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xv

Engineers search for designs of new systems that perform optimally and are cost 
effective or for the optimal operation and rehabilitation of existing systems. It 
turns out that design and operation usually involve the calibration of models 
that describe physical systems. The tasks of design, operation, and model cali-
bration can be approached systematically by the application of optimization. 
Optimization is defined as the selection of the best elements or actions from a 
set of feasible alternatives. More precisely, optimization consists of finding the 
set of variables that produces the best values of objective functions in which the 
feasible domain of the variables is restricted by constraints.

Meta‐heuristic and evolutionary algorithms, many of which are inspired by nat-
ural systems, are optimization methods commonly employed to calculate good 
approximate solutions to optimization problems that are difficult or impossible to 
solve with other optimization techniques such as linear programming, nonlinear 
programming, integer programming, and dynamic programming. Meta‐heuristic 
and evolutionary algorithms are problem‐independent methods of wide applica-
bility that have been proven effective in solving a wide range of real‐world and 
complex engineering problems. Meta‐heuristic and evolutionary algorithms have 
become popular methods for solving real‐world and complex engineering optimi-
zation problems.

Yet, in spite of meta‐heuristic and evolutionary algorithms’ frequent 
application, there is not at present a reference that presents and explains them 
in a clear, systematic, and comprehensive manner. There are several biblio-
graphical sources dealing with engineering optimization and the application of 
meta‐heuristic and evolutionary algorithms. However, their focus is largely on 
the results of application of these algorithms and less on their basic concepts 
on which they are founded. In view of this, it appears that a comprehensive, 
unified, and insightful overview of these algorithms is timely and would be 
welcome by those who seek to learn the principles and ways to apply meta‐
heuristic and evolutionary algorithms.

This book fills the cited gap by presenting the best‐known meta‐heuristic 
and evolutionary algorithms, those whose performance has been tested in 
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many engineering domains. Chapter 1 provides an overview of optimization 
and illustration of its application to engineering problems in various special-
ties. Chapter  2 presents an introduction to meta‐heuristic and evolutionary 
algorithms and their relation to engineering problems. Chapters 3–22 are 
dedicated to pattern search (PS), genetic algorithm (GA), simulated annealing 
(SA), tabu search (TS), ant colony optimization (ACO), particle swarm optimi-
zation (PSO), differential evolution (DE), harmony search (HS), shuffled frog‐
leaping algorithm (SFLA), honey‐bee mating optimization (HBMO), invasive 
weed optimization (IWO), central force optimization (CFO), biogeography‐
based optimization (BBO), firefly algorithm (FA), gravity search algorithm 
(GSA), bat algorithm (BA), plant propagation algorithm (PPA), water cycle 
algorithm (WCA), symbiotic organisms search (SOS), and comprehensive evo-
lutionary algorithm (CEA), respectively. The order of the chapters corresponds 
to the order of chronological appearance of the various algorithms, with the 
most recent ones receiving the larger chapter numbers. Each chapter describes 
a specific algorithm and starts with a brief literature review of its development 
and subsequent modification since the time of inception. This is followed by 
the presentation of the basic concept on which the algorithm is based and the 
mathematical statement of the algorithm. The workings of the algorithm 
are subsequently described in detail. Each chapter closes with a pseudocode 
of  the algorithm that constitutes an insightful and sufficient guideline for 
coding the algorithm to solve specific applications.

Several of the algorithms reviewed in this book were developed decades 
ago, and some have experienced modifications and hybridization with other 
algorithms. This presentation is concerned primarily with the original version 
of each algorithm, yet it provides references that are concerned with modifica-
tions to the algorithms.

This book was written for graduate students, researchers, educators, and 
practitioners with interests in the field of engineering optimization. The format 
and contents chosen are intended to satisfy the needs of beginners and experts 
seeking a unifying, complete, and clear presentation of meta‐heuristic and 
evolutionary algorithms.

Omid Bozorg‐Haddad
Mohammad Solgi
Hugo A. Loáiciga
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Meta‐heuristic and evolutionary algorithms are problem‐independent optimi-
zation techniques. They are effective in solving a wide range of real‐world and 
complex engineering problems. This book presents and explains the most 
important meta‐heuristic and evolutionary algorithms known to date in a 
clear, systematic, and comprehensive manner. The algorithms presented in this 
book are pattern search (PS), genetic algorithm (GA), simulated annealing 
(SA), tabu search (TS), ant colony optimization (ACO), particle swarm optimi-
zation (PSO), differential evolution (DE), harmony search (HS), shuffled frog‐
leaping algorithm (SFLA), honey‐bee mating optimization (HBMO), invasive 
weed optimization (IWO), central force optimization (CFO), biogeography‐
based optimization (BBO), firefly algorithm (FA), gravity search algorithm 
(GSA), bat algorithm (BA), plant propagation algorithm (PPA), water cycle 
algorithm (WCA), symbiotic organisms search (SOS), and comprehensive evo-
lutionary algorithm (CEA). These algorithms are presented in a consistent and 
systematic format, explaining their applications to engineering optimization 
problems. This book provides students, researchers, and teachers with a 
comprehensive exposition of meta‐heuristic and evolutionary algorithms with 
sufficient detail to understand their principles and apply them to specific 
problems.
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1

Summary

This chapter defines optimization and its basic concepts. It provides examples 
of various engineering optimization problems.

1.1  Optimization

Engineers are commonly confronted with the tasks of designing and operating 
systems to meet or surpass specified goals while meeting numerous constraints 
imposed on the design and operation. Optimization is the organized search for 
such designs and operating modes. It determines the set of actions or elements 
that must be implemented to achieve optimized systems. In the simplest case, 
optimization seeks the maximum or minimum value of an objective function 
corresponding to variables defined in a feasible range or space. More generally, 
optimization is the search of the set of variables that produces the best values 
of one or more objective functions while complying with multiple constraints. 
A single‐objective optimization model embodies several mathematical expres-
sions including an objective function and constraints as follows:

	 Optimize f X X x x x xi N( ), , , , , ,1 2   	 (1.1)

subject to

	 g X b j mj j( ) , , , ,1 2 	 (1.2)

	 x x x i Ni
L

i i
U , , , ,1 2 	 (1.3)

in which f(X) = the objective function; X = a set of decision variables xi that 
constitutes a possible solution to the optimization problem; xi = ith decision 
variable; N = the number of decision variables that determines the dimension 
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of the optimization problem; gj(X) = jth constraint; bj = constant of the jth 
constraint; m = the total number of constraints; xi

L( ) = the lower bound of the 
ith decision variable; and xi

U( ) = the upper bound of the ith decision variable.

1.1.1  Objective Function

The objective function constitutes the goal of an optimization problem. That 
goal could be maximized or minimized by choosing variables, or decision vari-
ables, that satisfy all problem constraints. The desirability of a set of variables 
as a possible solution to an optimization problem is measured by the value of 
objective function corresponding to a set of variables.

Some of the algorithms reviewed in this book are explained with optimization 
problems that involve maximizing the objective function. Others do so with 
optimization problems that minimize the objective function. It is useful to keep 
in mind that a maximization (or minimization) problem can be readily con-
verted, if desired, to a minimization (or maximization) problem by multiplying 
its objective function by −1.

1.1.2  Decision Variables

The decision variables determine the value of the objective function. In each 
optimization problem we search for the decision variables that yield the best 
value of the objective function or optimum.

In some optimization problems the decision variables range between an 
upper bound and a lower bound. This type of decision variables forms a 
continuous decision space. For example, choosing adequate proportions of dif-
ferent substances to make a mixture of them involves variables that are part of 
a continuous decision space in which the proportions can take any value in the 
range [0,1]. On the other hand, there are optimization problems in which the 
decision variables are discrete. Discrete decision variables refer to variables 
that take specific values between an upper bound and a lower bound. Integer 
values are examples of discrete values. For instance, the number of groundwa-
ter wells in a groundwater withdrawal problem must be an integer number. 
Binary variables are of the discrete type also. The typical case is that when 
taken the value 1 implies choosing one type of action, while taking the value 0 
implies that no action is taken. For example, a decision variable equal to 1 could 
mean building a water treatment plant at a site, while its value equal to 0 means 
that the plant would not be constructed at that site. Optimization problems 
involving continuous decision variables are called continuous problems, and 
those problems defined in terms of discrete decision variables are known as 
discrete problems. There are, furthermore, optimization problems that may 
involve discrete and continuous variables. One such example would be an opti-
mization involving the decision of whether or not to build a facility at a certain 
location and, if so, what its capacity ought to be. The siting variable is of the 
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binary type (0 or 1), whereas its capacity is a real, continuous variable. This 
type of optimization problem is said to be of mixed type.

1.1.3  Solutions of an Optimization Problem

Each objective function is expressed in terms of decision variables. When 
there is only one decision variable, the optimization problem is said to be one‐
dimensional, while optimization problems with two or more decision variables 
are called N‐dimensional. An N‐dimensional optimization problem has solu-
tions that are expressed in terms of one or more sets of solutions in which each 
solution has N decision variables.

1.1.4  Decision Space

The set of decision variables that satisfy the constraints of an optimization prob-
lem is called the feasible decision space. In an N‐dimensional problem, each 
possible solution is an N‐vector variable with N elements. Each element of this 
vector is a decision variable. Optimization algorithms search for a point (i.e., a 
vector of decision variables) or points (i.e., more than one vector of decision 
variables) in the decision space that optimizes the objective function.

1.1.5  Constraints or Restrictions

Each optimization problem may have two types of constraints. Some constraints 
directly restrict the possible value of the decision variables, such as a decision 
variable x being a positive real number, x > 0, or analogous to Equation (1.3). 
Another form of constraint is written in terms of formulas, such as when two 
decision variables x1 and x2 are restricted to the space x1 + x2 ≤ b or analogous 
to Equation (1.2). The goal of an optimization problem is to find an optimal 
feasible solution that satisfies all the constraints and yields the best value of the 
objective function among all feasible solutions. Figure 1.1 depicts a constrained 
two‐dimensional decision space with infeasible and feasible spaces.

The set of all feasible solutions constitute the feasible decision space, and the 
infeasible decision space is made up of all the infeasible decision variables. 
Evidently, the optimal solution must be in the feasible space.

1.1.6  State Variables

State variables are dependent variables whose values change as the decision 
variables change their values. State variables are important in engineering 
problems because they describe the system being modeled and the objective 
function and constraints are evaluated employing their values. As an example, 
consider an optimization problem whose objective is to maximize hydropower 
generation by operating a reservoir. The decision variable is the amount of 
daily water release passing through turbines. The state variable is the amount 
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of water stored in the reservoir, which is affected by the water released through 
turbines according to an equation of water balance that also involves water 
inflow to the reservoir, evaporation from the reservoir, water diversions or 
imports to the reservoir, water released from the reservoir bypassing turbines, 
and other water fluxes that change the amount of reservoir storage.

1.1.7  Local and Global Optima

It has been established that a well‐defined optimization problem has a well‐
defined decision space. Each point of the decision space defines a value of the 
objective function. A local optimum refers to a solution that has the best objec-
tive function in its neighborhood. In a one‐dimensional optimization problem, 
a feasible decision variable X* is a local optimum of a maximization problem if 
the following condition holds:

	 f X f X X X X( ) ( ), 	 (1.4)

In a minimization problem the local‐optimum condition becomes

	 f X f X X X X( ) ( ), 	 (1.5)

where X  = a local optimum and ɛ = limited length in the neighborhood about the 
local optimum X *. A local optimum is limited to a neighborhood of the decision 
space, and it might not be the best solution over the entire decision space.

A global optimum is the best solution in the decision space. Some optimiza-
tion problems may have more than one—in fact, an infinite number of global 
optima. These situations arise commonly in linear programming problems. 
In this case, all the global optima produce the same value of the objective func-
tion. There are not decision variables that produce a better objective function 

Lower bound x1

Lower bound x2

Upper bound x1

Upper bound x2

x1

x2
x
1 +x

2 =b

Infeasible decision space

Feasible decision space

Infeasible point

Feasible solution

Figure 1.1  Decision space of a constrained two‐dimensional optimization problem.
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value than the global optimum. A one‐dimensional optimization problem with 
decision variable X and objective function f(X) the value X* is a global optimum 
of a maximization problem if for any decision variable X the following is true:

	 f X f X( ) ( )	 (1.6)

In a minimization problem we would have

	 f X f X( ) ( )	 (1.7)

Figure 1.2 illustrates global and local optima for a one‐dimensional maximi-
zation problem.

L1, L2, and L3 in Figure 1.2 are local optima, and G denotes the global optimum 
with the largest value of the objective function. The decision space may be single 
modal or multimodal. In a single‐modal surface, there is only one extreme point, 
while there are several extremes on the surface of a multimodal problem. In a sin-
gle‐modal problem, there is a single local optimum that is also the global optimum. 
On the other hand, a multimodal problem may include several local and global 
optima. However, the decision variables that produce a global optimum must all 
produce the same value of the global optimum, by definition. Figure 1.3 illustrates 
the surface of one‐dimensional optimization problems with single‐modal and 
multimodal decision spaces in which there is one single optimum.

1.1.8  Near‐Optimal Solutions

A near optimum has a very close but inferior value to the global optimum. In 
some engineering problems, achieving the absolute global optimum is 
extremely difficult or sometimes impossible because of the innate complexity 
of the problem or the method employed to solve the problem. Or achieving the 

Global optimum

Local optima

f(X)

X
L1 L2 L3G

Figure 1.2  Schematic of global 
and local optimums in a one‐
dimensional maximizing 
optimization problem.
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global optimum may be computationally prohibitive. In this situation, a near 
optimum is calculated and reported as an approximation to the global optimum. 
Near optima are satisfactory in solving many real‐world problems. The prox-
imity of a near optimum to the global optimum depends on the optimization 
problem being solved and the judgment of the analyst. Figure 1.4 depicts the 
concept of a near optimum in a maximization problem.

1.1.9  Simulation

Each decision variable of an optimization problem defines an objective function 
value. The process of evaluating the state variables, which are necessary for 

(a)

f(X) f(X)

X

(b)

X

Figure 1.3  Different types of decision spaces: (a) maximization problem with single‐modal 
surface and one global optimum; (b) maximization problem with multimodal surface that 
has one global optimum.

f(X)

X
Optimum

Near optima

Figure 1.4  Demonstration of near 
optima in a one‐dimensional 
maximizing optimization problem.
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estimation of the objective function, and constraints with any decision variable is 
known as simulation. A simulation model receives the decision variables as inputs 
and simulates the system’s state variables. Sometimes the simulation model 
consists of one or more simple mathematical functions and equations. However, 
most real‐world and engineering problems require simulation models with 
complex procedures that most solve systems of equations and various formulas 
that approximate physical processes. Simulation is, therefore, the computational 
imitation of the operation of a real‐world process or system over time.

1.2  Examples of the Formulation of Various 
Engineering Optimization Problems

This section presents examples of the formulation of different types of 
engineering optimization problems including mechanical design, structural 
design, electrical engineering optimization, water resources optimization, and 
calibration of hydrological models.

1.2.1  Mechanical Design

Designing a compound gear train is exemplary of optimal designing. A com-
pound gear train is designed to achieve a particular gear ratio between the 
driver and driven shafts. The purpose of the gear train design is finding the 
number of teeth in each gear so that the error between the obtained and 
required gear ratios is minimized. In practice, the term gear ratio is used inter-
changeably with velocity ratio. It is defined as the ratio of the angular velocity 
of the output shaft to that of the input shaft. For a pair of matching gears, the 
velocity or gear ratio α is calculated as follows:

	
out

in

in

out
	 (1.8)

in which α = gear ratio; ωin = angular velocity of the input shaft; ωout = angular 
velocity of the output shaft; θin = the number of teeth on the input gear; and 
θout = the number of teeth on the output gear. The ratio is, thus, inversely pro-
portional to the number of teeth on the input and output gears.

Figure  1.5 shows a compound gear train that is made of four gears. It is 
desired to produce a gear ratio as close as possible to a required value μ. The 
objective of the design is to find the number of teeth in each gear so that the 
error between the obtained and required gear ratios is minimized. Normally, 
additional considerations such as the number of gear pairs to use and the 
geometric arrangement of the shafts must be considered in addition to wear. 
To simplify the problem only the particular configuration shown in Figure 1.5 
is considered here.
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For the system shown in Figure 1.5, the gear ratio is evaluated as follows:

	

d

a

b

f
	 (1.9)

in which τd, τa, τb, and τf = the number of teeth on gears D, A, B, and F, 
respectively.

The number of teeth on each gear constitutes the decision variables:

	 X x x x x d a b f1 2 3 4, , , , , , 	 (1.10)

Minimizing the square of the difference between the desired gear ratio (μ) 
and the actual design gear ratio (α) the optimization problem leads to the 
following optimization problem:

	 Minimize f X( ) 2	 (1.11)

in which

	
x
x

x
x

1

2

3

4
	 (1.12)

subject to

	 x x x iL
i

U( ) ( ) , , , ,1 2 3 4	 (1.13)

where μ = required gear ratio; α = actual gear ratio; x(L) and x(U) = minimum and 
maximum number of teeth on each gear, respectively. The minimization of 
the objective function (Equation (1.11)) is with respect to x1, x2, x3, and x4. The 
objective function is nonlinear, and the constraints (Equation (1.13)) are simple 
bounds on the decision variables. Since the number of teeth is an integer 
number, this problem has a discrete domain, and the decision variables must 
take integers values.

A B

D F

Driver Follower

Figure 1.5  Compound gear train made of four gears.
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1.2.2  Structural Design

Structural optimization problems are created and solved to determine the con-
figurations of structures that satisfy specifications and produce an optimum 
for a chosen objective function. The main purpose of structural optimization is 
to minimize the weight of a structure or the vertical deflection of a loaded 
member. Here, a two‐bar truss design model is considered for illustration 
purposes.

The truss shown in Figure  1.6 is designed to carry a certain load without 
elastic failure. In addition, the truss is subject to limitations in geometry, area, 
and stress.

The stresses on nodes A and B are calculated as follows:

	
AC

Force L L
L

H L

a H

2 2

1
	 (1.14)

	
BC

Force L
L

H L L

a H

2 2

2

( )
	 (1.15)

in which σAC and σBC = the stress on node A and B, respectively (N/m2); 
Force = force on node C (N); H = perpendicular distance from AB to point C (m); 
L = length of AB (m); L′ = length of AC (m); a1 = cross‐sectional area of AC; and 
a2 = cross‐sectional area of BC (m2).

In this case, a1, a2, and H are the decision variables of the optimization model: 

	 X x x x a a H1 2 3 1 2, , , , 	 (1.16)

L

L′

A B

C

a1 a2 H

Force

Figure 1.6  Schematic of a 
two‐bar truss.
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The optimization problem is expressed as follows when the weight of the 
structure is minimized:

	
Minimize f X a H L a H L L( ) 1

2 2
2

2 2 	 (1.17)

subject to

	 AC BC max, 	 (1.18)

	 x x x ii
L

i i
U( ) ( ) , , ,1 2 3	 (1.19)

in which ρ = the volumetric density of the truss; σmax = the maximum allowable 
stress; xi

L  and xi
U  = the minimum and maximum values of the decision vari-

ables, respectively. The minimization of Equation (1.17) is with respect to a1, 
a2, and H, which are real‐valued variables. The objective function is nonlinear, 
and so are the constraints.

1.2.3  Electrical Engineering Optimization

Directional overcurrent relays (DOCRs), which protect transmission systems, 
constitute a classical electrical engineering design problem. DOCRs are part of 
electrical power systems that isolate faulty lines in the event of failures in the 
system. DOCRs are logical elements that issue a trip signal to the circuit breaker 
if a failure occurs within the relay jurisdiction and are placed at both ends of 
each transmission line. Their coordination is an important aspect of system 
protection design. The relay coordination problem is to determine the sequence 
of relay operations for each possible failure location so that the failure section is 
isolated with sufficient coordination margins and without excessive time delays. 
The selection of the sequence of relay operations is a function of the power 
network topology, relay characteristics, and protection philosophy. The DOCR 
protection scheme consists of two types of settings, namely, current, referred to 
as plug setting (PS), and time dial setting (TDS), which must be calculated. With 
the optimization of these settings, an efficient coordination of relays can be 
achieved, and the faulty transmission line may be isolated, thereby maintaining 
a continuity of power supply to functional sections of power systems.

The operating time (T) of a DOCR is a nonlinear function of the relay settings 
including time dial settings (TDS), plug settings (PS), and the fault current (I) 
seen by the relay. The relay operating time equation for a DOCR is estimated 
as follows:

	

T K

C
K

pri rating

K
1

3

2
	 (1.20)



1.2  Examples of the Formulation of Various Engineering Optimization Problems 11

in which T = operating time; K1, K2, and K3 = constants that depend upon the 
specific device being simulated; ξ = time dial settings; ψ = plug settings; γ = faulty 
current passing through the relay, which is a known value, as it is a system‐
dependent parameter and continuously measured by monitoring instruments; 
and C pri rating = a parameter whose value depends on the number of turns in the 
current transformer (CT). CT is used to reduce the level of the current so that 
the relay can withstand it. One “current transformer” is used with each relay, 
and, thus, C pri rating is known in the problem.

The TDS and PS of the relays are the decision variables of the optimization 
model:

	 X x x x x x xN N N N N N1 2 1 2 2 1 2 1 2, , , , , , , , , , , , , ,   

(1.21)

where N = number of relays of the system.
The optimization problem is formulated as follows:

	
Minimize f X Ti j

primary

j

M

i

N
( ) ,

11

	 (1.22)

subject to

	 T T C for all relay pairsbackup primary
T

( ) ( ) , 	 (1.23)

	 x x x i Ni
L

i i
U( ) ( ) , , , ,1 2 2 	 (1.24)

in which M = number of failures; Ti j
primary

,
( ) = operating time of the primary relay 

i for a failure j; T(backup) = operating time of the backup relay; CT = coordinating 
time interval; and xi

L( ) and xi
U( ) = bounds on relay settings. The objective function 

(Equation (1.22)) is nonlinear, and so are the constraints.

1.2.4  Water Resources Optimization

Flowing water generates energy that can be managed and turned into electricity. 
This is known as hydroelectric power or hydropower. Dams of reservoirs are the 
most common type of hydroelectric power plant. Some hydropower dams have 
several functions such as supplying urban and agriculture water and flood control. 
This example focuses on hydropower generation exclusively. Figure 1.7 shows a 
simple schematic of a hydropower dam with its associated water fluxes.

The reservoir storage (S) in each operational time period is calculated as 
follows:

	 S I S R Sp t Nt t t t t1 1 2, , , , 	 (1.25)

	
Sp

if I S R S
I S R S if I S R St

t t t

t t t t t t

0 max

max max
	 (1.26)
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in which St 1 = the reservoir storage at the end of time period t; It = the volume 
of input water during time period t; St = the reservoir storage at the start of time 
period t; Rt = the volume of release of the reservoir; Smax = the reservoir capacity; 
Spt = the volume of overflow that occurs whenever the reservoir storage exceeds 
the reservoir capacity; and N = the total number of time periods. There is spill 
or overflow whenever the reservoir storage exceeds the capacity of the reser-
voir. The storage volume cannot be less than a value like Smin given that the 
floodgate is usually placed higher than the bottom of the dam. This part of the 
reservoir is usually filed with sediments.

The generated power is a function of water flow and the elevation difference 
between the hydraulic head at the intake and outlet of the turbine. The generated 
power in period t is determined as follows:

	 P g h qt t t 	 (1.27)

	
q R

t nt
t

t
	 (1.28)

in which Pt = generated power (W) in period t; η = efficiency of powerhouse; 
ρ = density (kg/m3) (~1000 kg/m3 for water); g = acceleration of gravity (9.81 m/
s2); ht = falling height or effective hydraulic head (m) in time period t; qt = water 
flow in period t (m3/s); Rt = total volume of release of reservoir in time period t 
(m3); nt = ratio of time when the powerhouse is active; and Δt = length of time 
period (s). The water level in the reservoir is usually estimated based on the 
area or volume of water stored in the reservoir by predefined equations.

The volume of water that enters the reservoir in each time period (It) is 
known. The goal of the problem is determining the volume of release in each 
time period (Rt) so that the total generated power is close to the power plant 
capacity (PPC) as much as possible. The volume of water release from the res-
ervoir in each time period is the decision variable of the optimization model:

	 X x x x R R RN N1 2 1 2, , , , , ,  	 (1.29)

where N = total number of decision variables that is equal to the total number 
of time periods.

I

S

Downstream flow
R

Water level

h

Figure 1.7  Schematic of a hydropower dam.
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The optimization problem minimizes the normalized sum of squared deviations 
between generated power and power plant capacity and is written as follows:

	
Minimize f X P

PPC
i

i

N
( ) 1

1

2

	 (1.30)

	
P g h x

t n
i Ni i

i

i
, , , ,1 2 	 (1.31)

subject to

	 min i maxS S S≤ ≤ 	 (1.32)

	 0 iP PPC≤ ≤ 	 (1.33)

	 x x x i Ni
L

i i
U( ) ( ) , , , ,1 2 	 (1.34)

in which PPC = the power plant capacity; Smin = the minimum storage; and 
xi

L( ) and xi
U( ) = the minimum and maximum volume of release in each period 

i, respectively. The minimum release is governed by different factors such 
as environmental flows to sustain aquatic life. One of the factors that 
restrict the maximum release from the reservoir is the capacity of the 
floodgate.

1.2.5  Calibration of Hydrologic Models

The parameter calibration of hydrologic model is commonly posed as the 
minimization of a norm of errors between observed and predicted hydrologic 
values. The routing of floods in river channels is a classic example involving the 
calibration of hydrologic models. Flood is a natural phenomenon that can 
cause considerable damage in urban, industrial, and agricultural regions. 
To prevent those damages it is necessary to implement a hydrologic model to 
estimate the flood hydrograph at the downstream river reach given the 
upstream hydrograph. The Muskingum model is a hydrologic model based on 
the continuity and parameterized storage equations as follows:

Continuity:

	
dS
dt

I Ot
t t 	 (1.35)

Parameterized storage:

	 S Y I Y Ot t t1 1 2 	 (1.36)

in which St, It, and Ot = storage, inflow, and outflow in a river reach at time t, 
respectively; β1 = storage time constant for a river reach that has a value rea-
sonably close to the travel time of a flood through the river reach; β2 = exponent 
for the effect of nonlinearity between accumulated storage and weighted flow; 
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and Y = weighting factor between 0 and 0.5 for reservoir storage and between 0 
and 0.3 for stream channels.

Equation (1.36) is solved for the reach outflow as follows:

	
O

Y
S Y

Y
It

t
t

1
1 11

1
2

	 (1.37)

By combining Equations (1.35) and (1.37), the state equation becomes

	

S
t Y

S
Y

It t
t

1
1

1
11

1
2

	 (1.38)

	 S S St t t1 	 (1.39)

The routing of a flood hydrograph consists of the following steps:

Step 1: Assume values for the parameters β1, β2, and Y.
Step 2: Calculate the storage (St) with Equation (1.36), with the initial outflow 

equal to the initial inflow.
Step 3: Calculate the time rate of change of storage volume with Equation (1.38).
Step 4: Estimate the next storage with Equation (1.39).
Step 5: Calculate the next outflow with Equation (1.37).
Step 6: Repeat steps 2–5 for total time steps in the flood routing until reaching 

a stopping criterion.

The goal of this problem is estimating β1, β2, and Y so that the sum of the 
squared differences between observed and predicted outflows is minimized. 
The parameters β1, β2, and Y of the Muskingum model are the decision 
variables:

	 X x x x Y1 2 3 1 2, , , , 	 (1.40)

The optimization problem is formulated as follows:
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subject to

	 x x x ii
L

i i
U( ) ( ) , , ,1 2 3	 (1.42)

where M = total number of time steps in the flood routing; Ot and Ôt = observed 
and routed outflow, respectively, at time t; and xi

L( ) and xi
U( ) = minimum and 

maximum values of parameters of Muskingum model, respectively.
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1.3  Conclusion

This chapter introduced foundational concepts of optimization such as the 
objective function, decision variables, decision space, and constraints. In addi-
tion, several examples of formulating engineering optimization problems were 
presented to illustrate a variety of optimization models.
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2

Summary

This chapter presents a brief review of methods for searching the decision 
space of optimization problems, describes the components of meta‐heuristic 
and evolutionary algorithms, and illustrates their relation to engineering 
optimization problems. Other topics covered in this chapter are the coding 
of  meta‐heuristic and evolutionary algorithms, dealing with constraints, the 
generation of initial or tentative solutions, the iterative selection of solutions, 
and the performance evaluation of meta‐heuristic and evolutionary algorithms. 
A  general algorithm that encompasses the steps of all meta‐heuristic and 
evolutionary algorithms is presented.

2.1  Searching the Decision Space 
for Optimal Solutions

The set of all possible solutions for an optimization problem constitutes the 
decision space. The goal of solving an optimization problem is finding a 
solution in the decision space whose value of the objective function is the best 
among all possible solutions. One of the procedures applicable for finding the 
optimum in a decision space is sampling or trial‐and‐error search. The meth­
ods that apply trial‐and‐error search include (1) sampling grid, (2) random 
sampling, and (3) targeted sampling.

The goal of a sampling grid is evaluating all possible solutions and choos­
ing the best one. If the problem is discrete, a sampling network evaluates all 
possible solutions and constraints. The solution that satisfies all the con­
straints and has the best objective function value among all feasible solutions 
is chosen as the optimum. When the decision space of a discrete problem 
is  large, the computational burden involved in evaluating the objective 

Introduction to Meta‐Heuristic 
and Evolutionary Algorithms
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function and constraints could be prohibitive. Therefore, the sampling grid 
method is practical for relatively small problems only. When an optimization 
problem is continuous testing, all solutions are not possible because there 
are an infinite number of them. In this situation the continuous problem is 
transformed to a discrete problem by overlaying a grid on the decision 
space as shown in Figure 2.1. The intersections of the grid are points that are 
evaluated. In fact, after discretization of the decision space, the procedure 
followed is as the same as that employed for discrete problems. It is clear that 
in this method reducing the size of the grid interval improves the accuracy of 
the search while increasing the computational burden. It is generally impos­
sible to find solutions that are very near the global optimum of a complex 
optimization problem because to achieve that it would be necessary to 
choose a very small grid for which the computational burden would in all 
probability be prohibitive.

Another method is random sampling in which sampling is performed 
randomly through the decision space. Possible solutions are chosen randomly 
and their objective functions are evaluated. The best solution among the 
chosen possible solutions is designated as the optimum.

Suppose that there are S possible solutions, among which r = 1 is the optimal 
one, and K possible solutions are chosen randomly among the S possible ones 
to be evaluated. First, let us consider that the random selection is done with­
out replacement, and let Z denote the number of optimal solutions found in 
the randomly chosen sample of K possible solutions (Z can only take the value 
0 or 1 in this instance). The probability that one of the K chosen possible 

Lower boundary of 
x1

Upper boundary of 
x1

x1

x2

Lower boundary of 
x2

Upper boundary of 
x2

Figure 2.1  Sampling grid on a two‐dimensional decision space.
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solutions is the optimal one is found from the hypergeometric distribution 
and is equal to P(Z = 1) = K/S. Therefore, if there are S = 106 possible solutions 
and K = 105 possible solutions are randomly chosen, the probability of selecting 
the optimal solution among those in the randomly chosen sample is only 0.10 
(10.0%) in spite of the computational effort of evaluating 105 possible solutions. 
Also, random selection can be done with replacement. In this  method, the 
probability that one of the tested solutions is the optimal solution of the opti­
mization problem equals P Z S S K( ) (( ) ) ( ) .1 1 1 1 999999 10 0 0956 105

/ /  
or about 9.5%.

One of the key shortcomings of the previous sampling grid and random 
sampling methods is that they require that all the decision space be searched 
precisely. This exerts a high and wasteful computational effort. In these two 
methods, the evaluation of any new possible solution is done independently 
of previously tested solutions. In others words, there is no learning about 
the history of previous computations to guide the search for the optimal 
solution more efficiently as the search algorithm progresses through the 
computations.

The sampling grid and random sampling are not efficient or practical meth­
ods to solve real‐world engineering problems, and they are cited here as an 
introduction to a third method called targeted sampling. Unlike sampling grid 
and random sampling, targeted sampling searches the decision space, taking 
into account the knowledge gained from previously tested possible solutions, 
and selects the next sample solutions based on results from previously tested 
solutions. Thus, targeted sampling focuses gradually in areas of the decision 
space where the optimum may be found with a high probability.

Targeted sampling is the basis of all meta‐heuristic and evolutionary 
algorithms that rely on a systematic search to find an optimum. In contrast to 
other sampling methods, meta‐heuristic and evolutionary algorithms of the 
targeted sampling type are capable to solve all well‐posed real‐world and 
complex problems that other types of optimization methods such as linear 
and nonlinear programming, dynamic programming, and stochastic dynamic 
programming cannot solve. For this reason meta‐heuristic and evolutionary 
algorithms have become a preferred solution approach for most complex engi­
neering optimization problems.

Meta‐heuristic and evolutionary algorithms are typically applied to calculate 
near‐optimal solutions of problems that cannot be solved easily or at all using 
other techniques, which constitute the great majority of problems. Meta‐
heuristic and evolutionary algorithms may prove to be computationally inten­
sive in finding an exact solution, but sometimes a near‐optimal solution is 
sufficient. In these situations, evolutionary techniques are effective. Due to 
their random search nature, evolutionary algorithms are never guaranteed to 
find an optimal solution to any problem, but they will often find a near‐optimal 
solution if one exists.
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2.2  Definition of Terms of Meta‐Heuristic 
and Evolutionary Algorithms

Meta‐heuristic and evolutionary algorithms are problem‐independent tech­
niques that can be applied to a wide range of problems. An “algorithm” refers 
to a sequence of operations that are performed to solve a problem. Algorithms 
are made of iterative operations or steps that are terminated when a stated 
convergence criterion is reached. Each step may be refined into more refined 
detail in terms of simple operations. Figure 2.2 shows a general schematic of 
an algorithm.

Start

K=0

Command

Command

Command

Are termination 
criteria satisfied?

Final state

Stop

Yes
Condition met?

No

No Yes

Initial state

K=K+1

Figure 2.2  General schematic of a simple algorithm; K denotes the counter of iterations.
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Meta‐heuristic and evolutionary algorithms start from an initial state and 
initial data. The purpose of these algorithms is finding appropriate values for 
the decision variables of an optimization problem so that the objective function 
is optimized. Although there are differences between meta‐heuristic and evo­
lutionary algorithms, they all require initial data and feature an initial state, 
iterations, final state, decision variables, state variables, simulation model, 
constraints, objective function, and fitness function.

2.2.1  Initial State

Each meta‐heuristic and evolutionary algorithm starts from an initial state 
of variables. This initial state can be predefined, randomly generated, or deter­
ministically calculated from formulas.

2.2.2  Iterations

Algorithms perform operations iteratively in the search for a solution. 
Evolutionary or meta‐heuristic algorithms start their iterations with one or sev­
eral initial solutions of the optimization problem. Next, sequential operations 
are performed to generate new solution(s). An iteration ends when a new pos­
sible solution is generated. The new generated solution(s) is (are) considered as 
initial solution(s) for the next iteration of the algorithm.

2.2.3  Final State

After satisfying the chosen termination criteria, the algorithm stops and reports 
the best or final generated solution(s) of an optimization problem. Termination 
criteria are defined in several different forms: (1) the number of iterations, 
(2)  the improvement threshold of the value of solution between consecutive 
iterations, and (3) the run time of the optimization algorithm. The first criterion 
refers to a predefined number of iterations that the algorithm is allowed to 
execute. The second criterion sets a threshold for improving the solution 
between consecutive steps. The third criterion stops the algorithm after a 
defined run time and the best solution available at that time is reported.

2.2.4  Initial Data (Information)

Initial information is classified into two categories including (1) data about the 
optimization problem, which are required for simulation, and (2) parameters of 
the algorithm, which are required for its execution and may have to be calibrated. 
Table 2.1 lists the input data for several sample problems introduced in Chapter 1.

The second type of initial information is needed to calibrate the solution 
algorithm to solve an optimization problem. Almost all meta‐heuristic and 
evolutionary algorithms have parameters that must be adjusted. The param­
eters of the algorithm must be properly chosen to achieve its successful 
application. The stopping criterion, for instance, is an algorithmic parameter 
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that is user specified. If the stopping criterion is not correctly chosen, the 
algorithm may not converge to the global solution. On the other hand, the 
algorithm could run for an unnecessarily long time.

2.2.5  Decision Variables

Decision variables are those whose values are calculated by execution of the 
algorithm, and their values are reported as solution of an optimization problem 

Table 2.1  The input data of the example problems presented in Chapter 1.

Problem Input data

Mechanical design (compound gear 
train)

(1)  The required gear ratio
(2)  Limits on decision variables

Structural design (two‐bar truss) (1)  The distance between supports
(2)  �The horizontal distance between 

loaded force and supports
(3)  The maximum allowable stress
(4)  Volume density
(5)  Load force
(6)  Limits on decision variables

Electrical engineering 
optimization (DOCR)

(1)  Characteristics of the simulated system
(2)  Parameter of the current transformer
(3)  The number of faults
(4)  The number of relays
(5)  Parameter of fault current
(6)  Limits on decision variables

Water resources optimization 
(hydropower plant)

(1)  Reservoir inflow
(2)  The reservoir capacity
(3)  The dead volume of the reservoir
(4)  The efficiency of the powerhouse
(5)  The density of water
(6)  Acceleration of gravity
(7)  The number of time periods
(8)  The length of the time periods
(9)  Power plant capacity

(10)  Limits on decision variables
Calibration of hydrologic models 
(Muskingum model)

(1)  Number of time steps
(2)  Length of time steps
(3)  Reach inflow
(4)  Limits on decision variables
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upon reaching the stopping criterion. Table 2.2 lists the decision variables for 
the problems introduced in Chapter 1.

Meta‐heuristic and evolutionary algorithms first initialize the decision 
variables and recalculate their values through the execution of the algorithm.

2.2.6  State Variables

The state variables are related to the decision variables. In fact, the values of the 
state variables change as the decision variables change. Table 2.3 lists the state 
variables for the example problems introduced in Chapter 1.

2.2.7  Objective Function

The objective function determines the optimality of solutions. An objective 
function value is assigned to each solution of an optimization problem. 
Table  2.4 lists the objective functions of the example problems introduced 
in Chapter 1.

Table 2.2  The decision variables of the example problems presented in Chapter 1.

Problem Decision variable

Mechanical design (compound gear train) The number of tooth of the gears
Structural design (two‐bar truss) The properties of the truss
Electrical engineering optimization (DOCR) The relay settings
Water resources optimization 
(hydropower plant)

The volume of water releases from the 
reservoir

Calibration of hydrologic models 
(Muskingum model)

The parameters of the Muskingum model

Table 2.3  The state variables of the example problems presented in Chapter 1.

Problem State variable

Mechanical design (compound gear train) The gear ratio
Structural design (two‐bar truss) Stress on nodes of the truss
Electrical engineering optimization (DOCR) The operating time
Water resources optimization 
(hydropower plant)

Reservoir storage and generated power

Calibration of hydrologic models 
(Muskingum model)

Routed outflow and reach storage
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2.2.8  Simulation Model

A simulation model is a single function or a set of mathematical operations 
that evaluate the values of the state variables in response to the values of the 
decision variables. The simulation model is a mathematical representation 
of a real problem or system that forms part of an optimization problem. 
The  mathematical representation is in terms of numerical and logical 
operations programmed in the solution algorithm implemented for an 
optimization problem.

2.2.9  Constraints

Constraints delimit the feasible space of solutions of an optimization prob­
lem and are considered in meta‐heuristic and evolutionary algorithms. In 
fact, these influence the desirability of each possible solution. After objec­
tive function and state variables related to each solution are evaluated, the 
constraints are calculated and define conditions that must be satisfied 
for  feasibility of any possible solution. If the constraints are satisfied, the 
solution is accepted and it is called a feasible solution; otherwise the solution 
is removed or modified. Table  2.5 lists the constraints of the example 
problems introduced in Chapter 1.

2.2.10  Fitness Function

The value of the objective function is not always the chosen measure of 
desirability of a solution. For example, the algorithm may employ a transformed 
form of the objective function by the addition of penalties that avoid the viola­
tion of constraints, in which case the transformed function is called the fitness 
function. The fitness function is then employed to evaluate the desirability of 
possible solutions.

Table 2.4  The objective function of the example problems presented in Chapter 1.

Problem Objective function

Mechanical design (compound 
gear train)

Minimizing the differences between the required 
and calculated gear ratios

Structural design (two‐bar truss) Minimizing the weight of the structure
Electrical engineering 
optimization (DOCR)

Minimizing the summation of the operating times

Water resources optimization 
(hydropower plant)

Minimizing the differences between the power 
plant capacity and the generated power

Calibration of hydrologic 
models (Muskingum model)

Minimizing the differences between the observed 
and the routed outflows
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2.3  Principles of Meta‐Heuristic 
and Evolutionary Algorithms

Figure 2.3 depicts the relation between the simulation model and the optimiza­
tion algorithm in an optimization problem. The decision variables are inputs to 
the simulation model. Then, the state variables, which are outputs of the simu­
lation model, are evaluated. Thereafter, the objective function is evaluated. In 
the next step, the problem constraints are evaluated, and lastly the fitness value 
of the current decision variables is calculated. At this time, the optimization 
algorithm generates a new possible solution of decision variables to continue 
the iterations if a termination criterion is not reached. Notice that if the 
optimization generates a set of solutions rather than a single solution in each 
iteration, the previous steps are performed for all solutions in parallel with each 
other. The meta‐heuristic and evolutionary algorithms are independent of the 
simulation model and they only employ the value of the current state variables. 
In other words, these algorithms execute their operations independently of the 
equations and calculations executed by the simulation model. The main 
difference between the various meta‐heuristic and evolutionary algorithms is 
how they generate new solution(s) in their iterative procedure, wherein these 
apply elements of artificial intelligence by learning from previous experience 
(old possible solutions) and employ accumulated information to generate new 
possible solutions. In other words, optimization algorithms generate a set of 
solutions whose fitness values are evaluated. Based on these fitness values, the 
optimization algorithm generates a new and improved set of solutions.

Table 2.5  The constraints of the example problems presented in Chapter 1.

Problem Constraint

Mechanical design (compound 
gear train)

(1)  Limits on the number of tooth of the gears

Structural design (two‐bar truss) (1)  Limitation of the stress on nodes
(2)  �Limits on the cross sectional area of trusses
(3)  �Limits on the perpendicular distance 

between the load force and the supports
Electrical engineering 
optimization (DOCR)

(1)  �Limitation of the operating time of the 
primary and backup relays

(2)  Limits on the relay settings
Water resources optimization 
(hydropower plant)

(1)  Limitation of the reservoir storage
(2)  Limitation of the generated power
(3)  Limits on the water release from reservoir

Calibration of hydrologic models 
(Muskingum model)

(1)  �Limits on the parameters of the 
Muskingum model
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In summary, meta‐heuristic and evolutionary algorithms first generate a set 
of initial solutions. The simulation model then calculates the decision variables 
(these are the current possible solutions) with which to evaluate the objective 
function. The fitness values corresponding to the current decision variables 
are evaluated based on the calculated objective function. At this juncture the 
optimization algorithm applies a number of operations akin to  phenomena 
observed in nature or that might be based on other principles to generate 
new  solutions while it takes advantage of the good features of the previous 
solution(s). Optimization algorithms attempt to improve solutions in each 

Report the result

Evaluate state variables

Generate decision variables

Run simulation modelEvaluate the objective 
function

Input problem’s data

Evaluate constraints

Evaluate fitness function

Optimality 
achieved?

No Yes

Optimization 
algorithm

End

Start

Figure 2.3  Diagram depicting the relation between a simulation model and an 
optimization algorithm.
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iteration, seeking to converge toward the optimal solution. After a number of 
iterations, the search reaches an optimal region of the feasible decision space. 
The best solution calculated by the algorithm at the time of termination 
constitutes the optimal solutions of a particular run. Figure 2.4 portrays the 
process of optimization by meta‐heuristic and evolutionary algorithms.

2.4  Classification of Meta‐Heuristic 
and Evolutionary Algorithms

This section presents several classifications of meta‐heuristic and evolutionary 
algorithms.

2.4.1  Nature‐Inspired and Non‐Nature‐Inspired Algorithms

Some algorithms are inspired by natural process, such as the genetic 
algorithm (GA), the ant colony optimization (ACO), the honey‐bee mating 
optimization (HBMO), and so on. On the other hand, there are other types 
of algorithms such as tabu search (TS) that has origins unrelated to natural 
processes. It is sometimes difficult to clearly assign an algorithm to one of 
these two classes (nature‐ and non‐nature inspired), and many recently 
developed algorithms do not fit either class or may feature elements from 
both classes. Therefore, this classification is not particularly helpful. 
For instance, although TS is classified as a non‐nature‐inspired algorithm, it 
takes advantage of artificial intelligence aspects such as memory. It is there­
fore pertinent to argue whether or not the use of memory in the TS qualifies 
it as a nature‐inspired algorithm.

Convergence
?

Simulation 
model

Optimization 
algorithm

Results

No

Yes

Start:
initial data

Figure 2.4  The main components of the optimization by meta‐heuristic and evolutionary 
algorithms.
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2.4.2  Population‐Based and Single‐Point Search Algorithms

Some algorithms calculate iteratively one possible solution to an optimization 
problem. This means that the algorithms generate a single solution and they 
attempt to improve that solution in each iteration. Algorithms that work on a 
single solution are called trajectory methods and encompass local search‐based 
meta‐heuristics, such as TS. In contrast, population‐based algorithms perform 
search processes that describe the evolution of a set of solutions in the search 
space. The GA is a good example of the population‐based algorithms.

2.4.3  Memory‐Based and Memory‐Less Algorithms

A key feature of some meta‐heuristic and evolutionary algorithms is that they 
resort to the search history to guide the future search for an optimal solution. 
Memory‐less algorithms apply a Markov process to guide the search for a 
solution as the information they rely upon to determine the next action is the 
current state of the search process. There are several ways of using memory, 
which is nowadays recognized as one of the fundamental capabilities of 
advanced meta‐heuristic and evolutionary algorithms.

2.5  Meta‐Heuristic and Evolutionary Algorithms 
in Discrete or Continuous Domains

In meta‐heuristic and evolutionary algorithms, each solution of an optimiza­
tion problem is defined as an array of decision variables as follows:

	 X x x x xi N1 2, , , , ,  	 (2.1)

where X = a solution of optimization problem, xi = ith decision variable of the 
solution array X, and N = the number of decision variables.

