging systems and components (Chang et al., 2006). This testbed, which was
constructed using commercial off-the-shelf software and equipment, supports three major engineering
tasks: the reverse engineering that supports recovering of technical data from worn sample parts,
reengineering that alters design for better performance or lesser cost, and fast prototyping that in-
corporates advanced manufacturing technologies to produce functional or physical prototype of the
part in small quantity in a short turnaround time.

Most reverse engineering solutions involve multidisciplinary design activities. Consequently,
design collaboration is essential for a typical reverse engineering project to allow designers in different
disciplines to perform their roles. In the integrated system, the design collaboration is based on two
kinds of designers’ interactions: asynchronous and synchronous. Asynchronous interactions involve
email, notification, forums, and sharing documents where the designer is not required to respond in
real-time. During synchronous interactions, the designer is required to respond in real-time. These
synchronous interactions include whiteboard, chat room, model viewer, and video and audio
communication. To meet these requirements, the integrated testbed supports the following:

• Appropriate distribution of activities to members of the team;
• Tools that can support real-time collaboration among team members with engineering

information;
• An environment that organizes and provides easy access to engineering and other information

related to the project for the team;
• A knowledge base that includes information related to different reverse engineering processes,

tools, and techniques;
• A reverse engineering template that can be modified to support different reverse engineering

processes and reduce the initial effort to setup products.

The testbed is intended to provide a software environment that supports multiple geographically
dispersed designers. This principle extends to all reverse engineering activities, data, and collaborative
activities, as well as to the infrastructure design. The testbed is set up using simple client-server ar-
chitecture. The Windchill and communication module is housed in the server and is connected to the
Internet. Multiple clients (users) access product and reverse engineering information from the servers
using a web browser. Some product management functions supported by the servers are: (1) managing
the product data and model in a structure through which a designer can easily locate the product data;
(2) keeping the data secure and restrict illegal operations through basic file access controls; (3)
providing functions to manage the file operation privileges based on designers’ roles in the team; and
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(4) supporting file status control to prevent the file inconsistency which may occur when two users
modify the same file simultaneously.

To support real-time collaboration, a web-based tool has been developed (Figure 6.25). This
collaborative tool supports text messaging, audio, video, sketching, and viewing of 3D models in real-
time to facilitate activities required for meetings. To enhance collaboration among different members
of the team, the collaborative 3D model viewer allows users to have real-time synchronous view of the
model, add notes to the 3D model, and exchange text and audio information in real-time. Collaborative

FIGURE 6.25 Reverse Engineering Template and Activities in the Integration Testbed (Chang et al., 2006).
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meetings, if needed, can be scheduled in an ad-hoc manner. When a meeting is scheduled, appropriate
group members are sent an email that has the web link to the collaborative tool and the scheduled
meeting time. During the scheduled time, all group members can log into the collaborative tool to
discuss issues related to the project using the testbed.

In order to demonstrate the testbed, a case scenario was created. The reverse and reengineering
scenario highlights (1) a systematic reverse engineering approach, (2) an enhanced ability of team
member collaboration, and (3) a customized Windchill product management system. The reverse
engineering of an airplane anti-icing tubing scenario involves an engineering team consisting of four
members who are geographically distributed: manager, CAD engineer, and two point-cloud engi-
neers. A template with a flow of activities (see Figure 6.25), along with appropriate instructions, has
been setup in the Windchill environment. This template is the starting point for the manager to
initiate a reverse engineering project. The initial steps for the manager involve gathering informa-
tion, design constraints, and point-cloud information for the product. Once the information has been
gathered, the manager creates the team and calls a meeting in the integration framework using the
real-time collaborative tools (Figure 6.25) to discuss details of the project. After the meeting, the
appropriate reverse engineering process can be selected and modified according to the requirements
and needs of the project. The integration framework then supports accomplishing these tasks by
appropriate users. Information and instruction on how to complete the different tasks are also
available to the users from the testbed. Information created from each activity is uploaded in the
testbed for other members of the team to view, access, evaluate, and use. These data are organized in
a set of defined folders that follow the product structure to reduce the effort of finding the files. The
progress of the project can be monitored by any member of the team at any given time. After each
task is completed, the testbed sends appropriate notification to relevant team members to proceed to
the next steps.

6.6.3 Tool integration for e-Design
In this case study, we discuss an integration infrastructure that supports tool integration for e-Design
(Tsai et al., 1995). The infrastructure supports engineers in creating CAD and simulation models of the
mechanical system, accessing CAE tools to perform multidisciplinary engineering analyses, using
planning tools to create and manage design processes, communicating and exchanging engineering
data, conducting design trade-off analyses, and making informed decisions to yield a robust optimum
design.

The infrastructure was designed to correlate various simulation models with a common product
representation derived from a CAD model (see Figure 6.26). A base definition is created from the
CAD model to serve as the common ground for design data sharing and collaboration. Engineering
views are then derived from the base definition to support additional analysis requirements in each
engineering discipline. Engineering view models are correlated, or mapped, with the base definition
to support design collaboration and can be shared among the design team. Engineering tool wrappers
provide service to their respective tools, including accessing the analysis model from the global
database, converting model data into tool specific data formats, transmitting data to a specified
location, and retrieving and displaying analysis results. Finally, to create an e-Design tool envi-
ronment, design process management has to be employed to define, disseminate, coordinate, and
track design activities.
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6.6.3.1 CAD and base definition
To support multidisciplinary CAE analyses, a base definition has to be built as the common ground
among the CAE team members. The base definition contains two major types of information: an entity
hierarchy and entity attributes. The entity hierarchy describes how the components of the system are
grouped together. The hierarchy of an engine example is depicted in Figure 6.27. If an entity in the
hierarchy is an assembly, it can be expanded to display its components or collapsed without showing
its components. The entity attributes for a part include mass, center of gravity (CG), moments of
inertia, material properties, and geometry information. The default coordinate system defined in the
CAD model is used as the local coordinate system for the part; the CG is reported relative to it.
Geometry information of the mechanical system is kept in the original CAD format and later trans-
ferred to different formats to support various simulation model creations. In addition, parameters used
to build the CAD geometry need to be extracted and later used to support design trade-offs. Attribute
information for an assembly differs from that for a part, with the addition of assembly information
describing the position and orientation of individual components relative to a local reference frame.
Once all the hierarchy information and assembly information are available, the global position and
orientation of the individual part or assembly can be automatically calculated.

In the e-Design environment, design parameters are associated with the dimensions of features in
the parameterized CAD models. The design parameters are considered to be attributes of entities in the
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FIGURE 6.26 Concept of the Software Infrastructure for Support of Tool Integration for e-Design (Tsai et al., 1995).
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base definition; they stay with the entities when they are regrouped in engineering views to create
assemblies. The feature-based design parameters serve as a common language to support design trade-
offs across various engineering disciplines where relevant performance of the mechanical systems is
measured.

6.6.3.2 Disciplines and views
In addition to establishment of a common base definition, the integration infrastructure has to support
engineers from different disciplines (e.g. dynamics and structure) to create their own simulation
models and to perform engineering analyses. Due to the fact that data requirements vary from
discipline to discipline, the infrastructure has to allow engineers to augment the model data in the base
definition with discipline specific data. While allowing diverse data to be added, the infrastructure has
also to maintain the consistency among these data so that the common ground is not broken and design
trade-offs across different disciplines can still be performed.

To address these issues, a key conceptdengineering viewsdis introduced in the infrastructure.
The engineering views are associated with their corresponding disciplines to support the data

(a)

(b)

Engine

Connecting Rod

Propeller

Crankshaft

…
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FIGURE 6.27 Engine Example. (a) Computer-Aided Design Model, and (b) Product Base Definition (Tsai et al.,

1995).

6.6 Case studies 307



augmentation in a natural way. Furthermore, the data created in the engineering views can be shared
among the engineers that perform engineering analyses in the same discipline. Therefore, effort is
saved in creating engineering models.

Another important function the engineering views need to support is maintaining a consistent
product data set for the mechanical system being evaluated. The mappings between each view model
and the base definition has to be established (see Figure 6.28). All the engineering models, along with
their simulation results and the CAD model (brought in as the base definition), are correlated through
these mappings, allowing meaningful communication among the CAE team members and design
trade-offs across disciplines.

Another benefit of establishing these mappings is that they can be used as the foundation of
automating the engineering model (re)creation that is required during design iterations. Once a design
change is proposed, each engineering discipline has to re-evaluate the performance of the new design.
However, if the engineering model has to be regenerated from scratch, with engineers heavily
involved, then the effort previously spent in model creation is wasted. Therefore, a mechanism for
retaining the mapping relationships between the engineering model and the base definition
would greatly speed up the design cycle. As the CAD model is modified, the engineering model
could be automatically modified with very little effort. The goal of concurrence design then can be
achieved.

As an example, in the dynamics view, the assembly hierarchy defined in the CAD model might
not be suitable for multibody mechanical system definition. For that, parts or assemblies need to be
regrouped into bodies and then connection joints, allowing relative motion between bodies, need to
be defined. Once the regrouping is performed, the composite mass, CG, moments of inertia, and
assembly information of the body can be calculated automatically based on individual component
mass properties and assembly information. The dynamic view of the engine example shown in
Figure 6.27 is shown in Figure 6.29, in which parts under the engine assembly in CAD (and base
definition) are grouped and mapped to dynamic view, consisting of three subassemblies and one part
that correspond to the motion model of the example. Once the data required in the dynamics view are
created, the tool wrapper can be invoked to export the mechanical system definition into the local
working environment and create a motion simulation model (e.g., using DADS). The results of the

Base definition

Structural view Dynamic view

FIGURE 6.28 Mappings between Base Definition and Engineering Views (Tsai et al., 1995).
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dynamics analyses can also be retrieved via the tool wrapper to the global database to support other
simulations.

6.6.3.3 Engineering tool wrappers
After the engineering view models are created in the e-Design environment, engineers are ready to
perform various analyses using engineering tools. To interface with each engineering tool, the
infrastructure needs to provide services to prepare the analysis model from global database, translate it
into the tool specific data format, and transmit data to the dedicated location specified by the tool. Each
wrapper provides services to a specific tool; in other words, it is customized to properly interface with
that tool. For instance, the engineer can use the PATRAN wrapper to transfer the PATRAN hyperpatch
model from the structural view and visualize the dynamics simulation results to determine a peak load,
which is required by the structural analysis tools. Another service that wrappers provide is retrieving
analysis results from each tool. The analysis results are interpreted by the wrappers and then stored in
the global database for later use.

6.6.3.4 Design process management
Effective utilization of the integrated e-Design environment and collaboration among a CAE team is
contingent on a number of data generation and communication factors intrinsic to the operational
requirements of the engineering disciplines and the product design process in general. As described
above, the e-Design environment consists of a number of individual engineering views integrated via a
common base definition and a suite of tool wrappers. Enhanced collaboration among engineers of this
environment, vis-à-vis the design process management, will occur when engineers can identify data
sources that meet their analysis requirements and communicate their input data needs and simulation
results.
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FIGURE 6.29 Dynamic View of the Engine Example. (a) Computed-Aided Design, (CAD) Assembly Hierarchy in Base

Definition, and (b) CAD Model in Exploded View Showing Four Bodies for Motion Analysis.
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The design process management envisioned for the integrated e-Design environment employs
process definition and analysis, task identification and dissemination, and progress tracking to provide
enhanced collaboration among the CAE team. Process definition enables CAE teams to specify and
capture data generation, design, analysis, and design trade-off activities in the e-Design process and
represent data flow between process activities and perspectives. Process analysis allows the chief
engineer to identify potential bottlenecks in a process and aids in the definition of an optimal design
process. Process activities can be characterized by user data requirements, by operational parameters
such as time and resource requirements, and by activity dependencies, thus providing information
supporting the determination of a project plan in compliance with the time frame and resources
specified for completion of the design project. The design project plan can then be displayed to all
team members to provide them with an awareness of where data comes from and where it goes, thus
defining responsibilities and obligations in the design project. Finally, progress tracking allows the
CAE team to review and update the design project plan and to correlate the design project plan with the
design process. By this approach, CAE team members will be provided with a frame of reference, with
respect to project planning and environment operations, supporting communication and collaboration
to achieve project objectives and adhere to project schedules and milestones.

6.6.3.5 Design collaboration
Lastly, design collaboration includes the communication board, design process management, design
parameterization, and design trade-off. The communication board provides a means for CAE team
members to communicate about design tasks. The design parameterization module assists engineers in
identifying design parameters to facilitate effective design evaluation. The design trade-off module
collects performance evaluation information from the engineering tools and assists engineers in
obtaining optimal design.

6.7 Summary
In this chapter, we addressed two issues that are very relevant to product design: PDM and product
data exchange. We provided an overview on the practical means for file management and an
introduction to PDM technology and systems. We presented fundamentals of PDM, including the
data that PDM manages, the capabilities of PDM, and the benefits and successful stories of PDM
technology. We also discuss commercially available PDM systems. For product data exchanges, we
discussed the numerous approaches and translators available, as well as their strengths and limita-
tions. We include examples to demonstrate the part and assembly model translations between Pro/
ENGINEER and SolidWorks, as well as FR in both Pro/ENGINEER and SolidWorks. Finally, we
offered case studies that illustrate the practical use of SolidWorks Workgroup PDM, a practical case
of using PDM for support of reverse engineering project, and infrastructure for support of tool
integration for e-Design.

We discussed lots of topics and offered more diverse materials in this chapter. We hope this chapter
is not too difficult for you to read and digest. After reading this chapter, you should have acquired basic
knowledge and good understanding of these two important issues in product design.
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Together with the topics discussed in the previous chapters of this book, you should have a very
good understanding of the various subjects involved in product data modeling, such as geometric
modeling, CAD theories, mechanical assembly, design parameterization, and PDM. More importantly,
we hope this book provided you with a fundamental understanding of product modeling principles and
modern engineering tools for solid and assembly modeling, so that you can apply the principles and
software tools to support practical design applications.

With a good understanding of product modeling, you should feel competent in using CAD
tools in support of your design projects and move into other important topics for e-Design, such
as product performance evaluation, product manufacturing and cost estimating, and design
theory and methods, which are discussed in other books of the Computer-Aided Engineering Design
series.

Appendix A IGES file structure and data format
Similar to most CAD systems, IGES is based on the concept of entities. Entities could range from
simple geometric objects, such as points, lines, plane, and arcs, to more sophisticated entities, such as
dimensions. Entities in IGES are divided into three categories:

1. Geometric entities such as arcs, lines, and points that define the object,
2. Annotation entities, such as dimensions and notes that aid in the documentation and visualization

of the object,
3. Structure entities that define the associations between other entities in IGES file.

An IGES file is a sequential file consisting of a sequence of records. The file formats treat the
product definition to be exchanged as a file of entities, with each entity being represented in a
standard format, to and from which the native representation of a specific CAD/CAM system can be
mapped.

An IGES file consists of five sections, which must appear in the following order: Start section,
Global section, Directory Entry (DE) section, Parameter Data (PD) section, and Terminate section, as
shown in Figure A.1 (Stokes, 1995). In fact, an IGES file is composed of 80-character ASCII records.
Each of the sections can be identified by the letters S, G, D, P, and T, respectively appearing in the 73rd
column of each record or line in the IGES file. The role of these sections is summarized in the
following.

Start section
The start section is for free-form text generated by the user or the CAD/CAM system to tell the receiver
basic information about the IGES file, commonly described as a “prologue” to the IGES file. It is
essentially a human-readable introduction to the file. This section contains information such as the
names of the sending (source) and receiving (target) CAD/CAM systems and a brief description of the
product being converted.
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Global section
The global section provides information that pertains to the entire file. It is a fairly short section,
typically in three or four lines. This information describes the preprocessor and information needed by
the postprocessor to interpret the file. Some of the parameters that are specified in this section are:

1. Characters used as delimiters between individual entries and between records (usually commas
and semicolons respectively),

2. The name of the IGES file itself,
3. Vendor and software version of sending (source) system,
4. Number of significant digits in the representation of integers and single and double precision

floating point numbers on the sending systems,
5. Date and time of file generation,
6. Model space scale,
7. Model units,
8. Minimum resolution and maximum coordinate values,
9. Name of the author of IGES file.

