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Preface

The subject of this book is the estimation of random vectors given observations
of a related random process assuming that there is a linear relation between them.
Since the class of linear models is very rich, we restrict our attention to those having
a state space structure. The origin of this topic can be traced back to illustrious
researches such as Laplace, Gauss, and Legendre and, more recently, to H. Wold,
A.N. Kolmogorov, and N. Wiener in the late 1930s and earlier 1940s.

The theory received a great impulse with the incorporation of state space models.
The main contributor to this development was R.E. Kalman, who also made
important related contributions to linear systems, optimal control, stability theory,
etc. The subject matter of state space models has expanded a lot in recent years and
today includes nonlinear as well as non-Gaussian models. We have limited the scope
of the book to linear state space models, however, because otherwise its size would
have been excessive.

In this book, the emphasis is on the development of the theory of least-
squares estimation for finite-dimensional linear systems with two aims: firstly,
that the foundations are solidly laid and, secondly, that efficient algorithms are
simultaneously given to perform the necessary computations. For this reason, the
theory is presented in all generality without focusing on specific state space models
from the beginning, as is the case in, for example, the books by Harvey (1989)
or Durbin & Koopman (2012) with regard to structural time series models. The
theory developed in this book covers most aspects of what is generally known as the
Wiener–Kolmogorov and Kalman filtering theory.

The book is intended for students and researchers in many fields, including
statistics, economics and business, engineering, medicine, biology, sociology, etc. It
assumes familiarity with basic concepts of linear algebra, matrix theory, and random
processes. Some appendices at the end of several chapters provide the reader with
background material in some of these or related areas.

Chapters 1 and 2 deal with the definition of orthogonal projection and the
introduction of many topics associated with it, including state space and VARMA
models. In Chap. 3, stationary processes and their properties are considered. Chap-
ter 4 is dedicated to the general state space model, including many algorithms for
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filtering and smoothing. General Markov processes are also included. Chapter 5
contains the development of special features associated with time invariant state
space models. In Chap. 6, time invariant state space models with inputs are
considered. The Wiener–Kolmogorov theory is developed in Chap. 7. First for
infinite and then for finite samples. Finally, the SSMMATLAB software package
is described in Chap. 8.

Madrid, Spain Víctor Gómez
November 2015



Computer Software

Many of the algorithms presented in this book have been implemented by the author
in MATLAB in a software package called SSMMATLAB (Gómez, 2014, 2015).

A brief description of the SSMMATLAB package is given in Chap. 8. In this
chapter, a list of the most important SSMMATLAB functions is given, together with
references to the sections of this book with which the functions are connected.

As described in the SSMMATLAB manual, there are many examples and case
studies taken from time series books, such as Box & Jenkins (1976), Reinsel (1997),
Lütkepohl (2007), and Durbin & Koopman (2012), published time series articles, or
simulated series.
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Chapter 1
Orthogonal Projection

1.1 Expectation and Covariance Matrix of Random Vectors

Let Y D .Y 0
1; : : : ;Y

0
k/

0 be a k-dimensional random vector. If E.Yi/ D �i is the mean
of Yi, i D 1; : : : ; k, the mean vector of Y is defined by �y D .�1; : : : ; �k/

0.
In a similar way, the expectation of a matrix whose elements are random variables

is defined as the matrix in which each element is replaced by the expectation of that
element. If Y and X D .X1; : : : ;Xm/

0 are random vectors, the covariance matrix of
Y and X is defined as

†yx D Cov.Y;X/ D EŒ.Y � �y/.X � �x/
0�:

The .i; j/ element of†yx is the covariance between Yi and Xj, Cov.Yi;Xj/ D EŒ.Yi �
E.Yi//.Xj � E.Xj//�. In particular, the covariance matrix of Y is †yy D Cov.Y/ D
EŒ.Yi � �y/.Y � �y/

0�.
Given two random variables, Y and X, the correlation coefficient of Y and X is

defined by Corr.Y;X/ D Cov.Y;X/=.
p

Var.Y/
p

Var.X//. By the Cauchy–Schwarz
inequality, the correlation coefficient satisfies �1 � Corr.Y;X/ � 1. If Y and X are
random vectors, the correlation matrix of Y and X is defined by

Corr.Y;X/ D VyCov.Y;X/Vx;

where Vy D Diag.1=
p

Var.Y1/; : : : ; 1=
p

Var.Yk// and Vx D Diag..1=
p

Var.X1/;
: : : ; 1=

p
Var.Xm//.

If g.X/ is an estimator of the random vector X, the mean squared error (MSE)
of g.X/ is defined as MSE.g.X// D E.X � g.X//.X � g.X//0.

Given two random vectors, X and Y, the conditional expectation of X based on
Y is the measurable random vector E.XjY/ such that minimizes trMSE.g.X// for all
measurable random vectors g.X/, where tr denotes the trace of a matrix.

© Springer International Publishing Switzerland 2016
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2 1 Orthogonal Projection

If c is a k-dimensional vector of constants and A is an n � k nonrandom matrix,
the random vector Z D AY C c has mean E.Z/ D AE.Y/C c and covariance matrix
Var.Z/ D AVar.Y/A0. In a similar way, the covariance matrix of the random vectors
Z D AY C c and W D BX C d is Cov.Z;W/ D ACov.Y;X/B0 D A†yxB0.

The covariance matrix †yy of a random vector Y is symmetric and nonnegative
definite, since Var.b0Y/ D b0†yyb for all k-dimensional vector b . Thus, †yy can
be represented by means of the so-called Cholesky decomposition as †yy D LL0,
where L is a lower triangular matrix that is called Cholesky factor. Also, †yy D
PDP0, where P is orthogonal and D is a diagonal with the eigenvalues of †yy in
the diagonal. The Cholesky decomposition of †yy can also be expressed as †yy D
LDL0, where L is lower triangular with ones in the diagonal and D is diagonal with
nonnegative elements. Note that Var.L�1Y/ D D. As we will see later, when we
define orthogonality, this means that the elements of L�1Y are orthogonal.

Sometimes, we will be interested in the matrix of noncentered second moments,
defined by Syx D E.XY 0/.

A random variable X satisfying EjXjp < 1 is said to be of class p, denoted
X 2 Lp. A random vector X is said to be of class p if Xi 2 Lp for all components Xi

of X.

Theorem 1.1 If a random vector X 2 Lp, then X has finite noncentered moments of
order q for all q � p.

Proof Let X D .X0
1; : : : ;X

0
k/

0 and let ai � 0, pi � 0, i D 1; : : : ; k, and
Pk

iD1 pi D 1.
Then, by the inequality between the geometric and the arithmetic mean, we can
write

kY

iD1
api

i �
kX

iD1
piai:

This implies

kY

iD1
jXijji D

kY

iD1
jXijq

ji
q �

kX

iD1

ji
q

jXijq;

where q D Pk
iD1 ji. By Jensen’s inequality, Ef .X/ � f .EX/, which is true for all

convex downward functions f , we can write

E
kY

iD1
jXijji � E

kX

iD1

ji
q

jXijq �
kX

iD1

ji
q
.EjXijp/

q
p :

�



1.2 Orthogonality 3

1.2 Orthogonality

Two random variables, X and Y, with finite second moments are defined as
orthogonal if E.XY/ D 0. It can be verified that the product of random variables
defined by hX;Yi D E.XY/ has all the properties of an inner product. Strictly
speaking, the condition hX;Xi D 0 implies X D 0 except on a set of zero measure.
We can circumvent this difficulty by considering equivalence classes of random
variables instead of random variables themselves, where X and Y are defined as
equivalent if they differ on at most a set of zero measure. It can be shown that
the set of equivalence classes of random variables with finite second moments is
a Hilbert space. In what follows we will not distinguish between random variables
and their equivalence classes.

Given two random vectors, X and Y, belonging to L2, we define the product
hX;Yi D E.XY 0/, where the vectors can have different dimensions. This product
also has all the properties of an inner product except that the values taken by
the product are matrices and not real numbers. More specifically, the product h; i
satisfies the following properties:

1. hA1X1 C A2X2;Yi D A1hX1;Yi C A2hX2;Yi
2. hX;Yi D hY;Xi�
3. hX;Xi D 0 implies X D 0,

where A1 and A2 are nonstochastic matrices of appropriate dimensions and X1,
X2, X and Y are random vectors. Here if A is a matrix with complex elements,
A� denotes its conjugate transpose. Thus, the definition is also valid for complex
random vectors. As in the scalar case, condition (3) is valid up to a set of zero
measure and two random vectors are defined as equivalent if they differ on at most
a set of zero measure. In what follows we will not distinguish between random
vectors and their equivalence classes. Two random vectors, X and Y, are defined
as orthogonal if hX;Yi D 0. The orthogonality of X and Y is usually denoted as
X ? Y.

The notation

jjXjj2 D hX;Xi

is often used. If X is a nonrandom scalar, then jjXjj is its absolute value. Note that if
X is a zero mean random vector, then

jjXjj2 D Var.X/:

The product h; i, either for random vectors or for random variables, will be very
useful in the sequel and we will refer to it as an inner product.



4 1 Orthogonal Projection

1.3 Best Linear Predictor and Orthogonal Projection

Given two random vectors, X and Y, with finite second moments, the best linear
predictor E�.YjX/ of Y based on X is defined as the linear estimator AX such that
trE.Y � AX/.Y � AX/0 D E.Y � AX/0.Y � AX/ is minimum with respect to A, where
A is a nonrandom matrix.

Proposition 1.1 Suppose that X and Y are two random vectors with finite second
moments,

E

��
X
Y

� �
X0;Y 0�

�
D
�

Sxx Sxy

Syx Syy

�
; (1.1)

and assume that Sxx is nonsingular. Then, the best linear predictor of Y based on X is
E�.YjX/ D B0X, where B0 D SyxS�1

xx , and MSE.E�.YjX// D E.Y�B0X/.Y�B0X/0 D
Syy � B0Sxy D Syy � SyxS�1

xx Sxy.

Proof It is not difficult to verify that

E.Y � AX/0.Y � AX/ D trfSyy � SyxA
0 � ASxy C ASxxA

0g
D trfSyy � B0SxxA

0 � ASxxB C ASxxA
0g

D trfSyy � B0SxxB C B0SxxB � B0SxxA
0 � ASxxB C ASxxA0g

D trfSyy � B0SxxB C .A � B0/Sxx.A � B0/0g:

Because the third term to the right of the last equality is nonnegative, the expression
E.Y�AX/0.Y�AX/ is minimized if A D B0. This shows that the best linear predictor
of Y based on X is E�.YjX/ D SyxS�1

xx X:
In addition, because tr.Y � AX/.Y � AX/0 D .Y � AX/0.Y � AX/, the previous

argument also shows that MSE.E�.YjX// D Syy � B0Sxy D Syy � SyxS�1
xx Sxy. �

Example 1.1 Let Y D HX C V , where H is a fixed matrix and X and V are random
vectors such that X?V . Then, Syx D E.HX C V/X0 D HSxx and E�.YjX/ D
HSxxS�1

xx X D HX. On the other hand, Syy D HSxxH0 CSvv , so that MSE.E�.YjX// D
Syy � SyxS�1

xx Sxy D Svv . Þ

Remark 1.1 The matrix B0 of the best linear predictor of Y based on X, E�.YjX/ D
B0X, satisfies by Proposition 1.1 the so-called normal equations

B0Sxx D Syx: (1.2)

Þ

Proposition 1.2 (The Case of Singular Sxx) Suppose that X and Y are as in
Proposition 1.1 but that Sxx is singular. Then, the normal equations (1.2) are
consistent and the solution is not unique. No matter which solution B0 is used,
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the corresponding best linear predictor, E�.YjX/ D B0X, is unique and so is
MSE.E�.YjX// D Syy � B0Sxy. Moreover, B0 D SyxS�

xx, where S�
xx is a generalized

inverse of Sxx, is a solution of the normal equations.