Decision variables may be binary, discrete, or continuous values. Binary cod­
ing is used for Boolean decision variables of a binary nature (i.e., a situation 
occurs or it does not). Discrete values are used for problem with discrete deci­
sion space in which the decision variables are chosen from a predefined set of 
values. For instance, consider a two‐dimensional problem with two decision 
variables x1 and x2 so that the values of x1 and x2 are chosen from the sets V1 
and V2, respectively, where V1 = {1.1, 4.5, 9.0, 10.25, 50.1} and V2 = {1, 7, 80, 100, 
250}. Therefore, a feasible value of x1 is 1.1, but 1.2 is not. In general, it can be 
stated that x v v Vi i{ | } as a condition defining the feasible values of the ith 
decision variable.

A class of discrete problems is that in which the decision variables must 
take integer values. A classic example is an optimization problem searching 
for the optimal numbers of individuals to be chosen from among K groups to 
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make one consolidated optimal group. In this case, the optimal variables 
must take their values from the sets [0, 1, 2, …, Sk], where Sk is the largest 
number of individuals in the kth group, k = 1, 2, …, K. Another example could 
be a problem with three‐integer decision variables x1, x2, and x3 whose allow­
able ranges are [0,6], [5,20], and [0,100], respectively. Therefore the feasible 
values of x1 are {0,1,2,3,4,5,6}, and those of x2 and x3 are all the integer values 
between 5–20 and 0–100, respectively. In continuous problems the decision 
variables are real numbers contained between upper and lower boundaries 
and every value between boundaries is feasible. Constraints that involve func­
tions of the decision variables, such as 2x1 + x2 + 5x3 ≤ 20, reduce the decision 
space. These constraints are commonly enforced by adding them as penalties 
to the objective function.

2.6  Generating Random Values 
of the Decision Variables

A few meta‐heuristic and evolutionary algorithms are deterministic. Most of 
them, however, generate random values of the decision variables (possible 
solutions) at the start of the algorithm or during the search. There are algo­
rithms that generate initial solutions deterministically, and during the search 
for an optimum, they generate random values of the decision variables. 
Decision variables are chosen randomly in the case of discrete domains. All 
the permissible values have an equal chance of being selected. Binary deci­
sion variables are randomly assigned the value zero or one with a probability 
equal to 0.5 each. Continuous decision variables are assigned values randomly 
between their lower and upper boundaries employing a suitable distribution 
function, such as the uniform distribution, a truncated normal distribution, 
or some other distribution. In most meta‐heuristic and evolutionary 
algorithms, the uniform distribution is widely applied for random generation 
of decision variables.

2.7  Dealing with Constraints

Infeasible solutions occur in two ways. First, the values of the decision variables 
may be outside their allowable range. Second, even if all the decision variables 
are within their allowable range, they may be outside the feasible space, 
thus the solution is infeasible. Figure 2.5 shows one situation of feasible solu­
tion with feasible decision variables, one situation of an infeasible solution 
where the decision variables are within their ranges but outside the feasible 
space, and another case in which the solution is infeasible with the decision 
variables outside their ranges and outside the decision space.
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There are various methods to avoid infeasible decision variables, such as 
removing the infeasible space from the search, refinement, or using penalty 
functions that are discussed in the following text.

2.7.1  Removal Method

The removal method eliminates each possible solution that does not satisfy the 
constraints of the optimization model. Although the implementation of this 
method is simple, it has some disadvantages. First, this method does not 
distinguish between solutions with small and large constraints violations. 
Second, sometimes even infeasible solutions may yield clues about the optimal 
solution. For instance, although a solution might be infeasible, some of its deci­
sion variables may be the same as those of the optimum solution. Therefore, 
sometimes when a possible solution is deleted, its good features are eliminated 
from the search process.

2.7.2  Refinement Method

This method does not delete any of the infeasible solutions from the search 
process. Instead, the refinement method refines infeasible solutions to render 
them feasible solutions. For example, imagine that in building a structure 
two different materials A and B must be mixed in equal proportions and that 
variable B is a decision variable and variable A is a state variable. Assume that 
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Figure 2.5  Different solutions in a two‐dimensional decision space.
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the sum of amounts A and B must equal 200 units. If the optimization problem 
chooses a B equal to 150, the constraints are not satisfied because an amount of 
A equal to 150 would violate the constraint on the sum of A and B. This situa­
tion calls for a refinement of the amount of B to satisfy both constraints, 
although optimality might be lost once the refinement is made. Refinement may 
produce an optimal solution or an infeasible solution. The refinement method 
uses features of an infeasible solution that might help in its refinement toward 
an optimal solution. The refinement method is cumbersome in that it is non­
trivial to find ways to refine an infeasible solution and derive a feasible solution 
that is closer to an optimal one.

2.7.3  Penalty Functions

The application of penalty functions to avoid infeasible solutions overcomes 
the shortcomings of the removal and refinement methods. This method 
adds (or subtracts) a penalty function to the objective function of a minimi­
zation (or  maximization) problem. The penalty function that is added or 
subtracted severely degrades the value of the objective function whenever a 
constraint is violated. Consider, for example, the following minimization 
problem:

	 Minimize f X X x x x xi N( ), , , , , ,1 2   	 (2.2)

Subject to

	 G X( ) 1	 (2.3)

	 H X( ) 2	 (2.4)

	 Z X( ) 3	 (2.5)

The penalized objective function, or fitness function, for this minimization 
problem is achieved by adding penalties to the objective function as follows:

	 F X f X Penalty( ) ( ) 	 (2.6)

where

	 Penalty G X H X z x( ( )) ( ( )) ( ( ))1 2 3 	 (2.7)

in which the penalty on a violation of the constraint G(X):

	
G X

if G X
if G X( )

( )
( )

0
0

1

1
	 (2.8)

	 1 1 1 1
1G X C 	 (2.9)
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The penalty on a violation of the constraint H(X):

	
H X
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0
0
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	 (2.10)

	 2 2 2 2
2H X C( ) 	 (2.11)

The penalty on a violation of the constraint Z(X):

	
( ( ))

( )
Z X

if Z X
if Otherwise

0
0

3
	 (2.12)

	 3 3 3 3
3Z X C( ) 	 (2.13)

where X = solution of the optimization problem, f(X) = value of the objective 
function of solution X, G(X) = a constraint whose value exceeds δ1, H(X) = a 
constraint whose value is less than δ2, Z(X) = a constraint whose value equals δ3, 
F(X) = penalized objective function, Penalty = total value of the penalty on 
constraints violations, ϕ1 = penalty for constraint G(X), ϕ2 = penalty for constraint 
H(X), ϕ3 = penalty for constraint Z(X), and αk, βk, and Ck (k = 1, 2, 3) = constant 
values for adjusting the magnitude of the penalty function. In a maximization 
problem the penalized objective function, or fitness function, is written by 
subtracting penalties from the objective function as follows:

	 F X f X Penalty( ) ( ) 	 (2.14)

The coefficients αk and βk quantify the magnitude of constraints violations. 
For example, for βk = 1 the amount of the penalty increases linearly with the 
increase in constraint violation; αk determines the slope of the penalty func­
tion. Ck changes the value of the fitness of an infeasible solution independently 
of the magnitude of the constraint violation. The user‐specified values of αk, βk, 
and Ck impact the performances of the penalty function and of the optimiza­
tion algorithm searching for an optimal solution. In fact, employing penalty 
functions modifies the mapping between the objective function and the 
decision space. It is possible that the optimal solution of the unconstrained 
penalized objective function might differ from the optimal solution of the 
constrained objective function.

The specification of proper values for αk, βk, and Ck relies on experience with 
specific types of optimization problems and on reliance on sensitivity analysis. 
In the latter approach the analyst tries several combinations of αk, βk, and Ck 
and applies the optimization algorithm to calculate solutions and compare 
them. The combination of the penalty coefficients that yields the best solutions 
becomes the best choice of penalty coefficients.
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2.8  Fitness Function

The penalized objective function is called the fitness function. Therefore, the 
fitness function is written as follows:

	 F X f X Penalty 	 (2.15)

where X = solution of the optimization problem, f(X) = objective function of 
solution X, and F(X) = fitness function (penalized objective function) of solution 
X. The penalty is added (or subtracted) in a minimization (maximization) 
problem.

2.9  Selection of Solutions in Each Iteration

Selection refers to choosing some solutions from a set of solutions during the 
algorithmic calculations. In some meta‐heuristic and evolutionary algorithms, 
not all current solutions are employed to generate new solutions. The selection 
operators bypass many current solutions. The selection of solutions among the 
current set of solution is done randomly or deterministically based on the 
algorithm. In some algorithms, although all the current solutions are used to 
generate new solutions, not all the new solutions are accepted. Only those that 
have relatively high merit are applied in the search process. Selection of some 
newly generated solutions among all the generated new solutions can be done 
randomly or deterministically. Usually such selection is done based on the fit­
ness values of the decision variables, which are the current solutions in any 
algorithmic iteration. This means that in random selection methods, a higher 
probability of selection is assigned to superior solutions over inferior solutions. 
In deterministic selection methods usually the best solution(s) is (are) selected 
from a set of solutions. The selection of current solutions to generate new 
solutions in the algorithmic iterations has an important role in finding the 
optimum. Therefore, the selective pressure is an important factor in meta‐
heuristic and evolutionary algorithms. A selection method with high selective 
pressure most likely selects the best solutions and eliminates the worst ones at 
every step of the search. In contrast, a selection method with a very low 
selective pressure ignores the fitness values of the current solutions and assigns 
the same probability of selection to the diverse solutions featuring different 
fitness values. Figure 2.6 shows a set of solutions of an imaginary maximization 
problem so that the solutions are ranked based on their fitness values, and an 
example probability of selection is prescribed to each solution, employing a 
high selective pressure or a low selective pressure.

It is seen in Figure  2.6 that a low selective pressure assigns nearly equal 
probability of selection to diverse solutions regardless of their fitness. A high 
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selective pressure, on the other hand, assigns higher probability of selection to 
the fittest (largest) solutions. Recall that the uniform distribution assigns an 
equal probability of selection to all the solutions in each iteration. A selection 
process that chooses solutions based on the uniform distribution does not 
apply selective pressure. Unlike deterministic selection and selection with 
uniform distribution, there are other selection methods that allow the user to 
adjust the selective pressure or the methods themselves change the selective 
pressure automatically. In fact, one of the differences between meta‐heuristic 
and evolutionary algorithms is how they select solutions. Several algorithms 
do  not implement a selection process, whereas others do. Among common 
selection methods are the Boltzmann selection, the roulette wheel, the tourna­
ment selection, and others. These selection methods are described in this book.

2.10  Generating New Solutions

A key step of the meta‐heuristic and evolutionary algorithms is generating 
new solution(s) from the current one in each iteration. Each iteration of an 
algorithm is completed by generating new solution(s). Each algorithm 
generates new solutions differently from others. In all cases, however, all the 
algorithms rely on the current solutions to generate new ones. In fact, new 
solutions are usually in the neighborhood of a previous solution, they are a 
combination of two or more old solutions or they are randomly generated 
solutions whose acceptance for entering the search process is determined by 
comparison with previous solutions. The methods employed by leading 
meta‐heuristic and evolutionary algorithms to generate new solutions itera­
tively are described in this book.
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Figure 2.6  Selection probability of a set of solutions 1–10 of a hypothetical 
maximization problem.
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2.11  The Best Solution in Each Algorithmic Iteration

In some algorithms the best solution in each iteration is highlighted. Some 
algorithms keep the best solution in an iteration without any changes and carry 
it to the next iteration until a better solution is generated, at which time the 
better solution takes its place. Other algorithms such as the HBMO preserve 
the best solution in each iteration and assign it a larger weight to generate new 
solutions. Each algorithm names the best solution of an iteration differently, 
such as “base point” in the pattern search (PS) or “the queen” in the HBMO 
algorithm and so on.

2.12  Termination Criteria

Each iteration of an algorithm finishes with the generation of new solutions. 
The algorithm evaluates the fitness function of each solution and moves on 
to the next iteration, or it is terminated if the termination criteria are satis­
fied. Three prevalent termination criteria are the number of iterations, a 
threshold of improvement of the fitness function in consecutive iterations, 
and the run time.

The first criterion sets a number of iterations so that the algorithm continues 
for predefined number of iterations. For example, the maximum number of 
algorithmic iterations may be set at 106, at which time it will stop. The main dis­
advantage with this criterion is that the analyst does not know a priori how many 
iterations are good enough. Thus, the algorithm might be stopped prematurely 
when the current solution is far from optimal or it could reach a near‐optimal 
solution quickly and thereafter continue replicating that solution without further 
improvement and inflicting unnecessary computational burden.

The second criterion stops the execution of the algorithm whenever the dif­
ference between the solutions pertaining to two or more consecutive iterations 
falls below a user‐specified threshold. A disadvantage of this method is that the 
solution achieved may be a local optimum. The meta‐heuristic and evolution­
ary algorithms usually employ randomness or other tools to escape from local 
solutions if they are allowed to keep searching even if a threshold is met 
between a few consecutive iterations.

The maximum run time criterion stops the algorithm after a specified pro­
cessing time is complete and reports the best solution achieved up to that time 
without consideration to the number of iterations performed or the rate of 
improvement of the solution. The main limitation of this criterion is identical 
to that of which defines a maximum number of iterations, that is, it is generally 
unknown how much time is necessary to reach a near‐optimal solution.

There are other termination or stopping criteria that rely on special features 
of a search algorithm. These are discussed in various parts of this book.
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2.13  General Algorithm

This section presents a general algorithm that encompasses most or all of the 
steps found in meta‐heuristic and evolutionary algorithms. This allows the 
comparison of specific algorithms covered in this book to the general algo­
rithm. All meta‐heuristic and evolutionary algorithms begin by generating 
initial (possible or tentative) solution(s), which is (are) named “old” solutions 
and is (are) improved by the algorithm. The search algorithm iteratively 
improves “old” or known solutions with improved “new” ones until a termina­
tion criterion is reached. The steps of a general algorithm are as follows:

Step 0: Read input data.
Step 1: Generate initial possible or tentative solutions randomly or determinis- 

tically.
Step 2: Evaluate the fitness values of all current solutions.
Step 3: Rename the current solutions as old solutions.
Step 4: Rank all the old solutions and identify the best among them, those with 

relatively high fitness values.
Step 5: Select a subset of the old solutions with relatively high fitness values.
Step 6: Generate new solutions.
Step 7: Evaluate the fitness value of the newly generated solutions.
Step 8: If termination criteria are not satisfied, go to step 3; otherwise go to step 9.
Step 9: Report all the most recently calculated solutions or the best solution 

achieved at the time when the algorithm terminates execution.

Figure 2.7 illustrates the flowchart of the general algorithm.

2.14  Performance Evaluation of Meta‐Heuristic 
and Evolutionary Algorithms

An evolutionary or meta‐heuristic algorithm starts with initial solutions and 
attempts to improve them. Figure 2.8 depicts the progress of an algorithm that 
gradually convergences to a near optimum of imaginary hypothetical minimi­
zation problem. The convergence of an algorithm may be traced by graphing or 
monitoring the fitness value of the best solution against the number of itera­
tions or the run time. In addition to the number of iterations and the run time, 
another variable called the number of functional evaluations (NFE) may also be 
employed for tracing the convergence of an algorithm. The NFE equal the 
number of evaluations of the fitness function executed during the application 
of a search algorithm and equal the number of initial solutions plus the product 
of the number of iterations performed during algorithmic execution multiplied 
by the number of solutions generated in each iteration of the algorithm.
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It is seen in Figure 2.8 how the value of the fitness function improves rapidly in 
the first iterations and eventually convergences to the optimal solution after a rela­
tively large number of iterations. Furthermore, the fitness function improves or is 
maintained at the same level from one iteration to the next. Figure 2.8 is typical of 
the PS or HBMO algorithm, which improves or keeps the best solution calculated 
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Figure 2.7  The flowchart of the general algorithm.
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Figure 2.8  Convergence history of an optimization algorithm toward the best solution 
in a minimization problem.
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in the current iteration and use it in the next iteration. There are other algorithms 
in which the best solution(s) is not transferred to the next iteration, the standard 
GA being a case in point. The convergence of the latter type of algorithms 
resembles the chart depicted in Figure 2.9, in which the best solution of an itera­
tion may be worse than that of the previous iteration, even though, overall, there 
is a convergence toward an optimal solution as the number of iterations increases.

The NFE seem to be the best variable to measure the speed with which an 
algorithm converges to an optimal solution. The run time, on the other hand, 
may be affected by programming skill, type of programming language, computer 
speed, and other factors that are not algorithm dependent.

Another consideration is that most meta‐heuristic and evolutionary algorithms 
apply a random search and few of them are deterministic algorithms. Random‐
search algorithms require several runs to solving a given problem. Each run most 
likely produces a slightly different near‐optimal solution. Therefore, in judging the 
performance of a random‐search algorithm, several runs of the algorithm are 
performed when solving a given problem. The following factors determine the 
quality of the algorithm’s performance: (1)  capacity to reach near‐optimal 
solutions consistently, that is, across several runs solving a given problem, and 
(2) speed of the solution algorithm in reaching near‐optimal solutions. Algorithmic 
reliability is defined based on the variance of the solutions’ fitness‐function values 
achieved in several runs of an algorithm reported as final solutions by different 
runs of an algorithm. A reliable algorithm is one that converges to very similar 
near‐optimal solutions in roughly the same NFE. A reliable algorithm features 
relatively small variance of the solutions’ fitness‐functions values. Figure  2.10 
demonstrates this feature for three different runs of a hypothetical algorithm.

It is seen in Figure 2.10 that the various runs start with different, randomly 
generated initial solutions and converge to the same near‐optimal solution in 
about the same NFE, a defining feature of a reliable algorithm. Figure  2.11 
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Figure 2.9  Convergence of an optimization algorithm in which the best solution is not always 
transferred to the next iteration during the search in a minimization problem.



2.15  Search Strategies 39

depicts different runs of an algorithm in a minimization problem where all 
runs start from the same state. Run No. 1 converges fast but to a solution that 
is clearly nonoptimal. Run No. 2 reaches an acceptable solution that is close 
enough to the global optimum, but its convergence speed is relatively low. Run 
No. 3 achieves a near‐optimal solution with the fastest convergence rate.

Table 2.6 provides a summary of the solution performance of an algorithm in 
k runs executed to solve a minimization problem.

2.15  Search Strategies

The need for solving various problems with their peculiar decision spaces 
led to the development of algorithms inspired by natural phenomena or that 
mimic human intelligence. Some critics argued that a few of the newly 
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developed algorithms, although inspired by different phenomena, in practice, 
are a repetition of previously developed algorithms (e.g., Sörensen, 2013). In 
contrast, other researchers proved the differences between newly developed 
algorithms and old ones (e.g., Saka et al., 2016). All meta‐heuristic and evolu­
tionary algorithms have common features present in the general algorithm 
introduced this  chapter. There are, however, significant differences among 
them such as in generating the initial and new solutions and in selecting new 
solutions. Each  algorithm searches the decision space differently, and their 
efficiencies in solving specific problems vary. For example, algorithms that use 
a high selective pressure in their selection stage and emphasize on searching 
near the best found solutions can search single‐modal decision spaces effi­
ciently. However, their performance decreases searching multimodal decision 
spaces where there are several local optima because of the risk of being 
entrapped in local optima. On the other hand, the algorithms apply selection 
methods with low selective pressure and search the decision space randomly, 
thus implementing a thorough search all over the decision space and reducing 

Table 2.6  Recommended reporting of the solutions calculated in k runs 
of an algorithm that solves a minimization problem.

Criteria Result

Run 1 F1

Run 2 F2

 

Run k Fk

Best solution in k runs F F F i Kr r i, , , , ,1 2

Average solution in k runs

r

k

rF

k
1

Worst solution in k runs F F F i Kr r i, , , , ,1 2

Standard deviation of solutions in k runs

r

k

rF Average

k
1

2

Coefficient of variation of solutions in k runs st deviation
Average
.

Fk = the fitness value of the solution achieved with the kth run of the optimization 
algorithm; k = the total number of independent runs of the optimization algorithm; 
Average = the average solution in k runs; st. devision = standard deviation of 
solutions in k runs.
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the risk of entrapment near local optima, which makes them more effective in 
solving problems with multimodal decision spaces. However, these algorithms 
make a large number of calculations in solving problems with single‐modal 
decision space where there is no risk of entrapment near a local optimum. 
Also, most meta‐heuristic and evolutionary algorithms have parameters that 
regulate their performance. The choice of these parameters affects their 
search strategies. Other algorithms set their parameters automatically. For 
these reasons knowing the principles on which each algorithm works is 
essential for users applying them, who must choose an appropriate algorithm 
to solve specific optimization problems. Twenty algorithms are described in 
the remainder of this book and are the leading meta‐heuristic and evolution­
ary algorithms known to date: PS, GA, simulated annealing (SA), TS, ACO, 
particle swarm optimization (PSO), differential evolution (DE), harmony 
search (HS), shuffled frog‐leaping algorithm (SFLA), HBMO, invasive weed 
optimization (IWO), central force optimization (CFO), biogeography‐based 
optimization (BBO), firefly algorithm (FA), gravity search algorithm (GSA), 
bat algorithm (BA), plant propagation algorithm (PPA), water cycle algorithm 
(WCA), symbiotic organisms search (SOS), and comprehensive evolutionary 
algorithm (CEA).

2.16  Conclusion

This chapter provided an introduction to meta‐heuristic and evolutionary algo­
rithms by explaining different methods employed for searching the decision 
space. The components of meta‐heuristic and evolutionary algorithms were 
highlighted, and the features of several engineering optimization problems 
were  explained. Other related topics were introduced in this chapter, among 
which are coding meta‐heuristic and evolutionary algorithms, dealing with con­
straints, selection of solutions, and so on. A general algorithm was presented 
that includes the most common traits of meta‐heuristic and evolutionary 
algorithms. This general algorithm shall serve as a useful baseline for comparing 
various algorithms. Lastly, this chapter explained methods for evaluating the 
performance of meta‐heuristic and evolutionary algorithms.
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3

Summary

This chapter explains the pattern search (PS) algorithm. The PS is a meta‐heuristic 
algorithm that is classified as a direct search method.

3.1  Introduction

Hooke and Jeeves (1961) called the pattern search (PS) a family of numerical 
optimization methods that do not require calculating the gradient of the objec-
tive function in solving optimization problems. Tung (1984) employed the PS 
algorithm to calibrate the Muskingum model. Neelakantan and Pundarikanthan 
(1999) calculated an optimal hedging rule for water supply reservoir systems. 
They applied a neural network model to speed up the optimization process 
without considering the number of functional evaluations needed in the simula-
tion of the reservoir system operation. Al‐Sumait et al. (2007) presented a new 
method based on the PS algorithm to solve a well‐known power system eco-
nomic load dispatch (ELD) problem with valve‐point effect. Bozorg‐Haddad 
et al. (2013) implemented the PS for groundwater model calibration and com-
pared the performance of the PS with that of the particle swarm optimization 
(PSO) algorithm. Groundwater models are computer models that simulate and 
predict aquifer conditions in response to groundwater withdrawal or recharge or 
some other stress on an aquifer. Mahapatra et al. (2014) proposed a hybrid firefly 
algorithm and pattern search (h‐FAPS) technique for a static synchronous series 
compensator (SSSC)‐based power oscillation damping controller design. 
Khorsandi et al. (2014) applied optimization techniques including the genetic 
algorithm (GA) and PS for the identification of the location and quantity of 
surface‐water pollutants.

Pattern Search
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3.2  Pattern Search (PS) Fundamentals

The PS is a direct search method. Direct search methods solve a variety of 
numerical problems with emphasis on the use of simple strategies that make 
them better suited for implementation in modern computers than classical 
methods (e.g., linear of nonlinear programming). The qualifier “direct search” 
refers to sequential examination of trial solutions. Direct search compares 
each trial solution with the best solution previously obtained, and the result 
of the comparison determines what the next trial solution will be. Direct 
search techniques employ straightforward search strategies. These tech-
niques have features that distinguish them from classical methods and have 
solved problems that classical methods could not solve. Also, direct search 
techniques converge faster to the solutions of some problems than classical 
methods. Direct search techniques rely on repeated identical arithmetic 
operations with simple logic that are easily coded for computer calculations. 
Direct search techniques converge to near‐optimal solutions, which is 
also  a  feature of meta‐heuristic and evolutionary algorithms (Hooke and 
Jeeves, 1961).

Direct search methods randomly select a point B and call it a base point. 
A second point, P1, is randomly selected, and if it is better than B, it replaces 
the base point; if not, B remains the base point. This process continues with 
each new randomly selected point being compared with the current base point. 
The “strategy” for selecting new trial points is determined by a set of “states” 
that constitutes the memory of the algorithm. The number of states is finite. 
There is an arbitrary initial state and a final state that stops the search. The 
other states represent various situations that arise as a function of the results of 
the trials made. The kind of strategy implemented to select new points is dic-
tated by various aspects of the problem, including the structure of the decision 
space of the problem. The strategy includes the choice of the initial base point, 
the rules of transition between states, and the rules for selecting trial points as 
a function of the current state and the base point. Direct search designates a 
trial point as a move or step from the base point. The move is a success 
if the trial point is better than the base point, or it is a failure otherwise. The 
states make up part of the logic, influencing moves to be proposed in the same 
general direction as those that have recently succeeded. The states suggest new 
directions if recent moves have failed. The states decide when no further pro-
gress can be made. The fact that no further progress can be made does not 
always indicate that the solution has been found.

Solutions of the optimization problem calculated by the PS algorithm are 
points in an N‐dimensional space with N denoting the number of decision vari-
ables. Trial points refer to new solutions. The process of going from a given 
point to a trial point is called a move. A move may be successful if the trial 
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point is better than the base point; otherwise it is a failure. The PS finds the 
correct route to achieve optima from analyzing the failures and success of trial 
points. In other words, failure or success of trial points affects the direction 
and length of the steps of the movements in next stages. Table  3.1 lists the 
characteristics of the PS algorithm.

The PS generates a sequence of solutions that produces a mesh around the 
first solution and approaches an optimal solution. An initial solution is 
randomly generated and known as the base point. Next, trial points (new 
solutions) are generated. There are two patterns to generate trial points. The 
first pattern is an exploratory move designed to acquire knowledge about 
the decision space. This knowledge issues from the success or failure of the 
exploratory moves without regard to any quantitative appraisal of the values 
of the fitness functions. It means that exploratory moves determine a probable 
direction for a successful move. The second one is a pattern move that is 
designed to use the information achieved by the exploratory moves to find the 
optimal solution. After generating new solutions with the exploratory moves, 
the PS algorithm computes the fitness function at the mesh points and selects 
one whose value is better than the first solution’s fitness value. The searching 
point is transferred to the new solution if there is a point (solution) with a 
better obtained fitness function among the generated solutions. At this stage, 
the expansion coefficient is applied to generate new solutions. Thus, the new 
mesh size is larger than the previous one. In contrast, if there is no better 
solution in the generated solutions, the contraction coefficient is applied and 
the mesh size is limited to a smaller value. Figure 3.1 shows the flowchart of 
the PS algorithm.

Table 3.1  The characteristics of the PS.

General algorithm (see Section 2.13) Pattern search

Decision variable Coordinates of point’s position
Solution Point
Old solution Base point
New solution Trial point
Best solution Base point
Fitness function Desirability of the base point
Initial solution Random point
Selection Comparison of the trial point with base point
Generate new solution Exploratory and pattern move
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Set the new trial point as the new base point

Decrease the mesh size

Start

Define the parameters of the algorithm

Generate a base point randomly

Generate trial points with exploratory moves

Implement pattern move to generate new trial points

Is the new generated point better than the 
base point?

Yes

Report the base point

End

Are the termination criteria satisfied?

No
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Is the new generated point better than the 

base point?
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No Yes

Reset the mesh size

Search around the new generated trial point with exploratory moves

Figure 3.1  The flowchart of the PS.
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3.3  Generating an Initial Solution

Each possible solution of the optimization problem calculated by the PS is a 
point in the decision space. Therefore, in an N‐dimensional optimization prob-
lem, the position of the point in that space is a decision variable of the optimi-
zation problem that constitutes an array of size 1 × N. The PS starts with a 
single solution that is written as a matrix or row vector of size 1 × N as 
follows:

	 Point X x x x xi N1 2, , , , ,  	 (3.1)

where X = a solution of the optimization problem; xi = ith decision variable 
of the solution X; and N = number of decision variables. The decision 
variable values (x1, x2, x3, …, xN) are defined appropriately for continuous and 
discrete problems. The PS algorithm starts with an initial possible or tenta-
tive solution that is randomly generated (see Section 2.6) and known as the 
base point. Subsequently, trial points (solutions) are generated around 
the base point.

3.4  Generating Trial Solutions

Trial solutions are new solutions of the optimization problem that may poten-
tially be the next base point. There are two patterns with which to generate 
trial solutions. The first pattern is an exploratory move designed to acquire 
knowledge about the decision space. The second one is a pattern move that is 
designed to use the information achieved by the exploratory moves to find the 
optimal solution.

3.4.1  Exploratory Move

The exploratory move obtains information about the decision space of the opti-
mization problem. This knowledge is derived from the success or failure of the 
exploratory moves without regard to any quantitative appraisal of the values of 
the fitness functions. In each exploratory move the value of a single coordinate 
is changed, and the effect of this change on the fitness value is evaluated. The 
fitness value after the move is evaluated, and the move is successful if the newly 
calculated fitness value improves the fitness value prevailing before the move. 
Otherwise, the move is a failure. The purpose of the exploratory move is to find 
a direction of improvement. This purpose is achieved by perturbing the current 
point by small amounts in each of the variable directions and determining if the 
fitness function value improves or worsens. There are two patterns to generate 
solutions by an exploratory move including (1) generalized pattern search 
(GPS) and (2) mesh adaptive direct search (MADS). The number of solutions 
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generated by GPS about the first solution equals 2N, which are produced as 
follows, where the solution X is a matrix of size 1 × N:

	
X Xnew
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1
1 0 0 0 	 (3.2)
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1
0 1 0 0 	 (3.3)
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in which μ = mesh size; X = base point; and X(new) = trial solution.
MADS generates N + 1 new solutions about the base point (X) as follows:
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Figure 3.2 displays trial solutions generated by GPS and MADS methods in a 
two‐dimensional decision space.

The PS algorithm computes the fitness function of all new solutions after 
generating new points with either GPS or MADS and further evaluates the one 
with the best fitness value among them. A comparison is made between the 
best new solution and the base point. If there is a solution with a better fitness 
value in the generated solutions, the search point is transferred to this new 
point. At this stage, the expansion coefficient is used to generate new solutions. 
Thus, the new mesh size is larger than the previous one. In contrast, if there is 
no better solution in the generated solutions, the contraction coefficient is 
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applied and the mesh size is reduced to a smaller value. After a successful 
exploratory move, the pattern move is implemented to further the search in a 
direction of likely improvement.

3.4.2  Pattern Move

The pattern move is designed to use the knowledge acquired in the exploratory 
moves. When the exploratory move achieves a better point, the new generated 
point becomes the new base point. A new trial point is generated based on the 
previous point and the current base point is calculated as follows:

	 X X X Xnew 	 (3.12)

in which X(new) = the new trial solution; X′ = the previous base point; X = the 
current base point; and α = a positive acceleration factor.

The pattern move from a given base point repeats the combined moves from 
the previous base point. The reasoning for this type of movement is the pre-
sumption that whatever constituted a successful set of moves in the past is 
likely to prove successful again. Each pattern move is immediately followed by 
a sequence of exploratory moves that continually revise the pattern and could 
improve the new trial solution. If the new generated trial solution is better than 
the current base point, it becomes the new base point and the pattern move is 
implemented again to generate new trial point. Otherwise the current base 
point is not changed, and only exploratory moves are implemented about the 
base point (see Figure 3.1).

A pattern move first obtains a tentative trial solution and then finds a trial 
solution with an exploratory search. Pattern moves are repeated as long as they 
are successful (i.e., improve the fitness function) and usually become longer 
and longer steps. As soon as a pattern move fails, the pattern move is retracted 
and the algorithm goes back to an exploratory search about the best point so 
far calculated.

x1

x2

x1

x2

Trial point

Base point

MADSGPS

µµ

Figure 3.2  Meshes generated by the GPS and MADS methods in a two‐dimensional 
decision space.
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3.5  Updating the Mesh Size

If there is no better solution among the generated solutions by the exploratory 
move, the contraction coefficient is applied and the mesh size (μ) is reduced 
to a smaller value. For any given value of the mesh size, the algorithm reaches 
an impasse when all the exploratory moves from the base point fail. In this 
situation it is necessary to reduce the mesh size (μ) to continue the search. 
The magnitude of the reduction is sufficient to permit a new pattern to be 
established. However, too large a reduction in the mesh size slows the search. 
For this reason when all trial points are worse than the base point, the mesh 
size is decreased as follows:

	
( )new 	 (3.13)

in which μ(new) = new mesh size and δ = decreasing step of mesh size, which is a 
user‐defined parameter of the algorithm.

If there is a point (solution) with a better fitness value among the gener-
ated solutions, the search point is transferred to this new point. At this 
stage, the expansion coefficient is applied to generate new solutions. Thus, 
the new mesh size is larger than the previous one. Whenever the exploratory 
move reaches a better point, the mesh size (μ) is reset to the initial value 
as follows:

	
( )new

0	 (3.14)

in which μ0 = the initial value of μ, which is determined by the analyst as a 
parameter of the algorithm.

3.6  Termination Criteria

The termination criterion determines when to stop the algorithm. Selecting 
a good termination criterion is essential to avoid a premature stoppage 
whereby a suboptimal or a local optimal solution is calculated. On the other 
hand, it is desirable to avoid unnecessary calculations beyond a solution 
that cannot be improved once it is reached. A common termination 
criterion for the PS is the mesh size. The final termination of the search is 
made when the mesh size is sufficiently small to insure that the optimum 
has been closely approximated. Limiting the number of iterations, or the 
run time, and monitoring the improvement of the solution in consecutive 
iterations are other termination criteria that can be implemented with 
the PS algorithm.
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3.7  User‐Defined Parameters of the PS

The value of acceleration factor (α), initial mesh size (μ0), decreasing step of 
the mesh size (δ), and termination criterion are user‐defined parameters of the 
PS. A good choice of the parameters is dependent of the decision space of a 
particular problem, and usually the optimal parameter setting for one problem 
is of limited utility for other problems. A reasonable method for finding appro-
priate values of the algorithmic parameters is performing sensitivity analysis. 
This consists of experimenting with multiple combinations of parameters with 
which the algorithm is run. The results from the various combinations 
are compared, and the analyst chooses the parameter set that yields the best 
optimization results.

3.8  Pseudocode of the PS

Begin
	 Input parameters of the algorithm and initial data
	 Let X′ = previous base point; X(new) = new generated 

point and X = the current base point
	 Generate a base point (X) randomly and calculate its 

fitness function
	 While (the termination criteria are not satisfied)
	 Generate new points about X by exploratory moves 

and evaluate their fitness values
	 Set X(new) = the best new generated point
	 If X(new) is better than X
	 Reset the mesh size
	 While (X(new) is better than X)
	 Set X′ = X
	 Set X = X(new)

	 Obtain a new X(new) by pattern move with X′ and X
	 Generate new points around X(new) by exploratory 

moves and evaluate their fitness functions
	 Set X(new) = the best new generated point
	 End while
	 Otherwise
	 Decrease the mesh size
	 End if
	 End while
	 Report the solution
End
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3.9  Conclusion

The PS is a meta‐heuristic algorithm of the direct search type. This chapter 
explained the workings of the PS as a direct search method and provides 
pseudocode of the algorithm.
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4

Summary

This chapter describes the genetic algorithm (GA), which is a well‐known 
evolutionary algorithm. First, a brief literature review of the GA is presented, 
followed by a description of the natural process that inspires the algorithm and 
how it is mapped to the GA. The steps of the standard GA are described in 
depth. A pseudocode of the GA closes this chapter.

4.1  Introduction

One of the best‐known evolutionary algorithms is the genetic algorithm (GA) 
developed by Holland (1975) and popularized by Goldberg (1989). There are 
several varieties of GAs (Brindle, 1981; Baker, 1985, 1987; Goldberg et  al., 
1991). The elitist version, which allows the best individual(s) from a generation 
to carry over to the next one, was introduced by De Jong (1975). Other versions 
are the modified GA (modGA) (Michalewicz, 1996), messy GAs (Goldberg 
et al., 1990), GAs with varying population size (GAsVaPS) (Michalewicz, 1996), 
genetic implementor (GENITOR) (Whitley, 1989), and breeder GAs (BGA) 
(Muhlenbein and Schlierkamp, 1993). Several authors have implemented the 
GA in water resources optimization (East and Hall, 1994; Gen and Cheng, 
1997). Furuta et  al. (1996) presented a decision‐making supporting system 
based on the GA for the aesthetic design of dams. Pillay et al. (1997) applied 
genetic algorithms to the problem of parameter determination of induction 
motors. Wardlaw and Sharif (1999) employed the GA to solve four‐ and ten‐
reservoir problems. Several researchers implemented the GA to design 
flood control systems (Shafiei and Bozorg‐Haddad, 2005; Shafiei et al., 2005; 
Bozorg‐Haddad et al., 2015). Saadatpour et al. (2005) developed a simulation–
optimization model based on the GA to calculate the best compromise 

Genetic Algorithm
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solution for wasteload allocation. Bozorg‐Haddad et al. (2005) implemented 
the GA in the optimal design of stepped spillways of dams. Hosseini et  al. 
(2010) presented an optimization model based on the GA to design rainfall 
gage networks. Rasoulzadeh‐Gharibdousti et al. (2011) presented a hybrid GA 
for the optimal design and operation of pumping stations. Fallah‐Mehdipour 
et al. (2013) applied evolutionary algorithms including the GA, particle swarm 
optimization (PSO), and shuffled frog leaping algorithm (SFLA) for calculating 
multi-crop planning rules in a reservoir system. Khorsandi et al. (2014) applied 
optimization techniques including the GA and the pattern search (PS) for 
locating and quantifying water–surface pollutants. Bhoskar et  al. (2015) 
reported a literature review of applications of the GA in mechanical engineer-
ing. Montaseri et al. (2015) developed a simulation–optimization model based 
on the GA for urban stormwater management.

4.2  Mapping the Genetic Algorithm (GA) 
to Natural Evolution

The basic idea behind the GA is the Darwinian principle of survival of the fittest 
among organisms threatened by predators and environmental hazards. The fit-
test members have a better chance of survival than others. They are more likely 
to adapt to evolving conditions, and their offspring may inherit their traits and 
learn their skills, thus producing even fitter future generations. Furthermore, 
genetic mutations occur randomly in members of species, and some of those 
mutations may improve the chances of long‐term persistence of fit individuals 
and their evolutionary descendants. Each individual generated by the GA 
(called chromosome) plays the role of a possible solution of the optimization 
problem at hand. Each chromosome is made up of genes that represent decision 
variables. The fitness values of individuals determine their ability to survive. 
Each generation contains a mixture of a parent population, which contains sur-
viving individuals (chromosomes) from previous generation, and their children. 
The offsprings or children, which represent new solutions, are generated by 
genetic operators including crossover and mutation. Parents are chosen to 
generate a new generation so that their probability of selection is proportionate 
to their fitness values. The higher the fitness value, the better the chance to 
survive and reproduce. Table 4.1 lists the characteristics of the GA.

Standard GA begins with a randomly generated population of possible solutions 
(individuals). The individuals’ fitness is calculated, and some of them are selected 
as parents according to their fitness values. A new population (or generation) of 
possible solutions (the children’s population) is produced by applying the crossover 
operator to the parent population and then applying the mutation operator to 
their offspring. The iterations involving the replacement of the original generation 
(old individual) with a new generation (children) are repeated until the stopping 
criteria are satisfied. Figure 4.1 illustrates the flowchart of the GA.
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Table 4.1  The characteristics of the GA.

General algorithm (see Section 2.13) Genetic algorithm

Decision variable Gene of chromosome
Solution Chromosome (individual)
Old solution Parent
New solution Children (offspring)
Best solution Elite
Fitness function Quality of individual
Initial solution Random chromosome
Selection Surviving parents
Process of generating new solution Genetic operators

Start

Define the parameters of the algorithm

Generate the initial population

Reproduction

Select parents 

Are the termination criteria satisfied?

End

Report the last population

No Yes

Figure 4.1  The flowchart of the GA.
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4.3  Creating an Initial Population

Each possible solution of the optimization problem generated by the GA is 
called a chromosome. Therefore, in the mathematical formulation of an opti-
mization problem, each chromosome is made up of a series of genes (decision 
variables) that represent a possible solution of the optimization problem at 
hand. In an N‐dimensional optimization problem, a chromosome is an array of 
size 1 × N. This array is defined as follows:

	 Chromosome X x x x xi N1 2, , , , ,  	 (4.1)

where X = a possible solution of the optimization problem, xi = ith decision 
variable (or gene) of solution X, and N = number of decision variables. The GA 
begins with random generation of a population of chromosomes or possible 
solutions (see Section  2.6). The population size, or the number of possible 
solutions, is denoted by M. The population of generated possible solutions is 
represented as a matrix of chromosomes of size M × N:
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	 (4.2)

in which Xj = jth solution (or chromosome), xj,i = ith decision variable (or gene) 
of the jth solution, and M = population size. Each decision variable xj,i can be 
represented as a floating point number (real values) or as a predefined set of 
values for discrete problems. Some of the initially generated possible solutions 
are selected as parents to produce a new generation.

4.4  Selection of Parents to Create a New Generation

Selection in the GA is the procedure by which R (R < M) individuals are 
chosen from the population for reproduction. The selected individuals 
are the parents of the next generation and constitute the parent population. 
There are different methods for selection of the parents. The most common 
methods are proportionate selection, ranking selection, and tournament 
selection.
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4.4.1  Proportionate Selection

A popular selection approach is proportionate selection (Goldberg, 1989). 
According to proportionate selection the probability of a solution being 
selected is evaluated as follows:

	

P
F X

F X
k

k

j
j

M

1

	 (4.3)

in which Pk = the probability of solution kth being selected and F(X) = the fitness 
function of solution X.

First, the probability of selection of each solution is evaluated. Each solution 
k belongs to the parent population with probability Pk. Based on the evaluated 
probabilities, a roulette wheel is made and turned (i.e., set up numerically and 
calculated thereupon) to select parents. The concept of a roulette wheel is 
depicted in Figure  4.2 with a simple example having a population of three 
individuals. Each individual (solution) possesses a part of the roulette wheel 
that is proportionate to its fitness value (F). The roulette wheel is made and 
spun to select a parent. Selection is biased toward fitter individuals even though 
it is random and any individual has a chance to be selected.

A roulette wheel is created by calculating a cumulative probability for all 
solutions as follows:

	
Q P j Mj k

k

j

1
1 2, , , , 	 (4.4)

in which Qj = cumulative probability of the jth solution.
The selection of R parents following the creation of the roulette wheel is 

accomplished by spinning the wheel R times. Each spin is tantamount to a 
generated random number (Rand) in the range [0,1]. If Rand is less than Q1, the 
first solution (X1) is selected; otherwise the jth solution is selected such that 
Rand is greater than Qj‐1 and less or equal than Qj (Q Rand Qj j1 ).

1
2

3

Solution F P

1 60 0.50
2 40 0.33
3 20 0.17

Population size (M) = 3

Figure 4.2  Demonstration of a 
roulette wheel. F = Fitness function 
value; P = probability of selecting a 
solution.
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4.4.2  Ranking Selection

Ranking selection ranks all the solutions (also called chromosomes) based on 
their fitness values. The best solution receives rank 1, and the worst is assigned 
the lowest rank. A solution is assigned a probability that is proportionate to its 
rank according to the following linear function:

	 P U S Zk k 1 	 (4.5)

	 S Rank Xk k 	 (4.6)

	 j

M

jP
1

1	 (4.7)

	
U

Z M
M

1
2

1 	 (4.8)

in which Sk = the rank of the kth solution in the population, the term Sk = 1 
indicates that the kth solution is the best solution, and Z = a user‐defined value. 
Figure 4.3 depicts the sorting of solutions according to the fitness function (F) 
in a maximizing problem.

An alternative approach ranks all the solutions according to their fitness 
values. Then M − S copies of each solution are generated. For example, in a 
population of ten solutions (M = 10), for a solution of rank S = 3, 10 − 3 = 7 copies 
are made. R parent solutions are selected using the uniform distribution from 
the population, which is a mixture of the original solutions and their copies. 
The probability of choosing the fitter (better) solutions would be higher than 
those of less fit solutions due to their larger number of copies.

Solutions

F(X) F(X)

Sort

1
2

4
3

M

···

Figure 4.3  Ranking chromosomes (or solutions) according to the fitness function (F) in a 
maximizing problem.
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4.4.3  Tournament Selection

Another popular selection method is tournament selection. According to 
the tournament selection Y (Y < M), solutions are randomly selected with the 
uniform distribution. When applying the uniform distribution, the probability 
of selecting any solution is the same. The best solution in the selected set is 
chosen as a parent. This process is repeated until all parents are selected.

4.5  Population Diversity and Selective Pressure

Population diversity and selective pressure are important factors in the search 
process of the GA. These factors are inversely related so that increasing one 
reduces the other (Whitley, 1989). A high selective pressure may lead to 
premature convergence, while a low selective pressure may lead to stagnation 
in the optimization search.

Proportionate selection, discussed in a previous subsection, may introduce 
convergence errors. Premature convergence of the GA may occur when the prob-
ability P of selecting a solution is estimated from its fitness function value if there 
are large differences between the fitness values of the solutions of a population, or 
stagnation may occur if there are small differences between the fitness function 
values of the solutions (Whitley, 1989; Michalewicz, 1996). Several scaling func-
tions have been introduced to strike a balance between selective pressure and 
population diversity. These scaling functions are employed with proportionate 
selection and include linear scaling (Michalewicz, 1996), sigma truncation 
(Michalewicz, 1996), power law scaling (Michalewicz, 1996), logarithmic scaling 
(Grefenstette and Baker, 1989), exponential scaling (Grefenstette and Baker, 
1989), and Boltzmann selection (Back, 1994). Solgi et  al. (2016) proposed a 
new scaling function that is self‐regulating and does not have parameters to be 
adjusted. This departs from previous scaling methods that require the analyst to 
set their parameters to regulate the selective pressure.

Ranking selection allows the users to adjust the selective pressure of the algo-
rithm. If Z = 0 (and consequently, U = 1/M), there is no selection pressure. In this 
condition, all individuals have the same probability of selection. The maximum 
selective pressure is achieved when U = 2/M and Z = 2/(M(M − 1)). Large values 
of Y increase the selective pressure in tournament selection. A value Y = 2 is 
commonly used.

4.6  Reproduction

The GA algorithm must generate new solutions to progress toward an optimal 
solution. The parents make children that constitute the whole or a part of the 
next generation. Therefore, the next generation may be a mixture of the parent 
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population and the children population. The ratio of parents to offspring is a 
user‐defined parameter. Figure  4.4 gives an example of the procedure of 
producing the next generation from the original generation. Different meth-
odologies have been devised for constituting the next generation, which define 
varieties of the GA.

