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Preface

Engineers search for designs of new systems that perform optimally and are cost
effective or for the optimal operation and rehabilitation of existing systems. It
turns out that design and operation usually involve the calibration of models
that describe physical systems. The tasks of design, operation, and model cali-
bration can be approached systematically by the application of optimization.
Optimization is defined as the selection of the best elements or actions from a
set of feasible alternatives. More precisely, optimization consists of finding the
set of variables that produces the best values of objective functions in which the
feasible domain of the variables is restricted by constraints.

Meta-heuristic and evolutionary algorithms, many of which are inspired by nat-
ural systems, are optimization methods commonly employed to calculate good
approximate solutions to optimization problems that are difficult or impossible to
solve with other optimization techniques such as linear programming, nonlinear
programming, integer programming, and dynamic programming. Meta-heuristic
and evolutionary algorithms are problem-independent methods of wide applica-
bility that have been proven effective in solving a wide range of real-world and
complex engineering problems. Meta-heuristic and evolutionary algorithms have
become popular methods for solving real-world and complex engineering optimi-
zation problems.

Yet, in spite of meta-heuristic and evolutionary algorithms’ frequent
application, there is not at present a reference that presents and explains them
in a clear, systematic, and comprehensive manner. There are several biblio-
graphical sources dealing with engineering optimization and the application of
meta-heuristic and evolutionary algorithms. However, their focus is largely on
the results of application of these algorithms and less on their basic concepts
on which they are founded. In view of this, it appears that a comprehensive,
unified, and insightful overview of these algorithms is timely and would be
welcome by those who seek to learn the principles and ways to apply meta-
heuristic and evolutionary algorithms.

This book fills the cited gap by presenting the best-known meta-heuristic
and evolutionary algorithms, those whose performance has been tested in

Xv
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Preface

many engineering domains. Chapter 1 provides an overview of optimization
and illustration of its application to engineering problems in various special-
ties. Chapter 2 presents an introduction to meta-heuristic and evolutionary
algorithms and their relation to engineering problems. Chapters 3-22 are
dedicated to pattern search (PS), genetic algorithm (GA), simulated annealing
(SA), tabu search (TS), ant colony optimization (ACO), particle swarm optimi-
zation (PSO), differential evolution (DE), harmony search (HS), shuffled frog-
leaping algorithm (SFLA), honey-bee mating optimization (HBMO), invasive
weed optimization (IWO), central force optimization (CFO), biogeography-
based optimization (BBO), firefly algorithm (FA), gravity search algorithm
(GSA), bat algorithm (BA), plant propagation algorithm (PPA), water cycle
algorithm (WCA), symbiotic organisms search (SOS), and comprehensive evo-
lutionary algorithm (CEA), respectively. The order of the chapters corresponds
to the order of chronological appearance of the various algorithms, with the
most recent ones receiving the larger chapter numbers. Each chapter describes
a specific algorithm and starts with a brief literature review of its development
and subsequent modification since the time of inception. This is followed by
the presentation of the basic concept on which the algorithm is based and the
mathematical statement of the algorithm. The workings of the algorithm
are subsequently described in detail. Each chapter closes with a pseudocode
of the algorithm that constitutes an insightful and sufficient guideline for
coding the algorithm to solve specific applications.

Several of the algorithms reviewed in this book were developed decades
ago, and some have experienced modifications and hybridization with other
algorithms. This presentation is concerned primarily with the original version
of each algorithm, yet it provides references that are concerned with modifica-
tions to the algorithms.

This book was written for graduate students, researchers, educators, and
practitioners with interests in the field of engineering optimization. The format
and contents chosen are intended to satisfy the needs of beginners and experts
seeking a unifying, complete, and clear presentation of meta-heuristic and
evolutionary algorithms.

Omid Bozorg-Haddad
Mohammad Solgi
Hugo A. Lodiciga
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Meta-heuristic and evolutionary algorithms are problem-independent optimi-
zation techniques. They are effective in solving a wide range of real-world and
complex engineering problems. This book presents and explains the most
important meta-heuristic and evolutionary algorithms known to date in a
clear, systematic, and comprehensive manner. The algorithms presented in this
book are pattern search (PS), genetic algorithm (GA), simulated annealing
(SA), tabu search (TS), ant colony optimization (ACO), particle swarm optimi-
zation (PSO), differential evolution (DE), harmony search (HS), shuffled frog-
leaping algorithm (SFLA), honey-bee mating optimization (HBMO), invasive
weed optimization (IWO), central force optimization (CFO), biogeography-
based optimization (BBO), firefly algorithm (FA), gravity search algorithm
(GSA), bat algorithm (BA), plant propagation algorithm (PPA), water cycle
algorithm (WCA), symbiotic organisms search (SOS), and comprehensive evo-
lutionary algorithm (CEA). These algorithms are presented in a consistent and
systematic format, explaining their applications to engineering optimization
problems. This book provides students, researchers, and teachers with a
comprehensive exposition of meta-heuristic and evolutionary algorithms with
sufficient detail to understand their principles and apply them to specific
problems.
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Overview of Optimization

Summary

This chapter defines optimization and its basic concepts. It provides examples
of various engineering optimization problems.

1.1 Optimization

Engineers are commonly confronted with the tasks of designing and operating
systems to meet or surpass specified goals while meeting numerous constraints
imposed on the design and operation. Optimization is the organized search for
such designs and operating modes. It determines the set of actions or elements
that must be implemented to achieve optimized systems. In the simplest case,
optimization seeks the maximum or minimum value of an objective function
corresponding to variables defined in a feasible range or space. More generally,
optimization is the search of the set of variables that produces the best values
of one or more objective functions while complying with multiple constraints.
A single-objective optimization model embodies several mathematical expres-
sions including an objective function and constraints as follows:

Optimize f(X), X =(%1,%2,...,%»...,%N ) (1.1)
subject to

¢(X)<b;, j=12,..,m (1.2)

s <x<a i=12,.,N (1.3)

in which flX)=the objective function; X=a set of decision variables x; that
constitutes a possible solution to the optimization problem; x;=ith decision
variable; N =the number of decision variables that determines the dimension

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
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of the optimization problem; g(X)=jth constraint; b;=constant of the jth
constraint; m = the total number of constraints; fo) =the lower bound of the
ith decision variable; and "’ = the upper bound of the ith decision variable.

1.1.1 Objective Function

The objective function constitutes the goal of an optimization problem. That
goal could be maximized or minimized by choosing variables, or decision vari-
ables, that satisfy all problem constraints. The desirability of a set of variables
as a possible solution to an optimization problem is measured by the value of
objective function corresponding to a set of variables.

Some of the algorithms reviewed in this book are explained with optimization
problems that involve maximizing the objective function. Others do so with
optimization problems that minimize the objective function. It is useful to keep
in mind that a maximization (or minimization) problem can be readily con-
verted, if desired, to a minimization (or maximization) problem by multiplying
its objective function by -1.

1.1.2 Decision Variables

The decision variables determine the value of the objective function. In each
optimization problem we search for the decision variables that yield the best
value of the objective function or optimum.

In some optimization problems the decision variables range between an
upper bound and a lower bound. This type of decision variables forms a
continuous decision space. For example, choosing adequate proportions of dif-
ferent substances to make a mixture of them involves variables that are part of
a continuous decision space in which the proportions can take any value in the
range [0,1]. On the other hand, there are optimization problems in which the
decision variables are discrete. Discrete decision variables refer to variables
that take specific values between an upper bound and a lower bound. Integer
values are examples of discrete values. For instance, the number of groundwa-
ter wells in a groundwater withdrawal problem must be an integer number.
Binary variables are of the discrete type also. The typical case is that when
taken the value 1 implies choosing one type of action, while taking the value 0
implies that no action is taken. For example, a decision variable equal to 1 could
mean building a water treatment plant at a site, while its value equal to 0 means
that the plant would not be constructed at that site. Optimization problems
involving continuous decision variables are called continuous problems, and
those problems defined in terms of discrete decision variables are known as
discrete problems. There are, furthermore, optimization problems that may
involve discrete and continuous variables. One such example would be an opti-
mization involving the decision of whether or not to build a facility at a certain
location and, if so, what its capacity ought to be. The siting variable is of the
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binary type (0 or 1), whereas its capacity is a real, continuous variable. This
type of optimization problem is said to be of mixed type.

1.1.3 Solutions of an Optimization Problem

Each objective function is expressed in terms of decision variables. When
there is only one decision variable, the optimization problem is said to be one-
dimensional, while optimization problems with two or more decision variables
are called N-dimensional. An N-dimensional optimization problem has solu-
tions that are expressed in terms of one or more sets of solutions in which each
solution has N decision variables.

1.1.4 Decision Space

The set of decision variables that satisfy the constraints of an optimization prob-
lem is called the feasible decision space. In an N-dimensional problem, each
possible solution is an N-vector variable with N elements. Each element of this
vector is a decision variable. Optimization algorithms search for a point (i.e., a
vector of decision variables) or points (i.e., more than one vector of decision
variables) in the decision space that optimizes the objective function.

1.1.5 Constraints or Restrictions

Each optimization problem may have two types of constraints. Some constraints
directly restrict the possible value of the decision variables, such as a decision
variable x being a positive real number, x >0, or analogous to Equation (1.3).
Another form of constraint is written in terms of formulas, such as when two
decision variables x; and x, are restricted to the space x1 +x,<b or analogous
to Equation (1.2). The goal of an optimization problem is to find an optimal
feasible solution that satisfies all the constraints and yields the best value of the
objective function among all feasible solutions. Figure 1.1 depicts a constrained
two-dimensional decision space with infeasible and feasible spaces.

The set of all feasible solutions constitute the feasible decision space, and the
infeasible decision space is made up of all the infeasible decision variables.
Evidently, the optimal solution must be in the feasible space.

1.1.6 State Variables

State variables are dependent variables whose values change as the decision
variables change their values. State variables are important in engineering
problems because they describe the system being modeled and the objective
function and constraints are evaluated employing their values. As an example,
consider an optimization problem whose objective is to maximize hydropower
generation by operating a reservoir. The decision variable is the amount of
daily water release passing through turbines. The state variable is the amount

3
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Figure 1.1 Decision space of a constrained two-dimensional optimization problem.

of water stored in the reservoir, which is affected by the water released through
turbines according to an equation of water balance that also involves water
inflow to the reservoir, evaporation from the reservoir, water diversions or
imports to the reservoir, water released from the reservoir bypassing turbines,
and other water fluxes that change the amount of reservoir storage.

1.1.7 Local and Global Optima

It has been established that a well-defined optimization problem has a well-
defined decision space. Each point of the decision space defines a value of the
objective function. A local optimum refers to a solution that has the best objec-
tive function in its neighborhood. In a one-dimensional optimization problem,
a feasible decision variable X  is a local optimum of a maximization problem if
the following condition holds:

f(XN)= f(X), X' —e<X<X"+¢ (1.4)
In a minimization problem the local-optimum condition becomes

FIXH<F(X), X —e<X<X"+¢ (1.5)

where X" =alocal optimum and £=limited length in the neighborhood about the
local optimum X . A local optimum is limited to a neighborhood of the decision
space, and it might not be the best solution over the entire decision space.

A global optimum is the best solution in the decision space. Some optimiza-
tion problems may have more than one—in fact, an infinite number of global
optima. These situations arise commonly in linear programming problems.
In this case, all the global optima produce the same value of the objective func-
tion. There are not decision variables that produce a better objective function
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Figure 1.2 Schematic of global Global optimum
and local optimums in a one- f(X)
dimensional maximizing
optimization problem.
Local optima
I
I
|
1
. X
L4 L, G L

value than the global optimum. A one-dimensional optimization problem with
decision variable X and objective function f{X) the value X  is a global optimum
of a maximization problem if for any decision variable X the following is true:

F&X)z 00 (1.6)
In a minimization problem we would have
FX)<f(X) (1.7)

Figure 1.2 illustrates global and local optima for a one-dimensional maximi-
zation problem.

Ly, L,, and L; in Figure 1.2 are local optima, and G denotes the global optimum
with the largest value of the objective function. The decision space may be single
modal or multimodal. In a single-modal surface, there is only one extreme point,
while there are several extremes on the surface of a multimodal problem. In a sin-
gle-modal problem, there is a single local optimum that is also the global optimum.
On the other hand, a multimodal problem may include several local and global
optima. However, the decision variables that produce a global optimum must all
produce the same value of the global optimum, by definition. Figure 1.3 illustrates
the surface of one-dimensional optimization problems with single-modal and
multimodal decision spaces in which there is one single optimum.

1.1.8 Near-Optimal Solutions

A near optimum has a very close but inferior value to the global optimum. In
some engineering problems, achieving the absolute global optimum is
extremely difficult or sometimes impossible because of the innate complexity
of the problem or the method employed to solve the problem. Or achieving the

5
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f(X) f(X)
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Figure 1.3 Different types of decision spaces: (a) maximization problem with single-modal
surface and one global optimum; (b) maximization problem with multimodal surface that
has one global optimum.

f(X) Figure 1.4 Demonstration of near
Near optima optima in a one-dimensional
maximizing optimization problem.
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., .,
’ ’

Optimum

global optimum may be computationally prohibitive. In this situation, a near
optimum is calculated and reported as an approximation to the global optimum.
Near optima are satisfactory in solving many real-world problems. The prox-
imity of a near optimum to the global optimum depends on the optimization
problem being solved and the judgment of the analyst. Figure 1.4 depicts the
concept of a near optimum in a maximization problem.

1.1.9 Simulation

Each decision variable of an optimization problem defines an objective function
value. The process of evaluating the state variables, which are necessary for
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estimation of the objective function, and constraints with any decision variable is
known as simulation. A simulation model receives the decision variables as inputs
and simulates the system’s state variables. Sometimes the simulation model
consists of one or more simple mathematical functions and equations. However,
most real-world and engineering problems require simulation models with
complex procedures that most solve systems of equations and various formulas
that approximate physical processes. Simulation is, therefore, the computational
imitation of the operation of a real-world process or system over time.

1.2 Examples of the Formulation of Various
Engineering Optimization Problems

This section presents examples of the formulation of different types of
engineering optimization problems including mechanical design, structural
design, electrical engineering optimization, water resources optimization, and
calibration of hydrological models.

1.2.1 Mechanical Design

Designing a compound gear train is exemplary of optimal designing. A com-
pound gear train is designed to achieve a particular gear ratio between the
driver and driven shafts. The purpose of the gear train design is finding the
number of teeth in each gear so that the error between the obtained and
required gear ratios is minimized. In practice, the term gear ratio is used inter-
changeably with velocity ratio. It is defined as the ratio of the angular velocity
of the output shaft to that of the input shaft. For a pair of matching gears, the
velocity or gear ratio « is calculated as follows:

6;

= —_— 1-8
eout ( )

oyt

Wiy

in which a = gear ratio; w;,=angular velocity of the input shaft; w,,;=angular
velocity of the output shaft; 6;,=the number of teeth on the input gear; and
0,,: = the number of teeth on the output gear. The ratio is, thus, inversely pro-
portional to the number of teeth on the input and output gears.

Figure 1.5 shows a compound gear train that is made of four gears. It is
desired to produce a gear ratio as close as possible to a required value u. The
objective of the design is to find the number of teeth in each gear so that the
error between the obtained and required gear ratios is minimized. Normally,
additional considerations such as the number of gear pairs to use and the
geometric arrangement of the shafts must be considered in addition to wear.
To simplify the problem only the particular configuration shown in Figure 1.5
is considered here.

7
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Driver ‘ @2} ‘ @%) Follower

Figure 1.5 Compound gear train made of four gears.

For the system shown in Figure 1.5, the gear ratio is evaluated as follows:

=14y 1.9)

Ta Tf

in which 7,4, 7, 75, and 7y=the number of teeth on gears D, A, B, and F,
respectively.
The number of teeth on each gear constitutes the decision variables:

X:(xl,xz,xg,x4):(Td,ra,rb,rf) (1.10)
Minimizing the square of the difference between the desired gear ratio ()

and the actual design gear ratio (@) the optimization problem leads to the
following optimization problem:

Minimize f(X)=(u—a)’ (1.11)
in which
a=2y% (1.12)
Xy Xy
subject to
P <x <@, i=1,2,3,4 (1.13)

where y = required gear ratio; a = actual gear ratio; ¥’ and ' = minimum and
maximum number of teeth on each gear, respectively. The minimization of
the objective function (Equation (1.11)) is with respect to xy, x5, x3, and x4. The
objective function is nonlinear, and the constraints (Equation (1.13)) are simple
bounds on the decision variables. Since the number of teeth is an integer
number, this problem has a discrete domain, and the decision variables must
take integers values.
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1.2.2 Structural Design

Structural optimization problems are created and solved to determine the con-
figurations of structures that satisfy specifications and produce an optimum
for a chosen objective function. The main purpose of structural optimization is
to minimize the weight of a structure or the vertical deflection of a loaded
member. Here, a two-bar truss design model is considered for illustration
purposes.

The truss shown in Figure 1.6 is designed to carry a certain load without
elastic failure. In addition, the truss is subject to limitations in geometry, area,
and stress.

The stresses on nodes A and B are calculated as follows:

’

Forcex(L_LL jX\/HZ-i-LQ

Cac = 1.14

AC o H (1.14)
Forcex(Lij\/Hz +(L-L'Y

S 115

BC PR (1.15)

in which o4c and opc=the stress on node A and B, respectively (N/ m?);
Force=force on node C (N); H=perpendicular distance from AB to point C (m);
L =length of AB (m); L' =length of AC (m); 4, = cross-sectional area of AC; and
a, = cross-sectional area of BC (m?).

In this case, 4, a5, and H are the decision variables of the optimization model:

X:(xl;xz,x3)=(d1,d2,H) (1.16)

Figure 1.6 Schematic of a
two-bar truss.

Force

9
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The optimization problem is expressed as follows when the weight of the
structure is minimized:

Minimize f(X):px((alxlez+L2)+(a2x./H2+(L—L’)2 jj (1.17)

subject to
OAc>O0BC £Gmavc (118)
b < <)) i=1,2,3 (1.19)

in which p =the volumetric density of the truss; 6,,,, = the maximum allowable

stress; xm and x(u) =the minimum and maximum values of the decision vari-
’ 1 1

ables, respectively. The minimization of Equation (1.17) is with respect to a;,

a,, and H, which are real-valued variables. The objective function is nonlinear,

and so are the constraints.

1.2.3 Electrical Engineering Optimization

Directional overcurrent relays (DOCRs), which protect transmission systems,
constitute a classical electrical engineering design problem. DOCRs are part of
electrical power systems that isolate faulty lines in the event of failures in the
system. DOCRs are logical elements that issue a trip signal to the circuit breaker
if a failure occurs within the relay jurisdiction and are placed at both ends of
each transmission line. Their coordination is an important aspect of system
protection design. The relay coordination problem is to determine the sequence
of relay operations for each possible failure location so that the failure section is
isolated with sufficient coordination margins and without excessive time delays.
The selection of the sequence of relay operations is a function of the power
network topology, relay characteristics, and protection philosophy. The DOCR
protection scheme consists of two types of settings, namely, current, referred to
as plug setting (PS), and time dial setting (TDS), which must be calculated. With
the optimization of these settings, an efficient coordination of relays can be
achieved, and the faulty transmission line may be isolated, thereby maintaining
a continuity of power supply to functional sections of power systems.

The operating time (7) of a DOCR is a nonlinear function of the relay settings
including time dial settings (TDS), plug settings (PS), and the fault current (/)
seen by the relay. The relay operating time equation for a DOCR is estimated
as follows:

Ky x¢&

T= X,
N S B
¥ X Cpri—mting

(1.20)
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in which T'=operating time; Kj, K5, and K5 = constants that depend upon the
specific device being simulated; £ = time dial settings; w = plug settings; y = faulty
current passing through the relay, which is a known value, as it is a system-
dependent parameter and continuously measured by monitoring instruments;
and C,;_yaring = 2 parameter whose value depends on the number of turns in the
current transformer (CT). CT is used to reduce the level of the current so that
the relay can withstand it. One “current transformer” is used with each relay,
and, thus, C,;_yaing is known in the problem.

The TDS and PS of the relays are the decision variables of the optimization
model:

X= (xl’x%---1xN’xN+1:xN+2»-~~rx2N): (51:52;--~;§N;V/1;W2,- . -rl//N)

(1.21)
where N =number of relays of the system.
The optimization problem is formulated as follows:
Minimize f(X) ZZT(P’””“W (1.22)
i=1 j=1
subject to
7 backup) _(primary) 5 . for all relay pairs (1.23)
Al < <) i=1,2,.. 2N (1.24)

in which M = number of failures; T(” rimany) _ gperating time of the primary relay
i for a failure j; Tb“Ck”p )= operatmg tlme of the backup relay; Cr=coordinating
time interval; and x*) and 4’ = bounds on relay settings. The objective function
(Equation (1.22)) is nonlinear, and so are the constraints.

1.2.4 Water Resources Optimization

Flowing water generates energy that can be managed and turned into electricity.
This is known as hydroelectric power or hydropower. Dams of reservoirs are the
most common type of hydroelectric power plant. Some hydropower dams have
several functions such as supplying urban and agriculture water and flood control.
This example focuses on hydropower generation exclusively. Figure 1.7 shows a
simple schematic of a hydropower dam with its associated water fluxes.

The reservoir storage (S) in each operational time period is calculated as
follows:

Sp=1,+S,—R, —Sp,, t=1,2,..,N (1.25)

(1.26)

0 i L +S,— R < Sy
P[4 S —R -5, if I, +S,— R > Sy

11
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Water level

Downstream flow

Figure 1.7 Schematic of a hydropower dam.

in which S;,; =the reservoir storage at the end of time period ¢ I;=the volume
of input water during time period ¢; S; = the reservoir storage at the start of time
period t; R, = the volume of release of the reservoir; S, = the reservoir capacity;
Sp, =the volume of overflow that occurs whenever the reservoir storage exceeds
the reservoir capacity; and N =the total number of time periods. There is spill
or overflow whenever the reservoir storage exceeds the capacity of the reser-
voir. The storage volume cannot be less than a value like S,,;, given that the
floodgate is usually placed higher than the bottom of the dam. This part of the
reservoir is usually filed with sediments.

The generated power is a function of water flow and the elevation difference
between the hydraulic head at the intake and outlet of the turbine. The generated
power in period ¢ is determined as follows:

P=nxpxgxh xq, (1.27)
R

=— 1.28

qt Atxl’lt ( )

in which P,=generated power (W) in period ¢; = efficiency of powerhouse;
p = density (kg/m>) (~1000kg/m? for water); g=acceleration of gravity (9.81 m/
s%); h, = falling height or effective hydraulic head (m) in time period # g, = water
flow in period ¢ (m®/s); R, = total volume of release of reservoir in time period ¢
(m®); n,=ratio of time when the powerhouse is active; and At=length of time
period (s). The water level in the reservoir is usually estimated based on the
area or volume of water stored in the reservoir by predefined equations.

The volume of water that enters the reservoir in each time period (I)) is
known. The goal of the problem is determining the volume of release in each
time period (R,) so that the total generated power is close to the power plant
capacity (PPC) as much as possible. The volume of water release from the res-
ervoir in each time period is the decision variable of the optimization model:

X:(xl,xz,...,xN):(Rl,Rz,...,RN) (129)

where N =total number of decision variables that is equal to the total number
of time periods.



1.2 Examples of the Formulation of Various Engineering Optimization Problems

The optimization problem minimizes the normalized sum of squared deviations
between generated power and power plant capacity and is written as follows:

Minimize f(X)= i(l—if (1.30)
<\~ prC
Pi:nxpxgxhixA;Zni, i=12,..,N (1.31)
subject to
Smin < 8i < Spax (1.32)
0<P, <PPC (1.33)
*P <u <a™, i=1,2,..,N (1.34)

in which PPC = the power plant capacity; S,,;, = the minimum storage; and
x" and ¥’ = the minimum and maximum volume of release in each period
i, respectively. The minimum release is governed by different factors such
as environmental flows to sustain aquatic life. One of the factors that
restrict the maximum release from the reservoir is the capacity of the
floodgate.

1.2.5 Calibration of Hydrologic Models

The parameter calibration of hydrologic model is commonly posed as the
minimization of a norm of errors between observed and predicted hydrologic
values. The routing of floods in river channels is a classic example involving the
calibration of hydrologic models. Flood is a natural phenomenon that can
cause considerable damage in urban, industrial, and agricultural regions.
To prevent those damages it is necessary to implement a hydrologic model to
estimate the flood hydrograph at the downstream river reach given the
upstream hydrograph. The Muskingum model is a hydrologic model based on
the continuity and parameterized storage equations as follows:
Continuity:

=t o, -0, (1.35)
dt

Parameterized storage:
S, =B [YxI +(1-Y)0,]" (1.36)

in which S, I, and O,=storage, inflow, and outflow in a river reach at time ¢,
respectively; ff; = storage time constant for a river reach that has a value rea-
sonably close to the travel time of a flood through the river reach; f§, = exponent
for the effect of nonlinearity between accumulated storage and weighted flow;

13



14| 1 Overview of Optimization

and Y=weighting factor between 0 and 0.5 for reservoir storage and between 0
and 0.3 for stream channels.
Equation (1.36) is solved for the reach outflow as follows:

o3 )
1-Y \ B 1-Y

By combining Equations (1.35) and (1.37), the state equation becomes

1
AS, :_(;j(ijﬂz +(;),t (1.38)
At 1-Y )\ B 1-Y

Se1 =S, +AS, (1.39)
The routing of a flood hydrograph consists of the following steps:

Step 1: Assume values for the parameters f3;, 5, and Y.

Step 2: Calculate the storage (S;) with Equation (1.36), with the initial outflow
equal to the initial inflow.

Step 3: Calculate the time rate of change of storage volume with Equation (1.38).

Step 4: Estimate the next storage with Equation (1.39).

Step 5: Calculate the next outflow with Equation (1.37).

Step 6: Repeat steps 2—5 for total time steps in the flood routing until reaching
a stopping criterion.

The goal of this problem is estimating f;, f», and Y so that the sum of the
squared differences between observed and predicted outflows is minimized.
The parameters f;, f», and Y of the Muskingum model are the decision
variables:

X:(xl,xZ,xg):(ﬂl,ﬂz,Y) (1.40)

The optimization problem is formulated as follows:

M A2
Minimize SSQ=(0, 0, ) (1.41)
t=1
subject to
P <<, i=1,2,3 (1.42)

where M = total number of time steps in the flood routing; O, and O, = observed
and routed outflow, respectively, at time ¢ and xY and x“) = minimum and

maximum values of parameters of Muskingum model, respectively.



1.3 Conclusion

1.3 Conclusion

This chapter introduced foundational concepts of optimization such as the
objective function, decision variables, decision space, and constraints. In addi-
tion, several examples of formulating engineering optimization problems were
presented to illustrate a variety of optimization models.
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Introduction to Meta-Heuristic
and Evolutionary Algorithms

Summary

This chapter presents a brief review of methods for searching the decision
space of optimization problems, describes the components of meta-heuristic
and evolutionary algorithms, and illustrates their relation to engineering
optimization problems. Other topics covered in this chapter are the coding
of meta-heuristic and evolutionary algorithms, dealing with constraints, the
generation of initial or tentative solutions, the iterative selection of solutions,
and the performance evaluation of meta-heuristic and evolutionary algorithms.
A general algorithm that encompasses the steps of all meta-heuristic and
evolutionary algorithms is presented.

2.1 Searching the Decision Space
for Optimal Solutions

The set of all possible solutions for an optimization problem constitutes the
decision space. The goal of solving an optimization problem is finding a
solution in the decision space whose value of the objective function is the best
among all possible solutions. One of the procedures applicable for finding the
optimum in a decision space is sampling or trial-and-error search. The meth-
ods that apply trial-and-error search include (1) sampling grid, (2) random
sampling, and (3) targeted sampling.

The goal of a sampling grid is evaluating all possible solutions and choos-
ing the best one. If the problem is discrete, a sampling network evaluates all
possible solutions and constraints. The solution that satisfies all the con-
straints and has the best objective function value among all feasible solutions
is chosen as the optimum. When the decision space of a discrete problem
is large, the computational burden involved in evaluating the objective

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Figure 2.1 Sampling grid on a two-dimensional decision space.

function and constraints could be prohibitive. Therefore, the sampling grid
method is practical for relatively small problems only. When an optimization
problem is continuous testing, all solutions are not possible because there
are an infinite number of them. In this situation the continuous problem is
transformed to a discrete problem by overlaying a grid on the decision
space as shown in Figure 2.1. The intersections of the grid are points that are
evaluated. In fact, after discretization of the decision space, the procedure
followed is as the same as that employed for discrete problems. It is clear that
in this method reducing the size of the grid interval improves the accuracy of
the search while increasing the computational burden. It is generally impos-
sible to find solutions that are very near the global optimum of a complex
optimization problem because to achieve that it would be necessary to
choose a very small grid for which the computational burden would in all
probability be prohibitive.

Another method is random sampling in which sampling is performed
randomly through the decision space. Possible solutions are chosen randomly
and their objective functions are evaluated. The best solution among the
chosen possible solutions is designated as the optimum.

Suppose that there are S possible solutions, among which r=1 is the optimal
one, and K possible solutions are chosen randomly among the S possible ones
to be evaluated. First, let us consider that the random selection is done with-
out replacement, and let Z denote the number of optimal solutions found in
the randomly chosen sample of K possible solutions (Z can only take the value
0 or 1 in this instance). The probability that one of the K chosen possible
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solutions is the optimal one is found from the hypergeometric distribution
and is equal to P(Z=1) = K/S. Therefore, if there are S = 10° possible solutions
and K = 10° possible solutions are randomly chosen, the probability of selecting
the optimal solution among those in the randomly chosen sample is only 0.10
(10.0%) in spite of the computational effort of evaluating 10° possible solutions.
Also, random selection can be done with replacement. In this method, the
probability that one of the tested solutions is the optimal solution of the opti-
mization problemequals P(Z = 1) =1—((S—1)/5)¥ =1-(999999/10°)!" =0.095
or about 9.5%.

One of the key shortcomings of the previous sampling grid and random
sampling methods is that they require that all the decision space be searched
precisely. This exerts a high and wasteful computational effort. In these two
methods, the evaluation of any new possible solution is done independently
of previously tested solutions. In others words, there is no learning about
the history of previous computations to guide the search for the optimal
solution more efficiently as the search algorithm progresses through the
computations.

The sampling grid and random sampling are not efficient or practical meth-
ods to solve real-world engineering problems, and they are cited here as an
introduction to a third method called targeted sampling. Unlike sampling grid
and random sampling, targeted sampling searches the decision space, taking
into account the knowledge gained from previously tested possible solutions,
and selects the next sample solutions based on results from previously tested
solutions. Thus, targeted sampling focuses gradually in areas of the decision
space where the optimum may be found with a high probability.

Targeted sampling is the basis of all meta-heuristic and evolutionary
algorithms that rely on a systematic search to find an optimum. In contrast to
other sampling methods, meta-heuristic and evolutionary algorithms of the
targeted sampling type are capable to solve all well-posed real-world and
complex problems that other types of optimization methods such as linear
and nonlinear programming, dynamic programming, and stochastic dynamic
programming cannot solve. For this reason meta-heuristic and evolutionary
algorithms have become a preferred solution approach for most complex engi-
neering optimization problems.

Meta-heuristic and evolutionary algorithms are typically applied to calculate
near-optimal solutions of problems that cannot be solved easily or at all using
other techniques, which constitute the great majority of problems. Meta-
heuristic and evolutionary algorithms may prove to be computationally inten-
sive in finding an exact solution, but sometimes a near-optimal solution is
sufficient. In these situations, evolutionary techniques are effective. Due to
their random search nature, evolutionary algorithms are never guaranteed to
find an optimal solution to any problem, but they will often find a near-optimal
solution if one exists.
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2.2 Definition of Terms of Meta-Heuristic
and Evolutionary Algorithms

Meta-heuristic and evolutionary algorithms are problem-independent tech-
niques that can be applied to a wide range of problems. An “algorithm” refers
to a sequence of operations that are performed to solve a problem. Algorithms
are made of iterative operations or steps that are terminated when a stated
convergence criterion is reached. Each step may be refined into more refined
detail in terms of simple operations. Figure 2.2 shows a general schematic of
an algorithm.

Command Condition met? Command

No Are termination Yes

criteria satisfied?

| Final state |

Figure 2.2 General schematic of a simple algorithm; K denotes the counter of iterations.
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Meta-heuristic and evolutionary algorithms start from an initial state and
initial data. The purpose of these algorithms is finding appropriate values for
the decision variables of an optimization problem so that the objective function
is optimized. Although there are differences between meta-heuristic and evo-
lutionary algorithms, they all require initial data and feature an initial state,
iterations, final state, decision variables, state variables, simulation model,
constraints, objective function, and fitness function.

2.2.1 Initial State

Each meta-heuristic and evolutionary algorithm starts from an initial state
of variables. This initial state can be predefined, randomly generated, or deter-
ministically calculated from formulas.

2.2.2 Iterations

Algorithms perform operations iteratively in the search for a solution.
Evolutionary or meta-heuristic algorithms start their iterations with one or sev-
eral initial solutions of the optimization problem. Next, sequential operations
are performed to generate new solution(s). An iteration ends when a new pos-
sible solution is generated. The new generated solution(s) is (are) considered as
initial solution(s) for the next iteration of the algorithm.

2.2.3 Final State

After satisfying the chosen termination criteria, the algorithm stops and reports
the best or final generated solution(s) of an optimization problem. Termination
criteria are defined in several different forms: (1) the number of iterations,
(2) the improvement threshold of the value of solution between consecutive
iterations, and (3) the run time of the optimization algorithm. The first criterion
refers to a predefined number of iterations that the algorithm is allowed to
execute. The second criterion sets a threshold for improving the solution
between consecutive steps. The third criterion stops the algorithm after a
defined run time and the best solution available at that time is reported.

2.2.4 Initial Data (Information)

Initial information is classified into two categories including (1) data about the
optimization problem, which are required for simulation, and (2) parameters of
the algorithm, which are required for its execution and may have to be calibrated.
Table 2.1 lists the input data for several sample problems introduced in Chapter 1.

The second type of initial information is needed to calibrate the solution
algorithm to solve an optimization problem. Almost all meta-heuristic and
evolutionary algorithms have parameters that must be adjusted. The param-
eters of the algorithm must be properly chosen to achieve its successful
application. The stopping criterion, for instance, is an algorithmic parameter
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Table 2.1 The input data of the example problems presented in Chapter 1.

Problem Input data

Mechanical design (compound gear (1) The required gear ratio

train) (2) Limits on decision variables
Structural design (two-bar truss) (1) The distance between supports

(2) The horizontal distance between
loaded force and supports

(3) The maximum allowable stress

(4) Volume density

(5) Load force

(6) Limits on decision variables
Electrical engineering (1) Characteristics of the simulated system
optimization (DOCR) (2) Parameter of the current transformer

(3) The number of faults

(4) The number of relays

(5) Parameter of fault current

(6) Limits on decision variables
Water resources optimization (1) Reservoir inflow
(hydropower plant) (2) The reservoir capacity

(3) The dead volume of the reservoir

(4) The efficiency of the powerhouse

(5) The density of water

(6) Acceleration of gravity

(7) The number of time periods

(8) The length of the time periods

(9) Power plant capacity

(10) Limits on decision variables

Calibration of hydrologic models (1) Number of time steps
(Muskingum model) (2) Length of time steps

(3) Reach inflow

(4) Limits on decision variables

that is user specified. If the stopping criterion is not correctly chosen, the
algorithm may not converge to the global solution. On the other hand, the
algorithm could run for an unnecessarily long time.

2.2.5 Decision Variables

Decision variables are those whose values are calculated by execution of the
algorithm, and their values are reported as solution of an optimization problem
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upon reaching the stopping criterion. Table 2.2 lists the decision variables for
the problems introduced in Chapter 1.

Meta-heuristic and evolutionary algorithms first initialize the decision
variables and recalculate their values through the execution of the algorithm.

2.2.6 StateVariables

The state variables are related to the decision variables. In fact, the values of the
state variables change as the decision variables change. Table 2.3 lists the state
variables for the example problems introduced in Chapter 1.

2.2.7 Objective Function

The objective function determines the optimality of solutions. An objective
function value is assigned to each solution of an optimization problem.
Table 2.4 lists the objective functions of the example problems introduced
in Chapter 1.

Table 2.2 The decision variables of the example problems presented in Chapter 1.

Problem Decision variable
Mechanical design (compound gear train) The number of tooth of the gears
Structural design (two-bar truss) The properties of the truss

Electrical engineering optimization (DOCR)  The relay settings

Water resources optimization The volume of water releases from the
(hydropower plant) reservoir
Calibration of hydrologic models The parameters of the Muskingum model

(Muskingum model)

Table 2.3 The state variables of the example problems presented in Chapter 1.

Problem State variable

Mechanical design (compound gear train) The gear ratio

Structural design (two-bar truss) Stress on nodes of the truss

Electrical engineering optimization (DOCR) The operating time

‘Water resources optimization Reservoir storage and generated power
(hydropower plant)

Calibration of hydrologic models Routed outflow and reach storage

(Muskingum model)
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Table 2.4 The objective function of the example problems presented in Chapter 1.

Problem Objective function

Mechanical design (compound Minimizing the differences between the required
gear train) and calculated gear ratios

Structural design (two-bar truss) Minimizing the weight of the structure

Electrical engineering Minimizing the summation of the operating times
optimization (DOCR)

Water resources optimization Minimizing the differences between the power
(hydropower plant) plant capacity and the generated power
Calibration of hydrologic Minimizing the differences between the observed
models (Muskingum model) and the routed outflows

2.2.8 Simulation Model

A simulation model is a single function or a set of mathematical operations
that evaluate the values of the state variables in response to the values of the
decision variables. The simulation model is a mathematical representation
of a real problem or system that forms part of an optimization problem.
The mathematical representation is in terms of numerical and logical
operations programmed in the solution algorithm implemented for an
optimization problem.

2.2.9 Constraints

Constraints delimit the feasible space of solutions of an optimization prob-
lem and are considered in meta-heuristic and evolutionary algorithms. In
fact, these influence the desirability of each possible solution. After objec-
tive function and state variables related to each solution are evaluated, the
constraints are calculated and define conditions that must be satisfied
for feasibility of any possible solution. If the constraints are satisfied, the
solution is accepted and it is called a feasible solution; otherwise the solution
is removed or modified. Table 2.5 lists the constraints of the example
problems introduced in Chapter 1.

2.2.10 Fitness Function

The value of the objective function is not always the chosen measure of
desirability of a solution. For example, the algorithm may employ a transformed
form of the objective function by the addition of penalties that avoid the viola-
tion of constraints, in which case the transformed function is called the fitness
function. The fitness function is then employed to evaluate the desirability of
possible solutions.
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Table 2.5 The constraints of the example problems presented in Chapter 1.

Problem Constraint

Mechanical design (compound (1) Limits on the number of tooth of the gears
gear train)
Structural design (two-bar truss) (1) Limitation of the stress on nodes

(2) Limits on the cross sectional area of trusses

(3) Limits on the perpendicular distance
between the load force and the supports

Electrical engineering (1) Limitation of the operating time of the
optimization (DOCR) primary and backup relays

(2) Limits on the relay settings
‘Water resources optimization (1) Limitation of the reservoir storage
(hydropower plant) (2) Limitation of the generated power

(3) Limits on the water release from reservoir
Calibration of hydrologic models (1) Limits on the parameters of the
(Muskingum model) Muskingum model

2.3 Principles of Meta-Heuristic
and Evolutionary Algorithms

Figure 2.3 depicts the relation between the simulation model and the optimiza-
tion algorithm in an optimization problem. The decision variables are inputs to
the simulation model. Then, the state variables, which are outputs of the simu-
lation model, are evaluated. Thereafter, the objective function is evaluated. In
the next step, the problem constraints are evaluated, and lastly the fitness value
of the current decision variables is calculated. At this time, the optimization
algorithm generates a new possible solution of decision variables to continue
the iterations if a termination criterion is not reached. Notice that if the
optimization generates a set of solutions rather than a single solution in each
iteration, the previous steps are performed for all solutions in parallel with each
other. The meta-heuristic and evolutionary algorithms are independent of the
simulation model and they only employ the value of the current state variables.
In other words, these algorithms execute their operations independently of the
equations and calculations executed by the simulation model. The main
difference between the various meta-heuristic and evolutionary algorithms is
how they generate new solution(s) in their iterative procedure, wherein these
apply elements of artificial intelligence by learning from previous experience
(old possible solutions) and employ accumulated information to generate new
possible solutions. In other words, optimization algorithms generate a set of
solutions whose fitness values are evaluated. Based on these fitness values, the
optimization algorithm generates a new and improved set of solutions.
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Input problem’s data
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achieved?

|

Report the result

Figure 2.3 Diagram depicting the relation between a simulation model and an
optimization algorithm.

In summary, meta-heuristic and evolutionary algorithms first generate a set
of initial solutions. The simulation model then calculates the decision variables
(these are the current possible solutions) with which to evaluate the objective
function. The fitness values corresponding to the current decision variables
are evaluated based on the calculated objective function. At this juncture the
optimization algorithm applies a number of operations akin to phenomena
observed in nature or that might be based on other principles to generate
new solutions while it takes advantage of the good features of the previous
solution(s). Optimization algorithms attempt to improve solutions in each
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| \i

Start: Simulation Optimization
initial data model algorithm

Results

Figure 2.4 The main components of the optimization by meta-heuristic and evolutionary
algorithms.

iteration, seeking to converge toward the optimal solution. After a number of
iterations, the search reaches an optimal region of the feasible decision space.
The best solution calculated by the algorithm at the time of termination
constitutes the optimal solutions of a particular run. Figure 2.4 portrays the
process of optimization by meta-heuristic and evolutionary algorithms.

2.4 Classification of Meta-Heuristic
and Evolutionary Algorithms

This section presents several classifications of meta-heuristic and evolutionary
algorithms.

2.4.1 Nature-Inspired and Non-Nature-Inspired Algorithms

Some algorithms are inspired by natural process, such as the genetic
algorithm (GA), the ant colony optimization (ACO), the honey-bee mating
optimization (HBMO), and so on. On the other hand, there are other types
of algorithms such as tabu search (TS) that has origins unrelated to natural
processes. It is sometimes difficult to clearly assign an algorithm to one of
these two classes (nature- and non-nature inspired), and many recently
developed algorithms do not fit either class or may feature elements from
both classes. Therefore, this classification is not particularly helpful.
For instance, although TS is classified as a non-nature-inspired algorithm, it
takes advantage of artificial intelligence aspects such as memory. It is there-
fore pertinent to argue whether or not the use of memory in the TS qualifies
it as a nature-inspired algorithm.
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2.4.2 Population-Based and Single-Point Search Algorithms

Some algorithms calculate iteratively one possible solution to an optimization
problem. This means that the algorithms generate a single solution and they
attempt to improve that solution in each iteration. Algorithms that work on a
single solution are called trajectory methods and encompass local search-based
meta-heuristics, such as TS. In contrast, population-based algorithms perform
search processes that describe the evolution of a set of solutions in the search
space. The GA is a good example of the population-based algorithms.

2.4.3 Memory-Based and Memory-Less Algorithms

A key feature of some meta-heuristic and evolutionary algorithms is that they
resort to the search history to guide the future search for an optimal solution.
Memory-less algorithms apply a Markov process to guide the search for a
solution as the information they rely upon to determine the next action is the
current state of the search process. There are several ways of using memory,
which is nowadays recognized as one of the fundamental capabilities of
advanced meta-heuristic and evolutionary algorithms.

2.5 Meta-Heuristic and Evolutionary Algorithms
in Discrete or Continuous Domains

In meta-heuristic and evolutionary algorithms, each solution of an optimiza-
tion problem is defined as an array of decision variables as follows:

Xz(xl,xz,...,x,-,...,xN) (2.1)

where X =a solution of optimization problem, x;=ith decision variable of the
solution array X, and N =the number of decision variables.

Decision variables may be binary, discrete, or continuous values. Binary cod-
ing is used for Boolean decision variables of a binary nature (i.e., a situation
occurs or it does not). Discrete values are used for problem with discrete deci-
sion space in which the decision variables are chosen from a predefined set of
values. For instance, consider a two-dimensional problem with two decision
variables x; and x, so that the values of x; and x, are chosen from the sets V;
and V), respectively, where V;={1.1, 4.5, 9.0, 10.25, 50.1} and V,={1, 7, 80, 100,
250}. Therefore, a feasible value of x; is 1.1, but 1.2 is not. In general, it can be
stated that x; ={v|v €V;} as a condition defining the feasible values of the ith
decision variable.

