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Preface

For decades, statisticians have enjoyed the use of “statistical packages” which
read in a (potentially) large data set, calculate numerical summaries such as
the sample mean and sample variance, calculate more sophisticated statisti-
cal quantities such as confidence interval bounds and p-values associated with
hypothesis tests, and generate statistical graphics such as histograms, box
plots, and multidimensional plots. But pity the poor probabilist, who through
all those decades had only paper and pencil for symbolic calculations. The
purpose of this monograph is to address the plight of the probabilist by pro-
viding algorithms to perform calculations associated with random variables.
We refer to a collection of data structures and algorithms that automate prob-
ability calculations as “computational probability.” The data structures and
algorithms introduced here have been implemented in a language known as
APPL (A Probability Programming Language). Several illustrations of prob-
lems from the mathematical sciences that can be solved by implementing these
algorithms in a computer algebra system are presented in the final chapters
of this monograph.

The algorithms for manipulating random variables (e.g., adding, multi-
plying, transforming, ordering) symbolically result in an entire class of new
problems that can now be addressed. APPL is able to perform exact probabil-
ity calculations for problems that would otherwise be deemed intractable. The
work is quite distinct from traditional probability analysis in that a computer
algebra system, in this case Maple, is used as a computing platform.

The use of a computer algebra system to solve problems in operations re-
search and probability is increasing. Other researchers also sense the benefits
of incorporating a computer algebra system into fields with probabilistic appli-
cations, for example, Parlar’s Interactive Operations Research with Maple [98],
Karian and Tanis’s second edition of Probability and Statistics: Explorations
with Maple [58], Rose and Smith’s Mathematical Statistics and Mathemat-
ica [105], and Hasting’s second edition of Introduction to the Mathematics of
Operations Research with Mathematica [46].

V



VI Preface

This monograph significantly differs from the four titles listed above in two
ways. First, the four titles listed above are all textbooks, rather than research
monographs. They contain exercises and examples geared toward students,
rather than researchers. Second, the emphasis in most of these texts is much
broader than the emphasis being proposed here. For example, Parlar and
Hasting consider all of OR/MS, rather than the probabilistic side of OR/MS
proposed here in much more depth. Also, Karian and Tanis emphasize Monte
Carlo solutions to probability and statistics problems, as opposed to the exact
solutions given in APPL.

The monograph begins with an introductory chapter that contains short
examples involving the elementary use of APPL. Chapter 2 reviews the Maple
data structures and functions necessary to implement APPL. This is followed
by a discussion of the development of the data structures and algorithms
(Chaps. 3–6 for continuous random variables and Chaps. 7–9 for discrete ran-
dom variables) used in APPL. The monograph concludes with Chaps. 10–15
introducing a sampling of various applications in the mathematical sciences.
The two most likely audiences for the monograph are researchers in the math-
ematical sciences with an interest in applied probability and instructors us-
ing the monograph for a special topics course in computational probability
taught in a mathematics, statistics, operations research, management science,
or industrial engineering department. The intended audience for this mono-
graph includes researchers, MS students, PhD students, and advanced prac-
titioners in stochastic operations research, management science, and applied
probability.

An indication of the utility of APPL is that the research efforts of the
authors and other colleagues have produced many related refereed journal
publications, many conference presentations, the ICS Computing Prize with
INFORMS, a government patent, the INFORMS Undergraduate Research
Prize, a GEM Scholarship based on APPL research, and multiple improve-
ments to pedagogical methods in numerous colleges and universities around
the world. We believe that the potential of this field of computational probabil-
ity in research and education is unlimited. It is our hope that this monograph
encourages people to join us in attaining future accomplishments in this field.

We are grateful to Camille Price, Gary Folven, Carolyn Ford, and Matt
Amboy from Springer for their support of this project. We also thank Profes-
sor Ludolf Meester from TU Delft for class testing and debugging portions of
the APPL code. We thank our coauthors Matt Duggan, Kerry Connell, Jeff
Mallozzi, and Bruce Schmeiser for their collaboration on the applications given
in Chap. 11. We also thank the editors, anonymous referees, and colleagues
who have been helpful in the presentation of the material, including John
Backes, Donald Barr, Don Campbell, Jacques Carette, Gianfranco Ciardo,
Mike Crawford, Mark Eaton, Jerry Ellis, Bob Foote, James Fritz, Winfried
Grassmann, Greg Gruver, Carl Harris, Rex Kincaid, Hank Krieger, Marina
Kondratovitch, Sid Lawrence, Barry Nelson, David Nicol, Raghu Pasupathy,
Steve Roberts, Sheldon Ross, Bruce Schmeiser, Jim Scott, Bob Shumaker,



Preface VII

Paul Stockmeyer, Bill Treadwell, Michael Trosset, Mark Vinson, and Bert
Zwart. We thank techie Robert Marmorstein for his LATEX support, Chris
Weld for proofreading the second edition, and Barbara Boyer for her help
with the index keywords for the first edition of this monograph. The authors
gratefully acknowledge support from the Clare Boothe Luce Foundation, the
National Science Foundation (for providing funding for an Educational Inno-
vation Grant CDA9712718 “Undergraduate Modeling and Simulation Analy-
sis,” for scholarship funds provided under the CSEMS Grant 0123022 “Effec-
tive Transitions Through Academe to Industry for Computer Scientists and
Mathematicians,” for support by an NSF CSUMS grant DMS-0703532), the
Army Research Office, Grant 67906-MA, and The College of William & Mary
for research leave to support this endeavor.

Finally, our thanks goes to all of our coauthors who have made such sig-
nificant contributions to this volume and to APPL language. Nearly all of
the material in this monograph has originally appeared in journal articles:
Chap. 1 is from Glen et al. [38]; Chaps. 2 and 3 contain original material by
Diane Evans; Chap. 4 is from Glen et al. [37]; Chap. 5 is from Yang et al. [122];
Chap. 6 is from Glen et al. [39]; Chap. 7 is from Glen et al. [38]; Chap. 8 is
from Evans and Leemis [29]; Chap. 9 is from Evans et al. [30]; Chap. 10 is from
Leemis [73], Evans et al. [30], and Marks et al. [82]; Chap. 11 is from Webb and
Leemis [115]; Chap. 12 is from Duggan et al. [24] and Drew et al. [23]; Chap. 13
is from Kaczynski et al. [56]; Chap. 14 is original work by Matt Robinson; and
Chap. 15 is from Leemis [73], Leemis et al. [74], and Glen et al. [38].

Williamsburg, VA, USA John H. Drew
Terre Haute, IN, USA Diane L. Evans
Colorado Springs, CO, USA Andrew G. Glen
Williamsburg, VA, USA Lawrence M. Leemis
June 2016
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Part I

Introduction

Civilization advances by extending the number of important

operations which we can perform without thinking about them.

—Alfred North Whitehead



1

Computational Probability

The purpose of this chapter is to lure you into reading the rest of the
monograph. We present four examples of probability questions that would
be unpleasant to solve by hand, but are solvable with computational prob-
ability using APPL (A Probability Programming Language). We define the
field of computational probability as the development of data structures and
algorithms to automate the derivation of existing and new results in proba-
bility and statistics. Section 12.3, for example, contains the derivation of the
distribution of a well-known test statistic that requires 99,500 carefully crafted
integrations.

1.1 Four Simple Examples of the Use of APPL

The first example is one that a probability student would typically solve
approximately by using the central limit theorem or Monte Carlo simulation.
We show that APPL can compute the desired result exactly.

Example 1.1. Let X1, X2, . . . , X10 be independent and identically dis-
tributed (iid) random variables that are uniformly distributed between
0 and 1. Find the probability that their sum lies between 4 and 6, i.e.,

Pr

(
4 <

10∑
i=1

Xi < 6

)
.

The central limit theorem yields only one digit of accuracy for this
particular problem. Monte Carlo requires custom programming and
the result is typically stated as an interval around the true value.
Also, the number of replications required is a quadratic function of the
desired accuracy: each additional digit of accuracy requires a 100-fold
increase in the number of Monte Carlo replications. On the other hand,
the APPL statements to solve this problem are

© Springer International Publishing AG 2017
J.H. Drew et al., Computational Probability, International Series
in Operations Research & Management Science 246,
DOI 10.1007/978-3-319-43323-3 1
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4 1 Computational Probability

> X := UniformRV(0, 1);

> Y := ConvolutionIID(X, 10);

> CDF(Y, 6) - CDF(Y, 4);

which yields

Pr

(
4 <

10∑
i=1

Xi < 6

)
=

655177

907200
∼= 0.7222.

The first line of APPL code defines X as a U(0, 1) random variable.
The second line defines the random variable Y as the sum of 10 iid
random variables, each having the same distribution as X. Finally,
the last line evaluates the cumulative distribution function (CDF) of
Y at 6 less the CDF of Y at 4, yielding the exact result as the fraction
shown above.

The second example concerns finding the probability density function (PDF)
of the product of two triangular random variables.

Example 1.2. Let X and Y be independent random variables with
triangular distributions with parameters (1, 2, 4) and (1, 2, 3), respec-
tively. (The three parameters are the minimum, mode, and maximum,
respectively.) Find and plot the PDF of V = XY .

The APPL code to solve this problem is:

> X := TriangularRV(1, 2, 4);

> Y := TriangularRV(1, 2, 3);

> V := Product(X, Y);

> PlotDist(V);

which returns the PDF of V as

fV (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 4
3v +

2
3 ln v +

2v
3 ln v + 4

3 1 < v ≤ 2

−8 + 14
3 ln 2 + 7v

3 ln 2 + 10
3 v

−4 ln v − 5v
3 ln v 2 < v ≤ 3

−4 + 14
3 ln 2 + 7v

3 ln 2 + 2v

−2 ln v − v ln v − 2 ln 3− 2v
3 ln 3 3 < v ≤ 4

44
3 − 14 ln 2− 7v

3 ln 2− 8
3v

−2 ln 3 + 22
3 ln v − 2v

3 ln 3 + 4v
3 ln v 4 < v ≤ 6

8
3 − 8 ln 2− 4v

3 ln 2− 2
3v

+ 4
3 ln v +

v
3 ln v + 4 ln 3 + v

3 ln 3 6 < v ≤ 8

−8 + 8 ln 2 + 2v
3 ln 2 + 2

3v

+4 ln 3− 4 ln v + v
3 ln 3− v

3 ln v 8 < v < 12.



1.1 Four Simple Examples of the Use of APPL 5

The first two APPL statements define X and Y as triangular random
variables. The third statement uses the APPL Product procedure to
compute the PDF of the product. The last statement plots the PDF
of V , which is shown in Fig. 1.1.

2
x

0.3

1286
0

4

0.4

10

0.2

P
D

F

0.1

Fig. 1.1. PDF of V = XY

The first two examples are complex enough to require about an hour to work
out by hand, assuming that no mathematical or calculation errors occurred.
In both examples, the result was available with just a few lines of code and a
few seconds of computer time. We next turn to a problem involving discrete
random variables.

Example 1.3. A bag contains 15 billiard balls, numbered 1 to 15. If 7
balls are drawn from the bag at random, find the probability that the
median number drawn is 5 when (a) sampling is performed without
replacement; (b) sampling is performed with replacement.

In both of the solutions given below, the discrete random variable Y
denotes the median number drawn in the sample of size 7. In part (a),
the support of Y is 4, 5, . . . , 12 due to the sampling without replace-
ment, but in part (b), the support of Y is 1, 2, . . . , 15 due to the fact
that each ball drawn is placed back into the bag after being sampled.



6 1 Computational Probability

(a) The APPL code in the sampling without replacement case is

> X := UniformDiscreteRV(1, 15);

> Y := OrderStat(X, 7, 4, "wo");

> PDF(Y, 5);

which returns the probability that the median is 5 as

Pr(Y = 5) =
32

429
∼= 0.07459.

The first APPL statement establishes the distribution X has the uni-
form discrete, or rectangular, distribution, which implies that each of
the balls in the bag is equally likely to be drawn. The second statement
makes a call to the APPL procedure OrderStat with four arguments:
the population distribution, the number of draws from the popula-
tion, the order statistic of interest, and the optional "wo" argument
to indicate that sampling is without replacement (the default is with
replacement). Finally, the third statement evaluates the PDF of Y
at 5, giving the desired result.

(b) The APPL code in the sampling with replacement case is

> X := UniformDiscreteRV(1, 15);

> Y := OrderStat(X, 7, 4);

> PDF(Y, 5);

which returns the probability that the median is 5 as

Pr(Y = 5) =
2949971

34171875
∼= 0.08633.

The APPL code is identical to the without replacement case except
that the optional fourth argument in OrderStat has been defaulted.

Although these two quantities of interest could have been calculated
by hand, the calculations would have been much more tedious if some
of the billiard balls were more likely to be drawn than others. Such a
change, however, would not pose a difficulty for APPL. Also, although
it has not been exploited in the two calls to OrderStat, the procedure
has computed the entire distribution of Y , so expected values and
other subsequent computations on Y could be performed.

The three examples given thus far have concerned well-known distributions
(i.e., uniform, triangular) parameterized by constants. The fourth and final
example, drawn from a popular mathematical statistics text, highlights a non-
standard distribution with symbolic parameters. Unlike most of the earlier
examples, this example can be worked by hand, then the solution can be
checked using APPL. Furthermore, a student can change any of the arguments
in the problem (e.g., the sample size or critical value) to see if the results of
the change match their intuition.
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Example 1.4. Let X1 and X2 be iid observations drawn from a popu-
lation with PDF

f(x) = θxθ−1 0 < x < 1,

where θ > 0. Test H0: θ = 1 versus H1: θ > 1 using the test statistic
X1X2 and the critical region C = {(X1, X2) |X1X2 ≥ 3/4}. Find the
power function and significance level α for the test [52, page 270].

The APPL code to compute the power function is

> n := 2;

> c := 3 / 4;

> assume(theta > 0);

> X := [[x -> theta * x ^ (theta - 1)], [0, 1],

["Continuous", "PDF"]];

> T := ProductIID(X, n);

> power := SF(T, c);

which yields

Pr(rejecting H0 | θ) = 1− (3/4)θ + θ(3/4)θ ln(3/4)

for θ > 0. The sample size n is defined in the first APPL statement.
The critical value c is defined next. The Maple assume procedure de-
fines the parameter space θ > 0. The fact that the population distri-
bution is non-standard requires the random variable X to be defined
using the “list-of-sublists” data structure used in APPL (described
subsequently in Chaps. 3 and 7). The first sublist gives the functional
form of the PDF, the second sublist gives the support, and the third
sublist indicates that the random variable being defined is continuous
and that the function in the first sublist is a PDF. Unlike the previ-
ous three examples, all of which had numeric values for the parameters
in the probability distributions, this PDF involves the symbolic pa-
rameter θ. The ProductIID procedure computes the product of the
two iid random variables having the distribution of X, which results
in the creation of the random variable T . Finally, the power func-
tion is defined using the survivor function (SF) procedure to compute
Pr(T ≥ c = 3/4) for various values of θ > 0.

To compute the significance level of the test, the additional Maple
statement

> alpha := subs(theta = 1, power);

is required, yielding

α = 1/4 + (3/4) ln(3/4) ∼= 0.0342.
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Plotting the power function requires the additional Maple statement

> plot(power, theta = 0 .. 20);

0.8

0.6

0.4

0.2

0

theta~
20151050

Fig. 1.2. The power function

The power function is shown in Fig. 1.2. Obviously, this example can
be generalized for different sample sizes, population distributions, and
critical values with only minor modifications.

The careful reader has probably noted the distinction between APPL state-
ments and Maple statements from the previous example. If APPL is to be a
serious research tool, then it is necessary to learn certain aspects of Maple,
such as the subs and plot procedures used in the fourth example. A brief
review of those aspects of Maple that are germane to APPL are given in
Chap. 2.

The next section shows that there is a non-traditional way of thinking that
is required in order to mix probability and computing.

1.2 A Different Way of Thinking

A few weeks into the introductory calculus-based probability class, the prop-
erties associated with the PDF of a continuous random variable
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−∞
f(x) dx = 1 and f(x) ≥ 0,−∞ < x < ∞

are introduced. Probability definitions and problems often need to be recast
in order to make them amenable to processing by a computer algebra system.
The first property is fairly easy to verify in a computer algebra system [if f(x)
can be integrated symbolically, do so and show that the area under the curve
is 1, else, integrate numerically and show that the area under the curve is
within epsilon of 1]. The second property, however, is quite difficult to show.
One might imagine checking the PDF on a very fine grid over the support of
the random variable, but this is unappealing for two reasons. First, the grid
should be very fine, resulting in considerable CPU time. Second, and more
importantly, if f(x) drops below the x-axis between grid points, a PDF will
be accepted with f(x) < 0.

A better way to verify the PDF properties is to recast them as the equiv-
alent pair∫ ∞

−∞
f(x) dx = 1 and

∫ ∞

−∞
|f(x)| dx = 1,

which can be easily verified in a computer algebra system. An APPL proce-
dure named VerifyPDF verifies this latter pair of properties for a continuous
random variable rather than the more intuitive pair typically introduced in
an introductory probability class.

As a second example of a more algorithmic approach to thinking about
probability, consider the following problem. If X ∼ U(0, 1), find the distribu-
tion of Y = g(X) = X2. The “transformation technique” is commonly used
to find the distribution of Y when g(X) is a 1–1 transformation from the
support of X, which we call A, to the support of Y , which we call B. The
general formula for the PDF of Y is

fY (y) = fX
(
g−1(y)

) ∣∣∣∣dg−1(y)

dy

∣∣∣∣ y ∈ B.

Since the PDF ofX is fX(x) = 1 for 0 < x < 1, and the inverse transformation
is g−1(y) =

√
y, the PDF of Y is

fY (y) = fX
(√

y
) ∣∣∣∣ 1

2
√
y

∣∣∣∣ 0 < y < 1

or

fY (y) =
1

2
√
y

0 < y < 1.

This is exactly the way that the transformation technique should be imple-
mented in an algorithm. In fact, the APPL code to find the distribution of
Y is
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> X := UniformRV(0, 1);

> g := [[x -> x ^ 2], [0, 1]];

> Y := Transform(X, g);

which returns the PDF of Y as

fY (y) =
1

2
√
y

0 < y < 1

as expected. Unfortunately, the algorithm behind the Transform procedure is
not quite as simple as this example would suggest. For example, when Maple
finds the inverse function g−1(y) it returns not the single inverse suggested
above, but rather two inverses:

g−1
1 (y) = +

√
y and g−1

2 (y) = −√
y.

How do we determine which one is the correct inverse? Here is the thinking:
First, we determine the midpoint of the support of X, which we denote by
x0. In the current example, x0 = 1/2. Next, we calculate the value of the
transformation at x0, which in the current example is g(x0) = 1/4. Finally,
we loop through all of the inverses that are returned by the computer algebra
system inserting g(x0) as an argument, and determine which of the inverses
returns x0. In the current example, g−1

1

(
g(x0)
)
= x0, so the first inverse is the

right one and the second inverse should be discarded. Adjustments in this
procedure must be made for distributions with infinite support, such as the
exponential distribution and the normal distribution.

Likewise, what if the distribution of X is defined in a piecewise fashion,
e.g., the triangular distribution? In this case an outside loop must be added
to the Transform procedure in order to do the appropriate bookkeeping so
that all of the density gets transformed from the distribution of X to the
distribution of Y appropriately.

Furthermore, how does the Transform procedure handle portions of the
transformation that are 2–1, or, more generally, k–1? The algorithm behind
the Transform procedure tracks each piecewise segment and determines the
associated mapping onto the support of Y .

These two examples provide a window into the thinking that is required
to develop algorithms for performing probability calculations. APPL requires
many conditions [e.g., if g−1

1

(
g(x0)
)
= x0, then choose the right inverse] and

loops [e.g., loop through all inverses] to perform various manipulations of
random variables. Automating probability calculations in this manner is pre-
cisely the vision we have for computational probability. APPL and similar
languages can be used to explore new probability theory or calculate known
but mathematically intractable probability measures.
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1.3 Overview

We end this chapter with an overview of the organization of the monograph.
As mentioned earlier, Chap. 2 contains a brief review of Maple syntax, data
structures, and programming constructs that were used to write the proce-
dures that comprise APPL. We survey only a small portion of the Maple
language.

The second part of the monograph, Chaps. 3–6, considers continuous ran-
dom variables. The data structure that we have used for defining a continuous
random variable is defined in Chap. 3. Chapter 4 through Chap. 6 contain ex-
amples of algorithms that have been devised for manipulating continuous ran-
dom variables. Chapter 4 considers transformations of univariate continuous
random variables; Chap. 5 considers transformations of bivariate continuous
random variables; Chap. 6 considers products of continuous random variables.

The third part of the monograph, Chaps. 7–9, considers discrete random
variables. The data structure that we have used for defining a discrete random
variable is defined in Chap. 7. Chapters 8 and 9 contain examples of algorithms
that have been devised for manipulating discrete random variables. Chapter 8
considers the distribution of sums of discrete random variables; Chap. 9 con-
siders the distribution of order statistics drawn from discrete distributions.

The fourth part of the monograph, Chaps. 10–15, considers applications
of APPL in computational probability. Chapter 10 contains applications in
reliability and survival analysis, including system design, lower confidence
bounds on system reliability, and bootstrapping. Chapter 11 contains appli-
cations of APPL to ARMA (autoregressive moving average) models in time
series analysis. Chapter 12 contains APPL applications in discrete-event simu-
lation, including random number testing, input modeling, and goodness-of-fit
testing. Chapter 13 contains APPL applications in queueing theory, more
specifically, determining the probability distribution of initial customer so-
journ times. Chapter 14 contains APPL applications in Bayesian statistics,
including the calculation of posterior distributions and Bayesian credible sets.
Finally, Chap. 15 contains miscellaneous applications, such as determining the
exact distribution of the time to complete a stochastic activity network, prob-
abilistic analysis of Benford’s law, and the generation of values in statistical
tables.
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Maple for APPL

Maple is a computer algebra system and programming language that can be
used for numerical computations, solving equations, manipulating symbolic
expressions, plotting, and programming, just to name a few of the basics.
APPL is, simply, a set of supplementary Maple commands and procedures
that augments the existing computer algebra system. In effect, APPL takes
the capabilities of Maple and turns it into a computer algebra system for com-
putational probability. This chapter contains guidelines for using Maple, and
discusses the Maple commands that are used in APPL programming. After
reading this chapter, an APPL user will have the knowledge necessary to mod-
ify the APPL code to meet his or her particular needs. We will start with a
discussion of basic numeric computation, then advance to defining variables,
symbolic computations, functions, data types, solving equations, calculus and
graphing. Then we will discuss the programming features of Maple that facil-
itate building the APPL language: loops, conditions, and procedures.

2.1 Numerical Computations

Numerical computations in Maple give it the functionality of a hand-held
calculator. The command prompt is >. To execute an arithmetic expression
in Maple, the expression must be terminated with a semicolon or colon. The
# symbol is used for commenting in a Maple worksheet. Below are several
examples of numerical computations with their corresponding outputs.

© Springer International Publishing AG 2017
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> 2 + 2;

4

> 1 + 1 / 2;

3

2

> 1 + 0.5;

1.5

> sqrt(2); # sqrt() takes the square root
√
2

> Pi;

π

> evalf(Pi);

3.141592654

> 2 * 2.5:

> % + 1 / 2;

5.500000000

From these few examples, it is important to note the following:

• Spaces between symbols are optional, so 2 + 2; and 2+2; are equivalent.
We include spaces between operators for readability, consistent with good
programming practice.

• Maple performs exact calculations with rational numbers and approximate
calculations with decimals. To Maple, the rational number 3/2 and the
floating-point approximation 1.5 are different objects. Using both decimals
and rational numbers in a statement produces a decimal output.

• Maple interprets irrational numbers as exact quantities. Maple also recog-
nizes standard mathematical constants, such as π and e, and works with
them as exact quantities.

• The evalf command converts an exact numerical expression to a floating-
point number. By default, Maple calculates the result using ten digits of
accuracy, but any number of digits can be specified. The optional second
argument of evalf controls the number of floating-point digits for that
particular calculation.

• For particularly precise numerical expressions, a call to evalhf evaluates
an expression to a numerical value using the hardware floating-point preci-
sion of the underlying system. The evaluation is done in double precision.
The evalhf function computes only with real floating-point arguments.
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• If a statement ends with a colon, instead of a semicolon, then Maple
suppresses the output, although it will store the result (if assigned to a
variable) internally.

• The ditto operator % refers to your last calculated result, even if that
result is not on the line preceding the %.

2.2 Variables

It is convenient to assign variable names to expressions that are referred to
one or more times in a Maple session. Maple’s syntax for assigning a vari-
able name is name := expression. Almost any expression, including numbers,
equations, sets, lists, and plots, can be given a name, but it is helpful to choose
a name that describes the expression. The restart command makes Maple
act (almost) as if just started, and it clears the values of all Maple variables.
Some guidelines for variable names are:

• Maple is case sensitive, so the names X and x denote unique variables.
• A variable name can contain alphanumeric characters and underscores,
but it cannot start with a number.

• Once a variable is assigned to an expression, it remains that expression
until changed or cleared.

• A variable name can be cleared by assigning variable := ’variable’;

or executing the statement unassign(’variable’);
• Maple has some predefined and reserved names, such as Sum, sqrt, and

length, that are not available for variable assignment. Maple will not
allow an expression to be assigned to a predefined variable name.

• When you close a Maple session, variable names assigned during that
session will be forgotten. When a Maple worksheet is re-opened, variable
names must be reactivated.

• The restart command at the top of the worksheet, followed by the se-
quence of keystrokes Alt, E, E, W (Edit, Execute, Worksheet) restarts the
memory of the variables and then executes the entire worksheet in order.
Often one will be in the middle of a series of commands, fix an error and
need to re-execute all commands in order once again.

Below are several examples of defining variable names.

> restart:

> EventA := 0.3:

> EventB := 0.3:

> EventC := 0.4:

> S := EventA + EventB + EventC;

S := 1.0
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> Sum := EventA + EventB;

Error, attempting to assign to ‘Sum‘ which is protected

> prob := p * (1 - p) ^ 2:

> p := 1 / 4:

> prob;

9

64

> unassign(’p’): # You could also write p := ’p’

> newprob := 3 * p ^ 2 * (1 - p);

newprob := 3p2(1− p)

Once a Maple expression is given a name, it can be evaluated at different
values using subs() or eval(). The command subs(p = 1 / 2, newprob)

or eval(newprob, p = 1 / 2) yields the value 3
8 . Since newprob is a variable,

and not a function, Maple does not understand the syntax newprob(1 / 3),
which the user may incorrectly try to use to determine the value of newprob
for p = 1/3. If an expression is intended to actually define a function, then the
function must be formally defined, and a technique for doing so is in Sect. 2.4.

Sometimes assumptions must be made on variables in order to set vari-
able properties or relationships. A common use of the assume function is
to assume a constant is positive, i.e., assume(p > 0). Making such assump-
tions allow Maple routines to use this information to simplify expressions,
for example,

√
p2. When an assumption is made about a variable, thereafter

the variable is displayed with an appended tilde ~ to indicate that it carries
assumptions. The additionally function adds additional assumptions with-
out removing previous assumptions. For example, we could further restrict p
to be less than one with the command additionally(p < 1).

2.3 Symbolic Computations

One of Maple’s main strengths is its ability to manipulate symbolic expres-
sions. Symbols can be treated in the same way that numbers were in the
previous section and can do much more. Entering a constant or variable fol-
lowed by a variable, e.g., 2x or ab, does not imply multiplication in Maple. In
fact, ab would be treated as a new two-letter variable instead of the product of
two single-letter variables. You may not omit the multiplication symbol (∗) in
expressions with more than one factor. Below are a few examples of Maple’s
symbolic abilities using three commands, combine, expand, and simplify,
that appear in the APPL code.

> exp(-t ^ 2) * exp(-s ^ 2);

e(−t2)e(−s2)
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> combine(%);

e(−t2−s2)

> mgf_1 := (1 / 3) * exp(t) + (2 / 3) * exp(2 * t):

> mgf_2 := (1 / 4) + (3 / 4) * exp(-t):

> mgf_1 * mgf_2; (
1

3
et +

2

3
e(2t)
)(

1

4
+

3

4
e−t

)

> expand(%);

7

12
et +

1

4
+

1

6
(et)

2

> mgf_1 / mgf_2;

1

3
et +

2

3
e(2t)

1

4
+

3

4
e(−t)

> simplify(%);

4

3

e(2t) (1 + 2et)

et + 3

2.4 Functions

Functions are defined in Maple by using the arrow notation -> or the unapply()
command. The assignment operator := associates a function name with a
function definition. Two equivalent ways of defining a function f are

> f := x -> exp(-2) * 2 ^ x / x!:

> f := unapply(exp(-2) * 2 ^ x / x!, x);

f := x → e(−2)2x

x!

This notation allows a function to be evaluated in the “usual” way, i.e., f(0),
when it appears in Maple expressions. Such functions are an integral part of
APPL, and are used to create PDFs, CDFs, and transformations of random
variables. Unassigning a function is done in the same way that a variable is
unassigned to a value, f := ’f’. As shown in the examples below, piecewise
functions may also be defined in Maple, and we certainly take advantage of
this in APPL, e.g., the triangular distribution.

> g := unapply(exp(-lambda) * lambda ^ x / x!, lambda, x);
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g := (λ, x) → e(−λ)λx

x!

> g(2, 0);

e(−2)

> h := x -> piecewise(x <= 1, 0, x > 1, 2):

> h(x); {
0 x ≤ 1
2 x > 1

In addition to facilitating the creation of custom functions, Maple has
built-in mathematical functions, e.g., trigonometric functions such as tan, in-
verse trigonometric functions such as arccos, absolute value (abs), the expo-
nential function (exp), the gamma function (GAMMA), and binomial coefficients
(binomial). As illustrated earlier in the chapter, the exponential function in
Maple is written as exp(x). In order to compute e3, enter exp(3), not e ^

3. The binomial function binomial(n, x) determines binomial coefficients
for selecting x items from n items without replacement. Examples of calling
Maple functions that might arise in the APPL code are given below.

> abs(ln(0.4) + arcsin(0.65));

0.2087062952

> binomial(4, 2);

6

> GAMMA(5);

24

> evalf(erf(2));

0.9953222650

Maple has packages of functions available with specialized commands
to perform tasks from an extensive variety of disciplines. The commands
in a package can be activated using the with command. For exam-
ple, with(networks) adds the networks package, which supplies tools
for constructing, drawing, and analyzing combinatorial networks. Likewise,
with(plots) enables more options with plotting functions.

When a package’s functions are accessed with with, occasionally a previous
definition or a function, either built-in or defined by the user, will be over-
ridden. For example, trace is by default defined to be the program-tracing
function. However, after invoking with(linalg), trace is redefined to mean
the trace of a matrix. The with function prints out a warning message when-
ever it overrides a previous definition or function.
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2.5 Data Types

This section examines some basic types of Maple objects, including lists, sets,
arrays, and strings.

A Maple list can be created by enclosing any number of expressions (sep-
arated by commas) in brackets. Maple preserves the order and repetition in a
list. Thus, [a,b,c] and [b,c,a] are different lists. The nops command deter-
mines the total number of elements in a list. The membership of an element
in a list can be checked with member(), which returns a true or false Boolean
value.

> probs := [0.3, 0.5, 0.2]:

> nops(probs);

3

> member(0.3, probs);

true

Because order is preserved in a list, a particular element can be extracted
from a list without searching for it. Use L[i] to access the ith element of a
list L. The op command applied to a list removes the brackets of the list, and
sort preserves the list structure while sorting the elements into ascending
order.

> probs := [0.3, 0.5, 0.2]:

> op(probs);

0.3, 0.5, 0.2

> sort(probs);

[0.2, 0.3, 0.5]

In APPL, we utilize the functionality of Maple’s list structure to represent
a random variable as a “list-of-sublists.” A list-of-sublists is just a list, each
of whose elements is itself a list. For example, we create a random variable
as a list of three sublists, where the first sublist contains the functional form
that describes the probability distribution, the second sublist contains its
support, and the third sublist uses strings to describe the type of the random
variable, i.e., continuous or discrete, and the type of function, e.g., the PDF,
CDF or HF. When APPL receives a random variable for manipulation, it first
checks the type of the random variable before continuing; that is, is the random
variable continuous or discrete? Depending on the answer, APPL treats that
random variable accordingly, for example, integrating to determine expected
value versus summing. Additional information about APPL’s list-of-sublists
data structure for random variables is contained in Chaps. 3 and 7. Elements
in a list-of-sublists can be extracted using indices. For example,
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> x := [[1, 2, 3], [4, 5, 6], [7, 8]];

sets x to a list of three elements, each of which is a list. Sublists or individual
elements can be extracted as follows:

> x[2];

[4, 5, 6]

> x[2, 1];

4

> x[2][1];

4

A Maple set is constructed by enclosing any number of Maple objects (sep-
arated by commas) in braces. The braces identify the object as a set. Maple
does not preserve order or repetition in a set. Thus the sets {a,b,c}, {b,c,a},
and {c,c,b,a} are identical. The member command validates membership in
a set, and to choose an item from a set, the subscript notation [i] is used,
where i identifies the position of the desired element in the set. Also, the nops
function counts the number of elements in a set.

The seq command is used to generate sequences, which can be contained
in a list or a set if desired. For example, a sequence of binomial coefficients
can be obtained by using seq as follows:

> seq(binomial(4, i), i = 0 .. 4);

1, 4, 6, 4, 1

The Maple array data structure is an extension of the Maple list data
structure. Each element is still associated with an index (which can be negative
or zero), but an array is not restricted to one dimension.

A string is a Maple object created by enclosing a sequence of characters
in double quotes. We use strings in APPL in the third sublist of the list-of-
sublists that define a random variable to help identify its functional form,
such as "Continuous", "Discrete", "PDF", "CDF", etc.

2.6 Solving Equations

Maple can find analytic solutions for a large class of algebraic equations.
The solve command is a general-purpose equation solver. It takes a set
of one or more equations and attempts to solve it exactly for the specified
set of unknowns. The fsolve command is the numeric equivalent of solve;
fsolve calculates the solution(s) to equations using a variation on Newton’s
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method, producing approximate (floating-point) solutions. For a general equa-
tion, fsolve searches for a single root and often returns the first root it finds,
which may not be the desired root. For a polynomial, it looks for all real
roots. Fortunately, there is a way to make fsolve look for a specific solution
by specifying an interval over which fsolve may search, as illustrated in the
examples to follow. Some special notes about solving equations are:

• If the variable(s) being solved for are not specified, Maple solves for all
variables.

• If no right-hand side to an equation is given (for example, solve(2 * x

- 8)), the right-hand side is assumed to be 0.
• The fsolve command often only returns one real solution.
• If there are multiple solutions to an equation, they can be extracted by
setting the solution set to a variable, then using subscripts [1], [2], etc.

Here are several examples of solving one or more equations at a time.

> solve(x ^ 3 = 2 * x, x);

0,
√
2,−√

2

> fsolve(x ^ 3 = 2 * x, x);

−1.414213562, 0., 1.414213562

> eqns := {x + 2 * y = 3, y + 1 / x = 1}:

> solns := solve(eqns, {x, y});

solns := {y = 2, x = −1} ,
{
x = 2, y =

1

2

}

> solns[2]; {
x = 2, y =

1

2

}

> solve(cos(x) - x = 0);

RootOf( Z − cos( Z ))

> fsolve(cos(x) - x = 0);

0.7390851332

> express1 := (1 / x) + (1 / x ^ 2) - (3 / x ^ 3):

> solve(express1);

−1

2
+

√
13

2
, −1

2
−

√
13

2
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> fsolve(express1);

1.30277563

> fsolve(express1, x = -3 .. 0);

−2.302775638

Maple occasionally returns solutions in terms of the RootOf function,
which is a place holder for representing all the roots of an equation in one
variable. The prefix Z on the variable in a RootOf solution indicates that it
has integer values. The fsolve command is able to approximate these roots
(at most one at a time for non-polynomial equations, and a specific root if a
search interval is specified). Below is also an indication of the range of a vari-
able using two periods in a row. The range delimiter “..” denotes endpoints
of intervals in plots, integrations, and other situations.

Two other commands of interest for obtaining either the left-hand side
or right-hand side of an expression are lhs and rhs, respectively. Especially
useful to APPL is the ability of these commands to extract the first and last
term of a sequence. This functionality allows APPL to read off the bounds on
the support of a probability function, which is displayed in the second sublist
for a random variable. Both uses of lhs and rhs are displayed below.

> eqn1 := x + y = z + 3:

> lhs(eqn1);

x+ y

> rhs(eqn1);

z + 3

> support := 1 .. infinity:

> lhs(support);

1

> rhs(support);

∞

2.7 Graphing

Another capability of Maple is graphing. The explicit function y = f(x) and
its domain must be specified for a Maple plot. Plotting the standard normal
distribution on the interval −3 ≤ x ≤ 3, for example, can be done with the
Maple statements shown below. We will use the function form -> to define the
PDF of the standard normal distribution. The plot is displayed in Fig. 2.1.



2.8 Calculus 23

> f := x -> 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):

> plot(f(x), x = -3 .. 3);

In order to plot more than one function on a single graph, the functions
must be contained in brackets or braces. The use of brackets means that
order is important and Maple should graph them in the given order; the use
of braces means that order is not important and Maple may graph them in
any order. Also, it is sometimes useful to specify the range of the y-values in
order to display important features of a graph. Figure 2.2 contains a plot of
two normal PDFs. The functions are defined with two different variables, but
used as arguments in plot with a third variable, as one would expect.

x
3210

0.3

-1

0.4

-2

0.1

0.2

-3
0

Fig. 2.1. Plot of a standard normal PDF between x = −3 and x = 3

> f1 := t -> 1 / sqrt(2 * Pi) * exp(-t ^ 2 / 2):

> f2 := z -> 1 / (2 * sqrt(2 * Pi)) * exp(-(z - 1) ^ 2 / 8):

> plot({f1(x), f2(x)}, x = -7 .. 9, color = [red, blue]);

2.8 Calculus

Maple provides many powerful tools for solving calculus problems. This
section describes Maple’s ability to determine limits, symbolically compute
derivatives and definite integrals, and determine summations. The need for
calculus operations in APPL is significant because many probability theo-
rems rely on calculus to create new distribution functions. A few comments
about determining limits, derivatives, and definite integrals in Maple follow:
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Fig. 2.2. Plot of a standard normal PDF and a normal PDF with mean μ = 1 and
standard deviation σ = 2 between x = −7 and x = 9

• Maple will compute both two-sided limits, e.g., limx→5

(
x+2
x−1

)
, and one-

sided limits, e.g., limx↑1
(

x+2
x−1

)
, with the limit procedure.

• Maple can determine limits at ∞, such as the limit of an exponential CDF
at infinity.

Examples of the limit command are

> limit((3 ^ (x + h) - 3 ^ x) / h, h = 0);

3x ln(3)

> assume(lambda > 0):

> limit(1 - exp(-lambda * x), x = infinity);

1

The diff procedure computes the derivative of an expression. Maple dif-
ferentiates with respect to the variable placed in the second argument of the
diff() procedure. Clearly, diff is used often in APPL for changing from one
functional form of a continuous random variable’s distribution to another,
e.g., deriving a PDF from a CDF. One such example of the diff() command
follows; however it is important to note that APPL will do such conversions
in a more automated manner. Also note the use of the unapply command to
turn the final expression into a function.
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> F := x -> 1 - exp(-2 * x);

F := x → 1− e(−2x)

> f := unapply(diff(F(x), x), x);

f := x → 2 e(−2x)

The capabilities of Maple include a robust set of integration operations.
Symbolic integrals (often used in APPL) can be calculated as in the following
example:

> f := y -> 2 * exp(-2 * y):

> F := unapply(int(f(y), y = 0 .. x), x);

F := x → 1− e(−2x)

Maple’s ability to integrate also includes the numerical evaluation of inte-
grals for which no closed-form solution is available, such as the case with the
standard normal random variable:

> g := 1 / sqrt(2 * Pi) * exp(-x ^ 2 / 2):

> int(g, x = -infinity .. 1.96);

0.9750021049

However, if we integrate the standard normal PDF over exact values, rather
than floating point values, Maple responds with erf. For example, integrating
a standard normal PDF from x = −1 to 1 yields the following:

> int(g, x = -1 .. 1);

erf

(√
2

2

)

The function erf(x) is the error function and it is defined for real and complex
x by erf(x) = 2

π

∫ x
0
e−t2dt. Maple can numerically evaluate an erf(x) output

with the evalf command.

> evalf(int(g, x = -1 .. 1));

0.6826894920

Maple can also compute finite sums and infinite series, which are necessary
capabilities for working with discrete random variables. The next few exam-
ples demonstrate the use of sum. The first example verifies that a geometric
distribution with p = 1/4 has a PDF that sums to one.
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> geometric := (1 / 4) * (3 / 4) ^ (x - 1);

geometric :=

(
3

4

)(x−1)

4

> sum(geometric, x = 1 .. infinity);

1
The second example determines the expected value of a binomial distribution
with parameters n and p.

> assume(p > 0):

> additionally(p < 1):

> pdf := binomial(n, x) * p ^ x * (1 - p) ^ (n - x):

> simplify(sum(x * pdf, x = 0 .. n));

np∼

2.9 Loops and Conditions

Like all programming languages, loops in Maple allow the user to execute a
sequence of statements repeatedly, either for a prescribed number of times or
until a condition is satisfied (or not satisfied). This is a useful tool in APPL
when working with random variables. Loops are used in APPL to do many
things: cycle through segments of PDFs, verify inverse transformations, and
error-checking, to name a few. For example, if a discrete random variable’s
PDF consists of a finite number of numeric probabilities in the first sublist
in a list-of-sublists, we require these probabilities to be non-negative. Using a
for loop allows APPL to cycle through the items in this sublist (from item
one to nops(sublist)) until the list is complete or a negative value is identi-
fied. Similarly, if numeric probabilities in the first sublist are supposed to be
equally-likely probabilities, then APPL can repeatedly check each probability
value while the probability values remain the same. The expression in the
while clause is a Boolean expression which must evaluate to true or false
upon each cycle.

Conditional statements in APPL have a variety of purposes including error
checking, branching in logic, and conditional plotting. If an APPL procedure
requires input arguments from the user, then an if statement can be used to
verify that the input is valid. If a procedure does not receive the correct type
of arguments, e.g., lists, an error message is sent back to the APPL user. Also,
in the third sublist is the “form” of the random variable. The first element
of the third sublist tells APPL whether the random variable is continuous or
discrete. If the random variable is continuous, then continuous mathematics
(e.g., integration) is used to verify the validity of its PDF or compute its
mean, for example. If discrete random variables are indicated by the field,
then discrete mathematical techniques (e.g., summation) are used.
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Boolean expressions in the conditional statement are most often formed
by using <, <=, >, >=, =, <>, or, and, or not. For example, if the “form” of
the random variable is not one of the approved formats (e.g., PDF, CDF, SF,
HF, CHF, IDF), then an error message is reported to the user.

A few examples of small loops and conditionals are presented here to am-
plify the above explanations:

> probs := [0.1, 0.05, 0.2, 0.25, 0.15, 0.10, 0.15]:

> totprob := 0:

> for i from 1 to nops(probs) do

> totprob := totprob + probs[i]:

> end do; # ’od’ can also be used to end a ’do’ loop

totprob := 0.1
totprob := 0.15
totprob := 0.35
totprob := 0.60
totprob := 0.75
totprob := 0.85
totprob := 1.00

> die := rand(1 .. 6): # random integer from 1 to 6

> Roll1 := die():

> Roll2 := die():

> if (Roll1 >= Roll2) then

> print("Roll 1 is greater than or equal to Roll 2");

> else

> print("Roll 1 is less than Roll 2");

> end if; # ’fi’ can also be used to end an ’if’ conditional

To conclude this section, a while loop is created in which the user is encour-
aged to experiment with various values for the probability prob.

> i := 1:

> totprob := 0:

> prob := 1 / 2:

> while (totprob <= 1) and (i <= 1000) do

> totprob := prob + totprob:

> prob := prob ^ 2 + 0.001:

> i := i + 1:

> print(i):

> print(totprob):

> end do:

When a break statement is used in a procedure, a break is executed and
the result is to exit from the innermost repetition (for/while/do) statement
within which it occurs.
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2.10 Procedures

The capability to create new procedures in Maple is a key element to enabling
APPL programming. In fact, APPL is a text file of new Maple procedures that
is imported into a worksheet session with the read command. When a file is
read into Maple, each line in the file is treated as if it had been typed in
order. The APPL procedures are available during the Maple session, but the
commands are not displayed on the Maple worksheet. When the user reads
in the APPL commands, it’s as if they used the with command to add extra
capability. The syntax for reading APPL into Maple from the ASCII source
code file named APPL.txt is read(‘APPL.txt‘).

The syntax for creating a procedure in Maple is

proc(〈argseq〉) [local 〈nseq〉 ; global 〈nseq〉 ; ]
〈statement sequence〉

end;

where [ ] indicates optional parameters. Then

• 〈argseq〉 is a sequence of variable names, separated by commas. These
variables are the arguments to the procedure.

• 〈nseq〉 is a sequence of variable names, separated by commas.
• local 〈nseq〉 is a list of variables local to the procedure. Any assignments
of these variables will only have a scope of the procedure. The values of
these variables will be unassigned when the procedure starts, regardless
of the value of the variable outside the procedure.

• global 〈nseq〉 is a list of global variables used by the procedure. Any as-
signments made in the procedure will be global in scope and the initial
values of the variables will be as they are in the existing Maple session.

• 〈statement sequence〉 is the body of the procedure and may consist of any
valid sequence of Maple statements.

The proc command is usually used in conjunction with the RETURN key-
word. The syntax is

RETURN (expression) ;

This command will terminate the execution of the procedure and return the
value of expression.

Since APPL’s random variables often have several arguments, it’s helpful
that Maple provides an easy way to do data typing in procedures. The ar-
guments passed to a procedure may be given a specific data type. If any of
these variables is then assigned an incorrect type, Maple generates an error
message. The syntax for declaring a variable to be of a given data type is the
declaration is

variable name :: data type
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where Maple accepts a wide range of data types. The types most frequently
encountered in APPL are list and listlist (because of the list-of-sublists
structure of APPL random variables), constant, posint, int, and array.
Another type used frequently in APPL is symbol. Infinity (∞) is of type
symbol, and this is important information for APPL procedures to know
when evaluating random variables over supports that are not finite. The type
of an expression can be determined in Maple with the command type. The
syntax is

type (expression, type)

which returns a Boolean value, either true or false.
Another useful error-checking command that can used with procedures

is nargs, which is the number of arguments passed to a procedure. We use
if statements in APPL to determine if optional arguments are passed to a
procedure and how the procedure should proceed given this number of argu-
ments. For example, the OrderStat procedure in APPL will perform differ-
ently based on whether or not it is given an optional fourth argument that
specifies whether sampling is done without replacement.

To summarize the last few sections on programming in Maple, the follow-
ing excerpt from the APPL source code is noteworthy. The procedure is called
ReduceList and it is a small sub-procedure in APPL that looks for redundant
support entries in a random variable list-of-sublist’s second sublist. One sees
how the proc command begins the procedure as well as some argument check-
ing, local variable declarations, a for loop and some conditional branching.
The RETURN and end commands complete the procedure.

#

# ReduceList is a procedure that eliminates floating point

# redundancies (e.g., 3 vs. 3.0) from a sorted Maple list.

#

ReduceList := proc(LST :: list)

local i, size, delt, deltamin, ListIn:

deltamin := 0.0000001:

ListIn := LST:

size := nops(ListIn):

for i from (size - 1) by -1 to 1 do

if (ListIn[i] <> -infinity and ListIn[i + 1] <> infinity) then

delt := evalf(ListIn[i + 1]) - evalf(ListIn[i]):

if (delt < deltamin) then

if (whattype(ListIn[i]) <> float) then

ListIn := subsop((i + 1) = NULL, ListIn):

else

ListIn := subsop(i = NULL, ListIn):

fi:

fi:

fi:
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od:

RETURN(ListIn):

end:

This concludes our brief introduction to the Maple computer algebra sys-
tem. Additional help on a specific Maple topic can be accessed from the Maple
worksheet by entering ?topic or help(topic) at the prompt. Also, help can
be obtained directly by going to the “Help” menu in Maple, scrolling down to
“Topic Search,” and entering the topic of interest in the “Topic” line. We now
turn to the main topic of the monograph, defining random variables in APPL
and the associated algorithms to manipulate them. We begin with continuous
random variables.



Part II

Algorithms for Continuous
Random Variables

All models are wrong; some models are useful.

—George E.P. Box
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Data Structures and Simple Algorithms

This chapter and the three that follow it concern continuous random variables.
We have chosen to present continuous random variables first because they are
defined with a somewhat simpler data structure than that for discrete random
variables. The development described here gives a probabilist the ability to
automate the instantiation and processing of continuous random variables—
key elements of computational probability.

3.1 Data Structures

There are dozens of ways that one could represent the distribution of a random
variable in Maple. Whatever choice is made, the syntax associated with the
data structure should be succinct, intuitive, and easily manipulated. This
implies there should be a single data structure that allows a user to define the

• probability density function (PDF) fX(x),

• cumulative distribution function (CDF) FX(x) =
∫ x
−∞ fX(s) ds,

• survivor function (SF) SX(x) = 1− FX(x),

• hazard function (HF) hX(x) = fX(x)/SX(x),

• cumulative hazard function (CHF) HX(x) =
∫ x
−∞ hX(s) ds, and

• inverse distribution function (IDF) F−1
X (u)

for a continuous random variable X. It should also provide a seamless tran-
sition from one representation to another. The common data structure that
we used in the development of the APPL software package is referred to as
the “list-of-sublists.” Specifically, any functional representation of a random
variable is presented in a list that contains three sublists, each with a spe-
cific purpose. The first sublist contains the ordered functions that define the
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functional forms of the distribution. The PDF representation of the triangular
distribution, for example, would have the two linear functions that comprise
the two segments of its PDF for its first sublist. The second sublist is an or-
dered list of real numbers that delineate the end points of the intervals for
the functions in the first sublist. The end point of each interval is assumed to
be the starting point of the succeeding interval. The third sublist has two ele-
ments. The first element of the third sublist is either the string "Continuous"

for continuous distributions or "Discrete" for discrete distributions. The sec-
ond element of the third sublist shows which of the six functional forms listed
earlier in this paragraph is used in the first sublist. The string "PDF", for
example, indicates that the first sublist denotes a PDF.

Example 3.1. The following seven random variables give a variety of
ways continuous random variables can be defined in APPL.

• The following APPL statement assigns a list-of-sublists that rep-
resents the PDF of a U(0, 1) random variable to the list X:

> X := [[x -> 1], [0, 1], ["Continuous", "PDF"]];

• The triangular distribution has a PDF with two segments to its
distribution. The following statement defines a triangular(0, 1, 2)
random variable named X with a minimum of 0, mode of 1, and
maximum of 2, as a list-of-sublists:

> X := [[x -> x, x -> 2 - x], [0, 1, 2],

["Continuous", "PDF"]];

• An exponential random variable X with a mean of 1/3 can be
defined in terms of its hazard function with the APPL statement

> X := [[x -> 3], [0, infinity], ["Continuous", "HF"]];

• The three random variables defined above all have numeric param-
eters. APPL is also able to accommodate symbolic parameters. A
N(θ, 1) random variable X can be defined with the statement

> X := [[x -> exp(-(x - theta) ^ 2 / 2) / sqrt(2 * Pi)],

[-infinity, infinity], ["Continuous", "PDF"]];

• The parameter space can be specified by using the Maple assume

function. Consider the random variable T with HF

hT (t) =

{
λ 0 < t < 1
λt t ≥ 1
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for λ > 0. The random variable T can be defined by the statements

> assume(lambda > 0);

> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity], ["Continuous", "HF"]];

• The syntax allows the endpoints of intervals associated with the
support of a random variable to be specified symbolically. A U(a, b)
random variable X is defined by

> assume(a < b);

> X := [[x -> 1 / (b - a)], [a, b],

["Continuous", "PDF"]];

• There is no error checking to insure that the distribution associated
with a random variable is legitimately represented by a particular
list-of-sublists. This means that the statement shown below will
create a list-of-sublists that is not a legitimate PDF.

> X := [[x -> 17], [0, 49], ["Continuous", "PDF"]];

An APPL procedure named VerifyPDF will be introduced subse-
quently that can be used to verify the PDF properties for a random
variable.

After repeatedly typing the list-of-sublists for common continuous distri-
butions, we soon realized that the list-of-sublists format could be automated
for certain common (e.g., normal, exponential) distributions. We appended
the letters RV onto these procedure names so as to avoid any conflicts with
existing Maple procedures. The following continuous distributions have a pro-
cedure that creates the appropriate list-of-sublists in PDF form for use in
APPL: ArcSin, ArcTan, Beta, Cauchy, Chi, ChiSquare, Erlang, Error, Ex-
ponential, ExponentialPower, ExtremeValue, F, Gamma, GeneralizedPareto,
Gompertz, HyperbolicSecant, HyperExponential, HypoExponential, IDB, In-
verseGaussian, InvertedGamma, KS, LaPlace, LogGamma, Logistic, LogLo-
gistic, LogNormal, Lomax, Makeham, Muth, Normal, Pareto, Rayleigh, Stan-
dardCauchy, StandardNormal, StandardTriangular, StandardUniform, T, Tri-
angular, Uniform, and Weibull. This list of distributions, along with their
parameters, is displayed every time the APPL code is read into Maple. A chi
square random variable with six degrees of freedom, denoted by X, for exam-
ple, can be defined by the APPL statement

> X := ChiSquareRV(6);

This is much more compact than the standard list-of-sublists approach:

> X := [[x -> x ^ 2 * exp(-x / 2) / 16], [0, infinity],

["Continuous", "PDF"]];
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The ChiSquareRV procedure (or function, to use the more standard parlance)
relieves the user of typing the list-of-sublists every time a chi square random
variable is required. The APPL source code that defines a chi square random
variable with n degrees of freedom, complete with error trapping, is given by:

ChiSquareRV := proc(n :: {posint, symbol})

local ListOfLists, x:

global n1:

n1 := n:

if (nargs <> 1) then

print(‘ERROR: This procedure requires 1 argument‘):

RETURN():

fi:

if type(n1, infinity) then

print(‘ERROR: The shape parameter must be finite‘):

RETURN():

fi:

if type(n1, symbol) then

assume(n1, posint):

about(n1):

fi:

ListOfLists := [[unapply(x ^ (n1 / 2 - 1) * exp(-x / 2) /

(2 ^ (n1 / 2) * GAMMA(n1 / 2)), x)],

[0, infinity], ["Continuous", "PDF"]]:

RETURN(ListOfLists):

end:

We use Maple’s :: in the procedure call just after the argument for Maple
error checking to ensure that the argument is either a positive integer or a
symbol. If the argument is a symbol, Maple appends a tilde (∼) to the symbol
as a reminder to the user that an assumption (in this case that it is a positive
integer) has been placed on the symbol. The introduction of global variables
for parameters allows any assumptions about the parameters to be passed from
APPL code to the worksheet one is using. For example, the APPL statement

> X := ChiSquareRV(6);

returns a list-of-sublists with 6 substituted for n1 in the PDF. On the other
hand, the APPL statement

> X := ChiSquareRV(m);

returns a list of lists with m∼ substituted for n1 in the PDF. This allows for
certain symbolic operations to be done subsequently on X, such as verifying
(symbolically) that the area under the PDF is one. The first two if statements
in ChiSquareRV check that there is just one argument passed to the procedure
and that the number of degrees of freedom is not passed as infinity. The
third if statement places an assumption on the parameter if it is passed



3.2 Simple Algorithms 37

as a symbol and the Maple about procedure prints information about the
assumption to the screen. Finally, the Maple unapply procedure transforms
the expression for the PDF into the x -> format consistent with the earlier
examples, and the PDF is returned as a list-of-sublists. The PDF for the chi
square distribution contains the gamma function, which accounts for the use
of the Maple GAMMA procedure.

This concludes our description of the data structure that is used to rep-
resent a continuous random variable. We now briefly outline some simple
algorithms that can be applied to this data structure.

3.2 Simple Algorithms

The algorithms described in this section conduct the following elementary
operations on data structures that represent continuous random variables:

• convert any functional representation (PDF, CDF, SF, HF, CHF, and
IDF) of a random variable into another functional representation using
the common data structure,

• plot any of the six functional forms of any fully-specified distribution, e.g.,
the CDF,

• determine common summary characteristics of random variables, such as
the mean and variance,

• calculate the PDF of the rth order statistic from a sample of n iid random
variables.

Changing Functional Forms of a Random Variable. The functional
form of a distribution can be converted to and from any of its six well-known
forms: PDF, CDF, SF, HF, CHF, and IDF. The routines return functional
forms when they are called with a single argument and scalars when a second
optional argument is included. The names of the conversion procedures are
PDF, CDF, SF, HF, CHF, and IDF, and can be applied to both discrete and
continuous random variables. The first example finds a CDF from a PDF for
a continuous random variable.

Example 3.2. Let X ∼ U(0, 4). Find the CDF of X.

The APPL code required to define the distribution of X (which will
be in PDF form) and determine the CDF is

> X := UniformRV(0, 4);

> CDF(X);

which returns the list-of-sublists

[[x → x/4] , [0, 4], [“Continuous”, “CDF”]]

as expected.



38 3 Data Structures and Simple Algorithms

Since APPL uses Maple’s symbolic processing capability, it will typically
return the appropriate function without error whenever the function can
be expressed analytically. As the next example shows, however, there are
many elementary examples where Maple is not able to integrate functions
analytically.

Example 3.3. Let Z ∼ N(0, 1). Find the CDF of Z and Pr(Z < 1.96).

Analogous to the last example, the APPL statements required to de-
fine the distribution of Z and determine its CDF are

> Z := NormalRV(0, 1);

> CDF(Z);

Since the CDF for a standard normal random variable is not closed
form, APPL returns[[

x → 1

2
erf

(
1

2
x
√
2

)
+

1

2

]
, [−∞, ∞], [“Continuous”, “CDF”]

]

where erf is the Maple error function defined by erf(x) = 2
π

∫ x
0
e−s2ds.

To find Pr(Z < 1.96) requires an additional APPL statement which
uses the second optional argument in the call to CDF:

> prob := evalf(CDF(Z, 1.96));

which sets the Maple variable prob to 0.9750021048. The Maple evalf
function evaluates the value of CDF(Z, 1.96) as a floating-point (dec-
imal) value. A second optional argument can be included in the evalf
function to control the number of digits displayed.

The previous examples have considered numeric parameters. The six con-
version procedures work on distributions with symbolic parameters as well.

Example 3.4. Find the survivor function (SF) of a Weibull(λ, κ) ran-
dom variable and find the 99th percentile of a Weibull random variable
with λ = 2 and κ = 3.

For the case of symbolic parameters, the following statements define
a Weibull random variable in PDF form and convert it to a Weibull
random variable in SF form:

> X := WeibullRV(lambda, kappa);

> X := SF(X);

which sets X to the list-of-sublists format shown below:[[
x → e(−xκ˜ λ˜κ˜)

]
, [0, ∞] , [“Continuous”, “SF”]

]
As indicated earlier, the tildes after the parameters indicate that as-
sumptions have been made concerning the parameters (i.e., λ > 0 and
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κ > 0) in the WeibullRV procedure. Finding a percentile of a distribu-
tion requires the IDF procedure. The 99th percentile of a Weibull(2, 3)
distribution can be found with the APPL statement

> IDF(WeibullRV(2, 3), 0.99);

which returns 0.8318631745. If 0.99 is replaced by a random number, a
Weibull(2, 3) random variate is generated. Maple automatically senses
that 0.99 is floating point. The nearly-identical APPL statement

> IDF(WeibullRV(2, 3), 99 / 100);

returns the expression 2−2/3
(
ln(10)

)1/3
, rather than the floating point

approximation, for the 99th percentile.

The conversion procedures handle distributions defined in a piecewise fash-
ion in the same way as those defined over a single interval.

Example 3.5. Find the SF for the random variable T with hazard
function

hT (t) =

{
λ 0 < t < 1
λt t ≥ 1

for λ > 0.

The following APPL statements are used to find the survivor function:

> assume(lambda > 0);

> T := [[t -> lambda, t -> lambda * t],

[0, 1, infinity], ["Continuous", "HF"]];

> SF(T);

which returns

ST (t) =

{
e−λt 0 < t < 1

e−λ(t2+1)/2 t ≥ 1

as expected.

The conversion procedures can be nested; for example, the APPL state-
ments

> X := ExponentialRV(1);

> X := PDF(CDF(HF(SF(CHF(IDF(X))))));

do absolutely nothing to the list-of-sublists representation for X because all
transformations can be performed analytically.

Most of the code for the six conversion routines consists of error checking,
for example, to assure that
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• there are one or two arguments passed,
• the distribution of interest is in the list-of-sublists format and there are
three sublists,

• the list-of-sublists corresponds to one of the six forms.

Once the appropriate if statements have concluded that we are converting,
for example, from a CDF to a PDF, which is done by simply differentiating,
the real “work” in the PDF procedure consists of just a single loop shown in
the code segment

for i from 1 to nsegments do

ffx := unapply(diff(X[1][i](x), x), x):

fX := [op(fX), op([unapply(simplify(ffx(x)), x)])]:

od:

The Maple variable nsegments is a count of the number of piecewise segments
associated with a PDF (e.g., nsegments is 2 for a triangular distribution). The
first statement in the loop differentiates the ith piecewise function in the CDF,
then uses the Maple unapply procedure to place it in the x -> format for the
list-of-sublists. The second statement in the loop simplifies the segment of the
PDF using the Maple simplify procedure, then concatenates the function
into the list named fX, which is eventually returned as the first sublist in a
list-of-sublists containing the PDF.

Plotting Distributions. APPL contains the PlotDist procedure that plots
any distribution represented in the list-of-sublists format.

Example 3.6. The statements used to plot the PDF for the triangu-
lar(1, 2, 4) distribution are:

> X := TriangularRV(1, 2, 4);

> PlotDist(X);

The Maple plot drawn by the APPL PlotDist procedure is shown
in Fig. 3.1.

APPL is not able to plot “generic” distributions with symbolic parameters.
Attempting such a plot will produce an “empty plot” error message.

Calculating Expected Values. Expected values can be calculated with
the ExpectedValue procedure. The procedures Mean, Variance, Skewness,
Kurtosis, MGF, and CF all produce these special cases of expectation by in-
voking the ExpectedValue procedure.

Example 3.7. Find the expected value, kurtosis, and moment generat-
ing function of a normal random variable X.

The second argument in the NormalRV procedure is σ, unlike the cus-
tomary notation for a normal random variable. The APPL code to
compute the mean, kurtosis, and moment generating function is



3.2 Simple Algorithms 41

P
D

F

0.6

0.2

0.4

0.3

43.52.51.5

0.5

0.1

0

x
321

Fig. 3.1. Triangular PDF plot

> X := NormalRV(mu, sigma);

> Mean(X);

> Kurtosis(X);

> MGF(X);

which returns μ for the mean, 3 for the kurtosis, and

MX(t) = eμt+σ2t2/2 −∞ < t < ∞
for the moment generating function.

The ExpectedValue procedure can be used to find the expected value of
a function of a random variable.

Example 3.8. Find the expected value of the square root of Y , where
Y ∼ exponential(λ).

In this case, the APPL procedure ExpectedValue is used with a sec-
ond argument that defines the function of the random variable of
interest. The APPL statements

> Y := ExponentialRV(lambda);

> ExpectedValue(Y, y -> sqrt(y));

return
√
π/
(
2
√
λ
)
.

The ExpectedValue procedure calculates the expected value of a func-
tion of a random variable by calculating the appropriate integrals over each
segment of the support of the distribution, then summing the results.
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Example 3.9. To find the mean of a triangular(a, b, c) random variable
X, the APPL statements

> X := TriangularRV(a, b, c);

> Mean(X);

return
a+ b+ c

3
,

which is computed as a sum of the integrals over the two segments of
the distribution as

E[X] =

∫ b

a

x
2(x− a)

(c− a)(b− a)
dx+

∫ c

b

x
2(c− x)

(c− a)(c− b)
dx.

As Example 3.9 illustrates, the essence of the computation associated with
finding the expected value of any continuous random variable is to initialize
the desired expected value to zero and run a loop over the number of seg-
ments, incrementing (or decrementing) the expected value by the appropriate
integral.

Computing the Distribution of Order Statistics. The OrderStat proce-
dure returns the PDF of the rth of n order statistics drawn from a population
having the same distribution as the random variable X. For a continuous ran-
dom variable X having support on a < x < b with PDF f(x), CDF F (x), and
SF S(x), the PDF of the rth of n order statistics drawn from this distribution
is given by Hogg et al. [52, page 240] as

fr(x(r)) =
n!

(r − 1)!(n− r)!
F (x(r))

r−1f(x(r))S(x(r))
n−r a < x(r) < b.

This well-known result has been implemented in an APPL procedure named
OrderStat(X, n, r), where X is a list-of-sublists containing the population
distribution, n is the sample size, and r is the order statistic of interest.

Example 3.10. Find the distribution of the minimum of eight iid ex-
ponential(1) random variables.

The distribution of the minimum is found with the following APPL
statements:

> X := ExponentialRV(1);

> Y := OrderStat(X, 8, 1);

Not surprisingly, these statements place the exponential distribution
with a rate of eight into the variable Y. The list-of-sublists for Y is

[ [x → 8 e−8x ], [ 0,∞ ], [ “Continuous”, “PDF” ] ]
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For many distributions, the OrderStat procedure can accommodate dis-
tributions with symbolic parameters.

Example 3.11. Find the distribution of the median of a sample of size
n = 3 drawn from an exponential(λ) population.

In this example, an exponential distribution with a symbolic argument
is entered as an argument for OrderStat.

> X := ExponentialRV(lambda);

> OrderStat(X, 3, 2);

The result is the symbolic PDF of the sample median:

[ [x → 6λ˜(1− e−λ˜ x ) e−2λ˜ x ], [ 0,∞ ], [ “Continuous”, “PDF” ] ]

All of the standard programming constructs available in Maple, such as
loops and conditions, can be used alongside APPL statements, as illustrated
in the next example.

Example 3.12. To plot a progression of the five PDFs of the order
statistics for a sample of n = 5 observations drawn from an exponen-
tial(1) population, use the APPL code

> X := ExponentialRV(1);

> n := 5;

> for i from 1 to n do

> PlotDist(OrderStat(X, n, i), 0, 6);

> od;

The result is five PDFs plotted sequentially. The optional second and
third arguments to PlotDist define the lower and upper plotting limit.
This sequence could be of use to an instructor explaining the progres-
sive nature of order statistics to first-year probability students. The
last of the five plots is given in Fig. 3.2.

This chapter has presented data structures for representing continuous
random variables and illustrated some of the basic procedures comprising the
core of APPL. The procedures shown in the APPL tree diagram in Fig. 3.3
provide a roadmap for the rest of the monograph. The next three chapters
describe three of APPL’s nontrivial procedures that can be applied to con-
tinuous random variables: Transform (transformations of univariate random
variables), BiTransform (transformations of bivariate random variables), and
Product (products of two independent random variables).
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Transformations of Random Variables

This chapter presents a generalized version of the univariate change-of-variable
technique for transforming continuous random variables. Extending a theorem
from Casella and Berger [16] for many–to–1 transformations, we consider more
general univariate transformations. Specifically, the transformation can range
from 1–to–1 to many–to–1 on various subsets of the support of the random
variable of interest. We also present an implementation of the theorem in
APPL and present four examples.

In its simplest application, the change-of-variable technique is used to
determine the distribution of a continuous random variable Y given the dis-
tribution of a continuous random variable X and a 1–to–1 transformation
from the support of X to the support of Y . As the conditions on the trans-
formation Y = g(X) become more general, the technique requires more detail
in its description and is less likely to appear in introductory probability and
statistics texts. Casella and Berger [16, page 53] discuss transforming random
variables using the change-of-variable technique when the entire transforma-
tion is many–to–1, except for a finite number of points, i.e., the cardinality
of the set g−1(y) is the same for almost all y in the support of Y . Hogg,
et al. [52, pages 128–129] extend this many–to–1 technique to n-dimensional
random variables. We are concerned with a more general univariate case in
which the transformations are “piecewise many–to–1,” where “many” may
vary based on the subinterval of the support of Y under consideration. We
state and prove a theorem for this case and present APPL code to implement
the result. Although our theorem is a straightforward generalization of Casella
and Berger’s theorem, there are a number of details that have to be addressed
in order to produce an algorithm for finding the PDF of Y .

Consider the following simple example. Let

fX(x) =
1

3
− 1 < x < 2,
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be the PDF for the continuous random variable X. Consider the transfor-
mation Y = g(X) = X2. This transformation is a 2–to–1 transformation on
the interval X ∈ (−1, 1) (except at X = 0) and it is 1–to–1 on the interval
X ∈ [1, 2); see Figure 4.1 in Sect. 4.3. Some introductory probability texts use
this as an example (e.g., Larsen and Marx [68, page 174]), but fail to state a
general theorem that treats such piecewise many–to–1 transformations. The
difficulty lies in identifying an appropriate partition of the support of X and
a corresponding partition for the support of Y, and then determining which
of these subsets of the support of X correspond to each of the subsets of
the support of Y . A further complication is encountered when the transfor-
mation itself is either discontinuous or non-differentiable at certain points.
For example, consider the random variable X, where fX(x) = (x+ 1)/18 for
−1 < x < 5, and the transformation (see Figure 4.3 in Sect. 4.3)

Y = g(X) =

{
X2 −1 < X < 3

2

X 3
2 < X < 5.

In this example, the transformation is discontinuous as well as “piecewise
many–to–1.” Our theorem and resulting APPL implementation will determine
the PDF of Y for such transformations.

In Section 4.2, we will present our transformation theorem, modeled after
Casella and Berger’s Theorem 2.1.8 [16, page 53]. Our theorem has been pre-
sented more generally in earlier textbooks. Barr and Zehna [8, page 225] con-
sider multivariate many–to–one transformations. Rohatgi [104, pages 73–74]
and Port [102, page 462] consider the piecewise many–to–one case in the uni-
variate and multivariate settings, respectively. Our theorem is strictly univari-
ate, but permits implementation in APPL. It determines the distribution of
Y = g(X) for any univariate random variable X of the continuous type with
few restrictions on the transformation g(X). Our theorem will be stated in a
somewhat elaborate form for the purpose of facilitating its implementation.

4.1 Theorem

Before we present the theorem, we overview the rationale for the notation.
We assume that the support of X, denoted by X , consists of a finite union
of open intervals. The points x1 < x2 < · · · < xn+1 generate n consecutive
subintervals and are determined as follows. The first subinterval of X begins
with x1 and the last subinterval of X ends with xn+1. The remaining xi’s
correspond to other endpoints of the intervals of X or to the locations in X
where the function g is discontinuous or non-differentiable, or g′ is zero. Let
gi(x) denote the restriction of g(x) to (xi, xi+1); by design, gi is monotone
and therefore invertible. Let X� = {x1, x2, . . . , xn+1}; note that since X is
continuous, Pr(X ∈ X�) = 0.
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We introduce Y �, a set of points on the y-axis, to partition the support
of Y into subintervals. The range of each gi, denoted by (mi,Mi), either con-
tains or is disjoint from each Y subinterval. The set Y � is designed so that the
final PDF of Y may be specified by designating its value on each Y subinter-
val. The set Y � is defined using one-sided limits because the transformations
g1, g2, . . . , gn are not necessarily defined at the points in X�. The set Ij con-
sists of integers i with the property that the range of gi is either equal to
or properly contains the jth Y subinterval. The PDF for each Y subinterval
depends on the PDF of X and the associated transformations gi.

Theorem 4.1. Let X be a random variable of the continuous type with PDF
fX(x) and with support X , where X consists of a finite union of open intervals.
Let g(x) be a real-valued function whose domain includes X . Let −∞≤x1<
x2 < · · · < xn < xn+1 ≤ +∞ be a sequence of extended real numbers which
satisfy the following conditions:

1. The sequence includes the endpoints of the intervals whose union is X .
2. The PDF fX(x) is continuous on each open interval Ai = (xi, xi+1) for

i = 1, 2, . . . , n.
3. If fX(x) is not identically zero on Ai, then the function gi(x), which is the

restriction of g(x) to Ai, is monotone on Ai and has a nonzero derivative
at each point in Ai, for i = 1, 2, . . . , n.

Let X� = {x1, x2, . . . , xn+1}.
Let α = {i | fX(x) is not identically zero on Ai}.
Let mi = min

{
lim
x↓xi

g(x), lim
x↑xi+1

g(x)

}
for i = 1, 2, . . . , n.

Let Mi = max

{
lim
x↓xi

g(x), lim
x↑xi+1

g(x)

}
for i = 1, 2, . . . , n.

Let Y � = ∪i∈α {mi,Mi}.
Let m =‖Y � ‖ − 1, where ‖·‖ denotes cardinality.
Order the elements of yj of Y � so that y1 < y2 < · · · < ym+1.
Let Ij = {i |mi ≤ yj and yj+1 ≤ Mi}, for j = 1, 2, . . . ,m.
Then for y ∈ (yj , yj+1),

fY (y) =
∑
i∈Ij

fX

(
g−1
i (y)

) ∣∣∣∣dg−1
i (y)

dy

∣∣∣∣
for j = 1, 2, . . . ,m.

Proof. Without loss of generality, consider the jth Y subinterval (yj , yj+1).
Also suppose that a and b are any points that lie inside (yj , yj+1) such that a <
b. Furthermore, let Mi = max{g−1

i (a), g−1
i (b)} and mi = min{g−1

i (a), g−1
i (b)}

for i ∈ Ij . Then Y ∈ (a, b) if and only if X lies in (mi,Mi) for some i in Ij ,
which implies that

Pr(a < Y < b) =
∑
i∈Ij

Pr

(
mi < X < Mi

)
.
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Since Y is a continuous random variable,

Pr(a < Y < b) =
∑
i∈Ij

∫ Mi

mi

fX(x) dx

=
∑
i∈Ij

∫ b

a

fX

(
g−1
i (y)

) ∣∣∣∣dg−1
i (y)

dy

∣∣∣∣ dy
=

∫ b

a

∑
i∈Ij

fX

(
g−1
i (y)

) ∣∣∣∣dg−1
i (y)

dy

∣∣∣∣ dy
where we performed the change-of-variable y = gi(x), or equivalently x =
g−1
i (y), and have used the absolute value to treat both increasing and de-
creasing transformations (see Miller and Miller’s proof of their Theorem 7.1
[89, pages 240–242]). Referring to their theorem, we see that the integrand

∑
i∈Ij

fX

(
g−1
i (y)

) ∣∣∣∣dg−1
i (y)

dy

∣∣∣∣
is the PDF for Y on the subinterval (yj , yj+1). �

The theorem could have been stated more compactly. It is given in the
form presented here in order to facilitate data structures and algorithms that
will be implemented in the APPL Transform procedure.