Generating new solutions is the duty of the selected parents. Children 
(offspring) are new solutions. R solutions are selected as the population of parents 
based on their fitness. From this population parents are randomly selected once 
more with a crossover probability (PC) that is a user‐defined parameter of the 
algorithm. A random number Rand from the range [0,1] is generated for each 
solution in the parent population. If Rand is less than PC, that solution is selected 
for crossover. Not all parent solutions generate children. Among the selected par-
ent solutions, some are chosen pairwise with the uniform distribution to produce 
offspring. This process is called crossover. Offspring or children, which constitute 
solutions, are modified by the mutation operator. Thus, the GA first generates 
children by crossover and modifies them by mutation thereafter.

4.6.1  Crossover

Crossover occurs between two parent solutions. The crossover operator 
generates new offspring by exchanging genes between parents. According to 
the crossover operation, some decision variables of two solutions are exchanged. 
In other words, a new solution receives some decision variables from one 
parent solution and the rest from the other parent solution. Goldberg (1989) 
and Michalewicz (1996) have described several methods of crossover includ-
ing (1) one‐point crossover, (2) two‐point crossover, and (3) uniform crossover. 
Figure 4.5 illustrates the latter three types of crossover.

Original generation

Dead individuals
(deleted solutions)

Parents

Children

Next generation

Figure 4.4  The process of constituting a new generation from the previous generation.
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A crossover point (C in Figure 4.5a) is randomly selected when employing 
one‐point crossover. A child is generated so that some of its genes are those 
from one of the parents and are located on one side of the point, and the rest of 
its gens come from the other parent and are located on the other side of the 
point as shown in Figure 4.5a. Each couple of parents generates two children. 
Two crossover points are randomly generated when employing two‐point 
crossover and are denoted by C and C′ in Figure 4.5b. The genes between the 
two points in the parent solutions are preserved in the same positions in the 
genetic make of the children. The genes positioned outside the two boundaries 
are exchanged as shown in Figure 4.5b to produce the two children. The scheme 
for uniform crossover is depicted in Figure  4.5c and is self‐explanatory. 
Crossover points are generated as an integer random number in the range 
[1,N]. To illustrate one‐point crossover generation of two children from two 

A A A A A A

B B B B B B

A A A A B B

B B B B A A

Parents Children

C

Crossover

A A A A A A

B B B B B B

B B A A B B

A A B B A A

Parents Children

C′C

Crossover

A A A A A A

B B B B B B

B A A A B A

A B B B A B

Parents Children

Crossover

(a)

(b)

(c)

Figure 4.5  Different approaches of crossover: (a) one‐point crossover, (b) two‐point 
crossover, and (c) uniform crossover.
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N‐dimensional parent solutions X x x xN( , , , )1 2   and X x x xN( , , , )1 2  , let C 
denote the crossover point. Therefore, the children are generated as follows:

	 X x x x x x xnew
c c c N1 1 2 1 2

( ) ( , , , , , , , ) 

	 (4.9)

	 X x x x x x xnew
c c c N2 1 2 1 2

( ) ( , , , , , , , ) 

	 (4.10)

in which X(new) = new solution.

4.6.2  Mutation

Mutation is important because it introduces new genetic material to a population. 
The mutation operator replaces randomly some genes of an offspring. In other 
words, one or more decision variables of a new solution are replaced with random 
values while keeping the values of its other decision variables unaltered. Figure 4.6 
illustrates the mutation operator.

Two methods of mutation for real‐valued variables are uniform and 
nonuniform mutations. Uniform mutation replaces a parent gene with a ran-
domly generated gene that is within the feasible space of the solutions. Let 
X x x x xi N( , , , , , )1 2    and xi denote a solution (chromosome) and a gene 
(decision variable), respectively, where the decision variable ith (xi) is chosen 
for mutation. Uniform mutation produces a mutated X x x x xi N( , , , , , )1 2    
whereby xi  is evaluated as follows:

	 x Rnd x xi i
L

i
U( ) ( ), 	 (4.11)

in which xi  = the new value of xi produced by mutation, xi
U( ) =  the upper bound 

of the ith decision variable, xi
L( ) = the lower bound of the ith decision variable, 

and Rnd(a,b) = a random value chosen from the feasible range [a,b].
Nonuniform mutation induces an increasingly localized search for optimal 

solutions in which the sets of genes that are chosen for mutation are defined by 
means of boundaries that become narrower as the run of the GA progresses 
(Michalewicz, 1996). This type of mutation is especially useful for problems in 

A A A A A

A A A A D A

Original child

Mutated child

A

Randomly generated

Figure 4.6  An example of the mutation operator.
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which high precision is required. Let X x x x xi N( , , , , , )1 2    be a solution of an 
optimization problem and its ith decision variable (xi) be selected for mutation. 
Nonuniform mutation produces a mutated solution X x x x xi N( , , , , , )1 2    
whereby xi  is calculated as follows:

	 x Rnd x d x di i i, 	 (4.12)

	
d d T t

T0 	 (4.13)

in which d0 = initial value of d, t = current iteration, and T = maximum number 
of iterations.

Mutation is performed probabilistically. A mutation probability (PM) is 
specified that permits random mutations to be made to individual genes. The 
implementation of the mutation operator is applied to each decision variable of 
the solutions in the children population by generating a random number Rand 
in the range [0,1]. If Rand is less than PM, that decision variable is mutated; 
otherwise it remains unaltered.

4.7  Termination Criteria

The termination criteria determine when to end the algorithm’s iterations. 
Selecting a good termination criterion has an important role on the correct con-
vergence of the algorithm. The number of iterations, the amount of improve-
ment of the objective function between consecutive iterations, and the run time 
are common termination criteria for the GA.

4.8  User‐Defined Parameters of the GA

The size of the population of solutions (M), the number of parents (R), the 
probability of crossover (PC), the probability of mutation (PM), and the termi-
nation criterion are the user‐defined parameters of the GA. A good choice of 
the parameters is related to the decision space of a particular problem, and in 
general the optimal parameter setting for one problem may not perform 
equally as well for other problems. Consequently, determining a good param-
eter setting often requires the execution of a large number of time‐consuming 
experiments. Mastering the choice of the GA parameters relies on practice and 
experience with specific optimization problems. However, a reasonable 
method for finding suitable values for the parameters is performing sensitivity 
analysis. This entails choosing a combination of parameters and running the 
GA several times. Other combinations of parameters are chosen, and repeated 
runs are made with each combination. A comparison of the optimization 
results so obtained sheds light on the best set of GA parameters.
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4.9  Pseudocode of the GA

Begin
	 Input parameters of the algorithm and initial data
	 Let R and M = number of parents and the size of 

population, respectively
	 Generate M initial possible solutions
	 While (the termination criteria are not satisfied)
	 Evaluate fitness values for all solutions
	 Select the parent population with a selection 

method
	 For j = 1 to R
	 Generate a random value Rand in the range [0,1]
	 If Rand < PC 
	 Parent j is known as an effective solution
	 Otherwise
	 Parent j is known as an ineffective solution
	 End if
	 Next j
	 For j = 1 to (M ‐ R) / 2
	 Select two solutions randomly with the uniform 

distribution from effective parents of the 
parent population.

	 Generate two new solutions with the crossover 
operator

	 Put new generated solutions into the children 
population

	 Next j
	 For j = 1 to (M ‐ R)
	 For i = 1 to N
	 Generate a random value Rand in the 

range [0,1]
	 If Rand < PM 
	 Replace the decision variable i from 

solution j (xj,i) using the mutation 
operator

	 End if
	 Next i
	 Next j
	 Set population = parent population + children 

population
	 End while
	 Report the population
End
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4.10  Conclusion

This chapter described the GA, which is a well‐known evolutionary algorithm. 
First, a brief literature review of the GA was presented. The natural evolution-
ary process was mapped to the GA, and its key components were described. 
A pseudocode of the GA closed the GA review.
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Summary

This chapter reviews the simulated annealing (SA) algorithm. The SA is 
inspired by the process of annealing in metallurgy. It is one of the meta‐heuristic 
optimization algorithms. This chapter presents a literature review of the devel-
opment and applications of the SA, followed by a description of the process of 
physical annealing and its mapping to the SA, which outlines the steps 
of  the  algorithm in detail. The chapter closes with a pseudocode of the SA 
algorithm.

5.1  Introduction

A popular algorithm in heuristic optimization, simulated annealing (SA) 
optimization was developed by Kirkpatrick et al. (1983), who showed how a 
model for simulating the annealing of solids, as proposed by Metropolis et al. 
(1953), could be used for solving optimization problems in which the fitness 
or objective function to be minimized corresponds to the energy states of the 
solid. Dolan et al. (1989) demonstrated the capacity of the SA for optimizing 
chemical processes by applying it to the design of pressure relief header 
networks and heat exchanger networks. Dougherty and Marryott (1991) 
described the SA algorithm and applied it to the optimization of groundwater 
management problems in combinatorial form. Wang and Zheng (1998) linked 
the SA with MODFLOW, a groundwater flow simulation code, for optimal 
management of groundwater resources. The results of the SA were compared 
with those obtained with linear programming, nonlinear programming, and 
differential dynamic programming. The comparison showed better solutions 
by the SA than by other methods. Cunha and Sousa (1999) implemented 
the SA to obtain the least‐cost design of a looped water distribution network 

Simulated Annealing



5  Simulated Annealing70

and  proved the ability of the SA to handle this kind of problems. Cunha 
(1999) applied the SA for solving aquifer management problems. Ceranic 
et al. (2001) implemented the SA algorithm to the minimum‐cost design of 
reinforced concrete retaining structures. Tospornsampan et al. (2005) dem-
onstrated good performance of the SA in solving a ten‐reservoir optimiza-
tion problem. Alkandari et  al. (2008) applied the SA algorithm to electric 
power quality analysis. Orouji et al. (2013) compared the performance of the 
SA with that of the shuffled frog leaping algorithm (SFLA) in estimating the 
Muskingum flood routing parameters. Yeh et al. (2013) applied the SA and 
the tabu search (TS) to the optimization of sewer network designs, which 
are complex nonlinear problems, and reported that the performance of the 
SA was better than those of other methods previously reported in the 
literature.

5.2  Mapping the Simulated Annealing (SA) 
Algorithm to the Physical Annealing Process

The SA algorithm emulates the physical annealing of solids to solve optimi-
zation problems. SA is so named because of its similarity to the process of 
physical annealing of solids, in which a solid is heated and then cooled slowly 
until it attains its most possible regular crystal lattice arrangement free of 
crystal faults.

Annealing in metallurgy and materials science defines a process in which 
heat changes the physical and sometimes chemical features of a substance to 
increase its ductility and reduce its hardness. The particles of a solid have 
geometric configuration that corresponds to the minimum energy arrange-
ment in its most stable state, as it is experimentally seen in the crystals of a 
mineral. Physical annealing is the process whereby the low energy arrange-
ment of a solid is achieved by melting a substance followed by lowering its 
temperature slowly. The annealing of a substance involves heating it to its 
recrystallization temperature, maintaining a suitable temperature, followed 
by slowly cooling of the substance until reaching its freezing point. Annealing 
is a well‐known process to grow crystals from a molten substance. Through 
the process of annealing, atoms move in the crystal lattice and the number 
of dislocations decreases. The annealing process changes the ductility and 
hardness of substances. Especially important is that in the cooling stage, 
the  temperature of the substance has to be decreased slowly. Otherwise 
the resulting solid is frozen into a metastable glass or a crystal with faults in 
its structure.

The Metropolis Monte Carlo method was proposed to simulate the anneal-
ing process. Metropolis et al. (1953) presented a simple algorithm to simulate 
a system composed of a set of atoms of a substance at a specific temperature. 
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At each iteration an atom undergoes a small random movement, which 
changes the energy of the system. The resulting change and movement is 
accepted if the energy of the system decreases. On the other hand, the move-
ment of the atom is accepted with probability exp(−δ/kBλ) if the movement of 
the atom increases the energy of the system, where λ is the temperature, kB 
denotes the Boltzmann constant, and δ is the change in the energy of the 
system. The system achieves thermal equilibrium at each temperature after a 
large number of atomic movements take place at each temperature. At ther-
mal equilibrium the probability distribution of the system states follow a 
Boltzmann distribution whereby the probability of the system being in state i 
at temperature λ equals exp(−Ei/kBλ)/Z(λ), where Ei is the energy of state i and 
Z(λ) denotes the partition function that is required for normalization. The 
temperature of the substance is decreased slowly to allow the system attain 
thermal equilibrium. The procedure presented by Metropolis et  al. (1953) 
guarantees that the system evolves into the required Boltzmann distribution 
(Eglese, 1990).

Different states of a substance represent different solutions of the optimi-
zation problem when applying SA. The energy of the substance is equivalent 
to the fitness function to be optimized. The movement of atoms introduces 
a new solution. In other words, a new state of the substance is a new solution. 
Atom movements that introduce better solutions are accepted in SA. Non‐
improving (inferior) changes that result in a worse solution are accepted 
probabilistically. The probability of accepting non‐improving solutions 
depends on an acceptance function. Table  5.1 lists the characteristics of 
the SA.

Table 5.1  The characteristics of the SA.

General algorithm (see Section 2.13) Simulated annealing

Decision variable Position of the atoms of a substance
Solution State of the substance
Old solution Current state of the substance
New solution New state of the substance
Best solution –
Fitness function Energy of the substance
Initial solution Random position
Selection Acceptance function
Process of generating new solution Movement of atoms
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The SA starts by generating an initial random solution that is known as the 
current state of the substance. A new state in the neighborhood of the current 
state is generated by a suitable mechanism, and the fitness value of the new 
state is evaluated. The new state is accepted if it is better than the current state. 
Otherwise, the new state is inferior to the current state, and the new 
state is accepted if it is successful according to a probabilistic function called 
the  acceptance function, which depends on the system’s temperature. The 
algorithm proceeds by generating a certain number of new states at each tem-
perature while the temperature is gradually decreased. Several new solutions 
are tried until a thermal equilibrium criterion is satisfied at each temperature. 
At that juncture the temperature is decreased again. As the temperature is 
reduced, the probability of selecting non‐improving atom movements is 
also reduced. The process of generating new solutions as the system is cooled 
is repeated until termination criteria are satisfied. Figure  5.1 illustrates the 
flowchart of the SA algorithm.

5.3  Generating an Initial State

Each possible solution of an optimization problem generated by the SA 
corresponds to an arrangement of the atoms of a substance. The state of the 
system consists of N decision variables in an N‐dimensional space. The system 
state is represented as an array of size 1 × N describing the arrangement of the 
atoms of the substance. The SA starts with a single solution denoted by an 
array of size 1 × N as follows:

	 State X x x x xi N1 2, , , , ,  	 (5.1)

where X = a solution of the optimization problem, xi = ith decision variable of 
solution X, and N = the number of decision variables. The decision variable 
values (x1, x2, x3, …, xN) can be represented as a floating point number (real 
values) or as a predefined sets of values for continuous and discrete problems, 
respectively. An initial state is randomly generated to start the optimization 
algorithm (see Section 2.6). That initial state becomes the current state of the 
system (i.e., a substance or a solid).

5.4  Generating a New State

Atoms move to new places to decrease the energy of a system and achieve a sus-
tainable state during annealing. A new potential state of the system is generated 
according to the current state. Several deterministic and stochastic schemes are 
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used to generate a neighbor solution from a given solution. One common scheme 
is the random walk, which is expressed mathematically as follows:

	 x x Rnd i Ni i ( , ), , , ,1 2 	 (5.2)

in which xi  = new value of decision variable ith, Rnd(a,b) = a random value 
from range [a,b], and ε = a small value.

Start

Define the parameters of the algorithm

Generate the initial state of the substance

Generate a new state

Decrease temperature

Replace the current state with the new state

Is the acceptance criterion satisfied?

No

Yes

Report the substance’s state

End

Is the thermal equilibrium satisfied?
Yes

Are the termination criteria satisfied?
YesNo

No

Figure 5.1  The flowchart of the SA.
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New values of all the decision variables are evaluated prior to generating a 
new solution. Then, a new solution is generated as follows:

	 X x x x xnew
i N1 2, , , , , 

	 (5.3)

in which X(new) = new solution.
A newly generated solution may replace an old solution based on the accept-

ance function, which is described next.

5.5  Acceptance Function

The acceptance function determines whether or not a newly generated solution 
replaces the current solution. The new solution represents a potential arrange-
ment of the substance, and its acceptance or rejection is based on the fitness 
values of the old solution and newly generated solution. The new solution 
replaces the old solution whenever its fitness value is superior to that of the old 
solution. Otherwise, the new solution is replaced by the old solution with 
a  specific probability that is calculated based on the difference between the 
fitness values of the new and the old solutions. In the case of a minimization 
problem, the new solution is accepted according to an acceptance probabilistic 
function as follows:

	

P X X
if F X F X

e Otherwise

new

new

F,
( )1

	 (5.4)

	 F F X F Xnew ( ) 	 (5.5)

in which X = the old solution, X(new) = the newly generated solution, P(X, 
X(new)) = the probability of replacing X with X(new), F(X) = the fitness value 
of solution X, and λ = a control parameter that corresponds to the tempera-
ture in the analogy with physical annealing. A uniformly distributed random 
variable (Rand) within [0,1] is generated, and P(X, X(new)) is evaluated. If 
P(X, X(new)) is larger than or equal to Rand, the newly generated solution 
(X(new)) replaces the old solution (X); otherwise it is rejected. The acceptance 
function defined by Equations (5.4) and (5.5) is the Boltzmann distribution. 
The previously defined acceptance function implies that small differences in 
the fitness function value are more likely to be accepted than large differ-
ences. When λ is large non‐improving changes are accepted more easily than 
when λ is relatively small. In other words, the selective pressure is high (low) 
when λ is low (high). The value of λ has an important role in the correct 
convergence of the algorithm. The algorithm starts with a relatively large 
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value of λ to avoid being prematurely trapped in a local optimum, and it is 
gradually decreased as the algorithm progresses.

5.6  Thermal Equilibrium

A system achieves thermal equilibrium at each temperature whenever a large 
number of neighborhood movements occur at each temperature. It can be 
proved that at thermal equilibrium, the probability distribution of a system 
states follows a Boltzmann distribution. The SA proceeds by attempting a 
number of neighborhood moves at each temperature. In other words, for each 
value of the temperature λ, a certain number of new states are generated and 
accepted or discarded before λ is decreased. The new states are tested by the 
acceptance function. The number of new states is a parameter of SA algorithm 
selected by the user and is herein denoted by β. Thermal equilibrium is satis-
fied whenever a predefined number of new solutions (β) is generated and 
tested by the acceptance function.

5.7  Temperature Reduction

The system’s temperature is decreased after testing a number of new states. 
The parameter λ controls the selective pressure, which is high (low) when λ is 
low (high), and plays an important role in the correct convergence of the SA 
algorithm. The algorithm starts with a relatively high value of λ to avoid being 
prematurely trapped in a local optimum, and it is gradually decreased as the 
algorithm progresses, as follows:

	
lim ,

t
t t0 0	 (5.6)

in which t = the iteration counter of the algorithm.
Two common procedures for decreasing λ are linear and geometric. The 

linear function modifies λ in each iteration with the following equation:

	 t t0 	 (5.7)

	
0 T

T
	 (5.8)

in which λ0 = initial temperature, λt = the (modified) temperature in iteration t, 
T = the total number of iterations, and α = the cooling factor.

The geometric procedure for cooling the system is as follows:

	 t
t

0 0 1, 	 (5.9)
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in which α = the cooling factor. The advantage of the geometric function is 
that it does not require the specification of the maximum number of itera-
tions of the algorithm. The stopping criterion of the algorithm could be 
the  maximum number of iterations T, but other termination criteria can 
be  imposed, such as run time. In this case, the value of T is unknown, 
and the SA algorithm continues until the stopping criteria (e.g., run time) 
are satisfied.

5.8  Termination Criteria

The termination criterion determines when to terminate the SA algorithm. 
Selecting a suitable termination criterion has an important role on the cor-
rect convergence of the algorithm. The number of iterations, the incremental 
improvement of the objective function between consecutive iterations, and the 
run time are common termination criteria applied in the implementation of 
the SA algorithm.

5.9  User‐Defined Parameters of the SA

The initial value of λ, the value of β, which determines the number of new 
generated solutions at each value of λ (thermal equilibrium), the rate of 
decrease of λ, and the termination criterion are user‐defined parameters of 
the SA. These parameters are known as the annealing or cooling schedule. 
The choice of the annealing schedule influences the performance of the 
algorithm. Annealing schedules that have been recommended for success-
ful convergence have not proven successful in all practical applications. 
Thus, the application of the SA algorithm requires the implementation of 
heuristic criteria that strike an acceptable trade‐off between time invested 
in selecting the SA parameters and the quality of the solution achieved. 
A  good choice of the parameters depends on the decision space of the 
optimization problem. Frequently the optimal parameter setting for one 
problem is of limited utility for other problems. Consequently, determining 
a good  parameter set often requires a large number of time‐consuming 
experiments. The proper choice of the SA parameters involves practice and 
experience with the type of problem being solved. Sensitivity analysis is a 
reasonable method for finding appropriate values for the SA parameters. 
Sensitivity analysis prescribes a combination of parameters with which 
the  SA algorithm is run for several times. Several other combinations 
are  chosen and the algorithm is run several times with each of them. 
A comparison of the results calculated from many runs provides guidance 
about a suitable choice of the SA parameters.
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5.10  Pseudocode of the SA

Begin
	 Input parameters of the algorithm and initial data
	 Generate initial solution possible X and evaluate 

its fitness value
	 Let β = the number of new solutions which are generated 

to reach thermal equilibrium
	 While (termination criteria are not satisfied)
	 For j = 1 to β
	 Generate a new solution X(new) and evaluate its 

fitness value
	 If the new generated solution (X(new)) is better 

than the old one (X)
	 Put X = X(new)

	 Otherwise
	 Evaluate P(X, X(new)) and generate Rand 

from the range [0,1] randomly
	 If P(X, X(new)) > Rand
	 Put X = X(new)

	 End if
	 End if
	 Next j
	 Decrease the temperature
	 End while
	 Report the solution X
End

5.11  Conclusion

This chapter explained the SA algorithm that is inspired by the process of 
annealing in metal work. The physical annealing process was mapped into the 
SA after a brief literature review, and the steps of the algorithm were described. 
A pseudocode of the SA algorithm closed this review.
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Summary

This chapter describes the tabu search (TS), which is a meta‐heuristic algorithm 
for combinatorial optimization. A brief literature review of development and 
applications of the TS opens this chapter. The foundations of the TS and its 
algorithmic steps are described next, followed by a pseudocode of the TS.

6.1  Introduction

The tabu search (TS) was developed by Glover (1986). It is designed to 
solve combinatorial (finite solution set) optimization problems. Simple TS and 
advanced TS were introduced by Glover (1989, 1990). Bland (1995) implemented 
the TS in a structural design context and showed that the TS is a technically 
viable technique for optimal structural design. Fanni et al. (1999) applied the 
TS coupled with deterministic strategies for the optimal design of magnetic 
resonance imaging (MRI) devices. Wang et al. (1999) demonstrated the capa-
bility of the TS to optimal design of multiproduct batch chemical processes. 
Nara et al. (2001) applied the TS to determine locations and discrete capacities 
of distributed generators so that the distribution loss is minimized. Hajji et al. 
(2004) developed a new TS algorithm for global optimization of multimodal 
functions with continuous domain. Misevicius (2005) implemented the TS to 
solve the quadratic assignment problem (QAP). Nourzad and Afshar (2009) 
proposed a probabilistic improvement to the neighborhood selection of the TS 
and used that to find optimal water resources allocation for an industrial cop-
per complex distribution system. Hajji et al. (2010) designed software based on 
scatter search, the TS, and neural networks for determining water‐pumping 
schedules. Martinez et al. (2010) employed the TS algorithm to optimize water 
level monitoring stations in lakes and streams within the south Florida water 

Tabu Search
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management district. Yeh et al. (2013) used the TS and the SA to the optimiza-
tion of sewer‐network designs that are complex nonlinear problems. Haghighi 
and Bakhshipour (2014) presented an integrated optimization model for 
designing sewage collection networks and applied the TS method as a deter-
ministic combinatorial meta‐heuristic to solve the optimization model.

6.2  Tabu Search (TS) Foundation

The TS is an enhancement of local search (LS) methods. The LS refers to itera-
tive procedures that start with a solution and then employs local modifications 
(moves) to find a superior solution. The basic concept of the LS is that the 
movement is always from a worse solution to a better one. The search termi-
nates when it reaches an optimum with respect to the movements made. The 
optimum achieved with the LS is mostly a local optimum instead of a global 
optimum given that the algorithm always moves to an improved neighboring 
solution near the current one. The TS solved the problem of convergence to 
local optima experienced with LS methods by allowing movements to non‐
improving solutions when there is no better solution near the current solution. 
The TS also takes advantage of principles of artificial intelligence by making 
search movements based on memory structures that prevent repetitive move-
ments and help to explore the decision space of the optimization problem 
more thoroughly. Previously visited solutions are known as tabu and moving 
back to them is prevented by the memories that save the history of the search 
for optima.

TS designates solutions of an optimization problem as points in an  
N‐dimensional space where N denotes the number of decision variables. 
Neighboring points refer to new solutions. The process of going from the 
searching point, which is the old solution, to a neighboring point is called 
a move. The best point reached in the search is the best solution found during 
the search. Table 6.1 lists the characteristics of the TS.

A simple TS starts by generating a random solution (initial solution), which 
is known as the searching point. The current searching point is considered 
momentarily as the best point. In the next step neighboring points are gener-
ated near the searching point. Only the neighboring points that are not tabu 
are considered. The searching point moves to the best neighboring point that 
is not tabu. Unlike the LS, in the TS the best neighboring point replaces the 
searching point even if it is worse than the current searching point. The previ-
ous searching point is memorized as tabu. If the new searching point is better 
than the best point, the new point replaces the best point; otherwise the best 
point remains unchanged. Neighboring points near the new searching point 
are generated. The previously mentioned process repeats until the termination 
criteria are satisfied. Figure 6.1 illustrates the flowchart of the TS.



Table 6.1  The characteristics of the TS.

General algorithm (see Section 2.13) Tabu search

Decision variable Point’s position
Solution Point
Old solution Searching point
New solution Neighbor point
Best solution Best point
Fitness function Desirability of the point
Initial solution Random point
Selection Tabu list
Process of generating new solution Movement

Start

Define the parameters of the algorithm

Generate a searching point randomly

Move from the searching point to the best non-tabu neighbor point

Update the best point

Is the new point better than the best point?

Report the best point

End

Are the termination criteria satisfied?

No

No Yes

Update the tabu list

Consider the search point as the best point

Yes

Figure 6.1  The flowchart of the TS.
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6.3  Generating an Initial Searching Point

Each possible solution of the TS is a point in the feasible space of the optimiza-
tion problem. In an N‐dimensional optimization problem, a solution point is 
an array of size 1 × N. The TS starts with a single solution of size 1 × N:

	 Point X x x x xi N1 2, , , , ,  	 (6.1)

where X = a solution of the optimization problem, xi = ith decision variable 
of the solution X, and N = number of decision variables. The decision 
variable values (x1, x2, x3, …, xN) are represented as a predefined set of 
values for  discrete problems. The optimization algorithm starts with an 
initial point known as the searching point that is randomly selected 
from  the  discrete decision space when solving combinatorial problems 
(see Section 2.6). Neighboring points (new solutions) are considered near 
the searching point.

6.4  Neighboring Points

The TS was developed to solve combinatorial (finite solution set) optimization 
problems. The decision variables take discrete values in this instance. The 
neighborhood of a solution is made of all the solutions in which the value of 
one decision variable is changed to its immediate adjacent values in a sorted 
list of discrete values. Assume that Figure 6.2 portrays the decision space of an 
optimization problem with a two‐dimensional discrete decision space. In 
Figure 6.2 the circles denote possible answers for the problem.

Suppose that in Figure 6.2, the solution (3,2), which is encircled by a square, 
is selected as searching point. All the possible solutions that are connected 

Current solution

Solution

x1

x2

1 2 3 4

1

2

3

4

Figure 6.2  The decision 
space of a two‐dimensional 
optimization problem.
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with  lines to (3,2) are neighboring solutions. In an N‐dimensional space if 
X x x x xi N( , , , , , )1 2  

 is the searching point, the number of neighbor 
solutions surrounding the searching point is 2N, which are represented 
as follows:
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	 (6.2)

	 x x i Ni i , , , ,1 2 	 (6.3)

	 x x i Ni i , , , ,1 2 	 (6.4)

in which M = the matrix of the neighbor points around X, Xi
new( ) = ith neighboring 

solution near the searching point X, xi = the value of decision variable ith of the 
searching point, xi  and xi  = the new values of decision variable ith, and ε = the 
length of steps in a discrete decision space.

The search movements are generalized as follows:

	 X X enew
N1 	 (6.5)

in which X(new) = a neighbor solution around X, e = a specified direction vector 
that is a matrix of zeroes and ones, and ε = the length of steps in a discrete 
decision space.

For specific combinatorial problem at hand, various alternative possible 
neighborhood structures can be used according to the search space. Choosing 
a search space and a neighborhood structure has a key role in the design of any 
TS algorithm.
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6.5  Tabu Lists

The TS features principles of artificial intelligence because it acts based on memory 
structures that prevent repetitive movements, thus improving the search for 
optima within the decision space of the optimization problem more effectively. 
The TS prevents moving back to previously visited solutions using memories 
recorded in a tabu list that memorize the history of the search. The tabu list is a key 
feature of the TS, which is a deterministic method and allows movements to worse 
neighboring solutions if there is no improving solution. It is probable then that the 
TS algorithm might fall into an iterative cycle without making any progress 
toward an optimal solution. Cycling defines a situation whereby the TS algorithm 
is trapped into repetitive movements. When cycling occurs there must be inter-
vention to break it up. The tabu list is used to prevent cycling.

Tabus can be defined and memorized in different ways. One possibility is 
recording a solution that is visited. Moving to a previously visited solution is 
forbidden. Memorizing the visited solution is the most efficient method to 
prevent cycling, yet it is seldom used because this requires a lot of storage mak-
ing it expensive to evaluate whether or not a potential move is tabu. On the 
other hand, another commonly used tabu is memorizing the transformation 
performed on the current solution and prohibiting reverse transformations. In 
this manner following a move from solution X to X′ precludes returning from 
X′ to X, but arriving at X through another route is allowed.

It is recommended that transformation and reverse transformation be 
recorded as tabu. Recalling Figure 6.2, if the current searching point is (3,2) and 
the TS algorithm moves to point (2,2) as new searching point, moving back 
from (2,2) to (3,2) is forbidden and considered as a tabu. The TS algorithm 
cannot follow a previously traveled path. Yet, it is possible to return to point 
(3,2). Imagine that after two iterations, the search reaches point (3,3). The 
algorithm may move back to point (3,2) through another route that is not a 
tabu. This would introduce cycling because the algorithm will again move from 
(3,2) to (2,2), which can be solved by recording the forward transformation and 
the reverse transformation as tabu. In the previously mentioned example, the 
algorithm moves from the current searching point (3,2) to point (2,2) requires 
recording the moves (3,2) to (2,2) and (2,2) to (3,2) as tabu. This would elimi-
nate cycling involving these moves.

6.6  Updating the Tabu List

Tabus are memorized for a predefined number of iterations and then they are 
removed from the tabu list. Generally, the basic purpose of a tabu list is to 
avoid returning to a previously visited point (solution). The probability of 
cycling caused by following a sequence of moves that ends with a previously 
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visited solution is inversely related to the distance of the current searching 
point from that previous solution (Glover, 1989).

The number of iterations during which tabu lists are saved is called the tabu 
tenure (δ), which is a user‐defined parameter of the algorithm. In this manner 
the tabu list keeps information on the last δ moves (iterations) that have been 
performed during the search process. For example, a solution that becomes a 
tabu at iteration 1 with the tabu tenure equal to 3 (δ = 3) is deleted from the tabu 
list at iteration 4. When a new solution (information) is added to a full tabu list, 
it results in the removal of the oldest solution or information from the list.

Standard tabu lists usually have a fixed length. Yet, tabu lists of variable 
lengths have been implemented (Glover, 1989, 1990; Skorin‐Kapov, 1990; 
Taillard, 1990, 1991).

6.7  Attributive Memory

Many types of memories for TS have been developed during past years to 
enhance its capacity. One of the most common of such memories is attributive 
memory. This type of memory records information about the properties or 
attributes of solutions. The most prevalent attributive memory approaches are 
frequency‐based memory and recency‐based memory.

6.7.1  Frequency‐Based Memory

Frequency‐based memory keeps information that facilitates selecting feature 
moves. Specifically, the TS algorithm saves the number of times that each solu-
tion has been selected to be the searching point, and this information is called 
frequency‐based memory, which excises a penalty that is proportional to the 
frequency with which a solution is visited by subtracting a penalty value from 
the fitness value of the solution as follows:

	 F X F X 	 (6.6)

in which F′(X) = penalized fitness function of the solution X, F(X) = fitness 
function of the solution X, and μ = number of times that solution X has been 
visited. Equation (6.6) applies to a maximization problem.

The desirability of a solution is evaluated by its penalized fitness value rather 
than its fitness function value. Thus, frequency‐based memory would select 
between two neighboring solutions that have the same fitness value and with 
the lower frequency of visitation (under maximization).

6.7.2  Recency‐Based Memory

Two possible methods to record tabus were cited earlier, one that saves a solution 
that is visited and the other that saves the search movements that are performed. 
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There is another way of recording tabus whereby attributes of solutions are 
memorized as a tabu list. This type of tabu list is called recency‐based memory, 
the most prevalent memory structure applied in TS implementations. This mem-
ory structure keeps track of solutions’ attributes that have changed during the 
recent past. For example, recalling Figure  6.2, suppose that the search starts 
from point (3,2) and moves to point (2,2). It is clear that in moving from (3,2) to 
(2,2), the value of decision variable x1 is reduced, and by moving back from (2,2) 
to (3,2), increasing the value of x1 is necessary. Moving back to the previous 
solution and cycling does not occur if increasing the value of x1 is forbidden. 
Increasing the value of x1 is therefore considered as a tabu for the δ next iterations. 
The selected attributes or properties of solutions recently visited are labeled tabu 
active in recency‐based memory. Solutions that have tabu‐active elements, or 
particular combinations of these attributes, are those that become tabu.

A tabu list that is constructed on recency‐based memory is easy to save and 
to read information from. Selected attributes occur in solutions recently vis-
ited. If these attributes are labeled tabu active, then solutions that have never 
been visited but share the same tabu‐active attributes are prevented from being 
visited by the search algorithm. To illustrate, suppose the search starts with 
point (3,2) in Figure  6.3 and moves to (2,2). Assume that δ (tabu tenure) is 
equal to 2. This movement decreases the value of x1, which precludes increas-
ing the value of x1 in the next two iterations. The TS algorithm can thus move 
to (2,1), (2,3), or (1,2), but it cannot move to (3,2). Suppose that point (2,3) is 
selected to be the next searching point. Decreasing the value of x2 would be a 
tabu in the next movement. In the third iteration the searching point is (2,3) 
and the two neighboring points (2,4) and (1,3) are non‐tabu points, whereas 
the two neighboring points (2,2) and (3,3) are tabu (see Figure 6.3). It is evident 
in Figure 6.3 that the point (3,3) has not been visited during the search, but it is 
considered as a tabu because increasing the value of x1 from 2 to 3 is tabu. 
Thus, it is necessary to cancel tabus in some instances. The action by which the 
algorithm ignores tabus is called aspiration criteria.

x1

x2

1 2 3 4

1

2

3

4

Current solution

Tabu solution

Solution

Figure 6.3  Illustration of 
steps based on recency‐
based memory in a 
two‐dimensional 
decision space.
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6.8  Aspiration Criteria

Tabus may prohibit rewarding moves even when there is no danger of cycling, 
or they may lead to an overall stagnation of the searching process. Consequently, 
the aspiration criterion frees the algorithm to move to a tabu point under 
certain favorable conditions. A commonly used aspiration criterion is a condi-
tion in which a tabu movement leads to a better solution than the best solution 
that has been encountered in previous moves.

6.9  Intensification and Diversification Strategies

Intensification and diversification strategies are applied in some versions of TS. 
Intensification strategies have been commonly implemented based on long‐
term memory so that a set of elite solutions are selected, their components 
serve to construct new neighbors, and diversification strategies encourage 
examining unvisited regions by generating solutions significantly different 
from those searched earlier (Glover and Laguna, 1997).

These strategies ensure that all areas of the search space are adequately 
explored. A frequency‐based tabu list keeps track of the search area. The fre-
quency index of a previously visited solution is increased whenever it is revisited. 
The diversification strategy set a threshold of the frequency index. A value of the 
frequency index larger than a predefined threshold implies that a region has been 
explored frequently and the search process is restarted with a new, randomly 
generated point. This diversification strategy is similar to the restart mechanism 
of other stochastic optimization approaches. The restart in the TS, however, is 
guided by historical information based on an intensification strategy.

6.10  Termination Criteria

The termination criterion determines when to terminate the TS algorithm. 
Selecting a good termination criterion has an important role for the correct 
convergence of the algorithm. The number of algorithmic iterations, the amount 
of improvement of the objective function between consecutive iterations, and 
the run time are common termination criteria for the TS algorithm.

6.11  User‐Defined Parameters of the TS

The value of the tabu tenure (δ) and the criterion used to decide when to 
terminate the algorithm are the user‐defined parameters of the TS. Choosing 
an appropriate δ is important. Large values of δ make the algorithm to move 
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gradually away from points visited during the previous δ iterations. A small 
value for δ provides more mobility to the algorithm. Previous experience 
with the TS reveals that there is a stable range of δ that prevents cycling and 
leads to good solutions. A good choice of the parameters is related to 
the decision space of a particular problem. In general, optimal parameters 
for one problem may not function well for other problems. Consequently, 
determining a good parameter setting often requires the execution of a large 
number of time‐consuming experiments. The setting of suitable parameters 
relies principally on in‐depth experience with the type of problem being 
solved. Yet, a reasonable method for finding appropriate values of the TS 
parameters is performing sensitivity analysis whereby combinations of 
parameters are tested with multiple runs for each combination. From these 
results the analyst may gain clear guidance on the choice of parameters that 
produce near‐optimal solutions.

6.12  Pseudocode of the TS

Begin
	 Input parameters of the algorithm and initial data
	 Let X* = the best point and X = the current search 

point
	 Generate a search point (X) randomly and evaluate 

its fitness value
	 Set X* = X
	 While (termination criteria are not satisfied)
	 Generate neighbor points around the searching 

point and evaluate their fitness values
	 If all neighbor points are tabus and cannot satisfy 

the aspiration criteria
	 Stop the algorithm and report the best point (X*)
	 End if
	 Select the best neighbor point which is not tabu 

or satisfies the aspiration criteria
	 Put X = the selected point
	 If X is better than X*

	 Set X* = X
	 End if
	 Update the tabu list
	 End while
	 Report the best point (X*)
End
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6.13  Conclusion

This chapter described the TS, which is a meta‐heuristic algorithm for com-
binatorial optimization. First, a brief literature review of development and 
applications of the TS was presented. This was followed by a description of 
the fundamentals of the TS and its algorithmic nuances. A pseudocode of the 
TS closed this chapter.

References

Bland, J. A. (1995). “Discrete‐variable optimal structural design using tabu 
search.” Structural Optimization, 10(2), 87–93.

Fanni, A., Giacinto, G., Marchesi, M., and Serri, A. (1999). “Tabu search coupled 
with deterministic strategies for the optimal design of MRI devices.” 
International Journal of Applied Electromagnetics and Mechanics, 10(1), 21–31.

Glover, F. (1986). “Future paths for integer programming and links to artificial 
intelligence.” Computers and Operations Research, 13, 533–549.

Glover, F. (1989). “Tabu search: Part I.” ORSA Journal on Computing, 1(3), 190–206.
Glover, F. (1990). “Tabu search: Part II.” ORSA Journal on Computing, 2(1), 4–32.
Glover, F. and Laguna, M. (1997). “Tabu search.” Kluwer Academic, Norwell, MA.
Haghighi, A. and Bakhshipour, A. (2014). “Deterministic integrated optimization 

model for sewage collection networks using tabu search.” Journal of Water 
Resources Planning and Management, 141(1), 04014045.

Hajji, M., Fares, A., Glover, F., and Driss, O. (2010). “Water pump scheduling 
system using scatter search, tabu search and neural networks: The case of 
bouregreg water system in Morocco.” In: Palmer, R. N. (Ed.), World 
environmental and water resources congress 2010: Challenges of change, May 
16–20, American Society of Civil Engineers (ASCE), Reston, VA, 822–832.

Hajji, O., Brisset, S., and Brochet, P. (2004). “A new tabu search method for 
optimization with continuous parameters.” IEEE Transactions on Magnetics, 
40(2), 1184–1187.

Martinez, S., Merwade, V., and Maidment, D. (2010). “Linking GIS, hydraulic 
modeling, and tabu search for optimizing a water level‐monitoring network in 
south Florida.” Journal of Water Resources Planning and Management, 136(2), 
167–176.

Misevicius, A. (2005). “A tabu search algorithm for the quadratic assignment 
problem.” Computational Optimization and Applications, 30(1), 95–111.

Nara, K., Hayashi, Y., Ikeda, K., and Ashizawa, T. (2001). “Application of tabu 
search to optimal placement of distributed generators.” IEEE Power Engineering 
Society Winter Meeting, Columbus, OH, January 27–31, Piscataway, NJ: 
Institute of Electrical and Electronics Engineers (IEEE).



6  Tabu Search90

Nourzad, S. and Afshar, M. (2009). “Industrial distribution system simulation for 
optimal water resource assignment using probabilistic tabu search.” World 
Environmental and Water Resources Congress 2009, Kansas City, MO, May 
17–21, Reston, VA: American Society of Civil Engineers (ASCE), 1–10.

Skorin‐Kapov, J. (1990). “Tabu search applied to the quadratic assignment 
problem.” ORSA Journal on Computing, 2(1), 33–45.

Taillard, É. (1990). “Some efficient heuristic methods for the flow shop 
sequencing problem.” European Journal of Operational Research, 47(1), 65–74.

Taillard, É. (1991). “Robust taboo search for the quadratic assignment problem.” 
Parallel Computing, 17(4–5), 443–455.

Wang, C., Quan, H., and Xu, X. (1999). “Optimal design of multiproduct batch 
chemical process using tabu search.” Computers and Chemical Engineering, 
23(3), 427–437.

Yeh, S. F., Chang, Y. J., and Lin, M. D. (2013). “Optimal design of sewer network 
by tabu search and simulated annealing.” 2013 IEEE International Conference 
on Industrial Engineering and Engineering Management, Bangkok, Thailand, 
December 10–13, Piscataway, NJ: Institute of Electrical and Electronics 
Engineers (IEEE).



91

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,  
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Loáiciga. 
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

7

Summary

This chapter describes ant colony optimization (ACO). The basic concepts of 
the ACO are derived from analogy to the foraging behavior of ants. The chapter 
begins with a brief literature review highlighting the development and applica-
tions of the ACO. This is followed by a description of the ACO’s algorithm. 
A pseudocode of the ACO closes the chapter.

7.1  Introduction

Ant colony optimization (ACO) was introduced by Dorigo et al. (1991, 1996). 
It attempts to simulate in algorithmic fashion the foraging behavior of 
ants.  Several varieties of ACO algorithms have appeared since its original 
inception, and those include the elitist ant system (AS) (Dorigo, 1992; Dorigo 
et  al., 1996), Ant‐Q (Gambardella and Dorigo, 1995), ant colony system 
(Gambardella and Dorigo, 1996; Dorigo and Gambardella, 1997), max–min 
AS (Stutzle and Hoos, 2000), and the hypercube AS (Blum and Dorigo, 2004). 
The ACO has solved various types of problems such as vehicle routing 
(Reimann et al., 2004), project scheduling (Merkle et al., 2002), and open shop 
scheduling (Blum, 2005). Various types of ant‐based algorithms have found 
frequent implementations in civil engineering and structural optimization 
(Christodoulou, 2010; Lee, 2012; Sharafi et al., 2012). Abadi and Jalili (2006) 
applied the ACO for network vulnerability analysis. Effatnejad et  al. (2013) 
implemented the ACO for determining the feasible optimal solution of eco-
nomic dispatching. Afshar et al. (2015) wrote a state‐of‐the‐art review of the 
ACO’s applications to water resources management.

Ant Colony Optimization
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7.2  Mapping Ant Colony Optimization (ACO) 
to Ants’ Foraging Behavior

The ACO takes inspiration from the foraging behavior of some ant species that 
deposit pheromone on the ground to mark favorable paths for colony members 
to follow to procure food. Many ant species take advantage of a particular type 
of communication called stigmergy in which workers are stimulated by the 
performance they have achieved. Stigmergy is differentiated from other types 
of communication in two distinct ways. First, stigmergy is an indirect, non‐
symbolic form of communication mediated by the environment. Ants exchange 
information by modifying their environment. Second, stigmergic information 
is local. Therefore, the information exchanged by stigmergy is only available 
for those who see the location where it is released.

This type of communication explains the strategy followed by ants to collect 
and transport food to their nest. Many ant species release a substance called 
pheromone along their tracks while they are walking to or from a food source. 
Other ants detect the presence of pheromone and follow paths where the 
pheromone concentration is present. This tactic allows ants to transport food 
to their nest in a remarkably effective way.

The pheromone‐laying and pheromone‐following behavior of ants was 
studied by Deneubourg et al. (1990). In a double‐bridge experiment, the nest 
of an ant colony was connected to a food source using two bridges that were 
equal in length. Ants could reach the food crossing either one of the bridges. 
The results of experiment demonstrated that initially the bridges were selected 
arbitrarily by the ants. Due to random fluctuations one of the two bridges 
exhibited a higher concentration of pheromone than the other after some 
time, and, therefore, more ants moved through the former bridge. This 
brought a further amount of pheromone to that bridge, making it a more 
attractive route, and eventually the whole colony converged toward using the 
same bridge.

The pheromone‐laying mechanism helps ants find the shortest path between 
a food source and their nest. When one of the bridges is shorter, ants that move 
through the shorter path reach the food sooner and increase the concentration 
of pheromone on the way back. Goss et al. (1989) considered a variant of the 
double‐bridge experiment in which one bridge is significantly longer than 
the  other. In this case, the stochastic fluctuations in the initial choice of a 
bridge are much reduced, and a second mechanism plays an important role. 
Specifically, the ants choosing by chance the short bridge are the first to reach 
the nest. The short bridge receives larger amounts of pheromone earlier than 
the long one, and this fact increases the probability that more ants select it 
for transport to and from a food source. Figure 7.1 shows a schematic of the 
double‐bridge experiment.
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Goss et al. (1989) presented a model to evaluate probability of an ant to select 
the first bridge (ϕ1) where μ1 ants have selected the first bridge and μ2 ants have 
selected the other bridge in a double‐bridge experiment as follows:

	
1

1

2 1

z

z z

h

h h
	 (7.1)

in which ϕ1 = the probability of an ant selecting the first bridge, μ1 = the number 
of ants that have selected the first bridge, μ2 = the number of ants that have 
selected the second bridge, and z and h = parameters that must be fitted to the 
experimental data.