Proof The normal equations can be written as SxxB D Sxy. It is clear that for a
solution to exist it is necessary and sufficient that Sxy be in the space generated
by the columns of Sxx. Thus, the normal equations are consistent if, and only if,
R.Sxy/ � R.Sxx/. By Corollary 1A.2 in the Appendix to this chapter, we can write

R.Sxy/˚ N .Syx/ D R.Sxx/˚ N .Sxx/: (1.3)

By Corollary 1A.1 in the Appendix to this chapter, the condition R.Sxy/ � R.Sxx/

can be expressed as R.Sxx/ D R.Sxy/˚ U, where U is the orthogonal complement
of R.Sxy/ in R.Sxx/. It follows from this and (1.3) that the normal equations are
consistent if, and only if,

R.Sxy/˚ N .Syx/ D R.Sxy/˚ U ˚ N .Sxx/:

It is easily seen that this condition is equivalent to N .Sxx/ � N .Syx/. On the other
hand, if a 2 N .Sxx/, then a0Sxxa D 0 and a0X has zero variance. Assuming for
simplicity that X and Y have zero means, this implies a0X D 0 and, therefore,
Cov.Y; a0X/ D Syxa D 0 and a 2 N .Syx/. Thus, the condition N .Sxx/ � N .Syx/

always holds and the normal equations are consistent.
To see that E�.YjX/ and MSE.E�.YjX// are unique no matter what solution of

the normal equations we use, let B0
1 and B0

2 be two solutions of the normal equations.
Then, .B0

1 � B0
2/Sxx D 0 and, assuming for simplicity that X and Y have zero mean,

this implies that .B0
1�B0

2/X has zero covariance matrix and, therefore, .B0
1�B0

2/X D
0. In addition, since N .Sxx/ � N .Syx/, we have .B0

1 � B0
2/Sxy D 0 and the equality

of the MSE of the two best linear predictors follows.
If S�

xx is a generalized inverse of Sxx and B0 is any solution of the normal equations,
then, using the properties of a generalized inverse, we can write

�
SyxS

�
xx

	
Sxx D B0 �SxxS

�
xxSxx

	 D B0Sxx D Syx:

Therefore, SyxS�
xx is a solution of the normal equations. �

To define the best linear predictor we have only considered noncentered second
moments. To take centered second moments into account, suppose that we want
to obtain the best linear predictor of Y based on .1;X0/0. Then, E�.Yj1;X/ D
A.1;X0/0 D A1CA2X, where A D .A1;A2/ is partitioned conformally to .1;X0/0. The
estimator A1CA2X is called an affine estimator instead of a linear estimator. For the
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rest of this section, let the matrix of noncentered second moments of .1;X0;Y 0/0 be

E

8
<

:

2

4
1

X
Y

3

5
�
1;X0;Y 0�

9
=

;
D
2

4
1 m0

x m0
y

mx Sxx Sxy

my Syx Syy

3

5

and let

Var

��
X
Y

��
D
�
†xx †xy

†yx †yy

�
:

Proposition 1.3 Assume that Sxx is nonsingular. Then, the best linear predictor of
Y based on .1;X0/0 is E�.Yj1;X/ D B0

1 C B0
2X D my C †yx†

�1
xx .X � mx/ and

MSE.E�.Yj1;X// D †yy �†yx†
�1
xx †xy.

Proof Using the result of Proposition 1.1, we can write

�
B0
1;B

0
2

� D �
my; Syx

� �1 m0
x

mx Sxx

��1
:

Thus,

B0
1 C B0

2mx D my

B0
1m

0
x C B0

2Sxx D Syx:

Solving for B0
1 in the first equation and substituting in the second one, it is obtained

that B0
2.Sxx � mxm0

x/ D Syx � mym0
x. From this, we get B0

2 D †yx†
�1
xx and B0

1 D
my�†yx†

�1
xx mx. Substituting in MSE.E�.Yj1;X// D E.Y�B0

1�B0
2X/.Y�B0

1�B0
2X/

0,
the expression for the MSE follows easily. �

Remark 1.2 (Dispensing with the Means) The previous result shows that we can
work with centered random vectors to compute the best linear predictor. To see this,
let QX D X � mx and QY D Y � my. Then, E�. QYj QX/ D †yx†

�1
xx

QX D E�.Yj1;X/ � my

and MSE.E�. QYj QX// D MSE.E�.Yj1;X//. Þ

In the rest of the section, we will consider some properties of best linear
prediction.

Proposition 1.4 B0X is the best linear predictor if and only if Y �B0X is orthogonal
to X.

Proof If B0X is the best linear predictor, E.Y � B0X/X0 D Syx � B0Sxx D 0.
Conversely, if E.Y � B0X/X0 D 0, then Syx � B0Sxx D 0 and B0 D SyxS�1

xx . �
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The previous proposition shows that the best linear predictor E�.YjX/ coincides
with the orthogonal projection of Y on X. This last projection is defined as the
vector B0X such that Y � B0X is orthogonal to X.

Remark 1.3 (Projection Theorem for Random Variables) If Y is a random variable
and X D .X1; : : : ;Xk/

0 is a random vector, the orthogonal projection of Y on X is the
linear combination of the elements of X, B0X D b1X1C� � �CbkXk, such that Y �B0X
is orthogonal to X. Thus, the orthogonal projection is an element of the vector space,
S.X/, generated by the components of X, that is, the space of all linear combinations
of the form a1X1 C � � � C akXk, where a1; : : : ; ak 2 R. By Proposition 1.4, it is in
fact the unique element of S.X/, B0X, such that

jjY � B0Xjj � jjY � A0Xjj; A0X 2 S:

This is an instance of the so-called Projection Theorem in inner product spaces. Þ

In the rest of the book, whenever we consider an orthogonal projection of a
random vector Y on another random vector of the form .X0

1; : : : ;X
0
k/

0, where the
Xi, i D 1; : : : ; k are in turn random vectors, we will write for simplicity and using a
slight abuse of notation

E�.YjX1; : : : ;Xk/;

instead of

E� �Yj.X0
1; : : : ;X

0
k/

0� :

Proposition 1.5 If .Y 0;X0
1; : : : ;X

0
k/

0 is a random vector such that X1; : : : ;Xk are
mutually orthogonal, then

E�.YjX1; : : : ;Xk/ D E�.YjX1/C � � � C E�.YjXk/:

Proof We can write

E�.YjX1; : : : ;Xk/ D .Syx1 ; : : : ; Syxk/diag.S�1
xixi
/

2

6
4

X1
:::

Xk

3

7
5 ;

and the result follows. �

Proposition 1.6 If .Y 0;X0
1; : : : ;X

0
k/

0 is a random vector such that X1; : : : ;Xk are
mutually orthogonal, then

E�.Yj1;X1; : : : ;Xk/ D E�.Yj1;X1/C � � � C E�.Yj1;Xk/� .k � 1/my:
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Proof Considering centered variables, QY; QX1; : : : ; QXk, and applying the previous
proposition, it is obtained that

E�. QYj QX1; : : : ; QXk/ D E�.Yj1;X1; : : : ;Xk/ � my

D E�. QYj QX1/C � � � C E�. QYj QXk/

D E�.Yj1;X1/ � my C � � � C E�.Yj1;Xk/ � my:

�

Proposition 1.7 The orthogonal projection is invariant by nonsingular affine
transformations. That is,

E�.Yj1;X/ D E�.Yj1;Z/;

where

�
1

Z

�
D
�
1 0

n M

� �
1

X

�

and jMj ¤ 0.

Proof We can write

E�.Yj1;Z/ D �
my; Syx

�
�
1 n0
0 M0

� ��
1 0

n M

� �
1 m0

x

mx Sxx

� �
1 n0
0 M0

���1

�
�
1 0

n M

� �
1

X

�

D �
my; Syx

� � 1 m0
x

mx Sxx

��1 �
1

X

�

D E�.Yj1;X/:

�

1.4 Orthogonalization of a Sequence of Random Vectors:
Innovations

All random variables in this section will be assumed without loss of generality to
have zero mean. Given a sequence of random vectors fYig, i D 1; : : : ; n, that may be
autocorrelated, we want to address the problem of constructing a new sequence fEig,
i D 1; : : : ; n, of mutually uncorrelated random vectors such that each Ei depends
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linearly on Yj, j � i. The random vectors Ei of the new sequence will be called
innovations.

Given two random vectors, X and Y, with finite second moments given by (1.1)
and assuming that Sxx is nonsingular, we know that, by Proposition 1.4, Z D Y �
E�.YjX/ D Y � SyxS�1

xx X is orthogonal to X. Thus, if we make the transformation

�
X
Z

�
D
�

I 0

�SyxS�1
xx I

� �
X
Y

�
; (1.4)

then

E

��
X
Z

� �
X0;Z0�

�
D
�

I 0

�SyxS�1
xx I

� �
Sxx Sxy

Syx Syy

� �
I �S�1

xx Sxy

0 I

�

D
�

Sxx 0

0 Syy � SyxS�1
xx Sxy

�
: (1.5)

In this case, fX;Zg D fE1;E2g is the desired sequence of innovations and
fD1;D2g D fSxx; Syy � SyxS�1

xx Sxyg is the sequence of their covariance matrices.
Suppose now a sequence of three random vectors Y D .Y 0

1;Y
0
2;Y

0
3/

0, where jjYjj2
is positive definite. Then, to construct three mutually orthogonal random vectors,
E D .E0

1;E
0
2;E

0
3/

0, where jjEijj2 D Di, such that each Ei depends linearly on Yj,
j � i, i D 1; 2; 3, we can apply the well-known Gram–Schmidt orthogonalization
procedure of Euclidean spaces to the sequence Y.

The procedure is recursive. Define first E1 D Y1 and D1 D jjY1jj2. Then, define

E2 D Y2 �‚21E1

such that E2 is orthogonal to E1. This implies

0 D hY2;E1i �‚21jjE1jj2

and, thus,

‚21 D hY2;Y1iD�1
1 ; D2 D hY2;Y2i �‚21D1‚

0
21:

Note that ‚21E1 D E�.Y2jE1/ and E2 D Y2 � E�.Y2jE1/. Finally, define

E3 D Y3 �‚32E2 �‚31E1
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such that E3 is orthogonal to E2 and E1. To obtain ‚32 and ‚31, we impose the
orthogonality conditions. Therefore,

0 D hY3;E1i �‚31jjE1jj2
0 D hY3;E2i �‚32jjE2jj2

D hY3;Y2 �‚21E1i �‚32jjE2jj2
D hY3;Y2i � h‚31E1;‚21E1i �‚32jjE2jj2;

where the last equality holds because Y3 D E3 C‚32E2 C‚31E1 and E3 and E2 are
orthogonal to E1. From this, it is obtained that

‚31 D hY3;Y1iD�1
1

‚32 D .hY3;Y2i �‚31D1‚
0
21/D

�1
2

D3 D hY3;Y3i �‚32D2‚
0
32 �‚31D1‚

0
31

Note that ‚31E1 D E�.Y3jE1/, ‚32E2 D E�.Y3jE2/ and, by Proposition 1.5, E3 D
Y3 � E�.Y3jE1;E2/.

The previous algorithm implies the transformation

2

4
Y1
Y2
Y3

3

5 D
2

4
I 0 0

‚21 I 0

‚31 ‚32 I

3

5

2

4
E1
E2
E3

3

5 : (1.6)

Given that the variables in E are mutually orthogonal, this transformation produces
a block Cholesky decomposition of the matrix jjYjj2,

jjYjj2 D
2

4
I 0 0

‚21 I 0

‚31 ‚32 I

3

5

2

4
D1 0 0

0 D2 0

0 0 D3

3

5

2

4
I 0 0

‚21 I 0

‚31 ‚32 I

3

5

0

:

The procedure just described to orthogonalize three random vectors can be
generalized to any number of random vectors. We summarize the result in the
following theorem.

Theorem 1.2 (Innovations Algorithm) Let the sequence of random vectors Y D
.Y 0
1; : : : ;Y

0
n/

0, where jjYjj2 is positive definite and Sij D E.YiY 0
j /, i; j D 1; : : : ; n.

Then, for t D 2; : : : ; n,

Yt D ‚t1E1 C‚t2E2 C � � � C‚t;t�1Et�1 C Et

D E�.YtjEt�1; : : : ;E1/C Et;
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where the Ei vectors, i D 1; : : : ; t, are mutually orthogonal and the coefficients‚tj,
j D 1; : : : ; t � 1, and Dt D jjEtjj2, can be obtained from the recursions

‚tj D
 

Stj �
j�1X

iD1
‚tiDi‚

0
ji

!