Directory entry section
The directory entry (DE) section is an index listing each entity in the file, together with
certain attributes associated with them. The entry for each entity occupies two 80-character

FIGURE A.1 Anatomy of a Sample IGES File. (a) IGES File with Sections Labeled, and (b) Equivalent Graphics

(Stokes, 1995).
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Table A.1 IGES Entities (Stokes, 1995)

IGES Entity Number Form Numbers IGES Entity Name

0 Null entry

100 Circular arc

102 Composite curve

104 0e3 Conic arc

106 1e63 Copious data

108 (e1)e1 Plane

110 Line

112 Parametric spline curve

114 Parametric spline surface

116 Point

118 0e1 Ruled surface

120 Surface of revolution

122 Tabulated cylinder

123 Direction (G)

124 0e12 Transformation matrix

125 0e4 Flash

126 0e5 Rational B-spline curve

128 0e9 Rational B-spline surface

130 Offset curve

132 Connect point

134 Node

136 Finite element (G)

138 Nodal displacement and
rotation

140 Offset surface

141 Boundary (G)

142 Curve on a parametric surface

143 Bounded surface (G)

144 Trimmed surface

146 Nodal results (G)

148 Elements results (G)

150 Block

152 Right angular wedge

154 Right circular cylinder

156 Right circular cone frustum

158 Sphere

160 Torus

162 0e1 Solid of revolution

164 Solid of linear extrusion

Continued
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Table A.1 IGES Entities (Stokes, 1995)dcont’d

IGES Entity Number Form Numbers IGES Entity Name

168 Ellipsoid

180 Boolean tree

182 Selected component (G)

184 Solid assembly

186 Manifold solid B-rep object (G)

190 Plane surface (G)

192 Right circular cylindrical
surface (G)

194 Right circular conical
surface (G)

196 Spherical surface (G)

198 Toroidal surface (G)

202 Angular dimension

204 Curve dimension (G)

206 Diameter dimension

208 Flag note

210 General label

212 0e105 General note (F, G)

213 New general note (G)

214 1e12 Leader (arrow)

216 0e2 Linear dimension (G)

218 0e1 Ordinate dimension (G)

220 Point dimension

222 0e1 Radius dimension (G)

228 0e3 General symbol (G)

230 0e1 Sectioned area (G)

302 Associativity definition

304 1e2 Line font definition

306 Macro (G)

308 Subfigure definition

310 Text font definition

312 0e1 Text display template

314 Color definition

316 Units data (G)

320 Network subfigure definition

322 0e2 Attribute table definition

402 1e21 Associativity instance (F, G)

404 0e1 Drawing (G)

406 1e31 Property (F, G)
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records that are divided into a total of 20 8-character fields as shown in Figure A.1. The first and
the eleventh (beginning of the second record of any given entity) fields contain the entity type
number such as 100 for circle, 110 for lines, etc. The second field contains a pointer to the parameter
data entry for the entity in the PD section. The pointer of an entity is simply its sequence number in
the DE section. Some of the entity attributes specified in this section are line font, layer number,
transformation matrix, line weight, and color. A list of IGES entities is provided in Table A.1 for
reference.

Parameter data section
The parameter data (PD) section contains the actual data defining each entity listed in the DE section.
For example, a straight line entity is defined by the six coordinates of its two endpoints. Although each
entity has always two records in the DE section, the number of records required for each entity in the
PD section varies from one entity to another (the minimum is one record) and depends on the amount
of data. Parameter data are placed in free format in columns 1–64. The parameter delimiter (usually a
comma) is used to separate parameters and the record delimiter (usually a semicolon) is used to
terminate the list of parameters. Both delimiters are specified in the Global section of the IGES file.
Column 65 is left blank. Columns 66–72 on all PD records contain the entity pointer specified in the
first record of the entity in the DE section.

Table A.1 IGES Entities (Stokes, 1995)dcont’d

IGES Entity Number Form Numbers IGES Entity Name

408 Singular subfigure instance

410 0e1 View (G)

412 Rectangular array subfigure
instance

414 Circular array subfigure
instance

416 0e4 External reference (G)

418 Nodal load/constraint

420 Network subfigure instance

422 0e1 Attribute table instance

430 Solid instance

502 Vertex (G)

504 Edge (G)

508 Loop (G)

510 Face (G)

514 Shell (G)

Notes: 1. All information is based upon IGES version 5.1, September 1991.
2. F ¼ Some or all forms of this entity have been obsoleted by newer entities.
3. G ¼ Some or all forms of this entity have not been fully tested.
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Terminate section
The Terminate section contains a single record that specifies the number of records in each of the four
preceding sections for checking purposes.

Figure A.2 shows another IGES sample file containing only two POINT (Type 116), two
CIRCULAR ARC (Type 100), and two LINE (Type 110) entities. It represents a slot, with the
points at the centers of the two half-circles that form the ends of the slot, and the two lines that form the
sides.

As stated earlier, the file is divided into five sections: Start, Global, Directory Entry, Parameter
Data, and Terminate, indicated by the characters S, G, D, P, or T in column 73. The characteristics and
geometric information for an entity are split between two sectionsdone is in a two-record, fixed-
length format (the DE section), whereas the other is in a multiple-record, comma-delimited format (the
PD section), as can be seen in a more human-readable representation of the file. When displayed, the
user should see two yellow points, one located at the origin of model space [0,0,0], two red circular
arcs, and two green lines.

For a more in-depth discussion on IGES, readers are referred to books such as Kennicott
(1996).

Appendix B Step data structure and applications protocols
STEP consists of several hundred documents called parts, as illustrated in Figure B.1. Every year new
parts are added or new revisions of older parts are released. This makes STEP the biggest standard
within ISO. Each part has its own scope and introduction. These parts are assigned a name and number
and grouped together with common functions within a specific range.

The 10 series parts comprise the computer-interpretable area of STEP. This area allows all users
to operate by the same guidelines and rules necessary to maintain consistent, accurate data

FIGURE A.2 Sample IGES File. (a) IGES File Contents, and (b) Equivalent Graphics (en.wikipedia.org).
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exchange. EXPRESS is the data modeling language used to make STEP computer-interpretable.
The language can be compiled to produce “C” structures, SQL statements, or other similar
types of information. This language is an important advantage of STEP over IGES, which offers
nothing comparable.

The 20-series parts define the physical file and database-sharing exchange area and are the enabling
tools for STEP data translation.

The 30-series parts define conformance testing requirements and are used for data and application
verification.

The 40-series parts are considered to be the bread and butter of STEP. These parts contain such
generic resource information as raw geometry and display attributes, among other things. These and
the 100-series parts are the tools used to create application protocols (APs).

The 100-series parts are similar in concept to the 40-series parts in their use to create
application protocols. The difference between the two is that the 100-series is specific to an application
area.

The 200-series are where STEP meets the real world. Each AP includes a scope describing its
purpose, an activity diagram describing the functions that an engineer needs to perform within that
scope, and an application requirement model describing the information requirements of those ac-
tivities. These information requirements are then mapped into the common set of integrated resources.
The result is a data exchange standard for the activities within the scope.

The ultimate goal is for STEP to support the product life cycle, from conceptual design to final
disposal, for all kinds of products. However, it will be a number of years before this goal is reached.
The most tangible advantage of STEP to users today is the ability to exchange design data as solid
models and assemblies of solid models. Other data exchange standards, such as the newer versions of
IGES, also support the exchange of solid models, but not as well.

FIGURE B.1 The Structure of STEP (Dincau, 1995).
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Table B.1 A List of STEP Application Protocols

Part Description

201 Explicit drafting

202 Associative drafting

203 Configuration-controlled design

204 Mechanical design using boundary representation

205 Mechanical design using surface representation

206 Mechanical design using wireframe representation

207 Sheet metal dies and blocks

208 Life cycle product change process

209 Design through analysis of composite and metallic structures

210 Electronic printed circuit assembly, design, and manufacturing

211 Electronics test diagnostics and remanufacture

212 Electrotechnical plants

213 Numerical control process plans for machined parts

214 Core data for automotive mechanical design processes

215 Ship arrangement

216 Ship molded forms

217 Ship piping

218 Ship structures

219 Dimensional inspection process planning for CMMS

220 Printed circuit assembly manufacturing planning

221 Functional data and schematic representation for process plans

222 Design engineering to manufacturing for composite structures

223 Exchange of design and manufacturing DPD for composites

224 Mechanical product definition for process planning

225 Structural building elements using explicit shape rep

226 Shipbuilding mechanical systems

227 Plant spatial configuration

228 Building services

229 Design and manufacturing information for forged parts

230 Building structure frame steelwork

231 Process engineering data

232 Technical data packaging

233 Systems engineering data representation

234 Ship operational logs, records and messages

235 Materials information for products

236 Furniture product and project

237 Computational fluid dynamics

238 Integrated CNC machining

239 Product life cycle support

240 Process planning
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A list of the STEP APs is given in Table B.1. The ability to support many protocols within one
framework is one of the key strengths of STEP. All the protocols are built on the same set of integrated
resources, so they all use the same definitions for the same information. For example, AP203 and
AP214 use the same definitions for three-dimensional geometry, assembly data, and basic product
information. Therefore, CAD vendors can support both with one piece of code.

Questions and exercises

1. When you open or save a CAD model using Pro/ENGINEER or SolidWorks (or other CAD
systems), you may notice that the CAD software is able to open and save the model into many
different formats. It is important for a CAD user and a designer to know these file formats, where
they come from, and their use in solid modeling and product design. In this exercise, you are
asked to create a list of file formats that are supported by either Pro/ENGINEER or SolidWorks
(or the CAD system you have access to) and report the following:
a. File suffix and the name of the file format.
b. Source of the file format (for example, the CAD system that creates the file or a neutral

format). For neutral format, please report the nature of the format, its use in data exchange,
and pros and cons.

c. Provide the sources of your information, web links, technical report, etc.
2. Pick a commercial PDM (or PLM) system, carry out a case study on the system, and report the

following:
a. Brief information about the software company who develops and commercializes the PDM

system.
b. Major functions of the system, its strengths, and its weaknesses.
c. Major companies who are using the system.
d. Provide sources of your information, web links, technical report, etc.

3. In Section 6.3.4 we discussed two stories regarding the use of PDM systems in industry. Please
conduct a similar study to report a similar successful story and report the following:
a. Name of the company or organization, and the nature of its product or project.
b. The PDM system the company uses.
c. How did the company or organization use the PDM system? What was the driving factor that

propelled the company to adopt PDM?
d. What is the benefit that company is able to obtain (for example, reduced time-to-market,

increased engineering efficiency, reduced prototype costs, reduced late changes to parts, etc.)?
Provide quantitative data if possible.

e. Provide the sources of your information, web links, technical report, etc.
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Computer-aided design (CAD) assembly was discussed in Chapter 4, in which both theoretical and
practical aspects of the subject were discussed. There is no need to emphasize the importance of
understanding the concept and theory employed for creating assembly. It is equivalently important
for engineers to learn to use CAD software for creating assembly. In addition, in Chapter 6, we
discussed an important and practical issue in product data managementdthat is, CAD model
translation between heterogeneous CAD systems. We discussed the numerous means available for
addressing this issue. It is critical for engineers to learn how to handle CAD model translations using
existing tools.

In Project S1, we introduce SolidWorks for creating assemblies and supporting CAD model
translations. We include three examples to help you get started on learning and using the software: a
single-piston engine, in which you will learn the basics of creating an assembly using mating con-
straints; a gear train assembly imported from Pro/ENGINEER to SolidWorks; and a simple housing
part, illustrating the details of solid feature recognition. Example models are available for download at
the book’s companion website (http://booksite.elsevier.com/9780123985132).

Overall, the objective of this project is to enable readers to use SolidWorks for constructing as-
sembly models and carrying out model translations. For those who are interested in learning more
about part and assembly modeling to elevate yourself to an intermediate level (and beyond), you may
want to go over more examples offered by tutorial books on the subject, such as the SolidWorks 2013
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Bible by Matt Lombard (www.wiley.com/WileyCDA/WileyTitle/productCd-1118508408.html) or the
Beginner’s Guide to SolidWorks 2013dLevel I by Alejandro Reyes (www.sdcpublications.com/
Textbooks/Beginners-Guide-SolidWorks-2013-Level/ISBN/978-1-58503-774-2).

Note that the lessons included in this project were developed using SolidWorks 2012 SP4.0. If you
are using a different version of SolidWorks, you may see slightly different menu options or dialog
boxes. Because SolidWorks is fairly intuitive to use, these differences should not be too difficult to
figure out.

S1.1 Introduction to SolidWorks
SolidWorks� is a computer software tool that supports users in creating solid models and beyond. The
SolidWorks part mode allows users to create parts, whereas its assembly mode supports the assembling
of parts to create an assembly. You can build complex assemblies consisting of many components,
which can be parts or subassemblies. For most operations, the behavior of components is the same for
both types. Adding a component to an assembly creates a link between the assembly and the
component. When SolidWorks opens the assembly, it finds the component file and brings the
component to the assembly. Changes in the component are automatically reflected in the assembly, and
vice versa. The document name extension for assemblies is .SLDASM.

The main objective of this tutorial project is to help you, as a new user, become familiar with
SolidWorks assembly capabilities and capabilities offered by SolidWorks for support of solid model
translations. The discussion on SolidWorks software in this section is brief. For more information
about capabilities and use of menus and buttons, refer to SolidWorks Help by selecting from the pull-
down menu: Help/ SolidWorks Help.

S1.1.1 User interface
A typical user interface window in SolidWorks (Figure S1.1) consists of a graphics area, a Featur-
eManager design tree (in the Browser), CommandManager (with toolbar), and filters. The graphics
area displays the solid model with which you are working on. The CommandManager above the
graphics area is a context-sensitive toolbar that dynamically updates based on the toolbar you want to
access. By default, it has toolbars embedded in it based on the model type. When you click a tab below
the CommandManager, it updates to show that toolbar. For example, if you click the Sketches tab, the
Sketch toolbar appears. The buttons in the CommandManager of the assembly are listed in Table S1.1.
Click some of the buttons and try to become more familiar with their functions.

The FeatureManager design tree to the left of the graphics area displays these items for assemblies:

• Top-level assembly (the first item)
• Various folders, such as Annotations and Mates
• Assembly planes and origin
• Components (subassemblies and individual parts)
• Assembly features (cuts or holes) and component patterns

You can expand or collapse each component to view its details by clicking beside the component
name. To collapse all the items in the tree, right-click anywhere in the tree and select Collapse Items.
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FIGURE S1.1 User Interface of SolidWorks.

Table S1.1 The Shortcut Buttons in the Assembly Toolbar of CommandManager

Symbol Name Function

Edit component To edit a part while in an assembly

Insert component To insert a component to an assembly

New part To create a new part in an assembly

New assembly To create a new assembly

Copy with mates To include mates when you create additional
instances of a component in an assembly

Mate To position two components relative to each other

Linear component pattern To pattern components in one or two linear directions

Circular component pattern To create a circular pattern of components in an
assembly

Continued
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You can use the same component multiple times within an assembly. For each occurrence of the
component in the assembly, the suffix <n> is incremented.

Also, in the FeatureManager design tree, a component name can have a prefix that provides in-
formation about the state of its relationships to other components. The prefixes are:

(�) underdefined
(+) overdefined
(f) fixed
(?) not solved

The absence of a prefix indicates that the component’s position is fully defined. Right-clicking on a
node in the FeatureManager design tree will bring up command options that you can choose to modify
or adjust the entity.

The Message dialog box at the bottom of the SolidWorks window provides information related to
the function you are performing.

Table S1.1 The Shortcut Buttons in the Assembly Toolbar of CommandManagerdcont’d

Symbol Name Function

Feature-driven component pattern To create a pattern of components based on an
existing pattern

Mirror components To add components by mirroring existing part or
subassembly components

Smart fasteners To add fasteners to the assembly using the
SolidWorks toolbox library of standard hardware

Move component To move a component within the degrees of freedom
defined by its mates

Rotate component To rotate a component within the degrees of freedom
defined by its mates

Show hidden components To temporarily show all hidden components and make
the selected component visible

Assembly features To create various assembly features

Reference geometry To create various assembly reference geometry

New motion study To insert a new motion study

Bill of materials To add a bill of materials

Exploded view To separate the components into an exploded view

Explode line sketch To add or edit a three-dimensional (3D) sketch
showing the relationships between exploded
components

Instant 3D To quickly create and modify model geometry using
drag handles and rulers
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S1.1.2 Examples
Three simple examples are included in this tutorial project, which illustrates the step-by-step details of
creating an assembly, importing Pro/ENGINEER parts and assemblies to SolidWorks, and recognizing
solid features in an imported part. We start with a very simple single-piston engine example, in which
the propeller is allowed to rotate. We then use a gear train assembly to show how to import a Pro/
ENGINEER part and assembly to SolidWorks. As for importing assemblies, you will learn the reality
in terms of translating the assembly mating constraints from one CAD software to another. We use a
simple housing part to illustrate the details in solid feature recognition. All examples and topics to be
discussed in each lesson are summarized in Table S1.2.

Table S1.2 Examples Employed in This Project

Section Example Solid Models Things to Learn

S1.2 Single-
piston
engine

1. This is an introductory tutorial lesson,
showing detailed steps for creating an
assembly using four components.
2. We review the mating constraints that are
defined between parts and subassemblies.
3. You will learn how to create an assembly
using basic mating constraints that allows the
propeller to rotate.

S1.3 Gear train
assembly

1. In this tutorial lesson, we focus on
importing Pro/ENGINEER parts and
assemblies to SolidWorks.
2. We discuss numerous options for CAD
model translations offered by SolidWorks.
3. You will learn two options in bringing Pro/
ENGINEER parts and assemblies into
SolidWorksdOption 1: importing solid
features and Option 2: importing just
geometrydas well as their pros and cons.