The ants represent solutions in ACO. The path of an ant is a set of decision 
variables that constitute a solution of the optimization problem in ACO. In 
other words, the tour of an ant from nest to food represents a possible solution 
of the optimization problem. Each ant has a fitness value corresponding to the 
value of the objective function of the optimization problem that reflects the 
length of its tour. The better the fitness value, the shorter the length of the tour. 
Each ant leaves a concentration of pheromone in a specific area of the decision 
space according to its fitness value that marks its path. New ants (solutions) are 
made based on information left by previous ants in the decision space. Table 7.1 
lists the characteristics of the ACO.

The ACO starts by generating a set of random solutions made up of deci-
sion variables that are selected from a predefined set of discrete values. The 
fitness values of all the solutions are evaluated. Then, proportionate to 
the  fitness values of solutions, concentrations of pheromone are assigned 
to  the decision space. The concentration of pheromone shows desirability. 
The  parts of the decision space that make fitter solutions achieve more 

Food

T= 1

Food

T= 2

Food

T= 3

Figure 7.1  A double‐bridge experiment with pathways of unequal length.
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concentration of pheromone. The sum of the pheromone of a specific value of 
a decision variable is equal to all the pheromone left by all ants that possess 
that value. New ants (solutions) are constructed in the next algorithmic step 
based on information retrieved from previous ants. New solutions are gener-
ated randomly with a stochastic function that assigns a probability to allow-
able values of each decision variable according to its pheromone. Values that 
have higher concentration of pheromone are more likely to be selected. 
Concentrations of pheromone are added to the decision space to generate 
new solutions after evaluating the fitness values of newly generated solutions 
if the termination criteria are not satisfied. Otherwise the algorithm ends. 
Figure 7.2 depicts the flowchart of the ACO.

7.3  Creating an Initial Population

An ant’s track in any dimension of an N‐dimensional space represents a deci-
sion variable of the optimization problem. An ant is known as an array of size 
1 × N that describes the ant’s path. This array is defined as follows:

	 Ant X x x x xi N1 2, , , , ,  	 (7.2)

where X = a solution of the optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. The decision variable values 
(x1, x2, x3, …, xN) are chosen from a set of predefined values for discrete problems. 
The ACO solves problems with discrete domain; each decision variable i takes a 
value from a predefined set of values Vi as follows:

	 V v v v v i Ni i i i d i Di, , , ,, , , , , , , , ,1 2 1 2   	 (7.3)

Table 7.1  The characteristics of the ACO.

General algorithm (see Section 2.13) Ant colony optimization

Decision variable Track path of ant
Solution Ant
Old solution Old ant
New solution New ant
Best solution –
Fitness function Pheromone
Initial solution Random ant
Selection –
Process of generating new solutions Based‐information stochastic mechanism
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in which Vi = the set of predefined values for ith decision variable, vi,d = dth 
possible value for the ith decision variable, and Di = total number of possible 
values for the ith decision variable.

A solution is represented as a graph that connects decision variables to each 
other defining a pathway or solution as shown in Figure 7.3. The number of layers 
of the graph equals the number of decision variables, and the number of nodes in 
a particular layer equals the number of discrete probable values permitted for the 
corresponding design variable. Thus, each node on the graph is associated with a 
permissible discrete value of a design variable.

The ACO algorithm begins with randomly generating a matrix (see 
Section 2.6) of size M × N (where M and N denote the size of the population of 
solutions and the number of decision variables, respectively). Hence, the 
matrix of solutions that is generated randomly is as follows (there are M rows 
or solutions, and each solution contains N decision variable):
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	 (7.4)

Start

Define the parameters of the algorithm

Generate a set of ants randomly

Generate new ants

Allocate pheromone to occupied decision space by ants

Are the termination criteria satisfied?

End

Report the ants

YesNo

Figure 7.2  The flowchart of the ACO.
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size (the number of solutions). The value of xj,i is randomly 
selected from a set Vi (see Equation (7.3)).

7.4  Allocating Pheromone to the Decision Space

In contrast to most other meta‐heuristic and evolutionary algorithms, the 
ACO allocates desirability to the decision space instead of the solutions to find 
the best region of the decision space or the best mixture of decision variables. 
Most meta‐heuristic and evolutionary algorithms generate new solutions using 

Decision variable 1 v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

v1,D1–1 v1,D1

v2,D2–1 v2,D2

v3,D3–1 v3,D3

vN,1 vN,2 vN,3
vN,DN–1 vN,DN

……………….

……………….

……………….

……………….
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Decision variable 2

Decision variable 3

.

.

.

.

.

.

.

.

Decision variable N

.

.

.

.

.

.

.

.

Nest

Figure 7.3  Representa­
tion of a solution in the 
ACO; there are M such 
solutions.
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old solutions, say, by mixing old solutions or by generating new solutions in the 
neighborhood of old solutions. The ACO searches different points of the deci-
sion space and adds information to the decision space. New solutions are ran-
domly constructed based on the information in the decision space. The ACO 
allocates a concentration of pheromone to each decision variable’s value 
according to the fitness value of a solution. The more fit a solution is, the higher 
the pheromone concentration, and vice versa. In other words, values that make 
better solutions achieve higher concentration of pheromone in comparison 
with values that make worse solutions.

N arrays of size 1 × Di are employed to allocate pheromone to the decision 
space so that each of them is assigned to one decision variable as follows:

	 C c c c c i Ni i i i d i Di, , , ,, , , , , , , , ,1 2 1 2   	 (7.5)

in which Ci = pheromone matrix for the ith decision variable and ci,d = pheromone 
concentration of the dth possible value of the ith decision variable.

The elements of the matrix C equal zero at the beginning of the algorithmic 
optimization. They are updated during the algorithmic search, taking positive 
values. The aim of the pheromone update is to increase the pheromone con-
centration of good or promising decision variable’s values. The pheromone 
allocation is achieved by (1) decreasing all the pheromone values through 
pheromone evaporation and (2) increasing the pheromone levels associated 
with a chosen set of good solutions. Solutions (ants) are generated and their 
fitness values are evaluated. The concentration of pheromone for the dth pos-
sible value of the ith decision variable is updated as follows:

	
c c c d D i Ni d

new
i d i d

j
i

j

M

,
( )

, ,
( ) , , , , , , , ,1 1 2 1 2

1
 

	 (7.6)

in which ci d
new
,

( ) = new concentration of pheromone of the dth possible value of 
the decision variable, ρ = evaporation rate, and ( )

,
j

i dc∆  = the quantity of phero-
mone laid on the dth possible value of the ith decision variable by the jth ant. 
The value of ( )

,
j

i dc∆  corresponds to the fitness value of the jth solution, and it is 
estimated as follows in a minimization problem:

	

c
Q

F X
if x v

if Otherwise
j M i N di d

j
j

j i i d
,

, ,( ) , , , , , , , , ,
0

1 2 1 2  1 2, , , Di

(7.7)

in which Q = a constant value and F(Xj) = fitness value of the jth solution.
Equation (7.7) was proposed by Dorigo et al. (1996) to solve the salesman 

problem in which the fitness value must be a positive number; otherwise it is 
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not acceptable for estimating the concentration of pheromone. It follows from 
Equation (7.7) that in a minimization problem, the concentration of phero-
mone is inversely proportional to the fitness value. By extension it follows that 
in a maximization problem, the concentration of pheromone is proportional to 
the fitness value. The concentration of pheromone can be zero or a positive 
value. The ACO solves optimization problems relying on a formula that relates 
the pheromone concentrations and fitness values according to Equation (7.7).

New solutions are generated after evaluating of concentration of pheromone 
for possible values for all decision variables so that the values with higher 
concentration of pheromone have a better chance of being selected for new 
solutions.

7.5  Generation of New Solutions

New solutions are generated through a stochastic process. Each decision vari-
able i is assigned a value with a probability that depends on the concentration 
of pheromone. Specifically, a probability Pi,d is assigned to each possible value 
d of decision variable i as follows:

	

P c

c
d D ii d

i d i d

i k i k
k

D i
i

,
, ,

, ,

( ) ( )

( ) ( )
, , , , ,

1

1 2 1 2, , , N 	 (7.8)

in which Pi,d = probability that the dth possible value (vi,d) be selected for the ith 
decision variable, ηi,d = a heuristic value for the dth possible value of the 
ith decision variable, and α and β = parameters that control the relative impor-
tance of the pheromone versus the heuristic information (ηi,d). The heuristic 
information shows the desirability of selecting possible values that help the 
algorithmic search of the decision space more efficiently. For instance, in the 
structural design problem presented in Chapter 1, the purpose is minimizing 
the weight of the structure. Before solving the problem it is clear that a smaller 
cross‐sectional area would produce a lighter structure. It is possible to assign a 
heuristic value to the cross‐sectional area so that less cross‐sectional area has a 
larger heuristic value and, thus, a high probability of being chosen. The choice 
of the parameters α and β renders this feature optional. The sum of the proba-
bilities of the possible values of each decision variable is equal to one:

	
P i Ni d

d

Di

, , , , ,1 1 2
1

 	 (7.9)

The values of the decision variables of a new solution are randomly 
selected based on the evaluated probabilities. To accomplish this one first 
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calculate a cumulative probability for all the possible values of each decision 
variable as follows:

	
i r i d

d

r

iP i N r D, , , , , , , , , ,
1

1 2 1 2  	 (7.10)

in which ψi,r = cumulative probability of the rth possible value of the ith deci-
sion variable.

Thereafter, a random number (Rand) in the range [0,1] is generated. If Rand is 
less than ψi,1, the first value (vi,1) is selected; otherwise the rth value is selected such 
that Rand is greater than i r, 1 and less or equal than ψi,r ( i r i rRand, ,1 ). 
This procedure assigns randomly a value from the set Vi to each decision variable 
i of solution j. If component vi,d of set V v v v vi i i i d i Di, , , ,, , , , ,1 2    is assigned to 
the ith decision variable of the jth new solution, we have

	 x v i N j Mj i i d, , , , , , , , , ,1 2 1 2  	 (7.11)

in which xj i,  = new value of the ith decision variable of the jth new solution.
The new solutions are constructed after evaluation of all the decision varia-

bles as follows:

	 X x x x x j Mj
new

j j j i j N
( )

, , , ,, , , , , , , , ,1 2 1 2   	 (7.12)

in which X j
new( ) = new solution j. The M newly generated solutions displace all 

of the old solutions.

7.6  Termination Criteria

The termination criterion determines when to end the algorithm. Selecting a 
good termination criterion is essential for the correct convergence of the ACO 
algorithm. The number of iterations, the incremental improvement of the 
objective function between consecutive iterations, and the run time are com-
mon convergence criteria for the ACO.

7.7  User‐Defined Parameters of the ACO

The size of the population of solutions (M), the evaporation rate (ρ), the control 
parameters of pheromone (α), heuristic information (β), and the termination 
criterion of the algorithm are user‐defined parameters of the ACO. A good 
choice of the parameters is related to the decision space of a particular problem, 
and usually the optimal parameter setting for one problem is of limited utility 
for any other problem. Consequently, determining a good set of parameters 
requires the execution of a large number of time‐consuming experiments. 
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The  setting of suitable parameters relies principally on in‐depth experience 
with the type of problem being solved. Yet, a reasonable method for finding 
appropriate values of the ACO parameters is performing sensitivity analysis 
whereby combinations of parameters are tested with multiple runs for each 
combination. From these results the analyst may gain clear guidance on the 
choice of parameters that produce near‐optimal solutions.

7.8  Pseudocode of the ACO

Begin
	 Input parameters of the algorithm and initial data
	 Let M = population size and N = number of decision 

variables
	 Let Di = number of possible values for decision  

variable i
	 Generate M initial possible solutions randomly
	 While (termination criteria are not satisfied)
	 Evaluate fitness values for all solutions
	 For i = 1 to N
	 For d = 1 to Di
	 Update pheromone concentration of possible 

value d for decision variable i
	 Evaluate probability of possible value d 

to be selected
	 Next d
	 Next i
	 For j = 1 to M
	 For i = 1 to N
	 Randomly select a value for decision 

variable i among possible values based 
on their probabilities

	 Next i
	 Next j
	 End while
	 Report the ants or solutions
End

7.9  Conclusion

This chapter described ACO. It included a brief literature review of the ACO, 
a mathematical statement of its algorithm, and a pseudocode.
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8

Summary

This chapter describes the particle swarm optimization (PSO) technique, which is 
inspired by the swarming strategies of various organisms in nature. The next sec-
tion reviews a few implementations of the PSO. The remainder of this chapter 
describes the PSO algorithm and presents a pseudocode for its implementation.

8.1  Introduction

Kennedy and Eberhart (1995) developed the particle swarm optimization (PSO) 
algorithm as a meta‐heuristic algorithm based on the social behavior exhibited by 
birds or fishes when striving to reach a destination. Balci and Valenzuela (2004) 
presented a technique that uses the PSO combined with the Lagrangian relaxa-
tion (LR) framework to solve a power generator scheduling problem known as 
the unit commitment problem. Chuanwen and Bompard (2005) applied a self‐
adaptive chaotic PSO algorithm for optimal hydroelectric plant dispatch model 
based on the rule of maximizing the benefit in a deregulated environment. The 
proposed approach introduced chaos mapping, and the self‐adaptive chaotic 
PSO algorithm increased the mapping convergence rate and associated preci-
sion. Suribabu and Neelakantan (2006) used the Environmental Protection 
Agency’s hydraulic network simulator (EPANET) and the PSO algorithm in a 
combined simulation and optimization model to design a water distribution 
pipeline network. Matott et al. (2006) identified the PSO algorithm as an effective 
technique for solving pump‐and‐treat optimization problems with analytic 
element flow models. Izquierdo et al. (2008) applied the PSO algorithm to the 
optimization of a wastewater collection network. Results showed that the algo-
rithm’s performance and the calculated results were consistent with those calcu-
lated with dynamic programming to solve the same problem under the same 
conditions. Fallah‐Mehdipour et  al. (2011) proposed a multi‐objective PSO 

Particle Swarm Optimization
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(MOPSO) approach in multipurpose multi‐reservoir operation. MOPSO calcu-
lated near‐optimal Pareto fronts. Ostadrahimi et  al. (2012) employed a multi‐
swarm PSO to extract multi‐reservoir operation rules and showed that the PSO 
algorithm outperformed the common implicit stochastic optimization approach 
in the real‐time operation of a reservoir system. Gaur et al. (2012) coupled artifi-
cial neural network (ANN) and the PSO for the management of the Dore river 
basin in France. An analytic element method (AEM)‐based flow model was 
applied to generate the data set for the training and testing of the ANN. A cou-
pled ANN‐PSO was implemented to minimize the pumping cost of wells and 
compared with AEM‐PSO. ANN‐PSO reduced the computational burden sig-
nificantly in the analysis of various management scenarios. Kumar and Reddy 
(2012) employed elitist‐mutated PSO (EMPSO) as an efficient and reliable swarm 
intelligence‐based approach in multipurpose reservoir operation. Results dem-
onstrated that the EMPSO performed better than the PSO algorithm. Noory 
et al. (2012) presented a discrete PSO algorithm for optimizing irrigation water 
allocation and multi‐crop planning. Saadatpour and Afshar (2013) implemented 
the MOPSO in a pollution spill response management model in reservoirs. They 
coupled CE‐QUAL‐W2 with the MOPSO algorithm to obtain a desirable near‐
optimal reservoir operation strategy and/or emergency planning in a selective 
withdrawal framework. Fallah‐Mehdipour et  al. (2013) calculated multi‐crop 
planning rules in a reservoir system with the PSO algorithm, the genetic algo-
rithm (GA), and shuffled frog leaping algorithm (SFLA). They maximized the 
total net benefit of the water resources system by supplying irrigation water for a 
proposed multi‐cropping pattern over the planning horizon. Qu and Lou (2013) 
proposed a PSO algorithm based on the immune evolutionary algorithm (IEA) to 
optimal allocation of regional water resources. The results of the survey demon-
strated that the performance of the presented algorithm to solve the issue of 
optimal allocation of regional water resources is reliable and reasonable. Bozorg‐
Haddad et al. (2013) compared the performance of the PSO algorithm with that 
of the pattern search (PS) algorithm for calibration of numerical groundwater 
models. Orouji et al. (2014) proposed a hybrid algorithm, linking the PSO and 
SFLA, to solve the resource‐constrained project scheduling problem (RCPSP). 
The RCPSP minimized the duration of a construction project considering 
resource limitations and the timing of activities. The hybrid PSO‐SFLA proved 
more capable in determining an optimal solution with fewer iterations compared 
with the individual application of the PSO and SFLA.

8.2  Mapping Particle Swarm Optimization (PSO) 
to the Social Behavior of Some Animals

This chapter deals with the application of computational algorithms to 
biological–social systems and, more specifically, to the collective behaviors 



8.2  Mapping Particle Swarm Optimization (PSO) to the Social Behavior of Some Animals 105

of  individuals interacting with their environment and each other. These 
systems are known as swarm intelligence. Swarm intelligence defines the 
discipline that deals with natural and artificial systems consisting of many 
individuals who  coordinate among themselves using decentralized con-
trol  and self‐organization. Swarm intelligence focuses on the collective 
behavior resulted from the local interactions between individuals and 
between individuals and their environment. Beehives, ant colonies, fish 
schools, bird flocks, and animal herds are examples of systems with swarm 
intelligence. The PSO is one of the most common examples of swarm 
intelligence.

The PSO algorithm is based on the social behavior of birds. It simulates the 
behaviors of bird flocks. Suppose that a group of birds are randomly looking for 
food in an area. Imagine that seeker birds do not know where the food is. One 
effective strategy to find food is for birds to follow the bird that is known to be 
nearest to the food. The PSO acts according to the previous example and 
employs a numerical analog to solve optimization problems.

The PSO designates each single solution in the decision space of the 
optimization problem as a bird and is called a particle. All the particles have 
fitness values that are evaluated by the objective function to be optimized, 
which measures their distances to food. Each particle also has velocity that 
directs the flying of the particle. The best particle is the leader, and other 
particles follow the leader. The particles fly through the decision space of the 
problem by following the leader. Each particle determines its next position 
based on (1) its best individual position so far occupied and (2) the best 
position achieved in the group. In other words, each particle is updated by 
two positions. The first one is the best position that the particle has occu-
pied so far. The other is the best position achieved so far by any particle in 
the population of particles. The first position is the best individual position, 
and the second one is the best global position. Table 8.1 lists the characteris-
tics of the PSO.

The PSO starts with the position and velocity of particles randomly ini-
tialized within the search space (see Section 2.6). The fitness values of the 
particles are calculated. These first fitness values and positions are the best 
individual fitness values and the best individual positions, respectively. 
The best position among all particles is the global best position. The posi-
tion and velocity of each particle are updated to generate new solutions 
based on their personal and global best positions. In the next iteration the 
fitness values of the updated particles are recalculated, and the personal 
and global best positions are updated. In this manner the new particles’ 
positions and velocities are generated. The PSO algorithm continues 
updating the individual and global best positions and generating new posi-
tions until the termination criteria are met. Figure 8.1 shows the flowchart 
of the PSO.
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Start

Define the parameters of the algorithm

Generate initial particles randomly

Calculate the velocities

Update the particle positions

Are the termination criteria satisfied?
No Yes

Report the best position in the swarm’s history

End

Calculate the best positions in the particle’s and swarm’s history

Figure 8.1  The flowchart of the PSO.

Table 8.1  The characteristics of the PSO.

General algorithm (see Section 2.13) Particle swarm optimization

Decision variable Particle’s position in each dimension
Solution Particle’s position
Old solution Old position of particle
New solution New position of particle
Best solution Leader of particles
Fitness function Distance between particle and food
Initial solution Random particle
Selection –
Process of generating new solution Flying with a specific velocity and direction
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8.3  Creating an Initial Population of Particles

The PSO designates each possible solution of the optimization problem as a 
particle. The particles’ positions represent the decision variables in an N‐
dimensional optimization problem. Particles are specified as an array of size 
1 × N. This array is defined as follows:

	 Particle X x x x xi N1 2, , , , ,  	 (8.1)

where X = a possible solution of the optimization problem, xi = ith decision vari-
able of solution X, and N = number of decision variables. The decision variable 
values (x1, x2, x3, …, xN) can be represented as floating point number (real values) 
or as a predefined set for continuous and discrete problems, respectively.

The PSO algorithm starts by randomly generating a matrix of particles (see 
Section 2.6) of size M × N (where M and N denote the size of the population of 
solutions and the number of decision variables, respectively). Hence, the 
matrix of solutions is as follows (there are M rows or solutions; each solution 
contains N decision variables):
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

8.4  The Individual and Global Best Positions

Each particle moves through the decision space based on the individual and 
global best positions. Each particle attempts to achieve the best or optimal 
position in the decision space with two types of parameters (Pbest and Gbest). 
Pbest and Gbest are the best positions in the particle’s and swarm’s histories, 
respectively. For each particle j, there is a Pbest as follows:

	 Pbest p p p p j Mj j j j i j N, , , ,, , , , , , , , ,1 2 1 2   	 (8.3)

in which Pbestj = the best position of the jth particle and pj,i = the best position 
of the jth particle in the ith dimension.
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Gbest is an array 1 × N whose elements define the best position achieved in 
the swarm:

	 Gbest g g g g all ji N1 2, , , , , ,  	 (8.4)

where Gbest = the best position in the swarm’s history and gi = the best position 
in the swarm’s history in the ith dimension.

The initial population of particles are generated randomly (see Section 2.6), 
and their fitness values are calculated. These first fitness values and posi-
tions constitute the best individual fitness values and the best individual 
positions (Pbest). The best position among all particles is considered as the 
global best position (Gbest). In each iteration of the algorithm, Pbest and 
Gbest are updated. Each particle’s best individual position (Pbest) is updated 
if the fitness value of the particle’s new position is better than Pbest. Figure 8.2 
illustrates the concept of the best individual position in a maximization 
problem. In Figure 8.2 the route of a bird flying on a two‐dimensional space 
is depicted. This bird experiences different positions including X1, X2, X3, 
and X4. This bird finds different amounts of food [F(X)] at each position so 
that position X3 is the best among all. The bird memorizes the position X3 as 
the Pbest. It memorizes this position as the Pbest until it reaches a position 
with more food.

The concept of the global best position in a maximization problem is shown 
in Figure 8.3. Gbest is the best point that is calculated during the optimization 
search.

X2

X2

X4

X3

X1

X1

Pbest

F(X3) > F(X1), F(X2), F(X4)

Old position of the bird

p2

p1

Figure 8.2  Concepts of the best individual position in a two‐dimensional maximization 
problem.
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8.5  Velocities of Particles

Each particle has a velocity that directs the flying of the particle and deter-
mines its next position of the particle. The particles’ velocities are used to 
update their positions. The velocity is calculated based on Gbest and Pbest. 
The velocity of the jth particle (Vj) represented by an 1 × N array is as follows:

	 V v v v v j Mj j j j i j N, , , ,, , , , , , , , ,1 2 1 2   	 (8.5)

in which Vj = the velocity of the jth particle and vj,i = the velocity of the jth particle 
in the ith dimension that is calculated as follows:

	

v v C Rand p x C Rand g x
j

j i
new

j i j i j i i j i, , , , ,
,

1 2
1 22 1 2,..., , , ,...,M i N

	 (8.6)

in which v j i
new
,

( ) = the new velocity of the jth particle in the ith dimension, vj,i = the 
previous velocity of the jth particle in the ith dimension, ω = inertia weight 
parameter, Rand = a random value in the range [0,1], C1 = cognitive parameter, 
and C2 = social parameter (C1 and C2 control the movement of Pbest and Gbest 
toward an optimal point and usually C1 = C2 = 2). Movement along different 
directions toward Gbest and Pbest is possible if C1 and C2 are larger than one.

Lower and upper bounds for velocity limit the variation of a particle’s 
velocity as follows:

	 V v V j M i Ni
L

j i
new

i
U( )

,
( ) , , , , , , , ,1 2 1 2  	 (8.7)

in which Vi
L( ) and Vi

U( ) = the lower and upper bound of the velocity along the ith 
dimension, respectively.

The inertia weight parameter ω has an important role in swarm convergence 
and controls the effects of the current velocity. Large or small values of ω cause 

Particles’ Pbest

F(X) F(X)

Sort

Gbest

Figure 8.3  Concept of the global best position in a maximization problem.
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searching in a wide or narrow space, respectively. The inertia weight parameter 
may change as the algorithm progresses as follows:

	
t T

t
T

t T0 0 1 2, , , , 	 (8.8)

in which ω0 = initial inertia weight, ωT = inertia weight for the last iteration, and 
T = total number of iterations. The value of ω changes through the iterations.

8.6  Updating the Positions of Particles

Particles move to new positions from the old position to generate new positions. 
This movement of particles is performed based on the velocities. A particle’s 
position is updated as follows:

	 X x x x x j Mj
new

j j j i j N
( )

, , , ,, , , , , , , , ,1 2 1 2   	 (8.9)

	 x x v j M i Nj i j i j i
new

, , , , , , , , , , ,1 2 1 2  	 (8.10)

in which X j
new( ) = jth new solution and xj i,  = new value of ith decision variable of 

the jth new solution. The M newly generated solutions displace all the old 
solutions.

8.7  Termination Criteria

The termination criteria determine when to terminate the algorithm. Selecting 
a good termination criterion has an important role to correct the convergence 
of the algorithm. The number of iterations, the run time, and the improvement 
of the solution between consecutive iterations are common termination criteria 
for the PSO algorithm.

8.8  User‐Defined Parameters of the PSO

The size of the population of solutions (M), the value of the initial inertia 
weight (ω0), the final value of the inertia weight (ωT), and the termination 
criterion are user‐defined parameters of the PSO. A good choice of the 
parameters is related to the decision space of a particular problem, and usu-
ally the optimal parameter setting for one problem is of limited utility for 
other problems. Consequently, determining a good parameter setting often 
requires the execution of numerous time‐consuming experiments. In‐depth 
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practice and experience are keys to choosing appropriate algorithmic 
parameters. However, a reasonable method for finding appropriate values 
for the parameters is performing sensitivity analysis. Combinations of 
parameters are applied to run the algorithm. The algorithm is run several 
times for each combination of parameters. This captures the variability 
of the solution due to the randomness of the PSO algorithm. By comparing 
the solutions across the combination of parameters, the analyst is guided to 
choose appropriate values.

8.9  Pseudocode of the PSO

Begin
	 Input parameters of the algorithm and initial data
	 Generate M initial possible solutions and evaluate 

their fitness values
	 Initialize the velocities of all the solutions 

randomly
	 For j = 1 to M
	 Put Pbestj = solution j
	 Next j
	 Set Gbest = the best solution in the population
	 While (termination criteria are not satisfied)
	 For j = 1 to M
	 If the fitness value of solution j is better 

than that of Pbestj
	 Put Pbestj = solution j
	 End if
	 Next j
	 If the best solution is better than Gbest
	 Substitute the best solution for Gbest
	 End if
	 For j = 1 to M
	 Calculate the velocity of solution j
	 Control the velocity of solution j
	 Update solution j
	 Next j
	 Evaluate fitness value for all solutions
	 Update inertia weight parameter (ω)
	 End while
	 Report the best solution
End
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8.10  Conclusion

This chapter described the PSO, which is based on the strategies of swarms in 
their search for food. The chapter presented a brief literature review of the 
PSO, its algorithmic fundamentals, and a pseudocode.
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Summary

This chapter describes differential evolution (DE), which is a parallel direct 
search method that takes advantage of some features of evolutionary algorithms 
(EAs). The DE is a simple yet powerful meta‐heuristic method. This chapter 
begins with a brief literature review about the DE and its applications, followed 
by a presentation of the DE’s fundamentals and a pseudocode.

9.1  Introduction

Differential evolution (DE) was developed by Storn and Price (1997). The DE 
was designed primarily for continuous optimization problems. Lampinen 
and Zelinka (1999) presented a modified DE for discrete optimization. 
Vesterstrom and Thomsen (2004) demonstrated that DE had a better perfor-
mance in comparison with other optimization techniques such as the genetic 
algorithm (GA) and particle swarm optimization (PSO). The DE algorithm 
has been successfully applied to solve a wide range of optimization problems 
such as clustering, pattern recognition, and neural network training (Price 
et al., 2005). Tang et al. (2008) applied the DE to structural system identifica-
tion. Lakshminarasimman and Subramanian (2008) implemented the DE 
for  optimization of power systems. Qing (2009) demonstrated different 
applications of the DE in electrical engineering. Wang et al. (2009) applied 
the DE for optimum design of truss structures. Gong et al. (2009) applied the 
DE to optimal engineering design. Xu et al. (2012) implemented the DE to 
estimate parameter of a nonlinear Muskingum model applied for flood pre-
diction in water resources management. Gonuguntla et al. (2015) presented 
a modified DE with adaptive parameter specification.

Differential Evolution
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9.2  Differential Evolution (DE) Fundamentals

DE is a parallel direct search method that takes advantage of some features of 
evolutionary algorithms (EAs). In other words, the DE is a method that opti-
mizes a problem by iteratively improving candidate solutions with respect to a 
given measure of quality.

Direct search methods can solve a variety of numerical problems with empha-
sis on the use of simple strategies rather than complex tactics, which makes 
them well suited for computational processing. The phrase “direct search” refers 
to sequential examination of trial solutions. Direct search methods compare 
each trial solution with the best solution previously obtained, and the result of 
the comparison determines the next trial solution. Direct search techniques 
employ straightforward search strategies. These techniques have some features 
that distinguish them from classical methods. They have solved problems 
that defied classical methods. They have calculated solutions for some prob-
lems faster than classical methods. In addition, direct search techniques apply 
repeated identical arithmetic operations with a simple logic that are easily 
coded for computer processing (Hooke and Jeeves, 1961).

Direct search methods choose a point B randomly that is called the base 
point. A second point, P1, is chosen, and if it is better than B, then it replaces 
the base point; otherwise, B is not changed. This process continues by compar-
ing each new point with the current base point. The “strategy” for selecting 
new trial points is determined by a set of “states” that constitute the memory of 
the search process. The number of states is finite. There are an arbitrary initial 
state and a final state that stops the search. The other states represent various 
situations that arise as a function of the results of the trials made. The strategy 
implemented to select new points is dictated by various aspects of the prob-
lem, including the structure of its decision space. The strategy includes the 
choice of an initial base point, the rules of transition between states, and the 
rules for selecting trial points as a function of the current state and the base 
point. Direct search designates a trial point as a move or step from the base 
point. The move is a success if the trial point is better than the base point and 
is a failure otherwise. The states make up part of the algorithmic logic influenc-
ing moves in the same general direction as those that have recently succeeded. 
The states suggest new directions if recent moves have failed; and they decide 
when no further progress can be made. A diagnosis that no further progress 
can be made does not always indicate that the solution to an optimization 
problem has been found.

The DE algorithm was designed by using the common concepts of EAs, 
such as multipoint searching, use of crossover, mutation, and selection 
operators, and it has some unique characteristics that make it different 
from many other EAs. The major differences with EAs are how offspring are 
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generated and in the selection mechanism that the DE applies to transition 
from one generation of solutions to the next.

The DE algorithm has a population of candidate solutions that are called 
agents. The components of each agent in an N‐dimensional space constitute 
the decision variables of the optimization problem. These agents are moved in 
the decision space by using crossover and mutation operators that combine 
and change their positions. In other words, trial agents are produced based on 
old agents. In this respect the DE resembles EAs because it applies genetic 
operators to produce new solutions. Selection of solutions is done based on 
greedy criteria. If the new position of an agent is an improvement, it is accepted 
and it replaces the old solution. An improved trial agent is known as a success 
and is added to the population of solutions. Otherwise the trial agent is a 
failure, and it is discarded from the direct search. Table 9.1 lists the character-
istics of the DE.

The DE starts by randomly generating a set of solutions (see Section  2.6) 
known as the initial population of agents. A new trial solution or agent is gen-
erated for each agent (solution). The generation of a trial agent requires that 
three agents from the old population be randomly selected and a new solution 
be generated using a heuristic function. This process is known as mutation. A 
crossover operator is implemented to combine the old agent and the newly 
generated solution. This produces a trial solution. The trial solution replaces 
the old solution if it has a better fitness value according to the greedy criteria. 
Otherwise, the old solution remains in the population. Trial solutions are again 
generated if the termination criteria are not satisfied. Otherwise, the final 
population is reported, and the algorithm ends. Figure 9.1 shows the flowchart 
of the DE.

Table 9.1  The characteristics of the DE.

General algorithm (see Section 2.13) Differential evolution

Decision variable Coordinate of agent’s position
Solution Agent (position)
Old solution Old agent
New solution Trial agent
Best solution –
Fitness function Desirability of the agent
Initial solution Random agent
Selection Greedy criterion
Process of generating new solution Mutation and crossover
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9.3  Creating an Initial Population

Each possible solution of the optimization problem found by DE is called an 
agent. In an N‐dimensional optimization problem, an agent’s component in any 
dimension of the N‐dimensional space is a decision variable of the optimization 
problem. An agent is an array of size 1 × N:

	 Agent X x x x xi N1 2, , , , ,  	 (9.1)

where X = a possible or tentative solution of the optimization problem, xi = ith 
decision variable of solution X, and N = number of decision variables. A matrix 
of agents of size M × N is randomly generated (see Section 2.6), where M and N 
are the size of population and the number of decision variables, respectively, to 
start the optimization algorithm. This matrix is represented as follows:
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	 (9.2)
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Figure 9.1  The flowchart of the DE.
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size. Each of the decision variable values of the jth solution 
(xj,1, xj,2, xj,3, …, xj,N) is represented as a floating point number (real values). The 
DE solves problems with continuous decision space.

9.4  Generating Trial Solutions

The DE generates new trial solutions by means of mutation and crossover 
operations acting in series. A new trial solution X j is first generated by muta-
tion. The crossover operator is applied to the newly generated solution that 
combines the old solution and the newly generated solution to produce a trial 
solution X j

new( ). This process is performed on each member of the population 
of solutions.

9.4.1  Mutation

Mutation produces a new solution that is mixed with an old solution by crosso-
ver to generate a trial solution. Mutation is executed by selecting randomly 
three solutions—Xr, Xr , and Xr —from the present population. Thereafter, 
new solutions are generated as follows:

	 X x x x x j Mj j j j i j N, , , ,, , , , , , , , ,1 2 1 2   	 (9.3)

	 x x x x i N j M r r r jj i r i r i r i, , , , , , , , , , , , ,1 2 1 2 

(9.4)

	 r Irnd M r r r j( , ),1 	 (9.5)

	 r Irnd M r r r j( , ),1 	 (9.6)

	 r Irnd M r r r j( , ),1 	 (9.7)

in which X j = new jth mutated solution; xj i,  = ith decision variable of the jth 
new mutated solution; δ = mutation factor that is a value in the range [0,2]; xr,i, 
xr i, , xr i,  = ith decision variable of the rth, r′th, and r″th solutions, respectively; 
and Irnd(1, M) = an integer random number in the range [1,M]; r, r′, and, 
r″ = counters of randomly chosen solutions that are different from each other 
and from the counter j that designates the target old solution. A new solution 
generated by mutation is crossed over with the target old solution to generate 
a trial solution.

9.4.2  Crossover

Crossover combines the targeted old solution (Xj) with the newly generated 
solution ( )X j  to generate a trial solution X j

new( ) as follows:
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	 X x x x xj
new

j j j i j N
( )

, , , ,, , , , ,1 2  

	 (9.8)

	
x

x if Rand C or i b
x if Rand C and i b i N jj i

j i j

j i j
,

,

,
, , , , ,1 2 11 2, , , M 	 (9.9)

	 b Irnd N j Mj ( , ), , , ,1 1 2 	 (9.10)

in which X j
new( ) = jth trial solution, xj i,  = ith decision variable of the jth trial solu-

tion, Rand = a random number in the range [0,1], C = crossover constant that is a 
predefined value in the range [0,1], and bj = a randomly chosen index that denotes 
a decision variable of the jth solution and ensures that X j

new( ) has at least one 
decision variable from X j; otherwise no new solution is produced.

9.5  Greedy Criteria

The trial solution X j
new( ) is compared with the old solution Xj to determine 

whether or not it becomes a member of the population of solutions. If the trial 
solution has better fitness value than the old solution, it replaces it. Otherwise, 
the trial solution is deleted and the old solution is kept in the population. This 
selection process is called greedy criteria.

9.6  Termination Criteria

The termination criterion determines when to terminate the algorithm. 
Selecting a good termination criterion has an important role on the correct 
convergence of the DE algorithm. The number of iterations, the magnitude of 
the improvement of the solution between consecutive iterations, and the run 
time are common convergence criteria for the DE.

9.7  User‐Defined Parameters of the DE

The population size (M), the mutation factor (δ), the crossover constant (C), and 
the termination criteria are user‐defined parameters of the DE. A good choice 
of the parameters depends on the decision space of a particular problem, and the 
optimal parameter setting for one problem is of limited utility for other problems. 
Consequently, determining a good parameter setting often requires the execution 
of a large number of computational experiments. A reasonable method for finding 
appropriate values for the parameters is performing sensitivity analysis, whereby 
combinations of parameters are tested and the algorithm is run several times 
for each combination to account for the random nature of the solution algorithm. 
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In this manner the analyst obtains a distribution of solutions and associated objec-
tive function values for each combination of parameters. A comparison of the 
results from all the combination of parameters provides guidance on a proper 
choice of the algorithmic parameters.

9.8  Pseudocode of the DE

Begin
	 Input parameters of the algorithm and initial data
	 Generate M initial possible solutions
	 Evaluate fitness value for solutions
	 While (termination criteria are not satisfied)
	 For j = 1 to M
	 Generate solution Xj by mutation
	 Generate trial solution Xj

new( ) by crossover 
between Xj and old solution Xj

	 Evaluate fitness value of trial solution Xj
new( )

	 If trial solution Xj
new( ) is better than old 

solution Xj
	 Put Xj = Xj

new( )

	 End if
	 Next j
	 End while
	 Report the population of solutions
End

9.9  Conclusion

This chapter described the DE, which is a parallel direct search method that 
takes advantage of some features of EAs. The chapter presented the algorithmic 
fundamentals of the DE and a pseudocode.
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Summary

This chapter describes harmony search (HS), which is a meta‐heuristic algorithm 
for discrete optimization. A brief literature review of the HS is presented, followed 
by a description of its algorithmic fundamentals. A pseudocode of the HS closes 
this chapter.

10.1  Introduction

Geem et al. (2001) developed harmony search (HS) inspired by the harmony 
found in many musical compositions. The HS has been applied to various 
benchmarking and real‐world optimization problems. Kim et  al. (2001) 
implemented the HS for estimation of the nonlinear Muskingum model for 
flood routing. Geem et  al. (2002) applied the HS to find optimal design of 
water distribution networks. Lee and Geem (2004) implemented the HS for 
structural optimization. Geem et al. (2009) reviewed the applications of the 
HS algorithm in the areas of water resources and environmental system 
optimization including design of water distribution networks, scheduling of 
multi‐location dams, parameter calibration of environmental models, and 
determination of ecological reserve location. Karahan et al. (2013) proposed 
a hybrid HS algorithm for the parameter estimation of the nonlinear 
Muskingum model. Ambia et al. (2015) applied the HS to optimally design the 
proportional–integral (PI) controllers of a grid‐side voltage converter with 
two additional loops for smooth transition of islanding and resynchroniza-
tion operations in a distributed generation (DG) system.

Harmony Search
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10.2  Inspiration of the Harmony Search (HS)

Music is a widely enjoyed entertainment. The HS is a meta‐heuristic algo-
rithm inspired by artificial phenomena found in musical compositions that 
strive for aesthetic perfection. Musicians test different possible mixtures of 
musical pitches to achieve a pleasing combination. Such a process of search 
for a fantastic harmony can be simulated numerically to find the optima of 
optimization problems.

As an example consider a group of musicians playing a saxophone, double 
bass, and guitar. Assume that there are a certain number of preferable pitches 
in each musician’s memory: saxophonist {Do, Mi, Sol}, double bassist {Ti, Sol, 
Re}, and guitarist {La, Fa, Do}. If the saxophonist plays note Sol, the double 
bassist plays Ti, and the guitarist plays Do, together their notes make a new 
harmony (Sol, Ti, Do). In other words, musicians improvise a new harmony, 
which may sound better than the existing worst harmony in their memories, in 
which case the new harmony is included in their memories and the worst 
harmony is discarded. This procedure is repeated until an optimal harmony 
is produced.

Musical improvisation is a process of searching for an optimal or sublime 
harmony by trying various combinations of pitches following any of the follow-
ing three rules:

1)	 Playing any one pitch among stored in the memory
2)	 Playing a random pitch chosen among those in the possible range of pitches 

even it is not in the memory
3)	 Playing a pitch that is close to another pitch already in the memory

According to the first rule, a musician chooses one of the pitches stored in its 
memory. By the second rule a musician uses a random pitch even it is not in 
its memory. On the basis of the third rule a musician adopts a close pitch to one 
present in its memory.

Musicians seek the best state (fantastic harmony) determined by aesthetic 
feeling, just as the optimization algorithm seeks the best state (global optimum) 
determined by evaluating the fitness function. Musical aesthetics derive from 
the set of pitches played by each instrument, just as the fitness function evalu-
ation is performed by the set of values assigned to each decision variable. The 
harmonic desirability is enhanced practice after practice, just as the solution 
quality is enhanced iteration by iteration.

According to the HS each harmony is a solution of the optimization problem 
and pitches that determine the desirability of the harmony represent decision 
variables. Aesthetic criteria resemble the fitness function of the optimization 
problem. Creating new solutions in an optimization problem is tantamount in 
HS to improvising new harmonies during musical creation. A new harmony 
replaces the worst harmony stored in the musician’s memory if it is better than 
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the worst harmony. The selection of solutions during the optimization process 
is analogous to updating the musical memory. Table 10.1 lists the characteris-
tics of the HS.

The HS starts by generating several random harmonies as initial solutions 
(see Section 2.6) and they are memorized. The fitness values of all the initial 
solutions are evaluated. These solutions are sorted according to their fitness 
values, and the worst one is determined. A new harmony is made by musical 
improvisation. If the new harmony is better than the worst one stored in the 
memory, the memory is updated and the new harmony replaces the worst 
one in the memory. Otherwise, the memory is not changed and another new 
harmony is generated. The process of generating new harmonies and compar-
ing them with the worst memorized harmony is repeated until the termination 
criteria are satisfied. Figure 10.1 illustrates the flowchart of the HS.

10.3  Initializing the Harmony Memory

Each possible solution of the optimization problem calculated by HS is called a 
harmony. In other words, harmony’s pitches in an N‐dimensional optimization 
problem are the decision variables of the optimization problem. A harmony is 
known as an array of size 1 × N harmony pitches. This array is defined as 
follows:

	 Harmony X x x x xi N1 2, , , , ,  	 (10.1)

where X = a solution of optimization problem, xi = ith decision variable of solution 
X, and N = number of decision variables. The HS algorithm starts with the ran-
dom generation of a matrix of harmonies of size M × N (where M and N denote 

Table 10.1  The characteristics of the HS.

General algorithm (see Section 2.13) Harmony search

Decision variable Pitch
Solution Harmony
Old solution Memorized harmony
New solution New harmony
Best solution –
Fitness function Aesthetic criteria
Initial solution Random harmony
Selection Updating memory
Process of generating new solutions Improvising new harmony
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the size of the harmony memory (HM) and the number of decision variables, 
respectively). Hence, the matrix of initial possible solutions, which is generated 
randomly, is as follows (there are M rows or solutions each with N decision 
variables):
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	 (10.2)

in which Memory = HM, Xj = jth solution, xj,i = ith decision variable of the jth 
solution, and M = capacity of HM. In the HS, each of the decision variable 

Start

Define the parameters of the algorithm

Initialize the harmony memory

Improvise the new harmony

Determine the worst harmony

Is the new harmony better than the 
worst one?

End

Update the harmony memory

Yes

No
Are the termination criteria satisfied?

Yes

No

Figure 10.1  The flowchart of the HS.
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values (x1, x2, x3, …, xN) is represented as discrete numbers. The HS solves prob-
lems with discrete decision space. Each decision variable i takes a value from a 
predefined set of values Vi as follows:

	 V v v v v i Ni i i i d i Di, , , ,, , , , , , , , ,1 2 1 2   	 (10.3)

in which Vi = set of possible values for ith decision variable, vi,d = dth possible 
value for the ith decision variable, and Di = total number of possible values for 
the ith decision variable.

10.4  Generating New Harmonies (Solutions)

New solutions have to be produced in the search for optima. The HS search 
process of generating new solutions is known as improvising harmony, which 
is performed on the basis of the three previously listed rules of musical improv-
isation. Each iteration of the HS generates only one new solution even though 
it is a population‐based algorithm.

A value is chosen for each decision variable among the possible values for 
that decision variable for the purpose of generating a new solution. 
Choosing values for decision variables is performed by three rules of 
improvisation in the HS optimization process: (1) memory strategy, (2) ran-
dom selection, and (3) adjustment pitch. X(new) is a new solution and it is 
defined as follows:

	 X x x x xnew
i N

( ) , , , , ,1 2  

	 (10.4)

in which X(new) = new solution and xi  = ith decision variable of the new 
solution.

10.4.1  Memory Strategy

Memory strategy chooses decision variables’ values from those that are stored 
in the memory. Memory strategy selects randomly one of the memorized solu-
tions for each decision variable and the new solution’s value is assigned as 
follows:

	 x x i Ni j i, , , , ,1 2 	 (10.5)

	 j Irnd M1, 	 (10.6)

in which xj,i = ith decision variable of the jth solution that is stored in the 
memory and Irnd(1, M) = an integer random number in the range [1,M]. Notice 
that for each decision variable i, a different random number is generated, and 
this is done for all the decision variables.
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Memory strategy generates a new solution from previously memorized 
solutions. This strategy for generating new solution is similar to crossover in 
the genetic algorithm, which combines the decision variables of two previous 
solutions to form a new solution. However, the memory strategy of the HS is 
likely to involve more than two solutions in the generation of a new one.

Imagine a three‐dimensional problem that includes three decision variables 
x1, x2, and x3. The possible values for decision variables x1, x2, and x3 are 
{a1,a2,a3,a4}, {b1,b2,b3,b4}, and {c1,c2,c3,c4}. If the size of HM is equal to 3 (M = 3) 
and three solutions are stored in the memory, as depicted in Figure  10.2, 
solution (a2,b3,c2) would be a new solution on the basis of memory strategy.