D�1
j ; j D 1; : : : ; t � 1;

Dt D Stt �
t�1X

iD1
‚tiDi‚

0
ti;

initialized with Y1 D E1 and D1 D S11.

Proof The orthogonality conditions imply

‚tjjjEjjj2 D hYt;Eji

D
*

Yt;Yj �
j�1X

iD1
‚jiEi

+

D Stj �
j�1X

iD1
‚tiDi‚

0
ji;

where we have made use of the fact that E.YtE0
i/ D E.‚tiEiE0

i/ D ‚tiDi. The
expression for Dt is proved analogously. The equality E�.YtjEt�1; : : : ;E1/ D
‚t1E1 C � � � C‚t;t�1Et�1 follows from Proposition 1.5. �

The innovations algorithm implies the transformation

2

6
6
6
4

Y1
Y2
:::

Yn

3

7
7
7
5

D

2

6
6
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

7
7
7
5

2

6
6
6
4

E1
E2
:::

En

3

7
7
7
5
; (1.7)

which constitutes a generalization of (1.6), and the corresponding block Cholesky
decomposition of jjYjj2,

jjYjj2 D

2

66
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

77
7
5

2

66
6
4

D1 0 � � � 0
0 D2 � � � 0
:::

:::
: : :
:::

0 0 � � � Dn

3

77
7
5

2

66
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

77
7
5

0

: (1.8)
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It is shown in the proof of the innovations algorithm that the lower triangular matrix
in (1.7) can also be written as

2

6
6
66
6
4

I
hY2;E1ijjE1jj�2 I
hY3;E1ijjE1jj�2 hY3;E2ijjE2jj�2 I

:::
:::

:::
: : :

hYn;E1ijjE1jj�2 hYn;E2ijjE2jj�2 hYn;E3ijjE3jj�2 � � � I

3

7
7
77
7
5
:

Example 1.2 Let Y1 be a random variable with E.Y1/ D 0 and Var.Y1/ D .1C�2/�2
and let Yt D �At�1CAt, t � 2, where j� j < 1 and fAtg is an uncorrelated sequence of
random variables with zero mean and common variance �2 such that E.Y1A1/ D �2

and E.Y1At/ D 0, t � 2. Given the sequence Y D .Y1; : : : ;Yn/
0, we can obtain the

covariances Sij D E.YiY 0
j /, i; j D 1; : : : ; n, as follows. Clearly, Stt D .1 C �2/�2,

t � 1. To obtain St;t�1, t � 2, multiply the equation Yt D �At�1 C At by Yt�1 to get

YtYt�1 D �At�1Yt�1 C AtYt�1:

Taking expectations and considering that At is uncorrelated with Yt�1 and
E.At�1Yt�1/ D �2 for t � 2, we get St;t�1 D �2� . Similarly, St;t�j D 0, j > 1,
t � j � 1. Thus,

Var.Y/ D �2

2

6
6
66
6
4

1C �2 �

� 1C �2 �

: : :
: : :

: : :

� 1C �2 �

� 1C �2

3

7
7
77
7
5
:

Applying the innovations algorithm, we have E1 D Y1, D1 D .1 C �2/�2, and for
t � 2

‚t;t�1Dt�1 D St;t�1 D ��2

Dt D Stt �‚2
t;t�1Dt�1 D .1C �2/�2 � �2�4=Dt�1:

This implies for t � 2

Yt D ‚t;t�1Et�1 C Et; ‚t;t�1 D �.1C �2 C � � � C �2.t�2//
1C �2 C � � � C �2.t�1/

;

Dt D 1C �2 C � � � C �2t

1C �2 C � � � C �2.t�1/
�2:
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The decomposition (1.8) is in this case Var.Y/ D LDL0, with

LD D

2

6
66
4

1

‚21 1
: : :

: : :

‚n;n�1 1

3

7
77
5

2

6
66
4

D1

D2

: : :

Dn

3

7
77
5
:

Þ

Example 1.3 Let Y1 be a random variable with E.Y1/ D 0 and Var.Y1/ D
�2=.1 � �2/ and let Yt D �Yt�1 C At, t � 2, where j�j < 1 and fAtg is an
uncorrelated sequence of random variables with zero mean and common variance
�2, uncorrelated with Y1. Given the sequence Y D .Y1; : : : ;Yn/

0, we can obtain the
covariances Sij D E.YiY 0

j /, i; j D 1; : : : ; n, as follows. Clearly, S11 D �2=.1 � �2/.
To obtain St;t�1, multiply the equation Yt D �Yt�1 C At by Yt�1 to get

YtYt�1 D �Y2t�1 C AtYt�1:

Taking expectations and considering that Yt�1 is uncorrelated with At yields St;t�1 D
�Stt: To obtain St;t�2, replace first Yt�1 in Yt D �Yt�1CAt with Yt�1 D �Yt�2CAt�1
to get

Yt D �2Yt�2 C �At�1 C At:

Then, multiplying by Yt�2 and taking expectations, we have St;t�2 D �2Stt:

Reiterating this procedure we get St;t�k D �kStt. Finally, to obtain Stt, we proceed
by induction on the hypothesis that Stt D �2=.1 � �2/. It is evidently true for
t D 1. Assuming it is true for t � 1, taking expectations in Y2t D .�Yt�1 C At/

2

and considering that Yt�1 is uncorrelated with At, we get Stt D �2St�1;t�1 C �2 D
�2=.1� �2/. Thus,

Var.Y/ D �2

1 � �2

2

6
6
6
4

1 � �2 � � � �n�1
� 1 � � � � �n�2
:::

:::
:::

: : :
:::

�n�1 �n�2 �n�3 � � � 1

3

7
7
7
5
:

The innovations algorithm yields E1 D Y1, D1 D �2=.1 � �2/,

Y2 D ‚21E1 C E2; ‚21 D �; D2 D �2;

and for t � 2,

Yt D � t�1E1 C � t�2E2 C � � � C �Et�1 C Et; Dt D �2:
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Therefore, the decomposition (1.8) is in this case Var.Y/ D LDL0, with

LD D

2

6
6
6
66
4

1

� 1

�2 � 1
:::

:::
:::
: : :

�n�1 �n�2 � � � � 1

3

7
7
7
77
5

2

6
6
6
66
4

�2=.1� �2/

�2

�2

: : :

�2

3

7
7
7
77
5
:

Þ

From (1.6), it is easy to recursively derive the following expressions that give the
innovations Et in terms of the observations Ys, s � t, t D 1; 2; 3,

E1 D Y1

E2 D �‚21Y1 C Y2

E3 D �.‚31 �‚32‚21/Y1 �‚32Y2 C Y3: (1.9)

A similar transformation holds in the general setting. To see this, consider that
the innovations algorithm allows us to express the random vector Yt in terms of
the orthogonal vectors Es, s D 1; : : : ; t � 1. Since these last vectors are linear
combinations of the Yj vectors, j � s, we can write Yt D …t1Y1 C � � � C
…t;t�1Yt�1 C Et, where the …i depend on the ‚i. This last transformation amounts
to premultiply (1.7) by a suitable block lower triangular matrix to get

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5

2

6
6
6
4

Y1
Y2
:::

Yn

3

7
7
7
5

D

2

6
6
6
4

E1
E2
:::

En

3

7
7
7
5
: (1.10)

Comparing (1.10) with (1.7), the following relation is obtained

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5

2

6
6
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

7
7
7
5

D

2

6
6
6
4

I 0 � � � 0
0 I � � � 0
:::
:::
: : :
:::

0 0 � � � I

3

7
7
7
5
: (1.11)

Thus, the …ti weights can be obtained recursively from the ‚ti ones. We will state
this result in a corollary.
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Corollary 1.1 Let the sequence of random vectors Y D .Y 0
1; : : : ; Y 0

n/
0, where

jjYjj2 is positive definite, and assume we apply the innovations algorithm. Then,
for t D 2; : : : ; n,

Yt D E�.YtjY1; : : : ;Yt�1/C Et

D …t1Y1 C…t2Y2 C � � � C…t;t�1Yt�1 C Et;

where the Et vectors, t D 2; : : : ; n, are the innovations and the coefficients …ti,
i D 1; : : : ; t � 1, can be obtained recursively by solving

��…t1 �…t2 � � � I
�

2

6
6
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚t1 ‚t2 � � � I

3

7
7
7
5

D �
0 0 � � � I

�
:

Proof The only thing we have to prove is Yt D E�.YtjYt�1/ C Et. Let Yt�1 D
.Y 0
1; : : : ;Y

0
t�1/0 and Et�1 D .E0

1; : : : ;E
0
t�1/0. Since the transformation (1.7), where

n D t � 1, is nonsingular, by Propositions 1.7 and 1.5, the equality E�.YtjYt�1/ D
E�.YtjEt�1/ holds. By the innovations algorithm, E�.YtjEt�1/ D Pt�1

iD1 ‚tiEi and
Et D Yt � E�.YtjEt�1/ is orthogonal to E�.YtjEt�1/ D E�.YtjYt�1/. Thus, Yt D
E�.YtjYt�1/C Et D Pt�1

iD1 …tiYi C Et. �

Inverting both sides of (1.8) and considering (1.11), it is obtained that

jjYjj�2 D

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5

02

6
6
6
4

D�1
1 0 � � � 0

0 D�1
2 � � � 0

:::
:::

: : :
:::

0 0 � � � D�1
n

3

7
7
7
5

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5
:

(1.12)

The expression (1.7) can be written more compactly as

Y D LE;

where Y D .Y 0
1; : : : ;Y

0
n/

0 is the vector of observations, E D .E0
1; : : : ;E

0
n/

0 is the
vector of innovations and

L D

2

6
6
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

7
7
7
5
: (1.13)
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Letting S D jjYjj2 and D Ddiag.D1; : : : ;Dn/, the decomposition (1.8) of S can be
written as

S D LDL0; (1.14)

and letting

W D L�1 D

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5
; (1.15)

the decomposition (1.12) becomes

S�1 D W 0D�1W: (1.16)

The decomposition S D LDL0 is similar to the Cholesky decomposition of a
symmetric matrix. Note that if D1=2 denotes a matrix such that D D D1=2D1=20

and we define NL D LD1=2, the matrix NL is lower triangular and

S D NL NL0;

so that NL is a Cholesky factor of S. If we define NE D D�1=2E, we have jj NEjj2 D I, so
that this vector constitutes a vector of standardized innovations and Y D NL NE.

The decompositions (1.14) and (1.16) can be referred to as “lower–upper” and
“upper–lower” triangularizations of symmetric, positive definite matrices. Every
symmetric, positive definite matrix admits both a unique lower–upper and a unique
upper–lower triangularization.

Letting

Yi D W 0D�1E;

it is easy to see that the covariance matrix of Yi is the inverse of the covariance
matrix of Y, that is Var.Yi/ D V�1. For this reason, Yi D .Yi0

1 ; : : : ; Yi0
n /

0 is called
the the inverse process of Y.

The following theorem shows that the …ti and Dt matrices in (1.10) and (1.12)
can be recursively computed.

Theorem 1.3 (Autoregressive Representation) Let the sequence of random vec-
tors Y D .Y 0

1; : : : ; Y 0
n/

0, where jjYjj2 is positive definite and Sij D E.YiY 0
j /,

i; j D 1; : : : ; n. Then, for t D 2; : : : ; n,

Yt D E�.YtjY1; : : : ;Yt�1/C Et

D …t1Y1 C…t2Y2 C � � � C…t;t�1Yt�1 C Et;
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where the Es vectors, s D 1; : : : ; t, are mutually orthogonal and the coefficients…ti,
i D 1; : : : ; t � 1, and matrix Dt D jjEtjj2, can be obtained from the recursions

Ctj D Stj �
j�1X

iD1
Sti…

0
ji; j D 1; : : : ; t � 1;

…tj D CtjD
�1
j �

t�1X

iDjC1
CtiD

�1
i …ij; j D 1; : : : ; t � 1;

Dt D Stt �
t�1X

iD1
CtiD

�1
i C0

ti;

initialized with Y1 D E1 and D1 D S11.