S1.4 Hosing 1. In this tutorial lesson, we focus on the solid
feature recognition capabilities offered by
FeatureWorks
2. We discuss both automatic and interactive
options and a best possible strategy for
feature recognition using FeatureWorks.
3. You will learn both automatic and
interactive options, as well as their pros and
cons.
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S1.2 Single-piston engine
In this lesson, you will learn how to create an assembly model for a single-piston engine, as shown in
Figure S1.2. You will learn how to select mating constraints (called assembly mates in SolidWorks) to
assemble parts and subassemblies. After the assembly is created, you may drag the propeller to check
the kinematics of the assembly. We start this lesson with a brief overview about the engine assembly to
be created in SolidWorks, then show you the detailed steps for creating the assembly.

S1.2.1 The single-piston engine example
The engine example consists of four major components: case (case_asm), propeller (propeller_asm),
connecting rod (connectingrod_asm), and piston, as shown in Figure S1.3a. For this lesson, the parts
and subassemblies have been created in SolidWorks. There are 23 model files provided, including
three assemblies: case_asm, propeller_asm, and connectingrod_asm. In addition, the final assembled
engine example (Engine) is included for your reference. You may open this Engine assembly file to
preview it.

The connecting rod is assembled to the propeller (at the crankshaft) using concentric and
coincident mates, as shown in Figure S1.3b. The connecting rod is free to rotate relative to the
propeller (at the crankshaft) along the x-direction. The piston is assembled to the connecting rod (at
the piston pin) using a concentric mate. The piston is also assembled to the engine case using another
concentric mate. This mate restricts the piston movement along the y-direction, which in turn re-
stricts the top end of the connecting rod to move vertically. Finally, the propeller is assembled to the
case using concentric and coincident mates. The components are assembled so that the propeller is
free to rotate along the x-direction.

FIGURE S1.2 The Single-Piston Engine Example in a CAD Assembly.
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S1.2.2 Using SolidWorks
Start SolidWorks and choose File> New. In the New SolidWorks Document dialog box (Figure S1.4),
choose Assembly and click OK. The Begin Assembly dialog box will appear to the left of the graphics
area (overlapping with the browser), as shown in Figure S1.5.

FIGURE S1.4 The New SolidWorks Document Dialog Box.

Propeller
Piston

Connecting rod 

Engine case 

Concentric1

Coincident1 Concentric2
Concentric3

Concentric 4 

Coincident2

(a) (b)

FIGURE S1.3 The Single-Piston Engine Example. (a) Exploded View, and (b) Mating Constraints Defined between

components (parts or subassemblies).
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From the Begin Assembly dialog box, click the Browse button. In the File Open dialog box,
navigate to the folder Single-Piston Engine Tutorial (or the folder where you put the parts and as-
semblies), pull down the File Type list, and then choose Assembly (*.asm; *.sldasm) (see Figure S1.6).
You should see a list of SolidWorks assembly files in the dialog box. Pick case_asm.SLDASM, and
click Open. The engine case subassembly will appear in the graphics area and will move with your

FIGURE S1.5 The Begin Assembly Dialog Box.
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mouse pointer. Left-click at any location within the graphics area to insert the subassembly. Note that
the case subassembly is now listed in the browser, and you can expand it to view the details and in-
dividual parts by clicking beside (f) case_asm<1>, as shown in Figure S1.7.

Next, insert other parts and subassemblies. Choose from the pull-down menu:

Insert> Component> Existing Part/Assembly

to bring up the Insert Component dialog box, which is similar to the Begin Assembly dialog box shown
in Figure S1.5. Click on the Browse button in the File Open dialog box, choose propeller_
asm.SLDASM, and click Open to insert. Left-click in the graphics area to temporarily place the
propeller subassembly. Repeat the same steps to bring in the subassembly connectingrod_
asm.SLDASM and part piston_.sldprt. Note that when inserting the piston, you need to choose Part
(*.prt; *.sldprt) in the File Type pull-down list, as shown in Figure S1.8.

FIGURE S1.6 The File Open Dialog Box.
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Now all major components needed to build the engine assembly have been inserted, as shown in
Figure S1.9. Note that in the browser, the first item Assem1 is the default name of the top-level
assembly you just created (see Figure S1.10). The prefix (f) in front of case_asm<1> indicates that, as
the first component brought into the top-level assembly, the engine case is automatically fixed in the
global coordinate system. All components inserted afterward are underdefined, and you can use the
mouse pointer to drag and move those floating components in the graphics area.

FIGURE S1.7 Expand the Case_asm Subassembly.
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FIGURE S1.8 Change the File Type from Assembly to Part (*.prt; *.sldprt).

FIGURE S1.9 Components Inserted.
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Choose File> Save from the pull-down menu and save the current assembly as Engine_Assem-
bly.SLDASM in the same folder with the components. Once the assembly is saved, the name of the top-
level assembly in the browser will change accordingly.

Next, define mating constraints to assemble the parts and subassemblies. From the pull-down
menu, choose Insert>Mate. The Mate dialog box will appear, in which the Mate Selections box is
automatically activated, as shown in Figure S1.11. In the graphics area, pick the back fan-shaped
face on the propeller, and then pick the front ring-shape face on the connecting rod, as illustrated in
Figure S1.12. You may need to rotate the view by holding down and dragging in the graphics area using
the middle mouse button so that you can see and select both faces (see Figure S1.12b).

As shown in Figure S1.13, the two chosen surfaces will be listed in theMate Selections box, and the
Coincident mate option under Standard Mates will be automatically selected based on the types of the
two entities you chose to define the mate. At the same time, in the graphics area, the position and
orientation of corresponding components (in this case, the propeller and the connecting rod) will be
adjusted to comply with the mate. Click the OK button at the top left corner of theMate dialog box
to accept the coincident mate. The Mate Selections box will be cleared for you to pick the entities for
the next mate.

FIGURE S1.10 The FeatureManager Design Tree.
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FIGURE S1.11 The Mate Dialog Box.
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FIGURE S1.12 Coincident Mate #1. (a) Face to Pick in the Connecting Rod, and (b) Face to Pick in the crankshaft.

FIGURE S1.13 The Two Chosen Surfaces Listed.
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If you accidently selected a wrong surface when defining a mate, right-click on the Mate Selections
box and you will be able to delete the highlighted item or clear all selections, as shown in Figure
S1.14. If you accepted a wrong mate, you can click the undo button (Figure S1.14) to cancel the
last mate.

Now, define the second mate by selecting the cylindrical surface of the crankshaft on the propeller
and the inner surface of the hole on the connecting rod (Figure S1.15), and then choosing Concentric
under Standard Mate (Figure S1.15). Click the OK button to accept.

Next, pick the cylindrical surface of the piston pin on the connecting rod and the inner surface of
the hole on the piston, as shown in Figure S1.16. Choose Concentric as the mate type and click
to accept.

Following the same steps, define a concentric mate between the outer cylindrical surface of the
piston and the inner cylindrical surface of the engine case. As shown in Figure S1.17, to select the inner
face of the engine case, you may need to rotate the view and click on the surface through the oval-
shaped hole on the engine case.

Next, define a coincident mate between the front ring shaped face on the engine case and the back
ring shaped face on the propeller, as shown in Figure S1.18.

Finally, as shown in Figure S1.19, pick the surface of the propeller shaft and the inner surface
of the shaft tube on the engine case. Select Concentric as the mate type in the Mate dialog box
and click OK . Note that all the mates you have defined so far are listed under Mates in the
Mate dialog box (Figure S1.20). Click the OK button again to accept all mates and close the
dialog box.

FIGURE S1.14 Options to Undo the Selection.
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FIGURE S1.15 Concentric Mate #1.
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FIGURE S1.16 Concentric Mate #2.
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FIGURE S1.17 Concentric Mate #3.
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FIGURE S1.19 Concentric Mate #4.
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Now the single-piston engine assembly has been created, as shown in Figure S1.21. We used two
coincident and four concentric mates to assemble the components. You can expand Mates in the
browser to view all the assembly mates (see Figure S1.22). When you click on any assembly mates, the
corresponding mating entities will be highlighted in the graphics area.

FIGURE S1.20 List of Mating Constraints Defined.
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FIGURE S1.21 The Single-Piston Engine Assembly.

FIGURE S1.22 Mates in the Assembly.
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In this assembly, the propeller is free to rotate along the x-direction. You can drag the propeller
in the graphics area to check the kinematics of the engine. If you right-click on case_asm<1> in the
browser and choose Change Transparency (see Figure S1.23), the engine case will turn partially
transparent, and you can see the motion of the piston when the propeller is rotating, as shown in Figure
S1.24. Finally, save your model.

FIGURE S1.23 Adjust Transparency of the Engine Case.

FIGURE S1.24 Dragging the Propeller to Create Motion for the Assembly.

342 Project S1 Solid Modeling with SolidWorks



S1.3 Importing Pro/ENGINEER parts and assemblies to SolidWorks
From time to time when conducting engineering design using SolidWorks, you may encounter the
need to import solid models from other CAD software, such as Pro/ENGINEER. SolidWorks provides
an excellent capability that supports importing solid models from a broad range of software
and formats, including Parasolid, ACIS, Initial Graphics Exchange Standards (IGES), Standard for
Exchange of Product Data (STEP), SolidEdge, and Pro/ENGINEER. For a complete list of supported
software and formats in SolidWorks, please refer to Figure S1.25. You may access this list by
choosing File>Open from the pull-down menu, and pull down the Files of type in the File Open
dialog box.

FIGURE S1.25 The File Open Dialog Box.
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In this tutorial lesson, we focus on importing Pro/ENGINEER parts and assemblies. Hopefully, the
methods and principles you learn from this lesson will offer viable ideas for importing solid models
from other software and formats.

SolidWorks provides capabilities for importing both parts and assemblies. Users can choose two
options when importing solid models: Option 1 to import solid features and Option 2 to import just
geometry. Importing solid features may bring you a parametric solid model that you will be able to
modify just like a SolidWorks part. On the other hand, if you choose to import geometry only, you will
end up with an imported feature that you cannot change because all solid features are lumped into a
single imported geometry without any solid features or dimensions.

Importing geometry is relatively straightforward. In general, SolidWorks does a good job of
bringing in a Pro/ENGINEER part as a single imported geometry. In fact, several other translators,
such as IGES and STEP, support such geometric translations as well. IGES and STEP are especially
useful when there is no direct translation from one CAD program to another.

Importing solid models with solid features is a lot more challenging, in which solid features
embedded in the part geometry, such as holes and chamfers, must be identified first. In addition,
sketches that were employed for generating the solid features must be recovered and the feature types
(e.g., revolve, extrude, sweep) must be identified. With a virtually infinite number of possibilities in
creating solid features, it is almost certain that you will encounter problems when importing solid
models with feature conversion. Therefore, if you do not anticipate making design changes in the parts
imported to SolidWorks, it is highly recommend that you import them as a single geometric feature.

We will discuss the approaches for importing parts and assemblies. In each case, we will try both
optionsdthat is, importing solid features vs importing geometry. We will use the gear train example as
the test case and as an example for illustrations.

S1.3.1 The gear train example in Pro/ENGINEER
The gear train assembly consists of one part and three subassemblies. If you have access to Pro/
ENGINEER, you may want to open the final assembly, gear_train_final.asm, to check the assembled
gear train shown in Figure S1.26. There are four components in this assembly: gbox_housing.prt,
gbox_input.asm, gbox_middle.asm, and gbox_output.asm. The input and output gear assemblies
consist of one gear each, Pinion 1 and Gear 2, respectively. The middle gear assembly has two gears,
Gear 1 and Pinion 2. The four spur gears form two gear pairs: Pinion 1 and Gear 1, and Pinion 2 and
Gear 2, as illustrated in Figure S1.26.Gear 1 and Pinion 2 are mounted on the same shaft. There are 22
distinct parts in this assembly, as listed in Table S1.3.

S1.3.2 Importing Pro/ENGINEER parts
Wewill import the gear housing (gbox_housing.prt) shown in Figure S1.27 using both options. Wewill
try the first option of importing solid features. If you have access to Pro/ENGINEER, you may choose
from the pull-down menu Tools>Model Player to see the sequence of feature creation. As shown in
Figure S1.27 (Pro/ENGINEER model tree), there are eight datum features and 14 solid features.
SolidWorks will try to import these 14 solid features from Pro/ENGINEER.

Option 1: Importing Solid Features
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gbox_housing.pr

gbox_middle.as

gbox_input.asm

gbox_output.asm
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Gear 1

Pinion 2
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FIGURE S1.26 The Gear Train Assembly.

Table S1.3 List of Part and Assembly Files

Part/Subassemblies Part Names Remarks

gbox_housing.prt

gbox_input.asm wheel_gbox_shaft_input.prt

wheel_gbox_pinion_1s.prt Pinion 1

spacer_12� 18� 5 mm.prt

spacer_12� 20� 1 mm.prt

bearing_12� 18� 8 mm.prt (2)

spacer_10� 18� 014 mm.prt

wheel_gbox_sft_mid_washer.prt

screw_tapper_head_5� 15.prt

screw_set_tip_6� 6.prt (2)

gbox_middle.asm wheel_gbox_pinion_2s.prt Pinion 2

wheel_gbox_gear_1s.prt Gear 1

wheel_gbox_shaft_mid_pinion.prt

wheel_gbox_shaft_mid_gear.prt

bearing_12� 18� 8 mm.prt (2)

screw_tapper_head_5� 28.prt (6)

wheel_gbox_sft_mid_washer.prt (2)

screw_tapper_head_5� 15.prt (2)

align_pin_4� 27 mm.prt (2)

gbox_output.asm wheel_gbox_gear_2s.prt Gear 2

wheel_gbox_connect_wheel.prt

bear_tap_roller25� 47� 15 mm.prt

screw_straight_head_4� 15.prt (10)

align_pin_4� 20 mm.prt (2)

wheel_gbox_connect_wh_setscrew.prt (4)
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Start SolidWorks and choose File>Open. Change to the folder where these gear train parts and
assemblies reside. In the File Open dialog box (Figure S1.25), pull down the Files of type list and
choose ProE Part (*.prt, *.prt.*, *.xpr). You should see a list of Pro/ENGINEER parts in the dialog
box. Click gbox_housing.prt, and click Open. In the Pro/ENGINEER to SolidWorks Converter
dialog box (Figure S1.28), choose Analyze the model completely (default), and click Import ma-
terial properties, Import sketch/curve entities, and Import geometry from hidden sections.
Click OK.

FIGURE S1.27 Gear Housing Part in Pro/ENGINEER.

FIGURE S1.28 The Converter Dialog Box.
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In the next Converter dialog box (Figure S1.29), click the Features button. The conversion process
will start. You will see sketches and solid features appear in the graphics window. After about a minute,
the Translation Report dialog box appears, as shown in Figure S1.30, summarizing the results of the
translation. The report indicates that 12 out of 14 features were recognized and translated. The con-
verted model and features listed in the browser are shown in Figure S1.31.

As shown in Figure S1.31, there is one dangling sketch, Sketch8, representing the unrecognizable
solid feature in addition to the chamfer feature. You may identify the sketch in the graphics area by
clicking its name listed in the browser. In addition, the back plate (Extrude1 in the browser) is
recognized incorrectly. Certainly, SolidWorks is capable of importing some parts correctly and
completely, especially when the solid features are relatively simple (but not this gear housing part).

FIGURE S1.29 The Converter Dialog Box.

FIGURE S1.30 The Translation Report.
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If you take a closer look at any of the successful solid features, for example Extrude3, you will see
that the sketches (e.g., Sketch3 of Extrude3) of the solid features do not have complete dimensions. A
(�) symbol is placed in front of the sketch, indicating that the sketch is not fully defined.

Apparently, this translation is not complete. Unfortunately, this translation represents a typical
situation you will encounter for a large majority of the parts. In many cases, it may take only a small
effort to repair or recreate wrongly recognized or unrecognized solid features. However, when you
translate an assembly with many parts, the repairing effort could be substantial.

Option 2: Importing Geometry

Importing geometry is more straightforward and has a higher success rate than that of importing solid
features.

Repeat the same steps to open the gear housing part, gbox_housing.prt. In the Pro/ENGINEER to
SolidWorks Converter dialog box (Figure S1.32), choose Import geometry directly (default), and then
Kniting (default) in order to import solid models instead of just surface models. Note that if you choose
BREP (Boundary Representation), only boundary surfaces will be imported. Click OK.

The conversion process will start. After about a minute or two, the converted model will appear in
the graphics window, as shown in Figure S1.33. In addition, an entity Imported1 will appear in the
browser (Figure S1.33). As mentioned earlier, there will be no parametric solid feature with di-
mensions and sketch converted if you choose Option 2. However, the geometry converted seems to be
accurate. All the geometric features in Pro/ENGINEER shown in Figure S1.27 were included in this
imported feature. This translation is successful. If you do not anticipate making any changes to the gear
housing, this imported part is satisfactory.

Dangling
sketch

Incorrect
solid
feature

FIGURE S1.31 The Converted Solid Model and Features.
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FIGURE S1.32 The Converter Dialog Box.