4.2 Implementation in APPL

It could be quite tedious to implement this theorem by hand for large m
and n. Since transformations of random variables are commonplace in applied
probability, we wanted to include an implementation of the theorem in APPL’s
suite of procedures. Two significant implementation issues emerged. First,
Maple may produce several candidates for g−1

i , e.g., when gi(x) = x2. As
alluded to earlier, Maple returns g−1

i (y) = −√
y and g−1

i (y) =
√
y. The correct

inverse is selected by requiring that g−1
i (gi(ci)) = ci, where ci is any point in

the ith X subinterval. When the ith X subinterval has finite endpoints, ci can
be chosen to be the midpoint of the subinterval. In the cases in which x1 = −∞
or xn+1 = ∞ [e.g., X ∼ N(μ, σ2)], ci must be selected more carefully. The
algorithm for determining ci is:

1. If xi = −∞ and xi+1 = +∞, then ci = 0.
2. If xi = −∞ and xi+1 �= +∞, then ci = xi+1 − 1.
3. If xi �= −∞ and xi+1 = +∞, then ci = xi + 1.

4. For all other cases (i.e., xi and xi+1 both finite), ci =
xi + xi+1

2
.
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The second implementation issue involves redundancies in lists. Maple
doesn’t recognize that the integer 3 and the floating-point value 3.0, for ex-
ample, are redundant in a list. The ReduceList procedure finds all adjacent
points that differ by a small prescribed threshold δ and discards redundant
floating-point type elements.

The Transform(X, g) procedure has two arguments: X and g. The first
argument is a random variable in the list-of-sublists format described in Chap-
ter 3. The data structure for g is a “list-of-two-sublists” that is similar in
nature to the first two sublists of X. Here we characterize g by listing its
monotone components and the endpoints of the corresponding domains.

The following are some additional minor implementation issues that arose
during the coding of the algorithm:

• The user must supply x1, x2, . . . , xn+1. This ordered list consists of the
endpoints of the open intervals that constitute X and all locations in X
where g(x) is discontinuous or non-differentiable, or g′(x) is zero. A pre-
processor to determine elements of X� corresponding to g′(x) = 0 could
be added to the algorithm if desired. Thus if the support of X is (−1, 2),
and Y = g(X) = X2, this preprocessor would include x = 0 in X� yielding
X� = {−1, 0, 2}.

• The partition points x1, x2, . . . , xn+1 must be chosen so that fX(x) is
not defined in a piecewise fashion on any X subinterval (e.g., if X has a
triangular distribution, the mode must be a partition point).

• Adding extra x-values in X to X� that are not maxima, minima, or sad-
dle points of g(x) or discontinuities of fX(x) or g(x) will not affect the
correctness of the algorithm’s implementation of the theorem, although
the implementation will be slower.

• Many transformations such as g(x) = x+ ex do not have an inverse that
can be expressed in a closed-form. Numerical methods could be used in
conjunction with the algorithm to find individual values of fY (y). We have
not implemented this in our code. If g(x) = x+ ex, for example, then∣∣∣∣dg−1(y)

dy

∣∣∣∣ = 1

1 + ex

∣∣∣∣
x=g−1(y)

.

• Periodic transformations can pose a problem in the implementation of the
theorem. Maple uses the usual principal inverses for sin x, cosx, and tanx,
but the restricted ranges of these principal inverses are often inappropri-
ate. When the algorithm tries to identify which inverse is appropriate,
it is only given one choice, the principal inverse, but the domain of X
might not coincide with the range of the principal inverse. Example 4.4
illustrates this problem and a circumvention.

• No error-trapping has been done to insure that fX(x) is a legitimate PDF.
Also, there is limited error-trapping on g(x) in that the procedure gives
an error message when the inverse cannot be found.

• Symbolic parameters are allowed in fX(x) but not in g(x).
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4.3 Examples

This section contains some illustrative examples of using the algorithm de-
scribed in the previous section to determine the distribution of Y = g(X).
Before using the program, we tested its performance on several common trans-
formations. Given X ∼ N(0, 1) and Y = g(X) = X2, the program correctly
returned the PDF for a chi square random variable with one degree of freedom.
Given X ∼ N(μ, σ2) and Y = g(X) = (X − μ)/σ, the program correctly re-
turned the PDF for a standard normal random variable. Now we will consider
more complex examples that illustrate the theorem’s implementation.

Example 4.1. Consider the first example introduced earlier: given the
random variable X ∼ U(−1, 2), find the PDF of Y = g(X) = X2.

Given X�, the algorithm determines the relevant partitions of the sup-
ports of X and Y . Then it determines which X subintervals map onto
which Y subintervals. The subintervals are apparent in Fig. 4.1. Note
the set X� is displayed on the horizontal axis, Y � on the vertical axis,
both marked with the × symbol. The transformation is partitioned
into monotone segments (with identical or disjoint ranges) delineated
by •. The assignment of data structures for f and g and the call to
Transform are as follows:

> X := UniformRV(-1, 2);

> g := [[x -> x ^ 2, x -> x ^ 2], [-infinity, 0, infinity]];

> Y := Transform(X, g);

−1 0 1 2

0

1

2

3

4

•

•

•

X X XX

X

X

X

g(X)

Fig. 4.1. The transformation Y = g(X) = X2 for −1 < X < 2
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The Transform procedure determines that the transformation is 2–to–1
on −1 < x < 1 (excluding x = 0) and 1–to–1 on 1 ≤ x < 2. Since
Y = X2 has two inverses, the procedure determines which inverse to
apply to which X subinterval. The resulting PDF for Y is

fY (y) =

{
1/(3

√
y) 0 < y < 1

1/(6
√
y) 1 < y < 4.

The corresponding returned value of Y is a list-of-sublists that specifies
the PDF of Y :[[

y → 1

3
√
y
, y → 1

6
√
y

]
, [0, 1, 4], [“Continuous”, “PDF”]

]

The previous example could have been completely automated by letting
Maple determine the extreme point, as opposed to specifying g separately on
each of its monotone segments. The next example will use a nondifferentiable
function to indicate why we require the user to break a function into its
monotone segments.

Example 4.2. Consider the random variable X ∼ U(0, 7). Find the
PDF of Y = g(X) =

∣∣|X − 3| − 1
∣∣.

A graphical representation of this transformation is shown in Fig. 4.2,
with X�, Y �, and the monotone segments of g marked as before. This
transformation is more complex than Example 4.1 in that it is 4–to–1
for 0 < y < 1, 2–to–1 for 1 < y < 2, and 1–to–1 for 2 < y < 3.
The APPL code

0 1 2 3 4 5 6 7

0

1

2

3

•

•

•

•

•

X X X X XX

X

X

X

X

g(X)

Fig. 4.2. The transformation Y = g(X) =
∣
∣|X − 3| − 1

∣
∣ for 0 < X < 7
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> X := UniformRV(0, 7);

> g := [[x -> 2 - x, x -> x - 2, x -> 4 - x, x -> x - 4],

[0, 2, 3, 4, 7]];

> Y := Transform(X, g);

yields the correct PDF for Y :

fY (y) =

⎧⎨
⎩

4/7 0 < y < 1
2/7 1 < y < 2
1/7 2 < y < 3.

Example 4.3. Consider the second example from beginning of the
chapter: if the random variable X has PDF

fX(x) = (x+ 1)/18 − 1 < x < 5,

find the distribution of

Y = g(X) =

{
X2 −1 < X < 3

2

X 3
2 < X < 5.

The appropriate partition for the transformation with n = 3 and
m = 4 is depicted in Fig. 4.3. The APPL code for calculating the
distribution of Y is

−1 0 1 2 3 4 5

0

1

2

3

4

5

•

•

•
•

•

X X X XX

X
X

X

X

X

g(X)

Fig. 4.3. The transformation Y = g(X) has a discontinuity and is variously 2–to–1
and 1–to–1 on different subintervals
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> X := [[x -> (x + 1) / 18], [-1, 5],

["Continuous", "PDF"]];

> g := [[x -> x ^ 2, x -> x ^ 2, x -> x],

[-1, 0, 3 / 2, 5]];

> Y := Transform(X, g);

The Transform procedure returns the following PDF for Y as a list-
of-sublists:

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
18

√
y 0 < y < 1

√
y+1

36
√
y 1 < y < 3/2

(2y+3)
√
y+1

36
√
y 3/2 < y < 9/4

y+1
18 9/4 < y < 5.

Example 4.4. As a final example, we will consider the problem that
Casella and Berger [16] discussed, without providing fY (y), as a pre-
lude to their transformation theorem. Letting X be a uniform random
variable on (0, 2π), find the distribution of Y = g(X) = sin2(X).

As Fig. 4.4 shows, this transformation is 4–to–1 for the single subin-
terval for Y , which is (0, 1). Furthermore, since n = 4, X� =
{0, π

2 , π,
3π
2 , 2π}. The PDF of Y is

fY (y) =
1

π
√

y − y2
0 < y < 1,

0 1 2 3 4 5 6

0.0

0.5

1.0

•

•

•

•

•X X X X XX

X

X

g(X)

Fig. 4.4. The transformation Y = g(X) = sin2(X) for 0 < X < 2π
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which is commonly known as the arcsin distribution (Johnson, et al.
[55, pages 253–255]). To overcome the principal inverse difficulty al-
luded to in the previous section, we devised the following equivalent
problem: let the random variable X ∼ U(−π

2 ,
π
2 ) and let Y = g(X) =

sin2(X). In this case the domain of X will be the same as the range
of g−1 which results from using the standard arcsin function. This
solution yielded a random variable with a notable feature. The distri-
bution’s HF, hY (y) = fY (y)/SY (y), might be of interest to a reliability
engineer. For this distribution,

hY (y) =
2√

y − y2
[
π − 2 arcsin(2y − 1)

] 0 < y < 1.

By plotting this HF, we see it has the rare property of a closed-form,
“bathtub”-shaped HF. Furthermore, we can now apply the trans-
formation W = g(Y ) = λY in order to derive a random variable W
that is a one-parameter random variable with a closed-form, bathtub-
shaped HF. To our knowledge, although the arcsin distribution has
been discussed in the literature, we have yet to find mention of the
fact that it has a bathtub-shaped HF. Most distributions with bath-
tub-shaped HFs must be analyzed numerically because their HFs are
not closed form. One of the useful features of the Transform proce-
dure is that it can help the practitioner gain insight into what trans-
formations could result in a useful model. In this example, it becomes
apparent that the transformation “crowds” the uniformly distributed
X random variable into a distribution for Y that is “heavy” on either
end of its support. The result is a random variable with a bathtub-
shaped HF. The program enables the model designer to confirm, or
gain insight into the univariate transformations that could result in a
useful model.

The Transform procedure, originally devised by Glen, et al. [37], is one
of the fundamental building blocks of APPL. Although the presentation in
this chapter has been solely for continuous random variables, Transform has
also been extended to find the distribution of a function of a discrete random
variable. Applications of Transform will be postponed to the later chapters of
this monograph. The next chapter considers a generalization of the Transform
procedure to allow for bivariate transformations.
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Bivariate Transformations of Random
Variables

This chapter extends the work in the previous chapter in order to automate
the bivariate change-of-variables technique for bivariate continuous random
variables with arbitrary distributions. The algorithm from the previous chap-
ter for univariate change-of-variables was originally devised by Glen et al.
[37]. The bivariate transformation procedure presented in this chapter han-
dles 1-to-1, k-to-1, and piecewise k-to-1 transformations for both independent
and dependent random variables. We also present other procedures that oper-
ate on bivariate random variables (e.g., calculating correlation and marginal
distributions).

The most relevant software we found to automate bivariate transforma-
tions is Mathematica’s statistical package, MathStatica by Rose and Smith
[105]. Their examples appear to be limited to 1-to-1 transformations and
independent random variables X and Y . We present an addendum to the
APPL language that handles 1-to-1 transformations, k-to-1 transformations,
and piecewise k-to-1 transformations for both dependent and independent
continuous random variables X and Y .

The bivariate transformation technique calculates the distribution of U =
g(X,Y ) from the joint distribution of two continuous random variables X
and Y with joint PDF fX,Y (x, y) defined on the support set A in the xy-
plane. In the simplest case, an auxiliary dummy function V = h(X,Y ) can be
found so that the two functions U = g(X,Y ) and V = h(X,Y ) define a 1-to-1
transformation from the support set A in the xy-plane onto a support set B in
the uv-plane. Denote the inverse transformation from B to A by X = r(U, V )
and Y = s(U, V ). The formula from Hogg et al. [52]

fU,V (u, v) = fX,Y

(
r(u, v), s(u, v)

)|J | for (u, v) ∈ B
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gives the joint PDF of U and V , where J =

∣∣∣∣∣
dx
du

dx
dv

dy
du

dy
dv

∣∣∣∣∣ is the Jacobian. The

marginal PDF of U is then calculated by integrating v out of the joint PDF

fU (u) =

∫ ∞

−∞
fU,V (u, v) dv =

∫
D(u)

fU,V (u, v) dv for u ∈ U ,

where D(u) = {v | (u, v) ∈ B} and U is the support of U .
Next, we present a bivariate transformation algorithm used to handle

such 1-to-1 transformations, and, more generally, k-to-1 transformations and
piecewise k-to-1 transformations for the joint continuous random variables X
and Y . The algorithm is modeled after the theorem for univariate transfor-
mations that was described in the previous chapter.

5.1 Algorithm

The purpose of the algorithm is to find the PDF of U = g(X,Y ), where X and
Y are bivariate continuous random variables with joint PDF fX,Y (x, y). Let
the support of X and Y in the xy-plane be denoted by A, which is partitioned
into a finite number of disjoint components. Denote the ith component of A by
Ai and the associated PDF on Ai by fi(x, y) for i = 1, 2, . . . , n. The purpose
of this partitioning might be to accommodate a distribution that is defined
piecewise, a transformation that is defined piecewise, a transformation that
is many-to-one, or any combination of these situations. Since the Ai might
include some of their boundary points on which the transformation could be
badly behaved, we consider the interior of each Ai, denoted by A◦

i , which is
an open set. Let (U, V ) = w(X,Y ) =

(
g(X,Y ), h(X,Y )

)
be a function from

R
2 to R

2 whose domain includes ∪n
i=1A◦

i . The following assumptions must
hold:

1. The PDF fi(x, y) is continuous for all (x, y) ∈ A◦
i for i = 1, 2, . . . , n.

2. The function w is a 1-to-1 transformation from A◦
i onto a set Bi in the

uv-plane, for i = 1, 2, . . . , n. Denoting the inverse of this transformation
from A◦

i onto Bi by (X,Y ) = w−1
i (U, V ) =

(
ri(U, V ), si(U, V )

)
, we require

that the Jacobian

Ji =

∣∣∣∣∣
∂ri(u,v)

∂u
∂ri(u,v)

∂v
∂si(u,v)

∂u
∂si(u,v)

∂v

∣∣∣∣∣
is non-vanishing on Bi for i = 1, 2, . . . , n, and that the partial derivatives
are everywhere defined and continuous.

Since the Bi’s are not necessarily pairwise disjoint, we find the contribution
to the joint PDF of U and V over the component Bi that results from A◦

i , is,
from Hogg et al. [52],

fi,U,V (u, v) = fi
(
ri(u, v), si(u, v)

)|Ji| for (u, v) ∈ Bi
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for i = 1, 2, . . . , n. Then fU,V (u, v) =
∑

fi,U,V (u, v), where the sum is taken
over those i’s for which (u, v) ∈ Bi. To calculate the marginal PDF fU (u), we
define the following additional notation. For those values of u that can occur
for points (u, v) in Bi, denote the contribution of the component Ai to the
marginal PDF of U by

fUi
(u) =

∫ ∞

−∞
fi,U,V (u, v) dv =

∫
Di(u)

fi,U,V (u, v) dv,

where Di(u) = {v | (u, v) ∈ Bi}. In order to automate the integration over
Di(u), we have made the additional assumption that, for each value of u
realizable in the interior of Bi, Di(u) is a single line segment (i.e., each vertical
line segment spanning Bi is entirely contained in Bi) and that the endpoints
of the closure of Di(u) are determined by two different constraints. For some
transformations defined on A, these assumptions can only be satisfied by a
judicious partitioning of A. Because the boundary of Bi typically consists of
many distinct constraint curves, and the limits of integration for v depend on
which constraint curves are relevant for a particular value of u, the function
fUi

(u) is defined in a piecewise fashion with mi pieces, where mi is a positive
integer. Then proceed as follows to find the PDF of U .

• For j = 1, 2, . . . ,mi, denote the jth piece of fUi
(u) by fUij

(u), which is
defined on an interval denoted by uij < u < ui(j+1).

• Let U∗ = ∪n
i=1{uij | j = 1, 2, . . . ,mi + 1}.

• Order the elements of U∗ without repeats and relabel them using the
notation u∗

i so that u∗
1 < u∗

2 < · · · < u∗
l+1, where l = ‖U∗‖ − 1, and ‖ · ‖

denotes cardinality.
• Let Ik = {(i, j) |uij ≤ u∗

k and u∗
k+1 ≤ ui(j+1)} for k = 1, 2, . . . , l.

Then for u ∈ (u∗
k, u

∗
k+1), the PDF of U is given by

fU (u) =
∑

(i,j)∈Ik

fUij
(u)

for k = 1, 2, . . . , l.

5.2 Data Structure

In order to implement the algorithm, we will use a data structure for the dis-
tribution of the bivariate random variable that expands on the list-of-sublists
format used in APPL and described in Chap. 3. The distribution of the bivari-
ate random variable is presented in a list-of-three-sublists format. The first
sublist contains the ordered two-variable PDF expressions fi(x, y) of the dis-
tribution, corresponding to the components Ai into which the support of X
and Y has been partitioned. The second sublist describes each component of
Ai by using a list of constraints for that component. The third sublist contains
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the strings "Continuous" and "PDF" to specify the type of distribution and
meaning of the function in the first sublist. For proper implementation of our
algorithms, each component described in the second sublist must be a simply
connected set (i.e., contains no holes) whose boundary can be formed by con-
secutive segments of curves that satisfy equations of the form p(x, y) = 0. In
addition, the constraints listed in the second sublist for each component must
satisfy the following conditions:

• The constraints must be entered in adjacent order; clockwise or counter-
clockwise is acceptable.

• The constraints must completely enclose a region.
• The constraints must be entered as strict inequalities.
• Except for constraints of the form x < a or x > a, each constraint, when

written as an equality, must pass the vertical line test, i.e., only a single
value of y corresponds to each value of x. For example, use y <

√
1− x2

or y > −√
1− x2, rather than x2 + y2 < 1.

• If the component is unbounded, a less than ∞ or greater than −∞ con-
straint must be included.

This data structure will be illustrated in Sect. 5.4.

5.3 Implementation

The bivariate transformation procedure BiTransform(Z, g, h) takes up to
three arguments as input. The first two arguments are required and the third
is optional. The first required argument is the joint distribution of X and
Y , which is given in the list-of-three-sublists format. If U = g(X,Y ) is a k-
to-1 transformation or defined in a piecewise fashion, or both, then the user
must partition the support of X and Y such that g(X,Y ) is 1-to-1 and is not
defined in a piecewise fashion on each component of the partition. The second
required argument is the transformation of interest U = g(X,Y ), given in
the Maple function format [(x, y) → g(x, y)]. If only one transformation
is provided, then g(x, y) is applied to all components of the support of X
and Y . Otherwise the user must supply a number of transformations equal
to the number of components, where the first transformation corresponds to
the first component, the second transformation corresponds to the second
component, and so on. The third optional argument is the transformation
V = h(X,Y ), which is described using the same Maple function format and
conventions used when describing U . The default transformation is the dummy
transformation V = h(X,Y ) = Y for all values in A.

We give detail in this paragraph concerning the automatic determination
of the inverse. Each component Ai of the support of X and Y is associated
with a corresponding transformation U = gi(X,Y ) and V = hi(X,Y ) for
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i = 1, 2, . . . , n. The algorithm adapts to the case in which the inverse trans-
formation (X,Y ) =

(
ri(U, V ), si(U, V )

)
found by the Maple solve procedure

returns multiple solutions, and the correct inverse must be chosen. For exam-
ple, the 2-to-1 function (U, V ) = (X2, Y ) yields inverses (X,Y ) = (

√
U, V )

and (X,Y ) = (−√
U, V ). The BiTransform procedure finds the correct in-

verse by selecting the inverse that satisfies xi = ri
(
gi(xi, yi), hi(xi, yi)

)
and

yi = si
(
gi(xi, yi), hi(xi, yi)

)
where (xi, yi) ∈ A◦

i . An algorithm for determin-
ing such a point (xi, yi) in Ai follows. Let Wi denote the set of x-values for
all intersections of adjacent constraint equalities that define Ai. Let ti be the
minimum of Wi and Ti be the maximum of Wi. If Wi contains more than two
elements, let t̂i be the second smallest element of Wi and T̂i be the second
largest element of Wi.

1. If ti = −∞ and Ti = ∞, then xi = 0 and yi is the average of the y-values
for the two constraint equalities associated with xi = 0 that maximize the
difference of the y-values.

2. If ti = −∞ and Ti is finite, then xi = (Ti + T̂i)/2 and yi is the average
of the two y-values that correspond to xi on the two constraint equalities
associated with xi.

3. If ti is finite, then xi = (ti+ t̂i)/2 and yi is the average of the two y-values
that correspond to xi on the two constraint equalities associated with xi.

Each constraint defining Ai is an inequality of the form p(x, y) < 0, where
p is a real-valued continuous function. The corresponding constraint for Bi is
found by substituting the appropriate inverse transformations determined by
the algorithm described in the previous paragraph to achieve the inequality
p
(
ri(u, v), si(u, v)

)
< 0. One difficulty arises when the number of constraints

for Ai is greater than the number of constraints for Bi. In other words, at least
one of the corresponding constraints for Bi has been deleted as redundant. The
following example illustrates this problem.

Consider the bivariate random variables X and Y with support on the
open unit square 0 < x < 1, 0 < y < 1. The transformation U = XY with
dummy transformation V = Y is a 1-to-1 transformation from A to B (shown
in Fig. 5.1 where the boundaries of A and B are not a part of the support)
with inverse X = U/V , Y = V . Substituting X = U/V and Y = V into
the linear constraints x > 0, y > 0, x < 1, y < 1 gives the linear constraints
u > 0, v > 0, u < v, v < 1. The second constraint, v > 0, is redundant and
should not be included in the description of the support of UV . The support of
X and Y is bounded by four linear constraints whose corresponding equalities
intersect at the adjacent points (0, 0), (1, 0), (1, 1), (0, 1). These points on the
boundary of A are mapped to (0, 0), (0, 0), (1, 1), (0, 1), respectively on the
boundary of B. The BiTransform procedure checks for equality between ad-
jacent intersections for B and deletes redundant constraints. In this case, the
first and second intersections for A map to the same point, (0, 0), for B, so
v > 0 is deleted.
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Fig. 5.1. Transformation from A to B given by (U, V ) = (XY, Y ). The constraint
equality y = 0 of A is mapped to a point on the boundary of B

There are cases where Maple functions don’t operate as desired. The most
troublesome of these functions is solve. In particular, the input solve({x =

a, y = infinity}) returns NULL for a = 0, but returns {x = a, y = ∞}
for all a �= 0. The solve procedure is used primarily to find the intersec-
tion points between adjacent constraints associated with the support. Since
joint distributions constrained to the first quadrant are fairly common, if-
statements in the code handle the a = 0 case. However, it is impossible to add
conditional statements for all problems of this type (i.e., solve({x = y * y,

y = infinity}) also returns NULL). Thus, the capability of our transforma-
tion procedure, BiTransform, is limited in handling distributions with infinite
support. The scope of problems that can be solved by BiTransform is limited
to those whose adjacent constraint equalities can be solved analytically by the
solve function.

5.4 Examples

This section illustrates the use of the bivariate transformation procedure
BiTransform for a variety of distributions and transformations. Example 5.1
illustrates the use of BiTransform on independent random variables. Exam-
ple 5.2 illustrates transforming dependent random variables. Example 5.3 il-
lustrates piecewise transformations. Example 5.4 illustrates k-to-1 transforma-
tions. Example 5.5 illustrates piecewise k-to-1 transformations. Example 5.6
illustrates a method for working around a support that is not a simply con-
nected set.
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Example 5.1 (Independent X and Y ). The joint PDF of the indepen-
dent continuous random variables X ∼ U(0, 1) and Y ∼ U(0, 1) is

fX,Y (x, y) = fX(x)fY (y) = 1 0 < x < 1, 0 < y < 1.

Find the distribution of U = XY .

The distribution of U = XY is found using the transformation tech-
nique as follows:

u = g(x, y) = xy x = r(u, v) = u/v
v = h(x, y) = y y = s(u, v) = v,

J =

∣∣∣∣1/v −u/v2

0 1

∣∣∣∣ = 1/v,

fU,V (u, v) = 1 ·
∣∣∣∣1v
∣∣∣∣ = 1

v
0 < u < v,

fU (u) =

∫ 1

u

1

v
dv

= [ln v]
1
u

= − lnu 0 < u < 1.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> XY := [[(x, y) -> 1], [[y > 0, x > 0, y < 1, x < 1]],

["Continuous", "PDF"]];

> g := [(x, y) -> x * y];

> h := [(x, y) -> y];

> U := BiTransform(XY, g, h);

which return

[[u → − ln (u)] , [0, 1], [“Continuous”, “PDF”]]

as the PDF of U as expected. Leaving out the third line of code and
the third argument in BiTransform results in identical output.

The next example illustrates a bivariate transformation with a similar
support as the previous example, but with dependent continuous random
variables X and Y .

Example 5.2 (Dependent X and Y ). The joint PDF of dependent con-
tinuous random variables X and Y is

fX,Y (x, y) = 2 x > 0, y > 0, x+ y < 1.

Find the distribution of U = X + Y .
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The distribution of U = X + Y is found using the transformation
technique as follows:

u = g(x, y) = x+ y x = r(u, v) =
u+ v

2

v = h(x, y) = x− y y = s(u, v) =
u− v

2
,

J =

∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1

2
,

fU,V (u, v) = 2 ·
∣∣∣∣−1

2

∣∣∣∣ = 1 0 < u < 1, −u < v < u,

fU (u) =

∫ u

−u

1 dv = 2u 0 < u < 1.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> XY := [[(x, y) -> 2], [[x > 0, y > 0, x + y < 1]],

["Continuous", "PDF"]];

> g := [(x, y) -> x + y];

> h := [(x, y) -> x - y];

> U := BiTransform(XY, g, h);

which correctly return

[[u → 2u] , [0, 1], [“Continuous”, “PDF”]]

as the PDF of U .

The next example considers a bivariate transformation that is defined in
a piecewise fashion.

Example 5.3 (Piecewise Transformation). The joint PDF of the inde-
pendent continuous random variables X ∼ U(0, 1) and Y ∼ U(0, 1) is

fX,Y (x, y) = fX(x)fY (y) = 1 0 < x < 1, 0 < y < 1.

Find the probability distribution of U , which is defined by the piece-
wise transformation with U = X + Y for 0 < x < 1/2, 0 < y < 1 and
U = XY for 1/2 < x < 1, 0 < y < 1.

The transformation is illustrated in Fig. 5.2, using V = X − Y on
0 < X < 1/2, 0 < Y < 1 and V = Y on 1/2 < X < 1, 0 < Y < 1. For
A1 with 0 < x < 1/2, 0 < y < 1,
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Fig. 5.2. Piecewise transformation from A1 to B1 and A2 to B2

u = g1(x, y) = x+ y x = r1(u, v) =
u+ v

2

v = h1(x, y) = x− y y = s1(u, v) =
u− v

2
,

J1 =

∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣ = −1

2
,

f1,U,V (u, v) = 1 ·
∣∣∣∣−1

2

∣∣∣∣ = 1/2 0 < u+ v < 1, 0 < u− v < 2,

fU1
(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ u

−u

1/2 dv 0 < u < 1/2∫ 1−u

−u

1/2 dv 1/2 < u < 1∫ 1−u

u−2

1/2 dv 1 < u < 3/2

=

⎧⎨
⎩

u 0 < u < 1/2
1/2 1/2 < u < 1
(3− 2u)/2 1 < u < 3/2.

For A2 with u = g2(x, y) = xy, v = h2(x, y) = y, we have J2 = 1/v
from Example 5.1 and

f2,U,V (u, v) = 1 ·
∣∣∣∣1v
∣∣∣∣ = 1

v
v/2 < u < v, 0 < v < 1,

fU2
(u) =

⎧⎪⎪⎨
⎪⎪⎩

∫ 2u

u

1/v dv = ln(2) 0 < u < 1/2∫ 1

u

1/v dv = − ln(u) 1/2 < u < 1.



66 5 Bivariate Transformations of Random Variables

Using the algorithm for bivariate transformations

fU (u) = fU1
(u) + fU2

(u) =

⎧⎨
⎩

u+ ln(2) 0 < u < 1/2
1/2− ln(u) 1/2 < u < 1
(3− 2u)/2 1 < u < 3/2.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> XY := [[(x, y) -> 1, (x, y) -> 1],

[[y > 0, x < 0, y < 1, x < 1 / 2],

[y > 0, x > 1 / 2, y < 1, x < 1]],

["Continuous", "PDF"]];

> g := [(x, y) -> x + y, (x, y)-> x * y];

> h := [(x, y) -> x - y, (x, y)-> y];

> U := BiTransform(XY, g, h);

which return the correct PDF of U in the APPL list-of-sublists for-
mat as

[[u → u+ ln (2) , u → − ln (u) + 1/2, u → −u+ 3/2] , [0, 1/2, 1, 3/2],

[“Continuous”, “PDF”]]

The previous three examples have all involved 1-to-1 transformations. The
next example considers a 2-to-1 bivariate transformation of the continuous
random variables X and Y .

Example 5.4 (2-to-1 Transformation). The joint PDF of the indepen-
dent continuous random variables X and Y is

fX,Y (x, y) = 1/4 − 1 < x < 1,−1 < y < 1.

Find the distribution of U = X2 − Y .

The distribution of U under the 2-to-1 transformation U = X2 − Y
and V = Y is found using the algorithm described in Sect. 5.2.
Partition the support of X and Y such that the transformation
is 1-to-1 in each component. Let A1 be the component bound by
−1 < x < 0,−1 < y < 1 and A2 be the component bound by
0 < x < 1,−1 < y < 1. Both components map onto B under the trans-
formation U = X2 − Y and V = Y , as illustrated in Fig. 5.3. For A1,

u = g1(x, y) = x2 − y x = r1(u, v) = −(u+ v)1/2

v = h1(x, y) = y y = s1(u, v) = v,

J1 =

∣∣∣∣− 1
2 (u+ v)−1/2 − 1

2 (u+ v)−1/2

0 1

∣∣∣∣ = −1

2
(u+ v)−1/2,
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Fig. 5.3. 2-to-1 transformation from A = A1 ∪ A2 to B

f1,U,V (u, v) =
1

4
·
∣∣∣∣−1

2
(u+ v)−1/2

∣∣∣∣ = 1

8
(u+ v)−1/2

for −v < u < 1− v, −1 < v < 1,

fU1
(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ 1

−u

1

8
(u+ v)−1/2 dv −1 < u < 0∫ 1−u

−u

1

8
(u+ v)−1/2 dv 0 < u < 1∫ 1−u

−1

1

8
(u+ v)−1/2 dv 1 < u < 2

=

⎧⎨
⎩

√
u+ 1/4 −1 < u < 0

1/4 0 < u < 1
−√

u− 1/4 + 1/4 1 < u < 2.

For A2,

u = g2(x, y) = x2 − y x = r2(u, v) = (u+ v)1/2

v = h2(x, y) = y y = s2(u, v) = v,

J2 =

∣∣∣∣ 12 (u+ v)−1/2 1
2 (u+ v)−1/2

0 1

∣∣∣∣ = 1

2
(u+ v)−1/2,

f2,U,V (u, v) =
1

4
·
∣∣∣∣12(u+ v)−1/2

∣∣∣∣ = 1

8
(u+ v)−1/2

for −v < u < 1− v, −1 < v < 1,
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fU2
(u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ 1

−u

1

8
(u+ v)−1/2 dv −1 < u < 0∫ 1−u

−u

1

8
(u+ v)−1/2 dv 0 < u < 1∫ 1−u

−1

1

8
(u+ v)−1/2 dv 1 < u < 2

=

⎧⎨
⎩

√
u+ 1/4 −1 < u < 0

1/4 0 < u < 1
−√

u− 1/4 + 1/4 1 < u < 2.

Using the algorithm for bivariate transformations,

fU (u) = fU1
(u)+ fU2

(u) =

⎧⎨
⎩

√
u+ 1/2 −1 < u < 0

1/2 0 < u < 1
−√

u− 1/2 + 1/2 1 < u < 2.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> XY := [[(x, y) -> 1 / 4, (x, y) -> 1 / 4],

[[y > -1, x > -1, y < 1, x < 0],

[y > -1, x > 0, y < 1, x < 1]],

["Continuous", "PDF"]];

> g := [(x, y) -> x ^ 2 - y];

> h := [(x, y) -> y];

> U := BiTransform(XY, g, h);

which return the correct PDF of U in the APPL list-of-sublists for-
mat as[[

u → √
u+ 1/2, u → 1/2, u → −√

u− 1/2 + 1/2
]
, [−1, 0, 1, 2],

[“Continuous”, “PDF”]]

The two previous examples have considered a piecewise transformation
and a 2-to-1 transformation. The next example combines these two situations
to analyze a bivariate piecewise 2-to-1 transformation.

Example 5.5 (Piecewise 2-to-1 Transformation). The joint PDF of in-
dependent continuous random variables X and Y is

fX,Y (x, y) = 1/6 − 2 < x < 1,−1 < y < 1.

Find the probability distribution of U = X2 − Y .

The transformation U = X2 −Y and V = Y is 2-to-1 on −1 < x < 1,
−1 < y < 1 and 1-to-1 on −2 < x < −1, −1 < y < 1. Partition the
support of X and Y such that the transformation U = X2 − Y and
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Fig. 5.4. Piecewise 2-to-1 transformation. Note that A1 maps onto B1 ∪ B2 while
A2 only maps to B2

V = Y is 1-to-1 in each component. Let A1 be the component bound
by −2 < x < 0,−1 < y < 1 and A2 be the component bound by
0 < x < 1,−1 < y < 1, as illustrated in Fig. 5.4. The marginal PDF
of U is

fU (u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
u+ 1/3 −1 < u < 0√
u+ 1/6 + 1/6 0 < u < 1

−√
u− 1/3 + 1/6 +

√
u+ 1/6 1 < u < 2

−√
u− 1/6 +

√
u+ 1/6 2 < u < 3

−√
u− 1/6 + 1/3 3 < u < 5.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> XY := [[(x, y) -> 1 / 6, (x, y) -> 1 / 6],

[[y > -1, x > -2, y < 1, x < 0],

[y > -1, x > 0, y < 1, x < 1]],

["Continuous", "PDF"]];

> g := [(x, y) -> x ^ 2 - y, (x, y) -> x ^ 2 - y];

> h := [(x, y) -> y, (x, y) -> y];

> U := BiTransform(XY, g, h);

Notice that g and h each contain two functions instead of one as
in the previous example. Declaring the same transformation for each
component achieves the same result as declaring the transformation
once. The correct PDF of U is returned in the APPL list-of-sublists
format as

[[u → √
u+ 1/3, u → √

u+ 1/6 + 1/6, u → −√
u− 1/3 + 1/6 +

√
u+ 1/6,

u → −√
u− 1/6 +

√
u+ 1/6,

√
u+ 1, u → −√

u− 1/6 + 1/3], [−1, 0, 1, 2, 3, 5],

[“Continuous”, “PDF”]].
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The final example of using the BiTransform procedure illustrates its use
in the case of a non-simply connected support.

Example 5.6 (Non-simply Connected Support for U and V ). Let X
and Y be uniformly distributed on (1, 2)× (−π, π). Find the PDF of
U = X cosY .

Consider the bivariate transformation

U = X cosY, V = X sinY.

The joint density of U and V is

fU,V (u, v) =
1

2π
√
u2 + v2

1 < u2 + v2 < 4

and the marginal PDF of U is

fU (u) =

{
π−1 sinh−1

√
4u−2 − 1 1 < |u| < 2

π−1
(
sinh−1

√
4u−2 − 1− sinh−2

√
u−1 − 1

)
|u| < 1.

The commands to assign data structures and apply the bivariate trans-
formation technique are

> X := UniformRV(1, 2);

> Y := UniformRV(-Pi, Pi);

> XY := JointPDF(X, Y);

> g := [(x, y) -> x * cos(y)];

> h := [(x, y) -> x * sin(y)];

> BiTransform(XY, g, h);

which displays the joint density of (U, V ) as[[
(u, v) �→ 1/2

1

π
√|v2 + u2|

]
,
[[
1 <
√
v2 + u2,

√
v2 + u2 < 2,

arctan

(
v√

v2 + u2
,

u√
v2 + u2

)
< π

]]
, [“Continuous”, “PDF”]

]

The marginal PDF is calculated by manually dividing the support of
(U, V ) into six regions using u = −1, v = 0 and u = 1, as illustrated
in Fig. 5.5. The Maple commands

> UV := [[(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2)),

(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2)),

(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2)),

(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2)),

(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2)),

(u, v) -> 1 / (2 * pi * sqrt(u ^ 2 + v ^ 2))],
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Fig. 5.5. Support of U and V

[[v < sqrt(4 - u ^ 2), u < -1, v > 0],

[v < sqrt(4 - u ^ 2), u > -1,

v > sqrt(1 - u ^ 2), u < 1],

[v < sqrt(4 - u ^ 2), u > 1, v > 0],

[v > -sqrt(4 - u ^ 2), u < -1, v < 0],

[v > -sqrt(4 - u ^ 2), u > -1,

v < -sqrt(1 - u ^ 2), u < 1],

[v > -sqrt(4 - u ^ 2), u > 1, v < 0]],

["Continuous", "PDF"]];

> MarginalPDF(UV, u);

correctly return[[
u �→ 1

2π
ln
(√

−u2 + 4 + 2
)
− 1

2π
ln
(
−
√

−u2 + 4 + 2
)
,

u �→ − 1

2π
ln
(√

−u2 + 1 + 1
)
− 1

2π
ln
(√

−u2 + 4 + 2
)
+

1

2π
ln
(
−
√

−u2 + 4 + 2
)
− 1

2π
ln
(
−
√

−u2 + 1 + 1
)
,

u �→ − 1

2π
ln
(√

−u2 + 4 + 2
)
+

1

2π
ln
(
−
√

−u2 + 4 + 2
)]

,

[−2.0,−1.0, 1.0, 2.0], [“Continuous”, “PDF”]

]

as the marginal PDF of U . [Recall that sinh−1(x) = ln
(
x+

√
x2 + 1

)
.]

This completes the six examples that illustrate the use of the BiTransform
procedure. Calculating the distribution of a transformation of two random
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variables by hand can be tedious, especially when working with piecewise
joint distributions or piecewise transformations. An automated method for
computing bivariate transformations saves the user time and prevents calcu-
lation errors. The algorithm and BiTransform procedure we developed allows
for 1-to-1, k-to-1, and piecewise k-to-1 transformations for both independent
and dependent continuous random variables. In the future, we hope to see
computer-based algorithms for bivariate discrete transformations, as well as
multivariate transformations involving three or more random variables. The
algorithm described in this chapter has been implemented in approximately
1300 lines of code and is available at www.math.wm.edu/~leemis/BiVarAPPL.
txt.

www.math.wm.edu/~leemis/BiVarAPPL.txt
www.math.wm.edu/~leemis/BiVarAPPL.txt


6

Products of Random Variables

This chapter describes an algorithm for computing the PDF of the product
of two independent continuous random variables. This algorithm has been
implemented in the Product procedure in APPL. The algorithms behind the
Transform and BiTransform procedures from the two previous chapters differ
fundamentally from the algorithm behind the Product procedure in that the
transformation algorithms are more general whereas determining the distribu-
tion of the product of two random variables is more specific. Some examples
given in the chapter demonstrate the algorithm’s application.

Rohatgi’s well-known result [104, page 141] for determining the distribu-
tion of the product of two random variables is straightforward to derive, but
difficult to implement: If X and Y are continuous random variables with joint
PDF fX,Y (x, y), then the PDF of V = XY is

fV (v) =

∫ ∞

−∞
fX,Y

(
x,

v

x

) 1

|x| dx.

Larsen and Marx [69, page 225] state the formula for the special case in which
X and Y are independent. The implementation of this easily-stated result,
however, is not straightforward for general X and Y . Springer [109] presents
a chapter on finding distributions of products of random variables, relying
mostly on Laplace and Mellin transformation techniques, as implementation
of Rohatgi’s result is often too cumbersome. Difficulties occur as a result of
both the myriad variations to the limits of integration and the propensity of
the PDF of V to be defined in a piecewise manner. In this chapter, we consider
the cases when X and Y are independent and may have PDFs defined in a
piecewise fashion. This simplification implies that the joint PDF of X and Y
will be defined on a rectangular product space, as shown in Hogg et al. [52,
page 109].

© Springer International Publishing AG 2017
J.H. Drew et al., Computational Probability, International Series
in Operations Research & Management Science 246,
DOI 10.1007/978-3-319-43323-3 6

73
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6.1 Theorem

Considering a special case of Rohatgi’s result will illustrate some of the issues
associated with a general algorithm for determining the PDF of the product
of two independent random variables. For completeness, the theorem below is
proven from first principles (using the transformation technique) even though
it could be stated as a special case of Rohatgi’s result. Assume that the random
variable X has support on the positive interval (a, b) and the random variable
Y has support on the positive interval (c, d). Also, the product space of the two
random variables is assumed to fall entirely in the first quadrant. Theorems
and proofs for other rectangular support regions are similar. The algorithm
described in Sect. 6.5 includes all possible scenarios.

Theorem 6.1. Let X be a random variable of the continuous type with PDF
fX(x) that is defined and positive on the interval (a, b), where 0 < a < b < ∞.
Similarly, let Y be a random variable of the continuous type with PDF fY (y)
which is defined and positive on the interval (c, d), where 0 < c < d < ∞. The
PDF of V = XY is

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c
a

fY
(
v
x

)
fX(x) 1x dx ac < v < ad∫ v/c

v/d
fY
(
v
x

)
fX(x) 1x dx ad < v < bc∫ b

v/d
fY
(
v
x

)
fX(x) 1x dx bc < v < bd

when ad < bc,

fV (v) =

⎧⎨
⎩
∫ v/c
a

fY
(
v
x

)
fX(x) 1x dx ac < v < ad∫ b

v/d
fY
(
v
x

)
fX(x) 1x dx ad < v < bd

when ad = bc, and

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c
a

fY
(
v
x

)
fX(x) 1x dx ac < v < bc∫ b

a
fY
(
v
x

)
fX(x) 1x dx bc < v < ad∫ b

v/d
fY
(
v
x

)
fX(x) 1x dx ad < v < bd

when ad > bc.

Proof. Only the case of ad < bc is considered. The other cases are proven
analogously. Using the transformation technique [52, page 87], the bivariate
transformation Z = X and V = XY constitutes a 1-to-1 mapping from
A = {(x, y)|a < x < b, c < y < d} to B = {(z, v)|a < z < b, cz < v < dz}. Let
u denote the transformation and w the inverse transformation. The transfor-
mation, inverse, and Jacobian are

z = u1(x, y) = x x = w1(z, v) = z
v = u2(x, y) = xy y = w2(z, v) = v/z
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J =

∣∣∣∣ 1 0
−v/z2 1/z

∣∣∣∣ = 1/z.

The joint PDF of Z and V is

fZ,V (z, v) = fX
(
w1(z, v)

)
fY
(
w2(z, v)

) |J | , (z, v) ∈ B,

or, equivalently,

fZ,V (z, v) = fX(z)fY (v/z)
1

|z| , (z, v) ∈ B.

Integrating with respect to z over the appropriate intervals and replacing z
with x in the final result yields the marginal PDF of V ,

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ v/c
a

fY
(
v
x

)
fX(x) 1x dx ac < v < ad∫ v/c

v/d
fY
(
v
x

)
fX(x) 1x dx ad < v < bc∫ b

v/d
fY
(
v
x

)
fX(x) 1x dx bc < v < bd,

as desired. �

The geometry associated with the transformation for the case ad < bc
considered in the proof is shown in Figs. 6.1 and 6.2. The transformation maps
Ai onto Bi for i = 1, 2, 3. Although the transformation technique has been
used to prove this theorem, the CDF technique could also have been used. The

xy = ac
xy = ad
xy = bc

xy = bd
A1

A2
A3

a b

c

d

x

y

Fig. 6.1. The support of X and Y when ad < bc
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B1

B2

B3

a b

ac

ad

bc

bd

z

v

Fig. 6.2. The mapping of Z = X and V = XY when ad < bc

theorem also follows directly from Rohatgi’s result because fX,Y (x, v/x) =
fX(x)fY (v/x), which is nonzero only when a < x < b and c < v/x < d.
Thus max {a, v/d} < x < min {b, v/c}, which yields the limits of integration
displayed in the theorem. The geometry of the case ad < bc is shown in
Fig. 6.1 in which the regions A1, A2, and A3 correspond to the three different
integrals for that case. Each Ai corresponds to a different interval of v for
the family of hyperbolas given by xy = v. Given v, the interval of integration
consists of those values of x for which the curve xy = v intersects the rectangle
{(x, y) : a < x < b, c < y < d}.

6.2 Implementation in APPL

The theorem in the previous section illustrates the importance of considering
the magnitudes of the product of the coordinates of the southeast and north-
west corners of the product space [i.e., (b, c) and (a, d)] when it lies entirely in
the first quadrant. In order to apply the theorem to any continuous random
variables X and Y , three generalizations need to be addressed:

1. Analogous theorems must be written for the cases when the product space
defined by (a, b) and (c, d) lies wholly in one of the other three quadrants.
Rectangles that lie in more than one quadrant can be split into parts.

2. Instead of having PDFs that are specified by a single standard function
over their entire support, the random variables X and Y may be defined
in a piecewise manner over several intervals, forming many segments of
the PDF (e.g., the triangular distribution).

3. The cases when 0 and/or ±∞ belong to the endpoints of the intervals
which constitute the support of X and Y must be considered (e.g., the
normal distribution, see Example 6.4).
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These generalizations result in 24 (6 for each quadrant) primary cases that
must be considered in order to correctly compute the limits of integration of
the theorem. Further, some of these 24 cases must be broken into as many as
three subcases, as illustrated in the theorem. In the first quadrant (i.e., a ≥ 0
and c ≥ 0), for example, we must consider the six primary cases:

1. c = 0 and d = ∞ (Scenario A, see the algorithm in Sect. 6.5),
2. c = 0 and d < ∞ (Scenario B),
3. c > 0 and d = ∞ (Scenario C),
4. c > 0 and d < ∞ (Scenario D, with Case I: ad < bc),
5. c > 0 and d < ∞ (Scenario D, with Case II: ad = bc), and
6. c > 0 and d < ∞ (Scenario D, with Case III: ad > bc).

The paragraphs below provide more details. For quadrants II, III and IV, the
limits of integration must also be set based on the appropriate geometry, as
in Fig. 6.1.

For random variables that are defined in a piecewise fashion over various
intervals, let n be the number of intervals for X and let m be the number
of intervals for Y . There are mn rectangular product subspaces and the con-
tribution of each to the value of the PDF of V = XY must be computed.
Furthermore, each product subspace can contribute differently to the PDF
of V on up to three segments of the support of V (see Theorem 6.1). As a
result, the PDF of V tends to become complicated very quickly, with an up-
per limit of 3mn segments to its PDF. Furthermore, each of these segments
fits into one of the 24 cases of the integration mentioned above. For example,
the product of two U(0, 1) random variables (Scenario B from the list above)
yields a random variable V with only one segment (see Example 6.1). But
slightly changing X and Y to X ∼ U(1, 2) and Y ∼ U(3, 4) yields a V = XY
defined differently on three segments (see Example 6.2).

The case in which the support of X or Y contains 0 [e.g., U(−1, 2)] poses
special difficulty because some of the rectangular product spaces will not lie
wholly in any one quadrant and cannot be handled by the previously devel-
oped techniques. Our solution to this difficulty is to artificially add 0 as one
of the endpoints of the intervals for X and Y whenever this case occurs, pro-
ducing redundant segments, i.e., a segment on each side of zero with the same
formula for the PDF. This method allows for implementation when the sup-
port area intersects more than one quadrant. Example 6.3 gives an application
of this special case, where the area of interest intersects all four quadrants.
The algorithm subdivides the total area into four components, each entirely
in one quadrant, and calculates the relevant portion of the new PDF for each
quadrant.

The algorithm consists of a set-up portion, followed by nested loops that
determine the contribution to the PDF of V = XY separately for each of
the four quadrants. Section 6.5 contains the set-up portion and the algorithm
associated with the first quadrant. The algorithm for the other quadrants is
similar.
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The set-up phase begins by setting n and m to the number of intervals
that form the support of X and Y . Next, 0 is added as an interval delimiter
for X and/or Y if the random variable can assume both positive and negative
values, and 0 is not already an interval delimiter. Finally, the endpoints of the
intervals that form the support of V are determined by taking all products of
the endpoints of the X intervals times the endpoints of the Y intervals.

A nested set of loops follows that treats all pairings of X and Y intervals.
As shown in Fig. 6.1, the coordinates (a, c) are assigned to the southwest corner
of the current rectangle of interest, and the coordinates (b, d) are assigned to
the northeast corner of the current rectangle of interest. A test to determine
which quadrant contains the current rectangle is made at this point. Adding 0
as an interval delimiter in the set-up phase assures that the current rectangle
will be completely contained in just one of the quadrants. Once the quadrant
is determined, tests on c and d determine which integrals should be computed
and the appropriate limits of integration. Finally, the insertion of 0 sometimes
leads to a PDF for V with the same formula on both sides of 0. If this occurs,
the procedure simplifies the PDF by removing 0 as an interval endpoint if the
function is defined at 0.

When this algorithm is implemented in APPL, Maple occasionally returns
a PDF in a less than optimal form. The expression ln(−v)− Iπ, for example,
may occur as part of a PDF. Since ln(−1) = Iπ, the expression is equal to
ln v. Also the PDF may involve a complicated integral, which Maple fails to
recognize is equal to a much simpler standard form (see Example 6.5). We
anticipate that future generations of computer algebra systems will overcome
these difficulties.

There are three classes of resultant distributions that come from products
via this algorithm. Class A is the set of resultant distributions that are com-
pletely tractable, such as the product of two U(0, 1) random variables (see
Example 6.1). Here the PDF is in closed form, the CDF is calculable, quan-
tiles can be calculated, and plots of distributions are easily produced. The
second set, Class B, is the set of resultant distributions that are not in closed
form, but are in forms that Maple can still evaluate, such as PDFs that rely
on the erf function or the BesselK functions of Maple. Example 6.4 illus-
trates one such case, where the non-closed form PDF is expressed in terms
of the BesselK function. In Class B, it is often possible to plot the PDF and
calculate quantiles. Finding a usable form for the CDF, however, might not
be possible. The final class of problems, Class C, is the set that only appears
as un-evaluated integrals. The convolution of three Weibull random variables
is one such example. Here the resulting PDF has little use, as Maple cannot
plot the function, and cannot evaluate critical points very effectively.
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6.3 Examples

This section contains examples of applying the APPL procedure Product,
which is our implementation of the algorithm described in the previous section.

Example 6.1. Consider the independent random variables X ∼ U(0, 1)
and Y ∼ U(0, 1). Find the distribution of V = XY .

This is a simple application of the algorithm. The following APPL
code defines the distribution of the random variables X and Y and
returns the PDF of their product.

> X := UniformRV(0, 1);

> Y := UniformRV(0, 1);

> V := Product(X, Y);

The resulting PDF for V = XY is

fV (v) = − ln v 0 < v < 1,

which can be readily verified by hand as follows. The CDF of V is

FV (v) = Pr(V ≤ v)

= 1− Pr(V > v)

= 1− Pr(XY > v)

= 1−
∫ 1

v

∫ 1

v/x

1 dy dx

= v − v ln v.

Differentiating with respect to v yields the same PDF returned by
APPL.

Example 6.1 illustrates the simplest case, where the PDF of V is defined
on a single segment. The next example has a rectangular support for X and
Y , which results in a piecewise PDF of V .

Example 6.2. Consider the independent random variables X ∼ U(1, 2)
and Y ∼ U(3, 4). Find the distribution of V = XY .

The following APPL code defines the random variables X and Y and
returns the PDF of their product.

> X := UniformRV(1, 2);

> Y := UniformRV(3, 4);

> V := Product(X, Y);
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These statements yields the following PDF for V = XY :

fV (v) =

⎧⎨
⎩

ln v − ln 3 3 < v < 4
ln 4− ln 3 4 < v < 6
3 ln 2− ln v 6 < v < 8.

Notice that while the PDF of both X and Y are defined on single
segments that have positive interval limits, the PDF of V is defined
on three segments. All of the other APPL procedures described earlier
can be applied to the random variable V . For instance, the first four
moments of V can be calculated via the additional APPL statements

> Mean(V);

> Variance(V);

> Skewness(V);

> Kurtosis(V);

which return

21

4

175

144

54
√
7

875

1647621

765625
.

Examples 6.1 and 6.2 have defined X and Y using numeric parameters,
with the joint support of X and Y being a bounded product space. The next
example considers the distribution of the product of two random variables
with symbolic parameters whose joint support is the entire first quadrant.

Example 6.3. Consider the independent random variables X ∼
lognormal(μ1, σ1) and Y ∼ lognormal(μ2, σ2). Show that the prod-
uct of X and Y is also lognormal.

The APPL code to find the distribution of the product is

> X := LogNormalRV(mu1, sigma1);

> Y := LogNormalRV(mu2, sigma2);

> V := Product(X, Y);

Maple does not return the PDF of V in a form that can be directly
identified as a lognormal PDF. But using the Transform procedure
with transformation g(V ) = ln V on the random variable V yields
a random variable that is N

(
μ1 + μ2, σ

2
1 + σ2

2

)
. Because of the rela-

tionship between the lognormal and the normal distributions, we know
that V is lognormal with PDF

fV (v) =
exp
(− (ln v − μ1 − μ2)

2/2(σ2
1 + σ2

2)
)

v
√
2π(σ2

1 + σ2
2)

v > 0.

This can be identified as a lognormal
(
μ1 + μ2,

√
σ2
1 + σ2

2

)
random

variable. Hence the product of two independent lognormal random
variables is itself lognormal.
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We now move outside the first quadrant to a distribution with a much less
tractable distribution for V = XY .

Example 6.4. Consider the independent random variablesX ∼ N(0, 1)
and Y ∼ N(0, 1). Find the PDF of V = XY .

This example illustrates the case of 0 in the support of X and Y and
also the case where the support of X and Y includes the endpoints
±∞. The APPL code to find the distribution of the product is

> X := NormalRV(0, 1);

> Y := NormalRV(0, 1);

> V := Product(X, Y);

The Product procedure yields the following PDF for V :

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

BesselK(0, −v)

π
−∞ < v < 0

BesselK(0, v)

π
0 < v < ∞

which relies on Maple’s BesselK function. An APPL plot of this func-
tion is given in Fig. 6.3.

x

f(x)

0

0.2

0.4

0.6

0.8

–3 –2 –1 1 2 3

Fig. 6.3. The PDF of V = XY for X ∼ N(0, 1) and Y ∼ N(0, 1)
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The following final, more complicated example, involves checking the va-
lidity of a well-known random variate generation algorithm.

Example 6.5. Consider the independent uniform random variables
U1 ∼ U(0, 1) and U2 ∼ U(0, 1). The Box–Muller algorithm for gen-
erating a single standard normal deviate V can be coded in one line
(see Devroye [21]) as

V ←
√

−2 lnU1 cos(2πU2),

where U1 and U2 are independent random numbers. Use the Transform
and Product procedures together to determine the PDF of V .

Due to the principle inverse difficulty with trigonometric functions (see
Example 4.4 for an illustration), the transformation must be rewrit-
ten as

V ←
√

−2 lnU1 cos(πU2)

before using Transform. The APPL code to compute the distribution
of V is

> U1 := UniformRV(0, 1);

> U2 := UniformRV(0, Pi);

> T1 := Transform(U1, [[x -> sqrt(-2 * ln(x))],[0, 1]]);

> T2 := Transform(U2, [[x -> cos(x)], [0, Pi]]);

> V := Product(T1, T2);

This APPL code yields the following PDF for V :

fV (v) =

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−v

xe− x2/2

π
√
x2 − v2

dx −∞ < v < 0∫ ∞

v

xe− x2/2

π
√
x2 − v2

dx 0 < v < ∞.

While this form in not easily recognizable as the PDF for the normal
distribution, it is mathematically equivalent to the more standard

fV (v) =
1√
2π

e−v2/2 −∞ < v < ∞.

6.4 Extensions

We consider two extensions to the Product procedure: (a) adapting the al-
gorithm to automate finding the distribution of sums of random variables by
using the Product and Transform procedures together, and (b) placing a loop
around the Product code to compute the distribution of the product of several
iid random variables.



6.4 Extensions 83

First, by combining the algorithm from Chap. 4 for automating the trans-
formations of random variables, it is possible to create an algorithm for finding
the distribution of the sum of independent, univariate random variables. Note
that the relationship W = ln(eXeY ) is equivalent to W = X + Y , when X
and Y are independent random variables. This equivalence allows us to find
the distributions of eX and eY , then find the distribution of the product of the
two, then find the distribution of the natural logarithm of this product to yield
the distribution of the sum of X and Y . So APPL includes the Convolution

procedure, which is used to find the distribution of the sum of X and Y . Like-
wise, there is an ancillary APPL procedure Difference that uses Transform
and Product to find the distribution of X − Y . Additionally, Transform and
Product can be used together to find the distribution of X/Y . For example,
the single line of APPL code

> Convolution(UniformRV(0, 1), UniformRV(0, 1));

calculates the distribution of the sum of two independent U(0, 1) random
variables in the fashion described above.

Second, applications might arise when it is of interest to find the distribu-
tion of the product of several iid random variables. For instance, if W is the
product of eight U(0, 1) random variables, the distribution of W can be found
using the following APPL code:

> X := UniformRV(0, 1);

> Y := Product(X, X);

> Z := Product(Y, Y);

> W := Product(Z, Z);

The program is clearer, and more easily generalized if a Maple for loop is
used:

> X := UniformRV(0, 1);

> W := Product(X, X);

> for i from 3 to 8 do

> W := Product(W, X);

> od;

APPL contains a procedure named ProductIID which automates this process,
giving a more readable code segment than the two segments given above:

> X := UniformRV(0, 1);

> W := ProductIID(X, 8);

or, equivalently, but more succinctly,

> W := ProductIID(UniformRV(0, 1), 8);

Since the Product procedure is fairly short, we end this chapter by pre-
senting the Product algorithm in pseudocode.
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6.5 Algorithm

This section gives the details associated with the Product algorithm, which
computes the PDF of the product of two continuous, independent random
variables. Cardinality is denoted by ‖·‖ and the empty list is denoted by
[ ]. Indentation is used to indicate loops and conditions. Comments are set
flushright. To allow subscripting, the PDFs fX(x), fY (y), and fV (v) are re-
placed by f(x), g(y), and h(v). The conditions prior to the calculation of
the integrals are imposed to prevent calculating integrals unnecessarily. For
brevity, the pseudocode presented here considers only the calculation of the
probability distribution of the product of two random variables whose sup-
ports are both positive. Handling the more general cases is analogous.

Procedure Product: Find the PDF of the product of X and Y .

Input: The distribution of the random variable X and the distribution of
the random variable Y , where X and Y are independent, univariate, con-
tinuous random variables. The PDFs are in the list-of-sublists format, i.e.,
the random variable X is represented by the data structure [f̃(x), x�,

["Continuous", "PDF"]], and the random variable Y is represented by the
data structure [g̃(y), y�, ["Continuous", "PDF"]]. The first sublist forX is
a list of the piecewise f(x) functions, that is, f̃(x) =[f1(x), f2(x), . . . , fn(x)].
The second sublist for X is a list of the endpoints of the support of X,
that is, x� =[x�

1, x
�
2, . . . , x

�
n+1], where f(x) = fi(x) for x�

i < x < x�
i+1,

i = 1, 2, . . . , n. The same format applies to defining the m segments that
define the PDF of Y , i.e., g(y).

Output: The PDF of V = XY , h(v), in the same list-of-sublists format as
the input. The list h̃(v) =[h1(v), h2(v), . . . , hl(v)] contains the piecewise ele-
ments of the PDF of V and v� =[v�1 , v

�
2 , . . . , v

�
l+1] contains the corresponding

breakpoints of the support of V . The PDF is determined by a special case of
Rohatgi’s result for two independent random variables:

h(v) =

∫ ∞

−∞
f(x) · g

( v
x

) 1

|x| dx.

Algorithm:
n ← ‖x�‖ − 1 n is the number of segments of the PDF of X
m ← ‖y�‖ − 1 m is the number of segments of the PDF of Y
if (x�

1 < 0 and x�
n+1 > 0 and 0 /∈ x�) then insert 0 into x� if necessary

for i ← 1 to n
if (x�

i < 0 and x�
i+1 > 0) then

insert 0 between positions x�
i and x�

i+1

insert fi(x) after element i in the list f̃(x)
n ← n+ 1
break
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if (y�1 < 0 and y�m+1 > 0 and 0 /∈ y�) then insert 0 into y� if necessary
for i ← 1 to m

if (y�i < 0 and y�i+1 > 0) then
insert 0 between positions y�i and y�i+1

insert gi(y) after element i in the list g̃(y)
m ← m+ 1
break

v� ← [ ] initialize the support list for V
for i ← 1 to n+ 1 build the support list v�

for j ← 1 to m+ 1
v� ← v�

⋃(
x�
i · y�j
)

v� ← sort(v�) order the endpoints of the support of V
l ← ‖v�‖ − 1 l is the number of segments of the PDF of V
for i ← 1 to l initialize PDF segments of V

hi(v) ← 0
for i ← 1 to n loop through each piecewise segment of X

for j ← 1 to m loop through each piecewise segment of Y
a ← x�

i define corners of the rectangular region
b ← x�

i+1

c ← y�j
d ← y�j+1

if (a ≥ 0 and c ≥ 0) then the region is in the first quadrant

p(v) ← ∫ b
a
fi(x) · gj( vx ) · 1

x dx compute required integrals

if (d < ∞) then q(v) ← ∫ b
v/d

fi(x) · gj( vx ) · 1
x dx

if (c > 0) then r(v) ← ∫ v/c
a

fi(x) · gj( vx ) · 1
x dx

if (c > 0 and d < ∞ and ad < bc) then

s(v) ← ∫ v/c
v/d

fi(x) · gj( vx ) · 1
x dx

if (c = 0 and d = ∞) then Scenario A from Section 6.2
for k ← 1 to l

if (v�k ≥ 0) then hk(v) ← hk(v) + p(v)
if (c = 0 and d < ∞) then Scenario B from Section 6.2

for k ← 1 to l
if (v�k ≥ 0 and v�k+1 ≤ ad) then hk(v) ← hk(v) + p(v)
if (v�k ≥ ad and v�k+1 ≤ bd) then hk(v) ← hk(v) + q(v)

if (c > 0 and d = ∞) then Scenario C from Section 6.2
for k ← 1 to l

if (v�k ≥ bc) then hk(v) ← hk(v) + p(v)
if (v�k ≥ ac and v�k+1 ≤ bc) then hk(v) ← hk(v) + r(v)

if (c > 0 and d < ∞) then Scenario D from Section 6.2
if (ad < bc) then Case I

for k ← 1 to l
if (v�k ≥ ac and v�k+1 ≤ ad) then hk(v) ← hk(v) + r(v)
if (v�k ≥ ad and v�k+1 ≤ bc) then hk(v) ← hk(v) + s(v)
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if (v�k ≥ bc and v�k+1 ≤ bd) then hk(v) ← hk(v) + q(v)
if (ad = bc) then Case II

for k ← 1 to l
if (v�k ≥ ac and v�k+1 ≤ ad) then hk(v) ← hk(v) + r(v)
if (v�k ≥ bc and v�k+1 ≤ bd) then hk(v) ← hk(v) + q(v)

if (ad > bc) then Case III
for k ← 1 to l

if (v�k ≥ ac and v�k+1 ≤ bc) then hk(v) ← hk(v) + r(v)
if (v�k ≥ bc and v�k+1 ≤ ad) then hk(v) ← hk(v) + p(v)
if (v�k ≥ ad and v�k+1 ≤ bd) then hk(v) ← hk(v) + q(v)

analogous steps here for rectangles in quadrants II, III, and IV
remove any redundancies in fV (v) due to 0 in the support list
return([h̃(v), v∗, ["Continuous", "PDF"]])

In conclusion, an algorithm for calculating the PDF of the product of two
independent random variables X and Y, as detailed in Glen et al. [39], has
been developed and implemented. Special care has been taken to allow for
random variables that are defined in a piecewise manner or have 0 as a part
of their support. The algorithm can be extended to calculate the PDF of sums
of independent random variables and to products of iid random variables. Al-
though its presentation in this chapter has been solely for continuous random
variables, the algorithm is also able to find the distribution of the product of
two discrete random variables. This concludes our introduction to continuous
random variables. The next three chapters are devoted to discrete random
variables.



Part III

Algorithms for Discrete Random
Variables

Now in building of chaises, I tell you what,

There is always somewhere a weakest spot,–

In hub, tire, felloe, in spring or thill,

In panel, or crossbar, or floor, or sill,

Above or below, or within or without,–

And that’s the reason, beyond a doubt,

A chaise breaks down, but doesn’t wear out.

—Oliver Wendall Holmes, “The Deacon’s Masterpiece”



7

Data Structures and Simple Algorithms

This chapter introduces the data structures necessary to define a discrete
random variable in APPL and surveys some simple algorithms associated
with discrete random variables. The first section will show that the nature of
the support of discrete random variables makes the data structures required
much more complicated than for continuous random variables.

7.1 Data Structures

Recall from Chap. 3 that the format for describing a continuous random vari-
able is a Maple list consisting of three sublists:

[[f(x)], [support ], ["Continuous", "XXX"]]

where XXX is PDF, CDF, SF, HF, CHF, or IDF. It might seem like a trivial matter
to simply modify the list-of-sublists to

[[f(x)], [support ], ["Discrete", "XXX"]]

but there is a complication. The problem lies in the second sublist—the sup-
port. For example, let X denote the number of heads in two tosses of a fair
coin. The binomial distribution with n = 2 and p = 1/2 is an appropriate
probability model for X. The APPL statement

> X := [[1 / 4, 1 / 2, 1 / 4], [0, 1, 2], ["Discrete", "PDF"]];

defines X using the above format for a discrete random variable. But what
if n = 1000? Keying 1001 support values into the second sublist is imprac-
tical. The data structure must provide a way to automate the input when
the support contains many values. Furthermore, what if we are interested
in finding the distribution of Y = X2 by using the Transform procedure?
There also needs to be a mechanism available for easily encoding the support
0, 1, 4, 9, . . . , n2.

© Springer International Publishing AG 2017
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in Operations Research & Management Science 246,
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The acronyms that identify the functional form that defines the distribu-
tion of a discrete random variable X in the second element of the third sublist
are the same as in the continuous case (log denotes natural logarithm):

• probability density function (PDF) fX(x) = Pr(X = x)

• cumulative distribution function (CDF) FX(x) =
∑

s≤x fX(s),

• survivor function (SF) SX(x) =
∑

s≥x fX(s),

• hazard function (HF) hX(x) = fX(x)/SX(x),

• cumulative hazard function (CHF) HX(x) = −log
(
SX(x)

)
, and

• inverse distribution function (IDF) F−1
X (u).

The probability density function is also commonly referred to as the probability
mass function for discrete random variables.

The common data structure used in APPL is again referred to as a “list-
of-sublists.” Each APPL random variable is input as a list that contains three
sublists, each with a specific purpose. The first sublist contains either a func-
tion or a numeric list that defines one of the six functional forms that describe
the distribution. For example, the PDF form of the Poisson distribution with
mean λ and support x = 0, 1, 2, . . . has as its first sublist[

x → λxe−λ

x!

]
.

The CDF form of the geometric(1/4) distribution with support x = 1, 2, . . . ,
has as its first sublist [

x → 1−
(
3

4

)x ]
.

The SF form (in a numeric Maple list) of the probability of obtaining an x or
higher, where x = 1, 2, . . . , 6, on a single roll of a fair 6-sided die is[

1,
5

6
,
2

3
,
1

2
,
1

3
,
1

6

]
.

The second sublist contains the random variable’s support. Recall from
Chap. 3 that for a continuous random variable, this second sublist contains an
ordered list of real numbers that delineate the end points of the intervals for
the functions in the first sublist. The end point of each interval is automatically
the starting point of the subsequent interval. A discrete random variable’s
support, on the other hand, can be input in one of several different formats.
This variation in formats presents greater difficulty than in the continuous case
for determining a structure for the second sublist. For example, the Poisson
distribution with PDF

f(x) =
λxe−λ

x!
x = 0, 1, 2, . . .
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has as its support the nonnegative integers. This support has a pattern to it;
the first value of x at which the PDF is defined is zero and the rest of the
support consists of subsequent integers. Many discrete random variables do
not have a patterned support. When designing the second sublist structure
for discrete random variables, we first had to distinguish between random
variables that had some type of pattern to their support versus those that
did not. For example, let X be a binomial random variable with parameters
n = 5 and p = 0.2, and associated PDF

f(x) =

(
5

x

)
(0.2)x (0.8)5−x x = 0, 1, . . . , 5.

The support of the random variable X consists of consecutive integers. For
such random variables, only the first and last values of the support are needed
to generate the entire support list. We call this support case the Dot case,
since we can write the support in Maple’s range (also called type ‘..’) format:
min{Ω} .. max{Ω}, where Ω is the support. Thus, the second sublist for the
random variable X is input as [0 .. 5].

Switching to the NoDot case, consider the random variable Y with PDF

f(y) =

⎧⎨
⎩

0.2 y = 1
0.5 y = 7/2
0.3 y = 11.

Random variables with supports that display no pattern, such as the support
of Y , must be entered as a Maple list, where the list elements are separated
by commas. We call this support case the NoDot case. The support values
listed in the second sublist correspond to the distribution’s function values in
the first sublist. We input the first and second sublists of Y as [0.2, 0.5, 0.3]
and [1, 7 / 2, 11], respectively.

After distinguishing between the Dot and NoDot support cases, there are
subcases of these two general cases to consider. First, in the NoDot case, the
function in the first sublist can be written as a formula or a list of numeric ele-
ments. The random variable Y with PDF values [0.2, 0.5, 0.3] is a Maple list
of numeric elements (separated by commas). On the other hand, the random
variable X with PDF

f(x) =
x

27
x = 1, 3, 7, 16,

is a valid discrete probability mass function whose PDF can be written as
a formula in Maple’s function notation as x → x/27. Its first two sublists
are input in Maple as [x -> x / 27] and [1, 3, 7, 16]. APPL allows the user
to enter a discrete random variable represented in the NoDot case in either
format, numeric or formulaic. Converting the first sublist from the formulaic
NoDot format to a “standard” NoDot format (where the first sublist is not
written as a formula) is handled in a procedure called Convert. If we enter
X as displayed above and apply the Convert procedure to X with the APPL
statements
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> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];

> X := Convert(X);

the random variable X is returned as the list[[
1

27
,
1

9
,
7

27
,
16

27

]
, [1, 3, 7, 16], [“Discrete”, “PDF”]

]

More examples of the Convert procedure are given subsequently.
The Dot case also has two subcases: either the random variable has finite

or infinite support. Let Ω represent the support of a random variable X. The
“standard” Dot format for defining the support has the general form

[min{Ω} .. max{Ω}, k, x → g(x) ]

where the default value of the support increment k (if not entered) is 1 and
the default value of support transformation function g(x) (if not entered) is
the identity function.

To introduce the different variations in format, let X1 ∼ geometric(1/4)
with PDF

fX1
(x) =

1

4

(
3

4

)x−1

x = 1, 2, . . . .

Let X2 = 2Y , where Y ∼ binomial(5, 0.2). The PDF of X2 is

fX2
(x) =

(
5

x/2

)
(0.2)x/2 (0.8)5−x/2 x = 0, 2, 4, . . . , 10.

Let X3 be a discrete random variable with PDF

fX3
(x) =

x+ 6

54
x = 1, 4, 9, 16.

Let X4 be a discrete random variable with PDF

fX4
(x) =

√
x

15
x = 9, 25, 49.

The support of each of these random variables has a pattern that can be ac-
counted for in the Dot data structure. X1’s support is incremented by ones,
while X2’s support is incremented by twos. The support of X3 is not only
incremented by ones, but is also transformed by the function g(x) = x2. Go-
ing a step further, X4’s support is incremented by twos starting with x = 3
and then transformed by g(x) = x2. In each of these cases, the minimum and
maximum values of the support, the increment of the support, and the type of
transformation applied to the support is pertinent information. Thus, in the
Dot case, the second sublist will consist of either 1, 2, or 3 elements separated
by commas containing this information. This general capability has been in-
cluded in the data structure to accommodate discrete algorithmic procedures,
such as Transform.
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The supports of the random variables X1, X2, X3, and X4 are input in
the second sublist in the APPL list-of-sublists as

X1 : [1 .. ∞]
X2 : [0 .. 10, 2]
X3 : [1 .. 4, x → x2]
X4 : [3 .. 7, 2, x → x2]

In summary, if the random variable X is discrete, its support will match
one of the cases displayed in Table 7.1. An example of the APPL list-of-sublists
format of a random variable from each of these cases is given in the outline
that immediately follows Table 7.1.

Table 7.1. Discrete random variable support categories for various types of support,
support increments k, and support transformation functions g(x)

Support Ω Cases Subcases Examples

NoDot Numeric PDF 7.1

Ω = [x1, x2, . . . , xn] Formulaic PDF
—

7.2

g(x) = x 7.3
k = 1

g(x) �= x 7.4
Finite support

g(x) = x 7.5

Dot
k �= 1

g(x) �= x 7.6

g(x) = x 7.7Ω = [min{Ω} ..max{Ω},
k = 1

g(x) �= x 7.8k, x → g(x)]
Infinite support

g(x) = x 7.9
k �= 1

g(x) �= x 7.10

1. NoDot support format: The random variable’s support Ω is a Maple
numeric list of elements.

(a) Numeric PDF: The random variable’s PDF is a Maple numeric list
of elements.
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Example 7.1. Let X be a random variable with PDF

f(x) =

⎧⎨
⎩

0.6 x = 2.5
0.3 x = 3
0.1 x = 15.