10.4.2  Random Selection

Random selection lets decision variables take values that are not in the HM. 
A new solution is first generated with memory strategy. One or more decision 
variables are then selected probabilistically to replace their values with random 
numbers. This approach involves the so‐called harmony memory considering 
rate (HMCR), which is a user‐defined parameter of the algorithm and ranges 
from 0 to 1. The HMCR determines the probability of selecting a decision variable 
for random replacement. Specifically, for each decision variable a random num-
ber in the range [0,1] is generated and compared with the HMCR. The decision 
variable is selected for random replacement if the randomly generated number is 
larger than the HMCR. Otherwise, it is not selected. If the ith decision variable is 
selected for random replacement, its value is determined as follows:

	 x vi i d, 	 (10.7)

	 d Irnd Di1, 	 (10.8)

in which vi,d = possible dth value for the ith decision variable.
Consider the example shown in Figure 10.2. If decision variable 3 is selected 

for random replacement, the new solution may be (a2, b3, c4) in which c4 is 
randomly replaces c2 even though c4 is not in the memory.

Harmony memory

New solution

(a4,b3,c2)

(a2,b1,c3)

(a4,b2,c2)

(a2,b3,c2)

Figure 10.2  Generating a new solution based on memory strategy.
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Equation (10.9) determines the decision variables of a new solution consid-
ering memory strategy and random selection together.

	
x

x if Rand
v if Rand i Ni

j i

i d

,

,
, , , ,1 2 	 (10.9)

	 j Irnd M1, 	 (10.10)

	 d Irnd Di1, 	 (10.11)

in which Rand = a random number in the range [0,1] and δ = HM considering 
rate (HMCR). For example, an HMCR of 0.95 indicates that the HS algorithm 
will choose the decision variable value from historically stored values in the 
memory with a 95% probability or from the entire possible range with a 
100 − 95 = 5% probability.

10.4.3  Pitch Adjustment

Pitch adjustment refines newly generated solutions. This is accomplished by 
examining every component obtained by the memory strategy to determine 
whether or not it should be pitch adjusted. This operation employs a parameter 
called the pitch adjustment parameter (PAR) that is user specified and ranges 
from 0 to 1. Pitch adjustment is a probabilistic process applied to decision vari-
ables. A random value is generated in the range [0,1]. If the generated random 
value is less than the PAR, then the value of a decision variable is changed to a 
neighboring possible value. For example, a PAR of 0.1 indicates that the algo-
rithm will choose a neighboring value with a 10% probability. If the ith decision 
variable is randomly selected for pitch adjustment and vi,d is its present value, 
its new value is determined as follows:

	
x

v if Rand
v if Randi

i d

i d

,

,

.

.
1

1

0 5
0 5	 (10.12)

in which vi d, 1 and vi d, 1 = neighboring possible values of vi,d listed as possible 
values for the ith decision variable. In the example shown in Figure 10.2 a1 or 
a3 can replace a2 in the new solution if the decision variable 1 is chosen for 
pitch adjustment.

10.5  Updating the Harmony Memory

The new solution may or may not be selected to enter the HM after it is 
generated. The new solution replaces the worst one if it has a better fitness 
value than the worst solution that is stored in the HM. Otherwise, the HM 
remains unchanged.
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10.6  Termination Criteria

The termination criterion determines when to end the algorithm. Selecting a 
good termination criterion has an important role in the correct convergence of 
the algorithm. The number of iterations, the amount of improvement of the 
objective function between consecutive iterations, and the run time are com-
mon convergence criteria for the HS.

10.7  User‐Defined Parameters of the HS

The size of HM (M), the HM considering rate (HMCR), the PAR, and the 
criterion used to terminate the algorithm are the user‐defined parameters of 
the HS. A good choice of the parameters is related to the decision space of a 
particular problem, and usually the optimal parameter setting for one problem 
is of limited utility for any other problem. Consequently, determining a good 
parameter setting often requires the execution of many experimental trials. 
Lots of practice and experience with the HS problems is helpful. A reasonable 
method for finding appropriate values for the parameters is performing 
sensitivity analysis, whereby combinations of parameters are tested and the 
algorithm is run several times for each combination to account for the random 
nature of the solution algorithm. In this manner the analyst obtains a distribu-
tion of solutions and associated objective function values for each combination 
of parameters. A comparison of the results from all the combination of param-
eters provides guidance on a proper choice of the algorithmic parameters.

10.8  Pseudocode of the HS

Begin
	 Input the parameters of the algorithm and initial data
	 Generate M initial possible solutions randomly
	 Memorize all solutions in the harmony memory
	 Evaluate fitness value for all solutions
	 While (termination criteria are not satisfied)
	 Determine the worst solution in the harmony memory
	 For i = 1 to N
	 Generate Rand randomly from the range [0,1]
	 If Rand > the harmony memory considering 

rate (HMCR)
	 Put xi = a random value
	 Otherwise
	 Generate integer number j randomly from 

the range [1,M]
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	 Put xi = xj,i
	 Generate Rand randomly from the range [0,1]
	 If Rand ≤ pitch adjustment parameter (PAR)

	 Generate Rand randomly from the range 
[0,1]

	 If Rand > 0.5
	 Put xi = an upper adjacent value
	 Otherwise
	 Put xi = an lower adjacent value
	 End if
	 End if
	 End if
	 Next i
	 Construct new solution X x x x xnew

i N
( ) , , , , ,1 2  

	 If the new solution is better than the worst one 
in the harmony memory

	 Update the harmony memory
	 End if
	 End while
	 Report the harmony memory
End

10.9  Conclusion

This chapter described HS, which is a meta‐heuristic algorithm for discrete 
optimization. First, a brief literature review of the HS was presented. This was 
followed by a description of the fundamentals of the HS and its algorithmic 
steps. A pseudocode closed this chapter.
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11

Summary

This chapter describes the shuffled frog‐leaping algorithm (SFLA), which is a 
swarm intelligence algorithm based on the memetic evolution of the social 
behavior of frogs.

11.1  Introduction

The shuffled frog‐leaping algorithm (SFLA) is a swarm intelligence algorithm 
based on the social behavior of frogs. It was proposed by Eusuff and Lansey 
(2003). Eusuff et al. (2006) demonstrated the capability of the SFLA for calibrating 
groundwater models and to design water distribution networks problems. They 
also compared the results of the SFLA with those of the genetic algorithm (GA). 
The comparison proved that the SFLA can be an effective tool for solving 
combinatorial optimization problems. Chung and Lansey (2008) developed a 
general large‐scale water supply model to minimize the total system cost by 
integrating a mathematical supply system representation applying the SFLA. 
The results showed that the SFLA found solutions that satisfied all the con-
straints for the studied networks. Seifollahi‐Aghmiuni et al. (2011) implemented 
the SFLA to analyze the efficiency of a designed network based on nodal demand 
uncertainty during the operational period. Zhao et al. (2011) presented a com-
bined water quality assessment model constructed based on artificial neural 
network (ANN) and the SFLA, which was applied to train the initialized data 
from water quality criteria. Balamurugan (2012) applied the SFLA to achieve 
the optimum solution of economic dispatch problem with multiple fuel options 
and demonstrated that the SFLA algorithm provides quality solutions with less 
computational time than other techniques reported in the literature. Fallah‐
Mehdipour et  al. (2013) extracted multi‐crop planning rules in a reservoir 

Shuffled Frog‐Leaping Algorithm
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system with the SFLA algorithm, the GA, and the particle swarm optimization 
(PSO). Orouji et  al. (2013) compared the performance of the SFLA with the 
simulated annealing (SA) in estimation of Muskingum flood routing parameters. 
The result showed the superiority of the SFLA relative to  the SA. Seifollahi‐
Aghmiuni et  al. (2013) applied the SFLA to evaluate performance of a water 
distribution network under pipe roughness uncertainty during an operational 
period. Orouji et al. (2014) proposes a hybrid algorithm, based on the PSO and 
SFLA, to solve the resource‐constrained project scheduling problem (RCPSP), 
which aims at the minimization of time required to complete a project consider-
ing resource limitations and the timing of activities. Results showed that the 
hybrid PSO–SFLA is quite capable to determine an optimal solution in all prob-
lems, even with a fewer number of iterations compared with the individual 
application of the PSO and SFLA. Bozorg‐Haddad et al. (2015) proposed a novel 
hybrid algorithm, based on the SFLA and the Nelder–Mead simplex (NMS), for 
the estimation of parameters of two new nonlinear Muskingum flood routing 
models. Mahmoudi et al. (2016) presented a novel tool for estimation of quality 
of surface water by coupling support vector regression (SVR) and the SFLA. 
Their results indicated that the new proposed SFLA–SVR tool is more efficient 
and powerful tool for determining water quality parameters in comparison with 
other previously methods such as genetic programming (GP).

11.2  Mapping Memetic Evolution of Frogs 
to the Shuffled Frog Leaping Algorithm (SFLA)

A meme is a spreading information template that affects human and animal 
minds and changes their behavior. Memes are spread by those who possess 
them. A pattern is known as a meme whenever an idea or information template 
influences someone, and the template is repeated or transmitted to someone 
else. Otherwise, the pattern is not a meme. Notice that all transmitted informa-
tion is called memetic. Examples of memes are songs, ideas, catch phrases, 
clothing fashions, and techniques for making pots or building arches.

A memetic algorithm (MA), which derives from “meme,” is a population‐
based method to solve optimization problems (Eusuff et al., 2006). Each meme 
contains memotypes that resemble the genes of a chromosome. Memes spread 
through the meme pool as they move from brain to brain. Genes and memes 
scatter from one individual to another in various ways, and their purposes are 
different. Memes are used basically for increased communicability among 
their hosts (described as frogs in the SFLA). Genes transmit DNA characteris-
tics from parents to offspring.

Eusuff et al. (2006) stated that memetic and genetic evolution are subjected 
to the same basic principles. Yet, memetic evolution is a much more flexible 
mechanism than genetic evolution. They reasoned that genes can only be trans-
ferred from parents to offspring and are transmitted between generations, 
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meaning that their propagation through higher organisms may take several 
years to propagate. Memes, on the other hand, can theoretically be transformed 
between any two individuals and can be transmitted within minutes. Gene rep-
lication is restricted by the relatively small number of offspring from a single 
parent, whereas the number of individuals that can take over a meme from a 
single individual is almost unlimited. Therefore, meme spreading is much faster 
than gene spreading (Eusuff and Lansey, 2003).

Think of a group of frogs leaping in a swamp. There are stones at different 
locations throughout the swamp. Frogs want to find the stone with the maxi-
mum amount of available food as fast as possible. For this purpose they improve 
their memes. The frogs interact with each other and develop their memes by 
exchanging information. Frogs change their positions by adjusting their leaping 
step size based on the development of memes.

The SFLA acts as an MA that progresses by transforming frogs in memetic 
evolution. Individual frogs of the SFLA are hosts for memes and are represented 
by means of a memetic vector. Made of a number of memotypes, each meme 
attributed to a frog is a solution of an optimization problem, while memotypes 
are the decision variables and resemble the genes of a chromosome in the 
genetic algorithm. The SFLA does not change the physical characteristics of 
an individual; rather, it progressively improves the ideas held by each frog in a 
so‐called virtual population, which is used to model the meme pool consisting 
of a diverse set of frogs in a manner analogous to the population representing a 
chromosome pool in a GA population. A set of frogs represents a population of 
solutions. The population of possible solutions is partitioned into subsets that 
are called memeplexes. Each meme is the unit of cultural evolution. The term 
memeplex is introduced to mark a group of mutually supporting memes that 
form an organized belief system, such as a religion or scientific theory. The 
memeplexes can be perceived as a set of parallel frog cultures attempting to 
reach some goal. Each frog culture or memeplex evolves toward its goal. Frog 
leaping improves an individual’s meme and enhances its performance toward 
the goal. Within each memeplex the frogs are influenced by other frogs’ ideas. 
Hence they experience a memetic evolution. Information is passed between 
memeplexes in a shuffling process according to memetic evolutionary steps. 
Table 11.1 lists the characteristics of the SFLA.

The SFLA starts the optimization process by randomly generating a set of 
frog memes (see Section 2.6), each of which is a solution of the optimization 
problem. All the initially generated frogs (or solutions) are classified into 
several memeplexes, so that each frog is assigned to one memeplex. These 
memeplexes allow evolving independently by searching the solution space in 
different directions. Information is then passed between memeplexes in a 
shuffling process. The search for the optimal solutions by the memeplexes 
continues after shuffling. The searches by the memeplexes and the shuffling 
process continue until the defined termination criteria are satisfied. Figure 11.1 
depicts the flowchart of the SFLA.
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Start

Define the parameters of the algorithm

Generate initial frags randomly

Frog leaping

Shuffling process

Are the termination criteria satisfied?
No Yes

Report the frogs

End

Classify frogs into memeplexes

Figure 11.1  The flowchart of the SFLA.

Table 11.1  The characteristics of the SFLA.

General algorithm (see Section 2.13) Shuffled frog leaping algorithm

Decision variable Memotype
Solution Meme of frog
Old solution Previous meme of frog
New solution Improved meme of frog
Best solution Best frog
Fitness function Amount of food
Initial solution Random frog
Selection Classification frogs into memeplexes
Process of generating new solution Frog leaping
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11.3  Creating an Initial Population

Each possible solution of the optimization problem is called a frog in the SFLA. 
Each solution or frog contains N decision variables or memotypes when solv-
ing an N‐dimensional optimization problem. A solution or frog is represented 
as an array of size 1 × N. This array is as follows:

	 Frog X x x x xi N1 2, , , , ,  	 (11.1)

where X = a possible solution (frog) of the optimization problem, xi = ith decision 
variable (memotype) of solution X, and N = the number of decision variables. 
The decision variable values (x1, x2, x3, …, xN) designate the memotypes.

The SFLA begins with the random generation of a matrix of size M × N (see 
Section 2.6) where M and N denote the size of the population of solutions and 
the number of decision variables, respectively. The matrix of solutions generated 
randomly is represented as follows (each row contains the decision variables of a 
solution or frog, and there are M rows):
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

11.4  Classifying Frogs into Memeplexes

A fitness function is used to evaluate the worth of each frog. Frogs are then 
sorted based on the values of their fitness function in ascending or descending 
order in a minimization or maximization problem, respectively. Figure  11.2 
depicts the sorting of frogs according to the values of the fitness function F(X) 
in a maximizing problem.

After sorting the frogs are assigned to Z memeplexes, with Y frogs in each 
memeplex. The frog with the best value of the fitness function becomes the first 
member of the first memeplex; the second‐best frog becomes the first member 
of the second memeplex. The assignment of sorted frogs continues until the 
Zth‐sorted frog becomes the first member of the Zth memeplex. In the next 
step, the (Z + 1)st frog becomes the second member of the first memeplex and 
so on. Figure 11.3 portrays the assignment of frogs to the memeplexes. Y and Z 
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are user‐defined parameters of the algorithm, and their values are determined 
by user. Consequently, the population size (M) is equal to Z × Y.

11.5  Frog Leaping

After the population of possible solutions of frogs is classified into several parallel 
communities (memeplexes), the frogs are influenced by other frogs’ ideas within 
each memeplex generating a so‐called memetic evolution. Memetic evolution 
improves the quality of the meme of an individual and enhances the individual 
frog’s performance toward a goal. The frogs with better memes (ideas) contribute 
more to the development of new ideas than frogs with poor ideas. This ensures 
that memetic evolution (i.e., the spreading of superior ideas) selects with higher 
probability the best individuals to continue the search for optima.

The frogs’ purpose is to move toward the optimum by improving their memes. 
For this purpose for each memeplex, a subset of the memeplex called a sub-
memeplex is chosen for the transmission of ideas. In actuality, the submemeplex 
has Q < Y frogs. The concept of a submemeplex is depicted in Figure 11.4.

# frog = 1

# frog = Z + 1

# frog = (Y – 1) × Z + 1

# memeplex = 1

# frog = 2

# frog = Z + 2

# frog = (Y – 1) × Z + 2

# memeplex = 2

# frog = Z

# frog = 2 × Z

# frog = M = Y × Z

# memeplex = Z

Figure 11.3  Assigning frogs to different memeplexes; Z = number of memeplexes and 
Y = number of frogs assigned to each memeplex.

Frogs

F(X) F(X)

Sort

1
2

4
3

M

Figure 11.2  Sorting frogs according to the fitness function F(X) in a maximizing problem.
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The choice of frogs to form a submemeplex conforms to the strategy that 
superiorly fit frogs have a higher probability of forming the submemeplex. 
The frogs of a memplex are ranked according to their fitness functions. The 
probability with which the Q frogs are selected from a memeplex to form a 
submemeplex conforms to the following distribution:

	
P Y j

Y Y
j Yj

2 1
1

1 2( )
( )

, , , ,

	 (11.3)

in which Pj = the probability that the jth frog of a memeplex is selected for the 
submemeplex, j = counter of frogs in the memeplex, and Y = total number of frogs 
in the memeplex. j = 1 denotes the best frog in the memplex, and j = Y denotes the 
worst frog in the memeplex. It follows from Equation (11.3) that the fittest (j = 1) 
frog of the memeplex has a probability equal to 2 1/( )Y  of being selected, and 
the least fit frog (j = Y) of the memeplex is chosen with a probability 2 2/( )Y Y .

Q frogs are selected to form a submemeplex, and they are ranked with the 
fittest frog having rank 1 and the worst frog having rank Q according to their 
fitness values. Next, the worst frog in the submemeplex is improved. The worst 
frog adopts its meme from the best frog within the submemeplex and from the 
globally best frog. The best and worse frogs in each submemeplex and the best 
global frog in the entire population of frogs are called Mbest, Mworst, and 
Pbest, respectively. The meme of the Mworst is improved as follows:

	 d Rand x x D d D i Ni Mbest i Mworst i i, , , , , , ,min max 1 2 	 (11.4)

	 x x d i Ni Mworst i i, , , , ,1 2 	 (11.5)

	 X x x x xnew
i N1 2, , , , , 

	 (11.6)

where di = leaping step size for the ith decision variable of the worst frog in the 
submemeplex; Rand = random values in the range [0,1]; xMbest,i = ith decision 
variable of the best solution in the submemeplex; xMworst,i = ith decision variable 

Entire population including Z
memeplexes 

Memeplex of Y frogs

Submemeplex of Q
frogs

Figure 11.4  The representation of a memeplex 
and a submemeplex within the entire 
population.
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of the worst solution in the submemeplex; Dmin and Dmax = minimum and 
maximum allowable values for the leaping step size, respectively; xi  = ith 
decision variable of the new solution; and X(new) = the new solution.

If X(new) is better than the Mworst, it replaces Mworst. Otherwise, X(new) is 
generated based on Pbest instead of Mbest as follows:

	 d Rand x x D d D i Ni Pbest i Mworst i i, , , , , , ,min max 1 2 	 (11.7)

	 x x d i Ni Mworst i i, , , , ,1 2 	 (11.8)

	 X x x x xnew
i N1 2, , , , , 

	 (11.9)

in which xPbest,i = ith decision variable of the best solution in the entire 
population.

In case X(new) is not better than Mworst, a randomly generated possible solution 
substitutes Mworst as follows:

	 x Rnd x x i Ni i
L

i
U( ) ( ), , , , ,1 2 	 (11.10)

	 X x x x xnew
i N1 2, , , , , 

	 (11.11)

in which Rnd(a,b) = a random value from the range [a,b], xi
L( ) and xi

U( ) = the 
lower and upper allowable values of the ith decision variable, respectively.

The frogs of the memeplex are ranked according to their fitness values 
following the replacement of Mworst. A new set of solutions are selected 
randomly to construct a new submemeplex, and the worst solution among 
them is updated as described previously. This process is executed for all the 
memeplexes for a user‐defined number of times μ. After a certain number of 
memetic evolutions (μ), the memeplexes are forced to mix to form new meme-
plexes through a shuffling process. This shuffling enhances the quality of the 
memes after being influenced by the ideas of frogs from different regions of the 
swamp (different memeplexes).

11.6  Shuffling Process

The intercultural migration of frogs accelerates the searching procedure 
through the sharing of information, and it ensures that the cultural evolution 
toward any particular goal or optimum is free from regional or group bias. In 
fact, shuffling guarantees that there is no bias in cultural evolution toward any 
specific goal (Eusuff et al., 2006).

Shuffling leads to the convergence of cultures that evolve in isolation until 
they are brought together to share ideas or information. Shuffling mixes all the 
memeplexes into a unique population of possible solutions from which next 
memeplexes are produced. Also, the shuffling process updates the best frog.
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11.7  Termination Criteria

The termination criterion determines when to end the SFLA. Selecting a 
good termination criterion has an important role on the correct conver-
gence of the algorithm. The number of iterations, the amount of fitness 
improvement of the solution between consecutive iterations, the number of 
algorithmic iterations, and the run time are common termination criteria 
for the SFLA.

11.8  User‐Defined Parameters of the SFLA

The number of memeplexes (Z), the number of solutions in each memeplexes 
(Y), the submemeplex size (Q), the minimum and maximum allowable values 
for the leaping step size, the number of memetic evolutions (μ), and the 
criterion used to decide when to terminate the algorithm are user‐defined 
parameters of the SFLA. A good choice of the parameters depends on the 
decision space of a particular problem, and frequently the optimal parameter 
setting for one problem is of limited utility for any other problem. Consequently, 
determining a good parameter setting often requires experimentation with the 
parameter set and experience with specific problems. A reasonable method 
for  finding appropriate values for the parameters is performing sensitivity 
analysis. This entails choosing various sets of parameters and running the 
SFLA with each set of parameters a number of times to account for the random 
nature of its solution scheme. This is repeated for each set of parameters, and 
carrying out a comparison of the solutions from all runs to gain an insight on 
an appropriate choice of algorithmic parameters.

11.9  Pseudocode of the SFLA

Begin
	 Input the parameters of the algorithm and initial data
	 Let Z = the number of memeplexes; Y = the number of 

frogs in each memeplex; μ = the number of memetic 
evolutions; Q = submemeplex size; and M = Y × Z

	 Generate M initial possible frogs (solutions) randomly 
and evaluate their fitness values

	 While (the termination criteria are not satisfied)
	 Sort the frogs according to their fitness values
	 Divide frogs into Z memeplexes each of which has 

Y frogs
	 For s = 1 to Z 
	 For j = 1 to μ
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	 Choose Q frogs from memeplex s randomly 
and make a submemeplex

	 Improve the worst frog of the submemeplex 
(MWorst) according to the best frog of 
the submemeplex (MBest) and update its 
fitness value

	 If there is no improvement in the worst frog
	 Improve the worst frog of the  

submemeplex (MWorst) according to 
the best frog in the population 
(PBest) and update its fitness 
value

	 End if
	 If there is no improvement in the worst frog
	 Generate a random frog to replace the 

worst frog of the submemeplex and 
evaluate its fitness value

	 End if
	 Next j
	 Next s
	 Combine all memeplexes.
	 End while
	 Report the best solution
End

11.10  Conclusion

This chapter described the SFLA, which is a swarm intelligence algorithm 
based on the memetic evolution of the social behavior of frogs. The chapter 
presented a brief literature review of the SFLA and its applications, its algorith-
mic fundamentals, and a pseudocode.
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Summary

This chapter describes the honey‐bee mating optimization (HBMO) algorithm, 
which is based on the mating strategy of honey bees. The chapter presents a 
review of the HBMO, its applications, fundamentals, algorithmic steps, and a 
pseudocode.

12.1  Introduction

Honey bees are social insects that live in large and well‐organized hives. Social 
intelligence, observance of collective rules, and division of labor are some of 
the traits that honey bees exhibit. Honey bees mate and reproduce in a unique 
way. The honey‐bee mating optimization (HBMO) algorithm is inspired by the 
honey‐bee mating process. It was developed and applied to reservoir operation 
by Bozorg‐Haddad et al. (2006). Bozorg‐Haddad and Mariño (2007) proposed 
dynamic penalty function as a strategy in solving water resources combinato-
rial optimization problems with the HBMO algorithm. Bozorg‐Haddad et al. 
(2009) applied the HBMO to solve non‐convex optimization problems. Several 
studies have reported the successful application of the HBMO algorithm to 
solve a variety of problems such as water reservoir operation (Afshar et  al., 
2007; Bozorg‐Haddad and Mariño, 2008; Bozorg‐Haddad et  al., 2008b, 
2010a,  b; Afshar et  al., 2011), water distribution networks  (Bozorg‐Haddad 
et  al., 2008a; Jahanshahi and Bozorg‐Haddad, 2008; Ghajarnia et  al., 2009, 
2011; Soltanjalili et al., 2011; Sabbaghpour et al., 2012; Soltanjalili et al., 2013a, 
b; Solgi et al., 2015; Bozorg‐Haddad et al., 2016a, b, c; Solgi et al., 2016b), pro-
ject management (Bozorg‐Haddad et  al., 2010c), supply chain management 
(Marinakis et  al., 2008a), clustering analysis (Marinakis et  al., 2008b), elec-
tric  distribution systems (Niknam, 2009), image processing and pattern 
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recognition (Horng et al., 2009), design and operation of run‐of‐river power 
plants (Bozorg‐Haddad et al., 2011), and groundwater management (Bozorg‐
Haddad and Mariño, 2011). Several of those works have proven the superiority 
of the HBMO algorithm compared with other algorithms such as the genetic 
algorithm (GA), ant colony optimization (ACO), and particle swarm optimiza-
tion (PSO) for the chosen applications. Karimi et al. (2013) proved the better 
performance of the HBMO algorithm than that of the GA solving various test 
functions. Solgi et  al. (2016a) modified the HBMO leading to the enhanced 
HBMO (EHBMO) algorithm and demonstrated the superiority of the EHBMO 
on the HBMO and elitist GA in solving several mathematical functions and 
water resources optimization problems.

12.2  Mapping Honey‐Bee Mating Optimization 
(HBMO) to the Honey‐Bee Colony Structure

There is fossil evidence of honey bees’ existence dating back 100 million 
years ago (Michener and Grimaldi, 1988). Honey bees live together in well‐
organized hives. The purpose of a hive is to maximize the efficiency of the bees 
by means of the division of the labor. A well‐organized hive remains viable 
except in special circumstances. A colony of bees is a group of bees living 
together in one bee hive. A honey‐bee colony typically consists of a single egg‐
laying long‐lived queen, anywhere from zero to several thousand drones 
(depending on the season) and usually 10 000–60 000 workers. So a honey‐bee 
hive consists of a single queen, broods, drones, and workers (Moritz and 
Southwick, 1992). The queen and workers are female, while drones are male. 
The queen is generally the only bee that can mate with drones and can fertilize 
the eggs. However, queens are not the only colony members capable of 
reproduction. Honey‐bee workers cannot mate but can lay male eggs. Mate 
production by workers in the   honey bee is rare, however, due to workers’ 
policing. The primary duty of workers is brood caring. Drones are the fathers 
of the colony. The queen can lay both fertilized and unfertilized eggs. Fertilized 
eggs represent female bees (worker or queen) and unfertilized eggs represent 
drones. Drones are haploid and amplify their mother’s genome without altera-
tion of their genetic composition except through mutation. However female 
bees inherit their genome from both their mothers and fathers. When a new 
queen is born, it replaces the old queen or it leaves the hive.

The queen is the most important member of the hive because she is the one 
that breeds new members. With the help of approximately 18 males (drones), 
the queen bee mates from one to five times over several days in her life. The 
sperm from the drone is planted inside a pouch in her body. She uses the stored 
sperm to fertilize the eggs. The queen exits from the hive and engages in a 
mating flight around the hive to fertilize her eggs. In each mating flight the 
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queen usually mates with 7–20 drones. In each mating the drone’s sperm 
reaches the queen’s spermatheca and accumulates there to form the genetic 
pool of the colony. After the end of the mating flight, the queen returns to 
the  hive and starts laying eggs. The successful drones in mating flights die 
immediately after mating with the queen. In the other words, insemination 
ends with the death of the drone. The unsuccessful drones (those that do not 
mate with the queen) also die from starvation and exposure because the work-
ers forbid their entry to the hive at the end of the mating season. Usually, as the 
nights turn colder and winter arrives, the drones still in the hive are forced out 
of the hive by worker bees. This is a survivalist sacrifice because the hive would 
not have enough food if the drones remain in the hive. The queen usually starts 
laying eggs in the middle of February and continues to do so till the end of June. 
The population of the hive grows day by day as a result of reproduction until 
space shortages appear in the hive.

The HBMO algorithm mimics the queen, broods, and drones as possible solu-
tions that are made up of genes. Each gene is equivalent to a decision variable. 
The best solution is considered as the queen. Broods can be diploid or haploid 
broods. The former are made by applying mutation and crossover operators on 
the queen’s genome and drone’s, whereas the latter are made by applying muta-
tion on the queen. Brood caring by workers is mapped into the algorithm to 
improve the broods by applying heuristic functions. The queens play the most 
important role in the mating process in nature as well as in the HBMO algo-
rithm. Each queen is characterized with a genotype, speed, energy, and a sper-
matheca with defined capacity. Spermatheca is the repository of drones’ sperm 
produced during mating with the queen. Therefore, for a queen with defined 
spermatheca size, speed and energy are initialized before each mating flight. 
After successful mating, the drones’ sperm is stored in the queens’ spermatheca. 
Later in the breeding process, a brood is constructed by copying some of the 
drones’ genes into the brood genotype and completing the rest of the genes from 
the queens’ genome. The fitness of the resulted genotype is determined by 
evaluating the value of the fitness function of the brood genotype and/or its 
normalized value. It is important to note that a brood has only one genotype. 
A mating flight is mapped into the HBMO algorithm as the queen randomly 
chooses drones from the decision space of the problem. The genome of each 
drone that is successful in mating is stored in the queen’s spermatheca. Also, the 
death of drones at the end of the mating season is simulated by destroying all 
remaining drones after the mating flight in each iteration of the HBMO algo-
rithm. The characteristics of the HBMO algorithm are listed in Table 12.1.

The HBMO algorithm starts with the random generation of the initial popu-
lation of possible solutions (see Section 2.6). The solutions are ranked based 
on their fitness values. The fittest (best) solution is marked out as the queen. 
In  the next step a mating flight is implemented to randomly select drones 
(solutions) from the decision space for mating with the queen. The genome of 
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each selected drone is stored in the queen’s spermatheca. The remaining 
solutions are deleted after the mating flight. The queen and the solution stored 
in the queen’s spermatheca are used to make the next generation. First, the 
broods (diploid or haploid) are made. The haploid broods are made by apply-
ing mutation on the queen. The diploid broods are made by applying crossover 
and mutation operators between the queen and the solutions stored in the 
queen’s spermatheca. Heuristic functions that model worker bees are applied 
in an attempt to improve the broods. Finally, the best brood replaces the old 
queen if it is better than the old queen. Figure 12.1 depicts the flowchart of the 
HBMO algorithm.

12.3  Creating an Initial Population

Each possible solution of the optimization problem calculated by the HBMO 
algorithm is called a bee. Each bee (drone, queen, or brood) in the mathemati-
cal formulation of an optimization problem symbolizes a series of genes (deci-
sion variable) that represent a solution of the problem. In an N‐dimensional 
optimization problem, a bee is an array of size 1 × N. This array is as follows:

	 Bee X x x x xi N1 2, , , , ,  	 (12.1)

where X = a solution of optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. Each of the decision variable 
values (x1, x2, x3, …, xN) can be represented as floating point number (real values) 
or as a predefined set for continuous and discrete problems, respectively.

A matrix of size M × N is generated randomly (see Section 2.6), where M and 
N are the size of the population of solutions and the number of decision 

Table 12.1  The characteristics of the HBMO.

General algorithm (see Section 2.13) Honey‐bee mating optimization

Decision variable Gene
Solution Bee (drone/queen/brood)
Old solution Queen and drone
New solution Brood
Best solution Queen
Fitness function Fitness of bee
Initial solution Random bee
Selection Mating process
Process of generating new solutions Genetic operators and brood caring
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variables, respectively. Hence, the matrix of solutions that is generated ran-
domly is given as follows (rows and columns are the number of bees and the 
number of decision variables, respectively):
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	 (12.2)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

Start

Define the parameters of the algorithm

Generate initial possible solutions randomly

Select drones for mating with the queen

Improve broods by workers

Generate broods 

Are the termination criteria satisfied?
No Yes

Report the queen

End

Mark the best solution out as the queen 

Figure 12.1  The flowchart of the HBMO algorithm.
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12.4  The Queen

As mentioned previously, the queen plays the most important role in the 
mating process in nature as well as in the HBMO algorithm. Each queen is 
characterized with a genotype, speed, energy, and a spermatheca with defined 
capacity. Genotype characterizes the queen as a solution of the optimization 
problem (the best solution in the present generation). The speed and energy of 
the queen are parameters of the algorithm that control the rate of convergence 
and are described in the following sections in detail. The spermatheca is 
the repository of drones’ sperm produced during mating with the queen. The 
speed and energy of a queen with spermatheca size (Sc) are initialized before 
each mating flight at random in the range of (0.5,1). All the bees are ranked 
based on their fitness values. The best solution (i.e., the bee with the best 
fitness value) is made queen. Figure 12.2 shows how to select the queen in a 
minimization problem.

It is seen in Figure 12.2 that after all the solutions are ranked, the best one is 
designated as the queen and other solutions become trial solutions. The rules 
for trial solutions are described in the following sections.

12.5  Drone Selection

The HBMO selects drones to mate with the queen and generate broods 
(new solutions). The queen is the mother of all the new solutions, and they 
have different fathers that are drones selected for mating. Two strategies are 
used for drone selection: (1) mating flights and (2) considering trial solutions 
as drones.

Bees

F(X) F(X)

Queen

Trial 
solutionsSort

Figure 12.2  Determining the queen and trial solutions according to the fitness 
function F(X).
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12.5.1  Mating Flights

During each mating flight, the queen flies based on its energy and speed, which 
are generated at random for the queen before each mating flight commences. 
The mating flight begins, and the queen, based on its speed and energy, finds 
the best randomly generated drones for mating. The queen’s motion is gov-
erned by its speed, which is the probability of mating between the queen and 
drones. The speed of the queen is at its maximum value at the beginning of the 
mating flight, and it decreases as the queen flies and vets different drones. 
Therefore, the space of the queen’s activity decreases as it continues to fly. This 
means that the probability of the mating for a drone in the beginning of the 
mating flight is higher than the probability of mating for the same drone at the 
end of the mating flight. At every step of the mating flight, the queen tests its 
adjacent drone using a probability function. The drones’ sperm is saved in the 
queen’s sperm bag if the mating is successful (the drone passes the threshold).

Drones are randomly generated for the mating process. A drone’s genome is 
memorized in the queen’s spermatheca after evaluating its fitness value if the 
drone succeeds in a simulated annealing (SA) function as follows:

	 X X eq d

F X F Xq d

,
( ) ( )

	 (12.3)

in which ζ(Xq, Xd) = the probability of mating a drone with the queen, F(Xq) = the 
fitness function of the queen, F(Xd) = the fitness function of the drone, and 
λ = queen’s speed, which is a parameter of the algorithm and whose value 
regulates selective pressure. The selective pressure is high (low) when λ is low 
(high). A uniformly distributed random variable (Rand) within [0,1] is generated 
while ζ(Xq, Xd) is evaluated. If ζ(Xq, Xd) is larger than or equal to Rand, the drone 
is successful in mating with the queen; otherwise it is not. Equation (12.3) acts 
as an annealing function. Whether or not the mating between a drone and 
the queen is successful, another drone is randomly generated until the queen’s 
spermatheca (Sc) is full or the queen’s energy is finished.

The probability of mating is high when either the queen’s speed is high or the 
fitness of the drone (F(Xd)) is as good as that of the queen (F(Xq)). It is also high 
at the beginning of the mating flight when the queen’s speed is high or when 
the drone is fit enough. The queen’s energy and speed decrease after each 
movement of the queen in space or after each mating according to the follow-
ing equations:

	
( )new 	 (12.4)

	 ( )new 	 (12.5)

where ψ(new) = new energy of the queen, ψ = old energy of the queen, λ(new) = new 
speed of the queen, λ = old speed of the queen, α = a coefficient between (0,1), 
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and γ = the value of the energy decrease. The energy and speed of the queen is 
updated each time that a new solution (drone) is randomly generated.

The mating flight may be considered as a set of transitions in a state space (the 
environment) where the queen moves between different states at variable speed 
and mates with the drones encountered in each state probabilistically. At the start 
of the flight, the queen is initialized with some energy content and returns to her 
nest when the energy is within some threshold from zero or when her spermatheca 
is full. It might be that the energy is zero but the spermatheca is not full yet. In this 
situation the queen uses the trial solutions to fill the spermatheca.

The queen starts breeding after completing the mating flight. A queen is 
selected in proportion to her fitness and inseminated with a randomly selected 
sperm from her spermatheca.

12.5.2  Trial Solutions

Trial solutions are used for local search with the present population. It was 
previously stated that mating selects drones that mate with the queen and 
generate new solutions. For this purpose the queen selects Sc drones for 
crossover. Whenever the improvement of the queen exceeds a predefined 
threshold, Sc trial solutions become drones and saved in the queen’s sper-
matheca. In this case the mating flight is not carried out, and, instead, the 
queen’s spermatheca is filled with the best solutions of the present population. 
However, whenever the improvement of the queen is less than a predefined 
threshold, then a mating flight is carried out to escape from entrapment in a 
local optimum. The difference between best solutions (queens) of successive 
iterations is evaluated as follows:

	
F X F Xq

t
q

t 1 	 (12.6)

in which F Xq
t( )( )  = the queen’s fitness value in iteration t and F Xq

t( )( )1  = the 
queen’s fitness value in iteration t − 1. If ε is less than a predefined threshold like 
θ, then drones are selected by mating flight in the decision space in iteration 
t + 1, and randomly generated solutions fill the queen’s spermatheca.

It may happen that in a mating flight, the energy of the queen is used up 
but  the queen’s spermatheca is not yet filled. In this instance, the queen’s 
spermatheca is also filled with the best trial solutions.

12.6  Brood (New Solution) Production

New broods are produced by combining some of the queen’s genes with 
existing genes in the sperm bag. Broods are generated by means of genetic 
operators including crossover and mutation operators. Crossover replaces 
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some of the queen’s genes with genes of drones memorized in the spermatheca. 
The crossover operator generates new offspring by exchanging some genes 
between the queen and the drones. Thus, crossover involves the exchange of 
decision variables between solutions. Goldberg (1989) and Michalewicz (1996) 
have described several methods of crossover including (1) one‐point crossover, 
(2) two‐point crossover, and (3) uniform crossover. Crossover occurs between 
two solutions. Figure 12.3 illustrates different types of crossover.

One‐point crossover selects randomly a crossover point. The genes of 
parents placed adjacent to the crossover point generate a pair of offspring genes 
as shown in Figure 12.3a by interchanging the position of the parents’ genes. 
Two‐point crossover selects randomly two crossover points. The genes of the 
parents located between the crossover points are replicated in the offspring as 
shown in Figure 12.3b. The genes of the parents not placed between the crosso-
ver points are transposed in the offspring (see Figure 12.3b). Uniform crossover 
selects randomly parents’ genes, and the offspring’s genes are transposed 
correspondingly as shown in Figure 12.3c.

A A A A A A

B B B B B B

A A A A B B

B B B B A A

Parents Offspring

Offspring

Offspring

C

Crossover

A A A A A A

B B B B B B

B B A A B B

A A B B A A

Parents

C′C

Crossover

A A A A A A

B B B B B B

B A A A B A

A B B B A B

Parents

Crossover

(a)

(b)

(c)

Figure 12.3  Different crossover approaches: (a) one‐point crossover, (b) two‐point 
crossover, and (c) uniform crossover.
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A crossover point is an integer random number in the range [1,N]. For 
example, if X x x xN1 2, , ,  denotes the queen, X x x xN1 2, , ,  denotes a 
drone, and the index C indicates a crossover point in one‐point crossover, then 
two children are generated as follows (see Figure 12.3a):

	 X x x x x x xnew
c c c N1 1 2 1 2, , , , , , , 

	 (12.7)

	 X x x x x x xnew
c c c N2 1 2 1 2, , , , , , , 

	 (12.8)

in which X new
1
( ) and X new

2
( ) = newly generated solutions by one‐point crossover 

operator.
The mutation operator replaces one or more decision variables of the current 

solution with random values, and the other values of the decision variable 
remain unchanged. Figure 12.4 illustrates the mutation operator.

One of the methods of mutation is called uniform mutation. Uniform mutation 
randomly generates a value that is within the feasible range of values to replace 
the value of a gene. Uniform mutation prescribes that if the ith decision variable 
(xi) of a new solution X x x x xi N( , , , , , )1 2    and is selected for mutation, then 
the muted brood would be X x x x xi N( , , , , , )1 2    whereby xi  is evaluated as 
follows:

	 x Rnd x xi i
L

i
U( ) ( ), 	 (12.9)

in which xi  = the new value of xi that is selected for mutation, xi
U( ) = the upper 

bound of the ith decision variable, xi
L( ) = the lower bound of the ith decision 

variable, and Rnd(a,b) = a random value from the range [a,b].
Mutation is done probabilistically. In fact, a mutation probability (PM) is 

specified that permits random mutations to be made to individual genes. The 
mutation operator is implemented by generating a random number Rand in 
the range [0,1] for each decision variable of a new solution. If Rand is less than 
PM, that decision variable is muted; otherwise it is remained without change.

A A A A A

A A A A D A

Original brood

Muted brood

A

Randomly generated

Figure 12.4  Performance of mutation operator.
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12.7  Improving Broods (New Solutions) by Workers

The workers who feed the queen and broods are symbols of meta‐heuristic 
functions that improve solutions. Workers that are used to improve the brood’s 
genotype represent a set of different heuristics for local searching. In the brood 
caring stage of the HBMO, an attempt is made to improve the generated broods 
using heuristic functions. For this purpose, a heuristic function was introduced 
by Solgi et al. (2016a). The introduced heuristic function replaces the value of 
some genes of a brood with new ones that are randomly generated based on the 
value of the corresponding genes that belong to the brood, the queen of the 
previous iteration, and the queen of the present population. Let X x xn( , , )1   
denote a brood, Y y yn( , , )1   denote the best solution in the present iteration, 
Y y yn( , , )1   denote the best solution in the previous iteration, and the com-
ponent xi from brood X is randomly chosen for substitution, where 
X x x xnew

i n
( ) ( , , , , )1    denotes the brood after brood caring. xi  is evaluated 

as follows:

	
x G y G xi i i( ) , ( ) ( ) ( ) , ( ) ( )2 2 2 21 1 xxi

(12.10)

where

	
G a b b Rnd a x b Rnd x ai

U
i
L( , ) , ,( ) ( )1

2
1

2
	 (12.11)

	 y xi i	 (12.12)

	 y yi i 	 (12.13)

in which xi = the value of the brood’s ith component before substitution, 
xi  = the value of the brood’s ith component after substitution, yi = the value of 
the best solution’s ith component in the present iteration, yi  = the value of the 
best solution’s ith component in the previous iteration, and ϕ(a) = returns the 
sign of the number a (sign function) that can be equal to 1, −1, or 0. Thereafter, 
the functions ϕ(a) and G(a,b) are evaluated and are substituted in Equation 
(12.10) as follows:

	

x

Rnd y x if

Rnd x y if

Rnd x x ifi

i i
U

i
L

i

i i
U

,

,

,

( )

( )

( )

0

0

0 aand

Rnd x x if and
x if and

i
L

i

i

0

0 0
0 0

( ) ,

	 (12.14)
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According to Equations (12.14) if the gene of the best solution (yi) in the 
present iteration is larger than that of the best solution in the previous iteration 
( )yi , a random value between yi and xi

U( ) replaces the gene of the brood. 
Conversely, if yi is less than yi , xi  is made equal to a random value between xi

L( ) 
and yi. When yi and yi  are the same ( 0), xi  is determined based on the result 
of the comparison between the present value of the brood’s gene and that of the 
corresponding gene of the best solution in the present iteration (yi). If yi is 
larger than xi, xi  is made equal to a random value between xi and xi

U( ). If yi is less 
than xi, xi  is made equal to a random value between xi

L( ) and xi. Otherwise, if yi, 
yi , and xi are the same, the value of the brood’s gene is not changed.

12.8  Termination Criteria

The termination criterion determines when to terminate the algorithm. 
Selecting a good termination criterion has an important role in the correct 
convergence of the algorithm. The number of iterations, the amount of 
improvement of the fitness function between consecutive iterations, and the 
run time are common termination criteria for the HBMO.

12.9  User‐Defined Parameters of the HBMO

The size of the population (M), the size of the queen’s spermatheca (Sc), θ, the value 
of the queen’s energy decrease (γ), the reduction factor of the queen’s speed (α), and 
termination criteria are user‐defined parameters of the HBMO. A good choice of 
the parameters is related to the decision space of a particular problem, and usually 
the optimal parameter setting for one problem is of limited utility for any other 
problem. The difficulty associated with adjusting the values of the parameters is 
that the decision space is usually not well known. Consequently, determining a 
good parameter setting often requires the execution of trial‐and‐error experiments. 
A reasonable method for finding appropriate values for the parameters is perform-
ing sensitivity analysis. This is accomplished by choosing combinations of parame-
ters, and the algorithm is run several times for each combination. Comparison of 
the results from many runs helps in determining appropriate parameter values.

12.10  Pseudocode of the HBMO

Begin
	 Input the parameters of the algorithm and initial data
	 Let θ = the threshold of applying mating flight, ψ = 

energy of the queen, and M = the population size
	 Generate M initial possible solutions randomly
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	 While (the termination criteria are not satisfied)
	 Mark the best solution out as the queen and other 

solutions as trial solutions
 	 Evaluate the difference between the queen of 

present and previous iteration (ε)
	 If ε > θ then
	 Fill the queen’s spermatheca with best trial 

solutions as drones
	 Otherwise
	 Generate energy and speed of the queen randomly
	 While (ψ > 0)
	 If the queen’s spermatheca is not full
	 Generate a solution randomly
	 If the fitness value of the generated 

solution is better than the queen
	 Add the generated solution to the 

queen’s spermatheca
	 Update the queen’s speed and energy
	 Otherwise
	 Evaluate ζ(Xq, Xd) and generate Prob 

randomly
	 If ζ(Xq, Xd) > Prob
	 Add the generated solution to 

the queen’s spermatheca
	 Update the queen’s speed and 

energy
	 End if
	 End if
	 End if
	 End while
	 If the queen’s spermatheca is not full
	 Fill the queen’s spermatheca with trial 

solutions
	 End if
	 End if
	 Generate broods (new solutions) by crossover and 

mutation
	 Improve the broods (new solutions) by workers
	 Replace all trial solutions with new generated 

solutions
	 Empty the queen’s spermatheca
	 End while
	 Report the best solution
End
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12.11  Conclusion

This chapter described the HBMO algorithm. It contains a literature review 
of the HBMO and its applications. The mathematical statement of the HBMO 
algorithm was mapped to the basic functioning of honey‐bee colonies. 
A pseudocode of the HBMO was presented.
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13

Summary

This chapter describes the invasive weed optimization (IWO) algorithm, which 
mimics weed’s adaptive patterns. This chapter contains a literature review of 
the IWO, an overview of weeds’ biology, a description of the mapping of the 
IWO algorithm to weeds’ biology, a thorough explanation of the steps of 
the IWO algorithm, and a pseudocode of the IWO algorithm.