Imported
geometry 

FIGURE S1.33 The Gear Housing Model Converted as a Single Solid Feature, Imported1.
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S1.3.3 Importing Pro/ENGINEER assembly
We will import the input gear assembly (gbox_input.asm) shown in Figure S1.34 using
both options. We will try Option 1 first; i.e. importing solid features. As shown in the left of Figure
S1.34 (Pro/ENGINEER model tree), there are 11 parts (plus several datum features, not shown) in
this assembly. SolidWorks will try to import this assembly as well as the 11 parts from Pro/
ENGINEER.

Option 1: Importing Solid Features

Repeat the same steps to open the input gear assembly, gbox_input.asm. In the Pro/ENGINEER to
SolidWorks Converter dialog box (Figure S1.35), choose Use feature import for all parts, and choose
Overwrite for If same name SolidWorks file is found (just in case you have SolidWorks files with the
same file names in the same folder). Choose Import material properties and Import sketch/curve
entities. Click Import. The conversion process will start.

You will see sketches, solid features, and solid models appear in the graphics window. After about a
minute, the translation process is completed. The converted assembly and the browser with parts listed
are shown in Figure S1.36.

As shown in Figure S1.36, the parts are not completely converted. Major solid features are missing,
such as pinion 1 (wheel_gbox_pinion_1s<1>), where most solid features are not converted. If you
expand the part, you will see that only two extrude features were converted; the remaining entities are
mostly sketches. The remaining parts were converted. However, the Mates branch in the browser is
completely empty, implying that no assembly mates have been imported.

Apparently, this translation is not satisfactory. A nontrivial effort will be have to be devoted to
reconstructing the solid features (therefore, solid models) as well as the final assembly.

Option 2: Importing Geometry

Importing geometry is also more straightforward for assembly and has a higher rate of success.

FIGURE S1.34 Input Gear Assembly in Pro/ENGINEER.
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FIGURE S1.35 The Converter Dialog Box.

FIGURE S1.36 The Converted Assembly with Constituent Parts.
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Repeat the same steps to open the input gear assembly, gbox_input.asm. In the Pro/ENGINEER to
SolidWorks Converter dialog box (Figure S1.37), choose Use body import for all parts (default), and
then Knitting (default) in order to import solid models. Choose Overwrite for If same name SolidWorks
file is found, and choose Import material properties and Import sketch/curve entities. Click Import. The
conversion process will begin.

After about a minute or two, the converted assembly appears in the graphics window, as shown in
Figure S1.38. The assembly and all 11 parts seem to be correctly imported. If you expand any of the
part branch, such as the gear (wheel_gbox_pinion_1s<1>), you will see an imported feature listed, as
depicted in Figure S1.38. Again, there is no solid feature converted in any of the parts. In addition, the
Mates branch is empty.

If you do not anticipate making any change to this input gear assembly, this imported assembly is
satisfactory, except it does not have any assembly mates. Assembling all 11 parts (or more, in some
cases) will take a nontrivial effort. If you do not anticipate making changes in how these parts are
assembled, you may merge all 11 parts into a single part, instead of assembling them using mating
constraints.

FIGURE S1.37 The Converter Dialog Box.

352 Project S1 Solid Modeling with SolidWorks



In SolidWorks, you can join two or more parts to create a new part in an assembly. The
merge operation removes surfaces that intrude into each other’s space and merges the parts into a
single solid volume. We will insert a new part into the assembly and merge all 11 parts into this
new part.

Choose from the pull-down menu Insert> Component> New Part. A new part with an assigned
name is listed in the browser (Figure S1.39). SolidWorks is expecting you to select a plane or a flat face
to place a sketch for the new part.

Imported 
geometry

Z

X

Y

FIGURE S1.38 The Converted Assembly with Constituent Parts.

New part 

FIGURE S1.39 A New Part Added.
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Click a plane or planar face on a component. For example, pick the assembly Front plane from the
browser; the Front plane will appear in the graphics window (Figure S1.40). In the new part, a sketch
opens on the selected plane. Close the sketch. Because you are creating a joined part, you do not need a
sketch.

Next, select all 11 parts and merge them into the new part.
From the browser, click the first part wheel_box_shaft_input<1>, press the Shift key, and then

click the last part, screw_set_tip_6�6<2>. All 11 parts will be selected.
From the pull-down menu, choose Insert> Features> Join. The Join dialog box will appear

(overlapping with the browser) as shown in Figure S1.41. In the Join dialog box, all 11 parts are listed.

Front Plane 

Y

X

Z

FIGURE S1.40 The Assembly Front Plane.

FIGURE S1.41 The Join Dialog Box (Overlapping with the Browser).
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All you have to do is to click the checkmark on top to accept the parts. Save the part (choose the part in
the Resolve Ambiguity dialog box shown in Figure S1.42, then click OK). In the warning dialog box
(Figure S1.43), click OK. Enter the name gbox_input.sldprt in the Save As dialog box, and click Save.
Save one more time for the assembly. Close the entire assembly model.

Now open the part gbox_input. Make sure you open gbox_input.sldprt instead of gbox_
input.sldasm. The part gbox_input will appear in the graphics window. In addition, all entities
belong to this part will be listed in the browser, as shown in Figure S1.44. Note that there is an arrow

FIGURE S1.42 The Resolve Ambiguity Dialog Box.

FIGURE S1.43 The Warning Dialog Box.

Join feature 

Merged part 

Y

Z X

FIGURE S1.44 The Join Feature Created with Parts Merged.
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symbol -> to the right of the root entity, gbox_input. This symbol indicates that these entities enclosed
in this part refer to other parts or assembly. Note that the Join1 branch has the same symbol. Expand
the Join1 branch. You will see 11 parts listed, all with arrows, pointing to the actual parts currently in
the same folder.

S1.4 Solid feature recognition using FeatureWorks
The FeatureWorks module of SolidWorks recognizes solid features on an imported object in a
SolidWorks part document. Recognized features are (almost) the same as features that you create
using the SolidWorks software. You can edit the definition of recognized features and change their
attributes and dimension parameters. For features that are based on sketches, you can edit the
sketches to change the geometry of the features.

There are basically two approaches offered by FeatureWorks for feature recognition: automatic and
interactive. Automatic feature recognition allows the users to recognize features in a batch mode in
accordance with the preset options. Features that were created last (also called outer features) are
usually recognized first, essentially in a reverse order of feature creation sequence recorded in the
FeatureManager design tree. Whenever a problematic feature is encountered, the process aborts, and
whichever features recognized prior to this point are organized in a partial FeatureManager design tree.
On the other hand, interactive feature recognition allows users to recognize one or one type of features
at a time. In this case, users will have to pick the geometric entities in the imported object from the
graphics window for the features to be recognized in the right sequence. Overall, one possible strategy
for using FeatureWorks in solid feature recognition is to use automatic feature recognition to recognize
as many features as possible, and then recognize the remaining features interactively.

In this lesson, we use the housing example, an imported part shown in Figure S1.45, to illustrate the
steps in feature recognition.

S1.4.1 Setting key options
First, we need to activate the FeatureWorks add-in module by choosing from the pull-down menu.

Tools>Add-Ins

In the Add-Ins dialog box shown in Figure S1.46, click FeatureWorks in both boxes (Active Add-ins
and Start Up), and then click OK. You may need to restart SolidWorks to activate the FeatureWorks
module.

Certainly, before going over this tutorial project, you are encouraged to check with your system
administrator to make sure that FeatureWorks has been properly installed to your computer.

Next, we clear the Use fully defined sketches option (see Figure S1.47) by choosing from the pull-
down menu.

Tools>Options

and clicking Sketch under the System Options tab. Then, click OK. Clearing this option allows you to
create features from sketches that are not fully defined. What will happen if you turn on the Use fully
defined sketches option? A fully defined sketch must be available before it is used to create a feature.
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FIGURE S1.45 The Housing Example for Solid Feature Recognition.

FIGURE S1.46 The Add-Ins Dialog Box.
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This will cause problems in feature recognition because, in this case, a feature must have a fully
defined sketch before it is recognized.

S1.4.2 Using FeatureWorks
Open the housing example (filename housing.SLDPRT). In the FeatureWorks message dialog box
(Figure S1.48), choose No for the time being, to not start the recognition process. Instead, you will
open the model and then start feature recognition. As shown under the FeatureManager design tree,
only one solid feature, Imported1, is listed (Figure S1.49).

Next we set up FeatureWorks options by choosing from the pull-down menu:

Insert> FeatureWorks>Options

FIGURE S1.47 The System Options-Sketch Dialog Box.

FIGURE S1.48 The FeatureWorks Message Dialog Box.
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In the FeatureWorks Options dialog box (Figure S1.50), select Dimensions/Relations, then choose
Enable Auto Dimensioning of Sketches to enable auto dimensioning of the recognized sketches, choose
Baseline under Scheme, and click Add constraints to sketch under relations. Click OK to accept the
selections.

S1.4.2.1 Automatic feature recognition
Next, start feature recognition by choosing from the pull-down menu:

Insert> FeatureWorks> Recognize Features

FIGURE S1.49 Imported1 Feature Listed in the FeatureManager Design Tree.

FIGURE S1.50 The FeatureWorks Options Dialog Box.
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In the FeatureWorks dialog box, choose Automatic, Standard features, select all feature types, and
click the checkmark to accept the selections and start the automatic feature recognition (see
Figure S1.51). After a minute or two, 16 solid features and 3 planes will be recognized and listed in the
FeatureManager design tree, as shown in Figure S1.52.

Note that most sketches of the recognized solid features are fully defined. For example, if you
expand the Cut-Extrude1 and double-click Sketch5 (see Figure S1.53a), the dimensions of the sketch
appear (Figure S1.53b). Right-click Sketch5 and choose Edit Sketch, and choose Normal view, and
sketch relations and dimensions are shown (Figure S1.53c). All entities are in black color, implying
that the sketch is fully defined. Save your model under the default name Part1.

FIGURE S1.51 The FeatureWorks Message Dialog Box.
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S1.4.2.2 Interactive feature recognition
Close the model Part1 to go back to the imported model, in which Imported1 is the only solid feature
listed in the FeatureManager design tree. This time, use the interactive option for feature recognition.

Like before, start feature recognition by choosing from the pull-down menu:

Insert> FeatureWorks> Recognize Features

In the FeatureWorks dialog box, choose Interactive, Standard features, select all feature types, and
choose Chain fillet faces (see Figure S1.54). In the graphics window, pick any of the round faces on the
two ears. The faces picked and chain faces of the selected round faces are listed in the Selected entities
box, as shown in Figure S1.54. Click Recognize to start feature recognition.

FIGURE S1.52 Features Recognized.
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(a) (b) (c)

FIGURE S1.53 Fully Defined Sketch. (a) Expand Cut-Extrude1 and Click Sketch1, (b) Sketch Highlighted with

dimensions, and (c) Normal View of the Sketch with Relations and Dimensions.

Pick any of the round
face on the “ears”  

FIGURE S1.54 Interactive Feature Recognition.
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Almost immediately, the selected faces are recognized as a fillet feature, which is listed below the
imported feature in the FeatureManager design tree, as shown in Figure S1.55c.

You may right click Fillet1 in the FeatureManager design tree and select Edit (see Figure S1.56a).
In the Fillet1 dialog box (Figure S1.56b), enter a different fillet radius, such as 0.625. Click the
checkmark to accept the change. The fillet feature will be changed to a radius of 0.625 because the fillet
is recognized as a parametric solid feature.

(a) (b) (c)
Fillets recognized 
and removed 
from Imported1 

FIGURE S1.55 Interactive Feature Recognition. (a) Before Recognition, (b) After Recognition, and (c) Recognized

Features, Fillet1, Added to the FeatureManager Design Tree.

Edit feature 

Enter radius value 

(a) (b)

FIGURE S1.56 Editing the Fillet Feature. (a) Right-click Fillet1 and Choose the Edit feature, and (b) Enter a Different

Value for the Radius.
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Following the same steps, you may select more round faces to recognize them as fillet features, as
shown in Figure S1.57.

Next, choose Hole from the FeatureWorks dialog box (Figure S1.58a). Pick the inner face of the
hole of the right ear. Click Recognize. The hole is recognized and temporarily removed from the solid
model, as shown in Figure S1.58b. Repeat the same for the hole on the other side. Note that multiple
hole selection is not supported in SolidWorks 2012 or earlier.

FIGURE S1.57 Recognizing More Fillet Features. (a) Vertical Edge Walls, and (b) Corners at the Bottom Plate.

Pick the inner hole 
face of the right “ear” 

(a) (b)

FIGURE S1.58 Recognizing the Hole Feature in the Right “Ear”. (a) Selections, and (b) Hole Recognized and

Temporarily Removed.
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Next, choose Boss Extrude from the FeatureWorks dialog box (Figure S1.59a). Pick the two top
faces of the ears from the model. Click Recognize. The two rectangular blocks are recognized and
temporarily removed from the solid model (Figure S1.59b).

Next, we recognize the four small vertical holes on the top face as a pattern feature. Choose Hole
from the FeatureWorks dialog box (Figure S1.60a). Pick a vertical hole (Figure S1.60a), choose
Recognize, select Rectangular, under Recognize pattern and then click Recognize. The holes are
recognized as a pattern feature and temporarily removed from the solid model, as shown in Figure
S1.60b.

Click the checkmark on the top left of the FeatureWorks dialog box. The recognized features are
listed in the FeatureManager design tree, as shown in Figure S1.61. Click these features to see more
information, such as sketches. Are these sketches fully defined?

Save your model, and continue recognizing the remaining features in Exercise S1.2.

Pick these two faces  

(a) (b)

FIGURE S1.59 Recognizing the Boss Feature of the Two “Ears”. (a) Selections, and (b) Boss Features Recognized

and Temporarily Removed.

S1.4 Solid feature recognition using FeatureWorks 365



Pick a small vertical
hole on the top face 

(a) (b)

FIGURE S1.60 Recognizing the Boss Feature of the Two “Ears”. (a) Selections, and (b) Boss Features Recognized

and Temporarily Removed.

FIGURE S1.61 Recognized Features listed in the FeatureManager Design Tree.

366 Project S1 Solid Modeling with SolidWorks



Exercises

S1.1. Open the gbox_middle.asm (see Figure ES1.1) in the same folder as Lesson S1.3. Report the
results of the assembly importing, using both options (Use body import for all parts and Use
feature import for all parts). Discuss the pros and cons of both options.

S1.2. Continue to recognize the remaining features from the tutorial lesson S1.4 (see Figure ES1.2).
Report the following:
a. A write-up for the feature recognition type and recognition order
b. Screen captures for feature model tree, and solid models before and after each feature

recognition
c. Discuss failed feature recognition, if any
d. Describe at least two lessons learned from this exercise that may benefit your fellow

classmates or co-workers.

FIGURE ES1.1 The gbox_middle.asm.

FIGURE ES1.2 The Housing Model with Remaining Features to Recognize.
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Several important topics relevant to product design, such as direct modeling, assembly, design
parameterization, and product data exchange, were discussed in Chapters 3–6, respectively. There is no
need to emphasize the importance of understanding the concept and theory behind these topics. It is
equivalently important for engineers to learn to use computer-aided design (CAD) software for creating
assemblies, capturing design intents, addressing CAD model translations, and directly modifying part
designs. It is essential for engineers to learn how to handle these issues using existing tools.

In Project P1, we introduce Pro/ENGINEER (Wildfire 5.0) for creating assemblies, capturing
design intents, and supporting CAD model translations. In addition, we include a short introduction to
the direct modeling capability offered by Creo Direct. We include four tutorial lessons to help you get
started on learning and using the software. These lessons use the example of a single-piston engine,
with which you will learn the basics of creating an assembly using mating constraints, a slider-crank
mechanism for capturing design intents in assembly, the same slider-crank example for learning CAD
model translation and feature recognition, and a crankshaft example that shows the capabilities of
direct modeling offered in Creo Direct. Example models are available for download at the book’s
companion website (http://booksite.elsevier.com/9780123985132).

Overall, the objective of this project is to enable readers to use Pro/ENGINEER and Creo Direct for
assembly modeling, design intent capturing, model translations, and direct modeling. If you are
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interested in learning more about assembly modeling and elevating yourself to an intermediate level
(and beyond), you may want to review more assembly examples offered by tutorial books on
the subject, such as Creo Parametric 1.0 Tutorial and MultiMedia DVD by Roger Toogood and
Jack Zecher (http://www.sdcpublications.com/Textbooks/Creo-Parametric-1-0-Tutorial/ISBN/978-1-
58503-692-9) and Parametric Modeling with Pro/ENGINEER Wildfire 5.0 by Randy H. Shih
(http://www.sdcpublications.com/Textbooks/Parametric-Modeling-ProENGINEER-Wildfire-5/ISBN/
978-1-58503-539-7).

Note that the lessons included in this project were developed using Pro/ENGINEER Wildfire 5.0
M040 and Creo Direct 2.0. If you are using a different version of Pro/ENGINEER and Creo Direct,
you may see slightly different menu options or dialog boxes. Because the software tools are fairly
intuitive to use, these differences should not be too difficult to figure out.