This random variable X is input in APPL as

> X := [[0.6, 0.3, 0.1], [2.5, 3, 15],

["Discrete", "PDF"]];

(b) Formulaic PDF: The random variable’s PDF is formulaic.

Example 7.2. Let X be a random variable with PDF

f(x) = x/8 x = 1, 3, 4.

This random variable X is input in APPL as

> X := [[x -> x / 8], [1, 3, 4], ["Discrete", "PDF"]];

2. Dot support format: The random variable’s support Ω is of Maple type
“..”, i.e., min{Ω} .. max{Ω}.
(a) Finite support: The random variable’s support is finite.

(i) The random variable’s support is incremented by k = 1 and trans-
formed by the identity function, i.e., g(x) = x for all x.

Example 7.3. Let X be a Benford random variable [9] with PDF

f(x) = log10 (1 + 1/x) x = 1, 2, . . . , 9.

The Benford random variable is input in APPL as

> X := [[x -> log[10](1 + 1 / x)], [1 .. 9],

["Discrete", "PDF"]];

(ii) The random variable’s support is incremented by k = 1 and
transformed by a function other than the identity function, i.e.,
g(x) �= x for some or all x.

Example 7.4. Let X be a random variable with PDF

f(x) = x/224 x = 8, 27, 64, 125.

This random variable is input in APPL as

> X := [[x -> x / 224], [2 .. 5, x -> x ^ 3],

["Discrete", "PDF"]];
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(iii) The random variable’s support is incremented by k �= 1 and trans-
formed by g(x) = x.

Example 7.5. Let Y ∼ binomial(5, p), and let X = 2Y . This ran-
dom variable X is input in APPL as

> X := [[x -> 120 * p ^ (x / 2) *

(1 - p) ^ (5 - x / 2) /

((5 - x / 2)! * (x / 2)!)],

[0 .. 10, 2], ["Discrete", "PDF"]];

(iv) The random variable’s support is incremented by k �= 1 and trans-
formed by g(x) �= x.

Example 7.6. Let X be a random variable with PDF

f(x) = 1600/489x x = 4, 25, 64.

This random variable is input in APPL as

> X := [[x -> 1600 / (489 * x)],

[2 .. 8, 3, x -> x ^ 2],

["Discrete", "PDF"]];

(b) Infinite support: The random variable’s support is infinite.

(i) The random variable’s support is incremented by k = 1 and trans-
formed by g(x) = x.

Example 7.7. Let X be a negative binomial random variable with
parameters r = 3 and p = 1/3. The simplified PDF of X is

f(x) =
(x− 2)(x− 1)

16

(
2

3

)x
x = 3, 4, . . . .

This random variable is input in APPL as

> X := [[x -> (2 / 3) ^ x * (x - 2) * (x - 1) / 16],

[3 .. infinity], ["Discrete", "PDF"]];

(ii) The random variable’s support is incremented by k = 1 and trans-
formed by g(x) �= x.

Example 7.8. Let X be the square of a geometric
(
1
2

)
random vari-

able; i.e.,
f(x) = 1/2

√
x x = 1, 4, 9, . . . .
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This random variable is input in APPL as

> X := [[x -> 2 ^ (-sqrt(x))],

[1 .. infinity, x -> x ^ 2],

["Discrete", "PDF"]];

(iii) The random variable’s support is incremented by k �= 1 and trans-
formed by g(x) = x.

Example 7.9. Let Y ∼ geometric
(
1
2

)
. Let X = 2Y , which has PDF

f(x) =

(
1

2

)x/2
x = 2, 4, 6, . . . .

This random variable is input in APPL as

> X := [[x -> (1 / 2) ^ (x / 2)], [2 .. infinity, 2],

["Discrete", "PDF"]];

(iv) The random variable’s support is incremented by k �= 1 and trans-
formed by g(x) �= x.

Example 7.10. Let Y ∼ geometric
(
1
2

)
and X = 4Y 2. The PDF of

X is

f(x) =

(
1

2

)√x/2

x = 4, 16, 36, . . . .

This random variable is input in APPL as

> X := [[x -> (1 / 2) ^ (sqrt(x) / 2)],

[2 .. infinity, 2, x -> x ^ 2],

["Discrete", "PDF"]];

Whenever an APPL procedure is invoked to perform an operation on a
discrete random variable, the random variable is first converted to its standard
format within the procedure. As discussed in the preceding section, there is
a standard discrete data structure format for both the NoDot and Dot cases.
The conversion is necessary so that the main body of each procedure can avoid
the complexity resulting from multiple formats.

LetX, for example, be the random variable discussed earlier in this chapter
with PDF

f(x) =
x

27
x = 1, 3, 7, 16.

Suppose the random variable X is input in APPL as

> X := [[x -> x / 27], [1, 3, 7, 16], ["Discrete", "PDF"]];
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When an APPL procedure, such as Mean, receives the random variable X as
an argument, it first determines if X has a Dot or NoDot support format.
Since the support Ω = [1, 3, 7, 16] has a NoDot support format, the proce-
dure’s formula for computing the mean expects that it is receiving the random
variable X in its converted format, which is[[

1

27
,
1

9
,
7

27
,
16

27

]
, [1, 3, 7, 16], [“Discrete”, “PDF”]

]

In this format, the mean of a random variable with support values x1, x2, . . .
with a NoDot support format is computed as

E[X] =

|Ω|∑
i=1

xi · f(xi)

=
4∑

i=1

X[2][i] · X[1][i]

= 1 · 1

27
+ 3 · 1

9
+ 7 · 7

27
+ 16 · 16

27

=
35

3
,

where X[2][i] is the ith element in the second sublist (X’s support) and
X[1][i] is the ith element in the first sublist (X’s probability values).

Again, each APPL procedure operates on random variables only in the
standard NoDot and Dot formats. Each APPL procedure internally converts
arguments to one of the two pre-defined formats, which allows algorithms to
be developed that exploit these formats. Without these standard formats, an
APPL procedure would be forced to discern the exact form of each random
variable it encountered. The computations required in the procedure would
then depend on the unique structure of each random variable, and as indi-
cated in Table 7.1, there are ten acceptable formats for a discrete random
variable in APPL. The Convert procedure provides each APPL procedure
with a standard structural format for a discrete random variable.

Some random variables with finite support, such as the random variable
Y with PDF

f(y) =
y

15
y = 3, 5, 7,

can be input in APPL in several different formats, which include both aNoDot
and Dot format. The APPL statements

> Y := [[1 / 5, 1 / 3, 7 / 15], [3, 5, 7], ["Discrete", "PDF"]];

> Y := [[y -> y / 15], [3, 5, 7], ["Discrete", "PDF"]];

> Y := [[y -> y / 15], [3 .. 7, 2], ["Discrete", "PDF"]];

define the same random variable Y in APPL. The first two lines define Y in
its NoDot formats, while the third line displays Y in one possible Dot format.



98 7 Data Structures and Simple Algorithms

Although Y may be defined by using any of the several different formats, any
algorithm or formula applied to Y will have the same outcome. Conversely,
a discrete random variable with countably infinite support can only be input
using a Dot support format. Since it is impossible to physically list every
element of a countably infinite set, the NoDot support format for this type
of random variable cannot be used.

The Convert procedure acts on discrete random variables in both the Dot
and NoDot cases. It converts a discrete random variable X with a

• Dot support format to the standard APPL Dot support format. If Ω is
the support of X, then the standard Dot second sublist support format is

[min{Ω} .. max{Ω}, k, x → g(x)]

where k is the support increment and g(x) is the support transformation
function.

• NoDot support format to the standard APPL NoDot support format
with corresponding PDF. If f(x) is the PDF and the support is x =
x1, x2, . . . , xn, then the PDF first sublist and the standard NoDot second
sublist support format are

[f(x1), f(x2), . . . , f(xn)], [x1, x2, . . . , xn]

Two examples of the Convert procedure for the NoDot and Dot formats
are included for further clarification.

Example 7.11. Use the APPL Convert procedure to convert a Zipf
random variable [106, page 182] with parameter α = 1 to the standard
Dot format.

The APPL statements below define X as the desired Zipf random
variable and convert it to its standard Dot format.

> X := [[x -> 6 / (Pi * x) ^ 2], [1 .. infinity],

["Discrete", "PDF"]];

> Convert(X);

The converted Zipf random variable in the standard APPL Dot for-
mat is [[

x → 6

(πx)
2

]
, [1 ..∞, 1, x → x], [“Discrete”, “PDF”]

]

Example 7.12. Use the APPL Convert procedure to convert a Benford
random variable (see Example 7.3) to the standard NoDot format.

The APPL statements below define X as a Benford random variable
and convert it to its standard NoDot format.
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> X := [[x -> log[10](1 + 1 / x)],

[1, 2, 3, 4, 5, 6, 7, 8, 9],

["Discrete", "PDF"]];

> Convert(X);

The converted Benford random variable in the standard APPL NoDot
format is

[[
ln(2)

ln(10)
,
ln( 3

2
)

ln(10)
,
ln( 4

3
)

ln(10)
,
ln( 5

4
)

ln(10)
,
ln( 6

5
)

ln(10)
,
ln( 7

6
)

ln(10)
,
ln( 8

7
)

ln(10)
,
ln( 9

8
)

ln(10)
,
ln( 10

9
)

ln(10)

]

,

[1, 2, 3, 4, 5, 6, 7, 8, 9], [“Discrete”, “PDF”]

]

As in the case of continuous random variables, there are several commonly-
used random variables that are pre-defined and automated for input into
APPL: BenfordRV, BernoulliRV, BingoCoverRV, BinomialRV, BirthdayRV,
GeometricRV, HypergeometricRV, NegativeBinomialRV, PoissonRV,
UniformDiscreteRV, and ZipfRV. This list of distributions, along with their
parameters, is displayed every time APPL is entered. A binomial random vari-
able X with n = 3 and p = 1/2, for example, can be defined by the APPL
statement

> X := BinomialRV(3, 1 / 2);

which is much more compact than the standard list-of-sublists approach:

> X := [[1 / 8, 3 / 8, 3 / 8, 1 / 8], [0, 1, 2, 3],

["Discrete", "PDF"]];

7.2 Simple Algorithms

Now that the data structure for representing discrete random variables in
APPL has been established, we present some elementary algorithms that can
be applied to these random variables. Specifically, the algorithms described in
this section conduct the following elementary operations:

• convert any of the six functional forms of a random variable (PDF, CDF,
SF, HF, CHF, or IDF) into another functional form,

• plot any of the six functions for any fully-specified distribution, e.g., the
CDF,

• determine common summary characteristics of a random variable, such as
the mean and variance,

• verify the validity of a particular PDF functional form.
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Changing the Functional Form of a Random Variable. The functional
form of a distribution can be converted to and from its six well-known forms,
the PDF, CDF, SF, HF, CHF, and IDF. As in the case of continuous random
variables, the procedures return functional forms when they are called with
a single argument and scalars when an optional second argument is included.
The names of the conversion procedures are PDF, CDF, SF, HF, CHF, and IDF,
and the procedures can be applied to both discrete and continuous random
variables.

The matrix in Table 7.2 shows how the PDF, CDF, SF, HF, and CHF
distribution forms (given in the columns) can be found if one of the forms
(given by the rows) is known. For example, if the CDF of a distribution is
given, then its CHF can be determined for xi ∈ Ω by

Table 7.2. A 5 × 5 transition matrix for determining f(xi), F (xi), S(xi), h(xi), or
H(xi) from any of the others for discrete distributions, where F (x0) ≡ 0, h(x0) ≡ 0,

and when |Ω| is finite, S(x|Ω|+1) ≡ 0 and e−H(x|Ω|+1) ≡ 0

f(xi) F (xi) S(xi) h(xi) H(xi)

f(x) • ∑

j|xj≤xi

f(xj)
∑

j|xj≥xi

f(xj)
f(xi)

∑
j|xj≥xi

f(xj)
−log

⎛

⎜⎜⎜⎝
∑

j|xj≥xi

f(xj)

⎞

⎟⎟⎟⎠

F (x) F (xi) − F (xi−1) • 1 − F (xi−1)
F (xi) − F (xi−1)

1 − F (xi−1)
− log

(
1 − F (xi−1)

)

S(x) S(xi) − S(xi+1) 1 − S(xi+1) •
S(xi) − S(xi+1)

S(xi)
− log S(xi)

h(x) h(xi)
∏

j|xj<xi

[
1 − h(xj)

]
1− ∏

j|xj≤xi

[
1 − h(xj)

] ∏

j|xj<xi

[
1 − h(xj)

] • − ∑

j|xj<xi

log
(
1−h(xj)

)

H(x) e−H(xi)−e
−H(xi+1)

1 − e
−H(xi+1)

e−H(xi)
e−H(xi)−e

−H(xi+1)

e−H(xi)
•
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H(xi) = − log
(
S(xi)
)
= − log

(
1− F (xi−1)

)
,

where log is the natural logarithm (log base e) and F (x0) ≡ 0. Some facts
used to compute the entries in the matrix for xi ∈ Ω are given in Leemis [72,
pages 56–57, 73]:

• h(xi) = f(xi)/S(xi),
• H(xi) = − logS(xi),

• S(xi) =
∏

j|xj<xi

(
1− h(xj)

)
, and

• H(xj) = −
∑

j|xj<xi

log
(
1− h(xj)

)
.

An example of how to find one distribution form when another is known
using the 5 × 5 matrix in Table 7.2 is given next.

Example 7.13. Given the hazard function

h(x) = 1/4 x = 1, 2, . . . ,

find f(xi) for xi = 1, 2, 3, . . . .

Using the
(
h(x), f(xi)

)
matrix element in Table 7.2,

f(xi) = h(xi)
∏

j|xj<xi

[1− h(xj)] =
1

4

xi−1∏
j=1

[
1− 1

4

]
=

1

4

(
3

4

)xi−1

for xi = 1, 2, 3, . . . , which is a geometric distribution with p = 1/4.
The geometric distribution is the only discrete distribution having
both a constant hazard function and the memoryless property. This
calculation is made in APPL with the statements

> X := [[x -> 1 / 4], [1 .. infinity], ["Discrete", "HF"]];

> PDF(X);

The algorithms for the PDF, CDF, SF, HF, and CHF procedures are similar
and utilize the formulas in Table 7.2. When changing the “current form” of
a random variable to a “new form,” the algorithm uses the Table 7.2 matrix
element (“current form”, “new form”).

We now delve into some detail on how the PDF procedure works.

The PDF of the discrete random variableX is defined as f(x) = Pr(X = x)
for all x ∈ Ω. The PDF(X, [x]) procedure returns either

1. the PDF of the random variable X in its APPL list-of-sublists format if
only one argument is provided in the procedure call; i.e., PDF(X), or

2. the probability value Pr(X = x) if both arguments are provided in the
procedure call; i.e., PDF(X, x).
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Example 7.14. In order to illustrate many of the conversion operations,
we use a discrete random variable X with PDF

f(x) =
x

6
x = 1, 2, 3.

The formulas for its CDF, SF, HF, CHF, and IDF are:

F (x) =
x2 + x

12
x = 1, 2, 3

S(x) =
−x2 + x+ 12

12
x = 1, 2, 3

h(x) =
2x

−x2 + x+ 12
x = 1, 2, 3

H(x) = − log

(−x2 + x+ 12

12

)
x = 1, 2, 3

F−1(u) =

⌈
−1

2
+

1

2

√
1 + 48u

⌉
u = 1/6, 1/2, 1.

If we assign the variable X to the CDF of X using the Dot format,
then the statement PDF(X) returns the PDF of X in its APPL list-of-
sublists format:

> X := [[x -> (x ^ 2 + x) / 12], [1 .. 3],

["Discrete", "CDF"]];

> PDF(X);

yielding the PDF[[
x → x

6

]
, [1 .. 3], [“Discrete”, “PDF”]

]
Alternatively, the statements

> X := [[x -> (x ^ 2 + x) / 12], [1 .. 3],

["Discrete", "CDF"]];

> PDF(X, 2);

compute Pr(X = 2), which is 1/3.

The algorithm in the PDF procedure first checks a discrete random vari-
able X to determine if it has a Dot or NoDot support format. Although
two distinct branches in the algorithm have been constructed to process ran-
dom variables of each format separately, the basic functional relationships
displayed in Table 7.2 are used in each branch. Whether X has a Dot or
NoDot support format, one of the following bullets will be executed depend-
ing on X’s distribution form (and support format in the case of IDF). We
assume Ω = {x1, x2, . . . }, where x1 < x2 < · · · .
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• If X has a PDF form, do nothing to X.

• If X has a CDF form, determine the PDF of X with the
(
F (x), f(xi)

)
matrix element in Table 7.2:

f(xi) = F (xi)− F (xi−1) xi ∈ Ω,

where i = 1, 2, . . . and F (x0) ≡ 0.

• IfX has a SF form, determine the PDF ofX with the
(
S(x), f(xi)

)
matrix

element in Table 7.2:

f(xi) = S(xi)− S(xi+1) xi ∈ Ω,

where i = 1, 2, . . . and S(x|Ω|+1) ≡ 0 when |Ω| is finite.
• IfX has a HF form, determine the PDF ofX with the

(
h(x), f(xi)

)
matrix

element in Table 7.2:

f(xi) = h(xi)
∏

j|xj<xi

[
1− h(xj)

]
xi ∈ Ω,

where i = 1, 2, . . . and h(x0) ≡ 0.

• If X has a CHF form, determine the PDF of X with the
(
H(x), f(xi)

)
matrix element in Table 7.2:

f(xi) = e−H(xi) − e−H(xi+1) xi ∈ Ω,

where i = 1, 2, . . . and e−H(x|Ω|+1) ≡ 0 when |Ω| is finite.
• If X has an IDF form with Dot support, then

1. If there is a ceiling term as part of the inverse function, extract the
expression under the ceiling in order to solve F−1(x) = y. Referring
back to X with PDF f(x) = x/6 for x = 1, 2, 3, the IDF of X (from
Example 7.14) is

F−1(u) =

⌈
−1

2
+

1

2

√
1 + 48u

⌉
,

for u = 1/6, 1/2, 1. Rewrite F−1(u) as

F−1(u) = −1

2
+

1

2

√
1 + 48u.

This removal of the ceiling function can be done using the Maple eval
procedure.

2. Solve the equation
F−1(x) = y

for x, yielding F (y). For our particularX, solving − 1
2+

1
2

√
1 + 48x = y

for x yields F (x) = x2+x
12 , replacing y with x.
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3. Find the appropriate inverse. If there is more than one solution to the
equation F−1(x) = y, determine the correct inverse by testing which
solution F (x) correctly calculates F

(
F−1(s)

)
= s for s equal to one of

the following. The choices for s are considered in the bulleted order.

• if min{Ω} = −∞ and max{Ω} = ∞, then s = 1.

• if max{Ω} �= ∞, then s = max{Ω}.
• if min{Ω} �= −∞, then s = min{Ω}.
• otherwise, s =

min{Ω}+max{Ω}
2

.

See the beginning of Sect. 4.2 for the continuous analog of these con-
ditions.

4. Convert the CDF of X to its PDF form by the using the
(
F (x), f(xi)

)
matrix element in Table 7.2.

5. Determine the range of the PDF of X. The minimum support value is
F−1(x1) (where x1 is the minimum support value of the IDF here) and
the maximum support value is F−1(1). Since the minimum support
value of the IDF for the example random variable X is x1 = 1/6, then
F−1(1/6) = 1. Also, F−1(1) = 3.

• If X has an IDF form and a NoDot support, then the second sublist of the
APPL list-of-sublists contains the CDF values of X and the first sublist
contains the CDF support values. To compute the PDF of X, the first and
second sublists of the IDF are swapped to form the CDF, and then the
PDF is computed using the

(
F (x), f(xi)

)
matrix element in Table 7.2.

The IDF of our example random variable X is

F−1(x) =

⎧⎪⎨
⎪⎩

1 x = 1
6

2 x = 1
2

3 x = 1.

The APPL list-of-sublists is[
[1, 2, 3],

[
1

6
,
1

2
, 1

]
, [“Discrete”, “IDF”]

]

The CDF is found by swapping the first two sublists:[[
1

6
,
1

2
, 1

]
, [1, 2, 3], [“Discrete”, “CDF”]

]

Finally, the PDF is

f(1) = F (1) = 1
6 ,

f(2) = F (2)− F (1) = 1
3 ,

f(3) = F (3)− F (2) = 1
2 .
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After the PDF has been computed, the algorithm checks whether one or
two arguments were entered. If only one argument,X, is provided, i.e., PDF(X),
then the PDF of X is returned in its list-of-sublists format. Otherwise, if two
arguments, X and x, are provided, then the probability value Pr(X = x) is
computed and returned. The algorithm distinguishes between the two support
formats when determining this probability value:

• If X has the Dot support format, then

1. If xi ∈ Ω, then compute and return the probability value f(xi) us-
ing the PDF formula already determined in the earlier part of the
procedure.

2. If the value xi /∈ Ω, then return Pr(X = xi) = 0.

• If X has the NoDot support format, then

1. Loop through the support values of the PDF searching for the target
value xi in the second sublist. If xi is found in position j, then its
corresponding probability value is in position j of the first sublist.
Return the jth element in the first sublist.

2. If the target value xi is not found in the second sublist, then return
Pr(X = xi) = 0.

Example 7.15 (Adapted from Hogg et al. [52, page 44]). Cast a die two
independent times and let X equal the absolute value of the difference
of the two resulting values. The CDF of X is

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

6
x = 0

11x− x2 + 6

36
x = 1, 2, . . . , 5.

Determine the PDF of X.

Define the APPL NoDot format of F (x) as the random variable X.
Then use the PDF procedure to determine X’s numeric PDF.

> X := [[1 / 6, 4 / 9, 2 / 3, 5 / 6, 17 / 18, 1],

[0, 1, 2, 3, 4, 5], ["Discrete", "CDF"]];

> PDF(X);

The APPL NoDot format of f(x) is[[
1

6
,
5

18
,
2

9
,
1

6
,
1

9
,
1

18

]
, [0, 1, 2, 3, 4, 5], [“Discrete”, “PDF”]

]

which can be converted by hand to the formulaic PDF:
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f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

6
x = 0

6− x

18
x = 1, 2, . . . , 5.

Plotting Distributions. Especially for newcomers to probability theory,
plots of the various functional forms of a random variable can provide in-
sight into the distribution of that random variable. The PlotDist procedure
requires only one argument, a random variable X, but two additional optional
arguments can be provided to indicate the plotting range, low and high. The
procedure can plot a random variable in any of its six functional forms. The al-
gorithm employed by the PlotDist procedure utilizes the list-of-sublists data
structure to glean the necessary information for a plot. For discrete random
variables, graphs for CDFs, SFs, CHFs, and IDFs, for instance, are plots of
step functions with jumps at the support values specified in the second sub-
list. Open and closed circles at the ends of the steps indicate exclusion and
inclusion, respectively, of support values.

Example 7.16 (Karian and Tanis [58, page 40]). Let

f(x) = (5− x)/10 x = 1, 2, 3, 4

be a PDF of a discrete random variable X . Use PlotDist to depict
the CDF of X.

Instead of first converting X’s PDF form into a CDF form by hand,
one can directly define the PDF and compose the CDF conversion
with PlotDist. This leaves the conversion work to APPL. The plot
of the desired CDF can be executed with the statements

> X := [[x -> (5 - x) / 10], [1 .. 4], ["Discrete", "PDF"]];

> PlotDist(CDF(X));

The corresponding plot is displayed in Fig. 7.1.

Calculating Expected Values. If X is a discrete random variable with
support Ω = {x1, x2, . . . } and PDF f(x), then the mean (or expected value)
of X is defined by

μ = E[X] =
∑

all xi ∈Ω

xi · f(xi).

More generally, if g(X) is any function of X, such as g(X) = X2, then

E
[
g(X)
]
=
∑

all xi ∈Ω

g(xi) · f(xi).

The ExpectedValue procedure requires one argument, a random variable X,
and can be given an additional argument, the function g(X). When only one
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Fig. 7.1. CDF for f(x) = (5− x)/10 for x = 1, 2, 3, 4

argument is provided for the ExpectedValue procedure, i.e., ExpectedValue
(X), the mean of the random variable X is returned. When g(x) is also
given, the ExpectedValue procedure calculates the mean of g(X). By de-
fault, the procedure assumes g(X) = X when no second argument is given.
The Mean, Variance, Kurtosis, and Skewness procedures all make use of the
ExpectedValue procedure. This is efficient because variance, the coefficient
of skewness, γ1, and the coefficient of kurtosis, γ2, for a random variable X
can be calculated as

Var[X] = E
[
(X − μ)

2
]
= E
[
X2
]− μ2,

γ1 = E

[(
X − μ

σ

)3]
=

E
[
X3
]− 3μE

[
X2
]
+ 2μ3

(Var[X])
3/2

, and

γ2 = E

[(
X − μ

σ

)4]
=

E
[
X4
]− 4μE

[
X3
]
+ 6μ2E

[
X2
]− 3μ4

(Var[X])
2 .

Example 7.17 (Ross [106, page 178]). Find the expected value and
the variance of the number of times one must throw a die until the
outcome one has occurred four times.

Since the random variable of interest is a negative binomial with pa-
rameters r = 4 and p = 1/6, the statements
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> r := 4;

> p := 1 / 6;

> X := NegativeBinomialRV(r, p);

> ExpectedValue(X);

> Variance(X);

yield the correct results: E[X] = 24 and Var[X] = 120.

Example 7.18 (Ross [106, page 198]). Let X be a binomial random
variable with parameters n and p. Show that

E

[
1

X + 1

]
=

1− (1− p)
n+1

(n+ 1)p
.

Since we want to compute E [1/(X + 1)], let g(X) = 1/(X + 1). The
APPL statements

> unassign(’p’);

> X := BinomialRV(n, p);

> ExpectedValue(X, x -> 1 / (x + 1));

produce the desired expected value.

Verifying the Validity of a PDF. Let X be a discrete random variable
defined on the support Ω = {x1, x2, . . . }. A discrete probability PDF must
satisfy the following two conditions:∑
all xi ∈Ω

Pr(X = xi) = 1 and Pr(X = xi) > 0 for each xi ∈ Ω.

The APPL VerifyPDF procedure has one argument, a random variable X, and
the procedure’s purpose is to verify that X satisfies these two conditions. When
the call to the procedure VerifyPDF(X) is made, either a message is returned
stating that X has a valid PDF or that it does not. The following example
illustrates the use of this procedure.

Example 7.19 (Karian and Tanis [58, page 62]). Verify that the prob-
abilities of a geometric random variable with parameter p sum to 1.

The random variable X can be defined as a geometric random vari-
able with parameter p using the pre-defined APPL random variable
GeometricRV(p). When the GeometricRV procedure receives a sym-
bolic argument (parameter), it uses the Maple assume command to
correctly assume that the symbolic parameter is inclusively between
0 and 1. Thus, the statements

> X := GeometricRV(p);

> VerifyPDF(X);

generate a message to the screen indicating that X has a valid PDF.
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This concludes our introduction of the data structure and some simple
algorithms for discrete random variables. The next two chapters introduce
nontrivial algorithms for two useful and representative operations on discrete
random variables: finding the probability distribution of sums of mutually
independent random variables and finding the probability distribution of order
statistics.
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Sums of Independent Discrete Random
Variables

This chapter presents an algorithm for computing the PDF of the sum of two
independent discrete random variables, along with an implementation of the
algorithm in APPL. Some examples illustrate the utility of this algorithm.

8.1 Preliminary Examples

An important operation in probability theory and statistical inference is to
calculate the distribution of the sum of two independent random variables X
and Y . Applications of sums of random variables appear in many areas of
mathematics, probability theory, physics, and engineering. Most texts devote
the majority of their attention to sums of continuous random variables, rather
than discrete random variables. We focus here on the case in which X and Y
are discrete random variables with integer-valued supports that are bounded
below.

There are several approaches for computing the PDF of Z = X+Y in the
discrete case. The event {X+Y = z}, z ∈ ZZ, can be written as the union of the
disjoint events {X = ζ, Y = z− ζ}, {X = ζ +1, Y = z− (ζ +1)}, . . . , {X =
z − ζ, Y = ζ}, where ζ is the minimum of the union of the support values of
X and Y . The PDF fZ(z) of the convolution of the PDFs of the independent
random variables X and Y (with integer supports) can be computed as
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Pr(Z = z) = Pr(X + Y = z)

=

z−ζ∑
k=ζ

Pr(X = k, Y = z − k)

=

z−ζ∑
k=ζ

Pr(X = k)Pr(Y = z − k).

The following example illustrates the use of this discrete convolution formula.

Example 8.1 ([106, page 287]). If X and Y are independent Poisson
random variables with respective parameters λ1 and λ2, compute the
PDF of Z = X + Y .

The PDF of a Poisson random variable X with parameter λ is

fX(x) =
λx e−λ

x!
x = 0, 1, 2, . . . .

Since ζ = min{0, 1, 2, . . .} = 0,

Pr(Z = z) = Pr(X + Y = z)

=

z∑
k=0

Pr(X = k, Y = z − k)

=

z∑
k=0

Pr(X = k) · Pr(Y = z − k)

=

z∑
k=0

e−λ1λk
1

k!
· e

−λ2λ2
z−k

(z − k)!

= e−(λ1+λ2)
z∑

k=0

λ1
kλ2

z−k

k! (z − k)!

=
e−(λ1+λ2)

z!

z∑
k=0

z!

k! (z − k)!
λ1

kλ2
z−k

=
(λ1 + λ2)

z
e−(λ1+λ2)

z!
z = 0, 1, 2, . . . .

So Z = X + Y has a Poisson distribution with parameter λ1 + λ2.
As will be seen subsequently, the APPL procedure Convolution au-
tomates this process.

If one wants to sum more than two iid random variables, then the dis-
tribution function for Z can be determined by induction [42, page 286]. Let
Zn = X1+X2+ · · ·+Xn be the sum of n independent random variables with
common PDF fX(x) defined on the integers. Then the PDF of Z1 is fX(x).
We can write

Zi = Zi−1 +Xi,
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for i = 2, 3, . . . , n. Thus, since we know the distribution of Xi is fX(x), for
i = 1, 2, . . . , n, we can find the distribution function of Zn by induction.
When summing more than two iid random variables, the APPL procedure
ConvolutionIID uses this inductive process to compute the PDF of the sum.

For example, let X1, X2, and X3 have PDFs fX(x) = 1/6 for x =
1, 2, . . . , 6. If Z2 = X1 +X2, then the PDF fZ2

(z) is

fZ2
(z) =

⎧⎪⎨
⎪⎩

z − 1

36
z = 2, 3, . . . , 7

13− z

36
z = 8, 9, . . . , 12.

The PDF of Z3 = X1+X2+X3 is the convolution of the PDFs of Z2 and X3.
For example,

Pr(Z3 = 4) = Pr(Z2 = 3) · Pr(X3 = 1) + Pr(Z2 = 2) · Pr(X3 = 2)

=
2

36
· 1
6
+

1

36
· 1
6

=
1

72
.

Due to the mathematical intractability in implementing the discrete con-
volution formula,

∑z−ζ
k=ζ Pr(X = k, Y = z− k), for certain non-identically dis-

tributed random variables [e.g., X ∼ Poisson(λ), Y ∼ geometric(p)] and the
inefficiency in making computations with this formula for random variables
with arbitrary supports (e.g., X with support {−216,−57, 23, 81} and Y with
support {−1002,−15, 2, 62, 211}), only certain convolutions can or should be
computed using this formula. For random variables with arbitrary supports,
the discrete convolution formula can be used, but it is often inefficient because
one or both of the random variables have support values ranging over a large
domain of non-adjacent integer values. The following example displays the
inefficiency that can be encountered by using this formula, even for random
variables with only a small number of support values.

Example 8.2. SupposeX and Y are independent discrete random vari-
ables with PDFs:

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

and

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Compute the PDF of Z = X + Y .
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The support values for Z are

{−5,−3,−2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16}.

We use the discrete convolution formula Pr(Z = z) =
∑z−ζ

k=ζ Pr(X =
k, Y = z − k), where ζ = −3, to compute Pr(Z = 4):

Pr(Z = 4) =

7∑
k=−3

Pr(X = k, Y = 4− k)

= Pr(X = −3) · Pr(Y = 7) + Pr(X = −2) · Pr(Y = 6) +

Pr(X = −1) · Pr(Y = 5) + Pr(X = 0) · Pr(Y = 4) +

Pr(X = 1) · Pr(Y = 3) + Pr(X = 2) · Pr(Y = 2) +

Pr(X = 3) · Pr(Y = 1) + Pr(X = 4) · Pr(Y = 0) +

Pr(X = 5) · Pr(Y = −1) + Pr(X = 6) · Pr(Y = −2) +

Pr(X = 7) · Pr(Y = −3)

= 0.15 · 0 + 0 · 0 + 0.25 · 0.3 + 0 · 0 + 0 · 0 + 0.1 · 0 +

0 · 0.1 + 0 · 0 + 0 · 0 + 0.3 · 0.2 + 0 · 0
= 0 + 0 + 0.075 + 0 + 0 + 0 + 0 + 0 + 0 + 0.06 + 0

= 0.135.

The probabilities for the other support values of Z are computed in a
similar fashion. Because of the tedious calculations needed to compute
the PDF of Z by the discrete convolution formula, we compute it fully
in the next example using moment generating functions (MGFs).

Unlike the discrete convolution formula, the algorithm to be presented in
this chapter avoids all zero term computations by using the moment generat-
ing function technique, which is illustrated below.

Example 8.3. Suppose X and Y are the discrete random variables de-
fined in Example 8.2 and Z = X + Y . Find the PDF of Z using the
moment generating function technique (see, for example, Hogg et al.
[52]).

Since X and Y are independent, the MGF of Z is

MZ(t) = E
[
etZ
]

= E
[
et(X+Y )

]
= E
[
etXetY

]
= E
[
etX ]E[etY

]
= MX(t)MY (t).

The MGFs of X and Y , respectively, are
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MX(t) = E
(
etX
)
= 0.15e−3t + 0.25e−t + 0.1e2t + 0.3e6t + 0.2e8t

and
MY (t) = E

(
etY
)
= 0.2e−2t + 0.1et + 0.3e5t + 0.4e8t

for −∞ < t < ∞. Thus, the MGF of Z is

MZ(t) = 0.03e−5t + 0.05e−3t + 0.015e−2t + 0.045 + 0.045e2t +

0.01e3t + 0.135e4t + 0.06e5t + 0.04e6t + 0.16e7t + 0.02e9t +

0.04e10t + 0.09e11t + 0.06e13t + 0.12e14t + 0.08e16t

for −∞ < t < ∞. Then, the PDF of Z is found by matching the coef-
ficients (mass values) with the associated coefficients in the exponents
(support values):

z −5 −3 −2 0 2 3 4 5 6 7 9 10 11 13 14 16

fZ(z) 0.03 0.05 0.015 0.045 0.045 0.01 0.135 0.06 0.04 0.16 0.02 0.04 0.09 0.06 0.12 0.08

In complicated examples, especially those involving continuous random
variables, using the moment generating function technique to obtain convo-
lution functions can be more efficient than direct summation or integration.
Along the same lines as the moment generating function technique, the prob-
ability generating function technique can be used for determining the PDF of
the sum of discrete random variables with non-negative integer-valued sup-
ports. Unfortunately, implementing either of these techniques in a computer
algebra system like Maple has drawbacks when the supports of the random
variables X and/or Y are not integer-valued. These implementation issues are
discussed in Sect. 8.4.

Besides the integration/summation and generating function methods al-
ready described, the characteristic functions of independent random variables
can be used to compute convolutions (see Parzen [100, page 395]). In order
to use this method, though, one must know the inversion formula of the PDF
of a random variable in terms of its characteristic function. The complexity
of the inversion makes this method unappealing for complicated or arbitrary
distributions.

The purpose of this chapter is to present an algorithm for determining the
distributions of sums of discrete random variables, especially those with fi-
nite arbitrary supports. Like the algorithm presented in Woodward [121], our
algorithm handles well-known distributions, such as the binomial and Pois-
son. But, our algorithm was primarily written for arbitrary random variables
whose supports have moderate cardinality. Computer algebra systems make
it feasible to determine the distribution of a sum of these types of random
variables.

Section 8.2 describes the algorithm for determining the PDF of a sum of
two discrete random variables in conceptual terms. The algorithm that was
constructed to compute the convolution appears in Sect. 8.3; implementation
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issues that arose when the algorithm was coded in APPL are given in Sect. 8.4.
Section 8.5 provides a collection of examples that can be solved with the
convolution algorithm.

8.2 Conceptual Algorithm Development

One way to compute the convolution of the PDFs of two independent discrete
random variables is by what we call the “brute force method.” Let X have
support x1, x2, . . . , xn and Y have support y1, y2, . . . , ym. This method does
just what the name implies—it computes all possible sums between the sup-
port of X and the support of Y by brute force, e.g., x1+y1, x1+y2, . . . , x1+
ym, x2 + y1, x2 + y2, . . . , xn + ym−1, xn + ym. The sums are placed in a one-
dimensional array, called s, of length n · m. The corresponding probabilities
for each of these sums, fX(x1) · fY (y1), fX(x1) · fY (y2), . . . , fX(xn) · fY (ym),
are stored in an one-dimensional array called Probs, also of length n · m.
The probability in position Probsi corresponds to the sum in position si,
i = 1, 2, . . . , n ·m.

For example, let X and Y be the random variables introduced in Exam-
ple 8.2. The arrays s and Probs for the random variables X and Y are

s = [−5, −2, 2, 5, −3, 0, 4, 7, 0, 3, 7, 10, 4, 7, 11, 14, 6, 9, 13, 16 ] ,

P robs = [0.03, 0.015, 0.045, 0.06, 0.05, 0.025, 0.075, 0.1, 0.02, 0.01,

0.03, 0.04, 0.06, 0.03, 0.09, 0.12, 0.04, 0.02, 0.06, 0.08].

We assume that s is initially unsorted and may contain repeated values, such
as 0, 4, and 7 in this particular example. The array s is then sorted and the
elements in the array Probs are rearranged in a corresponding way. After
sorting, the arrays s and Probs are

s = [−5, −3, −2, 0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 7, 9, 10, 11, 13, 14, 16 ],

P robs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08 ].

Finally, the redundancies in s are removed and the appropriate probabilities
corresponding to those redundancies are combined in Probs. The final arrays
are

s = [−5, −3, −2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16],

P robs = [0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16,

0.02, 0.04, 0.09, 0.06, 0.12, 0.08].

One algorithm we employ to sort the array s is the insertion sort, as
described in Weiss [116]. When n ·m is small, the simplicity of the insertion
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sort makes it an appropriate choice. Unfortunately, for random variables X
and Y with larger support sizes n and m, such as n = m = 10, the insertion
sort becomes inefficient. Since the insertion sort is an O(N2) algorithm, where
N = n · m in our setting, it is not an appropriate method for sorting lists
containing more than one hundred or so elements. For this reason, another
sorting algorithm, heapsort, also described in Weiss [116], is used to sort larger
arrays. Heapsort uses a heap, which is a binary tree with special properties,
to sort the array s. Heapsort is an O

(
N · log(N)

)
algorithm (see, for example,

Carrano et al. [15]).
Heapsort builds the array s as a maximum heap data structure. It then

swaps the maximum element (the root) of the heap with the element in the
last array position sn·m. The heap is rebuilt with the remaining unsorted
elements in array positions s1 through sn·m−1. The maximum element of the
new heap is then swapped with the element in the second to last position of
the array s, which is position sn·m−1. Now the last two positions in s are sorted
in ascending order. The heap structure is again restored with the remaining
unsorted elements in array positions s1 through sn·m−2. This swap and rebuild
process repeats itself until all elements are removed from the unsorted region
of the heap and placed in ascending order from the front to the back of the
heap. Heapsort proved more efficient than insertion sort for large values of N .

Shellsort, an improved insertion sort, is the algorithm employed by the
mathematical software package Maple to sort polynomials. Since Shellsort’s
“performance is quite acceptable in practice, even for N [the number of ele-
ments] in the tens of thousands” [116, page 260], we take advantage of Maple’s
sorting algorithm for polynomials (when possible) by using the moment gen-
erating function technique to compute the sum of discrete random variables.
The MGFs for X and Y , denoted by MX(t) and MY (t) respectively, are
first computed. Next, the product of the MGFs, MZ(t), is computed. We
manipulate the terms of the MGF with Maple’s expand procedure so that
they are written in a fashion that Maple interprets as polynomials terms. For
example, if the MGF is MZ(t) = 1

3e
3t + 1

6e
2t + 1

2e
5t, then expand(MZ(t))

returns MZ(t) as 1
3 (e

t)
3
+ 1

6 (e
t)

2
+ 1

2 (e
t)

5
. The terms of the resulting ex-

panded MGF are then sorted in descending order by the constant appearing
in the exponent of each et term. Sorting the example expression MZ(t) returns
1
2 (e

t)
5
+ 1

3 (e
t)

3
+ 1

6 (e
t)

2
. The probability and support values are extracted

from the terms of the expression MZ(t), and the PDF of the sum is formed.
The PDF for the example expression MZ(t) is

fZ(z) =

⎧⎪⎨
⎪⎩

1
6 z = 2
1
3 z = 3
1
2 z = 5.

Although in theory this is an ideal method, Maple recognizes that expressions
with non-integer valued constants in the exponents, such as 1

3e
3.1t + 1

6e
2.5t +

1
2e

5.4t, are not truly polynomials and will incorrectly sort such expressions.
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Since the MGF MZ(t) may not always have integer constants in its expo-
nents, the moment generating function technique for computing the PDF of
a sum is only reasonable to use for integer supports. Using probability gener-
ating functions to compute the PDF of a sum of random variables results in
the same complications. Further implementation issues faced by moment and
probability generating functions are discussed in Sect. 8.4.

As suggested by Nicol [92], the sum array s can be constructed in such a
way that the next largest sum element is placed in s as it is being built. Instead
of constructing the array s first and then sorting it, our algorithm constructs s
by sequentially appending the next ordered element. We refer to this method
as the “moving heap method,” and it involves building, deleting, and inserting
sums into a minimum heap data structure. A minimum heap contains its
smallest element in the root, rather than its largest as in a maximum heap
data structure.

The idea behind this sorting algorithm is the construction of a two-
dimensional “conceptual” array A, which has m+ 1 rows and n+ 1 columns.
The array A is not instantiated to save on memory, but serves as a book-
keeping device to help explain the nature of the algorithm. As illustrated in
Example 8.4, A is displayed in an unusual manner in order to resemble the
axes in the Cartesian coordinate system. Without loss of generality, we as-
sume that the supports of X and Y are arranged in increasing order; i.e.,
x1 < x2 < · · · < xn and y1 < y2 < · · · < ym. The array cell (i, j) contains the
sum Ai, j = yi + xj for i = 1, 2, . . . , m and j = 1, 2, . . . , n. The cells in row
m+1 of A hold a 0 or 1 for each column j = 1, 2, . . . , n to indicate whether the
cell in column j is “active,” which means its entry is in the heap H, consisting
of the candidates for the next element to be appended to s. Thus, Am+1, j = 0
or 1 for j = 1, 2, . . . , n. Likewise, the cells in column n + 1 of A also hold a
0 or 1 for each row i = 1, 2, . . . , m to indicate whether the cell in row i is
“active,” so Ai, n+1 = 0 or 1 for i = 1, 2, . . . , m. The cell (m+1, n+1) is not
used in the algorithm. Example 8.4 illustrates what is meant by an “active”
cell. Occasionally, it will be convenient to have a notation for the matrix A
with row m+1 and column n+1 deleted. This m×n matrix will be denoted
by Â.

Since xj < xj+1 for j = 1, 2, . . . , n−1 and yi < yi+1 for i = 1, 2, . . . , m−1,
the entry in cell (i, j) is always guaranteed to be less than both the entries in
cells (i+1, j) and (i, j+1); i.e. Ai, j < Ai+1, j and Ai, j < Ai, j+1. This result
allows the algorithm to repeatedly move the smallest number of candidate
entries for the next largest sum from the array A to the current heap H.
Thus, this algorithm moves from the southwest cell to the northeast cell of
the array Â repeatedly placing the next largest sum into s after choosing it
as the minimum element in the current heap H.

Theorem 8.1. Let x1 < x2 < · · · < xn and y1 < y2 < · · · < ym be finite
real numbers. Let the m × n array Â be arranged as shown in Fig. 8.1 and
have entries Âi, j = yi+xj , i = 1, 2, . . . , m and j = 1, 2, . . . , n. Let the set C
contain all (i, j) pairs such that xi + yj ≤ c, where c > y1 + x1 is a fixed real

number. Let P be the path from the northwest corner of Â to the southeast
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...
...

...

x1 x2 xn

y2

y1 y1 + x2y1 + x1

y2 + x1 y2 + x2

ym ym + x2ym + x1 . . .

. . .

. . .

ym + xn

y2 + xn

y1 + xn

. . .

Fig. 8.1. Array Â where x1 < x2 < · · · < xn and y1 < y2 < · · · < ym

corner of Â that separates C from its complement C ′. The smallest element in
C ′ must occur immediately northeast of a point at which the path P changes
direction from southward to eastward.

Proof. Suppose the smallest element in C ′ occurs in the cell (r, s). Since
Ar−1,s < Ar,s and Ar,s−1 < Ar,s, cells (r − 1, s) and (r, s − 1) are both
in C. Thus, the path P must pass between cell (r, s) and cells (r, s − 1) and
(r − 1, s), changing direction from southward to eastward as it does. �

Theorem 8.1 not only identifies the candidates for the next element to
append to s, but it also shows how the list of candidates should be modified
when its smallest element is removed. If Ap,q is appended to s, then the path
P corresponding to c = Ap,q passes along the upper edge and right edge of
cell (p, q), implying that P may change direction just southwest of Ap+1,q

and Ap,q+1. As an illustration, Fig. 8.2 displays the array Â associated with
Example 8.2 with c = 3.

Since this process and its intricacies are best explained by an example,
we’ll reintroduce the discrete random variable X and Y which were first en-
countered in Example 8.2.

Example 8.4. Let X and Y have PDFs:

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.
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−3 −1 2 6 8

−2

1

5

8

−5 −3

−2

0

0 3

4

4

5

72

107

7

11

14 16

13

9

6

Fig. 8.2. Array Â corresponding to Example 8.2. The thickened path P from the
northwest corner to the southeast corner of Â delimits the set C = {(i, j) | yi +
xj ≤ 3} from its complement C′. The circled entries lie just to the northeast of
points where the path turns from southward to eastward. These three entries are
candidates for the smallest entry in the cells of C′ for c = 3

Use the “moving heap method” to determine the PDF of Z = X +Y .

Construct the 5 × 6 array A. Set Ai, n+1 = Ai, 6 = 0 for i = 1, 2, 3, 4
and Am+1, j = A5, j = 0 for j = 1, 2, 3, 4, 5. The smallest value in A is
positioned in cell (1, 1) and is A1, 1 = y1 + x1 = −5. The algorithm
designates the cell (1, 1) as an “active” cell in A by setting Am+1, 1 =
A5, 1 = 1 and A1, n+1 = A1, 6 = 1. The zeros in the other cells of
row five and column six remain. Figure 8.3 displays this initial array.
The entries of A increase in value as one moves up, to the right, or a
combination of both (as in the Cartesian coordinate system).

−3
col 1

−1 2 6 8
col 2 col 3 col 4 col 5 col 6

−2

1

5

8

1 0 0 0 0

0

0

0

1

row 5

row 4

row 3

row 2

row 1 −5

Fig. 8.3. Array A with active cell (1, 1), which contains the entry A1, 1 = −5
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As in the brute force method, let the one-dimensional array s of length
n ·m hold the sums of the supports of the random variables X and Y .
The corresponding probabilities for each of these sums will again be
stored in the one-dimensional array called Probs, also of length n ·m.
Clearly, the first (smallest) sum to be placed in the first position of
array s is A1, 1. Accordingly, fX(x1) · fY (y1) = 0.03 is placed in the
Probs array in its first position, Probs1. After setting s1 = A1, 1 = −5
and Probs1 = Pr(Z = A1, 1) = fX(x1) · fY (y1) = 0.03, the cell (1, 1)
becomes inactive. In order to reflect the absence of an active cell in
the first row and first column, reset Am+1, 1 = A5, 1 = 0 and A1, n+1 =
A1, 6 = 0. The next two cells to become “active” (i.e., cells that may
contain the next largest sum) in the array A are (1, 2) and (2, 1), with
A1, 2 = y1+x2 = −3 and A2, 1 = y2+x1 = −2. Since cell (1, 2) in A is
now active, reset A1, 6 = 1 and set A5, 2 = 1. Similarly, since cell (2, 1)
is active, set A2, 6 = 1 and reset A5, 1 = 1. The purpose of these ones
and zeros along the boundary of the A array is to assure that there
is no more than one active cell in each row and column. Figure 8.4
contains the current state of array A.

−3
col 1

−1 2 6 8
col 2 col 3 col 4 col 5 col 6

−2

1

5

8

1 1 0 0 0

0

0

1

1

row 5

row 4

row 3

row 2

row 1 −5 −3

−2

Fig. 8.4. Array A after A1, 1 has been processed and added to the one-dimensional
sum array s. The cells (1, 2) and (2, 1) are active, as indicated by the ones in cells
(1, 6), (5, 2), (2, 6), and (5, 1)

The values A1, 2 and A2, 1 now form the minimum heap H, resulting in
H = {A1,2, A2,1} = {−3,−2}. Informally, a heap is a complete binary
tree with a special ordering property of its nodes. A complete binary
tree is a tree that is completely filled with the possible exception of
the bottom level, which is filled from left to right. Figure 8.5 contains
illustrations of structures which are and are not complete binary trees.
Each node of the tree has one parent, except the root of the tree, which
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a

c

f

b

d e g

h i

Fig. 8.5. Six binary trees. The top three trees are complete binary trees and the
bottom three are not

has no parent. In a minimum heap, the smallest element of the heap
is contained in its root. In the upper-right tree in Fig. 8.5, a is the root
of the tree. Nodes b and c are a’s children, where b is the left child and
c is the right child. (According to the definition of a complete binary
tree, when a node above the bottom level of the tree has only one
child, it must be a left child.) Node b is the parent to nodes d and e.
The height of a tree is the number of nodes from the root to a node
at the bottom level of the tree. For example, the heights of the top
trees in Fig. 8.5 are three, three, and four, respectively.

Thus, a minimum heap is a complete binary tree with the special
ordering property that each parent node contains a value less than or
equal to the values in its children’s nodes. Because of this ordering
property, the smallest value in a minimum heap will always be at the
root.

The binary heapH formed with the values A1, 2 and A2, 1 is in Fig. 8.6.
The next sum to be entered into s in position s2 is the root of the
heap, i.e., the smallest element in H. Since A1, 2 = −3 is the root, it
is removed from the heap H and placed in s2, while its corresponding
probability is placed in Probs2. Because the entry A1, 2 is removed
from the array A, reset A1, 6 = 0 and A5, 2 = 0 to indicate that
row one and column two no longer contain an active cell. After these
changes, array A is displayed in Fig. 8.7.
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−2

−3

Fig. 8.6. Heap H containing entries A1, 2 = −3 and A2, 1 = −2
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row 1 −5 −3

−2

Fig. 8.7. Array A after A1, 2 = −3 is processed and appended to s. Cell (2, 1) is the
only active cell. Candidates to become active are cells (1, 3) and (2, 2). Cell (2, 2)
cannot become active since row two already contains an active cell

After setting cell (1, 2) to inactive, the two cells that are candidates
to become active (if the corresponding row and column do not already
contain an active cell) are cells (1, 3) and (2, 2). Since row two contains
the active cell (2, 1), and by design A2, 1 < A2, 2, entry A2, 2 is not
activated. However, cell (1, 3) does become active, and its entry is
A1, 3 = y1 + x3 = 0. Hence, A1, 6 = 1 and A5, 3 = 1. After these
changes, array A is displayed in Fig. 8.8.

The entry A1, 3 is inserted into the heap H, resulting in H =
{A2, 1, A1, 3} = {−2, 0}. After the addition of A1, 3, the heap H is
displayed in Fig. 8.9. The minimum element, A2, 1, is removed from
the root of the heap and placed in the sum array s in position s3. Its
corresponding probability is placed in Probs3.

The two cells that may enter the array A after the removal of the
A2, 1 entry are in cells (2, 2) and (3, 1), as indicated by the arrows in
Fig. 8.10. Both cells (2, 2) and (3, 1) become active, and their values
are A2, 2 = y2 + x2 = 0 and A3, 1 = y3 + x1 = 2. Hence, A2, 6 = 1,
A5, 2 = 1, A3, 6 = 1, and A5, 1 = 1, as displayed in Fig. 8.11. Entries
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−5 −3
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Fig. 8.8. Array A with active cells (1, 3) and (2, 1)
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Fig. 8.9. Heap H containing entries A2, 2 = −2 and A1, 3 = 0
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Fig. 8.10. Array A after A2, 2 = −2 is removed. Cell (3, 1) is the only active cell.
Candidates to become active are cells (2, 2) and (3, 1)
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Fig. 8.11. Array A with active cells (1, 3), (2, 2), and (3, 3)

A2, 2 and A3, 1 are inserted into the heap H, and H is again rebuilt
as H = {A1, 3, A2, 2, A3, 1} = {0, 0, 2}. Its structure is displayed in
Fig. 8.12.
Moving ahead to the seventeenth pass through the construction of the
array A, its appearance is displayed in Fig. 8.13. A3, 4 = 11 is placed
in s17, and values A3, 5 = 13 and A4, 4 = 14 are activated in the array
A and inserted into the heap H. Since A3, 5 is the root of the heap,
it is deleted and placed in s18. No new element is allowed to enter H,
so the root element of the heap is now A4, 4 = 14, and it is removed
and placed in s19. The last entry to be activated is A4, 5 = 16, and it
is placed in position s20 of the sum array s.

Thus, after 20 iterations of this process, s and Probs arrays are

s = [−5, −3, −2, 0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 7, 9, 10, 11, 13, 14, 16 ]

Probs = [0.03, 0.05, 0.015, 0.025, 0.02, 0.045, 0.01, 0.075, 0.06, 0.06,

0.04, 0.1, 0.03, 0.03, 0.02, 0.04, 0.09, 0.06, 0.12, 0.08 ]

20

0

Fig. 8.12. Heap H with entries A1, 3 = 0, A2, 2 = 0 and A1, 3 = 2
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Fig. 8.13. Array A with its seventeenth active cell (3, 4)

which are the same arrays encountered by using the moment gener-
ating function technique. The redundancies are removed from s and
the appropriate probabilities are combined in Probs to complete the
algorithm. (This could have been embedded into the iterative steps of
the algorithm to save memory.) Thus, the PDF of Z = X + Y is the
same as determined in Example 8.3.

8.3 Algorithm

The algorithm for the procedure Convolution(X, Y) returns the convolution
of the PDFs of the random variables X and Y . A brief description of the
algorithm for discrete random variables follows.

If X and Y are discrete, their supports, finite or infinite, dictate which
of the methods described in Sect. 8.2 is used to compute the convolution.
The convolution of the PDFs of X and Y with finite support is computed
either using the BruteForceMethod or MovingHeapMethod procedures, whose
algorithms appear in the appendices of Evans and Leemis [29]. The PDF of
the convolution of Z is stored and returned in the usual list-of-sublists format.
The list of elements f(z1), f(z2), . . . , f(zn·m) are the probability values of Z,
while z1, z2, . . . , zn·m are its support values. The one-dimensional array s is
created to contain the unique sums extracted from the array A. Similarly,
the one-dimensional array Probs is created to hold the probability values
corresponding to the sums in s.

The zeros (if any) at the end of the Probs array do not represent probabil-
ity values; they correspond to the zeros in the Probs array that are not support
values. These extra zeros indicate that there are redundant values in the sup-
port of Z. The non-zero probability values are removed from Probs and placed
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in the array FinalProbs. The support values that correspond to the removed
probability values are removed and placed in the array FinalSupport.

If the supports of the random variables X and Y are infinite, either the
discrete convolution formula is used to compute the convolution or the APPL
procedure MGF is used to determine the MGF of the sum of X and Y .

If either X or Y has infinite support, while the other has finite support,
the product of their MGFs is returned. If both X and Y have infinite support
and the discrete convolution formula formed with their PDFs results in an
intractable sum, then the product of their MGFs is returned. Otherwise, the
discrete convolution formula is used to determine the convolution of their
PDFs.

Unless the MGF of Z or the PDF of the sum of X and Y (with n = 1 and
m = 1) has already been returned, the PDF fZ(z) is returned.

Procedure Convolution: Computes the PDF of the sum two independent
random variables (indentation indicates nesting).

Input: The random variables X and Y in the usual APPL list-of-sublists
format. Assume that the random variables X and Y are input in their PDF
forms. The support of X is ΩX and the support of Y is ΩY .

Output: The PDF of Z = X + Y .

Algorithm:
if X and Y are continuous

fZ(z) ←
∫∞
−∞ fX(z − y) fY (y) dy

else if X and Y are discrete
if X and Y have finite support

n ← |ΩX |
m ← |ΩY |
if n ·m ≤ 100

Z ← BruteForceMethod(X, Y )
else

Z ← MovingHeapMethod(X, Y )
if (n = 1 and m = 1) i.e. fZ(z) = 1 for z = c ∈ IR

return(fZ(z))
dimension s[n ·m] create the sums array s
dimension Probs[n ·m] create the probability array Probs
for i ← 1 to n ·m

si ← 0
Probsi ← 0

s1 ← z1
s2 ← z2
Probs1 ← f(z1)
k ← 2
j ← 2
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while (k < n ·m) do
Probsj ← Probsj + f(zk)
if zk �= zk+1 then eliminate redundant support values

j ← j + 1
sj ← zk+1

k ← k + 1
Probsj ← Probsj + f(zk)
NumZeros ← 0
for i ← n ·m to 1 by −1 while Probsi = 0

NumZeros ← NumZeros+ 1
dimension FinalProbs[1, n ·m−NumZeros]
dimension FinalSupport[1, n ·m−NumZeros]
for i ← 1 to (n ·m−NumZeros)

FinalProbsi ← Probsi
FinalSupporti ← si

fZ(z) ← [FinalSupport, F inalProbs]
else if (X or Y has infinite support or X and Y have infinite support

with intractable discrete convolution sum)
mgfx ← MGF(X)
mgfy ← MGF(Y )
mgfprod ← mgfx ·mgfy
return(mgfprod)

else discrete convolution formula
fZ(z) ←

∑z
k=0

(
fX(z)
) · (fY (z − k)

)
else

print(“ERROR: X and Y must both be continuous or discrete”)
return

return
(
fZ(z)
)

8.4 Implementation Issues

The algorithm for Convolution has been implemented and included in
APPL’s suite of procedures. One portion of the algorithm for the Convolution
procedure involves computing every possible sum between the support of the
random variables X and Y . At the same time, the probabilities for those sums
are calculated. Earlier we have referred to this as the “brute force method.”
The list of sums are ordered and redundancies combined. The corresponding
probability values are repositioned to match their corresponding sums. One
important reason for sorting the sums is that all other APPL procedures as-
sume that discrete distributions, written in their list-of-sublists form, have
supports listed in increasing order without repeated values. To be consistent
with the APPL language and textbooks, the sums are sorted. Also, placing



8.4 Implementation Issues 129

the values of the support into a list in sorted order means that tied yi + xj

values can be combined dynamically as the algorithm proceeds.
The first sorting method used to sort the list of sums was the insertion

sort. It was chosen because of its straightforward code and efficiency in com-
puting convolutions when the support sizes of the random variables are small.
Unfortunately, as the supports of random variables grow larger [e.g., random
variables with 50 random numbers chosen on the interval (−1, 1) as a support],
the time used to compute the PDF of the convolution becomes unreasonably
long. A faster sorting method for larger list sizes is heapsort. Heapsort is em-
ployed in the Convolution procedure for sorting the list of sums created by
the “brute force method.”

Maple uses Shellsort to sort polynomials. In order to use the Shellsort
procedure in Maple, the MGFs of X and Y need to be computed. The product
of the MGFs of X and Y is an expression composed of exponential terms ekt,
where k ∈ IR, t > 0. Letting u = et, the MGF of the product can be rewritten
as a polynomial-type expression. For example, if u = et, then MZ(t) =

1
3e

3t+
1
6e

2t + 1
2e

5t for −∞ < t < ∞ can be rewritten MZ(t) =
1
3u

3 + 1
6u

2 + 1
2u

5

for u > 0. The Shellsort procedure sorts the polynomial-like expression, and
the PDF of the convolution of X and Y is retrieved from this expression.
Instead of MGFs, probability generating functions (PGFs) can be used in the
process. MGFs were chosen over PGFs since PGFs can only be formed when
the discrete distribution has non-negative integer support.

The method of computing convolutions via their MGFs was abandoned af-
ter realizing that Maple can only sort “true” polynomial expressions in which
variables are raised to non-negative integer powers. Thus, using MGFs would
be too restrictive for a Maple implementation. Maple is unable to sort an
expression that has non-integers in the powers of the polynomial terms. For

example, Maple cannot sort the expression 1
3 (e

t)
3/2

+ 1
6 (e

t)
1/2

+ 1
2 (e

t)
5.5

.
Since the Convolution procedure was intended to be used on arbitrary dis-
tributions, which could indeed have negative, non-integer supports, the MGF
method was removed from the procedure Convolution. The extra time in-
volved in checking for appropriate values also affected the algorithm’s effi-
ciency.

Unfortunately, for random variables with large finite support sizes, heap-
sort was also inefficient. Nicol [92] suggested constructing a heap dynamically
and sorting the list of sums sequentially, instead of waiting until the list of
sums is built and then sorting it. The heap will always contain min{m, n} or
fewer entries. After constructing the algorithm for this method, which is called
MovingHeapMethod, the Convolution procedure was tested on random vari-
ables with large supports by using the BruteForceMethod with insertion sort,
the BruteForceMethod with heapsort, and the MovingHeapMethod. A brief
comparison analysis of the three methods suggested that MovingHeapMethod
yielded the best times for computing convolution of random variables with
large supports. Test cases of random variables with increasing support sizes
were performed to confirm this claim.
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The test involved generating random numbers between −1 and 1 and mak-
ing them the support values for the random variables X and Y . The random
numbers were sorted and placed into the second sublist in the list-of-sublists
format for the random variables that conforms to the system of the APPL lan-
guage. The probabilities, which had no effect on the efficiency of the different
algorithms, were assigned to be equal for all support values; i.e., if X’s support
consisted of 50 values, then each support value’s probability was 1/50. The
times for determining the PDF of the sum of random variables of increasing
support sizes appears in Evans and Leemis [29].

When either one or both random variables’ supports are infinite, either the
convolution of their PDFs is computed via the discrete convolution formula or
the product of their MGFs is determined. If one of the random variables has
infinite support, while the other has finite support, the product of their MGFs
is returned. At this time, APPL does not contain a procedure to convert the
MGF of a random variable to its PDF form.

Having two random variables with infinite support does not guarantee that
the PDF of their sum can be determined by the discrete convolution formula.
Only tractable summations, such as the convolution formula for two Pois-
son random variables as in Example 8.1, can be computed. This means that
instead of determining the PDF for the convolution of the PDFs of some ran-
dom variables, such as a Poisson with parameter λ = 5 and a geometric with
parameter p = 0.3, the Convolution procedure only computes the product of
their MGFs.

8.5 Examples

The following examples use the algorithm described in Sect. 8.3 to determine
the PDF of the sum of independent random variables. Examples for a variety
of random variables are provided to illustrate the utility of the algorithm.
Returning first to Examples 8.1 and 8.2 introduced in Sect. 8.1, we can use
the Convolution procedure to determine the PDF of Z = X + Y .

Example 8.5. If X and Y are independent Poisson random variables
with respective parameters λ1 and λ2, compute the PDF of Z = X+Y .

In APPL, define X as a Poisson random variable with parameter
lambda1 and Y as a Poisson random variable with parameter lambda2.
The Poisson random variable is also predefined in APPL. The PDF
Z = X + Y is found with the statements

> X := PoissonRV(lambda1);

> Y := PoissonRV(lambda2);

> Z := Convolution(X, Y);
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which returns the PDF of Z as[[
z → (z + 1) e−λ1−λ2 (λ2 + λ1)

z

(z + 1)!

]
, [0 ..∞] , [“Discrete”, “PDF”]

]
Using the Maple simplify procedure, the resulting PDF after simpli-
fication is

f(z) =
(λ2 + λ1)

z
e−λ1−λ2

Γ (z + 1)
z = 0, 1, . . . ,

which is easy to recognize in its standard form as

f(z) =
(λ1 + λ2)

z
e−λ1−λ2

z!
z = 0, 1, . . . .

We are fortunate in the previous example that Maple can compute the
PDF by the discrete convolution formula by simplifying the sum∑x

k=0
λ1

ke−λ1λ2
x−ke−λ2

k! (x−k)! . Unfortunately, Maple can only simplify certain ex-

pressions, so in some instances we cannot compute the PDF by the discrete
convolution formula.

Example 8.6. X and Y are independent discrete random variables with
PDFs defined as

fX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.15 x = −3
0.25 x = −1
0.1 x = 2
0.3 x = 6
0.2 x = 8

fY (y) =

⎧⎪⎪⎨
⎪⎪⎩

0.2 y = −2
0.1 y = 1
0.3 y = 5
0.4 y = 8.

Find the PDF of Z = X + Y .

Define the random variables X and Y in APPL’s list-of-sublists format.
Compute the PDF of Z = X + Y with the statements

> X := [[0.15, 0.25, 0.1, 0.3, 0.2], [-3, -1, 2, 6, 8],

["Discrete", "PDF"]];

> Y := [[0.2, 0.1, 0.3, 0.4], [-2, 1, 5, 8],

["Discrete", "PDF"]];

> Z := Convolution(X, Y);

which return the PDF of Z as

[[0.03, 0.05, 0.015, 0.045, 0.045, 0.01, 0.135, 0.06, 0.04, 0.16, 0.02, 0.04,

0.09, 0.06, 0.12, 0.08 ],

[−5,−3,−2, 0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16], [“Discrete”, “PDF”]]

The probability generating function, defined for a discrete random variable
X as GX(t) = E

[
tX
]
, has been referred to several times in this chapter as an

alternative to the moment generating function for determining the probabil-
ity distribution of the sum of two discrete random variables. Its use will be
illustrated in the next three examples.
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Example 8.7. Let X and Y be independent random variables; X as-
sumes three possible values, 0, 1, 3, with probabilities 1/2, 3/8, and
1/8; Y assumes two possible values, 0 and 1, with probabilities 1/3
and 2/3. Find the PDF of the random variable Z = X+Y (from Burr
[14, page 136]).

By hand, we can compute the PDF of Z with probability generating
functions. The PGFs GX(t) and GY (t) of X and Y , respectively, are

GX(t) =
1

8
t3 +

3

8
t+

1

2
−∞ < t < ∞,

GY (t) =
2

3
t+

1

3
−∞ < t < ∞.

Thus, the PGF of Z = X + Y is the product of GX(t) and GY (t):

GZ(t) =
1

12
t4 +

1

24
t3 +

1

4
t2 +

11

24
t+

1

6
−∞ < t < ∞,

and hence the PDF of Z is

fZ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
6 z = 0
11
24 z = 1
1
4 z = 2
1
24 z = 3
1
12 z = 4.

In APPL, defining X and Y as lists-of-sublists and then applying the
Convolution procedure achieves the same result.

> X := [[1 / 2, 3 / 8, 1 / 8], [0, 1, 3],

["Discrete", "PDF"]];

> Y := [[1 / 3, 2 / 3], [0, 1], ["Discrete", "PDF"]];

> Z := Convolution(X, Y);

Other measures of a distribution, such as the mean and variance, can be
found with the use of additional APPL procedures, as illustrated in the next
example.

Example 8.8. Let X1 and X2 be observations of a random sample of
size n = 2 drawn from a distribution with PDF f(x) = x

6 , x = 1, 2, 3.
Find the PDF of Y = X1+X2, and determine the mean and variance
of the sum [51, page 297].

The PGF of X1 and X2 is

GX1
(t) = GX2

(t) =
1

2
t3 +

1

3
t2 +

1

6
t −∞ < t < ∞.
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Thus, GY (t) is the product of GX1
(t) and GX2

(t):

GY (t) =
1

4
t6 +

1

3
t5 +

5

18
t4 +

1

9
t3 +

1

36
t2 −∞ < t < ∞.

and fY (y) is

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
36 y = 2
1
9 y = 3
5
18 y = 4
1
3 y = 5
1
4 y = 6.

The mean and the variance of Y , respectively, are

E[Y ] = G′
Y (t)

∣∣∣∣
t=1

=

[
3

2
t5 +

5

3
t4 +

10

9
t3 +

1

3
t2 +

1

18
t

]
t=1

=
14

3

and

Var[Y ] = G′′
Y (1) +G′

Y (1)−
[
G′

Y (1)
]2

=
10

9
.

In APPL, the mean and variance of Y are computed with the state-
ments

> X := [[x -> x / 6], [1 .. 3], ["Discrete", "PDF"]];

> Y := Convolution(X, X);

> Mean(Y);

> Variance(Y);

which return the mean and variance computed by hand.

Example 8.9. Find the probability of obtaining a total of 14 in a toss
of four fair dice (from Hogg et al. [50, page 230]).

Let X be the PDF fX(x) = 1
6 , x = 1, 2, . . . , 6. The PGF G of X is

GX(t) =
1

6
t6 +

1

6
t5 +

1

6
t4 +

1

6
t3 +

1

6
t2 +

1

6
t −∞ < t < ∞.

The PDF of Z = X1 + X2 + X3 + X4 can be found by computing[
GX(t)

]4
, which is

[
GX(t)

]4
=

1

1296
t24 +

1

324
t23 +

5

648
t22 +

5

324
t21 +

35

1296
t20 +

7

162
t19 +

5

81
t18 +

13

162
t17 +

125

1296
t16 +

35

324
t15 +

73

648
t14 +

35

324
t13 +

125

1296
t12 +

13

162
t11 +

5

81
t10 +

7

162
t9 +

35

1296
t8

5

324
t7 +

5

648
t6 +

1

324
t5 +

1

1296
t4



134 8 Sums of Independent Discrete Random Variables

for −∞ < t < ∞. Thus, Pr(Z = 14) = 73/648. In APPL, define
X as a uniform discrete random variable (predefined in APPL) with
parameter 1/6. The procedure ConvolutionIID(X, n) computes the
PDF of the convolution of n iid random variables X. This procedure
contains a Maple for loop which calls Convolution n times.

> X := UniformDiscreteRV(1, 6);

> Z := ConvolutionIID(X, 4);

> PDF(Z, 14);

The APPL procedure PDF computes the probability that Z is 14 cor-
rectly as 73/648.

Examples 8.10–8.12 are from the article “Getting Normal Probability Ap-
proximations without Using Normal Tables” by Thompson [112]. His arti-
cle discusses an alternate approach to approximating probabilities involving
sums of discrete random variables using the PDF for the normal distribu-
tion. He lets S denote the sum of n independent discrete random variables,
and assumes that S can take on consecutive integer values. Letting μ = E[S]
and σ2 = Var[S], he argues that for sufficiently large values of n, S is ap-
proximately normally distributed. Using the standard continuity correction,
Thompson uses the approximation

Pr(S = s) ∼= Pr
(
s− 0.5 < N(μ, σ2) < s+ 0.5

)
.

Calculating a midpoint approximation using a single subinterval, the normal
PDF approximation is obtained, which is

Pr(S = s) ∼= 1√
2πσ

e−(s−μ)2/2σ2

.

Instead of settling for approximations of the probabilities, we will show
how APPL procedures, including Convolution, can retrieve exact solutions,
while still giving the same insight into the problem.

Example 8.10. Suppose that X1, X2, . . . , X20 are independent and
that Xi ∼ Bernoulli

(
pi =

29+2i
100

)
, i = 1, 2, . . . , 20. Let S =

∑20
i=1Xi.

(Here S denotes the total number of successes obtained in a series of
independent trials where the probability of success varies from trial to
trial.) Give an exact probability table for S for s = 2, 3, . . . , 10 (from
Thompson [112, page 53]).

Using Thompson’s notation, μ = 10 and σ2 = 2367/500, and so

Pr(S = s) ∼= 1√
2π
√

2367/500
e−(s−10)2/(2367/250), s = 0, 1, . . . , 20.

Using APPL, we obtain the exact distribution of the random variable
S by calling Convolution inside a Maple for loop:
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> p := (29 + 2 * 1) / 100;

> S := BernoulliRV(p);

> for i from 2 to 20 do

> p := (29 + 2 * i) / 100:

> X := BernoulliRV(p):

> S := Convolution(S, X):

> od:

> S;

Table 8.1 contains the exact probabilities found with APPL and the
normal PDF approximations for s = 2, 3, . . . , 10.

Table 8.1. Exact probabilities and normal PDF approximations of Pr(S = s) for
s = 2, 3, . . . , 10

s True Pr(S = s) from Approximation of Normal PDF
APPL using Convolution true Pr(S = s) approximation

2 204658765144989225788930713729011
1600000000000000000000000000000000000 0.0001 0.0002

3 670581044381861117271962962043967
800000000000000000000000000000000000 0.0008 0.0010

4 12306309890051216090420607156481161
3200000000000000000000000000000000000 0.0038 0.0041

5 13130118961411820609429234497062639
1000000000000000000000000000000000000 0.0131 0.0131

6 13845545992556016094922419904605161
400000000000000000000000000000000000 0.0346 0.0338

7 14429186684261724023997491367619439
200000000000000000000000000000000000 0.0721 0.0709

8 193196528593089153025093245904930293
1600000000000000000000000000000000000 0.1207 0.1202

9 65549414450257125600014354447607969
400000000000000000000000000000000000 0.1639 0.1650

10 725313008476889512417635294011302541
4000000000000000000000000000000000000 0.1813 0.1834

Example 8.11. There are 20 girls and 30 boys in Group 1, 25 girls
and 25 boys in Group 2, and 10 girls and 10 boys in Group 3. If
10 children are randomly chosen from each group and S denotes the
total number of girls chosen, give an exact probability table for S for
s = 7, 8, . . . , 21 (from Thompson [112, pages 53–54]).