13.1  Introduction

Invasive weed optimization (IWO) was developed by Mehrabian and Lucas 
(2006). They solved two engineering problems and compared the results with 
other algorithms including the genetic algorithm (GA), particle swarm optimi­
zation (PSO) algorithm, the shuffled frog leading algorithm (SFLA), and the 
simulated annealing (SA) algorithm. The results showed a relatively superior 
performance by the IWO. The IWO has been implemented in a variety of engi­
neering optimization problems. Mehrabian and Yousefi‐Koma (2007) applied 
the IWO to optimize the location of piezoelectric actuators on a smart fin. 
Mallahzadeh et al. (2008) tested the flexibility, effectiveness, and efficiency of the 
IWO in optimizing a linear array of antenna and compared the computed results 
with those of the PSO algorithm. Sahraei‐Ardakani et al. (2008) implemented 
IWO to optimize the generation of electricity. Roshanaei et al. (2009) applied 
the  IWO to optimize uniform linear array (ULA) used in wireless networks, 
such as commercial cellular systems, and compared their results with those from 
the GA and least mean squares (LMS). Mallahzadeh et al. (2009) applied the 
IWO to design vertical antenna elements with maximal efficiency. Krishnanand 
et al. (2009) compared the effectiveness of the IWO, GA, PSO algorithm, artifi­
cial bee colony (ABC), and artificial immune (AI) by solving five basic standard 
mathematical problems with multivariate functions. Zhang  et  al. (2010) used 

Invasive Weed Optimization
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heuristic algorithm concepts for developing the IWO. They introduced the IWO 
with crossover function and tested the new algorithm on standard mathematical 
problems and compared the results of the developed IWO with those of the 
standard IWO and PSO. Sharma et  al. (2011) applied the IWO to schedule 
dynamic economic dispatching (DED). Their results showed that the IWO algo­
rithms reduced production costs relative to those obtained with the PSO and AI 
algorithms and the differential evolution (DE). Jayabarathi et al. (2012) employed 
the IWO for solving economic dispatch problems. Kostrzewa and Josiński 
(2012) developed a new version of the IWO and tested their algorithm on sev­
eral standard mathematical problems. Abu‐Al‐Nadi et al. (2013) implemented 
the IWO for model order reduction (MOR) in linear multiple‐input–multiple‐
output (MIMO) systems. Sang and Pan (2013) introduced the effective discrete 
IWO (DIWO) to solve the problem of flow shop scheduling with average stored 
buffers and compared their results with the hybrid GA (HGA), hybrid PSO 
algorithm (HPSO), and the hybrid discrete differential evolution algorithm 
(HDDE). Saravanan et al. (2014) applied the IWO to solve the unit commitment 
(UC) problem for minimizing the total costs of generating electricity. They com­
pared their results with those calculated with the GA, SFLA, PSO, Lagrangian 
relaxation (LR), and bacterial foraging (BF) algorithms. Barisal and Prusty (2015) 
applied the IWO to solve economic problems on a large scale with the aim of 
minimizing the costs of production and transfer of goods subject to restrictions 
on production, market  demand, and the damage caused to goods during 
transportation and to alleviate other calamities. Asgari et al. (2015) presented a 
modified IWO as weed optimization algorithm (WOA) to optimal reservoir 
operation. Hamedi et al. (2016) applied the WOA for parameter estimation of 
hydrologic flood‐routing models.

13.2  Mapping Invasive Weed Optimization (IWO) 
to Weeds’ Biology

Weeds grow spontaneously and compete with other vegetation. A plant is called 
weed if in any specified geographical area, its population grows entirely or 
predominantly in conditions markedly disturbed by man. Weeds are agricultural 
pests. They can easily adapt to almost any environment and new conditions. It 
is a common belief in agronomy that “The Weeds Always Win.” Weeds may 
reproduce with or without sexual cells depending on the type of the plant. In 
sexual reproduction eggs are fertilized by pollen and form seeds in a parent 
plant. Several factors such as wind, water, and animals distribute seeds. When 
seeds find suitable place to thrive, they grow to adult plants while in interaction 
with other neighboring plants. They turn to flowering plants and produce seeds 
at the final stage of their life. The weed biomass produced becomes limited by 
the availability of resources so that the yield per unit area becomes independent 
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of density. The stress of density increases the risk of mortality to whole plants 
and their parts, and the rate of death becomes a function of the growth rate of 
the survivors. Thus, birth, growth, and reproduction of plants are influenced by 
population density. There are three main components of compatibility in the 
community. They are (1) reproduction, (2)  struggle for survival with com­
petitors, and (3) avoidance of predators. Any weed colony tries to improve its 
compatibility to achieve a longer life. The study of population biology seeks to 
unravel the factors that are important for weed survival and reproduction. One 
of the factors is called r‐selection, which implies “live fast, reproduce quick, die 
young.” r‐selection enhances the chances to succeed in unstable and unpredict­
able environments, where ability to reproduce rapidly and opportunistically is 
at a premium and where there is little value in adaptations to succeed in compe­
tition. A variety of qualities are thought to be favored by r‐selection, including 
high fecundity, small size, and adaptations for long‐distance dispersal. On the 
other hand, K‐selection is tantamount to “live slow, reproduce slow, die old.” 
Selection for the qualities is needed to succeed in stable, predictable environ­
ments where there is likely to be heavy competition for limited resources 
between individuals well equipped to compete when the population size is close 
to the maximum that the habitat can bear. A variety of qualities are thought to 
be favored by K‐selection, including large size, long life, and small numbers of 
intensively cared‐for offspring, in contrast with r‐selection (Mehrabian and 
Lucas, 2006). It is customary to emphasize that r‐selection and K‐selection are 
the extremes of a continuum, most real cases lying somewhere in between.

IWO represents a solution with a plant whose location in an N‐dimensional 
space is a decision variable. A bunch of plants constitutes a colony. In nature 
each weed, based on its quality in the colony, produces seeds that spread 
randomly in the environment, grows, and eventually generates new seeds. 
Therefore, each plant generates a specified number of new seeds according to its 
fitness value. Each seed is known as a new solution. If the maximum number of 
plants in a colony is reached, competition for survival starts between weeds so 
that in each stage weeds with lower quality (less fitness value) are removed. The 
remaining weeds as mother plants spread new seeds. This process continues to 
produce weeds of the highest quality (the best fitness value). Table 13.1 shows 
the characteristics of the IWO.

The IWO starts the optimization process by randomly generating a set of 
weeds, each of which is a solution of the optimization problem (see Section 2.6). 
After evaluating the fitness function for all solutions, the number of seeds 
for  each weed (solution) is estimated based on its fitness value. All weeds 
(solutions) generate seeds (new solutions). Solutions with low fitness are 
eliminated until the number of solutions equals the capacity of colony when­
ever the number of solutions exceeds a threshold. Improved, new solutions 
are generated by remaining solutions for as long as the termination criteria are 
not satisfied. Figure 13.1 depicts the flowchart of the IWO.
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Start

Define the parameters of the algorithm

Generate initial population of weeds randomly

Spread new seeds in decision space

Determine the number of seeds for each weed according to its fitness value

Are the termination criteria satisfied?

No Yes

Eliminate weeds with low fitness

End

Does the number of weeds exceed the capacity of the colony?

Report the weeds

YesNo

Figure 13.1  The flowchart of the IWO.

Table 13.1  The characteristics of the IWO.

General algorithm (see Section 2.13) Invasive weed optimization

Decision variable Weed’s location in each dimension
Solution Weed (position)
Old solution Mother plant
New solution Seed
Best solution –
Fitness function Quality of the plant
Initial solution Random weed
Selection Competition for survival
Process of generating new solution Spreading seeds



13.4  Reproduction 167

13.3  Creating an Initial Population

IWO calls each possible solution of the optimization problem a weed. A weed’s 
location in any dimension of an N‐dimensional space is a decision variable of 
the optimization problem, and a weed is represented as an array of size 1 × N 
that describes a weed’s location. This array is defined as follows:

	 Weed X x x x xi N1 2, , , , ,  	 (13.1)

where X = a solution of the optimization problem, xi = ith decision variable of 
the solution X, and N = number of decision variables. The decision variable 
values (x1, x2, x3, …, xN) are represented as floating point number (real values) or 
as a predefined set for continuous and discrete problems, respectively.

The IWO starts by randomly generating a matrix of size M × N (see 
Section 2.6), where M and N are the size of population and the number of deci­
sion variables, respectively. Hence, the matrix of solutions that is generated 
randomly is as follows (rows and columns are the number of weeds and the 
number of decision variables, respectively):
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x x x x
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	 (13.2)

in which Xj = jth solution, xj,i = the ith decision variable of the jth solution, and 
M = size of the initial population of weeds.

13.4  Reproduction

During the reproductions stage, weeds are allowed to produce seeds according 
to their fitness values and the maximum and minimum allowed numbers of 
produced seeds (λmax), (λmin), respectively. The solution with the worst fitness 
value generates λmin new solutions, while the best solution generates λmax new 
solutions. Other solutions generate new solutions according to their fitness 
function between these two limiting values. The number of seeds for each 
solution is evaluated as follows:

	
j jBest Worst

F X j Mmax min ( ), , , ,1 2 	 (13.3)
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in which μj =  the number of new solutions generated by the jth solution, 
F(Xj) = fitness value of the jth solution, Best = the fitness value of the best 
solution, Worst = the fitness value of the worst solution. and λmax and λmin = the 
maximum and minimum number of produced seeds, respectively, which 
are  user‐defined parameters. Seed production is illustrated in Figure  13.2 
approximately as a linear function.

The reproduction stage adds an important advantage to the IWO algorithm. 
Evolutionary algorithms have population members that range from appropri­
ate solutions to inappropriate ones. Appropriate solutions have a higher 
probability of reproduction than inappropriate ones, but there is always 
the  possibility that population elements that seem inappropriate at each 
stage contain important information that even suitable plants lack. It is pos­
sible that some individuals with lower fitness value carry useful information 
during the evolution process. Therefore, the system can reach the optimal 
point more easily if it is possible to “cross” an infeasible region. It is therefore 
probable that with a suitable reproduction, inappropriate plants survive 
an  unsuitable environment and find a hidden suitable environment. This 
phenomenon is observed in nature.

13.5  The Spread of Seeds

Adoption and randomness are introduced in the IWO algorithm by the spread 
of seeds. The produced seeds spread randomly with a normal distribution that 
has zero mean in an N‐dimensional space. Therefore, new plants spread 
randomly around the mother plants, but their standard deviation is variable. 

Solution’s fitness

Fitness
Best 

solution
Worst 

solution

Number of seeds

Produced seeds

λmax

λmin

Figure 13.2  Number of seeds for each weed with respect to the fitness value.
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The standard deviation is reduced from the initial predetermined value 
(maximum) to a final predetermined value (minimum) as follows:

	
t initial final final

T t

T
	 (13.4)

where σt = the standard deviation of the current iteration t, T = the maximum 
number of iterations (reproduction stages), t = the current iteration, σinitial = the 
initial standard deviation, σfinal = the final standard deviation, and β = a nonlinear 
modulus (called nonlinear modulation index) selected by the user as parameter 
of the algorithm.

New solutions are generated after evaluating the standard division as 
follows:

	 X Mrand X r j Mr
new

t j j( , ) , , , , , , ,0 1 2 1 2  	 (13.5)

in which Xr
new( ) = the new solution rth on the basis of solution jth of the popula­

tion, Mrand(0, σt) = a matrix of random values by mean 0 and standard division 
σt with size 1 × N, and Xj = jth solution of the population.

The algorithm localizes search during its progress. At the beginning of the 
algorithm, the standard deviation is high; while the algorithm proceeds, the 
standard deviation is reduced by Equation (13.4). In Equation (13.5) a low 
standard deviation makes new solutions to be close to the mother plant, while 
a high standard deviation makes new solutions spread out over a wider range. 
The probability of placing a seed far from its mother plant in the beginning of 
the algorithm is high, and it decreases during later stages of the algorithm 
when the number of appropriate plants increases. In this manner the probabil­
ity of dropping a seed in a distant area decreases nonlinearly at each time step, 
which results in grouping fitter plants and elimination of inappropriate plants. 
This represents transformation from r‐selection to K‐selection.

13.6  Eliminating Weeds with Low Fitness

A plant that does not produce seeds becomes extinct. The number of plants 
increases exponentially if all the plants produce seeds and the seeds grow. 
Therefore, a competitive process is necessary to limit and remove some of the 
existing plants. After several reproductions the number of plants in the colony 
reaches its maximum (Mmax). At this juncture the process of omitting unsuitable 
plants starts and is repeated until the end of the algorithm.

The elimination scheme allows each weed to produce seeds according to 
reproduction rules whenever the current population size (M) reaches Mmax. 
Offspring (new solutions) are ranked together with their parents (as a colony of 



13  Invasive Weed Optimization170

weeds). Next, weeds with low fitness are eliminated until the number of weeds 
is equal to the maximum allowable population in the colony. In this manner 
plants with lower fitness have a chance to reproduce, and if their offspring have 
a good fitness in the colony, then they can survive.

13.7  Termination Criteria

The termination criterion ends the execution of the IWO algorithm. Selecting 
a good termination criterion has an important role in the correct convergence 
of the algorithm. The number of iterations, the amount of improvement of the 
solution between consecutive iterations, and the run time are common termi­
nation criteria for the IWO.

13.8  User‐Defined Parameters of the IWO

The initial size of population (M), the maximum size of the population 
(Mmax), the maximum number of produced seeds (λmax), the minimum num­
ber of produced seeds (λmin), the initial standard deviation (σinitial), the 
final standard deviation (σfinal), the nonlinear modulation index (β), and the 
criterion used to decide when to terminate the algorithm are user‐defined 
parameters of the IWO algorithm. A good choice of the parameters is related 
to the decision space of a particular problem, and usually the optimal 
parameter setting for one problem is of limited utility for any other problem. 
The issue of how to determine the appropriate values of these parameters is 
pertinent. Practice and experience with specific types of problems is valuable 
in this respect. A reasonable method for finding appropriate values for 
the  parameters is performing sensitivity analysis. This is accomplished by 
choosing combinations of parameters and running the algorithm several 
times for each combination. A comparison of the results from different runs 
helps in determining appropriate parameter values.

13.9  Pseudocode of the IWO

Begin
	 Input the parameters of the algorithm and initial data
	 Let Mmax = the maximum population size and M = the 

current population size
	 Generate M initial possible solutions randomly and 

evaluate their fitness values
	 While (the termination criteria are not satisfied)
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	 Evaluate the standard division (σ)
	 For j = 1 to M
	 Determine the number of seeds (μj) for solution j 

according to its fitness value
	 For r = 1 to μj
	 Generate a new solution around the solution 

j using normal distribution and add it to 
the offspring population

	 Evaluate fitness value of the newly generated 
solution

	 Next r
	 Next j
	 Add offspring population to the current 

population and update M
	 If M > Mmax
	 Eliminate solutions with low fitness until M = Mmax
	 End if
	 End while
	 Report the population
End

13.10  Conclusion

This chapter described the IWO algorithm. The IWO is a meta‐heuristic opti­
mization method inspired by weeds’ ecological characteristics. This chapter 
presented literature review of the IWO and its applications, the weeds’ biology 
was mapped into a mathematical statement of the IWO algorithm, each part of 
the IWO was explained in detail, and a pseudocode of the algorithm was 
presented.
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14

Summary

This chapter describes the central force optimization (CFO) algorithm. The 
basic concepts of the CFO are issued from kinesiology in physics. The CFO 
resembles the motion of masses under the influence of the gravity field. One 
of the most important features of the CFO is that it is a deterministic method, 
which means that each position of a particle (called probe in this method) 
follows a certain path toward a solution. The following sections relate 
Newton’s gravitational low and the CFO. The CFO algorithm is explained, 
and a pseudocode of the algorithm is presented.

14.1  Introduction

The central force optimization (CFO) is a search meta‐heuristic method devel­
oped by Formato (2007) based on gravitational kinematics. This algorithm 
models the motion of airborne probes under effect of gravity and maps the 
equations’ motion to an optimization scheme. The CFO algorithmic equations 
are developed for the probes’ positions and the accelerations using the analogy 
of particle motion in a gravitational field. The CFO is deterministic, which is a 
variance from most other meta‐heuristic algorithms. Formato (2007) assessed 
the performance of the CFO algorithm with recognized complex mathematical 
functions and electronic problems and compared the results with that of other 
algorithms. Formato (2010) demonstrated the good performance of the CFO 
algorithm in solving several different functions. Mahmoud (2011) applied the 
CFO to a microstrip antenna design problem. Formato (2012) employed 
the  CFO in electronics for improving bandwidth and achieved very precise 
results. Also, Haghighi and Ramos (2012) applied the CFO algorithm 
for drinking‐water networks and compared the results with previous works. 

Central Force Optimization
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The results demonstrated that the CFO algorithm achieved solutions more 
rapidly. Liu and Tian (2015) developed a multi‐start CFO (MCFO) and com­
pared the performance of the MCFO with those of other algorithms.

14.2  Mapping Central Force Optimization (CFO) 
to Newton’s Gravitational Law

The CEO is inspired by the motion of masses in a gravitational field. The gravi­
tational force between two masses Mass1 and Mass2 is described by Newton’s 
universal law of gravitation as follows:

	
Force Mass Mass

r
1 2

2 	 (14.1)

in which Force = the magnitude of the force of attraction, γ = gravitational con­
stant, Mass1 and Mass2 = masses that attract each other, and r = the distance 
between the center of masses of Mass1 and Mass2. According to the gravita­
tional force, each mass such as Mass1 is accelerated toward another mass Mass2 
with vector acceleration calculated as follows:

	
2

1 2

ˆMass rA
r

γ ×=


	 (14.2)

in which 


A1 = acceleration vector of Mass1 toward Mass2 and r̂ = a unit vector.
The gravitational force causes particles to move toward each other. The new 

particle’s position is calculated as follows:

	
� � � �
R t t R t V t t A t( ) ( ) ( )

2

2
	 (14.3)

in which 


R t( ) = the position of particle at time t, 


V t( ) = the velocity of particle at 
time t, and Δt = time interval.

The CFO has a physical base. Suppose that we want to find the largest planet 
in a hypothetical star system whose position is unknown. From the gravita­
tional law described previously, it can be inferred that the largest planet has the 
strongest gravitational field. Therefore, if several probe satellites are spread 
through the star system, they gradually move along gravitational fields. After a 
long enough time, most of the probes probably will cluster in orbits surround­
ing the planet with the largest gravitational field. The CFO generalizes the 
equations of motion in three‐dimensional physical space to seek optima in a 
multidimensional decision space.

CFO designates the location of each probe as a solution of the optimiza­
tion problem. All particles have masses proportional to their fitness values 
so that the heavier the masses, the better the fitness values. According to the 



14.3  Initializing the Position of Probes 177

gravitational law, probes move toward each other with a specific velocity 
and acceleration. Movements of probes through the decision space produce 
new solutions. Table 14.1 lists the characteristics of the CFO.

The CFO starts by specifying initial probe positions deterministically as 
explained in the next section. Then fitness values are evaluated and the initial 
acceleration is assigned to each probe. The new positions of probes are com­
puted based on the previously evaluated accelerations. Each probe must be 
located inside the decision space. If a probe strays outside the decision space, it 
is called a deviated probe, and its location is modified. The fitness values of the 
new locations are evaluated and new accelerations are estimated. This process 
is repeated until the termination criteria are satisfied. Figure 14.1 illustrates the 
flowchart of the CFO.

14.3  Initializing the Position of Probes

The CFO calls each possible solution of the optimization problem a probe. 
A  probe’s position in an N‐dimensional optimization problem is a decision 
variable of the optimization problem. A probe is represented by an array of size 
1 × N that expresses the probe’s position. This array is defined as follows:

	 Probe X x x x xi N1 2, , , , ,  	 (14.4)

where X = a solution of optimization problem, xi = ith decision variable of solu­
tion X, and N = number of decision variables. The decision variable values 
(x1, x2, x3, …, xN) are represented as floating‐point numbers (real values) or as a 
predefined set of values for continuous and discrete problems, respectively.

Table 14.1  The characteristics of the CFO.

General algorithm (see Section 2.13) Central force optimization

Decision variable Position of probes in each dimension
Solution Position of probe
Old solution The old position of probe
New solution The new position of probe
Best solution –
Fitness function Mass of probe
Initial solution Deterministic position
Selection –
Process of generating new solutions Movement of probe
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A matrix of probes of size M × N is generated (where M is the number of 
probes) to start the CFO algorithm. The matrix of probes is represented as 
follows (rows and columns denote the number of probes and the number of 
decision variables, respectively):
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	 (14.5)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

Start

Define the parameters of the algorithm

Initialize the position of probes 

Move the probes

Modify the position of the deviated probes

Are the termination criteria satisfied?
No Yes

Report the position of probes

End

Calculate the acceleration of probes

Figure 14.1  The flowchart of the CFO.
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Notice that unlike most of other meta‐heuristic algorithms, the initial 
solutions in the CFO are not generated randomly. Formato (2007) did not 
present a general scheme for generating initial solutions. According to 
Formato (2011) the initial probes are distributed on lines parallel to the 
coordinate axes that contain the decision space of the optimization problem. 
Figure 14.2 depicts distribution of the initial probes in a two‐dimensional 
problem.

It is seen in Figure 14.2 that lines made of initial probes intersect at a point 
along the principal diagonal. The intersection is calculated as follows:

	 D X X Xmin max min 	 (14.6)
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in which D = the intersection position, Xmin and Xmax = diagonal’s end points, 
δ = a parameter that determines where along the diagonal the orthogonal probe 
array is placed (0 1), xi

L( ) = the lower bound of the ith decision variable, 
xi

U( ) = the upper bound of the ith decision variable, and êi = a matrix of size 1 × N 
whose elements are zero except for its ith element that equals 1. Different 
numbers of initial probes per axis can be implemented if, for instance, equal 
probe spacings were desired in a space with unequal boundaries or if excluding 
overlapping probes is intended (Formato, 2011).

Lower bound x1 Upper bound x1

x1

Lower bound x2

Upper bound x2

x2

Probes

Intersection (D)

Prin
cip

al d
iagonal

Figure 14.2  Distribution of initial probes in the CFO algorithm.
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14.4  Calculation of Accelerations

According to Newton’s universal law of attraction, each probe experiences an 
acceleration vector under the influence of the gravitational central forces 
generated by other probes. In a maximizing optimization problem, the 
“acceleration” experienced by the jth probe due to the kth probe is calculated 
as follows:
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x x
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in which aj i
k
,

( ) = the acceleration of the jth probe due to the kth probe in the ith 
dimension; α, β, and G = gravitational constant (G > 0; α > 0 and β > 0); F(X) = the 
fitness value of solution X; U(z) = the unit step function; and Aj

k( ) = acceleration 
vector of the jth probe due to the kth probe.

The CFO algorithm permits assigning a gravitational acceleration differ­
ent from the actual one in the physical universe. For example, the term 
“( ( ) ( ))F X F Xk j ” in Equation (14.9) resembles mass in Equation (14.2). 
Probes that are located near each other in the decision space may have simi­
lar fitness values. This may lead to an excessive gravitational force on the 
subject probe. Therefore, it is the difference between fitness values, instead 
of the fitness values themselves, that is used to avoid excessive gravitational 
attraction by other probes that are very close to the subject probe. The fit­
ness difference intuitively seems to be a better measure of how much gravi­
tational influence there should be between the probe with a greater fitness 
and the probe with a smaller one (Formato, 2007).

Although real masses are positive, the term “( ( ) ( ))F X F Xk j ” can be positive 
or negative depending on which objective function is greater. The unit step 
function is introduced to avoid the possibility of “negative” mass. In other words, 
using the unit step function forces the CFO to create only positive masses as 
observed in nature. In case negative masses are allowed, the corresponding 
accelerations are repulsive instead of attractive. The effect of a repulsive gravita­
tional force is that probes move far away from large fitness values instead of 
being attracted toward them.

Equation (14.9) evaluates the acceleration of the jth probe toward the kth 
probe. Notice that other probes may attract the jth probe and also affect 
its  acceleration. The total acceleration of the jth probe is equal to the 
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summation of all the accelerations exerted by all other probes, and it is 
calculated as follows:
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	 A a a a aj j j j i j N, , , ,, , , , ,1 2   	 (14.13)

in which aj,i = overall acceleration of the jth probe in the ith dimension and 
Aj = overall acceleration of the jth probe due to all other probes.

14.5  Movement of Probes

Probes move through the space and reach new positions in each iteration as the 
decision space is searched and new solutions are generated. Moving to a new 
position is done based on the current position of the probe, the previous velocity 
of the probe, and its acceleration. The new position is evaluated as follows:

	
x x v a i N j Mj i j i j i j i, , , , , , , , , , , ,1
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in which xj i,  = the new value of the ith decision variable of the jth solution, 
X j

new( ) = the new position of the jth probe (new solution), xj,i = the current value 
of the ith decision variable of the jth solution at the present iteration, xj i

old
,

( ) = the 
value of the ith decision variable of the jth solution in the previous iteration, 
ψ = parameter of the algorithm that resembles time interval in physics, and 
vj,i = velocity of the jth solution in the ith dimension. Formato (2007) suggested 
that the initial value of v and ψ be considered to be zero and one, respectively. 
In other words the value of v in the first iteration is equal to zero for all probes 
in all dimensions.

14.6  Modification of Deviated Probes

While the algorithm progresses, some probes may move to a position outside 
the decision space. A probe that strays outside the decision space is called 
a  deviated probe and its location has to be modified. The method for such 
modification is central to the proper convergence of the CFO.
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There are many possible approaches to returning deviated probes to the 
feasible space. One method is returning the probe to a specific point such as its 
starting point or its last position. However, Formato (2007) stated that this 
method does not work well. Another method is that any probe outside the 
decision space is returned to the midpoint between its starting position and 
the minimum or maximum value of the coordinate lying outside the allowable 
range. Another possibility is to randomly reposition deviated probes. This 
method is a simple approach because it can utilize the compiler’s built‐in 
random number generator, which presumably returns essentially uncorrelated 
floating‐point numbers. This introduces randomness into the CFO algorithm. 
However, the CFO is a deterministic algorithm and it does not require 
randomness in any of its calculations. Formato (2010) suggested the following 
equations to restore deviated probes:
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in which xj i,  = new value of the ith decision variable of the jth solution, j = the 
deviated solution, and ϕ = probe repositioning factor, which is determined by 
the user and is between zero and one.

14.7  Termination Criteria

The termination criterion prescribes when to terminate the algorithm. Selecting 
a good termination criterion has an important role on the correct convergence of 
the algorithm. The number of algorithmic iterations, the amount of improvement 
of the solution between consecutive iterations, and the run time are common 
termination criteria for the CFO.

14.8  User‐Defined Parameters of the CFO

The size of the population (M); the value of the gravitational constants (α, β, G), 
ψ, and ϕ; and the termination criteria are user‐defined parameters of the CFO. 
The initial acceleration of a probe is usually set equal to zero.

A good choice of the parameters depends on the decision space of a parti­
cular problem, and usually the optimal parameter setting for one problem 
is  of  limited utility for other problems. Consequently, determining a good 
set  of  parameters often requires performing a large number of numerical 
experiments. Practice and experience with specific types of problems is valua­
ble in this respect. A reasonable method for finding appropriate values for 
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the  parameters is performing sensitivity analysis. This is accomplished by 
choosing combinations of parameters and running the algorithm several times 
for each combination. A comparison of the results from different runs helps in 
determining appropriate parameter values.

14.9  Pseudocode of the CFO

Begin
	 Input parameters of the algorithm and initial data
	 Generate M initial possible solutions 

deterministically
	 Initialize the first acceleration of all solutions
	 While (the termination criteria are not satisfied)
	 Evaluate fitness value of solutions
	 For j = 1 to M
	 Move probe j to new position
	 If the new position is outside of decision 

space
	 Modify the position of solution j
	 End if
	 Next j
	 For j = 1 to M
	 Evaluate new acceleration of probe j
	 Next j
	 End while
	 Report the population
End

14.10  Conclusion

This chapter reviewed the analogy between Newton’s gravitational low and the 
CFO and explained the fundamentals of the CFO algorithm. A pseudocode of 
the algorithm closed the chapter’s theory.
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Summary

This chapter describes the biogeography‐based optimization (BBO), which is 
inspired by the science of biogeography and a meta‐heuristic optimization 
algorithm. This chapter presents a brief literature review of the BBO and its 
applications and reviews the discipline of biogeography and its analogy to 
BBO. The BBO algorithm is described in detail, and a pseudocode of the BBO 
algorithm closes the chapter.

15.1  Introduction

Simon (2008) introduced the biogeography‐based optimization (BBO) algo­
rithm utilizing biogeographic concepts. Savsani et  al. (2014) studied the 
effect of hybridizing the BBO technique with artificial immune algorithm 
(AIA) and the ant colony optimization (ACO). Niu et al. (2014) proposed a 
BBO algorithm with mutation strategies (BBO‐M), which employs mutation 
motivated by the differential evolution (DE) algorithm and chaos theory for 
improving the global searching capability of the algorithm. Gupta et  al. 
(2015) implemented the BBO for optimal component sizing of off‐grid small 
autonomous hybrid power systems (SAHPS) by minimizing the cost of 
energy. Yang (2015) proposed a modified biogeography‐based optimization 
(MBBO) algorithm to solve a flexible job shop scheduling problem (FJSSP). 
Tamjidy et al. (2015) used the BBO to deal with hole‐making process problem. 
Bozorg‐Haddad et al. (2015) used the BBO to optimal operation of single‐ 
and multi‐reservoir systems.

Biogeography‐Based Optimization
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15.2  Mapping Biogeography‐Based Optimization 
(BBO) to Biogeography Concepts

Biogeography is the study of the geographical distribution of living organisms. 
Mathematical biogeographic models attempt to explain how species migrate 
between habitats, their appearance, adaptation, evolution, and extinction. The 
habitats that are more suitable places for species settlement have a relatively 
high habitat suitability index (HSI) that depends on factors such as vegetative 
cover, precipitation, area, temperature, and so on. Variables that determine the 
quality of habitat are known as suitability index variables (SIVs). SIVs are inde­
pendent variables and the HSI is variable dependent on SIVs. Habitats with 
large values of HSI accommodate more species, and, conversely, a low HSI 
habitat supports fewer species. Habitats with a high HSI have many species 
that emigrate to nearby habitats, simply by virtue of the large number of spe­
cies that they host and at the same time exhibit low species immigration rate 
because they already house many species. There is a stronger tendency for spe­
cies to emigrate from a habitat as its number of species increases to find a new 
habitat with lower population density. Habitats with low population density 
may attract immigration provided that the habitat has adequate life‐support­
ing characteristics. Habitats with a low HIS may have a high species immigra­
tion rate. This immigration of new species to low HSI habitats may raise the 
HSI of the habitat, because the suitability of a habitat is proportional to its 
biological diversity.

Figure 15.1 illustrates the effect that the number of species has on the immi­
gration rate (λ) and emigration rate (μ). According to Figure 15.1 the maximum 
rate of immigration to the habitat occurs when there are no species in it. As the 
number of species in the habitat increases, the rate of immigration decreases. 
The rate of immigration becomes nil when the number of species in the habitat 
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Figure 15.1  Species immigration and 
emigration pattern in a habitat.
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equals Smax. The rate of emigration increases as the number of species in a 
habitat increases, starting with zero emigration rate for an empty habitat. The 
maximal rates of immigration and emigration are identified by I and E, respec­
tively. The immigration and emigration curves in Figure  15.1 are shown as 
straight lines but they might be nonlinear curves.

BBO designates each habitat as a solution of the optimization problem, 
and features of a habitat that determine its quality represent decision variables. 
Therefore, each SIV is a decision variable. A good solution is known as a habitat 
with a high HSI, while a poor solution represents a habitat with a low HSI. Also, 
it is assumed that high HSI solutions represent habitats with many species, 
whereas low HSI solutions represent habitats with few species. In nature, spe­
cies travel between habitats according to the immigration and emigration rates. 
Therefore, solutions obtained with the BBO share their variables with each 
other based on their fitness values. In this manner good solutions tend to share 
their variables (features) with worse solutions, and poor solutions accept a lot of 
new variables from good solutions. In contrast, good solutions accept few vari­
ables from other solutions. Solutions that have better fitness values than others 
resist change more than worse solutions. This sharing of variables is intended to 
raise the quality of solutions. Modified solutions are new solutions. A habitat’s 
HSI can change suddenly due to cataclysmic events affecting natural habitats 
such as large floods, disease, earthquakes, forest fires, and so on. The BBO 
simulates these events randomly in terms of mutation. Table 15.1 lists the char­
acteristics of the BBO.

BBO begins by generating randomly a set of habitats. Each habitat is a potential 
solution to the given problem. The fitness value of each habitat is evaluated and 
mapped to the number of species, the immigration rate λ, and the emigration rate μ. 
Thereafter, the migration process is implemented to modify each non‐elite 

Table 15.1  The characteristics of the BBO.

General algorithm (see Section 2.13) Biogeography‐based optimization

Decision variable Suitability index variables
Solution Habitat
Old solution Old habitat
New solution Modified habitat
Best solution Habitat with max HSI (elite habitat)
Fitness function Habitat suitability index
Initial solution Random habitat
Selection Migration process
Process of generating new solutions Migration process/mutation
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habitat, followed by its mutation. The objective function for all solutions is evaluated, 
and the migration and mutation process are applied to modify the habitats. This 
algorithm is terminated after a predefined number of iterations. The flowchart of 
the FA is shown in Figure 15.2.

15.3  Creating an Initial Population

BBO designates a habitat as a possible solution of the optimization problem, 
and each SIV of a habitat is a decision variable of the optimization problem. A 
habitat is represented as an array of size 1 × N. In an N‐dimensional problem 
this array is written as follows:

	 Habitat X x x x xi N1 2, , , , ,  	 (15.1)

where X = a solution of optimization problem, xi = ith decision variable of solu­
tion X, and N = number of decision variables. The decision variable values 
(x1, x2, x3, …, xN) can be represented as floating point number (real values) or as 
a predefined set of values for continuous and discrete problems.

Start

Define the parameters of the algorithm

Generate a set of habitats randomly

Modify the solutions based on migration and immigration rates

Allocate emigration and immigration rates based on fitness value

Are the termination criteria satisfied?

Apply mutation

End

Report the best habitat

YesNo

Figure 15.2  The flowchart of the BBO.
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The biogeography algorithm begins with the generation of a matrix of size 
M × N (see Section 2.6), where M and N denote the size of the population of 
solutions and the number of decision variables, respectively. Hence, the matrix 
of possible solutions that is generated randomly is written as follows (rows and 
columns are the number of habitats (or solutions) and the number of decision 
variables, respectively):
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	 (15.2)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

15.4  Migration Process

The HSI plays the role of a fitness value in the BBO algorithm. The greater the 
HSI, the more suitable the habitat is. The number of species (S) has a direct 
relation to the HSI for a solution (habitat) whose emigration E and immigra­
tion (I) rates are equal (E = I), as shown in the Figure 15.3. The HSI values can 
be used for evaluating the fitness of a solution. In Figure 15.3 S1 is a solution 
with low HSI, while S2 represents a high HSI solution. S1 represents a habitat 
with few species, while S2 denotes a habitat with numerous species. The λ1 
associated with S1 is larger than the λ2 corresponding to S2. μ1 for S1 is smaller 
than μ2 for S2.

The rates of emigration (μ) and immigration (λ) are expressed in terms of the 
number S of species found within the habitat in the following form:

	
E S

Smax
	 (15.3)

	
I S

S
1

max
	 (15.4)

in which μ = emigration rate, E = the maximum emigration rate, λ = immigra­
tion rate, I = the maximum immigration rate, S = the number of species in the 
habitat, and Smax = the maximum number of species at which λ = 0 and E. 
Notice that μ + λ = E = I if E = I.
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The immigration process is implemented by first ranking all solutions based 
on their fitness values so that the best (fittest) solution is the Mth solution of 
the population as shown in Figure 15.4 for a minimization problem.

It is then assumed that Smax = M and the rank of each solution, which is pro­
portional to its fitness value is equal to S for that solution. The values μ and λ 
are evaluated as follows:

	 j E j
M

j M, , , ,1 2 	 (15.5)

	
j I j

M
j M1 1 2, , , , 	 (15.6)
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Figure 15.4  Ranking habitats (solutions) according to their fitness values in a minimization 
problem.



15.5  Mutation 191

in which μj = the probability of emigration of the jth solution, λj = the probability 
of immigration of the jth solution, E = the maximum probability of emigration 
(0 1E≤ ≤ ), I = the maximum probability of immigration (0 1I≤ ≤ ), and j = the 
counter of solutions that are ranked in descending order (if the problem solved 
is one of minimization) based on their desirability. The values of E and I are 
determined by the user. Lastly, for every solution j of the population, a random 
number in the range [0–1] (Randj) is generated. If the generated random 
number is less than λj, this means that the jth solution has experienced 
immigration. For any other solution r of the population, a random number in 
the range [0–1] (Randr) is generated. If Randr is less than μr, a randomly selected 
decision variable of the jth solution is replaced with the corresponding decision 
variable of the rth solution. For example, if X x x x xi N( , , , , , )1 2    is selected 
for immigration and X x x x xi N( , , , , , )1 2    is selected for emigration, and if 
decision variable i (xi) is selected for replacement, then the improved solution 
is constructed as follows:

	 X x x x ximproved
i N

( ) , , , , ,1 2  

	 (15.7)

in which X(improved) = the improved form of solution X.
Each solution can be improved by another solution with some pro­

bability. A solution is chosen as an improvement according to its immigra­
tion rate after selecting the SIVs to be modified. The emigration rate (μ) 
relevant to other solutions is used to select the improvement solution. SIVs 
from chosen solutions are randomly replaced with the SIVs of the improve­
ment solution. The BBO takes advantage of elitism when λ = 0 for the best 
habitat.

The BBO migration strategy differs from other evolutionary strategies in at 
least one important aspect. In evolutionary strategies global recombination 
such as crossover in the genetic algorithm (GA) is employed to generate new 
solutions. The BBO, on the other hand, implements migration to change exist­
ing solutions. Migration in the BBO, an adaptive process, is applied to modify 
existing habitats. On the other hand, global recombination in evolutionary 
strategy is a reproductive process. The BBO takes advantage of elitism in order 
to retain the best solutions in the population similarly to other population‐
based optimization algorithms. This prevents the best solutions from being 
destroyed by immigration.

15.5  Mutation

Events such as the spreading of infectious diseases, natural hazards, and other 
calamities can rapidly change the HSI of a habitat. Therefore, the condition of 
a habitat changes from adequate to inadequate in a manner similar to 
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mutations in the GA. Mutation can be exerted on SIVs after migration based 
on a probability distribution such as the Gaussian distribution or the uniform 
distribution. The mutation operator replaces some of the decision variables 
with randomly generated values. Let X x x x xi N( , , , , , )1 2    be a solution of an 
optimization problem and assume that the ith decision variable (xi) is selected 
for mutation. The mutated solution X x x x xi N( , , , , , )1 2    obtained by pro­
ducing xi  is calculated as follows:

	 x Rnd x xi i
L

i
U( ) ( ), 	 (15.8)

in which xi  = the new value of xi that is selected for mutation, xi
U( ) = the upper 

bound of the ith decision variable, xi
L( ) = the lower bound of the ith decision 

variable, and Rnd(a,b) = a random value in the range [a,b].
A probability of mutation (Pc) is applied to solutions to implement muta­

tion. The elite solution has a probability of mutation equal to zero. A random 
number is generated for every solution. If the generated random number is 
less than Pc, that solution experiences mutation.

15.6  Termination Criteria

The termination criterion prescribes when to terminate the algorithm. 
Selecting a good termination criterion has an important role on the correct 
convergence of the algorithm. The number of algorithmic iterations, the 
amount of improvement of the solution between consecutive iterations, and 
the run time are common termination criteria for the CFO.

15.7  User‐Defined Parameters of the BBO

The population size (M), the maximal probability of immigration (I) and emi­
gration (E), the probability of mutation (Pc), and the termination criterion are 
user‐defined parameters of the BBO. A good choice of the parameters depends 
on the decision space of a particular problem, and commonly the optimal set of 
parameter for one problem is of limited utility for other problems. Practice 
and  experience with specific types of problems is valuable in this respect. 
A  reasonable method for finding appropriate values for the parameters 
is  performing sensitivity analysis. This is accomplished by choosing com­
binations of parameters and running the algorithm several times for each 
combination. A comparison of the results from different runs helps in deter­
mining appropriate parameter values.
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15.8  Pseudocode of the BBO

Begin
	 Input the parameters of the algorithm and initial 

data
	 Generate M initial possible solutions randomly
	 While (the termination criteria are not satisfied)
	 Evaluate fitness value of solutions
 	 Rank solutions based on their fitness values so 

that Mth solution is the fittest solution
	 Determine the immigration (λ) and emigration (μ) 

probabilities based on the ranks of solutions
	 For j = 1 to (M – 1)
	 Select habitat j with probability λj
	 If habitat j is selected
	 For r = 1 to M
	 Select habitat r with probability μr
	 If habitat r is selected
	 Select xj,i randomly
	 Put xj,i = xr,i
	 End if
	 Next r
	 End if
	 Next j
 	 For j = 1 to (M – 1)
 	 Select habitat j with probability Pc
 	 If habitat j is selected
 	 Put xj,i equal to a random value
 	 End if
 	 Next j
 	End while
	 Report the best solution
End

15.9  Conclusion

This chapter described the BBO algorithm. First, a brief literature review about 
the BBO and its application was presented. The principles of biogeography 
were described and mapped to the BBO algorithm, which was described in 
detail. Lastly, a pseudocode of the BBO closed the chapter.
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Summary

This chapter describes the firefly algorithm (FA), which is inspired by the flash-
ing powers of fireflies. It is a meta‐heuristic optimization algorithm. This chapter 
presents in sequence a brief literature review of the FA and its applications, the 
characteristics of fireflies and their mapping to the FA, a detailed description of 
the FA, and a pseudocode of the FA.

16.1  Introduction

Yang (2008) introduced the firefly algorithm (FA) and applied it to solve sev-
eral optimization test problems whose results compared favorably with the 
genetic algorithm (GA) and particle swarm optimization (PSO) (Yang, 2009). 
Yang (2010) merged the Levy flight (LF) approach searching with the FA and 
solved several optimization test problems by applying the proposed hybrid 
algorithm. The results indicated that the success rate of the Levy flight FA 
(LFA) was better than that of the standard FA. Yang (2011) applied chaos 
theory for auto‐tuning of the parameters of the algorithm. The results of the 
cited study compared favorably with those of the standard FA for the well‐
known problem of the welded beam. Yan et al. (2012) developed an adaptive 
FA (AFA) to upgrade the FA’s capability in solving large dimensional. The 
latter authors showed that the AFA performed better with several test prob-
lems than the standard FA, differential evolution (DE), and PSO. Many stud-
ies have been devoted to improving the searching accuracy of the FA and 
have shown its better convergence rate than other algorithms. The advantage 
of the FA from the standpoint of speed of convergence has led to its adoption 
in solving complex and nonlinear problems in different scientific fields. In 
this context, Afnizanfaizal et al. (2012) introduced a new hybrid FA named 

Firefly Algorithm
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hybrid evolutionary FA (HEFA) to  improve the searching accuracy of the 
original FA. This approach was a combination of the FA and the DE algo-
rithm with the goal of estimating the parameters of a nonlinear and complex 
biological model of large dimensionality. The results showed that HEFA 
has  an improved searching accuracy compared with the GA, PSO, and 
evolutionary programming (EP). Santos et al. (2013) calculated the amount of 
precipitation of a region in South America. They computed the precipitation 
using six different methods. In each of these methods, different effective 
parameters were used to calculate the precipitation. The FA was applied to 
find the optimal weights for the various methods. In a comprehensive review 
of the FA, Fister et  al. (2013) concluded that the FA’s solving efficiency is 
explained by its capacity to solve multimodal, nonlinear, optimization prob-
lems. Garousi‐Nejad et al. (2016b) applied the FA to reservoir operation and 
demonstrates the superiority of this algorithm against the GA. Garousi‐Nejad 
et al. (2016a) presented a modified FA for solving multi‐reservoir operation 
in continuous and discrete domains.

16.2  Mapping the Firefly Algorithm (FA) to the Flashing 
Characteristics of Fireflies

There are about 2000 firefly species, most of which produce short and rhyth-
mic flashes. The flashing light of fireflies is an interesting sight in the summer 
sky of tropical and temperate areas. Usually a particular species exhibits a 
unique flashing pattern. The flashing light is generated by bioluminescence. It 
is believed that two fundamental functions of such flashes are to attract mating 
partners (communication) and to attract potential prey. In addition, flashing 
may also serve as a protective warning mechanism. Several factors including 
the rhythmic flash, the rate of flashing, and the duration of flashing form part 
of the signal system that brings both sexes together. Females respond to a male’s 
unique pattern of flashing in the same species, while in some species such as 
Photuris, female fireflies can mimic the mating flashing pattern of other species 
to lure and eat the male fireflies who may mistake the flashes as a potential 
suitable mate. In summary, fireflies flash their stored energy as a light to mate, 
hunt, or evade predators. Fireflies produce attractiveness by shining light.

It is known that the light intensity at a particular distance from the light 
source follows the inverse square law, whereby the light intensity decreases 
with increasing distance between a viewer and the source of the light. 
Furthermore, the air absorbs light that becomes weaker as the distance 
increases. Fireflies are thus visible only over a restricted distance, usually 
several hundred meters in the dark, which is usually sufficient for fireflies to 
communicate.
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The FA assumes that the flashing light can be formulated in such a way that 
it is associated with the objective function of the optimization problem. The 
FA is based on three idealized rules:

1)	 All fireflies are unisex so their attractiveness depends on the amount of light 
flashed by them regardless of their sex.

2)	 The attractiveness of fireflies is proportional to their brightness. Thus, for 
any two flashing fireflies, the firefly that flashes less will move toward the 
firefly that flashes more. The attractiveness and the brightness of fireflies 
decrease as the distance between fireflies increases. Thus, the movement of 
fireflies continues in this manner until there is no brighter firefly in a group. 
Once this happens the fireflies move randomly.

3)	 The brightness of a firefly is determined by a fitness function.

The FA designates a firefly as a solution whose location in any N‐dimensional 
is a decision variable. In nature each firefly moves toward other fireflies accord-
ing to their attractiveness. For simplicity, it is assumed that the attractiveness of 
a firefly is determined by its brightness, which in turn is associated with the 
fitness function. The FA dictates that if the fitness value of a firefly is larger than 
that of another firefly, the firefly with less brightness (fitness value) moves 
toward the firefly with more brightness. The movement of the firefly is based 
on the light intensity of the other firefly, which is influenced by the distance 
between the fireflies. New positions occupied by the fireflies are new solutions. 
Table  16.1 lists the characteristics of the FA, and the flowchart of the FA is 
shown in Figure 16.1.