P1.1 Introduction to Pro/ENGINEER
Pro/ENGINEER� is an integrated three-dimensional (3D) CAD/CAM/CAE solution. Using Pro/
ENGINEER, you can create parametric, feature-based, associative solid models and assemble indi-
vidual components to build complex assemblies using mating constraints (called placement constraints
in Pro/ENGINEER). Each component in an assembly can be opened in its own Pro/ENGINEER
window for users to perform many operations. Changes in components will be automatically reflected
in the assembly. The document name extension for Pro/ENGINEER assemblies is .asm.

The main objective of this tutorial project is to help you, as a new user, to become familiar with Pro/
ENGINEER assembly capabilities, capabilities offered by Pro/ENGINEER for support of solid model
translations, as well as direct model editing supported by Creo 2.0 (in Section P1.5).

P1.1.1 User interface
A typical user interface window of Pro/ENGINEER, shown in Figure P1.1, consists of the menu bar,
graphics area, model tree, toolchests, and message area. The graphics area displays the solid model on
which you are working. The message area lists guiding information related to the function you are
performing. The menu bar contains commands for creating, saving, and modifying models, and for
setting your Pro/ENGINEER environment and configuration options. You can customize the menu bar
by adding, removing, copying, or moving commands. Top toolchests provides buttons for general file
and model operations, such as open, close, zoom in/out, and display options. In addition, the side bar to
the right of the graphics area (side toolchests) shows a list of feature buttons that support solid and
assembly modeling.

The Model Tree to the left of the graphics area displays a list of assembly file names and the
corresponding constituent components or subassemblies. You can expand or collapse each subas-
sembly to view its components by clicking in front of the name of the subassembly. A component
name with a little square prefix indicates that the component is not fully constrained. Right-clicking on
any component in the model will bring up command options that you can choose to modify or adjust
the entity. When a part file is opened, the Model Tree shows the part file name, datum entities, co-
ordinate system, and part features. If multiple Pro/ENGINEER windows are opened, the Model Tree
contents reflect the file in the current window.
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There are three buttons associated with assembling on the Engineering Features toolbar in the right
toolchests (Figure P1.1):

• Add component to the assembly
• Add a manikin to the assembly
• Create a component in assembly mode

When you insert a component to the current assembly, the Component Placement dashboard appears.
As shown in Figure P1.2, the dashboard consists of the dialog bar, slide-up panels, and buttons for tool
options.

Some of the buttons on the Component Placement dashboard are listed in Table P1.1. In addition to
the buttons, from the dialog bar, you can choose the mating constraints you want to assemble the
component being inserted. In Pro/ENGINEER, you can choose from two types of constraints: pre-
defined constraint sets and user-defined constraint sets, as shown in Figure P1.3. Detailed constraint
options within each category are listed in Tables P1.2 and P1.3, respectively. You can use the button
on the dialog bar to convert a user-defined set to a predefined set or vice versa, because the two types of
constraints are equivalent in terms of constraining the relative motion between components. For
example, you can replace a Pin constraint in the predefined set with an Insert constraint and aMate (or

Graphics area 

Message area

Model 
tree

Top toolchests

Engineering 
feature toolbar 
(side toolchests)

Menu bar

FIGURE P1.1 User Interface of Pro/ENGINEER.

Slide-up panels Component placement dialog bar

FIGURE P1.2 Component Placement Dashboard.
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Align) constraint that belong to the user-defined set. In the following tutorial lessons, we focus only on
user-defined constraint sets when building the assemblies. However, predefined constraint sets are
required if the assembled model is to be used for motion analysis in Mechanism Design.

The placement status of the component is also listed in the dialog bar to the right of the pull-down
lists (Figure P1.2). Component status can switch between No Constraints, Partially Constrained, Fully
Constrained, and Constraints Invalid depending on the constraints defined.

Table P1.1 Shortcut Buttons on the Component Placement Dashboard

Icon Function

Places a component using an interface

Places a component manually

Converts a user-defined set to a predefined set or vice versa

Displays the component in its own window as you define constraints

Displays the component in the graphics window and updates component placement as you
define constraints (default)

Pauses component placement so you can use a tool

Resumes component placement following a pause

Applies component placement and quit the dashboard

Cancels component placement

Predefined 
constraint sets

User-defined 
constraint sets

FIGURE P1.3 Predefined and User-Defined Constraint Sets.
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Table P1.2 Predefined Constraint Sets

Icon Name Function

Rigid Allows no movement in the assembly

Pin Contains a rotational movement axis and translation constraints

Slider Contains a translational movement axis and rotation constraints

Cylinder Contains a 360� rotational movement axis and translational movement

Planar Contains a planar constraint to allow rotation and translation along the reference planes

Ball Contains a point alignment constraint for 360� movement

Weld Contains a coordinate system and an offset value to "weld" the component in a fixed
position to the assembly

Bearing Contains a point alignment constraint to allow rotation along a straight trajectory

General Creates a user-defined set of two constraints

6DOF Contains a coordinate system and an offset value, to allow movement in all directions

Slot Contains a point alignment to allow rotation along a nonstraight trajectory

Table P1.3 User-Defined Constraint Sets

Icon Name Function

Mate Positions two references of the same type so that they face each other

Align Positions two planes on the same plane (coincident and facing the same direction),
two axes coaxial, or two points coincident

Insert Inserts a revolved component surface into an assembly revolved surface

Coordinate
system

Aligns the components coordinate system with an assembly coordinate system

Tangent Positions two references of different types so that they face each other. The point of
contact is a tangent

Pnt on line Positions a point on a line

Pnt on Srf Positions a point on a surface

Edge on Srf Positions an edge on a surface

Fix Fixes the current location of a component that was moved or packaged

Default Aligns the component coordinate system with the default assembly coordinate system
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Four slide-up panels are hidden beneath the dialog bar (Figure P1.2). You can open each panel by
clicking its name. The two most used panels are Placement and Move. As shown in Figure P1.4a, the
Placement panel enables and displays component placement and connection definitions. The Navi-
gation and Collection area (left-hand side) displays sets and constraints. Reference entities selected for
each constraint are listed under the constraint name. A new constraint will be activated after a valid
pair of references is selected for the current constraint, until the component is fully constrained. The
Constraint Attributes area (right-hand side) contains context-sensitive options for constraints selected
in the Navigation and Collection area. TheMove panel (Figure P1.4b) is used to move the component
being assembled for easier access. The component to be moved must be packaged or configured with a
predefined constraint set.

P1.1.2 Examples
Four lessons are included in this tutorial project, which illustrate step-by-step details for creating
assemblies, capturing design intents, importing SolidWorks models to Pro/ENGINEER, and direct
modeling using Creo Direct. We start with a very simple single-piston engine example, in which the
propeller is allowed to rotate. We then use a slider-crank example to show how to capture design
intents in assembly after making changes to its components. The same slider-crank model will be used
to illustrate how SolidWorks parts and assemblies can be imported to Pro/ENGINEER, as well as the
feature recognition capability in Pro/ENGINEER. Finally, we use a crankshaft model to demonstrate
basic direct modeling capabilities offered in Creo Direct. All examples and topics to be discussed in
each lesson are summarized in Table P1.4.

P1.2 Single-piston engine
In this lesson, you will learn how to create an assembly model for a single-piston engine shown in
Figure P1.5. You will learn how to select placement constraints to assemble parts and subassemblies.
After the assembly is created, you may drag the propeller to check the kinematics of the assembly. We
will start this lesson with a brief overview about the engine assembly to be created in Pro/ENGINEER,
then show you the detailed steps in creating the assembly.

(a) (b)

Constraint

Reference 
entities

Constraint 
type

Navigation and 
collection area Constraint attributes area

FIGURE P1.4 Slide-Up Panels. (a) Placement Panel, and (b) Move Panel.
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P1.2.1 The single-piston engine example
The engine example consists of four major components: case (case.asm), propeller (propeller.asm),
connecting rod (connectingrod.asm), and piston (piston.prt), as shown in Figure P1.6a. For this lesson,
the parts and subassemblies have been created in Pro/ENGINEER. There are 22 model files created,
including three assemblies: case, propeller, and connectingrod. In addition, the final assembled engine
example (single_piston_engine.asm) is included for your reference. You may open this single_-
piston_engine assembly file to preview it.

The propeller is assembled to case using mate and insert constraints, as shown in Figure P1.6b. We
will assemble the components so that the propeller is free to rotate along the x-direction.

Table P1.4 Examples Employed in this Project

Section Example Solid Models Things to Learn

P1.2 Single-piston
engine

1. This is an introductory lesson, showing
detailed steps in creating an assembly
using four components.
2. We will review the mating constraints
that are defined between parts and
subassemblies.
3. You will learn how to create an
assembly that allows the propeller to
rotate.

P1.3 Slider-crank
mechanism

1. This tutorial lesson shows detailed
steps in capturing design intents for the
slider-crank mechanism.

P1.4 Importing
SolidWorks parts
and assemblies to
Pro/ENGINEER

1. In this tutorial lesson, we will focus on
importing SolidWorks parts and
assemblies to Pro/ENGINEER.
2. You will learn how to recognize
features on an imported model using the
feature recognition tool in Pro/ENGINEER

P1.5 Direct modeling
using Creo direct

1. This tutorial lesson shows steps in
modifying part geometry imported as an
Initial Graphics Exchange Standards
(IGES) model using direct modeling
capabilities in Creo direct.

P1.2 Single-piston engine 375



The connecting rod is assembled to the propeller (at the crankshaft) using mate and insert constraints.
The connecting rod is free to rotate relative to the propeller (at the crankshaft) along the x-direction.
Finally, the piston is assembled to the connecting rod (at the piston pin) using an insert constraint.
The piston is also assembled to the engine case using another insert constraint. This constraint restricts
the piston movement along the y-direction, which in turn restricts the top end of the connecting rod to
move vertically.

P1.2.2 Using Pro/ENGINEER
Start Pro/ENGINEER and choose File> New. In the New dialog box, choose Assembly, enter assembly
name Engine_Assembly, and then click OK, as shown in Figure P1.7.

Now we start to insert components into the assembly. Choose from the pull-down menu:

Insert> Component>Assemble

FIGURE P1.5 The Single-Piston Engine Example in Computer-Aided Design Assembly.

(a) (b)

Propeller

Piston

Connecting rod

Case

Insert

Mate
Insert

Insert

Insert

Mate 

FIGURE P1.6 The Single-Piston Engine Example. (a) Exploded View, and (b) Placement Constraints Defined

between Components (parts or subassemblies).
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to bring up the Open dialog box. Navigate to the folder Single-Piston Engine Tutorial (or the folder
where you put the parts and assemblies), select subassembly case.asm, and click Open, as shown in
Figure P1.8. The engine case will appear in the graphics area, and you should see the Component
Placement dialog bar above the graphics area (Figure P1.9).

FIGURE P1.7 New Dialog Box.

FIGURE P1.8 Open Dialog Box.
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Pull down the Constraint list, and then choose Fix to fix the location of the engine case in the global
coordinate system (Figure P1.9). Note that the component status on the dialog bar switches from No
Constraints (Figure P1.9) to Fully Constrained when the Fix constraint is defined. Click the OK
bottom on the right of the dialog bar to accept the inserted component and constraint. Once a part or
subassembly is brought in, it will be listed in the Model Tree to the left of the graphics area. You can
expand the subassembly to view individual parts by clicking in front of the name of the inserted
component, as shown in Figure P1.10.

Component 
placement dialog bar

FIGURE P1.9 Component Placement Dialog Bar.

FIGURE P1.10 Model Tree.
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Next, we insert the second component. From the pull-down menu, choose Insert> Component>
Assemble, and open subassembly propeller.asm. Then we define placement constraints for the pro-
peller. In the Component Placement dialog bar, click Placement to bring up the Placement Slide-up
Panel (Figure P1.11a). The default constraint type is Automatic. From the Constraint pull-down list,
choose Insert, then pick the surface of the propeller shaft and the inner surface of the shaft tube on the
engine case as references for the constraint, as shown in Figure P1.11b. Once the constraint is defined,
in the graphics area, the position and orientation of corresponding components (in this case, the
propeller) will be adjusted automatically to comply with the constraint. In the meantime, the
component status in the Component Placement dialog bar turns from No Constraints to Partially
Constrained (Figure P1.11a).

Next, we define the second constraint by clicking New Constraint in the Placement slide-up panel.
Choose Mate from the Constraint pull-down list, then pick the front ring-shaped face on the propeller
and the back ring-shaped face on the engine case, as shown in Figure P1.12. Note that the component
status becomes Fully Constrained (Figure P1.12), which means the propeller will not be able to rotate.
This is because when the Allow Assumptions option is turned on (by default) in the slide-up panel
(Figure P1.12), Pro/ENGINEER automatically makes assumptions in terms of the orientation of
the constraint. Clear the Allow Assumptions check box, and you should see that the component
status returns to Partially Constrained. Click OK to accept the inserted component and close the
dialog bar.

Before inserting the next component, we need to temporarily hide the engine case because part of
the propeller is now hidden inside the case, which may cause problems when assembling other
components to the propeller. Right-click CASE.ASM in the model tree and choose Hide to hide the
engine case. Next, repeat the same steps to bring in the component connectingtod.asm. In the
Component Placement dialog bar, create an Insert constraint between the cylindrical surface of
the crankshaft on the propeller and the inner surface of the hole on the connecting rod. And then define
a Mate constraint by selecting the back fan-shaped face on the propeller and the front ring-shape face
on the connecting rod (Figure P1.13). Click OK to accept the component and constraints.

Placement slide-up 
panel

(a) (b)

Pick these two 
surfaces for insert

FIGURE P1.11 Assembling the Propeller to the Engine Case Using Insert Constraint. (a) Placement Slide-up Panel,

and (b) Surfaces to Pick in the Graphics Area.
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Now we bring in the last component piston.prt. From the Constraint pull-down list, choose Insert,
and then pick the cylindrical surface of the piston pin on the connecting rod and the inner surface of the
hole on the piston, as shown in Figure P1.14. The last constraint to be defined is between the outer
cylindrical surface of the piston and the inner cylindrical surface of the chamber of the engine case.
Therefore, we first click OK in the Component Placement dialog bar to accept the inserted piston
and close the dialog bar, and then right click CASE.ASM in the model tree and choose Unhide to show
the engine case in the graphics area. In addition, before defining the next constraint, we need to adjust
the orientation of the piston to avoid confusion of the software when solving the constraint. As shown
in Figure P1.15, from the View toolbar, choose Drag Components, and drag the piston at the tip of the
boss feature so that it is roughly facing upwards. Click Close to exit the Drag dialog box.

To define the last constraint, right click PISTON.PRT in the model tree and choose Edit Definition
to bring up the Component Placement dialog bar. Pull down the Placement slide-up panel and

(a)

Pick these two faces
for mate

(b)

FIGURE P1.12 Assembling the Propeller to the Engine Case Using Mate Constraint. (a) Placement Slide-up Panel,

and (b) Faces to Pick in the Graphics Area.

Pick these two faces
for mate

Pick these two 
surfaces for insert

FIGURE P1.13 Assembling the Connecting Rod to the Propeller.
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click New Constraint. Select Insert as the constraint type and pick the reference surfaces as shown in
Figure P1.16. Note that to select the inner face of the chamber, you may need to rotate the view and
click the surface through the oval-shaped hole on the chamber (Figure P1.16). Click the OK button
to accept the constraint.

Now the single-piston engine has been completely assembled, as shown in Figure P1.17a. Note that
in the model tree, there is a little square in front of the name of each component, except for CASE.ASM
(Figure P1.17b). This is because only the engine case is fully constrained in this assembly. To review the
placement constraints defined for each component, right-click on the component name in the model tree,
choose Edit Definition, and then expand the Placement slide-up panel in the dialog bar. When you click
on each constraint, the corresponding reference entities will be highlighted in the graphics area.

In this assembly, the propeller is free to rotate along the x-direction. You can drag the propeller in
the graphics area using the Drag Components tool to check the kinematics of the engine. To check
the motion of the piston hidden inside the case, pull down the Appearance Gallery button from the
View toolbar, and choose ptc-glass under My Appearances, as shown in Figure P1.18a. The mouse

Drag here

FIGURE P1.15 Drag the Piston to Adjust Orientation.

Pick these two 
surfaces for insert

FIGURE P1.14 Assembling the Piston to the Connecting Rod.
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(a) (b)

FIGURE P1.17 The Single-Piston Engine Assembly. (a) Assembled Model, and (b) Model Tree.

Pick these two 
surfaces for insert

FIGURE P1.16 Assembling the Piston to the Engine Case.

(a) (b)

FIGURE P1.18 Changing Appearance of the Engine Case. (a) Appearance Gallery Pull-down Panel, and (b) Model

Appearance Editor Dialog Box.
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pointer will then turn into a brush. Click the engine case in the graphics area and click OK in the
Select dialog box. You will see that the engine case becomes partially transparent. To further adjust
transparency, choose Edit Model Appearance in the Appearance Gallery pull-down panel
(Figure P1.18a), increase Transparency to 90 (Figure P1.18b), and close the Model Appearance
Editor dialog box. In the graphics area, you should see clearly the motion of the piston and the
connecting rod while the propeller is rotating, as shown in Figure P1.19. Save your model for future
reference.