Let X1, X2, and X3 be the three independent hypergeometric random
variables, and let S = X1 + X2 + X3. The mean and variance of S
are μ = E[S] = E[X1] + E[X2] + E[X3] = 14 and σ2 = Var[S] =
Var[X1] + Var[X2] + Var[X3] = 101/19 (since X1, X2, and X3 are
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independent). Table 8.2 shows the normal PDF approximation values

Pr(S = s) ∼= 1√
2π
√

101/19
e−(s−14)2/(202/19) for s = 7, 8, . . . , 21.

Using the APPL Convolution procedure, we can readily produce the
PDF of S with the statements

> X1 := HypergeometricRV(50, 20, 10);

> X2 := HypergeometricRV(50, 25, 10);

> X3 := HypergeometricRV(20, 10, 10);

> Y := Convolution(X1, X2, X3);

Table 8.2. The exact probabilities and normal PDF approximations for Pr(S = s)
for s = 7, 8, . . . , 21

s True Pr(S = s) from Approximation of Normal PDF
APPL using Convolution true Pr(S = s) approximation

7 4641594894759547665
3082276280132202064912 0.0015 0.0017

8 97479371530863990
17512933409842057187 0.0056 0.0059

9 12613791756912076515
770569070033050516228 0.0164 0.0165

10 74849525260411094591
1926422675082626290570 0.0389 0.0384

11 57967137494173367365
770569070033050516228 0.0752 0.0742

12 2096975232909133615
17512933409842057187 0.1197 0.1188

13 22076335771392253895
140103467278736457496 0.1576 0.1575

14 317244095646532855
1843466674720216546 0.1721 0.1730

15 9955623438355053449
63683394217607480680 0.1563 0.1575

16 217921905682010165
1843466674720216546 0.1182 0.1188

17 1894259194489549345
25473357687042992272 0.0744 0.0742

18 71588441634588035
1843466674720216546 0.0388 0.0384

19 10756216836381565
641205799902684016 0.0168 0.0165

20 1208983087163529637
202781334219223820060 0.0060 0.0059

21 280730797358534065
162225067375379056048 0.0017 0.0017
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The exact values for s = 7, 8, . . . , 21 are shown in Table 8.2.

In the next example, APPL is able to find the distribution of the sum of
a large number (150) of random variables. While not impossible, computing
the actual distribution by hand is tremendously tedious and time-consuming.

Example 8.12. Let the discrete random variable S = X1 +X2 + · · ·+
X150, where the Xi’s are independent, Pr(Xi = −1) = Pr(Xi = 0) =
Pr(Xi = 1) = 1/3, i = 1, 2, . . . , 150. Find a normal approximation to
Pr(S = 5) and its exact value (from Thompson [112, page 54]).

Since the mean and variance of S are μ = 0 and σ2 = 100, using the
normal PDF approximation we obtain approximately

Pr(S = 5) ∼= 1

20

√
2e−1/8

√
π

∼= 0.03521.

The APPL code

> X := [[1 / 3, 1 / 3, 1 / 3], [-1, 0, 1],

["Discrete", "PDF"]];

> S := ConvolutionIID(X, 150);

> PDF(S, 5);

yields the exact PDF for S. The statement PDF(S, 5) returns

Pr(S = 5) = 160709987007649212790999852367465829596098558279031212787052332840770
4567759074507740406477787437675267212178680251724974985372646979033929

,

which is approximately 0.03518. Since the support values of the parent
population are −1, 0, and 1, Pr(S = 5) can also be computed using a
combinatorics approach:

Pr(S = 5) =
∑∑

{(p,q,r)|p+q+r=150,
0≤p≤150,
0≤q≤150,
0≤r≤150,
r−p=5}

∑ ( 150

p, q, r

)(
1

3

)p(
1

3

)q (
1

3

)r

or equivalently

Pr(S = 5) =

72∑
p=0

(
150

p, 145− 2p, 5 + p

)(
1

3

)150
,

yielding the same result as the APPL code. The true power of APPL
is not demonstrated in this particular example because of the special
nature of the parent populations. The APPL approach allows for un-
equal mass values and more general support values. Also, more than
three support values can be used in the APPL approach. Although a
combinatorics method may still be used on these types of examples,
the resulting expressions will not be as easy to derive or to evaluate
as the expression obtained in the sum above.
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The Convolution algorithm that was constructed (with heaps) to compute
the PDF of the sum was extended to determine the PDF of the product also.
Because of negative and positive support values for random variables X and
Y , the product algorithm must split the array Â into four quadrants before
forming heaps. The quadrants are split based on X’s and Y ’s negative and
non-negative support values using the support from Example 8.2. Figure 8.14
illustrates the evolution of the algorithm in the most general case when both
X and Y have negative and positive support values. The product algorithm
works from the corners of quadrants two and four toward the center where the
quadrants meet, and then works outward from the center through quadrants
one and three. For the product algorithm, the heap can receive values from two
competing quadrants at a time. The Product procedure has been implemented
for discrete random variables and is a part of APPL.

−3 −1 2 6 8

−2

1

5

8

Quadrant 1

Quadrant 4

Quadrant 2

Quadrant 3

Fig. 8.14. Array A split into four quadrants for the Product procedure

This concludes our discussion concerning the algorithm to calculate the
distribution of the sum of two discrete random variables. The next chap-
ter considers another non-trivial algorithm associated with discrete random
variables—one which determines the distribution of order statistics drawn
from discrete populations.
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Order Statistics for Random Sampling from
Discrete Populations

This chapter presents an algorithm for computing the PDF of order statistics
drawn from discrete parent populations, along with an implementation of the
algorithm in APPL. Several examples illustrate the utility of this algorithm.

9.1 Notation and Taxonomy

Over a thousand references cited in the survey text on order statistics by
David and Nagaraja [20] reflect the interest in the theory and application of
order statistics. Many popular mathematical statistics texts, such as Hogg et
al. [52], Casella and Berger [16], and Rice [103], address only distributions of
order statistics for iid random variables drawn from continuous populations
due to the mathematical tractability of their theoretical formulas.

Results for order statistics drawn from discrete parent populations are
sparse and usually specialized to fit one particular discrete population (e.g.,
Young [123], Srivastava [110], Ciardo et al. [17]). Arnold et al. [5] devote a
chapter to discrete order statistics. We present an algorithm for determining
distributions of order statistics drawn from a general discrete parent popula-
tion. The algorithm presented in this chapter handles discrete parent popula-
tions with finite or infinite support, and sampling with or without replacement.
Application areas, bootstrapping in particular, are postponed until Chap. 10.

Let X1, X2, . . . , Xn be iid discrete random variables defined on support
Ω, each with CDF FX(x) and PDF fX(x). Let X(1) ≤ X(2) ≤ · · · ≤ X(n)

denote these random variables rearranged in weakly increasing order. Thus,
X(r) is the rth smallest number in the sample, r = 1, 2, . . . , n, which is known
as the rth “order statistic.” Because order statistics are random variables, it
is possible to compute probabilities associated with values in their support.
Since X1, X2, . . . , Xn is a random sample from a discrete population, the PDF
of the rth order statistic cannot always be expressed as a single formula, as in
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the continuous case (see Sect. 3.2). When working with discrete random vari-
ables, the computation of the PDF of the rth order statistic will fall into one
of several categories, depending on the sampling convention (with or without
replacement), the random variable’s support (finite or infinite), and the ran-
dom variable’s distribution (equally likely or nonequally likely probabilities).
A taxonomy of these categories appears in Fig. 9.1.

Discrete Population

Sampling
With Replacement

Finite
Support

Infinite
Support

Sampling
Without Replacement

Finite
Support

Equally
Likely

Probabilities

Nonequally
Likely

Probabilities

Infinite
Support

Fig. 9.1. Categorization of discrete order statistics by sampling convention, support,
and probability distribution

The APPL procedure OrderStat(X, n, r, ["wo"]) has three required
arguments: a random variable X, the number of items n randomly drawn from
the population with PDF fX(x), and the index r of the desired order statis-
tic. An optional fourth argument "wo" can be specified to indicate that the
items are drawn from the population without replacement. OrderStat can be
used for continuous and discrete populations; the algorithm associated with
discrete populations is detailed in this chapter. The implementation steps of
the OrderStat algorithm are explained in detail in the following two sections
(“Without Replacement” and “With Replacement”) and further details and
applications are given in Evans et al. [30]. In both cases, the output of the
algorithm is fX(r)

(x), the PDF of the rth order statistic, where n items have
been sampled either with or without replacement from a population with PDF
fX(x). Each of the five branches displayed in the tree in Fig. 9.1 is discussed,
followed by an example illustrating the particular sampling convention, sup-
port, and population PDF combinations. The particular branch from Fig. 9.1
being illustrated in each example is given in italics at the beginning of the
example.
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9.2 Sampling Without Replacement

Providing the string "wo" as the fourth argument to the OrderStat procedure
indicates that items are drawn from the discrete population without replace-
ment. Random variables with finite or infinite support are handled by two
separate techniques.

If the population distribution has finite support, the population size is
denoted by N . To specify this support in a compact form, it is temporarily
assumed to be (without loss of generality) the ordered set {1, 2, . . . , N}. For
example, if

fX(x) =

⎧⎨
⎩

0.5 x = 7
0.2 x = 11
0.3 x = 15,

then N = 3, and the support of X is temporarily assumed to be {1, 2, 3}, in-
stead of {7, 11, 15}. The original support is reinstated after the order-statistic
probabilities are computed.

If the population with PDF fX(x) has equally likely probability values,
e.g., rolling a fair die, then by combinatorial analysis the PDF of the rth order
statistic when n items are sampled is [5, page 54]

fX(r)
(x) =

(
x−1
r−1

)(
N−x
n−r

)
(
N
n

) x = r, r + 1, . . . , r +N − n.

Example 9.1 (Sampling Without Replacement; Finite Support; Equally
Likely Probabilities). Draw 15 cards at random and without replace-
ment from a deck of 25 cards numbered 1, 2, . . . , 25. Find the proba-
bility that the card numbered 10 is the median of the cards selected
[50, page 231].

Let fX(x) = 1
25 for x = 1, 2, . . . , 25. The population size isN = 25, the

size of the sample is n = 15, and the sample median X(8) corresponds
to r = 8. The probability that the sample median equals 10 is given
by the above formula as

Pr(X(8) = 10) =

(
9
7

)(
15
7

)
(
25
15

)
=

1053

14858
∼= 0.0709.

In addition to just computing one probability value as obtained by
hand above, the OrderStat algorithm returns the PDF of the 8th
order statistic (when n = 15 items are sampled from the population
without replacement), which is
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fX(8)
(x) =

1

3268760

(
x− 1

7

)(
25− x

7

)
x = 8, 9, . . . , 18.

The APPL code to compute the PDF of the sample median and the
probability that the median equals 10 is

> X := UniformDiscreteRV(1, 25);

> Y := OrderStat(X, 15, 8, "wo");

> PDF(Y, 10);

If X has finite support N and nonequally likely probabilities, there are
three cases to consider when computing the PDF of the rth order statistic:

1. One item is sampled: n = 1. The PDF of the rth order statistic is the
same as the population PDF; i.e., fX(r)

(x) = fX(x) for r = 1, 2, . . . , N .

2. The entire population is sampled: n = N . The PDF of the rth order
statistic is fX(r)

(x) = 1 for x = r.

3. More than one item, but not the entire population, is sampled: n =
2, 3, . . . , N − 1. In this nontrivial case, an n×N array, ProbStorage, is de-
fined that eventually contains the probabilities fX(r)

(x) for x = 1, 2, . . . , N
and r = 1, 2, . . . , n. The value of fX(r)

(x) is found in row r and col-

umn x of the array. For example, if X ∼ binomial
(
5, 1

4

)
and n = 3

items are sampled (without replacement) from this population, then the
ProbStorage array is 3 × 6 and has the form displayed in Table 9.1. The
algorithm’s implementation requires use of two APPL combinatorial pro-
cedures, NextCombination and NextPermutation, which were specifically
created for use in the OrderStat algorithm. Following is a brief description
of the algorithm for the without-replacement/finite support/nonequally-
likely-probabilities case for n = 2, 3, . . . , N − 1.

(a) The first lexicographical combination of n items sampled from the
sequence of integers 1 to N is formed; it is {1, 2, . . . , n}. For X ∼
binomial

(
5, 14
)
, the first lexicographical combination of n = 3 items

from {1, 2, . . . , 6} is {1, 2, 3}.

Table 9.1. Initial form of the ProbStorage array for X ∼ binomial
(

5, 1
4

)

, where
n = 3 items are sampled without replacement. Bullets denote positive probability
values; zeros denote impossible situations

r
�
�
�
�
x 1 2 3 4 5 6

1 • • • • 0 0
2 0 • • • • 0
3 0 0 • • • •
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(b) Given a combination consisting of n distinct integers, the algorithm
generates all possible permutations of that combination and their cor-
responding probabilities. For the example X ∼ binomial(5, 1

4 ), the
first combination is {1, 2, 3} and its permutations are [1, 2, 3], [1, 3, 2],
[2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]. The probabilities obtained for each
of these permutations, respectively, are 13286025

150351872 ,
13286025
204334592 ,

13286025
119164928 ,

13286025
110607872 ,

13286025
197270528 , and

13286025
134730752 . As an example, the probability of

obtaining the permutation [3, 1, 2] is computed as

fX(3) · fX(1)

1− fX(3)
· fX(2)

1− (fX(3) + fX(1)
)

or
135

512
·

243
1024

1− 135
512

·
405
1024

1− ( 135512 + 243
1024

) = 13286025

197270528
.

(c) After the probability of each permutation generated in step (b) is
computed, each permutation is “rewritten” lexicographically to de-
termine the corresponding order-statistic probabilities. The permuta-
tion [3, 1, 2], for example, is rewritten as [1, 2, 3]. The algorithm then
adds the probability of obtaining that particular permutation to the
appropriate three cells in the ProbStorage array, which is denoted by∑

(r, x) + q in Table 9.2. The (r, x) cell accumulates the probabilities
of the various permutations for which the rth order statistic has the
value x. For example, the final value in the (1, 1) cell represents the
probability that the first order statistic assumes the value one. In the
binomial(5, 1

4 ) example, the probability of obtaining the permutation
[3, 1, 2], q = 13286025

197270528 , is added to the ProbStorage cells (1, 1), (2, 2),
and (3, 3), as illustrated in Table 9.2.

(d) After all n! permutations of a given combination are exhausted, the
procedure NextCombination determines the next lexicographical com-
bination. Given this new combination, the algorithm repeats steps (b)
and (c). This process iterates through the

(
N
n

)
combinations of size n

chosen from a population of size N .

Table 9.2. Computation of the ProbStorage array for X ∼ binomial
(

5, 1
4

)

, where
n = 3 items are sampled without replacement. Given the permutation [3, 1, 2], its
probability q = 13286025

197270528
is added to the current probability sums

∑
(r, x) in cells

(1, 1), (2, 2), and (3, 3). Zeros denote impossible situations

r
�
�
�
�
x 1 2 3 4 5 6

1
∑

(1, 1) + q
∑

(1, 2)
∑

(1, 3)
∑

(1, 4) 0 0

2 0
∑

(2, 2) + q
∑

(2, 3)
∑

(2, 4)
∑

(2, 5) 0

3 0 0
∑

(3, 3) + q
∑

(3, 4)
∑

(3, 5)
∑

(3, 6)
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Example 9.2 (Sampling Without Replacement; Finite Support; Nonequally
Likely Probabilities). Let X be a random variable with PDF

fX(x) =

⎧⎪⎪⎨
⎪⎪⎩

p1 x = 1
p2 x = 10
p3 x = 100
p4 x = 1000,

where p1 + p2 + p3 + p4 = 1 and pi > 0, i = 1, 2, 3, 4. Find the
distribution of the median when n = 3 items are sampled without
replacement from the population.

Since sampling is without replacement, the median can only assume
the values x = 10 and x = 100. The APPL code to compute the
distribution of the median is

> X := [[p1, p2, p3, p4], [1, 10, 100, 1000],

["Discrete", "PDF"]];

> OrderStat(X, 3, 2, "wo");

which returns the PDF

fX(2)
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p4 p2 p1
(1− p4) (1− p2 − p4)

+
p4 p2 p1

(1− p4) (1− p1 − p4)
+

p4 p2 p1
(1− p2) (1− p2 − p4)

+
p4 p2 p1

(1− p2) (1− p1 − p2)
+

p4 p2 p1
(1− p1) (1− p1 − p4)

+
p4 p2 p1

(1− p1) (1− p1 − p2)
+

p3 p2 p1
(1− p3) (1− p2 − p3)

+
p3 p2 p1

(1− p3) (1− p1 − p3)
+

p3 p2 p1
(1− p2) (1− p2 − p3)

+
p3 p2 p1

(1− p2) (1− p1 − p2)
+

p3 p2 p1
(1− p1) (1− p1 − p3)

+
p3 p2 p1

(1− p1) (1− p1 − p2)
x = 10

p4 p3 p2
(1− p4) (1− p4 − p3)

+
p4 p3 p2

(1− p4) (1− p2 − p4)
+

p4 p3 p2
(1− p3) (1− p4 − p3)

+
p4 p3 p2

(1− p3) (1− p2 − p3)
+

p4 p3 p2
(1− p2) (1− p2 − p4)

+
p4 p3 p2

(1− p2) (1− p2 − p3)
+

p4 p3 p1
(1− p4) (1− p4 − p3)

+
p4 p3 p1

(1− p4) (1− p1 − p4)
+

p4 p3 p1
(1− p3) (1− p4 − p3)

+
p4 p3 p1

(1− p3) (1− p1 − p3)
+

p4 p3 p1
(1− p1) (1− p1 − p4)

+
p4 p3 p1

(1− p1) (1− p1 − p3)
x = 100.

If the population distribution from which the sample is drawn has a count-
ably infinite support, e.g., {1, 2, . . . }, then the pattern established for finding
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the PDF of the rth order statistic in the finite-support case will not work.
At this time, beyond the trivial case when n = 1 item is sampled, where
fX(r)

(x) = fX(x) for r = 1, 2, . . . , N , the OrderStat algorithm computes the
PDF of the minimum order statistic when at most n = 2 items are sampled
without replacement from a discrete population with infinite support. The
n = 2 case is considered in the following paragraph. Work on the OrderStat

algorithm to incorporate the pattern for values of n ≥ 3 is an open research
question.

When n = 2 items are sampled without replacement, the probability that
the minimum order statistic has value x, for x = 1, 2, . . . , is given by

Pr(X(1) = x) = Pr(X1 = x) Pr(X2 ≥ x+ 1 |X1 = x) +
∞∑

y=x+1

Pr(X1 = y) Pr(X2 = x |X1 = y).

Thus, the PDF of X(1) when n = 2 items are sampled is

fX(1)
(x) = fX(x)

[
SX(x+ 1)

1− fX(x)
+

∞∑
y=x+1

fX(y)

1− fX(y)

]
x = 1, 2, . . . ,

where SX(x) is the survivor function defined by SX(x) = Pr(X ≥ x).

Example 9.3 (Sampling Without Replacement; Infinite Support; Non
equally Likely Probabilities). Let X ∼ geometric( 12 ). Find the proba-
bility that the minimum order statistic is five when n = 2 items are
sampled without replacement from the population.

The PDF of the minimum order statistic as calculated using the
OrderStat algorithm is

fX(1)
(x) =

(
1
4

)x
1− ( 12)x +

1

2

(
1

2

)x−1 ∞∑
y=x+1

1

2

(
1
2

)y−1

1− 1
2

(
1
2

)y−1

for x = 1, 2, . . . . By substitution, it can easily be determined that
Pr(X = 5) ∼= 0.0020. The PDF of the second order statistic and the
probability that it assumes the value of five can be computed in APPL
with the statements

> X := GeometricRV(1 / 2);

> Y := OrderStat(X, 2, 1, "wo");

> evalf(PDF(Y, 5));

9.3 Sampling with Replacement

If the optional fourth argument "wo" is not provided to the OrderStat pro-
cedure, the items are assumed to be sampled from the discrete population
with replacement. When sampling with replacement, the PDF fX(x), CDF
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FX(x), and SF SX(x) are needed to determine the distribution of the rth
order statistic.

If the random variable X has finite support Ω, then without loss of gener-
ality we can assume that Ω = {1, 2, . . . , N}. The PDF of X(r) when n items
are sampled with replacement from this finite population is given by

fX(r)
(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−r∑

w=0

(

n

w

)

[

fX(1)
]n−w[

SX(2)
]w

x = 1

r−1∑

u=0

n−r∑

w=0

(

n

u, n− u− w,w

)

[

FX(x− 1)
]u[

fX(x)
]n−u−w[

SX(x+ 1)
]w

x = 2, 3, . . . , N − 1
r−1∑

u=0

(

n

u

)

[
FX(N − 1)

]u[
fX(N)

]n−u
x = N.

This formula is not valid in the special case when the discrete population
consists of only one item, that is, when N = 1. The PDF of the rth order
statistic in this case is simply fX(r)

(1) = 1.
The formula for the PDF of X(r) is a direct result of the following ob-

servation. For the rth order statistic to equal x, there must be u values less
than or equal to x − 1 and w values greater than or equal to x + 1, where
u = 0, 1, . . . , r − 1 and w = 0, 1, . . . , n − r. The other n − u − w values
must be equal to x. The CDF procedure is used to determine the probability
of obtaining a value less than or equal to x − 1, the SF procedure is used to
determine the probability of obtaining a value greater than or equal to x+1,
and the PDF procedure is used to determine the probability of obtaining the
value x. The multinomial coefficient expresses the number of combinations
resulting from a specific choice of u and w.

Using an example from Arnold et al. [5, page 43], let X be a discrete
uniform random variable with PDF fX(x) = 1

4 , x = 1, 2, 3, 4. Then the CDF
and SF of X, respectively, are

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < 1

�x�
4

1 ≤ x < 4

1 x ≥ 4

SX(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 x ≤ 1

1− �x�
4

1 < x ≤ 4

0 x > 4.

Suppose n = 5 values are sampled with replacement from this population. To
calculate fX(2)

(3), i.e., the probability that the second order statistic is x = 3,
evaluate the sum

fX(2)
(3) =

1∑
u=0

3∑
w=0

(
5

u, 5− u− w,w

)[
FX(2)

]u[
fX(3)
]5−u−w[

SX(4)
]w

.
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The first term in the summation is the probability of drawing all threes. The
second term, in which u = 0 and w = 1, is the probability of drawing four
threes and a value greater than or equal to four (which can only be the value
four in this example). This collection of four threes and one four can be drawn
five different ways. The subsequent terms in the sum have similar meanings.

Example 9.4 (Sampling with Replacement; Finite Support). A fair die
is cast eight independent times. Find the PDF of the smallest of the
eight numbers obtained, X(1) [50, page 230].

To compute the numeric PDF by hand,

fX(1)
(x) =

7∑
w=0

(
8

w

)(
1

6

)8−w (
1− x

6

)w

is calculated for x = 1, 2, . . . , 6. For example, the probability that the
first order statistic is x = 4 is

fX(1)
(4) =

7∑
w=0

(
8

w

)(
1

6

)8−w (
1

3

)w

=
1

1679616
+

1

104976
+

7

104976
+

7

26244
+

35

52488
+

7

6561
+

7

6561
+

4

6561

=
6305

1679616
∼= 0.0038.

Similar calculations for x = 1, 2, . . . , 6 yield the PDF of the first order
statistic as

fX(1)
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1288991

1679616
x = 1

36121

186624
x = 2

58975

1679616
x = 3

6305

1679616
x = 4

85

559872
x = 5

1

1679616
x = 6.

The APPL code required to generate this PDF is:

> X := UniformDiscreteRV(1, 6);

> OrderStat(X, 8, 1);
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The OrderStat algorithm yields the same results, but in addition
returns the PDF of the minimum order statistic as a polynomial:

fX(1)
(x) = − 1

209952
x7 +

91

419904
x6 − 889

209952
x5 +

38675

839808
x4

− 63217

209952
x3 +

496951

419904
x2 − 543607

209952
x+

4085185

1679616

for x = 1, 2, . . . , 6.

If the support of X is countably infinite, i.e., Ω = {1, 2, . . . }, then the
calculation of the PDF of X(r) is similar to the finite-support case. The main
difference is that the formula used in the finite-support case is now used for
values of x that are unbounded:

fX(r)
(x) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n−r∑

w=0

(

n

w

)

[
fX(1)

]n−w[
SX(2)

]w
x = 1

r−1∑

u=0

n−r∑

w=0

(

n

u, n− u− w,w

)

[

FX(x− 1)
]u[

fX(x)
]n−u−w[

SX(x+ 1)
]w

x = 2, 3, . . . .

Because the formula assumes that the support ofX is {1, 2, . . . }, the algorithm
only works for distributions with infinite right-hand tails.

Since it is physically impossible to execute the formula for infinitely many
values of x, a general expression for fX(r)

(x) in terms of x is obtained by
taking advantage of Maple’s ability to sum and simplify complicated symbolic
expressions. Maple computes (in symbolic terms) the double summation of a
multinomial coefficient multiplied by the product of the CDF, PDF, and SF
raised to various powers.

Example 9.5 (Sampling with Replacement; Infinite Support). Define a
geometric random variable X with parameter p (0 < p < 1) to be the
trial number of the first success in repeated independent Bernoulli(p)
trials. The PDF of X is fX(x) = p qx−1, for x = 1, 2, . . . , where
q = 1 − p. Margolin and Winokur [81] tabulated values for the mean
and variance of the rth order statistic for a random sample drawn from
a geometric population distribution for samples of size n = 1, 5 (5) 20
for r = 1 (1) 5 (5) 20, where r = 1, 2, . . . , n and q = 0.25 (0.25) 0.75.
The values are calculated to two decimal places.
Margolin and Winokur’s treatment of order statistics for the geometric
population distribution is based on the use of recurrence relations.
The formulas they use to compute the first and second moments of
the rth order statistic for a random sample drawn from a geometric
population distribution (with parameter p = 1− q) when n items are
sampled (with replacement) are
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E
[
X(r)

]
= n

(
n− 1

r − 1

) r−1∑
j=0

(−1)
j (r−1

j

)
(n− r + j + 1) (1− qn−r+j+1)

and

E
[
X2

(r)

]
= n

(
n− 1

r − 1

) r−1∑
j=0

(−1)
j (r−1

j

) (
1 + qn−r+j+1

)
(n− r + j + 1) (1− qn−r+j+1)

2 .

The OrderStat algorithm can easily produce the exact value of any
of the rounded figures given in their tables. If X ∼ geometric(14 ), for
example, then the exact values of the mean and variance of the third
order statistic when n = 5 items are sampled can be found with the
following APPL code

> X := GeometricRV(1 / 4);

> Y := OrderStat(X, 5, 3);

> Mean(Y);

> Variance(Y);

yielding

E
[
X(3)

]
=

3257984

1011395
∼= 3.22

and

Var
[
X(3)

]
=

13665723739776

5114599230125
∼= 2.67.

As shown in Example 9.5, the OrderStat procedure can be combined with
the Mean and Variance procedures to compute the mean and variance of vari-
ous order statistics. APPL might be used in this context to eliminate the need
for some of the existing tables in the statistical literature. In addition, Maple
can compute results using symbolic parameters. If X ∼ geometric(p), for ex-
ample, then the variance of the first order statistic when n = 6 observations
are sampled randomly from the geometric distribution with replacement can
be computed with the APPL statements

> X := GeometricRV(p);

> Y := OrderStat(X, 6, 1);

> Variance(Y);

which yield

Var
[
Y(1)

]
=

p6 − 6p5 + 15p4 − 20p3 + 15p2 − 6p+ 1

p7 − 6p6 + 15p5 − 20p4 + 15p3 − 6p2
.
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9.4 Extension

One natural extension to the OrderStat algorithm is a RangeStat algorithm,
which finds the PDF of the range of a sample of n items drawn from a discrete
population, either with or without replacement.

Let X be a discrete random variable with PDF fX(x) and CDF FX(x),
and let Y be a random variable representing the range of X. We can assume
(without loss of generality) that the support ofX is {1, 2, . . . , N}, whereN is a
positive integer or infinity. If we are sampling with replacement (which implies
that the n draws are independent), then the probability that Y assumes the
value y, where y = 0, 1, . . . , N − 1, is given by Burr [14]:

Pr(Y = y) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑

x=1

[fX(x)]n y = 0

N−y
∑

x=1

{[Pr(x ≤ X ≤ x+ y)]n − [Pr(x+ 1 ≤ X ≤ x+ y)]n

−[Pr(x ≤ X ≤ x+ y − 1)]n + [Pr(x+ 1 ≤ X ≤ x+ y − 1)]n} =
N−y
∑

x=1

{[FX(x+ y)− FX(x− 1)]n − [FX(x+ y)− FX(x)]n

−[FX(x+ y − 1)− FX(x− 1)]n + [FX(x+ y − 1)− FX(x)]n}
y = 1, 2, . . . , N − 1.

Of the four terms being summed in the y = 1, 2, . . . , N −1 case, the first term
is the probability that all sampled elements lie between x and x+ y inclusive.
The second term removes the probability that these elements do not include
x, because this would result in a range that is less than y. The third term
removes the probability that these elements do not include x+y, because this
would also result in a range that is less than y. The fourth term adds back the
probabilities of those elements that include neither x nor x + y, which were
removed by both the second and third terms.

In the case of sampling without replacement, the RangeStat algorithm
basically follows the same steps as the OrderStat algorithm, including use of
the procedures NextCombination and NextPermutation. In the trivial case
when the entire population is sampled, the PDF of the range Y is fY (y) = 1
for y = N − 1. If n = 2, 3, . . . , N , where N is a positive integer less than or
equal to n, then a single-dimensional array of length N − n + 1 is defined
that will eventually contain the values of fY (y) for y = n − 1, n, . . . , N − 1.
As in the OrderStat algorithm, the first lexicographical combination of n
items sampled from the sequence of integers 1 to N is formed. Given such a
combination, the algorithm generates all possible permutations of that com-
bination. The probability for each permutation is calculated (as described in
Sect. 9.1), and then the maximum and minimum values of that permutation
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are determined. The permutation’s range, which is the difference between its
maximum and minimum values, is computed and then the appropriate array
cell is incremented by that permutation’s probability.

This concludes our survey of data structures and selected algorithms in
APPL. The remaining portion of the monograph concerns the application of
the language to problems in computational probability.



Part IV

Applications

When you can measure what you are speaking about and

express it in numbers, you know something about it;

but when you cannot measure it, when you cannot express

it in numbers, your knowledge is of the meager and

unsatisfactory kind.

—Lord Kelvin



10

Reliability and Survival Analysis

The remaining chapters contain dozens of computational probability applica-
tions using APPL. The applications range in complexity from brief examples
to results and algorithms requiring long derivations. This chapter surveys some
applications in reliability and the closely-related field of survival analysis.

Section 10.1 presents four brief examples concerning the probabilistic anal-
ysis of systems of components: (1) analyzing a k-out-of-n system; (2) deter-
mining the mean time to failure of a parallel system with symbolic parameters;
(3) determining the conditional survivor function for a system with a piecewise
survival distribution; and (4) determining the probability of mission success
for a unit and two cold standby units. Section 10.2 contains an algorithm for
determining a lower confidence bound on the system reliability from binary
failure data collected on each of the independent components in a coherent
system via bootstrapping. Section 10.3 uses APPL to avoid the use of re-
sampling in performing a bootstrap analysis in a survival analysis setting.
Section 10.4 uses APPL in bootstrapping applications in systems reliability
modeling.

10.1 Systems Analysis

Reliability engineers often compare competing system designs by the use of
probabilistic analysis. This section considers a series of four short examples
that use APPL procedures to manipulate random variables associated with
component lifetimes in order to compute measures of performance associated
with the system, such as the mean time to failure or the system reliability.
We begin with the analysis of a k-out-of-n system.

© Springer International Publishing AG 2017
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Example 10.1. Consider a 4-out-of-6 system that operates when four
or more of its six components are functioning. Let the six component
lifetimes be iid Weibull random variables with SF

S(t) = e−(5t)2 t ≥ 0.

Use APPL to find
(a) the hazard function of the time to system failure,
(b) the mean time to system failure,
(c) the variance of the time to system failure,
(d) the probability that the system survives to time 0.1.

Let X denote the component lifetimes and T denote the system life-
time. The APPL code to calculate the four quantities of interest is

> X := WeibullRV(5, 2);

> T := OrderStat(X, 6, 3);

> HF(T);

> Mean(T);

> Variance(T);

> SF(T, 1 / 10);

The first statement defines the random variable X, which is associ-
ated with the lifetimes of the components, each with a Weibull time
to failure with scale parameter 5 and shape parameter 2. Since this
system has six components, the system failure occurs upon the third
failure. Therefore, the system lifetime is the third order statistic of six
independent Weibull random variables, denoted by T . The HF proce-
dure returns the hazard function of the system time to failure, which
is

hT (t) =
3000t
(
1− e−25 t2

)2
10 e−50 t2 − 24 e−25 t2 + 15

t ≥ 0.

The next statement computes the mean of the system time to failure,
which is

E[T ] = −12
√
5π

25
+

√
6π

6
+

3
√
π

4
∼= 0.1505.

The next statement computes the variance of the system time to fail-
ure, which is

Var[T ] =
37

1500
− 11287π

6000
+

4π
√
30

25
+

18π
√
5

25
− π

√
6

4
∼= 0.002003.

Finally, the probability that the system survives to time 0.1 is deter-
mined by the SF procedure, which yields

ST (0.1) = 10 e−3/2 − 24 e−5/4 + 15 e−1 ∼= 0.8734.

Following each of the final three APPL statements with the Maple
statement evalf(%); computes the floating-point approximations as-
sociated with the exact values.
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All of the parameters in Example 10.1 were numeric, which resulted, for
example, in numeric values for the system mean time to failure and probability
of system survival to time 0.1. A similar analysis can be applied to achieve a
more general solution for a system with symbolic parameters, as illustrated
in Example 10.2.

Example 10.2. Find the expected time to system failure of a par-
allel system, where each of the n components has an independent
exponential(λ) lifetime.

As in the previous example, let X denote the component lifetimes
and T denote the system lifetime. Since the reliability function of a
parallel system of n identical components, each with reliability p, is

r(p) = 1− (1− p)n

and the survivor function of an exponential random variable with
failure rate λ is

SX(t) = e−λt t > 0,

the system survivor function is

ST (t) = 1− (1− e−λt
)n

t > 0.

The mean time to system failure is given by the expression

E[T ] =

∫ ∞

0

(
1− (1− e−λt

)n)
dt.

This quantity can be calculated, for instance when n = 8, with the
APPL statements

> X := ExponentialRV(lambda);

> T := MaximumIID(X, 8);

> Mean(T);

which return a mean time to system failure of E[T ] = 761/(280λ).
The MaximumIID(X, 8) procedure call is equivalent to a call to
OrderStat(X, 8, 8). This solution did not require that the user
know the functional form of the reliability function of a parallel sys-
tem. If, on the other hand, the modeler did know the functional form
of the reliability function, the solution can be checked using entirely
Maple statements:

> assume(lambda > 0);

> s := 1 - (1 - exp(-lambda * t)) ^ 8;

> int(s, t = 0 .. infinity);

which also return a mean time to system failure of E[T ] = 761/(280λ).
The advantage afforded by APPL is that the mathematical details
associated with the derivation can be bypassed.
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Examples 10.1 and 10.2 have considered components and systems with
lifetimes characterized by having positive support values. Situations occasion-
ally arise where the component lifetimes have varying support, perhaps due to
a warranty or burn-in program. The next example considers a system which
has varying supports, making the bookkeeping tedious. APPL relieves the
modeler of the tedium of keeping track of the varying supports.

Example 10.3. Consider a three-component system with component 1
in parallel with the series arrangement of components 2 and 3, as
shown in the block diagram in Fig. 10.1. Let T1, T2, and T3 be the
independent lifetimes of the three components, where

T1 ∼ U(2, 10) T2 ∼ U(4, 14) T3 ∼ U(6, 18).

Find the 90th percentile of the distribution of the failure time of such
a system that has survived to time 8.

1

2 3

Fig. 10.1. Three-component system

Although this particular problem is conceptually straightforward,
keeping track of the various supports for the components is tedious.
Let T = max {T1,min {T2, T3}} denote the system failure time and
let Tc denote the system failure time conditioned on survival to time
t = 8. The APPL code to solve this problem is given below.

> T1 := UniformRV(2, 10);

> T2 := UniformRV(4, 14);

> T3 := UniformRV(6, 18);

> T := Maximum(T1, Minimum(T2, T3));

> TC := Truncate(T, 8, infinity);

> IDF(TC, 0.90);

This code returns the 90th percentile of the conditional distribution
of the system lifetime as

32−√
46

2
∼= 12.6088.

This code illustrates three new APPL procedures that have not yet
been introduced. The first three statements define the distribution of
T1, T2, and T3. The next statement calculates the PDF of T using the
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Minimum and Maximum procedures, which each take on two indepen-
dent, but not necessarily identically distributed, random variables as
arguments. The next statement uses the Truncate procedure to calcu-
late the conditional distribution given survival to time 8. Finally, the
IDF procedure is used to calculate the 90th percentile of Tc. The entire
distribution of Tc has been computed in case one wants to perform
further operations.

The APPL code given above is the ideal way to solve this particular
problem. If one were uneasy about the correctness of the solution, it
could be verified by Monte Carlo simulation. This Monte Carlo simula-
tion is possible in APPL and Maple, although it is not computationally
efficient in either language since Maple is an interpreted language. The
Maple code below generates 10,000 system lifetimes and estimates the
quantity of interest. Surprisingly, Maple does not contain a random
number generator for producing pseudorandom numbers. Instead, we
use Maple’s rand function, which generates a random 12-digit integer.

> _seed := 17:

> variates := []:

> for i from 1 to 10000 do

> t1 := IDF(UniformRV(2, 10), rand() / 10 ^ 12):

> t2 := IDF(UniformRV(4, 14), rand() / 10 ^ 12):

> t3 := IDF(UniformRV(6, 18), rand() / 10 ^ 12):

> t := max(t1, min(t2, t3)):

> if (t > 8) then

> variates := [op(variates), t]:

> fi:

> od:

> variates := sort(variates):

> n := nops(variates):

> print(evalf(variates[floor(0.90 * n)]));

The first statement initializes the random number generator seed. The
second statement initializes variates to an empty list. The for loop
cycles through the 10,000 replications of the simulation. The random
variates T1 ∼ U(2, 10), T2 ∼ U(4, 14), and T3 ∼ U(6, 18) are generated
in the first three lines of code within the for loop using the IDF

procedure. This is followed by the calculation of the (unconditional)
system failure time T = max {T1,min {T2, T3}}. If the value of T
exceeds 8, then it is concatenated onto the right of the list variates.
Outside of the for loop, the elements in variates are sorted using the
Maple sort command. The nops function is used to find n, the number
of elements in variates. Finally, the estimated 90th percentile of the
conditional system lifetime is printed. When this code was executed
five times (with _seed fixed prior to the first execution) the following
five estimates for the conditional failure time were generated:
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12.57 12.62 12.63 12.57 12.58.

The output of these five runs of Monte Carlo simulation hovers around
the theoretical value of 12.61, which supports the analytic solution
provided by APPL. A more careful statistical analysis would involve
calculating a confidence interval from the five estimates.

The three previous examples all considered systems with “warm” standby
units, i.e., all components are on-line until failure. Some systems have cold
standby units, as illustrated in the next example.

Example 10.4. Let T1, T2, T3 be independent gamma random vari-
ables that represent the lifetime of a unit (T1) and the lifetimes
of two backup cold standby units (T2 and T3) taken on a mission
of duration 10. If T1 ∼ gamma(1/2, 3), T2 ∼ gamma(1/4, 5), and
T3 ∼ gamma(1/6, 7), find the probability that the mission is success-
ful.

Let the system lifetime T = T1 + T2 + T3. The APPL code required
to solve this problem is

> T1 := GammaRV(1 / 2, 3);

> T2 := GammaRV(1 / 4, 5);

> T3 := GammaRV(1 / 6, 7);

> T := Convolution(T1, T2, T3);

> SF(T, 10);

If there were more components with distributions following the same
pattern and a Maple for loop is preferable. The following equivalent
APPL code could be used, replacing the upper limit of the for by the
number of components.

> T := GammaRV(1 / 2, 3);

> for i from 2 to 3 do

> T := Convolution(T, GammaRV(1 / (2 * i), 2 * i + 1)):

> od:

> SF(T, 10);

In either case, the probability of a successful mission, i.e., Pr(T ≥ 10)
is returned as

−57415240

3
e−5/2 +

2129286487

256
e−5/3 +

739

256
e−5 ∼= 0.9995.

If this probability of mission success is not high enough, more cold
standby units could be added to the system.
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10.2 Lower Confidence Bound on System Reliability

The examples to this point in the monograph have been drawn mainly from
applied probability. This section takes up a problem in reliability that has a
statistical nature.

We consider the problem of determining a (1 − α)100% lower confidence
bound pL on the system reliability for a coherent system of k components with
independent lifetimes. Components of type i are subjected to a life test, i =
1, 2, . . . , k. The failure data is (yi, ni), where yi is the number of components
of type i that pass the test and ni is the number of components of type
i being tested, i = 1, 2, . . . , k. We assume throughout that the components
fail independently, e.g., no common-cause failures. Bootstrapping is used to
estimate a lower confidence bound on the system reliability.

A three-component (k = 3) series system is used as an example throughout
this section, although the techniques described here apply to any coherent
system of k independent components. A block diagram for the series system
is given in Fig. 10.2.

1 2 3

Fig. 10.2. Three-component series system

Binary data is collected on each component in the system. The number of
components tested and the number of passes for each type of component for
the example problem are given in Table 10.1.

Table 10.1. Failure data for a three-component series system example

Component number i = 1 i = 2 i = 3
Number passing (yi) 21 27 82
Number on test (ni) 23 28 84

The point estimate for the system reliability is

21

23
· 27
28

· 82
84

=
1107

1288
∼= 0.8595.

There is no known exact confidence interval for this system reliability. We will
consider only a lower confidence bound on the system reliability here, because
this is typically the quantity of interest to a reliability engineer when assessing
risk. The bootstrapping technique proposed by Efron and Tibshirani [26] can
be used to calculate a lower 95% confidence interval bound. Other authors,
such as Martin [85] and Padgett and Tomlinson [96], have proposed the use
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of bootstrapping for determining confidence limits. The approach used here
differs conceptually from the standard application of bootstrapping, in which
the standard error of a single unknown distribution is oftentimes estimated by
resampling iid data. In our setting, there are k different distributions—one
for each component—and we resample component reliabilities and combine
using the reliability function to yield the system reliability.

Bootstrapping resamples some fixed number B of the systems, calculates
the system reliability, then calculates the αBth ordered system reliability.
More specifically, for the three-component series system of interest, the boot-
strapping algorithm follows the following steps:

• For the first component, the data set (21 ones and 2 zeros) is sampled
with replacement 23 times.

• These values are summed and divided by 23 yielding a reliability estimate
for the first component.

• The previous two steps are repeated for components 2 and 3.
• The product of the reliability estimates for the three components are mul-
tiplied (because the components are arranged in series and their failures
are independent) to give a system reliability estimate.

The four steps listed above are repeated B times. The B system reliability es-
timates are then sorted. Finally, the αBth ordered system reliability is output,
which is used as a lower bound on the system reliability.

The algorithm for estimating the (1 − α)100% lower confidence interval
bound is given in Table 10.2, where p̃i is a bootstrap estimate for the relia-
bility of component i and zj is a bootstrap estimate of the system reliability.
Indentation is used to indicate begin–end blocks in the pseudocode. Generat-
ing a binomial random variate is appropriate because the resampling from the
data set is performed with replacement. The returned value zαB is the order
statistic associated with the zj ’s generated in the outside loop. See Law [70]
for handling the case when αB is not an integer.

This algorithm has been implemented in R as a function named
seriessystemboot, which is given next.

Table 10.2. Bootstrap algorithm for calculating a (1 − α)100% lower confidence
bound for the reliability of a k-component series system

for j ← 1 to B resampling loop
for i ← 1 to k loop through components

p̃i ← binomial(ni, yi/ni)/ni component i reliability

zj ←
∏k

i=1 p̃i calculate system reliability
sort z sort the system reliability values
return zαB return the estimate for the lower bound
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> seriessystemboot <- function(n, y, alpha) {

> k <- length(n)

> b <- 10000

> z <- rep(1, b)

>

> point <- prod(y) / prod(n)

>

> for (j in 1:b) {

> for (i in 1:k) {

> z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i]) / n[i]

> }

> }

> z <- sort(z)

> pl <- z[floor(alpha * b)]

> c(point, pl)

> }

The first two arguments, n and y, are vectors of length k, and the third
argument, alpha, is a real number between 0 and 1. Thus, the R function call

> seriessystemboot(c(23, 28, 84), c(21, 27, 82), 0.05)

prints a point estimate and a 95% lower confidence interval bound on the
system reliability for the three-component series system considered in this
section. After a call to set.seed(3) to initialize the random number seed,
five calls to seriessystemboot yielded the following estimates for the 95%
lower bound on the system reliability pL:

0.7426057 0.7482993 0.7456744 0.7486690 0.7453416.

The dispersion associated with these five estimates is due to the finite choice
of B, i.e., B = 10,000. Based on these results, the third digit after the decimal
point can’t be reported with certainty, so the 95% lower bound on the system
reliability is best reported for these simulations as pL = 0.75. A modeler would
be uncertain how many digits to report on the estimate in a general setting.
If the effect of the choice of B could be eliminated, there would be no need
for concern about the precision of the estimates. So a major drawback of this
approach is our inability to determine the size of the resampling error as a
function of the size of B.

Resampling error can be eliminated using APPL. The APPL statements
given below utilize the Product and Transform procedures.

> X1 := BinomialRV(23, 21 / 23);

> X1 := Transform(X1, [[x -> x / 23], [0, infinity]]);

> X2 := BinomialRV(28, 27 / 28);

> X2 := Transform(X2, [[x -> x / 28], [0, infinity]]);

> X3 := BinomialRV(84, 82 / 84);

> X3 := Transform(X3, [[x -> x / 84], [0, infinity]]);

> T := Product(X1, X2, X3);
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This alternative approach to determining a lower 95% bootstrap confidence
interval bound for the system reliability is equivalent to using an infinite value
for B. This is equivalent to deriving the entire PDF of the bootstrap estimate
of the system reliability. Since p̃i can assume any one of ni+1 values, there are
a possible 24 · 29 · 85 = 59,160 potential mass values for the random variable
T determined by the two calls to the Product procedure. Of these, only 6633
are distinct because the Product procedure combines repeated values. Since
the random variable T from the APPL code plays an analogous role to the
vector z from the bootstrap algorithm in Table 10.2, the lower 95% bootstrap
confidence interval bound is the 0.05 fractile of the distribution of T, which
is pL = 6723/9016 ∼= 0.746. This result using APPL is consistent with the
standard resampling approach for finding the lower confidence interval limit
based on the five results presented earlier (one equals 6723/9016 exactly, two
are above 6723/9016, and two are below 6723/9016).

Bootstrapping worked well in this example, but will encounter problems
when systems with perfect test results on one or more components are en-
countered. The problem that arises when component i has perfect test results
(i.e., yi = ni) is that the sample size ni becomes irrelevant. A test in which
2 components out of 2 pass the test is equivalent to one in which 100 com-
ponents out of 100 pass the test from the perspective of the bootstrapping
algorithm. Efforts to overcome the problem associated with perfect compo-
nent test results by placing a beta conjugate prior distribution on component
reliabilities are outlined in Leemis [73].

10.3 Survival Analysis

Survival analysis is a branch of statistics that concerns “time-to-event” data.
For biological organisms, the interest might be in the time to death or the
remission time of a cancer. In reliability, the interest might be in the time to
failure or the time to repair for a system. In actuarial science, the interest
might be in the time to death of the insured or the time to first claim on the
insurance of a structure. In sociology, the interest might be in the duration
of a strike or the time to commit another crime after release from prison
in a recidivism study. In economics, survival analysis is known as duration
analysis or duration modeling. The key element in a survival analysis study
is a nonnegative random variable (typically the time to some event) with
significant dispersion and oftentimes with an associated vector of covariates.
Two popular textbooks in survival analysis are Lawless [71] and Kalbfleisch
and Prentice [57].

In this section, we investigate bootstrapping in survival analysis. More
specifically, we consider the simple question of comparing some aspect of two
populations. Using Efron and Tibshirani’s [26] notation, this section again
considers eliminating the generation of B bootstrap samples when performing
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a bootstrap analysis by calculating the exact distribution of the statistic of
interest via APPL. There are several reasons for considering this approach:

• Although bootstrap methods are relatively easy to apply, determining the
number of bootstrap repetitions, B, to employ is a common problem facing
practitioners [4]. A practitioner needs to be concerned about problem-
specific requirements for B, e.g., “B in the range of 50 to 200 usually
makes ŝeboot a good standard error estimator, even for estimators like
the median” [26, page 14] or “B should be ≥ 500 or 1000 in order to
make the variability of [the estimated 95th percentile] acceptably low”
for estimating 95th percentiles [26, page 275]. In fact, “one can obtain a
‘different answer’ from the same data merely by using different simulation
draws if B is too small, but computational costs can be great if B is
chosen to be extremely large” [3, page 23]. Because of this, Andrews and
Buchinsky [3] introduced a three-step method to determine B to attain a
specified level of accuracy.

• Exact values are always preferred to approximations. There is no point in
adding resampling error to the already-existing sampling error unneces-
sarily.

• A bootstrapping novice can easily confuse the sample size n and number
of bootstrap samples B. Eliminating the resampling of the data set B
times simplifies the conceptualization of the bootstrap process.

• In many situations, computer time is saved using the exact approach.

By way of example, this section shows how the OrderStat and RangeStat

procedures, along with other APPL procedures, can be used to perform ex-
act bootstrap analysis. The use of these algorithms eliminates the resampling
variability that is present in the usual bootstrap procedure. Exact results in
the bootstrapping literature are limited: “The only exact solutions that are
available for the bootstrap variance of an L-statistic (e.g., mean, trimmed
mean, median, quick estimators of location and scale, upper and lower quar-
tiles) are for the specific cases of the sample mean and sample median (when
the sample size is odd)” [53, page 89]. The application areas that will be pre-
sented here are the estimation of standard errors for the median, mean, and
range, and interval estimation for the range.

Estimation of Standard Errors. The standard error of the sample mean,
s/
√
n, is useful when comparing means, but standard errors for comparing

other quantities (e.g., fractiles) are often intractable. The following examples
consider the estimation of standard errors associated with the rat-survival
data given in Table 10.3 from Efron and Tibshirani [26, page 11]. Seven rats
are given a treatment and their survival times, given in days, are shown in
the first row of the table. Nine other rats constitute a control group, and their
survival times are shown in the second row of the table.
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Table 10.3. Rat-survival data

Group Data n Median Mean Range
Treatment 16, 23, 38, 94, 99, 141, 197 7 94 86.86 181
Control 10, 27, 30, 40, 46, 51, 52, 104, 146 9 46 56.22 136

In the first example, we compare the medians of the two populations using
bootstrapping.

Example 10.5. Consider first the estimation of the standard error of
the difference between the medians of the two samples. The standard
bootstrap approach to estimating the standard error of the median for
the treatment group is to generate B bootstrap samples, each of which
consists of seven samples drawn with replacement from 16, 23, 38, 94,
99, 141, and 197. The sample standard deviation of the medians of
these B bootstrap samples is an estimate of the standard error of the
median. Using the R commands

> tr = c(16, 23, 38, 94, 99, 141, 197)

> B = 50

> medians = numeric(B)

> for (i in 1:B) {

> bootstrap = sample(tr, 7, replace = TRUE)

> medians[i] = median(bootstrap)

> }

> sd(medians)

yielded an estimated standard error of 41.18 for the treatment data
with B = 50 bootstrap replicates. Table 10.4 shows the estimated
standard errors for several B values. There is considerable resampling
error introduced for smaller values of B. The B = +∞ column of
Table 10.4 corresponds to the ideal bootstrap estimate of the standard
error of θ̂, or seF̂ (θ̂

∗) = limB→+∞ ŝeB , to use the terminology and
notation in Efron and Tibshirani [26, page 46].

Table 10.4. Bootstrap estimates of the standard error of the median

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 41.18 37.63 36.88 37.90 38.98 37.83
Control 20.30 12.68 9.538 13.10 13.82 13.08

We now consider the possibility of avoiding resampling altogether us-
ing APPL. An additional APPL procedure was constructed, namely
BootstrapRV(data) (henceforth referred to as BootstrapRV), whose
only argument is a list of n data values named data. The BootstrapRV
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procedure creates a discrete random variable X that can assume the
provided data values, each with probability 1

n . If we put the treat-
ment data values 16, 23, 38, 94, 99, 141, and 197 in a list and provide
this list to the BootstrapRV procedure, it creates a discrete random
variable X that can assume these data values each with probability 1

7 .
The following APPL code calculates the bootstrap standard deviation
of the median:

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);

> Y := OrderStat(X, 7, 4);

> sqrt(Variance(Y));

The random variable X has a discrete uniform distribution with sup-
port values equal to the data values from the treatment data set. The
random variable Y is the fourth order statistic (the median) in seven
draws with replacement from the treatment group of the rat-survival
data set. Since the median in a resampling experiment must take on
one of the seven data values, the support of Y contains seven elements.
APPL returns the distribution of the random variable Y as

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8359

823543
y = 16

80809

823543
y = 23

196519

823543
y = 38

252169

823543
y = 94

196519

823543
y = 99

80809

823543
y = 141

8359

823543
y = 197.

The last APPL statement takes the square root of the variance of Y ,
yielding the standard error as 2

823543

√
242712738519382 ∼= 37.8347.

This is the upper-right-hand entry in Table 10.4. In a similar fashion,
the ideal bootstrap estimate of the standard error of the median can be
calculated in the control case giving the lower-right-hand entry in Ta-
ble 10.4 as 1

387420489

√
25662937134123797402 ∼= 13.0759. Finally, note

that the seemingly large difference between the two sample medians
(94−46 = 48) is only 48/

√
37.832 + 13.082 ∼= 1.19 standard-deviation

units away from zero, indicating that the observed difference in the
medians is not statistically significant. Had the standard bootstrap
procedure been applied with B = 50 bootstrap replications, Table 10.4
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indicates that the number of standard-deviation units would have been
estimated to be 48/

√
41.182 + 20.302 ∼= 1.05. Although the conclusion

in this case is the same, the difference between using B = 50 and
B = +∞ could potentially result in different conclusions for the same
data set.

Unlike the sample median, the standard error of the mean happens to
be tractable. In spite of this fact, we continue with the previous analysis
and attempt to compare the sample means to illustrate how other APPL
procedures can be used for comparing means.

Example 10.6. In a similar fashion to the previous example involving
medians, the following R code uses B = 50 bootstrap replications to
estimate the standard error of the mean for the treatment group.

> tr = c(16, 23, 38, 94, 99, 141, 197)

> B = 50

> means = numeric(B)

> for (i in 1:B) {

> bootstrap = sample(tr, 7, replace = TRUE)

> means[i] = mean(bootstrap)

> }

> sd(means)

This code returned 23.89, which is the the upper-left-hand entry in
Table 10.5. When this code is executed for other values of B and for
the control group, we see the usual pattern of nonmonotonic conver-
gence as B increases in Table 10.5, which is consistent with stochastic
simulation.

We again consider the use of APPL to avoid resampling. The support
of the distribution of the mean is much larger than the previous exam-
ple because there are 77 = 823,543 different samples with replacement
that could be drawn, resulting in hundreds (762, to be exact) of pos-
sible sample means. The APPL code to calculate the exact value of
the standard error of the mean for the treatment group is

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);

> W := ConvolutionIID(X, 7);

> g := [[x -> x / 7], [-infinity, infinity]];

> Y := Transform(W, g);

> sqrt(Variance(Y));

Table 10.5. Bootstrap estimates of the standard error of the mean

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 23.89 24.29 23.16 24.36 23.75 23.36
Control 17.07 13.83 13.40 13.13 13.55 13.35
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After the bootstrap random variable X is created as in the previ-
ous example, the APPL procedure ConvolutionIID sums n = 7 of
these iid X’s to create a random variable W . The APPL procedure
Transform transforms the random variable W using the transforma-
tion Y = W/n to calculate the PDF of the sample mean, which is

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/77 = 1/823543 y = 16(
7

1

)/
77 = 1/117649 y = 17

(
7

2

)/
77 = 3/117649 y = 18

(
7

3

)/
77 = 5/117649 y = 19

(
7

1

)/
77 = 1/117649 y = 134/7

(
7

4

)/
77 = 5/117649 y = 20

...
...

1/77 = 1/823543 y = 197,

and the standard error as 2
49

√
327649 ∼= 23.3635. This, of course, is

equal to
√

n−1
n

s√
n
=
√

6
7

s√
7
, where s is the standard deviation of the

treatment survival times. This fact is the fortunate consequence of the
mathematical tractability of the standard error for means. Other, less
fortunate situations can be handled in a similar manner.

Similar APPL code for the treatment case yielded an estimated stan-
dard error in the B = +∞ case of 1

27

√
129902 ∼= 13.3489. The dif-

ference between the treatment and control group means, which is
86.86 − 56.22 = 30.64 days, is not statistically significant since it
is only 30.64/

√
23.362 + 13.352 ∼= 1.14 standard deviations away from

zero.

The previous two examples have estimated the standard errors of measures
of central tendency (the median and mean). Estimation of the standard error
of a measure of dispersion, the sample range R, for the rat survival data will
now be considered.

Example 10.7. As in the previous two examples, the R code given
below creates a bootstrap estimate of the standard error of the range
in the treatment case with B = 50.
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> tr = c(16, 23, 38, 94, 99, 141, 197)

> B = 50

> ranges = numeric(B)

> for (i in 1:B) {

> bootstrap = sample(tr, 7, replace = TRUE)

> ranges[i] = diff(range(bootstrap))

> }

> sd(ranges)

Table 10.6 contains the standard error estimates for other values of B
and for the control group.
To determine whether there is a statistically significant difference be-
tween the sample ranges for the treatment and control groups in the
rat-survival data, we again use the APPL code below for estimating
the standard error of the range for the treatment group.

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);

> Y := RangeStat(X, 7);

> sqrt(Variance(Y));

The bootstrap estimate of the standard error of the range R for the
treatment case corresponding to B = +∞ is 2

16807

√
88781509983 ∼=

35.4569. The distribution of the sample range Y from bootstrapping
returned by APPL is

fY (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/117649 y = 0
18/117649 y = 5
18/117649 y = 7
18/117649 y = 15
276/117649 y = 22
18/117649 y = 42
276/117649 y = 47
36/117649 y = 56
276/117649 y = 61
276/117649 y = 71
1734/117649 y = 76
1734/117649 y = 78
6792/117649 y = 83
276/117649 y = 98
3468/117649 y = 103
6792/117649 y = 118
20010/117649 y = 125
6792/117649 y = 159
20010/117649 y = 174
48828/117649 y = 181.

Similar APPL statements for the control case yielded an estimated
standard error for the range as 2

4782969

√
5666287777334555 ∼= 31.4762.
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Table 10.6. Bootstrap estimates of the standard error of the range

B = 50 B = 100 B = 250 B = 500 B = 1000 B = +∞
Treatment 39.57 35.46 34.70 35.50 33.81 35.46
Control 36.70 29.84 30.95 30.07 30.14 31.48

The observed difference in the ranges between the treatment and con-
trol groups, 181 − 136 = 45 days, is not statistically significant since
it is only 45/

√
35.462 + 31.482 ∼= 0.95 standard deviations away from

zero.

Confidence Intervals. A final example is presented here to show how one
of the shortcomings of the standard bootstrap approach can be overcome by
using the parametric bootstrap method. APPL can again be used to eliminate
resampling error.

The previous three examples estimated the standard errors of two measures
of central tendency and a measure of dispersion. The next example constructs
two confidence intervals for the sample range of the rat-treatment group.

Example 10.8. Let R be the range of the n = 7 observations in the
treatment group from Table 10.3. The APPL statements

> X := BootstrapRV([16, 23, 38, 94, 99, 141, 197]);

> Y := RangeStat(X, 7);

> IDF(Y, 0.025);

> IDF(Y, 0.975);

yield a 95% confidence interval of 76 < R < 181. This confidence
interval has the unappealing property that the point estimator, R̂ =
197− 16 = 181 days, is also the upper limit of the confidence interval.

Trosset [113] suggested an alternative method for computing a confi-
dence interval for the range R, which involves parametric bootstrap-
ping. First, an exponential distribution with rate λ is fit to the treat-
ment group data using the APPL MLE (maximum likelihood estima-
tor) procedure. The procedure identifies the parameter estimate for

the distribution as λ̂ = 7/608. The (continuous) distribution of the
sample range of n = 7 observations drawn from an exponential pop-
ulation with parameter λ̂ = 7/608 is then computed. The confidence
interval is determined with the IDF procedure. The following APPL
statements yield a 95% confidence interval for the range R for n = 7
observations as 68 < R < 475.

> treatment := [16, 23, 38, 94, 99, 141, 197];

> X := ExponentialRV(lambda);

> lambdahat := op(MLE(X, treatment, [lambda]));

> Y := ExponentialRV(lambdahat);
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> Z := RangeStat(Y, 7);

> IDF(Z, 0.025);

> IDF(Z, 0.975);

This section has considered the use of bootstrapping for simple compar-
isons between two populations. In conclusion, for moderate sample sizes and
test statistics that are tractable for APPL, the exact approach to bootstrap-
ping can eliminate resampling error and oftentimes reduce computation time.

10.4 Applying Bootstrap Methods to System Reliability

This section presents a fully enumerated bootstrap method to find the empiri-
cal system lifetime distribution for a coherent system modeled by a reliability
block diagram. Given failure data for individual components of a coherent
system, the bootstrap empirical system lifetime distribution derived here will
be free of resampling error. We also derive distribution-free expressions for
the bias associated with the bootstrap method for estimating the mean sys-
tem lifetimes of parallel and series systems with statistically-identical compo-
nents. We show that bootstrapping underestimates the mean system lifetime
for parallel systems and overestimates the mean system lifetime for series sys-
tems, although both bootstrap estimates are asymptotically unbiased. The
expressions for the bias are evaluated for several popular parametric lifetime
distributions.

Background. Bootstrapping as a statistical method is ubiquitous. In most
applications, one is left with two types of error: random sampling error asso-
ciated with the data set and resampling error associated with the bootstrap-
ping process. Resampling error is generally contained, but not eliminated,
by increasing the number of bootstrap iterations, B. The “ideal bootstrap”
sets B = ∞ [26], and is sometimes calculable by fully enumerating all possi-
ble outcomes of a bootstrap instead of resampling the data. In this section,
we present a fully enumerated bootstrap method that has this advantage of
eliminating resampling error. We will apply the method to models of a co-
herent system, represented by a reliability block diagram (RBD). This fully
enumerated bootstrap produces the distribution of a discrete random variable
that approximates the system’s continuous lifetime distribution. We show that
there is inherent bias that can be computed exactly under various parametric
assumptions. System designers can use these methods to investigate system
parameters to include in the design, for example, the effect of changing the
number of components in series, parallel or combinations of both to achieve
system reliability improvement.

This section is organized as follows. In the first subsection, we investigate
the simplest forms of RBDs consisting of two components whose lifetimes are
iid random variables and the components are placed in parallel (or series) to
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illustrate the nature of the underlying mathematics in the enumerated boot-
strap. In the next subsection we present the steps of a resampled bootstrap
and present a simple example of how bias is induced by the minimum and
maximum operations. In the next subsection, we present the general result
for bias for parallel and series systems. We also present some of the difficulties
encountered in generalizing to systems consisting of more than two compo-
nents. The final subsection presents some applications of a fully enumerated
bootstrap for an RBD example.

The literature concerning bootstrapping of RBDs is sparse. Leemis [73]
uses enumerated bootstrapping of binary data that represents the availability
of components in a RBD to construct a lower confidence bound for three
components in series. Doss and Chiang [22] present a traditional bootstrap
analysis of RBDs to include a comparison of resampling schemes. There is
ample literature on enumerated bootstraps, but little of it applies to RBD
models.

Parallel systems have two or more components operating simultaneously
that perform identical tasks as backups to each other. This system config-
uration occurs quite often in design. Series systems of iid components are
less frequently observed. Individual fins in a turbine engine could be consid-
ered to comprise a series system: when the first one fails the system fails.
Clearly, the independence of the fins could be questioned. Consider the RBD
in Fig. 10.3, a model of a computer server system (e-mail or brokerage servers
perhaps). The series configuration could represent the major subsystems of
power supply, computation hardware, and external memory. Each subsystem
is made more resilient by having two components with iid lifetimes operating
simultaneously in parallel. Thus, A1 and A2 represent the iid lifetimes of two
power supplies, and the other components represent computer and memory
subsystems. The system lifetime S is given by the algebraic relationship

S = min {max {A1, A2} ,max {B1, B2} ,max {C1, C2}} .

Given the hypothetical case that all lifetime CDFs of the components are
known to be FA(t), FB(t), and FC(t) respectively, the exact CDF of S is

FS(t) = 1− [1− F 2
A(t)
] · [1− F 2

B(t)
] · [1− F 2

C(t)
]

t > 0.

Now consider the more common case in which the CDFs of the components
are not known, but life test data is available for each component. Let na

A1

A2

B1

B2

C1

C2

Fig. 10.3. Block diagram of a series arrangement of parallel subsystems
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be the sample size of the data set for component A, with similar defini-
tions for nb and nc. These data sets, {a1, a2, . . . , ana

}, {b1, b2, . . . , bnb
}, and

{c1, c2, . . . , cnc
}, provide the supports for three different discrete random vari-

ables A�, B�, and C�, each having equal probability for these support values
(assuming that the data values are distinct). Thus, A�, B�, and C� represent
the random variables associated with the bootstrap samples from these three
data sets. The discrete CDFs of A�, B�, and C�, denoted by FA�(t), FB�(t),
and FC�(t), are the same as the empirical distribution functions (EDFs) of
their corresponding lifetime data sets. Thus, a fully enumerated bootstrap of
the system can be represented algebraically by

S� = min {max{A�
1, A

�
2}, max{B�

1 , B
�
2}, max{C�

1 , C
�
2}} .

The discrete CDF [that approximates the unknown, but true continuous CDF
FS(t)] is

FS�(t) = 1−
(
1− [FA�(t)]

2
)
·
(
1− [FB�(t)]

2
)
·
(
1− [FC�(t)]

2
)

t > 0.

It is this CDF that is the fully enumerated bootstrapped distribution of the
system. We will show that such bootstrapped systems have bias resulting from
taking minimums and maximums of discrete random variables.

We use the following notation in the section:
X A continuous random variable with PDF fX(t) and CDF FX(t) that

represents a component lifetime.
X A random sample of n component lifetimes.
X(i) The ith ordered element of X, i = 1, 2, . . . , n.
S A continuous random variable representing the system lifetime of

a system consisting of two components arranged in parallel, each
with an independent lifetime distributed according to X, i.e., S =
max{X1, X2}.

T A continuous random variable representing the system lifetime of
a system consisting of two components arranged in series, each
with an independent lifetime distributed according to X, i.e., T =
min{X1, X2}.

X� A random variable distributed according to the EDF associated with
the random sample X.

S� A random variable representing the system lifetime of a system con-
sisting of two components arranged in parallel, each with an indepen-
dent lifetime distributed according to X�, i.e., S� = max{X�

1 , X
�
2}.

The distribution of S� is used to approximate the unknown distri-
bution of S. Also, it is known that S� converges almost surely to S
asymptotically by the Glivenko–Cantelli theorem (see Billingsley [11],
for example).

T � A random variable representing the system lifetime of a system con-
sisting of two components arranged in series, each with an independent
lifetime distributed according to X�, i.e., T � = min{X�

1 , X
�
2}.
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Two and m iid Components in Parallel or in Series. In this sub-
section, we present the mathematics underlying bootstrapping for simple
systems. Consider a system with two identical components in parallel, in
other words, a system with two constantly operating components with iden-
tically distributed failure times that act as real-time backups to one an-
other. We assume that prior testing of n components has produced a failure-
time data set x = {x1, x2, . . . , xn}, from which we define X� with CDF
FX�(t) = i/n for t ∈ [x(i), x(i+1)), i = 1, 2, . . . , n and x(1), x(2), . . . , x(n) are the
ordered observations. Knowing only the failure-time data (with no assumption
of an underlying parametric failure-time distribution), we can approximate the
true system lifetime using the random variable S� = max{X�

1 , X
�
2}. The CDF

of S� is

FS�(t) = Pr (S� ≤ t)

= Pr(max{X�
1 , X

�
2} ≤ t)

= Pr(X�
1 ≤ t) · Pr(X�

2 ≤ t)

= FX�(t) · FX�(t)

=
i2

n2
t ∈ [x(i), x(i+1)), i = 0, 1, 2, . . . , n− 1.

At each support point x(i) the value of the PDF can be found by subtracting
the appropriate CDF values:

fS�(t) = FS�(t)− FS�(x(i−1))

=
i2 − (i− 1)2

n2

=
2i− 1

n2
t = x(i), i = 1, 2, . . . , n.

Note that one must assign x(0) = 0 and FS�(x(0)) = 0 for the indexing to be
correct. We note several interesting properties of the PDF of S�:

• The PDF of S� has the same probability values fS�(t) regardless of the
values xi in the data set, as long as the data values are distinct (i.e., there
are no repeated or tied values) for a fixed sample size n.

• The supports of S� and X� are identical.
• The PDF of S� is an increasing function over the values of its support with

initial mass value pS�(x(1)) = 1/n2, constant increments of 2/n2, and final
mass value pS�(x(n)) = (2n− 1)/n2 for distinct data values.

Similar methods can be used to derive the empirical system distribution
S�
m, which is the lifetime of a system of m components with iid lifetimes

arranged in parallel, using X� to approximate the lifetime distribution of
each. The CDF and PDF of S�

m are

FS�
m
(t) =

im

nm
t ∈ [x(i), x(i+1)), i = 1, 2, . . . , n
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and

fS�
m
(t) =

im

nm
− (i− 1)m

nm
t = x(i), i = 1, 2, . . . , n.

Using a binomial expansion and simplifying, the PDF can be expressed as:

fS�
m
(t) = n−m

m∑
j=1

(
m

j

)
(−1)j−1im−j t = x(i), i = 1, 2, . . . , n.

The minimum lifetime of iid components can be derived in a similar fash-
ion. Let T � = min{X�

1 , X
�
2} be the analogous discrete random variable for a

system of two iid components in series, given a component failure-time data
set. The CDF and PDF of T � are

FT�(t) = 1−
(
1− i

n

)2
t ∈ [x(i), x(i+1)), i = 1, 2, . . . , n

and

fT�(t) =
2n− 2i+ 1

n2
, t = x(i), i = 1, 2, . . . , n.

The PDF of T � is now a decreasing function over its support, beginning with
pT�(x(1)) = (2n− 1)/n2 and ending with pT�(x(n)) = 1/n2, with decrements
of 2/n2 for distinct data values. An extension for a system of m components
in series can be derived.

Bootstrapping and Bias for a Parallel System. We now illustrate how
bias enters into bootstrapping. Consider the case of a two-component parallel
system with iid unit exponential component lifetimes. The interest is in the
mean system lifetime. The analyst is unaware of the true lifetime distribution,
and only has the values of n = 3 component lifetimes. This small value of n
is for enumeration purposes only; bootstrapping applications usually rely on
larger sample sizes. What is the bias associated with the use of bootstrapping
to estimate the mean system lifetime?

The unit exponential component distribution, represented by X in our
notation, has expected value E[X] = 1 and CDF FX(t) = 1−exp(−t), t > 0.
In this case, the system lifetime S has CDF

FS(t) = Pr(S ≤ t) =
(
1− exp(−t)

)2
t > 0.

So the true expected system lifetime is

E[S] =

∫ ∞

0

(
1− FS(t)

)
dt =

3

2
,

which uses the technique for calculating the mean of a nonnegative random
variable from Meeker and Escobar [86, page 77]. The analyst, however, knows
only (a) that the component lifetimes are independent, (b) that the compo-
nents have identical lifetime distributions, and (c) the values of three com-
ponent lifetimes: x1, x2, and x3. Because there is no knowledge of the true
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lifetime distribution, the analyst might consider a simple resample-style boot-
strapping, rather than a parametric approach or our fully enumerated ap-
proach. To further simplify the example we will set the bootstrap resample
value artificially low: B = 3. In this setting, a resampling bootstrap proceeds
as follows:

1. Three values are sampled with replacement from the data set, representing
three lifetimes from component 1, y1, y2, and y3.

2. Three additional values are sampled with replacement from the data set,
representing three lifetimes from component 2, z1, z2, and z3.

3. Pairwise maximums of the values from the two previous steps are taken,
representing three system lifetimes, s1 = max{y1, z1}, s2 = max{y2, z2},
and s3 = max{y3, z3}.

4. The three system lifetimes, which approximate three true system lifetimes,
are averaged in order to estimate the mean system lifetime.

To illustrate these steps with numerical values, consider the data set of the
n = 3 component observations 0.8, 1.7, 0.4. The steps given above might go as
follows:

1. The component 1 lifetimes sampled are 0.8, 0.4, 0.8.
2. The component 2 lifetimes sampled are 1.7, 1.7, 0.4.
3. The pairwise maximums representing system lifetimes are 1.7, 1.7, 0.8.
4. The estimate for the mean system lifetime is (1.7 + 1.7 + 0.8)/3 = 1.4.

To calculate the bias in this estimate, consider the more general case in
which the value sampled for the lifetime of a component is equally likely to be
one of the data values X1, X2, or X3. Therefore, there are 3 · 3 = 9 different
outcomes by the multiplication rule, as illustrated below.

Component 1 X(1) X(1) X(1) X(2) X(2) X(2) X(3) X(3) X(3)

Component 2 X(1) X(2) X(3) X(1) X(2) X(3) X(1) X(2) X(3)

Maximum X(1) X(2) X(3) X(2) X(2) X(3) X(3) X(3) X(3)

Since the nine outcomes are equally likely, the probabilities associated with
the first, second, and third order statistic corresponding to the maximum of
the two lifetimes in the bootstrap sample are 1/9, 3/9, and 5/9. Therefore,
the expected system lifetime using bootstrapping is

E [S�] =
1

9
E
[
X(1)

]
+

3

9
E
[
X(2)

]
+

5

9
E
[
X(3)

]
.

Using the standard order statistic results (see, for example Arnold et al. [5])
for random variables from a continuous population to calculate these expected
values:

E [S�] =
1

9
· 1
3
+

3

9
· 5
6
+

5

9
· 11
6

=
4

3
.