A class of discrete problems is that in which the decision variables must
take integer values. A classic example is an optimization problem searching
for the optimal numbers of individuals to be chosen from among K groups to
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make one consolidated optimal group. In this case, the optimal variables
must take their values from the sets [0, 1, 2, ..., S|, where S; is the largest
number of individuals in the kth group, k=1, 2, ..., K. Another example could
be a problem with three-integer decision variables x1, x,, and x3 whose allow-
able ranges are [0,6], [5,20], and [0,100], respectively. Therefore the feasible
values of x; are {0,1,2,3,4,5,6}, and those of x, and x; are all the integer values
between 5-20 and 0—100, respectively. In continuous problems the decision
variables are real numbers contained between upper and lower boundaries
and every value between boundaries is feasible. Constraints that involve func-
tions of the decision variables, such as 2x; +x, + 5x3 < 20, reduce the decision
space. These constraints are commonly enforced by adding them as penalties
to the objective function.

2.6 Generating Random Values
of the Decision Variables

A few meta-heuristic and evolutionary algorithms are deterministic. Most of
them, however, generate random values of the decision variables (possible
solutions) at the start of the algorithm or during the search. There are algo-
rithms that generate initial solutions deterministically, and during the search
for an optimum, they generate random values of the decision variables.
Decision variables are chosen randomly in the case of discrete domains. All
the permissible values have an equal chance of being selected. Binary deci-
sion variables are randomly assigned the value zero or one with a probability
equal to 0.5 each. Continuous decision variables are assigned values randomly
between their lower and upper boundaries employing a suitable distribution
function, such as the uniform distribution, a truncated normal distribution,
or some other distribution. In most meta-heuristic and evolutionary
algorithms, the uniform distribution is widely applied for random generation
of decision variables.

2.7 Dealing with Constraints

Infeasible solutions occur in two ways. First, the values of the decision variables
may be outside their allowable range. Second, even if all the decision variables
are within their allowable range, they may be outside the feasible space,
thus the solution is infeasible. Figure 2.5 shows one situation of feasible solu-
tion with feasible decision variables, one situation of an infeasible solution
where the decision variables are within their ranges but outside the feasible
space, and another case in which the solution is infeasible with the decision
variables outside their ranges and outside the decision space.
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Figure 2.5 Different solutions in a two-dimensional decision space.

There are various methods to avoid infeasible decision variables, such as
removing the infeasible space from the search, refinement, or using penalty
functions that are discussed in the following text.

2.7.1 Removal Method

The removal method eliminates each possible solution that does not satisfy the
constraints of the optimization model. Although the implementation of this
method is simple, it has some disadvantages. First, this method does not
distinguish between solutions with small and large constraints violations.
Second, sometimes even infeasible solutions may yield clues about the optimal
solution. For instance, although a solution might be infeasible, some of its deci-
sion variables may be the same as those of the optimum solution. Therefore,
sometimes when a possible solution is deleted, its good features are eliminated
from the search process.

2.7.2 Refinement Method

This method does not delete any of the infeasible solutions from the search
process. Instead, the refinement method refines infeasible solutions to render
them feasible solutions. For example, imagine that in building a structure
two different materials A and B must be mixed in equal proportions and that
variable B is a decision variable and variable A is a state variable. Assume that
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the sum of amounts A and B must equal 200 units. If the optimization problem
chooses a B equal to 150, the constraints are not satisfied because an amount of
A equal to 150 would violate the constraint on the sum of A and B. This situa-
tion calls for a refinement of the amount of B to satisfy both constraints,
although optimality might be lost once the refinement is made. Refinement may
produce an optimal solution or an infeasible solution. The refinement method
uses features of an infeasible solution that might help in its refinement toward
an optimal solution. The refinement method is cumbersome in that it is non-
trivial to find ways to refine an infeasible solution and derive a feasible solution
that is closer to an optimal one.

2.7.3 Penalty Functions

The application of penalty functions to avoid infeasible solutions overcomes
the shortcomings of the removal and refinement methods. This method
adds (or subtracts) a penalty function to the objective function of a minimi-
zation (or maximization) problem. The penalty function that is added or
subtracted severely degrades the value of the objective function whenever a
constraint is violated. Consider, for example, the following minimization
problem:

Minimize f(X), Xz(xl,xz,...,x,-,...,xN) (2.2)
Subject to

G(X)>6, (2.3)

H(X) <6, (2.4)

Z(X)=8, (2.5)

The penalized objective function, or fitness function, for this minimization
problem is achieved by adding penalties to the objective function as follows:

F(X)= f(X)+ Penalty (2.6)
where
Penalty = (HG(X))x ¢ ) +(EH (X)) x s ) +(w (2(x)) x ) (2.7)

in which the penalty on a violation of the constraint G(X):

0 ifGX)> 5,
$(6M)=1y 60 <5,

h=a ><(51 —G(X))ﬁ1 +C (2.9)
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The penalty on a violation of the constraint H(X):

0 if H(X)<5,
é(H(X))={0 if H(X)> 6, (2.10)
b =y x(H(X)=8,)" +C, 2.11)
The penalty on a violation of the constraint Z(X):
v (Z(X)) ={g z:gg;:gz (2.12)
¢ =03 X(IZ(X)—53|)B3 +C; (2.13)

where X=solution of the optimization problem, fiX)=value of the objective
function of solution X, G(X)=a constraint whose value exceeds &;, H(X)=a
constraint whose value is less than §,, Z(X) =a constraint whose value equals &s,
F(X) =penalized objective function, Penalty=total value of the penalty on
constraints violations, ¢»; = penalty for constraint G(X), ¢, = penalty for constraint
H(X), ¢p3=penalty for constraint Z(X), and a, f, and C; (k=1, 2, 3)=constant
values for adjusting the magnitude of the penalty function. In a maximization
problem the penalized objective function, or fitness function, is written by
subtracting penalties from the objective function as follows:

F(X)= f(X)— Penalty (2.14)

The coefficients a; and i quantify the magnitude of constraints violations.
For example, for fr=1 the amount of the penalty increases linearly with the
increase in constraint violation; ay determines the slope of the penalty func-
tion. Ci changes the value of the fitness of an infeasible solution independently
of the magnitude of the constraint violation. The user-specified values of ay, S,
and Cy impact the performances of the penalty function and of the optimiza-
tion algorithm searching for an optimal solution. In fact, employing penalty
functions modifies the mapping between the objective function and the
decision space. It is possible that the optimal solution of the unconstrained
penalized objective function might differ from the optimal solution of the
constrained objective function.

The specification of proper values for ay, fi, and C; relies on experience with
specific types of optimization problems and on reliance on sensitivity analysis.
In the latter approach the analyst tries several combinations of ay, S, and Cy
and applies the optimization algorithm to calculate solutions and compare
them. The combination of the penalty coefficients that yields the best solutions
becomes the best choice of penalty coefficients.
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2.8 Fitness Function

The penalized objective function is called the fitness function. Therefore, the
fitness function is written as follows:

F(X)= f(X)+ Penalty (2.15)

where X =solution of the optimization problem, f{X)=objective function of
solution X, and F(X) = fitness function (penalized objective function) of solution
X. The penalty is added (or subtracted) in a minimization (maximization)
problem.

2.9 Selection of Solutions in Each Iteration

Selection refers to choosing some solutions from a set of solutions during the
algorithmic calculations. In some meta-heuristic and evolutionary algorithms,
not all current solutions are employed to generate new solutions. The selection
operators bypass many current solutions. The selection of solutions among the
current set of solution is done randomly or deterministically based on the
algorithm. In some algorithms, although all the current solutions are used to
generate new solutions, not all the new solutions are accepted. Only those that
have relatively high merit are applied in the search process. Selection of some
newly generated solutions among all the generated new solutions can be done
randomly or deterministically. Usually such selection is done based on the fit-
ness values of the decision variables, which are the current solutions in any
algorithmic iteration. This means that in random selection methods, a higher
probability of selection is assigned to superior solutions over inferior solutions.
In deterministic selection methods usually the best solution(s) is (are) selected
from a set of solutions. The selection of current solutions to generate new
solutions in the algorithmic iterations has an important role in finding the
optimum. Therefore, the selective pressure is an important factor in meta-
heuristic and evolutionary algorithms. A selection method with high selective
pressure most likely selects the best solutions and eliminates the worst ones at
every step of the search. In contrast, a selection method with a very low
selective pressure ignores the fitness values of the current solutions and assigns
the same probability of selection to the diverse solutions featuring different
fitness values. Figure 2.6 shows a set of solutions of an imaginary maximization
problem so that the solutions are ranked based on their fitness values, and an
example probability of selection is prescribed to each solution, employing a
high selective pressure or a low selective pressure.

It is seen in Figure 2.6 that a low selective pressure assigns nearly equal
probability of selection to diverse solutions regardless of their fitness. A high
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Figure 2.6 Selection probability of a set of solutions 1-10 of a hypothetical
maximization problem.

selective pressure, on the other hand, assigns higher probability of selection to
the fittest (largest) solutions. Recall that the uniform distribution assigns an
equal probability of selection to all the solutions in each iteration. A selection
process that chooses solutions based on the uniform distribution does not
apply selective pressure. Unlike deterministic selection and selection with
uniform distribution, there are other selection methods that allow the user to
adjust the selective pressure or the methods themselves change the selective
pressure automatically. In fact, one of the differences between meta-heuristic
and evolutionary algorithms is how they select solutions. Several algorithms
do not implement a selection process, whereas others do. Among common
selection methods are the Boltzmann selection, the roulette wheel, the tourna-
ment selection, and others. These selection methods are described in this book.

2.10 Generating New Solutions

A key step of the meta-heuristic and evolutionary algorithms is generating
new solution(s) from the current one in each iteration. Each iteration of an
algorithm is completed by generating new solution(s). Each algorithm
generates new solutions differently from others. In all cases, however, all the
algorithms rely on the current solutions to generate new ones. In fact, new
solutions are usually in the neighborhood of a previous solution, they are a
combination of two or more old solutions or they are randomly generated
solutions whose acceptance for entering the search process is determined by
comparison with previous solutions. The methods employed by leading
meta-heuristic and evolutionary algorithms to generate new solutions itera-
tively are described in this book.
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2.11 The Best Solution in Each Algorithmic Iteration

In some algorithms the best solution in each iteration is highlighted. Some
algorithms keep the best solution in an iteration without any changes and carry
it to the next iteration until a better solution is generated, at which time the
better solution takes its place. Other algorithms such as the HBMO preserve
the best solution in each iteration and assign it a larger weight to generate new
solutions. Each algorithm names the best solution of an iteration differently,
such as “base point” in the pattern search (PS) or “the queen” in the HBMO
algorithm and so on.

2.12 Termination Criteria

Each iteration of an algorithm finishes with the generation of new solutions.
The algorithm evaluates the fitness function of each solution and moves on
to the next iteration, or it is terminated if the termination criteria are satis-
fied. Three prevalent termination criteria are the number of iterations, a
threshold of improvement of the fitness function in consecutive iterations,
and the run time.

The first criterion sets a number of iterations so that the algorithm continues
for predefined number of iterations. For example, the maximum number of
algorithmic iterations may be set at 10°, at which time it will stop. The main dis-
advantage with this criterion is that the analyst does not know a priori how many
iterations are good enough. Thus, the algorithm might be stopped prematurely
when the current solution is far from optimal or it could reach a near-optimal
solution quickly and thereafter continue replicating that solution without further
improvement and inflicting unnecessary computational burden.

The second criterion stops the execution of the algorithm whenever the dif-
ference between the solutions pertaining to two or more consecutive iterations
falls below a user-specified threshold. A disadvantage of this method is that the
solution achieved may be a local optimum. The meta-heuristic and evolution-
ary algorithms usually employ randomness or other tools to escape from local
solutions if they are allowed to keep searching even if a threshold is met
between a few consecutive iterations.

The maximum run time criterion stops the algorithm after a specified pro-
cessing time is complete and reports the best solution achieved up to that time
without consideration to the number of iterations performed or the rate of
improvement of the solution. The main limitation of this criterion is identical
to that of which defines a maximum number of iterations, that is, it is generally
unknown how much time is necessary to reach a near-optimal solution.

There are other termination or stopping criteria that rely on special features
of a search algorithm. These are discussed in various parts of this book.
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2.13 General Algorithm

This section presents a general algorithm that encompasses most or all of the
steps found in meta-heuristic and evolutionary algorithms. This allows the
comparison of specific algorithms covered in this book to the general algo-
rithm. All meta-heuristic and evolutionary algorithms begin by generating
initial (possible or tentative) solution(s), which is (are) named “old” solutions
and is (are) improved by the algorithm. The search algorithm iteratively
improves “old” or known solutions with improved “new” ones until a termina-
tion criterion is reached. The steps of a general algorithm are as follows:

Step 0: Read input data.

Step 1: Generate initial possible or tentative solutions randomly or determinis-
tically.

Step 2: Evaluate the fitness values of all current solutions.

Step 3: Rename the current solutions as old solutions.

Step 4: Rank all the old solutions and identify the best among them, those with
relatively high fitness values.

Step 5: Select a subset of the old solutions with relatively high fitness values.

Step 6: Generate new solutions.

Step 7: Evaluate the fitness value of the newly generated solutions.

Step 8: If termination criteria are not satisfied, go to step 3; otherwise go to step 9.

Step 9: Report all the most recently calculated solutions or the best solution
achieved at the time when the algorithm terminates execution.

Figure 2.7 illustrates the flowchart of the general algorithm.

2.14 Performance Evaluation of Meta-Heuristic
and Evolutionary Algorithms

An evolutionary or meta-heuristic algorithm starts with initial solutions and
attempts to improve them. Figure 2.8 depicts the progress of an algorithm that
gradually convergences to a near optimum of imaginary hypothetical minimi-
zation problem. The convergence of an algorithm may be traced by graphing or
monitoring the fitness value of the best solution against the number of itera-
tions or the run time. In addition to the number of iterations and the run time,
another variable called the number of functional evaluations (NFE) may also be
employed for tracing the convergence of an algorithm. The NFE equal the
number of evaluations of the fitness function executed during the application
of a search algorithm and equal the number of initial solutions plus the product
of the number of iterations performed during algorithmic execution multiplied
by the number of solutions generated in each iteration of the algorithm.
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Figure 2.7 The flowchart of the general algorithm.

Fitness function

Number of iterations/run time/NFE

Figure 2.8 Convergence history of an optimization algorithm toward the best solution
in a minimization problem.

It is seen in Figure 2.8 how the value of the fitness function improves rapidly in
the first iterations and eventually convergences to the optimal solution after a rela-
tively large number of iterations. Furthermore, the fitness function improves or is
maintained at the same level from one iteration to the next. Figure 2.8 is typical of
the PS or HBMO algorithm, which improves or keeps the best solution calculated
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ss function

Fitne

Number of iterations/run time/NFE

Figure 2.9 Convergence of an optimization algorithm in which the best solution is not always
transferred to the next iteration during the search in a minimization problem.

in the current iteration and use it in the next iteration. There are other algorithms
in which the best solution(s) is not transferred to the next iteration, the standard
GA being a case in point. The convergence of the latter type of algorithms
resembles the chart depicted in Figure 2.9, in which the best solution of an itera-
tion may be worse than that of the previous iteration, even though, overall, there
is a convergence toward an optimal solution as the number of iterations increases.

The NFE seem to be the best variable to measure the speed with which an
algorithm converges to an optimal solution. The run time, on the other hand,
may be affected by programming skill, type of programming language, computer
speed, and other factors that are not algorithm dependent.

Another consideration is that most meta-heuristic and evolutionary algorithms
apply a random search and few of them are deterministic algorithms. Random-
search algorithms require several runs to solving a given problem. Each run most
likely produces a slightly different near-optimal solution. Therefore, in judging the
performance of a random-search algorithm, several runs of the algorithm are
performed when solving a given problem. The following factors determine the
quality of the algorithm’s performance: (1) capacity to reach near-optimal
solutions consistently, that is, across several runs solving a given problem, and
(2) speed of the solution algorithm in reaching near-optimal solutions. Algorithmic
reliability is defined based on the variance of the solutions’ fitness-function values
achieved in several runs of an algorithm reported as final solutions by different
runs of an algorithm. A reliable algorithm is one that converges to very similar
near-optimal solutions in roughly the same NFE. A reliable algorithm features
relatively small variance of the solutions’ fitness-functions values. Figure 2.10
demonstrates this feature for three different runs of a hypothetical algorithm.

It is seen in Figure 2.10 that the various runs start with different, randomly
generated initial solutions and converge to the same near-optimal solution in
about the same NFE, a defining feature of a reliable algorithm. Figure 2.11
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Figure 2.10 Convergence of different runs of an optimization algorithm toward near-
optimal solutions of a minimization problem.

Figure 2.11 Convergence
of different runs of an
optimization algorithm in a
minimization problem.

Fitness function

Number of iterations/run time/NFE

depicts different runs of an algorithm in a minimization problem where all
runs start from the same state. Run No. 1 converges fast but to a solution that
is clearly nonoptimal. Run No. 2 reaches an acceptable solution that is close
enough to the global optimum, but its convergence speed is relatively low. Run
No. 3 achieves a near-optimal solution with the fastest convergence rate.

Table 2.6 provides a summary of the solution performance of an algorithm in
k runs executed to solve a minimization problem.

2.15 Search Strategies

The need for solving various problems with their peculiar decision spaces
led to the development of algorithms inspired by natural phenomena or that
mimic human intelligence. Some critics argued that a few of the newly
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Table 2.6 Recommended reporting of the solutions calculated in k runs
of an algorithm that solves a minimization problem.

Criteria Result
Run1 F,
Run 2 F,
Run k F,
Best solution in k runs F,EFE<F, i=12,.,K
Average solution in k runs k
Y
r=1
k
Worst solution in k runs E,F>F, i=12,..,K
Standard deviation of solutions in k runs k )
D (F — Average)
r=1
k
Coefficient of variation of solutions in k runs st.deviation
Average

Fj =the fitness value of the solution achieved with the kth run of the optimization
algorithm; k=the total number of independent runs of the optimization algorithm;
Average = the average solution in k runs; st.devision = standard deviation of
solutions in k runs.

developed algorithms, although inspired by different phenomena, in practice,
are a repetition of previously developed algorithms (e.g., Sérensen, 2013). In
contrast, other researchers proved the differences between newly developed
algorithms and old ones (e.g., Saka et al., 2016). All meta-heuristic and evolu-
tionary algorithms have common features present in the general algorithm
introduced this chapter. There are, however, significant differences among
them such as in generating the initial and new solutions and in selecting new
solutions. Each algorithm searches the decision space differently, and their
efficiencies in solving specific problems vary. For example, algorithms that use
a high selective pressure in their selection stage and emphasize on searching
near the best found solutions can search single-modal decision spaces effi-
ciently. However, their performance decreases searching multimodal decision
spaces where there are several local optima because of the risk of being
entrapped in local optima. On the other hand, the algorithms apply selection
methods with low selective pressure and search the decision space randomly,
thus implementing a thorough search all over the decision space and reducing
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the risk of entrapment near local optima, which makes them more effective in
solving problems with multimodal decision spaces. However, these algorithms
make a large number of calculations in solving problems with single-modal
decision space where there is no risk of entrapment near a local optimum.
Also, most meta-heuristic and evolutionary algorithms have parameters that
regulate their performance. The choice of these parameters affects their
search strategies. Other algorithms set their parameters automatically. For
these reasons knowing the principles on which each algorithm works is
essential for users applying them, who must choose an appropriate algorithm
to solve specific optimization problems. Twenty algorithms are described in
the remainder of this book and are the leading meta-heuristic and evolution-
ary algorithms known to date: PS, GA, simulated annealing (SA), TS, ACO,
particle swarm optimization (PSO), differential evolution (DE), harmony
search (HS), shuffled frog-leaping algorithm (SFLA), HBMO, invasive weed
optimization (IWO), central force optimization (CFO), biogeography-based
optimization (BBO), firefly algorithm (FA), gravity search algorithm (GSA),
bat algorithm (BA), plant propagation algorithm (PPA), water cycle algorithm
(WCA), symbiotic organisms search (SOS), and comprehensive evolutionary
algorithm (CEA).

2.16 Conclusion

This chapter provided an introduction to meta-heuristic and evolutionary algo-
rithms by explaining different methods employed for searching the decision
space. The components of meta-heuristic and evolutionary algorithms were
highlighted, and the features of several engineering optimization problems
were explained. Other related topics were introduced in this chapter, among
which are coding meta-heuristic and evolutionary algorithms, dealing with con-
straints, selection of solutions, and so on. A general algorithm was presented
that includes the most common traits of meta-heuristic and evolutionary
algorithms. This general algorithm shall serve as a useful baseline for comparing
varjous algorithms. Lastly, this chapter explained methods for evaluating the
performance of meta-heuristic and evolutionary algorithms.
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Pattern Search

Summary

This chapter explains the pattern search (PS) algorithm. The PS is a meta-heuristic
algorithm that is classified as a direct search method.

3.1 Introduction

Hooke and Jeeves (1961) called the pattern search (PS) a family of numerical
optimization methods that do not require calculating the gradient of the objec-
tive function in solving optimization problems. Tung (1984) employed the PS
algorithm to calibrate the Muskingum model. Neelakantan and Pundarikanthan
(1999) calculated an optimal hedging rule for water supply reservoir systems.
They applied a neural network model to speed up the optimization process
without considering the number of functional evaluations needed in the simula-
tion of the reservoir system operation. Al-Sumait et al. (2007) presented a new
method based on the PS algorithm to solve a well-known power system eco-
nomic load dispatch (ELD) problem with valve-point effect. Bozorg-Haddad
et al. (2013) implemented the PS for groundwater model calibration and com-
pared the performance of the PS with that of the particle swarm optimization
(PSO) algorithm. Groundwater models are computer models that simulate and
predict aquifer conditions in response to groundwater withdrawal or recharge or
some other stress on an aquifer. Mahapatra et al. (2014) proposed a hybrid firefly
algorithm and pattern search (h-FAPS) technique for a static synchronous series
compensator (SSSC)-based power oscillation damping controller design.
Khorsandi et al. (2014) applied optimization techniques including the genetic
algorithm (GA) and PS for the identification of the location and quantity of
surface-water pollutants.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
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3.2 Pattern Search (PS) Fundamentals

The PS is a direct search method. Direct search methods solve a variety of
numerical problems with emphasis on the use of simple strategies that make
them better suited for implementation in modern computers than classical
methods (e.g., linear of nonlinear programming). The qualifier “direct search”
refers to sequential examination of trial solutions. Direct search compares
each trial solution with the best solution previously obtained, and the result
of the comparison determines what the next trial solution will be. Direct
search techniques employ straightforward search strategies. These tech-
niques have features that distinguish them from classical methods and have
solved problems that classical methods could not solve. Also, direct search
techniques converge faster to the solutions of some problems than classical
methods. Direct search techniques rely on repeated identical arithmetic
operations with simple logic that are easily coded for computer calculations.
Direct search techniques converge to near-optimal solutions, which is
also a feature of meta-heuristic and evolutionary algorithms (Hooke and
Jeeves, 1961).

Direct search methods randomly select a point B and call it a base point.
A second point, P1, is randomly selected, and if it is better than B, it replaces
the base point; if not, B remains the base point. This process continues with
each new randomly selected point being compared with the current base point.
The “strategy” for selecting new trial points is determined by a set of “states”
that constitutes the memory of the algorithm. The number of states is finite.
There is an arbitrary initial state and a final state that stops the search. The
other states represent various situations that arise as a function of the results of
the trials made. The kind of strategy implemented to select new points is dic-
tated by various aspects of the problem, including the structure of the decision
space of the problem. The strategy includes the choice of the initial base point,
the rules of transition between states, and the rules for selecting trial points as
a function of the current state and the base point. Direct search designates a
trial point as a move or step from the base point. The move is a success
if the trial point is better than the base point, or it is a failure otherwise. The
states make up part of the logic, influencing moves to be proposed in the same
general direction as those that have recently succeeded. The states suggest new
directions if recent moves have failed. The states decide when no further pro-
gress can be made. The fact that no further progress can be made does not
always indicate that the solution has been found.

Solutions of the optimization problem calculated by the PS algorithm are
points in an N-dimensional space with N denoting the number of decision vari-
ables. Trial points refer to new solutions. The process of going from a given
point to a trial point is called a move. A move may be successful if the trial
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Table 3.1 The characteristics of the PS.

General algorithm (see Section 2.13) Pattern search

Decision variable Coordinates of point’s position

Solution Point

Old solution Base point

New solution Trial point

Best solution Base point

Fitness function Desirability of the base point

Initial solution Random point

Selection Comparison of the trial point with base point
Generate new solution Exploratory and pattern move

point is better than the base point; otherwise it is a failure. The PS finds the
correct route to achieve optima from analyzing the failures and success of trial
points. In other words, failure or success of trial points affects the direction
and length of the steps of the movements in next stages. Table 3.1 lists the
characteristics of the PS algorithm.

The PS generates a sequence of solutions that produces a mesh around the
first solution and approaches an optimal solution. An initial solution is
randomly generated and known as the base point. Next, trial points (new
solutions) are generated. There are two patterns to generate trial points. The
first pattern is an exploratory move designed to acquire knowledge about
the decision space. This knowledge issues from the success or failure of the
exploratory moves without regard to any quantitative appraisal of the values
of the fitness functions. It means that exploratory moves determine a probable
direction for a successful move. The second one is a pattern move that is
designed to use the information achieved by the exploratory moves to find the
optimal solution. After generating new solutions with the exploratory moves,
the PS algorithm computes the fitness function at the mesh points and selects
one whose value is better than the first solution’s fitness value. The searching
point is transferred to the new solution if there is a point (solution) with a
better obtained fitness function among the generated solutions. At this stage,
the expansion coefficient is applied to generate new solutions. Thus, the new
mesh size is larger than the previous one. In contrast, if there is no better
solution in the generated solutions, the contraction coefficient is applied and
the mesh size is limited to a smaller value. Figure 3.1 shows the flowchart of
the PS algorithm.
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Figure 3.1 The flowchart of the PS.



3.4 Generating Trial Solutions

3.3 Generating an Initial Solution

Each possible solution of the optimization problem calculated by the PS is a
point in the decision space. Therefore, in an N-dimensional optimization prob-
lem, the position of the point in that space is a decision variable of the optimi-
zation problem that constitutes an array of size 1xN. The PS starts with a
single solution that is written as a matrix or row vector of size 1xN as
follows:

Point = X =(%1,%,...r%;.. 1 XN ) (3.1)

where X =a solution of the optimization problem; x;=ith decision variable
of the solution X; and N=number of decision variables. The decision
variable values (x1, x5, x3, ..., xx) are defined appropriately for continuous and
discrete problems. The PS algorithm starts with an initial possible or tenta-
tive solution that is randomly generated (see Section 2.6) and known as the
base point. Subsequently, trial points (solutions) are generated around
the base point.

3.4 Generating Trial Solutions

Trial solutions are new solutions of the optimization problem that may poten-
tially be the next base point. There are two patterns with which to generate
trial solutions. The first pattern is an exploratory move designed to acquire
knowledge about the decision space. The second one is a pattern move that is
designed to use the information achieved by the exploratory moves to find the
optimal solution.

3.4.1 Exploratory Move

The exploratory move obtains information about the decision space of the opti-
mization problem. This knowledge is derived from the success or failure of the
exploratory moves without regard to any quantitative appraisal of the values of
the fitness functions. In each exploratory move the value of a single coordinate
is changed, and the effect of this change on the fitness value is evaluated. The
fitness value after the move is evaluated, and the move is successful if the newly
calculated fitness value improves the fitness value prevailing before the move.
Otherwise, the move is a failure. The purpose of the exploratory move is to find
a direction of improvement. This purpose is achieved by perturbing the current
point by small amounts in each of the variable directions and determining if the
fitness function value improves or worsens. There are two patterns to generate
solutions by an exploratory move including (1) generalized pattern search
(GPS) and (2) mesh adaptive direct search (MADS). The number of solutions

47



48

3 Pattern Search

generated by GPS about the first solution equals 2N, which are produced as
follows, where the solution X is a matrix of size 1 x N:

Xl(”ew)zu-[l 00 .. OLN+X (3.2)
X§”ew):y.[0 10 .. OLN+X (3.3)
X&}“W):u[o 0 ... 0 1LN+X (3.4)
Xg’;j;”):y{—l 00 .. O:|1XN+X (3.5)
X&?j@:u.[o 10 .. OLN+X (3.6)
Xé’;iw):u{o 0 .. 0 —ILN+X (3.7)

in which y = mesh size; X = base point; and X" = trial solution.
MADS generates N + 1 new solutions about the base point (X) as follows:

Xl(””“)zu-[l 00 .. OLN+X (3.8)
X§”6W)=y-[o 10 .. OLN+X (3.9)
X&}”W)zu-[o 0 ... 0 1LN+X (3.10)
X&?jy):u.[q 1 -1 .. —1LN+X (3.11)

Figure 3.2 displays trial solutions generated by GPS and MADS methods in a
two-dimensional decision space.

The PS algorithm computes the fitness function of all new solutions after
generating new points with either GPS or MADS and further evaluates the one
with the best fitness value among them. A comparison is made between the
best new solution and the base point. If there is a solution with a better fitness
value in the generated solutions, the search point is transferred to this new
point. At this stage, the expansion coefficient is used to generate new solutions.
Thus, the new mesh size is larger than the previous one. In contrast, if there is
no better solution in the generated solutions, the contraction coefficient is
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Figure 3.2 Meshes generated by the GPS and MADS methods in a two-dimensional
decision space.

applied and the mesh size is reduced to a smaller value. After a successful
exploratory move, the pattern move is implemented to further the search in a
direction of likely improvement.

3.4.2 Pattern Move

The pattern move is designed to use the knowledge acquired in the exploratory
moves. When the exploratory move achieves a better point, the new generated
point becomes the new base point. A new trial point is generated based on the
previous point and the current base point is calculated as follows:

XU = X' o (X=X (3.12)

in which X" =the new trial solution; X’ =the previous base point; X = the
current base point; and a =a positive acceleration factor.

The pattern move from a given base point repeats the combined moves from
the previous base point. The reasoning for this type of movement is the pre-
sumption that whatever constituted a successful set of moves in the past is
likely to prove successful again. Each pattern move is immediately followed by
a sequence of exploratory moves that continually revise the pattern and could
improve the new trial solution. If the new generated trial solution is better than
the current base point, it becomes the new base point and the pattern move is
implemented again to generate new trial point. Otherwise the current base
point is not changed, and only exploratory moves are implemented about the
base point (see Figure 3.1).

A pattern move first obtains a tentative trial solution and then finds a trial
solution with an exploratory search. Pattern moves are repeated as long as they
are successful (i.e., improve the fitness function) and usually become longer
and longer steps. As soon as a pattern move fails, the pattern move is retracted
and the algorithm goes back to an exploratory search about the best point so
far calculated.
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3.5 Updating the Mesh Size

If there is no better solution among the generated solutions by the exploratory
move, the contraction coefficient is applied and the mesh size () is reduced
to a smaller value. For any given value of the mesh size, the algorithm reaches
an impasse when all the exploratory moves from the base point fail. In this
situation it is necessary to reduce the mesh size (u) to continue the search.
The magnitude of the reduction is sufficient to permit a new pattern to be
established. However, too large a reduction in the mesh size slows the search.
For this reason when all trial points are worse than the base point, the mesh
size is decreased as follows:

ue = -8 (3.13)
in which 4”*") = new mesh size and & = decreasing step of mesh size, which is a
user-defined parameter of the algorithm.

If there is a point (solution) with a better fitness value among the gener-
ated solutions, the search point is transferred to this new point. At this
stage, the expansion coefficient is applied to generate new solutions. Thus,
the new mesh size is larger than the previous one. Whenever the exploratory
move reaches a better point, the mesh size (u) is reset to the initial value
as follows:

p = g (3.14)

in which po=the initial value of u, which is determined by the analyst as a
parameter of the algorithm.

3.6 Termination Criteria

The termination criterion determines when to stop the algorithm. Selecting
a good termination criterion is essential to avoid a premature stoppage
whereby a suboptimal or a local optimal solution is calculated. On the other
hand, it is desirable to avoid unnecessary calculations beyond a solution
that cannot be improved once it is reached. A common termination
criterion for the PS is the mesh size. The final termination of the search is
made when the mesh size is sufficiently small to insure that the optimum
has been closely approximated. Limiting the number of iterations, or the
run time, and monitoring the improvement of the solution in consecutive
iterations are other termination criteria that can be implemented with
the PS algorithm.
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3.7 User-Defined Parameters of the PS

The value of acceleration factor (a), initial mesh size (uo), decreasing step of
the mesh size (6), and termination criterion are user-defined parameters of the
PS. A good choice of the parameters is dependent of the decision space of a
particular problem, and usually the optimal parameter setting for one problem
is of limited utility for other problems. A reasonable method for finding appro-
priate values of the algorithmic parameters is performing sensitivity analysis.
This consists of experimenting with multiple combinations of parameters with
which the algorithm is run. The results from the various combinations
are compared, and the analyst chooses the parameter set that yields the best
optimization results.

3.8 Pseudocode of the PS

Begin
Input parameters of the algorithm and initial data
Let X = previous base point; X" = new generated

point and X = the current base point
Generate a base point (X) randomly and calculate its
fitness function
While (the termination criteria are not satisfied)
Generate new points about X by exploratory moves
and evaluate their fitness values
Set Xx™" - the best new generated point
If Xx™" is better than X
Reset the mesh size
While (X" is better than X)
Set X = X
Set X = X(new)
Obtain a new X™" by pattern move with X and X
Generate new points around X™" by exploratory
moves and evaluate their fitness functions

Set Xx™" - the best new generated point
End while
Otherwise
Decrease the mesh size
End if
End while

Report the solution
End
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3.9 Conclusion

The PS is a meta-heuristic algorithm of the direct search type. This chapter
explained the workings of the PS as a direct search method and provides
pseudocode of the algorithm.
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Genetic Algorithm

Summary

This chapter describes the genetic algorithm (GA), which is a well-known
evolutionary algorithm. First, a brief literature review of the GA is presented,
followed by a description of the natural process that inspires the algorithm and
how it is mapped to the GA. The steps of the standard GA are described in
depth. A pseudocode of the GA closes this chapter.

4.1 Introduction

One of the best-known evolutionary algorithms is the genetic algorithm (GA)
developed by Holland (1975) and popularized by Goldberg (1989). There are
several varieties of GAs (Brindle, 1981; Baker, 1985, 1987; Goldberg et al.,
1991). The elitist version, which allows the best individual(s) from a generation
to carry over to the next one, was introduced by De Jong (1975). Other versions
are the modified GA (modGA) (Michalewicz, 1996), messy GAs (Goldberg
etal., 1990), GAs with varying population size (GAsVaPS) (Michalewicz, 1996),
genetic implementor (GENITOR) (Whitley, 1989), and breeder GAs (BGA)
(Muhlenbein and Schlierkamp, 1993). Several authors have implemented the
GA in water resources optimization (East and Hall, 1994; Gen and Cheng,
1997). Furuta et al. (1996) presented a decision-making supporting system
based on the GA for the aesthetic design of dams. Pillay et al. (1997) applied
genetic algorithms to the problem of parameter determination of induction
motors. Wardlaw and Sharif (1999) employed the GA to solve four- and ten-
reservoir problems. Several researchers implemented the GA to design
flood control systems (Shafiei and Bozorg-Haddad, 2005; Shafiei et al., 2005;
Bozorg-Haddad et al., 2015). Saadatpour et al. (2005) developed a simulation—
optimization model based on the GA to calculate the best compromise
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solution for wasteload allocation. Bozorg-Haddad et al. (2005) implemented
the GA in the optimal design of stepped spillways of dams. Hosseini et al.
(2010) presented an optimization model based on the GA to design rainfall
gage networks. Rasoulzadeh-Gharibdousti et al. (2011) presented a hybrid GA
for the optimal design and operation of pumping stations. Fallah-Mehdipour
et al. (2013) applied evolutionary algorithms including the GA, particle swarm
optimization (PSO), and shuffled frog leaping algorithm (SFLA) for calculating
multi-crop planning rules in a reservoir system. Khorsandi et al. (2014) applied
optimization techniques including the GA and the pattern search (PS) for
locating and quantifying water—surface pollutants. Bhoskar et al. (2015)
reported a literature review of applications of the GA in mechanical engineer-
ing. Montaseri et al. (2015) developed a simulation—optimization model based
on the GA for urban stormwater management.

4.2 Mapping the Genetic Algorithm (GA)
to Natural Evolution

The basic idea behind the GA is the Darwinian principle of survival of the fittest
among organisms threatened by predators and environmental hazards. The fit-
test members have a better chance of survival than others. They are more likely
to adapt to evolving conditions, and their offspring may inherit their traits and
learn their skills, thus producing even fitter future generations. Furthermore,
genetic mutations occur randomly in members of species, and some of those
mutations may improve the chances of long-term persistence of fit individuals
and their evolutionary descendants. Each individual generated by the GA
(called chromosome) plays the role of a possible solution of the optimization
problem at hand. Each chromosome is made up of genes that represent decision
variables. The fitness values of individuals determine their ability to survive.
Each generation contains a mixture of a parent population, which contains sur-
viving individuals (chromosomes) from previous generation, and their children.
The offsprings or children, which represent new solutions, are generated by
genetic operators including crossover and mutation. Parents are chosen to
generate a new generation so that their probability of selection is proportionate
to their fitness values. The higher the fitness value, the better the chance to
survive and reproduce. Table 4.1 lists the characteristics of the GA.

Standard GA begins with a randomly generated population of possible solutions
(individuals). The individuals’ fitness is calculated, and some of them are selected
as parents according to their fitness values. A new population (or generation) of
possible solutions (the children’s population) is produced by applying the crossover
operator to the parent population and then applying the mutation operator to
their offspring. The iterations involving the replacement of the original generation
(old individual) with a new generation (children) are repeated until the stopping
criteria are satisfied. Figure 4.1 illustrates the flowchart of the GA.



4.2 Mapping the Genetic Algorithm (GA) to Natural Evolution

Table 4.1 The characteristics of the GA.

General algorithm (see Section 2.13)

Genetic algorithm

Decision variable
Solution

Old solution
New solution
Best solution
Fitness function
Initial solution
Selection

Process of generating new solution

Gene of chromosome
Chromosome (individual)
Parent

Children (offspring)

Elite

Quality of individual
Random chromosome
Surviving parents

Genetic operators

Define the parameters of the algorithm

J

Generate the initial population

\/

Select parents

J

| Reproduction

No Are the termination criteria satisfied? Yes

]

| Report the last population

v

Figure 4.1 The flowchart of the GA.
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4.3 Creating an Initial Population

Each possible solution of the optimization problem generated by the GA is
called a chromosome. Therefore, in the mathematical formulation of an opti-
mization problem, each chromosome is made up of a series of genes (decision
variables) that represent a possible solution of the optimization problem at
hand. In an N-dimensional optimization problem, a chromosome is an array of
size 1 x N. This array is defined as follows:

Chromosome:X:(xl,xz,...,x,-,...,xN) (4.1)

where X=a possible solution of the optimization problem, x;=ith decision
variable (or gene) of solution X, and N =number of decision variables. The GA
begins with random generation of a population of chromosomes or possible
solutions (see Section 2.6). The population size, or the number of possible
solutions, is denoted by M. The population of generated possible solutions is
represented as a matrix of chromosomes of size M x N:

Xl xl,l xl,Z e xl,i cee xl,N
X Xo1 Xo2 vt Xttt XoN
Population = = ' (4.2)
X} x/,l x1,2 “en xi,l “on x}‘N
XM xM,l xM,Z xM,i xM,N

in which X;=jth solution (or chromosome), x;; = ith decision variable (or gene)
of the jth solution, and M = population size. Each decision variable x;; can be
represented as a floating point number (real values) or as a predefined set of
values for discrete problems. Some of the initially generated possible solutions
are selected as parents to produce a new generation.

4.4 Selection of Parents to Create a New Generation

Selection in the GA is the procedure by which R (R< M) individuals are
chosen from the population for reproduction. The selected individuals
are the parents of the next generation and constitute the parent population.
There are different methods for selection of the parents. The most common
methods are proportionate selection, ranking selection, and tournament
selection.



4.4 Selection of Parents to Create a New Generation

4.4.1 Proportionate Selection

A popular selection approach is proportionate selection (Goldberg, 1989).
According to proportionate selection the probability of a solution being
selected is evaluated as follows:

g2 FX)

_ﬁ;ax,-)

in which Py = the probability of solution kth being selected and F(X) = the fitness
function of solution X.

First, the probability of selection of each solution is evaluated. Each solution
k belongs to the parent population with probability P;. Based on the evaluated
probabilities, a roulette wheel is made and turned (i.e., set up numerically and
calculated thereupon) to select parents. The concept of a roulette wheel is
depicted in Figure 4.2 with a simple example having a population of three
individuals. Each individual (solution) possesses a part of the roulette wheel
that is proportionate to its fitness value (F). The roulette wheel is made and
spun to select a parent. Selection is biased toward fitter individuals even though
it is random and any individual has a chance to be selected.

A roulette wheel is created by calculating a cumulative probability for all
solutions as follows:

(4.3)

J
Q=>P, j=12,..M (4.4)
k=1

in which Q;=cumulative probability of the jth solution.

The selection of R parents following the creation of the roulette wheel is
accomplished by spinning the wheel R times. Each spin is tantamount to a
generated random number (Rand) in the range [0,1]. If Rand is less than Q, the
first solution (X;) is selected; otherwise the jth solution is selected such that
Rand is greater than Q;.; and less or equal than Q; (Q;_; < Rand < Q).

Figure 4.2 Demonstration of a

roulette wheel. F=Fitness function Solution F P

value; P=probability of selecting a 1 60 0.50

solution. 2 40 0.33
3 20 0.17

Population size (M) =3
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4.4.2 Ranking Selection

Ranking selection ranks all the solutions (also called chromosomes) based on
their fitness values. The best solution receives rank 1, and the worst is assigned
the lowest rank. A solution is assigned a probability that is proportionate to its
rank according to the following linear function:

Pk ZU—(Sk—l)XZ (4:5)
Sk =Rﬂ}’lk(Xk) (4-6)
M
> P=1 (4.7)
j=1
yoZWM-1) 1 (4.8)

2 M

in which Sy=the rank of the kth solution in the population, the term S;=1
indicates that the kth solution is the best solution, and Z = a user-defined value.
Figure 4.3 depicts the sorting of solutions according to the fitness function (F)
in a maximizing problem.

An alternative approach ranks all the solutions according to their fitness
values. Then M-S copies of each solution are generated. For example, in a
population of ten solutions (M = 10), for a solution of rank S=3, 10 -3 =7 copies
are made. R parent solutions are selected using the uniform distribution from
the population, which is a mixture of the original solutions and their copies.
The probability of choosing the fitter (better) solutions would be higher than
those of less fit solutions due to their larger number of copies.

|

A O =
llllllllll

Solutions —

[

I|II|III'I
|
e

F(X)

Figure 4.3 Ranking chromosomes (or solutions) according to the fitness function (F) in a
maximizing problem.
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4.4.3 Tournament Selection

Another popular selection method is tournament selection. According to
the tournament selection Y (Y<M), solutions are randomly selected with the
uniform distribution. When applying the uniform distribution, the probability
of selecting any solution is the same. The best solution in the selected set is
chosen as a parent. This process is repeated until all parents are selected.

4.5 Population Diversity and Selective Pressure

Population diversity and selective pressure are important factors in the search
process of the GA. These factors are inversely related so that increasing one
reduces the other (Whitley, 1989). A high selective pressure may lead to
premature convergence, while a low selective pressure may lead to stagnation
in the optimization search.

Proportionate selection, discussed in a previous subsection, may introduce
convergence errors. Premature convergence of the GA may occur when the prob-
ability P of selecting a solution is estimated from its fitness function value if there
are large differences between the fitness values of the solutions of a population, or
stagnation may occur if there are small differences between the fitness function
values of the solutions (Whitley, 1989; Michalewicz, 1996). Several scaling func-
tions have been introduced to strike a balance between selective pressure and
population diversity. These scaling functions are employed with proportionate
selection and include linear scaling (Michalewicz, 1996), sigma truncation
(Michalewicz, 1996), power law scaling (Michalewicz, 1996), logarithmic scaling
(Grefenstette and Baker, 1989), exponential scaling (Grefenstette and Baker,
1989), and Boltzmann selection (Back, 1994). Solgi et al. (2016) proposed a
new scaling function that is self-regulating and does not have parameters to be
adjusted. This departs from previous scaling methods that require the analyst to
set their parameters to regulate the selective pressure.

Ranking selection allows the users to adjust the selective pressure of the algo-
rithm. If Z =0 (and consequently, U = 1/M), there is no selection pressure. In this
condition, all individuals have the same probability of selection. The maximum
selective pressure is achieved when U/=2/M and Z=2/(M(M - 1)). Large values
of Y increase the selective pressure in tournament selection. A value Y=2 is
commonly used.