Table 16.1  The characteristics of the FA.

General algorithm (see Section 2.13) Firefly algorithm

Decision variable Position of firefly in each dimension
Solution Firefly (position)
Old solution Old position of firefly
New solution New position of firefly
Best solution –
Fitness function Brightness
Initial solution Random firefly
Selection –
Process of generating new solutions Movement of firefly
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16.3  Creating an Initial Population

Each possible solution of the optimization problem is called a firefly in the FA. 
In an N‐dimensional optimization problem, a firefly’s location represents a deci-
sion variable of the optimization problem. A firefly is denoted by an array of size 
1 × N that represents the firefly’s location. This array is defined as follows:

	 Firefly X x x x xi N1 2, , , , ,  	 (16.1)

where X = a solution of optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. The decision variable values 
(x1, x2, x3, …, xN) can be represented as floating point number (real values) or as 
a predefined set for continuous and discrete problems, respectively.

Start

Define the parameters of the algorithm

Generate the initial population of fireflies randomly

Determine the brightness of fireflies

Move each firefly toward the brighter fireflies

Rank the fireflies according to their brightness

Are the termination criteria satisfied?
No Yes

Report fireflies

End

Figure 16.1  The flowchart of the FA.
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The FA algorithm starts by randomly generating a matrix of size M × N 
(see Section 2.6), where M and N denote the size of the population and the 
number of decision variables, respectively. Hence, the matrix of solutions that 
is generated randomly is given as follows (rows and columns are the number of 
fireflies and the number of decision variables, respectively):
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X

X
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x x x x
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	 (16.2)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

16.4  Attractiveness

The attractiveness is the brightness of the light emitted by fireflies, which 
varies with the squared distance between them. In addition, light intensity 
decreases with the distance from the source. According to Yang’s (2009) 
assumptions, the attractiveness of a firefly at a distance d is calculated 
as follows:

	 ( ) ,d e mdm

0 1	 (16.3)

in which ( )d  firefly’s attractiveness at distance d from the firefly, β0 = the 
attractiveness at a distance d 0, γ = light absorption coefficient, d = the dis-
tance between any two fireflies, and m = exponent. Yang (2009) proposed the 
value of m = 2.

16.5  Distance and Movement

The distance between the kth and jth fireflies that are located at Xk and Xj posi-
tions, respectively, is computed as follows:

	
d X X x xj k j k j i k i

i

N

, , ,
2

1
	 (16.4)

in which dj,k = Cartesian distance between the jth and kth fireflies,  = the mag-
nitude of the distance vector between the jth and kth fireflies in space, xj,i = ith 
dimension of the spatial coordinate of the jth firefly’s position (ith  decision 
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variable of the jth solution), N = number of dimensions (decision variables), and 
xk,i = ith dimension of the spatial coordinate of the kth firefly’s position. It is 
worth mentioning that dj,k defined in Equation (16.4) is not limited to 
the Euclidean distance. In fact, any measure that can effectively characterize 
the  quantities of interests in the optimization problems can be  used as the 
distance depending on the type of the problem at hand (Yang, 2013).

For any two flashing fireflies, the firefly that flashes less intensely (fitness 
value) moves toward the firefly that flashes more intensely (fitness value). The 
longer the distance between fireflies, the lower their mutual attractiveness is. 
The movement of fireflies continues guided by these two rules until there is not 
a brighter firefly in a group. At that time fireflies move randomly. Rule 3 states 
that the brightness of a firefly is determined by a fitness function.

If a pair of fireflies k and j is to be considered so that firefly j is better than 
firefly k in terms of brightness (fitness value), then firefly k is attracted by firefly 
j and will move toward the position of firefly j. As the result of this movement, 
firefly k would move to a new position that is computed as follows:

	 X X e X X Randk
new

k
d

j k
( ) ( ) ( . )0

j,k
2

0 5 	 (16.5)

in which Xk
new( ) and Xk = new position and current position of firefly k that has 

less brightness (solution with worse fitness value), respectively, Xj = position of 
firefly j that has more brightness (solution with better fitness value), α = a 
randomized parameter, and Rand is a random value in the range [0,1]. The 
second and third terms of Equation (16.5) correspond to the attraction and 
randomization, respectively. β0, γ, and α are parameters of the algorithm.

16.6  Termination Criteria

Termination criterion determines when to terminate the algorithm. Selecting a 
good termination criterion has an important role to correct convergence of the 
algorithm. The number of iterations, the amount of improvement of solutions 
between consecutive iterations, and the run time are common termination 
criteria for the FA.

16.7  User‐Defined Parameters of the FA

The size of population (M), the initial attractiveness (β0), the light absorption 
coefficient (γ), the randomized parameter (α), and the termination criteria are 
user‐defined parameters of the FA. Yang (2009) pointed out that for most imple-
mentations, the value of β0 equals 1. Moreover, according to Yang (2009), the 
range of values of α is [0,1]. Even though Yang (2013) pointed out that it is better 
to use a time‐dependent α so that randomness decreases gradually as the 
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iterations proceed. Also, γ is a light absorption coefficient that takes values in the 
range 0, , in theory. When γ = 0 the attractiveness is constant. In other words, 
the light intensity does not decrease. Therefore, a flashing firefly can be seen 
anywhere in the domain. In contrast, γ = ∞ means that the attractiveness is almost 
zero in the view of other fireflies. In practice γ is usually in the range [0.1,10] 
(Yang, 2009). It is worth mentioning that the value of these parameters is the key 
in determining the convergence speed and the overall capability of the algorithm. 
Thus, a sensitivity analysis of these parameters is of vital importance.

16.8  Pseudocode of the FA

Begin
	 Input the parameters of the algorithm and initial data
	 Generate M initial possible solutions randomly
	 While (the termination criteria are not satisfied)
	 Determine fitness value of all solutions
	 Sort all solutions according to their fitness 

values
	 For k = 1 to M
	 For j = 1 to M
	 If F(Xj) is better than F(Xk)
	 Move the solution k toward the solution j

	 End if
	 Next j
	 Next k
	 End while
	 Report all solutions
End

16.9  Conclusion

This chapter described the FA, presented a literature review of the FA and its 
application, mapped the characteristics of fireflies into the FA, described the 
FA in detail, and closed with a pseudocode of the FA.
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Summary

This chapter describes the gravity search algorithm (GSA), an evolutionary 
optimization algorithm based on the law of gravity and mass interactions. It 
designates a particle as a solution of an optimization problem. Particles exhibit 
simple behavior, and they follow intelligent pathways toward the near‐optimal 
solution. This chapter presents a literature review of the GSA and its applica-
tions, explains the GSA’s analogy to the law of gravity and the GSA in detail, and 
closes with a pseudocode of the GSA.

17.1  Introduction

Rashedi et al. (2009) introduced the gravity search algorithm (GSA) based on 
the law of gravity and mass interactions and compared it with the particle 
swarm optimization (PSO) and central force optimization (CFO) with well‐
known benchmark functions. Their results established the excellent perfor-
mance of the GSA in solving various nonlinear functions. Ghalambaz et  al. 
(2011) presented a hybrid neural network and gravitational search algorithm 
(HNGSA) method to solve the well‐known Wessinger’s equation. Their results 
showed that HNGSA produced a closer approximation to the analytic solution 
than other numerical methods and that it could easily be extended to solve a 
wide range of problems. Jadidi et al. (2013) proposed a flow‐based anomaly 
detection system and used a multilayer perceptron (MLP) neural network with 
one hidden layer for solving it. The latter authors optimized the interconnec-
tion weights of an MLP network with the GSA, and the proposed GSA‐based 
flow anomaly detection system (GFADS) was trained with a flow‐based data 
set. Chen et al. (2014) proposed an improved gravitational search algorithm 
(IGSA) and solved the identification problem for a water turbine regulation 
system (WTRS) under load and no‐load running conditions.

Gravity Search Algorithm
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17.2  Mapping the Gravity Search Algorithm (GSA) 
to the Law of Gravity

Every particle in the universe attracts every other particle because of gravity. 
Gravitation is the tendency of masses to accelerate toward each other. Newton’s 
law of gravity states that particles attract each other with a force that is directly 
proportional to their masses and inversely proportional to the square of the 
distance between them. Nature encompasses three types of masses:

1)	 Active gravity mass, in which the gravity force increases with increasing 
mass

2)	 Passive gravity mass, in which the gravity force does not increase with 
increasing mass

3)	 Inertial mass that expresses mass resistance to changing its position and 
movement

Particles attract each other with a specific force that is directly related to the 
masses of the particles and inversely related to the square distance between 
their centers of mass (see Figure 17.1):

	
Force Mass Mass

d
1 2

2 	 (17.1)

where Force = gravity force (N), Mass1 = active gravity mass (kg) of first particle, 
Mass2 = passive mass (kg) of second particle, γ = Newton’s gravitational con-
stant [(Nm2)/kg2], and d = distance separating the centers of masses of the two 
particles (m).

Mass4

Mass3

Mass1

Mass2

Force14

Force13

Force12 Force1

Figure 17.1  Gravity force between different particles; Force1 is the resultant force on Mass1.
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Newton’s second law states that when a force is applied to a particle, its accel-
eration depends only on the force and its mass:

	
A Force

Mass
	 (17.2)

where A = particle acceleration and Mass = inertial mass. Also, based on the law of 
motion, the summation of the velocity ratio and acceleration at time t is considered 
in updating the velocity at time t + 1. The variation of the velocity or acceleration of 
any mass is equal to the force acting on the system divided by the inertial mass.

According to the GSA every particle in the system determines the position 
and state of other particles employing the law of gravity (Rashedi et al., 2009). 
The GSA begins by randomly choosing the positions of particles over the entire 
solution space. Thereafter, a mass is assigned to each particle according to its 
fitness value. Notice that the position of particles determines the fitness value. 
In the next step, the exerted force on each particle by other particles is calcu-
lated. Lastly, each particle moves to new positions based on the summation 
force of other particles. Table 17.1 defines the characteristics of the GSA, and 
the steps of the GSA are depicted in Figure 17.2.

17.3  Creating an Initial Population

Each possible solution of the optimization problem is called a particle by the 
GSA. In an N‐dimensional optimization problem, a particle is an array of size 
1 × N. This array is defined as follows:

	 Particle X x x x xi N1 2, , , , ,  	 (17.3)

Table 17.1  The characteristics of the GSA.

General algorithm (see Section 2.13) Gravity search algorithm

Decision variable Position of particle in each dimension
Solution Position of particle
Old solution The old position of particle
New solution The new position of particle
Best solution –
Fitness function Mass of particle
Initial solution Random particle
Selection –
Process of generating new solutions Movement of particle
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where X = a solution of optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. Each of the decision variable 
values (x1, x2, x3, …, xN) can be represented as floating point number (real val-
ues) or as a predefined set for continuous and discrete problems, respectively.

The GSA algorithm starts with the random generation (see Section 2.6) of a 
matrix of size M × N, where M and N are the size of population and the number 
of decision variables, respectively. Hence, the matrix of solutions that is 
generated randomly is given as follows (rows and columns are the number of 
particles and the number of decision variables, respectively):
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	 (17.4)

Start

Define the parameters of the algorithm

Generate the initial positions of particles randomly

Evaluate the mass of particles

Update Newton gravitational factor

Update velocities and positions

Are the termination criteria satisfied?
No Yes

Report the particles

End

Figure 17.2  The flowchart of the GSA.
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

17.4  Evaluation of Particle Masses

The fitness value is calculated for each particle. The best and the worst values 
of the fitness value are called Best and Worst, respectively, which are deter-
mined as follows (under minimization):

	
Worst Max F X

j

M

j
1

	 (17.5)

	
Best Min F X

j

M

j
1

	 (17.6)

where F(Xj) = the fitness value of the jth solution and Worst and Best = the 
fitness value of the worst and best solution, respectively. Then, the relative 
normalized fitness value is calculated as follows:

	
( )

( )
, , ,...,X

F X Worst
Best Worst

j Mj
j 1 2 	 (17.7)

where ψ(Xj) = the normalized fitness value of solution j. The mass of each 
particle is calculated based on the normalized fitness value as follows:

	

Mass X
X

X
j Mj

j

j
j

M( )
( )

( )
, , ,...,

1
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in which Mass(Xj) = mass of particle (solution) jth. It is clear that the value 
of Mass increases with increasing the difference between the fitness value of 
solution j and Worst.

17.5  Updating Velocities and Positions

Equation (17.9) is employed to calculate the force acting on the jth particle 
exerted by the rth particle:
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where Forcej,r,i = the force action on the jth particle by the rth particle in the ith 
dimension, ε = small positive constant, and dj,r = the Euclidean distance between 
the jth mass and rth mass that is calculated as follows:

	
d x x j M r Mj r j i r i

i

N

, , , , , ,..., , , ,...,2

1
1 2 1 2 	 (17.10)

The GSA algorithm is randomized by assuming that the total force acting 
on the jth particle in the ith dimension is a randomly weighted sum of the ith 
components of the forces exerted by other particles. The acceleration of 
each mass in the ith dimension is calculated based on the second law of 
motion as follows:

	
a
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j M ij i

j r i
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j
,
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, , ,..., , , ,...,1 1 2 1 2 NN 	 (17.11)

where aj,i = acceleration of the jth particle (solution) in the ith dimension and 
rand = a random number with uniform distribution in the interval [0,1] that 
introduces random properties to the GSA.

The velocity is calculated as follows:

	 v Rand v a j M i Nj i
new

j i j i,
( )

, , , , ,..., , , ,...,1 2 1 2 	 (17.12)

where v j i
new
,

( ) = new velocity of the jth particle (solution) in the ith dimension, 
vj,i = previous velocity of the jth particle (solution), and Rand = a uniform ran-
dom variable in the interval [0,1].

The new position of the jth solution is given by

	 x x v j M i Nj i j i j i
new

, , ,
( ) , , , , , , , ,1 2 1 2  	 (17.13)
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where xj i,  = new value of the ith decision variable of the jth solution, xj,i = ith 
decision variable of the jth solution, and X j

new( ) = new position of the jth particle 
(new solution).

17.6  Updating Newton’s Gravitational Factor

The factor γ is a parameter that controls the searching capacity and the GSA’s 
efficiency. The searching capacity of the optimization algorithm increases 
whenever γ increases. On the other hand, the convergence efficiency of the 
search algorithm increases when γ decreases. For these reasons, it is 
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recommendable to use a value of γ that is set initially high and decreases with 
increasing time (Rashedi et al., 2009). A suitable formula for γ is the following:

	
( ) , , , ,t

C t
Te t T0 1 2 	 (17.15)

where γ(t) = Newton gravitational constant in iteration t, γ0 and C = controlling 
coefficients of the GSA, t = current iteration, and T = lifetime of the system (total 
number of iterations). In Equation (17.15), γ(t) is initialized at the beginning of the 
optimization and is reduced with advancing time to control the search accuracy.

17.7  Termination Criteria

The termination criterion determines when to terminate the algorithm. 
Selecting a good termination criterion has an important role on the correct 
convergence of the algorithm. The number of iterations, the amount of 
improvement of the solution between consecutive iterations, and the run time 
are common termination criteria for the GSA.

17.8  User‐Defined Parameters of the GSA

The population size (M), the initial Newton gravitational constant (γ0), C, and 
the termination criteria are user‐defined parameters of the GSA. A good choice 
of the parameters depends on the decision space of a particular problem, and 
usually the optimal parameter setting for one problem is of limited utility for 
other problems. Determining a good set of parameter often requires perform-
ing computational experiments. A reasonable method for finding appropriate 
values for the parameters is performing sensitivity analysis, whereby combina-
tions of parameters are tested and the algorithm is run several times for each 
combination to account for the random nature of the solution algorithm. In 
this manner the analyst obtains a distribution of solutions and associated 
objective function values for each combination of parameters. A comparison 
of the results from all the combination of parameters provides guidance on a 
proper choice of the algorithmic parameters.

17.9  Pseudocode of the GSA

Begin
	 Input the parameters of the algorithm and initial data
	 Generate M initial possible solutions randomly
	 While (the termination criteria are not satisfied)



17  Gravity Search Algorithm210

 	 Determine the best and worst solution according 
to the fitness value

 	 For j = 1 to M
 	 Evaluate inertial mass of solution j
 	 Next j
 	 For j = 1 to M
 	 For r = 1 to M
 	 Evaluate Euclidian distance between two 

solution j and r
 	 For i = 1 to N
 	 Calculate the force action on solution 

j from solution r in dimension i
 	 Next i
 	 Next r
 	 Update the acceleration and velocity of  

solution j
 	 Move solution j to new position
 	 Next j
 	 Update newton gravitational factor
 	End while
 	Report all solutions
End

17.10  Conclusion

This chapter described the GSA, presented a brief review of the GSA and its 
applications, described analogies between the GSA and the law of gravity, 
explained the GSA in detail, and introduced a pseudocode for the GSA.
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Summary

This chapter describes the bat algorithm (BA) that is a relatively new meta‐
heuristic optimization algorithm. The basic concepts of the BA are inspired by 
the echolocation behavior of bats. The following sections present a literature 
review of the BA and its applications, a description of the analogy between the 
behavior of microbats and the BA, and a detailed explanation of the BA and 
introduce a pseudocode of the BA.

18.1  Introduction

Yang (2010) developed the bat algorithm (BA) based on the echolocation 
features of microbats. The continuous optimization of engineering design 
optimization has been extensively studied with the BA, which demonstrated 
that the BA can deal with highly nonlinear problems efficiently and can find 
the optimal solutions accurately (Yang, 2010, 2012; Yang and Gandomi, 
2012). Case studies include pressure vessel design, automobile design, spring 
and beam design, truss systems, tower and tall building design, and others. 
Assessments of the BA features are found in Koffka and Ashok (2012), 
who compared the BA with the genetic algorithm (GA) and particle swarm 
optimization (PSO) in cancer research problems and provided evidence that 
the BA performs better than the other two algorithms. Malakooti et  al. 
(2012) implemented the BA to solve two types of multiprocessor scheduling 
problems (MSP) and concluded that bat intelligence outperformed the list 
algorithm and the GA in the case of single‐objective MSP. Reddy and Manoj 
(2012) applied fuzzy logic and the BA to obtain optimum capacitor place-
ment for loss reduction in electricity distribution systems. Ramesh et  al. 
(2013) reported a detailed study of combined economic load and emission 

Bat Algorithm
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dispatch problems employing the BA. They compared this algorithm 
with  the ant colony optimization (ACO) algorithm, hybrid GA, and other 
methods and concluded that the BA is easy to implement and much superior 
to the comparison algorithms in terms of accuracy and efficiency. Niknam 
et al. (2013) showed that the BA outperforms the GA and PSO in solving 
energy‐generation problems. Baziar et al. (2013) compared the BA with the 
GA and PSO in the management of micro‐grid for various types of renewa-
ble power sources and concluded that the BA has the best performance. 
Bozorg‐Haddad et  al. (2014) applied the BA to find optimal operation of 
water reservoir systems.

18.2  Mapping the Bat Algorithm (BA) 
to the Behavior of Microbats

Bats, the only winged mammals, can determine their locations while flying by 
sound emission and reception, which is called echolocation. Their population 
amounts to about 20% of all mammal species. Bat sizes range from the tiny 
bumblebee bat (with mass ranging from 1.5 to 2 g) to the giant bats with wing-
span of about 2 m weighing about 1 kg (Altringham, 1996; Colin, 2000).

Most microbats are insectivores and use a type of sonar, called echolocation, 
to detect prey, avoid obstacles, and locate their roosting crevices in the dark. 
Bats emit sound pulses while flying and listen to their echoes from surround-
ing objects to assess their own location and those of the echoing objects 
(Yang and Gandomi, 2012).

Each pulse has a constant frequency (usually in the range of 25 × 103 to 
150 × 103 Hz) and lasts a few thousandths of a second (up to about 8–10 ms). 
About 10–20 sounds are emitted every second with the rate of emission up to 
about 200 pps when they fly near their prey while hunting. If the interval 
between two successive sound bursts is less than 300–400 µs, bats cannot pro-
cess them for path‐finding purposes (Yang, 2010).

The speed of sound in air is typically v = 340 m/s, and the wavelength (W) of 
the ultrasonic sound bursts with a constant frequency (λ) is given by (Yang and 
Gandomi, 2012)

	
W v 	 (18.1)

in which W = the wavelength, v = the speed of sound, and λ = frequency. W is in 
the range of 2–14 mm for the typical frequency range from 25 × 103 to 
150 × 103 Hz. Such wavelengths W are of the same order of magnitude as their 
prey sizes.

Bats emit pulses as loud as 110 dB that are in the ultrasonic region (frequency 
range of human hearing is between 20 and 20 000 Hz). The loudness also varies 
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from the loudest when searching for prey to a quieter base when homing toward 
the prey. The traveling range of such short pulses is typically a few meters.

Microbats can avoid obstacles as small as thin human hairs. Such echolocation 
behavior of microbats has been formulated to create the bat‐inspired optimiza-
tion algorithm applying the following idealized rules (Yang, 2010):

1)	 All bats use echolocation to sense distance, and they can discern the difference 
between food/prey and background barriers.

2)	 Bats fly randomly with velocity v1 at position x1 with a fixed frequency λmin, 
varying wavelength W, and loudness A0 to search prey. They can automatically 
adjust the wavelength (or frequency) of their emitted pulses and adjust the 
pulsation rate, depending on the proximity of their target.

3)	 The loudness can vary from a large (positive) A0 to a minimum constant 
value Amin.

In general the frequency (λ) is in the range of [λmin,λmax] and corresponds to 
a range of wavelengths [Wmin,Wmax]. In actual implementations, one can adjust 
the range by adjusting the wavelengths (or frequencies), and the detectable 
range (or the largest wavelength) should be chosen such that it is comparable 
to the size of the domain of interest, and then toning down to smaller ranges. 
For simplicity, λ is assumed to be in the range of [0,λmax].

The pulsation rate (δ) is in the range of [0,1], where 0 means no pulses at 
all and 1 means the maximum pulsation rate. Based on these approxima-
tions and idealization, the basic steps of the BA have been summarized in 
the flowchart shown in Figure 18.1, and Table 18.1 lists the characteristics of 
the BA.

18.3  Creating an Initial Population

Each possible solution of the optimization problem represents a bat’s position 
in the BA. A bat’s position is defined by a set of N coordinates that constitute 
the decision variables. A bat’s position is denoted by an array of size 1 × N as 
follows:

	 Bat X x x x xi N1 2, , , , ,  	 (18.2)

where X = a solution (bat) of optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. The decision variable values 
(x1, x2, x3, …, xN) are represented as floating point numbers (real values) or as a 
predefined set for continuous and discrete problems, respectively.

The BA starts with the random generation (see Section 2.6) of a matrix of 
size M × N where M and N are the size of population and the number of deci-
sion variables, respectively. Hence, the matrix of solutions that is generated 
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Start

Define the parameters of the algorithm

Generate initial location of bats

Local search and random fly

Are the termination criteria satisfied?

Update the location of the bats

End

Report the bats

YesNo

Adjust frequency and updating velocities 

Figure 18.1  The flowchart of the BA.

Table 18.1  The characteristics of the BA.

General algorithm (see Section 2.13) Bat algorithm

Decision variable Position of bat in any dimension
Solution Position of bat
Old solution Old position of bat
New solution New position of bat
Best solution Best bat
Fitness function Distance with food
Initial solution Random bat
Selection Loudness criteria
Process of generating new solutions Fly bats
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randomly is written as follows (rows and columns are the number of bats and 
the number of decision variables, respectively):

	

Population

X
X

X

X

x x x x

j

M

i1

2

1 1 1 2 1 1

�

�
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i N

j j j i j N

M M M i M
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� � NN

	 (18.3)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

18.4  Movement of Virtual Bats

According to Figure 18.1 the fitness value is evaluated for all solutions, and 
those solutions are ranked based on their fitness values. The following are the 
rules to update the jth bat’s position (Xj) and its velocity in an N‐dimensional 
search space (j = 1, 2, …, M) (updated positions):

	 X x x x x j Mj
new

j j j i j N
( )

, , , ,, , , , , , , , ,1 2 1 2   	 (18.4)

	 x x v j M i Nj i j i j i, , , , , , , , , , ,1 2 1 2  	 (18.5)

	 v v x x j M i Nj i j i j i j i Best i, , , , , , , , , , , , ,1 2 1 2  	 (18.6)

	 j i Rand j M i N, , , , , , , , ,min max min 1 2 1 2  	 (18.7)

where X j
new( ) = the new position of the jth bat (new solution), xj i,  = the new 

value of ith decision variable of the jth solution, xj,i = the old value of the ith 
decision variable of the jth solution, Rand = a random value in the range of 
[0,1] drawn from a uniform distribution, xBest,i = ith decision variable of the 
current global best solution determined after comparing all the solutions 
among all the M bats, vj,i = the velocity of the jth bat (solution) in the ith 
dimension in the previous iteration, v j i,  = the velocity of the jth bat (solution) 
in the ith dimension in the current iteration, and λmin and λmax = lower and 
upper boundaries, respectively, of the frequency that are user‐defined 
parameters of the algorithm and are determined based on the size of the 
decision space of the problem at hand. A frequency value is drawn from a 
uniform distribution in the range [λmin,λmax] at the start of the BA and 
assigned to each bat.
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18.5  Local Search and Random Flying

A new solution is locally generated using random walk once a solution has 
been selected among the current best solutions. This is the local search part 
(random fly) of the BA. The new solution that replaces the rth selected solution 
(Yang and Gandomi, 2012) is calculated as follows:

	 x x Rnd A i Nr i r i
t

, ,
( )( , ) , , , ,1 1 1 2 	 (18.8)

	 X x x x xr
new

r r r i r N
( )

, , , ,, , , , ,1 2  

	 (18.9)

where Rnd(−1,1) = a random number in the range of [−1,1] and A(t) = the average 
loudness of all the bats at iteration t. The A(t) is reduced while approaching the 
optimum solution by using a rate called random walk rate.

Updating the velocities and positions of bats is similar to the procedure in the 
standard PSO algorithm as λ essentially controls the pace and range of the 
movement of the swarming particles. Therefore, the BA constitutes a combina-
tion of the standard PSO and intensive local search controlled by the loudness 
and pulsation rate.

18.6  Loudness and Pulse Emission

The BA implements local search when the pulse rate criterion is satisfied. The 
new solution replaces the old one when the loudness criterion is satisfied and 
the new solution is better than the old one. The pulse rate criterion is satisfied 
if a random value (Rand) is larger than δj. The loudness criterion is satisfied if 
a random value (Rand) is less than Aj. In addition, whenever the new solution 
replaces the old one, the loudness (Aj) and the pulsation rate (δj) are updated 
according to the BA’s iteration steps. The loudness usually decreases once a bat 
has found its prey, while the pulsation rate increases. Thus, the loudness can be 
chosen as any value of convenience. For example, the values of A(0) = 1 and 
Amin = 0 can be used, whereby the zero value means that a bat has just found a 
prey and temporarily stops emitting any sound. The pulsation and loudness 
rates at each iteration are calculated as follows:

	 j
t

j
Final C te j M( ) ( ) , , , ,1 1 21

 	 (18.10)

	 A C Aj
t

j
t( ) ( )

2
1 	 (18.11)

where j
t( ) = pulsation rate of the jth solution at iteration t; j

Final( ) = final pulsa-
tion of the jth solution, which is a user‐defined parameter; Aj

t( ) = loudness of the 
jth solution at iteration t; and C1 and C2 are constant values. C2 is similar to the 
cooling factor in the simulated annealing (SA) algorithm. For any 0 < C2 < 1 and 
C1 > 0, we have Aj

t( ) 0 and j
t

j
Final( ) ( ) when t .
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Choosing the correct values for the parameters C1 and C2 requires computa-
tional experimentation. Initially, each bat should be assigned values of loudness 
and pulsation rate. This can be achieved by randomization. Their loudness and 
pulsation rates are updated only if the solutions improve, which means that the 
bats are moving toward the optimal solution.

18.7  Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting 
a good termination criterion has an important role in the correct convergence of 
the algorithm. The number of iterations, the amount of improvement of solu-
tions between consecutive iterations, and the run time are common termination 
criteria for the BA.

18.8  User‐Defined Parameters of the BA

The population size (M), the initial loudness (A(0)), the minimum loudness 
(Amin), the final pulsation rate (δ(Final)), the values of constant C1 and C2, the 
frequency boundaries (λmin and λmax), and the termination criteria are user‐
defined parameters of the BA. A good choice of the parameters depends on the 
decision space of a particular problem, and usually the optimal parameter 
setting for one problem is of limited utility for other problems. Determining a 
good set of parameter often requires performing computational experiments. 
A reasonable method for finding appropriate values for the parameters is 
performing sensitivity analysis, whereby combinations of parameters are tested 
and the algorithm is run several times for each combination to account for the 
random nature of the solution algorithm. In this manner, the analyst obtains a 
distribution of solutions and associated objective function values for each 
combination of parameters. A comparison of the results from all the combina-
tion of parameters provides guidance on a proper choice of the algorithmic 
parameters.

18.9  Pseudocode of the BA

Begin
 	Input the parameters of the algorithm and initial data
 	Generate M initial possible situations
 	While (the termination criteria are not satisfied)
 	 Evaluate fitness value for all solutions
 	 Rank all solutions according to their fitness 

values and find the current best solution
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 	 For j = 1 to M
 	 Generate new solutions by adjusting frequency, 

and updating velocities and locations/
solutions

 	 Generate Rand randomly
 	 If Rand > δj
 	 Select a solution among the best 

solutions
 	 Generate a local solution around the best 

solution
 	 End if
 	 Generate a new solution by random fly
 	 Generate Rand randomly
 	 If (Rand < Aj) and (the new solution is 

better than the old one)
 	 Accept the new solutions
 	 Increase δj and reduce Aj
 	 End if
 	 Next j
 	End while
	 Report all solutions
End

18.10  Conclusion

This chapter described the BA, reviewed its development and applications, 
provided an analogy between the echolocation of bats and the BA, explained 
the BA in detail, and closed with a pseudocode for the BA.
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Summary

This chapter describes the plant propagation algorithm (PPA) that emulates 
the multiplication of plants akin to strawberry. The history of the PPA and its 
applications are reviewed, the PPA is mapped to the natural process of plant 
propagation, the PPA is described in detail, and a pseudocode of the PPA is 
introduced.

19.1  Introduction

The plant propagation algorithm (PPA) is inspired by propagating plants akin 
to the strawberry plant (Salhi and Fraga, 2011). They tested the PPA with low‐
dimensional single‐ and multi‐objective problems. The results showed that the 
PPA has merits and deserves further testing and research on higher‐dimensional 
problems. Sulaiman et al. (2014) applied the PPA to solve large problems. The 
PPA is attractive because, among other things, it is easy to implement. It also 
involves only a few parameters that are relatively simple to specify unlike most 
other meta‐heuristic algorithms.

19.2  Mapping the Natural Process to the Planet 
Propagation Algorithm (PPA)

The PPA resembles the manner in which plants, in particular strawberry 
plants, propagate. Although some varieties of plants propagate using seeds 
contained in fruits, hybrid types like strawberry are infertile and issue run-
ners to propagate. In this way, the original plant issues runners to generate 
new plants.

Plant Propagation Algorithm
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There is an interesting strategy that propagating plants employ. These plants 
develop runners. By doing so these plants attempt to place their offspring 
where nutrients and growth potential are suitable. If a plant is placed in a good 
spot of land, which provides enough water, nutrients, and light, it issues many 
short runners that generate new plants, which occupy the neighborhood as 
best as they can. However, if the original plant is placed in a spot without 
enough water, nutrients, light, or any other requirements called growth poten-
tial, it tries to find a better spot for its offspring. In the latter instance, the plant 
issues few runners farther to explore distant neighborhoods. It can be inferred 
that this plant sends only a few because sending a long runner is a large 
investment for a plant that is placed in a poor land.

The location of each plant represents a solution of the optimization problem in 
the PPA. The growth potential of the plant’s location is synonymous to its fitness 
value. Generally, the richer the land, the better the fitness values. A plant propaga-
tion strategy is to generate new plants around itself using runners so that the num-
ber and length of runners are determined by the fitness value of the original (mother) 
plant. Runners represent the process by which new solutions of the optimization 
problem are generated. Table 19.1 lists the characteristics of the PPA.

The PPA consists of the following two critical rules:

1)	 Plants that are placed in appropriate lands propagate by spreading many 
short runners.

2)	 Plants that are placed in poor lands propagate by generating a few long 
runners.

Exploration and exploitation are important features of optimization algorithms. 
Exploration refers to the property of searching the space, while exploitation refers 
to the property of searching near good solutions for achieving a more precise 
solution. It is clear that in the PPA exploitation is executed by plants sending 

Table 19.1  The characteristics of the PPA.

General algorithm (see Section 2.13) Plant propagation algorithm

Decision variable Position of plant in any dimension
Solution Position of plant
Old solution Mother plant
New solution Daughter plant
Best solution –
Fitness function Growth potential
Initial solution Random plant
Selection Eliminating worst solutions
Process of generating new solutions Propagation strategy
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many short runners in good areas (high growth potential), while exploration is 
executed by sending few long runners by plants in poor areas.

The PPA starts by randomly generating a number of initial possible solutions 
(see Section 2.6) as plants within the decision space. The objective functions of 
all plants are evaluated, and the evaluated objective functions are normalized 
between zero and one. This allows ranking of all solutions according to their 
fitness values. In the next step, each plant acting as a mother plant generates 
daughter plants, which represent new solutions. This process is called propaga-
tion, and it is obvious that propagation proceeds according to the propagation 
strategy of plants. Plants with a strong fitness values generate more new solutions 
near themselves than those plants with inferior fitness values. Under maximiza-
tion (minimization), strong (inferior) fitness value is tantamount to high (low) 
values of the fitness function. Each plant produces several offspring (new 
solutions), and, therefore, the population of solutions grows in each iteration. 
The worst solutions are eliminated at the end of each iteration to control the size 
of the population of solutions, and only a fixed number of solutions are kept and 
are carried to the next iteration. These solutions are considered as mother 
plants, and the aforementioned process is repeated until the termination criteria 
are satisfied. Figure 19.1 depicts the flowchart of the PPA.

Start

Define the parameters of the algorithm

Generate initial plants

Propagate offspring of plants

Eliminate plants with lower fitness value

Are the termination criteria satisfied?
No Yes

Report the plants

End

Normalize the fitness values of plants

Figure 19.1  The flowchart of the PPA.
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19.3  Creating an Initial Population of Plants

Each possible solution of the optimization problem represents a plant’s position 
in the PPA. In an N‐dimensional optimization problem, a plant’s position is writ-
ten as an array of size 1 × N, whose elements represent the decision variables. 
This array is defined as follows:

	 Plant X x x x xi N1 2, , , , , 	 (19.1)

where X = a solution of the optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. The PPA algorithm starts by 
randomly generating a matrix of size M × N (see Section 2.6) where M and N 
are the size of the population and the number of decision variables, respec-
tively. Hence, the matrix of solutions that is generated randomly is as follows 
(rows and columns represent the number of plants and the number of decision 
variables, respectively):
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	 (19.2)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size. Each of the decision variable values (x1, x2, x3, …, xN) can be 
represented as floating point number (real values). The PPA solves problems 
with continuous decision spaces.

19.4  Normalizing the Fitness Function

The fitness of a solution must be assessed prior to generating new solutions. To 
accomplish this assessment, the fitness functions are normalized between zero 
and one. The following equation normalizes the fitness function:

	
F X

F X Worst
Best Worst

j Mj
j , , , ,1 2 	 (19.3)

in which σ[F(Xj)] = the normalized fitness value of the jth solution, 
F(Xj) = fitness value of the jth solution, Worst = the worst possible value of F, 
and Best = the best possible value of F. Determining the best and worst pos-
sible values of the fitness value is sometimes impossible. In this case the best 
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and worst available values in the current population or the best and worst 
fitness values calculated during the search process replace the best and 
worst  possible values. Other functions such as trigonometric functions or 
exponential functions can be used for normalization depending on the prob-
lem at hand.

19.5  Propagation

The PPA dictates that each plant issues runners to explore the decision space. 
Each runner results in an offspring that is a new solution. The number of off-
spring made by a solution may vary among solutions. The number of runners 
(offspring) generated by a solution is proportionate to its normalized fitness 
value, and it is evaluated as follows:

	 j j Rand j Mmax , , , ,1 2 	 (19.4)

in which μj = number of new solutions generated by the jth solution, μmax = the 
maximum number of new solutions that can be produced by a solution (this is 
a predefined parameter), σj = the normalized fitness value of the jth solution, 
and Rand = a random value from the range [0,1]. Notice that ⌈x⌉ where x is the 
argument of the function on the right‐hand side of Equation (19.4) means the 
ceiling of x (i.e., the smallest integer ≥x).

In contrast to the number of runners (new solutions), the length of runners is 
inversely proportional to the normalized fitness values. It was previously stated 
that better solutions generate new solutions close to themselves and poor solu-
tions generate new solutions in places farther from themselves. The distance 
between the original solution and new solution is determined as follows:

	 d Rand j M i Nj i j, ( . ), , , , , , , ,2 1 0 5 1 2 1 2  	 (19.5)

in which dj,i = the length of runner of the jth solution in the ith dimension 
(decision variable). The term Rand 0 5.  makes it possible for a runner to 
take negative or positive directions.

The evaluated runner’s length is employed to generate new solutions as 
follows:

	 x x x x d i N r jr i j i i
U

i
L

j i j, ,
( ) ( )

, , , , , , , , , , , ,1 2 1 2 1 2  ,, M

(19.6)

in which xr i,  = ith decision variable of the rth new solution generated by the jth 
solution, xj,i = ith decision variable of the jth solution, xi

U( ) = the upper bound of 
the ith decision variable, and xi

L( ) = the lower bound of the ith decision variable. 
Equation (19.6) may generate a new solution that falls outside the decision space. 
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In the latter instance, the newly generated solution is adjusted to be within the 
decision space. Each new solution r is represented as follows:

	 X x x x x rr
new

r r r i r N j
( )

, , , ,, , , , , , , , ,1 2 1 2   	 (19.7)

in which Xr
new( ) = rth new solutions generated by the jth solution.

19.6  Elimination of Extra Solutions

It is necessary at the end of each iteration to delete the part of population in 
excess of the allowed number of solutions. Solutions produce several offspring 
(new solutions) in each iteration, which means that the population would grow 
as the iterations progress unless the population is controlled in each iteration. 
This is achieved in each by eliminating the worst solutions to keep the number 
of solutions fixed as the algorithm progresses.

19.7  Termination Criteria

The termination criteria determine when to terminate the algorithm. 
Selecting a good termination criterion is important because if the number of 
iteration of the algorithm is not sufficiently large, the algorithm may termi-
nate prematurely at a suboptimal solution. On the other hand, it is clear that 
wasteful computations are incurred if the algorithm continues to run when 
the solution does not improve across iterations. Although there are several 
distinct termination criteria, Salhi and Fraga (2011) recommended that the 
number of iterations is a suitable termination criterion. This means that 
the PPA algorithm runs for a predefined number of iterations.

19.8  User‐Defined Parameters of the PPA

The population size (M), the maximum number of new solutions that can be 
produced by each solution (μmax), and the maximum number of iterations are 
parameters that must be determined by the user. In comparison with other 
meta‐heuristic and evolutionary algorithms, it is seen that the PPA has a 
relatively small number of user‐defined parameters. Its simple structure and 
small number of parameters make implementation of the PPA comparatively 
simple. A good choice of the parameters depends on the decision space of a 
particular problem, and usually the optimal parameter setting for one 
problem is of limited utility for any other problem. Determining a good 
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set  of  parameters often requires performing computational experiments. 
A  reasonable method for finding appropriate values for the parameters is 
performing sensitivity analysis, whereby combinations of parameters are 
tested and the algorithm is run several times for each combination to account 
for the random nature of the solution algorithm. In this manner, the analyst 
obtains a distribution of solutions and associated objective function values 
for each combination of parameters. A  comparison of the results from all 
the combination of parameters provides guidance on a proper choice of the 
algorithmic parameters.

19.9  Pseudocode of the PPA

Begin
 	Input the parameters of the algorithm and initial data
 	Let M = the size of population and N = number of 

decision variables
 	Generate M initial possible solutions randomly
 	While (the termination criteria are not satisfied)
 	 Evaluate fitness value of solutions
 	 For j = 1 to M
 	 Evaluate normalized fitness value of solution 

j (σ[F(Xj)])
 	 Evaluate number of new solutions generated by 

solution j (μj)
 	 For i = 1 to N
 	 Evaluate the length of runner dj,i
 	 Next i
 	 For r = 1 to μj
 	 For i = 1 to N
 	 Evaluate the decision variable i-th of 

new solution r-th (xr i, )
 	 If xr i,  > xi

U( ) or xr i,  < xi
L( )

 	 Adjust xr i,  within the boundaries
 	 End if
 	 Next i
 	 Next r
 	 Next j
 	 Constitute new population with M best solutions
 	End while
 	Report the population
End
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19.10  Conclusion

This chapter described the PPA that simulates multiplication of some plants 
akin to the strawberry plant. The chapter presented a brief introduction to 
the PPA, its analogy to plant propagation, an algorithmic explanation, and a 
pseudocode of the PPA.

References

Salhi, A. and Fraga, E. S. (2011). “Nature‐inspired optimization approaches and 
the new plant propagation algorithm.” Proceedings of the International 
Conference on Numerical Analysis and Optimization (ICeMATH 2011), 
Yogyakarta, Indonesia, June 6–8, Colchester: University of Essex.

Sulaiman, M., Salhi, A., Selamoglu, B. I., and Kirikchi, O. B. (2014). “A plant 
propagation algorithm for constrained engineering.” Mathematical Problems in 
Engineering, 2014, 627416.



231

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,  
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Loáiciga. 
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

20

Summary

This chapter describes the water cycle algorithm (WCA), which is a relatively 
new meta‐heuristic optimization algorithm. The fundamental concepts of 
the WCA are inspired by natural phenomena concerning the water cycle and 
how rivers and streams flow to the sea. The next sections present the 
background and applications of the WCA, explain the WCA, and provide a 
pseudocode.

20.1  Introduction

The water cycle algorithm (WCA) was introduced by Eskandar et al. (2012). 
The authors compared the results of the WCA with those of other meta‐
heuristic algorithms such as the genetic algorithm (GA), particle swarm 
optimization (PSO) algorithm, harmony search (HS), bee colony, and dif-
ferential evolution (DE). Their results showed that the WCA is a suitable 
method for solving constrained optimization problems and competes favora-
bly with other meta‐heuristic algorithms. Eskandar et al. (2013) illustrated 
the application of the WCA by solving the problem of designing truss struc-
tures and compared the results with those of other meta‐heuristic algorithms 
such as the GA, PSO, mine blast algorithm (MBA), etc. The results of their 
comparison demonstrated the strong capability of the WCA algorithm to 
find optimal solutions and its rapid convergence. Bozorg‐Haddad et  al. 
(2014) applied the WCA to find optimal operation strategies for a four‐
reservoir system in Iran. The results demonstrated the high efficiency and 
reliability of the WCA in solving reservoir operation problems. Ghaffarzadeh 
(2015) applied the WCA to design a power system stabilizer (PSS) that 
enhances the damping of power system oscillations.

Water Cycle Algorithm
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20.2  Mapping the Water Cycle Algorithm (WCA) 
to the Water Cycle

The basic idea of the WCA is inspired by nature’s water cycle and by the man-
ner in which rivers and streams flow toward the sea. The water or hydrologic 
cycle has no beginning or end, and its several processes occur consecutively 
and indefinitely. Streams and rivers constitute interconnected networks, issu-
ing from high ground, where sometimes snow or ancient glaciers melt, and 
discharging to sea and lakes. Streams and rivers collect water from rain and 
other streams on their way down stream toward the sea. Water in rivers, seas, 
and lakes evaporates. The evaporated water is carried to the atmosphere to 
generate clouds. These clouds condense and release the water back in the form 
of rain or snow, creating streams and rivers. This is the manner of functioning 
of the hydrologic or water cycle (see, e.g., David, 1993).

The WCA simulates the precipitation process by randomly generated rain-
drops, each of which is an array that represents a solution of the optimization 
problem. The streams are created by the raindrops, and streams join each 
other to form rivers. Some of the streams may also flow directly to the sea. 
Rivers and streams flow to the sea (the lowest point). The WCA classifies rain-
drops as the sea, or as rivers, or as streams that form an interconnected net-
work. The sea is the best raindrop (solution), which has the minimum fitness 
value (under minimization), and other raindrops are known as rivers or 
streams, so that rivers are better solutions than streams. Rivers flow to the sea, 
and streams flow to rivers or to the sea. The WCA generates new solutions as 
water flows toward the sea. The evaporation process causes the seawater to 
evaporate as rivers/streams flow to the sea. Whenever all rivers have fitness 
values as good as that of the sea, this indicates that all the water has evaporated 
and raining occurs again completing the water cycle. Table 20.1 lists the char-
acteristics of the WCA.

The WCA assumes that there is rain or precipitation that generates rain-
drops (initial solutions) randomly. The fitness values of all the raindrops are 
evaluated following precipitation. The best raindrop, which has the lowest 
value of objective function (under minimization), is marked out as the sea, and 
other raindrops are classified into rivers and streams according to their fitness 
values. In the next step, the number of streams connected to each river is 
determined according to the fitness of each river. In fact, each river receives 
water from the streams depending on its flow magnitude. New streams and 
rivers (new solutions) are generated by old streams flowing to their corre-
sponding rivers and by rivers flowing to the sea. The direction of flow is 
reversed if new streams are better than the old corresponding rivers. In other 
words, a new stream that is better than an old river becomes a river, and an old 
river becomes a stream. Also, the direction of flow between rivers and the sea 
can be reversed if a new river is better than an old sea. The flow of water 
through streams and rivers toward the sea continues until all rivers reach the 



20.3  Creating an Initial Population 233

sea, which indicates that evaporation has been completed, at which time rain 
(or precipitation) occurs again to form a new network of streams. This 
algorithm is repeated until the termination criteria are satisfied. Figure 20.1 
presents the flowchart of the WCA.

20.3  Creating an Initial Population

The WCA designates possible solution of the optimization problem as a rain-
drop. In an N‐dimensional optimization problem, a raindrop is an array of size 
1 × N. This array is defined as follows:

	 Raindrop X x x x xi N1 2, , , , ,  	 (20.1)

where X = a solution of optimization problem, xi = ith decision variable of solu-
tion X, and N = number of decision variables. To start the optimization algo-
rithm, a matrix of size M × N is generated (where M and N are the size of 
population and the number of decision variables, respectively). Hence, the 
matrix of solutions that is generated randomly (see Section 2.6) is written as 
follows (rows and columns are the number of raindrops and the number of 
decision variables, respectively):
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Table 20.1  The characteristics of the WCA.