So the bootstrapping approach underestimates the true expected system life-
time of 3/2. Specifically the bias is E [S�]−E [S] = 4/3−3/2 = −1/6. The next
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subsection uses the prior section’s insights concerning bias to prove a general
result that quantifies the bias in the bootstrap estimate for the mean system
lifetime for parallel and series systems.

Bias Result for Two and m iid Components in Parallel or in
Series. The example in the previous subsection has shown that bootstrapping
can underestimate the mean system lifetime of a simple parallel system. The
following theorems indicate that this result is true in general and that the
bootstrap estimate is asymptotically unbiased. Theorem 10.1 establishes that
bootstrapping underestimates the mean system lifetime for a two-component
parallel system. In fact, since E[S] > E[X], the bias will always be negative.
The result can be interpreted as follows: the bias is −1/n times the expected
improvement of increasing from one component to two components in parallel.

Theorem 10.1. For a system consisting of two independent components with
statistically-identical lifetimes and finite population means arranged in par-
allel, the bias resulting from the bootstrap estimation of the mean system
lifetime is

E [S�]− E [S] = −E [S]− E [X]

n
.

Proof. The conditional CDF of X�, given a random sample X, is the EDF

FX�|X(t|x) =

⎧⎪⎨
⎪⎩
0 t < x(1)

i/n x(i) ≤ t < x(i+1), i = 1, 2, . . . , n− 1

1 t ≥ x(n).

The conditional CDF of S� = max{X�
1 , X

�
2} is

FS�|X(t|x) = Pr(max{X�
1 , X

�
2} ≤ t|X = x)

= Pr(X�
1 ≤ t|X = x) · Pr(X�

2 ≤ t|X = x)

= F 2
X�|X(t|x)

=

⎧⎪⎨
⎪⎩
0 t < x(1)

i2/n2 x(i) ≤ t < x(i+1), i = 1, 2, . . . , n− 1

1 t ≥ x(n).

The conditional PDF of S� on its support is

fS�|X(t|x) = FS�|X(t|x)− lim
τ→t−

FS�|X(τ |x) = i2 − (i− 1)2

n2
=

2i− 1

n2

for t = x(i), i = 1, 2, . . . , n. Applying the law of total probability and the
result concerning the probability distribution of order statistics associated
with a continuous population, the PDF of the bootstrap system lifetime is
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fS�(t) =
n∑

i=1

pS�|X(t|x)fX(i)
(t)

=

n∑

i=1

2i− 1

n2
· n!

(n− i)!(i− 1)!
fX(t)F i−1

X (t)
(
1− FX(t)

)n−i
(10.1)

on its support. Using the binomial theorem to expand
(
1 − FX(t)

)n−i
and

then re-ordering the sums, we can re-write (10.1) as

fS� (t) =
n∑

i=1

2i− 1

n2
· n!

(n− i)!(i− 1)!
fX(t)F i−1

X (t) ·
n−i∑

j=0

(n− i

j

)
(−1)n−i−jFn−i−j

X (t)

=

n−1∑

j=0

fX(t)n!

j!n2

n−j∑

i=1

(2i− 1)(−1)n−i−j

(n− i− j)!(i− 1)!
F i−1
X (t)Fn−i−j

X (t)

=
fX(t)

n

n−1∑

j=0

(n− 1)!(n− j − 1)!Fn−j−1
X (t)

j!(n− j − 1)!

n−j∑

i=1

(2i− 1)(−1)n−i−j

(n− i− j)!(i− 1)!

=
fX(t)

n

n−1∑

j=0

(n− 1

j

)
Fn−j−1
X (t)

n−j∑

i=1

(n− j − 1

n− i− j

)
(2i− 1)(−1)n−i−j (10.2)

on its support. Making the substitution α = n− i− j in the right-most sum-
mation,

n−j∑
i=1

(
n− j − 1

n− i− j

)
(2i− 1)(−1)α =

n−j−1∑
α=0

(
n− j − 1

α

)(
2(n− j − α)− 1

)
(−1)α

= −2

n−j−1∑
α=0

(
n− j − 1

α

)
α(−1)α+

(2n− 2j − 1)

n−j−1∑
α=0

(
n− j − 1

α

)
(−1)α.

(10.3)

Using the binomial expansion of (1 + t)n−j−1 and its derivative,

(1 + t)n−j−1 =

n−j−1∑
α=0

(
n− j − 1

α

)
tα,

(n− j − 1)t(1 + t)n−j−2 =

n−j−1∑
α=0

(
n− j − 1

α

)
αtα,

we can simplify the summations for certain values of j in (10.3):

n−j−1∑
α=0

(
n− j − 1

α

)
(−1)α =

{
1 j = n− 1

(1− 1)n−j−1 = 0 j = 0, 1, . . . , n− 2,
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and

n−j−1∑
α=0

(
n− j − 1

α

)
α(−1)α = (−1)

n−j−1∑
α=0

(
n− j − 1

α

)
α(−1)α−1

=

{
−1 j = n− 2

−(n− j − 1)(1− 1)n−j−2 = 0 j = 0, 1, . . . , n− 1, n− 3.

Substituting these results into (10.3), we have

n−j∑
i=1

(
n− j − 1

n− i− j

)
(2i− 1)(−1)α =

⎧⎪⎨
⎪⎩
1 j = n− 1

2 j = n− 2

0 j = 0, 1, . . . , n− 3.

Therefore, the PDF of S� from (10.2) simplifies to

fS�(t) =
fX(t)
(
2(n− 1)FX(t) + 1

)
n

=
2(n− 1)fX(t)FX(t) + fX(t)

n

on its support. Using the identities

E [X] =

∫ ∞

0

tfX(t) dt,

FS(t) = F 2
X(t),

E [S] =

∫ ∞

0

tF ′
S(t) dt =

∫ ∞

0

2tfX(t)FX(t) dt,

gives a general result for E [S�]:

E [S�] =
(n− 1)

∫∞
0

2tfX(t)FX(t) dt+
∫∞
0

tfX(t) dt

n
=

(n− 1)E [S] + E [X]

n
.

The bias result follows. �

Theorem 10.1 states that bootstrapping underestimates the mean system
lifetime for a two-component parallel system consisting of components with
independent lifetimes. Theorem 10.2 states that bootstrapping overestimates
the mean system lifetime for a two-component series system consisting of com-
ponents with independent lifetimes. Furthermore, the magnitudes of the two
biases in the parallel and series cases are equal. A similar proof construction
applies for Theorem 10.2, the series case, and the more general result for m
items in parallel or series. Because these proofs are lengthy, they have been
omitted.

Theorem 10.2. For a system consisting of two independent components with
statistically-identical lifetimes and finite population means arranged in series,
the bias resulting from the bootstrap estimation of the mean system lifetime is
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E [T �]− E [T ] =
E [X]− E [T ]

n
= −(E [S�]− E [S]

)
,

which, as indicated, is the negative of the result for the bootstrapping bias
for a parallel system.

Both proofs begin by exploiting the underlying properties of X� and S�

outlined earlier. The difficult part of the proofs is finding E [S�], after that the
result readily follows. Table 10.7 contains expressions for the bias for several
popular survival distributions with positive support, positive scale parameter
η, and positive shape parameter κ. Note that for the gamma distribution,

2F1(·) refers to the regularized hypergeometric function, which is reviewed
with a bibliography by Weisstein [117] and can be calculated in numerous
software packages including Mathematica and Maple (see, Wolfram [119] and
Maplesoft [80]). The exact form of 2F1(·) is the following infinite sum:

2F1(a, b, c, z) =

∞∑
n=0

(a)n(b)n
(c)n

· z
n

n!
,

where (·)n is the Pochhammer symbol, which is shorthand for

(x)n =
Γ (x+ n)

Γ (x)
.

This series converges when |z| < 1. Continuity arguments allow for calculating

2F1(·) at z = −1. The gamma distribution bias formula when κ = 1 simplifies
to the corresponding exponential distribution bias formula given in the table.

Table 10.7. Bootstrapping bias for parametric survival distributions

Distribution f(t) E [S�]− E[S]

Gamma(η, κ)
xκ−1exp(−t/η)

ηκΓ (κ)
−ηΓ (1 + 2κ) 2F1(κ, 1 + 2κ, 2 + κ,−1)

nΓ (κ)

Weibull(η, κ)
κ

η

(
t

η

)κ−1

exp

[

−
(
t

η

)κ]

−
η
(

1− 2−1/κ
)

Γ (1 + 1/κ)

n

exponential(η) η−1exp(−t/η) − η

2n

log logistic(η, κ)
κ(t/η)κ−1

η[1 + (t/η)κ]2
− ηπ

nκ2 sin(π/κ)
, κ > 1
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Some distributions do not have closed form expressions for bias, such as
the log normal distribution. Even in these cases of no closed form, numerical
methods yield bias calculations. Given that FX(t) is available, the bias can
be calculated analytically or numerically with the following application of
Theorem 10.1:

− 1

n

(
E[S]− E[X]

)
= − 1

n

(∫ ∞

0

(
1− F 2

X(t)
)
dt−
∫ ∞

0

(
1− FX(t)

)
dt

)

= − 1

n

∫ ∞

0

FX(t)
(
1− FX(t)

)
dt.

This result has a useful graphical interpretation. The integrand is the mul-
tiplication of the individual component’s CDF times its SF, 1 − FX(t). The
integrand is plotted in Fig. 10.4, which also contains the CDF and SF of a typ-
ical lifetime distribution. The area under that integrand, labeled β, is propor-
tional to the bootstrap bias, specifically, the bias is −β/n. More importantly,
if one substitutes the parametric CDF and SF with the respective empirical
CDF and SF, Fn(t) and 1 − Fn(t), then an empirical estimate for bias can
also be calculated. Thus, one must estimate E[S] with E [S�], producing the
empirical estimate of bias as

E [S�]− E [S] ∼= − 1

n

(
E [S�]− E [X�]

)
.

This estimate of bias has a smaller bias of order 1/n2, typically less than one
tenth of one percent of a component’s expected lifetime for reasonable sample
sizes. As we shall see, the empirical bias estimates are within the variability
of bias results for various assumptions of parametric distributions.

1 – FX (t)  FX (t) 

FX (t) (1 – FX (t))

t

1 -

0 -

0.25 -

0.5 -

0.75 -

b

Fig. 10.4. The CDF and SF of a lifetime distribution with its associated bias, which
is proportional to the area β
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We can generalize the results of this section for systems consisting of m
components in parallel (or series), but the same simplifications do not follow.
If we let S�

m = max{X�
1 , X

�
2 , . . . , X

�
m} be the bootstrap estimate of system

lifetime for m components in parallel, then, following a similar approach to
the one used in proving Theorem 10.1, we can find the exact bootstrap bias
for a system consisting of m components in parallel:

E [S�
m]− E [Sm] =

∫ ∞

0
tfS�

m
(t) dt−

∫ ∞

0
tfSm (t) dt

=

∫ ∞

0

n∑

i=1

im − (i− 1)m

nm
· n!

(n− i)!(i− 1)!
tfX(t)F i−1

X (t)
(
1− FX(t)

)n−i
dt

−
∫ ∞

0
tmfX(t)Fm−1

X (t) dt.

For example, substituting m = 3 and following a similar approach to proving
Theorem 10.1 yields

E [S�
3 ]− E [S3] =

(−3n+ 2)E [S3] + 3(n− 1)E [S2] + E [X]

n2
. (10.4)

We can produce analogous general expressions for bias related to bootstrap
estimates for series system lifetimes and letting m = 3:

E [T �
3 ]− E [T3] =

(−3n+ 2)E [T3] + 3(n− 1)E [T2] + E [X]

n2
. (10.5)

Empirical estimates for m = 3 can be similarly constructed by substituting
E [S�

m] and E [T �
m] for the appropriate E [Sm] and E [Tm] on the right-hand

side of (10.4) and (10.5).
Interestingly, assuming different underlying parametric distributions re-

sults in fairly consistent bias estimates. Table 10.8 shows the effect of assum-
ing different distributional families for each component in a two-component
parallel system. In each case, the sample size was fixed at n = 25 and the dis-
tribution’s parameters were chosen so that the data had identical population
first and second moments μ and σ2. In other words the different distributions
are similar, at least in center and spread. Notice that the empirical estimates
of bias are within the range of parametric biases, making the concern of the
bias’ bias less pressing. For the Weibull and gamma distributions, the third
and fourth columns of the table represent data with an increasing failure rate
(IFR) hazard function, indicative of items that degrade with time, and the
last column corresponds to a decreasing failure rate (DFR), indicative of items
where “used” is better than “new.” In the IFR case the bias is on the order
of about 0.1% of the mean failure time. In the DFR case, the biases vary
significantly. Even in the worst case (gamma) the bias is about 0.3% of the
mean value of the sample. The exponential distribution with means 62, 3, and
20 has associated bootstrap biases −1.24, −0.06, and −0.4, respectively. The
exponential distribution lacks the advantage of a second parameter, causing
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Table 10.8. Bootstrapping bias for parametric survival distributions for an
m-component parallel system for three population parameter settings and sample
size n = 25 with μ and σ2 as shown

Moments and μ = 62 μ = 3 μ = 20
distribution m σ2 = 10 σ2 = 0.1 σ2 = 2000
Empirical 2 −0.0703 −0.0070 −0.6410
Gamma 2 −0.0713 −0.0071 −0.6381

log logistic 2 −0.0696 −0.0069 −0.3705
log normal 2 −0.0713 −0.0071 −0.5249
Weibull 2 −0.0693 −0.0070 −0.5992
Weibull 3 −0.0894 −0.0093 −1.4516

the bias to be of greater magnitude. Notice that in the Weibull cases in which
m = 3, the bias is greater than for m = 2. In general, we have observed that
bias increases with m, a conjecture that we have not proven.

A Practical Example. In this subsection we present an example of a fully
enumerated bootstrap on the system in Fig. 10.3. The fully enumerated boot-
strap (outlined in Efron and Tibshirani [26]) is generally untenable for typical
operations involving sums of random variables. Minimum and maximum op-
erations, however, are much more amenable to a fully enumerated bootstrap.
Consider, for example, S� and T �. The size of their support is limited from
above by the total number of distinct observations in the sample X. For more
complicated coherent systems, the support size of the system bootstrap ran-
dom variable is similarly constrained because each element in the support of
the system lifetime distribution is one of the component lifetimes. The follow-
ing example illustrates the limited support of RBD systems. The open source
APPL software allows for such fully enumerated bootstraps of RBDs as well
as other systems.

Referring to Fig. 10.3, let the three types of components, A, B, and C, also
have previous life test data sets of size nA = 45, nB = 60, and nC = 45, re-
spectively, for each component. The failure times are stored in the Maple lists
alist, blist, and clist. Assume that a system designer wants to estimate
the lifetime distribution of a system with the series arrangement of parallel
subsystems shown in Fig. 10.3. The fully enumerated bootstrap lifetime distri-
bution for this system, S� = min{max{A�

1, A
�
2},max{B�

1 , B
�
2},max{C�

1 , C
�
2}},

can be found with the following APPL commands:

> A := BootstrapRV(alist);

> B := BootstrapRV(blist);

> C := BootstrapRV(clist);

> Sstar := Minimum(MaximumIID(A, 2), Minimum(MaximumIID(B, 2),

MaximumIID(C, 2)));
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Notice that the embedded Minimum commands, a necessity since that com-
mand only takes on two arguments. The BootstrapRV procedure transforms
a list into a discrete uniform random variable in APPL’s list-of-lists format.
For a specific set of data, the fully enumerated bootstrapped system was pro-
duced and a portion of the 138-element PDF for S� is as follows:

fS�(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1/2025 t = 2.268
1/675 t = 3.678

...
2009/7290000 t = 10.051
3599/810000 t = 11.262

...
10057/20250000 t = 173.620
1157/750000 t = 179.461.

This PDF and the associated CDF are graphed in Figs. 10.5 and 10.6. The
graph does not include the vertical lines of a typical plot because they would
eclipse some of the points in the plot. Also, each point in the PDF plot has a
unique value on the horizontal axis, even though the pattern appears to have
points on top of other points. Notice how FS�(t) approximates a smooth curve,
that of some underlying, but unknown, continuous FS(t). Since the PDF of S�

is exactly determined, all the typical characteristics of S� can be calculated,
e.g., the mean, variance, skewness, percentiles. For example E [S�] = 78.78 and
the 5th percentile of the system lifetime is 31.95. Also, note that the support
size of S� is limited above by the total number of the individual component
failure times, i.e., nS� = 138 ≤ nA+nB +nC = 45+60+45 = 150. The algo-
rithm to find FS�(t) executes quickly, in approximately O(nA+nB+nC) time.
In general, for all m, parallel and series systems will execute in O(n) time, as
minimum and maximum operations only use the observed failure times. No
new values are created that could become support values in S�. This is unlike
a cold backup system, with system lifetime T = X1 + X2, in which a fully
enumerated bootstrap would execute very slowly, on the order of O(n2), since
all n2 possible support values would need to be enumerated. The authors have
done extensive research in these more difficult algebraic structures, creating
PDFs with thousands of support values for relatively simple models.

Estimating bias in S� is possible, but it requires simulation and distribu-
tional assumptions. Unlike the case of iid components in series or parallel,
there are no easily formed analytic results for non-iid cases, in part due to the
innumerable potential configurations of the more complex systems. Using an
“estimate then simulate” approach, one can calculate a bias estimate for the
system. Making parametric assumptions is helpful in this process, as we will
outline next.

Consider the lifetime data available for the individual components A, B,
and C. The “estimate” step of the bias estimation process is as follows:
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Fig. 10.6. The CDF of the estimated lifetime of the complex system
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1. Assume a Weibull model for each of the three component types and cal-
culate the associated maximum likelihood estimates η̂A, κ̂A, η̂B , κ̂B , η̂C ,
and κ̂C from each lifetime data set.

2. Form the estimated CDF for the system

F̂S(t) = 1−
[
1− (1− exp(tκ̂A/η̂A)

)2] · [1− (1− exp(tκ̂B/η̂B)
)2] ·[

1− (1− exp(tκ̂C/η̂C)
)2]

for t > 0.
3. Find the expected system lifetime of the estimated system

Ê [S] =

∫ ∞

0

(
1− F̂S(t)

)
dt.

The “simulate” step of the process is as follows:

1. For each i iteration of the simulation, draw nA simulated component life-
times from the Weibull(η̂A, κ̂B) distribution, and likewise nB and nC life-
times from the respective distributions for components B and C.

2. Calculate the empirical distribution for S�
i from these component lifetimes

using the appropriate APPL Minimum and Maximum commands outlined
earlier in this section.

3. Calculate the mean E [S�
i ] for the system.

4. Calculate this iteration’s simulated bias, bi = E [S�
i ]− Ê [S].

5. Repeat this simulation many times, storing each bi.
6. Find the mean and standard deviation of the bias estimates, b̄ and sb̄.

This simulation was conducted for 2500 iterations using the values of alist,
blist, and clist for the original component lifetimes. In this case b̄ =
−0.3553, sb̄ = 4.513 and a 95% confidence interval for b was (−0.5323,
−0.1783).

To validate that the simulation presents estimates that are reasonable,
we have conducted two different evaluations. First, we simulated this “esti-
mate then simulate” process in its own set of simulations. In this effort we
established true η and κ parameters for each component. We then simulated
20 sets of life-time data for each component. For each of the 20 sets of data
we conducted the “estimate then simulate” process 500 times to produce 20
values of b̄, Ê [S], and 20 confidence intervals. An ANOVA of the 20 × 500

bias values, versus the factor Ê [S] showed that the b̂ estimates were statis-
tically similar. We also simulated the effect of reducing the sample sizes for
the lifetime data of some of the components. As expected, the bias estimates
grew both in expected magnitude and standard deviation when the size of
component failure time data sets decreased. This algorithm could be altered
to fit specific purposes. For example one could make the original procedure
more robust by averaging over several parametric model assumptions, should
that level of confidence be necessary.
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The second evaluation of the method involved comparing known bias with
simulated bias. We applied this “estimate then simulate” process to iid com-
ponents in parallel (the subsystems in Fig. 10.3) and compared the simulated
bias estimates to the true, analytic biases. In each case the 95% confidence
intervals for simulated bias captured the analytic bias. This gives us rationale
to opine that the two methods produce stochastically similar bias estimates
for these parallel subsystems. Furthermore, the agreement of the analytic and
simulated results argues in favor of applying the “estimate then simulate”
method to the full system as a way of estimating bias.

Further, bias can be approximated by either calculating the empirical bias
estimates or by making parametric assumptions on the components and us-
ing Table 10.7. We will outline the steps to calculate such bias. First, we
will explain the empirical method in detail because it has the advantage of
not making parametric assumptions. Then we will outline a similarly based
method using the Weibull distribution as the assumed distribution of compo-
nent lifetimes. In each case, one will estimate the bias b in units of time, then
convert that bias to the proportion of the effect of bias to the expected value
of the system p = (μX + b)/μX . To account for the combination of series and
parallel structure to the system, the overall bias proportion can be expressed
as a product of these proportions. A scalar transformation will then produce
the unbiased system distribution.

The empirical estimate of bias is calculated as follows:

• Establish the discrete distributions of the subsystems that are in parallel
by using APPL to calculate the PDF for the following random variables:
A2� = max{A�

1, A
�
2} which is calculated with the APPL code A2star :=

MaximumIID(A, 2);. Similarly define and calculate B2� and C2�.
• Find the expected values E [A2�], E [B2�] and E [C2�].
• Estimate the bias of each subsystem using the empirical method: for the

A2� subsystem bias bA2
∼= − 1

na
(E [A2�] − E [A�]) = −1.2013. Similar

calculations produce bB2
∼= −0.4561 and bC2

∼= −0.5491. Note, E [A�] is
the sample mean of the data set for component A.

• Calculate the proportion of bias to the expected value of the subsystems.
The proportion of the effect of bias to E [A2�] would be pA2 = (E [A2�] +
bA2)/E [A2�] = 0.99287. Similar calculations produce pB2 = 0.99611 and
pC2 = 0.9951. In other words, E [A2�] is under estimating the true E [A2],
i.e., E [A2�] ∼= 0.99287E(A2).

The series configuration is harder to approximate, as the results stated earlier
only apply to iid components in series, and we have different distributions
for A2�, B2�, and C2�. However, one can see the effect of assuming three
different scenarios, where the three series components were all iid composed
of A2� components, then all B2� components, then all C2� components. That
way if one of these components is particularly more biased than the others, we
have upper and lower bounds for system bias. Using the series bias formula for
m = 3 outlined in the previous section, we calculate the following empirical
based biases for the three different assumptions.
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• For the case where three components in series are all of type A2� (we
abbreviate A2:3), the bias is bA2:3 = 1.4697 and the proportion of bias to
the mean system lifetime is pA2:3 = 1.01786. Likewise, if all components in
series are of type B2�, then bB2:3 = 0.5896 and pB2:3 = 1.00740. Likewise,
bC2:3 = 0.7328 and pC2:3 = 1.00927.

• Combine the net effect of the parallel contribution of bias and the series
contribution of bias by multiplying the appropriate proportions. For A2 : 3,
we see that the parallel bias offsets the series bias, which can be calculated
as pA2 · pA2:3 = 0.99287 · 1.01786 = 1.0106. Thus, for the assumption of
three A2 items in series the net effect is that E [S�] ∼= 1.0106E [S], slightly
overestimating the system average lifetime. The B and C proportions are
calculated to be 1.00347 and 1.00433, respectively.

• Now one can estimate system bias in whatever way makes the most sense.
To be conservative, one can use the first bias proportion estimate, 1.0106.
The system distribution can be adjusted for bias by the simple transfor-
mation S�

unbiased = S�/1.0106, which can be done in APPL.
• Alternatively, one could argue the bias is perhaps the average of the three

cases, and could then unbias S� with a different constant.

Note that we choose to unbias these systems by using proportions, not sub-
tractions. The subtraction method is problematic, as the support of S� could
shift into the negative numbers.

Alternatively, one could estimate bias using parametric assumptions. The
process is similar to that described above, except one would have to estimate
parameters of the assumed distribution along the way. For the parametric
method, assume, for the sake of argument, an underlying Weibull distribution
for each component. One can estimate η̂ and κ̂ for each component and use
Table 10.1 to derive the bias for the parallel subsystems to be bA2 = −1.25,
bB2 = −0.45, and bC2 = −0.54. Similar follow-on steps would mirror the
empirical process, and one would again see that the S� distribution slightly
overestimates the true E [S]. For reasonable sample sizes, the bias variations
between the empirical method and a parametric method are small in com-
parison to the sampling error of the component lifetimes, thus, it is probably
most practical to choose the non-parametric method based on the empirical
estimates of bias.

In addition to modeling S� and estimating its bias, a further use of the
enumerated bootstrap could be exploring the effect of system design on the
system lifetime distribution. Consider again the system in Fig. 10.3. A sys-
tem designer might want to improve that system by investigating how many
components of type A in parallel it would take to increase both the system
mean lifetime and the system 5th percentile by, say, 12%. The iterative calcu-
lations in APPL and Maple [80], using the code below, are used to calculate
the answer.

> n := 2;

> target := 1.12;
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> m := 78.78;

> p5 := 31.95;

> mux := m;

> pct := p5;

> while (mux < target * m or pct < target * p5) do

> n := n + 1;

> System := Minimum(MaximumIID(A, n), Minimum(MaximumIID

> (B, 2), MaximumIID(C, 2)));

> mux := Mean(System);

> pct := IDF(System, 0.05);

> end do;

> print(n);

It turns out that five components of type A arranged in parallel produce
the desired increase of 12% in both the mean and 5th percentile, leaving the
designers to then conduct a cost-benefit analysis of the improved system. Fur-
ther still, one can investigate the asymptotic benefit of even more components
of type A in parallel. Let target be the desired increase in mean system life-
time. By changing the value of the variable target in the loop to 1.13, 1.14,
1.15, and 1.16, one finds that the number of type A components in parallel is
required to be 6, 7, 20, and ∞ respectively. The asymptotic upper limits of the
mean and the 5th percentile are approximately 90.61 and 41.66 respectively
as the number of parallel type A components approaches infinity.

Clearly, without a fully enumerated bootstrap, the above iterative method
of exploring system design would become much more computationally expen-
sive. Also, multiple resampling error analyses would have to be conducted at
each iteration. In these situations, increasing the bootstrap iteration value B is
not as simple as it sounds, as one would have iteration within iteration. One
can imagine even more complex optimization algorithms than those above
and the benefits of the enumerated bootstrapping become more apparent.
Finally, in further research, we have also investigated the cold start backup
of components (statistically, distributions of convolutions) using enumerated
bootstrapping. Comparing parallel structures of systems to cold start backup
structures are now possible, each time getting an exact distribution for the
system. In fact all sorts of algebraic operations are possible for other types of
systems as well as statistics, many of which we are still investigating. Work on
this is also being extended to k-out-of-n type systems as well as cold backup
systems.

This section has proved that using bootstrapping on a parallel (or series)
systems with statistically-identical components underestimates (or overesti-
mates) the expected system lifetime. An expression for the bias for all values
of n is closed-form. Exact bias results are calculated for two and three compo-
nent systems. Fully enumerated bootstraps are possible, and an application
of such bootstrapping is provided.

This completes our initial chapter on APPL applications to reliability and
survival analysis. The next chapter concerns applications of APPL in time
series analysis.
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Symbolic ARMA Model Analysis

This chapter extends the APPL language to include the analysis of ARMA
(autoregressive moving average) time series models. ARMA models provide
a parsimonious and flexible mechanism for modeling the evolution of a time
series. Some useful measures of these models (e.g., the autocorrelation function
or the spectral density function) are oftentimes tedious to compute by hand,
and APPL can help ease the computational burden.

Many problems in time series analysis rely on approximate values from
Monte Carlo simulations or the central limit theorem rather than exact results.
This chapter describes our time series extension to APPL which can compute
autocorrelation and partial autocorrelation functions of ARMA models which
would otherwise require extremely tedious pencil and paper work or simula-
tion to find, along with several other tools for working with ARMA models.
Simulation is not used in any of the results.

The time series extension to APPL provides procedures for ARMA mod-
els to:

• calculate an autocorrelation (TSCorrelation), including autocorrelations
of models with heteroskedastic error terms,

• calculate a partial autocorrelation (TSPartialCorrelation),
• calculate a mean (TSMean),
• calculate a variance or covariance (TSVariance),
• plot an autocorrelation or partial correlation function (TSPlot),
• calculate a spectral density function (SDF),
• perform a unit roots analysis to determine whether or not an AR(p) model

is stationary or an MA(q) model is invertible (UnitRoots),
• forecast an AR(p) model and calculate a confidence interval (TSForecast),
• generate a realization of a process (TSRealization),
• perform an exploratory time series analysis (ETSA) which displays several

of the previous commands at once.
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The remainder of this chapter is organized as follows. Section 11.1 describes
the ARMAmodel. Section 11.2 describes the data structure for storing ARMA
models and explains the ways that the mean, variance, autocorrelation, partial
autocorrelation and forecasts are computed. Section 11.3 illustrates how to use
the time series extension through a series of examples.

11.1 ARMA Model Basics

An AR(p) model has p autoregressive components, 0 moving average compo-
nents and is defined by

Yt = c+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt, (11.1)

where Yt is the value of the time series at time t, c is a real-valued constant,
φ1, φ2, . . . , φp are real-valued parameters, and ε0, ε1, ε2, . . . , εt are error terms,
typically mutually independent and normally distributed with a mean of 0. An
MA(q) model has 0 autoregressive components, q moving average components
and is defined by

Yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q, (11.2)

with variables defined similarly. An ARMA(p, q) model is a combination of
(11.1) and (11.2):

Yt = c+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q.
(11.3)

See Box and Jenkins [13] for more details.
One aspect of analyzing ARMA (and other time series) models is finding

autocorrelation functions, that is, the jth autocorrelation, denoted by ρj , is
the correlation between the value of a time series Yt at time t and its value
Yt−j at time t− j. For models in which the εt terms are iid, ρj is the same at
any time t. The jth autocorrelation of MA(q) models with q < ∞ is 0 when
j > q because Yt and Yt−j do not share terms. On the other hand, the jth
autocorrelation of stationary AR(p) models asymptotically approaches 0 as
j increases because the value of Yt affects all future values, but its impact
decreases over time. Finding the exact autocorrelation function for an ARMA
model can be difficult to do by hand, especially when error terms are not iid.
Section 11.2 explains two ways that this process is automated with Maple and
APPL.

APPL is essential for working with various distributions of error terms.
For example, suppose that εt ∼ exponential(4) and we want to find E[ε2t ].
APPL can find the exact solution quickly:

> X := ExponentialRV(4);

> g := [[x -> x ^ 2], [0, infinity]];

> U := Transform(X, g);

> Mean(U);
1

8
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The Mean, Variance, and Transform procedures, as well as the data structure
for probability distributions in APPL, are all used when working with ARMA
models. This enables our software to use an arbitrary probability distribution
for the error terms.

11.2 Implementation

The time series analysis extension to the APPL software consists of approxi-
mately 1000 lines of Maple code which allow a user to define an ARMA model
and compute various measures associated with the model. The data structure
for storing the ARMA model and methods for computing the autocorrelation
and partial autocorrelation are described here.

Data Structure. One of the first steps in developing the time series extension
is to define a data structure within Maple to store a times series model. A list-
of-lists data structure was used to describe an ARMA model. This allows for
both symbolic and numeric values for the parameters, and the error terms εt
can have arbitrary probability distributions. The first sub-list contains the pa-
rameters φ1, φ2, . . . , φp for the autoregressive portion of the model; the second
sub-list contains the parameters θ1, θ2, . . . , θq for the moving average portion
of the model; the third element of the list contains the probability distribution
of the error terms. For example, the statement

> X := [[0.2, 0.93], [1.4], NormalRV(0, sigma)];

sets the variable X to an ARMA(2, 1) model with φ1 = 0.2, φ2 = 0.93, θ1 = 1.4,
and N(0, σ2) error terms (Gaussian white noise). Procedures AR, MA, and ARMA

have also been written to save on keystrokes. For example,

> Y := ARMA(1, 1);

sets the variable Y to a ARMA(1, 1) model with arbitrary parameters φ1, θ1,
and the default standard normal error terms (the default allows a realization to
be computed). Other error terms can also be included using these procedures,
for example,

> Z := MA([2, 3, 1 / 4], ExponentialRV(1));

sets the variable Z to an MA(3) model with parameters θ1 = 2, θ2 = 3,
θ3 = 1/4, and unit exponential error terms. Time-dependent error terms can
be introduced in the data structure by using the variable tau, the time se-
ries placeholder for t in the expression for the error-term distribution. Time-
dependent errors are illustrated in Sect. 11.3.

Computing Autocorrelation by the Defining Formula. The autocorre-
lation between Yt and Yt−j can be calculated using the defining formula:

ρj =
Cov(Yt, Yt−j)

σYt
σYt−j

=
E[(Yt − E[Yt])(Yt−j − E[Yt−j ])]√

E[(Yt − E[Yt])2]
√

E[(Yt−j − E[Yt−j ])2]
. (11.4)
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For MA(q) models, this is a straightforward but tedious computation to per-
form by hand. Since for any random variables X1, X2 and constants a, b we
have

E[aX1 + bX2] = aE[X1] + bE[X2], (11.5)

then

E[Yt] = E[c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q]

= c+ E[εt] + θ1E[εt−1] + θ2E[εt−2] + · · ·+ θqE[εt−q]. (11.6)

Maple and APPL can then compute E[Yt] term-by-term, even for error term
distributions that are non-normal or time-dependent (i.e., not iid). The com-
puted values of E[Yt] and E[Yt−j ] are then substituted into (11.4). The result-
ing expressions within each of the expected values are then expanded so that
Maple and APPL can compute each expected value term-by-term once again
using (11.5). With these results, Maple can compute the mean, variance, jth
covariance, and jth autocorrelation for MA(q) models.

For stationary AR(p) and ARMA(p, q) models, this method will not work
because computing E[Yt] requires computing E[Yt−1], which in turn requires
computing E[Yt−2], etc. However, autocorrelations for either stationary or
non-stationary AR(p) and ARMA(p, q) models over a finite time horizon can
be computed using this method. For example, consider an AR(2) model at
time 7,

Y7 = c+ φ1Y6 + φ2Y5 + ε7 (11.7)

and let the two initial observations be Y0 = c + ε0 and Y1 = c + φ1Y0 + ε1.
Substitute c + φ1Y5 + φ2Y4 + ε6 for Y6 in (11.7), then substitute c + φ1Y4 +
φ2Y3 + ε5 for Y5, . . . , c + ε0 for Y0. The resulting Y7 will not contain any Yt

terms and thus the jth autocorrelation of Y7, ρj,7, can be computed using the
method described above.

Computing Autocorrelation with the Yule–Walker Equations. Au-
tocorrelation for a steady-state AR(p) model (i.e., a stationary process that
has run for long enough that covariances are equal) cannot be computed us-
ing the above method. Instead, a well-known system of equations called the
Yule–Walker equations describes the autocorrelations (provided that the error
terms are iid). For an AR(p) model, the Yule–Walker equations are given in
Hamilton [44, page 59]:

ρ0 = 1

ρ1 = φ1ρ0 + φ2ρ−1 + · · ·+ φpρ1−p

ρ2 = φ1ρ1 + φ2ρ0 + · · ·+ φpρ2−p

...

ρp = φ1ρp−1 + φ2ρp−2 + · · ·+ φpρ0. (11.8)

Since for real-valued processes ρ1 = ρ−1, ρ2 = ρ−2, . . ., we can solve for any
ρj whenever the process is stationary. Covariances can be computed with the
similar system of equations, where γj is the jth covariance:
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γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2

γj = φj−1γ1 + φj−2γ2 + · · ·+ φpγj−p j = 1, 2, . . . . (11.9)

For a stationary ARMA(p, q) process there is not an easily definable
system of equations for computing the autocorrelations. However, a system
can be generated in the following manner. Consider finding the equation for
γj of an ARMA(p, q) model, j ≤ q. Observe that when j > q, then (11.9)
describes γj . For simplicity, let c = 0 even though the results hold when this
is not the case.

Yt = φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q

E[YtYt−j ] = E[Yt−j(φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q)]

γj = φ1γj−1 + φ2γj−2 + · · · + φpγj−p + E[Yt−j(εt + θ1εt−1 + θ2εt−2 + · · · + θqεt−q)].

Now define ξk = E[Ytεt−k] and let θ0 = 1, giving us the following solvable
system of equations (once the expectations ξk are computed):

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p + θjξ0 + θj+1ξ1 + · · ·+ θqξq−j j ≤ q

γj = φj−1γ1 + φj−2γ2 + · · ·+ φpγj−p j > q.
(11.10)

The expectation ξk can be computed in the following way and then substituted
into (11.10):

ξ0 = E[εt(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= E[ε2t ] = σ2

ξ1 = E[εt−1(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξ0 + θ1σ
2

ξ2 = E[εt−2(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξ1 + φ2ξ0 + θ2σ
2

...

ξk = E[εt−k(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξk−1 + φ2ξk−2 + · · ·+ φkξ0 + θkσ
2.

Maple will solve (11.8)–(11.10) either with arbitrary parameters or with values
that describe a stationary process.

Computing Partial Autocorrelation. Partial autocorrelations are com-
puted by first finding autocorrelations with one of the above methods. Then
the jth partial autocorrelation is [120, pages 579–580]
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αj =

∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρ1 ρ2 · · · ρj−2 ρ1
ρ1 ρ0 ρ1 · · · ρj−3 ρ2
ρ2 ρ1 ρ0 · · · ρj−4 ρ3
...

...
...

. . .
...

...
ρj−1 ρj−2 ρj−3 · · · ρ1 ρj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρ1 ρ2 · · · ρj−2 ρj−1

ρ1 ρ0 ρ1 · · · ρj−3 ρj−2

ρ2 ρ1 ρ0 · · · ρj−4 ρj−3

...
...

...
. . .

...
...

ρj−1 ρj−2 ρj−3 · · · ρ1 ρ0

∣∣∣∣∣∣∣∣∣∣∣

, (11.11)

which can be evaluated using Maple’s LinearAlgebra package.

Invertibility for MA(q) Models. MA(q) models as defined by (11.2) are
invertible if they can be represented by an AR(∞) model. For models with iid
error terms, this is true when the roots of the model’s characteristic equation
lie outside the unit circle in the complex plane. The characteristic equation of
an MA(q) model is

1 + θ1z + θ2z
2 + · · ·+ θqz

q = 0. (11.12)

However, non-invertible MA(q) models have an invertible representation
with identical moments from Hamilton [44, page 68]. If λ1, λ2, . . . , λn are the
roots of (11.12) inside the unit circle and λn+1, λn+2, . . . , λq are the roots
of (11.12) outside the unit circle, then an invertible model with identical
moments is

Yt = c+

( n∏
i=1

(1− λiL)

)( q∏
i=n+1

(1− λ−1
i L)

)
ε′t, (11.13)

where V [ε′t] = σ2λ−2
1 λ−2

2 · · ·λ−2
n and L is the lag or backshift operator, i.e.,

εtL = εt−1, εtL
2 = εt−2, etc.

Forecasting AR(p) Models. Consider an AR(p) model where the values of
Yt, Yt−1, . . . are known, but the values of Yt+1, Yt+2, . . . are unknown, and we
want to find the expected value and a confidence interval for Yt+s for some
positive integer s. Then,

Yt+s = φ1Yt+s−1 + φ2Yt+s−2 + · · ·+ φpYt+s−p + εt+s

Yt+s−1 = φ1Yt+s−2 + φ2Yt+s−3 + · · ·+ φpYt+s−p−1 + εt+s−1

...

Yt+1 = φ1Yt + φ2Yt−1 + · · ·+ φpYt−p+1 + εt+1.

Since Yt+1 is an error term plus a constant, then we can substitute Yt+1

into Yt+2, then substitute Yt+2 into Yt+3, . . . , then substitute Yt+s−1 into
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Yt+s, resulting in an expression consisting of error terms and constants. The
software assumes that the error terms are mutually independent and normally
distributed, which implies that the value of Yt+s is also normally distributed.
Maple can then compute the mean and variance of Yt+s and call APPL’s IDF
procedure to find values for a confidence interval.

11.3 Examples

This section consists of a series of examples that highlight the capability of
the time series extension to the APPL language. Some of the long symbolic
results may find uses in statistical software which currently use simulation to
find measures of interest. Some examples contain graphical output, which is
included in the text rather than referring to a figure.

Example 11.1. Find the lag 2 autocorrelation at time t of an MA(2)
model with time-dependent error terms with εt ∼ N

(
0, ln(t)2

)
.

The MA(2) model is

Yt = c+ εt + θ1εt−1 + θ2εt−2,

where εt ∼ N
(
0, ln(t)2

)
, εt−1 ∼ N

(
0, ln(t−1)2

)
, etc. First we compute

the second autocorrelation at time t, ρ2,t, by hand and then we will
compute ρ2,t using the time series extension.
Using the defining formula for correlation, we have

ρ2,t =
Cov(Yt, Yt−2)

σYt
σYt−2

=
E[(Yt − E[Yt])(Yt−2 − E[Yt−2])]√

E[(Yt − E[Yt])2]
√

E[(Yt−2 − E[Yt−2])2]
.

Notice that since all error terms have a mean of 0, then E[Yt] = c and
E[Yt−2] = c. Substituting in the expressions for Yt and Yt−2 we have,

ρ2,t =
E[(εt + θ1εt−1 + θ2εt−2)(εt−2 + θ1εt−3 + θ2εt−4)]√

E[(εt + θ1εt−1 + θ2εt−2)2]
√

E[(εt−2 + θ1εt−3 + θ2εt−4)2]
.

While the error term distributions are not identical, they are inde-
pendent and have mean 0, meaning that for any i �= j we have
E[εt−iεt−j ] = 0. This allows us to simplify when expanding the poly-
nomials inside the expected values. So we have,

ρ2,t =
E[θ2ε

2
t−2]√

E[ε2t + θ21ε
2
t−1 + θ22ε

2
t−2]
√

E[ε2t−2 + θ21ε
2
t−3 + θ22ε

2
t−4]

.

Each θi parameter is a constant (i.e., we can bring them outside of
the expected value operator), so it remains to find E[ε2t ], . . . , E[ε2t−4] to
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complete our calculation of ρ2,t. For any k > 0 and εk ∼ N
(
0, ln(k)2

)
we can use the properties of the normal and chi square distribu-
tions to find E[ε2k]. First, ε2k/ln(k)

2 ∼ χ2(1), which implies that
E[ε2k/ln(k)

2] = 1 because the expected value of a chi square random
variable is its degrees of freedom. Then, since 1/ln(k)2 is a constant,
we can bring it outside of the expected value operator and solve, giving
us E[ε2k] = ln(k)2. Using this result, we have:

ρ2,t =
θ2ln(t − 2)2

√
ln(t)2 + θ2

1 ln(t − 1)2 + θ2
2 ln(t − 2)2

√
ln(t − 2)2 + θ2

1 ln(t − 3)2 + θ2
2 ln(t − 4)2

.

Now we will compute the same autocorrelation in just two commands
using the time series extension.

> X := MA(2, NormalRV(0, ln(tau))):

> TSCorrelation(X, 2);

θ2ln(t− 2)2√
ln(t)2 + θ21 ln(t− 1)2 + θ22 ln(t− 2)2

√
ln(t− 2)2 + θ21 ln(t− 3)2 + θ22 ln(t− 4)2

The first command assigns the time series list-of-lists data structure
to X. The first argument of the MA() procedure is the order of the
model and the second argument is the distribution of the error terms
in APPL format (APPL takes standard deviation rather than variance
for its probability distributions), with tau as the placeholder for t. The
second command computes the second autocorrelation of the assigned
model.

Example 11.2. Find the unit roots of an MA(3) model with parameters
θ1 = 0.7, θ2 = 0.9, and θ3 = −1.3.

Since all MA(q) models are stationary, a unit root analysis of an
MA(q) model tests for invertibility. If the model is not invertible, then
an invertible representation will be found according to Eq. (11.13). A
call to the procedure UnitRoots prints the values of the unit roots,
plots the unit roots in the complex plane, and gives an invertible rep-
resentation of the model with identical autocorrelation function.

> X := MA([0.7, 0.9, -1.3]):

> UnitRoots(X):

The roots are:
[−0.3730587892+ 0.6289673928I,−0.3730587892−

0.6289673928I, 1.438425271]
Number of roots inside the unit circle: 2

Assuming error terms are i.i.d, then an invertible representation is:
Yt =

c+ εt + 0.0509128847εt−1 + 0.0160683988εt−2 − 0.3717765894εt−3
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If the parameter values were given as exact values rather than dec-
imals (and q ≤ 4), then the invertible model would also have exact
parameters. So if the model were instead input as

> X := MA([7 / 10, 9 / 10, -13 / 10]):

then the UnitRoots procedure prints the exact values of the three
roots of the cubic polynomial

1 +
7

10
z +

9

10
z2 − 13

10
z3 = 0,

which are the real root

1

78

3

√
217836 + 780

√
73329 +

236

13
3
√

217836 + 780
√
73329

+
3

13

and the complex conjugates

− 1

156

3

√
217836 + 780

√
73329− 118

13
3
√

217836 + 780
√
73329

+
3

13
±

i
√
3

2

(
1

78

3

√
217836 + 780

√
73329− 236

13
3
√

217836 + 780
√
73329

)
.

Example 11.3. Find the unit roots of the AR(3) model with φ1 = 0.5,
φ2 = 0.1, and φ3 = −0.3.

Instead of testing for invertibility as in the previous example, unit
roots analysis of AR(p) and ARMA(p, q) models tests for stationarity.
AR(p) models with iid error terms are stationary when the roots of
1− φ1z − φ2z

2 − · · · − φpz
p = 0 lie outside the unit circle.
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> X := AR([0.5, 0.1, -0.3]):

> UnitRoots(X);

The roots are:
[1.034099254+ 0.9230480107I, 1.034099254−

0.9230480107I,−1.734865174]
All roots lie outside the unit circle, so the ARMA process is

stationary

-1

10.5

i

-0.5-1

-0.5

-1.5
0

0

1

R

0.5

Example 11.4. Find the lag 1 autocorrelation of an MA(1) model with
real-valued parameter θ1 and exponential(4) error terms.

As expected, non-normal but iid error terms produce the same auto-
correlation function as the case with normal error terms.

> X := MA(1, ExponentialRV(4)):

> TSCorrelation(X, 1);

θ1
1+ θ21

Example 11.5. Find the lag 2 autocorrelation for an AR(2) model with
parameters φ1 = 1/2 and φ2 = 1/4 at time t = 7.

In this example, ρ2,7 for Y7 = c+φ1Y6+φ2Y5+ε7 of an AR(2) model is
calculated using recursive substitution then taking of expected values
as described in Sect. 11.2. Notice that the constant term, c, appears
in the expression.

> X := AR([1 / 2, 1 / 4]):

> TSCorrelation(X, 2, 7);

1067
√
30621

√
16384

31355904
√

2209
16384

c2 + 461
256
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This can also be evaluated with arbitrary parameters, but the resulting
expression for the second autocorrelation value is very long.

Example 11.6. Find the lag 2 autocorrelation of an AR(4) model with
parameters φ1, φ2, φ3, and φ4 with the autocorrelation computed by
the Yule–Walker equations.

We can compute ρ2 for an AR(4) model that is in steady-state (i.e.,
stationary) by the Yule–Walker method described in Sect. 11.2. The
optional "YW" flag tells Maple to find the correlation by solving the
Yule–Walker equations rather than the defining formula.

X := AR(4):

TSCorrelation(X, 2, "YW");

− −φ4
2φ2 + φ4φ3

2 + φ1φ4φ3 − φ2
2φ4 + φ1

2 + φ2 + φ1φ3 − φ2
2

−1+ φ4 + φ2 + φ4
2 − φ4

3 − φ4
2φ2 + φ1φ3 + φ3

2 + φ1
2φ4 + φ1φ4φ3

Example 11.7. Find the lag 2 autocorrelation of an ARMA(3, 3) model
with parameters φ1 = 1/2, φ2 = 3/10, φ3 = 1/10, θ1 = 9/10, θ2 = 1/2,
and θ3 = 3/10 at time t = 8.

The lag 2 autocorrelation of Y8 is computed as described in Sect. 11.2.

> X := ARMA([1 / 2, 3 / 10, 1 / 10],

[9 / 10, 1 / 2, 3 / 10]):

> TSCorrelation(X, 2, 8);

3935943161

31174413101120000000

√
97420040941

√
6400000000

1
√

204404181
16000000

+ 14874485521
25600000000

c2

This can be computed with arbitrary parameters but the resulting
equation is very long. Again, notice that the constant term, c, appears
in the expression.

Example 11.8. Find the lag 2 autocorrelation of an ARMA(3, 2) model
with parameters φ1 = 1/2, φ2 = 3/10, φ3 = 1/10, θ1 = 3/4, and
θ2 = 1/4 by solving the Yule–Walker equations.

The lag 2 autocorrelation of Yt is computed as described in Sect. 11.2.

> X := ARMA([1 / 2, 3 / 10, 1 / 10], [3 / 4, 1 / 4]):

> TSCorrelation(X, 2, "YW");

1636

1831
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Example 11.9. Find the lag 3 partial autocorrelation of an MA(2)
model with parameters θ1 and θ2.

The lag 3 partial autocorrelation of an MA(2) model is computed as
described in Sect. 11.2.

> TSPartialCorrelation(MA(2), 3);

θ1 (1 + θ2)
(
−2 θ2 − 2 θ2

3 + θ1
2 + θ2

2θ1
2 + θ2

2
)

1 + 2 θ22 + θ16 + θ12 + θ14 + 2 θ24 − 2 θ2θ12 + θ22θ14 + 5 θ22θ12 − 4 θ2θ14 − 2 θ23θ12 + θ26 + θ24θ12

Example 11.10. Find the lag 3 partial autocorrelation of an MA(1)
model with parameter θ1 and error terms εt ∼ N(0, t).

The lag 3 partial autocorrelation is computed as described in Sect. 11.2
and εt ∼ N(0, t).

> X := MA(1, NormalRV(0, sqrt(tau))):

> TSPartialCorrelation(X, 3);

θ1
3 (t− 1)3

√
t+ θ1

2t− θ1
2
√
t− 1+ θ1

2t− 2 θ1
2
(
t2 − t+ θ1

4t2 − 3 θ1
4t− θ1

2 + 2 θ1
4
)

Example 11.11. Find the lag 2 partial autocorrelation of an AR(3)
model with parameters φ1 = 1/2, φ2 = 3/10, and φ3 = 1/10 at time
t = 7.

In this example, the first two autocorrelations of Y7 are computed
initially, then they are then used to find the lag 2 partial autocorre-
lation. All calculations are performed using the methods described in
Sect. 11.2.

> TSPartialCorrelation(AR([1 / 2, 3 / 10, 1 / 10]), 2, 7);

1

132731033

(
22811879108847780543893

33554432000000000000000
c
2 − 58277673273951481

838860800000000000000000

√
132731033

√
51200000

√
170119849

256000000
c2 +

289249

128000
+

89625931935942986179113

8388608000000000000000

)√
132731033

√
51200000

(
170119849

256000000
c
2 +

289249

128000

)−1/2

(
5269767243516833

13107200000000000
c2 +

2761515025601

1000000000000

)−1

Again, this partial autocorrelation can be computed with arbitrary
parameters, but the resulting expression is very long. As in two of the
previous examples, the constant term c appears in the expression.
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Example 11.12. Find the lag 2 partial autocorrelation of an AR(3)
model with parameters φ1, φ2, and φ3 using the Yule–Walker equa-
tions.

By using the "YW" flag in TSPartialCorrelation, the computer finds
the autocorrelations by Yule–Walker which it then uses to find the lag
2 partial autocorrelation as described in Sect. 11.2.

> TSPartialCorrelation(AR(3), 2, "YW");

−
4φ3φ1φ2 + φ2φ3

2 − φ2 + 2φ2
2 − φ1φ2

2φ3 − φ2
3 + φ1

3φ3 + 2φ1
2φ3

2 + φ1
2φ2 + φ3

3φ1 − φ3φ1

φ1
2φ3

2 + 2φ3
3φ1 − 2φ3φ1 + φ3

4 − 2φ3
2 + 2φ2φ3

2 + 1 − 2φ2 + φ2
2 − φ2

2φ3
2 − φ1

2

Example 11.13. Plot the autocorrelation function of an ARMA(3, 3)
model with parameters φ1 = 0.4, φ2 = 0.2, φ3 = −0.3, θ1 = 0.9,
θ2 = 0.3, and θ3 = −0.2 using the Yule–Walker equations.

TSPlot will find several autocorrelations or partial autocorrelations
(by using the optional "partial" flag as a third parameter) and then
plot them. In this example, the "YW" flag is used to tell Maple to find
autocorrelations by solving the Yule–Walker equations as described in
Sect. 11.2.

> X := ARMA([0.4, 0.2, -0.3], [0.9, 0.3, -0.2]):

> TSPlot(X, "YW");

Lag
121110

0.4

C
or
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n

1

0.8

0 1 2 3 4 5 6 7 8 9

0.6

0.2

0

−0.2

Example 11.14. Give a point estimate and 95% confidence interval
for a forecasted value of an AR(3) model with parameters φ1 = 0.5,
φ2 = 0.1, and φ3 = −0.3, five time periods into the future.
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In this example an AR(3) model is forecast five time periods into the
future as described in Sect. 11.2. The last three known values of the
model are [-5, -1, 4] , with -5 being the most recent. Such small
data sets may be used, for example, for the price of a stock shortly
after its launch or for space missions where there is limited data on
past missions. The fourth (optional) argument in TSForecast contains
the lower and upper percentiles on the confidence interval. The default
is a symmetric 90% confidence level. This example plots a symmetric
95% confidence interval.

> X := AR([0.5, 0.1, -0.3], NormalRV(0, 4)):

> TSForecast(X, 5, [-5, -1, 4], [.025, .975]);

Assuming error terms are normal for this forecast.

42

Y[t]

10

3

5

0

−5

−10

−15
1

t
8765

Expected value and confidence interval are:
[0.36950, 12.78829339,−12.04929337]

After the three known values are plotted, the next five expected values
and confidence interval bounds are plotted.

Example 11.15. Plot a realization of an ARMA(3, 3) model with pa-
rameters φ1 = 1/2, φ2 = 3/10, φ3 = 1/10, θ1 = 1/10, θ2 = 1/2, and
θ3 = 7/10.
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TSRealization will sample normally distributed error terms with the
Box–Muller transformation and then plot a realization for the given
model. If AR parameters are given, then the system warms up before
plotting. This example plots a realization of 75 values (the default is
50 values).

> X := ARMA([1 / 2, 3 / 10, 1 / 10], [1 / 10, 1 / 2, 7 / 10]):

> TSRealization(X, 75);

706050403020100

4

0

-4

-8

This realization shows the evolution of one instantiation of 75 values,
Y1, Y2, . . . , Y75 from this particular ARMA(3, 3) model.

Example 11.16. Execute the APPL ETSA (Exploratory Time Series
Analysis) procedure for an MA(3) model with parameters θ1 = 1/5,
θ2 = −7/5, and θ3 = 11/5.

The ETSA() procedure calls autocorrelation, partial autocorrelation,
unit roots analysis, spectral density function, and realization proce-
dures. This calculates various quantities associated with the MA(3)
model. It also produces plots that might be of interest to a modeler
in order to gain some intuition associated with the time series model.

> X := MA([1 / 5, -7 / 5, 11 / 5]):

> ETSA(X);

Time series model:
Yt = c+ εt +

1
5
εt−1 − 7

5
εt−2 +

11
5
εt−3
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Unit Roots Analysis:
The roots are:[

− 1
33
(8171+ 33

√
61305)(1/3) − 16

33(8171+33
√
61305)(1/3)

+ 7
33
, 1
66
(8171+

33
√
61305)(1/3) + 8

33(8171+33
√
61305)(1/3)

+ 7
33

− 1
2
I
√
3

(
− 1

33
(8171+ 33

√
61305)(1/3) +

16

33(8171+33
√
61305)(1/3)

)
, 1
66
(8171+ 33

√
61305)(1/3)
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+ 8

33(8171+33
√
61305)(1/3)

+ 7
33

− 1
2
I
√
3

(
− 1

33
(8171+ 33

√
61305)(1/3) +

16

33(8171+33
√
61305)(1/3)

)]

All roots are inside the unit circle.
Assuming error terms are i.i.d., then an invertible representation is:

Yt = c+εt− 7

11
εt−1+

1

11
εt−2+

(
1

1089

√
61305+

4096

35937(8171+ 33
√
61305)

+
8164

35937

)
εt−3
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Spectral Density Function:

f(ω) =
196
25

− 158
25

cos(ω)− 48
25

cos(2ω) + 22
5
cos(3ω)

π
0 < ω < π
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First Realization:
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Second Realization:
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Stochastic Simulation

This chapter considers applications from stochastic simulation. Section 12.1
considers tests of randomness. Section 12.2 investigates the use of computa-
tional probability in input modeling. Section 12.3 contains a development of
an algorithm to find the distribution of the Kolmogorov–Smirnov goodness-
of-fit test statistic in the all-parameters-known case.

12.1 Tests of Randomness

Since random numbers play a pivotal role in Monte Carlo simulation, discrete-
event simulation, and bootstrapping, having random number generators with
good statistical properties is essential. Some of the most common types of ran-
dom number generators are in the class of Lehmer generators. These genera-
tors are based on Lehmer’s algorithm [77] which defines an iterative equation
that can be used to produce a stream of random numbers. A Lehmer genera-
tor requires three input parameters: m, a, and z0. The modulus parameter m
is a fixed large prime integer. The multiplier parameter a is a fixed positive
integer less than m. The initial seed z0 can be any positive integer less than
m and can vary from experiment to experiment. Lehmer’s algorithm produces
integers in the range [1,m − 1] via the iterative equation zi+1 = azi mod m
for i = 0, 1, . . . . For proper choices of a and m (see Banks et al. [7], Fishman
[33], or Law [70]), the period length of the generator is m− 1. To convert the
zi’s into U(0, 1) pseudo-random variates, referred to here as simply “random
numbers,” each is divided by the modulus m, xi = zi/m, yielding a rational
number in the set { 1

m , 2
m , . . . , m−1

m }.
It is known that the numbers produced by a Lehmer generator are not

truly random, but with carefully chosen m and a it is possible to generate
output that will be “random enough” from a statistical point of view. Lehmer
generators are also considered “good” generators because their output can be

© Springer International Publishing AG 2017
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replicated, they’re portable, efficient, and thoroughly documented. However,
a disturbing amount of regularity inherent in the output of these generators
was discovered by Marsaglia [83]. He observed a lattice structure when con-
secutive random numbers were plotted as overlapping ordered n-tuples [i.e,
(x0, x1, . . . , xn−1), (x1, x2, . . . , xn), . . .]. We consider two types of testing for
random numbers in this section. The first is the more traditional Kolmogorov–
Smirnov goodness-of-fit test and the second is based on the distance between
consecutive random number pairs.

Kolmogorov–Smirnov Goodness-of-Fit Test. Consider the use of the
Kolmogorov–Smirnov test for assessing model adequacy (goodness of fit) for
a Lehmer generator. Assume that m = 231−1 = 2147483647, a = 75 = 16807,
and z0 = 987654321, which is a popular random number generator described
in Park and Miller [97]. The first five random numbers generated are

1605065384

2147483647

1791818921

2147483647

937423366

2147483647
1334477970

2147483647

252032522

2147483647
or, approximately

0.7474168 0.8343807 0.4365218

0.6214147 0.1173618.

Since these five data values are being evaluated for their uniformity, there
should be a reasonable match between their empirical CDF and the CDF
for a U(0, 1) random variable. If we let the Maple list Sample contain the five
random numbers generated above, then the APPL statements required to plot
these two functions over the interval (0, 1), shown in Fig. 12.1, are

> n := 5;

> a := 7 ^ 5;

> seed := 987654321;

> m := 2 ^ 31 - 1;

> Sample := [];

> for j from 1 to n do

> seed := a * seed mod m:

> Sample := [op(Sample), seed / m]:

> od;

> U := UniformRV(0, 1);

> PlotEmpVsFittedCDF(U, Sample, [], 0, 1);

The five parameters that are required by the APPL plotting procedure
PlotEmpVsFittedCDF are the random variable whose CDF is to be plotted,
the data values [held in a list], the parameters associated with the random
variable [empty in this case of U(0, 1) random variable], and the optional lower
and upper plotting limits.



12.1 Tests of Randomness 211

0

0.2

0.4

0.6

0.8

1

CDF

0.2 0.4 0.6 0.8 1
x

Fig. 12.1. The empirical CDF of Sample and the theoretical U(0, 1) CDF

Let F (x) be the hypothesized CDF and F5(x) be the empirical CDF. To
determine the Kolmogorov–Smirnov test statistic,

D5 = sup
x

|F (x)− F5(x)| ,

which measures the largest vertical distance between the two CDFs, requires
the following additional command:

> TestStat := KSTest(U, Sample, []);

The approximate value of the test statistic for the five random numbers is
0.2365, which occurs just to the left of the random number 0.4365.

Since large values of the test statistic indicate a poor fit, and the CDF
FD5

(x) of the test statistic under the null hypothesis is (see Sect. 12.3)

FD5
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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25 x+ 336
625

3
10 ≤ y < 2

5

−20x5 + 74x4 − 456
5 x3 + 224

5 x2 − 728
125 x

2
5 ≤ y < 1

2

12x5 − 6x4 − 56
5 x3 + 24

5 x2 + 522
125 x− 1 1

2 ≤ y < 3
5

−20 y6 + 32 y5 − 185
9 y3 + 175

36 y2 + 3371
648 y − 1 1

2 ≤ y < 3
5

−8x5 + 22x4 − 92
5 x3 + 12

25 x
2 + 738

125 x− 1 3
5 ≤ y < 4

5

2x5 − 10x4 + 20x3 − 20x2 + 10x− 1 4
5 ≤ y < 1

1 y ≥ 1,
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the p-value for this particular test can be found with the additional APPL
statement

> p := SF(KSRV(5), TestStat);

which yields p ∼= 0.8838.
If this process is repeated for a total of 1000 groups of nonoverlapping

consecutive sets of five random number pairs, the empirical CDF of the
Kolmogorov–Smirnov statistics should be close to the theoretical from APPL
if the random number generator is valid. Figure 12.2 is a plot of the em-
pirical CDF of the 1000 Kolmogorov–Smirnov statistics versus the theoretical
Kolmogorov–Smirnov CDF with n = 5. The empirical CDF lies slightly above
the theoretical. If this experiment were performed repeatedly, the empirical
CDFs should fluctuate around the theoretical CDF for a good random number
generator.
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Fig. 12.2. Empirical CDF of 1000 Kolmogorov–Smirnov test statistics and the
theoretical Kolmogorov–Smirnov CDF for n = 5

Distance Between Consecutive Random Number Pairs. While it is
true that the lattice structure discovered by Marsaglia [83] does not appear to
be random at all, it may be the case that there is still a degree of randomness
embedded within it. This randomness is not to be found in the structure of
the lattice, however, but in the order in which the points are generated. More
specifically, the empirical distribution of the distance between consecutive
random number pairs should be close to the theoretical distance between con-
secutive random number pairs for a good random number generator. Duggan
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et al. [24] have developed a test of randomness based on the distance between
consecutive random number pairs. We consider only the use of APPL to find
the distribution of the distance between two of these pairs here. The deriva-
tions and analysis are an extension of the work by L’Ecuyer et al. [65] who test
for excessive clustering or repulsion of random points in space, where points
Xi are non-overlapping k-dimensional vectors of successive output values of a
random number generator. They consider the Lp-distances between all pairs of
points generated Xi and Xj , whereas we only consider distances between con-
secutively generated points Xi and Xi+1, but treat both the overlapping and
non-overlapping cases. Knuth [63] discusses specific tests that have tradition-
ally been used to check the randomness of sequences, but all differ from our
method. An ideal random number generator will have a close match between
the empirical and theoretical distribution of the distance between consecutive
random number pairs.

A random number generator should produce a stream of numbers that ap-
pears to be random despite the fact that they are generated by a deterministic
function. Even though Marsaglia discovered that a plot of the n-tuples con-
structed from consecutive random numbers results in a lattice structure, the
order in which the points are generated will affect the generator’s statistical
properties. That is, we hope to observe that points generally are not gener-
ated in order along a hyperplane nor is there necessarily a regular pattern
of jumping between hyperplanes. With this in mind, we compare the distri-
bution of the distances between consecutive points (ordered pairs) and the
distribution of the distances between truly random points on the unit square.
The assumption being made is that generators that yield a distribution of
distances similar to the purely random points will be better random number
generators.

When considering the distance between consecutive pairs of random num-
bers, the first question that must be addressed is whether to consider overlap-
ping or non-overlapping ordered pairs. We choose the simpler case here, the
non-overlapping ordered pairs (xi, xi+1) and (xi+2, xi+3), because APPL can
be used to find the theoretical distance between the points in two-dimensional
space. When working with non-overlapping pairs, it must be noted that anal-
ysis is only performed on half of the possible ordered pairs at a time and then
merged together at the end. The two sets of ordered pairs that are examined
are

{(x0, x1), (x2, x3), (x4, x5), . . . , (xm−3, xm−2)}
and

{(x1, x2), (x3, x4), (x5, x6), . . . , (xm−2, xm−1)},
where the first set consists of all ordered pairs with the first coordinate having
an even index and the second set consists of all ordered pairs with the first
coordinate having an odd index. The distances are calculated between consec-
utive points in the same set and then combined to form a single distribution.

Under the assumption that the pairs contain non-overlapping coordi-
nates, the calculation of the theoretical distribution of the distances between
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consecutive pairs of randomly generated numbers is straightforward. If we as-
sume that X1, X2, X3, and X4 are iid U(0, 1) random variables, then we must
simply find the distribution of the distance between (X1, X2) and (X3, X4)
given by

D =
√
(X1 −X3)2 + (X2 −X4)2.

Since D represents a distance between two points, it is obvious that D > 0
(the inequality is strict because the Lehmer algorithm cannot generate two
identical pairs unless m = 3). Furthermore, since the longest distance possible
is across the diagonal of the unit square, D <

√
2 (the inequality is also strict

because the Lehmer algorithm cannot generate the numbers 0 or 1).
APPL provides an easy way to find the distribution of D which is a rather

cumbersome hand calculation. The APPL code below calculates the PDF
of D.

> U1 := UniformRV(0,1);

> U2 := UniformRV(0,1);

> V1 := Difference(U1, U2);

> g1 := [[x -> x ^ 2, x -> x ^ 2], [-infinity, 0, infinity]];

> V2 := Transform(V1, g1);

> V3 := Convolution(V2, V2);

> g2 := [[x -> sqrt(x)], [0, 2]];

> V4 := Transform(V3, g2);

The theoretical PDF of D is returned as

f(x) =

⎧⎨
⎩

2x(x2 − 4x+ π) 0 < x ≤ 1

−2x
(
2
√
x2−1+4−4x2+2

√
x2−1 arcsin

(
x2−2

x2

)
+x2

√
x2−1

)

√
x2−1

1 < x <
√
2,

which is a continuous function because limx↑1 f(x) = limx↓1 f(x) = 2(π − 3).
The graph in Fig. 12.3 is a plot of the PDF.

The corresponding CDF can be found with the additional CDF(V4); state-
ment, yielding

F (x) =

⎧

⎪⎨

⎪⎩

1
2
x4 − 8

3
x3 + πx2 0 < x ≤ 1√

x2−1

(
2−12x2 arcsin

(
x2−2

x2

)
−3x4−12x2

)
+24x2−24+16(x2−1)2

6
√

x2−1
1 < x <

√
2.

The distribution of D can then be used in the following fashion. Generate
many non-overlapping pairs of random numbers, then calculate and store the
distance between consecutive pairs. Perform a goodness-of-fit test to see if the
distances provide a reasonable fit to the data values. If so, then the random
number generator can be considered adequate. Details are given in Duggan et
al. [24]. Khoshkenara and Mahloojia [61] consider tests for randomness based
on the Manhattan distance between consecutive random numbers pairs.
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Fig. 12.3. The PDF of D

12.2 Input Modeling

Stochastic simulation models have stochastic elements that mimic the proba-
bilistic nature of the system under consideration. A close match between the
input model and the true underlying probabilistic mechanism associated with
the system is required for successful “input modeling.” The general question
considered by input modeling is how best to model an element (e.g., arrival
process, service times) in a discrete-event simulation given a data set collected
on the element of interest. Oftentimes this involves fitting standard univariate
parametric probability distributions to data sets. For brevity, it is assumed
that data is available on the aspect of the simulation of interest. It is also
assumed that raw data is available, as opposed to censored data, grouped
data, or summary statistics. This example-driven section examines some ap-
plications of APPL for input modeling. Most simulation texts (e.g., Law [70])
have a broader treatment of input modeling than presented here. Nelson and
Yamnitsky [91] survey advanced techniques.

Input modeling is typically performed using an input modeling package.
These packages fit several distributions to a data set, then determine the distri-
bution with the best fit by comparing goodness-of-fit statistics. But what if an
appropriate input model is not included in one of these packages? The modeler
must resort to deriving the appropriate estimators by hand for the appropri-
ate input model. The purpose of this section is to investigate the use of APPL
for input modeling. APPL allows an analyst to specify a standard or non-
standard distribution for an input model, and have the derivations performed
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automatically. Input modeling serves as an excellent arena for illustrating the
applicability and usefulness of APPL. Besides including pre-defined distribu-
tions for over 45 different types of continuous and discrete random variables
and over 30 procedures for manipulating random variables (e.g., Convolution,
Transform), APPL contains input modeling procedures for parameter estima-
tion, plotting empirical and fitted CDFs, and performing goodness-of-fit tests.
Using examples, we illustrate its utility for input modeling.

Both APPL and Maple can be adapted for use in input modeling. This
section gives several examples from Evans and Leemis [28] of cases where a
symbolic language is of use in analyzing a data set.

Example 12.1. One of the tools for selecting a suitable input model is
a plot of the coefficient of variation (γ = σ/μ) versus the skewness

γ3 = E

[(
X − μ

σ

)3]

for several popular input distributions. After constructing this plot,
the sample coefficient of variation and the sample skewness can be
plotted for a particular data set or data sets to determine an appropri-
ate distribution for modeling the data. The Maple code that produces
the plot in Fig. 12.4 for the Weibull, gamma, log normal, and log logis-
tic distributions uses the additional APPL procedures CoefOfVar and
Skewness. The statements necessary to plot the gamma distribution’s
coefficient of variation versus skewness are shown below. The plots for
the other distributions are calculated similarly. The Maple statement
used to display all four plots in one graphic is also provided.

> unassign(’kappa’);

> lambda := 1;

> X := GammaRV(lambda, kappa);

> c := CoefOfVar(X);

> s := Skewness(X);

> GammaPlot := plot([c, s, kappa = 0 .. 750],

labels = [gamma, gamma_3]):

.

.

.

> plots[display]({GammaPlot, WeibullPlot,

LogNormalPlot, LogLogisticPlot},

scaling = unconstrained);

The Maple unassign command is used to treat κ as a symbolic pa-
rameter. Vargo et al. [114] include an updated version of Fig. 12.4.
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Fig. 12.4. Coefficient of variation γ vs. skewness γ3 for the gamma, Weibull, log
normal, and log logistic distributions

Example 12.2. The following n = 23 ball bearing failure times (in
millions of revolutions) are collected to determine an input model in
a stochastic simulation:

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

The original source for this data set is Lieblein and Zelen [79]. First,
consider fitting an exponential distribution to this data set using max-
imum likelihood. The data set for the service times, BallBearing, is a
pre-defined list in APPL. The APPL MLE procedure returns the max-
imum likelihood estimators as a list. Its arguments are the model, the
data, and the parameters to be estimated. The APPL statements

> unassign(’lambda’);

> X := ExponentialRV(lambda);

> lamhat := MLE(X, BallBearing, [lambda]);

return λ̂ ∼= 0.0138 as the maximum likelihood estimator. The addi-
tional APPL command

> PlotEmpVsFittedCDF(X, BallBearing,

[lambda = lamhat[1]], 0, 180);

produces a plot of the empirical and fitted CDFs on one set of axes,
as seen in Fig. 12.5.
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Fig. 12.5. Empirical and fitted exponential CDFs for the ball bearing data set

In order to assess the model adequacy, either a formal goodness-of-fit
test can be performed, or goodness-of-fit statistics can be compared
for competing models. The Kolmogorov–Smirnov test statistic, for
example, can be computed with the additional APPL statement

> KSTest(X, BallBearing, [lambda = lamhat[1]]);

which returns 0.3068, indicating a rather poor fit.

As an alternative, one might consider fitting the reciprocal of an exponen-
tial random variable to the service times, as in the following example.

Example 12.3. Fit the reciprocal of an exponential random variable to
the service times in the previous example.

The APPL statements required to find the distribution of the recip-
rocal of an exponential random variable and find the MLE for the
unknown parameter are

> unassign(’lambda’);

> X := ExponentialRV(lambda);

> g := [[x -> 1 / x], [0, infinity]];

> Y := Transform(X, g);

> lamhat := MLE(Y, BallBearing, [lambda]);

which derive the PDF of Y to be

fY (y) =
λ

y2
e−λ/y y > 0
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and calculate the MLE λ̂ ∼= 55.06. The function g is used to find
the distribution of Y = g(X) = 1/X. As can be seen in Fig. 12.6,
the reciprocal of the exponential also provides a poor fit to the ball
bearing data.
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Fig. 12.6. Empirical and reciprocal exponential fitted CDFs for the ball bearing
data set

Neither the exponential model nor its reciprocal are appropriate for mod-
eling the service times. It might be appropriate to consider two-parameter
distributions as potential models, as shown in the next example.

Example 12.4. Fit the inverse Gaussian and Weibull distributions to
the data set. Again using the APPL procedures MLE and KSTest,

> unassign(’lambda’);

> X := InverseGaussianRV(lambda, mu);

> hat := MLE(X, BallBearing, [lambda, mu]);

> KSValue := KSTest(X, BallBearing,

[lambda = hat[1], mu = hat[2]]);

yields an improved fit with λ̂ ∼= 231.67, μ̂ ∼= 72.22, and a Kolmogorov–
Smirnov test statistic of 0.088. The MLE procedure is able to return
the appropriate values because the maximum likelihood estimators
can be expressed in closed form for this particular distribution. Un-
fortunately, the statements

> unassign(’lambda’); unassign(’kappa’);

> Y := WeibullRV(lambda, kappa);

> hat := MLE(Y, BallBearing, [lambda, kappa]);
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fail to return the MLEs in APPL. The Maple numerical equation
solving procedure fsolve is not clever enough to exploit some of the
structure in the score vector that is necessary to find the MLEs. There-
fore a special routine, MLEWeibull, has been written that computes
MLEs for the Weibull distribution.