4.6 Reproduction

The GA algorithm must generate new solutions to progress toward an optimal
solution. The parents make children that constitute the whole or a part of the
next generation. Therefore, the next generation may be a mixture of the parent
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Original generation Parents Next generation
N N
B\ N\
L | & Children &

Dead individuals
(deleted solutions)

Figure 4.4 The process of constituting a new generation from the previous generation.

population and the children population. The ratio of parents to offspring is a
user-defined parameter. Figure 4.4 gives an example of the procedure of
producing the next generation from the original generation. Different meth-
odologies have been devised for constituting the next generation, which define
varieties of the GA.

Generating new solutions is the duty of the selected parents. Children
(offspring) are new solutions. R solutions are selected as the population of parents
based on their fitness. From this population parents are randomly selected once
more with a crossover probability (Pc) that is a user-defined parameter of the
algorithm. A random number Rand from the range [0,1] is generated for each
solution in the parent population. If Rand is less than P, that solution is selected
for crossover. Not all parent solutions generate children. Among the selected par-
ent solutions, some are chosen pairwise with the uniform distribution to produce
offspring. This process is called crossover. Offspring or children, which constitute
solutions, are modified by the mutation operator. Thus, the GA first generates
children by crossover and modifies them by mutation thereafter.

4.6.1 Crossover

Crossover occurs between two parent solutions. The crossover operator
generates new offspring by exchanging genes between parents. According to
the crossover operation, some decision variables of two solutions are exchanged.
In other words, a new solution receives some decision variables from one
parent solution and the rest from the other parent solution. Goldberg (1989)
and Michalewicz (1996) have described several methods of crossover includ-
ing (1) one-point crossover, (2) two-point crossover, and (3) uniform crossover.
Figure 4.5 illustrates the latter three types of crossover.
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Figure 4.5 Different approaches of crossover: (a) one-point crossover, (b) two-point
crossover, and (c) uniform crossover.

A crossover point (C in Figure 4.5a) is randomly selected when employing
one-point crossover. A child is generated so that some of its genes are those
from one of the parents and are located on one side of the point, and the rest of
its gens come from the other parent and are located on the other side of the
point as shown in Figure 4.5a. Each couple of parents generates two children.
Two crossover points are randomly generated when employing two-point
crossover and are denoted by C and C’ in Figure 4.5b. The genes between the
two points in the parent solutions are preserved in the same positions in the
genetic make of the children. The genes positioned outside the two boundaries
are exchanged as shown in Figure 4.5b to produce the two children. The scheme
for uniform crossover is depicted in Figure 4.5c and is self-explanatory.
Crossover points are generated as an integer random number in the range
[1,N]. To illustrate one-point crossover generation of two children from two
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N-dimensional parent solutions X = (x;,x;,...,xx) and X' = (x1,%3,...,xy ), let C
denote the crossover point. Therefore, the children are generated as follows:

X{"ew) = (X1, %0 ey Ke s K1 s Kors 2 5e e s XN ) (4.9)

XéneW) = (x{rxé;---7x2:xc+l’xc+2:--~rxN) (4"10)

in which X"*" = new solution.

4.6.2 Mutation

Mutation is important because it introduces new genetic material to a population.
The mutation operator replaces randomly some genes of an offspring. In other
words, one or more decision variables of a new solution are replaced with random
values while keeping the values of its other decision variables unaltered. Figure 4.6
illustrates the mutation operator.

Two methods of mutation for real-valued variables are uniform and
nonuniform mutations. Uniform mutation replaces a parent gene with a ran-
domly generated gene that is within the feasible space of the solutions. Let
X =(%1,%2,...,%;,...,xy) and x; denote a solution (chromosome) and a gene
(decision variable), respectively, where the decision variable ith (x;) is chosen
for mutation. Uniform mutation produces a mutated X' = (xy,%5,...,%,...,%x)
whereby x] is evaluated as follows:

x{:Rnd(x,(L),xl(u)) (4.11)

in which x] = the new value of x; produced by mutation, '’ = the upper bound
of the ith decision variable, x*) = the lower bound of the ith decision variable,
and Rud(a,b) =a random value chosen from the feasible range [a,b].
Nonuniform mutation induces an increasingly localized search for optimal
solutions in which the sets of genes that are chosen for mutation are defined by
means of boundaries that become narrower as the run of the GA progresses
(Michalewicz, 1996). This type of mutation is especially useful for problems in

Original child AlA A A A A

@ Randomly generated

Mutatedchid | A | A | A A( D )A
N/

Figure 4.6 An example of the mutation operator.
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which high precision is required. Let X = (x;,%5,...,%;,...,%x ) be a solution of an
optimization problem and its ith decision variable (x;) be selected for mutation.
Nonuniform mutation produces a mutated solution X'=(xy,%5,...,%,...,%x)
whereby «; is calculated as follows:

%/ =Rnd (x;—d,x; +d) (4.12)

dzdoxT_t

(4.13)

in which d, = initial value of d, ¢ = current iteration, and 7'= maximum number
of iterations.

Mutation is performed probabilistically. A mutation probability (Py) is
specified that permits random mutations to be made to individual genes. The
implementation of the mutation operator is applied to each decision variable of
the solutions in the children population by generating a random number Rand
in the range [0,1]. If Rand is less than Py, that decision variable is mutated;
otherwise it remains unaltered.

4.7 Termination Criteria

The termination criteria determine when to end the algorithm’s iterations.
Selecting a good termination criterion has an important role on the correct con-
vergence of the algorithm. The number of iterations, the amount of improve-
ment of the objective function between consecutive iterations, and the run time
are common termination criteria for the GA.

4.8 User-Defined Parameters of the GA

The size of the population of solutions (M), the number of parents (R), the
probability of crossover (Pc), the probability of mutation (P,), and the termi-
nation criterion are the user-defined parameters of the GA. A good choice of
the parameters is related to the decision space of a particular problem, and in
general the optimal parameter setting for one problem may not perform
equally as well for other problems. Consequently, determining a good param-
eter setting often requires the execution of a large number of time-consuming
experiments. Mastering the choice of the GA parameters relies on practice and
experience with specific optimization problems. However, a reasonable
method for finding suitable values for the parameters is performing sensitivity
analysis. This entails choosing a combination of parameters and running the
GA several times. Other combinations of parameters are chosen, and repeated
runs are made with each combination. A comparison of the optimization
results so obtained sheds light on the best set of GA parameters.
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4.9 Pseudocode of the GA

Begin
Input parameters of the algorithm and initial data
Let R and M = number of parents and the size of
population, respectively

Generate M initial possible solutions

While (the termination criteria are not satisfied)
Evaluate fitness values for all solutions
Select the parent population with a selection

method
For j =1 to R
Generate a random value Rand in the range [0,1]

If Rand < P
Parent j is known as an effective solution

Otherwise
Parent j is known as an ineffective solution
End if
Next 7
For j =1 to (M - R) / 2
Select two solutions randomly with the uniform
distribution from effective parents of the
parent population.
Generate two new solutions with the crossover
operator
Put new generated solutions into the children
population
Next 7
For j =1 to (M - R)
For 1 = 1 to N
Generate a random value Rand in the
range [0,1]
If Rand < Py
Replace the decision variable i from
solution j (xj,;) using the mutation

operator
End if
Next 1
Next 7
Set population = parent population + children
population
End while

Report the population
End
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4.10 Conclusion

This chapter described the GA, which is a well-known evolutionary algorithm.
First, a brief literature review of the GA was presented. The natural evolution-
ary process was mapped to the GA, and its key components were described.
A pseudocode of the GA closed the GA review.
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Simulated Annealing

Summary

This chapter reviews the simulated annealing (SA) algorithm. The SA is
inspired by the process of annealing in metallurgy. It is one of the meta-heuristic
optimization algorithms. This chapter presents a literature review of the devel-
opment and applications of the SA, followed by a description of the process of
physical annealing and its mapping to the SA, which outlines the steps
of the algorithm in detail. The chapter closes with a pseudocode of the SA
algorithm.

5.1 Introduction

A popular algorithm in heuristic optimization, simulated annealing (SA)
optimization was developed by Kirkpatrick et al. (1983), who showed how a
model for simulating the annealing of solids, as proposed by Metropolis et al.
(1953), could be used for solving optimization problems in which the fitness
or objective function to be minimized corresponds to the energy states of the
solid. Dolan et al. (1989) demonstrated the capacity of the SA for optimizing
chemical processes by applying it to the design of pressure relief header
networks and heat exchanger networks. Dougherty and Marryott (1991)
described the SA algorithm and applied it to the optimization of groundwater
management problems in combinatorial form. Wang and Zheng (1998) linked
the SA with MODFLOW, a groundwater flow simulation code, for optimal
management of groundwater resources. The results of the SA were compared
with those obtained with linear programming, nonlinear programming, and
differential dynamic programming. The comparison showed better solutions
by the SA than by other methods. Cunha and Sousa (1999) implemented
the SA to obtain the least-cost design of a looped water distribution network
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First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

69



70

5 Simulated Annealing

and proved the ability of the SA to handle this kind of problems. Cunha
(1999) applied the SA for solving aquifer management problems. Ceranic
et al. (2001) implemented the SA algorithm to the minimum-cost design of
reinforced concrete retaining structures. Tospornsampan et al. (2005) dem-
onstrated good performance of the SA in solving a ten-reservoir optimiza-
tion problem. Alkandari et al. (2008) applied the SA algorithm to electric
power quality analysis. Orouji et al. (2013) compared the performance of the
SA with that of the shuffled frog leaping algorithm (SFLA) in estimating the
Muskingum flood routing parameters. Yeh et al. (2013) applied the SA and
the tabu search (TS) to the optimization of sewer network designs, which
are complex nonlinear problems, and reported that the performance of the
SA was better than those of other methods previously reported in the
literature.

5.2 Mapping the Simulated Annealing (SA)
Algorithm to the Physical Annealing Process

The SA algorithm emulates the physical annealing of solids to solve optimi-
zation problems. SA is so named because of its similarity to the process of
physical annealing of solids, in which a solid is heated and then cooled slowly
until it attains its most possible regular crystal lattice arrangement free of
crystal faults.

Annealing in metallurgy and materials science defines a process in which
heat changes the physical and sometimes chemical features of a substance to
increase its ductility and reduce its hardness. The particles of a solid have
geometric configuration that corresponds to the minimum energy arrange-
ment in its most stable state, as it is experimentally seen in the crystals of a
mineral. Physical annealing is the process whereby the low energy arrange-
ment of a solid is achieved by melting a substance followed by lowering its
temperature slowly. The annealing of a substance involves heating it to its
recrystallization temperature, maintaining a suitable temperature, followed
by slowly cooling of the substance until reaching its freezing point. Annealing
is a well-known process to grow crystals from a molten substance. Through
the process of annealing, atoms move in the crystal lattice and the number
of dislocations decreases. The annealing process changes the ductility and
hardness of substances. Especially important is that in the cooling stage,
the temperature of the substance has to be decreased slowly. Otherwise
the resulting solid is frozen into a metastable glass or a crystal with faults in
its structure.

The Metropolis Monte Carlo method was proposed to simulate the anneal-
ing process. Metropolis et al. (1953) presented a simple algorithm to simulate
a system composed of a set of atoms of a substance at a specific temperature.
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At each iteration an atom undergoes a small random movement, which
changes the energy of the system. The resulting change and movement is
accepted if the energy of the system decreases. On the other hand, the move-
ment of the atom is accepted with probability exp(-6/kgl) if the movement of
the atom increases the energy of the system, where 4 is the temperature, kg
denotes the Boltzmann constant, and § is the change in the energy of the
system. The system achieves thermal equilibrium at each temperature after a
large number of atomic movements take place at each temperature. At ther-
mal equilibrium the probability distribution of the system states follow a
Boltzmann distribution whereby the probability of the system being in state i
at temperature A equals exp(-E;/kgA)/Z(1), where E; is the energy of state i and
Z(2) denotes the partition function that is required for normalization. The
temperature of the substance is decreased slowly to allow the system attain
thermal equilibrium. The procedure presented by Metropolis et al. (1953)
guarantees that the system evolves into the required Boltzmann distribution
(Eglese, 1990).

Different states of a substance represent different solutions of the optimi-
zation problem when applying SA. The energy of the substance is equivalent
to the fitness function to be optimized. The movement of atoms introduces
anew solution. In other words, a new state of the substance is a new solution.
Atom movements that introduce better solutions are accepted in SA. Non-
improving (inferior) changes that result in a worse solution are accepted
probabilistically. The probability of accepting non-improving solutions
depends on an acceptance function. Table 5.1 lists the characteristics of
the SA.

Table 5.1 The characteristics of the SA.

General algorithm (see Section 2.13)

Simulated annealing

Decision variable
Solution

Old solution
New solution
Best solution
Fitness function
Initial solution
Selection

Process of generating new solution

Position of the atoms of a substance
State of the substance

Current state of the substance

New state of the substance

Energy of the substance

Random position

Acceptance function

Movement of atoms
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The SA starts by generating an initial random solution that is known as the
current state of the substance. A new state in the neighborhood of the current
state is generated by a suitable mechanism, and the fitness value of the new
state is evaluated. The new state is accepted if it is better than the current state.
Otherwise, the new state is inferior to the current state, and the new
state is accepted if it is successful according to a probabilistic function called
the acceptance function, which depends on the system’s temperature. The
algorithm proceeds by generating a certain number of new states at each tem-
perature while the temperature is gradually decreased. Several new solutions
are tried until a thermal equilibrium criterion is satisfied at each temperature.
At that juncture the temperature is decreased again. As the temperature is
reduced, the probability of selecting non-improving atom movements is
also reduced. The process of generating new solutions as the system is cooled
is repeated until termination criteria are satisfied. Figure 5.1 illustrates the
flowchart of the SA algorithm.

5.3 Generating an Initial State

Each possible solution of an optimization problem generated by the SA
corresponds to an arrangement of the atoms of a substance. The state of the
system consists of N decision variables in an N-dimensional space. The system
state is represented as an array of size 1 x N describing the arrangement of the
atoms of the substance. The SA starts with a single solution denoted by an
array of size 1 x N as follows:

State = X =(%1,%,...;%is..., %N ) (5.1)

where X =a solution of the optimization problem, x;=ith decision variable of
solution X, and N=the number of decision variables. The decision variable
values (x1,% %3,...,&4y) can be represented as a floating point number (real
values) or as a predefined sets of values for continuous and discrete problems,
respectively. An initial state is randomly generated to start the optimization
algorithm (see Section 2.6). That initial state becomes the current state of the
system (i.e., a substance or a solid).

5.4 Generating a New State
Atoms move to new places to decrease the energy of a system and achieve a sus-

tainable state during annealing. A new potential state of the system is generated
according to the current state. Several deterministic and stochastic schemes are
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Define the parameters of the algorithm

v

Generate the initial state of the substance

Generate a new state

J

No o — Yes
Is the acceptance criterion satisfied?

v

Replace the current state with the new state

Is the thermal equilibrium satisfied?

v

Decrease temperature

Are the termination criteria satisfied?

\

Report the substance’s state

Figure 5.1 The flowchart of the SA.

used to generate a neighbor solution from a given solution. One common scheme
is the random walk, which is expressed mathematically as follows:

x; =x; + Rnd(-¢,¢), i=12,...,N (5.2)

in which x/ =new value of decision variable ith, Rud(a,b)=a random value
from range [a,b], and e =a small value.
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New values of all the decision variables are evaluated prior to generating a
new solution. Then, a new solution is generated as follows:

XU = (x4, 80y ) -

in which X"**) = new solution.
A newly generated solution may replace an old solution based on the accept-
ance function, which is described next.

5.5 Acceptance Function

The acceptance function determines whether or not a newly generated solution
replaces the current solution. The new solution represents a potential arrange-
ment of the substance, and its acceptance or rejection is based on the fitness
values of the old solution and newly generated solution. The new solution
replaces the old solution whenever its fitness value is superior to that of the old
solution. Otherwise, the new solution is replaced by the old solution with
a specific probability that is calculated based on the difference between the
fitness values of the new and the old solutions. In the case of a minimization
problem, the new solution is accepted according to an acceptance probabilistic
function as follows:

. (new)
P(X,X("ew)): 1£ 4 F(X )<F(X) (5.4)
e »  Otherwise

AF =|F (x(mew) )= F(X)| (5.5)

in which X=the old solution, X" =the newly generated solution, P(X,
X" —the probability of replacing X with X", F(X)=the fitness value
of solution X, and 1=a control parameter that corresponds to the tempera-
ture in the analogy with physical annealing. A uniformly distributed random
variable (Rand) within [0,1] is generated, and P(X, X"") is evaluated. If
P(X,X"")) is larger than or equal to Rand, the newly generated solution
(X)) replaces the old solution (X); otherwise it is rejected. The acceptance
function defined by Equations (5.4) and (5.5) is the Boltzmann distribution.
The previously defined acceptance function implies that small differences in
the fitness function value are more likely to be accepted than large differ-
ences. When 1 is large non-improving changes are accepted more easily than
when 1 is relatively small. In other words, the selective pressure is high (low)
when 1 is low (high). The value of 1 has an important role in the correct
convergence of the algorithm. The algorithm starts with a relatively large
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value of 1 to avoid being prematurely trapped in a local optimum, and it is
gradually decreased as the algorithm progresses.

5.6 Thermal Equilibrium

A system achieves thermal equilibrium at each temperature whenever a large
number of neighborhood movements occur at each temperature. It can be
proved that at thermal equilibrium, the probability distribution of a system
states follows a Boltzmann distribution. The SA proceeds by attempting a
number of neighborhood moves at each temperature. In other words, for each
value of the temperature 4, a certain number of new states are generated and
accepted or discarded before 1 is decreased. The new states are tested by the
acceptance function. The number of new states is a parameter of SA algorithm
selected by the user and is herein denoted by f. Thermal equilibrium is satis-
fied whenever a predefined number of new solutions (f) is generated and
tested by the acceptance function.

5.7 Temperature Reduction

The system’s temperature is decreased after testing a number of new states.
The parameter A controls the selective pressure, which is high (low) when 4 is
low (high), and plays an important role in the correct convergence of the SA
algorithm. The algorithm starts with a relatively high value of 4 to avoid being
prematurely trapped in a local optimum, and it is gradually decreased as the
algorithm progresses, as follows:

lim 4, =0, >0 (5.6)
t—>+o0
in which ¢=the iteration counter of the algorithm.
Two common procedures for decreasing A are linear and geometric. The
linear function modifies 4 in each iteration with the following equation:

lt:%_axt (57)

T

T (5.8)

in which 1y =initial temperature, 4,=the (modified) temperature in iteration ¢,
T =the total number of iterations, and a =the cooling factor.
The geometric procedure for cooling the system is as follows:

A =Xxa', O<a<l (5.9)
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in which a =the cooling factor. The advantage of the geometric function is
that it does not require the specification of the maximum number of itera-
tions of the algorithm. The stopping criterion of the algorithm could be
the maximum number of iterations 7, but other termination criteria can
be imposed, such as run time. In this case, the value of T is unknown,
and the SA algorithm continues until the stopping criteria (e.g., run time)
are satisfied.

5.8 Termination Criteria

The termination criterion determines when to terminate the SA algorithm.
Selecting a suitable termination criterion has an important role on the cor-
rect convergence of the algorithm. The number of iterations, the incremental
improvement of the objective function between consecutive iterations, and the
run time are common termination criteria applied in the implementation of
the SA algorithm.

5.9 User-Defined Parameters of the SA

The initial value of 4, the value of , which determines the number of new
generated solutions at each value of 1 (thermal equilibrium), the rate of
decrease of 4, and the termination criterion are user-defined parameters of
the SA. These parameters are known as the annealing or cooling schedule.
The choice of the annealing schedule influences the performance of the
algorithm. Annealing schedules that have been recommended for success-
ful convergence have not proven successful in all practical applications.
Thus, the application of the SA algorithm requires the implementation of
heuristic criteria that strike an acceptable trade-off between time invested
in selecting the SA parameters and the quality of the solution achieved.
A good choice of the parameters depends on the decision space of the
optimization problem. Frequently the optimal parameter setting for one
problem is of limited utility for other problems. Consequently, determining
a good parameter set often requires a large number of time-consuming
experiments. The proper choice of the SA parameters involves practice and
experience with the type of problem being solved. Sensitivity analysis is a
reasonable method for finding appropriate values for the SA parameters.
Sensitivity analysis prescribes a combination of parameters with which
the SA algorithm is run for several times. Several other combinations
are chosen and the algorithm is run several times with each of them.
A comparison of the results calculated from many runs provides guidance
about a suitable choice of the SA parameters.
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5.10 Pseudocode of the SA

Begin
Input parameters of the algorithm and initial data
Generate initial solution possible X and evaluate
its fitness value
Let f = the number of new solutions which are generated
to reach thermal equilibrium
While (termination criteria are not satisfied)
For j = 1 to
Generate a new solution X™" and evaluate its
fitness wvalue
If the new generated solution (X®") is better
than the old one (X)
Put X = X(new)
Otherwise
Evaluate P(X, X™") and generate Rand
from the range [0,1] randomly
If P(X, x™") > Rand
Put X = X(new)
End if
End if
Next 7
Decrease the temperature
End while
Report the solution X
End

5.11 Conclusion

This chapter explained the SA algorithm that is inspired by the process of
annealing in metal work. The physical annealing process was mapped into the
SA after a brief literature review, and the steps of the algorithm were described.
A pseudocode of the SA algorithm closed this review.
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Tabu Search

Summary

This chapter describes the tabu search (TS), which is a meta-heuristic algorithm
for combinatorial optimization. A brief literature review of development and
applications of the TS opens this chapter. The foundations of the TS and its
algorithmic steps are described next, followed by a pseudocode of the TS.

6.1 Introduction

The tabu search (TS) was developed by Glover (1986). It is designed to
solve combinatorial (finite solution set) optimization problems. Simple TS and
advanced TS were introduced by Glover (1989, 1990). Bland (1995) implemented
the TS in a structural design context and showed that the TS is a technically
viable technique for optimal structural design. Fanni et al. (1999) applied the
TS coupled with deterministic strategies for the optimal design of magnetic
resonance imaging (MRI) devices. Wang et al. (1999) demonstrated the capa-
bility of the TS to optimal design of multiproduct batch chemical processes.
Nara et al. (2001) applied the TS to determine locations and discrete capacities
of distributed generators so that the distribution loss is minimized. Hajji et al.
(2004) developed a new TS algorithm for global optimization of multimodal
functions with continuous domain. Misevicius (2005) implemented the TS to
solve the quadratic assignment problem (QAP). Nourzad and Afshar (2009)
proposed a probabilistic improvement to the neighborhood selection of the TS
and used that to find optimal water resources allocation for an industrial cop-
per complex distribution system. Hajji et al. (2010) designed software based on
scatter search, the TS, and neural networks for determining water-pumping
schedules. Martinez et al. (2010) employed the TS algorithm to optimize water
level monitoring stations in lakes and streams within the south Florida water

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
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management district. Yeh et al. (2013) used the TS and the SA to the optimiza-
tion of sewer-network designs that are complex nonlinear problems. Haghighi
and Bakhshipour (2014) presented an integrated optimization model for
designing sewage collection networks and applied the TS method as a deter-
ministic combinatorial meta-heuristic to solve the optimization model.

6.2 Tabu Search (TS) Foundation

The TS is an enhancement of local search (LS) methods. The LS refers to itera-
tive procedures that start with a solution and then employs local modifications
(moves) to find a superior solution. The basic concept of the LS is that the
movement is always from a worse solution to a better one. The search termi-
nates when it reaches an optimum with respect to the movements made. The
optimum achieved with the LS is mostly a local optimum instead of a global
optimum given that the algorithm always moves to an improved neighboring
solution near the current one. The TS solved the problem of convergence to
local optima experienced with LS methods by allowing movements to non-
improving solutions when there is no better solution near the current solution.
The TS also takes advantage of principles of artificial intelligence by making
search movements based on memory structures that prevent repetitive move-
ments and help to explore the decision space of the optimization problem
more thoroughly. Previously visited solutions are known as tabu and moving
back to them is prevented by the memories that save the history of the search
for optima.

TS designates solutions of an optimization problem as points in an
N-dimensional space where N denotes the number of decision variables.
Neighboring points refer to new solutions. The process of going from the
searching point, which is the old solution, to a neighboring point is called
a move. The best point reached in the search is the best solution found during
the search. Table 6.1 lists the characteristics of the TS.

A simple TS starts by generating a random solution (initial solution), which
is known as the searching point. The current searching point is considered
momentarily as the best point. In the next step neighboring points are gener-
ated near the searching point. Only the neighboring points that are not tabu
are considered. The searching point moves to the best neighboring point that
is not tabu. Unlike the LS, in the TS the best neighboring point replaces the
searching point even if it is worse than the current searching point. The previ-
ous searching point is memorized as tabu. If the new searching point is better
than the best point, the new point replaces the best point; otherwise the best
point remains unchanged. Neighboring points near the new searching point
are generated. The previously mentioned process repeats until the termination
criteria are satisfied. Figure 6.1 illustrates the flowchart of the TS.



Table 6.1 The characteristics of the TS.

General algorithm (see Section 2.13) Tabu search

Decision variable Point’s position
Solution Point

Old solution Searching point

New solution Neighbor point

Best solution Best point

Fitness function Desirability of the point
Initial solution Random point
Selection Tabu list

Process of generating new solution Movement

| Define the parameters of the algorithm |

| Generate a searching point randomly |

V

Consider the search point as the best point |

L

| Move from the searching point to the best non-tabu neighbor point |

v

| Update the best point |

)

| Update the tabu list |

v

| Report the best point |

Figure 6.1 The flowchart of the TS.
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6.3 Generating an Initial Searching Point

Each possible solution of the TS is a point in the feasible space of the optimiza-
tion problem. In an N-dimensional optimization problem, a solution point is
an array of size 1 x N. The TS starts with a single solution of size 1 x N:

Point = X =(%1,%,..» %15 XN ) (6.1)

where X = a solution of the optimization problem, x; = ith decision variable
of the solution X, and N=number of decision variables. The decision
variable values (x;,%,,%3,...,xy) are represented as a predefined set of
values for discrete problems. The optimization algorithm starts with an
initial point known as the searching point that is randomly selected
from the discrete decision space when solving combinatorial problems
(see Section 2.6). Neighboring points (new solutions) are considered near
the searching point.

6.4 Neighboring Points

The TS was developed to solve combinatorial (finite solution set) optimization
problems. The decision variables take discrete values in this instance. The
neighborhood of a solution is made of all the solutions in which the value of
one decision variable is changed to its immediate adjacent values in a sorted
list of discrete values. Assume that Figure 6.2 portrays the decision space of an
optimization problem with a two-dimensional discrete decision space. In
Figure 6.2 the circles denote possible answers for the problem.

Suppose that in Figure 6.2, the solution (3,2), which is encircled by a square,
is selected as searching point. All the possible solutions that are connected

X5 Figure 6.2 The decision
space of a two-dimensional
optimization problem.
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with lines to (3,2) are neighboring solutions. In an N-dimensional space if
X =(%1,%,...,%,...,xy) is the searching point, the number of neighbor
solutions surrounding the searching point is 2N, which are represented
as follows:

[y (new ’
X; )=(x1,x2,...,x,-,...,xN)

new ’
Xé )=(x1,x2,...,x,-,...,xN)

X (e = (xl,xz,...,xf,...,xN)
X {new) = (%1, %050 cs Ko s X )

M= (new) " (6.2)
XN+1 :(xI!xZ’---,xl’,...,xN)

X (e = (%1523 %15 s %)

(new) __ "
XNy —(xl,xz,...,xi,...,xN)

new "
XéN ) =(x1,x2,...,x,-,...,xN)

x{:xi+8, i=1;2;---)N (6'3)
X'=x—g, i=12,..,N (6.4)

new

in which M = the matrix of the neighbor points around X, X l( )=ith neighboring
solution near the searching point X, x;=the value of decision variable ith of the
searching point, x; and x; =the new values of decision variable ith, and e=the
length of steps in a discrete decision space.

The search movements are generalized as follows:

XU = X + (g -epn ) (6.5)

in which X" = a neighbor solution around X, e =a specified direction vector
that is a matrix of zeroes and ones, and e=the length of steps in a discrete
decision space.

For specific combinatorial problem at hand, various alternative possible
neighborhood structures can be used according to the search space. Choosing
a search space and a neighborhood structure has a key role in the design of any
TS algorithm.
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6.5 Tabu Lists

The TS features principles of artificial intelligence because it acts based on memory
structures that prevent repetitive movements, thus improving the search for
optima within the decision space of the optimization problem more effectively.
The TS prevents moving back to previously visited solutions using memories
recorded in a tabu list that memorize the history of the search. The tabu list is a key
feature of the TS, which is a deterministic method and allows movements to worse
neighboring solutions if there is no improving solution. It is probable then that the
TS algorithm might fall into an iterative cycle without making any progress
toward an optimal solution. Cycling defines a situation whereby the TS algorithm
is trapped into repetitive movements. When cycling occurs there must be inter-
vention to break it up. The tabu list is used to prevent cycling.

Tabus can be defined and memorized in different ways. One possibility is
recording a solution that is visited. Moving to a previously visited solution is
forbidden. Memorizing the visited solution is the most efficient method to
prevent cycling, yet it is seldom used because this requires a lot of storage mak-
ing it expensive to evaluate whether or not a potential move is tabu. On the
other hand, another commonly used tabu is memorizing the transformation
performed on the current solution and prohibiting reverse transformations. In
this manner following a move from solution X to X’ precludes returning from
X' to X, but arriving at X through another route is allowed.

It is recommended that transformation and reverse transformation be
recorded as tabu. Recalling Figure 6.2, if the current searching point is (3,2) and
the TS algorithm moves to point (2,2) as new searching point, moving back
from (2,2) to (3,2) is forbidden and considered as a tabu. The TS algorithm
cannot follow a previously traveled path. Yet, it is possible to return to point
(3,2). Imagine that after two iterations, the search reaches point (3,3). The
algorithm may move back to point (3,2) through another route that is not a
tabu. This would introduce cycling because the algorithm will again move from
(3,2) to (2,2), which can be solved by recording the forward transformation and
the reverse transformation as tabu. In the previously mentioned example, the
algorithm moves from the current searching point (3,2) to point (2,2) requires
recording the moves (3,2) to (2,2) and (2,2) to (3,2) as tabu. This would elimi-
nate cycling involving these moves.

6.6 Updating the Tabu List

Tabus are memorized for a predefined number of iterations and then they are
removed from the tabu list. Generally, the basic purpose of a tabu list is to
avoid returning to a previously visited point (solution). The probability of
cycling caused by following a sequence of moves that ends with a previously
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visited solution is inversely related to the distance of the current searching
point from that previous solution (Glover, 1989).

The number of iterations during which tabu lists are saved is called the tabu
tenure (6), which is a user-defined parameter of the algorithm. In this manner
the tabu list keeps information on the last § moves (iterations) that have been
performed during the search process. For example, a solution that becomes a
tabu at iteration 1 with the tabu tenure equal to 3 (§ = 3) is deleted from the tabu
list at iteration 4. When a new solution (information) is added to a full tabu list,
it results in the removal of the oldest solution or information from the list.

Standard tabu lists usually have a fixed length. Yet, tabu lists of variable
lengths have been implemented (Glover, 1989, 1990; Skorin-Kapov, 1990;
Taillard, 1990, 1991).

6.7 Attributive Memory

Many types of memories for TS have been developed during past years to
enhance its capacity. One of the most common of such memories is attributive
memory. This type of memory records information about the properties or
attributes of solutions. The most prevalent attributive memory approaches are
frequency-based memory and recency-based memory.

6.7.1 Frequency-Based Memory

Frequency-based memory keeps information that facilitates selecting feature
moves. Specifically, the TS algorithm saves the number of times that each solu-
tion has been selected to be the searching point, and this information is called
frequency-based memory, which excises a penalty that is proportional to the
frequency with which a solution is visited by subtracting a penalty value from
the fitness value of the solution as follows:

F'(X)=F(X)-u (6.6)

in which F'(X)=penalized fitness function of the solution X, F(X)=fitness
function of the solution X, and y =number of times that solution X has been
visited. Equation (6.6) applies to a maximization problem.

The desirability of a solution is evaluated by its penalized fitness value rather
than its fitness function value. Thus, frequency-based memory would select
between two neighboring solutions that have the same fitness value and with
the lower frequency of visitation (under maximization).

6.7.2 Recency-Based Memory

Two possible methods to record tabus were cited earlier, one that saves a solution
that is visited and the other that saves the search movements that are performed.
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There is another way of recording tabus whereby attributes of solutions are
memorized as a tabu list. This type of tabu list is called recency-based memory,
the most prevalent memory structure applied in TS implementations. This mem-
ory structure keeps track of solutions’ attributes that have changed during the
recent past. For example, recalling Figure 6.2, suppose that the search starts
from point (3,2) and moves to point (2,2). It is clear that in moving from (3,2) to
(2,2), the value of decision variable x; is reduced, and by moving back from (2,2)
to (3,2), increasing the value of x; is necessary. Moving back to the previous
solution and cycling does not occur if increasing the value of x; is forbidden.
Increasing the value of x, is therefore considered as a tabu for the § next iterations.
The selected attributes or properties of solutions recently visited are labeled tabu
active in recency-based memory. Solutions that have tabu-active elements, or
particular combinations of these attributes, are those that become tabu.

A tabu list that is constructed on recency-based memory is easy to save and
to read information from. Selected attributes occur in solutions recently vis-
ited. If these attributes are labeled tabu active, then solutions that have never
been visited but share the same tabu-active attributes are prevented from being
visited by the search algorithm. To illustrate, suppose the search starts with
point (3,2) in Figure 6.3 and moves to (2,2). Assume that § (tabu tenure) is
equal to 2. This movement decreases the value of x;, which precludes increas-
ing the value of x; in the next two iterations. The TS algorithm can thus move
to (2,1), (2,3), or (1,2), but it cannot move to (3,2). Suppose that point (2,3) is
selected to be the next searching point. Decreasing the value of x, would be a
tabu in the next movement. In the third iteration the searching point is (2,3)
and the two neighboring points (2,4) and (1,3) are non-tabu points, whereas
the two neighboring points (2,2) and (3,3) are tabu (see Figure 6.3). It is evident
in Figure 6.3 that the point (3,3) has not been visited during the search, but it is
considered as a tabu because increasing the value of x; from 2 to 3 is tabu.
Thus, it is necessary to cancel tabus in some instances. The action by which the
algorithm ignores tabus is called aspiration criteria.

X Figure 6.3 lllustration of
steps based on recency-
based memoryina
two-dimensional
decision space.

Current solution

b @

Tabu solution

eo oo
-0 ®
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6.8 Aspiration Criteria

Tabus may prohibit rewarding moves even when there is no danger of cycling,
or they maylead to an overall stagnation of the searching process. Consequently,
the aspiration criterion frees the algorithm to move to a tabu point under
certain favorable conditions. A commonly used aspiration criterion is a condi-
tion in which a tabu movement leads to a better solution than the best solution
that has been encountered in previous moves.

6.9 Intensification and Diversification Strategies

Intensification and diversification strategies are applied in some versions of TS.
Intensification strategies have been commonly implemented based on long-
term memory so that a set of elite solutions are selected, their components
serve to construct new neighbors, and diversification strategies encourage
examining unvisited regions by generating solutions significantly different
from those searched earlier (Glover and Laguna, 1997).

These strategies ensure that all areas of the search space are adequately
explored. A frequency-based tabu list keeps track of the search area. The fre-
quency index of a previously visited solution is increased whenever it is revisited.
The diversification strategy set a threshold of the frequency index. A value of the
frequency index larger than a predefined threshold implies that a region has been
explored frequently and the search process is restarted with a new, randomly
generated point. This diversification strategy is similar to the restart mechanism
of other stochastic optimization approaches. The restart in the TS, however, is
guided by historical information based on an intensification strategy.

6.10 Termination Criteria

The termination criterion determines when to terminate the TS algorithm.
Selecting a good termination criterion has an important role for the correct
convergence of the algorithm. The number of algorithmic iterations, the amount
of improvement of the objective function between consecutive iterations, and
the run time are common termination criteria for the TS algorithm.

6.11 User-Defined Parameters of the TS

The value of the tabu tenure (5) and the criterion used to decide when to
terminate the algorithm are the user-defined parameters of the TS. Choosing
an appropriate § is important. Large values of § make the algorithm to move
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gradually away from points visited during the previous & iterations. A small
value for 6 provides more mobility to the algorithm. Previous experience
with the TS reveals that there is a stable range of § that prevents cycling and
leads to good solutions. A good choice of the parameters is related to
the decision space of a particular problem. In general, optimal parameters
for one problem may not function well for other problems. Consequently,
determining a good parameter setting often requires the execution of a large
number of time-consuming experiments. The setting of suitable parameters
relies principally on in-depth experience with the type of problem being
solved. Yet, a reasonable method for finding appropriate values of the TS
parameters is performing sensitivity analysis whereby combinations of
parameters are tested with multiple runs for each combination. From these
results the analyst may gain clear guidance on the choice of parameters that
produce near-optimal solutions.

6.12 Pseudocode of the TS

Begin
Input parameters of the algorithm and initial data
Let X'=the best point and X=the current search
point
Generate a search point (X) randomly and evaluate
its fitness wvalue
Set X'=X
While (termination criteria are not satisfied)
Generate neighbor points around the searching
point and evaluate their fitness wvalues
If all neighbor points are tabus and cannot satisfy
the aspiration criteria
Stop the algorithm and report the best point (X7)
End if
Select the best neighbor point which is not tabu
or satisfies the aspiration criteria
Put X=the selected point
If X is better than X

Set X'=X
End if
Update the tabu list
End while

Report the best point (X")
End
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6.13 Conclusion

This chapter described the TS, which is a meta-heuristic algorithm for com-
binatorial optimization. First, a brief literature review of development and
applications of the TS was presented. This was followed by a description of
the fundamentals of the TS and its algorithmic nuances. A pseudocode of the
TS closed this chapter.
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Ant Colony Optimization

Summary

This chapter describes ant colony optimization (ACO). The basic concepts of
the ACO are derived from analogy to the foraging behavior of ants. The chapter
begins with a brief literature review highlighting the development and applica-
tions of the ACO. This is followed by a description of the ACO’s algorithm.
A pseudocode of the ACO closes the chapter.

7.1 Introduction

Ant colony optimization (ACO) was introduced by Dorigo et al. (1991, 1996).
It attempts to simulate in algorithmic fashion the foraging behavior of
ants. Several varieties of ACO algorithms have appeared since its original
inception, and those include the elitist ant system (AS) (Dorigo, 1992; Dorigo
et al, 1996), Ant-Q (Gambardella and Dorigo, 1995), ant colony system
(Gambardella and Dorigo, 1996; Dorigo and Gambardella, 1997), max—min
AS (Stutzle and Hoos, 2000), and the hypercube AS (Blum and Dorigo, 2004).
The ACO has solved various types of problems such as vehicle routing
(Reimann et al., 2004), project scheduling (Merkle et al., 2002), and open shop
scheduling (Blum, 2005). Various types of ant-based algorithms have found
frequent implementations in civil engineering and structural optimization
(Christodoulou, 2010; Lee, 2012; Sharafi et al., 2012). Abadi and Jalili (2006)
applied the ACO for network vulnerability analysis. Effatnejad et al. (2013)
implemented the ACO for determining the feasible optimal solution of eco-
nomic dispatching. Afshar et al. (2015) wrote a state-of-the-art review of the
ACO’s applications to water resources management.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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7.2 Mapping Ant Colony Optimization (ACO)
to Ants’' Foraging Behavior

The ACO takes inspiration from the foraging behavior of some ant species that
deposit pheromone on the ground to mark favorable paths for colony members
to follow to procure food. Many ant species take advantage of a particular type
of communication called stigmergy in which workers are stimulated by the
performance they have achieved. Stigmergy is differentiated from other types
of communication in two distinct ways. First, stigmergy is an indirect, non-
symbolic form of communication mediated by the environment. Ants exchange
information by modifying their environment. Second, stigmergic information
is local. Therefore, the information exchanged by stigmergy is only available
for those who see the location where it is released.

This type of communication explains the strategy followed by ants to collect
and transport food to their nest. Many ant species release a substance called
pheromone along their tracks while they are walking to or from a food source.
Other ants detect the presence of pheromone and follow paths where the
pheromone concentration is present. This tactic allows ants to transport food
to their nest in a remarkably effective way.

The pheromone-laying and pheromone-following behavior of ants was
studied by Deneubourg et al. (1990). In a double-bridge experiment, the nest
of an ant colony was connected to a food source using two bridges that were
equal in length. Ants could reach the food crossing either one of the bridges.
The results of experiment demonstrated that initially the bridges were selected
arbitrarily by the ants. Due to random fluctuations one of the two bridges
exhibited a higher concentration of pheromone than the other after some
time, and, therefore, more ants moved through the former bridge. This
brought a further amount of pheromone to that bridge, making it a more
attractive route, and eventually the whole colony converged toward using the
same bridge.

The pheromone-laying mechanism helps ants find the shortest path between
afood source and their nest. When one of the bridges is shorter, ants that move
through the shorter path reach the food sooner and increase the concentration
of pheromone on the way back. Goss et al. (1989) considered a variant of the
double-bridge experiment in which one bridge is significantly longer than
the other. In this case, the stochastic fluctuations in the initial choice of a
bridge are much reduced, and a second mechanism plays an important role.
Specifically, the ants choosing by chance the short bridge are the first to reach
the nest. The short bridge receives larger amounts of pheromone earlier than
the long one, and this fact increases the probability that more ants select it
for transport to and from a food source. Figure 7.1 shows a schematic of the
double-bridge experiment.
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Figure 7.1 A double-bridge experiment with pathways of unequal length.

Goss etal. (1989) presented a model to evaluate probability of an ant to select
the first bridge (¢;) where y; ants have selected the first bridge and u, ants have
selected the other bridge in a double-bridge experiment as follows:

_ (/l;”)h i (7.1)
(ta+2) +(m +2)

in which ¢, = the probability of an ant selecting the first bridge, u; = the number
of ants that have selected the first bridge, y, =the number of ants that have
selected the second bridge, and z and % = parameters that must be fitted to the
experimental data.

The ants represent solutions in ACO. The path of an ant is a set of decision
variables that constitute a solution of the optimization problem in ACO. In
other words, the tour of an ant from nest to food represents a possible solution
of the optimization problem. Each ant has a fitness value corresponding to the
value of the objective function of the optimization problem that reflects the
length of its tour. The better the fitness value, the shorter the length of the tour.
Each ant leaves a concentration of pheromone in a specific area of the decision
space according to its fitness value that marks its path. New ants (solutions) are
made based on information left by previous ants in the decision space. Table 7.1
lists the characteristics of the ACO.

The ACO starts by generating a set of random solutions made up of deci-
sion variables that are selected from a predefined set of discrete values. The
fitness values of all the solutions are evaluated. Then, proportionate to
the fitness values of solutions, concentrations of pheromone are assigned
to the decision space. The concentration of pheromone shows desirability.
The parts of the decision space that make fitter solutions achieve more
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Table 7.1 The characteristics of the ACO.

General algorithm (see Section 2.13) Ant colony optimization
Decision variable Track path of ant
Solution Ant

Old solution Old ant

New solution New ant

Best solution -

Fitness function Pheromone

Initial solution Random ant

Selection -

Process of generating new solutions Based-information stochastic mechanism

concentration of pheromone. The sum of the pheromone of a specific value of
a decision variable is equal to all the pheromone left by all ants that possess
that value. New ants (solutions) are constructed in the next algorithmic step
based on information retrieved from previous ants. New solutions are gener-
ated randomly with a stochastic function that assigns a probability to allow-
able values of each decision variable according to its pheromone. Values that
have higher concentration of pheromone are more likely to be selected.
Concentrations of pheromone are added to the decision space to generate
new solutions after evaluating the fitness values of newly generated solutions
if the termination criteria are not satisfied. Otherwise the algorithm ends.
Figure 7.2 depicts the flowchart of the ACO.

7.3 Creating an Initial Population

An ant’s track in any dimension of an N-dimensional space represents a deci-
sion variable of the optimization problem. An ant is known as an array of size
1 x N that describes the ant’s path. This array is defined as follows:

Ant:X:(xl,xz,...,xi,...,xN) (7.2)

where X =a solution of the optimization problem, x;=ith decision variable of
solution X, and N =number of decision variables. The decision variable values
(%1, %2, %3, ..., xp) are chosen from a set of predefined values for discrete problems.
The ACO solves problems with discrete domain; each decision variable i takes a
value from a predefined set of values V; as follows:

Vi= {Vi,l;Vi,Z;---;Vi,d:---,Vi,D, }r i=12,..,N (7.3)
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Figure 7.2 The flowchart of the ACO.

in which V;=the set of predefined values for ith decision variable, v;;=dth
possible value for the ith decision variable, and D;=total number of possible
values for the ith decision variable.