Proof Let Yt�1 D .Y 0
1; : : : ;Y

0
t�1/0, Et�1 D .E0

1; : : : ;E
0
t�1/0, St�1

t D .St1; : : : ; St;t�1/,
…t�1

t D .…t1; : : : ;…t;t�1/ and

…t�1 D

2

6
6
6
4

I 0 � � � 0 0

�…21 I � � � 0 0
:::

:::
: : :

:::
:::

�…t�1;1 �…t�1;2 � � � �…t�1;t�2 I

3

7
7
7
5
:

We have already proved in Corollary 1.1 that Yt D E�.YtjYt�1/ C Et D
…t�1

t Yt�1 C Et. Thus, by Proposition 1.1, …t�1
t D St�1

t jjYt�1jj�2 and Dt D Stt �
St�1

t jjYt�1jj�2St�10

t . Substituting (1.12) in the previous expressions, it is obtained
that

…t�1
t D St�1

t …0
t�1Dt�1…t�1; Dt D Stt � St�1

t …0
t�1Dt�1…t�1St�10

t ;

where Dt�1 D Diag.D�1
1 ; : : : ;D

�1
t�1/.

Define Ct�1
t D .Ct1; : : : ;Ct;t�1/ D St�1

t …0
t�1. Then, …t�1

t D Ct�1
t Dt�1…t�1 and

Dt D Stt � Ct�1
t Dt�1Ct�10

t , and the theorem follows. �

The following corollary is sometimes useful. It is an immediate consequence of
Corollary 1.1.

Corollary 1.2 The coefficient…t;t�1 of Yt�1 given by the autoregressive representa-
tion coincides with the coefficient‚t;t�1 of Et�1 given by the innovations algorithm.

Remark 1.4 The autoregressive representation allows for the computation of the
…ni, i D 1; : : : ; n�1, and Dn matrices recursively, without having to invert matrices
of big size, as would be the case if we applied the best linear predictor formulae to
compute E�.YnjY1; : : : ;Yn�1/ and its MSE. Þ
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Example 1.2 (Continued) Given that Stt D �2.1C �2/ if t � 1 and St;t�1 D �2� if
t � 1, the autoregressive representation yields D1 D S11, Y1 D E1,

C21 D S21

…21 D C21D
�1
1 D �=.1C �2/

D2 D S22 � C21D
�1
1 C21 D �2.1C �2 C �4/=.1C �2/;

and Y2 D …21Y1 C E2. Continuing in this way, it is obtained for t � 2 that Yt D
…t1Y1 C…t2Y2 C � � � C…t;t�1Yt�1 C Et, where

Dt D 1C �2 C � � � C �2t

1C �2 C � � � C �2.t�1/
�2; …tj D .�1/t�jC1� t�j 1C �2 C � � � C �2. j�1/

1C �2 C � � � C �2.t�1/
;

j D 1; : : : ; t � 1:

Þ
Example 1.3 (Continued) In this case, Stt D �2=.1��2/ and St;t�k D �kStt if t � 1,
k D 1; : : : ; t � 1. Thus, the autoregressive representation yields D1 D S11, Y1 D E1,

C21 D S21

…21 D C21D
�1
1 D �

D2 D S22 � C21D
�1
1 C21 D �2;

Y2 D …21Y1 C E2, and for t � 2, Yt D …t;t�1Yt�1 C Et, where …t;t�1 D � and
Dt D �2. Thus, the matrices L�1 and D�1 in (1.15) and (1.16) are

L�1 D

2

66
6
6
6
4

1

�� 1
�� 1

: : :
: : :

�� 1

3

77
7
7
7
5
; D�1 D

2

66
6
6
6
4

.1 � �2/=�2
1=�2

1=�2

: : :

1=�2

3

77
7
7
7
5
:

(1.17)
Þ

1.5 The Modified Innovations Algorithm

The innovations algorithm uses the Gram–Schmidt procedure to orthogonalize
a sequence of random vectors. There is, however, an alternative that is more
numerically stable, the so-called modified Gram–Schmidt algorithm. This algorithm
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is as follows. Suppose the sequence of random vectors Y D .Y 0
1 : : : ;Y

0
n/

0 and
let Sij D E.YiY 0

j /, i; j D 1; : : : ; n. Then, if E D .E0
1;E

0
2; : : : ;E

0
n/

0 denotes
the innovations sequence, the modified Gram–Schmidt algorithm consists of the
following steps.

(a) Initialize with E1 D Y1 and D1 D jjE1jj2.
(b) FormeYjj1 D Yj�E�.YjjE1/, j D 2; : : : ; n, and Sij:1 D E.eYij1eY 0

jj1/, i; j D 2; : : : ; n,

i � j. Set E2 D eY2j1 and D2 D jjE2jj2.
(c) Form eYjj2 D eYjj1 � E�.eYjj1jE2/, j D 3; : : : ; n, and Sij:2 D E.eYij2eY 0

jj2/,
i; j D 3; : : : ; n, i � j. Set E3 D eY3j2 and D3 D jjE3jj2,

and so on. We can arrange the Yt and the generated eYtjj in a triangular array such
that the diagonal entries are the innovations, Et, in the following way.

Y1
Y2 eY2j1
Y3 eY3j1 eY3j2
:::

:::
:::
: : :

Yn eYnj1 eYnj2 � � � eYnjn�1:

(1.18)

The procedure can be seen as a series of transformations applied to the columns of
the triangular array (1.18). The first transformation can be described as premultiply-
ing Y with a lower triangular matrix so that the following equality holds

2

6
6
66
6
4

I
�hY2;E1ijjE1jj�2 I
�hY3;E1ijjE1jj�2 0 I

:::
:::
:::
: : :

�hYn;E1ijjE1jj�2 0 0 � � � I

3

7
7
77
7
5

2

6
6
66
6
4

E1
Y2
Y3
:::

Yn

3

7
7
77
7
5

D

2

6
6
66
6
4

E1
eY2j1
eY3j1
:::

eYnj1

3

7
7
77
7
5
: (1.19)

Let T1 be the lower triangular matrix on the left-hand side of (1.19) and eY j1 D
.eY 0

2j1;eY
0
3j1; : : : ; eY

0
nj1/

0. Partition jjYjj2 as

jjYjj2 D
�jjE1jj2 m0

1

m1 M1

�
:

Then, it is not difficult to verify (see Problem 1.3) using the properties of orthogonal
projection that the following equality holds

T1jjYjj2T 0
1 D

�jjE1jj2 0

0 M1 � m1jjE1jj�2m0
1

�
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and, therefore, jjeY j1jj2 D M1 � m1jjE1jj�2m0
1. Thus, the effect of the first

transformation on jjYjj2 is to make zeros both in the first block column and in the
first block row after the first block entry. Also, Sij:1 D Sij�Si1D�1

1 S0
j1, i; j D 2; : : : ; n,

and D1 D S11.
The second transformation consists of premultiplying the second column of the

triangular array (1.18) with a lower triangular matrix so that the following equality
holds

2

6
6
6
66
4

I
�heY3j1;E2ijjE2jj�2 I
�heY3j1;E2ijjE2jj�2 0 I

:::
:::
:::
: : :

�heYnj1;E2ijjE2jj�2 0 0 � � � I

3

7
7
7
77
5

2

6
6
6
66
4

E2
eY3j1
eY4j1
:::

eYnj1

3

7
7
7
77
5

D

2

6
6
6
66
4

E2
eY3j2
eY4j2
:::

eYnj2

3

7
7
7
77
5
: (1.20)

As with the first transformation, let T2 be the lower triangular matrix on the left-hand
side of (1.20) andeY j2 D .eY 0

3j2;eY
0
4j2; : : : ;eY

0
nj2/

0. Partition jjeY j1jj2 as

jjeY j1jj2 D
�jjE2jj2 m0

2

m2 M2

�
:

Then,

T2jjeY j1jj2T 0
2 D

�jjE2jj2 0

0 M2 � m2jjE2jj�2m0
2

�

and, therefore, jjeY j2jj2 D M2 � m2jjE2jj�2m0
2 and Sij:2 D Sij:1 � Si2:1D�1

2 S0
j2:1,

i; j D 3; : : : ; n, D2 D S22:1.
Proceeding in this way and letting T be the lower triangular matrix

T D

2

66
6
4

I 0 0 0
:::
: : :

:::
:::

0 0 I 0

0 0 0 Tn�1

3

77
7
5

� � �
�

I 0

0 T2

�
T1;

the following equality holds

TjjYjj2T 0 D

2

6
66
4

jjE1jj2 0 0 0
:::

: : :
:::

:::

0 0 jjEn�1jj2 0

0 0 0 jjEnjj2

3

7
77
5
:
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Thus, the effect of premultiplying Y with T is to make the covariance matrix of
TY block diagonal. This in turn implies that the block entries of TY are indeed the
innovations, Et, and

TY D E:

Therefore, T D L�1, where L is the matrix (1.13). T is also the matrix (1.15) given
by the autoregressive representation. It can be shown (see Problem 1.2) that the ith
column of L can be obtained by taking the inner product of the ith column in the
triangular array (1.18) with jjEijj2Ei, i D 1; : : : ; n.

We summarize the algorithm based on the modified Gram–Schmidt procedure in
the following theorem.

Theorem 1.4 (Modified Innovations Algorithm) Let the sequence of random
vectors Y D .Y 0

1; : : : ; Y 0
n/

0, where jjYjj2 is positive definite and Sij D E.YiY 0
j /,

i; j D 1; : : : ; n. DefineeYjj0 D Yj, j D 1; : : : ; n, and Sij:0 D Sij, i; j D 1; : : : ; n. Then,
the algorithm is

Set E1 D Y1; D1 D S11
for t D 2; : : : ; n

for j D t; : : : ; n
‚M

j;t�1 D Sj;t�1:t�2D�1
t�1

eYjjt�1 D eYjjt�2 �‚M
j;t�1Et�1

for k D j; : : : ; n
Skj:t�1 D Skj:t�2 �‚M

k;t�1Dt�1‚M0

j;t�1
end

end
Et D eYtjt�1; Dt D Stt:t�1

end

1.6 State Space Approach to the Innovations Algorithm

State space models will be introduced in the next section. In this section, we will
obtain the same output of the innovations algorithm using a heuristic argument. It
will turn out that the equations that we will use are a special case of state space
models. Let the sequence of zero mean random vectors Y D .Y 0

1 : : : ;Y
0
n/

0, where
jjYjj2 is positive definite, and let Ysjt D E�.YsjY1; : : : ;Yt/, t < s. Define the
equations

xtC1 D Fxt C KtEt (1.21)

Yt D Hxt C Et; (1.22)



22 1 Orthogonal Projection

where xtC1 D .Y 0
tC1jt; : : : ;Y

0
tCn�1jt/

0, x1 D 0,

F D

2

6
66
6
6
4

0 I 0 � � � 0
0 0 I � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � I
0 0 0 � � � 0

3

7
77
7
7
5
; H D ŒI; 0; : : : ; 0� ;

and the matrix Kt is obtained from covariance data only by means of the recursions

Dt D Stt � H†tH
0

Kt D .Nt � F†tH
0/D�1

t ; Nt D �
S0

tC1;t; S0
tC2;t; : : : ; S0

tCn�1;t
�0
; (1.23)

†tC1 D F†tF
0 C KtDtK

0
t ; t D 1; 2; : : : ; n;

initialized with †1 D 0. Here it is understood that all the random vectors that are
not in the sample are zero. Thus, Ysjt D 0 and Sst D 0 if s > n, 1 � t � n.

Theorem 1.5 The quantities Et and Dt, generated by Eqs. (1.21) and (1.22) and the
recursions (1.23), initialized with x1 D 0 and†1 D 0, coincide with the innovations
and their variances. In addition,†t D Var.xt/.