To summarize the ball bearing data set examples, Table 12.1 contains the
Kolmogorov–Smirnov test statistic values for various distributions that were
fit to the data via maximum likelihood estimation.

Table 12.1. Kolmogorov–Smirnov test statistics for various distributions

Model Test statistic
Exponential 0.307

Reciprocal of exponential 0.306
Weibull 0.151
Gamma 0.123

Arctangent 0.093
Log normal 0.090

Inverse Gaussian 0.088

Another difficulty that can present itself in input modeling is the presence
of censoring. A right-censored data set, for example, often occurs in reliability
and biostatistical applications. Examples likely to arise in discrete-event input
modeling situations include machine failure times (when some machines have
not yet failed) and the analysis of rare events.

Example 12.5. Consider the problem of determining an input model
for the remission time for the treatment group in the study concerning
the drug 6-MP given by Gehan [35]. Letting an asterisk denote a right-
censored observation, the remission times (in weeks) are

6 6 6 6* 7 9* 10 10* 11* 13 16
17* 19* 20* 22 23 25* 32* 32* 34* 35*.

Both MP6 and MP6Censor are pre-defined lists in APPL. MP6 is simply
the 21 data values given above, and MP6Censor is the list

[1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]

where 0 represents a right-censored observation and 1 represents an
uncensored observation. The statements used to determine the MLE
for an exponential distribution are

> unassign(’lambda’);

> X := ExponentialRV(lambda);

> hat := MLE(X, MP6, [lambda], MP6Censor);
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The code yields the MLE for the failure rate as λ̂ = 9/359 remissions
per week. Similarly, the statements

> unassign(’lambda’); unassign(’kappa’);

> Y := WeibullRV(lambda, kappa);

> hat := MLEWeibull(MP6, MP6Censor);

yield the MLE estimates λ̂ ∼= 0.03 and κ̂ ∼= 1.35 for the Weibull distri-
bution. The Kaplan–Meier product-limit survivor function estimate
for the MP6 data set, along with the fitted Weibull survivor function
are plotted in Fig. 12.7 using the additional APPL statement

> PlotEmpVsFittedSF(Y, MP6,

[lambda = hat[1], kappa = hat[2]],

MP6Censor, 0, 23);

The downward steps in the estimated survivor function occur only
at observed remission times. The six arguments required by the
PlotEmpVsFitted procedure are the random variable whose SF is to
be plotted, the data values in a list, the parameters associated with
the random variable, the right-censoring vector in a list, and the lower
and upper plotting limits. Note that the product-limit estimator cuts
off after the largest observed remission time per the convention given
in Lawless [71].
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Fig. 12.7. Product-limit survivor function estimate and fitted Weibull survivor
function for the 6-MP treatment group
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All of the input modeling examples thus far have been limited to contin-
uous data. The next example fits the geometric distribution as a model for
daily demand at a vending machine.

Example 12.6. A vending machine has capacity for 24 cans of “Purple
Passion” grape drink. The machine is restocked to capacity every day
at noon. Restocking time is negligible. The last 5 days have produced
the following Purple Passion sales:

14 24 18 20 24.

The demand for Purple Passion at this particular vending machine
can be estimated from the data by treating the 24-can sales figures
as right-censored demand observations. If demand has the geometric
distribution, with probability function

f(t) = p(1− p)t t = 0, 1, 2, . . . ,

find the MLE p̂.

As discussed earlier, many procedures, like MLE, are able to handle
discrete distributions. Since the pre-defined geometric distribution in
APPL is parameterized for t = 1, 2, . . . , we need to define a geometric
random variable with the different parameterization (used above) in
the list-of-sublists data structure. The statements

> X := [[x -> p * (1 - p) ^ x],

[0 .. infinity],

["Discrete", "PDF"]];

> PurplePass := [14, 24, 18, 20, 24];

> PurplePassCensor := [1, 0, 1, 1, 0];

> MLE(X, PurplePass, [p], PurplePassCensor);

yield p̂ = 3/103. Model adequacy is not considered for this particular
example.

All previous examples have considered time-independent observations.
There are occasions when a series of event times may be time dependent,
and a more complicated input model may be appropriate.

Example 12.7. Ignoring preventive maintenance, ten odometer read-
ings (from a certain model of car) associated with failures appearing
over the first 100,000 miles, reading row-wise, are

12942 17256 23254 28489 45561
85603 88143 94078 98231 99900.

Consider fitting a nonhomogeneous Poisson process to the above data
set, where the ending time of the observation interval is assumed to
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be 100,000 miles. The data can be approximated by a power law
process (i.e., the intensity function has the same parametric form
as the hazard function for a Weibull random variable). The follow-
ing APPL statements, including the additional procedure MLENHPP,
return λ̂ ∼= 0.000058 and κ̂ ∼= 1.30.

> unassign(’lambda’); unassign(’kappa’);

> CarFailures := [12942, 17256, 23254, 28489, 45561,

85603, 88143, 94078, 98231, 99900];

> X := WeibullRV(lambda, kappa);

> hat := MLENHPP(X, CarFailures, [lambda, kappa]);

Every example considered thus far has used maximum likelihood to esti-
mate the unknown parameters. APPL includes the procedure MOM for com-
puting the method of moments estimators.

Example 12.8. Hurricanes typically strike the eastern and southern
coastal regions of the United States, although they occasionally sweep
inland before completely dissipating. The U.S. Weather Bureau re-
ported that during the period from 1900 to 1969 a total of 36 hurri-
canes moved as far as the Appalachian Mountains. The maximum 24
hour precipitation levels (measured in inches) recorded from those 36
storms during the time they were over the mountains are [69, pages
319–322]

31.00 2.82 3.98 4.02 9.50 4.50
11.40 10.71 6.31 4.95 5.64 5.51
13.40 9.72 6.47 10.16 4.21 11.60
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

A histogram of the data, which can be plotted in Maple, suggests that
the random variable X, which is the maximum 24 hour precipitation,
might be well approximated by the gamma distribution. The following
APPL code finds the method of moments estimates for the parameters
λ and κ, where Hurricane is the above data set pre-defined in APPL:

> X := GammaRV(lambda, kappa);

> hat := MOM(X, Hurricane, [lambda, kappa]);

The resulting estimates for the parameters are λ̂ = 954000
4252153

∼= 0.224
and κ̂ = 6952275

4252153
∼= 1.64.

12.3 Kolmogorov–Smirnov Goodness-of-Fit Test

In this final section, we present an algorithm for computing the CDF of the
Kolmogorov–Smirnov test statisticDn in the all-parameters-known case. Birn-
baum [12] gives an n-fold integral for the CDF of the test statistic which yields
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a function defined in a piecewise fashion, where each piece is a polynomial of
degree n. Unfortunately, it is difficult to determine the appropriate limits of
integration for computing these polynomials. Our algorithm performs the re-
quired integrations in a manner that avoids calculating the same integrals
repeatedly, resulting in shorter computation time. It can be used to compute
the entire CDF or just a portion of the CDF, which is more efficient for finding
a critical value or a p-value associated with a hypothesis test. To date, critical
tables have been approximated by various techniques including asymptotic ap-
proximations, recursive formulas, and Monte Carlo simulation. Our approach
yields exact critical values and significance levels. The algorithm has been
implemented in APPL.

The Kolmogorov–Smirnov (KS) test statistic Dn is defined by

Dn = sup
x

|F (x)− Fn(x)| ,

where n is the sample size, F (x) is a hypothesized CDF with fixed param-
eters, and Fn(x), also called the empirical distribution function, is a step-
function that increases by 1/n at each data value. This statistic has been
used for goodness-of-fit testing for continuous populations for decades. The
KS test’s appeal is its straightforward computation of the test statistic and
the distribution-free characteristic of Dn. Its drawback is that its CDF under
the null hypothesis is difficult to determine, leaving one to calculate critical
values with various approximation methods.

Birnbaum [12] gives the CDF of Dn − 1
2n as

Pr

(
Dn <

1

2n
+ v

)
= n!

∫ 1
2n+v

1
2n−v

∫ 3
2n+v

3
2n−v

. . .

∫ 2n−1
2n +v

2n−1
2n −v

g(u1, u2, . . . , un)

dun . . . du2 du1

for 0 ≤ v ≤ 2n−1
2n , where

g(u1, u2, . . . , un) = 1

for 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1, and is 0 otherwise. Equivalently,

Pr

(
Dn <

1

2n
+ v

)
= n!

∫ min(1, 1
2n+v)

max(0, 1
2n−v)

∫ min(1, 3
2n+v)

max(u1,
3
2n−v)

. . .

∫ min(1, 2n−1
2n +v)

max(un−1,
2n−1
2n −v)

1

dun . . . du2 du1.

Birnbaum’s rather harmless-looking integral is tedious to compute by hand,
even for small values of n, due to the complexity of the region where g is
nonzero. Evaluating his expression requires calculating many n-fold integrals
whose limits are determined by considering a carefully chosen partition of the
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support of Dn. The difficult part of the process is setting the appropriate
limits on these integrals. The final expression for the KS CDF is a piecewise
polynomial function in which each polynomial has degree n.

The literature available on the KS statistic is extensive. Stephens’ article
(Chap. 4 of D’Agostino and Stephens [19]) contains comprehensive coverage
on the use of the KS statistic, as well as other statistics based on the em-
pirical distribution function. He calculates the power of these goodness-of-fit
tests. Johnson et al. [55, page 460] consider this source to be so complete
that they have deleted KS discussions in their second edition and refer the
reader to that compendium instead. For computing critical points of the KS
distribution, we find five-digit accuracy as early as 1956 in Miller [87]. Miller
relies on asymptotic results that converge fairly quickly to produce these es-
timates. Birnbaum’s article [12] also explains how various sets of recursive
formulas can be used to calculate certain critical points to reasonable levels
of accuracy. Law [70, pages 351–356] has a well-written introduction to the
KS test and indicates that critical points can only be calculated via computer
techniques. There appears to be no source that produces exact distribution
functions for any distribution where n > 3 in the literature. Birnbaum [12,
page 144] gives the CDF of Dn − 1

2n for n = 2 and n = 3. Knuth [63] pro-
vides a functional form for the CDFs for the two statistics D+

n and D−
n , but

does not provide the CDF for Dn = max{D+
n , D

−
n }, a harder problem given

the dependence between the two random variables. As a consequence of the
apparent complexity of the required integration and lack of literature on ex-
act distributions, we believed early on that a computational algebra system,
such as Maple, would be necessary to compute the polynomials needed for the
distribution of the KS test statistic.

Computing the Distribution of Dn. When 0 < v < 1
2n , Birnbaum’s

integral is easy to compute because none of the intervals of integration overlap.
Additionally, these intervals are all wholly contained within the interval from
0 to 1. For example, u1 varies over the interval from 1

2n − v to 1
2n + v, and u2

varies over the interval from 3
2n −v to 3

2n +v. The interval for u1 begins to the
right of 0 and ends before the interval for u2 begins. Thus, when 0 < v < 1

2n ,
the limits of integration of Birnbaum’s integral guarantee that 0 ≤ u1 ≤ u2 ≤
· · · ≤ un ≤ 1. Because the ui’s are constrained in this way, we may replace
Birnbaum’s integrand g(u1, u2, . . . , un) with 1, and our computation of the
KS CDF requires only a single n-fold integral:

Pr

(
Dn <

1

2n
+ v

)
= n!

∫ 1
2n+v

1
2n−v

∫ 3
2n+v

3
2n−v

. . .

∫ 2n−1
2n +v

2n−1
2n −v

1 dun . . . du2 du1

= n!(2v)n 0 < v <
1

2n
.

When v has a fixed value greater than 1
2n , it is also desirable to replace

Birnbaum’s integrand by 1. In order to permit this replacement, we must
only allow integration over that region of n-dimensional space for which
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0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1. Since the intervals of integration specified in
Birnbaum’s integral for different ui’s can overlap, the smallest allowable value
for any ui is influenced by all uj ’s with subscripts less than i that can take
on values in ui’s interval of integration. This overlapping requires partitioning
the interval from 1

2n−v to 2n−1
2n +v into subintervals (which we will henceforth

refer to as u-subintervals), with the first u-subinterval starting at 1
2n −v and a

new u-subinterval beginning whenever the left endpoint of one of Birnbaum’s
intervals of integration is encountered. When any ui lies in a u-subinterval
that consists entirely of negative values, Birnbaum’s integrand is zero. For
this reason, only u-subintervals having a positive right endpoint contribute to
the KS CDF.

Of course, the number of u-subintervals having a positive right endpoint
depends on the value of v. For small values of v (i.e., 0 < v < 1

2n ), n + 1
u-subintervals have a positive right endpoint since all n of Birnbaum’s lower
limits of integration are positive. For large values of v (i.e., 2n−3

2n < v < 2n−1
2n ),

only two u-subintervals have a positive right endpoint since only un’s lower
limit of integration is positive. Intermediate values of v produce all possibilities
from 2 to n+ 1 u-subintervals having a positive right endpoint.

Because different values of v can yield different numbers of u-subintervals
having a positive right endpoint, the interval 0 < v < 2n−1

2n must be subdivided
at the following values of v: 1

2n ,
3
2n ,

5
2n , . . . ,

2n−3
2n . When the values of v remain

within one of the resulting subintervals for v, the number of u-subintervals
having a positive right endpoint will remain fixed.

Another complication arises because it is necessary to know, for a fixed
value of v and for the u-subintervals produced by this value, which variables
of integration ui can take on values in each of the u-subintervals of [0, 1]. The
previous subdivision of the values of v is not fine enough to allow unambiguous
specification of the range for each ui. When i < j, ui and uj have overlapping
intervals of integration if the upper integration limit for ui exceeds the lower
integration limit for uj , i.e.,

2i−1
2n + v ≥ 2j−1

2n − v. As a result, as v increases
from 0 to 2n−1

2n , new overlaps take place when v equals 1
2n ,

2
2n ,

3
2n , . . . ,

n−1
2n .

The interval 0 < v < 2n−1
2n must be divided into subintervals at these values

of v as well as at the values of v listed previously. We will henceforth refer to
the resulting subintervals as v-subintervals.

Indicator matrices will be used to summarize the interrelationships be-
tween the possible values for the variables of integration u1, u2, . . . , un. For a
fixed n and for values of v in the kth v-subinterval of

(
0, 2n−1

2n

)
, the indicator

matrix Ak will show, by the presence of a 1 or a 0 in row i and column j,
whether or not ui can take on values in the jth u-subinterval. Finally, by defin-
ing paths through these indicator matrices, we will produce a complete set of
n-fold integrals which satisfy the requirement 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1,
and which produce the KS CDF when summed.

The algorithm for computing the CDF of Dn is divided into four phases.
In Phase 1, an appropriate partition of the support of Dn− 1

2n is determined.
In Phase 2, we define matrices Ak that are instrumental in determining the
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limits of integration in the n-fold integrals. In Phase 3, these integrals and their
associated limits are computed. To take advantage of the similarities in the
limits of integration of these n-fold integrals, they are grouped for efficiency
and all evaluated to the same level of integration before proceeding to the
next level. Finally, Phase 4 consists of translating the support of Dn − 1

2n to
the support of Dn. Thus, the input to the algorithm is a positive integer n
and the output is the piecewise CDF of Dn.

Phase 1: Partition the Support of Dn − 1
2n . The endpoints of the seg-

ments that define the support of the KS test statistic can be determined from
the limits of integration given by Birnbaum. Using Birnbaum’s formula, the
baseline lower and upper limits of integration associated with v = 0 are{

1

2n
,
3

2n
,
5

2n
, . . . ,

2n− 1

2n

}
.

As v increases, the support of Dn − 1
2n is broken into disjoint v-subintervals.

The endpoints of these support v-subintervals consist of v = 0 and the values
of v for which the endpoints of the n intervals of integration either:

• equal 0 or 1, or
• coincide.

The 0 or 1 cases occur at v values in the set{
1

2n
,
3

2n
,
5

2n
, . . . ,

2n− 1

2n

}
.

The set of values of v for which the endpoints of different intervals of integra-
tion coincide are {

1

2n
,
2

2n
,
3

2n
, . . . ,

n− 1

2n

}
.

Thus, the union of these two sets and 0 comprise the endpoints of the v-
subintervals of the support of Dn − 1

2n .
The first phase of the algorithm given at the end of this section com-

putes the above endpoints v0 = 0, v1, v2, . . . , vm, where m is the number of
v-subintervals on which the CDF of Dn − 1

2n is defined. For any n,

m =
⌈3n
2

⌉
− 1.

Phase 2: Define the A Matrices. At this point in the algorithm, v0, v1, . . . ,
vm are the endpoints of the m v-subintervals on which the CDF of Dn − 1

2n
is defined.

Two book-keeping steps are needed in this phase of the algorithm. They
are:

1. Define c1, c2, . . . , cm as the midpoints of the v-subintervals of support for
Dn − 1

2n .
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2. Define x1, x2, . . . , xn as the midpoints of the intervals of integration for
u1, u2, . . . , un in Birnbaum’s n-fold integral. Thus

xi =
2i− 1

2n
i = 1, 2, . . . , n.

Part of the algorithm involves defining the n × n indicator matrices
A1, A2, . . . , Am corresponding to the v-subintervals which form the support
of Dn − 1

2n . The rows of an A matrix refer to the variables of integration
u1, u2, . . . , un. The columns of an A matrix refer to the u-subintervals, with
the jth column corresponding to the interval from xj − v to xj+1 − v, except
for the nth column, which corresponds to the interval from xn − v to xn + v.
If the (i, j) element of an A matrix equals 1, then the range of ui includes at
least part of the jth u-subinterval.

Since the (n, n) element of each A matrix is the only element in the nth
row that is 1, the integrals that need to be computed for each segment of
support of Dn − 1

2n can be visualized as a path in A, consisting of a sequence
of moves from the (n, n) position of A to a nonzero element in the first row of
A. All moves in the A matrix from row i to row i− 1 (for i = n, n− 1, . . . , 2)
require that the following conditions are met:

1. The move must be from one of the 1’s in row i to one of the 1’s in row
i− 1.

2. The move is either directly vertical or vertical and one or more spaces to
the left.

That is, if the move begins at a 1 element in column j of row i, it must end
at a 1 element in column 1 through j of row i− 1.

Example 12.9. For n = 3 and k = 3, the CDF is defined on the v-
subinterval 2

6 < v < 3
6 and has the following A3 matrix:

A3 =

⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦ .

There are five different paths from the (3, 3) element to the top row
of the matrix. In the five matrices below, these five paths to the top
row of the A matrix are displayed by using boldface type on the path.
Next to each matrix is the corresponding triple integral that the path
represents.⎡

⎣1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 3

6−v

0

∫ 5
6−v

3
6−v

∫ 1

5
6−v

1 du3 du2 du1

⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 5

6−v

3
6−v

∫ 5
6−v

u1

∫ 1

5
6−v

1 du3 du2 du1
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⎡
⎣1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 3

6−v

0

∫ 3
6+v

5
6−v

∫ 1

u2

1 du3 du2 du1

⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 5

6−v

3
6−v

∫ 3
6+v

5
6−v

∫ 1

u2

1 du3 du2 du1

⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦ ∫ 1

6+v

5
6−v

∫ 3
6+v

u1

∫ 1

u2

1 du3 du2 du1

When these five integrals are summed, Birnbaum’s expression re-
duces to

Pr

(
D3 <

1

6
+ v

)
= −4v3 +

11

3
v − 11

27

2

6
< v <

3

6
.

Note that the innermost integral∫ 1

u2

1 du3

on the third, fourth, and fifth triple integrals are identical. The num-
ber of identical integrals of this type grows rapidly as n increases.
The algorithm we have developed avoids recalculation of duplicate in-
tegrals. Continuing in this fashion for the other A matrices (i.e., A1,
A2, and A4), yields the CDF

Pr

(
D3 <

1

6
+ v

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

48v3 0 < v < 1
6

−12v3 + 8v2 + v − 1
9

1
6 < v < 2

6

−4v3 + 11
3 v − 11

27
2
6 < v < 3

6

2v3 − 5v2 + 25
6 v − 17

108
3
6 < v < 5

6 .

Note that Birnbaum [12] contains a sign error in the fourth v-subinterval
of support.

Table 12.2 shows how rapidly the number of n-fold integrations required to
compute the CDF ofDn− 1

2n grows with n. Note that the five triple integrals in
the previous example corresponds to n = 3 and the third v-subinterval (k = 3),
shown in boldface in the table. Note that the fifth column in Table 12.2 is the
product of the first and fourth columns.

Example 12.10. The method for determining the integers in the third
column of the Table 12.2 is somewhat analogous to determining the
entries in a row of Pascal’s triangle by using the entries of the previous
row. Beginning at each nonzero A matrix element in rows 2 through
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Table 12.2. Computational requirements for computing the Dn CDF for small n

Number of n-fold Total number Total number
n m integrals required for of n-fold integrals of single integrals

each v-subinterval required required
1 1 1 1 1
2 2 1, 2 3 6
3 4 1, 4, 5, 3 13 39
4 5 1, 8, 13, 9, 4 35 140
5 7 1, 16, 34, 27, 28, 14, 5 125 625
6 8 1, 32, 89, 81, 89, 48, 20, 6 366 2196

n, there are a certain number of paths whose moves to the top row
of the matrix satisfy the two conditions stated previously. We will
assign such elements a number p (for paths) that denotes the number
of paths from that element to the top of the matrix. Thus, if p2,2 = 2
(as is the case for the (2, 2) element of the A3 matrix for n = 3 and
k = 3 in Example 12.9), then no matter how we reached this element
of the A matrix, there are only two possible paths remaining to the
top. The pi,j values are assigned as follows. Only A matrix elements
with value 1 are assigned a pi,j value. If the jth entry in the first row
of A is nonzero, assign p1,j = 1. For the second and subsequent rows

(i = 2, 3, . . . , n), pi,j =
∑j

q=1 pi−1,q. Upon completion, pn,n represents
the total number of paths from the lower right corner of the matrix
to the top row of the matrix. Consider, for example, the case of n = 5
and k = 4. The A4 matrix with superscripts denoting the pi,j values is

A4 =

⎡
⎢⎢⎢⎢⎣
0 11 11 11 0
0 11 12 13 13

0 0 13 16 19

0 0 0 19 118

0 0 0 0 127

⎤
⎥⎥⎥⎥⎦ .

Here we see that p5,5 = 27, meaning there are 27 possible paths to
the top row of A4, consistent with the n = 5 and k = 4 element in
Table 12.2.

Phase 3: Set Limits on the Appropriate Integrals. The indicator matrix
A shows, by the presence of a 1 in row i and column j, for j < n, that ui

can assume values from the maximum of xj − v and 0 to the minimum of
xj+1 − v and xi + v. The presence of a 1 in row i and column n, means that
ui assumes values from xn − v to the minimum of xi + v and 1. Each path
in A represents a set of allowable intervals of integration for the variables
u1 to un in a particular n-fold integral. For a particular path, the limits of
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integration for each ui are those given above that correspond to entry ai,j of
A in row i that lies on the path, with one exception: if both ai,j and ai−1,j

are on the same path, the lower limit of integration for ui must be ui−1. This
exception occurs because the path allows ui and ui−1 to assume values in the
same u-subinterval. In such a case, the lower limit of integration for ui must
be ui−1 in order to reflect the requirement ui−1 ≤ ui.

For each path through the matrix A, and for each nonzero entry ai,j on
that path, a single integration with respect to ui must be performed. If ai−1,j

is on the same path as ai,j , then the lower limit of integration will be the
variable ui−1. If ai−1,j is not on the same path as ai,j , then the lower limit of
integration will be a fixed number: the maximum of xj − v and 0. Thus, for
each path which passes through ai,j , either a variable or fixed lower limit of
integration might be appropriate.

Example 12.11. Consider again the case of n = 5 and the fourth v-
subinterval (k = 4). The A4 matrix shown below has its 1’s replaced
with F , V, or B, indicating whether a fixed-limit integral, a variable-
limit integral, or both need to be computed for each entry.

A4 =

⎡
⎢⎢⎢⎢⎣
0 F F F 0
0 V B B F
0 0 B B B
0 0 0 B B
0 0 0 0 B

⎤
⎥⎥⎥⎥⎦ .

In general, when theAmatrix contains a zero, neither the fixed nor variable
lower limits need to be computed. Now consider the elements of the A matrix
that contain a 1. The positions associated with the first 1 in each column of
A require only a fixed lower limit to be calculated. The positions below the
first 1 in the first nonzero column require only a variable lower limit to be
calculated. All other positions in the A matrix associated with 1 elements
require both a fixed and a variable lower limit to be calculated. Table 12.3
shows the computational efficiency of performing the integrations for various
values of n by using the algorithm.

The number of single integrals calculated by the algorithm for any n is no
more than

n(n+ 1)

2
· 2 ·
(⌈3n

2

⌉
− 2

)
∼= 3

2
n3,

where the first factor corresponds to the maximum number of 1’s in any A
matrix, the second factor accounts for computing both the fixed and variable
matrices (described subsequently), and the last factor is one less than m since
no integration is required for the first v-subinterval. Due to savings associated
with 0 elements in the A matrix and the fact that both fixed and variable ma-
trix elements do not need to be calculated in all cases, this order n3 expression
is closely approximated by 0.80n3 for n = 20, 30, and 50.
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Table 12.3. Computational efficiency associated with using the F and V arrays

Total number Total number
n m of single integrals of single integrals

required (Table 12.2) required (algorithm)
1 1 1 0
2 2 6 4
3 4 39 23
4 5 140 48
5 7 625 108
6 8 2196 170
10 14 442540 800
15 22 318612735 2793
20 29 232093052440 6400
30 44 136617382366486800 21550
50 74 61056379955994182386843138150 99500

Table 12.4 lists the coefficients of the polynomials that define the CDF of
Dn − 1

2n as computed by the APPL procedure KSRV whose algorithm is given
at the end of this section, for n = 1, 2, . . . , 6. The ability to store fractions
exactly is of particular benefit for these calculations.

Rather than detail every aspect of the logic of Phase 3 of the algorithm,
we illustrate the evolution of the n × n matrices F (for fixed limits) and V
(for variable limits) in a row-by-row fashion for a particular combination of n
and k.

Example 12.12. Consider again the case of n = 3 and k = 3, which
corresponds to the v-subinterval 2

6 < v < 3
6 . The xi values associated

with n = 3 are

x1 =
1

6
x2 =

3

6
x3 =

5

6
.

The vi values associated with n = 3 are v0 = 0,

v1 =
1

6
v2 =

2

6
v3 =

3

6
v4 =

5

6
.

The centers of the v-subintervals are

c1 =
1

12
c2 =

3

12
c3 =

5

12
c4 =

8

12
.

The A3 matrix is

A3 =

⎡
⎣ 1 1 1
0 1 1
0 0 1

⎤
⎦ .
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Table 12.4. CDFs of Dn − 1
2n

for n = 1, 2, . . . , 6

n m k Coefficients of CDF polynomials Subinterval

1 1 1 2, 0 0 < v < 1
2

2 2 1 8, 0, 0 0 < v < 1
4

2 −2, 3,− 1
8

1
4 < v < 3

4

3 4 1 48, 0, 0, 0 0 < v < 1
6

2 −12, 8, 1,− 1
9

1
6 < v < 2

6

3 −4, 0, 11
3 ,− 11

27
2
6 < v < 3

6

4 2,−5, 25
6 ,− 17

108
3
6 < v < 5

6

4 5 1 384, 0, 0, 0, 0 0 < v < 1
8

2 −48, 0, 15,− 9
8 ,

3
256

1
8 < v < 2

8

3 16,−40, 21,− 5
8 ,− 29

256
2
8 < v < 3

8

4 6,−7,− 27
16 ,

293
64 ,− 853

2048
3
8 < v < 5

8

5 −2, 7,− 147
16 , 343

64 ,− 353
2048

5
8 < v < 7

8

5 7 1 3840, 0, 0, 0, 0, 0 0 < v < 1
10

2 0,−288, 624
5 ,− 96

25 ,− 36
125 ,

6
625

1
10 < v < 2

10

3 160,−160, 24
5 , 616

25 ,− 332
125 ,

6
125

2
10 < v < 3

10

4 −20, 64,− 318
5 , 542

25 , 343
500 ,− 273

1250
3
10 < v < 4

10

5 12, 0,− 62
5 , 6

5 ,
2391
500 ,− 3413

6250
4
10 < v < 5

10

6 −8, 18,− 52
5 ,− 19

5 , 1838
250 ,− 10527

25000
5
10 < v < 7

10

7 2,−9, 81
5 ,− 729

50 , 6561
1000 ,− 9049

50000
7
10 < v < 9

10

6 8 1 46080, 0, 0, 0, 0, 0, 0 0 < v < 1
12

2 2880,−3360, 660, 60,− 95
12 ,

5
24 ,− 5

5184
1
12 < v < 2

12

3 320, 480,−700, 5620
27 ,− 125

36 ,− 275
216 ,

2195
46656

2
12 < v < 3

12

4 −280, 420,− 335
2 ,− 1675

54 , 26005
864 ,− 3125

1728 ,− 20645
373248

3
12 < v < 4

12

5 104,−188, 1235
6 ,− 7435

54 , 36245
864 ,− 7327

5184 ,− 69797
373248

4
12 < v < 5

12

6 −20, 22, 45
4 ,− 2005

108 ,− 185
1728 ,

57971
10368 ,− 406469

746496
5
12 < v < 7

12

7 10,−33, 925
24 ,− 3065

216 ,− 22175
3456 , 134807

20736 ,− 632863
1492992

7
12 < v < 9

12

8 −2, 11,− 605
24 , 6655

216 ,− 73205
3456 , 161051

20736 ,− 278569
1492992

9
12 < v < 11

12

The F and V matrices are computed simultaneously, row by row,
starting with the last row and ending with the first. Thus, all of the
elements of the third row of F and of V are computed before com-
puting the elements of the second row is begun. In general, integrals
that are calculated in a particular row become integrand candidates
for the integration to be carried out in the row immediately above.
The F and V matrices are designed to store the intermediate results
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of integration of the n-fold integrals so that the necessary inner inte-
gration operations are performed only once. Entries in the ith rows of
F and V each result from n+1− i single integrations, one integration
corresponding to the ith row and one integration for every lower row.
The F matrix stores the results of all integration in which the last
integral had a fixed lower limit and the V matrix stores the results of
all integration in which the last integral had a variable lower limit. In
this example, for the inner-most integration variable u3, there is only
one possible fixed integration to compute and one possible variable in-
tegration to compute on the third u-subinterval. These computations
are seen in the (3, 3) element of the respective matrices:

F =

⎡
⎢⎣
F1,1 F1,2 F1,3

0 F2,2 F2,3

0 0
∫ 1

5
6−v

1du3

⎤
⎥⎦ , V =

⎡
⎣V1,1 V1,2 V1,3

0 V2,2 V2,3

0 0
∫ 1
u2

1du3

⎤
⎦ .

The second variable, u2, has four possible combinations of limits and
integrands. Thus, there are four storage elements for u2, found in the
second rows of the F and V matrices. Elements (2, 2) and (2, 3) of
the F matrix store integration results that have all fixed lower-limits
of integration, but the integrands are fixed and variable, respectively.
Similarly, elements (2, 2) and (2, 3) of the V matrix are for the cases
when the lower-limit of integration contains the u1 variable, while the
integrands are fixed and variable, respectively. F2,2 is computed to
cover the case in which u2 varies over the second u-subinterval and u3

varies over the third u-subinterval. F2,3 covers the case in which both
u2 and u3 vary over the third u-subinterval, so u3 must have u2 as its
variable lower limit; hence the integrand is V3,3, not F3,3. Similar cases
are covered by V2,2 and V2,3, except that variable lower limits are used
in anticipation of the fact that u1 and u2 can both vary over the same
u-subinterval, making it necessary to have u1 as the (variable) lower
limit for u2. The integrations in the second row of each matrix are
shown below (note, the integration for the (3, 3) element, previously
discussed, has been carried out):

F =

⎡
⎢⎣
F1,1 F1,2 F1,3

0
∫ 5

6−v
1
2−v

F3,3 du2

∫ 1
2+v
5
6−v

V3,3 du2

0 0 1
6 + v

⎤
⎥⎦ ,

V =

⎡
⎢⎣
V1,1 V1,2 V1,3

0
∫ 5

6−v

u1
F3,3 du2

∫ 1
2+v

u1
V3,3 du2

0 0 1− u2

⎤
⎥⎦ .

For the third and last variable, u1, only fixed-limit integration takes
place so only the F matrix gets updated. The (1, 1) element covers the
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case in which u1 varies over the first u-subinterval and u2 varies over
the second and third u-subinterval. The (1, 2) element covers the case
in which u1 varies over the second u-subinterval and u2 varies over
the second and third u-subinterval. The (1, 3) element allows both u1

and u2 to vary over the third u-subinterval. The integrals in this first
row are shown below (note again, all previously discussed integration
has been carried out in the second and third rows of F and V ):

F =

⎡
⎢⎢⎢⎣
∫ 1

2−v

0
(F2,2 + F2,3) du1

∫ 5
6−v
1
2−v

(V2,2 + F2,3) du1

∫ 1
6+v
5
6−v

V2,3 du1

0 1
3v +

1
18 − 1

9 + 2
3v

0 0 1
6 + v

⎤
⎥⎥⎥⎦ ,

V =

⎡
⎣V1,1 V1,2 V1,3

0 −v2 + 2
3v +

5
36 − vu1 − 1

6u1
1
2v

2 + 1
2v +

3
8 + 1

2u
2
1 − u1

0 0 1− u2

⎤
⎦ .

The completely evaluated F matrix is given by

F =

⎡
⎣−v2 + 5

9v − 1
36 − 1

36 + 5
18v − 2

3v
3 + v2 − 2

9v − 1
81

0 − 1
3v +

1
18 − 1

9 + 2
3v

0 0 1
6 + v

⎤
⎦ .

Finally, the CDF on the third v-subinterval is the sum of the elements
in the first row of the F matrix, all multiplied by 3! = 6.

Phase 4: Shift the Distribution. At this point, the CDF is computed in
the form Pr(Dn < v + 1

2n ). Now we convert the distribution into the more
usable form Pr(Dn < y) = FDn

(y) by making the substitution y = v + 1
2n in

both the polynomials and the v-subintervals of the CDF. Specifically, we add
1
2n to each endpoint of the v-subintervals and we substitute (y − 1

2n ) for v in
the CDF polynomials. We then take these two lists of numbers and polyno-
mials respectively, simplify them (using Maple’s simplify() command), and
create the CDF representation in the usual list-of-sublists representation for
distributions. Specifically, we can now verify critical values for the distribu-
tion, but more importantly, we can calculate exact significance levels of any
given statistic. An example of the shifted distribution for n = 6 is

F (y) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 y < 1
12

46080 y6 − 23040 y5 + 4800 y4 − 1600
3

y3 + 100
3

y2 − 10
9

y + 5
324

1
12

≤ y < 1
6

2880 y6 − 4800 y5 + 2360 y4 − 1280
3

y3 + 235
9

y2 + 10
27

y − 5
81

1
6
≤ y < 1

4

320 y6 + 320 y5 − 2600
3

y4 + 4240
9

y3 − 785
9

y2 + 145
27

y − 35
1296

1
4
≤ y < 1

3

−280 y6 + 560 y5 − 1115
3

y4 + 515
9

y3 + 1525
54

y2 − 565
81

y + 5
16

1
3
≤ y < 5

12

104 y6 − 240 y5 + 295 y4 − 1985
9

y3 + 775
9

y2 − 7645
648

y + 5
16

5
12

≤ y < 1
2

−20 y6 + 32 y5 − 185
9

y3 + 175
36

y2 + 3371
648

y − 1 1
2
≤ y < 2

3

10 y6 − 38 y5 + 160
3

y4 − 265
9

y3 − 115
108

y2 + 4651
648

y − 1 2
3
≤ y < 5

6

−2 y6 + 12 y5 − 30 y4 + 40 y3 − 30 y2 + 12 y − 1 5
6
≤ y < 1

1 y ≥ 1.
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The CDF and PDF of D6 are shown in Figs. 12.8 and 12.9. The APPL com-
mands used to produce these plots are

> Y := KSRV(6);

> PlotDist(CDF(Y));

> PlotDist(PDF(Y));

0.4

x

0.2

0.2
0

10.80.6

1

0.4

0.6

CDF
0.8

Fig. 12.8. The CDF of the D6 random variable

We have noted that there is a discontinuity in the PDF at y = 1
6 , and more

generally, at y = 1
n . This corresponds to the value v = 1

2n in Birnbaum’s
original integral. This is the smallest value of v for which the n-dimensional
hypercube centered at

(
1
2n ,

3
2n , . . . ,

2n−1
2n

)
makes contact with the boundary

of the region in n-space that satisfies 0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ 1.
Critical values associated with the distribution of Dn are determined with

the APPL IDF procedure. Arbitrary accuracy can be achieved by using the
Maple Digits command to define the precision. We have verified critical val-
ues by comparing them with those given in Owen [95] for α = 0.1, 0.05, and
0.01 and for n = 1, 2, . . . , 10 and those values match ours exactly, except that
ours are not limited to five decimal places.

In summary, we have developed and implemented an algorithm for com-
puting the CDF of the KS test statistic in the all-parameters-known case for
a positive integer parameter n. Computing the CDF provides a challenging
calculus problem, even for small values of n. The CDF can be constructed
from a set of piecewise degree-n polynomials. The algorithm can be used to
plot the entire CDF or to just find particular fractiles or probabilities associ-
ated with the distribution. Further details are given in Drew et al. [23]. An
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PDF
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4
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0

0.60.4

Fig. 12.9. The PDF of the D6 random variable. Note the discontinuity at y = 1/6

extension to the parameters-estimated-from-data case for sampling from an
exponential population and a small sample size is given in Evans et al. [31].
We conclude this section by presenting the algorithm for KSRV, which returns
the CDF of the KS test statistic Dn in the all-parameters-known case.

Procedure KSRV: Compute the CDF of the Kolmogorov–Smirnov test statistic.

Input: A positive integer n, the sample size associated with the KS test statis-
tic when all parameters are known.

Output: The CDF of the KS test statistic when all parameters are known is
returned. The random variable will be in the usual list-of-sublists format.

Algorithm:

Phase 1: Determine the endpoints of the segments that define the support
of the KS test statistic.

Dimension v
[
0..
⌈
3n
2

⌉
− 1
]
v holds the partition values for the support of Dn

m ← 0
vm ← 0
g ← 1

2n g is the gap between adjacent integration limits when v = 0
For i ← 1 to n− 1

m ← m+ 1
vm ← i · g
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For j ← 2 · �n
2 �+ 1 to 2n− 1 by 2 lower limit is n or n+ 1, whichever is odd

m ← m+ 1
vm ← j · g

Phase 2: This phase of the algorithm has three parts to it.

1. Define c1, c2, . . . , cm as the midpoints of the support intervals
2. Define x1, x2, . . . , xn as the limits of integration when v = 0
3. Define the n× n indicator matrices A1, A2, . . . , Am.

Dimension c[m] define vector c of midpoints of the support subintervals
For k ← 1 to m

ck ← (vk−1 + vk)/2

Dimension x[n] define vector x of centers of integration limits
For i ← 1 to n

xi ← (2i− 1) · g

Dimension A[n, n]

For i ← 2 to n
For j ← 1 to i− 1

Aij ← 0 zero out lower triangle of A

For k ← 1 to m loop through all subintervals of support
For i ← 1 to n

For j ← i to n
Aij ← 0 zero out upper triangle of A

z ← max{�nck − 1
2�, 0} z ≡ number of leading zero columns in A

l ← min {�2nck�, n} l ≡ number of u-subint. intersecting
(

1
2n

− v, 1
2n

+ v
)

For i ← 1 to n
For j ← max{i, z + 1} to min{n, i+ l − 1}

Aij ← 1 place 1’s in A

Phase 3: Compute the fixed and variable limit matrices F and V and com-
bine to give the piecewise polynomial CDF.

Dimension P [m] nth order polynomials for CDF segments param. by v
Dimension F [n, n] array of fixed integrals parameterized by v
Dimension V [n, n] array of variable integrals parameterized by v
Real S(v) a function of v, used as a running sum S(v) is the sum of

all F elements one row down, starting one element to the right

P1(v) ← n!(2v)n
[
P1(v) ← n!

∫ x1+v

x1−v

∫ x2+v

x2−v
. . .
∫ xn+v

xn−v
1 dun . . . du2 du1

]
For k ← 2 to m loop through all subintervals of support

z ← max{�nck − 1
2�, 0}
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l ← min {�2nck�, n}
Fn,n(v) ←

∫ 1
xn−v

1 dun

Vn,n(v) ←
∫ 1
un−1

1 dun

For i ← n− 1 to 2 by −1
If i+ l > n then

S(v) ← 0
else

S(v) ← Fi+1,i+l(v)
If i+ l > n+ 1 then

Fi,n(v) ←
∫ 
xi+ck�+(xi+v)(1−
xi+ck�)
xn−v

Vi+1,n(v) dui

Vi,n(v) ←
∫ 
xi+ck�+(xi+v)(1−
xi+ck�)
ui−1

Vi+1,n(v) dui

If i+ l = n+ 1 then
Fi,n(v) ←

∫ xi+v

xn−v
Vi+1,n(v) dui

If i+ l < n+ 1 then
Fi,i+l−1(v) ←

∫ xi+v

xi+l−1−v
{Vi+1,i+l−1(v) + S(v)} dui

S(v) ← S(v) + Fi+1,min{i+l−1,n}(v)
For j ← min{n− 1, i+ l − 2} to max{i+ 1, z + 2} by −1

Fi,j(v) ←
∫ xj+1−v

xj−v
{Vi+1,j(v) + S(v)} dui

Vi,j(v) ←
∫ xj+1−v

ui−1
{Vi+1,j(v) + S(v)} dui

S(v) ← S(v) + Fi+1,j(v)
If z + 1 ≤ i then

Vi,i(v) ←
∫ xi+1−v

ui−1
S(v) dui

If z + 1 > i then
Vi,z+1(v) ←

∫ xz+2−v

ui−1
{Vi+1,z+1(v) + S(v)} dui

If z + 1 < i then
Fi,i(v) ←

∫ xi+1−v

xi−v
S(v) dui

If l = n then rows 2, 3, . . . , n of A matrix completed at this point
S(v) ← 0

F1,n(v) ←
∫ x1+v

xn−v
V2,n(v) du1

else
S(v) ← F2,l+1(v)

If l < n then
F1,l(v) ←

∫ x1+v

xl−v
{V2,l(v) + S(v)} du1

S(v) ← S(v) + F2,l(v)
For j ← min{n− 1, l − 1} to max{2, z + 1} by −1

F1,j(v) ←
∫ xj+1−v

(xj−v)�xj−ck� {V2,j(v) + S(v)} du1

S(v) ← S(v) + F2,j(v)
If z = 0 then

F1,1(v) ←
∫ x2−v

0
S(v) du1

Pk(v) ← 0 For j ← z + 1 to l
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Pk(v) ← Pk(v) + F1,j(v)
Pk(v) ← n!Pk(v)

Phase 4: Shift the distribution to the form of Pr(Dn < y) by substituting
y = v + 1

2n .

y0 ← v0 +
1
2n

For k ← 1 to m loop through all subintervals of support
yi ← vk + 1

2n
Fk(y) ← Pk(y − 1

2n )

Return: y0, y1, . . . , ym and F1(y), F2(y), . . . , Fm(y).
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Transient Queueing Analysis

An APPL extension that computes the exact distribution of the nth cus-
tomer’s sojourn time in an M/M/s queue with k customers initially present
is derived in this chapter. Algorithms for computing the covariance between
sojourn times for an M/M/1 queue with k customers present at time zero are
also developed. Maple computer code is developed to implement the transient
queue analysis for many system measures of performance without regard to
traffic intensity (i.e., the system may be unstable with traffic intensity greater
than one).

13.1 Introduction

Many traditional simulation studies analyze queueing systems in steady-state,
requiring appropriate warm-up periods and associated long simulation runs.
However, in many cases the system being modeled never reaches steady-state;
thus, steady-state simulation results do not accurately portray the system be-
havior. The ability to analyze transient results associated with such models is
often complicated by intractable theory, leaving simulation as the only method
for analysis. Further complicating the transient analysis is the effect of ini-
tial conditions [60]. Since steady-state results depend on running the system
long enough to eliminate the impact of initial conditions, these steady-state
results reveal nothing about the transient behavior of the queueing system.
Our purpose here is to combine new and existing results in transient queueing
analysis with a symbolic engine in computational probability.

There are many classes of queueing systems in which a transient analysis is
required, e.g., service businesses often model queues that never reach equilib-
rium. Recognizing the need to develop theory for transient results, as opposed
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to steady-state results, has resulted in a wide literature in this area. Initial
work in transient analysis ironically appeared as an attempt to measure when
a system achieved equilibrium. Law [66] notes the consequences of failing to
adequately account for the initial transient period, leading to Gafarian et
al. [34] outlining a comprehensive framework for the initial transient prob-
lem. Morisaku [90] addresses the time to equilibrium in simulations modeling
the M/M/1 queue and provides schematics for the transition probabilities
given k ≥ 0 customers initially present at time t = 0. Grassmann [40] com-
pares three methods for finding transient solutions in Markovian queueing
systems, Runge–Kutta, Liou’s method, and randomization, where random-
ization is shown as superior for large sparse transition matrices. Pegden and
Rosenshine [101] provide a closed-form expression for the probability of ex-
actly i arrivals and j servicings over a time horizon of length t in an M/M/1
queue starting empty and idle, allowing the calculation of certain performance
measures for a specified time period. Odoni and Roth [94] take an empirical
approach to compare observed and predicted transient state queue length for
the M/M/1 queue, noting that for small values of t the expected queue length
is strongly influenced by initial conditions, and provide a good approximation
for an upper bound of the time to steady-state. Kelton and Law [60] consider
the M/M/s (s ≥ 1) queue and provide expressions to calculate the probabili-
ties of having up to n+k customers in the system upon the arrival of the nth
customer, where k is the number of customers in the system at time t = 0.
They then apply these calculations to a variety of measures of performance
with implications to convergence on steady-state delays and offer methods for
choosing queue initialization in simulation. Much of the work in this chapter
is motivated by their results. Kelton [59] extends the previous work by consid-
ering M/Em/1 and Em/M/1 queues. Parthasarathy [99] provides a transient
solution for the probability that there are n customers in the system at time t
for an M/M/1 queue. Abate and Whitt [1] use Laplace transformations to
analyze some transient results of interest in the M/M/1 queue. Leguesdron et
al. [76] provide transient probabilities for the M/M/1 queue by inverting the
generating function of the uniformized Markov chain describing the M/M/1
process. Transient distributions of cumulative reward are calculated by e Silva
et al. [25] using uniformization, where the distribution of cumulative reward
is over a finite interval with reward rates represented by Markov model states.
Grassmann [41] investigates warm-up periods in simulation and shows that
in many cases these warm-up periods should not be used, especially if the
simulation begins in a high probability state. In this chapter we will focus on
the transient analysis of the M/M/1 and the more general M/M/s queues,
specifically on the distribution of the nth customer’s sojourn time, which is
the sum of the nth customer’s delay time and service time. Almost all the
references above address measures of performance specified over a finite time
interval and are the results of numerical work, which is in stark contrast to
the measures proposed here, which are based on the exact distribution of spe-
cific customers. Rather than arriving at the results numerically, a computer
algebra system is utilized offering exact measures of performance based on a
given number of customers.
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The M/M/s queue is defined in Sect. 13.2 for a positive integer s, and a
method is given for calculating the probability distribution of the number of
customers an arriving customer sees upon arrival to an M/M/s queue. Sec-
tion 13.3 describes how the sojourn time distribution is calculated for a given
customer in an M/M/s queue with k customers initially present in the sys-
tem, k ≥ 0. Section 13.4 includes examples using the implemented procedures
to calculate exact sojourn time distributions, related measures of performance,
and graphical illustrations for varying parameters such as traffic intensity and
number of customers in the system. Section 13.5 offers two approaches for cal-
culating the covariance and correlation among customers in an M/M/1 queue.
Section 13.6 extends the covariance and correlation calculations by automat-
ing the process of finding the joint probability distribution function of the
sojourn times of two customers, and provides the exact covariance and corre-
lation calculations for varying traffic intensities. Commented code is available
for all computations conducted here.

13.2 Basics of the M/M/s Queue

The M/M/s queue is governed by iid exponential interarrival times (the ar-
rival stream is a Poisson process) with arrival rate λ, and iid exponential
service times among s identical servers, each with service rate μ. The in-
terarrival times and the service times are mutually independent. The traffic
intensity of the system is ρ = λ/(sμ). The system consists of a single queue
with customers waiting to be serviced by one of the s identical parallel servers.
If an arriving customer finds at least one idle server, the customer immedi-
ately proceeds to service; otherwise the customer joins the single queue of
those waiting for service in a first-come, first-served manner. To achieve clas-
sic steady-state results, the traffic intensity must satisfy ρ < 1. This critical
assumption is not required in transient analysis, described here, because the
system of interest never reaches equilibrium.

Let Pk(n, i) be the probability that upon the arrival of the nth customer
there are i customers in the system including the nth customer (in queue
or in service), given k customers are present at time t = 0. Using propo-
sitions provided by Kelton and Law [60], reprinted here for completeness
(proofs are available in the reference), and a recursion algorithm, Pk(n, i)
for i = 1, 2, . . . , n+ k can be computed. Using these probabilities, it is pos-
sible to find the distribution of the sojourn time for the nth customer in an
M/M/s queue, given k customers are present at time t = 0. Proposition 1
addresses the case of no exits prior to the nth customer’s arrival, given k ≥ 1.
Proposition 2 is identical to Proposition 1 except that the system is empty
and idle at t = 0 (i.e., k = 0). Proposition 3 addresses the case that the first
customer finds i − 1 other customers present for k > 0. Proposition 4 is the
more general case that customer n ≥ 2 finds i other customers present, given
k ≥ 0.
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Proposition 1. If k ≥ 1, then for n ≥ 1,

Pk(n, k+n) =

⎧⎪⎪⎨
⎪⎪⎩

[ρ/(ρ+ 1)]
n

k ≥ s

ρn/
∏n

j=1 [ρ+ (k + j − 1)/s] k + n ≤ s

ρn/
[
(ρ+ 1)n−s+k

∏s−k
j=1 [ρ+ (k + j − 1)/s]

]
k < s < k + n.

Proposition 2. For n ≥ 1,

P0(n, n) =

{
ρn/
∏n

j=1 [ρ+ (j − 1) s] n ≤ s

ρn/
[
(ρ+ 1)n−s

∏s
j=1 [ρ+ (j − 1)/s]

]
n > s.

Proposition 3. If k ≥ 1, then for 2 ≤ i ≤ k,

Pk(1, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{ρ/ [ρ+ (i− 1)/s]} ·∏k−i+1
j=1 {1− ρ/ [ρ+ (k − j + 1)/s]} k ≤ s

ρ/(ρ+ 1)k−i+2 k > s and i > s{
ρ/
[
(ρ+ 1)k−s+1 [ρ+ (i− 1)/s]

]} ·∏s−i
j=1 {1− ρ/ [ρ+ (s− j)/s]} i ≤ s < k.

Proposition 4. For n ≥ 2, and 2 ≤ i ≤ k + n− 1,

Pk(n, i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ρ/(ρ+ 1)]
∑k+n−1

j=i−1 [1/(ρ+ 1)]
j−i+1

Pk(n− 1, j) i > s

{ρ/ [ρ+ (i− 1)/s]} ·{∑s−1
j=i−1

[∏j−i+1
h=1 {1− ρ/ [ρ+ (j − h+ 1)/s]}

]
·

Pk(n− 1, j) +
[∏s−i

h=1 {1− ρ/ [ρ+ (s− h)/s]}
]
·∑k+n−1

j=s [1/(ρ+ 1)]
j−s+1

Pk(n− 1, j)
}

i ≤ s.

Using these four propositions, Pk(n, 1) is calculated by subtracting the com-
plementary probability from one. These results can be generated by invoking
the Maple procedure MMsQprob(n, k, s), where

• n is the index of the customer of interest,
• k is the number of customers in the system at time t = 0,
• s is the number of identical parallel servers.

The procedure is written in Maple and uses APPL. We choose to calculate
the distribution of the sojourn time because it is a purely continuous random
variable enabling us to exploit associated procedures in APPL.

13.3 Creating the Sojourn Time Distribution

Once the necessary Pk(n, i) probabilities are calculated, for i = 1, 2, . . . , n+k,
the exact sojourn time distribution for the nth customer can be calculated.



13.3 Creating the Sojourn Time Distribution 245

We define Xn as the number of customers, including customer n, in the system
upon the arrival of the nth customer. The possible values of Xn can vary from
a minimum of 1, which occurs when customer n arrives to an empty queue
with idle servers, to a maximum of n + k, which occurs when 0 exits occur
prior to customer n’s arrival, matching the possible values for i in the expres-
sion Pk(n, i) above. The mathematical derivations for both the M/M/1 and
M/M/s queues make extensive use of the memoryless property, permitting
the construction of the distribution of Tn, the sojourn time of customer n. We
present each case separately below.

Distribution of Tn for the M/M/1 Queue. For anM/M/1 queue starting
empty and idle, the delay time of the first customer is zero because the cus-
tomer proceeds directly to service upon arrival. Therefore, the first customer
has an exponential(μ) sojourn time distribution. Conditioning on customer 1’s
service time, one can calculate the probabilities of customer 2 arriving before
and after customer 1 finishes service. These well-known results [49, 62, 118]
are

Pr(Y < X) =
μ

λ+ μ
, Pr(X < Y ) =

λ

λ+ μ
,

where X is an exponential(λ) interarrival time and Y is an exponential(μ)
service time. The first probability represents customer 2 proceeding directly
to service, in which case his sojourn time is simply his service time, which is
exponential(μ). The second probability represents the likelihood that cus-
tomer 2 will delay prior to service. Using the memoryless property, cus-
tomer 2 delays an exponential(μ) time before being serviced in an additional
exponential(μ) time. Using these two probabilities, it is easy to see that cus-
tomer 2’s sojourn time distribution is a mixture, where the mix probabil-
ities are the P0(n, i)’s and the distributions are determined by the order-
ings of delays and services potentially encountered. It is well known that for
X1, X2, . . . , Xn iid exponential(λ) random variables that

n∑
i=1

Xi ∼ Erlang(λ, n). (13.1)

Using this result, the M/M/1 queue sojourn time distribution for k = 0
initial customers generalizes very elegantly to include k > 0, as indicated
in Table 13.1. Line i of the table occurs with probability Pk(n, i) and lists
the distribution of the sojourn time for the nth customer, conditioned on i
customers being in the system upon his arrival.

Let gi(t) be the PDF of an Erlang(μ, i) random variable. Using the con-
ditional sojourn time distributions for i = 1, 2, . . . , n+ k potential customers
in the system, each with probability Pk(n, i), the PDF for the nth customer’s
sojourn time Tn is the mixture

fn(t) =

n+k∑
i=1

Pk(n, i)gi(t) t > 0. (13.2)
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Table 13.1. Conditional sojourn time distributions for the M/M/1 queue

Delay Service time Conditional sojourn
Xn distribution distribution time distribution
1 0 exponential(μ) exponential(μ)
2 exponential(μ) exponential(μ) Erlang(μ, 2)
3 Erlang(μ, 2) exponential(μ) Erlang(μ, 3)
4 Erlang(μ, 3) exponential(μ) Erlang(μ, 4)
...

...
...

...
n+ k Erlang(μ, n+ k − 1) exponential(μ) Erlang(μ, n+ k)

This result is simple in the M/M/1 case because we can take advantage of
(13.1), resulting in a mixture of n+ k Erlang distributions.

Distribution of Tn for the M/M/s Queue. Given s > 1 parallel iden-
tical servers, the nth customer’s sojourn time distribution is still a mix-
ture of n + k conditional sojourn time distributions. However, each distri-
bution might be more complicated. For illustration, consider an M/M/3
queue starting empty and idle with exponential(λ) arrivals and three iden-
tical exponential(μ) servers. It is clear that for customers 1, 2, and 3, the
sojourn time is exponential(μ) because all three customers proceed directly
to service. Therefore, in the general case, for the number of customers in the
system including customer n, which we defined as Xn, when Xn ≤ s the
conditional sojourn time distribution is exponential(μ). However, if Xn > s,
then the nth customer experiences a delay while observing Xn − s service
completions. When s > 1 and Xn > s, the service time distribution observed
by customers in queue is exponential with rate sμ.

Using this result, it is apparent that the delay time for the nth customer
is the sum of Xn − s independent exponential(sμ) random variables, and
using (13.1) is Erlang(sμ,Xn − s). To calculate the nth customer’s sojourn
time for a particular value of Xn, we sum his delay time and his service time.
Table 13.2 shows the distributions conditioned on the number of customersXn

encountered by customer n (including himself) for the M/M/3 queue, given
k = 0 customers present at time t = 0. The APPL procedure Convolution

calculates the distribution of a sum of independent random variables. We use
the symbol ⊕ to denote convolution.

Since Xn represents the number of customers in the system upon arrival
of the nth customer, including himself, the first row in Table 13.2 corresponds
to customer n arriving to an empty system and the last row corresponds to
no service completions prior to customer n’s arrival. The general form for
the M/M/s sojourn time PDF is identical to (13.2), however, in the M/M/s
case each gi(t) can potentially require an additional step to calculate the
distribution of a sum of random variables.
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Table 13.2. Conditional sojourn time distributions for the M/M/3 queue

Delay Service time Conditional sojourn
Xn distribution distribution time distribution
1 0 exponential(μ) exponential(μ)
2 0 exponential(μ) exponential(μ)
3 0 exponential(μ) exponential(μ)
4 exponential(3μ) exponential(μ) exponential(3μ) ⊕ exponential(μ)
5 Erlang(3μ, 2) exponential(μ) Erlang(3μ, 2) ⊕ exponential(μ)
...

...
...

...
n Erlang(3μ, n− 3) exponential(μ) Erlang(3μ, n− 3) ⊕ exponential(μ)

13.4 Transient Analysis Applications

It is apparent that calculating (13.2) for large n is tedious. Kelton and Law
[60] acknowledge the computational difficulty in achieving the Pk(n, i) proba-
bilities alone. Conducting the added steps of up to n− s convolutions for the
M/M/s queue and then mixing the resulting conditional distributions with
the appropriate probabilities can be complicated to implement. APPL pro-
vides the underlying computational engine to achieve exact results for such
problems. The APPL procedure Queue(X, Y, n, k, s) returns the exact
sojourn time distribution for customer n. Queue calls MMsQprob(n, k, s),
which uses recursion to calculate the necessary Pk(n, i) probabilities. APPL
is capable of symbolic results, as illustrated in Examples 13.1 and 13.2.

Example 13.1. Consider an M/M/1 queue with arrival rate λ and ser-
vice rate μ starting empty and idle at time t = 0. For the fourth
customer, calculate the probabilities P0(4, i) for i = 1, 2, 3, 4.

The APPL command MMsQprob(4, 0, 1) returns the exact symbolic
probabilities

P0(4, 1) =
5ρ2 + 4ρ+ 1

(ρ+ 1)
5 ,

P0(4, 2) =
ρ
(
5ρ2 + 4ρ+ 1

)
(ρ+ 1)

5 ,

P0(4, 3) =
ρ2 (3ρ+ 1)

(ρ+ 1)
4 ,

P0(4, 4) =
ρ3

(ρ+ 1)
3 ,

where ρ = λ/μ is the traffic intensity. It is easy to verify that for any

ρ > 0,
∑4

i=1 P0(4, i) = 1, as required. For example, a simple substitu-
tion letting ρ = 9/10 yields

P0(4, 1) =
865000

2476099
, P0(4, 2) =

778500

2476099
, P0(4, 3) =

29970

130321
, P0(4, 4) =

729

6859
.
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Example 13.2. For the queue described in Example 13.1, calculate the
fourth customer’s sojourn time distribution, mean sojourn time and
sojourn time variance.

The APPL statements

> X := ExponentialRV(lambda);

> Y := ExponentialRV(mu);

> T := Queue(X, Y, 4, 0, 1);

> Mean(T);

> Variance(T);

calculate the desired results. The first two lines define the interar-
rival and service time distributions, while the third line calculates the
fourth customer’s sojourn time distribution. The last two lines are self
explanatory. The resulting PDF is

f4(t) =
1

6 (λ+ μ)
5μ

4e−μt
(
30λ2 + 30λ3t+ 24λμ+ 24λ2μt+ 6μ2+

6μ2λt+ 9t2λ4 + 12t2λ3μ+ 3t2λ2μ2 + t3λ5 + 2t3λ4μ+ t3λ3μ2
)

for t > 0. Using f4(t) above, the Mean and Variance commands return

E [T4] =
μ5 + 6λμ4 + 26μ2λ3 + 16μ3λ2 + 17μλ4 + 4λ5

μ (λ+ μ)
5

and

Var [T4] =
(
181μ2λ8 + 484μ3λ7 + 816μ4λ6 + 868μ5λ5 + 574μ6λ4+

244μ7λ3 + 40μλ9 + 68μ8λ2 + 12μ9λ+ μ10 + 4λ10
)
/
(
μ2 (λ+ μ)

10)
.

Substituting λ = 1 and μ = 10/9, for example, the results simplify to

f4(t) =
5000

66854673
e−10/9t

(
361t3 + 2109t2 + 5190t+ 5190

)
t > 0,

E [T4] =
23323347

12380495
∼= 1.8839,

and

Var [T4] =
383506725720906

153276656445025
∼= 2.5021.

The CPU time associated with these two examples was negligible. Ex-
amples 13.1 and 13.2 represent simple applications of these procedures that
circumvent time intensive hand-calculations. They serve only as indications
of more challenging problems solvable using these procedures.

Example 13.3. Calculate the mean sojourn time of the 9th customer
in an M/M/2 queue with arrival rate λ = 1, service rate μ = 9/20,
(ρ = 10/9), and k = 3 customers initially present.
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The mean can be calculated in a single APPL statement by embedding
the function calls

> Mean(Queue(ExponentialRV(1), ExponentialRV(9 / 20), 9, 3, 2));

which yields

E[T9] =
888596294932695525996949989160095340

156268000432990839922685380588656603

or, to 4 digits, E[T9] = 5.6864.

Being able to represent the sojourn time distribution for the nth cus-
tomer in closed form also provides valuable information on asymptotic behav-
ior for queueing systems, including steady-state convergence rates for differ-
ent initial conditions. Figure 13.1 shows the mean sojourn time for customer
n = 1, 2, . . . , 120 in an M/M/1 queue with λ = 1, μ = 10/9, and ρ = 9/10
for several values of k. The points that are plotted have been connected by
lines. As expected, despite the initial condition, all cases appear to move to-
ward the steady-state value of 9 with increasing n. The horizontal axis is only
limited to n = 120 for display purposes and in fact, identical computations
were carried out for n > 300 customers to verify convergence. However, as
shown in the cases where k = 6 and k = 10, the convergence to steady-state
is not always monotone. Additionally, in testing various traffic intensities, the
rate of convergence to steady-state increases rapidly with decreasing traffic
intensity for varying values of k.

APPL also has the ability to calculate the closed-form CDF for the nth
customer’s sojourn time, permitting CDF comparisons for varying n as well
as distribution percentiles for a given customer. The procedure call CDF(T)
returns the exact CDF for customer 4 (from Example 13.1). Figure 13.2 dis-
plays the sojourn time CDF for varying n with fixed k = 0 and ρ = 9/10. The
differences in CDFs across n correspond to the increasing mean attributed

Fig. 13.1. M/M/1 mean sojourn time for ρ = 9/10 given k at t = 0
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Fig. 13.2. M/M/1 sojourn time CDFs for various n given ρ = 9/10 and k = 0

to the delays experienced by successive customers, e.g., customer 2 has delay
time zero or exponential(μ) whereas the nth customer (for n > 2) faces a finite
mixture of n potential delay distributions. The CDF associated with n = ∞
corresponds to the steady-state distribution of the sojourn time, which is ex-
ponentially distributed with a mean of 9 [62].

Varying k for an M/M/1 queue also provides another basis for comparison
of CDFs. Figure 13.3 fixes n = 2, ρ = 9/10, and plots the resulting CDFs
across k. Kelton and Law [60] make a similar comparison using convergence
to steady state delay time. Using the CDF for multiple values of k allows
direct comparison of sojourn time percentiles for customer n. As depicted,
the sojourn time CDF for customer 2 is extremely sensitive to the initial
condition k. As an illustration, the 80th percentiles for k = 0, 3, 6 are

F−1
2 (0.80) ∼=

⎧⎨
⎩

1.935 k = 0
4.432 k = 3
7.510 k = 6.

These percentiles are achieved using the APPL statements

> X := ExponentialRV(1);

> Y := ExponentialRV(10 / 9);

> Z := Queue(X, Y, 2, k, 1);

> IDF(Z, 0.8);

for k = 0, 3, 6. The last statement, IDF(Z, 0.8), numerically solves
FZ(z) = 0.80 on the interval (0,∞).
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Fig. 13.3. M/M/1 sojourn time CDFs for customer n = 2 for various k given
ρ = 9/10

Given the complete specification of the sojourn time distribution, one can
use APPL to calculate not only the mean but also the second, third, and
fourth moments for customer n. This is especially valuable for steady-state
analysis. It is common in simulation to verify attainment of steady-state be-
havior by examining the mean delay or mean sojourn time. Though some
literature exists on estimating transient mean and variance, we are not aware
of any literature addressing higher moments. Literature addressing the sec-
ond moment seems mostly focused on variance estimation and not necessarily
convergence. Therefore, even when the first moment might acceptably ap-
proximate the steady state value, there is reason for further analysis of higher
moments. For example, Fig. 13.4 displays the first four moments of the sojourn
time for customer n in an M/M/1 queue, where λ = 1, μ = 2, ρ = 1/2, with
the initial condition k = 0, 4, 8.

The APPL code used to calculate the values plotted in Fig. 13.4 is

> X := ExponentialRV(1);

> Y := ExponentialRV(2);

> for i from 2 to 60 by 1 do

> T := Queue(X, Y, i, k, 1):

> print(i, evalf(Mean(T)), evalf(Variance(T)),

> evalf(Skewness(T)), evalf(Kurtosis(T))):

> od:

for k = 0, 4, 8. The vertical dashed lines give the smallest customer number
for which all three of the transient values are within 1% of the steady state
value. The relatively low traffic intensity ρ = 1/2 was selected purposely to
allow quick convergence and easy visual inspection. Even with this somewhat
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Fig. 13.4. First four moments of the M/M/1 sojourn time for customers 2 through
60 for ρ = 1/2 and k = 0, 4, 8. The arrival rate is λ = 1 and the service rate is μ = 2,
resulting in steady-state values for the four measures of performance of 1, 1, 2, 9
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low traffic intensity, it is apparent that the higher moments converge more
slowly than the lower moments. In other scenarios where ρ > 1/2, the higher
moments exhibit an even slower convergence. Each vertical dashed line in
Fig. 13.4 was triggered by the k = 8 curve, suggesting that the moments are
more sensitive to a heavily pre-loaded system. For the cases k = 0, 4, 8, the
customer numbers for which the transient results were within 1% of the steady
state values are listed in Table 13.3. To verify the initial-condition effect on
the convergence rate of the first four moments, k was increasingly incremented
beyond eight and displayed a further slowing of convergence.

Table 13.3. Smallest customer number where the sojourn time transient result is
within 1% of steady state for an M/M/1 queue with k = 0, 4, 8 and ρ = 1/2

k = 0 k = 4 k = 8
E[Tn] 19 21 36√
Var[Tn] 27 29 46

E
[
((Tn − μ)/σ)3

]
28 29 50

E
[
((Tn − μ)/σ)4

]
34 35 56

13.5 Covariance and Correlation in the M/M/1 Queue

The dependence exhibited in sojourn times of successive customers is one
reason for the difficulty in calculating interval estimators for queue measures
of performance. In the simplest case, consider an initially empty and idle
M/M/1 queue with interarrival and service rates λ and μ. Our desire is to
calculate the covariance between the sojourn times of customers 1 and 2. We
outline two approaches to modeling the events in the queue, which will be
helpful in the presentation of the analytic result.

Discrete-Event Simulation Approaches. As previously discussed, cus-
tomer 1 proceeds directly to service and two cases exist for customer 2. In
the first case, customer 2 proceeds directly to service. In the second case, he
delays until customer 1’s departure. Both cases are shown in Fig. 13.5. This
section introduces two approaches for generating the first two customers’ so-
journ times.

The first approach is a standard discrete-event simulation model. Without
loss of generality, assume that customer 1 arrives at time 0. In the next-event
approach, customer 1’s service time is distributed according to the service
distribution, exponential(μ), and an arrival time, a2, for customer 2 is dis-
tributed according to the time-between-arrivals distribution, exponential(λ).
If the arrival occurs after customer 1’s service completion (case 1), then cus-
tomer 2 also has an independent exponential(μ) service time, which in this
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Case 1
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T2

t

t

T2

T1

Case 2

Fig. 13.5. Standard discrete-event simulation approach for cases 1 and 2

case is equal to his sojourn time T2. In the second case in which customer 2’s
arrival time occurs before customer 1’s completion of service (a2 < T1), cus-
tomer 2 delays for T1−a2 time units. We then add the exponential(μ) service
time to the delay time to calculate T2.

We define the gap occurring in case 2 as, Y = T1 − a2. It can be shown
analytically that Y ∼ exponential(μ) by computing the distribution of the
difference T1−A2, where A2 is the random arrival time of the second customer,
which is exponential(λ), and then truncating the result on the left at zero.
(Alternately, it can be reasoned that Y ∼ exponential(μ) by the memoryless
property for the exponential distribution because the remaining service time
for customer 1 after customer 2’s arrival has the same distribution as an
unconditional service time.) Therefore, by using (13.1), in case 2 the sojourn
time for customer 2 is distributed Erlang(μ, 2).

The second approach is a conditional discrete-event simulation model,
where the initial event, whose occurrence time is denoted as E1 in Fig. 13.6,
is either a completion of service for customer 1 with probability μ/(λ + μ)
or the arrival of customer 2 with probability λ/(λ + μ). Since E1 is the
minimum of the arrival time of customer 2 and service time of customer 1,
E1 ∼ exponential(λ+ μ).

Covariance Calculations. One way to calculate the exact covariance of
the sojourn times between customers 1 and 2 requires their joint probability
density function, fT1,T2

(t1, t2). The method used here for computing the joint
probability density function uses Theorem 13.1.

Theorem 13.1. Let X1 ∼ exponential(λ1), X2 ∼ exponential(λ2), and
X3 ∼ exponential(λ3) be independent random variables. The joint probability
density function of (T1, T2) = (X1 +X2, X1 +X3) is

fT1,T2
(t1, t2) =

⎧⎪⎪⎨
⎪⎪⎩

λ1λ2λ3

(
eλ1t1 − e(λ2+λ3)t1

)
e−λ1t1−λ2t1−λ3t2

λ1 − λ2 − λ3
0 < t1 < t2

λ1λ2λ3

(
eλ1t2 − e(λ2+λ3)t2

)
e−λ2t1−λ1t2−λ3t2

λ1 − λ2 − λ3
0 < t2 < t1.
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Fig. 13.6. Conditional discrete-event simulation approach for cases 1 and 2

Proof. The joint CDF of T1 and T2 is

FT1,T2
(t1, t2) = Pr (T1 ≤ t1, T2 ≤ t2)

= Pr (X1 +X2 ≤ t1, X1 +X3 ≤ t2)

= Pr (X2 ≤ t1 −X1, X3 ≤ t2 −X1)

=

∫ min{t1,t2}

0

Pr (X2 ≤ t1 − x1, X3 ≤ t2 − x1|X1 = x1) fX1
(x1) dx1

=

∫ min{t1,t2}

0

Pr (X2 ≤ t1 − x1|X1 = x1) ·

Pr (X3 ≤ t2 − x1|X1 = x1) fX1
(x1) dx1

=

∫ min{t1,t2}

0

(

1− e−λ2(t1−x1)
)(

1− e−λ3(t2−x1)
)

λ1e
−λ1x1dx1

=

{∫ t1
0

(
1− e−λ2(t1−x1)

) (
1− e−λ3(t2−x1)

)
λ1e−λ1x1dx1 0 < t1 < t2

∫ t2
0

(
1− e−λ2(t1−x1)

) (
1− e−λ3(t2−x1)

)
λ1e−λ1x1dx1 0 < t2 < t1.

After evaluating the integrals and differentiating, fT1,T2
(t1, t2) is

fT1,T2
(t1, t2) =

⎧⎪⎪⎨
⎪⎪⎩

λ1λ2λ3

(
eλ1t1 − e(λ2+λ3)t1

)
e−λ1t1−λ2t1−λ3t2

λ1 − λ2 − λ3
0 < t1 < t2

λ1λ2λ3

(
eλ1t2 − e(λ2+λ3)t2

)
e−λ2t1−λ1t2−λ3t2

λ1 − λ2 − λ3
0 < t2 < t1,

which completes the proof. �

Theorem 13.1 provides the joint PDF of the first two sojourn times for
case 2, which must be weighted appropriately by the probability that the
arrival of customer 2 occurs prior to customer 1’s completion of service,
or λ/(λ + μ). Using the conditional discrete-event model, case 1 consists
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of independent sojourn times, so the joint density can be written as the
product of the densities of the sojourn times T1 ∼ exponential(λ + μ) and
T2 ∼ exponential(μ), and weighted by μ/(λ + μ). The resulting joint den-
sity is a mixture of the two possible cases displayed in Fig. 13.6. We apply
Theorem 13.1 to case 2 because of the dependence that occurs due to the
overlap of the sojourn times. Figure 13.7 depicts the relationships between
the sojourn times T1, T2 and the random variables X1, X2, and X3 defined in
Theorem 13.1.

X2 X1 X3

a2

T1
T2

t

Case 2

Fig. 13.7. Case 2 for Theorem 13.1 with X1 ∼ exponential(λ1), X2 ∼
exponential(λ2), and X3 ∼ exponential(λ3)

Substituting λ1 = μ, λ2 = λ + μ, and λ3 = μ into the mixture of cases 1
and 2 yields the joint PDF of T1 and T2 as

fT1,T2
(t1, t2) =

⎧⎪⎪⎨
⎪⎪⎩

μ2
(
λe−μt2 + μe−λt1−μt1−μt2

)
λ+ μ

0 < t1 ≤ t2

μ2
(
λe−λt1−μt1+λt2 + μe−λt1−μt1−μt2

)
λ+ μ

0 < t2 < t1.