A solution is represented as a graph that connects decision variables to each
other defining a pathway or solution as shown in Figure 7.3. The number of layers
of the graph equals the number of decision variables, and the number of nodes in
a particular layer equals the number of discrete probable values permitted for the
corresponding design variable. Thus, each node on the graph is associated with a
permissible discrete value of a design variable.

The ACO algorithm begins with randomly generating a matrix (see
Section 2.6) of size M x N (where M and N denote the size of the population of
solutions and the number of decision variables, respectively). Hence, the
matrix of solutions that is generated randomly is as follows (there are M rows
or solutions, and each solution contains N decision variable):

X X1 X2 o X1, ot XN
X Xo1 KXo ot Xpp ottt XN
Population = = . (7.4)
X} x],,l x].,z e xj,i e xj,N
Xm Xma XM ot Xmi t XMN
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Figure 7.3 Representa-
tion of a solution in the
ACO; there are M such
solutions.
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in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size (the number of solutions). The value of x;; is randomly
selected from a set V; (see Equation (7.3)).

7.4 Allocating Pheromone to the Decision Space

In contrast to most other meta-heuristic and evolutionary algorithms, the
ACO allocates desirability to the decision space instead of the solutions to find
the best region of the decision space or the best mixture of decision variables.
Most meta-heuristic and evolutionary algorithms generate new solutions using
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old solutions, say, by mixing old solutions or by generating new solutions in the
neighborhood of old solutions. The ACO searches different points of the deci-
sion space and adds information to the decision space. New solutions are ran-
domly constructed based on the information in the decision space. The ACO
allocates a concentration of pheromone to each decision variable’s value
according to the fitness value of a solution. The more fit a solution is, the higher
the pheromone concentration, and vice versa. In other words, values that make
better solutions achieve higher concentration of pheromone in comparison
with values that make worse solutions.

N arrays of size 1x D; are employed to allocate pheromone to the decision
space so that each of them is assigned to one decision variable as follows:

Ci = (Ci,lici,2""’Ci,d""’ci,D, ), i=12,...,.N (7.5)

in which C;=pheromone matrix for the ith decision variable and c; ;= pheromone
concentration of the dth possible value of the ith decision variable.

The elements of the matrix C equal zero at the beginning of the algorithmic
optimization. They are updated during the algorithmic search, taking positive
values. The aim of the pheromone update is to increase the pheromone con-
centration of good or promising decision variable’s values. The pheromone
allocation is achieved by (1) decreasing all the pheromone values through
pheromone evaporation and (2) increasing the pheromone levels associated
with a chosen set of good solutions. Solutions (ants) are generated and their
fitness values are evaluated. The concentration of pheromone for the dth pos-
sible value of the ith decision variable is updated as follows:

M
¢ =(1-p)xcig+ Y Ac), d=12,..,D;, i=12,..,N (7.6)
j=1

in which cl(:’fW) =new concentration of pheromone of the dth possible value of

the decision variable, p =evaporation rate, and Acl(,jd) =the quantity of phero-
mone laid on the dth possible value of the ith decision variable by the jth ant.
The value of ACEQ corresponds to the fitness value of the jth solution, and it is
estimated as follows in a minimization problem:

: lij,i =Vid
Ac.’d: F(X;) , j=L12,..,M, i=12,.,N, d=12,..,D

, 0 if Otherwise
(7.7)

in which Q =a constant value and F(X)) =fitness value of the jth solution.
Equation (7.7) was proposed by Dorigo et al. (1996) to solve the salesman
problem in which the fitness value must be a positive number; otherwise it is
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not acceptable for estimating the concentration of pheromone. It follows from
Equation (7.7) that in a minimization problem, the concentration of phero-
mone is inversely proportional to the fitness value. By extension it follows that
in a maximization problem, the concentration of pheromone is proportional to
the fitness value. The concentration of pheromone can be zero or a positive
value. The ACO solves optimization problems relying on a formula that relates
the pheromone concentrations and fitness values according to Equation (7.7).

New solutions are generated after evaluating of concentration of pheromone
for possible values for all decision variables so that the values with higher
concentration of pheromone have a better chance of being selected for new
solutions.

7.5 Generation of New Solutions

New solutions are generated through a stochastic process. Each decision vari-
able i is assigned a value with a probability that depends on the concentration
of pheromone. Specifically, a probability P, , is assigned to each possible value
d of decision variable i as follows:

(Ci,d)a X (m,d)ﬁ
|:(Ci,k ) x (ni,k)ﬁ:'

1

P,= , d=12,.,D; i=12,.,N (7.8)

v}

i

b
Il

in which P; ;= probability that the dth possible value (v;,) be selected for the ith
decision variable, #;,=a heuristic value for the dth possible value of the
ith decision variable, and @ and = parameters that control the relative impor-
tance of the pheromone versus the heuristic information (#;4). The heuristic
information shows the desirability of selecting possible values that help the
algorithmic search of the decision space more efficiently. For instance, in the
structural design problem presented in Chapter 1, the purpose is minimizing
the weight of the structure. Before solving the problem it is clear that a smaller
cross-sectional area would produce a lighter structure. It is possible to assign a
heuristic value to the cross-sectional area so that less cross-sectional area has a
larger heuristic value and, thus, a high probability of being chosen. The choice
of the parameters a and ff renders this feature optional. The sum of the proba-
bilities of the possible values of each decision variable is equal to one:

D,
> P,=1, i=12,.,N (7.9)
d=1

The values of the decision variables of a new solution are randomly
selected based on the evaluated probabilities. To accomplish this one first
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calculate a cumulative probability for all the possible values of each decision
variable as follows:

Vi,=> P4 i=12,..,N, r=12,.,D, (7.10)
d=1

in which ;= cumulative probability of the rth possible value of the ith deci-
sion variable.

Thereafter, a random number (Rand) in the range [0,1] is generated. If Rand is
less than y; 1, the first value (v;;) is selected; otherwise the rth value is selected such
that Rand is greater than v, ,_; and less or equal than y;, (y;,; < Rand <y, ).
This procedure assigns randomly a value from the set V; to each decision variable
i of solution j. If component v;; of set V; = {Vi,l,vi,z seeisVidsee Vi, D‘,} is assigned to
the ith decision variable of the jth new solution, we have

Xj;=Vvig, i=12,.,N, j=12,.,M (7.11)

in which x; = new value of the ith decision variable of the jth new solution.
The new solutions are constructed after evaluation of all the decision varia-
bles as follows:

X;new) :(x;,l,x},z,...,x},,-,...,x},N), j:1)21-.-7M (712)

in which X;”EW) =new solution j. The M newly generated solutions displace all
of the old solutions.

7.6 Termination Criteria

The termination criterion determines when to end the algorithm. Selecting a
good termination criterion is essential for the correct convergence of the ACO
algorithm. The number of iterations, the incremental improvement of the
objective function between consecutive iterations, and the run time are com-
mon convergence criteria for the ACO.

7.7 User-Defined Parameters of the ACO

The size of the population of solutions (M), the evaporation rate (p), the control
parameters of pheromone (a), heuristic information (f), and the termination
criterion of the algorithm are user-defined parameters of the ACO. A good
choice of the parameters is related to the decision space of a particular problem,
and usually the optimal parameter setting for one problem is of limited utility
for any other problem. Consequently, determining a good set of parameters
requires the execution of a large number of time-consuming experiments.
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The setting of suitable parameters relies principally on in-depth experience
with the type of problem being solved. Yet, a reasonable method for finding
appropriate values of the ACO parameters is performing sensitivity analysis
whereby combinations of parameters are tested with multiple runs for each
combination. From these results the analyst may gain clear guidance on the
choice of parameters that produce near-optimal solutions.

7.8 Pseudocode of the ACO

Begin
Input parameters of the algorithm and initial data
Let M=population size and N=number of decision
variables
Let D;=number of possible values for decision
variable i1
Generate M initial possible solutions randomly
While (termination criteria are not satisfied)
Evaluate fitness values for all solutions
For i=1 to N
For d=1 to D;
Update pheromone concentration of possible
value d for decision variable i1
Evaluate probability of possible value d
to be selected
Next d
Next 1
For j=1 to M
For i=1 to N
Randomly select a value for decision
variable i among possible values based
on their probabilities

Next i
Next 7
End while
Report the ants or solutions

End

7.9 Conclusion

This chapter described ACO. It included a brief literature review of the ACO,
a mathematical statement of its algorithm, and a pseudocode.
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8

Particle Swarm Optimization

Summary

This chapter describes the particle swarm optimization (PSO) technique, which is
inspired by the swarming strategies of various organisms in nature. The next sec-
tion reviews a few implementations of the PSO. The remainder of this chapter
describes the PSO algorithm and presents a pseudocode for its implementation.

8.1 Introduction

Kennedy and Eberhart (1995) developed the particle swarm optimization (PSO)
algorithm as a meta-heuristic algorithm based on the social behavior exhibited by
birds or fishes when striving to reach a destination. Balci and Valenzuela (2004)
presented a technique that uses the PSO combined with the Lagrangian relaxa-
tion (LR) framework to solve a power generator scheduling problem known as
the unit commitment problem. Chuanwen and Bompard (2005) applied a self-
adaptive chaotic PSO algorithm for optimal hydroelectric plant dispatch model
based on the rule of maximizing the benefit in a deregulated environment. The
proposed approach introduced chaos mapping, and the self-adaptive chaotic
PSO algorithm increased the mapping convergence rate and associated preci-
sion. Suribabu and Neelakantan (2006) used the Environmental Protection
Agency’s hydraulic network simulator (EPANET) and the PSO algorithm in a
combined simulation and optimization model to design a water distribution
pipeline network. Matott et al. (2006) identified the PSO algorithm as an effective
technique for solving pump-and-treat optimization problems with analytic
element flow models. Izquierdo et al. (2008) applied the PSO algorithm to the
optimization of a wastewater collection network. Results showed that the algo-
rithm’s performance and the calculated results were consistent with those calcu-
lated with dynamic programming to solve the same problem under the same
conditions. Fallah-Mehdipour et al. (2011) proposed a multi-objective PSO
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(MOPSO) approach in multipurpose multi-reservoir operation. MOPSO calcu-
lated near-optimal Pareto fronts. Ostadrahimi et al. (2012) employed a multi-
swarm PSO to extract multi-reservoir operation rules and showed that the PSO
algorithm outperformed the common implicit stochastic optimization approach
in the real-time operation of a reservoir system. Gaur et al. (2012) coupled artifi-
cial neural network (ANN) and the PSO for the management of the Dore river
basin in France. An analytic element method (AEM)-based flow model was
applied to generate the data set for the training and testing of the ANN. A cou-
pled ANN-PSO was implemented to minimize the pumping cost of wells and
compared with AEM-PSO. ANN-PSO reduced the computational burden sig-
nificantly in the analysis of various management scenarios. Kumar and Reddy
(2012) employed elitist-mutated PSO (EMPSO) as an efficient and reliable swarm
intelligence-based approach in multipurpose reservoir operation. Results dem-
onstrated that the EMPSO performed better than the PSO algorithm. Noory
et al. (2012) presented a discrete PSO algorithm for optimizing irrigation water
allocation and multi-crop planning. Saadatpour and Afshar (2013) implemented
the MOPSO in a pollution spill response management model in reservoirs. They
coupled CE-QUAL-W2 with the MOPSO algorithm to obtain a desirable near-
optimal reservoir operation strategy and/or emergency planning in a selective
withdrawal framework. Fallah-Mehdipour et al. (2013) calculated multi-crop
planning rules in a reservoir system with the PSO algorithm, the genetic algo-
rithm (GA), and shuffled frog leaping algorithm (SFLA). They maximized the
total net benefit of the water resources system by supplying irrigation water for a
proposed multi-cropping pattern over the planning horizon. Qu and Lou (2013)
proposed a PSO algorithm based on the immune evolutionary algorithm (IEA) to
optimal allocation of regional water resources. The results of the survey demon-
strated that the performance of the presented algorithm to solve the issue of
optimal allocation of regional water resources is reliable and reasonable. Bozorg-
Haddad et al. (2013) compared the performance of the PSO algorithm with that
of the pattern search (PS) algorithm for calibration of numerical groundwater
models. Orouji et al. (2014) proposed a hybrid algorithm, linking the PSO and
SELA, to solve the resource-constrained project scheduling problem (RCPSP).
The RCPSP minimized the duration of a construction project considering
resource limitations and the timing of activities. The hybrid PSO-SFLA proved
more capable in determining an optimal solution with fewer iterations compared
with the individual application of the PSO and SFLA.

8.2 Mapping Particle Swarm Optimization (PSO)
to the Social Behavior of Some Animals

This chapter deals with the application of computational algorithms to
biological—-social systems and, more specifically, to the collective behaviors
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of individuals interacting with their environment and each other. These
systems are known as swarm intelligence. Swarm intelligence defines the
discipline that deals with natural and artificial systems consisting of many
individuals who coordinate among themselves using decentralized con-
trol and self-organization. Swarm intelligence focuses on the collective
behavior resulted from the local interactions between individuals and
between individuals and their environment. Beehives, ant colonies, fish
schools, bird flocks, and animal herds are examples of systems with swarm
intelligence. The PSO is one of the most common examples of swarm
intelligence.

The PSO algorithm is based on the social behavior of birds. It simulates the
behaviors of bird flocks. Suppose that a group of birds are randomly looking for
food in an area. Imagine that seeker birds do not know where the food is. One
effective strategy to find food is for birds to follow the bird that is known to be
nearest to the food. The PSO acts according to the previous example and
employs a numerical analog to solve optimization problems.

The PSO designates each single solution in the decision space of the
optimization problem as a bird and is called a particle. All the particles have
fitness values that are evaluated by the objective function to be optimized,
which measures their distances to food. Each particle also has velocity that
directs the flying of the particle. The best particle is the leader, and other
particles follow the leader. The particles fly through the decision space of the
problem by following the leader. Each particle determines its next position
based on (1) its best individual position so far occupied and (2) the best
position achieved in the group. In other words, each particle is updated by
two positions. The first one is the best position that the particle has occu-
pied so far. The other is the best position achieved so far by any particle in
the population of particles. The first position is the best individual position,
and the second one is the best global position. Table 8.1 lists the characteris-
tics of the PSO.

The PSO starts with the position and velocity of particles randomly ini-
tialized within the search space (see Section 2.6). The fitness values of the
particles are calculated. These first fitness values and positions are the best
individual fitness values and the best individual positions, respectively.
The best position among all particles is the global best position. The posi-
tion and velocity of each particle are updated to generate new solutions
based on their personal and global best positions. In the next iteration the
fitness values of the updated particles are recalculated, and the personal
and global best positions are updated. In this manner the new particles’
positions and velocities are generated. The PSO algorithm continues
updating the individual and global best positions and generating new posi-
tions until the termination criteria are met. Figure 8.1 shows the flowchart
of the PSO.
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Table 8.1 The characteristics of the PSO.

General algorithm (see Section 2.13) Particle swarm optimization

Decision variable Particle’s position in each dimension
Solution Particle’s position

Old solution Old position of particle

New solution New position of particle

Best solution Leader of particles

Fitness function Distance between particle and food

Initial solution Random particle

Selection -

Process of generating new solution Flying with a specific velocity and direction

| Define the parameters of the algorithm |

y

| Generate initial particles randomly |

Calculate the best positions in the particle’s and swarm’s history

J

| Calculate the velocities |

)

| Update the particle positions |

N2

| Report the best position in the swarm’s history |

Figure 8.1 The flowchart of the PSO.




8.4 The Individual and Global Best Positions

8.3 Creating an Initial Population of Particles

The PSO designates each possible solution of the optimization problem as a
particle. The particles’ positions represent the decision variables in an N-
dimensional optimization problem. Particles are specified as an array of size
1xN. This array is defined as follows:

Particle = X =(1,%,...;%ir...0 %N ) (8.1)

where X = a possible solution of the optimization problem, x; = ith decision vari-
able of solution X, and N =number of decision variables. The decision variable
values (x1,%, %3, ...,%x) can be represented as floating point number (real values)
or as a predefined set for continuous and discrete problems, respectively.

The PSO algorithm starts by randomly generating a matrix of particles (see
Section 2.6) of size M x N (where M and N denote the size of the population of
solutions and the number of decision variables, respectively). Hence, the
matrix of solutions is as follows (there are M rows or solutions; each solution
contains N decision variables):

X X1 X120t X1, ot XN
X2 x2,1 x2,2 e x2‘i e xZ,N
Population = = . (8.2)
X} x].,l x].,z e xj,i e xj,N
Xm Xma1 Xm0t Xmi t XMN

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

8.4 The Individual and Global Best Positions

Each particle moves through the decision space based on the individual and
global best positions. Each particle attempts to achieve the best or optimal
position in the decision space with two types of parameters (Pbest and Gbest).
Pbest and Gbest are the best positions in the particle’s and swarm’s histories,
respectively. For each particle j, there is a Pbest as follows:

Pbestj:(pj,l,p]',z,...,p,‘vl‘,...,p}‘,N), j=1,2,...,M (8.3)

in which Pbest; = the best position of the jth particle and p;;=the best position
of the jth particle in the ith dimension.
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X

P2

F(X3)> F(Xy), F(Xa), F(X4)

|. Old position of the bird

P1 X1

Figure 8.2 Concepts of the best individual position in a two-dimensional maximization
problem.

Gbest is an array 1 x N whose elements define the best position achieved in
the swarm:

Gbest = (g1, 82 Gir-8n ), allj (8.4)

where Gbest = the best position in the swarm’s history and g; = the best position
in the swarm’s history in the ith dimension.

The initial population of particles are generated randomly (see Section 2.6),
and their fitness values are calculated. These first fitness values and posi-
tions constitute the best individual fitness values and the best individual
positions (Pbest). The best position among all particles is considered as the
global best position (Gbest). In each iteration of the algorithm, Pbest and
Gbest are updated. Each particle’s best individual position (Pbest) is updated
if the fitness value of the particle’s new position is better than Pbest. Figure 8.2
illustrates the concept of the best individual position in a maximization
problem. In Figure 8.2 the route of a bird flying on a two-dimensional space
is depicted. This bird experiences different positions including Xi, X5, X3,
and X,. This bird finds different amounts of food [F(X)] at each position so
that position X3 is the best among all. The bird memorizes the position X3 as
the Pbest. It memorizes this position as the Pbest until it reaches a position
with more food.

The concept of the global best position in a maximization problem is shown
in Figure 8.3. Gbest is the best point that is calculated during the optimization
search.



8.5 Velocities of Particles

N — 1N — > Gbest
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Figure 8.3 Concept of the global best position in a maximization problem.

8.5 Velocities of Particles

Each particle has a velocity that directs the flying of the particle and deter-
mines its next position of the particle. The particles’ velocities are used to
update their positions. The velocity is calculated based on Gbest and Pbest.
The velocity of the jth particle (V}) represented by an 1 x N array is as follows:

‘/j=(Vj,1er,2’-'~’Vj,ir~--’Vj,N)! j=1,2,...,M (8.5)

in which V;=the velocity of the jth particle and v;; = the velocity of the jth particle
in the ith dimension that is calculated as follows:

v%ew) =wxv;;+CixRandx(p;; —%;;)+Cy x Rand x(g; - x;,) (8.6)
j=12,.,M, i=12,.,N
in which V%ew) =the new velocity of the jth particle in the ith dimension, v;; = the

previous velocity of the jth particle in the ith dimension, @ =inertia weight
parameter, Rand = a random value in the range [0,1], C; = cognitive parameter,
and C, =social parameter (C; and C, control the movement of Pbest and Gbest
toward an optimal point and usually C;=C,=2). Movement along different
directions toward Gbest and Pbest is possible if C; and C, are larger than one.

Lower and upper bounds for velocity limit the variation of a particle’s
velocity as follows:

VO <) <y @) o1, M, i=12,..,N (8.7)

in which V;'*) and V!’ = the lower and upper bound of the velocity along the ith
dimension, respectively.

The inertia weight parameter @ has an important role in swarm convergence
and controls the effects of the current velocity. Large or small values of w cause
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searching in a wide or narrow space, respectively. The inertia weight parameter
may change as the algorithm progresses as follows:

a)tzwo—{(a)o—a)T)xi} t=12,...,T (8.8)

in which @, = initial inertia weight, wr=inertia weight for the last iteration, and
T =total number of iterations. The value of @ changes through the iterations.

8.6 Updating the Positions of Particles

Particles move to new positions from the old position to generate new positions.
This movement of particles is performed based on the velocities. A particle’s
position is updated as follows:

XU = (18] 20 s o®fn )y J= 1200 M (8.9)

K= e, j=12,.,M, i=12,.,N (8.10)
in which X}”e’”) = jth new solution and x,; = new value of ith decision variable of
the jth new solution. The M newly generated solutions displace all the old
solutions.

8.7 Termination Criteria

The termination criteria determine when to terminate the algorithm. Selecting
a good termination criterion has an important role to correct the convergence
of the algorithm. The number of iterations, the run time, and the improvement
of the solution between consecutive iterations are common termination criteria
for the PSO algorithm.

8.8 User-Defined Parameters of the PSO

The size of the population of solutions (M), the value of the initial inertia
weight (@), the final value of the inertia weight (w7), and the termination
criterion are user-defined parameters of the PSO. A good choice of the
parameters is related to the decision space of a particular problem, and usu-
ally the optimal parameter setting for one problem is of limited utility for
other problems. Consequently, determining a good parameter setting often
requires the execution of numerous time-consuming experiments. In-depth



8.9 Pseudocode of the PSO

practice and experience are keys to choosing appropriate algorithmic
parameters. However, a reasonable method for finding appropriate values
for the parameters is performing sensitivity analysis. Combinations of
parameters are applied to run the algorithm. The algorithm is run several
times for each combination of parameters. This captures the variability
of the solution due to the randomness of the PSO algorithm. By comparing
the solutions across the combination of parameters, the analyst is guided to
choose appropriate values.

8.9 Pseudocode of the PSO

Begin
Input parameters of the algorithm and initial data
Generate M initial possible solutions and evaluate
their fitness wvalues
Initialize the velocities of all the solutions
randomly
For j =1 to M
Put Pbest; = solution j
Next Jj
Set Gbest = the best solution in the population
While (termination criteria are not satisfied)
For j = 1 to M
If the fitness value of solution j is better
than that of Pbest;
Put Pbest; = solution j
End if
Next Jj
If the best solution is better than Gbest
Substitute the best solution for Gbest
End if
For j = 1 to M
Calculate the velocity of solution j
Control the velocity of solution j
Update solution j
Next Jj
Evaluate fitness value for all solutions
Update inertia weight parameter (w)
End while
Report the best solution
End
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8.10 Conclusion

This chapter described the PSO, which is based on the strategies of swarms in
their search for food. The chapter presented a brief literature review of the
PSO, its algorithmic fundamentals, and a pseudocode.
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Differential Evolution

Summary

This chapter describes differential evolution (DE), which is a parallel direct
search method that takes advantage of some features of evolutionary algorithms
(EAs). The DE is a simple yet powerful meta-heuristic method. This chapter
begins with a brief literature review about the DE and its applications, followed
by a presentation of the DE’s fundamentals and a pseudocode.

9.1 Introduction

Differential evolution (DE) was developed by Storn and Price (1997). The DE
was designed primarily for continuous optimization problems. Lampinen
and Zelinka (1999) presented a modified DE for discrete optimization.
Vesterstrom and Thomsen (2004) demonstrated that DE had a better perfor-
mance in comparison with other optimization techniques such as the genetic
algorithm (GA) and particle swarm optimization (PSO). The DE algorithm
has been successfully applied to solve a wide range of optimization problems
such as clustering, pattern recognition, and neural network training (Price
et al.,, 2005). Tang et al. (2008) applied the DE to structural system identifica-
tion. Lakshminarasimman and Subramanian (2008) implemented the DE
for optimization of power systems. Qing (2009) demonstrated different
applications of the DE in electrical engineering. Wang et al. (2009) applied
the DE for optimum design of truss structures. Gong et al. (2009) applied the
DE to optimal engineering design. Xu et al. (2012) implemented the DE to
estimate parameter of a nonlinear Muskingum model applied for flood pre-
diction in water resources management. Gonuguntla et al. (2015) presented
a modified DE with adaptive parameter specification.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
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9.2 Differential Evolution (DE) Fundamentals

DE is a parallel direct search method that takes advantage of some features of
evolutionary algorithms (EAs). In other words, the DE is a method that opti-
mizes a problem by iteratively improving candidate solutions with respect to a
given measure of quality.

Direct search methods can solve a variety of numerical problems with empha-
sis on the use of simple strategies rather than complex tactics, which makes
them well suited for computational processing. The phrase “direct search” refers
to sequential examination of trial solutions. Direct search methods compare
each trial solution with the best solution previously obtained, and the result of
the comparison determines the next trial solution. Direct search techniques
employ straightforward search strategies. These techniques have some features
that distinguish them from classical methods. They have solved problems
that defied classical methods. They have calculated solutions for some prob-
lems faster than classical methods. In addition, direct search techniques apply
repeated identical arithmetic operations with a simple logic that are easily
coded for computer processing (Hooke and Jeeves, 1961).

Direct search methods choose a point B randomly that is called the base
point. A second point, P1, is chosen, and if it is better than B, then it replaces
the base point; otherwise, B is not changed. This process continues by compar-
ing each new point with the current base point. The “strategy” for selecting
new trial points is determined by a set of “states” that constitute the memory of
the search process. The number of states is finite. There are an arbitrary initial
state and a final state that stops the search. The other states represent various
situations that arise as a function of the results of the trials made. The strategy
implemented to select new points is dictated by various aspects of the prob-
lem, including the structure of its decision space. The strategy includes the
choice of an initial base point, the rules of transition between states, and the
rules for selecting trial points as a function of the current state and the base
point. Direct search designates a trial point as a move or step from the base
point. The move is a success if the trial point is better than the base point and
is a failure otherwise. The states make up part of the algorithmic logic influenc-
ing moves in the same general direction as those that have recently succeeded.
The states suggest new directions if recent moves have failed; and they decide
when no further progress can be made. A diagnosis that no further progress
can be made does not always indicate that the solution to an optimization
problem has been found.

The DE algorithm was designed by using the common concepts of EAs,
such as multipoint searching, use of crossover, mutation, and selection
operators, and it has some unique characteristics that make it different
from many other EAs. The major differences with EAs are how offspring are
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Table 9.1 The characteristics of the DE.

General algorithm (see Section 2.13) Differential evolution
Decision variable Coordinate of agent’s position
Solution Agent (position)

Old solution Old agent

New solution Trial agent

Best solution _

Fitness function Desirability of the agent
Initial solution Random agent
Selection Greedy criterion
Process of generating new solution Mutation and crossover

generated and in the selection mechanism that the DE applies to transition
from one generation of solutions to the next.

The DE algorithm has a population of candidate solutions that are called
agents. The components of each agent in an N-dimensional space constitute
the decision variables of the optimization problem. These agents are moved in
the decision space by using crossover and mutation operators that combine
and change their positions. In other words, trial agents are produced based on
old agents. In this respect the DE resembles EAs because it applies genetic
operators to produce new solutions. Selection of solutions is done based on
greedy criteria. If the new position of an agent is an improvement, it is accepted
and it replaces the old solution. An improved trial agent is known as a success
and is added to the population of solutions. Otherwise the trial agent is a
failure, and it is discarded from the direct search. Table 9.1 lists the character-
istics of the DE.

The DE starts by randomly generating a set of solutions (see Section 2.6)
known as the initial population of agents. A new trial solution or agent is gen-
erated for each agent (solution). The generation of a trial agent requires that
three agents from the old population be randomly selected and a new solution
be generated using a heuristic function. This process is known as mutation. A
crossover operator is implemented to combine the old agent and the newly
generated solution. This produces a trial solution. The trial solution replaces
the old solution if it has a better fitness value according to the greedy criteria.
Otherwise, the old solution remains in the population. Trial solutions are again
generated if the termination criteria are not satisfied. Otherwise, the final
population is reported, and the algorithm ends. Figure 9.1 shows the flowchart
of the DE.
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’ Define the parameters of the algorithm ‘

J

’ Generate initial population randomly ‘
T

v

’ Generate trial solutions ‘

J

’ Selection based on the greedy criteria

No Yes
Are the termination criteria satisfied?

N
’ Report the population ‘

J

Figure 9.1 The flowchart of the DE.

9.3 Creating an Initial Population

Each possible solution of the optimization problem found by DE is called an
agent. In an N-dimensional optimization problem, an agent’s component in any
dimension of the N-dimensional space is a decision variable of the optimization
problem. An agent is an array of size 1 x N:

Agent = X =(%1,%5,... X1y XN ) (9.1)

where X =a possible or tentative solution of the optimization problem, x;=ith
decision variable of solution X, and N =number of decision variables. A matrix
of agents of size M x N is randomly generated (see Section 2.6), where M and N
are the size of population and the number of decision variables, respectively, to
start the optimization algorithm. This matrix is represented as follows:

X, X110 X120t Xt XN
X Xo1 X2 vt Xttt XoN
Population = = . (9.2)
Xj xj,l x1’2 e xj,i e xj,N
Xy XM XMm2 XM, XM,N



9.4 Generating Trial Solutions

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size. Each of the decision variable values of the jth solution
(%1, %2 %j3, ..., %) is represented as a floating point number (real values). The
DE solves problems with continuous decision space.

9.4 Generating Trial Solutions

The DE generates new trial solutions by means of mutation and crossover
operations acting in series. A new trial solution X; is first generated by muta-
tion. The crossover operator is applied to the newly generated solution that
combines the old solution and the newly generated solution to produce a trial
solution X}”ew). This process is performed on each member of the population
of solutions.

9.4.1 Mutation

Mutation produces a new solution that is mixed with an old solution by crosso-
ver to generate a trial solution. Mutation is executed by selecting randomly
three solutions—X,, X,,, and X,»—from the present population. Thereafter,
new solutions are generated as follows:

Xj :(x},l»x},z»-..,x},i:---:x},zv)’ j=12,...M (93)

Xjp =%, +0x(%;— %), i=12,..,N, j=1L2,..,M, r#r'#r'#]

(9.4)
r=Irnd(,M), r#r'#r"#j (9.5)
r'=Irnd(LM), r#r'#r"#j (9.6)
r"=Irnd(L,M), r=r'#r"+#j (9.7)

in which Xj=new jth mutated solution; x;=ith decision variable of the jth
new mutated solution; § = mutation factor that is a value in the range [0,2]; x,,,
x,;» % ; = ith decision variable of the rth, r'th, and r"th solutions, respectively;
and Irnd(1,M)=an integer random number in the range [LM]; r, ¥/, and,
r" = counters of randomly chosen solutions that are different from each other
and from the counter j that designates the target old solution. A new solution
generated by mutation is crossed over with the target old solution to generate
a trial solution.

9.4.2 Crossover

Crossover combines the targeted old solution (X)) with the newly generated
solution (X7}) to generate a trial solution X;"ew) as follows:
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X;new) =(xf,l,x;’,z,...,x;{,-,...,x}',N) (98)
xj; if Rand <Cori=b;
"= i=12,..,N, j=12,...,M (9.9)

MV x,  if Rand>C andi+b;’
by = Imd(LN), j=12,..,M (9.10)

in which X E"ew) =jth trial solution, x7, = ith decision variable of the jth trial solu-
tion, Rand = a random number in the range [0,1], C=crossover constant that is a
predefined value in the range [0,1], and b;=a randomly chosen index that denotes
a decision variable of the jth solution and ensures that X;”ew) has at least one
decision variable from X; otherwise no new solution is produced.

9.5 Greedy Criteria

The trial solution X ;"ew) is compared with the old solution X; to determine
whether or not it becomes a member of the population of solutions. If the trial
solution has better fitness value than the old solution, it replaces it. Otherwise,
the trial solution is deleted and the old solution is kept in the population. This
selection process is called greedy criteria.

9.6 Termination Criteria

The termination criterion determines when to terminate the algorithm.
Selecting a good termination criterion has an important role on the correct
convergence of the DE algorithm. The number of iterations, the magnitude of
the improvement of the solution between consecutive iterations, and the run
time are common convergence criteria for the DE.

9.7 User-Defined Parameters of the DE

The population size (M), the mutation factor (6), the crossover constant (C), and
the termination criteria are user-defined parameters of the DE. A good choice
of the parameters depends on the decision space of a particular problem, and the
optimal parameter setting for one problem is of limited utility for other problems.
Consequently, determining a good parameter setting often requires the execution
of alarge number of computational experiments. A reasonable method for finding
appropriate values for the parameters is performing sensitivity analysis, whereby
combinations of parameters are tested and the algorithm is run several times
for each combination to account for the random nature of the solution algorithm.
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In this manner the analyst obtains a distribution of solutions and associated objec-
tive function values for each combination of parameters. A comparison of the
results from all the combination of parameters provides guidance on a proper
choice of the algorithmic parameters.

9.8 Pseudocode of the DE

Begin
Input parameters of the algorithm and initial data
Generate M initial possible solutions
Evaluate fitness value for solutions
While (termination criteria are not satisfied)
For j = 1 to M
Generate solution X} by mutation
Generate trial solution X" by crossover
between X) and old solution X;
Evaluate fitness value of trial solution X"
If trial solution X" is better than old
solution Xj
Put X; = Xy
End if
Next Jj
End while
Report the population of solutions
End

9.9 Conclusion

This chapter described the DE, which is a parallel direct search method that
takes advantage of some features of EAs. The chapter presented the algorithmic
fundamentals of the DE and a pseudocode.
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Harmony Search

Summary

This chapter describes harmony search (HS), which is a meta-heuristic algorithm
for discrete optimization. A brief literature review of the HS is presented, followed
by a description of its algorithmic fundamentals. A pseudocode of the HS closes
this chapter.

10.1 Introduction

Geem et al. (2001) developed harmony search (HS) inspired by the harmony
found in many musical compositions. The HS has been applied to various
benchmarking and real-world optimization problems. Kim et al. (2001)
implemented the HS for estimation of the nonlinear Muskingum model for
flood routing. Geem et al. (2002) applied the HS to find optimal design of
water distribution networks. Lee and Geem (2004) implemented the HS for
structural optimization. Geem et al. (2009) reviewed the applications of the
HS algorithm in the areas of water resources and environmental system
optimization including design of water distribution networks, scheduling of
multi-location dams, parameter calibration of environmental models, and
determination of ecological reserve location. Karahan et al. (2013) proposed
a hybrid HS algorithm for the parameter estimation of the nonlinear
Muskingum model. Ambia et al. (2015) applied the HS to optimally design the
proportional—integral (PI) controllers of a grid-side voltage converter with
two additional loops for smooth transition of islanding and resynchroniza-
tion operations in a distributed generation (DG) system.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
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10.2 Inspiration of the Harmony Search (HS)

Music is a widely enjoyed entertainment. The HS is a meta-heuristic algo-
rithm inspired by artificial phenomena found in musical compositions that
strive for aesthetic perfection. Musicians test different possible mixtures of
musical pitches to achieve a pleasing combination. Such a process of search
for a fantastic harmony can be simulated numerically to find the optima of
optimization problems.

As an example consider a group of musicians playing a saxophone, double
bass, and guitar. Assume that there are a certain number of preferable pitches
in each musician’s memory: saxophonist {Do, Mi, Sol}, double bassist {Ti, Sol,
Re}, and guitarist {La, Fa, Do}. If the saxophonist plays note Sol, the double
bassist plays Ti, and the guitarist plays Do, together their notes make a new
harmony (Sol, Ti, Do). In other words, musicians improvise a new harmony,
which may sound better than the existing worst harmony in their memories, in
which case the new harmony is included in their memories and the worst
harmony is discarded. This procedure is repeated until an optimal harmony
is produced.

Musical improvisation is a process of searching for an optimal or sublime
harmony by trying various combinations of pitches following any of the follow-
ing three rules:

1) Playing any one pitch among stored in the memory

2) Playing a random pitch chosen among those in the possible range of pitches
even it is not in the memory

3) Playing a pitch that is close to another pitch already in the memory

According to the first rule, a musician chooses one of the pitches stored in its
memory. By the second rule a musician uses a random pitch even it is not in
its memory. On the basis of the third rule a musician adopts a close pitch to one
present in its memory.

Musicians seek the best state (fantastic harmony) determined by aesthetic
feeling, just as the optimization algorithm seeks the best state (global optimum)
determined by evaluating the fitness function. Musical aesthetics derive from
the set of pitches played by each instrument, just as the fitness function evalu-
ation is performed by the set of values assigned to each decision variable. The
harmonic desirability is enhanced practice after practice, just as the solution
quality is enhanced iteration by iteration.

According to the HS each harmony is a solution of the optimization problem
and pitches that determine the desirability of the harmony represent decision
variables. Aesthetic criteria resemble the fitness function of the optimization
problem. Creating new solutions in an optimization problem is tantamount in
HS to improvising new harmonies during musical creation. A new harmony
replaces the worst harmony stored in the musician’s memory if it is better than
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Table 10.1 The characteristics of the HS.

General algorithm (see Section 2.13) Harmony search
Decision variable Pitch

Solution Harmony

Old solution Memorized harmony
New solution New harmony

Best solution -

Fitness function Aesthetic criteria

Initial solution Random harmony
Selection Updating memory
Process of generating new solutions Improvising new harmony

the worst harmony. The selection of solutions during the optimization process
is analogous to updating the musical memory. Table 10.1 lists the characteris-
tics of the HS.

The HS starts by generating several random harmonies as initial solutions
(see Section 2.6) and they are memorized. The fitness values of all the initial
solutions are evaluated. These solutions are sorted according to their fitness
values, and the worst one is determined. A new harmony is made by musical
improvisation. If the new harmony is better than the worst one stored in the
memory, the memory is updated and the new harmony replaces the worst
one in the memory. Otherwise, the memory is not changed and another new
harmony is generated. The process of generating new harmonies and compar-
ing them with the worst memorized harmony is repeated until the termination
criteria are satisfied. Figure 10.1 illustrates the flowchart of the HS.

10.3 Initializing the Harmony Memory

Each possible solution of the optimization problem calculated by HS is called a
harmony. In other words, harmony’s pitches in an N-dimensional optimization
problem are the decision variables of the optimization problem. A harmony is
known as an array of size 1x N harmony pitches. This array is defined as
follows:

Harmony = X =(%1,%2,...,%5...,%x ) (10.1)

where X =a solution of optimization problem, x;=ith decision variable of solution
X, and N=number of decision variables. The HS algorithm starts with the ran-
dom generation of a matrix of harmonies of size M x N (where M and N denote
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| Define the parameters of the algorithm

v

| Initialize the harmony memory

v

| Determine the worst harmony

y

Improvise the new harmony

\

| Update the harmony memory

v

No Yes
Are the termination criteria satisfied?

Figure 10.1 The flowchart of the HS.

the size of the harmony memory (HM) and the number of decision variables,
respectively). Hence, the matrix of initial possible solutions, which is generated
randomly, is as follows (there are M rows or solutions each with N decision

variables):
X, X1 X2
X X211 X2
Memory = =
X; Xjp Xj2
Xm Xma1 XMm2

XM,i

X1,N

X2, N

x,-,N

XM,N

(10.2)

in which Memory=HM, X;=jth solution, x;;=ith decision variable of the jth
solution, and M = capacity of HM. In the HS, each of the decision variable
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values (xy, %, %3, ..., xy) is represented as discrete numbers. The HS solves prob-
lems with discrete decision space. Each decision variable i takes a value from a
predefined set of values V; as follows:

Vi={ViiVigr-sVidsoVin, }» i=12,..,N (10.3)

in which V;=set of possible values for ith decision variable, v; ;=dth possible
value for the ith decision variable, and D, = total number of possible values for
the ith decision variable.

10.4 Generating New Harmonies (Solutions)

New solutions have to be produced in the search for optima. The HS search
process of generating new solutions is known as improvising harmony, which
is performed on the basis of the three previously listed rules of musical improv-
isation. Each iteration of the HS generates only one new solution even though
it is a population-based algorithm.

A value is chosen for each decision variable among the possible values for
that decision variable for the purpose of generating a new solution.
Choosing values for decision variables is performed by three rules of
improvisation in the HS optimization process: (1) memory strategy, (2) ran-
dom selection, and (3) adjustment pitch. X" is a new solution and it is
defined as follows:

X rew) = (X1, %55. s X e XN ) (10.4)

in which X" =new solution and x]=ith decision variable of the new
solution.

10.4.1 Memory Strategy

Memory strategy chooses decision variables’ values from those that are stored
in the memory. Memory strategy selects randomly one of the memorized solu-
tions for each decision variable and the new solution’s value is assigned as
follows:

X =x;, i=12,.,N (10.5)
j=1Irnd(L,M) (10.6)

in which x;;=ith decision variable of the jth solution that is stored in the
memory and Irnd(1, M) = an integer random number in the range [1,M]. Notice
that for each decision variable i, a different random number is generated, and
this is done for all the decision variables.
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Harmony memory

(6334,b310;2) \i/
”””” New solution ———  (82,03,C2)
| (@2b1.09) A A

Figure 10.2 Generating a new solution based on memory strategy.

Memory strategy generates a new solution from previously memorized
solutions. This strategy for generating new solution is similar to crossover in
the genetic algorithm, which combines the decision variables of two previous
solutions to form a new solution. However, the memory strategy of the HS is
likely to involve more than two solutions in the generation of a new one.

Imagine a three-dimensional problem that includes three decision variables
x1, %5, and x3. The possible values for decision variables x;, x,, and x3 are
{avazazas, {b1,by,b3,bs}, and {c1,¢5,c3,¢4}. If the size of HM is equal to 3 (M =3)
and three solutions are stored in the memory, as depicted in Figure 10.2,
solution (a,,b3,c;) would be a new solution on the basis of memory strategy.

10.4.2 Random Selection

Random selection lets decision variables take values that are not in the HM.
A new solution is first generated with memory strategy. One or more decision
variables are then selected probabilistically to replace their values with random
numbers. This approach involves the so-called harmony memory considering
rate (HMCR), which is a user-defined parameter of the algorithm and ranges
from 0 to 1. The HMCR determines the probability of selecting a decision variable
for random replacement. Specifically, for each decision variable a random num-
ber in the range [0,1] is generated and compared with the HMCR. The decision
variable is selected for random replacement if the randomly generated number is
larger than the HMCR. Otherwise, it is not selected. If the ith decision variable is
selected for random replacement, its value is determined as follows:

X =Via (10.7)
d=1Irnd(1,D;) (10.8)

in which v; ;= possible dth value for the ith decision variable.

Consider the example shown in Figure 10.2. If decision variable 3 is selected
for random replacement, the new solution may be (a,, b3, ¢4) in which ¢, is
randomly replaces ¢, even though c, is not in the memory.
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Equation (10.9) determines the decision variables of a new solution consid-
ering memory strategy and random selection together.

. |#®i f Rand<é
H=10 i Rand > i=12,...,N (10.9)
j=1Irnd(1,M) (10.10)
d = Irnd(1,D;) (10.11)

in which Rand=a random number in the range [0,1] and §=HM considering
rate (HMCR). For example, an HMCR of 0.95 indicates that the HS algorithm
will choose the decision variable value from historically stored values in the
memory with a 95% probability or from the entire possible range with a
100 - 95 = 5% probability.

10.4.3 Pitch Adjustment

Pitch adjustment refines newly generated solutions. This is accomplished by
examining every component obtained by the memory strategy to determine
whether or not it should be pitch adjusted. This operation employs a parameter
called the pitch adjustment parameter (PAR) that is user specified and ranges
from O to 1. Pitch adjustment is a probabilistic process applied to decision vari-
ables. A random value is generated in the range [0,1]. If the generated random
value is less than the PAR, then the value of a decision variable is changed to a
neighboring possible value. For example, a PAR of 0.1 indicates that the algo-
rithm will choose a neighboring value with a 10% probability. If the ith decision
variable is randomly selected for pitch adjustment and v;, is its present value,
its new value is determined as follows:

Viav1 if Rand >0.5
r_ 10.1
x Vid-1 l_f Rand <0.5 ( 0 2)
in which v; 4.; and v; ; 1 = neighboring possible values of v;, listed as possible
values for the ith decision variable. In the example shown in Figure 10.2 g, or
as can replace a, in the new solution if the decision variable 1 is chosen for
pitch adjustment.

10.5 Updating the Harmony Memory

The new solution may or may not be selected to enter the HM after it is
generated. The new solution replaces the worst one if it has a better fitness
value than the worst solution that is stored in the HM. Otherwise, the HM
remains unchanged.
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10.6 Termination Criteria

The termination criterion determines when to end the algorithm. Selecting a
good termination criterion has an important role in the correct convergence of
the algorithm. The number of iterations, the amount of improvement of the
objective function between consecutive iterations, and the run time are com-
mon convergence criteria for the HS.