Proof The recursions are run for t D 1; : : : ; n, starting with x1 D 0 and †1 D 0.
If t D 1, then Y1 D E1 and D1 D S11. If t > 1, then, by the definition of xt, it
is clear that Et D Yt � Hxt is the tth innovation. From this, it follows that Stt D
Dt C H†tH0. On the other hand, by the properties of linear projection, the equation
xtC1 D Fxt C KtEt is true if we define the matrix Kt appropriately. To see this,
consider that, by Propositions 1.7 and 1.5,

YtCijt D E�.YtCijY1; : : : ;Yt�1;Yt/

D E� �YtCijY1; : : : ;Yt�1;Et C E�.YtjY1; : : : ;Yt�1/
�

D E�.YtCijY1; : : : ;Yt�1/C E�.YtCijEt/

D YtCijt�1 C KtEt:

Since YtCijt D YtCi �.YtCi �YtCijt/ and YtCi �YtCijt is orthogonal to Yt, it follows
that Cov.xtC1;Yt/ D Nt. Thus, Cov.xtC1;Et/ D KtDt D Cov.xtC1;Yt � Hxt/ D
Nt � Cov.Fxt;Hxt/ D Nt � F†tH0. Since the equation †tC1 D F†tF0 C KtDtK0

t
follows from the orthogonality of xt and Et, the result is proved. �
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If we replace Et D Yt � Hxt in xtC1 D Fxt C KtEt, the following state space form
is obtained

xtC1 D .F � KtH/xt C KtYt

Yt D Hxt C Et;

which produces an output equal to that of the autoregressive representation.
The decompositions (1.8) and (1.12) of jjYjj2 and jjYjj�2 can be written more

compactly as

jjYjj2 D LDL0; jjYjj�2 D W 0D�1W;

where

L D

2

6
6
6
4

I 0 � � � 0
‚21 I � � � 0
:::

:::
: : :
:::

‚n1 ‚n2 � � � I

3

7
7
7
5
; W D L�1 D

2

6
6
6
4

I 0 � � � 0
�…21 I � � � 0
:::

:::
: : :
:::

�…n1 �…n2 � � � I

3

7
7
7
5
;

and D D diag.D1; : : : ;Dn/. The elements ‚ti and …ti in L and W are time variant.
In terms of the matrices of Eqs. (1.21) and (1.22) L and W can be written as

L D

2

6
6
66
6
4

I 0 0 � � � 0
HK1 I 0 � � � 0
HFK1 HK2 I � � � 0
:::

:::
:::

: : :
:::

HFn�2K1 HFn�3K2 HFn�4K3 � � � I

3

7
7
77
7
5

(1.24)

and

W D L�1 D

2

6
6
6
6
66
4

I 0 0 � � � 0
�HK1 I 0 � � � 0
�HF3p;2K1 �HK2 I � � � 0
:::

:::
:::

: : :
:::

�HFn
p;2K1 �HFn

p;3K2 �HFn
p;4K3 � � � I

3

7
7
7
7
77
5

; (1.25)

where Fj
p;i D Fp;j�1Fp;j�2 � � � Fp;i if j > i, Fi

p;i D I, and Fp;t D F � KtH.
The dimensions in these last expressions could be greatly reduced if the data

Y D .Y 0
1; : : : ;Y

0
n/

0 had some structure. Equations (1.21) and (1.22) are a special
case of state space models, as we will see in the next section.
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1.7 Introduction to VARMA and State Space Models

On many occasions, the multivariate data under study have a finite structure
that allows, among other things, for the generation of the first two moments of
the distribution in a recursive fashion. This is the case of the so-called vector
autoregressive moving average processes, or VARMA models for short. A vector
process fYtg with Yt 2 R

p is said to follow a VARMA model if it satisfies a
stochastic difference equation of the form

Yt Cˆt;1Yt�1 C � � � Cˆt;pYt�p D ‚t;0At C‚t;1At�1 C � � � C‚t;qAt�q; (1.26)

where fAt 2 R
sg is a zero mean uncorrelated sequence with nonsingular covariance

matrices, Var.At/ D †t. The process will usually start at t D 1 and a set of initial
conditions, I, will be necessary to specify its covariance structure. For example, if
r D max. p; q/ and I D fY1; : : : ;Yr;A1; : : : ;Arg, specifying the covariance structure
of I and assuming that I is uncorrelated with At for t > r will be sufficient to generate
the covariance matrices of Yt for t > r recursively using (1.26).

Another structure that we will often encounter is that of state space models. A
vector process fYtg with Yt 2 R

p is said to follow a state space model if it satisfies
a model of the form

xtC1 D Ftxt C Gt�t (1.27)

Yt D Htxt C Jt�t; (1.28)

where xt 2 R
r is the state vector, f�t 2 R

sg is an uncorrelated sequence with
E.�t/ D 0 and Var.�t/ D I, the initial state vector, x1, is orthogonal to �t for all t,
E.x1/ D 0 and Var.x1/ D �. Equations (1.27) and (1.28) are called the “transition
equation” and the “measurement equation,” respectively.

It seems perhaps surprising that VARMA and state space models are equivalent.

Theorem 1.6 Suppose that the process fYtg follows a state space model (1.27)
and (1.28) and assume that the matrices Ot;r D ŒH0

t ; .HtC1FtC1
t /0; : : : ;

.HtCr�1FtCr�1
t /0�0, where r D dim.xt/, Fj

i D Fj�1Fj�2 � � � Fi if j > i and Fi
i D I, have

full column rank for all t. Then, fYtg follows a VARMA model (1.26).

Proof Iterating in the state space model and stacking the observations, we get

YtWtCr D Ot;rC1xt C Pt;rC1UtWtCr; (1.29)
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where YtWtCr D .Y 0
t ;Y

0
tC1; : : : ;Y 0

tCr/
0,

Pt;rC1 D

2

66
6
4

Jt

HtC1Gt JtC1
:::

:::
: : : JtCn�1

HtCrFtCr
t Gt � � � � � � HtCrGtCr�1 JtCr

3

77
7
5
;

Ot;rC1 D ŒO0
t;r; .HtCrFtCr

t /0�0, and UtWtCr D .�0
t , �

0
tC1, and : : : ; �0

tCr/
0. Since Ot;r has

full column rank, there exists a block matrix, ˆt D Œˆt;r; : : : ; ˆt;1; I�, such that
ˆtOt;rC1 D 0. Then, premultiplying (1.29) by ˆt, it is obtained that

Œˆt;r ; : : : ; ˆt;1; I�YtWtCr D Œˆt;r ; : : : ; ˆt;1; I�Pt;rC1UtWtCr:

The right-hand side in the previous equality is a process of the form ‚t;0�tCr C
‚t;1�tCr�1 C � � � C‚t;r�t. Thus, the theorem follows. �

Theorem 1.7 Suppose that the process fYtg follows a VARMA model (1.26). Then,
fYtg follows a state space model (1.27) and (1.28).

Proof Let r D max. p; q C 1/ and define ˆt;i D 0 if p < i and‚t;i D 0 if q < i. We
illustrate the procedure to construct a state space model for fYtg when p D 2 and
q D 2. The general case is similar. Set �t D L�1

t AtC1, where Var.At/ D LtL0 is the
Cholesky decomposition of Var.At/, and define

xtC1 D
2

4
�ˆtC1;1 I 0
�ˆtC2;2 0 I
�ˆtC3;3 0 0

3

5 xt C
2

4
‚tC1;0
‚tC2;1
‚tC3;2

3

5 Lt�t

Yt D ŒI; 0; 0�xt:

Then, if xtC1 D .x0
tC1;1; x0

tC1;2; x0
tC1;3/0, using the state space model equations, we

get

xtC1;1 D �ˆtC1;1xt;1 C xt;2 C‚tC1;0AtC1
D �ˆtC1;1xt;1 �ˆtC1;2xt�1;1 C xt�1;3 C‚tC1;1At C‚tC1;0AtC1
D �ˆtC1;1xt;1 �ˆtC1;2xt�1;1 C‚tC1;0AtC1 C‚tC1;1At C‚tC1;2At�1:

Therefore, xt;1 satisfies the same difference equation as Yt. �

Remark 1.5 The state space representation used in the proof of the previous
theorem is not unique. For example, another representation that can be used for
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the same case, p D 2 and q D 2, is the following.

xtC1 D
��ˆtC1;1 I

�ˆtC2;2 0

�
xt C

�
‚tC1;1 �ˆtC1;1‚t;0

‚tC2;2 �ˆtC2;2‚t;0

�
Lt�t

Yt D ŒI; 0�xt C‚t;0Lt�t;

where �t D L�1
t At. See Problem 1.5. Þ

An alternative state space representation to (1.27) and (1.28) is

xtC1 D Ftxt C Gtut (1.30)

Yt D Htxt C vt; (1.31)

where xt 2 R
r is the state vector,

E

��
ut

vt

� �
u0

s; v
0
s

�� D
�

Qt St

S0
t Rt

�
ıts;

ut 2 R
s, vt 2 R

p, E.ut/ D 0, E.vt/ D 0, the initial state vector, x1, is orthogonal to ut

and vt for all t, E.x1/ D 0 and Var.x1/ D �. Later in this section, in Lemma 1.1, we
will describe how the covariance matrices of a process following (1.30) and (1.31)
can be obtained.

The fact that the same term �t appears in (1.27) and (1.28) is general, not
restrictive, and facilitates sometimes the development of more elegant formulae for
the filtering and smoothing algorithms that we will describe in Chap. 4. Usually,
the matrices Gt and Jt are selection matrices formed with zeros and ones. To pass
from the state space representation (1.30) and (1.31)–(1.27) and (1.28), consider the
decomposition

Wt D
�

GtQtG0
t GtSt

S
0

t G
0
t Rt

�

D W1=2
t W1=20

t ;

where if M is a symmetric square matrix, M1=2 is any matrix satisfying M D
M1=2M1=20

. For example, let O be an orthogonal matrix such that O0MO D D,
where D is a diagonal matrix. Then, we can take M1=2D OD1=2O0, where D1=2 is
the matrix obtained from D by replacing its nonzero elements with their square
roots. This choice of M1=2 has the advantage of being valid and numerically stable
even if M is singular. It follows from this that we can take .G0

t; J
0
t/

0 D W1=2
t .
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Example 1.2 (Continued) Equation (1.26) is in this case

Yt D At C �At�1:

One possible set of Eqs. (1.27) and (1.28) is

xtC1 D ���t

Yt D xt C ��t; t D 1; 2; : : : ; n:

Thus, in this case, Ft D 0, Ht D 1, Gt D �� , Jt D � , �t D At=� , and � D
Var.x1/ D �2�2. Þ

Example 1.3 (Continued) Equation (1.26) is for this example

Yt D �Yt�1 C At:

One possible set of Eqs. (1.27) and (1.28) is

xtC1 D �xt C ��t

Yt D xt; t D 1; 2; : : : ; n:

Thus, Ft D �, Ht D 1, Gt D � , Jt D 0, �t D AtC1=� , and � D Var.x1/ D
�2=.1� �2/. Þ

1.7.1 Innovations Algorithm for VARMA Models

In the case of a VARMA model, a transformation, originally proposed by Ansley
(1979) for time invariant models, simplifies the equations of the innovations
algorithm considerably. Let fYtg with Yt 2 R

p be a process that follows the model

Yt Cˆt;1Yt�1 C � � � Cˆt;pYt�p D 	t;0At C 	t;1At�1 C � � � C 	t;qAt�q;

where fAt 2 R
sg is an uncorrelated sequence with nonsingular covariance matrices,

Var.At/ D †t. Assume that we have a sequence of vectors, Y D .Y 0
1; : : : ;Y

0
n/

0,
generated by the previous model and such that Var.Y/ is positive definite. Define

Xt D
�

Yt; if t D 1; : : : ; r;
Yt Cˆt;1Yt�1 C � � � Cˆt;pYt�p; if t > r;
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where r D max. p; q/. Denoting the covariance function of fYtg by 
Y.i; j/ D
E.YiY 0

j /, it is not difficult to verify that the covariance function Sij D E.XiX0
j/ is

given by

Sij D

8
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
:


Y.i; j/ if 1 � i � j � r

Y.i; j/CPp

hD1 ˆi;h
Y.i C h; j/ if 1 � i � r < j � 2rPq
hD0 	i;h†i�h	

0
j;hCj�i if r < i � j � i C q

0 if r < i and i C q < j
S0

ij if j < i;

(1.32)

where 	t;h D 0 if h > q. The notable feature of the previous transformation is that
Sij D 0 if j j � ij > q, i; j > r. This in turn, by the decomposition (1.8), implies that

Xt D ‚t;t�qEt�q C � � � C‚t;t�1Et�1 C Et; t > r;

when the innovations algorithm is applied to fXt W t D 1; 2; : : : ; ng. More
specifically, the output of this last algorithm in terms of fYt W t D 1; 2; : : : ; ng is
easily shown to be

Yt D ‚t;1E1 C � � � C‚t;t�1Et�1 C Et; t � r;

where

‚tj D
"


Y.t; j/ �
j�1X

iD1
‚tiDi‚

0
ji

#

D�1
j ; j D 1; : : : ; t � 1;

Dt D 
Y.t; t/ �
t�1X

iD1
‚tiDi‚

0
ti;

and

Yt C
pX

jD1
ˆt;jYt�j D ‚t;t�qEt�q C � � � C‚t;t�1Et�1 C Et; t > r;

where

‚tj D
0

@Stj �
j�1X

iDt�q

‚tiDi‚
0
ji

1

AD�1
j ; j D t � q; : : : ; t � 1;

Dt D Stt �
t�1X

iDt�q

‚tiDi‚
0
ti;
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and Sij is given by (1.32). In addition, since the matrix of the transformation
that gives .X0

1; : : : ;X
0
t/

0 in terms of .Y 0
1; : : : ;Y

0
t /

0 is easily seen to be nonsingular
for t D 1; 2; : : : ; n, it follows from Proposition 1.7 that E�.YtjXt�1; : : : ;X1/ D
E�.YtjYt�1; : : : ;Y1/. This implies E�.XtjXt�1; : : : ;X1/ D E�.YtjYt�1; : : : ;Y1/ for
t D 1; : : : ; r, and E�.XtjXt�1; : : : ;X1/ D E�.YtjYt�1; : : : ;Y1/ C Pp

jD1 ˆt;jYt�j for
t D r C 1; : : : ; n. Therefore,

Et D Xt � E�.XtjXt�1; : : : ;X1/ D Yt � E�.YtjYt�1; : : : ;Y1/; t D 1; 2; : : : ; n;

and the Et and Dt given by the innovations algorithm applied to fXt W t D 1; 2; : : : ; ng
can be used for prediction and likelihood evaluation of fYt W t D 1; 2; : : : ; ng.