(13.3)
Using this joint PDF, the covariance between the sojourn times of customers 1
and 2 is calculated to be

Cov(T1, T2) =
λ(λ+ 2μ)

(λ+ μ)2μ2
.

Substituting λ = 1 and μ = 2, for example, produces

Cov(T1, T2) =
5

36
∼= 0.1389.

We now use the results of Theorem 13.1 in Example 13.4.



13.5 Covariance and Correlation in the M/M/1 Queue 257

Example 13.4. Let T1 and T2 be the sojourn times for customers 1
and 2, respectively, in an initially empty and idle M/M/1 queue with
exponential(λ = 1) times between arrivals and exponential(μ = 2)
service times. Find the distribution of the sample mean

T̄ = (T1 + T2)/2,

as well as E[ T̄ ] and Var[ T̄ ].

Applying Eq. (13.3) with λ = 1 and μ = 2, the joint PDF of T1 and
T2 is

fT1,T2
(t1, t2) =

⎧⎪⎨
⎪⎩

8

3
e−3t1−2t2 +

4

3
e−2t2 0 < t1 ≤ t2

8

3
e−3t1−2t2 +

4

3
e−3t1+t2 0 < t2 < t1.

Define the transformation

U = T̄ = (T1 + T2)/2 and V = (T1 − T2)/2

with inverse

T1 = U + V and T2 = U − V.

It can be shown that the functions U and V define a one-to-one
transformation; thus, using the bivariate transformation technique de-
scribed in Hogg et al. [52], the joint PDF of U and V is

fU,V (u, v) =

{
fT1,T2

(u+ v, u− v)|J | −u ≤ v < 0
fT1,T2

(u+ v, u− v)|J | 0 < v < u,

where J is the Jacobian of the inverse transformation defined as

J =

∣∣∣∣∣∣∣
∂t1
∂u

∂t1
dv

∂t2
∂u

∂t2
∂v

∣∣∣∣∣∣∣ =
∣∣∣∣1 1
1 −1

∣∣∣∣ = −2.

Substituting t1 = u + v, t2 = u − v, J = −2 and integrating out the
dummy transformation variable v, the resulting PDF of U = T̄ is

fU (u) = 4e−4u + 2e−2u − 6e−6u u > 0.

The mean of U is

E[U ] =

∫ ∞

0

u · fU (u)du

=

∫ ∞

0

u · (4e−4u + 2e−2u − 6e−6u
)
du

=
7

12.
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Likewise, the variance of U using Var [U ] = E
[
U2
]− (E[U ])

2
, where

E
[
U2
]
=

∫ ∞

0

u2 · fU (u)du

=

∫ ∞

0

u2 · (4e−4u + 2e−2u − 6e−6u
)
du

=
41

72
,

results in

Var[U ] =
41

72
−
[
7

12

]2
=

11

48
.

Using the Queue(X, Y, n, k, s) procedure for customers 1 and 2,
the mean sojourn times are E[T1] = 1/2 and E[T2] = 2/3, and
the corresponding variances are Var[T1] = 1/4 and Var[T2] = 7/18.
The covariance of sojourn times T1 and T2 was calculated to be
Cov(T1, T2) = 5/36. Therefore, the mean sojourn time for customers 1
and 2 is

E

[
T1 + T2

2

]
=

E[T1] + E[T2]

2
=

7

12
,

and the variance is

Var

[
T1 + T2

2

]
=

Var[T1] + Var[T2] + 2Cov(T1, T2)

4
=

11

48
,

supporting the distribution of U = T̄ given above.

Proceeding in this manner, we now derive similar expressions for the first
three customers arriving to an initially empty and idle M/M/1 queue. We
could use first principles to derive the trivariate PDF fT1,T2,T3

(t1, t2, t3); how-
ever, since covariance only occurs between two customers, it is easier to cal-
culate each respective paired joint distribution for covariance calculations.
When considering n = 3 customers, there are five possible arrival and depar-
ture orderings. In general, for n customers, the number of ways arrivals and
departures can occur is given by the nth Catalan number (see Stanley [111]),
which is

Cn =
(2n)!

n!(n+ 1)!
.

Figure 13.8 shows the five possible arrangements for n = 3 customers
along with the sojourn times T1, T2, and T3 for each, with the arrival and
completion times for the ith customer denoted by ai and ci respectively. The
vertical arrows at event times represent service completions (pointing up) or
arrivals (pointing down). This competing-event approach parallels the second
discrete-event simulation approach described previously.

Using the same conditioning approach as in the proof of Theorem 13.1,
the joint PDFs for each of the pairs (T1, T2), (T1, T3), and (T2, T3) in each
of the five cases can be determined and then mixed to achieve the three
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Fig. 13.8. Five cases for n = 3 customers’ sojourn times in an M/M/1 queue

associated joint PDFs. The mixture probabilities are calculated by multiplying
the appropriate number of competing arrivals (with probability λ/(λ+μ)) or
service completions (with probability μ/(λ+μ)). For example, in case 1 shown
in Fig. 13.8, there are two instances with competing risks, both of which result
in a service completion, thus the probability of this case is μ2/(λ+μ)2. Using
these joint densities, the symmetric variance–covariance matrix for the first
n = 3 customer sojourn times

Σ =

⎡
⎣ σ2

1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

⎤
⎦

is

Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

μ2

λ(2μ+ λ)

(λ+ μ)2μ2

λ2(λ2 + 4λμ+ 5μ2)

(λ+ μ)4μ2

• 2λ2 + 4λμ+ μ2

(λ+ μ)2μ2

λ(2λ2 + 8λ2μ+ 11λμ2 + 2μ3)

(λ+ μ)4μ2

• • 3λ6 + 18λ5μ+ 45λ4μ2 + 54λ3μ3 + 30λ2μ4 + 8λμ5 + μ6

(λ+ μ)6μ2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Substituting λ = 1 and μ = 2, for example, results in

Σ =

⎡
⎢⎢⎢⎢⎣
1/4 5/36 29/324

• 7/18 13/54

• • 1451/2916

⎤
⎥⎥⎥⎥⎦ ∼=
⎡
⎣ 0.2500 0.1389 0.0895

• 0.3889 0.2407
• • 0.4976

⎤
⎦ .

The sojourn time variance increases with customer number down the diagonal
of the matrix because of the nature of the queueing process, where the sojourn
time distribution for each additional customer is dependent on all the previous
customers. On the other hand, the off-diagonal covariance entries in each row
decrease with customer separation, for example σ13 < σ12.

13.6 Extending Covariance Calculations

Consider the n = 3 case where all three customers arrive prior to the first
customer’s completion of service (this is Case 5 in Fig. 13.8). Using a 1 to
represent an arrival and a −1 for a departure, this sequence of arrivals and
departures can be represented by the vector[

1 1 1 −1 −1 −1
]
.

Figure 13.9 depicts this case as a path from left to right in the figure, where
moving up and right indicates an arrival and moving down and right indicates
a service completion. Horizontal moves are not permitted. Each of the five
possible sequences of arrivals and departures for n = 3, shown in Fig. 13.8,
can be depicted by a specific path from the bottom left node to the bottom
right node. The number in the system is depicted by the height of each node
in the figure.

Ruskey and Williams [107] present an elegant algorithm that generates
all such paths of arrival and service completions for a given number of cus-
tomers n. The algorithm is based on a simple iterative successor rule that uses

Fig. 13.9. Path for case 5 of n = 3 customers arrival and departure pattern in an
M/M/1 queue
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prefix shifts to exhaust the possible arrival and service completion scenarios.
In Fig. 13.9 these are the 6!/(3!4!) = 5 paths that can be drawn from the bot-
tom left node to the bottom right node. The algorithm is “loopless” in that it
requires a constant amount of computation in transforming the current case
to its successor. Define the case matrix C with dimension (2n)!/(n!(n + 1)!)
by 2n as the exhaustive list of possible arrival and service completion scenarios
for n customers. To initiate the matrix the first row of C is

C1 =
[
1 −1 1 1 −1 −1

]
.

The first row is always the ordered string created by an arrival, a service
completion, n−1 arrivals, and n−1 service completions. The iterative successor
rule described by Ruskey and Williams [107] is: “Locate the leftmost [−1, 1]
and suppose its 1 is in position k. If the (k+1)st prefix shift is valid (a possible
arrival/service completion sequence), then it is the successor; if it is not valid
then the kth prefix shift is the successor.” The (k + 1)st prefix shift for the
sequence

B = {B1, B2, . . . , Bk−1, Bk, Bk+1, . . . , B2n}
is defined to be

B = {B1, Bk+1, B2, . . . , Bk−1, Bk, Bk+2, . . . , B2n},
that is, the (k+1)st element of the sequence is shifted into the second position
and the relative order of the other elements is left unchanged. The length of
the sequence is always 2n because the number of arrivals and departures is
balanced at n each. An example of an invalid sequence is[

1 −1 −1 1 1 −1
]

because the second service completion occurs prior to the second arrival.
For n = 3, the case matrix C is

C =

⎡
⎢⎢⎢⎢⎣
1 −1 1 1 −1 −1
1 1 −1 1 −1 −1
1 −1 1 −1 1 −1
1 1 −1 −1 1 −1
1 1 1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦ .

(Note that the order of the five rows does not match the order of the cases in
Fig. 13.8.)

Figure 13.10 further categorizes each segment of the path based on whether
there exists a competing risk (competing event) in which case the distribution
of the time until the next event (either an arrival or a completion) is given by

min{exponential(λ), exponential(μ)} ∼ exponential(λ+ μ),

where the time between arrivals is distributed as exponential(λ) and the ser-
vice time distribution is exponential(μ).
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μ

μ

μ

λ+μ

λ+μ

Fig. 13.10. Path segment distributions for case 5 for n = 3 customers

Competing risks can only occur along path segments originating inside the
dashed triangle shown in Fig. 13.10. These path segments are exponential(λ+
μ) distributed and are correspondingly labeled λ + μ. Once all customers
have arrived, the only possible events are service completions; thus each path
segment along the rightmost edge of Fig. 13.10 is distributed exponential(μ)
and labeled μ. If the path of interest reaches a node at the bottom of the
figure, the queueing system empties and the next event must be an arrival,
which occurs in an exponential(λ) time into the future. While the system is
empty, none of the customers’ sojourn times are affected, therefore waiting
for the next arrival does not impact customer sojourn time distribution. The
interior triangle in the path diagram also provides a method to calculate the
probability of all possible paths. For path segments originating inside the
triangle, a move right and up occurs with probability λ/(λ + μ) and a move
right and down occurs with probability μ/(λ + μ). For the particular path
shown in Fig. 13.10 there are two segments originating inside the triangle,
both of which are right and up, representing two successive arrivals. Thus,
the probability of this case is

λ

λ+ μ
· λ

λ+ μ
=

λ2

(λ+ μ)2
.

In order to capture the structure of the segment distributions for a given
path, represented as a row of the case matrix C, another vector of length 2n−1
is created, in which each entry corresponds to the sojourn time distribution
for a particular segment. There are three possible entries in this vector:

1. exponential(λ+ μ), which is indicated by a 1
2. exponential(μ), which is indicated by a 2
3. no distribution as a result of an emptied system, which is depicted as a 0.

The vector is of length 2n − 1 since the first customer’s arrival time can
be ignored as it does not affect sojourn time. For the particular path shown
in Fig. 13.10 the corresponding segment distribution vector is
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1 1 2 2 2

]
.

Define the new matrix C ′ with dimension (2n)!/(n!(n+ 1)!) by 2n− 1 as the
segment distribution matrix for each case in C. For n = 3, the matrix C ′ is

C ′ =

⎡
⎢⎢⎢⎢⎣
1 0 1 2 2
1 1 1 2 2
1 0 1 0 2
1 1 1 0 2
1 1 2 2 2

⎤
⎥⎥⎥⎥⎦ .

The two vectors, which are each the fifth row of the corresponding matrices

C5 =
[
1 1 1 −1 −1 −1

]
and C ′

5 =
[
1 1 2 2 2

]
contain the information necessary to calculate the contribution of Case 5 to
the joint PDF for the sojourn times of any two customers. Denote Cl as the
lth row vector of case matrix C, and define the 2× 2 matrix Rl with elements

Rl =

[
ris rif
rjs rjf

]

where ris and rif are the start and finish indices for customer i in row l of the
case matrix C. Define rjs and rjf similarly for customer j. Using C5 above,
for customers i = 1 and j = 3,

R5 =

[
1 4
3 6

]
.

Customer 1’s arrival is the first event to occur. Customer 1’s departure is
the fourth event to occur. Customer 3’s arrival is the third event to occur.
Customer 3’s departure is the sixth event to occur.

The Rl matrix provides two critical pieces of information. First, for the
given case l, if rif < rjs then the sojourn times for customers i and j do not
overlap because customer i departs prior to customer j’s arrival. Since in each
specific case the sojourn time for each customer is comprised of a uniquely
determined sequence of independent time segments, consistent of either ser-
vice completions distributed exponential(μ) or interarrival times distributed
exponential(λ + μ), and the sequences for customers i and j have no time
segments in common, the sojourn times for customers i and j are indepen-
dent. Therefore, if rif < rjs, the contribution of case l to the joint PDF is
created by simply multiplying the sojourn time PDFs for customers i and j.
Second, by computing rif − ris and rjf − rjs and then indexing across C ′

l , the
appropriate segment distributions can be combined to form the joint sojourn
time PDF for customers i and j.

When rif > rjs the joint probability distribution is calculated by condi-
tioning in a similar fashion to the proof of Theorem 13.1. However, it is first
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necessary to find the independent and overlapping segments for the customers
of interest. For the arrival and service completion scenario described by C5,
Fig. 13.11 shows sojourn times T1 and T3 for customers 1 and 3. The indepen-
dent portion of customer 1’s sojourn time consists of the two exponential(λ+μ)
segments. The independent portion of customer 3’s sojourn time consists of
the two exponential(μ) segments shown on the right side of Fig. 13.11. The
dependent (overlap) portion between customers 1 and 3 consists of the sin-
gle exponential(μ) segment falling within the dashed vertical lines. Using C ′

5

and R5, these segments can be determined without reference to Fig. 13.11,
as follows: Given r1f > r3s, that is customer 3 arrives prior to customer 1
completing service, the independent portions of customer 1’s sojourn time
distribution are found by (a) calculating r3s − r1s = 3 − 1 = 2 and then
(b) collecting the elements in C ′

5 beginning at index r1s = 1 and indexing
r3s − r1s − 1 = 1 additional element of the vector. For C ′

5 =
[
1 1 2 2 2

]
, the

first two entries, c′51 and c′52 correspond to the two exponential(λ + μ) seg-
ments. Likewise, customer 3’s independent sojourn time segments are found
by (a) calculating r3f − r1f = 6− 4 = 2, and then (b) collecting the elements
in C ′

5 beginning at index r1f = 4 and indexing r3f − r1f − 1 = 1 additional
element of the vector. This amounts to the two exponential(μ) segments in
elements four and five of C ′

5. The dependent portion is identified by starting
at the element r3s = 3 and indexing rif − r3s− 1 = 0 additional elements, the
third element of C ′

5, a single exponential(μ) segment.
In this case, calculating the joint PDF is straightforward because the in-

dependent portions for each customer are iid exponential random variables.
Defining the independent cumulative distribution function portions for cus-
tomers 1 and 3 as X1 ∼ Erlang(λ+ μ, 2) and X3 ∼ Erlang(μ, 2) respectively,

Fig. 13.11. Sojourn time segments for customers 1 and 3 in case 5 for n = 3
customers
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and the dependent (overlap) random variable as W ∼ exponential(μ), the
contribution of Case 5 to the joint CDF of (T1, T3) = (X1 + W,X3 + W ),
conditioning on the dependent distribution segment W , is

FT1,T3
(t1, t3) = Pr(T1 ≤ t1, T3 ≤ t3)

= Pr(X1 +W ≤ t1, X3 +W ≤ t3)

= Pr(X1 ≤ t1 −W,X3 ≤ t3 −W )

=

∫ min{t1,t3}

0

Pr(X1 ≤ t1 − w,X3 ≤ t3 − w|W = w)fW (w) dw

=

∫ min{t1,t3}

0

Pr(X1 ≤ t1 − w|W = w) ·
Pr(X3 ≤ t3 − w|W = w)fW (w) dw

=

∫ min{t1,t3}

0

FX1
(t1 − w)FX3

(t3 − w)μe−μw dw

=

{∫ t1
0

FX1
(t1 − w)FX3

(t3 − w)μe−μw dw 0 < t1 < t3∫ t3
0

FX1
(t1 − w)FX3

(t3 − w)μe−μw dw 0 < t3 < t1.

Since closed-form versions of FX1
(t1−w) and FX3

(t3−w) are available, Maple
is capable of evaluating this expression, though for large n it can be time
consuming.

When the independent distribution segments are not iid exponential ran-
dom variables, the calculation is more problematic because we can no longer
use Eq. (13.1) to easily express FX1

(t1 − w) and FX3
(t3 − w). Convolution is

required, and though capable, Maple, and subsequently APPL, tend to slow
down significantly with increasing n. To overcome this shortfall, consider The-
orem 13.2, which appears to be a faster approach than the two suggested in
Hagwood [43].

Theorem 13.2. If S1 ∼ Erlang(λ1,m) and S2 ∼ Erlang(λ2, n) are indepen-
dent random variables, then the PDF of Y = S1 + S2 is

fY (y) =

[
λm
1 λn

2 e
−λ2y

(m− 1)!(n− 1)!

n−1∑
x=0

{
(−1)x

(
n− 1

x

)
yn−1−xe(λ2−λ1)s·

m−1+x∑
r=0

(−1)r
(m− 1 + x)!sm−1+x−r

(m− 1 + x− r)!(λ2 − λ1)r+1

}]y
s=0

y > 0.

Proof. Since S1 and S2 are independent, the PDF of Y = S1 + S2 using
convolution and the binomial theorem is
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fY (y) =

∫ y

0

fS1(s)fS2(y − s) ds

=

∫ y

0

λ1(λ1s)
m−1e−λ1s

(m− 1)!
· λ2(λ2(y − s))n−1e−λ2(y−s)

(n− 1)!
ds

=
λm
1 λn

2

(m− 1)!(n− 1)!

∫ y

0

sm−1e−λ1s(y − s)n−1e−λ2(y−s) ds

=
λm
1 λn

2 e
−λ2y

(m− 1)!(n− 1)!

∫ y

0

sm−1(y − s)n−1es(λ2−λ1) ds

=
λm
1 λn

2 e
−λ2y

(m− 1)!(n− 1)!

∫ y

0

sm−1

(
n−1∑

x=0

(

n− 1

x

)

yn−1−x(−s)x
)

es(λ2−λ1) ds

=
λm
1 λn

2 e
−λ2y

(m− 1)!(n− 1)!

n−1∑

x=0

{

(−1)x
(

n− 1

x

)

yn−1−x

∫ y

0

sm−1+xes(λ2−λ1) ds

}

=

[

λm
1 λn

2 e
−λ2y

(m− 1)!(n− 1)!

n−1∑

x=0

{

(−1)x
(

n− 1

x

)

yn−1−xe(λ2−λ1)s·

m−1+x∑

r=0

(−1)r
(m− 1 + x)!sm−1+x−r

(m− 1 + x− r)!(λ2 − λ1)r+1

}]y

s=0

y > 0,

which completes the proof. �

The APPL procedure Cov(a, b, n) applies Theorem 13.2 to calculate the
covariance between the sojourn times of customers a and b (a < b) in a system
of n customers. For computational considerations (i.e., evaluating the fewest
cases necessary for a given n), setting the number of customers n = b provides
the fastest result. Additionally, calling Cov(a, b, n) where n > b produces
a result identical to n = b because customers arriving after customer b do not
affect the covariance of previous customers.

Rewriting the integral as a sum via Theorem 13.2 avoids the calls to
Convolution(X, Y) in APPL as well as integrating for each case and piece.
One can always use this approach, even when the independent part of a par-
ticular customer’s sojourn time contains many independent distribution seg-
ments. The times for these segments can only be exponential(λ+μ) distributed
or exponential(μ) distributed, implying their sum can always be written as
the sum of two independent Erlang random variables. This approach speeds
computation time considerably. The symmetric variance–covariance matrix
for n = 10 customers with parameters λ = 1, μ = 2, and ρ = 1/2 is shown in
Table 13.4 providing the exact values.

CPU time is a factor in these computations. Each element in the tenth
column of the variance–covariance matrix is calculated from a joint PDF which
is a mixture of C10 = 20!/(10!11!) = 16,796 component distributions, each
corresponding to a unique ordering of arrivals and departures.
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Table 13.4. Sojourn time variance–covariance matrix for the first n = 10 customers
in an M/M/1 queue with λ = 1, μ = 2

1

4

5

36

29

324

181

2916

1181

26244

2647

78732

18191

708588

127111

6377292

2699837

172186884

19319845

1549681956

•
7

18

13

54

239

1458

1543

13122

10303

118098

23485

354294

163493

3188646

3462503

86093442

24719519

774840978

• •
1451

2916

8531

26244

53995

236196

356291

2125764

805705

6377292

5576849

57395628

39197977

516560652

836647331

13947137604

• • •
34514

59049

209794

531441

1357010

4782969

3031606

14348907

20810726

129140163

145390102

1162261467

3088887890

31381059609

• • • •
12525605

19131876

77889229

172186884

170586983

516560652

1156711327

4649045868

8013045911

41841412812

169183999981

1129718145924

• • • • •
551583889

774840978

1162296371

2324522934

7727099083

20920706406

52871149859

188286357654

1106749378225

5083731656658

• • • • • •
10582107143

13947137604

67728246079

125524238436

454382575415

1129718145924

9394007745229

30502389939948

• • • • • • •
225196533287

282429536481

1455144635743

2541865828329

29498588275973

68630377364883

• • • • • • • •
75890492486993

91507169819844

1482244865480580

2470693585135780

• • • • • • • • •
28549065408995300

33354363399333100

Because these values are difficult to compare in fractional form, the same
matrix is provided again, with matrix elements rounded to four decimal places:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2500 0.1389 0.0895 0.0621 0.0450 0.0336 0.0257 0.0199 0.0157 0.0125
• 0.3889 0.2407 0.1639 0.1176 0.0872 0.0663 0.0513 0.0402 0.0319
• • 0.4976 0.3251 0.2286 0.1676 0.1263 0.0972 0.0759 0.0600
• • • 0.5845 0.3948 0.2837 0.2113 0.1611 0.1251 0.0984
• • • • 0.6547 0.4524 0.3302 0.2488 0.1915 0.1498
• • • • • 0.7119 0.5000 0.3694 0.2808 0.2177
• • • • • • 0.7587 0.5396 0.4022 0.3080
• • • • • • • 0.7974 0.5725 0.4298
• • • • • • • • 0.8293 0.5999
• • • • • • • • • 0.8559

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As the traffic intensity increases, so do the values in the variance–covariance
matrix. To illustrate, the same matrix is provided for the increased traffic
intensity parameters λ = 1, μ = 10/9, and ρ = 9/10. The increasing sojourn-
time variance along the diagonal is expected with the increasing traffic in-
tensity. In addition, the rate that covariance between customers decreases as
customer separation increases is less pronounced, as indicated in the variance–
covariance matrix
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8100 0.5856 0.4737 0.4040 0.3553 0.3189 0.2904 0.2673 0.2481 0.2318
• 1.3956 1.1097 0.9393 0.8226 0.7363 0.6692 0.6150 0.5702 0.5323
• • 1.9561 1.6298 1.4167 1.2626 1.1441 1.0494 0.9714 0.9057
• • • 2.5021 2.1458 1.8995 1.7142 1.5679 1.4484 1.3485
• • • • 3.0364 2.6565 2.3831 2.1715 2.0009 1.8593
• • • • • 3.5605 3.1614 2.8652 2.6310 2.4389
• • • • • • 4.0754 3.6600 3.3444 3.0904
• • • • • • • 4.5818 4.1524 3.8199
• • • • • • • • 5.0803 4.6386
• • • • • • • • • 5.5713

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using this variance–covariance matrix for traffic intensity ρ = 9/10, consider
the following example.

Example 13.5. Let Ti, i = 1, 2, . . . , 10, be the sojourn times for the
first n = 10 customers in an M/M/1 queue with arrival rate λ = 1
and service rate μ = 10/9 that is initially empty and idle. Find the
variance of the average sojourn time for the first ten customers.

Define the average sojourn time as

T̄ =
1

10

10∑
i=1

Ti.

Since the sojourn times are not independent random variables, the
variance of the average sojourn time is

Var
[
T̄
]
= Var

[
1

10

10∑
i=1

Ti

]

=
1

100
Var

[
10∑
i=1

Ti

]

=
1

100

⎡
⎣ 10∑

i=1

Var [Ti] + 2
∑∑

i<j

Cov (Ti, Tj)

⎤
⎦ .

The result is the sum of all elements in the variance–covariance matrix
multiplied by the constant 1/100. The sum of the variance–covariance
matrix rounded to four significant digits is 177.6642; therefore the
variance of T̄ is

Var
[
T̄
] ∼= 1.7766.

To verify the calculation, a discrete-event simulation was conducted
five times, each using one million replications. The resulting 95% con-
fidence interval for the variance of T̄ was T̄ ∈ (1.773, 1.781), which
agrees with the analytic result.



13.7 Sojourn Time Covariance with k Customers Initially Present 269

Traditional steady-state queueing theory and analysis lacks the insight pro-
vided in these transient variance–covariance matrices. For businesses in which
the number of customers in a day is so small that true steady state is never
achieved, routine queueing measures of performance are not representative of
reality. Additionally, consider a system in which the traffic intensity exceeds
one. For a such a system, an analyst might be interested in customer covari-
ance. Increasing the traffic intensity so that ρ > 1 does not preclude covariance
calculations using this method, and therefore allows transient analysis of such
systems. A variance–covariance matrix for ρ = 3/2 is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.2500 1.8900 1.7172 1.6135 1.5438 1.4937 1.4558 1.4263 1.4027 1.3835
• 4.1400 3.7368 3.5018 3.3459 3.2344 3.1507 3.0856 3.0337 2.9913
• • 6.0957 5.6825 5.4166 5.2292 5.0896 4.9817 4.8958 4.8261
• • • 8.1312 7.7208 7.4397 7.2332 7.0747 6.9493 6.8479
• • • • 10.2424 9.8410 9.5538 9.3361 9.1652 9.0276
• • • • • 12.4235 12.0342 11.7463 11.5230 11.3444
• • • • • • 14.6687 14.2931 14.0081 13.7828
• • • • • • • 16.9727 16.6115 16.3319
• • • • • • • • 19.3310 18.9846
• • • • • • • • • 21.7397

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Given this traffic intensity, the system is unstable and the expected sojourn
times for successive customers increase without bound. Along the main diag-
onal the customer variance is clearly increasing, and the covariance decreases
as the separation occurs between customers. This decrease is monotonic, and
though not studied in detail here, it appears that the rate of covariance de-
crease might be of interest for an unstable traffic intensity.

13.7 Sojourn Time Covariance with k Customers
Initially Present

When k customers are present in theM/M/1 queue at time zero, the approach
used to compute sojourn-time covariance between customers becomes more
difficult. When the two customers of interest possess indices larger than k (i.e.,
Ti where i > k), then the approach is similar to that derived in Sect. 13.6.
However, there are two other possibilities. The first possibility is that the first
customer has an index of k or less, and the second customer has an index
larger than k. In this instance, the only difference in deriving the joint CDF
is that the lower indexed customer begins his sojourn time at time zero. In
the second possibility, both customers have an index of k or below. If these
indices are i and j, where i < j ≤ k, the time intervals for sojourn times
Ti and Tj begin at zero. It is obvious that Ti ≤ Tj , because the completion
time for customer i must occur prior to the completion time for customer j.
For each of the possibilities above the covariance derivation that follows will
mirror the empty and idle covariance derivation in Sect. 13.6.
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To illustrate the calculations, consider an M/M/1 queue with k = 2 cus-
tomers initially present at time zero and a single additional customer, n = 1.
The transition diagram where the first event (not including the k customers
initially present at time zero) is an arrival, which is analogous to Figs. 13.9
and 13.10, is given in Fig. 13.12. The total number of customers passing

Fig. 13.12. Transition diagram for n+k = 1+2 = 3 customers when the first event
is an arrival

through the system is n + k = 3. Using 1 to denote an arrival and −1 to
denote a departure, each arrival/departure ordering instance for n + k = 3
customers must contain exactly three −1’s (completions of service) and a sin-
gle 1 (arrival). The algorithm presented by Ruskey and Williams [107] does
not facilitate listing all orderings for an unbalanced system, where the num-
ber of departures is greater than the number of arrivals (as opposed to an
empty and idle queue at time zero). However, we can produce all possible
arrival–departure sequences with a simple manipulation of the algorithm, as
well as count the number of possible sequences. The number of possible order-
ings, denoted by C(n|k), follows, where n represents the number of customers
passing through the system that arrive after time zero and k is the number of
customers present at time zero:

C(n|k) =

k/2�∑
j=0

(−1)j
(
k − j

j

)
Cn+k−j

for k = 0, 1, 2, . . . and n = 1, 2, . . . , where �·� denotes the greatest integer
function. The case matrix C is found by applying the Ruskey and Williams
[107] algorithm for n+k customers, then deleting the instances where the first
k events do not correspond to arrivals. As seen previously, the case matrix for
n+ k = 1 + 2 = 3 customers is
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C =

⎡
⎢⎢⎢⎢⎣
1 −1 1 1 −1 −1
1 1 −1 1 −1 −1
1 −1 1 −1 1 −1
1 1 −1 −1 1 −1
1 1 1 −1 −1 −1

⎤
⎥⎥⎥⎥⎦ .

Rows 2, 4, and 5 correspond to the first k = 2 events being arrivals. Rows 1
and 3 must be deleted from the case matrix, since for each row, a completion
of service occurs prior to the first two arrivals. Deleting these rows results in
the case matrix

C =

⎡
⎣ 1 1 −1 1 −1 −1
1 1 −1 −1 1 −1
1 1 1 −1 −1 −1

⎤
⎦

with the remaining rows representing all possible arrival–departure sequences.
We can further simplify the case matrix by deleting the first k columns, re-
sulting in

C =

⎡
⎣−1 1 −1 −1
−1 −1 1 −1
1 −1 −1 −1

⎤
⎦ .

The rows of the case matrix correspond to the three cases shown in Fig. 13.13.

Fig. 13.13. Three cases for k = 2 initial customers and a single n = 1 additional
customer in an M/M/1 queue
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The algorithm for computing the joint PDF, and subsequently the covari-
ance, of the sojourn times of any two customers does not differ significantly
from the algorithm presented in Sect. 13.6. However, for the sojourn times T1

and T2 in Fig. 13.13, a new theorem is introduced.

Theorem 13.3. Let X ∼ exponential(λ1) and Y ∼ exponential(λ2) be inde-
pendent random variables. The joint PDF of (T1, T2) = (X,X + Y ) is

fT1,T2
(t1, t2) = λ1λ2e

−λ2t1−λ1t2+λ1t1 0 < t1 < t2.

Proof. The joint CDF of T1 and T2 is

FT1,T2
(t1, t2) = Pr (T1 ≤ t1, T2 ≤ t2)

= Pr (X ≤ t1, X + Y ≤ t2)

= Pr (X ≤ t1, Y ≤ t2 −X)

=

∫ t1

0

∫ t2−x

0

fX(x) · fY (y) dy dx

=

∫ t1

0

∫ t2−x

0

(
λ1e

−λ1x
) · (λ2e

−λ2y
)
dy dx

=
λ1 − λ2 + λ2e−λ1t2 + λ2e−λ2t1 − λ1e−λ2t1 − λ2e−λ2t1−λ1t2+λ1t1

λ1 − λ2
,

for 0 < t1 < t2. Taking partial derivatives, fT1,T2
(t1, t2) is

fT1,T2
(t1, t2) = λ1λ2e

−λ2t1−λ1t2+λ1t1 0 < t1 < t2,

which completes the proof. �

Theorem 13.3 provides the joint PDF for the sojourn times T1 and T2 of
the first two customers initially present at time zero. It may be more com-
plicated to calculate the joint PDFs for the sojourn times of other pairs of
customers who were initially present at time zero. This is due to the fact
that if (i, j) �= (1, 2) and i < j ≤ k, where k is the number of customers
present at time zero, the time intervals of duration X and Y during which
customers i and j, respectively, are served may each be composed of multiple
independent exponentially distributed time segments. Each of these multiple
segments is limited to only one of two possibilities, an exponential(λ+μ) seg-
ment or an exponential(μ) segment. In this more complicated situation we let
(Ti, Tj) = (X,X+Y ) as in Theorem 13.3 and apply Theorem 13.2 to find the
PDF’s of X and Y (using the procedure conv(m, n)), then let Maple handle
the sojourn time joint PDF calculation. When the second customer of interest
has an index greater than or equal to k, the sojourn time joint PDF follows
an application of Theorem 13.1 when cases exist with dependence.

Using the final case matrix C above, the associated segment distribution
matrix C ′ is

C ′ =

⎡
⎣ 1 1 0 2
1 1 2 2
1 2 2 2

⎤
⎦ ,
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where the possible elements are the same as defined in Sect. 13.6. The proba-
bility vector associated with the case matrix C is[

4

9

2

9

1

3

]
.

Using the case matrix C and the segment distribution matrix C ′, the joint
PDFs for each case are created by selecting the appropriate segments for a
given pair of customers, where the segments are identified by the Rl matrix
discussed in Sect. 13.6. Once the joint PDF’s are created for each case, they
are mixed with the probability vector to determine the sojourn time joint
PDF for covariance calculations. These calculations are coded in Maple as
the procedure kCov(X, Y, a, b, n, k). The first two arguments X and Y
are the distribution of time between arrivals, exponential(λ), and the ser-
vice time distribution, exponential(μ), respectively. They are entered in the
APPL list-of-lists format. The arguments a and b are the customers of in-
terest for the covariance calculation, where a < b. The argument n is the
number of customers processing through the system not including those
present at time zero, which is indicated by the last argument, k. There-
fore, the total number of customers processing through the system is n + k,
and a covariance calculation between any two of these customers can be
achieved with the appropriate function call. For example, the function call
kCov(ExponentialRV(1), ExponentialRV(2), 1, 2, 1, 3) calculates the
covariance between customers 1 and 2 in an M/M/1 queue with an arrival
rate λ = 1, with service time rate μ = 2, with three customers present at
time zero, and a single additional customer processes through the system.
The variance–covariance matrix for an M/M/1 queue with arrival rate λ = 1,
and service rate μ = 2, where k = 4 customers are present at time zero and
an additional n = 6 customers process through the system is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4

1
4

1
4

1
4

211
972

1579
8748

11651
78732

28553
236196

630131
6377292

4646155
57395628

• 1
2

1
2

1
2

211
486

1579
4374

11651
39366

28553
118098

630131
3188646

4646155
28697814

• • 3
4

3
4

211
324

1579
2916

11651
26244

28553
78732

630131
2125764

4646155
19131876

• • • 1 211
243

1579
2187

11651
19683

28553
59049

630131
1594323

4646155
14348907

• • • • 37289
26244

271153
236196

1966777
2125764

1588153
2125764

34755203
57395628

763875281
1549681956

• • • • • 1629655
1062882

11663887
9565938

9353743
9565938

203800469
258280326

4465399991
6973568802

• • • • • • 263490131
172186884

208262483
172186884

4506205633
4649045868

98323535707
125524238436

• • • • • • • 63939878
43046721

1359189250
1162261467

29402061622
31381059609

• • • • • • • • 179260456277
125524238436

379721786263
3389154437772

• • • • • • • • • 62708955663745
45753584909922

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Unlike the previous variance–covariance matrices, some row elements, in par-
ticular those elements associated with customers that are initially present, do
not decrease monotonically. To explain these entries, consider Theorem 13.4.
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Theorem 13.4. If X1, X2, . . . , Xn are iid exponential(μ) random variables
and

Ts =

s∑
r=1

Xr s = 1, 2, . . . , n,

then Var[Ti] = Cov(Ti, Tl), 0 < i < l ≤ n.

Proof. Note that E[Tk] = k/μ for k = 1, 2, . . . , n and that Ti and Xr are
independent for 1 ≤ i < r ≤ n.

Cov(Ti, Tl) = E

[(
Ti − i

μ

)(
Tl − l

μ

)]

= E

[(
Ti − i

μ

){(
Ti − i

μ

)
+

l∑
r=i+1

(
Xr − 1

μ

)}]

= E

[(
Ti − i

μ

)2]
+ E

[
l∑

r=i+1

{(
Ti − i

μ

)(
Xr − 1

μ

)}]

= Var [Ti] +

l∑
r=i+1

E

[
Ti − i

μ

]
E

[
Xr − 1

μ

]

= Var [Ti] ,

which completes the proof. �

We can apply Theorem 13.4 to those customer pairs where both indices
i, j ≤ k. Therefore, the entries in the variance–covariance matrix for customer
pairs (1, 2), (1, 3), and (1, 4) are

Var [T1] = Cov(T1, T2) = Cov(T1, T3) = Cov(T1, T4) =
1

4
.

Likewise, for the customer pairs (2, 3) and (2, 4)

Var [T2] = Cov(T2, T3) = Cov(T2, T4) =
1

2
.

Furthermore, it can be shown in general that

Var [Ti] = Cov(Ti, Tj) =
i

μ2

for i < j ≤ k, where k customers are present at time zero. For example,
consider a single-server box office with exponential(μ) service times which
will be offering tickets to a popular concert the next day. If 1000 customers,
each buying one ticket, camp out the night before determined to get the best
seats for the concert, these k = 1000 customers are present at time zero
and therefore we can pre-determine the covariance between any two of the
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customers. Additionally, Theorem 13.4 presents the counter-intuitive result
that Cov(T1, T2) = Cov(T1, T1000). The correlation decreases with increasing
lag, however, as expected due to the diminishing effect of the intermediate
customer sojourn times reflected in the denominator of the defining formula
of the correlation.

Previous transient analysis results for the M/M/1 and M/M/s queues
have been combined with the functionality of the Maple computational engine
(and subsequently APPL) to develop both symbolic and numeric exact sojourn
time PDFs that can be manipulated to compute and study various measures of
performance. A complete variance–covariance matrix for the first n = 10 cus-
tomers and varying traffic intensity is calculated, illustrating this approach’s
ability to determine the joint PDF between two customer sojourn times. The
results offer a framework for describing how the well-known M/M/s queue
steady-state results occur as the queue progresses toward steady-state. When
possible, results are checked against corresponding discrete-event simulation
and/or previous literature. The first principles derivation suggests a viable
alternative for future research would be to apply the approaches provided in
this work to a G/G/1 queue. Computational considerations take priority as
n increases. Making use of other computational formulae (such as Hagwood
[43]) may offer significant time savings and is another interesting avenue for
future work.



14

Bayesian Applications

This chapter considers Bayesian applications of APPL. Section 14.1 introduces
Bayesian statistics and motivates the use of a computer algebra system to
derive posterior distributions. Section 14.2 develops algorithms in the case of
a single unknown parameter. Section 14.3 develops algorithms in the case of
multiple unknown parameters.

14.1 Introduction

Interest in Bayesian statistics has increased rapidly over the past few decades.
In response to the increased interest, a variety of software packages have been
developed in order to facilitate applied statistical analysis. These software
packages, however, use numerical techniques implemented in languages such
as R, Stan, and WinBUGS to produce discrete approximations of posterior
distributions. Currently, no program automates the derivation of exact closed-
form posterior distributions. These derivations must either be accomplished
by hand, which is often intractable, or approximated through simulation. The
computer implementations of Bayesian statistics have made it possible for
practitioners of statistics to apply Bayesian methods in more complex settings.
The growing popularity of Bayesian statistics has led to a proliferation of
software packages capable of performing applied statistical analysis within
the Bayesian framework.

In this chapter, we present software capable of automating the derivation of
exact posterior distributions. Specifically, we extend APPL to include a num-
ber of procedures that integrate Bayesian methods into APPL. The Bayesian
procedures developed here allow users to conduct inference on single- and
multi-parameter distributions, derive posterior predictive distributions and
derive Jeffrey’s priors. By automating the application of Bayes’ rule, APPL
both serves as a time saving device and a tool for theoretical exploration.

© Springer International Publishing AG 2017
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Bayesian computer applications have largely remained confined to numer-
ical tools written in languages, such as R, Stan, and WinBUGS. While ideal
for performing one-time computations within the context of applied statistical
analysis, these software packages lack the symbolic manipulation capabilities
present in computer algebra systems, such as Maple and Mathematica. Due to
underutilization of computer algebra systems, a gap exists within the field of
computational Bayesian statistics. Specifically, no software package currently
has the ability to automate Bayesian inference on random variables, with the
goal of producing the entire probability density function as its output, espe-
cially in the case of multi-parameter distributions.

This chapter presents a remedy for this problem in the form of software
that produces posterior PDFs in closed-form. In particular, we outline the
software suite APPLBayes, a Bayesian extension to APPL. Working in con-
junction with existing APPL procedures, APPLBayes automates the appli-
cation of Bayes’ Theorem to random variables. At a practical level, these
automated manipulations serve two primary purposes. First, they save time
by eliminating the need to undergo mathematically tedious derivations. This
saves time and allows for checking hand-derived results against the results
produced by APPLBayes. Second, APPLBayes provides a tool for experimen-
tation to solve time-consuming problems quickly. Moreover, it eliminates the
need to rely on conjugate prior relationships. Even within the context of an
introductory statistics course, APPLBayes gives students the ability to ex-
periment with ad hoc prior distributions, thus allowing students to develop a
deeper appreciation of theoretical concepts.

The procedures in APPLBayes fall broadly into two categories: Bayesian
inference on single and multi-parameter models. This chapter will treat each of
these categories in turn, and then present some avenues for further theoretical
exploration that APPLBayes has already opened.

The literature contains only a few attempts to apply computational meth-
ods in order to derive closed-form posterior PDFs. Cook and Broehmling [18]
present several Bayesian applications using Mathematica. Their code, how-
ever, is not reusable. They make no attempt to automate the ad hoc Bayesian
procedures that they present in their article. APPLBayes, on the other hand,
consists of automated procedures that can be readily applied to complex mod-
els without abstruse coding. Jaakkola and Jordan [54], on the other hand,
present reusable code capable of producing closed-form posterior PDFs for
logistic regression. Their algorithm, however, depends on producing normal
approximations to the likelihood function. As such, they remain limited to
the use of normal prior distributions. APPLBayes allows for greater flexibility
than Jaakkola and Jordan’s approximations because it produces exact closed-
form PDFs without remaining constrained to conjugate prior relationships.
Given these improvements over current systems, APPLBayes represents an
advance in the field of computational Bayesian statistics.
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14.2 Bayesian Inference on Single-Parameter
Distributions

Bayesian inference on single-parameter distributions represents the simplest
class of problems within Bayesian statistics. Due to their relative simplicity,
introductory Bayesian courses typically use problems of inference on one vari-
able as a means to motivate the theoretical basis for Bayesian statistics. A
typical problem that would appear in a Bayesian statistics textbook would
generally take the following form: given a likelihood function, f(x|θ), a prior
distribution of a single unknown parameter θ, g(θ), and a data set, derive the
posterior distribution g(θ|x). APPLBayes has the capability of automating
the solution to these simple problems. Consider the following example.

Example 14.1. Suppose we conduct a series of experiments, each con-
sisting of 12 Bernoulli trials (where 1 denotes a success and 0 denotes
a failure). Further suppose that the likelihood function takes the form
of a binomial(12, θ) random variable, where θ is an unknown parame-
ter satisfying 0 < θ < 1. Assuming a beta( 12 ,

1
2 ) prior distribution on

the parameter θ, and an observed data vector x = [5, 6, 3, 2, 5], derive
the posterior distribution of the parameter θ.

APPLBayes can accomplish this derivation using the following com-
mands.

> X := BinomialRV(12, theta);

> Y := BetaRV(1 / 2, 1 / 2);

> data := [5, 6, 3, 2, 5];

> P := Posterior(X, Y, data, theta);

This APPLBayes code returns a beta(39, 21) random variable as the
distribution of the random variable P . Notice that the posterior dis-
tribution in this case is in the same class of distributions as the prior
distribution. Bayesians call this relationship between the prior and
posterior distribution a conjugate prior relationship. Problems that
use conjugate prior relationships abound in introductory textbooks
because of their mathematical simplicity. To understand why, we em-
ploy Bayes’ Theorem, which is typically written as

g(θ|x) = f(x|θ) · g(θ)∫∞
−∞ f(x|θ) · g(θ) dθ .

Notice that the numerator requires just multiplication. Evaluating
the integral in the denominator, however, can become rather compli-
cated. Using conjugate prior relationships eases the burden of deriving
posterior distributions because the posterior distribution falls in the
same class of distributions as the prior. As such, the normalizing con-
stant for the posterior distribution can be easily found through pattern



280 14 Bayesian Applications

matching. In this example, for instance, we recognize the normalizing

constant of a beta(39, 21) random variable as the number Γ(39+21)
Γ(39)Γ(21) .

Thus, introductory Bayesian statistics students can derive a posterior
distribution without ever evaluating a complex integral.

Not everyone, however, will choose the beta distribution as a prior for the
binomial distribution. Any probability distribution with support (0, 1), in fact,
could classify our prior beliefs about the parameter. This disillusionment with
an arbitrary choice of prior distributions may even lead to preferring classical
methods, without ever giving Bayesian methods a fair chance. APPLBayes
helps by eliminating the need to rely on conjugate priors. APPLBayes, in
fact, makes deriving posterior distributions with ad hoc priors as simple as
deriving posteriors with conjugate priors. Consider Example 14.1. Instead of
a beta( 12 ,

1
2 ) prior, suppose that we place a triangular(0, 1

2 , 1) prior on the
parameter θ. Such a problem would never appear in an introductory Bayesian
text. Not only does the posterior not fall into a known conjugate prior re-
lationship, but obtaining the normalizing constant also requires integration
over a piecewise function. Nevertheless, APPLBayes can solve this problem
with the same amount of effort as in the conjugate prior case. The following
APPLBayes commands can be used to derive the posterior distribution.

> X := BinomialRV(12, theta);

> Y := TriangularRV(0, 1 / 2, 1);

> data := [5, 6, 3, 2, 5];

> P := Posterior(X, Y, data, theta);

The resulting posterior distribution is a piece-wise distribution, which ap-
pears as

g(θ|x) =
{− 543985284099935107948831513667174400

395821499369962291 θ22 (θ − 1)39 0 ≤ θ ≤ 1
2

543985284099935107948831513667174400
395821499369962291 θ21 (θ − 1)40 1

2 ≤ θ ≤ 1.

As illustrated, the APPLBayes software allows experimentation with a wider
range of possibilities within Bayesian statistics than is currently possible.

Along with the derivation of posterior distributions, additional function-
alities provided by APPLBayes allows solution of follow-on problems related
to the posterior distribution. Consider our modification to Example 14.1 pre-
sented above. Given a data set, a binomial likelihood function, and a tri-
angular prior, APPLBayes computed a posterior distribution describing our
updated belief about the parameter θ. Another typical problem in a Bayesian
statistics textbook may ask a student to conduct statistical inference on the
parameter, given this posterior distribution. For instance, suppose we wish
to test the null hypothesis H0 : θ = 1/2 versus the alternative hypothesis
H1 : θ > 1/2. The APPL command SF(X, x) computes the survivor func-
tion of a random variable, and allows us to calculate the probability that θ
is greater than 1/2 based on its posterior distribution. APPL can likewise
compute the left-tail probability using an analogous command, CDF(X,x).
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The additional APPLBayes statement that calculates the floating-point rep-
resentation of the probability that θ exceeds 1/2 is

> prob := evalf(SF(P, 1 / 2));

The result of this code is Pr(θ > 1
2 |x) = 0.013775, which allows us to reject

or fail to reject the null hypothesis, depending on the confidence level α.
Similarly, a Bayesian credible set is calculated with the APPLBayes

CredibleSet(X, alpha) procedure, which constructs a Bayesian credible set
with confidence level α. APPLBayes can construct the Bayesian credible set
with the additional statement

> CS := CredibleSet(P, 0.05);

The APPLBayes output gives the 95% Bayesian credible set [0.2517, 0.3149].
These examples show how APPLBayes can be used to conduct inference on a
parameter using an ad hoc prior, using only a few simple lines of code. In so
doing, APPLBayes allows solution of a much broader range of problems than
was previously possible.

Another typical problem presented to introductory students in Bayesian
statistics involves the derivation of posterior predictive distributions, which
shows the distribution of the (n + 1)th observation, given a vector of n ob-
servations. Again, the problems within grasp of introductory students remain
confined to distributions that demonstrate a conjugate prior relationship. In
order to see why, consider the following example.

Example 14.2. Suppose we are observing a process that is described
by a Poisson(θ) likelihood, a gamma(2, 5) prior distribution on the
parameter θ, and a single observation: x = 5. Derive the posterior
predictive distribution of y, the next observation.

APPLBayes can compute the posterior predictive distribution with
the following commands.

> X := PoissonRV(theta);

> Y := GammaRV(2, 5);

> data := [5];

> PP := PosteriorPredictive(X, Y, data, theta);

The resulting APPLBayes output shows that the posterior predictive
distribution is

f(y|x) = 729

4697620490
4−y(y + 1)(y + 2) . . . (y + 9) y > 0.

In the case of posterior predictive distributions, it is less clear that this
solution relies on the conjugate prior relationship. In order to clarify
the nature of this dependence, it is useful to derive the posterior pre-
dictive distribution. In this case, the posterior predictive distribution
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can be derived as follows from the definition of the posterior predic-
tive, which states that f(y|x) = ∫∞−∞ g(θ|x) · f(y|θ) dθ. The likelihood
function is

f(x = 5|θ) = θ5e−θ

5!
θ > 0,

and the prior distribution is

g(θ) =
25

Γ(5)
θ4e−2θ =

4

3
θ4e−2θ θ > 0.

The posterior distribution is derived as

f(x = 5|θ)g(θ) =
(
θ5e−θ

5!
· 4
3
θ4e−2θ

)
∝ e−3θθ9

g(θ|x = 5) =
f(x = 5|θ)g(θ)∫∞

0
f(x = 5|θ)g(θ)dθ =

310

Γ(10)
e−3θθ9 θ > 0.

The posterior predictive distribution is

f(y|x = 5) =

∫ ∞

0

g(θ|x = 5) · f(y|θ)dθ

=

∫ ∞

0

310

Γ(10)
e−3θθ9 · θ

ye−θ

y!
dθ

=
310

Γ(10)y!

∫ ∞

0

e−3θθ9θye−θ dθ

=
310

Γ(10)y!

∫ ∞

0

θ9+ye−4θ dθ

=
310

Γ(10)y!
· Γ(10 + y)

410+y

∫ ∞

0

410+y

Γ(10 + y)
e−4θθ9+y dθ

=
310

Γ(10)y!
· Γ(10 + y)

410+y
y = 0, 1, 2, . . . .

Note that, although the posterior predictive distribution derived above
takes a different form than the posterior predictive derived by APPLBayes,
they are in fact the same distribution. A simple check in Maple shows that

310

Γ(10)·410 = 729
4697620490 , the constant produced by APPLBayes, while the iden-

tity Γ(10+y) = (y+9)(y+8) . . . 1 proceeds directly from the definition of the
gamma function. Notice that, unlike the posterior distribution, the resulting
posterior predictive distribution does not fall in the same class of distributions
as the prior. However, the conjugate prior relationship also made the deriva-
tion of the posterior predictive easier by eliminating the integral

∫∞
0

e−4θθ9+y.
Since this takes the form of the gamma distribution, we can avoid evaluating

the integral by multiplying the inside of the integral by 410+y

Γ(10+y) , the constant



14.2 Bayesian Inference on Single-Parameter Distributions 283

that normalizes the gamma distribution, and the outside of the integral by its
inverse. By doing this, the integral simply evaluates to one and the function

remains unchanged, because multiplying the function by 410+y

Γ(10+y) · Γ(10+y)
410+y is

equivalent to multiplying the function by one. As with posterior distributions,
introductory Bayesian statistics textbooks remain confined to addressing the
derivation of posterior predictive distributions in which conjugate prior rela-
tionships holds. Again, with APPLBayes we can eliminate the need to use
conjugate prior relationships with no additional effort. Considering Exam-
ple 14.2, assume that, instead of a gamma prior, we instead wish to place a
N
(
1/2, (1/2)2

)
prior distribution on the parameter θ. APPLBayes can accom-

plish this derivation using the following code:

> X := PoissonRV(theta);

> N := NormalRV(1 / 2, 1 / 2);

> data := [5];

> PP := PosteriorPredictive(X, N, data, theta);

This APPL code calculates the posterior predictive distribution as

f(y|x = 5) =
−16
(
e−1/8(y + 4)(y + 2)

√
2
(
(−1)y − 1

)
2−3y/2

)
281Γ(y/2 + 1/2)

y > 0.

Deriving this distribution by hand would be very tedious due to the lack
of a conjugate prior relationship. Nevertheless APPLBayes has the ability to
produce a closed-form posterior predictive distribution, even in this relatively
complex case, with no more effort than it requires for the posterior predictive
distribution in the simple case using conjugate priors. This presents an op-
portunity for fruitful theoretical exploration. Specifically, posterior predictive
distributions using ad hoc distributions can be compared to their conjugate
prior counterparts in order to determine which makes better predictions re-
garding the next observation in the data set. If the ad hoc prior performs
better, then it makes little sense to remain constrained by the use of conju-
gate prior relationships.

In the case of single-parameter distributions, APPLBayes also has a func-
tion that can automatically derive Jeffrey’s priors, which are uninformed priors
that are invariate under reparameterizations of the distribution. For distribu-
tions with one parameter, Jeffrey’s priors can be found using

g(θ) =

√√√√E

[
d ln
(
f(x|θ))
dθ

]
.

This function is useful because it allows users to check posterior distributions
produced using informed priors against a result using a non-informed prior.
APPLBayes has the ability to produce Jeffrey’s priors for both likelihood func-
tions with well-known Jeffrey’s priors, as well as ad hoc likelihood functions.
An an example, consider a Poisson likelihood function. The Jeffrey’s prior
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for this likelihood function can be found by using the following APPLBayes
commands.

> X := PoissonRV(lambda);

> J := Jeffreys(X, 0, infinity, lambda);

The output of these APPLBayes commands shows that the Jeffrey’s prior
for the Poisson distribution is g(λ) = 1/

√
λ for λ > 0, consistent with the

well-known analytic result.
Using these Bayesian procedures, APPLBayes provides greater flexibility

in using ad hoc prior distributions for inference on a single parameter. This has
the potential not only to aid students in the exploration of Bayesian concepts,
but also to open the door to theoretical experimentation.

Theoretical Explorations Using APPLBayes. So far, it may appear as
though APPLBayes is only useful in solving simple, introductory level prob-
lems in the single-parameter case. However, the computer algebra capabilities
inherent in APPLBayes have already facilitated important theoretical explo-
ration.

APPLBayes, for instance, can be used to compare the effect of using dif-
ferent prior distributions. Using previous software, such comparisons would
have required an extraordinary amount of coding. The reusable APPLBayes
code makes such comparisons simple to implement. For example, suppose we
have observed a data vector x = [2, 3, 2, 5, 6]. We posit that this data has
been drawn from a N

(
μ, 22
)
distribution, and would like to estimate the un-

known parameter μ. Under the typical Bayesian paradigm, the choice of prior
distributions would be limited to either conjugate or uninformed priors. Here
we will evaluate the effect of using two ad hoc, but nevertheless reasonable
prior distributions, the Laplace and triangular distributions. Of these two
distributions, the triangular is particularly interesting because it provides a
compromise between an uninformed and a well informed prior. In spite of its
utility, the use of the triangular distribution as a prior is notably absent from
the literature.

We can set up our experiment using the following APPLBayes commands
for each prior distribution.

> X := NormalRV(mu, 2);

> data := [2, 3, 2, 5, 6];

> Y1 := NormalRV(2, 2);

> B1 := BayesUpdate(X, Y1, data, mu);

These commands produce the following posterior distributions as output. For
the normal prior distribution, the posterior distribution is

g(μ|x) =
√
3 e−3μ2/4+5μ−47/5

2
√
π e−16/15

−∞ < μ < ∞.
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For the uniform prior distribution, the posterior distribution is

g(μ|x) =
√
10 e−5μ2/8+9μ/2−9

√
πe−9/10

(
erf
(
17
√
10/5
)
+ erf
(
8
√
10/5
)) − 10 < μ < 10.

For the Laplace prior distribution, the posterior distribution is

g(μ|x) = e−
1
2 |μ−2|−5μ2/8+9μ/2−163

√
10/16

√
π
(
e−

19
16 + e−

223
80 − erf

(√
10/2
)
e−

19
16 + erf

(
3
√
10/10
)
e−

223
80

)
on the support −∞ < μ < ∞. For the triangular prior distribution, the
posterior distribution is

g(μ|x) =
{
14.83 (0.0164μ+ 0.164) e−0.625μ2+4.5μ−9.75 −10 ≤ μ ≤ 2

14.83 (2.456− 0.02456μ) e−0.625μ2+4.5μ−9.75 2 ≤ μ ≤ 10.

Note that the posterior distribution for the triangular prior is displayed using
floating point rather than exact numbers. The PDF using exact values covers
several pages. With these functions in hand, we can plot the posterior distri-
butions in order to visualize how the choice of prior distribution affects the
posterior. A plot of the various prior distributions appears in Fig. 14.1. A plot
of the corresponding posterior distributions appears in Fig. 14.2. Using AP-
PLBayes, it is not only possible to use ad hoc priors such as the Laplace and

Fig. 14.1. Prior distributions for four parametric distributions
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Fig. 14.2. Posterior distributions for four parametric prior distributions

triangular distributions. It is also possible to show visually how the posterior
distribution changes with the choice of priors. Thus, APPLBayes serves as an
excellent tool for investigating the impact of using various prior distributions.

Along with comparisons, APPLBayes also simplifies theoretical explo-
rations. For example, we can use APPLBayes to confirm that the posterior
distribution of the μ parameter in a normal distribution with a uniform prior
follows a truncated normal distribution. Using the following APPL commands,
we can derive the PDF of a N

(
18/5, (2

√
5/5)2
)
distribution truncated be-

tween −10 and 10:

> N := NormalRV(18 / 5, (2 / 5) * sqrt(5));

> N2 := Truncate(N, -10, 10);

The output of these APPLBayes statements shows that this truncated nor-
mal has PDF c · exp(−(5x − 18)2/40) for −10 < x < 10, where c is a nor-
malizing constant. Completing the square shows that exp(−(5x− 18)2/40) =
exp(−5x2/8 + 9x/2 − 9), or the same distribution that we found as the pos-
terior for μ using the uniform prior. As such, we can use APPLBayes to show
that the posterior distribution for μ with a uniform prior follows a truncated
normal distribution.

Leaving the parameters of the Laplace distribution unspecified, we can use
APPLBayes to derive a closed-form solution to the posterior distribution for
μ with a Laplace prior. This derivation, which otherwise is quite complicated,
can be accomplished using three lines of code in APPLBayes.
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> X := NormalRV(mu, sigma);

> Y := LaPlaceRV(a, b);

> B := BayesUpdate(X, Y, [x], mu);

The APPLBayes output shows that if we have a N(μ, σ 2) likelihood function,
a Laplace(a, b) prior distribution, and a data observation x, then the posterior
distribution takes the form

g(μ|x) = 2e−(|−μ+b|σ2+ax2−2axμ+aμ2)/(aσ2)/
[√

πσe(−σ2+4ab+4xa)/(4a2)·(
−e2x/a − e2b/a − erf

(
2ab−2xa−σ2

2aσ

)
e2x/a + erf

(
2ab−2xa−σ2

2aσ

)
e2b/a
)]

for σ > 0, b > 0, and −∞ < μ < ∞. This closed-form solution, which does not
appear to exist anywhere in the literature despite the potential usefulness of
the Laplace as a prior distribution for μ, can be calculated using APPLBayes
with minimal effort. Similar code shows if we have a Binomial(n, p) likelihood
function—where p is the unknown parameter and n is a positive integer—
and a Triangular(0, b, 1) prior distribution with 0 < b < 1, then the posterior
distribution for p is

g(p|x) =

⎧
⎪⎪⎨

⎪⎪⎩

2p(n!)(px)(1−p)n−x

b(n−x)!x!

(
n!bpx(1−p)n−x

(n−x)!x!
+

px(1−p)n−xn!(1−b2)
(b−1)(n−x)!x!

− 2px(1−p)n−xn!(1−b)
(b−1)(n−x)!x!

) 0 ≤ p ≤ b

2(p−1)px(1−p)n−x

b(n−x)!x!

(
n!bpx(1−p)n−x

(n−x)!x!
+

px(1−p)n−xn!(1−b2)
(b−1)(n−x)!x!

− 2px(1−p)n−xn!(1−b)
(b−1)(n−x)!x!

) b ≤ p ≤ 1.

The ability of APPLBayes to produce generalized closed-form posterior dis-
tributions with ad hoc priors highlights the program’s theoretical usefulness.
These examples represent a small portion of what has been accomplished so
far using APPLBayes. As these examples demonstrate, leveraging the com-
puter algebra capabilities of APPLBayes makes fruitful theoretical exploration
a relatively simple matter.

14.3 Bayesian Inference on Multiple-Parameter
Distributions

As demonstrated in the previous section, deriving posterior distributions using
Bayesian methods quickly becomes intractable when we deviate from the use
of conjugate prior distributions, even in the single-parameter case. This prob-
lem compounds rapidly when we enter the realm of distributions with multiple
parameters. To understand why, we can begin by discussing two-parameter
distributions. For a distribution with two parameters, Bayes’ Theorem be-
comes

g(θ1, θ2|x) = f(x|θ1, θ2) · g(θ1, θ2)∫∞
−∞
∫∞
−∞ f(x|θ1, θ2) · g(θ1, θ2) dθ1 dθ2

.
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This relationship differs from Bayes’ Theorem for single-parameter distribu-
tions in two important ways. First, the multiple-parameter case requires a joint
prior distribution, g(θ1, θ2). Second, it requires the evaluation of a double inte-
gral. The multiple-parameter case, in fact, requires one iterated integration for
each parameter in the distribution. As we saw in the previous sections, these
integrals are typically rather difficult to evaluate. Thus, for Bayesians seek-
ing a closed-form posterior distribution, the dependence on conjugate priors
becomes even stronger in the multiple-parameter case.

Bayesians have several methods for dealing with this complication. When
conducting applied statistical analysis, Bayesians depend on Markov Chain
Monte Carlo (MCMC) methods. Without delving into too much detail,
MCMC methods essentially simulate the prior distribution and the likeli-
hood function, and use the data points gathered from this simulation in order
to construct a discrete approximation to the posterior distribution. While
ideal for one-time use in statistical analysis, since the simulations depend
on pseudo-random number generators, the posterior distributions that result
from MCMC are different after each run. As such, it is difficult to use these
results for theoretical experimentation. Moreover, MCMC simulations fail to
produce closed-form posterior distributions; the output of MCMC is essen-
tially a matrix of probabilities.

Several attempts have been made to devise methods capable of producing
closed-form posterior distributions in the multiple-parameter case. Jaakkola
and Jordan [54] present a method capable of producing approximate closed-
form distributions of the posterior for logistic regression. In order to ac-
complishes this, Jaakkola and Jordan utilize variational methods. Variational
methods attempt to find a normal approximation to the posterior distribution
using computational optimization techniques to minimize the difference be-
tween the true posterior distribution and the Gaussian approximation. This
method, however, has limitations. First, in some cases, normal distributions
provide a poor approximation to the logit model. Second, the method only
applies to logistic regression, whereas a more general method would be prefer-
able. Finally, because of the reliance on a normal approximation to the logit
curve, closed-form posterior distributions can only be found when normal prior
distributions are used.

APPLBayes, on the other hand, contains an algorithm capable of pro-
ducing approximate closed-form marginal distributions for each parameter
in a multiple-parameter distribution without depending on conjugate priors.
The algorithm works by holding all but one parameter constant, conduct-
ing Bayesian inference on that parameter, and then doing the same for the
remaining parameters. We then iterate this process until the posterior dis-
tributions converge to a final solution. This process results in increasingly
better approximations of the marginal distribution for this parameter. Un-
der the assumption of independence, these approximations converge to the
true marginal posterior distribution for each parameter. This section will de-
scribe this algorithm, the cases under which the algorithm produces good
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approximations to the marginal distributions for each parameter, potential is-
sues with the algorithm, as well as its some interesting avenues of theoretical
exploration that it has already opened.

Assumptions. In order for the algorithm to produce marginal posterior dis-
tributions for the parameters in a multiple-parameter likelihood function, we
must make several assumptions concerning the parameters, their interdepen-
dence, and the shape of the posterior distribution. In order to simplify the
notation, we will present these assumptions here in the two-parameter case.
First, we assume that in the joint prior distribution, g(θ1, θ2), the parame-
ters θ1 and θ2 are independent. By the definition of independence, this allows
us to write the prior distribution as g(θ1, θ2) = g1(θ1) · g2(θ2). This assump-
tion serves two purposes. First, APPL’s data structure currently only treats
single-variable distributions. As such, including joint prior distributions would
require significant modifications to the underlying structure of APPL. Second,
since the posterior distributions must be independent for the conditional dis-
tributions that the algorithm produces to equal the marginal distributions
for each parameter, the prior distributions must be independent as well. Sec-
ond, we must assume that the parameters are independent a posteriori. That
is, the value of each parameter cannot have any effect on the value of the
other parameters. This allows us to use our method to compute marginal dis-
tributions, rather than simply computing conditional approximations to the
marginal distributions. Under the independence assumption, the conditional
distribution g(θ1|x, θ̂2) is the same as the marginal distribution g(θ1|x). This
follows directly from the definition of statistical independence.

Along with these assumptions regarding the independence of the parame-
ters, we must also assume that the resulting posterior distributions are convex.
This is necessary in order for the iterating mechanism of the algorithm to con-
verge on the correct conditional distribution. This assumption should hold in
the vast majority of cases, especially given a large data vector. Well-known
results in Bayesian theory show that the posterior distribution is asymptot-
ically normal under a relatively broad class of conditions (see, for example,
Ghosal et al. [36]). This is a stricter condition than convexity, which tends to
hold even for small data vectors.

Before proceeding to describe the algorithm, it is useful to see how these
assumptions allow us to produce an exact marginal distribution. We begin by
repeating Bayes’ Theorem in the two-parameter case:

g(θ1, θ2|x) = f(x|θ1, θ2) · g(θ1, θ2)∫∞
−∞
∫∞
−∞ f(x|θ1, θ2) · g(θ1, θ2) dθ1 dθ2

.

Assuming independence of the parameters in the prior distributions, we can
rewrite Bayes’ Theorem as

g(θ1, θ2|x) = f(x|θ1, θ2) · g1(θ1) · g2(θ2)∫∞
−∞
∫∞
−∞ f(x|θ1, θ2) · g1(θ1) · g2(θ2) dθ1 dθ2

.
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Convexity guarantees that the algorithm will find the most likely conditional
distribution, given a likelihood function, a data vector, and a set of prior distri-
butions. Suppose that we have used our algorithm to find such a distribution
for the first parameter. The relationship now becomes

g(θ1|x, θ̂2) = f(x|θ1, θ̂2) · g1(θ1)∫∞
−∞ f(x|θ1, θ̂2) · g1(θ1) dθ1

.

The integral in the denominator in this case reduces to a single integral.
This can either be evaluated symbolically or numerically. In either case, find-
ing the conditional distribution g(θ1|x, θ̂2) now reduces to a computational
problem. Now, under the assumption of independence in the parameters in
the posterior distribution, it follows from the definition of independence that
g(θ1|x, θ̂2) = g(θ1|x), the marginal distribution of the parameter θ1. In this
manner, the algorithm is capable of producing marginal posterior distributions
for each parameter in a multiple-parameter likelihood function.

The Algorithm. With these assumptions in place, we can now proceed to
describe the steps that the algorithm uses to produce marginal distributions
for each parameter. First, the algorithm requires as arguments the likelihood
function, a list of marginal prior distributions, a list of unknown parameters,
a data vector, a list of variables in the likelihood function, a list of initial guess
values for the parameters and a level of precision. Written in APPL, the call
sequence for the procedure is

> PosteriorMV(X, data, PriorList, paramList,

> variables, guess, precision);

The likelihood function is input as a random variable using APPL’s random
variable data structure. Data is entered as a list-of-sublists. One data vector
is required for each variable in the likelihood function. While typically a like-
lihood function may only contain one variable, for instance an x variable, this
becomes important when the algorithm is used for regression. In this case, the
likelihood function may contain several variables, such as y, x1, x2, etc. The
list of marginal priors is entered as a list of random variables in the APPL
random variable format. The list of parameters, variables, and the initial guess
for each parameter are entered as a list. The number of elements in the initial
guess list, however, must equal the number of elements in the unknown pa-
rameter list. In other words, there must be a single guess for each parameter.
Precision is a floating point number on [0, 1].

The Likelihood Function. The PosteriorMV algorithm begins by deriving
the likelihood function using the input data set. Here we introduce the fol-
lowing notation: f(x|θ) denotes the likelihood function of the data set, given
a vector of unknown parameters, x denotes the data set, and f(x|θ) refers to
the input likelihood function for one piece of data. This procedure requires
multiplication, using Maple’s built-in symbolic manipulator:



14.3 Bayesian Inference on Multiple-Parameter Distributions 291

f(x|θ) �→
n∏

i=1

f(xi|θ)

where n is equal to the number of observations in the data set.

Initial Approximations. After deriving the likelihood function,
PosteriorMV produces initial approximations for the marginal distribution
of each parameter, using the initial guess values provided in the call sequence.
In order to accomplish this, the algorithm substitutes the initial guess for all
but one parameter, and then conducts Bayesian updating on the resulting ap-
proximate marginal distributions. Mathematically, this step of the algorithm
appears as fapprox �→ g(θ̂i|x,θ\θi) for each θi in the parameter vector θ. These
approximations to the marginal distributions serve as the initial guesses sup-
plied to the algorithm’s iteration procedure. Note that, at this point in the
algorithm, the approximations remain un-normalized. Since normalizing the
marginal distributions is computationally expensive, it occurs only once, at
the end of the algorithm.

Iteration. After finding an initial set of approximations, the algorithm pro-
ceeds to find an increasingly better set of approximations. It accomplishes
this by repeating the fix-then-update process until the resulting distributions
cease to change. In order to determine the degree to which the approximate
distributions change after each iteration, however, we require a measure that
allows us to track how the distribution changes. The ideal measure would

be
(∫

fn+1
approx

)2 − (∫ fn
approx

)2
which would measure the area between the ap-

proximation on step n+1 and step n. However, integrals are computationally
expensive, making this approach impractical.

An alternative approach considers using the mean of the distribution. The
mean of the approximate marginal can be computed as

E
[
θ̂i

]
=

∫ ∞

−∞
fn+1
approx(θ̂i|x,θ\θi) dθi.

Again, since computing the mean also requires integration, using the mean to
measure the difference between successive approximations is not ideal.

A more fruitful option uses the mode of the distribution. Using the mode
is useful because, owing to the convexity of the marginal approximations, all
possible marginal approximations have a unique mode. The mode has the
added advantage that it avoids the need to evaluate an integral on each step
of the iteration. Several issues nevertheless arose in the initial attempts to
use the mode as the basis for measuring changes in the approximate marginal
distribution. In particular, the usual method used to compute the mode in-
volves taking the first derivative of the PDF, and then solving for its critical

point. This requires us to solve
dfn+1

approx(θ̂i)

dθi
= 0 for the critical θ̂i via Maple’s

symbolic solve function. This approach proved unsatisfactory because the
marginal distributions are only defined within the limits of the support of the
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parameter. Consider, for instance, an approximate marginal distribution for
a parameter θ that is defined for θ ≥ 0. In this case, the function describing
the approximate marginal may contain critical values for θ < 0. Using the
traditional differentiation approach, Maple sometimes returns these incorrect
critical values. Because of this, numerical methods that take an initial guess
as an input provide a better alternative. Again, the most natural choice in-
volves differentiation, and then using a numerical method, perhaps a bisection

search, to solve for θ̂i in
dfn+1

approx(θ̂i)

dθi
= 0. The limitations of Maple’s floating

point number evaluator, however, caused this approach to fail as well. Specif-
ically, in the tails of these approximate marginal distributions, solving for

θ̂i in
dfn+1

approx(θ̂i)

dθi
= 0 evaluates to a number very close to 0. Even adjusting

Maple to track floating point numbers to 50 digits, Maple has difficulty dis-
tinguishing these numbers from 0, and as a result frequently returns values
in the tail as critical values. As such, an ideal method computes the mode
without having to differentiate the approximate marginal distribution. This
can be accomplished using a golden section search, which works by evaluat-
ing the function itself until it converges to the functions highest value. Since
the approximate marginal distribution are convex functions, the golden sec-
tion search is guaranteed to accurately compute the mode of the distribution,
to a pre-specified level of precision. In consequence of these advantages, the
PosteriorMV algorithms employs a Maple implementation of the golden sec-
tion search to compute the mode of the approximate marginal distributions.
Using the golden section search has the added advantage that it requires no
calculus. This leaves open the possibility that the algorithm could be imple-
mented in a lower level language, such as C, which would substantially reduce
the algorithm’s run-time.

Using the mode as a number that uniquely characterizes each approximate
marginal distribution, the algorithm produces increasingly accurate approxi-
mations to the marginal distribution using the following steps, beginning with
a set of guesses, θ̂:

1. Fix all parameters except for θi.
2. Perform Bayesian updating to find the approximate marginal distribution

g(θi|x, θ̂).
3. Replace θ̂i ∈ θ̂ with argmaxθig(θi|x, θ̂).
4. Repeat for all θi ∈ θ.

The algorithm continues this iteration process until the guesses for each
parameter cease to change, within a pre-set level of precision. In order to
determine when to stop, the algorithm tracks the percent change in the guesses
for each parameter on each step of the iteration. The iteration process then

stops after the condition
∣∣∣ θ̂i2−θ̂i1

θ̂i1

∣∣∣ < ρ for all θi ∈ θ is met, where ρ is the

precision variable described in the call sequence.
The set of marginal distributions that the algorithm converges to does not

depend on the initial conditions provided in the algorithm’s call sequence.
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However, the iteration process does end considerably sooner if good guesses
are supplied by the user. So far, the maximum likelihood estimates for the
parameters have provided the best performance with regard to the initial
guesses. With independent or weakly dependent parameters the algorithm
tends to converge after only a handful of iterations when maximum likelihood
estimates are used as initial guesses.