P1.3 Slider-crank mechanism
In this lesson, we will learn how to capture design intents for a slider-crank mechanism shown in
Figure P1.20a, as mentioned in Chapter 5. Because the detailed steps in using placement constraints in

FIGURE P1.19 Single-Piston Engine Assembly with Partially Transparent Engine Case.

(a)

Connecting 
rod 

Piston pin 

Crankshaft 

Piston (b)

Design
variable

d2:0

FIGURE P1.20 The Slider-Crank Mechanism. (a) CAD Solid Model, and (b) Exploded View with a Design Variable

d2:0.
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Pro/ENGINEER to create assembly have been presented in Section P1.2, we will not repeat the steps in
this lesson. Instead, we focus on capturing the design intents for the assembly. We will start this lesson
with a brief overview about the mechanism, then discuss steps in creating two design variables for the
assembly.

P1.3.1 The slider-crank example
This mechanism consists of four parts: crankshaft, connecting rod, piston pin, and piston, as shown in
Figure P1.20b. Our goal is to assemble the crankshaft with the datum planes for a particular orien-
tation, like the one shown in Figure P1.21a, then capture two design variables: crankshaft length d2:
0 and rod length d3:2, as shown in Figure P1.21b. Currently, the dimension values are: d2:0¼ 3 and d3:
2¼ 8. Note that when we change the design variables, we expect to see all four parts are intact (i.e.,
properly assembled) and the piston pin axis stays on the ASM_TOP datum plane (see Figure P1.21b).

In order to capture the intent, we create one additional datum plane in the assembly. The datum
plane ASM_DTM1 will be created by rotating ASM_TOP along the axis A_2 (in crankshaft with an
angle sin�1 (3/8). Note that this angle dimension can be defined by entering the dimension value of 22
(approximately) and later adding the following relation:

d1: 1 ¼ sin�1 ð3=8Þ (P1.1)

Note that ASM_DTM1will be used to properly orient the connecting rod. In addition, the rotation angle
of ASM_DTM1, which determines the configuration of the assembly, will be related to the crankshaft
length through the following equation:

d1: 1 ¼ sin�1 ðd2: 0=d3: 2Þ (P1.2)

Equation P1.2 defines the relation of angle (d1:1) to the design variables d2:0 (crankshaft length) and
d3:2 (rod length). Dimension d1:1 actually rotates the datum plane ASM_DTM1 according to the
change of d2:0 and d3:2. This is how the design intent is captured for this example.

(a) (b)

ASM_RIGHT 

ASM_DTM1
d3:2 = 8 (rod length) 

d2:0 = 3 
(crankshaft
length) 

d0:1 = 3 
(distance)

d1:1 

ASM_TOP 
Piston pin axis 

ASM_RIGHT 

ASM_DTM1

d0:1 = 3 
(distance)

d1:1 

ASM_TOP 

FIGURE P1.21 Design Variables to Define in the Assembly. (a) Crankshaft Orientation in Assembly, and (b) Side

View of the Assembly with Design Variables d2:0 and d3:2.
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P1.3.2 Using Pro/ENGINEER
Create a new assembly in Pro/ENGINEER with the name Slider_Crank and first bring in the crank-
shaft component. The assembly datum planes ASM_RIGHT, TOP, and FRONT are employed to
assemble the crankshaft using Mate and Align placement constraints:

• Mate: datum plane ASM_RIGHT and TOP in crankshaft
• Align: datum plane ASM_TOP and RIGHT in crankshaft
• Align: datum plane ASM_FRONT and FRONT in crankshaft

Note that during assembling you can use the datum plane and datum axis buttons in the Datum
Display toolbar to turn on and off the display of the datum planes and axes in the graphics area. The
crankshaft assembled to the assembly datum planes is shown in Figure P1.22.

Next, create a new assembly datum plane ASM_DTM1. Choose from the pull-down menu:

Insert>Model Datum> Plane

to bring up the Datum Plane dialog box. In the graphics area, pick the datum plane ASM_TOP and axis
A_2 in crankshaft while holding the Ctrl key. In the dialog box, enter 22 as the rotation angle and click
OK, as shown in Figure P1.23. As discussed earlier, 22 is just an approximate value; therefore, you
need to assign a precise angle for the datum plane ASM_DTM1 using the Relations tool.

From the pull-down menu, choose Tools> Relations and the Relations dialog box will appear. If
you click the datum plane ASM_DTM1 in the graphics area, you can see all the related dimensions. In
this case, the only dimension is d1:1, which is the rotation angle of ASM_DTM1 with respect to the
datum plane ASM_TOP, as highlighted in Figure P1.24. Click on the dimension d1:1 to insert it into the
text box in the Relations dialog box as d1 (Figure P1.24). Continue to enter the relation as
d1¼ asin (3/8) in the text box and click OK to accept. Click the Regeneration button to the top right
of the graphics area, and then click Regenerate in the pop-up Regeneration Manager dialog box to
rebuild the model. Note that the angle of the datum plane ASM_DTM1 will be updated in the graphics
area, and the Regeneration button icon will switch from yellow light to green light .

FIGURE P1.22 Assembling the Crankshaft.
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The next component to be inserted to the assembly is the rod. The rod is assembled to crankshaft
and the datum planes using the following (see Figure P1.25):

• Align: axis A_1 in rod and A_2 in crankshaft
• Mate: front face of the boss in rod and back face in crankshaft
• Align: datum plane ASM_DTM1 and FRONT in rod

FIGURE P1.23 Creating Datum Plane ASM_DTM1.

FIGURE P1.24 Creating Relation for Datum Plane ASM_DTM1.
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Next, we bring in the pin and assemble it to the rod using two constraints (see Figure P1.26):

• Align: axis A_1 in pin and A_3 in rod
• Align: TOP in pin and TOP in rod.

Finally, the piston is inserted and assembled using (see Figure P1.27):

• Align: axis A_5 in piston and A_1 in pin
• Mate: TOP in piston and TOP in pin

In addition to the two constraints above, we will define the FRONT plane in piston to be parallel with
the datum plane ASM_TOP using an Align constraint, as shown in Figure P1.28. Note that the Offset
option is set to be Oriented instead of Coincident in the slide-up panel.

Align axes 

Mate surfaces 

(Back face)

rod

crankshaft 

(Front ring face) 

Align surfaces 

ASM_DTM1

FRONT

FIGURE P1.25 Assembling the Rod.

Align axes

Align surfaces

TOP

TOP

rod

pin

FIGURE P1.26 Assembling the Pin.
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So far, the slider-crank mechanism has been assembled, in which all components are fully con-
strained. The assembly placement constraints are summarized in Table P1.5.

Now, adjust the first design variable d2:0 to see its impact to the assembly. Right-click CRANK.PRT
in the model tree and choose Open to open the crankshaft in a new window. In the crank model tree,
expand feature Protrusion id 9, right-click sketch S2D0002, and then choose Edit Definition. In the
graphics area, double-click the length dimension 3.00 and change it to 5 as shown in Figure P1.29.
Press the Enter key to apply the change and click Done on the sketch toolbar to exit the sketch
mode. Note that the length of the crankshaft has been updated in the graphics area. Choose from the
pull-down menu Window> SLIDER_CRANK to return to the assembly window, and then click to
regenerate the model. As shown in Figure P1.30, the piston pin axis is no longer in the ASM_TOP
plane. Why? Because the orientation of the datum plane ASM_DTM1 is fixed as sin�1 (3/8), and is not
changing with the length of the crankshaft.

Align axes

Align surfaces

TOP

TOP

rod

pin

piston

FIGURE P1.27 Assembling the Piston.

FIGURE P1.28 Align Constraint between FRONT in Piston and ASM_TOP.
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Table P1.5 Placement Constraints Defined for the Slider-Crank Mechanism

ASM_RIGHT, TOP, FRONT Crankshaft ASM_DTM1 Rod Pin

Crankshaft Mate: ASM_RIGHT/Top
Align: ASM_TOP/Right
Align: ASM_FRONT/Front

Rod Align:
A_1/A_2
Mate: faces

Align:
ASM_DTM1/
Front

Pin Align:
A_1/A_3
Align:
Top/Top

Piston Align: ASM_TOP/Front Align:
A_5/A_1
Mate:
Top/Top

FIGURE P1.29 Changing the Design Variable d2:0.

ASM_TOP Piston pin axis

ASM_DTM1

ASM_RIGHT

FIGURE P1.30 Design Intent not Captured After Changing Crankshaft Length.
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To capture the design intent, we need to relate the orientation of ASM_DTM1 to both the length of

the crank and the rod. To do that, choose Tools> Relations and modify the relation defined earlier to
d1¼ asin(d2:0/d3:2), as shown in Figure P1.31. Click OK to exit the dialog box and then regenerated
the assembly. Now you can see that the angle of the datum plane ASM_DTM1 has changed, and the
piston pin returns to the ASM_TOP datum plane (Figure P1.32).

Certainly, the procedure above is not the only way of capturing the design intent in this case. For
example, if we make the FRONT plane in piston coincide (instead of parallel) with the datum plane
ASM_TOP, then the datum plane ASM_DTM1, as well as the second Align constraint for rod, are no
longer needed.

Change the length of the crankshaft back to 3 and regenerate the assembly.
Next, we adjust the second design variable d3:2. Following the same steps, change the rod length

(sketch S2D0002 under feature Protrusion id 10) from 8 to 12 at the part level and regenerate the

FIGURE P1.31 Create a Relation for Datum Plane ASM_DTM1.

ASM_TOP

Piston pin axis

ASM_DTM1

ASM_RIGHT

FIGURE P1.32 Design Variable d2:0 Properly Defined.
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assembly. How will the design be regenerated? Like the one in Figure P1.33a and b? Or something
else? Is the design intent adequately captured?

There are two problems. The smaller hole in the rod does not move together with the dimension d3
(d3:2 in assembly). The piston and piston pin do not move together with the dimension d3:2.

The reason that you see problems is that, at part level, the location of the smaller hole in the rod is
related not to the length of the rod but to the location of the larger hole. When the rod is elongated after
the design change, the distance between the two holes in the rod remains constant. Therefore, you need
to define a relation for the rod part (see Figure P1.34), as:

d16¼ d3 (why not d3¼ d16?)
Then, regenerate the part to make sure that the design intent is captured at the part. After that, go

back to the assembly window and regenerate the model. As can be seen in Figure P1.35, due to the
relation defined in the assembly, all components are properly assembled, and the piston pin axis stays
within the ASM_TOP datum plane.

Save your models for future reference.

ASM_RIGHT 

ASM_DTM1

ASM_TOP 

(a) (b)

d3:2 = 8 (rod length)

FIGURE P1.33 Problems Encountered in Design Variable d3:2.

FIGURE P1.34 Create Relation to Relate Dimensions d3 and d16.
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P1.4 Importing SolidWorks parts and assemblies to Pro/ENGINEER
In Project S1, we demonstrated how to import Pro/ENGINEER parts and assemblies to SolidWorks. In
this lesson, we discuss the approaches of importing solid models from other CAD software, such as
SolidWorks, into Pro/ENGINEER. Pro/ENGINEER supports importing solid models from a broad
range of software and formats, including Parasolid, ACIS, Initial Graphics Exchange Standards
(IGES), Standard for Exchange of Product data (STEP) and SolidWorks. For a complete list of sup-
ported software and formats in Pro/ENGINEER, please refer to Figure P1.36. You may access this list
by choosing File>Open from the pull-down menu, and pull down the Files of type in the File Open
dialog box.

In this tutorial lesson, we focus on importing SolidWorks parts and assemblies. We hope that the
methods and principles you learn from this lesson are applicable to importing solid models from other
software and formats.

Pro/ENGINEER provides capabilities for importing both part and assembly. However, unlike
SolidWorks, it does not offer the functionalities for importing feature history or dimensions. The parts
and assemblies of any format will be imported as a dumb geometry only, which means all solid
features are lumped into a single imported body without dimensions.

Certainly, if you do not anticipate making design changes in Pro/ENGINEER, there is no problem
with importing parts as a single geometric feature. However, when it is required to make design
changes to the model in Pro/ENGINEER, you will need to recognize solid features embedded in the
imported object. Prior to Pro/ENGINEERWildfire 4.0, the feature recognition tool (FRT) can only be
installed in Pro/ENGINEER as a third-party plug-in application. For Pro/ENGINEER versions later
than Wildfire 4.0, this plug-in application is integrated in the software packaged as the FRT. This tool
identifies and replaces geometry representing features in imported models with true parametric fea-
tures, and enables you to selectively edit geometry of features in imported solid models without
completely rebuilding the model manually.

Compared to the feature recognition capability in SolidWorks (discussed in Project S1.4), the FRT
in Pro/ENGINEER is much simpler and less desired. Only six types of major features are supported:
extrusion, slot, hole, chamfer, fillet, and pattern. In addition, the feature recognition process in

ASM_RIGHT 

ASM_DTM1

ASM

FIGURE P1.35 Design Variable d3:2 Properly Defined.
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Pro/ENGINEER is not automated, which means users need to manually recognize features one
at a time, while determining the right sequence of picking the geometric entities on the imported
object.

Moreover, during SolidWorks feature recognition, each feature will be temporarily removed from
the solid model once the feature is recognized to facilitate identifying the next feature. However, in
Pro/ENGINEER, all recognized features remain in display, including those embedded in the part
geometry, such as holes and chamfers, thus making it difficult in most cases to continue the recognition
process. Furthermore, in Pro/ENGINEER, the innermost feature (the feature that was created first) will
not be recognized due to the lack of reference. Because of that, the best a user can achieve from the
feature recognition process in Pro/ENGINEER will be a partially parametric model.

Overall, the feature recognition capability in Pro/ENGINEER offers design engineers an easy and
useful tool to make some design changes to the imported geometry. However, the capability is not
powerful enough to convert the imported object to a fully parametric model.

In this lesson, we will first import a slider-crank assembly created in SolidWorks (Figure P1.37) to
Pro/ENGINEER. Then, we will use one of the components in this assembly to illustrate the steps of
using the FRT in Pro/ENGINEER.

FIGURE P1.36 File Open Dialog Box.
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P1.4.1 The slider-crank example in SolidWorks
The slider-crank mechanism consists of four parts. If you have access to SolidWorks, you may want to
open the final assembly, slider_crank.SLDASM, to review the assembled mechanism, as shown in
Figure P1.37. The four parts in this assembly are: crank.SLDPRT, pin.SLDPRT, piston.SLDPRT, and
rod.SLDPRT. The mating constraints used to assemble the components are listed in the feature tree
shown in Figure P1.37. Pro/ENGINEER will try to import this assembly as well as the four parts from
SolidWorks.

P1.4.2 Importing SolidWorks assembly
Start Pro/ENGINEER and choose File>Open. In the File Open dialog box, change to folder
File_import (or the folder where you have these parts and assemblies). Pull down the Files Type list,
and choose SolidWorks Assembly (*.sldasm). Select the only SolidWorks assembly file in the dialog
box, Silder_Crank.SLDASM, and click Open. In the Import New Model dialog box, you should see that
the Type option is automatically set to be Assembly, as shown in Figure P1.38. Note that if you are
opening a SolidWorks part file, you can choose either Part or Assembly as the import type. If the
Assembly option is chosen for a SolidWorks part, you will end up with a Pro/ENGINEER assembly
that contains one single component.

Accept the default import options by clicking OK in the Import New Model dialog box. You
should see the assembly model in the graphics area, as shown in Figure P1.39. Note that in the model
tree, four parts in the assembly are imported successfully, and all of them are fixed in the global

FIGURE P1.37 Slider-Crank Assembly in SolidWorks.
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coordinate system (you will not be able to drag them to move in the graphics area using the Drag
Component tool).

Are the individual parts constrained? Right-click on any part (in this case, we use the piston) in the
model tree and choose Edit Definition to bring up the Component Placement dialog bar. As shown in
Figure P1.40, no constraint is defined for the part, and the component status is No Constraints. Now,
close the toolbar without changing anything, and you will see that the part piston becomes non-fully-
constrained (little square in front of the part name in the model tree, as shown in Figure P1.41). Also,
you can now move the piston in the graphics area using the Drag Components tool (Figure P1.41).

FIGURE P1.38 Import New Model Dialog Box.

FIGURE P1.39 Imported Assembly.
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Apparently, a SolidWorks assembly will be imported to Pro/ENGINEER as individual parts without
any mating constraint. If the assembly consists of a large number of parts, reassembling all parts in Pro/
ENGINEER will take a nontrivial effort.

Now, open individual parts in the imported assembly. Right-click crank in the model tree and
choose Open to open the part crank in a new window. If you take a look at the model tree, as shown in
Figure P1.42, you will see that the part is imported as a dumb block with no parametric solid feature,
dimension, or sketch. Therefore, if you want to make design changes to the imported parts and as-
sembly, you are recommended to use the FRT in Pro/ENGINEER to identify and modify solid features
on the imported models.