Example 1.4 Let Y1 be a random variable with E.Y1/ D 0 and Var.Y1/ D Œ.1 �
2�� C �2/=.1 � �2/��2 and let Yt C �Yt�1 D At C �At�1, t � 2, where j�j < 1,
j� j < 1 and fAtg is an uncorrelated sequence of random variables with zero mean
and common variance �2 such that E.Y1A1/ D �2 and E.Y1At/ D 0, t � 2. Given
the sequence Y D .Y1; : : : ;Yn/

0, we can obtain the covariances 
Y.i; j/ D E.YiY 0
j /,

i; j D 1; : : : ; n, as follows. Clearly, 
Y.1; 1/D Var.Y1/. To obtain 
Y.2; 1/, multiply
the equation Y2 C �Y1 D A2 C �A1 by Y1 and take expectations to get


Y.2; 1/ D ��
Y.1; 1/C ��2:

Multiplying the same equation this time by Y2, taking expectations, and using the
previous relation, it is obtained that 
Y.2; 2/ D 
Y.1; 1/. We could continue in this
way, but it will not be necessary because, following Ansley (1979), we transform
the fYtg process before applying the innovations algorithm so that the new process
fXtg is

Xt D
�

Yt; if t D 1

Yt C �Yt�1; if t > 1;

Then, letting Sij D E.XiXj/, (1.32) yields

Sij D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂


Y.1; 1/ if i D j D 1

��2 if i � 1; j D i C 1

.1C �2/�2 if i D j; i � 2

0 if 1 < i and i C 1 < j
S0

ij if j < i;

Applying the innovations algorithm to the transformed model, we get E1 D Y1,
D1 D Œ.1 � 2�� C �2/=.1 � �2/��2, and for t � 2, Yt C �Yt�1 D Et C‚t;t�1Et�1,
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where

‚t;t�1Dt�1 D St;t�1 D ��2

Dt D Stt �‚2
t;t�1Dt�1 D .1C �2/�2 � �2�4=Dt�1:

It is shown in Problem 1.6 that the previous recursions can be easily solved. Letting

L�1 D

2

66
6
4

1

� 1

: : :
: : :

� 1

3

77
7
5
;

Y D .Y1; : : : ;Yn/
0 and X D .X1; : : : ;Xn/

0, we can write X D L�1Y. Then, we can
express Cov.Y/ as

Var.Y/ D LLxDxL0
xL0;

where Lx and Dx are

Lx D

2

66
6
4

1

‚21 1
: : :

: : :

‚n;n�1 1

3

77
7
5
; Dx D

2

66
6
4

D1

D2

: : :

Dn

3

77
7
5
:

Þ

1.7.2 Covariance-Based Filter for State Space Models

The calculations (1.23) to obtain the innovations and their covariance matrices
using (1.21) and (1.22), given a stack of random vectors, X D .Y 0

1; : : : ;Y
0
n/

0, can
be greatly simplified if the data have some structure.

Assume the state space model (1.30) and (1.31). The following lemma gives the
covariance function of the output process fYtg. We leave the proof as an exercise.
See Problem 1.7.

Lemma 1.1 Consider the state space model (1.30) and (1.31) and let…t D E.xtx0
t/.

Then,…t satisfies …1 D � D E.x1x0
1/ and

…tC1 D Ft…tF
0
t C GtQtG

0
t; t � 1: (1.33)
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The covariance matrices of the state variables can be written as


X.r; s/ D E.xrx
0
s/ D

�
Fr

s…s r � s
…rFs0

r r � s;

and the covariance matrices of the output process fYtg as


Y.r; s/ D E.YrY
0
s/ D

8
<

:

HrFr
sC1Ns r > s

Rr C Hr…rH0
r r D s

N0
rF

s0

rC1H0
s r < s;

(1.34)

where Fj
i D Fj�1Fj�2 � � � Fi if i < j, Fi

i D I, and Nr D Fr…rH0
r C GrSr D

Cov.xrC1;Yr/.

Theorem 1.8 Suppose that the process fYtg follows the state space model (1.30)
and (1.31) so that the covariance matrices, 
Y.r; s/ D E.YrY 0

s/, are generated
by (1.33) and (1.34). If Y D .Y 0

1; : : : ;Y
0
n/

0 is such that Var.Y/ is positive definite,
then fYtg admits the following state space representation

OxtC1jt D Ft Oxtjt�1 C KtEt

Yt D Ht Oxtjt�1 C Et; t D 1; 2; : : : ; n;

where Oxtjt�1 D E�.xtjY1; : : : ;Yt�1/, Et is the innovation, Et D Yt �
E�.YtjY1; : : : ;Yt�1/, and the quantities Var.Et/ D Dt, Var.Oxtjt�1/ D †t and Kt

are obtained by means of the recursions based on covariance data only

Dt D 
Y.t; t/ � Ht†tH
0
t

Kt D .Nt � Ft†tH
0
t/D

�1
t (1.35)

†tC1 D Ft†tF
0
t C KtDtK

0
t ;

initialized with Ox1j0 D 0 and †1 D 0.
The whitening filter for fYtg is further given by

OxtC1jt D .Ft � KtHt/Oxtjt�1 C KtYt

Et D Yt � Ht Oxtjt�1:

Proof If t D 1, then Y1 D E1 and D1 D 
Y.1; 1/ and there is nothing to prove. If
t > 1, consider the transformation (1.7) implied by the innovations algorithm. If this
transformation coincides with that implied by the state space form of the theorem
and (1.35), namely Y D ‰E, where E D .E0

1; : : : ;E
0
n/

0, Y D .Y 0
1; : : : ;Y

0
n/

0, and
‰ is block lower triangular with blocks of unit matrices in the main diagonal, the
first part of the theorem will be proved. Iterating in the state space equations of the
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theorem, it is not difficult to show that ‰ is given by

‰ D

2

6
6
6
66
4

I 0 � � � 0 0

H2K1 I � � � 0 0

H3F32K1 H3K2 � � � 0 0
:::

:::
: : :

:::
:::

HnFn
2K1 HnFn

3K2 � � � HnKn�1 I

3

7
7
7
77
5
;

where Fj
i D Fj�1Fj�2 � � � Fi if i < j, and Fi

i D I,
Let the block coefficients of ‰ different from zero or the unit matrix be ‚tj D

HtFt
jC1Kj. Then,

‚tj D HtF
t
jC1Kj

D HtF
t
jC1.Nj � Fj†jH

0
j/D

�1
j

D .
Y.t; j/ � HtF
t
j†jH

0
j/D

�1
j ; j D 1; 2; : : : ; t � 1:

Also, it follows from the recursion of the theorem for†t that

Ht†tH
0
t D

t�1X

iD1
HtF

t
iC1KiDiK

0
i F

t0
iC1H0

t

D
t�1X

iD1
‚tiDi‚

0
ti (1.36)

and

HtF
t
j†jH

0
j D

j�1X

iD1
HtF

t
iC1KiDiK

0
i F

j0

iC1H
0
j

D
j�1X

iD1
‚tiDi‚

0
ji:

Therefore, we obtain the same output as with the innovations algorithm,

‚tj D
 


Y.t; j/ �
j�1X

iD1
‚tiDi‚

0
ji

!

D�1
j ; j D 1; : : : ; t � 1;

Dt D 
Y.t; t/ �
t�1X

iD1
‚tiDi‚

0
ti:

The last recursion follows from the recursion of the theorem for Dt and (1.36). �
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The following corollary will be useful later in the book. The proof is omitted
because it is a direct consequence of the previous theorem.

Corollary 1.3 Under the assumptions and with the notation of Theorem 1.8, the
following decompositions hold

jjYjj2 D LDL0; jjYjj�2 D WD�1W 0;

where

L D

2

6
6
6
66
4

I 0 � � � 0 0

H2K1 I � � � 0 0

H3F32K1 H3K2 � � � 0 0
:::

:::
: : :

:::
:::

HnFn
2K1 HnFn

3K2 � � � HnKn�1 I

3

7
7
7
77
5
;

W D L�1 D

2

6
66
6
6
6
4

I 0 � � � 0 0

�H2K1 I � � � 0 0

�H3F3p;2K1 �H3K2 � � � 0 0
:::

:::
: : :

:::
:::

�HnFn
p;2K1 �HnFn

p;3K2 � � � �HnKn�1 I

3

7
77
7
7
7
5

D D diag.D1;D2; : : : ;Dn/, Fj
i D Fj�1Fj�2 � � � Fi if i < j, Fi

i D I, Fj
p;i D

Fp;j�1Fp;j�2 � � � Fp;i if i < j, Fi
p;i D I, and Fp;t D Ft � KtHt.

A special case of Theorem 1.8 that is important in practice is that in which the
matrices of the state space model (1.30) and (1.31) are time invariant. That is, fYtg
follows the model

xtC1 D Fxt C Gut (1.37)

Yt D Hxt C vt; (1.38)

where

E

��
ut

vt

�
�
u0

s; v
0
s

�
�

D
�

Q S
S0 R

�
ıts:

If, in addition,… D E.x1x0
1/ satisfies

… D F…F0 C GQG0; (1.39)
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then, by Lemma 1.1, the covariance matrices between Yr and Ys depend on r � s
only. More specifically, they are given by


Y.r � s/ D E.YrY
0
s/ D

8
<

:

HFr�s�1N r > s
R C H…H0 r D s
N0F.s�r�1/0H0 r < s;

(1.40)

where F0 D I and N D F…H0 C GS D Cov.xtC1;Yt/.
The processes fYtg such that the mean of Yt is constant and the covariance

matrices between YtCj and Yt depend on j only are called wide sense stationary
or, simply, stationary and will be studied in more detail in the next chapter.
For stationary processes, we have the following corollary that can be proved as
Theorem 1.8.

Corollary 1.4 Suppose a wide sense stationary vector process fYtg that follows
the state space model (1.37) and (1.38) with … D E.x1x0

1/ satisfying (1.39) or,
alternatively, suppose that there exist matrices F, H, and N such that the covariance
matrices, 
. j/ D E.YtCjY 0

t /, are 
.0/ and 
. j/ D HFj�1N, 
.�j/ D 
. j/0, j D
1; 2; : : :. If Y D .Y 0

1; : : : ;Y
0
n/

0 is such that Var.Y/ is positive definite, then fYtg admits
the following state space representation

OxtC1jt D FOxtjt�1 C KtEt (1.41)

Yt D HOxtjt�1 C Et; t D 1; 2; : : : ; n; (1.42)

where the Et are the innovations, and the quantities Var.Et/ D Dt, Var.Oxtjt�1/ D †t,
and Kt are obtained by means of the recursions

Dt D 
.0/� H†tH
0

Kt D .N � F†tH
0/D�1

t (1.43)

†tC1 D F†tF
0 C KtDtK

0
t ;

initialized with Ox1j0 D 0 and †1 D 0.