Normalizing the Marginals. After completing the iteration process, the
algorithm proceeds to normalize the resulting marginal distributions. Due to
the assumption that the parameters are independent a posteriori, this can
be accomplished with a single integral. Experience has shown this integral to
be problematic, even given Maple’s symbolic manipulation capabilities, due
to the complexity of the functions that result when ad hoc, non-conjugate
prior distributions are used for the parameters. As such, numerical methods
are used to obtain the normalizing constant. This is disadvantageous insofar
as it eliminates the possibility of producing exact closed-form marginal dis-
tributions. Nevertheless, given sufficiently accurate numerical techniques, the
resulting approximate marginal will be very close to the true distribution.

Problems with this approach arise because it is difficult to perform nu-
merical integration on functions that have infinite support. This problem can
be remedied using one of two methods. First, truncated prior distributions
can be used. The use of truncated prior distributions is convenient because,
in the majority of cases, the probability density contained in the tails of the
marginal posterior distributions is negligible. As such, little information is lost
when a truncated prior is used, as long as the truncation occurs in the tail.
Actually, this highlights the usefulness of APPLBayes in this respect. Only
with the aid of software such as APPLBayes does the use of ad hoc, truncated
priors become feasible. Second, the limits of the numerical integration can be
modified when the support extends to infinity. Presently, in cases in which
infinite support poses a problem, the algorithm changes the support of the
numerical integration to a point where Maple’s floating point evaluator fails
to distinguish the value of the function g(θ̂i|x, θ̂) from zero. Since only a neg-
ligible amount of the area beneath the curve falls beyond this point, omitting
it from the integration has little effect on the result. In cases where the nu-
merical integrator fails to normalize the area under the posterior distribution
to 1, the algorithm repeats the normalization process until the area under the
curve falls between 0.999999 and 1.000001. As a practical matter, experience
has shown that using Gaussian quadrature with a sufficiently high precision
setting succeeds in producing a normalizing constant in most cases.

Output. The output of the algorithm is a list of random variables, describ-
ing a closed-form approximation to the marginal posterior distribution for
each unknown parameter in the likelihood function. Standard APPL proce-
dures can be applied to these random variables in order to construct per-
centiles, confidence intervals, and other statistical measures. The algorithm is



294 14 Bayesian Applications

capable of producing closed-form approximations to the marginal distribu-
tions for each parameter in all cases where the problem can be re-stated as
performing inference on a distribution with n unknown parameters. This not
only includes inference on distributions with unknown parameters, but also
linear regression. As such, the range of problems to which the algorithm ap-
plies is much broader than the set of APPL procedures that operates on
single-variable distributions.

Issues with the Algorithm and Theoretical Possibilities. A variety of
issues may limit the usefulness of the PosteriorMV algorithm under certain
conditions. These issues fall broadly into two categories, computational and
theoretical.

• Computational Issues: A number of computational issues have arisen
during experimentation with the algorithm. These issues relate to the man-
ner in which Maple handles floating point numbers. The first issue results
when an insufficiently high level of precision is used in the implementation
of the golden section search for finding the mode. In this case, the golden
section search finds a mode that closely approximates, but is not exactly
equal to, the mode of the intermediate approximation to the marginal
distribution. When the golden section search does not find the mode to
a sufficiently high degree of precision, the algorithm has in some cases,
failed to converge. Instead, the algorithm bifurcates between two sets of
approximations, each very close to the set of true marginal distributions.
Under ideal circumstances, the algorithm ought to converge to somewhere
between these two sets of approximations. This issue can be addressed by
increasing the precision setting on the golden section search algorithm.
Increasing the precision setting on the mode-finding procedure appears to
solve this problem in the majority of cases. An alternative approach may
be to modify the algorithm so that it recognizes when these oscillations
take place. The algorithm could then produce a final approximation that
lies in between the two sets of looser approximations. This method, how-
ever, may fail if the algorithm instead oscillates between three or more
intermediate approximations.
Second, when working with posterior distributions whose support extends
to infinity, our method of modifying the limits of integration sometimes
fails to produce an area of one under the approximate marginal distri-
butions. As outlined above, this problem has been addressed by feeding
the resulting posteriors into a loop that re-normalizes them until the area
under the distributions becomes one. In practice, using this looped re-
normalization technique, this particular computational problem has not
proven to be particularly inhibiting.

• Theoretical Issues: A host of additional theoretical issues also accom-
pany the algorithm, especially when the assumption of parameter inde-
pendence is violated. In particular, when the parameters are dependent,
even weakly dependent, the algorithm does not truly produce marginal
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distributions. Rather, it provides a heuristic technique that produces the
conditional distribution for each parameter that most closely matches the
marginal distribution. When parameter dependence is weak, the differ-
ence between the distributions that the algorithm produces and the true
marginal distributions is likely to be extremely small. It is extenuated, how-
ever, when the parameters are strongly dependent, for instance between
the parameters in a logistic regression. In the case of logistic regression,
the algorithm produces credible sets that center around the same values
found using MCMC methods, as well as classical maximum likelihood es-
timation. However, the Bayesian credible sets in these cases tend to be
somewhat narrower. In other words, the variance of the distributions pro-
duced by the algorithm may tend to underestimate the variance of the
true marginal distributions. This is difficult to establish, however, because
the exact marginal distributions are not available, making comparison im-
possible. Efforts are underway to analyze the nature of this discrepancy.
It may be possible to transform the closed-form approximations produced
by the algorithm in such a way that it better captures the variance of the
true marginal distribution.
In addition to this, an analytical proof that the algorithm converges to the
marginal distribution in cases in which parameter independence holds has
yet to be written. This area of theoretical endeavor is currently under ex-
ploration. In spite of the lack of an analytical proof of correctness, however,
in practice the algorithm appears to produce solid results for independent
parameters.

Regardless of these difficulties, the PosteriorMV represents an advance
in the field of computational Bayesian statistics, for several reasons. First,
it has produced the first set of closed-form posterior distributions for several
outstanding problems in Bayesian statistics. This includes a logistic regression
on the failure data in the O-rings on the Challenger space shuttle. Second,
because the algorithm is completely analytic, as opposed to MCMC methods,
it serves as a convenient tool for theoretical experimentation, especially on
distributions with independent parameters. For instance, with the algorithm,
it is possible to repeatedly update using the same data set. After each run of
the algorithm, the resulting posteriors can be used as the prior distributions
for the next run. Repeating this process a sufficient number of times results
in a set of degenerate distributions equal to the mean of each of the initial
posterior distributions. While it is unclear whether this is of any theoretical
interest, such experimentation would not be possible outside of the framework
of the APPLBayes software.

Example 14.3. This example illustrates the APPLBayes PosteriorMV
procedure. First, we will generate a data of n = 20 observations set
by drawing randomly from a N

(
4, 22
)
distribution. The following

Maple/APPLBayes code accomplishes this task.
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> xdata:=[];

> for i from 1 to 20 do

> xdata:=[op(xdata), NormalVariate(4, 2)];

> end do;

This produces the data vector

xdata = [4.95237218, 5.70944159, 5.4330855, 6.66171129,

3.05933919, 3.82564198, 0.6325586, 4.16359636,

2.54410626, 3.24794389, 5.1276851, 2.08433906,

2.82013433, 7.04576974, 2.4937987, 2.65766740,

4.71412016, 3.48119893, 2.5813510, 3.97188172]

Next, we assume that the likelihood function takes the form of a nor-
mal distribution, which, omitting the normalizing constant, is

f(x|μ, σ) = 1

σ
e−(x−μ)2/(2σ2) −∞ ≤ x ≤ ∞,

for μ, and σ in the parameter space {(μ, σ)| −∞ < μ < ∞, σ > 0}.
(Omitting the normalizing constant is acceptable because multiply-
ing the likelihood by a constant has no effect on the posterior dis-
tribution.) In order to apply the algorithm, we must verify that our
assumption of independent parameters is valid. The independence as-
sumption can be supported with a contour plot of the two parameters
in the likelihood function, as shown in Fig. 14.3. This can be accom-
plished using the following APPLBayes code.

> X := NormalRV(mu, sigma);

> likeFunc := simplify(Likelihood(X, [xdata], [x]);

> with(plots);

> likeContour := contourplot(likefunc, mu = 0 .. 10,

sigma = 0 .. 10, numpoints = 20000);

The lack of slope of the contour plot supports the independence
assumption on the parameters. Since it appears that our assump-
tions hold, we can now proceed to apply prior distributions to the
two unknown parameters, μ and σ. In our example, we will use an
exponential(2/7) distribution truncated between 0 and 20 as the prior
for μ and a N

(
2.3, 12

)
distribution truncated between 0 and 12 as the

prior for σ. These distributions appear in APPLBayes as

g(μ) = 0.2867 · e−.2857μ 0 ≤ μ ≤ 20

g(σ) = 0.4033 · e−.0050(10σ−23)2 0 ≤ σ ≤ 12.

In APPLBayes, we set up the priors using the following code.

> Y1 := Truncate(ExponentialRV(2 / 7), 0, 20);

> Y2 := Truncate(NormalRV(2.3, 1), 0, 12);

> PriorList := [Y1, Y2];
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Fig. 14.3. Likelihood function contours for the simulated data values

We must now produce sensible initial guesses for each parameter.
Typically, using the maximum likelihood estimators for the likelihood
function works quite effectively. In this example, we can use μ̂ = x̄
and σ̂ = s̄ as sensible initial guesses for the parameters. Note that the
output of the algorithm is independent of the initial guesses. Effective
initial guesses simply serve to limit the amount of time the algorithm
requires to converge. We can establish our initial guesses using the
following APPL commands.

> B := BootstrapRV(xdata);

> muHat := Mean(B);

> sigHat := sqrt(Variance(B));

> guess := [muHat, sigHat];

We are now ready to apply the algorithm.

> paramList := [mu, sigma];

> variables := [x];

> precision := 0.001;

> Params := PosteriorMV(X, data, PriorList, paramList,

> variables, guess, precision);
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The algorithm converges after three iterations, and produces the two
marginal posterior distributions

g(μ|x) ∼= 74494.74 · e30.5864μ−3.9986μ2−69.5891μ3

0 ≤ μ ≤ 20

and

g(σ|x) ∼= 3.9847 · 108
σ20

e−10−28(2.5001·1029σ−2+5.000·1027σ2−2.300·1028σ+2.645·1028)

for 0 ≤ σ ≤ 12. These distributions have conditional expected values
E[μ|x] = 3.825 and E[σ|x] = 1.000. Additional APPL commands
can be used in order to conduct further inference on these posterior
distributions. As mentioned above, the algorithm produces Bayesian
credible sets that are too narrow when the assumption of parameter
independence does not hold. In order to demonstrate this, we will use
the algorithm to conduct a logistic regression, using the failure data
for the O-rings in the Challenger space shuttle accident. Since the code
used to generate this example is similar to that presented above, it will
be omitted for this example. We begin with the likelihood function for
the logistic regression, which is

f(x|β0, β1) =

(
eβ0+β1x

1 + eβ0+β1x

)y
·
(
1− eβ0+β1x

1 + eβ0+β1x

)1−y

0 ≤ x ≤ 1.

A contour plot of the two parameters in the likelihood function is used
to determine whether or our assumption of independence is valid. Us-
ing the O-ring data set, this likelihood function appears in Fig. 14.4.
The pronounced slope in the contour plot indicates that the two pa-
rameters are dependent. Thus, the output of the algorithm will be
a conditional slice of the multi-parameter distribution that is nar-
rower than the true marginal distribution. In order to determine an
approximation to the marginal distribution, we will begin by apply-
ing prior distributions to each parameter. In this case, we will use an
exponential(1/8.9) distribution as a prior for the parameter β0 and
a U(−1, 1) distribution as a prior for the parameter β1. The prior
distributions are

g(β0) = (1/8.9) · e−β0/8.9 β0 > 0

and

g(β1) =
1

2
− 1 < β1 < 1.

Applying these prior distributions to the likelihood function, the al-
gorithm converges after five iterations and produces closed-form ap-
proximations to the marginal distributions for each parameter. The
resulting approximate marginal distributions take the form
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Fig. 14.4. Likelihood function contours for the O-ring data set

g(β0|x) ∼=
(
1.02 · 1060e6.89β0−76.64

)
/
[
(1 + eβ0−11.93)6(1 + eβ0−12.65)24

(1 + eβ0−12.47)6(1 + eβ0−14.46)6(1 + eβ0−12.29)6(1 + eβ0−12.11)18

(1 + eβ0−13.01)6(1 + eβ0−13.20)6(1 + eβ0−10.30)6(1 + eβ0−11.39)6

(1 + eβ0−14.09)6(1 + eβ0−9.58)6(1 + eβ0−13.56)12(1 + eβ0−14.64)6

(1 + eβ0−13.74)12(1 + eβ0−14.28)6(1 + eβ0−10.48)6
]

β0 > 0

and

g(β1|x) ∼= 2.39 · 1011e62.23+424β1/
[
(1 + e8.89+66β1)6(1 + e8.89+70β1)24

(1 + e8.89+69β1)6(1 + e8.89+80β1)6(1 + e8.89+68β1)6

(1 + e8.89+67β1)18(1 + e8.89+72β1)6(1 + e8.89+73β1)6

(1 + e8.89+57β1)6(1 + e8.89+63β1)6(1 + e8.89+78β1)6

(1 + e8.89+53β1)6(1 + e8.89+75β1)12(1 + e8.89+81β1)6

(1 + e8.89+76β1)12(1 + e8.89+79β1)6(1 + e8.89+58β1)6
]

for −1 < β1 < 1. From these distributions, we can construct 95%
Bayesian credible sets. For the intercept parameter, β0, APPL pro-
duces a 95% Bayesian credible set

8.4 < β0 < 9.2

and for the slope parameter, β1, APPL produces a 95% Bayesian
credible set

−0.19 < β1 < −0.18.



300 14 Bayesian Applications

The applications demonstrated in this chapter show how APPLBayes can
expand the current state of understanding in Bayesian statistics. Concerning
single-parameter models, it might appear that APPLBayes only has the ability
to solve elementary problems. In a sense this is true: in this case APPLBayes
primarily serves as a tool to automate the application of Bayes’ Theorem
and ease mathematical tedium. Nevertheless, APPLBayes allows users to ex-
periment with non-standard prior distributions using Maple’s symbolic ma-
nipulation capability and offer a mechanism whereby Bayesians can test the
efficacy of different prior distributions. In the realm of multiple-variable distri-
butions, APPLBayes has proven capable of solving problems that Bayesians
would have previously considered intractable. On the one hand, having closed-
form solutions to these problems may prove little more useful than discrete
approximations produced by MCMC methods. On the other hand, closed-
form solutions may provide an unparalleled opportunity for new theoretical
insights. Regardless of their usefulness, however, without APPL’s unique ran-
dom variable data structure, deriving these closed-form distributions would
be tedious. As such, APPLBayes has opened up an entirely new avenue of
computational exploration for Bayesian statisticians.



15

Other Applications

This chapter contains miscellaneous computational probability applications.
Section 15.1 concerns algorithms for calculating the probability distribution of
the longest path of a series-parallel stochastic activity network with continuous
activity durations. Section 15.2 concerns the use of APPL in determining
whether a continuous random variable obeys Benford’s law. Finally, Sect. 15.3
contains miscellaneous computational probability applications that are not
covered elsewhere in the monograph.

15.1 Stochastic Activity Networks

Project planning is typically aided by the use of activity networks, which show
precedence relationships between the various activities that constitute the
project (see Adlakha and Kulkarni [2]). An activity network is a special case
of a directed graph in which the nodes (or vertices) represent points in time
and the arcs (or edges) represent activities with time values modeling activity
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6
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Y46
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Y14

Y56

Y34

Y23

3
Y36

Fig. 15.1. A six-node, nine-arc stochastic activity network
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durations. Figure 15.1 shows an example of a stochastic activity network in
which the positive random variable Yij denotes the time to complete the
activity associated with the arc from node i to node j. The Yij ’s are assumed
to be mutually independent. Common-cause delays, e.g., rain delays on an
outdoor project, are not considered here. Activity start times are constrained
in that no activity emanating from a given node can start until all activities
that enter that node have been completed.

Notation and Assumptions. Activity networks have n nodes and m arcs,
with a single source node (labeled node 1), a single terminal node (labeled
node n), and no loops. Nodes are labeled 1, 2, . . . , n in topological order as
defined by Laplante [67] so that if there is an arc aij from node i to node j,
then i is less than j. Thus the nodes along each path occur in ascending order.

For each node j, the “backward” set B(j) is the set of all nodes that are
immediately before node j on some path, that is, B(j) is the set of all nodes i
for which there is an arc from i to j. Similarly, for each node j, the “forward”
set A(j) is the set of all nodes that are immediately after node j on some
path, that is, A(j) is the set of all nodes k for which there is an arc from j
to k.

For each arc aij , there is a continuous random activity duration Yij with
positive support. The distribution of Yij is represented by its CDF FYij

(t) or
its PDF fYij

(t). For each node j there is a random time value Tj , which is
the time of completion of all activities entering node j. The quantity Tn is
therefore the time of completion of the entire network. Shier [108, pages 122–
123] gives an example of an activity network with discrete activity durations.

For each network, there will typically be several paths leading from node 1
to node n. Let M be the set of all paths, with the paths labeled π1, π2, . . . , πr,
where r = |M | is the number of paths. A path may be viewed as an ordered
set of arcs leading in succession from node 1 to node n. The length of path
πk, denoted Lk, is the sum of all Yij corresponding to the arcs aij ∈ πk.

For each realization of a stochastic network, the critical path πc is the path
with the greatest length, Lc = max{L1, L2, . . . , Lr}. The length of the critical
path determines the time to complete the entire network. For a stochastic
network, a path in M is the critical path with some probability p(πk) =
Pr(Lk = Lc), k = 1, 2, . . . , r. Some arcs may be along more than one path.
The probability that arc aij is along the critical path, also called the arc’s
criticality, denoted by ρij , is the sum of all p(πk) where aij ∈ πk. The criticality
of arc aij can be calculated by

ρij =

r∑
k=1

p(πk)δ
k
ij ,

where δkij is 1 if aij ∈ πk and 0 otherwise.

Matrix Representation of a Network. The first step in building a model
is defining a mathematical representation of a network. Matrices are well
suited for this task because (a) each node and arc in the network can be
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designated by using the rows and columns of a matrix, and (b) matrices are
easily instantiated in most computer languages. A node-arc incidence matrix
was chosen due to its suitability for the algorithms developed here.

The node-arc incidence matrix associated with a network is an n × m
matrix N , where each row represents a node and each column represents an
arc. Let

N [i, k] =

⎧⎨
⎩

1 if arc k leaves node i
−1 if arc k enters node i
0 otherwise.

A node-arc incidence matrix that describes the network in Fig. 15.1 is

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0
−1 0 0 1 1 0 0 0 0
0 −1 0 0 −1 1 1 0 0
0 0 −1 0 0 0 −1 0 1
0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The only limitation of this representation is that it cannot show an arc that
leaves and enters the same node. This ability will not be necessary since
feedback is not allowed by our definition of a stochastic activity network.

Series-Parallel Networks. The traditional approach to analyzing stochastic
activity networks is simulation. While straightforward to apply, simulation
has a distinct drawback. Each additional digit of accuracy in the estimate of
E[Tn], for example, requires approximately a 100-fold increase in replications
due to the square root in the denominator of the confidence interval formulas
for E[Tn]. We now derive the various performance measures analytically—
eliminating the need for simulation—for a special case of a stochastic activity
network known as a series-parallel network.

A series-parallel activity network is a special case of an activity network
that can be simplified by a sequence of reductions to a simple network con-
sisting of just two nodes and one arc. Reductions consist of taking two arcs,
either in series or in parallel, and replacing them with a single arc that has
a random duration whose distribution is calculated in the algorithm. This is
a good match for APPL’s symbolic capabilities because each reduction can
be preformed using either the Maximum or Convolution procedures. Once the
network is completely reduced, the distribution of the single remaining arc is
the distribution of the time Tn to complete the original network. The recur-
sive algorithm then reconstructs the network to determine the critical path
probabilities and arc criticalities. Our algorithm will use these operations to
simplify a series-parallel network, and then, by determining the distribution of
Tn and reconstructing the network, determine the critical path probabilities
and the criticalities. The earliest work on the exact analysis of series-parallel
networks is Martin [84]. The next paragraphs describe the parallel and series
reductions and reconstructions.
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Parallel Reduction. The algorithm described subsequently is capable of
processing two arcs in parallel, as illustrated in Fig. 15.2. A parallel reduction
is the process of combining these two arcs into a single arc. Let Xij and Yij

denote the random arc durations. Without loss of generality, if Ti = 0, then
Tj = max{Xij , Yij}. So

FTj
(t) = Pr(Tj ≤ t) = Pr(Xij ≤ t and Yij ≤ t) = FXij

(t)FYij
(t)

on the support of Tj . The portion of the algorithm prior to the second recursive
call uses this formula to reduce two arcs in parallel to a single arc.

i j

Xij

Yij

Fig. 15.2. Two arcs in parallel

Parallel Reconstruction. Consider the single arc aij resulting from a par-
allel reduction. If the probability ρij that this arc is on the critical path is
known, then this probability can be allocated to the two original parallel arcs
x and y based on each arc’s activity duration CDF:

ρx = Pr(Xij > Yij) · ρij = Pr(Xij − Yij > 0) · ρij
and

ρy = ρij − ρx.

This calculation involves determining the distribution of the difference be-
tween the two random variables, which can be calculated using the APPL
Difference procedure. The portion of the algorithm after the second recur-
sive call calculates the distribution of Xij − Yij and the probability that this
random variable is positive.

Series Reduction. The algorithm finds the CDF of the time to complete two
arcs in series, as illustrated in Fig. 15.3. Let Yij and Yjk denote the durations
of the two arcs with CDFs FYij

(t) and FYjk
(t). Without loss of generality, if

Ti = 0, then Tk = Yij +Yjk. The CDF of Tk on its support is (see Casella and
Berger [16, page 215])

FTk
(t) = Pr[Tk ≤ t] =

∫ t

0

FYij
(t− yjk)fYjk

(yjk) dyjk.

Series Reconstruction. Consider the single arc aik resulting from a series
reduction. For any two arcs aij and ajk that have been reduced into a single
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i j
Yij Yjk

k

Fig. 15.3. Two arcs in series

arc aik, ρij = ρjk = ρik. If two arcs in series are along the critical path, then
so is the respective arc resulting from the reduction.

Algorithm. Two arcs in series are detected by searching the rows of the
node-arc incidence matrix N for the first row containing exactly two nonzero
elements whose sum is 0. Such a row represents a single arc entering and a
single arc exiting the given node. To reduce a series of two arcs to a single
arc, the algorithm

• zeros out the row of N corresponding to the deleted middle node,
• links the first node of the series directly to the last node of the series, and
• computes the distribution of the sum of the durations of the two arcs.

Two arcs in parallel are identified by two identical nonzero columns of N ,
which represent two arcs linking the same two nodes. The algorithm iterates
through each column and if parallel arcs are found, the algorithm

• computes the distribution of the maximum of the two arc durations, and
• zeros out the column of N corresponding to the eliminated arc.

The following recursive algorithm reduces a series-parallel network, where
N is the node-arc incidence matrix of the network. The PDFs for the activity
durations of each arc are stored in a vector f (indexed in the same way
that the arcs are indexed to correspond to the columns of the matrix N),
and the criticalities of each arc are stored in a vector C. This algorithm
recursively performs one arc reduction at a time, arbitrarily giving priority to
series reductions over parallel reductions, until the network consists of just two
nodes connected by a single arc. At this point, the value of C for that one arc is
set to one and then the network is reconstructed on the return calls in reverse
order, determining values of C for each pair of series or parallel arcs based on
the value of C for the reduced arc. The algorithm returns the distribution of
the time to complete the network and the final value of C, which contains ρij
for each arc aij in the network. Indentation denotes nesting.

Procedure GetCriticalities: Find the distribution of the time to complete
a series-parallel stochastic activity network and the arc criticalities.

Input: The n × m node-arc incidence matrix N , the PDFs of m activity
durations Yij stored in the vector f , the number of nodes n, the number of
arcs m, the number of arcs to be reduced arcsremaining (initialized to m).

Output: Criticalities C[m]
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Algorithm:
local C, i, j, rowsum, absrowsum, negidx, posidx, c, d, l, k, empty, numdiff
if (arcsremaining = 1) if network reduced to one arc

for i ← 1 to n loop through rows of N
for k ← 1 to m loop through columns of N

if (N [i, k] �= 0) if true then arc k is the last existing arc
C[k] ← 1 set criticality to 1
print(CDF(f [k])) print CDF of project completion time
return(C) return criticalities

for i ← 1 to n begin series reduction
rowsum ← 0 initialize rowsum
absrowsum ← 0 initialize sum of absolute values in a row
for k ← 1 to m loop through columns of N

rowsum ← rowsum + N [i, k] sum values in the ith row of N
absrowsum ← absrowsum + |N [i, k]| sum the absolute values
if (N [i, k] = −1) if arc k enters node i

negidx ← k store the index of arc k
if (N [i, k] = 1) if arc k leaves from node i

posidx ← k store the index of arc k
if (rowsum = 0 and absrowsum = 2) only one arc enters & leaves node i

c ← f [negidx] save the PDF of first arc for reconstruction
d ← f [posidx] save the PDF of second arc for reconstruction
f [negidx] ← Convolution(c, d) combine the arcs into a single arc
for j ← 1 to n loop through rows of N

N [j, negidx] ← N [j, negidx] +N [j, posidx] change entering node
N [j, posidx] ← 0 delete middle node

arcsremaining ← arcsremaining − 1 reduce # of arcs in network
C ← GetCriticalities(N, f, n,m, arcsremaining) recursive call
for j ← 1 to n begin series reconstruction

if (N [j, negidx] = −1) if arc negidx enters node j
N [j, negidx] ← 0 delete arc made previously by reduction
N [j, posidx] ← −1 delete arc made previously by reduction

N [i, negidx] ← −1 reconstruct node deleted previously by reduction
N [i, posidx] ← 1 reconstruct node deleted previously by reduction
f [negidx] ← c reconstruct arc duration
f [posidx] ← d reconstruct arc duration
C[posidx] ← C[negidx] reconstruct arc criticality
return(C) return criticalities

for l ← 1 to m begin parallel reduction
for k ← l + 1 to m loop through columns of N

empty ← 0 initialize empty
numdiff ← 0 initialize numdiff
for i ← 1 to n loop through rows of N
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if (N [i, l] �= N [i, k]) if column difference found
numdiff ← 1 set boolean variable numdiff

if (N [i, l] �= 0) if a column is not empty
empty ← 1 set boolean variable empty

if (numdiff = 0 and empty �= 0) columns l & k identical & nonzero
c ← f [l] save the PDF of arc l for reconstruction
d ← f [k] save the PDF of arc k for reconstruction
f [l] ← Maximum(c, d) store PDF of the maximum
for i ← 1 n loop through rows of N

N [i, k] ← 0 zero out column of removed arc
arcsremaining ← arcsremaining − 1 reduce # network arcs
C ← GetCriticalities(N , f , n, m, arcsremaining)recursive call

for i ← 1 to n begin parallel reconstruction
N [i, k] ← N [i, l] reinsert arc k by copying column l

f [l] ← c rebuild distribution
f [k] ← d rebuild distribution
C[k] ← CDF(Difference(f [l], f [k]), 0) ·C[l] Pr(Xil − Yil > 0)·ρil
C[l] ← C[l]− C[k] calculate ρy = ρil − ρx
return(C) return criticalities

return(C) return criticalities

This algorithm requires symbolic processing capability in order to calcu-
late the distribution of the maximum of two independent random variables
for parallel reduction and the distribution of the sum of two independent
random variables for series reduction. The APPL procedures Maximum and
Convolution are used for these operations.

Example 15.1. Figure 15.4 shows an example of a series-parallel net-
work from Elmaghraby [27, page 261]. This network can be described
by the node-arc incidence matrix

1
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Y13
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Y25

Y35

Y45

2

Y34

Fig. 15.4. Series-parallel network from Elmaghraby [27, page 261]
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N =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0 0
−1 0 1 0 0 0
0 −1 0 1 1 0
0 0 0 −1 0 1
0 0 −1 0 −1 −1

⎤
⎥⎥⎥⎥⎦ .

The network can be reduced and reconstructed as illustrated in the
steps separated by arrows in Fig. 15.5. The algorithm has been applied
to this stochastic activity network in which the duration of each arc
Yij ∼ exponential(b), where 1/b is the mean activity duration. The
CDF of the time to complete the network (T5) is returned by the
algorithm as

FT5
(t) = 1− 3bte−bt − b2t2

2
e−bt − 3e−2bt +

5b2t2

2
e−2bt +

b3t3

2
e−2bt+

2e−3bt + 3bte−3bt + b2t2e−3bt t > 0.

The r = 3 paths in the network are listed in Table 15.1, along with the
critical path probabilities. Table 15.2 contains the criticalities for the
m = 6 arcs when b = 2. (Fisher et al. [32] determine criticalities when
activity durations are iid gamma random variables.) This example
has a small number of nodes and arcs along with simple distributions
for the arc durations so as to make the final CDF for the project
duration simple. If, however, the arc durations are each independent
triangular(0, 1, 2) random variables, then the problem of determining
the distribution of T5 becomes much more tedious. The arc criticalities
returned by the algorithm for this example with triangular(0, 1, 2) arc

Fig. 15.5. Reduction and reconstruction of the series-parallel network from
Elmaghraby [27, page 261]
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Table 15.1. Paths πk and critical path probabilities p(πk) for exponentially dis-
tributed arc durations with b = 2

k Node sequence πk p(πk)
1 1 → 2 → 5 {a12, a25} 115/432 ∼= 0.266
2 1 → 3 → 5 {a13, a35} 317/1728 ∼= 0.183
3 1 → 3 → 4 → 5 {a13, a34, a45} 317/576 ∼= 0.550

Table 15.2. Criticalities ρij for the exponentially distributed arc durations with
b = 2

Arc Paths ρij
a12 π1 115/432 ∼= 0.266
a13 π2, π3 317/432 ∼= 0.734
a25 π1 115/432 ∼= 0.266
a35 π2 317/1728 ∼= 0.183
a34 π3 317/576 ∼= 0.550
a45 π3 317/576 ∼= 0.550

durations are shown in Table 15.3. The CDF of the project completion
time is returned as

FT5(t) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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− 1
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5
5 < t ≤ 6

1 t > 6.

Activity networks are useful when modeling a project having distinct ac-
tivities that exhibit precedence relationships. When the durations of the activ-
ities are deterministic, it is easy to find the time needed to complete a project
by using a simple longest path algorithm. However, when only random activ-
ity durations are given, the analysis is much more complicated. Monte Carlo
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Table 15.3. Criticalities ρij for triangular(0, 1, 2) arc durations

Arc Paths ρij
a12 π1 30233/237600 ∼= 0.127
a13 π2, π3 207367/237600 ∼= 0.873
a25 π1 30233/237600 ∼= 0.127
a35 π2 6013643/85536000 ∼= 0.070
a34 π3 68638477/85536000 ∼= 0.802
a45 π3 68638477/85536000 ∼= 0.802

simulation can provide an approximate solution in this case, but the simula-
tion must be written specifically for the network and could require millions of
replications for a reliable estimate. In some networks, series-parallel reduction
can supply an exact solution analytically, but very few networks can be re-
duced in this manner. Leemis et al. [75] give an algorithm that can be applied
to a more general class of networks.

15.2 Benford’s Law

This section states Benford’s law and shows how APPL can be used to check
a probability model for conformity. The traditional analysis of Benford’s law
considers its applicability to data sets, but we consider whether probability
distributions obey Benford’s law. The material in this section is taken from
Leemis et al. [74], where a more thorough treatment of the topic can be found.

Benford’s law was first encountered by astronomer and mathematician
Simon Newcomb, who noticed “how much faster the first pages (of tables
of logarithms) wear out than the last ones” leading to the counter-intuitive
conclusion that the first significant digit in the values in a logarithm table is
not uniformly distributed between 1 and 9. Using a heuristic argument, he
found that ones occur most often (more than 30% of the time) and nines least
often (less than 5% of the time), and

Pr(X = x) = log10 (1 + 1/x) x = 1, 2, . . . , 9,

where X is a random variable denoting the first significant digit. He pub-
lished this result in 1881 as the “logarithm law” in the American Journal of
Mathematics.

General Electric physicist Frank Benford [9] apparently independently ar-
rived at the same conclusion as Newcomb concerning logarithm tables in 1938.
He proceeded to “collect data from as many fields as possible” to see if natural
and sociological data sets would also obey the logarithm law. He often found
good agreement between the logarithm law for his 20,229 total observations,
including data sets as diverse as the areas of rivers, American League baseball
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statistics, atomic weights of elements, death rates, and numbers appearing
in Reader’s Digest. What has become known as “Benford’s law” has found
applications in the distribution of the one-day return on stock market indices
(see Ley [78]), the distribution of the populations of 3141 counties in the 1990
U.S. Census, and the detection of accounting fraud (see Nigrini [93]). Recent
books on Benford’s law are Berger and Hill [10], Kossovsky [64], and Miller
[88].

A mathematically rigorous proof of Benford’s law has proven elusive. This
is in part due to the fact that certain data sets (e.g., random numbers) do
not follow Benford’s law. Recent attempts have considered the effect of scale
invariance (e.g., dollars vs. yen), base invariance (e.g., octal vs. base ten), and
mixtures (i.e., sample data drawn from several population distributions that
are selected at random), as indicated in Hill [47, 48].

The purpose of this section is to switch the emphasis from the examination
of data sets that obey Benford’s law to probability distributions that obey Ben-
ford’s law. The emphasis here is on survival distributions (i.e., distributions
with positive support), although more general distributions can be examined
in the same fashion. Hill [47, pages 361–362] states that “An interesting open
problem is to determine which common distributions (or mixtures thereof)
satisfy Benford’s law . . . ”. General conditions associated with the distribu-
tion of the random variable T will now be derived in order to determine when
Benford’s law applies.

Conditions for Conformance to Benford’s Law. We refer to a random
variable X with PDF

fX(x) = Pr(X = x) = log10 (1 + 1/x) x = 1, 2, . . . , 9

as a “Benford random variable.” This random variable is pre-defined in APPL
as BenfordRV. The associated CDF is

FX(x) = Pr(X ≤ x) = log10 (1 + x) x = 1, 2, . . . , 9.

Inverting the CDF, a Benford random variate X can be generated by

X ← �10U − 1�,
or, equivalently, saving a subtraction, by

X ← �10U�,
where U ∼ U(0, 1).

Let T be a nonnegative random variable whose first significant digit is of
interest. Let the integer-valued random variable D satisfy

10D ≤ T < 10D+1

(e.g., T = 365 ⇒ D = 2 and T = 1/10 ⇒ D = −1). This definition of D
allows the first significant digit Y of T to be written in terms of T and D as
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Y =
⌊
T · 10−D

⌋
=
⌊
10log10 T−D

⌋
(e.g., T = 365 ⇒ Y = �365 · 10−2� = �3.65� = 3).

Referring back to the variate generation algorithm, it is clear that if the
random variable Z = log10 T − D ∼ U(0, 1), which represents the result
from the logarithm table, then the first significant digit Y has the Benford
distribution. Using conditioning, the CDF of Z is given by

FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr
(

10d ≤ T < 10d+1
)

· Pr
(

log10 T − d ≤ z | 10d ≤ T < 10d+1
)

,

for 0 < z < 1. Thus conformance to Benford’s law implies that the weights (the
first factor in the product) associated with each order of magnitude (indexed
by d) and the distribution of Z = log10 T − D (the second factor in the
product) are such that the infinite sum produces a linear function in z.

Three examples of distributions providing a perfect fit for Benford’s law
are given below.

Example 15.2. Let W ∼ U(0, 2). Let T = 10W . The PDF of T is

fT (t) =
1

2t ln 10
1 < t < 100.

The PDF of D is

fD(0) = Pr(D = 0) = Pr(1 < T < 10) =

∫ 10

1

fT (t)dt =
1

2

and

fD(1) = Pr(D = 1) = Pr(10 < T < 100) =

∫ 100

10

fT (t)dt =
1

2
.

The PDF of the leading digit Y is

fY (y) = Pr(Y = y)

= Pr(y < T < y + 1) + Pr
(
10y < T < 10(y + 1)

)
=

∫ y+1

y

fT (t) dt+

∫ 10(y+1)

10y

fT (t) dt

=

∫ y+1

y

1

2t ln 10
dt+

∫ 10(y+1)

10y

1

2t ln 10
dt

= log10

(
y + 1

y

)
y = 1, 2, . . . , 9.

This PDF matches Benford’s distribution exactly. Alternatively, one
can proceed by determining the distribution of Z = log10 T − D as
follows, where W = log10 T :
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FZ(z) = Pr(Z ≤ z)

=
∞∑

d=−∞
Pr
(

10d ≤ T < 10d+1
)

· Pr
(

log10 T − d ≤ z | 10d ≤ T < 10d+1
)

=

1∑

d=0

Pr (d ≤ W < d+ 1) · Pr (W − d ≤ z | d ≤ W < d+ 1)

= Pr (0 ≤ W < 1) · Pr (W ≤ z | 0 ≤ W < 1) +

Pr (1 ≤ W < 2) · Pr (W − 1 ≤ z | 1 ≤ W < 2)

=
1

2
z +

1

2
z

= z 0 < z < 1.

Since this is the CDF for a U(0, 1) random variable, Benford’s law is
satisfied exactly.

This example can be generalized as follows. Let W ∼ U(a, b), where a and
b are real numbers satisfying a < b. If the interval

(
10a, 10b

)
covers an integer

number of orders of magnitude, then the first significant digit of the random
variable T = 10W satisfies Benford’s law exactly. Equivalently, if b − a is a
positive integer, then the first significant digit of T = 10W satisfies Benford’s
law. Examples include a = −2, b = 1 and a = log10(3/2), b = log10(150), with(
10a, 10b

)
equal to (0.01, 10) and (1.5, 150) respectively.

There is no need for the support of the distribution of T = 10W to span
several orders of magnitude as is the case for many of the data sets that
conform to Benford’s law. A single order of magnitude (e.g., a = 5, b = 6) is
sufficient.

The next example considers a non-uniform distribution forW that satisfies
Benford’s law exactly.

Example 15.3. Let W ∼ triangular(0, 1, 2). The PDF for W is

fW (w) =

{
w 0 < w < 1
2− w 1 ≤ w < 2.

As before, let T = 10W and Z = W −D. The CDF of Z is

FZ(z) =
1∑

d=0

Pr (d ≤ W < d+ 1) · Pr (W − d ≤ z | d ≤ W < d+ 1)

=
1

2
z2 +

1

2

(
2z − z2

)
= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly.

This example can also be generalized. Let W ∼ triangular(a, b, c), where
a, b, and c are real numbers satisfying a < b < c. The first significant digit of
the random variable T = 10W satisfies Benford’s law exactly if a, b, and c are
integers. The next example considers a non-symmetric distribution for W .
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Example 15.4. Let W have PDF

fW (w) =

{
1− w2 −1 < w < 0
(w − 1)2 0 ≤ w < 1.

As before, let T = 10W and Z = W −D. The CDF of Z is

FZ(z) =

0∑
d=−1

Pr (d ≤ W < d+ 1) · Pr (W − d ≤ z | d ≤ W < d+ 1)

=
2

3

[
−z3

2
+

3z2

2

]
+

1

3

[
1 + (z − 1)3

]
= z 0 < z < 1.

Thus the first significant digit of T satisfies Benford’s law exactly.

This example can be generalized for W with PDF

fW (w) =

{
1− wn −1 < w < 0
(w − 1)n 0 ≤ w < 1,

where n is a positive, even integer.
In order to test other probability distributions for conformance to Ben-

ford’s law, we automated the process of deriving the distribution of Z by
writing the APPL procedure Benford, whose argument is a random variable
representing W and whose returned value is the distribution of Z. The algo-
rithm is shown below.

Procedure Benford: Compute the distribution of Z to check conformity to
Benford’s law.

Input: A random variable W formatted in the usual APPL list-of-sublists
format.

Output: The PDF of Z.

Algorithm:

Ω ← Support(W ) the set Ω is the support of the random variable W
Lo ← �Ω� lower loop limit
Hi ← �Ω� − 1 upper loop limit
Dimension W [Hi− Lo+ 1] W holds the mixture probabilities
Dimension TranW [Hi− Lo+ 1] TranW holds transformed segments of W
For d ← Lo to Hi loop through the support of W

W [d] ← FW (d+ 1)− FW (d) calculate weights for the mixture
TruncW [d] ←Truncate(W,d, d+ 1) truncate W between d and d+ 1
TranW [d] ←Transform(TruncW,w − d) shift W by d units

Z ← Mixture(W,TranW ) compute the PDF of the mixture
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The APPL code required to return the distribution of Z for Example 15.2 is

> W := UniformRV(0, 2);

> Z := Benford(W);

The APPL code required to return the distribution of Z for Example 15.3 is

> W := TriangularRV(0, 1, 2);

> Z := Benford(W);

The APPL code required to return the distribution of Z for Example 15.4 is

> W := [[w -> 1 - w ^ 2, w -> (1 - w) ^ 2],

[-1, 0, 1], ["Continuous", "PDF"]];

> Z := Benford(W);

All three code segments return Z ∼ U(0, 1).

15.3 Miscellaneous Applications

This final section contains a series of short examples that are appropriate for
the symbolic capabilities of APPL that were not covered in previous chapters.

Example 15.5. The central limit theorem can be used to facilitate in-
ference about the population mean. The central limit theorem implies
that X̄ = 1

n

∑n
i=1 Xi is asymptotically normally distributed when the

Xi’s are iid random variables with finite mean and variance. Appli-
cation of the central limit theorem becomes restricted, however, with
small sample sizes, with skewed data, or in the presence of outliers. In
these cases, an alternative method is needed to determine the exact
distribution of X̄. Once the distribution X̄ is found, one can use it
to make statistical inferences about the population mean. Consider
the case of the population associated with Xi ∼ exponential(1). By
the central limit theorem, the distribution of Y = X̄ is approximately
N(1, 1

n ) for large n. For the case n = 3, one can compute the exact
distribution of Y with the following APPL statements.

> X := ExponentialRV(1);

> n := 3;

> Y := ConvolutionIID(X, n);

> Y := Transform(Y, [[x -> x / n], [0, infinity]]);

The resulting Erlang PDF is

fY (y) =
27

2
y2e−3y y > 0,

which is predictably non-normal in shape since n is too small for the
normality of the central limit theorem to apply to such a skewed under-
lying distribution. Now consider the case of n = 30, often considered
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a sufficiently large sample size for an adequate central limit theorem
approximation. Here a computation of the error associated with the
approximation is provided. To obtain the PDF of X̄, simply change
the second line of code to n := 30; The result is the following Erlang
PDF:

fY (y) =
246315313339233398437500000

10577732774609
y29e−30y y > 0.

Table 15.4 contains selected fractiles for both the exact distribution
of X̄ and its central limit theorem approximation, the N(1, 1

30 ) dis-
tribution. For the selected fractiles, the approximation is only good
to about one digit beyond the decimal point. The additional APPL
statements that generate the central limit theorem values in Table 15.4
are

> Z := NormalRV(1, 1 / sqrt(n));

> alpha := [0.9, 0.95, 0.975, 0.99];

> for i from 1 to 4 do

> evalf(IDF(Z, alpha[i]));

> od;

Table 15.4. Fractiles for exact and approximate distributions of X̄ for n = 30

Fractile
Approach Distribution 0.9 0.95 0.975 0.99

Exact X̄ 1.240 1.318 1.388 1.473
Central limit theorem N

(
1, 1

30

)
1.234 1.300 1.358 1.425

Example 15.6. As a second application related to the central limit the-
orem, consider an old, approximate method of generating random vari-
ates that have a standard normal distribution:

Z∗ = U1 + U2 + · · ·+ U12 − 6,

where the Ui’s are iid U(0, 1) random variables. The following APPL
statements determine the exact distribution of this 12-fold sum:

> U := UniformRV(0, 1);

> U12 := ConvolutionIID(U, 12);

> Zstar := Transform(U12, [[x -> x - 6], [0, 12]]);
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which returns the PDF of Z∗ as

fZ∗(x) =

⎧
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The following additional APPL statements calculate the kurtosis of
Z∗ and the kurtosis of a standard normal random variable Z:
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> Z := NormalRV(0, 1);

> Kurtosis(Zstar);

> Kurtosis(Z);

The distribution of Z∗ is useful because, like the standard normal
distribution, its mean is zero, its variance is one, and its skewness is
zero. However, the fourth moments of Z∗ and Z differ, with

E

⎡
⎣
(
Z∗ − E [Z∗]√

V [Z∗]

)4
⎤
⎦ = E

[
(Z∗)4
]
= 2.9,

while the kurtosis of Z is 3. An overlaid Maple plot of the standard
normal PDF and fZ∗(x) reveals that this approximation does quite
well. It is apparent that the PDFs are very close except around x = 0
[where fZ(0) = 1√

2π
∼= 0.399 and fZ∗(0) = 655177

1663200
∼= 0.394] and,

of course, in the tails, because the approximate distribution only has
support on (−6, 6). To obtain overlaid plots of these two distributions,
use the PlotDist procedure. First create a plot of the PDF of Z∗ and
store it as Plot1. Next, create a plot of the PDF of Z and store it
as Plot2. Finally, use the plots[display] procedure to combine the
two plots. This is summarized in the statements

> Plot1 := PlotDist(Zstar, -6, 6):

> Plot2 := PlotDist(Z, -6, 6):

> plots[display]({Plot1, Plot2}, scaling = unconstrained);

Dozens of tables of mathematically intractable statistical values have been
published over the years. Some of these constants can be calculated in APPL,
as illustrated in the next example.

Example 15.7. Balakrishnan and Chen’s [6] text is a valuable resource
for comparing various measures associated with probability distribu-
tions. Here we use APPL’s capabilities to produce similar measures.
This book begins with 39 pages of theory and references to the in-
verse Gaussian (IG) distribution and its order statistics, followed by
645 pages of PDF plots, expected value tables, covariance tables, es-
timation tables, and so forth. APPL is able to create a number of
these figures and tables, and in some cases goes beyond those pre-
sented in the text. Page 50, for example, shows the N(0, 1) and the
standardized IG(0.8) PDFs overlaid in a single plot. The PDF of a
standardized IG random variable X [which is listed as Eq. (2.14) on
page 7 of the text] is

fX(x) =
1√
2π

(
3

3 + kx

)3/2
e−3x2/(6+2kx) − 3

k
< x < ∞.
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The two plots may be overlaid and animated for k increasing from
zero to one as follows:

> Z := NormalRV(0, 1);

> X := [[x -> (3 / (3 + k * x)) ^ (3 / 2) *

exp(-3 * x ^ 2 / (6 + 2 * k * x)) /

sqrt(2 * Pi)],

[-3 / k, infinity], ["Continuous", "PDF"]];

> NormalExpr := op(unapply(Z[1](x))(x));

> InvGaussExpr := op(unapply(X[1](x))(x));

> unassign(’k’);

> plots[animate]({NormalExpr, InvGaussExpr},

x = -4 .. 4, k = 0 .. 1);

The plot is shown in Fig. 15.6 for k = 0.8. To execute the animation,
first select the plot by clicking on it. Then choose “Play” from the
“Animation” menu. Balakrishnan and Chen use such plots to show
how the two distributions separate as k increases from zero. Clearly
APPL is not limited to plotting the standardized version of the IG
PDF, but can be used to plot IG PDF, CDF, HF, and so on. Their
text also gives a listing of selected means of order statistics for the
standardized IG distribution Z. Using APPL one can calculate, for
example, the mean of the order statistic Z(2) for n = 4 (when k = 0.7,
as on page 74 of their text) as follows:

0

0.1

0.2

0.3

0.4

PDF

–4 –3 –2 –1 1 2 3 4
x

Fig. 15.6. Overlaid plots of the standard normal and standard IG(0.8) distributions
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> k := 0.7;

> Z := [[z -> 1 / sqrt(2 * Pi) * (3 / (3 + k * z)) ^

(3 / 2) * exp(-3 * z ^ 2 /

(2 * (3 + k * z)))],

[-3 / k, infinity], ["Continuous", "PDF"]];

> Zos := OrderStat(Z, 4, 2);

> avg := Mean(Zos);

which returns the value −0.35202 in agreement with the authors. In
addition to giving the mean, note that the variable Zos above is in
fact the list-of-sublists representation of the distribution of that order
statistic. Thus one may use any number of functions on that variable,
in order to find critical points, significance levels, and using that dis-
tribution in determining other distributions, e.g., by invoking Product

or Convolution.

Another resource, such as Harter and Balakrishnan’s [45] handbook of
tables for the use of order statistics in estimation also gives extensive charts
for various applications of order statistics. APPL can be used in a similar
fashion to duplicate many of their tabled values, and, in some cases, go beyond
the tabled values. See Glen et al. [38] for a specific example.

Example 15.8. Define a geometric random variable X with parameter
p = 1/4 to model the number of trials up to and including the first
success, i.e.,

fX(x) =
1

4
·
(
3

4

)x−1

x = 1, 2, . . . .

Calculate the median of the maximum order statistic when n = 5
items are sampled with replacement from this geometric distribution.
The APPL statements

> X := GeometricRV(1 / 4);

> Y := OrderStat(X, 5, 5);

> IDF(Y, 0.5);

return the median of the distribution as 8. The final statement could
have equivalently been issued as Median(Y);

Example 15.9. A sequence of order statistics drawn from a unit expo-
nential distribution was considered in Example 3.12. Five plots were
generated corresponding to the PDF of each of the order statistics via
the APPL code

> X := ExponentialRV(1);

> n := 5;

> for i from 1 to n do

> PlotDist(OrderStat(X, n, i), 0, 6);

> od;
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But what if one wanted to see all five of the order statistics on a single
graph? This can be done by modifying the code to

> X := ExponentialRV(1);

> n := 5;

> OSgraphs := [];

> for i from 1 to n do

> OSgraphs := [op(OSgraphs),

PlotDist(OrderStat(X, n, i), 0, 6)]:

> od:

> with(plots);

> display(OSgraphs);

This code initializes OSgraphs to an empty list, and concatenates the
various graphs in the loop. The with(plots) command is used to
include additional Maple plotting options. Finally, display is used to
plot multiple graphs on one plot. The graph is shown in Fig. 15.7.
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Fig. 15.7. Overlaid plots of the PDFs of order statistics drawn from an exponential
population



References

1. Abate J, Whitt W (1988) Transient behavior of the M/M/1 queue via Laplace
transforms. Adv Appl Probab 20:145–178

2. Adlakha VG, Kulkarni VG (1989) A classified bibliography of research on
stochastic PERT networks: 1966–1987. INFOR 27:272–296

3. Andrews DWK, Buchinsky M (2000) A three-step method for choosing the
number of bootstrap repetitions. Econometrica 68:23–51

4. Andrews DWK, Buchinsky M (2002) On the number of bootstrap repetitions
for BCa confidence intervals. Econometric Theory 18:962–984

5. Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order
statistics. SIAM, Philadelphia

6. Balakrishnan N, Chen WWS (1997) CRC handbook of tables for order statis-
tics from inverse Gaussian distributions with applications. CRC Press, Boca
Raton

7. Banks J, Carson JS, Nelson BL, Nicol DM (2005) Discrete-event system sim-
ulation, 4th edn. Prentice-Hall, Upper Saddle River, New Jersey

8. Barr D, Zehna PW (1971) Probability. Brooks/Cole
9. Benford F (1938) The law of anomalous numbers. Proc Am Philos Soc 78:

551–572
10. Berger A, Hill, TP (2015) An introduction to Benford’s law. Princeton Uni-

versity Press, Princeton
11. Billingsley P (1995) Probability and measure, 3rd edn. Wiley, New York
12. Birnbaum ZW (1952) Numerical tabulation of the distribution of Kolo-

mogorov’s statistic for finite sample size. J Am Stat Assoc 47:425–441
13. Box GEP, Jenkins GM (1994) Time series analysis: forecasting & control, 3rd

edn. Prentice-Hall
14. Burr IW (1955) Calculation of exact sampling distribution of ranges from a

discrete population. Ann Math Stat 26:530–532 (correction, volume 38, 280)
15. Carrano FM, Helman P, Veroff R (1998) Data abstraction and problem solving

with C++: walls and mirrors, 2nd edn. Addison-Wesley Longman, Reading,
Massachusetts

16. Casella G, Berger R (2002) Statistical inference, 2nd edn. Duxbury, Pacific
Grove, California

© Springer International Publishing AG 2017
J.H. Drew et al., Computational Probability, International Series
in Operations Research & Management Science 246,
DOI 10.1007/978-3-319-43323-3

323



324 References

17. Ciardo G, Leemis LM, Nicol D (1995) On the minimum of independent geo-
metrically distributed random variables. Stat Probab Lett 23:313–326

18. Cook P, Broemeling LD (1995) Bayesian statistics using mathematica. Am
Stat 49:70–76

19. D’Agostino RB, Stephens MA (1986) Goodness-of-fit techniques. Marcel
Dekker, New York

20. David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, New York
21. Devroye L (1996) Random variate generation in one line of code. In: Charnes J,

Morrice D, Brunner D, Swain J (eds) Proceedings of the 1996 winter simulation
conference. Institute of Electrical and Electronics Engineers, Coronado, CA,
pp 265–272

22. Doss H, Chiang Y (1994) Choosing the resampling scheme when bootstrapping:
a case study in reliability. J Am Stat Assoc 89:298–308

23. Drew JH, Glen AG, Leemis LM (2000) Computing the cumulative distribution
function of the Kolmogorov–Smirnov statistic. Comput Stat Data Anal 34:
1–15

24. Duggan MJ, Drew JH, Leemis LM (2005) A test of randomness based on
the distance between consecutive random number pairs. In: Kuhl ME, Steiger
NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005 winter simulation
conference. Institute of Electrical and Electronics Engineers, Piscataway, New
Jersey, pp 741–748

25. e Silva ES, Gail HR, Campos RV (1995) Calculating transient distributions
of cumulative reward. In: Proceedings of the 1995 ACM SIGMETRICS joint
international conference on measurement and modeling of computer systems,
pp 231–240

26. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman &
Hall, New York

27. Elmaghraby SE (1977) Activity networks: project planning and control by
network models. Wiley, New York

28. Evans DL, Leemis LM (2000) Input modeling using a computer algebra system.
In: Joines J, Barton R, Fishwick P, Kang K. (eds) Proceedings of the 2000
winter simulation conference. Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey, pp 577–586

29. Evans DL, Leemis LM (2004) Algorithms for determining the distributions of
sums of discrete random variables. Math Comput Modell 40:1429–1452

30. Evans DL, Leemis LM, Drew JH (2006) The distribution of order statistics
for discrete random variables with applications to bootstrapping. INFORMS
J Comput 18:19–30

31. Evans DL, Drew JH, Leemis, LM (2008) The distribution of the Kolmogorov–
Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for expo-
nential populations with estimated parameters. Commun Stat–Simul Comput
37:1396–1421

32. Fisher DL, Saisi D, Goldstein WM (1985) Stochastic PERT networks: OP
diagrams, critical paths and the project completion time. Comput Oper Res
12:471–482

33. Fishman GS (2001) Discrete-event simulation: modeling, programming, and
analysis. Springer, Berlin

34. Gafarian AV, Ancker CJ Jr, Morisaku T (1976) The problem of the initial
transient in digital computer simulation. In: Proceedings of the 76 bicentennial
conference on winter simulation, pp 49–51



References 325

35. Gehan EA (1965) A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika 52(parts 1 and 2):203–223

36. Ghosal S, Ghosh JK, Ramamoorthi RV (1999) Consistency issues in Bayesian
nonparametrics. In: Ghosh S (ed) Asymptotics, nonparametrics and time series:
a tribute to Madan Lal Puri. Statistics textbooks and monographs, vol 158.
Marcel Dekker, New York, pp 639–667

37. Glen AG, Drew JH, Leemis LM (1997) A generalized univariate change-of-
variable transformation technique. INFORMS J Comput 9:288–295

38. Glen AG, Evans DL, Leemis LM (2001) APPL: a probability programming
language. Am Stat 55:156–166

39. Glen AG, Leemis LM, Drew JH (2004) Computing the distribution of the
product of two continuous random variables. Comput Stat Data Anal 44:
451–464

40. Grassmann WK (1977) Transient solutions in Markovian queueing systems.
Comput Oper Res 4:47–53

41. Grassmann WK (2008) Warm-up periods in simulation can be detrimental.
Probab Eng Inform Sci 22:415–429

42. Grinstead CM, Snell JL (1997) Introduction to probability, 2nd rev. edn. Amer-
ican Mathematical Society, Providence, Rhode Island

43. Hagwood C (2009) An application of the residue calculus: the distribution of
the sum of nonhomogeneous gamma variates. Am Stat 63:37–39

44. Hamilton JD (1994) Time series analysis. Princeton University Press, Prince-
ton

45. Harter HL, Balakrishnan N (1996) CRC handbook of tables for the use of order
statistics in estimation. CRC Press, Boca Raton

46. Hasting KJ (2006) Introduction to the mathematics of operations research with
mathematica, 2nd edn. CRC Press, Boca Raton

47. Hill TP (1995) A statistical derivation of the significant-digit law. Stat Sci
86:354–363

48. Hill TP (1998) The first digit phenomenon. Am Sci 86:358–363
49. Hillier FS, Lieberman GJ (2010) Introduction to operations research, 9th edn.

McGraw–Hill, New York
50. Hogg RV, Craig AT (1995) Introduction to the mathematical statistics, 5th

edn. Prentice-Hall, Upper Saddle River, New Jersey
51. Hogg RV, Tanis EA (2001) Probability and statistical inference, 6th edn.

Prentice-Hall, Upper Saddle River, New Jersey
52. Hogg RV, McKean JW, Craig AT (2005) Introduction to the mathematical

statistics, 6th edn. Prentice-Hall, Upper Saddle River, New Jersey
53. Hutson AD, Ernst MD (2000) The exact bootstrap mean and variance of an

L-estimator. J R Stat Soc Ser B 62:89–94
54. Jaakkola TS, Jordan MI (2000) Bayesian parameter estimation via variational

methods. Stat Comput 10:25–37
55. Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distribu-

tions, vol 2, 2nd ed. Wiley, New York
56. Kaczynski WH, Leemis LM, Drew JH (2012) Transient queueing analysis. IN-

FORMS J Comput 24:10–28
57. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data,

2nd edn. Wiley, Hoboken, New Jersey
58. Karian ZA, Tanis EA (1999) Probability and statistics: explorations with

Maple, 2nd edn. Prentice-Hall, Upper Saddle River, New Jersey
59. Kelton WD (1985) Transient exponential-Erlang queues and steady-state sim-

ulation. Commun ACM 28:741–749



326 References

60. Kelton WD, Law AM (1985) The transient behavior of the M/M/s queue,
with implications for steady-state simulation. Oper Res 33:378–396

61. Khoshkenara A, Mahloojia H. (2013) A new test of randomness for Lehmer
generators based on the Manhattan Distance Between Pairs. Commun Stat–
Simul Comput 42:202–214

62. Kleinrock L (1975) Queueing systems. Wiley, New York
63. Knuth DE (1998) The art of computer programming, volume 2: seminumerical

algorithms, 3rd edn. Addison-Wesley, Reading, Massachusetts
64. Kossovsky AE (2015) Benford’s law : theory, the general law of relative quan-

tities, and forensic fraud detection applications. World Scientific, Singapore
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160, 214, 216, 246, 266, 303, 306,
307, 320

ConvolutionIID, 4, 45, 113, 134, 137,
168, 169, 315–316

Correlation, 253–260, 275
Cov, 266
Covariances, 194, 253–275
CredibleSet, 281
Critical path, 302–305, 308, 309
Cumulative distribution function

(CDF), 4, 33, 90, 264
Cumulative hazard function (CHF), 33,

90
Cumulative reward, 242

D
Data structure, 59–60
Data structures and continuous random

variables, 33–37
changing functional form, 37–40
distribution plotting, 40, 41
expected value calculation, 40–42
functions, 33–34
order statistics calculation, 42–43

Data types, in Maple language, 19–20,
29

Dependent continuous random
variables, 63

Discrete convolution formula, 112–114,
127–131

Discrete-event input modeling, 220
Discrete-event simulation, 253–255
Discrete random variables, 5, 11, 25, 26,

86, 89–93, 96–99, 101, 102, 106,
108, 109, 111, 114–115, 117, 119,
126, 131, 134, 137–139, 150, 167,
172, 174, 176, 216
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Dot support format, 94–95, 98, 105
Dummy transformation, 57, 60, 61, 257,

332

E
Economics and survival analysis,

164–165
Empirical distribution functions

(EDFs), 174
Erlang distribution, 245–247, 254,

264–266
Error checking

conditional statements, 26
conversion routines, 28
in procedures, 28

Error terms, 192, 197
ETSA, 191, 205
ExpectedValue, 40–41, 45, 106–108
Exponential distribution, 176, 181, 183,

192, 245–247, 250, 253–254, 256,
261–266, 272–274, 298

ExponentialRV, 39, 41–43, 157, 171,
192, 193, 200, 217, 218, 220,
248–251, 273, 296, 315, 320, 321

F
Forcasted AR(p) model, 203
Forecasting models, 196–197
Formulaic PDF, 76, 93, 94, 105–106
fsolve, 20–22, 220

G
Gamma distribution, 181, 183, 184, 281,

282
Gamma function, 282
GammaRV, 160, 216, 223, 281
Gaussian quadrature, 293
GeometricRV, 99, 108, 145, 149, 320
GetCriticalities, 305–307
G/G/1 queue, 275
Glivenko–Cantelli theorem, 174
Golden section search, 292, 294

H
Hazard function (HF), 33, 34, 90, 101,

156, 183, 223
HF, 34, 37, 39, 45, 56, 89, 100, 101, 156
Hypergeometric function, 181
HypergeometricRV, 99, 136

I
Identically distributed (iid) random

variables, 3, 4, 7, 37, 42, 82, 83,
86, 112, 113, 134, 139, 159, 172,
315

IDF, 37, 39, 45, 89, 100, 158, 159, 171,
172, 190, 197, 236, 316, 320

Infinite support, 10, 77, 92, 93, 95, 98,
127, 128, 130, 139–141, 144, 145,
148, 293

Initial transient period, 242
Insertion sort algorithm, 116, 117, 129
Inverse distribution function (IDF), 33,

37, 39, 45, 72, 89, 90, 99, 100,
102–104, 158, 159, 161, 171, 172,
190, 197, 236, 250, 316, 320

Invertible, 48, 191, 196, 198, 199, 207
Invertible time series model

backshift operator, 196
characteristic equation, 196

J
Jacobian, 57, 58, 257
Jeffreys, 284
Jeffrey’s prior distribution, 283, 284
Joint PDF, 57, 58, 64, 66, 68, 255, 257,

259, 263, 264, 266, 272, 273, 275
Joint probability, 254

K
Kaplan–Meier product-limit survivor

function, 221
KCov, 273
Kolmogorov–Smirnov goodness-of-fit

test, 210–212, 218, 220, 223–240
CDF of KS test statistic, 210–212,

214
the distribution Dn, 223–230, 232,

233, 235–237
KSRV, 212, 232, 236, 237
KS test statistic, 224, 225, 227, 236, 237
Kurtosis, 40, 41, 45, 80, 107, 251, 317,

318

L
Laplace distribution, 284–287
Laplace transformations, 242
Law of total probability, 178
Lehmer algorithm, 214
Lehmer generators, 209–210
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Lexicographical combination of items,
sampling of, 142, 150

Likelihood function, 290, 298
LinearAlgebra, 196
Linear regression, 294
“List-of-sublists” data structure, 7, 19,

33–40, 59
Logarithm law, 310
Logistic regression, 298
Logit curve, 288
Log logistic distribution, 181, 184
Log normal distribution, 181, 184
LognormalRV, 80
L-Statistic, 165

M
MA(q) model, 191, 192, 194, 196–198
Many-to-1 transformations, 47, 48
Maple, 181, 278
Maple (software)

code, 193
computation, 275
error function, 38
eval procedure, 103
implementation, 129
for loop, 83, 134
plot, 22–23
simplify, 40, 131, 235
sorting algorithm for polynomials, 97
unassign command, 216

Maple language
algebraic equations, 20–22
calculus problems, 23–24
conditional statements, 26
continuous random variables and

data types, 19–20, 29
functions, 17–18
graphing using, 22–23
loops, 26–27
numeric computations, 13–15
procedures, 28–30
symbolic expression manipulation,

16–17
variables, 15–16

Marginal PDF, 59, 70, 71
Markov chain, 242
Markov Chain Monte Carlo (MCMC),

288, 295
Mathematica, 57, 181, 278

MathStatica, 57
Matrices, 227
Maximum, 45, 159, 187, 303, 307
Maximum heap data structure, 117
Maximum likelihood estimators, 181,

295, 297
Mean, 40–42, 45, 80, 97, 107, 133, 149,

156, 157, 192, 193, 248, 249, 251
Mean system lifetime, 177, 178, 180,

187
Memoryless property, 254
MGF, 40, 41, 114
Minimum, 45, 158, 159, 185, 187
Minimum heap, 118, 122
Mixture, 45, 245
MLE, 45, 171, 217–223
MLENHPP, 45, 223
MLEWeibull, 220
M/M/1 queue, 245, 246, 250–260,

267–271, 273, 275
M/M/2 queue, 249
M/M/3 queue, 246, 247
MMsQprob, 244, 247
M/M/s queue, 241–247, 275
MOM, 45, 223
Moment generating functions (MGFs),

114–115
Monte Carlo simulation, 3, 224
Moving heap method, 118, 120
MP6Censor, 220

N
NegativeBinomialRV, 99
NextCombination and

NextPermutation, 142, 150
Node-arc incidence matrix, 303, 305
NoDot case, 91
NoDot support format, 97, 98
Non-overlapping ordered pairs, 213
Normal distribution, 198, 283–287, 295
Normal PDF approximation, 135
NormalRV, 38, 40, 81, 193, 198, 283–287,

296
Numeric computations, in Maple

language, 13–14

O
OrderStat, 6, 29, 42, 43, 140–142, 144,

157, 165, 320, 321
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OrderStat algorithm, 42–44, 139–151

Order statistic, 177

Order statistics

sampling without replacement,
141–145

APPL code to compute the PDF, 142

computation of PDF of rth, 145

equally likely probabilities, 142, 145

exact value, 149

extension, 150–151

finite support, 141–144, 147–148

infinite support, 145, 148

notation and taxonomy, 139–140

sampling with replacement, 145–149

string “wo,” argument, 141

OSgraphs, 321

P

Parallel systems, 172–190

Partial autocorrelation, 195, 202, 203,
205, 206

Pascal’s triangle, 229

Percentiles, 250

Periodic transformations, 51

Piecewise many-to-1 transformation,
47, 48

Piecewise 2-to-1 transformation, 68–69

Piecewise transformation, 64–66

PlotDist, 4, 40, 45, 106, 236, 318, 320,
321

PlotEmpVsFittedCDF, 210, 217

Pochhammer symbol, 181

Poisson distribution, 90, 112, 130, 281

PoissonRV, 130, 281, 283, 284

Posterior distribution, 277–300

PosteriorMV, 290–292, 294, 295, 297

PosteriorPredictive, 281, 283, 284

Posterior predictive distribution,
281–284

Power function, 7–8

Prefix shifts, 261

Prior distribution, 277–300

Probabilities and normal PDF
approximations for Pr, 135–136

Probability density function (PDF)

by discrete convolution formula,
131

function of, 254
independent random variables

convolution, 86
Poisson random variable, 112
of rth order statistic, computation of,

142, 146
Probability mass function, 91
ProbStorage array, 142–143
Procedures, in Maple, 28–30

Product, 4, 44, 73, 79–84, 138, 163,
164, 320

ProductIID, 7, 83

Q
Queue, 247–249, 258
Queueing analysis. See Transient

queueing analysis

R
R (language), 277, 278
Random sampling error, 172
Random variables

functional form, 100
sums distribution calculation, 106
support, 84

RangeStat algorithm, 150, 165, 170
Realization, 208
ReduceList, 29, 51
Reliability block diagram (RBD), 172,

173, 184
Resampling error, 163, 172

S
Sampling

with replacement, 5–6
without replacement, 6

SDF, 191
Seriessystemboot, 162–163
Series systems, 172–190
set.seed, 163
SF, 7, 37–39, 45, 89, 100, 101, 146, 156,

160, 212, 280, 281
Shellsort insertion sort, 117
Significance level, 7
Simplify, 296
Skewness, 40, 45, 80, 107, 216, 251
Sojourn time, 241–275
solve, 61, 62, 291
Spectral density function, 205, 207
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S-Plus

code, 165

function call, 163

Stan (language), 277, 278

Standard errors, estimation of, 165–170

Steady-state simulation, 241

Stochastic activity network

algorithm, 301–310

matrix representation of a network,
302–303

notations and assumptions, 302

parallel reduction, 304

series-parallel activity networks, 303

series reconstruction, 304–305

series reduction, 305

Stochastic simulation

CDF of KS test statistic, 223–225

distance between consecutive random
number pairs, 212–215

input modeling, 215–223

Kolmogorov–Smirnov goodness-of-fit
test, 223–240

tests of randomness, 209–210

String object, 20

Survival Analysis, 164–165

Survivor function (SF), 7, 38, 90

Symbolic expression manipulation, in
Maple language, 16–17

System lifetime, 175, 176

System reliability estimates, 161

Systems of components, 155

lower confidence bound on system
reliability, 161–164

Survival analysis, 155–190

system analysis

determining probability of mission
success, 160

k-out-of-n systems, 155

system failure of parallel system,
157–158

system failure time of three-
component system, 158–160

T

Three-component series system,
161–163

Time series, 191, 193

2-to-1 transformation, 66–68

Traffic intensity, 243, 247, 253, 267–269,
275

Transform, 10, 43, 45, 50–52, 54–56, 73,
80, 82, 83, 89, 92, 163, 168, 169,
192, 193, 214, 216, 218, 295, 315,
316

Transformation technique, 47–58, 64

Transformation theorem, 48–49, 55

Transient queueing analysis, 241–275

Triangular distribution, 280, 284–287

Triangular PDF plot, 41

TriangularRV, 4, 40, 42, 280, 315

Truncate, 45, 158, 159, 286, 296, 314

Truncated normal distribution, 286

TSCorrelation, 191, 198, 200, 201

TSForecast, 191, 204

TSMean, 191

TSPartialCorrelation, 191, 202, 203

TSPlot, 191, 203

TSRealization, 191, 204, 205

TSVariance, 191

Two-dimensional conceptual array
construction, 118

U

UniformDiscreteRV, 6, 99, 134, 142,
147

Uniform distribution, 285, 286, 298

UniformRV, 4, 10, 37, 52, 54, 70, 79, 82,
83, 158, 159, 210, 214, 315, 316

UnitRoots, 191, 198–200

Unit roots analysis, 205, 206

U -subintervals, 226, 228

V

Variables, in Maple language, 15–16

Variance, 37, 40, 45, 80, 99, 107, 132,
133, 135, 137, 149, 156, 165, 167,
185, 191–194, 197, 198, 248, 251,
258, 260, 267, 268, 295, 297, 315,
318

Variance–covariance matrix, 259, 267,
269, 274, 275

VerifyPDF, 9, 35, 45, 108
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W

Weibull distribution, 181, 183, 184

WeibullRV, 38, 39, 156, 219, 221, 223

Weibull survivor function, 221

while loop, in Maple, 27

WinBUGS (language), 277, 278

Y
Yule–Walker equations, 194–195, 201,

203

Z
Zipf random variable, 98
ZipfRV, 99


	Preface
	Contents
	Part I Introduction
	1 Computational Probability
	1.1 Four Simple Examples of the Use of APPL
	1.2 A Different Way of Thinking
	1.3 Overview

	2 Maple for APPL
	2.1 Numerical Computations
	2.2 Variables
	2.3 Symbolic Computations
	2.4 Functions
	2.5 Data Types
	2.6 Solving Equations
	2.7 Graphing
	2.8 Calculus
	2.9 Loops and Conditions
	2.10 Procedures


	Part II Algorithms for Continuous Random Variables
	3 Data Structures and Simple Algorithms
	3.1 Data Structures
	3.2 Simple Algorithms

	4 Transformations of Random Variables
	4.1 Theorem
	4.2 Implementation in APPL
	4.3 Examples

	5 Bivariate Transformations of Random Variables
	5.1 Algorithm
	5.2 Data Structure
	5.3 Implementation
	5.4 Examples

	6 Products of Random Variables
	6.1 Theorem
	6.2 Implementation in APPL
	6.3 Examples
	6.4 Extensions
	6.5 Algorithm


	Part III Algorithms for Discrete Random Variables
	7 Data Structures and Simple Algorithms
	7.1 Data Structures
	7.2 Simple Algorithms

	8 Sums of Independent Discrete Random Variables
	8.1 Preliminary Examples
	8.2 Conceptual Algorithm Development
	8.3 Algorithm
	8.4 Implementation Issues
	8.5 Examples

	9 Order Statistics for Random Sampling from Discrete Populations
	9.1 Notation and Taxonomy
	9.2 Sampling Without Replacement
	9.3 Sampling with Replacement
	9.4 Extension


	Part IV Applications
	10 Reliability and Survival Analysis
	10.1 Systems Analysis
	10.2 Lower Confidence Bound on System Reliability
	10.3 Survival Analysis
	10.4 Applying Bootstrap Methods to System Reliability

	11 Symbolic ARMA Model Analysis
	11.1 ARMA Model Basics
	11.2 Implementation
	11.3 Examples

	12 Stochastic Simulation
	12.1 Tests of Randomness
	12.2 Input Modeling
	12.3 Kolmogorov–Smirnov Goodness-of-Fit Test

	13 Transient Queueing Analysis
	13.1 Introduction
	13.2 Basics of the M/M/s Queue
	13.3 Creating the Sojourn Time Distribution
	13.4 Transient Analysis Applications
	13.5 Covariance and Correlation in the M/M/1 Queue
	13.6 Extending Covariance Calculations
	13.7 Sojourn Time Covariance with k Customers Initially Present

	14 Bayesian Applications
	14.1 Introduction
	14.2 Bayesian Inference on Single-Parameter Distributions
	14.3 Bayesian Inference on Multiple-Parameter Distributions

	15 Other Applications
	15.1 Stochastic Activity Networks
	15.2 Benford's Law
	15.3 Miscellaneous Applications


	References
	Index