P1.4.3 Feature recognition for SolidWorks part
With the FRT in Pro/ENGINEER, you can recognize features on an imported part, and edit the
definition of recognized features and change their attributes or dimension parameters. For features that

FIGURE P1.40 No Constraint Defined in the Assembly.

FIGURE P1.41 Imported Assembly with Unconstrained Piston.
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are based on sketches, you can edit the sketches to change the geometry of the features. In this lesson,
we will use the crankshaft (Figure P1.42) in the slider-crank assembly discussed earlier as an example
to illustrate the steps of using the FRT.

Before we start, we need to enable the FRT in Pro/ENGINEER, which is disabled by default.
Choose from the pull-down menu Tools>Options to open the Options dialog box. Add a new option
frt_enabled and set the value to yes, as shown in Figure P1.43. Click Add/Change and then click OK to
close the dialog box.

FIGURE P1.42 Imported Crankshaft.

FIGURE P1.43 Enabling the Feature Recognition Tool (FRT).
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Now repeat the steps discussed in the last section to import the SolidWorks part crank.SLDPRT into
Pro/ENGINEER. Alternatively, you can import the complete assembly as we did in the last section and
then open the part crank from the imported assembly. Once the crankshaft is imported or opened, you
will see that the FRT toolbar appears in the toolchests area, as shown in Figure P1.44. These FRT
options are also available in the Edit pull-down menu.

The FRT in Pro/ENGINEER supports six types of solid features:

• Protrusions or pockets on flat or curved surfaces
• Extruded slots
• Simple or sketched holes on flat or curved surfaces
• Constant radius rounds
• Chamfers
• Table pattern for holes

Now, we demonstrate how to use these capabilities to recognize features. First, recognize the larger pin
on the crankshaft. Click the button in the FRT toolbar, pick the flat surface of the main body of the
crankshaft, and then click OK in the Select dialog box (Figure P1.45). Pro/ENGINEER will search all
protrusion features created from this basis surface.

As shown in Figure P1.46, the larger pin has been successfully identified and added to the model
tree as feature Extrude 1 with a sketch. At the same time, a Remove 1 feature is created in the model
tree prior to Extrude 1. In fact, during the feature recognition process, Pro/ENGINEER first removed
the original geometry of the larger pin from the imported body, and then created a parametric feature to
replace the removed geometry. If you right-click Extrude 1 in the model tree and choose Delete, you
should see that the larger pin on the crankshaft disappears, as shown in Figure P1.47. However, if you
continue to delete the Remove 1 feature as well, the pin will grow back again, but this time it is simply
the original geometry rather than a parametric feature. Once both Extrude 1 and Remove 1 are deleted,
the model returns to the status right after it was imported.

Now recognize the larger pin again; then, following the same steps, recognize the smaller pin, as
shown in Figure P1.48. However, you will encounter problems when you proceed to recognize the last

FIGURE P1.44 Feature Recognition Tool (FRT) Toolbar.

FIGURE P1.45 Recognizing the Larger Pin.
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FIGURE P1.46 Larger Pin Recognized.

FIGURE P1.47 Larger Pin Removed from the Crankshaft.

FIGURE P1.48 Recognizing the Smaller Pin.

P1.4 Importing SolidWorks parts and assemblies to Pro/ENGINEER 399



featuredthe main body of the crankshaft. Using FRT, when recognizing an extrusion feature, we must
identify a reference surface based on which the feature is created. Because the main body of the
crankshaft is the first feature created when building the crankshaft, no reference surface for this feature
can be found. Therefore, the main body is not able to be recognized using the FRT in Pro/ENGINEER,
and the crankshaft has to be left as a partially parametric model.

Although the crankshaft is not completely converted into a parametric model, we can still make
design changes to the recognized features (in this case, the two pins). For example, to change the
location and diameter of the smaller pin, rightclick the sketch under Extrude 2 in the model tree
(Figure P1.48) and choose Edit Definition. In the graphics area, modify the radius and distance
dimensions to 0.20 and 2.00, respectively, as shown in Figure P1.49a, and then click the Done
button on the Sketch toolbar. The model of the crankshaft will be updated in the graphics area.
To change the height of the smaller pin, right-click on Extrusion 2 in the model tree and choose
Edit Definition. In the text field of the toolbar on top of the graphics area, change the height of the
extrusion feature to 0.3 and click OK to accept. As shown in Figure P1.49b, the smaller pin on the
crankshaft has been successfully changed.

Save your models for future reference.

P1.5 Direct modeling using Creo Direct
As a member of the PTC Creo product family, Creo Direct is a stand-alone 3D CAD modeling
application that supports creating, manipulating, and editing 3D geometries. Using a direct modeling
approach, Creo Direct offers the most efficiency and flexibility when you are creating a concept design
or editing models to defeature or simplify them for a downstream process, such as CAE analysis or
numerical control and tooling design. The data created or edited in Creo Direct can be seamlessly
shared among all other Creo applications used in the design process.

(a) (b)

FIGURE P1.49 Making Changes to the Crankshaft. (a) Changing Diameter and Location of the Smaller Pin,

and (b) Changing the Height of the Smaller Pin.
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Creo Direct follows a history-free design approach. That is, geometric entities created during the
design process are independent of each other. With Creo Direct, you will be able to make changes to a
3D CAD model that is imported without features or dimensions through direct interaction with
geometry. For example, you can “push–pull” geometry to the desired position without losing the
original design intent. Also, you can offset, mirror, and remove geometry, or modify rounds and
analytic features such as fillets, cylinders, cones, and spheres. In addition, Creo Direct supports 3D
surface modeling and assembly modeling.

In this tutorial lesson, we will learn how to directly edit the solid model of a crankshaft shown in
Figure P1.50 using Creo Direct. Because SolidWorks files cannot be opened in Creo Direct, in this
lesson, the crankshaft model will be imported as an IGES file.

It is worth mentioning that an add-on product named Flexible Modeling Extension (FMX), which
also provides direct modeling capabilities, is embedded in Creo Parametric. This add-on contains part
of the functionalities offered in Creo Direct. In this lesson, we will focus on Creo Direct (version 2.0)
to show the steps in directly editing the imported geometry. However, most operations demonstrated in
this lesson can also be accomplished using the FMX in Creo Parametric.

P1.5.1 Creo Direct user interface
As shown in Figure P1.51, the user interface of Creo Direct consists of a main window with a status bar
at the bottom. The status bar displays prompts, filter settings, and the mode for the modeling operation.
In the main window, the model tree to the left of the graphics area is similar to that in Pro/ENGINEER.
Most tools and commands are grouped into two tabsdHome and Viewdin the ribbon above the
graphics area. In part mode, the buttons in the Home tab include commands to create, modify,
manipulate, dimension, and analyze geometry.

P1.5.2 Using Creo Direct
Choose from the pull-down menu File>Open (or click the button on theQuick Access Toolbar). As
shown in Figure P1.52, in the File Open dialog box, navigate to the folder Direct Modeling Tutorial
(or the folder where you put the model), select crank.igs, and click Open. You should see the
crankshaft appears in the graphics area as a dumb solid block without features. Note that the file
formats supported in Creo Direct are listed in the File Type pull-down list (Figure P1.52).

FIGURE P1.50 Geometry of the Crankshaft Example.
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First, we change the size and location of the smaller shaft on the crankshaft. Click the Move &
Rotate button from the ribbon under the Home tab, as circled in Figure P1.53a, and then pick the front
half-cylindrical surface of the smaller shaft (Figure P1.53b). You should see a graphical control
tooldthe draggerdappear near the selected surface. In the meantime, a live toolbar that includes most
relevant commands for the selected entity shows up in the graphics area (Figure P1.53c). The arrows

Graphics 
area 

Quick 
access
toolbar

Model 
tree

Ribbon

Status
bar

Graphics 
toolbar

Home and 
View tabs

FIGURE P1.51 User Interface of Creo Direct.

FIGURE P1.52 File Open Dialog Box.
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and rings of the dragger are called handles, which enable movement in one or more degrees of
freedom. The handles that you can use for operations are highlighted in blue (Figure P1.53c).

As shown in Figure P1.53c, the origin of the dragger is placed at the location where you click to
pick the surface, and the highlighted arrow is normal to the surface. Drag to move the origin of the
dragger so that the blue arrow points approximately towards the larger shaft, as shown in
Figure P1.53d. Next, pull the blue arrow along its direction (Figure P1.53e), and you should see the
movement of the smaller shaft shown dynamically in the graphics area, with the relative distance
from the starting point. Click the middle mouse button to accept the new location of the smaller shaft
(Figure P1.53f).

Similarly, to adjust the length of the shaft, simply pick the end face of the shaft and pull the
highlighted arrow upwards, as shown in Figure P1.54.

Now, edit the diameter of the smaller shaft. Choose Modify Analytic from the ribbon (Figure
P1.55a), and then pick the cylindrical surface of the shaft. A red arrow will appear normal to the
selected surface with the current diameter displayed. Drag the arrow towards the opposite direction of
the arrow to reduce the diameter of the shaft, as shown in Figure P1.55b–d. Press the middle mouse
button to accept the change.

Next, duplicate the modified smaller shaft along one edge of the main body of the crankshaft. Pick
all three surfaces of the smaller shaft (two half cylindrical surfaces and one top surface) in the graphics
area, and then click Pattern from ribbon (Figure P1.56a). Note that you need to hold the Crtl key when
selecting multiple entities. The live toolbar switches automatically to the Pattern tab. Pick the straight
edge on the crankshaft as shown in Figure P1.56b, and then drag the red arrow to adjust the location of
the duplicated geometry. Click the middle mouse button to accept the change.

Live toolbar

Dragger

Pick this 

(a) (b) (c)

(d) (e) (f)

surface

FIGURE P1.53 Moving the Smaller Shaft.
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Finally, create a fillet on the duplicated shaft. Choose Round from the ribbon (Figure P1.57a) and
select the top circular edge of the duplicated shaft (Figure P1.57b). A fillet will be created and you can
adjust its radius by dragging either one of the two red arrows. As shown in Figure P1.57c, the fillet
radius will be dynamically updated in the graphics area. Click the middle mouse button to accept the
change.

Save the model for future reference.

FIGURE P1.54 Changing Length of the Smaller Shaft.

(a) (b) (c) (d)

FIGURE P1.55 Changing Diameter of the Smaller Shaft.

(a) (b) (c) (d)

Pick this edge

FIGURE P1.56 Duplicating the Smaller Shaft.
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Exercises

P1.1. In this problem, you are asked to create the pulley assembly from parts provided on the book’s
companion website (http://booksite.elsevier.com/9780123985132). Note that the unit system
mmNs is assumed. Use Set Up>Units to choose your unit system.
a. Create the assembly like the one shown in Figures EP1.1 and EP1.2 (cut-out view) and

print out four views (uncut, unexploded, with hidden lines) of the assembly: i.e. front, side,
top, and isometric views.

b. Create a matrix that shows component placement constraints, like the one in Table P1.5.
c. Check interference and report the volume of interference.
d. Create a cut in the base component to eliminate the interference problem.
e. Create a key with proper dimensions between the hole of the pulley and shaft in assembly

mode.
f. Generate an exploded view to visualize the assembly like the one in Figure EP1.3. Print out

and submit an isometric view.

(a) (b) (c) (d)

FIGURE P1.57 Adding Fillet to the Duplicated Shaft.

FIGURE EP1.1 The Pulley Assembly.
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FIGURE EP1.3 The Exploded View of the Pulley Assembly.

FIGURE EP1.2 The Cut-Out View of the Pulley Assembly.

FIGURE EP1.4 The Block Part of IGES Model.
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g. Define proper relationships among dimensions so that a physically valid model can be
regenerated when diameter of the shaft is changed. Report these relations with associated
screen captures for illustration.

Example files were extracted from Pro/ENGINEER Wildfire 5.0 Tutorial and
MultiMedia CD by Roger Toogood and Jack Zecher, SDC Publications, ISBN:
978-1-58503-415-4.

FIGURE EP1.5 The Block Part of SolidWorks.

FIGURE EP1.6 Changes to Make for the Block Example. (a) Hole Size. (b) Base Width. (c) Base Depth. (d) Slot

Width. and (e) Chamfer Size.
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P1.2. Open the block part of IGES shown in Figure EP1.4 in Pro/ENGINEER following the steps
shown in Section P1.4. Use the feature recognition capability to recognize solid features
embedded in the IGES model. Report features that you are able to recognize. Briefly state how
they are recognized and attach screen captures to illustrate your approach. Describe problems
encountered in the process, if any. Discuss the strengths and weaknesses of the feature
recognition capability offered by Wildfire 5.0.

P1.3. Import the block part of SolidWorks shown in Figure EP1.5 to Pro/ENGINEER following the
steps shown in Section P1.4. Use Creo Direct (or Creo Parametric) to edit the part, following
steps shown in Section P1.5, for changes shown in Figure EP1.6. These changes include:
(1) hole size, (2) base width, (3) base depth, (4) slot width, and (5) chamfer size, as shown in
Figure EP1.6a–e, respectively. Briefly state how the changes are made and attach screen
captures to illustrate your approach. Describe problems encountered in the process, if any.
Discuss the strengths and weaknesses of the direct modeling capability offered by Creo 2.0.
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Hierarchical product model for HMMWV, 27–28

Higher pair joints, 178

High-mobility multipurpose wheeled vehicle (HMMWV),

27–33, 275–276

design parameterization of, 252, 256–261, 256f, 257f

design change, 261, 261f

relations defined for differential, 258t

relations defined for steering rack, 259t

track design variable, 257–260, 257f, 258f, 259f

wheelbase design variable, 257f, 260, 260f

design trade-off, 32–33

detail design, 28f, 31–32

driver seat vertical accelerations, 30f

dynamic simulation model, 29f

gear hub assembly models, 28f

hierarchical product model, 27–28

lower control arm models, 29f, 32f

preliminary design, 27f, 28–30

shock absorbers

operation distance, 30f

forces, 31f
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Hinge joint, 178, 180f

Homogeneous coordinates, 99–101, 100f, 188, 203–204

Housing, 327, 357f

See also FeatureWorks

Human maxillary second molar modeling, 112, 113f

Human middle ear modeling, 112, 112f

h-version finite element analysis, 10, 10f

Hyperbola, 117–118, 117f

HyperMesh, 8–10, 277–279

HyperText Markup Language (HTML), 276

I
Image services, 283

iMAN, 285

Implicit form of curve representation, 42, 42f

Independence axiom, 238–240, 239f, 240f, 254, 256

Independent principal vector (IPV), 197–201, 198f, 220

Inertial frame, 201–203, 222

Information axiom, 240–241, 248–249, 254–256

minimization of information contents, 241f
Initial Graphics Exchange Standards (IGES), 292, 297,

343–344, 392

file structure and data format, 312–317

directory entry section, 313–314

global section, 313

parameter data section, 316

start section, 312

terminate section, 316–317
Instances, 132

Integrated Design and Engineering Analysis Software

(I-DEAS), 161

Integrated product and process development (IPPD), 3

Integrated testbed using Windchill, 304–306

Intent. See Design intent (DI)

Interactive feature recognition, 356

using FeatureWorks, 361–366, 362f, 363f

boss feature, 365f, 366f

editing fillet feature, 363f

FeatureManager design tree, 366f

fillet feature, 364f

hole feature, 364f
International TechneGroup Inc., 298–299

Intersection mating geometry (IMG), 197–201, 198f, 220

Intersection of primitives, 133, 133f

surface to surface, 134, 134f
Investment casting, 19

J
Joint

coordinate systems, 220–226

kinematic. See Kinematic joints

mating, 173. See also Mating constraints

selection in motion simulation models, 10–11
JT files, 272

JT Viewer, 276–277

K
Kernels, geometric modeling, 155–157

Kinematic joints, 178–184, 180f

mapping mating constraints to, 200–201, 202f, 203t
Kinematic modeling, 170, 199–226, 199f, 200f

constructing joint coordinate systems, 220–226

Denavit–Hartenberg representation, 201–220, 203f, 206f,

207t

mapping mating constraints to kinematic joints, 200–201,

202f, 203t
Knowledge, product, 5f

Knowledge-based engineering (KBE), 5–6

L
Life cycle

design, product, 3

product life cycle management, 266–267
Line, straight, 44–45, 45f

LMS SYSNOISE, 11–12

Loft surfaces, 88–91, 89f

Lower control arm models for HMMWV, 29f, 32f,

33f, 34f

Lower pair joints, 178, 180f, 181

DOFs of, 181t
LS-DYNA, 11–12

M
Machine control data (MCD), 22

Machining features, 140

Manifold objects, 136–137, 136f

Manufacturing

features, 140

issues, 3
MasterCAM, 127–129, 128f, 130f, 297

Material features, 140

Mating constraints, 41, 170–171, 173–178, 174f, 174t, 197,

220

aligned and antialigned conditions, 175f

mapping to kinematic joints, 200–201, 202f, 203t
Matlab, 84–85, 87–88

MatrixOne, 268, 285

M-codes, 22

Mean time between failure (MTBF), 13

Mechanism Design, 10–11

Metadata, 272–273

Meta-database, 272–273

Metaphase, 285
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Microsoft Excel, 16–17, 17f