Example 1.2 (Continued) It is clear that the process fYtg is stationary. In this case,
the matrices F, H, and N of (1.40) can be defined as the scalars 0, 1 and N D 
.1/,
so that the state space equations (1.41) and (1.42) become

OxtC1jt D KtEt

Yt D Oxtjt�1 C Et
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and the equations for Kt, Dt, and †t are

Dt D 
.0/�†t

Kt D 
.1/=Dt

†tC1 D KtDtKt;

where 
.0/ D .1C �2/�2 D Var.Yt/ and 
.1/ D ��2. Þ

Example 1.3 (Continued) Clearly, the process fYtg is stationary and the matrices F,
H and N of (1.40) can be defined as the scalars �, 1 and N D 
.1/. Thus, the state
space equations (1.41) and (1.42) become

OxtC1jt D �xtjt�1 C KtEt

Yt D Oxtjt�1 C Et

and the equations for Kt, Dt, and †t are

Dt D 
.0/�†t

Kt D .
.1/� �†t/ =Dt

†tC1 D �2†t C KtDtKt;

where 
.0/ D �2=.1� �2/D Var.Yt/ and 
.1/ D �
.0/. It is not difficult to verify
that D1 D 
.0/, Kt D � for t � 1, and Dt D �2 and †t D �2
.0/ for t � 2. Þ
Remark 1.6 Note that in Corollary 1.4 the form of the covariance matrices, 
. j/,
given by (1.40), implies that the covariance Hankel matrix of order r,

Gr D

2

6
6
6
4


.1/ 
.2/ 
.3/ � � � 
.r/

.2/ 
.3/ 
.4/ � � � 
.r C 1/
:::

:::
:::

: : :
:::


.r/ 
.r C 1/ 
.t C 2/ � � � 
.2r � 1/

3

7
7
7
5
;

can be expressed as

Gr D

2

6
6
6
4

H
HF
:::

HFr�1

3

7
7
7
5

�
N;FN; : : : ;Fr�1N

�
:

Þ
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Example 1.5 (Moving Average Processes) A stationary process of the form Yt D
At C ‚1At�1 C � � � C ‚qAt�q, t > q, where fAt W t � 1g is a sequence of zero
mean, uncorrelated random vectors with common nonsingular covariance matrix
�, is called a moving average of order q. It is easy to verify that all of its covariance
matrices, 
. j/, are zero except for j D 0; 1; 2; : : : ; q, and that 
. j/ D HFj�1N,
j D 1; 2; : : : ; q, where

F D

2

6
6
6
66
4

0 I 0 � � � 0
0 0 I � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � I
0 0 0 � � � 0

3

7
7
7
77
5
; H D ŒI; 0; : : : ; 0� ;

N D Œ
 0.1/; 
 0.2/; : : : ; 
 0.q/�0 and, letting ‚0 D I,


. j/ D
qX

iDj

‚i�‚
0
i�j; j D 0; 1; 2; : : : ; q:

In order for the process fYt W t D 1; 2; : : :g to be well defined, further assumptions
are needed. These are that the vector of initial conditions, .Y 0

1; : : : ;Y
0
q/

0, be uncorre-
lated with the sequence fAt W t > qg and that Cov.Yi;Yj/ D 
.i�j/, i; j D 1; 2; : : : ; q,
and Cov.Yi;Aj/ D ‚i�j�, j � i D 1; 2; : : : ; q. It will be proved later in the book
that the quantities †t, Kt and Dt, given by the recursions of Corollary 1.4, satisfy
†t ! †, Kt ! K D �

‚0
1;‚

0
2; : : : , ‚

0
q

�0
and Dt ! D D � as t ! 1. The limit

solution can be obtained by solving the following discrete algebraic Riccati equation

† D F†F0 C .N � F†H0/Œ
.0/ � H†H0��1.N � F†H0/0;

and setting K D .N � F†H0/D�1 and D D 
.0/� H†H0. Þ

1.8 Further Topics Associated With Orthogonal Projection

1.8.1 Sequential Update of an Orthogonal Projection

Suppose we want to predict the random vector Y3 and we observe the random vector
Y1. Then, as we saw in the discussion that led to (1.6), the best linear predictor is
E�.Y3jY1/. If a new observation Y2 becomes available, the new best linear predictor
is E�.Y3jY1;Y2/. Since the transformation (1.7) is nonsingular, by Propositions 1.7



1.8 Further Topics Associated With Orthogonal Projection 37

and 1.5 , the following equality holds

E�.Y3jY1;Y2/ D E�.Y3jE1;E2/
D E�.Y3jE1/C E�.Y3jE2/
D E�.Y3jY1/C…32ŒY2 � E�.Y2jY1/�; (1.44)

where E�.Y3jE2/ D …32E2 D …32ŒY2 � E�.Y2jY1/�. Thus, the predictor E�.Y3jY1/
can be updated by first computing the new predictor E�.Y2jY1/ and then the
coefficient …32. However, by Corollary 1.2, …32 in (1.44) coincides with the
coefficient matrix‚32 in the expression

Y3 D ‚31E1 C‚32E2 C E3;

given by the innovations algorithm. The recursions of this last algorithm yield

‚21 D S21D
�1
1 ; ‚31 D S31D

�1
1 ; D1 D S11

‚32 D .S32 � S31‚
0
21/D

�1
2 D .S32 � S31S

�1
11 S12/D

�1
2 ; D2 D S22 � S21S

�1
11 S12:

(1.45)

and

D3 D S33 �‚32D2‚
0
32 �‚31D1‚

0
31:

On the other hand, it follows from (1.44) and…32 D ‚32 that

Y3 � E�.Y3jY1;Y2/C‚32ŒY2 � E�.Y2jY1/� D Y3 � E�.Y3jY1/

and, because Y3 � E�.Y3jY1;Y2/ is orthogonal to Y2 � E�.Y2jY1/,

MSEŒE�.Y3jY1;Y2/� D MSEŒE�.Y3jY1/� �‚32MSEŒE�.Y2jY1/�‚0
32: (1.46)

Since MSEŒE�.Y3jY1;Y2/� D D3, MSEŒE�.Y3jY1/� D S33 � ‚31D1‚
0
31, and

MSEŒE�.Y2jY1/� D D2, the following formula for updating the MSE in (1.44) is
obtained

MSEŒE�.Y3jY1;Y2/� D S33:1 � S32:1S
�1
22:1S23:1;

where MSEŒE�.Y3jY1/� D S33:1, MSEŒE�.Y2jY1/� D S22:1, and

S33:1 D S33 � S31S
�1
11 S13; S22:1 D S22 � S21S

�1
11 S12; (1.47)

S32:1 D S32 � S31S
�1
11 S12; S23:1 D S23 � S21S

�1
11 S13: (1.48)
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Using (1.45), (1.47), and (1.48), the coefficient matrix …32 D ‚32 in (1.44) can
be expressed as

…32 D S32:1S
�1
22:1: (1.49)

We summarize the previous results in the following theorem.

Theorem 1.9 Suppose we want to predict the random vector Y3 and we observe the
random vector Y1. If a new observation, Y2, becomes available, we can update the
best linear predictor of Y3 based on Y1, E�.Y3jY1/, and its MSE using the formulae

E�.Y3jY1;Y2/ D E�.Y3jY1/C S32:1S
�1
22:1ŒY2 � E�.Y2jY1/�

D S31S
�1
11 Y1 C S32:1S

�1
22:1.Y2 � S21S

�1
11 Y1/

and

MSEŒE�.Y3jY1;Y2/� D MSEŒE�.Y3jY1/� � S32:1fMSEŒE�.Y2jY1/�g�1S23:1
D S33:1 � S32:1S

�1
22:1S23:1;

where MSEŒE�.Y3jY1/� D S33:1, MSEŒE�.Y2jY1/� D S22:1, and S22:1, S23:1, S32:1 and
S33:1 are given by (1.47) and (1.48).

The coefficient matrix …32 in (1.44) also has the following important interpreta-
tion.

Proposition 1.8 …32 in (1.44) is the coefficient matrix of the orthogonal projection
of the residual Y3 � E�.Y3jY1/ onto the residual Y2 � E�.Y2jY1/. Therefore, …32 D
S32:1S�1

22:1, where S22:1 and S32:1 are given by (1.47) and (1.48).

Proof …32 satisfies …32.Y2 � E�.Y2jY1// D E�.Y3jE2/ in (1.44). Since this last
predictor is also equal to E�.Y3 � E�.Y3jY1/jE2/ because E�.Y3jY1/ D ‚31E1 is
orthogonal to E2, the first part of the proposition follows. The formula for …32

is (1.49). �

1.8.2 The Law of Iterated Orthogonal Projection

The following theorem is an immediate consequence of the sequential update
formula (1.44).

Theorem 1.10 (Law of Iterated Orthogonal Projection) Given three random
vectors, Y1;Y2, and Y3, the following relation holds

E�ŒE�.Y3jY2;Y1/jY1� D E�.Y3jY1/:
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Proof The result follows immediately from (1.44) by projecting both sides onto Y1
and considering that Y2 � E�.Y2jY1/ is orthogonal to Y1. �

1.8.3 The Forward and Backward Prediction Problems

Suppose the zero-mean vector random process fYtg and for fixed t and increasing k,
consider the forward and backward innovations

Et;k D Yt � E�.YtjYt�1; : : : ;Yt�k/ (1.50)

D Yt �ˆt;k1Yt�1 � � � � �ˆt;kkYt�k

Rt�1;k D Yt�k�1 � E�.Yt�k�1jYt�1; : : : ;Yt�k/ (1.51)

D Yt�k�1 �ˆ�
t;kkYt�1 � � � � �ˆ�

t;k1Yt�k:

These are the forward and backward prediction problems, respectively. When the
process fYtg is stationary, these problems are associated with autoregressive model
fitting, as we will see later in the following chapter. The following recursive
formulae are extremely important in the time series context.

Theorem 1.11 (Order Recursive Prediction) Suppose the sequence of zero-mean
random vectors .Y 0

1; : : : ;Y
0
t /

0 and, for fixed t and increasing k D 1; 2; : : : ; t � 1,
consider the forward and backward innovations (1.50) and (1.51). Denote Dt;k D
Var.Et;k/, Qt�1;k D Var.Rt�1;k/ and �t;k D Cov.Et;k;Rt�1;k/ and let ˆ.t;k/ D
.ˆt;k1; : : : ; ˆt;kk/,ˆ�

.t;k/ D .ˆ�
t;kk; : : : ; ˆ

�
t;k1/, 	.t;k/ D .St;t�1; : : : ; St;t�k/, and 	�

.t;k/ D
.St�k;t; : : : ; St�1;t/, where Sij D Cov.Yi;Yj/. Then, the following recursions hold

ˆt;kk D �t;k�1Q�1
t�1;k�1 D

h
St;t�k � 	.t;k�1/ˆ�0

.t;k�1/
i

Q�1
t�1;k�1

D
h
St;t�k �ˆ.t;k�1/	�0

.t;k�1/
i

Q�1
t�1;k�1

.ˆt;k1; : : : ; ˆt;k�1;k/ D ˆ.t;k�1/ �ˆt;kkˆ
�
.t;k�1/

ˆ�
t;kk D �0

t;k�1D�1
t;k�1 D

h
St�k;t � 	�

.t;k�1/ˆ0
.t;k�1/

i
D�1

t;k�1

D
h
St�k;t �ˆ�

.t;k�1/	 0
.t;k�1/

i
D�1

t;k�1

.ˆ�
t;k�1;k; : : : ; ˆ�

t;k1/ D ˆ�
.t;k�1/ �ˆ�

t;kkˆ.t;k�1/

Dt;k D Dt;k�1 ��t;k�1Q�1
t�1;k�1�0

t;k�1 D .I �ˆt;kkˆ
�
t;kk/Dt;k�1

Qt;k D Qt�1;k�1 ��0
t;k�1D�1

t;k�1�t;k�1 D .I �ˆ�
t;kkˆt;kk/Qt�1;k�1

Et;k D Et;k�1 ��t;k�1Q�1
t�1;k�1Rt�1;k�1 D Et;k�1 �ˆt;kkRt�1;k�1

Rt;k D Rt�1;k�1 ��0
t;k�1D�1

t;k�1Et;k�1 D Rt�1;k�1 �ˆ�
t;kkEt;k�1;
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initialized with Et;0 D Yt, Rt�1;0 D Yt�1, ˆt;11 D St;t�1S�1
t�1;t�1, Dt;0 D Stt, ˆ�

11 D
St�1;tS�1

tt , �t;0 D St;t�1 and Qt�1;0 D St�1;t�1.