General algorithm (see Section 2.13) Water cycle algorithm

Decision variable Position of raindrop in any dimension
Solution Raindrop/sea/river/stream
Old solution Sea/river/stream
New solution New place of stream
Best solution Sea
Fitness function Flow
Initial solution Random stream
Selection Categorizing streams into sea/river/stream
Process of generating new solutions Stream and river flow
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Define the parameters of the algorithm

Generate initial raindrops randomly

Classified the raindrops into a sea, rivers, and streams

Streams flow to rivers

Rivers flow to the sea

Reverse the flow direction

Does a river have a lower fitness 
than the sea?

Does a stream have a lower fitness than the 
corresponding river?

Reverse the flow direction

Is the evaporation condition satisfied?

Apply raining process

Are the termination criteria satisfied?

YesNo

YesNo

YesNo

Yes

Determine the intensity of flow

Report the sea

Start

End

No

Decrease δ

Figure 20.1  The flowchart of the WCA for a minimization problem.



20.4  Classification of Raindrops 235

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size. Each of the decision variable values (x1, x2, x3, …, xN) can be 
represented as floating point number (real values) or as a predefined set for 
continuous and discrete problems, respectively.

20.4  Classification of Raindrops

The raindrop that has the minimum fitness value among others is marked out 
as the sea after evaluating the objective function of all the solutions. A number 
R of the best raindrops are selected as rivers. The total number of streams S 
that flow to the rivers or may directly flow to the sea is calculated as follows:

	
S M R

sea

1


	 (20.3)

in which R = the total number of rivers and S = the total number of streams.
Figure 20.2 illustrates how to classify raindrops and the relations between 

streams, rivers, and raindrops.
The following equations are used to designate/assign raindrops to the rivers 

and sea depending on the intensity of the flow (fitness value) in a minimization 
problem:

	

sea

r
r

RRound F Sea

F Sea F River
S( )

( )
1

	 (20.4)

Raindrops
(solutions)

F(X) F(X)

Sea

Rivers

Streams

Sort

Figure 20.2  Classification of raindrops and relations between the sea, rivers, and streams 
according to their fitness values (F(X)) for a minimization problem where M = 10 and R = 3.
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r

RRound
F River

F Sea F River
S j

( )
,

1

1,, , ,2 R	 (20.5)

where F(X) = fitness value of a solution X, Round = a function that rounds off 
the value of the function within brackets to the closest integer number, Sea = the 
best solution, Riverj = jth good solution after the best solution, λsea = the num-
ber of streams that flow directly to the sea, and λj = the number of streams that 
flow to the jth river.

20.5  Streams Flowing to the Rivers or Sea

The streams are created from the raindrops and join each other to form new 
rivers. Some of the streams may also flow directly to the sea. All rivers and 
streams discharge to the sea (best optimal point). A stream flows to a river 
along a line connecting them using a randomly chosen distance calculated as 
follows:

	 X Rnd C d C0 1, , 	 (20.6)

where X′ = new stream, Rnd = a random value between 0 and (C × d), d = the cur-
rent distance between old stream and river, and C = a value between 1 and 2 
(near to 2). The best value for C may be chosen as 2. The value of C being greater 
than one enables streams to flow in different directions toward the rivers. 
Figure 20.3 shows the schematic of a stream’s flow toward a specific river.

The concept behind Equation (20.6) involving the flow of streams to rivers 
may also be used for the flow of rivers to the sea. Therefore, the new decision 
variables for new streams and rivers are as follows:
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d

X X′ River

Figure 20.3  Schematic of stream flowing toward a river at distance d: X: existing stream;  
X′: new stream.
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where Streamj i
new
,

( ) = new value of the ith decision variable of jth stream, 
Streamj,i = the old value of the ith decision variable of the jth stream, Riveri

j( ) = the 
value of the ith decision variable of the river connected to the jth stream, 
Riverj i

new
,

( ) = new value of the ith decision variable of the jth river, Riverj,i = the 
old value of the ith decision variable of the jth river, Seai = the value of the ith 
decision variable of the sea (best solution), and Rand = uniformly distributed 
random number in the range [0,1].

The positions of a river and stream are exchanged (i.e., the stream becomes 
a river and vice versa) whenever the solution given by a stream is better than 
that of the river to which it discharges after calculation of the new stream and 
river. Such exchange can similarly happen for rivers and the sea.

20.6  Evaporation

Evaporation is one of the most important factors that can prevent the 
WCA algorithm from rapid convergence (immature convergence). As can 
be observed in nature, water evaporates from rivers and lakes. The evapo-
rated water is carried to the atmosphere to form clouds that then condenses 
in the colder atmosphere, releasing the water back to earth in the form of 
rain (or snow, in which case we deal with snow pellets as equivalents to rain 
drops). The rain creates the new streams and rivers, and the water cycle 
continues. The WCA induces evaporation from seawater as rivers/streams 
flow to the sea. This assumption is necessary to avoid entrapment in local 
optima. The following commands show how to determine whether or not a 
river flows to the sea:

	 d Sea River j Rj , , , ,1 2 	 (20.9)

where d = the distance between the sea and rivers. If the distance between a 
river and the sea is less than a predefined threshold δ (d ), this indicates that 
the river has reached/joined the sea. In this instance, the evaporation process 
is applied, and, as seen in nature, the precipitation will start after sufficient 
evaporation has occurred. Therefore, a large value of δ reduces the search, 
while a small value encourages the search intensity near the sea. δ controls the 
search intensity near the sea (the optimal solution). It is recommended that δ 
be chosen as a small number close to zero (Eskandar et al., 2012). The value of 
δ gradually decreases as the algorithm progresses as follows:

	
t t

t

T
1 	 (20.10)

where T = the total number of algorithm’s iterations and δ(t) = the threshold of 
evaporation in iteration t.
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20.7  Raining Process

The raining process is applied after satisfying the evaporation process. New 
raindrops are randomly generated during the raining process. The decision 
variables of the new raindrops are generated as follows:

	 x Rnd x x i Ni
new

i
L

i
U( ) ( ), , , , ,1 2 	 (20.11)

where xi
new( ) = decision variable ith of a new raindrop (solution) and xi

U( ) and 
xi

L( ) = lower and upper bounds defined by the given problem, respectively. 
Again, the best newly formed raindrop is considered as a river flowing to the 
sea. The other new raindrops are assumed to form new streams that flow to the 
rivers or may flow directly to the sea.

The convergence rate and computational performance of the WCA for con-
strained problems is improved by applying Equation (20.12) to generate the 
decision variable of new streams that flow directly to the sea. This equation 
encourages the generation of streams that flow directly to the sea to improve 
the search near the sea (the optimal solution) in the feasible region of con-
strained problems:

	 Stream Sea Randn i Ni
new

i
( ) , , , ,1 2 	 (20.12)

where Streami
new( ) = ith decision variable of the new stream, η = coefficient that 

shows the range of the search region near the sea, and Randn = normally 
distributed random number. A larger value for η increases the possibility to exit 
from the feasible region. On the other hand, the smaller value for η leads the 
algorithm to search in smaller regions near the sea. A suitable value for η is 0.1. 
From a mathematical viewpoint, the term  represents the standard deviation, 
and, accordingly, η captures the concept of variance. Using these concepts, the 
generated individuals with variance η are distributed about the best obtained 
optimal point (the sea).

There are several differences between the WCA and other meta‐heuristic 
methods such as the PSO. The WCA treats rivers (a number of best selected 
points except the best one (the sea)) as “guidance points,” which guide other 
individuals in the population toward better positions to prevent searching in 
inappropriate regions near optimal solutions. Furthermore, rivers are not fixed 
points and they flow toward the sea (the best solution). This procedure (streams 
flowing to rivers and rivers flowing to the sea) leads to search moves toward the 
best solution. In contrast, the PSO prescribes that only individuals (particles) 
find the best solution based on their best personal experiences. The WCA also 
uses “evaporation and raining conditions” that resemble the mutation operator 
in the GA. The evaporation and raining conditions prevent the WCA algorithm 
from being trapped in local solutions (Eskandar et al., 2012).
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20.8  Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting 
a good termination criterion has an important role in the correct convergence of 
the algorithm. The number of iterations, the amount of improvement of the 
solution between consecutive iterations, and the run time are common termina-
tion criteria for the WCA.

20.9  User‐Defined Parameters of the WCA

The population size (M), the number of rivers (R), the initial threshold of 
evaporation (δ), and the termination criteria are user‐defined parameters of the 
WCA. A good choice of the parameters depends on the decision space of a 
particular problem, and usually the optimal parameter setting for one problem 
is of limited utility for any other problem. Determining a good set of parameter 
often requires performing computational experiments. A reasonable method 
for finding appropriate values for the parameters is performing sensitivity 
analysis, whereby combinations of parameters are tested and the algorithm is 
run several times for each combination to account for the random nature 
of  the  solution algorithm. In this manner, the analyst obtains a distribution 
of solutions and associated objective function values for each combination of 
parameters. A comparison of the results from all the combination of parame-
ters provides guidance on a proper choice of the algorithmic parameters.

20.10  Pseudocode of the WCA

Begin
 	Input the parameters of the algorithm and initial data
 	Generate M initial possible solutions randomly
 	Evaluate fitness value for all solutions
 	Classified solutions into streams, rivers and the 

sea and assign each stream to a river or the sea
 	While (the termination criteria are not satisfied)
 	 For j = 1 to S (total number of streams)
 	 Flow stream j toward the corresponding river 

or the sea
 	 If the new generated stream is better than 

the river or the sea
 	 Reverse the flow direction
 	 End if
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 	 Next j
 	 For j = 1 to R (total number of rivers)
 	 Flow river j toward the sea
 	 If the new generated river is better than the sea
 	 Reverse the flow direction
 	 End if
 	 Next j
 	 If evaporation condition is satisfied
 	 Start raining process
 	 End if
 	 Reduce the value of δ
 	End while
 	Report the best solution (the sea)
End

20.11  Conclusion

This chapter described the WCA, a meta‐heuristic optimization algorithm. 
The chapter presented a brief history of the development and applications of 
the WCA and described the analogy between the water cycle and the mathe-
matical statement of the WCA. The chapter also described the WCA in detail 
and introduced a pseudocode.
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Summary

This chapter describes the symbiotic organisms search (SOS) algorithm, a 
recently developed meta‐heuristic algorithm. Unlike most of meta‐heuristic 
algorithms, the SOS does not require specification of algorithmic parameters. 
First, the basic concepts of the SOS algorithm are mapped to the symbiotic 
relations among organisms. The steps of the SOS algorithm are defined in 
detail and a pseudocode of the SOS is presented.

21.1  Introduction

Cheng and Prayogo (2014) introduced the symbiotic organisms search (SOS) 
algorithm. The SOS is a nature‐inspired optimization algorithm that simulates 
three different symbiosis interactions within a paired organism relationship 
through an ecosystem. Evolutionary algorithms (EAs) are targets of criticism 
because of the need for specifying algorithmic parameters. The SOS algorithm 
requires only the specification of the “maximum number of evaluations” and 
the “population size.” Evi et al. (2015) implemented the SOS for solving capaci-
tated vehicle routing problem (CVRP). Rajathy et al. (2015) demonstrated the 
superiority of the SOS for solving economic load dispatch problem.

21.2  Mapping Symbiotic Relations to the Symbiotic 
Organisms Search (SOS)

Symbiosis is a close physical relation between two interacting organisms. 
There are three categories of symbiotic relationships including mutualism, 
commensalism, and parasitism. Mutualism is a relation that is beneficial to 

Symbiotic Organisms Search
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both organisms involved. In many mutualistic relationships, the relation is 
obligatory; the species cannot live without each other. In others, the species 
can exist separately but are more successful when they are involved in a 
mutualistic relation. For instance, the interaction between starlings and buffalo 
is known as mutualism. Starlings remove ticks from the buffalo’s skin for 
sustenance. The itching from ticks biting the buffalo is reduced in return. 
Commensalism takes place when an organism receives benefits while the other 
is not significantly affected. Such is the case of the interactions between remora 
fish and sharks. Remora fish eat leftovers from the shark without bothering the 
shark at all. Parasitism is another kind of symbiotic relation in which an organ-
ism obtains benefits from the interaction while other is harmed. One example 
is that of the anopheles mosquito biting humans for blood. Anopheles injects 
Plasmodium parasites into the human body that cause malaria, a potentially 
lethal disease.

The SOS algorithm does not reproduce or create children (or offspring), a 
trait that differentiates it from GA‐type EAs (Cheng and Prayogo, 2014). It 
does, however, like the majority of population‐based EAs, generate an initial 
population of solutions (called “ecosystem”) plus specific operators through 
an iterative process to search for a near‐optimal solution among a group of 
candidate solutions (called “organisms”) within the promising area of the 
search space.

The SOS algorithm simulates the ecosystem with a randomly generated 
set of solutions, each of which is known as an organism. The solutions or 
organisms are represented as an array of decision variables of the optimiza-
tion problem. Commonly, meta‐heuristics have operators that generate a 
new solution. The phases in the SOS such as mutualism, commensalism, 
and parasitism serve as the operators. Each organism interacts with other 
organisms randomly in the population through all phases. When simulating 
mutualism, both of two selected solutions are improved. The simulation of 
commensalism of two selected solutions improves one solution while leav-
ing the other one unchanged. Parasitism is simulated when an improved 
solution replaces another solution that is discarded (it dies). The features of 
the SOS algorithm are listed in Table 21.1. Figure 21.1 illustrates the steps 
of the SOS algorithm.

21.3  Creating an Initial Ecosystem

Each possible solution of the optimization problem is called an organism in 
the SOS. An organism or solution is represented as array of size 1 × N in an 
N‐dimensional optimization problem. This array is written as follows:

	 Organism X x x x xi N1 2, , , , ,  	 (21.1)
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Table 21.1  The characteristics of the SOS.

General algorithm (see Section 2.13) Symbiotic organisms search

Decision variable Elements of organism
Solution Organism
Old solution Old organism
New solution Improved organism
Best solution Best organism
Fitness function Quality of organism
Initial solution Random organism
Selection Selection of organism
Process of generating new solutions Symbiotic relationship

Start

Define the parameters of the algorithm

Generate initial organisms randomly

Apply mutualism

Apply parasitism

Apply commensalism

Are the termination criteria satisfied?
No Yes

Report the best organism

End

Figure 21.1  The flowchart of the SOS.
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where X = a solution of optimization problem, xi = ith decision variable of 
solution X, and N = number of decision variables. The SOS algorithm starts 
with the generation of matrix of size M × N (where M and N are the size of 
population and the number of decision variables, respectively). Hence, the 
matrix of solutions that is generated randomly (see Section 2.6) is written as 
follows (rows and columns are the number of organisms and the number of 
decision variables, respectively):
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in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size. Each of the decision variable values (x1, x2, x3, …, xN) can be 
represented as floating point number (real values) or as a predefined set for 
continuous and discrete problems, respectively.

21.4  Mutualism

In this phase two organisms participate in a dialectic relation that is beneficial 
for both of them. Let Xj be an organism representing the jth member of the 
ecosystem (i.e., the population of solutions), and the rth solution Xr is selected 
randomly from the ecosystem to interact with Xj. Sometimes Xj and Xr are 
located far from each other in the search space. Thus, providing a mechanism 
to explore some new regions within the search space would promote the search 
algorithm’s performance. In so doing mutualism evaluates the new candidate 
solutions with a mutual factor to update (improve) the two organisms simulta-
neously rather than separately. The mutual factor is given by the following 
formula:

	 i
j i r ix x

i N, , , , , ,
2

1 2 	 (21.3)

in which μi = mutual factor in the ith dimension, xj,i = ith decision variable of the 
jth solution of the population of solutions (or ecosystem), and xr,i = ith decision 
variable of the rth solution of the population of solutions. The new candidate 
solutions are obtained with the following formulas:

	 x x Rand x i Nj i j i Best i i, , , , , , ,1 1 2 	 (21.4)
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	 x x Rand x i Nr i r i Best i i, , , , , , ,2 1 2 	 (21.5)

	 X x x x xj
new

j j j i j N, , , ,, , , , ,1 2  

	 (21.6)

	 X x x x xr
new

r r r i r N, , , ,, , , , ,1 2  

	 (21.7)

where xj i,  = new value of the ith decision variable of the jth solution, xr i,  = new 
value of the ith decision variable of the rth solution, Rand = a random value in 
the range [0,1], xBest,i = ith decision variable of the best solution in the popula-
tion, X j

new = a candidate solution for the jth solution, Xr
new = a candidate solution 

for the rth solution, and β1 and β2 = constants. β1 and β2 are valued randomly as 
either 1 or 2 to reflect the level of benefits received from the symbiosis. The 
constants β1 and β2 are so chosen to reflect the fact that in a mutualistic 
symbiosis between two organisms, one organism might gain a large benefit, 
while the other might receive no significant benefit.

21.5  Commensalism

By definition commensalism is a relation between two organisms whereby one 
organism gains benefits while the other remains unaffected. Similar to the pre-
vious section, Xr is selected randomly from the ecosystem to interact with Xj; 
however, Xj strives to receive benefits from the relation, yet Xr remains neutral 
or unaffected. In this phase, a new candidate solution that may outperform Xj 
is calculated as follows:

	 x x Rand x x i Nj i j i Best i r i, , , , , , , ,1 2 	 (21.8)

	 X x x x xj
new

j j j i j N, , , ,, , , , ,1 2  

	 (21.9)

21.6  Parasitism

The SOS algorithm has a unique mutation operator called parasitism in which 
Xj and Xr are the artificial parasite and host, respectively. In this type of sym-
biosis relation, one organism benefits, while the other is harmed. The trade-
mark of the parasite vector (PV) is that it competes against other randomly 
selected organisms rather than with its parent/creator. Throughout this phase 
the PV attempts to replace Xr, which is selected randomly from the ecosys-
tem. So as to create a PV, Xj must be duplicated within the search space, and 
then, the random dimensions are modified by using random numbers. 
Specifically, let X x x x xj i N( , , , , , )1 2    be a randomly selected solution, and 
assume the  ith decision variable is randomly selected for modification. 
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Parasitism calculates a new solution X x x x xj
parasitism

i N
( ) ( , , , , , )1 2    in which 

xi  is evaluated as follows:

	 x Rnd x xi i
L

i
U( ) ( ), 	 (21.10)

in which xi  = value of ith decision variable of X j
parasitism( ) and xi

L( ) and xi
U( ) = the 

lower and upper boundary of the ith decision variable, respectively.
The fitness values of the organisms illustrate the superiority of the parasite 

or the host. If X j
parasitism( ) outperforms Xr, then it will remain in the ecosystem 

and Xr is deleted. Otherwise, Xr remains in the ecosystem (i.e., the population 
of solutions).

21.7  Termination Criteria

The termination criterion determines when to terminate the algorithm. 
Selecting a good termination criterion has an important role in the correct 
convergence of the algorithm. The number of iterations, the amount of 
improvement of the solution between consecutive iterations, and the run time 
are common termination criteria for the SOS.

21.8  Pseudocode of the SOS

Begin
 	Input the parameters of the algorithm and initial data
 	Generate M initial possible solutions randomly
 	Evaluate fitness value for all solutions
 	While (the termination criteria are not satisfied)
 	 Determine the best solution (Best) in population 

according to the fitness values
 	 For j = 1 to M
 	 Select organism r (Xr) from ecosystem randomly
 	 Generate Xj

(new) and Xr
(new) by mutualism and 

evaluate their fitness values
 	 If (Xj

(new) is better than Xj) and (Xr
(new) is better 

than Xr)
 	 Replace the new solutions for previous 

solutions
 	 End if
 	 Select organism r (Xr) from ecosystem randomly
 	 Generate Xj

(new) based on commensalism and 
evaluate its fitness value

 	 If Xj
(new) is better than Xj
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 	 Replace the new solution for previous 
solution

 	 End if
 	 Duplicate Xj (Xj

(new) = Xj)
 	 Modify Xj

(new) based on parasitism and evaluate 
its fitness value

 	 Select organism r (Xr) from ecosystem 
randomly

 	 If Xj
(new) is better than Xr

 	 Replace Xj
(new) for Xr (Xr = Xj

(new)).
 	 End if
 	 Next j
 	End while
 	Report the best solution
End

21.9  Conclusion

The SOS algorithm is a recently developed meta‐heuristic algorithm that, 
unlike most of meta‐heuristic algorithms, does not require specification of 
algorithmic parameters. This chapter described the SOS algorithm, presented 
its analogy to symbiosis, reported the SOS’s algorithmic steps, and closed with 
a pseudocode.
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Summary

This chapter introduces a new meta‐heuristic optimization algorithm called 
the comprehensive evolutionary algorithm (CEA). This algorithm combines 
and takes advantages of some aspects of various algorithms, especially the 
genetic algorithm (GA) and the honey‐bee mating optimization (HBMO) 
algorithm. The following sections describe the fundamentals of the CEA and 
its algorithmic details. The chapter closes with a pseudocode of the CEA.

22.1  Introduction

The comprehensive evolutionary algorithm (CEA) is an optimization algo-
rithm of recent vintage that combines features of the genetic algorithm (GA) 
and the honey‐bee mating optimization (HBMO) algorithm. The CEA can 
solve single and multi‐objective problems. This algorithm optimizes the 
defined objective function of an optimization problem based on three pro-
cesses: (1) selection, (2) production, and (3) replacement. In addition, the 
CEA is able to explicitly perform sensitivity analysis of some of its parameters 
based on the problem conditions. In general, the CEA has better convergence 
performance and speed to the near‐optimal solution, on the optimality of 
final solution, and on the run time period.

The GA was developed by Holland (1975), inspired by evolutionary process 
that are emulated mathematically in the GA. Numerous researches have 
been  carried out to improve, extend, and apply the GA to a wide variety of 
optimization problems (Dimou and Koumousis, 2003; Hormwichian et  al., 
2009; Sonmez and Uysal, 2014). The HBMO algorithm is a population‐based 
method for optimization in which the searching process for finding the optimal 
solution is inspired by honey‐bee mating. Bozorg‐Haddad et  al. (2006) 

Comprehensive Evolutionary Algorithm
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developed the HBMO algorithm, evaluated its performance, and compared it 
with other algorithms for solving several mathematical problems and a simple 
reservoir operation problem. The HBMO algorithm has been applied to vari-
ous optimization problems with continuous and discrete decision spaces and 
has shown acceptable results in solving them (Bozorg‐Haddad et  al., 2008, 
2010, 2011; Solgi et al., 2015; Bozorg‐Haddad et al., 2016; Solgi et al., 2016a). 
Solgi et  al. (2016b) modified the HBMO, leading to the enhanced HBMO 
(EHBMO) algorithm, and demonstrated the superiority of the EHBMO 
compared with the HBMO and the elitist GA in solving several problems.

22.2  Fundamentals of the Comprehensive 
Evolutionary Algorithm (CEA)

CEA is based on the main concepts of the GA and the HBMO algorithm and 
implements a wide range of selection and generation operators that are selec-
tively applied by the user in the optimization process to solve optimization 
problems based on the user’s choice.

The CEA employs various operators. Selection operators select the superior 
solutions among the existing ones in each evolution step or iteration. Generation 
operators produce new solutions based on existing ones. The selection process 
refers to selecting some solutions to generate new solutions. The fitness 
function of selected solutions must be superior among the current iteration 
solutions. This implies that the probability of improvement will increase in the 
next iteration, and it can be expected that the algorithm would advance cor-
rectly toward a solution using various selection operators. The CEA features 
four selection operators: (1) proportionate, (2) tournament, (3) random, and 
(4) Boltzmann selection operator. The first three operators are germane to the 
GA, while the fourth to the HBMO algorithm. All four operators can be used 
in the CEA. Generating new solutions in the CEA is performed by crossover 
and mutation processes. The exclusive feature of the CEA is that it identifies 
efficient operators during the problem solution and relies on them for continu-
ing the optimization procedure. Also, the CEA takes advantage of elitism, 
which defines a process in which the best solutions of the previous iteration are 
carried to the next iteration without any change. The CEA also ensures that 
the best solution produces a significant part of the next population by applying 
the Boltzmann selection operator. In this respect the CEA resembles some fea-
tures of the HBMO. However, the CEA is not restricted to a limited number of 
operators and it employs several selection and generation operators, even those 
of the GA. The CEA can therefore apply various selection and generation 
operators to rapidly reach a near‐optimal solution. These characteristics are 
improvements of the CEA not present in previous algorithms.

Many of parameters in the CEA are defined as decision variables and as 
dependent parameters on the characteristics of the problem. This feature 
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bypasses the need of conducting sensitivity analysis of its parameters. 
Parameters’ values are determined based on problem conditions during the 
optimization process. The operators that exhibit better performance during 
the optimization process are recognized in each iteration and their effect is 
logically increased in the next iterations proportional to their performance. 
Thus, the effect of operators with poor performance in the optimization pro-
cess is gradually decreased, but these operators are not completely removed 
from the optimization process. Lastly, the user can assess the impact of the 
applied operators in each optimization problem and identify those that are 
efficient in solving specific types of problems. In summary, sensitivity analysis 
of its parameters is implicitly performed by the CEA itself.

The CEA treats each solution as an individual (chromosome). Each chromo-
some is constructed of genes that represent decision variables. The fitness values 
of individuals determine their quality. Offspring or children, which represent 
new solutions, are generated by genetic operators including crossover and muta-
tion. Also, the best individuals in the population of solutions in each iteration are 
known as elites. Table 22.1 lists the characteristics of the CEA.

The CEA starts receiving the input information including algorithmic 
parameters (estimates) and other necessary input data associated with the 
problem at hand. The values of some of these parameters are determined by 
the user, and other values are calculated by the algorithm based on the optimi-
zation problem’s characteristics during the optimization procedure. After 
receiving the input information, the CEA initializes the portion of operators 
according to the problem characteristics and randomly generates initial possi-
ble solutions in the allowable range of the problem. The CEA calculates the 
fitness value of the initial solutions, and it starts its iterative calculations by 
applying a trial‐and‐error procedure to find the near‐optimal solution. After 
selecting the best solutions (elites) among the existing ones, the selection 

Table 22.1  The characteristics of the CEA.

General algorithm (see Section 2.13) Comprehensive evolutionary algorithm

Decision variable Gene of chromosome
Solution Chromosome (individual)
Old solution Parent
New solution Children (offspring)
Best solution Elite
Fitness function Quality of individual
Initial solution Random individual
Selection Selection
Process of generating new solution Reproduction
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operators select superior solutions according to the operators’ roles. New 
solutions are generated by applying the selected superior solutions. This is 
accomplished by the crossover and mutation operators. These new solutions 
are employed in the next iteration. The fitness values of new solutions are 
calculated. The CEA calculates the improvement that its algorithmic operators 
effect on the possible solutions and compares the values of the fitness func-
tions of the new solutions with that of the best one. At this time, the operators’ 
roles in the next iteration are modified proportionally to the amount of 
improvement in the fitness function achieved by them in the current iteration, 
thus completing the iteration of the algorithm. The algorithm stops executing 
and reports the final solution when the stopping criteria are satisfied. The 
flowchart of the CEA is shown in Figure 22.1.

Start

Input the algorithm’s data

Initialize the roles of operators

Identify the best solutions

Generate initial possible solutions 

Are the termination criteria satisfied?

End

Report the best solution

YesNo

Selection

Reproduction

Modify the roles of operators

Figure 22.1  The flowchart of the CEA.
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All the evolutionary algorithms have similarities to that shown in Figure 22.1. 
Yet, the CEA is more comprehensive than other algorithms from the viewpoint 
of selection and generation operators. The CEA is able to identify efficient 
operators to objectively apply them in the optimization. Also, the CEA carries 
out sensitivity analysis of its parameters automatically.

22.3  Generating an Initial Population of Solutions

The CEA calls each possible solution of the optimization problem an individual. 
Each individual symbolizes a series of gens (decision variables) that constitutes 
a solution of the problem in the mathematical formulation of an optimization 
problem. In an N‐dimensional optimization problem, an individual is repre-
sented by an array of size 1 × N. This array is defined as follows:

	 Individual X x x x xi N1 2, , , , ,  	 (22.1)

where X = a solution of optimization problem, xi = ith decision variable of solution 
X, and N = number of decision variables. In the CEA, the decision variable values 
(x1, x2, x3, …, xN) are real values.

The CEA starts by randomly generating a matrix of size M × N where M and 
N are the size of population and the number of decision variables, respectively. 
Hence, the matrix of solutions that is generated randomly (see Section 2.6) is 
written as follows (rows and columns are the number of individuals and the 
number of decision variables, respectively):
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	 (22.2)

in which Xj = jth solution, xj,i = ith decision variable of the jth solution, and 
M = population size.

22.4  Selection

Selection is the procedure by which some individuals are chosen from the current 
population or decision space for reproduction. There are different selection 
operators. Applying four different selection operators ((1) proportionate 
selection, (2) tournament, (3) random, and (4) Boltzmann selection operator) is 
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possible in the CEA, and the user can activate anyone of or all of them for solving 
an optimization problem. As mentioned previously, the three first operators are 
applied in the GA, while the fourth one is used in the HBMO algorithm. All four 
can be used with the CEA.

Applying the proportionate selection operator requires normalization of the 
solution fitness functions in each iteration based on their summation. These nor-
malized values are considered as the selection probability of each solution. The 
selection probability of solutions with better fitness value exceeds those of undesir-
able solutions when applying the proportionate selection operator. The selection 
probability of less desirable solutions is not zero. Proportionate selection computes 
the probability of an individual being selected as follows (under maximization):

	

P
F X

F X
k

k

j
j

M

1

	 (22.3)

in which Pk = the probability of the kth solution being selected and F(Xk) = the 
fitness function of solution Xk.

The probability of selection of each solution is evaluated. A solution k has a 
chance proportionate to Pk to be selected. Based on the evaluated probabilities, 
a roulette wheel is made and turned to select solutions. The concept of a rou-
lette wheel is depicted in Figure 22.2, using a trivial example with a population 
of three solutions. Each individual (solution) possesses a part of a roulette 
wheel that is proportionate to its fitness value. The selection is random and any 
individual has a chance to be selected. Clearly selection favors the fitter indi-
viduals on average (see Section 4.4).

The tournament selection operator selects randomly two or more solutions 
from the current population of solutions. The best solution among the selected 
ones is added to the list of selected solutions. This procedure is repeated as 
many times as needed (see Section 4.4). The selected solution in each step can 
remain in the population and may be selected again in the next steps or it 
can removed from the population in which case it will not be selected again. 

1
2

3

Solution F P

1 60 0.50

2 40 0.33

3 20 0.17

Population size (M) = 3

Figure 22.2  Illustration of a roulette wheel.
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The latter procedure is considered in the CEA to select different solutions with 
this operator and to avoid selecting similar solutions in each iteration. Solutions 
that are not selected remain in the current population.

Another selection operator that is employed in the CEA is random selection. 
This operator selects solutions randomly among the current population. Applying 
this operator can cause generating a random and uniform set of solutions in the 
next iteration. This affects the optimization procedure of algorithm and the con-
vergence speed of the CEA algorithm might be decreased.

The CEA also applies the Boltzmann selection operator, which selects superior 
solutions by generating new random ones that are compared with the best one 
in the current iteration and are selected if they are superior to the current best. 
If the newly random generated solution is not better than the best one in the 
current iteration, the Boltzmann probability function is calculated as follows:

	
P

Best F X
exp

( )0 1
	 (22.4)

	
1 100 t

T
	 (22.5)

in which Best = fitness value of the best solution in the current iteration (elite); 
X = a randomly generated solution; F(X) = fitness function of random generated 
solution (X); μ0 = initial index of time elapsed since the start of the algorithm 
implementation, whose value fall within a specific range; α = random coefficient 
in the range of (0,1); t = number of the current iteration; and T = total number of 
iterations of the CEA algorithm.

P in Equation (22.4) is the selection probability of a newly generated random 
solution. It is compared with a random value in the range of [0,1]. If the random 
value is less than P, the newly generated solution is selected. Otherwise, another 
a new solution will be generated and evaluated (see Section 12.5).

22.5  Reproduction

A thorough search of the decision space in each optimization problem is 
possible with new solutions obtained through the reproduction process. The 
CEA classifies generating operators as crossover and mutation operators.

22.5.1  Crossover Operators

Crossover is a process in which a new solution is generated using two solutions 
selected from the current iteration. Table 22.2 lists the crossover operators that 
are employed in the CEA. In Table 22.2 a section is divided into left, middle, and 
right sides by vertical lines or section cuts, as shown in Figures 22.3 and 22.4.
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Table 22.2  Types of crossover operators in the CEA.

Crossover 
operator Type Definition

One‐point cut (1) The left side of the cross section of the first selected solution is 
crossed over with the right side of the cross section of the 
second selected solution

(2) The right side of the cross section of the first selected solution 
is crossed over with the left side of the cross section of the 
second selected solution

(3) The left side of the cross section of the first selected solution is 
crossed over uniformly with the right side of the cross section

(4) The left side of the cross section of the second selected 
solution is crossed over uniformly with the right side of the 
cross section

(5) The right side of the cross section of the first selected solution 
is crossed over uniformly with the left side of the cross section

(6) The right side of the cross section of the second selected 
solution is crossed over uniformly with the left side of the 
cross section

(7) The left side of the cross section of the first selected solution is 
crossed over with fixed weighted crossover for all of decision 
variables on the right side of the cross section

(8) The right side of the cross section of the first selected solution 
is crossed over with fixed weighted crossover with all the 
decision variables on the left side of the cross section

(9) The left side of the cross section of the first selected solution is 
crossed over with variable weighted crossover with all the 
decision variables on the right side of the cross section

(10) The right side of the cross section of the first selected solution 
is crossed over with variable weighted crossover with all the 
decision variables on the left side of the cross section

Two‐point cut (11) The middle part of cross sections of the first selected solution 
is crossed over with the sides of the cross sections of the 
second selected solution

(12) The middle part of cross sections of the second selected 
solution is crossed over with the sides of the cross sections of 
the first selected solution

(13) The sides of the cross sections of the first selected solution are 
crossed over with uniform crossover in the middle part of the 
cross sections

(14) The sides of the cross sections of the second selected solution 
are crossed over with uniform crossover in the middle part of 
cross sections
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Various types of crossover operators in the CEA are classified into three 
general categories: (1) One‐point cut crossover in which only one section cut 
is  considered in the structure of selected solutions to generate new ones 
(Figure 22.3), (2) two‐point cut crossover in which two section cuts are consid-
ered in the structure of selected solutions to generate new ones (Figure 22.4), and 
(3) overall crossover in which the whole set of selected solutions is considered to 
generate new solutions without any section cut (Figure 22.5). It was previously 
stated that a row of decision variables is considered as a possible solution of the 
problem (see Equation (22.2)). Therefore, in one‐ and two‐point cut crossovers, 
one and two sections, respectively, are assumed in the structure of a solution. 
There is not section cut in the whole crossover operators.

In the first new solution of Figure 22.3b (Figure 22.3c), the left [right] side of 
the section cut (depicted by a vertical line) is related to the first selected solu-
tion. The crossover on the right [left] side of the section cut is done uniformly. 

Crossover 
operator Type Definition

(15) The middle part of the cross sections of the first selected 
solution is crossed over uniformly with the sides of the cross 
sections

(16) The middle part of the cross sections of the second selected 
solution is crossed over uniformly with the sides of the cross 
sections

(17) The sides of the cross sections of the first selected solution are 
crossed over with fixed weighted crossover with all the 
decision variables on the middle part of the cross sections

(18) The middle part of the cross sections of the first selected 
solution is crossed over with fixed weighted crossover with all 
the decision variables on the sides of the cross sections

(19) The sides of the cross sections of the first selected solution are 
crossed over with variable weighted crossover with all of 
decision variables on the middle part of cross sections

(20) The middle part of the cross sections of the first selected 
solution is crossed over with variable fixed weighted crossover 
with all the decision variables on the sides of cross sections

Whole 
crossover

(21) Uniform whole crossover
(22) Fixed weighted whole crossover for all decision variables in 

both solutions’ structure
(23) Variable weighted whole crossover for all decision variables in 

both solutions’ structure

Table 22.2  (Continued)
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Figure 22.3  Types of one‐point cut crossover in the CEA: (a) Type 1 (new solution (1)) and 
type 2 (new solution (2)), (b) Type 3 (new solution (1)) and type 4 (new solution (2)), (c) Type 
5 (new solution (1)) and type 6 (new solution (2)), (d) Type 7 (new solution (1)) and type 8 
(new solution (2)), and (e) Type 9 (new solution (1)) and type 10 (new solution (2)).
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Figure 22.4  Types of two‐point cut crossover in the CEA: (a) Type 11 (new solution (1)) and type 
12 (new solution (2)), (b) Type 13 (new solution (1)) and type 14 (new solution (2)), (c) Type 15 
(new solution (1)) and type 16 (new solution (2)), (d) Type 17 (new solution (1)) and type 18 
(new solution (2)), and (e) Type 19 (new solution (1)) and type 20 (new solution (2)).
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This means that each decision variable on the right [left] side of the section 
cut of the new solution may be related to the first or second solution, and it 
determined randomly with the same chance for both solutions. In the first and 
second new solutions of Figure 22.3d (Figure 22.3e), the left and right sides of 
the section cut are related to the first selected solution, respectively. The 
crossover in another side of the section cut is performed by weighting. This 
means that a random value for all decision variables (a new random value for 
each decision variable) (A) is considered in the range of [0,1]. Then, the right 
side of the section cut is determined as the sum of the product of A times the 
first selected solution plus the product of 1 − A times the second one (the first 
new solution).

In the first new solution of Figure 22.4b (Figure 22.4c), the two sides of the 
section cuts are (middle of section cuts is) related to the first selected solution. 
The crossover in the middle of section cuts (two sides of section cuts) is done 
uniformly. This means that each decision variable in the middle of section cuts 

(a)

(b)

(c)

New solutions

(1)

Selected solutions

(1)

(2)

A= Random

New solutions

(1)

Selected solutions

(1)

(2)

A1, A2, …, A10= Random

New solutions

(1)

(2)

Selected solutions

(1)

(2)

Figure 22.5  Types of overall crossover in CEA: (a) Type 21, (b) Type 22, and (c) Type 23.
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(two sides of section cuts) of the new solution may be related to the first or 
second solution and it determined randomly with the same chance for both 
solutions. In the first and second new solutions of Figure 22.4d (Figure 22.4e), 
the two sides and the middle of section cuts are related to the first selected 
solution, respectively. The crossover in the middle and two sides of section 
cuts is performed by weighting considering a random value for all the decision 
variables (a new random value for each decision variable) (A) in the range of 
[0,1]. The middle of the section cuts is determined as sum of the product of A 
times the first selected solution plus the product of 1 − A times the second one 
(the first new solution).

The new solutions of Figure 22.5a undergo overall crossover that is done 
uniformly. This means that each decision variable of the new solution may be 
related to the first or second solution, and it determined randomly with the 
same chance for both solutions. In Figure  22.5b (Figure  22.5c), the overall 
crossover is performed by weighting considering a random value for all 
decision variables (a new random value for each decision variable) (A) in the 
range of [0,1]. The structure of a new solution is determined as sum of the 
product of A times the first selected solution plus the product of 1 − A times 
the second solution.

It should be noted that the performance of each new solution of the various 
crossover operators is assessed separately by the CEA. Also, the 23 types 
of crossover operators employed by the CEA perform differently and search 
thoroughly the decision space of an optimization problem. It may be possible 
that the allowable range constraints are not satisfied in the types of crosso-
vers shown in Figures 22.3d, e, 22.4d, e, and 22.5b, c. In this case a random 
solution in the allowable range for decision variables is generated to replace 
any generated infeasible solution.

22.5.2  Mutation Operators

Mutation is a process that generates new solutions in the next iteration or 
improves solutions generated by the crossover operator in evolutionary algo-
rithms. It also expands the searching for solutions by the CEA algorithm in the 
decision space. Different types of mutation operators applied by in the CEA are 
listed in Table 22.3.

Four types of mutation operators are considered in the CEA: (1) Random 
mutation involves parts of the selected solution structure that are randomly 
mutated in the allowable range and a new solution is obtained. (2) Boundary 
mutation change the parts of the selected solution structure, which may be 
closer to the upper, middle, and lower bounds of the allowable range in the 
problem, through boundary mutation, which is done based on the upper and 
lower bounds of the allowable range of the decision variables, obtaining a new 
solution. (3) Directional mutation change parts of selected solution structure 
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through oriented mutation, also obtaining a new solution. In this case, the 
gradient of fitness function for a selected solution is calculated and compared 
with the fitness function of the best solution in the set. Mutation is performed 
so that the calculated new solution becomes closer to the best one. (4) Dynamic 
mutation dynamically mutates parts of the selected solution structure based 
on the upper and lower bounds of the allowable range.

These mutation operators applied by the CEA have different performances, 
and their solutions differ from each other. A random solution is generated in 
the allowable range of the decision variables that replaces an infeasible solution 
whenever the allowable range constraints are not satisfied in the third and 
fourth types of the mutation operator.

22.6  Roles of Operators

Various selection and generation operators are selected by the user to solve 
an optimization problem. An operator role is to measure the percentage of 
the total number of solutions that is produced by that operator. In other 
words, it is the number of solutions selected or generated by each operator 
for the next iteration. The operator roles are changed during the optimiza-
tion according to their performance, and it renders the number of existing 
solutions in each iteration variable. A key factor in generating operators is 
their probability of occurrence, which measures the frequency of application 
of each operator.

The roles of operators are updated by evaluating the performance of various 
selection and production operators after calculating the fitness function of 
newly obtained solutions. In other words, the fitness values of new solutions 

Table 22.3  Types of mutation operators in the CEA.

Type Definition

(1) Random mutation (randomly changes some parts of the selected solution’s 
structure in the allowable range)

(2) Boundary mutation (makes the structure of the selected solution closer to 
the boundaries of the allowable range)

(3) Directional mutation based on gradient of the fitness function of the selected 
solution is compared with the fitness function of the best solution

(4) Dynamic mutation based on the upper and lower boundaries of the allowable 
range (the values of 0 and 1 mean mutation based on the upper and lower 
boundaries, respectively)
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are calculated, and the improvement caused by each operator is calculated and 
they are compared with the best solution. The operators’ roles in the next itera-
tion are modified proportionally to the amount of improvement of the fitness 
function they created in the current iteration. The operators that have better 
performance during the optimization process are identified in each iteration, 
and their effect is increased in the next iteration proportional to their perfor-
mance. Also, the effect of operators that have not desirable performance in the 
optimization process is gradually decreased, but these operators are not com-
pletely removed from the optimization process. Therefore, the CEA assesses 
directly the effect of different operators in the optimization process and identi-
fies the efficient operators for each problem. This implies that an implicit sen-
sitivity analysis is performed for applying selected operators for different 
processes in the CEA by the user. The effect of operators that have no desirable 
performance is reduced to improve the quality and convergence speed of the 
optimization.

22.7  Input Data to the CEA

Input data to the CEA includes algorithmic parameters and data for the 
problem’s simulation model. Some of these parameters are determined by the 
user, while the others are determined by the CEA. Table 22.4 lists the inputs 
and their determination procedure in the CEA. As shown in this table, the 
first five algorithmic parameters and all of the simulation model parameters 
are determined by the user of the CEA. The simulation model parameters are 
determined according to problem conditions and they usually do not require 
sensitivity analysis.

The first algorithmic parameter is the number of runs. Evolutionary algo-
rithms generate a set of random solutions. It is therefore necessary to evaluate 
several algorithmic runs to assess the quality of the calculated solutions. The 
CEA can perform several runs in parallel and present the final solution of each 
run individually. Applying the CEA requires determining the number of runs 
as specified by the user. The optimization process in the CEA starts with a set 
of initial solutions. Thus, the number of solutions in the initial population is 
specified by the user, while the suitable range for selecting the value of this 
parameter is determined by the algorithm based on the problem conditions, 
and it is indicated to the user. The necessity of sensitivity analysis for this 
parameter is decreased because the algorithm assists the user in selecting a 
suitable population size. The CEA applies all of the operators automatically for 
solving a problem in case the user selects none of the selection and generation 
operators. The CEA can identify the best operators and objectively apply them 
during the optimization process.
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Parameters (6)–(8) in Table 22.4 are automatically determined by the algo-
rithm according to the problem characteristics, and their sensitivity analysis is 
implicitly done in the algorithm. The number of elites, which are the best solu-
tions of the previous iteration that are carried to next solution without any 
change, is determined by the algorithm. Thus, the necessity of sensitivity 
analysis for this parameter vanishes in the CEA.

It is evident from Table 22.4 that the number of parameters in the CEA that 
require sensitivity analysis by user is smaller than that for most of the other 
evolutionary algorithms such as the GA (only parameters (1)–(3) require the 
sensitivity analysis). The sensitivity analysis of many parameters is implicitly 
done by the CEA during problem optimization. This makes the algorithm 
more flexible than others in solving a variety of optimization problems.

22.8  Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting 
a good termination criterion has an important role on the correct convergence 
of the algorithm. The number of iterations, the amount of improvement of 

Table 22.4  List of the parameters of the CEA.

Parameter Determined by

Algorithm 
parameters

(1) Number of runs User
(2) Number of algorithm iterations
(3) Desired precision of calculations
(4) Number of solutions in the primary 
population
(5) Type of selection and generation 
operators
(6) Number of solutions considered as elite Algorithm (CEA)
(7) Portion of selection and generation operators
(8) Probability of generation operators

Information 
of the problem 
simulation 
model

(1) Number of objective functions User
(2) Optimization status of each objective 
function (maximization or minimization)
(3) Number of decision variables
(4) Allowable range for decision variable values
(5) Coefficients of calculating and controlling 
the problem constraints



22.10  Conclusion 265

the  solution between consecutive iterations, and the run time are common 
termination criteria for the WCA.

22.9  Pseudocode of the CEA

Begin
 	Input information of the algorithm and initial data
 	Initialize the value of portions of selection and 

generation operators
 	Generate initial population of possible solutions
 	Evaluate fitness value for all solutions
 	While (the termination criteria are not satisfied)
 	 Identify and memorize the best solutions (elites)
 	 For each selection operator
 	 Select solutions using the selected operator 

according to its proportion
 	 For each crossover operator
 	 Generate new solutions using the selected 

operator according to its proportion
 	 End For
 	 For each mutation operator
 	 Generate new solutions using the selected 

operator according to its proportion
 	 End For
 	 End For
 	 Set Population = new generated solutions + best 

selected solutions (elites)
 	 Evaluate fitness value for new solutions
 	 Update operator’s proportions based on the amount 

of improvement of new generated solutions in 
comparison to the best solution

 	End while
 	Report the best solution
End

22.10  Conclusion

This chapter introduced a new meta‐heuristic optimization algorithm called 
the CEA. A general understanding of the CEA was provided, followed by a 
description of the CEA’s components. The CEA combines features of other 
algorithms and takes advantages of some of their best features.
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