Microsoft SharePoint, 270–271

Middle ear modeling, 112, 112f

Military, use of virtual reality in, 228, 228f

Mirror features, 141, 142f

Modeling engine. See Geometric modeling kernels

Monte Carlo method, 12–13

Motion analysis, 11, 24

Motion simulation models, 10–11, 11f

MSC Fatigue, 12

MSC/Nastran, 11–12

MSC/Patran, 8–10

N
nCode, 12

Neutral file exchange, 297–298

IGES, 297

STEP (ISO 10303), 297–298
Nongeometric features, 140

Nonmanifold objects, 136–137, 136f

Nonuniform B-spline curves, 62–66, 63f, 65f, 66f, 244

Notification, product data management utility function, 283

Numerical control (NC) toolpath generation, 127–129,

130f, 131–132

Numerical evaluation of stochastic structures under stress

(NESSUS), 13

NURB curves, 73–75, 75f

quadratic, representing conics with, 116–119,

118f, 119f
NURB surface, 82–83

NX, 7

NX viewer, 271–272

O
Open-loop kinematic system, 201, 203f, 204, 207–208,

210–214

adding parallel mating constraint between two planes, 213f

determining coordinate systems, 210f

link parameters for, 225t

z-axis and coordinate systems of joints, identification of,

222–224, 222f, 223f, 224f
Optegra, 285

Original equipment manufacturers (OEMs), 268–269

Orthogonality, 193

P
Parabola, 117–118, 117f

Parachuting simulation, 228, 228f

Parameterized product model, 7–11, 13–14

analysis models, 8–10

motion simulation models, 10–11

Parameters, product data type, 275–276

Parametric curves, 42–75, 42f, 43f

B-spline curves, 62–73

continuities, 61

cubic curves, 54–60

NURB curves, 73–75, 75f

quadratic curves, 45–54, 46f, 47f

straight line, 44–45, 45f
Parametric modeling, 131, 150–151, 244

Parametric study design, 16–17, 17f

Parametric surfaces, 75–83

B-spline surface, 81–83, 82f

representation, 76–81
Parasolid, 40, 138, 156–157, 161, 343, 392

Parent–child relationships between solid features, 149–150,

150f

Parts

level, design parameterization at, 241–248

guidelines, 244–248, 245t

of HMMWV, 257–259, 258f

profile in sketch, 241–243

of single-piston airplane engine, 254–256

solid features, 244

positioning, 184

Pro/ENGINEER, importing, 11–13, 293

converted gear housing model, 34f

converted solid model and features, 32f

Converter dialog box, 30f, 33f

gear housing part in, 29f

translation report, 31f

SolidWorks, feature recognition for parts, 61

crank changes, 60f

FRT, 48f, 119f

imported crank, 118f

larger pin, 49f, 52f

removing larger pin from crank, 55f

smaller pin, 58f

See also Assembly
PartsList, 289

Pattern features, 141, 142f

PATRAN, 277–279, 310

PDXViewer, 289

Peer-to-peer file sharing, 270

Performance analysis, product, 11–13

at component level, 26t

fatigue and fracture analysis, 12

motion analysis, 11

reliability evaluations, 12–13

structural analysis, 11–12
Physical prototyping, 19–22

computer numerical control machining, 22

rapid prototyping, 19–22
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Pick-and-place, 131, 131f, 139, 141

Pin joint, 178, 180f

Planar curves, 44

Planar joint, 180f, 181

mapping mating constraints to, 201, 202f

origin and z-axis of, 220, 221f
Plans, solid modeling, 151–153

build plan, 157–160, 158f, 159f, 160f
Polar coordinate system, circle in, 43, 43f, 73

Primitives, 130, 131f, 132, 133f

Principal vectors, 197

Prismatic joint, 178, 180f, 183, 200–201, 203–206, 214

mapping mating constraints to, 202f

origin and z-axis of, 220, 221f
Pro/CASTING, 13

Pro/ENGINEER, 2, 7, 10, 13, 27–28, 126, 142–143, 153,

155, 161–162, 170, 173–175, 177–178, 181,

183–184, 210, 212, 220, 228, 234, 240–242,

244–246, 248, 253, 256, 277–279, 286t

importing parts and assemblies to SolidWorks, 8–10

assembly, importing, 11, 293–295

gear train assembly in, 10–11, 29f

parts, importing, 11–13, 293

mating constraints in, 175t

sketch relations in, 163t

slider-crank assembly in, 249–251, 250f

solid modeling with, 40–42

Component Placement dashboard, 43f, 372t

importing SolidWorks parts and assemblies to, 54–57

Open dialog box, 112f

predefined and user-defined constraints, 43f, 373t

single-piston engine, 44–45

slider-crank mechanism, 49–50

slide-up panels, 45f

user interface, 42–75, 42f

See also SolidWorks
Pro/Intralink, 285

Pro/MECHANICA, 7, 10–11

Pro/MFG, 13, 22

Pro/MOLD, 13

Pro/PDM, 285

Pro/SHEETMETAL, 13

Pro/WELDING, 13

Problem formulation design, 15–16

Procedural parametric modeling. See Parametric modeling

Product data

categories, 275–276

model, 275–281
Product data exchange, 290–302

data exchange options, 291–292

direct model translations, 292–297

data exchange between CAD and CAE/CAM, 297

importing Pro/ENGINEER assembly to SolidWorks,

293–295

importing Pro/ENGINEER parts to SolidWorks, 293

importing SolidWorks assembly to Pro/ENGINEER,

296–297

importing SolidWorks parts to Pro/ENGINEER, 295

neutral file exchange, 297–298

IGES, 297

STEP (ISO 10303), 297–298

solid feature recognition, 299–302

third-party translators, 298–299

Proficiency, 298–299

TransMagic, 299
Product data management (PDM), 4, 266

case studies, 302–311

SolidWorks Workgroup PDM, 302–304

integrated testbed using Windchill, 304–306

tool integration for e-Design, 306–311

file management, 269–274

ad-hoc methods, 270–272

PDM approach, 273–274

fundamentals, 274–285

impact to industry, 284–285

process data model, 279–281

product data model, 275–279

user functions, 281–282

utility functions, 283

IGES file structure and data format, 312–317

directory entry section, 313–314

global section, 313

parameter data section, 316

start section, 312

terminate section, 316–317

product data exchange. See Product data exchange

step data structure and applications protocols, 317–318

systems, 285–289

approach, 273–274

offered by CAD vendors, 286–288

offered by non-CAD vendors, 288–289
Product life cycle design, 3

Product life cycle management (PLM), 266–267

ProductCenter, 288

Profiles, sketch, 142–149

Program management, 282

Project management, 282

Prototypes, fabrication of, 3

Protrusion, 83, 83f, 131, 131f, 141–142, 141f

p-version finite element analysis, 10–12, 10f

Q
Quadratic curves, 45–54, 46f

basic functions of, 47f
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Quadratic curves (Continued )
Bézier curve, 46f, 50–54

B-spline curve, 63f, 69–70

spline curve, 46–48, 46f, 47f

two points and a vector, 49–50
Quadratic programming (QP), 17–18, 32–33

Quality functional deployment (QFD), 15

R
Rail and carriage subsystems, 172f, 176–177

Rapid prototyping (RP), 2, 6, 19–22, 129

for airplane engine, 26f, 27

commercial systems, 20f

crosshatch pattern of typical cut-out layer, 21f

layered manufacturing, 20f
Rectangle scaling, 101, 101f

translation, 103f, 102–103
Relations, sketch, 142–144, 143f, 162, 163t

Reliability evaluations, product, 12–13

Removable media, 270

Renault–UNISURF 1971, 160

Representation, parametric, 75–81

Bézier surface, 78f, 80–81

bicubic surface patch, 76–77, 78f

Coons patch, 78–80, 78f

16-point format, 77–78, 78f
Reverse engineering, 112, 113f

Revolute joint, 178, 180f, 201, 203–206, 210

mapping mating constraints to, 201, 202f

origin and z-axis of, 220, 221f, 222–224, 223f
Revolved surfaces, 91–94, 92f

Rhinoceros, 161–162

Robotics, 201, 205, 211

Romulus, 161

Rotation transformations, 103–104, 104f, 188–190, 193, 196

DOF analysis, 198t
Ruled surfaces, 86–88, 86f

S
Scaling transformations, 101–102, 101f

Schemes, solid modeling, 132–138

boundary representation, 135–138, 135f

constructive solid geometry, 132–138
Screw joint, 180f, 181

SDRC, 157, 161, 285

Second-order reliability method (SORM), 12–13

Sensitivity analysis design, 16, 26

Shape optimization, 110–111, 111f

Shared network folders, 270–271

Siemens UGS NX, 286t

Siemens PLM Software, 272

Simulation models

dynamic, 29f

files, 275–276

motion, 10–11, 11f
Single-piston engine, 228, 229f, 234–235, 235f, 328, 328f,

329f, 375t

assembly mating constraints defined for, 229f

design parameterization of, 252, 253f

at assembly level of, 256

design variables design for DIs, 254f

excessive information, 253f

at part level, 254–256, 255f

using Pro/ENGINEER, 374, 376f, 382f

assembling connecting rod to propeller, 380f

assembling piston to connecting rod, 381f

assembling piston to engine case, 382f

assembling propeller to engine case, 379f, 380f

assembly with partially transparent engine case, 383f

changing appearance of engine case, 382f

Component Placement dialog bar, 378f

dragging piston to adjust orientation, 381f

Model Tree, 378f

New dialog box, 377f

Open dialog box, 377f

using SolidWorks, 328–342, 327t, 336f, 341f

adjusting transparency of engine case, 342

Begin Assembly dialog box, 7, 8f

changing file type from assembly to part, 11f

components, 14f

expanding case subassembly, 10f

FeatureManager design tree, 15f

File Open dialog box, 7, 9f

Mate dialog box, 17f

Mate Selections box, 20f, 21f, 22f, 23f, 25f

mating constraints, 25f, 27f

motion of assembly, 28f

New SolidWorks Document dialog box, 6f, 7

See also Airplane engine
Sinterstation, 19, 20f

Six Sigma, 3

16-point format, 77–78, 78f

Sketch profiles, 142–149, 241–243

sketch relations, 142–144, 143f, 162, 163t

variational modeling, 144–149
Skinning. See Surface skinning

SLA 7000, 19, 20f

Slider joint, 178, 180f

Slider-crankmechanism, 177–178, 177f, 181–184, 182f, 375t

as closed-loop system, 214–220, 215f

link parameters for, 226t

z-axis and coordinate systems of joints, identification of,

225–226, 225f

crank rotated in, 200f
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design changes in, 199f

design parameterization, 234, 239–240,

239f, 240f

assembly in Pro/ENGINEER, 249–251, 250f

assembly in SolidWorks, 251, 251f, 252f

constructive solid geometry tree, 248f

design intent capture, 247f

feature creation steps of crankshaft, 246f

variational equations for sketch profile, 247f

kinematic characteristics of, 180f

kinematic model of, 182f

locations of datum points and axes, 184f

mating constraints defined for, 179f

as open-loop system, 210–214, 210f, 213f

link parameters for, 225t

z-axis and coordinate systems of joints, identification of,

222–224, 222f, 223f, 224f

using Pro/ENGINEER, 383–392, 383f, 394f

Align constraint, 388f

crank assembling, 385f

Create relation, 391f

creating datum plane, 386f

creating relation for datum plane, 386f, 390f

design intent after changing crank length, 389f

design variables, 384f, 389f, 390f, 391f, 392f

pin assembling, 387f

piston assembling, 387f

placement constraints, 389t

rod assembling, 387f

simulation model joints, 183t

using SolidWorks, 197–199, 200–201
SMLib, 156

SofTech ProductCenter PLM, 288

Software as a Service (SaaS), 268

Solid Edge, 161

Solid features

in assembly, importing, 350

in parts

design parameterization, 344

importing, 37

recognition, 299–302

using FeatureWorks, 356, 366
Solid freeform fabrication (SFF) technology. See Rapid

prototyping (RP)

Solid modeling, 125, 130–132, 131f, 241–242

basics of, 127–138

build plan, 157–160, 158f, 159f, 160f

commercial CAD systems, 160–162

feature-based parametric solid modeling,

139–157

with SolidWorks. See SolidWorks, solid modeling with
SolidEdge, 343

SolidWorks, 7, 10, 111–112, 126, 141–144, 153, 155,

161–162, 170, 173–178, 180f, 184, 228, 234,

241–242, 244–246, 248, 271–272, 277–279, 285,

286t, 300–302

advanced mates in, 176f, 177t

importing parts and assemblies to Pro/ENGINEER,

350–356

assembly, 296–297, 394–396

feature recognition for parts, 396–400

slider-crank mechanism, 394

parts, 295

mating constraints in, 175t

Rebuild Errors window, 152f

sketch relations in, 163t

slider-crank assembly in, 251

change of length design variables, 252f

mating constraints, 252f

solid feature recognition using FeatureWorks, 356–366

solid modeling with, 323

CommandManager, 324–325t

importing Pro/ENGINEER parts and assemblies,

343–356

single-piston engine, 328–342

user interface, 325f, 324–326

standard mates in, 176t

supported software and formats in, 29f

See also Pro/ENGINEER
SolidWorks Enterprise product data management, 286,

286t, 288

SolidWorks Motion, 10–11

SolidWorks Workgroup product data management, 302–304

SpaceClaim Engineer, 161–162

Spatial curves, 44

Spherical joint, 180f, 181, 209

mapping mating constraints to, 201, 202f

origin and z-axis of, 221f, 222
Spline curve

B-spline curves, 62–73

cubic, 54–57, 54f

quadratic, 45–48, 46f, 47f
Standard for Exchange of Product Data (STEP), 292,

297–298, 343–344, 392

Static workflows, 280

Step data structure and applications protocols, 317–318

Stereolithography (STL), 112, 129, 130f

models, 21

engine case models, 21f
Straight line, 44–45, 45f

Stroke, defined, 23–24

Structural analysis, 11–12

Supply Chain, ENOVIA Smarteam, 287

Synchronous interactions, 304
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Surface models, 129–130, 129f, 130f

Surface skinning, 107, 109–110, 110f

engineering applications, 110–112
Surface to surface intersection, 134, 134f

Surfaces

CAD-generated, 83–98

parametric, 75–83
Sweep features. See Protrusion features

Sweep surfaces, 95–98, 95f

System-level design, for airplane engine, 23–24

connecting rod, 25f

dynamic load applied to, 25f

engine assembly, 23f

variables, 24t

T
Taylor series, 18–19, 73

TeamCenter, 285–286, 286t, 288

Telepresence, 226–227

Thickened features, 141

Thinkernel, 156

Third-party translators, 298–299

Proficiency, 298–299

TransMagic, 299
Time

cost/ECR vs., 3f, 4

product knowledge vs., 5f
Tool integration, 4, 13–14, 283

for e-Design, 306–311

CAD and base definition, 307–308

design collaboration, 311

design process management, 310–311

disciplines and views, 308–310

engineering tool wrappers, 310
Tool wrappers, 14, 310

Toolpath files, 275–276

Tooth modeling, 112, 113f

Topology optimization, 110–111, 111f

Tracked vehicle roadarm surface model, 111, 111f, 141

Trade-off analysis, design, 17–18, 17f, 18f

for airplane engine, 24–26

for HMMWV, 32–33, 33f, 34f
Transformation matrix, 185–197, 185f

coincident, 186, 187f

computation of, 188–197, 188f, 189f, 197f

concentric, 186–188, 187f
Transformations, geometric, 99–107

homogeneous coordinates, 99–101, 100f
Translations, geometry, 102–103, 103f, 188–193

DOF analysis, 198t

See also Direct model translations

Translational joint, 178, 180f

TransMagic, 299

2½ D layers, 19, 20f

U
Uncoupled design intent, 236, 236f, 238,

239f, 248

Unidirectional parametric modeling. See Parametric

modeling

Uniform B-spline curves, 67–69

Uniform global scaling, 102

Union of primitives, 132, 133f

Uni-Solid, 161

Universal joint, 180f, 181

UPG2, 156

USB drive, 270

User interface

of Creo Direct, 401, 402f

of Pro/ENGINEER, 370–374, 371f

of SolidWorks, 324–326, 325f

V
Variational modeling, 142, 144–149, 151–153

Variables. See Design variables (DVs)

VDA, 292

Venkataraman’s FR algorithm, 299–300

view3dscene, 276–277

Virtual manufacturing, 13, 14f, 24

cover die machining, 22f
Virtual prototyping (VP), 2–3, 7–19

design decision making, 15–19

parameterized CAD product model, 7–11

product performance analysis, 11–13

product virtual manufacturing, 13

tool integration, 13–14
Virtual reality, 226–228, 227f, 228f

Virtual Reality Modeling Language (VRML),

276–277

Virtusphere, 228, 228f

W
Web folders, 270–271

What-if study, 18–19, 26, 32

Windchill, 279, 285–288, 286t

Windows Messenger, 270

Wireframe models, 127–128, 128f

Workflow and process management, 282

Workgroup product data management, 285

World coordinate system (WCS), 173–174, 178, 222
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