10.7 User-Defined Parameters of the HS

The size of HM (M), the HM considering rate (HMCR), the PAR, and the
criterion used to terminate the algorithm are the user-defined parameters of
the HS. A good choice of the parameters is related to the decision space of a
particular problem, and usually the optimal parameter setting for one problem
is of limited utility for any other problem. Consequently, determining a good
parameter setting often requires the execution of many experimental trials.
Lots of practice and experience with the HS problems is helpful. A reasonable
method for finding appropriate values for the parameters is performing
sensitivity analysis, whereby combinations of parameters are tested and the
algorithm is run several times for each combination to account for the random
nature of the solution algorithm. In this manner the analyst obtains a distribu-
tion of solutions and associated objective function values for each combination
of parameters. A comparison of the results from all the combination of param-
eters provides guidance on a proper choice of the algorithmic parameters.

10.8 Pseudocode of the HS

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible solutions randomly
Memorize all solutions in the harmony memory
Evaluate fitness value for all solutions
While (termination criteria are not satisfied)
Determine the worst solution in the harmony memory
For 1 = 1 to N
Generate Rand randomly from the range [0,1]
If Rand > the harmony memory considering
rate (HMCR)
Put x; = a random value
Otherwise
Generate integer number j randomly from
the range [1,M]
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Put xj = xj,;
Generate Rand randomly from the range [0,1]
If Rand = pitch adjustment parameter (PAR)
Generate Rand randomly from the range
[0,1]
If Rand > 0.5
Put x; = an upper adjacent value

Otherwise
Put @ = an lower adjacent value
End if
End if
End if
Next 1

Construct new solution X% = (x5, x5, o, X5, o, xiy)

If the new solution is better than the worst one
in the harmony memory
Update the harmony memory
End if
End while
Report the harmony memory
End

10.9 Conclusion

This chapter described HS, which is a meta-heuristic algorithm for discrete
optimization. First, a brief literature review of the HS was presented. This was
followed by a description of the fundamentals of the HS and its algorithmic
steps. A pseudocode closed this chapter.
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Shuffled Frog-Leaping Algorithm

Summary

This chapter describes the shuffled frog-leaping algorithm (SFLA), which is a
swarm intelligence algorithm based on the memetic evolution of the social
behavior of frogs.

11.1 Introduction

The shuffled frog-leaping algorithm (SFLA) is a swarm intelligence algorithm
based on the social behavior of frogs. It was proposed by Eusuff and Lansey
(2003). Eusuffetal. (2006) demonstrated the capability of the SFLA for calibrating
groundwater models and to design water distribution networks problems. They
also compared the results of the SFLA with those of the genetic algorithm (GA).
The comparison proved that the SFLA can be an effective tool for solving
combinatorial optimization problems. Chung and Lansey (2008) developed a
general large-scale water supply model to minimize the total system cost by
integrating a mathematical supply system representation applying the SFLA.
The results showed that the SFLA found solutions that satisfied all the con-
straints for the studied networks. Seifollahi-Aghmiuni et al. (2011) implemented
the SFLA to analyze the efficiency of a designed network based on nodal demand
uncertainty during the operational period. Zhao et al. (2011) presented a com-
bined water quality assessment model constructed based on artificial neural
network (ANN) and the SFLA, which was applied to train the initialized data
from water quality criteria. Balamurugan (2012) applied the SFLA to achieve
the optimum solution of economic dispatch problem with multiple fuel options
and demonstrated that the SFLA algorithm provides quality solutions with less
computational time than other techniques reported in the literature. Fallah-
Mehdipour et al. (2013) extracted multi-crop planning rules in a reservoir
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system with the SFLA algorithm, the GA, and the particle swarm optimization
(PSO). Orouji et al. (2013) compared the performance of the SFLA with the
simulated annealing (SA) in estimation of Muskingum flood routing parameters.
The result showed the superiority of the SFLA relative to the SA. Seifollahi-
Aghmiuni et al. (2013) applied the SFLA to evaluate performance of a water
distribution network under pipe roughness uncertainty during an operational
period. Orouji et al. (2014) proposes a hybrid algorithm, based on the PSO and
SFLA, to solve the resource-constrained project scheduling problem (RCPSP),
which aims at the minimization of time required to complete a project consider-
ing resource limitations and the timing of activities. Results showed that the
hybrid PSO-SFLA is quite capable to determine an optimal solution in all prob-
lems, even with a fewer number of iterations compared with the individual
application of the PSO and SFLA. Bozorg-Haddad et al. (2015) proposed a novel
hybrid algorithm, based on the SFLA and the Nelder—-Mead simplex (NMS), for
the estimation of parameters of two new nonlinear Muskingum flood routing
models. Mahmoudi et al. (2016) presented a novel tool for estimation of quality
of surface water by coupling support vector regression (SVR) and the SFLA.
Their results indicated that the new proposed SFLA-SVR tool is more efficient
and powerful tool for determining water quality parameters in comparison with
other previously methods such as genetic programming (GP).

11.2 Mapping Memetic Evolution of Frogs
to the Shuffled Frog Leaping Algorithm (SFLA)

A meme is a spreading information template that affects human and animal
minds and changes their behavior. Memes are spread by those who possess
them. A pattern is known as a meme whenever an idea or information template
influences someone, and the template is repeated or transmitted to someone
else. Otherwise, the pattern is not a meme. Notice that all transmitted informa-
tion is called memetic. Examples of memes are songs, ideas, catch phrases,
clothing fashions, and techniques for making pots or building arches.

A memetic algorithm (MA), which derives from “meme,” is a population-
based method to solve optimization problems (Eusuff et al., 2006). Each meme
contains memotypes that resemble the genes of a chromosome. Memes spread
through the meme pool as they move from brain to brain. Genes and memes
scatter from one individual to another in various ways, and their purposes are
different. Memes are used basically for increased communicability among
their hosts (described as frogs in the SFLA). Genes transmit DNA characteris-
tics from parents to offspring.

Eusuff et al. (2006) stated that memetic and genetic evolution are subjected
to the same basic principles. Yet, memetic evolution is a much more flexible
mechanism than genetic evolution. They reasoned that genes can only be trans-
ferred from parents to offspring and are transmitted between generations,
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meaning that their propagation through higher organisms may take several
years to propagate. Memes, on the other hand, can theoretically be transformed
between any two individuals and can be transmitted within minutes. Gene rep-
lication is restricted by the relatively small number of offspring from a single
parent, whereas the number of individuals that can take over a meme from a
single individual is almost unlimited. Therefore, meme spreading is much faster
than gene spreading (Eusuff and Lansey, 2003).

Think of a group of frogs leaping in a swamp. There are stones at different
locations throughout the swamp. Frogs want to find the stone with the maxi-
mum amount of available food as fast as possible. For this purpose they improve
their memes. The frogs interact with each other and develop their memes by
exchanging information. Frogs change their positions by adjusting their leaping
step size based on the development of memes.

The SFLA acts as an MA that progresses by transforming frogs in memetic
evolution. Individual frogs of the SFLA are hosts for memes and are represented
by means of a memetic vector. Made of a number of memotypes, each meme
attributed to a frog is a solution of an optimization problem, while memotypes
are the decision variables and resemble the genes of a chromosome in the
genetic algorithm. The SFLA does not change the physical characteristics of
an individual; rather, it progressively improves the ideas held by each frog in a
so-called virtual population, which is used to model the meme pool consisting
of a diverse set of frogs in a manner analogous to the population representing a
chromosome pool in a GA population. A set of frogs represents a population of
solutions. The population of possible solutions is partitioned into subsets that
are called memeplexes. Each meme is the unit of cultural evolution. The term
memeplex is introduced to mark a group of mutually supporting memes that
form an organized belief system, such as a religion or scientific theory. The
memeplexes can be perceived as a set of parallel frog cultures attempting to
reach some goal. Each frog culture or memeplex evolves toward its goal. Frog
leaping improves an individual’s meme and enhances its performance toward
the goal. Within each memeplex the frogs are influenced by other frogs’ ideas.
Hence they experience a memetic evolution. Information is passed between
memeplexes in a shuffling process according to memetic evolutionary steps.
Table 11.1 lists the characteristics of the SFLA.

The SFLA starts the optimization process by randomly generating a set of
frog memes (see Section 2.6), each of which is a solution of the optimization
problem. All the initially generated frogs (or solutions) are classified into
several memeplexes, so that each frog is assigned to one memeplex. These
memeplexes allow evolving independently by searching the solution space in
different directions. Information is then passed between memeplexes in a
shuffling process. The search for the optimal solutions by the memeplexes
continues after shuffling. The searches by the memeplexes and the shuffling
process continue until the defined termination criteria are satisfied. Figure 11.1
depicts the flowchart of the SFLA.
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Table 11.1 The characteristics of the SFLA.

General algorithm (see Section 2.13) Shuffled frog leaping algorithm
Decision variable Memotype

Solution Meme of frog

Old solution Previous meme of frog

New solution Improved meme of frog

Best solution Best frog

Fitness function Amount of food

Initial solution Random frog

Selection Classification frogs into memeplexes
Process of generating new solution Frog leaping

Define the parameters of the algorithm

Generate initial frags randomly

Classify frogs into memeplexes

Frog leaping

!

Shuffling process

Are the termination criteria satisfied?

\V/

Report the frogs

End

Figure 11.1 The flowchart of the SFLA.



11.4 Classifying Frogs into Memeplexes
11.3 Creating an Initial Population

Each possible solution of the optimization problem is called a frog in the SFLA.
Each solution or frog contains N decision variables or memotypes when solv-
ing an N-dimensional optimization problem. A solution or frog is represented
as an array of size 1 x N. This array is as follows:

Frog =X =(%1,%2,...;%is.. %N ) (11.1)

where X =a possible solution (frog) of the optimization problem, x;=ith decision
variable (memotype) of solution X, and N=the number of decision variables.
The decision variable values (x1,%;,%3, ...,xy) designate the memotypes.

The SFLA begins with the random generation of a matrix of size M x N (see
Section 2.6) where M and N denote the size of the population of solutions and
the number of decision variables, respectively. The matrix of solutions generated
randomly is represented as follows (each row contains the decision variables of a
solution or frog, and there are M rows):

X, X110 X120t Xt XN
X Xo1 X2 vt Xttt XoN
Population = = . (11.2)
Xj xj,l x1’2 e xj,i e xj,N
XM xM,l xM’2 xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

11.4 Classifying Frogs into Memeplexes

A fitness function is used to evaluate the worth of each frog. Frogs are then
sorted based on the values of their fitness function in ascending or descending
order in a minimization or maximization problem, respectively. Figure 11.2
depicts the sorting of frogs according to the values of the fitness function F(X)
in a maximizing problem.

After sorting the frogs are assigned to Z memeplexes, with Y frogs in each
memeplex. The frog with the best value of the fitness function becomes the first
member of the first memeplex; the second-best frog becomes the first member
of the second memeplex. The assignment of sorted frogs continues until the
Zth-sorted frog becomes the first member of the Zth memeplex. In the next
step, the (Z+ 1)st frog becomes the second member of the first memeplex and
so on. Figure 11.3 portrays the assignment of frogs to the memeplexes. Y'and Z

137



138

11 Shuffled Frog-Leaping Algorithm

|

Frogs —

[

F(X)

A OON =

<

F(X)

Figure 11.2 Sorting frogs according to the fitness function F(X) in a maximizing problem.

# memeplex=1

# memeplex=2

# memeplex=2

# frog=1
# frog=Z+1

#frog=(Y-1)xZ+1

# frog=2
#frog=Z+2

#frog=(Y—-1)xZ+2

# frog=2Z
#frog=2xZ

#frog=M=YxZ

Figure 11.3 Assigning frogs to different memeplexes; Z=number of memeplexes and
Y=number of frogs assigned to each memeplex.

are user-defined parameters of the algorithm, and their values are determined
by user. Consequently, the population size (M) is equal to Zx Y.

11.5 Frog Leaping

After the population of possible solutions of frogs is classified into several parallel
communities (memeplexes), the frogs are influenced by other frogs’ ideas within
each memeplex generating a so-called memetic evolution. Memetic evolution
improves the quality of the meme of an individual and enhances the individual
frog’s performance toward a goal. The frogs with better memes (ideas) contribute
more to the development of new ideas than frogs with poor ideas. This ensures
that memetic evolution (i.e., the spreading of superior ideas) selects with higher
probability the best individuals to continue the search for optima.

The frogs’ purpose is to move toward the optimum by improving their memes.
For this purpose for each memeplex, a subset of the memeplex called a sub-
memeplex is chosen for the transmission of ideas. In actuality, the submemeplex
has Q<Y frogs. The concept of a submemeplex is depicted in Figure 11.4.



11.5 Frog Leaping

Figure 11.4 The representation of a memeplex
and a submemeplex within the entire
population.

Entire population including Z
memeplexes

Memeplex of Y frogs

Submemeplex of Q
frogs

The choice of frogs to form a submemeplex conforms to the strategy that
superiorly fit frogs have a higher probability of forming the submemeplex.
The frogs of a memplex are ranked according to their fitness functions. The
probability with which the Q frogs are selected from a memeplex to form a
submemeplex conforms to the following distribution:

C2x(Y +1—))

: . j=12,...Y (11.3)
Y x(Y +1)

in which P;=the probability that the jth frog of a memeplex is selected for the
submemeplex, j = counter of frogs in the memeplex, and Y =total number of frogs
in the memeplex. j=1 denotes the best frog in the memplex, and j= Y denotes the
worst frog in the memeplex. It follows from Equation (11.3) that the fittest (j=1)
frog of the memeplex has a probability equal to 2/(Y +1) of being selected, and
the least fit frog (j= Y) of the memeplex is chosen with a probability 2/(Y?* +Y).

Q frogs are selected to form a submemeplex, and they are ranked with the
fittest frog having rank 1 and the worst frog having rank Q according to their
fitness values. Next, the worst frog in the submemeplex is improved. The worst
frog adopts its meme from the best frog within the submemeplex and from the
globally best frog. The best and worse frogs in each submemeplex and the best
global frog in the entire population of frogs are called Mbest, Mworst, and
Pbest, respectively. The meme of the Mworst is improved as follows:

di = Randx(beest,i — XMworst i ), Dmin < di < Dmaxr i= 1727‘ . wN (114)
xl{:‘xMWOVSL‘,iJ’_di’ i:1’2’~'-’N (115)
XU = (%, %06l ) (1L6)

where d; =leaping step size for the ith decision variable of the worst frog in the
submemeplex; Rand =random values in the range [0,1]; xgpes; = ith decision
variable of the best solution in the submemeplex; xp,0.:,; = ith decision variable
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of the worst solution in the submemeplex; D,,;, and D,,,,=minimum and
maximum allowable values for the leaping step size, respectively; x; =ith
decision variable of the new solution; and X"*") = the new solution.

If X" is better than the Mworst, it replaces Mworst. Otherwise, X g
generated based on Pbest instead of Mbest as follows:

d; = Rdndx(beest,i — XMworst,i )’ Dyin <d; < Dy, i=12,...,N (11'7)

x{=xMworSt,i+di, i=1,2,...,N (11'8)

X("ew):(x{,xﬁ,...,xf,...,x}\[) (11.9)

in which xpp.s;=ith decision variable of the best solution in the entire
population.

In case X" is not better than Mworst, a randomly generated possible solution
substitutes Mworst as follows:

i =Rnd (5P, x®), i=1,2,.,N (11.10)

X("ew):(x{,xﬁ,...,xf,...,x}\[) (11.11)

in which Rnd(a,b)=a random value from the range [a,b], xl(L) and x}wzthe
lower and upper allowable values of the ith decision variable, respectively.

The frogs of the memeplex are ranked according to their fitness values
following the replacement of Mworst. A new set of solutions are selected
randomly to construct a new submemeplex, and the worst solution among
them is updated as described previously. This process is executed for all the
memeplexes for a user-defined number of times u. After a certain number of
memetic evolutions (), the memeplexes are forced to mix to form new meme-
plexes through a shuffling process. This shuffling enhances the quality of the
memes after being influenced by the ideas of frogs from different regions of the
swamp (different memeplexes).

11.6 Shuffling Process

The intercultural migration of frogs accelerates the searching procedure
through the sharing of information, and it ensures that the cultural evolution
toward any particular goal or optimum is free from regional or group bias. In
fact, shuffling guarantees that there is no bias in cultural evolution toward any
specific goal (Eusuff et al., 2006).

Shuffling leads to the convergence of cultures that evolve in isolation until
they are brought together to share ideas or information. Shuffling mixes all the
memeplexes into a unique population of possible solutions from which next
memeplexes are produced. Also, the shuffling process updates the best frog.



11.9 Pseudocode of the SFLA

11.7 Termination Criteria

The termination criterion determines when to end the SFLA. Selecting a
good termination criterion has an important role on the correct conver-
gence of the algorithm. The number of iterations, the amount of fitness
improvement of the solution between consecutive iterations, the number of
algorithmic iterations, and the run time are common termination criteria
for the SFLA.

11.8 User-Defined Parameters of the SFLA

The number of memeplexes (Z), the number of solutions in each memeplexes
(), the submemeplex size (Q), the minimum and maximum allowable values
for the leaping step size, the number of memetic evolutions (), and the
criterion used to decide when to terminate the algorithm are user-defined
parameters of the SFLA. A good choice of the parameters depends on the
decision space of a particular problem, and frequently the optimal parameter
setting for one problem is of limited utility for any other problem. Consequently,
determining a good parameter setting often requires experimentation with the
parameter set and experience with specific problems. A reasonable method
for finding appropriate values for the parameters is performing sensitivity
analysis. This entails choosing various sets of parameters and running the
SFLA with each set of parameters a number of times to account for the random
nature of its solution scheme. This is repeated for each set of parameters, and
carrying out a comparison of the solutions from all runs to gain an insight on
an appropriate choice of algorithmic parameters.

11.9 Pseudocode of the SFLA

Begin
Input the parameters of the algorithm and initial data
Let Z = the number of memeplexes; Y = the number of
frogs in each memeplex; u = the number of memetic
evolutions; QO = submemeplex size; and M = Y x Z
Generate M initial possible frogs (solutions) randomly
and evaluate their fitness values
While (the termination criteria are not satisfied)
Sort the frogs according to their fitness values
Divide frogs into Z memeplexes each of which has
Y frogs
For s =1 to Z
For j = 1 to u
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Choose Q frogs from memeplex s randomly
and make a submemeplex
Improve the worst frog of the submemeplex
(MWorst) according to the best frog of
the submemeplex (MBest) and update its
fitness value
If there is no improvement in the worst frog
Improve the worst frog of the
submemeplex (MWorst) according to
the best frog in the population
(PBest) and update its fitness
value
End if
If there is no improvement in the worst frog
Generate a random frog to replace the
worst frog of the submemeplex and
evaluate its fitness value
End if
Next j
Next s
Combine all memeplexes.
End while
Report the best solution
End

11.10 Conclusion

This chapter described the SFLA, which is a swarm intelligence algorithm
based on the memetic evolution of the social behavior of frogs. The chapter
presented a brief literature review of the SFLA and its applications, its algorith-
mic fundamentals, and a pseudocode.
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Honey-Bee Mating Optimization

Summary

This chapter describes the honey-bee mating optimization (HBMO) algorithm,
which is based on the mating strategy of honey bees. The chapter presents a
review of the HBMO, its applications, fundamentals, algorithmic steps, and a
pseudocode.

12.1 Introduction

Honey bees are social insects that live in large and well-organized hives. Social
intelligence, observance of collective rules, and division of labor are some of
the traits that honey bees exhibit. Honey bees mate and reproduce in a unique
way. The honey-bee mating optimization (HBMO) algorithm is inspired by the
honey-bee mating process. It was developed and applied to reservoir operation
by Bozorg-Haddad et al. (2006). Bozorg-Haddad and Marifio (2007) proposed
dynamic penalty function as a strategy in solving water resources combinato-
rial optimization problems with the HBMO algorithm. Bozorg-Haddad et al.
(2009) applied the HBMO to solve non-convex optimization problems. Several
studies have reported the successful application of the HBMO algorithm to
solve a variety of problems such as water reservoir operation (Afshar et al.,
2007; Bozorg-Haddad and Marifio, 2008; Bozorg-Haddad et al, 2008b,
2010a, b; Afshar et al., 2011), water distribution networks (Bozorg-Haddad
et al., 2008a; Jahanshahi and Bozorg-Haddad, 2008; Ghajarnia et al., 2009,
2011; Soltanjalili et al., 2011; Sabbaghpour et al., 2012; Soltanjalili et al., 2013a,
b; Solgi et al., 2015; Bozorg-Haddad et al., 20164, b, ¢; Solgi et al., 2016b), pro-
ject management (Bozorg-Haddad et al.,, 2010c), supply chain management
(Marinakis et al., 2008a), clustering analysis (Marinakis et al., 2008b), elec-
tric distribution systems (Niknam, 2009), image processing and pattern

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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recognition (Horng et al., 2009), design and operation of run-of-river power
plants (Bozorg-Haddad et al.,, 2011), and groundwater management (Bozorg-
Haddad and Marino, 2011). Several of those works have proven the superiority
of the HBMO algorithm compared with other algorithms such as the genetic
algorithm (GA), ant colony optimization (ACO), and particle swarm optimiza-
tion (PSO) for the chosen applications. Karimi et al. (2013) proved the better
performance of the HBMO algorithm than that of the GA solving various test
functions. Solgi et al. (2016a) modified the HBMO leading to the enhanced
HBMO (EHBMO) algorithm and demonstrated the superiority of the EHBMO
on the HBMO and elitist GA in solving several mathematical functions and
water resources optimization problems.

12.2 Mapping Honey-Bee Mating Optimization
(HBMO) to the Honey-Bee Colony Structure

There is fossil evidence of honey bees’ existence dating back 100 million
years ago (Michener and Grimaldi, 1988). Honey bees live together in well-
organized hives. The purpose of a hive is to maximize the efficiency of the bees
by means of the division of the labor. A well-organized hive remains viable
except in special circumstances. A colony of bees is a group of bees living
together in one bee hive. A honey-bee colony typically consists of a single egg-
laying long-lived queen, anywhere from zero to several thousand drones
(depending on the season) and usually 10000—60 000 workers. So a honey-bee
hive consists of a single queen, broods, drones, and workers (Moritz and
Southwick, 1992). The queen and workers are female, while drones are male.
The queen is generally the only bee that can mate with drones and can fertilize
the eggs. However, queens are not the only colony members capable of
reproduction. Honey-bee workers cannot mate but can lay male eggs. Mate
production by workers in the honey bee is rare, however, due to workers’
policing. The primary duty of workers is brood caring. Drones are the fathers
of the colony. The queen can lay both fertilized and unfertilized eggs. Fertilized
eggs represent female bees (worker or queen) and unfertilized eggs represent
drones. Drones are haploid and amplify their mother’s genome without altera-
tion of their genetic composition except through mutation. However female
bees inherit their genome from both their mothers and fathers. When a new
queen is born, it replaces the old queen or it leaves the hive.

The queen is the most important member of the hive because she is the one
that breeds new members. With the help of approximately 18 males (drones),
the queen bee mates from one to five times over several days in her life. The
sperm from the drone is planted inside a pouch in her body. She uses the stored
sperm to fertilize the eggs. The queen exits from the hive and engages in a
mating flight around the hive to fertilize her eggs. In each mating flight the
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queen usually mates with 7-20 drones. In each mating the drone’s sperm
reaches the queen’s spermatheca and accumulates there to form the genetic
pool of the colony. After the end of the mating flight, the queen returns to
the hive and starts laying eggs. The successful drones in mating flights die
immediately after mating with the queen. In the other words, insemination
ends with the death of the drone. The unsuccessful drones (those that do not
mate with the queen) also die from starvation and exposure because the work-
ers forbid their entry to the hive at the end of the mating season. Usually, as the
nights turn colder and winter arrives, the drones still in the hive are forced out
of the hive by worker bees. This is a survivalist sacrifice because the hive would
not have enough food if the drones remain in the hive. The queen usually starts
laying eggs in the middle of February and continues to do so till the end of June.
The population of the hive grows day by day as a result of reproduction until
space shortages appear in the hive.

The HBMO algorithm mimics the queen, broods, and drones as possible solu-
tions that are made up of genes. Each gene is equivalent to a decision variable.
The best solution is considered as the queen. Broods can be diploid or haploid
broods. The former are made by applying mutation and crossover operators on
the queen’s genome and drone’s, whereas the latter are made by applying muta-
tion on the queen. Brood caring by workers is mapped into the algorithm to
improve the broods by applying heuristic functions. The queens play the most
important role in the mating process in nature as well as in the HBMO algo-
rithm. Each queen is characterized with a genotype, speed, energy, and a sper-
matheca with defined capacity. Spermatheca is the repository of drones’ sperm
produced during mating with the queen. Therefore, for a queen with defined
spermatheca size, speed and energy are initialized before each mating flight.
After successful mating, the drones’ sperm is stored in the queens’ spermatheca.
Later in the breeding process, a brood is constructed by copying some of the
drones’ genes into the brood genotype and completing the rest of the genes from
the queens’ genome. The fitness of the resulted genotype is determined by
evaluating the value of the fitness function of the brood genotype and/or its
normalized value. It is important to note that a brood has only one genotype.
A mating flight is mapped into the HBMO algorithm as the queen randomly
chooses drones from the decision space of the problem. The genome of each
drone that is successful in mating is stored in the queen’s spermatheca. Also, the
death of drones at the end of the mating season is simulated by destroying all
remaining drones after the mating flight in each iteration of the HBMO algo-
rithm. The characteristics of the HBMO algorithm are listed in Table 12.1.

The HBMO algorithm starts with the random generation of the initial popu-
lation of possible solutions (see Section 2.6). The solutions are ranked based
on their fitness values. The fittest (best) solution is marked out as the queen.
In the next step a mating flight is implemented to randomly select drones
(solutions) from the decision space for mating with the queen. The genome of
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Table 12.1 The characteristics of the HBMO.

General algorithm (see Section 2.13) Honey-bee mating optimization
Decision variable Gene

Solution Bee (drone/queen/brood)

Old solution Queen and drone

New solution Brood

Best solution Queen

Fitness function Fitness of bee

Initial solution Random bee

Selection Mating process

Process of generating new solutions Genetic operators and brood caring

each selected drone is stored in the queen’s spermatheca. The remaining
solutions are deleted after the mating flight. The queen and the solution stored
in the queen’s spermatheca are used to make the next generation. First, the
broods (diploid or haploid) are made. The haploid broods are made by apply-
ing mutation on the queen. The diploid broods are made by applying crossover
and mutation operators between the queen and the solutions stored in the
queen’s spermatheca. Heuristic functions that model worker bees are applied
in an attempt to improve the broods. Finally, the best brood replaces the old
queen if it is better than the old queen. Figure 12.1 depicts the flowchart of the
HBMO algorithm.

12.3 Creating an Initial Population

Each possible solution of the optimization problem calculated by the HBMO
algorithm is called a bee. Each bee (drone, queen, or brood) in the mathemati-
cal formulation of an optimization problem symbolizes a series of genes (deci-
sion variable) that represent a solution of the problem. In an N-dimensional
optimization problem, a bee is an array of size 1 x N. This array is as follows:

Bee =X =(%1,%2,...,%5..., XN ) (12.1)

where X=a solution of optimization problem, x;=ith decision variable of
solution X, and N = number of decision variables. Each of the decision variable
values (x1,%5,%3, ..., xy) can be represented as floating point number (real values)
or as a predefined set for continuous and discrete problems, respectively.

A matrix of size M x N is generated randomly (see Section 2.6), where M and
N are the size of the population of solutions and the number of decision
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Define the parameters of the algorithm

Generate initial possible solutions randomly

Mark the best solution out as the queen
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Select drones for mating with the queen

J
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Are the termination criteria satisfied?

v
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J

Figure 12.1 The flowchart of the HBMO algorithm.

variables, respectively. Hence, the matrix of solutions that is generated ran-
domly is given as follows (rows and columns are the number of bees and the

number of decision variables, respectively):

X X1,1 X1,2

X Xo1 X2
Population = =

X} x]-,l x]',z

Xm XMl XMm2

X1,i

X9,i

XM

X1,N

X2,N

xj'N

XM,N

(12.2)

in which X;=jth solution, x;;=ith decision variable of the jth solution, and

M =population size.
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12.4 The Queen

As mentioned previously, the queen plays the most important role in the
mating process in nature as well as in the HBMO algorithm. Each queen is
characterized with a genotype, speed, energy, and a spermatheca with defined
capacity. Genotype characterizes the queen as a solution of the optimization
problem (the best solution in the present generation). The speed and energy of
the queen are parameters of the algorithm that control the rate of convergence
and are described in the following sections in detail. The spermatheca is
the repository of drones’ sperm produced during mating with the queen. The
speed and energy of a queen with spermatheca size (S,) are initialized before
each mating flight at random in the range of (0.5,1). All the bees are ranked
based on their fitness values. The best solution (i.e., the bee with the best
fitness value) is made queen. Figure 12.2 shows how to select the queen in a
minimization problem.

It is seen in Figure 12.2 that after all the solutions are ranked, the best one is
designated as the queen and other solutions become trial solutions. The rules
for trial solutions are described in the following sections.

12.5 Drone Selection

The HBMO selects drones to mate with the queen and generate broods
(new solutions). The queen is the mother of all the new solutions, and they
have different fathers that are drones selected for mating. Two strategies are
used for drone selection: (1) mating flights and (2) considering trial solutions
as drones.

— I
- |
I |
. Trial |
[ raj |

Bees — e —— solutions [r—
_ |
I o
[ . .
I Queen {_

F(X) F(X)

Figure 12.2 Determining the queen and trial solutions according to the fitness
function F(X).



12.5 Drone Selection

12.5.1 Mating Flights

During each mating flight, the queen flies based on its energy and speed, which
are generated at random for the queen before each mating flight commences.
The mating flight begins, and the queen, based on its speed and energy, finds
the best randomly generated drones for mating. The queen’s motion is gov-
erned by its speed, which is the probability of mating between the queen and
drones. The speed of the queen is at its maximum value at the beginning of the
mating flight, and it decreases as the queen flies and vets different drones.
Therefore, the space of the queen’s activity decreases as it continues to fly. This
means that the probability of the mating for a drone in the beginning of the
mating flight is higher than the probability of mating for the same drone at the
end of the mating flight. At every step of the mating flight, the queen tests its
adjacent drone using a probability function. The drones’ sperm is saved in the
queen’s sperm bag if the mating is successful (the drone passes the threshold).

Drones are randomly generated for the mating process. A drone’s genome is
memorized in the queen’s spermatheca after evaluating its fitness value if the
drone succeeds in a simulated annealing (SA) function as follows:

—|F(X,)-F(Xq)|
S(XpXa)=e A (12.3)

in which £(X,, X,) = the probability of mating a drone with the queen, F(X,) =the
fitness function of the queen, F(X,)=the fitness function of the drone, and
A=queen’s speed, which is a parameter of the algorithm and whose value
regulates selective pressure. The selective pressure is high (low) when 4 is low
(high). A uniformly distributed random variable (Rand) within [0,1] is generated
while {(X,, X,) is evaluated. If {(X,, X,,) is larger than or equal to Rand, the drone
is successful in mating with the queen; otherwise it is not. Equation (12.3) acts
as an annealing function. Whether or not the mating between a drone and
the queen is successful, another drone is randomly generated until the queen’s
spermatheca (S,) is full or the queen’s energy is finished.

The probability of mating is high when either the queen’s speed is high or the
fitness of the drone (F(X,)) is as good as that of the queen (F(X,)). It is also high
at the beginning of the mating flight when the queen’s speed is high or when
the drone is fit enough. The queen’s energy and speed decrease after each
movement of the queen in space or after each mating according to the follow-
ing equations:

(new)

W —y—y (12.4)

AU = g x A (12.5)

where /" = new energy of the queen, = old energy of the queen, 1" = new

speed of the queen, 4= o0ld speed of the queen, @ =a coefficient between (0,1),
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and y =the value of the energy decrease. The energy and speed of the queen is
updated each time that a new solution (drone) is randomly generated.

The mating flight may be considered as a set of transitions in a state space (the
environment) where the queen moves between different states at variable speed
and mates with the drones encountered in each state probabilistically. At the start
of the flight, the queen is initialized with some energy content and returns to her
nest when the energy is within some threshold from zero or when her spermatheca
is full. It might be that the energy is zero but the spermatheca is not full yet. In this
situation the queen uses the trial solutions to fill the spermatheca.

The queen starts breeding after completing the mating flight. A queen is
selected in proportion to her fitness and inseminated with a randomly selected
sperm from her spermatheca.

12.5.2 Trial Solutions

Trial solutions are used for local search with the present population. It was
previously stated that mating selects drones that mate with the queen and
generate new solutions. For this purpose the queen selects S. drones for
crossover. Whenever the improvement of the queen exceeds a predefined
threshold, S, trial solutions become drones and saved in the queen’s sper-
matheca. In this case the mating flight is not carried out, and, instead, the
queen’s spermatheca is filled with the best solutions of the present population.
However, whenever the improvement of the queen is less than a predefined
threshold, then a mating flight is carried out to escape from entrapment in a
local optimum. The difference between best solutions (queens) of successive
iterations is evaluated as follows:

e= ‘F(Xff))— F(x{) (12.6)

in which F (X,(ﬁ):the queen’s fitness value in iteration ¢ and F (X;"l))zthe
queen’s fitness value in iteration ¢ - 1. If € is less than a predefined threshold like
0, then drones are selected by mating flight in the decision space in iteration
t+1, and randomly generated solutions fill the queen’s spermatheca.

It may happen that in a mating flight, the energy of the queen is used up
but the queen’s spermatheca is not yet filled. In this instance, the queen’s
spermatheca is also filled with the best trial solutions.

12.6 Brood (New Solution) Production

New broods are produced by combining some of the queen’s genes with
existing genes in the sperm bag. Broods are generated by means of genetic
operators including crossover and mutation operators. Crossover replaces
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Figure 12.3 Different crossover approaches: (a) one-point crossover, (b) two-point
crossover, and (c) uniform crossover.

some of the queen’s genes with genes of drones memorized in the spermatheca.
The crossover operator generates new offspring by exchanging some genes
between the queen and the drones. Thus, crossover involves the exchange of
decision variables between solutions. Goldberg (1989) and Michalewicz (1996)
have described several methods of crossover including (1) one-point crossover,
(2) two-point crossover, and (3) uniform crossover. Crossover occurs between
two solutions. Figure 12.3 illustrates different types of crossover.

One-point crossover selects randomly a crossover point. The genes of
parents placed adjacent to the crossover point generate a pair of offspring genes
as shown in Figure 12.3a by interchanging the position of the parents’ genes.
Two-point crossover selects randomly two crossover points. The genes of the
parents located between the crossover points are replicated in the offspring as
shown in Figure 12.3b. The genes of the parents not placed between the crosso-
ver points are transposed in the offspring (see Figure 12.3b). Uniform crossover
selects randomly parents’ genes, and the offspring’s genes are transposed
correspondingly as shown in Figure 12.3c.
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Original brood | A A A A A A

@ Randomly generated

Muted brood | A A A A( D )A

N/

Figure 12.4 Performance of mutation operator.

A crossover point is an integer random number in the range [1,N]. For
example, if X =(%;,%,,...,%y ) denotes the queen, X' =(x{,%5,...,x ) denotes a
drone, and the index C indicates a crossover point in one-point crossover, then
two children are generated as follows (see Figure 12.3a):

new
Xl( ) (R15%2 e X K1 B2 1 XN ) (12.7)

X(new)

2 (x{,xén-.,xé,x0+1,xc+2,...,xN) (12.8)

in which X"*") and X{"*) = newly generated solutions by one-point crossover
operator.

The mutation operator replaces one or more decision variables of the current
solution with random values, and the other values of the decision variable
remain unchanged. Figure 12.4 illustrates the mutation operator.

One of the methods of mutation is called uniform mutation. Uniform mutation
randomly generates a value that is within the feasible range of values to replace
the value of a gene. Uniform mutation prescribes that if the ith decision variable
(x;) of a new solution X =(x;,%,,...,%;,...,4x5) and is selected for mutation, then
the muted brood would be X = (x7,%,,...,%;,...,%x) wWhereby x/ is evaluated as
follows:

Xl = Rnd(x,@),x}u)) (12.9)

in which x/ = the new value of x; that is selected for mutation, x* = the upper
bound of the ith decision variable, xl(L) =the lower bound of the ith decision
variable, and Rud(a,b) = a random value from the range [a,b].

Mutation is done probabilistically. In fact, a mutation probability (Py) is
specified that permits random mutations to be made to individual genes. The
mutation operator is implemented by generating a random number Rand in
the range [0,1] for each decision variable of a new solution. If Rand is less than

Py, that decision variable is muted; otherwise it is remained without change.
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12.7 Improving Broods (New Solutions) by Workers

The workers who feed the queen and broods are symbols of meta-heuristic
functions that improve solutions. Workers that are used to improve the brood’s
genotype represent a set of different heuristics for local searching. In the brood
caring stage of the HBMO, an attempt is made to improve the generated broods
using heuristic functions. For this purpose, a heuristic function was introduced
by Solgi et al. (2016a). The introduced heuristic function replaces the value of
some genes of a brood with new ones that are randomly generated based on the
value of the corresponding genes that belong to the brood, the queen of the
previous iteration, and the queen of the present population. Let X = (xy,...,%,)
denote a brood, Y =(yy,...,y,) denote the best solution in the present iteration,
Y'=(y1,...,y,) denote the best solution in the previous iteration, and the com-
ponent x; from brood X is randomly chosen for substitution, where
X" = (x,,...,%),...,%,) denotes the brood after brood caring. ] is evaluated
as follows:

K=9(0) <G (79(3))+ (1-9(0 Jx{9(0) <G ($(0)) +(1- 9l )

(12.10)
where
_ 1+b (%)) 1-b (L)
G(a,b) = 5 and(a,xi )+ 5 and(xi ,a) (12.11)
o=y —% (12.12)
5=y -9 (12.13)

in which x;=the value of the brood’s ith component before substitution,
x; = the value of the brood’s ith component after substitution, y; = the value of
the best solution’s ith component in the present iteration, y; = the value of the
best solution’s ith component in the previous iteration, and ¢(a) = returns the
sign of the number a (sign function) that can be equal to 1, -1, or 0. Thereafter,
the functions ¢(a) and G(a,b) are evaluated and are substituted in Equation
(12.10) as follows:

) ife>0
( ) if 6<0
X = Rnd(xv,xfu)) if 0=0and o >0 (12.14)
(#")

if 6=0and o <0
x; if 0=0and o =0
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According to Equations (12.14) if the gene of the best solution (y;) in the
present iteration is larger than that of the best solution in the previous iteration
(y)), a random value between y; and x*) replaces the gene of the brood.
Conversely, if ; is less than ¥}, x] is made equal to a random value between x.*)
and y;. When y; and y; are the same (6 =0), x; is determined based on the result
of the comparison between the present value of the brood’s gene and that of the
corresponding gene of the best solution in the present iteration (y;). If y; is
larger than x;, x] is made equal to a random value between x; and xfu). Ify;is less
than x;, x; is made equal to a random value between xl(L) and x;. Otherwise, if y;,

i, and x; are the same, the value of the brood’s gene is not changed.

12.8 Termination Criteria

The termination criterion determines when to terminate the algorithm.
Selecting a good termination criterion has an important role in the correct
convergence of the algorithm. The number of iterations, the amount of
improvement of the fitness function between consecutive iterations, and the
run time are common termination criteria for the HBMO.

12.9 User-Defined Parameters of the HBMO

The size of the population (M), the size of the queen’s spermatheca (S,), 6, the value
of the queen’s energy decrease (y), the reduction factor of the queen’s speed (), and
termination criteria are user-defined parameters of the HBMO. A good choice of
the parameters is related to the decision space of a particular problem, and usually
the optimal parameter setting for one problem is of limited utility for any other
problem. The difficulty associated with adjusting the values of the parameters is
that the decision space is usually not well known. Consequently, determining a
good parameter setting often requires the execution of trial-and-error experiments.
A reasonable method for finding appropriate values for the parameters is perform-
ing sensitivity analysis. This is accomplished by choosing combinations of parame-
ters, and the algorithm is run several times for each combination. Comparison of
the results from many runs helps in determining appropriate parameter values.

12.10 Pseudocode of the HBMO

Begin
Input the parameters of the algorithm and initial data
Let € = the threshold of applying mating flight, yw =
energy of the queen, and M = the population size
Generate M initial possible solutions randomly
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While (the termination criteria are not satisfied)
Mark the best solution out as the queen and other
solutions as trial solutions
Evaluate the difference between the queen of
present and previous iteration (g)
If ¢ > 0 then
Fill the queen’s spermatheca with best trial
solutions as drones
Otherwise
Generate energy and speed of the queen randomly
While (y > 0)
If the queen’s spermatheca is not full
Generate a solution randomly
If the fitness value of the generated
solution is better than the queen
Add the generated solution to the
queen’s spermatheca
Update the queen’s speed and energy
Otherwise
Evaluate {(X4, X4) and generate Prob
randomly
If {(X4, X4) > Prob
Add the generated solution to
the queen’s spermatheca
Update the queen’s speed and

energy
End if
End if
End if
End while

If the queen’s spermatheca is not full
Fill the queen’s spermatheca with trial
solutions
End if
End if
Generate broods (new solutionsg) by crossover and
mutation
Improve the broods (new solutions) by workers
Replace all trial solutions with new generated
solutions
Empty the queen’s spermatheca
End while
Report the best solution
End
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12.11 Conclusion

This chapter described the HBMO algorithm. It contains a literature review
of the HBMO and its applications. The mathematical statement of the HBMO
algorithm was mapped to the basic functioning of honey-bee colonies.
A pseudocode of the HBMO was presented.
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13

Invasive Weed Optimization

Summary

This chapter describes the invasive weed optimization (IWO) algorithm, which
mimics weed’s adaptive patterns. This chapter contains a literature review of
the IWO, an overview of weeds’ biology, a description of the mapping of the
IWO algorithm to weeds’ biology, a thorough explanation of the steps of
the IWO algorithm, and a pseudocode of the IWO algorithm.

13.1 Introduction

Invasive weed optimization (IWO) was developed by Mehrabian and Lucas
(2006). They solved two engineering problems and compared the results with
other algorithms including the genetic algorithm (GA), particle swarm optimi-
zation (PSO) algorithm, the shuffled frog leading algorithm (SFLA), and the
simulated annealing (SA) algorithm. The results showed a relatively superior
performance by the IWO. The IWO has been implemented in a variety of engi-
neering optimization problems. Mehrabian and Yousefi-Koma (2007) applied
the IWO to optimize the location of piezoelectric actuators on a smart fin.
Mallahzadeh et al. (2008) tested the flexibility, effectiveness, and efficiency of the
IWO in optimizing a linear array of antenna and compared the computed results
with those of the PSO algorithm. Sahraei-Ardakani et al. (2008) implemented
IWO to optimize the generation of electricity. Roshanaei et al. (2009) applied
the IWO to optimize uniform linear array (ULA) used in wireless networks,
such as commercial cellular systems, and compared their results with those from
the GA and least mean squares (LMS). Mallahzadeh et al. (2009) applied the
IWO to design vertical antenna elements with maximal efficiency. Krishnanand
et al. (2009) compared the effectiveness of the IWO, GA, PSO algorithm, artifi-
cial bee colony (ABC), and artificial immune (AI) by solving five basic standard
mathematical problems with multivariate functions. Zhang et al. (2010) used

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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heuristic algorithm concepts for developing the IWO. They introduced the IWO
with crossover function and tested the new algorithm on standard mathematical
problems and compared the results of the developed IWO with those of the
standard IWO and PSO. Sharma et al. (2011) applied the IWO to schedule
dynamic economic dispatching (DED). Their results showed that the IWO algo-
rithms reduced production costs relative to those obtained with the PSO and Al
algorithms and the differential evolution (DE). Jayabarathi et al. (2012) employed
the IWO for solving economic dispatch problems. Kostrzewa and Josinski
(2012) developed a new version of the IWO and tested their algorithm on sev-
eral standard mathematical problems. Abu-Al-Nadi et al. (2013) implemented
the IWO for model order reduction (MOR) in linear multiple-input—multiple-
output (MIMO) systems. Sang and Pan (2013) introduced the effective discrete
IWO (DIWO) to solve the problem of flow shop scheduling with average stored
buffers and compared their results with the hybrid GA (HGA), hybrid PSO
algorithm (HPSO), and the hybrid discrete differential evolution algorithm
(HDDE). Saravanan et al. (2014) applied the IWO to solve the unit commitment
(UC) problem for minimizing the total costs of generating electricity. They com-
pared their results with those calculated with the GA, SFLA, PSO, Lagrangian
relaxation (LR), and bacterial foraging (BF) algorithms. Barisal and Prusty (2015)
applied the IWO to solve economic problems on a large scale with the aim of
minimizing the costs of production and transfer of goods subject to restrictions
on production, market demand, and the damage caused to goods during
transportation and to alleviate other calamities. Asgari et al. (2015) presented a
modified IWO as weed optimization algorithm (WOA) to optimal reservoir
operation. Hamedi et al. (2016) applied the WOA for parameter estimation of
hydrologic flood-routing models.

13.2 Mapping Invasive Weed Optimization (IWO)
to Weeds' Biology

Weeds grow spontaneously and compete with other vegetation. A plant is called
weed if in any specified geographical area, its population grows entirely or
predominantly in conditions markedly disturbed by man. Weeds are agricultural
pests. They can easily adapt to almost any environment and new conditions. It
is a common belief in agronomy that “The Weeds Always Win” Weeds may
reproduce with or without sexual cells depending on the type of the plant. In
sexual reproduction eggs are fertilized by pollen and form seeds in a parent
plant. Several factors such as wind, water, and animals distribute seeds. When
seeds find suitable place to thrive, they grow to adult plants while in interaction
with other neighboring plants. They turn to flowering plants and produce seeds
at the final stage of their life. The weed biomass produced becomes limited by
the availability of resources so that the yield per unit area becomes independent



13.2 Mapping Invasive Weed Optimization (IWO) to Weeds’ Biology

of density. The stress of density increases the risk of mortality to whole plants
and their parts, and the rate of death becomes a function of the growth rate of
the survivors. Thus, birth, growth, and reproduction of plants are influenced by
population density. There are three main components of compatibility in the
community. They are (1) reproduction, (2) struggle for survival with com-
petitors, and (3) avoidance of predators. Any weed colony tries to improve its
compatibility to achieve a longer life. The study of population biology seeks to
unravel the factors that are important for weed survival and reproduction. One
of the factors is called r-selection, which implies “live fast, reproduce quick, die
young” r-selection enhances the chances to succeed in unstable and unpredict-
able environments, where ability to reproduce rapidly and opportunistically is
at a premium and where there is little value in adaptations to succeed in compe-
tition. A variety of qualities are thought to be favored by r-selection, including
high fecundity, small size, and adaptations for long-distance dispersal. On the
other hand, K-selection is tantamount to “live slow, reproduce slow, die old”
Selection for the qualities is needed to succeed in stable, predictable environ-
ments where there is likely to be heavy competition for limited resources
between individuals well equipped to compete when the population size is close
to the maximum that the habitat can bear. A variety of qualities are thought to
be favored by K-selection, including large size, long life, and small numbers of
intensively cared-for offspring, in contrast with r-selection (Mehrabian and
Lucas, 2006). It is customary to emphasize that r-selection and K-selection are
the extremes of a continuum, most real cases lying somewhere in between.

IWO represents a solution with a plant whose location in an N-dimensional
space is a decision variable. A bunch of plants constitutes a colony. In nature
each weed, based on its quality in the colony, produces seeds that spread
randomly in the environment, grows, and eventually generates new seeds.
Therefore, each plant generates a specified number of new seeds according to its
fitness value. Each seed is known as a new solution. If the maximum number of
plants in a colony is reached, competition for survival starts between weeds so
that in each stage weeds with lower quality (less fitness value) are removed. The
remaining weeds as mother plants spread new seeds. This process continues to
produce weeds of the highest quality (the best fitness value). Table 13.1 shows
the characteristics of the IWO.

The IWO starts the optimization process by randomly generating a set of
weeds, each of which is a solution of the optimization problem (see Section 2.6).
After evaluating the fitness function for all solutions, the number of seeds
for each weed (solution) is estimated based on its fitness value. All weeds
(solutions) generate seeds (new solutions). Solutions with low fitness are
eliminated until the number of solutions equals the capacity of colony when-
ever the number of solutions exceeds a threshold. Improved, new solutions
are generated by remaining solutions for as long as the termination criteria are
not satisfied. Figure 13.1 depicts the flowchart of the IWO.
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Table 13.1 The characteristics of the IWO.

General algorithm (see Section 2.13)

Invasive weed optimization

Decision variable

Weed’s location in each dimension

Solution Weed (position)
Old solution Mother plant

New solution Seed

Best solution -

Fitness function Quality of the plant

Initial solution
Selection

Process of generating new solution

Random weed
Competition for survival

Spreading seeds

| Define the parameters of the algorithm |

J

| Generate initial population of weeds randomly |

U

| Determine the number of seeds for each weed according to its fitness value |

V

| Spread new seeds in decision space |

\

| Eliminate weeds with low fitness |

l

No T Yes
Are the termination criteria satisfied?

V2

| Report the weeds |

!

Figure 13.1 The flowchart of the IWO.



13.4 Reproduction

13.3 Creating an Initial Population

IWO calls each possible solution of the optimization problem a weed. A weed’s
location in any dimension of an N-dimensional space is a decision variable of
the optimization problem, and a weed is represented as an array of size 1 x N
that describes a weed’s location. This array is defined as follows:

Weed:X:(xl,xz,...,xi,...,xN) (13.1)

where X =a solution of the optimization problem, x;=ith decision variable of
the solution X, and N=number of decision variables. The decision variable
values (x1, %y, %3, ..., xy) are represented as floating point number (real values) or
as a predefined set for continuous and discrete problems, respectively.

The IWO starts by randomly generating a matrix of size MxN (see
Section 2.6), where M and N are the size of population and the number of deci-
sion variables, respectively. Hence, the matrix of solutions that is generated
randomly is as follows (rows and columns are the number of weeds and the
number of decision variables, respectively):

X, X110 X120t X ot XN
X Xo1 KXo ottt Xttt Xo N
Population = = . (13.2)
Xj xj,l xj,2 e xj,i e xj,N
Xy Xpma1 XM o Xmi tt XMN

in which X;=jth solution, x;;=the ith decision variable of the jth solution, and
M =size of the initial population of weeds.

13.4 Reproduction

During the reproductions stage, weeds are allowed to produce seeds according
to their fitness values and the maximum and minimum allowed numbers of
produced seeds (A4x), (4uin), respectively. The solution with the worst fitness
value generates 1,,;, new solutions, while the best solution generates 4,,,, new
solutions. Other solutions generate new solutions according to their fitness
function between these two limiting values. The number of seeds for each
solution is evaluated as follows:

(ﬂ'max - lmin )

Hi= |Best - Worst| .

F(X])! ]:1:2;;M (133)
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Produced seeds

/Imax

Number of seeds

)“min

Fitness

Worst Best
solution solution

Solution’s fitness

Figure 13.2 Number of seeds for each weed with respect to the fitness value.

in which y;= the number of new solutions generated by the jth solution,
F(X)) =fitness value of the jth solution, Best=the fitness value of the best
solution, Worst = the fitness value of the worst solution. and 4,,,,, and 4,,;,, = the
maximum and minimum number of produced seeds, respectively, which
are user-defined parameters. Seed production is illustrated in Figure 13.2
approximately as a linear function.

The reproduction stage adds an important advantage to the IWO algorithm.
Evolutionary algorithms have population members that range from appropri-
ate solutions to inappropriate ones. Appropriate solutions have a higher
probability of reproduction than inappropriate ones, but there is always
the possibility that population elements that seem inappropriate at each
stage contain important information that even suitable plants lack. It is pos-
sible that some individuals with lower fitness value carry useful information
during the evolution process. Therefore, the system can reach the optimal
point more easily if it is possible to “cross” an infeasible region. It is therefore
probable that with a suitable reproduction, inappropriate plants survive
an unsuitable environment and find a hidden suitable environment. This
phenomenon is observed in nature.

13.5 The Spread of Seeds

Adoption and randomness are introduced in the IWO algorithm by the spread
of seeds. The produced seeds spread randomly with a normal distribution that
has zero mean in an N-dimensional space. Therefore, new plants spread
randomly around the mother plants, but their standard deviation is variable.



13.6 Eliminating Weeds with Low Fitness

The standard deviation is reduced from the initial predetermined value
(maximum) to a final predetermined value (minimum) as follows:

B
T-t
O = %(Uim‘tml —O final ) + O final (134)

where o,=the standard deviation of the current iteration ¢, T=the maximum
number of iterations (reproduction stages), ¢t=the current iteration, ¢;,;;,;=the
initial standard deviation, oj;,, = the final standard deviation, and f#=a nonlinear
modulus (called nonlinear modulation index) selected by the user as parameter
of the algorithm.

New solutions are generated after evaluating the standard division as
follows:

X" = Mrand(0,6,)+X;, r=12,..1;, j=12,..,M (13.5)

in which X" = the new solution rth on the basis of solution jth of the popula-
tion, Mrand(0, o) = a matrix of random values by mean 0 and standard division
o, with size 1 x N, and X =jth solution of the population.

The algorithm localizes search during its progress. At the beginning of the
algorithm, the standard deviation is high; while the algorithm proceeds, the
standard deviation is reduced by Equation (13.4). In Equation (13.5) a low
standard deviation makes new solutions to be close to the mother plant, while
a high standard deviation makes new solutions spread out over a wider range.
The probability of placing a seed far from its mother plant in the beginning of
the algorithm is high, and it decreases during later stages of the algorithm
when the number of appropriate plants increases. In this manner the probabil-
ity of dropping a seed in a distant area decreases nonlinearly at each time step,
which results in grouping fitter plants and elimination of inappropriate plants.
This represents transformation from r-selection to K-selection.

13.6 Eliminating Weeds with Low Fitness

A plant that does not produce seeds becomes extinct. The number of plants
increases exponentially if all the plants produce seeds and the seeds grow.
Therefore, a competitive process is necessary to limit and remove some of the
existing plants. After several reproductions the number of plants in the colony
reaches its maximum (A,,,,,). At this juncture the process of omitting unsuitable
plants starts and is repeated until the end of the algorithm.

The elimination scheme allows each weed to produce seeds according to
reproduction rules whenever the current population size (M) reaches M,,,,.
Offspring (new solutions) are ranked together with their parents (as a colony of
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weeds). Next, weeds with low fitness are eliminated until the number of weeds
is equal to the maximum allowable population in the colony. In this manner
plants with lower fitness have a chance to reproduce, and if their offspring have
a good fitness in the colony, then they can survive.

13.7 Termination Criteria

The termination criterion ends the execution of the IWO algorithm. Selecting
a good termination criterion has an important role in the correct convergence
of the algorithm. The number of iterations, the amount of improvement of the
solution between consecutive iterations, and the run time are common termi-
nation criteria for the IWO.

13.8 User-Defined Parameters of the IWO

The initial size of population (M), the maximum size of the population
(M,,45), the maximum number of produced seeds (4,,,,), the minimum num-
ber of produced seeds (4,,,), the initial standard deviation (6;u.), the
final standard deviation (6f,,), the nonlinear modulation index (f), and the
criterion used to decide when to terminate the algorithm are user-defined
parameters of the IWO algorithm. A good choice of the parameters is related
to the decision space of a particular problem, and usually the optimal
parameter setting for one problem is of limited utility for any other problem.
The issue of how to determine the appropriate values of these parameters is
pertinent. Practice and experience with specific types of problems is valuable
in this respect. A reasonable method for finding appropriate values for
the parameters is performing sensitivity analysis. This is accomplished by
choosing combinations of parameters and running the algorithm several
times for each combination. A comparison of the results from different runs
helps in determining appropriate parameter values.

13.9 Pseudocode of the IWO

Begin
Input the parameters of the algorithm and initial data
Let Muax = the maximum population size and M = the
current population size
Generate M initial possible solutions randomly and
evaluate their fitness values
While (the termination criteria are not satisfied)



References

Evaluate the standard division (o)
For j =1 to M
Determine the number of seeds (u;) for solution j
according to its fitness value
For r = 1 to uj
Generate a new solution around the solution
j using normal distribution and add it to
the offspring population
Evaluate fitness value of the newly generated
solution
Next r
Next 7
Add offspring population to the current
population and update M
If M > My,
Eliminate solutions with low fitness until M = M,
End if
End while
Report the population
End

13.10 Conclusion

This chapter described the IWO algorithm. The IWO is a meta-heuristic opti-
mization method inspired by weeds’ ecological characteristics. This chapter
presented literature review of the IWO and its applications, the weeds’ biology
was mapped into a mathematical statement of the IWO algorithm, each part of
the IWO was explained in detail, and a pseudocode of the algorithm was
presented.
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14

Central Force Optimization

Summary

This chapter describes the central force optimization (CFO) algorithm. The
basic concepts of the CFO are issued from kinesiology in physics. The CFO
resembles the motion of masses under the influence of the gravity field. One
of the most important features of the CFO is that it is a deterministic method,
which means that each position of a particle (called probe in this method)
follows a certain path toward a solution. The following sections relate
Newton’s gravitational low and the CFO. The CFO algorithm is explained,
and a pseudocode of the algorithm is presented.

14.1 Introduction

The central force optimization (CFO) is a search meta-heuristic method devel-
oped by Formato (2007) based on gravitational kinematics. This algorithm
models the motion of airborne probes under effect of gravity and maps the
equations’ motion to an optimization scheme. The CFO algorithmic equations
are developed for the probes’ positions and the accelerations using the analogy
of particle motion in a gravitational field. The CFO is deterministic, which is a
variance from most other meta-heuristic algorithms. Formato (2007) assessed
the performance of the CFO algorithm with recognized complex mathematical
functions and electronic problems and compared the results with that of other
algorithms. Formato (2010) demonstrated the good performance of the CFO
algorithm in solving several different functions. Mahmoud (2011) applied the
CFO to a microstrip antenna design problem. Formato (2012) employed
the CFO in electronics for improving bandwidth and achieved very precise
results. Also, Haghighi and Ramos (2012) applied the CFO algorithm
for drinking-water networks and compared the results with previous works.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

175



176

14 Central Force Optimization

The results demonstrated that the CFO algorithm achieved solutions more
rapidly. Liu and Tian (2015) developed a multi-start CFO (MCFO) and com-
pared the performance of the MCFO with those of other algorithms.

14.2 Mapping Central Force Optimization (CFO)
to Newton'’s Gravitational Law

The CEO is inspired by the motion of masses in a gravitational field. The gravi-
tational force between two masses Mass; and Mass, is described by Newton’s
universal law of gravitation as follows:

Mass, x Mass,

1"2

Force=y (14.1)

in which Force = the magnitude of the force of attraction, y = gravitational con-
stant, Mass; and Mass,=masses that attract each other, and r=the distance
between the center of masses of Mass; and Mass,. According to the gravita-
tional force, each mass such as Mass; is accelerated toward another mass Mass,
with vector acceleration calculated as follows:

~ Mass, X7

A=y 270 (14.2)

r
in which A, = acceleration vector of Mass, toward Mass, and 7 =a unit vector.
The gravitational force causes particles to move toward each other. The new

particle’s position is calculated as follows:
A-AL?

R(¢+At)= R(@)+V (¢)At + (14.3)

in which R(t) = the position of particle at time ¢, V (t) = the velocity of particle at
time t, and At =time interval.

The CFO has a physical base. Suppose that we want to find the largest planet
in a hypothetical star system whose position is unknown. From the gravita-
tional law described previously, it can be inferred that the largest planet has the
strongest gravitational field. Therefore, if several probe satellites are spread
through the star system, they gradually move along gravitational fields. After a
long enough time, most of the probes probably will cluster in orbits surround-
ing the planet with the largest gravitational field. The CFO generalizes the
equations of motion in three-dimensional physical space to seek optima in a
multidimensional decision space.

CFO designates the location of each probe as a solution of the optimiza-
tion problem. All particles have masses proportional to their fitness values
so that the heavier the masses, the better the fitness values. According to the



14.3 Initializing the Position of Probes

Table 14.1 The characteristics of the CFO.

General algorithm (see Section 2.13) Central force optimization

Decision variable Position of probes in each dimension
Solution Position of probe

Old solution The old position of probe

New solution The new position of probe

Best solution -

Fitness function Mass of probe

Initial solution Deterministic position
Selection -

Process of generating new solutions Movement of probe

gravitational law, probes move toward each other with a specific velocity
and acceleration. Movements of probes through the decision space produce
new solutions. Table 14.1 lists the characteristics of the CFO.

The CFO starts by specifying initial probe positions deterministically as
explained in the next section. Then fitness values are evaluated and the initial
acceleration is assigned to each probe. The new positions of probes are com-
puted based on the previously evaluated accelerations. Each probe must be
located inside the decision space. If a probe strays outside the decision space, it
is called a deviated probe, and its location is modified. The fitness values of the
new locations are evaluated and new accelerations are estimated. This process
is repeated until the termination criteria are satisfied. Figure 14.1 illustrates the
flowchart of the CFO.

14.3 Initializing the Position of Probes

The CFO calls each possible solution of the optimization problem a probe.
A probe’s position in an N-dimensional optimization problem is a decision
variable of the optimization problem. A probe is represented by an array of size
1 x N that expresses the probe’s position. This array is defined as follows:

Probe =X =(%1,%2,...,%5..., XN ) (14.4)

where X =a solution of optimization problem, x;=ith decision variable of solu-
tion X, and N=number of decision variables. The decision variable values
(%01, %2, %3, ..., %) are represented as floating-point numbers (real values) or as a
predefined set of values for continuous and discrete problems, respectively.
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Define the parameters of the algorithm

Initialize the position of probes

Calculate the acceleration of probes

y

Move the probes

J

Modify the position of the deviated probes

Are the termination criteria satisfied?

\]

Report the position of probes

Figure 14.1 The flowchart of the CFO.

A matrix of probes of size M x N is generated (where M is the number of
probes) to start the CFO algorithm. The matrix of probes is represented as
follows (rows and columns denote the number of probes and the number of
decision variables, respectively):

X X1,1 X2 ot X1, XN
X Xo1 KXo ot Xpp ottt XN
Population = = . (14.5)
X} xj,l xsz e xj,i e x},'N
XM xM,l xM’2 xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.
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Figure 14.2 Distribution of initial probes in the CFO algorithm.

Notice that unlike most of other meta-heuristic algorithms, the initial
solutions in the CFO are not generated randomly. Formato (2007) did not
present a general scheme for generating initial solutions. According to
Formato (2011) the initial probes are distributed on lines parallel to the
coordinate axes that contain the decision space of the optimization problem.
Figure 14.2 depicts distribution of the initial probes in a two-dimensional
problem.

It is seen in Figure 14.2 that lines made of initial probes intersect at a point
along the principal diagonal. The intersection is calculated as follows:

D = X i + 8 (Xonax = Xomin ) (14.6)
N

Xmin = Z‘xl@)éi (14'7)
i=1
N

Xppax = 3 2 0¢; (14.8)

in which D=the intersection position, X,,;, and X,,,,=diagonal’s end points,
0 =a parameter that determines where along the diagonal the orthogonal probe
array is placed (0< 8 <1), ") = the lower bound of the ith decision variable,
xl(U) =the upper bound of the ith decision variable, and é;=a matrix of size 1 x N
whose elements are zero except for its ith element that equals 1. Different
numbers of initial probes per axis can be implemented if, for instance, equal
probe spacings were desired in a space with unequal boundaries or if excluding

overlapping probes is intended (Formato, 2011).
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14.4 Calculation of Accelerations

According to Newton’s universal law of attraction, each probe experiences an
acceleration vector under the influence of the gravitational central forces
generated by other probes. In a maximizing optimization problem, the
“acceleration” experienced by the jth probe due to the kth probe is calculated
as follows:

KXii —Xji

a;ﬁ) :GXU(F(Xk)—F(Xj))X(F(Xk)_F(Xf))aXm (14.9)

i=12,.,N, j=12,.,.M

1 ifz=0
U=y, if 2<0 (14.10)
AP = (a®,a8,.ia®,na®), =12 M (14.11)

in which a%) =the acceleration of the jth probe due to the kth probe in the ith
dimension; @, f, and G = gravitational constant (G >0; a>0 and > 0); F(X) =the
fitness value of solution X; U(z) = the unit step function; and A;k ) = acceleration
vector of the jth probe due to the kth probe.

The CFO algorithm permits assigning a gravitational acceleration differ-
ent from the actual one in the physical universe. For example, the term
“(F(Xx)-F(X;)) in Equation (14.9) resembles mass in Equation (14.2).
Probes that are located near each other in the decision space may have simi-
lar fitness values. This may lead to an excessive gravitational force on the
subject probe. Therefore, it is the difference between fitness values, instead
of the fitness values themselves, that is used to avoid excessive gravitational
attraction by other probes that are very close to the subject probe. The fit-
ness difference intuitively seems to be a better measure of how much gravi-
tational influence there should be between the probe with a greater fitness
and the probe with a smaller one (Formato, 2007).

Although real masses are positive, the term “(F(X;)— F(X;))" can be positive
or negative depending on which objective function is greater. The unit step
function is introduced to avoid the possibility of “negative” mass. In other words,
using the unit step function forces the CFO to create only positive masses as
observed in nature. In case negative masses are allowed, the corresponding
accelerations are repulsive instead of attractive. The effect of a repulsive gravita-
tional force is that probes move far away from large fitness values instead of
being attracted toward them.

Equation (14.9) evaluates the acceleration of the jth probe toward the kth
probe. Notice that other probes may attract the jth probe and also affect
its acceleration. The total acceleration of the jth probe is equal to the
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summation of all the accelerations exerted by all other probes, and it is
calculated as follows:

M P '
a5 =Gx Y | U(F(X)-F(X;))x(F(X¢)-F(X;)) x’“k—"/ﬁ
k=1 (xk,i _x;',i)
k#j
j=1,2,...M, i=12,.,N (14.12)
A/ :(aj,l’aj,Z""’aj,il"'!aj,N) (].4'13)

in which a;;=overall acceleration of the jth probe in the ith dimension and
A;=overall acceleration of the jth probe due to all other probes.

14.5 Movement of Probes

Probes move through the space and reach new positions in each iteration as the
decision space is searched and new solutions are generated. Moving to a new
position is done based on the current position of the probe, the previous velocity
of the probe, and its acceleration. The new position is evaluated as follows:

x;-,i=x,,,-+(v,,ixy/)+%(a,,ixw2), i=1,2,...,N, j=12,..,M (14.14)

(old)
_Xji T X . .
v, = i=12,.,N, i=12,..M (14.15)
74
XV = (&0, 8) 20X n®fn s J =120, M (14.16)

in which xj, =the new value of the ith decision variable of the jth solution,
X ;"ew) =the new position of the jth probe (new solution), x;; = the current value
of the ith decision variable of the jth solution at the present iteration, xﬁf’ild) =the
value of the ith decision variable of the jth solution in the previous iteration,
w=parameter of the algorithm that resembles time interval in physics, and
v, =velocity of the jth solution in the ith dimension. Formato (2007) suggested
that the initial value of v and y be considered to be zero and one, respectively.
In other words the value of v in the first iteration is equal to zero for all probes
in all dimensions.

14.6 Modification of Deviated Probes

While the algorithm progresses, some probes may move to a position outside
the decision space. A probe that strays outside the decision space is called
a deviated probe and its location has to be modified. The method for such
modification is central to the proper convergence of the CFO.
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There are many possible approaches to returning deviated probes to the
feasible space. One method is returning the probe to a specific point such as its
starting point or its last position. However, Formato (2007) stated that this
method does not work well. Another method is that any probe outside the
decision space is returned to the midpoint between its starting position and
the minimum or maximum value of the coordinate lying outside the allowable
range. Another possibility is to randomly reposition deviated probes. This
method is a simple approach because it can utilize the compiler’s built-in
random number generator, which presumably returns essentially uncorrelated
floating-point numbers. This introduces randomness into the CFO algorithm.
However, the CFO is a deterministic algorithm and it does not require
randomness in any of its calculations. Formato (2010) suggested the following
equations to restore deviated probes:

a7y = max| P+ ¢x (a1~ 1)1 |, 1212, N (14.17)

12 i°

5 = min] 1 =g (5 =) 1 |, i=1,2,..,N (14.18)
in which x}; = new value of the ith decision variable of the jth solution, j=the
deviated solution, and ¢ = probe repositioning factor, which is determined by
the user and is between zero and one.

14.7 Termination Criteria

The termination criterion prescribes when to terminate the algorithm. Selecting
a good termination criterion has an important role on the correct convergence of
the algorithm. The number of algorithmic iterations, the amount of improvement
of the solution between consecutive iterations, and the run time are common
termination criteria for the CFO.

14.8 User-Defined Parameters of the CFO

The size of the population (M); the value of the gravitational constants (a, #, G),
y, and ¢; and the termination criteria are user-defined parameters of the CFO.
The initial acceleration of a probe is usually set equal to zero.

A good choice of the parameters depends on the decision space of a parti-
cular problem, and usually the optimal parameter setting for one problem
is of limited utility for other problems. Consequently, determining a good
set of parameters often requires performing a large number of numerical
experiments. Practice and experience with specific types of problems is valua-
ble in this respect. A reasonable method for finding appropriate values for
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the parameters is performing sensitivity analysis. This is accomplished by
choosing combinations of parameters and running the algorithm several times
for each combination. A comparison of the results from different runs helps in

determining appropriate parameter values.

14.9 Pseudocode of the CFO

Begin

Input parameters of the algorithm and initial data

Generate M initial possible solutions
deterministically

Initialize the first acceleration of all solutions
While (the termination criteria are not satisfied)

Evaluate fitness value of solutions
For j =1 to M
Move probe j to new position
If the new position is outside of decision
space
Modify the position of solution j
End if
Next Jj
For j =1 to M
Evaluate new acceleration of probe j
Next Jj
End while
Report the population
End

14.10 Conclusion

This chapter reviewed the analogy between Newton’s gravitational low and the
CFO and explained the fundamentals of the CFO algorithm. A pseudocode of

the algorithm closed the chapter’s theory.
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Biogeography-Based Optimization

Summary

This chapter describes the biogeography-based optimization (BBO), which is
inspired by the science of biogeography and a meta-heuristic optimization
algorithm. This chapter presents a brief literature review of the BBO and its
applications and reviews the discipline of biogeography and its analogy to
BBO. The BBO algorithm is described in detail, and a pseudocode of the BBO
algorithm closes the chapter.

15.1 Introduction

Simon (2008) introduced the biogeography-based optimization (BBO) algo-
rithm utilizing biogeographic concepts. Savsani et al. (2014) studied the
effect of hybridizing the BBO technique with artificial immune algorithm
(AIA) and the ant colony optimization (ACO). Niu et al. (2014) proposed a
BBO algorithm with mutation strategies (BBO-M), which employs mutation
motivated by the differential evolution (DE) algorithm and chaos theory for
improving the global searching capability of the algorithm. Gupta et al.
(2015) implemented the BBO for optimal component sizing of off-grid small
autonomous hybrid power systems (SAHPS) by minimizing the cost of
energy. Yang (2015) proposed a modified biogeography-based optimization
(MBBO) algorithm to solve a flexible job shop scheduling problem (FJSSP).
Tamyjidy et al. (2015) used the BBO to deal with hole-making process problem.
Bozorg-Haddad et al. (2015) used the BBO to optimal operation of single-
and multi-reservoir systems.

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
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15.2 Mapping Biogeography-Based Optimization
(BBO) to Biogeography Concepts

Biogeography is the study of the geographical distribution of living organisms.
Mathematical biogeographic models attempt to explain how species migrate
between habitats, their appearance, adaptation, evolution, and extinction. The
habitats that are more suitable places for species settlement have a relatively
high habitat suitability index (HSI) that depends on factors such as vegetative
cover, precipitation, area, temperature, and so on. Variables that determine the
quality of habitat are known as suitability index variables (SIVs). SIVs are inde-
pendent variables and the HSI is variable dependent on SIVs. Habitats with
large values of HSI accommodate more species, and, conversely, a low HSI
habitat supports fewer species. Habitats with a high HSI have many species
that emigrate to nearby habitats, simply by virtue of the large number of spe-
cies that they host and at the same time exhibit low species immigration rate
because they already house many species. There is a stronger tendency for spe-
cies to emigrate from a habitat as its number of species increases to find a new
habitat with lower population density. Habitats with low population density
may attract immigration provided that the habitat has adequate life-support-
ing characteristics. Habitats with a low HIS may have a high species immigra-
tion rate. This immigration of new species to low HSI habitats may raise the
HSI of the habitat, because the suitability of a habitat is proportional to its
biological diversity.

Figure 15.1 illustrates the effect that the number of species has on the immi-
gration rate (1) and emigration rate (¢). According to Figure 15.1 the maximum
rate of immigration to the habitat occurs when there are no species in it. As the
number of species in the habitat increases, the rate of immigration decreases.
The rate of immigration becomes nil when the number of species in the habitat

Figure 15.1 Species immigration and
emigration pattern in a habitat.
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15.2 Mapping Biogeography-Based Optimization (BBO) to Biogeography Concepts

Table 15.1 The characteristics of the BBO.

General algorithm (see Section 2.13) Biogeography-based optimization
Decision variable Suitability index variables

Solution Habitat

Old solution Old habitat

New solution Modified habitat

Best solution Habitat with max HSI (elite habitat)
Fitness function Habitat suitability index

Initial solution Random habitat

Selection Migration process

Process of generating new solutions Migration process/mutation

equals S,,,,. The rate of emigration increases as the number of species in a
habitat increases, starting with zero emigration rate for an empty habitat. The
maximal rates of immigration and emigration are identified by I and E, respec-
tively. The immigration and emigration curves in Figure 15.1 are shown as
straight lines but they might be nonlinear curves.

BBO designates each habitat as a solution of the optimization problem,
and features of a habitat that determine its quality represent decision variables.
Therefore, each SIV is a decision variable. A good solution is known as a habitat
with a high HSI, while a poor solution represents a habitat with a low HSI. Also,
it is assumed that high HSI solutions represent habitats with many species,
whereas low HSI solutions represent habitats with few species. In nature, spe-
cies travel between habitats according to the immigration and emigration rates.
Therefore, solutions obtained with the BBO share their variables with each
other based on their fitness values. In this manner good solutions tend to share
their variables (features) with worse solutions, and poor solutions accept a lot of
new variables from good solutions. In contrast, good solutions accept few vari-
ables from other solutions. Solutions that have better fitness values than others
resist change more than worse solutions. This sharing of variables is intended to
raise the quality of solutions. Modified solutions are new solutions. A habitat’s
HSI can change suddenly due to cataclysmic events affecting natural habitats
such as large floods, disease, earthquakes, forest fires, and so on. The BBO
simulates these events randomly in terms of mutation. Table 15.1 lists the char-
acteristics of the BBO.

BBO begins by generating randomly a set of habitats. Each habitat is a potential
solution to the given problem. The fitness value of each habitat is evaluated and
mapped to the number of species, the immigration rate 4, and the emigration rate y.
Thereafter, the migration process is implemented to modify each non-elite
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| Define the parameters of the algorithm |

J

| Generate a set of habitats randomly |
T

\

| Allocate emigration and immigration rates based on fitness value ‘

J

| Modify the solutions based on migration and immigration rates ‘

|

| Apply mutation |

\

| Report the best habitat |

Figure 15.2 The flowchart of the BBO.

habitat, followed by its mutation. The objective function for all solutions is evaluated,
and the migration and mutation process are applied to modify the habitats. This
algorithm is terminated after a predefined number of iterations. The flowchart of
the FA is shown in Figure 15.2.

15.3 Creating an Initial Population

BBO designates a habitat as a possible solution of the optimization problem,
and each SIV of a habitat is a decision variable of the optimization problem. A
habitat is represented as an array of size 1 x N. In an N-dimensional problem
this array is written as follows:

Habitat = X =(x1,%,...,%i..., %N ) (15.1)

where X =a solution of optimization problem, x; = ith decision variable of solu-
tion X, and N=number of decision variables. The decision variable values
(%01, %2, %3, ..., %) can be represented as floating point number (real values) or as
a predefined set of values for continuous and discrete problems.



15.4 Migration Process

The biogeography algorithm begins with the generation of a matrix of size
M x N (see Section 2.6), where M and N denote the size of the population of
solutions and the number of decision variables, respectively. Hence, the matrix
of possible solutions that is generated randomly is written as follows (rows and
columns are the number of habitats (or solutions) and the number of decision
variables, respectively):

Xl xl,l x1,2 xl,i xl,N
X2 lel x2,2 e xZ,i e xZ,N
Population = = . (15.2)
X} xj,l lez “ee xj,i “ee xj,N
XM xM,l xM’2 xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

15.4 Migration Process

The HSI plays the role of a fitness value in the BBO algorithm. The greater the
HSI, the more suitable the habitat is. The number of species (S) has a direct
relation to the HSI for a solution (habitat) whose emigration E and immigra-
tion (J) rates are equal (E=1), as shown in the Figure 15.3. The HSI values can
be used for evaluating the fitness of a solution. In Figure 15.3 §; is a solution
with low HSI, while S, represents a high HSI solution. S; represents a habitat
with few species, while S, denotes a habitat with numerous species. The 4;
associated with S; is larger than the 4, corresponding to S,. y; for S; is smaller
than y, for S,.

The rates of emigration (¢) and immigration (1) are expressed in terms of the
number S of species found within the habitat in the following form:

u=Ex

(15.3)

max

lex(1— S j (15.4)

max

in which g =emigration rate, E =the maximum emigration rate, A=immigra-
tion rate, /=the maximum immigration rate, S =the number of species in the
habitat, and S,,,,, = the maximum number of species at which 1=0 and u=E.
Notice that uy+A=E=IifE=1
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Figure 15.3 Comparison of two
solutions for one problem.
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Figure 15.4 Ranking habitats (solutions) according to their fitness values in a minimization
problem.

The immigration process is implemented by first ranking all solutions based
on their fitness values so that the best (fittest) solution is the Mth solution of
the population as shown in Figure 15.4 for a minimization problem.

It is then assumed that S,,,, = M and the rank of each solution, which is pro-
portional to its fitness value is equal to S for that solution. The values u and A
are evaluated as follows:

n :Exﬁ, j=12,..,M (15.5)

X

j ,
Ai=Ix|1-2|, j=12,..,.M 15.6
j ( M] J (15.6)



15.5 Mutation

in which y; = the probability of emigration of the jth solution, 4;= the probability
of immigration of the jth solution, E = the maximum probability of emigration
(0 E<1), I=the maximum probability of immigration (0<7<1), and j=the
counter of solutions that are ranked in descending order (if the problem solved
is one of minimization) based on their desirability. The values of E and I are
determined by the user. Lastly, for every solution j of the population, a random
number in the range [0-1] (Rand,) is generated. If the generated random
number is less than /; this means that the jth solution has experienced
immigration. For any other solution r of the population, a random number in
the range [0—1] (Rand,) is generated. If Rand, is less than u,, a randomly selected
decision variable of the jth solution is replaced with the corresponding decision
variable of the rth solution. For example, if X = (x1,%,,...,%;,...,%x) is selected
for immigration and X' = (x1,%3,...,4;,...,xy ) is selected for emigration, and if
decision variable i (x;) is selected for replacement, then the improved solution
is constructed as follows:

Xmproved) = (3,050 Xy ) (15.7)

in which X% _ the improved form of solution X.

Each solution can be improved by another solution with some pro-
bability. A solution is chosen as an improvement according to its immigra-
tion rate after selecting the SIVs to be modified. The emigration rate (u)
relevant to other solutions is used to select the improvement solution. SIVs
from chosen solutions are randomly replaced with the SIVs of the improve-
ment solution. The BBO takes advantage of elitism when 1 =0 for the best
habitat.

The BBO migration strategy differs from other evolutionary strategies in at
least one important aspect. In evolutionary strategies global recombination
such as crossover in the genetic algorithm (GA) is employed to generate new
solutions. The BBO, on the other hand, implements migration to change exist-
ing solutions. Migration in the BBO, an adaptive process, is applied to modify
existing habitats. On the other hand, global recombination in evolutionary
strategy is a reproductive process. The BBO takes advantage of elitism in order
to retain the best solutions in the population similarly to other population-
based optimization algorithms. This prevents the best solutions from being
destroyed by immigration.

15.5 Mutation

Events such as the spreading of infectious diseases, natural hazards, and other
calamities can rapidly change the HSI of a habitat. Therefore, the condition of
a habitat changes from adequate to inadequate in a manner similar to
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mutations in the GA. Mutation can be exerted on SIVs after migration based
on a probability distribution such as the Gaussian distribution or the uniform
distribution. The mutation operator replaces some of the decision variables
with randomly generated values. Let X = (x;,%5,...,%;,...,%x ) be a solution of an
optimization problem and assume that the ith decision variable (x;) is selected
for mutation. The mutated solution X =(xy,;,...,%/,...,xy) obtained by pro-
ducing «; is calculated as follows:

x; :Rnd(xl@),x,(u)) (15.8)
in which x] = the new value of x; that is selected for mutation, x*) = the upper
bound of the ith decision variable, x*) = the lower bound of the ith decision
variable, and Rnd(a,b) = a random value in the range [4,b].

A probability of mutation (P,) is applied to solutions to implement muta-
tion. The elite solution has a probability of mutation equal to zero. A random

number is generated for every solution. If the generated random number is
less than P, that solution experiences mutation.

15.6 Termination Criteria

The termination criterion prescribes when to terminate the algorithm.
Selecting a good termination criterion has an important role on the correct
convergence of the algorithm. The number of algorithmic iterations, the
amount of improvement of the solution between consecutive iterations, and
the run time are common termination criteria for the CFO.

15.7 User-Defined Parameters of the BBO

The population size (M), the maximal probability of immigration (/) and emi-
gration (E), the probability of mutation (P,), and the termination criterion are
user-defined parameters of the BBO. A good choice of the parameters depends
on the decision space of a particular problem, and commonly the optimal set of
parameter for one problem is of limited utility for other problems. Practice
and experience with specific types of problems is valuable in this respect.
A reasonable method for finding appropriate values for the parameters
is performing sensitivity analysis. This is accomplished by choosing com-
binations of parameters and running the algorithm several times for each
combination. A comparison of the results from different runs helps in deter-
mining appropriate parameter values.



15.9 Conclusion

15.8 Pseudocode of the BBO

Begin
Input the parameters of the algorithm and initial
data
Generate M initial possible solutions randomly
While (the termination criteria are not satisfied)
Evaluate fitness value of solutions
Rank solutions based on their fitness values so
that Mth solution is the fittest solution
Determine the immigration (4) and emigration (u)
probabilities based on the ranks of solutions
For j =1 to (M - 1)
Select habitat j with probability 4,
If habitat j is selected
For r = 1 to M
Select habitat r with probability u,
If habitat r is selected
Select x; ; randomly
Put x5 ; = X, ;
End if
Next r
End if
Next 7
For j = 1 to (M - 1)
Select habitat j with probability P,
If habitat j is selected
Put x;, ; equal to a random value
End if
Next 7
End while
Report the best solution
End

15.9 Conclusion

This chapter described the BBO algorithm. First, a brief literature review about
the BBO and its application was presented. The principles of biogeography
were described and mapped to the BBO algorithm, which was described in
detail. Lastly, a pseudocode of the BBO closed the chapter.
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Firefly Algorithm

Summary

This chapter describes the firefly algorithm (FA), which is inspired by the flash-
ing powers of fireflies. It is a meta-heuristic optimization algorithm. This chapter
presents in sequence a brief literature review of the FA and its applications, the
characteristics of fireflies and their mapping to the FA, a detailed description of
the FA, and a pseudocode of the FA.

16.1 Introduction

Yang (2008) introduced the firefly algorithm (FA) and applied it to solve sev-
eral optimization test problems whose results compared favorably with the
genetic algorithm (GA) and particle swarm optimization (PSO) (Yang, 2009).
Yang (2010) merged the Levy flight (LF) approach searching with the FA and
solved several optimization test problems by applying the proposed hybrid
algorithm. The results indicated that the success rate of the Levy flight FA
(LFA) was better than that of the standard FA. Yang (2011) applied chaos
theory for auto-tuning of the parameters of the algorithm. The results of the
cited study compared favorably with those of the standard FA for the well-
known problem of the welded beam. Yan et al. (2012) developed an adaptive
FA (AFA) to upgrade the FA’s capability in solving large dimensional. The
latter authors showed that the AFA performed better with several test prob-
lems than the standard FA, differential evolution (DE), and PSO. Many stud-
ies have been devoted to improving the searching accuracy of the FA and
have shown its better convergence rate than other algorithms. The advantage
of the FA from the standpoint of speed of convergence has led to its adoption
in solving complex and nonlinear problems in different scientific fields. In
this context, Afnizanfaizal et al. (2012) introduced a new hybrid FA named
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hybrid evolutionary FA (HEFA) to improve the searching accuracy of the
original FA. This approach was a combination of the FA and the DE algo-
rithm with the goal of estimating the parameters of a nonlinear and complex
biological model of large dimensionality. The results showed that HEFA
has an improved searching accuracy compared with the GA, PSO, and
evolutionary programming (EP). Santos et al. (2013) calculated the amount of
precipitation of a region in South America. They computed the precipitation
using six different methods. In each of these methods, different effective
parameters were used to calculate the precipitation. The FA was applied to
find the optimal weights for the various methods. In a comprehensive review
of the FA, Fister et al. (2013) concluded that the FA’s solving efficiency is
explained by its capacity to solve multimodal, nonlinear, optimization prob-
lems. Garousi-Nejad et al. (2016b) applied the FA to reservoir operation and
demonstrates the superiority of this algorithm against the GA. Garousi-Nejad
et al. (2016a) presented a modified FA for solving multi-reservoir operation
in continuous and discrete domains.

16.2 Mapping the Firefly Algorithm (FA) to the Flashing
Characteristics of Fireflies

There are about 2000 firefly species, most of which produce short and rhyth-
mic flashes. The flashing light of fireflies is an interesting sight in the summer
sky of tropical and temperate areas. Usually a particular species exhibits a
unique flashing pattern. The flashing light is generated by bioluminescence. It
is believed that two fundamental functions of such flashes are to attract mating
partners (communication) and to attract potential prey. In addition, flashing
may also serve as a protective warning mechanism. Several factors including
the rhythmic flash, the rate of flashing, and the duration of flashing form part
of the signal system that brings both sexes together. Females respond to a male’s
unique pattern of flashing in the same species, while in some species such as
Photuris, female fireflies can mimic the mating flashing pattern of other species
to lure and eat the male fireflies who may mistake the flashes as a potential
suitable mate. In summary, fireflies flash their stored energy as a light to mate,
hunt, or evade predators. Fireflies produce attractiveness by shining light.

It is known that the light intensity at a particular distance from the light
source follows the inverse square law, whereby the light intensity decreases
with increasing distance between a viewer and the source of the light.
Furthermore, the air absorbs light that becomes weaker as the distance
increases. Fireflies are thus visible only over a restricted distance, usually
several hundred meters in the dark, which is usually sufficient for fireflies to
communicate.



16.2 Mapping the Firefly Algorithm (FA) to the Flashing Characteristics of Fireflies

The FA assumes that the flashing light can be formulated in such a way that
it is associated with the objective function of the optimization problem. The
FA is based on three idealized rules:

1) Allfireflies are unisex so their attractiveness depends on the amount of light

flashed by them regardless of their sex.

2) The attractiveness of fireflies is proportional to their brightness. Thus, for
any two flashing fireflies, the firefly that flashes less will move toward the
firefly that flashes more. The attractiveness and the brightness of fireflies
decrease as the distance between fireflies increases. Thus, the movement of
fireflies continues in this manner until there is no brighter firefly in a group.

Once this happens the fireflies move randomly.
3) The brightness of a firefly is determined by a fitness function.

The FA designates a firefly as a solution whose location in any N-dimensional
is a decision variable. In nature each firefly moves toward other fireflies accord-
ing to their attractiveness. For simplicity, it is assumed that the attractiveness of
a firefly is determined by its brightness, which in turn is associated with the
fitness function. The FA dictates that if the fitness value of a firefly is larger than
that of another firefly, the firefly with less brightness (fitness value) moves
toward the firefly with more brightness. The movement of the firefly is based
on the light intensity of the other firefly, which is influenced by the distance
between the fireflies. New positions occupied by the fireflies are new solutions.
Table 16.1 lists the characteristics of the FA, and the flowchart of the FA is

shown in Figure 16.1.

Table 16.1 The characteristics of the FA.

General algorithm (see Section 2.13)

Firefly algorithm

Decision variable
Solution

Old solution
New solution
Best solution
Fitness function
Initial solution
Selection

Process of generating new solutions

Position of firefly in each dimension
Firefly (position)

Old position of firefly

New position of firefly

Brightness

Random firefly

Movement of firefly

197



198

16 Firefly Algorithm

Define the parameters of the algorithm

Generate the initial population of fireflies randomly
T

Y%

Determine the brightness of fireflies

J

Rank the fireflies according to their brightness

Move each firefly toward the brighter fireflies

No Yes

Are the termination criteria satisfied?

v

Report fireflies

Figure 16.1 The flowchart of the FA.

16.3 Creating an Initial Population

Each possible solution of the optimization problem is called a firefly in the FA.
In an N-dimensional optimization problem, a firefly’s location represents a deci-
sion variable of the optimization problem. A firefly is denoted by an array of size
1 x N that represents the firefly’s location. This array is defined as follows:

Pireﬂy:Xz(xl,xz,...,xi,...,xN) (16.1)

where X=a solution of optimization problem, x;=ith decision variable of
solution X, and N =number of decision variables. The decision variable values
(%01, %2, %3, ..., %) can be represented as floating point number (real values) or as
a predefined set for continuous and discrete problems, respectively.



16.5 Distance and Movement

The FA algorithm starts by randomly generating a matrix of size M xN
(see Section 2.6), where M and N denote the size of the population and the
number of decision variables, respectively. Hence, the matrix of solutions that
is generated randomly is given as follows (rows and columns are the number of
fireflies and the number of decision variables, respectively):

X, X1,1 X2 ot X, ot XN
X, X1 Xp2 vt Xttt XoN
Population=| _ |= ' (16.2)
X] x},l x},z e x},[ e xl’N
Xm Xma Xmz2 0t XM t XMN

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

16.4 Attractiveness

The attractiveness is the brightness of the light emitted by fireflies, which
varies with the squared distance between them. In addition, light intensity
decreases with the distance from the source. According to Yang’s (2009)
assumptions, the attractiveness of a firefly at a distance d is calculated
as follows:

B(d)=Boxe ", m>1 (16.3)

in which f(d)=firefly’s attractiveness at distance d from the firefly, f,=the
attractiveness at a distance d =0, y=light absorption coefficient, d =the dis-
tance between any two fireflies, and m =exponent. Yang (2009) proposed the
value of m =2.

16.5 Distance and Movement

The distance between the kth and jth fireflies that are located at X and X; posi-
tions, respectively, is computed as follows:

N
djy = ”Xj _Xk” = Z(xj,i — Xk, )2 (16.4)

i=1

in which dj; = Cartesian distance between the jth and kth fireflies, || ||=the mag-
nitude of the distance vector between the jth and kth fireflies in space, x;;=ith
dimension of the spatial coordinate of the jth firefly’s position (ith decision
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variable of the jth solution), N = number of dimensions (decision variables), and
xx; = ith dimension of the spatial coordinate of the kth firefly’s position. It is
worth mentioning that d;;, defined in Equation (16.4) is not limited to
the Euclidean distance. In fact, any measure that can effectively characterize
the quantities of interests in the optimization problems can be used as the
distance depending on the type of the problem at hand (Yang, 2013).

For any two flashing fireflies, the firefly that flashes less intensely (fitness
value) moves toward the firefly that flashes more intensely (fitness value). The
longer the distance between fireflies, the lower their mutual attractiveness is.
The movement of fireflies continues guided by these two rules until there is not
a brighter firefly in a group. At that time fireflies move randomly. Rule 3 states
that the brightness of a firefly is determined by a fitness function.

If a pair of fireflies k and j is to be considered so that firefly j is better than
firefly k in terms of brightness (fitness value), then firefly k is attracted by firefly
j and will move toward the position of firefly j. As the result of this movement,
firefly k would move to a new position that is computed as follows:

X = Xy + Boe " (X — Xy )+ a(Rand —0.5) (16.5)

in which X{"*) and X; = new position and current position of firefly k that has
less brightness (solution with worse fitness value), respectively, X; = position of
firefly j that has more brightness (solution with better fitness value), a=a
randomized parameter, and Rand is a random value in the range [0,1]. The
second and third terms of Equation (16.5) correspond to the attraction and
randomization, respectively. o, y, and a are parameters of the algorithm.

16.6 Termination Criteria

Termination criterion determines when to terminate the algorithm. Selecting a
good termination criterion has an important role to correct convergence of the
algorithm. The number of iterations, the amount of improvement of solutions
between consecutive iterations, and the run time are common termination
criteria for the FA.

16.7 User-Defined Parameters of the FA

The size of population (M), the initial attractiveness (), the light absorption
coefficient (y), the randomized parameter (@), and the termination criteria are
user-defined parameters of the FA. Yang (2009) pointed out that for most imple-
mentations, the value of f, equals 1. Moreover, according to Yang (2009), the
range of values of a is [0,1]. Even though Yang (2013) pointed out that it is better
to use a time-dependent a so that randomness decreases gradually as the
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iterations proceed. Also, y is a light absorption coefficient that takes values in the
range [0,00), in theory. When y =0 the attractiveness is constant. In other words,
the light intensity does not decrease. Therefore, a flashing firefly can be seen
anywhere in the domain. In contrast, y =co means that the attractiveness is almost
zero in the view of other fireflies. In practice y is usually in the range [0.1,10]
(Yang, 2009). It is worth mentioning that the value of these parameters is the key
in determining the convergence speed and the overall capability of the algorithm.
Thus, a sensitivity analysis of these parameters is of vital importance.

16.8 Pseudocode of the FA

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible solutions randomly
While (the termination criteria are not satisfied)
Determine fitness value of all solutions
Sort all solutions according to their fitness
values
For k = 1 to M
For j = 1 to M
If F(X;) is better than F(Xj)
Move the solution k toward the solution j
End if
Next j
Next k
End while
Report all solutions
End

16.9 Conclusion

This chapter described the FA, presented a literature review of the FA and its
application, mapped the characteristics of fireflies into the FA, described the
FA in detail, and closed with a pseudocode of the FA.
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Gravity Search Algorithm

Summary

This chapter describes the gravity search algorithm (GSA), an evolutionary
optimization algorithm based on the law of gravity and mass interactions. It
designates a particle as a solution of an optimization problem. Particles exhibit
simple behavior, and they follow intelligent pathways toward the near-optimal
solution. This chapter presents a literature review of the GSA and its applica-
tions, explains the GSA’s analogy to the law of gravity and the GSA in detail, and
closes with a pseudocode of the GSA.

17.1 Introduction

Rashedi et al. (2009) introduced the gravity search algorithm (GSA) based on
the law of gravity and mass interactions and compared it with the particle
swarm optimization (PSO) and central force optimization (CFO) with well-
known benchmark functions. Their results established the excellent perfor-
mance of the GSA in solving various nonlinear functions. Ghalambaz et al.
(2011) presented a hybrid neural network and gravitational search algorithm
(HNGSA) method to solve the well-known Wessinger’s equation. Their results
showed that HNGSA produced a closer approximation to the analytic solution
than other numerical methods and that it could easily be extended to solve a
wide range of problems. Jadidi et al. (2013) proposed a flow-based anomaly
detection system and used a multilayer perceptron (MLP) neural network with
one hidden layer for solving it. The latter authors optimized the interconnec-
tion weights of an MLP network with the GSA, and the proposed GSA-based
flow anomaly detection system (GFADS) was trained with a flow-based data
set. Chen et al. (2014) proposed an improved gravitational search algorithm
(IGSA) and solved the identification problem for a water turbine regulation
system (WTRS) under load and no-load running conditions.
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17.2 Mapping the Gravity Search Algorithm (GSA)
to the Law of Gravity

Every particle in the universe attracts every other particle because of gravity.
Gravitation is the tendency of masses to accelerate toward each other. Newton’s
law of gravity states that particles attract each other with a force that is directly
proportional to their masses and inversely proportional to the square of the
distance between them. Nature encompasses three types of masses:

1) Active gravity mass, in which the gravity force increases with increasing
mass

2) Passive gravity mass, in which the gravity force does not increase with
increasing mass

3) Inertial mass that expresses mass resistance to changing its position and
movement

Particles attract each other with a specific force that is directly related to the
masses of the particles and inversely related to the square distance between
their centers of mass (see Figure 17.1):

Mass, x Mass,
dZ
where Force = gravity force (N), Mass; = active gravity mass (kg) of first particle,
Mass, =passive mass (kg) of second particle, y=Newton’s gravitational con-

stant [(Nm?)/kg?], and d = distance separating the centers of masses of the two
particles (m).

Force =y x (17.1)

Mass;, ‘

Mass,

Force;,

Forceqs

Mass;

Mass,

Figure 17.1 Gravity force between different particles; Force, is the resultant force on Mass;.



17.3 Creating an Initial Population

Table 17.1 The characteristics of the GSA.

General algorithm (see Section 2.13) Gravity search algorithm

Decision variable Position of particle in each dimension
Solution Position of particle

Old solution The old position of particle

New solution The new position of particle

Best solution -

Fitness function Mass of particle
Initial solution Random particle
Selection -

Process of generating new solutions Movement of particle

Newton’s second law states that when a force is applied to a particle, its accel-
eration depends only on the force and its mass:

A= Force

= (17.2)
Mass

where A = particle acceleration and Mass=inertial mass. Also, based on the law of
motion, the summation of the velocity ratio and acceleration at time ¢ is considered
in updating the velocity at time ¢ + 1. The variation of the velocity or acceleration of
any mass is equal to the force acting on the system divided by the inertial mass.

According to the GSA every particle in the system determines the position
and state of other particles employing the law of gravity (Rashedi et al., 2009).
The GSA begins by randomly choosing the positions of particles over the entire
solution space. Thereafter, a mass is assigned to each particle according to its
fitness value. Notice that the position of particles determines the fitness value.
In the next step, the exerted force on each particle by other particles is calcu-
lated. Lastly, each particle moves to new positions based on the summation
force of other particles. Table 17.1 defines the characteristics of the GSA, and
the steps of the GSA are depicted in Figure 17.2.

17.3 Creating an Initial Population

Each possible solution of the optimization problem is called a particle by the
GSA. In an N-dimensional optimization problem, a particle is an array of size
1 x N. This array is defined as follows:

Particle = X =(1,%,...;%ir...0 %N ) (17.3)
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’ Define the parameters of the algorithm

J

’ Generate the initial positions of particles randomly

[

V

’ Evaluate the mass of particles

J

’ Update velocities and positions

l

’ Update Newton gravitational factor

v

’ Report the particles

Figure 17.2 The flowchart of the GSA.

where X=a solution of optimization problem, x;=ith decision variable of
solution X, and N'= number of decision variables. Each of the decision variable
values (x7,%,,%3,...,%y) can be represented as floating point number (real val-
ues) or as a predefined set for continuous and discrete problems, respectively.
The GSA algorithm starts with the random generation (see Section 2.6) of a
matrix of size M x N, where M and N are the size of population and the number
of decision variables, respectively. Hence, the matrix of solutions that is
generated randomly is given as follows (rows and columns are the number of
particles and the number of decision variables, respectively):

X, X1,1
X X2,1

Population=| . |=
P X/ xj,l
Xm XM,1

X1,2

X2,2

x]"z

XM2

X1,i

X9,i

X1,N

X2,N

Xj,N

XM,N

(17.4)
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in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

17.4 Evaluation of Particle Masses

The fitness value is calculated for each particle. The best and the worst values
of the fitness value are called Best and Worst, respectively, which are deter-
mined as follows (under minimization):

M
Worst = A;sz[F(X, )] (17.5)
M
Best = Aj/I:iln[F(X ] (17.6)

where F(X;)=the fitness value of the jth solution and Worst and Best=the
fitness value of the worst and best solution, respectively. Then, the relative
normalized fitness value is calculated as follows:

ll/(Xj)_F(Xj)—W/orst

- , j=12,.,M (17.7)
Best —Worst

where yw(X)) =the normalized fitness value of solution j. The mass of each
particle is calculated based on the normalized fitness value as follows:

Mass(X;) = j=1,2,...M (17.8)

in which Mass(X;) =mass of particle (solution) jth. It is clear that the value
of Mass increases with increasing the difference between the fitness value of
solution j and Worst.

17.5 Updating Velocities and Positions

Equation (17.9) is employed to calculate the force acting on the jth particle
exerted by the rth particle:

Mass(X;)x Mass(X, )
d]‘,,«‘f'g
j=12..,M, r=12,..,M, i=12,.,N

Force;j,; =y x (xi,i - x”-) (17.9)
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where Force;,,; = the force action on the jth particle by the rth particle in the ith
dimension, € = small positive constant, and d, = the Euclidean distance between
the jth mass and rth mass that is calculated as follows:

N
dip= 3% %)) j=120M, r=12,.,M (17.10)
i=1

The GSA algorithm is randomized by assuming that the total force acting
on the jth particle in the ith dimension is a randomly weighted sum of the ith
components of the forces exerted by other particles. The acceleration of
each mass in the ith dimension is calculated based on the second law of
motion as follows:

M
Z(Rand x Force;,,; )

a;; =11 , j=12,.,M, i=12,.,N 17.11
, Muss(X,) / ( )

where a;; =acceleration of the jth particle (solution) in the ith dimension and
rand =a random number with uniform distribution in the interval [0,1] that
introduces random properties to the GSA.

The velocity is calculated as follows:

Vﬁ,‘r;eW) = Rand x viitai, j=12,..M, i=12,.,N (17.12)
where V%ew) =new velocity of the jth particle (solution) in the ith dimension,
v;;=previous velocity of the jth particle (solution), and Rand =a uniform ran-
dom variable in the interval [0,1].

The new position of the jth solution is given by

K=, v, j=12,.,M, i=12,.,N (17.13)
X;neW) =(x;,l,x},2,...,x;‘,i,...,x;‘,N) (1714')

where x); =new value of the ith decision variable of the jth solution, x;;=ith
decision variable of the jth solution, and X ;"EW) =new position of the jth particle
(new solution).

17.6 Updating Newton’s Gravitational Factor

The factor y is a parameter that controls the searching capacity and the GSA’s
efficiency. The searching capacity of the optimization algorithm increases
whenever y increases. On the other hand, the convergence efficiency of the
search algorithm increases when y decreases. For these reasons, it is



17.9 Pseudocode of the GSA

recommendable to use a value of y that is set initially high and decreases with
increasing time (Rashedi et al., 2009). A suitable formula for y is the following:

Cxt
yO=yoxe T, t=1,2,.,T (17.15)

where 7 =Newton gravitational constant in iteration #, y, and C=controlling
coefficients of the GSA, ¢=current iteration, and T'=lifetime of the system (total
number of iterations). In Equation (17.15), y(t) is initialized at the beginning of the
optimization and is reduced with advancing time to control the search accuracy.

17.7 Termination Criteria

The termination criterion determines when to terminate the algorithm.
Selecting a good termination criterion has an important role on the correct
convergence of the algorithm. The number of iterations, the amount of
improvement of the solution between consecutive iterations, and the run time
are common termination criteria for the GSA.

17.8 User-Defined Parameters of the GSA

The population size (M), the initial Newton gravitational constant (y), C, and
the termination criteria are user-defined parameters of the GSA. A good choice
of the parameters depends on the decision space of a particular problem, and
usually the optimal parameter setting for one problem is of limited utility for
other problems. Determining a good set of parameter often requires perform-
ing computational experiments. A reasonable method for finding appropriate
values for the parameters is performing sensitivity analysis, whereby combina-
tions of parameters are tested and the algorithm is run several times for each
combination to account for the random nature of the solution algorithm. In
this manner the analyst obtains a distribution of solutions and associated
objective function values for each combination of parameters. A comparison
of the results from all the combination of parameters provides guidance on a
proper choice of the algorithmic parameters.

17.9 Pseudocode of the GSA

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible solutions randomly
While (the termination criteria are not satisfied)
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Determine the best and worst solution according
to the fitness value
For j =1 to M
Evaluate inertial mass of solution j
Next 7
For j =1 to M
For r = 1 to M
Evaluate Euclidian distance between two
solution j and r
For i = 1 to N
Calculate the force action on solution
j from solution r in dimension 1
Next 1
Next r
Update the acceleration and velocity of
solution j
Move solution j to new position

Next 7

Update newton gravitational factor
End while
Report all solutions

End

17.10 Conclusion

This chapter described the GSA, presented a brief review of the GSA and its
applications, described analogies between the GSA and the law of gravity,
explained the GSA in detail, and introduced a pseudocode for the GSA.
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Bat Algorithm

Summary

This chapter describes the bat algorithm (BA) that is a relatively new meta-
heuristic optimization algorithm. The basic concepts of the BA are inspired by
the echolocation behavior of bats. The following sections present a literature
review of the BA and its applications, a description of the analogy between the
behavior of microbats and the BA, and a detailed explanation of the BA and
introduce a pseudocode of the BA.

18.1 Introduction

Yang (2010) developed the bat algorithm (BA) based on the echolocation
features of microbats. The continuous optimization of engineering design
optimization has been extensively studied with the BA, which demonstrated
that the BA can deal with highly nonlinear problems efficiently and can find
the optimal solutions accurately (Yang, 2010, 2012; Yang and Gandomi,
2012). Case studies include pressure vessel design, automobile design, spring
and beam design, truss systems, tower and tall building design, and others.
Assessments of the BA features are found in Koffka and Ashok (2012),
who compared the BA with the genetic algorithm (GA) and particle swarm
optimization (PSO) in cancer research problems and provided evidence that
the BA performs better than the other two algorithms. Malakooti et al.
(2012) implemented the BA to solve two types of multiprocessor scheduling
problems (MSP) and concluded that bat intelligence outperformed the list
algorithm and the GA in the case of single-objective MSP. Reddy and Manoj
(2012) applied fuzzy logic and the BA to obtain optimum capacitor place-
ment for loss reduction in electricity distribution systems. Ramesh et al.
(2013) reported a detailed study of combined economic load and emission
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dispatch problems employing the BA. They compared this algorithm
with the ant colony optimization (ACO) algorithm, hybrid GA, and other
methods and concluded that the BA is easy to implement and much superior
to the comparison algorithms in terms of accuracy and efficiency. Niknam
et al. (2013) showed that the BA outperforms the GA and PSO in solving
energy-generation problems. Baziar et al. (2013) compared the BA with the
GA and PSO in the management of micro-grid for various types of renewa-
ble power sources and concluded that the BA has the best performance.
Bozorg-Haddad et al. (2014) applied the BA to find optimal operation of
water reservoir systems.

18.2 Mapping the Bat Algorithm (BA)
to the Behavior of Microbats

Bats, the only winged mammals, can determine their locations while flying by
sound emission and reception, which is called echolocation. Their population
amounts to about 20% of all mammal species. Bat sizes range from the tiny
bumblebee bat (with mass ranging from 1.5 to 2 g) to the giant bats with wing-
span of about 2 m weighing about 1kg (Altringham, 1996; Colin, 2000).

Most microbats are insectivores and use a type of sonar, called echolocation,
to detect prey, avoid obstacles, and locate their roosting crevices in the dark.
Bats emit sound pulses while flying and listen to their echoes from surround-
ing objects to assess their own location and those of the echoing objects
(Yang and Gandomi, 2012).

Each pulse has a constant frequency (usually in the range of 25x10° to
150 x 10*Hz) and lasts a few thousandths of a second (up to about 8—10ms).
About 10-20 sounds are emitted every second with the rate of emission up to
about 200pps when they fly near their prey while hunting. If the interval
between two successive sound bursts is less than 300—400 ps, bats cannot pro-
cess them for path-finding purposes (Yang, 2010).

The speed of sound in air is typically v=340m/s, and the wavelength (W) of
the ultrasonic sound bursts with a constant frequency (4) is given by (Yang and
Gandomi, 2012)

v
W 2 (18.1)
in which W= the wavelength, v=the speed of sound, and 1 =frequency. Wis in
the range of 2—-14mm for the typical frequency range from 25x10° to
150 x 10> Hz. Such wavelengths W are of the same order of magnitude as their
prey sizes.
Bats emit pulses as loud as 110dB that are in the ultrasonic region (frequency
range of human hearing is between 20 and 20000 Hz). The loudness also varies
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from the loudest when searching for prey to a quieter base when homing toward
the prey. The traveling range of such short pulses is typically a few meters.

Microbats can avoid obstacles as small as thin human hairs. Such echolocation
behavior of microbats has been formulated to create the bat-inspired optimiza-
tion algorithm applying the following idealized rules (Yang, 2010):

1) Allbats use echolocation to sense distance, and they can discern the difference
between food/prey and background barriers.

2) Bats fly randomly with velocity v; at position x; with a fixed frequency 4,,;,,
varying wavelength W, and loudness Ay to search prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the
pulsation rate, depending on the proximity of their target.

3) The loudness can vary from a large (positive) Ay to a minimum constant
value A,,;,.

In general the frequency (1) is in the range of [4,,Amax] and corresponds to
a range of wavelengths [W,,;,, W,,..,]. In actual implementations, one can adjust
the range by adjusting the wavelengths (or frequencies), and the detectable
range (or the largest wavelength) should be chosen such that it is comparable
to the size of the domain of interest, and then toning down to smaller ranges.
For simplicity, 4 is assumed to be in the range of [0,4,,.]-

The pulsation rate (6) is in the range of [0,1], where 0 means no pulses at
all and 1 means the maximum pulsation rate. Based on these approxima-
tions and idealization, the basic steps of the BA have been summarized in
the flowchart shown in Figure 18.1, and Table 18.1 lists the characteristics of
the BA.

18.3 Creating an Initial Population

Each possible solution of the optimization problem represents a bat’s position
in the BA. A bat’s position is defined by a set of N coordinates that constitute
the decision variables. A bat’s position is denoted by an array of size 1 x N as
follows:

Bat = X =(%1,%,...; %15 %N ) (18.2)

where X =a solution (bat) of optimization problem, x; = ith decision variable of
solution X, and N =number of decision variables. The decision variable values
(%01, %2, %3, ..., %) are represented as floating point numbers (real values) or as a
predefined set for continuous and discrete problems, respectively.

The BA starts with the random generation (see Section 2.6) of a matrix of
size M x N where M and N are the size of population and the number of deci-
sion variables, respectively. Hence, the matrix of solutions that is generated
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Define the parameters of the algorithm

Generate initial location of bats

Adjust frequency and updating velocities

Update the location of

the bats

Local search and random fly

No Yes
Are the termination criteria satisfied?

\

Report the bats

End
Figure 18.1 The flowchart of the BA.

Table 18.1 The characteristics of the BA.

General algorithm (see Section 2.13)

Bat algorithm

Decision variable
Solution

Old solution
New solution
Best solution
Fitness function
Initial solution
Selection

Process of generating new solutions

Position of bat in any dimension
Position of bat

Old position of bat

New position of bat

Best bat

Distance with food

Random bat

Loudness criteria

Fly bats




18.4 Movement of Virtual Bats

randomly is written as follows (rows and columns are the number of bats and
the number of decision variables, respectively):

Xl xl,l x1,2 xl,i xl,N
X2 lel x2,2 e ‘x2,i e xZ,N
Population = = . (18.3)
X} xj,l lez “ee xj,i “ee xj,N
XM xM,l xM’2 xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

18.4 Movement of Virtual Bats

According to Figure 18.1 the fitness value is evaluated for all solutions, and
those solutions are ranked based on their fitness values. The following are the
rules to update the jth bat’s position (X)) and its velocity in an N-dimensional
search space (j=1, 2, ..., M) (updated positions):

X = (8,158 200 s Xn )y J =120 M (18.4)
x}lizx/,i+v},i, j:1,2,...,M, i:1,2,...,N (185)
v;,i=v,,i+;L,,ix(x,_i—xgest,,»), j=1,2,..,.M, i=12,.,N (18.6)

i =[ Aomin +(Aomas = Aomin) | ¥ Rand, j=1,2,..,M, i=12,.,N (187)
where X}”e"’) =the new position of the jth bat (new solution), xj; =the new
value of ith decision variable of the jth solution, x;; = the old value of the ith
decision variable of the jth solution, Rand =a random value in the range of
[0,1] drawn from a uniform distribution, xp,;=ith decision variable of the
current global best solution determined after comparing all the solutions
among all the M bats, v;;=the velocity of the jth bat (solution) in the ith
dimension in the previous iteration, v}, = the velocity of the jth bat (solution)
in the ith dimension in the current iteration, and 4,,;, and A,,,,=lower and
upper boundaries, respectively, of the frequency that are user-defined
parameters of the algorithm and are determined based on the size of the
decision space of the problem at hand. A frequency value is drawn from a
uniform distribution in the range [A,iAma.] at the start of the BA and
assigned to each bat.
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18.5 Local Search and Random Flying

A new solution is locally generated using random walk once a solution has
been selected among the current best solutions. This is the local search part
(random fly) of the BA. The new solution that replaces the rth selected solution
(Yang and Gandomi, 2012) is calculated as follows:

X =%, +Rnd(-1,1)x AY, i=1,2,..,N (18.8)

X}EneW) :(x},’,17x;,21---7x},’,i1---)x;,N) (189)

where Rnd(-1,1) =a random number in the range of [-1,1] and AY = the average
loudness of all the bats at iteration . The A” is reduced while approaching the
optimum solution by using a rate called random walk rate.

Updating the velocities and positions of bats is similar to the procedure in the
standard PSO algorithm as A essentially controls the pace and range of the
movement of the swarming particles. Therefore, the BA constitutes a combina-
tion of the standard PSO and intensive local search controlled by the loudness
and pulsation rate.

18.6 Loudness and Pulse Emission

The BA implements local search when the pulse rate criterion is satisfied. The
new solution replaces the old one when the loudness criterion is satisfied and
the new solution is better than the old one. The pulse rate criterion is satisfied
if a random value (Rand) is larger than §;. The loudness criterion is satisfied if
a random value (Rand) is less than A;. In addition, whenever the new solution
replaces the old one, the loudness (4;) and the pulsation rate (5;) are updated
according to the BA’s iteration steps. The loudness usually decreases once a bat
has found its prey, while the pulsation rate increases. Thus, the loudness can be
chosen as any value of convenience. For example, the values of AQ-1 and
A,uin=0 can be used, whereby the zero value means that a bat has just found a
prey and temporarily stops emitting any sound. The pulsation and loudness
rates at each iteration are calculated as follows:

5/(;) :5](Final) X(l_e—clxt)’ ji=12,.,.M (18.10)

AY =Cyx AU (18.11)

where 5/“ )= pulsation rate of the jth solution at iteration £ 8 /%) = final pulsa-
tion of the jth solution, which is a user-defined parameter; Ajt) =loudness of the
jth solution at iteration £ and C; and C, are constant values. C, is similar to the
cooling factor in the simulated annealing (SA) algorithm. For any 0< C,< 1 and
C;>0, we have A;” —0and 5](»” - E;Fi”“l) when ¢ — 0.



18.9 Pseudocode of the BA

Choosing the correct values for the parameters C; and C, requires computa-
tional experimentation. Initially, each bat should be assigned values of loudness
and pulsation rate. This can be achieved by randomization. Their loudness and
pulsation rates are updated only if the solutions improve, which means that the
bats are moving toward the optimal solution.

18.7 Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting
a good termination criterion has an important role in the correct convergence of
the algorithm. The number of iterations, the amount of improvement of solu-
tions between consecutive iterations, and the run time are common termination
criteria for the BA.

18.8 User-Defined Parameters of the BA

The population size (M), the initial loudness (A, the minimum loudness
(A,in), the final pulsation rate (8% the values of constant C; and C,, the
frequency boundaries (4,,;,, and 4,,,,), and the termination criteria are user-
defined parameters of the BA. A good choice of the parameters depends on the
decision space of a particular problem, and usually the optimal parameter
setting for one problem is of limited utility for other problems. Determining a
good set of parameter often requires performing computational experiments.
A reasonable method for finding appropriate values for the parameters is
performing sensitivity analysis, whereby combinations of parameters are tested
and the algorithm is run several times for each combination to account for the
random nature of the solution algorithm. In this manner, the analyst obtains a
distribution of solutions and associated objective function values for each
combination of parameters. A comparison of the results from all the combina-
tion of parameters provides guidance on a proper choice of the algorithmic
parameters.

18.9 Pseudocode of the BA

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible situations
While (the termination criteria are not satisfied)
Evaluate fitness value for all solutions
Rank all solutions according to their fitness
values and find the current best solution
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18 Bat Algorithm

For j =1 to M
Generate new solutions by adjusting frequency,
and updating velocities and locations/
solutions
Generate Rand randomly
If Rand > 0,
Select a solution among the best
solutions
Generate a local solution around the best
solution
End if
Generate a new solution by random fly
Generate Rand randomly
If (Rand < Aj) and (the new solution is
better than the old one)
Accept the new solutions
Increase §; and reduce A;
End if
Next 7
End while
Report all solutions
End

18.10 Conclusion

This chapter described the BA, reviewed its development and applications,
provided an analogy between the echolocation of bats and the BA, explained
the BA in detail, and closed with a pseudocode for the BA.
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Plant Propagation Algorithm

Summary

This chapter describes the plant propagation algorithm (PPA) that emulates
the multiplication of plants akin to strawberry. The history of the PPA and its
applications are reviewed, the PPA is mapped to the natural process of plant
propagation, the PPA is described in detail, and a pseudocode of the PPA is
introduced.

19.1 Introduction

The plant propagation algorithm (PPA) is inspired by propagating plants akin
to the strawberry plant (Salhi and Fraga, 2011). They tested the PPA with low-
dimensional single- and multi-objective problems. The results showed that the
PPA has merits and deserves further testing and research on higher-dimensional
problems. Sulaiman et al. (2014) applied the PPA to solve large problems. The
PPA is attractive because, among other things, it is easy to implement. It also
involves only a few parameters that are relatively simple to specify unlike most
other meta-heuristic algorithms.

19.2 Mapping the Natural Process to the Planet
Propagation Algorithm (PPA)

The PPA resembles the manner in which plants, in particular strawberry
plants, propagate. Although some varieties of plants propagate using seeds
contained in fruits, hybrid types like strawberry are infertile and issue run-
ners to propagate. In this way, the original plant issues runners to generate
new plants.
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19 Plant Propagation Algorithm

There is an interesting strategy that propagating plants employ. These plants
develop runners. By doing so these plants attempt to place their offspring
where nutrients and growth potential are suitable. If a plant is placed in a good
spot of land, which provides enough water, nutrients, and light, it issues many
short runners that generate new plants, which occupy the neighborhood as
best as they can. However, if the original plant is placed in a spot without
enough water, nutrients, light, or any other requirements called growth poten-
tial, it tries to find a better spot for its offspring. In the latter instance, the plant
issues few runners farther to explore distant neighborhoods. It can be inferred
that this plant sends only a few because sending a long runner is a large
investment for a plant that is placed in a poor land.

The location of each plant represents a solution of the optimization problem in
the PPA. The growth potential of the plant’s location is synonymous to its fitness
value. Generally, the richer the land, the better the fitness values. A plant propaga-
tion strategy is to generate new plants around itself using runners so that the num-
ber and length of runners are determined by the fitness value of the original (mother)
plant. Runners represent the process by which new solutions of the optimization
problem are generated. Table 19.1 lists the characteristics of the PPA.

The PPA consists of the following two critical rules:

1) Plants that are placed in appropriate lands propagate by spreading many
short runners.

2) Plants that are placed in poor lands propagate by generating a few long
runners.

Exploration and exploitation are important features of optimization algorithms.
Exploration refers to the property of searching the space, while exploitation refers
to the property of searching near good solutions for achieving a more precise
solution. It is clear that in the PPA exploitation is executed by plants sending

Table 19.1 The characteristics of the PPA.

General algorithm (see Section 2.13) Plant propagation algorithm
Decision variable Position of plant in any dimension
Solution Position of plant

Old solution Mother plant

New solution Daughter plant

Best solution -

Fitness function Growth potential
Initial solution Random plant
Selection Eliminating worst solutions

Process of generating new solutions Propagation strategy




19.2 Mapping the Natural Process to the Planet Propagation Algorithm (PPA)

many short runners in good areas (high growth potential), while exploration is
executed by sending few long runners by plants in poor areas.

The PPA starts by randomly generating a number of initial possible solutions
(see Section 2.6) as plants within the decision space. The objective functions of
all plants are evaluated, and the evaluated objective functions are normalized
between zero and one. This allows ranking of all solutions according to their
fitness values. In the next step, each plant acting as a mother plant generates
daughter plants, which represent new solutions. This process is called propaga-
tion, and it is obvious that propagation proceeds according to the propagation
strategy of plants. Plants with a strong fitness values generate more new solutions
near themselves than those plants with inferior fitness values. Under maximiza-
tion (minimization), strong (inferior) fitness value is tantamount to high (low)
values of the fitness function. Each plant produces several offspring (new
solutions), and, therefore, the population of solutions grows in each iteration.
The worst solutions are eliminated at the end of each iteration to control the size
of the population of solutions, and only a fixed number of solutions are kept and
are carried to the next iteration. These solutions are considered as mother
plants, and the aforementioned process is repeated until the termination criteria
are satisfied. Figure 19.1 depicts the flowchart of the PPA.

’ Define the parameters of the algorithm ‘

J

’ Generate initial plants ‘

[
v

’ Normalize the fitness values of plants ‘

J

’ Propagate offspring of plants ‘

l

’ Eliminate plants with lower fitness value ‘

No Yes
Are the termination criteria satisfied?

]

’ Report the plants ‘

Figure 19.1 The flowchart of the PPA.
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19 Plant Propagation Algorithm

19.3 Creating an Initial Population of Plants

Each possible solution of the optimization problem represents a plant’s position
in the PPA. In an N-dimensional optimization problem, a plant’s position is writ-
ten as an array of size 1xN, whose elements represent the decision variables.
This array is defined as follows:

Plant:X:(xl,xz,...,xi,...,xN) (19.1)

where X =a solution of the optimization problem, x;=ith decision variable of
solution X, and N =number of decision variables. The PPA algorithm starts by
randomly generating a matrix of size M x N (see Section 2.6) where M and N
are the size of the population and the number of decision variables, respec-
tively. Hence, the matrix of solutions that is generated randomly is as follows
(rows and columns represent the number of plants and the number of decision
variables, respectively):

X, X1,1 X2 ot X, ot XN
X, Xo1  Xao vt Xttt XoN
Population = = ' (19.2)
X] xl,l x/,Z e x},l “en xl’N
XM xM,l xM,Z xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size. Each of the decision variable values (xy, x,, %3, ..., xy) can be
represented as floating point number (real values). The PPA solves problems
with continuous decision spaces.

19.4 Normalizing the Fitness Function

The fitness of a solution must be assessed prior to generating new solutions. To
accomplish this assessment, the fitness functions are normalized between zero
and one. The following equation normalizes the fitness function:

F (X j ) —Worst
o|F(X;)|=—""—, j=12,..,.M 19.3
[ ( ]ﬂ Best —Worst / ( )
in which o[F(X))] =the normalized fitness value of the jth solution,
F(X;) = fitness value of the jth solution, Worst = the worst possible value of F,
and Best = the best possible value of F. Determining the best and worst pos-
sible values of the fitness value is sometimes impossible. In this case the best
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and worst available values in the current population or the best and worst
fitness values calculated during the search process replace the best and
worst possible values. Other functions such as trigonometric functions or
exponential functions can be used for normalization depending on the prob-
lem at hand.

19.5 Propagation

The PPA dictates that each plant issues runners to explore the decision space.
Each runner results in an offspring that is a new solution. The number of off-
spring made by a solution may vary among solutions. The number of runners
(offspring) generated by a solution is proportionate to its normalized fitness
value, and it is evaluated as follows:

/,tj=(umaxx0',’><Rand—|, j=12,..,.M (19.4)

in which y;=number of new solutions generated by the jth solution, y,,,, =the
maximum number of new solutions that can be produced by a solution (this is
a predefined parameter), o;=the normalized fitness value of the jth solution,
and Rand = a random value from the range [0,1]. Notice that [x] where x is the
argument of the function on the right-hand side of Equation (19.4) means the
ceiling of x (i.e., the smallest integer >x).

In contrast to the number of runners (new solutions), the length of runners is
inversely proportional to the normalized fitness values. It was previously stated
that better solutions generate new solutions close to themselves and poor solu-
tions generate new solutions in places farther from themselves. The distance
between the original solution and new solution is determined as follows:

d;;=2x(1-0;)x(Rand—0.5), j=12,.,M, i=12,.,N (19.5)

in which d;;=the length of runner of the jth solution in the ith dimension
(decision variable). The term (Rand —0.5) makes it possible for a runner to
take negative or positive directions.

The evaluated runner’s length is employed to generate new solutions as
follows:

x;,l»:x,,i+(x§“)—x§“)xd,,,-, i=12,.,N, r=12..,4; j=12..,M
(19.6)

in which «; ; = ith decision variable of the rth new solution generated by the jth
solution, x;;=ith decision variable of the jth solution, x!)=the upper bound of
the ith decision variable, and x,(L )= the lower bound of the ith decision variable.
Equation (19.6) may generate a new solution that falls outside the decision space.
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In the latter instance, the newly generated solution is adjusted to be within the
decision space. Each new solution r is represented as follows:

XU = (01,8 20X XN )s T =120l (19.7)

in which X" = rth new solutions generated by the jth solution.

19.6 Elimination of Extra Solutions

It is necessary at the end of each iteration to delete the part of population in
excess of the allowed number of solutions. Solutions produce several offspring
(new solutions) in each iteration, which means that the population would grow
as the iterations progress unless the population is controlled in each iteration.
This is achieved in each by eliminating the worst solutions to keep the number
of solutions fixed as the algorithm progresses.

19.7 Termination Criteria

The termination criteria determine when to terminate the algorithm.
Selecting a good termination criterion is important because if the number of
iteration of the algorithm is not sufficiently large, the algorithm may termi-
nate prematurely at a suboptimal solution. On the other hand, it is clear that
wasteful computations are incurred if the algorithm continues to run when
the solution does not improve across iterations. Although there are several
distinct termination criteria, Salhi and Fraga (2011) recommended that the
number of iterations is a suitable termination criterion. This means that
the PPA algorithm runs for a predefined number of iterations.

19.8 User-Defined Parameters of the PPA

The population size (M), the maximum number of new solutions that can be
produced by each solution (y,,,,), and the maximum number of iterations are
parameters that must be determined by the user. In comparison with other
meta-heuristic and evolutionary algorithms, it is seen that the PPA has a
relatively small number of user-defined parameters. Its simple structure and
small number of parameters make implementation of the PPA comparatively
simple. A good choice of the parameters depends on the decision space of a
particular problem, and usually the optimal parameter setting for one
problem is of limited utility for any other problem. Determining a good
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set of parameters often requires performing computational experiments.
A reasonable method for finding appropriate values for the parameters is
performing sensitivity analysis, whereby combinations of parameters are
tested and the algorithm is run several times for each combination to account
for the random nature of the solution algorithm. In this manner, the analyst
obtains a distribution of solutions and associated objective function values
for each combination of parameters. A comparison of the results from all
the combination of parameters provides guidance on a proper choice of the
algorithmic parameters.

19.9 Pseudocode of the PPA

Begin
Input the parameters of the algorithm and initial data
Let M = the size of population and N = number of
decision variables
Generate M initial possible solutions randomly
While (the termination criteria are not satisfied)
Evaluate fitness value of solutions
For j = 1 to M
Evaluate normalized fitness value of solution
j (elF(X;)])
Evaluate number of new solutions generated by
solution j (uj)
For 1 = 1 to N
Evaluate the length of runner d; ;
Next 1
For r = 1 to uj
For 1 = 1 to N
Evaluate the decision variable i-th of
new solution r-th (x} ;)
If X;,i > XS:U) or X;,i < XS‘_L)
Adjust x,; within the boundaries
End if
Next 1
Next r
Next Jj
Constitute new population with M best solutions
End while
Report the population
End
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19 Plant Propagation Algorithm

19.10 Conclusion

This chapter described the PPA that simulates multiplication of some plants
akin to the strawberry plant. The chapter presented a brief introduction to
the PPA, its analogy to plant propagation, an algorithmic explanation, and a
pseudocode of the PPA.
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Water Cycle Algorithm

Summary

This chapter describes the water cycle algorithm (WCA), which is a relatively
new meta-heuristic optimization algorithm. The fundamental concepts of
the WCA are inspired by natural phenomena concerning the water cycle and
how rivers and streams flow to the sea. The next sections present the
background and applications of the WCA, explain the WCA, and provide a
pseudocode.

20.1 Introduction

The water cycle algorithm (WCA) was introduced by Eskandar et al. (2012).
The authors compared the results of the WCA with those of other meta-
heuristic algorithms such as the genetic algorithm (GA), particle swarm
optimization (PSO) algorithm, harmony search (HS), bee colony, and dif-
ferential evolution (DE). Their results showed that the WCA is a suitable
method for solving constrained optimization problems and competes favora-
bly with other meta-heuristic algorithms. Eskandar et al. (2013) illustrated
the application of the WCA by solving the problem of designing truss struc-
tures and compared the results with those of other meta-heuristic algorithms
such as the GA, PSO, mine blast algorithm (MBA), etc. The results of their
comparison demonstrated the strong capability of the WCA algorithm to
find optimal solutions and its rapid convergence. Bozorg-Haddad et al.
(2014) applied the WCA to find optimal operation strategies for a four-
reservoir system in Iran. The results demonstrated the high efficiency and
reliability of the WCA in solving reservoir operation problems. Ghaffarzadeh
(2015) applied the WCA to design a power system stabilizer (PSS) that
enhances the damping of power system oscillations.
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20.2 Mapping the Water Cycle Algorithm (WCA)
to the Water Cycle

The basic idea of the WCA is inspired by nature’s water cycle and by the man-
ner in which rivers and streams flow toward the sea. The water or hydrologic
cycle has no beginning or end, and its several processes occur consecutively
and indefinitely. Streams and rivers constitute interconnected networks, issu-
ing from high ground, where sometimes snow or ancient glaciers melt, and
discharging to sea and lakes. Streams and rivers collect water from rain and
other streams on their way down stream toward the sea. Water in rivers, seas,
and lakes evaporates. The evaporated water is carried to the atmosphere to
generate clouds. These clouds condense and release the water back in the form
of rain or snow, creating streams and rivers. This is the manner of functioning
of the hydrologic or water cycle (see, e.g., David, 1993).

The WCA simulates the precipitation process by randomly generated rain-
drops, each of which is an array that represents a solution of the optimization
problem. The streams are created by the raindrops, and streams join each
other to form rivers. Some of the streams may also flow directly to the sea.
Rivers and streams flow to the sea (the lowest point). The WCA classifies rain-
drops as the sea, or as rivers, or as streams that form an interconnected net-
work. The sea is the best raindrop (solution), which has the minimum fitness
value (under minimization), and other raindrops are known as rivers or
streams, so that rivers are better solutions than streams. Rivers flow to the sea,
and streams flow to rivers or to the sea. The WCA generates new solutions as
water flows toward the sea. The evaporation process causes the seawater to
evaporate as rivers/streams flow to the sea. Whenever all rivers have fitness
values as good as that of the sea, this indicates that all the water has evaporated
and raining occurs again completing the water cycle. Table 20.1 lists the char-
acteristics of the WCA.

The WCA assumes that there is rain or precipitation that generates rain-
drops (initial solutions) randomly. The fitness values of all the raindrops are
evaluated following precipitation. The best raindrop, which has the lowest
value of objective function (under minimization), is marked out as the sea, and
other raindrops are classified into rivers and streams according to their fitness
values. In the next step, the number of streams connected to each river is
determined according to the fitness of each river. In fact, each river receives
water from the streams depending on its flow magnitude. New streams and
rivers (new solutions) are generated by old streams flowing to their corre-
sponding rivers and by rivers flowing to the sea. The direction of flow is
reversed if new streams are better than the old corresponding rivers. In other
words, a new stream that is better than an old river becomes a river, and an old
river becomes a stream. Also, the direction of flow between rivers and the sea
can be reversed if a new river is better than an old sea. The flow of water
through streams and rivers toward the sea continues until all rivers reach the
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Table 20.1 The characteristics of the WCA.

General algorithm (see Section 2.13) Water cycle algorithm

Decision variable Position of raindrop in any dimension
Solution Raindrop/sea/river/stream

Old solution Sea/river/stream

New solution New place of stream

Best solution Sea

Fitness function Flow

Initial solution Random stream

Selection Categorizing streams into sea/river/stream
Process of generating new solutions Stream and river flow

sea, which indicates that evaporation has been completed, at which time rain
(or precipitation) occurs again to form a new network of streams. This
algorithm is repeated until the termination criteria are satisfied. Figure 20.1
presents the flowchart of the WCA.

20.3 Creating an Initial Population

The WCA designates possible solution of the optimization problem as a rain-
drop. In an N-dimensional optimization problem, a raindrop is an array of size
1 x N. This array is defined as follows:

Raindrop = X =(%1,%,...,%;..., % ) (20.1)

where X =a solution of optimization problem, x; = ith decision variable of solu-
tion X, and N=number of decision variables. To start the optimization algo-
rithm, a matrix of size M x N is generated (where M and N are the size of
population and the number of decision variables, respectively). Hence, the
matrix of solutions that is generated randomly (see Section 2.6) is written as
follows (rows and columns are the number of raindrops and the number of
decision variables, respectively):

X, X1 X120t Xt XN
X Xo1 Xop vt Xttt XoN
Population = = . (20.2)
X} x/,l x/,Z “en xi,l “en x}’N
Xm M1 XMm2 XM, XM,N
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| Define the parameters of the algorithm |

J

| Generate initial raindrops randomly |
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| Classified the raindrops into a sea, rivers, and streams |
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| Determine the intensity of flow |
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| Streams flow to rivers |

Does a stream have a lower fitness than the
corresponding river?
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Does a river have a lower fitness
than the sea?
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N
| Apply raining process |
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| Decrease § |

v

| Report the sea |

Figure 20.1 The flowchart of the WCA for a minimization problem.




20.4 Classification of Raindrops

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size. Each of the decision variable values (x, x5, %3, ..., xx) can be
represented as floating point number (real values) or as a predefined set for
continuous and discrete problems, respectively.

20.4 Classification of Raindrops

The raindrop that has the minimum fitness value among others is marked out
as the sea after evaluating the objective function of all the solutions. A number
R of the best raindrops are selected as rivers. The total number of streams S
that flow to the rivers or may directly flow to the sea is calculated as follows:

S=M-R-1 (20.3)
—
sea
in which R =the total number of rivers and S =the total number of streams.
Figure 20.2 illustrates how to classify raindrops and the relations between
streams, rivers, and raindrops.
The following equations are used to designate/assign raindrops to the rivers
and sea depending on the intensity of the flow (fitness value) in a minimization
problem:

‘ F(Sea)

Asea = Round n xS (20.4)
‘F(Sea) + ZF(River, )‘
r=1
N I
] | >
I ] >
= Streams —
Raindrops L] I
(solutions) ] ———
— — >
I Rivers { -
r— - <
— Sea -~ M-<---

[

|
|

F(X)

a
>

Figure 20.2 Classification of raindrops and relations between the sea, rivers, and streams
according to their fitness values (F(X)) for a minimization problem where M=10 and R=3.
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A; = Round ‘ F(Riverj)

2 xS, j=12,...,R (20.5)
‘F(Sea)+ZF(River,)‘

r=1

where F(X) =fitness value of a solution X, Round =a function that rounds off
the value of the function within brackets to the closest integer number, Sea = the
best solution, River;=jth good solution after the best solution, 4, =the num-
ber of streams that flow directly to the sea, and 4;=the number of streams that
flow to the jth river.

20.5 Streams Flowing to the Rivers or Sea

The streams are created from the raindrops and join each other to form new
rivers. Some of the streams may also flow directly to the sea. All rivers and
streams discharge to the sea (best optimal point). A stream flows to a river
along a line connecting them using a randomly chosen distance calculated as
follows:

X'=Rnd(0,Cxd), C>1 (20.6)

where X’ = new stream, Rnd = a random value between 0 and (C x d), d = the cur-
rent distance between old stream and river, and C=a value between 1 and 2
(near to 2). The best value for C may be chosen as 2. The value of Cbeing greater
than one enables streams to flow in different directions toward the rivers.
Figure 20.3 shows the schematic of a stream’s flow toward a specific river.

The concept behind Equation (20.6) involving the flow of streams to rivers
may also be used for the flow of rivers to the sea. Therefore, the new decision
variables for new streams and rivers are as follows:

Streamﬁ-"ew) =Stream;; + Rand x C x (Riveri(” —Stream; ; )

i (20.7)
i=1,2,.,N, j=12,...S

River;;’ew) = River;; + Rand x C x (Seai — River;, )

i=1,2,..,N, j=12,.,R

@ @ River
d

Figure 20.3 Schematic of stream flowing toward a river at distance d: X: existing stream;
X': new stream.

(20.8)




20.6 Evaporation

where Stream%e‘”) =new value of the ith decision variable of jth stream,
Stream;; = the old value of the ith decision variable of the jth stream, River/) = the
value of the ith decision variable of the river connected to the jth stream,
Riverj(,’few): new value of the ith decision variable of the jth river, River;;=the
old value of the ith decision variable of the jth river, Sea;=the value of the ith
decision variable of the sea (best solution), and Rand = uniformly distributed
random number in the range [0,1].

The positions of a river and stream are exchanged (i.e., the stream becomes
a river and vice versa) whenever the solution given by a stream is better than
that of the river to which it discharges after calculation of the new stream and

river. Such exchange can similarly happen for rivers and the sea.

20.6 Evaporation

Evaporation is one of the most important factors that can prevent the
WCA algorithm from rapid convergence (immature convergence). As can
be observed in nature, water evaporates from rivers and lakes. The evapo-
rated water is carried to the atmosphere to form clouds that then condenses
in the colder atmosphere, releasing the water back to earth in the form of
rain (or snow, in which case we deal with snow pellets as equivalents to rain
drops). The rain creates the new streams and rivers, and the water cycle
continues. The WCA induces evaporation from seawater as rivers/streams
flow to the sea. This assumption is necessary to avoid entrapment in local
optima. The following commands show how to determine whether or not a
river flows to the sea:

d =|Sea— River;|, j=1,2,...,R (20.9)

where d=the distance between the sea and rivers. If the distance between a
river and the sea is less than a predefined threshold § (d < §), this indicates that
the river has reached/joined the sea. In this instance, the evaporation process
is applied, and, as seen in nature, the precipitation will start after sufficient
evaporation has occurred. Therefore, a large value of 6 reduces the search,
while a small value encourages the search intensity near the sea. § controls the
search intensity near the sea (the optimal solution). It is recommended that §
be chosen as a small number close to zero (Eskandar et al., 2012). The value of
0 gradually decreases as the algorithm progresses as follows:

t
50 _ g0 8" (20.10)
T
where T'=the total number of algorithm’s iterations and 5 = the threshold of
evaporation in iteration ¢.
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20.7 Raining Process

The raining process is applied after satisfying the evaporation process. New
raindrops are randomly generated during the raining process. The decision
variables of the new raindrops are generated as follows:

") = Rnd (xV 1), i=1,2,..,N (20.11)
where x"") = decision variable ith of a new raindrop (solution) and x* and

(1) ~lower and upper bounds defined by the given problem, respectively.
Again, the best newly formed raindrop is considered as a river flowing to the
sea. The other new raindrops are assumed to form new streams that flow to the
rivers or may flow directly to the sea.

The convergence rate and computational performance of the WCA for con-
strained problems is improved by applying Equation (20.12) to generate the
decision variable of new streams that flow directly to the sea. This equation
encourages the generation of streams that flow directly to the sea to improve
the search near the sea (the optimal solution) in the feasible region of con-
strained problems:

(new) _

Stream;""’ = Sea; +n xRandn, i=1,2,...,.N (20.12)

where Streum(”ew) = ith decision variable of the new stream, # = coefficient that
shows the range of the search region near the sea, and Randn=normally
distributed random number. A larger value for 7 increases the possibility to exit
from the feasible region. On the other hand, the smaller value for # leads the
algorithm to search in smaller regions near the sea. A suitable value for 7 is 0.1.
From a mathematical viewpoint, the term \/ﬁ represents the standard deviation,
and, accordingly, 7 captures the concept of variance. Using these concepts, the
generated individuals with variance # are distributed about the best obtained
optimal point (the sea).

There are several differences between the WCA and other meta-heuristic
methods such as the PSO. The WCA treats rivers (a number of best selected
points except the best one (the sea)) as “guidance points,” which guide other
individuals in the population toward better positions to prevent searching in
inappropriate regions near optimal solutions. Furthermore, rivers are not fixed
points and they flow toward the sea (the best solution). This procedure (streams
flowing to rivers and rivers flowing to the sea) leads to search moves toward the
best solution. In contrast, the PSO prescribes that only individuals (particles)
find the best solution based on their best personal experiences. The WCA also
uses “evaporation and raining conditions” that resemble the mutation operator
in the GA. The evaporation and raining conditions prevent the WCA algorithm
from being trapped in local solutions (Eskandar et al., 2012).



20.10 Pseudocode of the WCA

20.8 Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting
a good termination criterion has an important role in the correct convergence of
the algorithm. The number of iterations, the amount of improvement of the
solution between consecutive iterations, and the run time are common termina-
tion criteria for the WCA.

20.9 User-Defined Parameters of the WCA

The population size (M), the number of rivers (R), the initial threshold of
evaporation (8), and the termination criteria are user-defined parameters of the
WCA. A good choice of the parameters depends on the decision space of a
particular problem, and usually the optimal parameter setting for one problem
is of limited utility for any other problem. Determining a good set of parameter
often requires performing computational experiments. A reasonable method
for finding appropriate values for the parameters is performing sensitivity
analysis, whereby combinations of parameters are tested and the algorithm is
run several times for each combination to account for the random nature
of the solution algorithm. In this manner, the analyst obtains a distribution
of solutions and associated objective function values for each combination of
parameters. A comparison of the results from all the combination of parame-
ters provides guidance on a proper choice of the algorithmic parameters.

20.10 Pseudocode of the WCA

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible solutions randomly
Evaluate fitness value for all solutions
Classified solutions into streams, rivers and the
sea and assign each stream to a river or the sea
While (the termination criteria are not satisfied)
For j = 1 to S (total number of streams)
Flow stream j toward the corresponding river
or the sea
If the new generated stream is better than
the river or the sea
Reverse the flow direction
End if
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Next 7
For j = 1 to R (total number of rivers)
Flow river j toward the sea
If the new generated river is better than the sea
Reverse the flow direction
End if
Next 7
If evaporation condition is satisfied
Start raining process

End if
Reduce the value of §
End while
Report the best solution (the sea)

End

20.11 Conclusion

This chapter described the WCA, a meta-heuristic optimization algorithm.
The chapter presented a brief history of the development and applications of
the WCA and described the analogy between the water cycle and the mathe-
matical statement of the WCA. The chapter also described the WCA in detail
and introduced a pseudocode.
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Symbiotic Organisms Search

Summary

This chapter describes the symbiotic organisms search (SOS) algorithm, a
recently developed meta-heuristic algorithm. Unlike most of meta-heuristic
algorithms, the SOS does not require specification of algorithmic parameters.
First, the basic concepts of the SOS algorithm are mapped to the symbiotic
relations among organisms. The steps of the SOS algorithm are defined in
detail and a pseudocode of the SOS is presented.

21.1 Introduction

Cheng and Prayogo (2014) introduced the symbiotic organisms search (SOS)
algorithm. The SOS is a nature-inspired optimization algorithm that simulates
three different symbiosis interactions within a paired organism relationship
through an ecosystem. Evolutionary algorithms (EAs) are targets of criticism
because of the need for specifying algorithmic parameters. The SOS algorithm
requires only the specification of the “maximum number of evaluations” and
the “population size”” Evi et al. (2015) implemented the SOS for solving capaci-
tated vehicle routing problem (CVRP). Rajathy et al. (2015) demonstrated the
superiority of the SOS for solving economic load dispatch problem.

21.2 Mapping Symbiotic Relations to the Symbiotic
Organisms Search (SOS)

Symbiosis is a close physical relation between two interacting organisms.
There are three categories of symbiotic relationships including mutualism,
commensalism, and parasitism. Mutualism is a relation that is beneficial to
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both organisms involved. In many mutualistic relationships, the relation is
obligatory; the species cannot live without each other. In others, the species
can exist separately but are more successful when they are involved in a
mutualistic relation. For instance, the interaction between starlings and buffalo
is known as mutualism. Starlings remove ticks from the buffalo’s skin for
sustenance. The itching from ticks biting the buffalo is reduced in return.
Commensalism takes place when an organism receives benefits while the other
is not significantly affected. Such is the case of the interactions between remora
fish and sharks. Remora fish eat leftovers from the shark without bothering the
shark at all. Parasitism is another kind of symbiotic relation in which an organ-
ism obtains benefits from the interaction while other is harmed. One example
is that of the anopheles mosquito biting humans for blood. Anopheles injects
Plasmodium parasites into the human body that cause malaria, a potentially
lethal disease.

The SOS algorithm does not reproduce or create children (or offspring), a
trait that differentiates it from GA-type EAs (Cheng and Prayogo, 2014). It
does, however, like the majority of population-based EAs, generate an initial
population of solutions (called “ecosystem”) plus specific operators through
an iterative process to search for a near-optimal solution among a group of
candidate solutions (called “organisms”) within the promising area of the
search space.

The SOS algorithm simulates the ecosystem with a randomly generated
set of solutions, each of which is known as an organism. The solutions or
organisms are represented as an array of decision variables of the optimiza-
tion problem. Commonly, meta-heuristics have operators that generate a
new solution. The phases in the SOS such as mutualism, commensalism,
and parasitism serve as the operators. Each organism interacts with other
organisms randomly in the population through all phases. When simulating
mutualism, both of two selected solutions are improved. The simulation of
commensalism of two selected solutions improves one solution while leav-
ing the other one unchanged. Parasitism is simulated when an improved
solution replaces another solution that is discarded (it dies). The features of
the SOS algorithm are listed in Table 21.1. Figure 21.1 illustrates the steps
of the SOS algorithm.

21.3 Creating an Initial Ecosystem

Each possible solution of the optimization problem is called an organism in
the SOS. An organism or solution is represented as array of size 1 xN in an
N-dimensional optimization problem. This array is written as follows:

Organism=X =(%1,%,...,%5...,%\ ) (21.1)
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Table 21.1 The characteristics of the SOS.

General algorithm (see Section 2.13) Symbiotic organisms search
Decision variable Elements of organism
Solution Organism

Old solution Old organism

New solution Improved organism

Best solution Best organism

Fitness function Quality of organism

Initial solution Random organism
Selection Selection of organism
Process of generating new solutions Symbiotic relationship

| Define the parameters of the algorithm |

| Generate initial organisms randomly |
I

v

| Apply mutualism |

)

| Apply commensalism |

J

| Apply parasitism |

v

| Report the best organism |

Figure 21.1 The flowchart of the SOS.
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where X=a solution of optimization problem, x;=ith decision variable of
solution X, and N=number of decision variables. The SOS algorithm starts
with the generation of matrix of size M x N (where M and N are the size of
population and the number of decision variables, respectively). Hence, the
matrix of solutions that is generated randomly (see Section 2.6) is written as
follows (rows and columns are the number of organisms and the number of
decision variables, respectively):

X, X1 X120t Xt XN
X Xo1  Xo2 vt Xttt XoN
Population = = ‘ (21.2)
X} x/’,l lez v xj,i e xj,N
XM xM,l xM'2 xM,i xM,N

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size. Each of the decision variable values (x, x5, %3, ..., xy) can be
represented as floating point number (real values) or as a predefined set for
continuous and discrete problems, respectively.

21.4 Mutualism

In this phase two organisms participate in a dialectic relation that is beneficial
for both of them. Let X; be an organism representing the jth member of the
ecosystem (i.e., the population of solutions), and the rth solution X, is selected
randomly from the ecosystem to interact with X;. Sometimes X; and X, are
located far from each other in the search space. Thus, providing a mechanism
to explore some new regions within the search space would promote the search
algorithm’s performance. In so doing mutualism evaluates the new candidate
solutions with a mutual factor to update (improve) the two organisms simulta-
neously rather than separately. The mutual factor is given by the following
formula:

Xji+Xei
ui:T, i=1,2,...N (21.3)

in which y; = mutual factor in the ith dimension, x;,; = ith decision variable of the
jth solution of the population of solutions (or ecosystem), and x,; = ith decision
variable of the rth solution of the population of solutions. The new candidate
solutions are obtained with the following formulas:

xj; =%+ Rand x(xpese; — ;< 1), i=12,....N (21.4)
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%y =%, + Rand x(xpese; — ;< o), i=1,2,...,N (21.5)
X7 :(x}yl,x},z,...,x},i,...,x},N) (21.6)
X;qew =(x;yl,x;,z,...,x;,,r,...,x;,N) (21'7)

where x; = new value of the ith decision variable of the jth solution, x; ; = new
value of the ith decision variable of the rth solution, Rand =a random value in
the range [0,1], xp.; = ith decision variable of the best solution in the popula-
tion, X/ =a candidate solution for the jth solution, X;"" =a candidate solution
for the rth solution, and f; and f, = constants. 1 and /3, are valued randomly as
either 1 or 2 to reflect the level of benefits received from the symbiosis. The
constants f; and S, are so chosen to reflect the fact that in a mutualistic
symbiosis between two organisms, one organism might gain a large benefit,
while the other might receive no significant benefit.

21.5 Commensalism

By definition commensalism is a relation between two organisms whereby one
organism gains benefits while the other remains unaffected. Similar to the pre-
vious section, X, is selected randomly from the ecosystem to interact with X;
however, X; strives to receive benefits from the relation, yet X, remains neutral
or unaffected. In this phase, a new candidate solution that may outperform X;
is calculated as follows:

’

X;; =x;; + Rand x (xgest,,- — %, ), i=12,...,N (21.8)

new ’ ' ' ’
Xj :(xjyl,xj‘z,...,xj,l-,...,ijN) (21.9)

21.6 Parasitism

The SOS algorithm has a unique mutation operator called parasitism in which
X; and X, are the artificial parasite and host, respectively. In this type of sym-
biosis relation, one organism benefits, while the other is harmed. The trade-
mark of the parasite vector (PV) is that it competes against other randomly
selected organisms rather than with its parent/creator. Throughout this phase
the PV attempts to replace X,, which is selected randomly from the ecosys-
tem. So as to create a PV, X; must be duplicated within the search space, and
then, the random dimensions are modified by using random numbers.
Specifically, let X; = (x1,%;,...,%;,...,xy) be a randomly selected solution, and
assume the ith decision variable is randomly selected for modification.
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parasitism) __ (

Parasitism calculates a new solution X; X1,%25..,%},...,%x ) in which

x} is evaluated as follows:
x; :Rnd(x,@),x}u)) (21.10)

in which x; = value of ith decision variable of X 5»1’ arasitism) and x") and x“) = the
lower and upper boundary of the ith decision variable, respectively.

The fitness values of the organisms illustrate the superiority of the parasite
or the host. If X ;p"msmsm) outperforms X, then it will remain in the ecosystem
and X, is deleted. Otherwise, X, remains in the ecosystem (i.e., the population
of solutions).

21.7 Termination Criteria

The termination criterion determines when to terminate the algorithm.
Selecting a good termination criterion has an important role in the correct
convergence of the algorithm. The number of iterations, the amount of
improvement of the solution between consecutive iterations, and the run time
are common termination criteria for the SOS.

21.8 Pseudocode of the SOS

Begin
Input the parameters of the algorithm and initial data
Generate M initial possible solutions randomly
Evaluate fitness value for all solutions
While (the termination criteria are not satisfied)
Determine the best solution (Best) in population
according to the fitness wvalues
For j =1 to M
Select organism r (X,) from ecosystem randomly
Generate Xﬁmew and X,™" by mutualism and
evaluate their fitness wvalues
If (zg“ww is better than X;) and (%, is better
than X,)
Replace the new solutions for previous
solutions
End if
Select organism r (X,) from ecosystem randomly
Generate Xﬁma” based on commensalism and
evaluate its fitness wvalue
If Xﬁmew is better than X;



References

Replace the new solution for previous
solution
End if
Duplicate X; (Xﬁmew = X;)
Modify X;™" based on parasitism and evaluate
its fitness value
Select organism r (X,) from ecosystem
randomly
If x;M" is better than X,
Replace X}mem for X, (X, = X}mew).
End if
Next 7
End while
Report the best solution
End

21.9 Conclusion

The SOS algorithm is a recently developed meta-heuristic algorithm that,
unlike most of meta-heuristic algorithms, does not require specification of
algorithmic parameters. This chapter described the SOS algorithm, presented
its analogy to symbiosis, reported the SOS’s algorithmic steps, and closed with
a pseudocode.
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Summary

This chapter introduces a new meta-heuristic optimization algorithm called
the comprehensive evolutionary algorithm (CEA). This algorithm combines
and takes advantages of some aspects of various algorithms, especially the
genetic algorithm (GA) and the honey-bee mating optimization (HBMO)
algorithm. The following sections describe the fundamentals of the CEA and
its algorithmic details. The chapter closes with a pseudocode of the CEA.

22.1 Introduction

The comprehensive evolutionary algorithm (CEA) is an optimization algo-
rithm of recent vintage that combines features of the genetic algorithm (GA)
and the honey-bee mating optimization (HBMO) algorithm. The CEA can
solve single and multi-objective problems. This algorithm optimizes the
defined objective function of an optimization problem based on three pro-
cesses: (1) selection, (2) production, and (3) replacement. In addition, the
CEA is able to explicitly perform sensitivity analysis of some of its parameters
based on the problem conditions. In general, the CEA has better convergence
performance and speed to the near-optimal solution, on the optimality of
final solution, and on the run time period.

The GA was developed by Holland (1975), inspired by evolutionary process
that are emulated mathematically in the GA. Numerous researches have
been carried out to improve, extend, and apply the GA to a wide variety of
optimization problems (Dimou and Koumousis, 2003; Hormwichian et al.,
2009; Sonmez and Uysal, 2014). The HBMO algorithm is a population-based
method for optimization in which the searching process for finding the optimal
solution is inspired by honey-bee mating. Bozorg-Haddad et al. (2006)

Meta-Heuristic and Evolutionary Algorithms for Engineering Optimization,
First Edition. Omid Bozorg-Haddad, Mohammad Solgi, and Hugo A. Lodiciga.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

249



250

22 Comprehensive Evolutionary Algorithm

developed the HBMO algorithm, evaluated its performance, and compared it
with other algorithms for solving several mathematical problems and a simple
reservoir operation problem. The HBMO algorithm has been applied to vari-
ous optimization problems with continuous and discrete decision spaces and
has shown acceptable results in solving them (Bozorg-Haddad et al., 2008,
2010, 2011; Solgi et al., 2015; Bozorg-Haddad et al., 2016; Solgi et al., 2016a).
Solgi et al. (2016b) modified the HBMO, leading to the enhanced HBMO
(EHBMO) algorithm, and demonstrated the superiority of the EHBMO
compared with the HBMO and the elitist GA in solving several problems.

22.2 Fundamentals of the Comprehensive
Evolutionary Algorithm (CEA)

CEA is based on the main concepts of the GA and the HBMO algorithm and
implements a wide range of selection and generation operators that are selec-
tively applied by the user in the optimization process to solve optimization
problems based on the user’s choice.

The CEA employs various operators. Selection operators select the superior
solutions among the existing ones in each evolution step or iteration. Generation
operators produce new solutions based on existing ones. The selection process
refers to selecting some solutions to generate new solutions. The fitness
function of selected solutions must be superior among the current iteration
solutions. This implies that the probability of improvement will increase in the
next iteration, and it can be expected that the algorithm would advance cor-
rectly toward a solution using various selection operators. The CEA features
four selection operators: (1) proportionate, (2) tournament, (3) random, and
(4) Boltzmann selection operator. The first three operators are germane to the
GA, while the fourth to the HBMO algorithm. All four operators can be used
in the CEA. Generating new solutions in the CEA is performed by crossover
and mutation processes. The exclusive feature of the CEA is that it identifies
efficient operators during the problem solution and relies on them for continu-
ing the optimization procedure. Also, the CEA takes advantage of elitism,
which defines a process in which the best solutions of the previous iteration are
carried to the next iteration without any change. The CEA also ensures that
the best solution produces a significant part of the next population by applying
the Boltzmann selection operator. In this respect the CEA resembles some fea-
tures of the HBMO. However, the CEA is not restricted to a limited number of
operators and it employs several selection and generation operators, even those
of the GA. The CEA can therefore apply various selection and generation
operators to rapidly reach a near-optimal solution. These characteristics are
improvements of the CEA not present in previous algorithms.

Many of parameters in the CEA are defined as decision variables and as
dependent parameters on the characteristics of the problem. This feature
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Table 22.1 The characteristics of the CEA.

General algorithm (see Section 2.13) Comprehensive evolutionary algorithm
Decision variable Gene of chromosome

Solution Chromosome (individual)

Old solution Parent

New solution Children (offspring)

Best solution Elite

Fitness function Quality of individual

Initial solution Random individual

Selection Selection

Process of generating new solution Reproduction

bypasses the need of conducting sensitivity analysis of its parameters.
Parameters’ values are determined based on problem conditions during the
optimization process. The operators that exhibit better performance during
the optimization process are recognized in each iteration and their effect is
logically increased in the next iterations proportional to their performance.
Thus, the effect of operators with poor performance in the optimization pro-
cess is gradually decreased, but these operators are not completely removed
from the optimization process. Lastly, the user can assess the impact of the
applied operators in each optimization problem and identify those that are
efficient in solving specific types of problems. In summary, sensitivity analysis
of its parameters is implicitly performed by the CEA itself.

The CEA treats each solution as an individual (chromosome). Each chromo-
some is constructed of genes that represent decision variables. The fitness values
of individuals determine their quality. Offspring or children, which represent
new solutions, are generated by genetic operators including crossover and muta-
tion. Also, the best individuals in the population of solutions in each iteration are
known as elites. Table 22.1 lists the characteristics of the CEA.

The CEA starts receiving the input information including algorithmic
parameters (estimates) and other necessary input data associated with the
problem at hand. The values of some of these parameters are determined by
the user, and other values are calculated by the algorithm based on the optimi-
zation problem’s characteristics during the optimization procedure. After
receiving the input information, the CEA initializes the portion of operators
according to the problem characteristics and randomly generates initial possi-
ble solutions in the allowable range of the problem. The CEA calculates the
fitness value of the initial solutions, and it starts its iterative calculations by
applying a trial-and-error procedure to find the near-optimal solution. After
selecting the best solutions (elites) among the existing ones, the selection
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operators select superior solutions according to the operators’ roles. New
solutions are generated by applying the selected superior solutions. This is
accomplished by the crossover and mutation operators. These new solutions
are employed in the next iteration. The fitness values of new solutions are
calculated. The CEA calculates the improvement that its algorithmic operators
effect on the possible solutions and compares the values of the fitness func-
tions of the new solutions with that of the best one. At this time, the operators’
roles in the next iteration are modified proportionally to the amount of
improvement in the fitness function achieved by them in the current iteration,
thus completing the iteration of the algorithm. The algorithm stops executing
and reports the final solution when the stopping criteria are satisfied. The
flowchart of the CEA is shown in Figure 22.1.

| Input the algorithm’s data |

J

| Initialize the roles of operators |

J

| Generate initial possible solutions |
|

v

| Identify the best solutions |

J

| Selection |

J

| Reproduction |

J

| Modify the roles of operators |

No Yes
Are the termination criteria satisfied?

\]

| Report the best solution |

Figure 22.1 The flowchart of the CEA.




22.4 Selection

All the evolutionary algorithms have similarities to that shown in Figure 22.1.
Yet, the CEA is more comprehensive than other algorithms from the viewpoint
of selection and generation operators. The CEA is able to identify efficient
operators to objectively apply them in the optimization. Also, the CEA carries
out sensitivity analysis of its parameters automatically.

22.3 Generating an Initial Population of Solutions

The CEA calls each possible solution of the optimization problem an individual.
Each individual symbolizes a series of gens (decision variables) that constitutes
a solution of the problem in the mathematical formulation of an optimization
problem. In an N-dimensional optimization problem, an individual is repre-
sented by an array of size 1 x N. This array is defined as follows:

Individual:X:(xl,xz,...,xi,...,xN) (22.1)

where X = a solution of optimization problem, x;=ith decision variable of solution
X, and N=number of decision variables. In the CEA, the decision variable values
(%1, %9, %3, ...,xy) are real values.

The CEA starts by randomly generating a matrix of size M x N where M and
N are the size of population and the number of decision variables, respectively.
Hence, the matrix of solutions that is generated randomly (see Section 2.6) is
written as follows (rows and columns are the number of individuals and the
number of decision variables, respectively):

X, X1,1 X2 ot X1, ot XN
X Xo1 KXo ot Xpp ot XN
Population = = . (22.2)
X Xig o Xjpo o Xt XN
Xm Xma Xmz2 ot XM t XMN

in which X;=jth solution, x;;=ith decision variable of the jth solution, and
M =population size.

22.4 Selection

Selection is the procedure by which some individuals are chosen from the current
population or decision space for reproduction. There are different selection
operators. Applying four different selection operators ((1) proportionate
selection, (2) tournament, (3) random, and (4) Boltzmann selection operator) is
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5 Solution F P
1 1 60 0.50
2 40 0.33
3 20 0.17

Population size (M)=3

Figure 22.2 lllustration of a roulette wheel.

possible in the CEA, and the user can activate anyone of or all of them for solving
an optimization problem. As mentioned previously, the three first operators are
applied in the GA, while the fourth one is used in the HBMO algorithm. All four
can be used with the CEA.

Applying the proportionate selection operator requires normalization of the
solution fitness functions in each iteration based on their summation. These nor-
malized values are considered as the selection probability of each solution. The
selection probability of solutions with better fitness value exceeds those of undesir-
able solutions when applying the proportionate selection operator. The selection
probability of less desirable solutions is not zero. Proportionate selection computes
the probability of an individual being selected as follows (under maximization):

p = F(Xy)

_gﬂx»

in which P =the probability of the kth solution being selected and F(X) =the
fitness function of solution X;.

The probability of selection of each solution is evaluated. A solution & has a
chance proportionate to Py to be selected. Based on the evaluated probabilities,
a roulette wheel is made and turned to select solutions. The concept of a rou-
lette wheel is depicted in Figure 22.2, using a trivial example with a population
of three solutions. Each individual (solution) possesses a part of a roulette
wheel that is proportionate to its fitness value. The selection is random and any
individual has a chance to be selected. Clearly selection favors the fitter indi-
viduals on average (see Section 4.4).

The tournament selection operator selects randomly two or more solutions
from the current population of solutions. The best solution among the selected
ones is added to the list of selected solutions. This procedure is repeated as
many times as needed (see Section 4.4). The selected solution in each step can
remain in the population and may be selected again in the next steps or it
can removed from the population in which case it will not be selected again.

(22.3)
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The latter procedure is considered in the CEA to select different solutions with
this operator and to avoid selecting similar solutions in each iteration. Solutions
that are not selected remain in the current population.

Another selection operator that is employed in the CEA is random selection.
This operator selects solutions randomly among the current population. Applying
this operator can cause generating a random and uniform set of solutions in the
next iteration. This affects the optimization procedure of algorithm and the con-
vergence speed of the CEA algorithm might be decreased.

The CEA also applies the Boltzmann selection operator, which selects superior
solutions by generating new random ones that are compared with the best one
in the current iteration and are selected if they are superior to the current best.
If the newly random generated solution is not better than the best one in the
current iteration, the Boltzmann probability function is calculated as follows:

—|Best —F(X
P =exp |es—(ﬁ)| (22.4)
Hox(1—ax)
100x¢

B=1+

(22.5)

in which Best =fitness value of the best solution in the current iteration (elite);
X =arandomly generated solution; F(X) = fitness function of random generated
solution (X); po=initial index of time elapsed since the start of the algorithm
implementation, whose value fall within a specific range; @ = random coefficient
in the range of (0,1); £= number of the current iteration; and T'=total number of
iterations of the CEA algorithm.

P in Equation (22.4) is the selection probability of a newly generated random
solution. It is compared with a random value in the range of [0,1]. If the random
value is less than P, the newly generated solution is selected. Otherwise, another
a new solution will be generated and evaluated (see Section 12.5).

22.5 Reproduction

A thorough search of the decision space in each optimization problem is
possible with new solutions obtained through the reproduction process. The
CEA classifies generating operators as crossover and mutation operators.

22.5.1 Crossover Operators

Crossover is a process in which a new solution is generated using two solutions
selected from the current iteration. Table 22.2 lists the crossover operators that
are employed in the CEA. In Table 22.2 a section is divided into left, middle, and
right sides by vertical lines or section cuts, as shown in Figures 22.3 and 22.4.

255



256

22 Comprehensive Evolutionary Algorithm

Table 22.2 Types of crossover operators in the CEA.

Crossover
operator

Type

Definition

One-point cut

Two-point cut

1)

(4)

(5)

)

(10)

(11)

(13)

(14)

The left side of the cross section of the first selected solution is
crossed over with the right side of the cross section of the
second selected solution

The right side of the cross section of the first selected solution
is crossed over with the left side of the cross section of the
second selected solution

The left side of the cross section of the first selected solution is
crossed over uniformly with the right side of the cross section

The left side of the cross section of the second selected
solution is crossed over uniformly with the right side of the
cross section

The right side of the cross section of the first selected solution
is crossed over uniformly with the left side of the cross section

The right side of the cross section of the second selected
solution is crossed over uniformly with the left side of the
cross section

The left side of the cross section of the first selected solution is
crossed over with fixed weighted crossover for all of decision
variables on the right side of the cross section

The right side of the cross section of the first selected solution
is crossed over with fixed weighted crossover with all the
decision variables on the left side of the cross section

The left side of the cross section of the first selected solution is
crossed over with variable weighted crossover with all the
decision variables on the right side of the cross section

The right side of the cross section of the first selected solution
is crossed over with variable weighted crossover with all the
decision variables on the left side of the cross section

The middle part of cross sections of the first selected solution
is crossed over with the sides of the cross sections of the
second selected solution

The middle part of cross sections of the second selected
solution is crossed over with the sides of the cross sections of
the first selected solution

The sides of the cross sections of the first selected solution are
crossed over with uniform crossover in the middle part of the
cross sections

The sides of the cross sections of the second selected solution
are crossed over with uniform crossover in the middle part of
cross sections
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Table 22.2 (Continued)

Crossover
operator Type  Definition

(15) The middle part of the cross sections of the first selected
solution is crossed over uniformly with the sides of the cross
sections

(16) The middle part of the cross sections of the second selected
solution is crossed over uniformly with the sides of the cross
sections

(17) The sides of the cross sections of the first selected solution are
crossed over with fixed weighted crossover with all the
decision variables on the middle part of the cross sections

(18) The middle part of the cross sections of the first selected
solution is crossed over with fixed weighted crossover with all
the decision variables on the sides of the cross sections

(19) The sides of the cross sections of the first selected solution are
crossed over with variable weighted crossover with all of
decision variables on the middle part of cross sections

(20) The middle part of the cross sections of the first selected
solution is crossed over with variable fixed weighted crossover
with all the decision variables on the sides of cross sections

Whole (21) Uniform whole crossover

crossover (22) Fixed weighted whole crossover for all decision variables in

both solutions’ structure

(23) Variable weighted whole crossover for all decision variables in
both solutions’ structure

Various types of crossover operators in the CEA are classified into three
general categories: (1) One-point cut crossover in which only one section cut
is considered in the structure of selected solutions to generate new ones
(Figure 22.3), (2) two-point cut crossover in which two section cuts are consid-
ered in the structure of selected solutions to generate new ones (Figure 22.4), and
(3) overall crossover in which the whole set of selected solutions is considered to
generate new solutions without any section cut (Figure 22.5). It was previously
stated that a row of decision variables is considered as a possible solution of the
problem (see Equation (22.2)). Therefore, in one- and two-point cut crossovers,
one and two sections, respectively, are assumed in the structure of a solution.
There is not section cut in the whole crossover operators.

In the first new solution of Figure 22.3b (Figure 22.3c), the left [right] side of
the section cut (depicted by a vertical line) is related to the first selected solu-
tion. The crossover on the right [left] side of the section cut is done uniformly.
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Figure 22.3 Types of one-point cut crossover in the CEA: (a) Type 1 (new solution (1)) and
type 2 (new solution (2)), (b) Type 3 (new solution (1)) and type 4 (new solution (2)), (c) Type
5 (new solution (1)) and type 6 (new solution (2)), (d) Type 7 (new solution (1)) and type 8
(new solution (2)), and (e) Type 9 (new solution (1)) and type 10 (new solution (2)).
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Figure 22.5 Types of overall crossover in CEA: (a) Type 21, (b) Type 22, and (c) Type 23.

This means that each decision variable on the right [left] side of the section
cut of the new solution may be related to the first or second solution, and it
determined randomly with the same chance for both solutions. In the first and
second new solutions of Figure 22.3d (Figure 22.3e), the left and right sides of
the section cut are related to the first selected solution, respectively. The
crossover in another side of the section cut is performed by weighting. This
means that a random value for all decision variables (a new random value for
each decision variable) (A) is considered in the range of [0,1]. Then, the right
side of the section cut is determined as the sum of the product of A times the
first selected solution plus the product of 1 — A times the second one (the first
new solution).

In the first new solution of Figure 22.4b (Figure 22.4c), the two sides of the
section cuts are (middle of section cuts is) related to the first selected solution.
The crossover in the middle of section cuts (two sides of section cuts) is done
uniformly. This means that each decision variable in the middle of section cuts
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(two sides of section cuts) of the new solution may be related to the first or
second solution and it determined randomly with the same chance for both
solutions. In the first and second new solutions of Figure 22.4d (Figure 22.4e),
the two sides and the middle of section cuts are related to the first selected
solution, respectively. The crossover in the middle and two sides of section
cuts is performed by weighting considering a random value for all the decision
variables (a new random value for each decision variable) (A) in the range of
[0,1]. The middle of the section cuts is determined as sum of the product of A
times the first selected solution plus the product of 1 - A times the second one
(the first new solution).

The new solutions of Figure 22.5a undergo overall crossover that is done
uniformly. This means that each decision variable of the new solution may be
related to the first or second solution, and it determined randomly with the
same chance for both solutions. In Figure 22.5b (Figure 22.5¢c), the overall
crossover is performed by weighting considering a random value for all
decision variables (a new random value for each decision variable) (A) in the
range of [0,1]. The structure of a new solution is determined as sum of the
product of A times the first selected solution plus the product of 1-A times
the second solution.

It should be noted that the performance of each new solution of the various
crossover operators is assessed separately by the CEA. Also, the 23 types
of crossover operators employed by the CEA perform differently and search
thoroughly the decision space of an optimization problem. It may be possible
that the allowable range constraints are not satisfied in the types of crosso-
vers shown in Figures 22.3d, e, 22.4d, e, and 22.5b, c. In this case a random
solution in the allowable range for decision variables is generated to replace
any generated infeasible solution.

22.5.2 Mutation Operators

Mutation is a process that generates new solutions in the next iteration or
improves solutions generated by the crossover operator in evolutionary algo-
rithms. It also expands the searching for solutions by the CEA algorithm in the
decision space. Different types of mutation operators applied by in the CEA are
listed in Table 22.3.

Four types of mutation operators are considered in the CEA: (1) Random
mutation involves parts of the selected solution structure that are randomly
mutated in the allowable range and a new solution is obtained. (2) Boundary
mutation change the parts of the selected solution structure, which may be
closer to the upper, middle, and lower bounds of the allowable range in the
problem, through boundary mutation, which is done based on the upper and
lower bounds of the allowable range of the decision variables, obtaining a new
solution. (3) Directional mutation change parts of selected solution structure
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Table 22.3 Types of mutation operators in the CEA.

Type Definition

1) Random mutation (randomly changes some parts of the selected solution’s
structure in the allowable range)

2) Boundary mutation (makes the structure of the selected solution closer to
the boundaries of the allowable range)

(3) Directional mutation based on gradient of the fitness function of the selected
solution is compared with the fitness function of the best solution

(4) Dynamic mutation based on the upper and lower boundaries of the allowable
range (the values of 0 and 1 mean mutation based on the upper and lower
boundaries, respectively)

through oriented mutation, also obtaining a new solution. In this case, the
gradient of fitness function for a selected solution is calculated and compared
with the fitness function of the best solution in the set. Mutation is performed
so that the calculated new solution becomes closer to the best one. (4) Dynamic
mutation dynamically mutates parts of the selected solution structure based
on the upper and lower bounds of the allowable range.

These mutation operators applied by the CEA have different performances,
and their solutions differ from each other. A random solution is generated in
the allowable range of the decision variables that replaces an infeasible solution
whenever the allowable range constraints are not satisfied in the third and
fourth types of the mutation operator.

22.6 Roles of Operators

Various selection and generation operators are selected by the user to solve
an optimization problem. An operator role is to measure the percentage of
the total number of solutions that is produced by that operator. In other
words, it is the number of solutions selected or generated by each operator
for the next iteration. The operator roles are changed during the optimiza-
tion according to their performance, and it renders the number of existing
solutions in each iteration variable. A key factor in generating operators is
their probability of occurrence, which measures the frequency of application
of each operator.

The roles of operators are updated by evaluating the performance of various
selection and production operators after calculating the fitness function of
newly obtained solutions. In other words, the fitness values of new solutions
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are calculated, and the improvement caused by each operator is calculated and
they are compared with the best solution. The operators’ roles in the next itera-
tion are modified proportionally to the amount of improvement of the fitness
function they created in the current iteration. The operators that have better
performance during the optimization process are identified in each iteration,
and their effect is increased in the next iteration proportional to their perfor-
mance. Also, the effect of operators that have not desirable performance in the
optimization process is gradually decreased, but these operators are not com-
pletely removed from the optimization process. Therefore, the CEA assesses
directly the effect of different operators in the optimization process and identi-
fies the efficient operators for each problem. This implies that an implicit sen-
sitivity analysis is performed for applying selected operators for different
processes in the CEA by the user. The effect of operators that have no desirable
performance is reduced to improve the quality and convergence speed of the
optimization.

22.7 Input Data to the CEA

Input data to the CEA includes algorithmic parameters and data for the
problem’s simulation model. Some of these parameters are determined by the
user, while the others are determined by the CEA. Table 22.4 lists the inputs
and their determination procedure in the CEA. As shown in this table, the
first five algorithmic parameters and all of the simulation model parameters
are determined by the user of the CEA. The simulation model parameters are
determined according to problem conditions and they usually do not require
sensitivity analysis.

The first algorithmic parameter is the number of runs. Evolutionary algo-
rithms generate a set of random solutions. It is therefore necessary to evaluate
several algorithmic runs to assess the quality of the calculated solutions. The
CEA can perform several runs in parallel and present the final solution of each
run individually. Applying the CEA requires determining the number of runs
as specified by the user. The optimization process in the CEA starts with a set
of initial solutions. Thus, the number of solutions in the initial population is
specified by the user, while the suitable range for selecting the value of this
parameter is determined by the algorithm based on the problem conditions,
and it is indicated to the user. The necessity of sensitivity analysis for this
parameter is decreased because the algorithm assists the user in selecting a
suitable population size. The CEA applies all of the operators automatically for
solving a problem in case the user selects none of the selection and generation
operators. The CEA can identify the best operators and objectively apply them
during the optimization process.
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Table 22.4 List of the parameters of the CEA.

Parameter Determined by
Algorithm (1) Number of runs User
parameters

(2) Number of algorithm iterations
(3) Desired precision of calculations

(4) Number of solutions in the primary
population

(5) Type of selection and generation
operators

(6) Number of solutions considered as elite Algorithm (CEA)
(7) Portion of selection and generation operators

(8) Probability of generation operators

Information (1) Number of objective functions User
O‘f the pFoblem (2) Optimization status of each objective
simulation

function (maximization or minimization)
model

(3) Number of decision variables
(4) Allowable range for decision variable values

(5) Coefficients of calculating and controlling
the problem constraints

Parameters (6)—(8) in Table 22.4 are automatically determined by the algo-
rithm according to the problem characteristics, and their sensitivity analysis is
implicitly done in the algorithm. The number of elites, which are the best solu-
tions of the previous iteration that are carried to next solution without any
change, is determined by the algorithm. Thus, the necessity of sensitivity
analysis for this parameter vanishes in the CEA.

It is evident from Table 22.4 that the number of parameters in the CEA that
require sensitivity analysis by user is smaller than that for most of the other
evolutionary algorithms such as the GA (only parameters (1)—(3) require the
sensitivity analysis). The sensitivity analysis of many parameters is implicitly
done by the CEA during problem optimization. This makes the algorithm
more flexible than others in solving a variety of optimization problems.

22.8 Termination Criteria

The termination criterion determines when to terminate the algorithm. Selecting
a good termination criterion has an important role on the correct convergence
of the algorithm. The number of iterations, the amount of improvement of
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the solution between consecutive iterations, and the run time are common
termination criteria for the WCA.

229 Pseudocode of the CEA

Begin
Input information of the algorithm and initial data
Initialize the value of portions of selection and
generation operators
Generate initial population of possible solutions
Evaluate fitness wvalue for all solutions
While (the termination criteria are not satisfied)
Identify and memorize the best solutions (elites)
For each selection operator
Select solutions using the selected operator
according to its proportion
For each crossover operator
Generate new solutions using the selected
operator according to its proportion
End For
For each mutation operator
Generate new solutions using the selected
operator according to its proportion
End For
End For
Set Population = new generated solutions + best
selected solutions (elites)
Evaluate fitness value for new solutions
Update operator’s proportions based on the amount
of improvement of new generated solutions in
comparison to the best solution
End while
Report the best solution
End

22.10 Conclusion

This chapter introduced a new meta-heuristic optimization algorithm called
the CEA. A general understanding of the CEA was provided, followed by a
description of the CEA’s components. The CEA combines features of other
algorithms and takes advantages of some of their best features.
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