Proof Let Z3 D Yt, Z2 D Yt�k and Z1 D .Y 0
t�1; : : :, Y 0

t�kC1/0 and apply
formula (1.44). Then,

E�.Z3jZ1;Z2/ D E�.Z3jZ1/C…32.Z2 � E�.Z2jZ1//
D ‚31Z1 C…32.Z2 �‚21Z1/

D …31Z1 C…32Z2;

where…31 D ‚31�‚32‚21,…32 D ‚32 and‚21,‚31 and‚32 are given by (1.45).
From this, it is obtained that ‚31 D ˆ.t;k�1/, ‚21 D ˆ�

.t;k�1/, .…31;…32/ D ˆ.k/,
…31 D .ˆt;k1; : : : ; ˆt;k�1;k/, and‚32 D ˆt;kk. Thus,

.ˆt;k1; : : : ; ˆt;k�1;k/ D ˆ.t;k�1/ �ˆt;kkˆ
�
.t;k�1/:

By Proposition 1.8,

…32 D ˆt;kk D �t;k�1Q�1
t�1;k�1

and, from (1.46), we can write

Dt;k D Dt;k�1 ��t;k�1Q�1
t�1;k�1�0

t;k�1:

The expression (1.45) for‚32 D ˆt;kk yields

ˆt;kk D
h
St;t�k � .St;t�1; : : : ; St;t�kC1/ˆ�0

.t;k�1/
i

Q�1
t�1;k�1:

Interchanging the roles of Z3 and Z2 in the previous argument yields the other
recursions. The only thing that remains to be proved is the formula Dt;k D
Dt;k�1 � �t;k�1Q�1

t�1;k�1 � �0
t;k�1 D .I � ˆt;kkˆ

�
t;kk/Dt;k�1 and its analogue for

Qt;k. But, because ˆt;kk D �t;k�1 � Q�1
t�1;k�1 and ˆ�

t;kkDt;k�1 D �0
t;k�1, we

have Dt;k D Dt;k�1 � ˆt;kk�
0
t;k�1 D Dt;k�1 � ˆt;kkˆ

�
t;kkDt;k�1 and the theorem is

proved. �
Corollary 1.5 Under the assumptions and with the notation of the previous
theorem, the eigenvalues of the matrix ˆt;kkˆ

�
t;kk are the squared canonical

correlations between the residuals Et;k�1 and Rt�1;k�1. Thus, they are the
squared partial canonical correlations between Yt and Yt�k with respect to
fYt�1; : : : ;Yt�kC1g. Moreover, these partial canonical correlations are the

singular values of Cov.Et;k�1;Rt�1;k�1/ D D�1=2
t;k�1�t;k�1Q�1=20

t�1;k�1, where Et;k�1
and Rt�1;k�1 are the standardized residuals Et;k�1 D D�1=2

t;k�1Et;k�1 and Rt�1;k�1 D
Q�1=2

t�1;k�1Rt�1;k�1.
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Proof The first part of the corollary follows from the formula

ˆt;kkˆ
�
t;kk D �t;k�1Q�1

t�1;k�1�0
t;k�1D�1

t;k�1
D †ER†

�1
RR†RE†

�1
EE ;

where †ER D Cov.Et;k�1;Rt�1;k�1/, †RE D †0
ER, †RR D Var.Rt�1;k�1/, and

†EE D Var.Et;k�1/. To prove the second part, consider that the eigenvalues of

det.ˆt;kkˆ
�
t;kk � �I/ = det.AA0 � �I/, where A D D�1=2

t;k�1�t;k�1Q�1=20

t�1;k�1. �

1.8.4 Partial and Multiple Correlation Coefficients

To avoid unnecessary complications, in this section we will assume that all random
variables have zero mean. By Remark 1.2, there is no loss of generality in doing this
because we can always work with centered variables if the means are not zero.

Suppose two random variables, Y3 and Y2, and a random vector Y1. The partial
correlation coefficient r32:1 of Y3 and Y2 with respect to Y1 measures the correlation
of these two variables after having eliminated the influence due to Y1. More
specifically, r32:1 is defined

r32:1 D Corr.Y3 � E�.Y3jY1/;Y2 � E�.Y2jY1//:

By Proposition 1.8, the coefficient …32 in (1.44) coincides with the coefficient
of the orthogonal projection of the residual Y3 � E�.Y3jY1/ onto the residual Y2 �
E�.Y2jY1/. Thus,…32 D CovŒY3 � E�.Y3jY1/;Y2 � E�.Y2jY1/�D�1

2 and

r32:1 D …32

p
MSE.E�.Y2jY1//p
MSE.E�.Y3jY1//

: (1.52)

Theorem 1.9 and Proposition 1.8 yield

r32:1 D S32:1p
S22:1

p
S33:1

:

The coefficient r32:1 can be obtained by means of the sequential updating scheme
of the Sect. 1.8.1. That is, first compute the predictor E�.Y3jY1/ and its MSE. Then,
compute the predictor E�.Y2jY1/, its MSE, and the coefficient…32. Finally, compute
r32:1 using (1.52).

It is also possible to compute r32:1 as a by-product of the computation of the
orthogonal projection E�.Y3jY1;Y2/ D …31Y1 C …32Y2 using the autoregressive
representation. To see this, note that these recursions give D2 D MSE.E�.Y2jY1//,
…32 and D3 D S33 � S31D�1

1 S13 �…32D2…
0
32. Finally, since MSE.E�.Y3jY1// D

S33 � S31D�1
1 S13, it is obtained that MSE.E�.Y3jY1// D D3 C …32D2…

0
32 and we
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have all the necessary quantities to compute r32:1 in (1.52). We have thus proved the
following proposition.

Proposition 1.9 Suppose two random variables, Y3 and Y2, and a random vector
Y1. Then, using the autoregressive representation, the partial correlation coefficient,
r32:1, of Y3 and Y2 with respect to Y1 is given by

r32:1 D …32

p
D2p

D3 C…32D2…
0
32

:

An alternative way to compute .…31;…32/ is to apply directly the formula that
gives the best linear prediction, .…31;…32/ D .S31; S32/Var�1Œ.Y 0

1;Y
0
2/

0�. In this
case, it is not difficult to verify using the autoregressive representation that

Œ…31;…32� D ŒS31; S32�

�
D�1
1 C…0

21D
�1
2 …21 �…0

21D
�1
2

�D�1
2 …21 D�1

2

�
;

where …21 D S21S�1
11 because, by Corollary 1.2, …21 D ‚21. Using again the

autoregressive representation, it can be verified that computing D3 directly by
the formula D3 D S33 �.S31; S32/Var�1Œ.Y 0

1;Y
0
2/

0�.S31; S32/0 yields D3 D S33 �
S31D�1

1 S13 �…32D2…
0
32. This allows for the computation of r32:1 as in the previous

proposition.

Example 1.2 (Continued) In this case, we define ˛.1/ D Corr.Y2;Y1/ and

˛.k/ D Corr.YkC1�E�.YkC1jYk; : : : ;Y2/;Y1�E�.Y1jY2; : : : ;Yk//; ; k D 1; 2; : : :

In order to use formula (1.52) to compute ˛.k/ when k > 1, we further define X1 D
.Y2; : : : ;Yk/

0, X2 D Y1 and X3 D YkC1. It is shown in Problem 1.8 that, applying the
autoregressive representation to the sequence fX1;X2;X3g, it is obtained that

˛.k/ D � .��/k
1C �2 C � � � C �2k

; k D 1; 2; : : :

Þ

Given a random variable Y2 and a random vector Y1, the multiple correlation
coefficient r2:1 of Y2 with respect to Y1 is defined as the correlation between Y2 and
E�.Y2jY1/,

r2:1 D Corr.Y2;E
�.Y2jY1//:

Proposition 1.10 Suppose a random variable Y2 and a random vector Y1. Then,
using the innovations algorithm, the multiple correlation coefficient, r2:1, of Y2 with
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respect to Y1 is given by

r2:1 D
s

‚21D1‚
0
21

‚21D1‚
0
21 C D2

D
s

S21S�1
11 S12

S22

In addition, the square of r2:1 satisfies

r22:1 D 1 � D2

‚21D1‚
0
21 C D2

(1.53)

D 1 � S22 � S21S�1
11 S12

S22

D S�1
22 S21S

�1
11 S12: (1.54)

Proof Since Y2 D E�.Y2jY1/ C E2 and E�.Y2jY1/ is orthogonal to E2,
Cov.Y2;E�.Y2jY1// D ‚21D1‚

0
21, where E�.Y2jY1/ D ‚21Y1, ‚21 D S21D�1

1

and D1 D S11. Thus,

r2:1 D ‚21D1‚
0
21p

‚21D1‚
0
21

p
‚21D1‚

0
21 C D2

D
s

‚21D1‚
0
21

‚21D1‚
0
21 C D2

D
s

S21S�1
11 S12

S22
:

The statement about the square of r2:1 is evident. �
The expression (1.53) implies that 0 � r22:1 � 1. Two extreme cases can occur.

If r22:1 D 1, then E2 D 0 and Y2 D E�.Y2jY1/. On the other hand, if r22:1 D 0, then
Y2 D E2 and E�.Y2jY1/ D 0.

The multiple correlation coefficient has the following property.

Proposition 1.11 Given a random variable Y2 and a random vector Y1, the multiple
correlation coefficient of Y2 with respect to Y1 coincides with the canonical
correlation between Y2 and Y1. Therefore, the linear combination ƒY1 that has
maximum correlation with Y2 is ‚21Y1 D E�.Y2jY1/.
Proof The proposition is a consequence of (1.54). �

Remark 1.7 Box & Tiao (1977) proposed in the time series context a measure of
predictability that can be considered as a generalization of the multiple correlation
coefficient. Letting fYtg be a zero mean vector random process, suppose that the
variables fYt�1; : : : ;Yt�kg contain enough information about the past of the process
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to predict the future, Yt. Letting the predictor be bYt;k D E�.YtjYt�1; : : : ;Yt�k/, we
can write

Yt D bYt;k C Et;k;

where Et;k coincides with that given by the recursions of Theorem 1.11,
bYt;k D S21S�1

11 , S21 D Cov.Yt;Yt�1Wt�k/, S11 D Var.Yt�1Wt�k/, and Yt�1Wt�k D
.Y 0

t�1; : : : ;Y 0
t�k/

0. Then, the covariance matrices of Yt,bYt;k, and Et;k satisfy

S22 D S21S
�1
11 S12 C Dt;k;

where Var.Yt/ D S22, Var.bYt;k/ D S21S�1
11 S12, and Var.Et;k/ D Dt;k. The measure of

predictability proposed by Box & Tiao (1977) is

…t;k D Var�1.Yt/Var.bYt;k/ D S�1
22 S21S

�1
11 S12:

Clearly, the eigenvalues of …t;k are the squared canonical correlations between Yt

and bYt;k. Thus, if 1 � 21 � � � � � 2n � 0 are the ordered eigenvalues of …t;k

and ai, i D 1; : : : ; n, are eigenvectors associated with 2i , the linear combinations
a0

iYt can be considered to be ordered from most to least predictable because among
all possible linear combinations of Yt their correlations with all possible linear
combinations ofbYt;k vary from a maximum of 1 to a minimum of n. Þ

1.9 Introduction to the Kalman Filter

We have seen in the previous sections several algorithms to obtain the innovations
given a sequence of random vectors, fYtg. Some algorithms were based on the
application of the Gram–Schmidt orthogonalization procedure of Euclidean spaces
to the sequence fYtg. When the data have state space structure, we saw a covariance
based state space algorithm. Another state space algorithm that can be used to
compute the innovations is the celebrated Kalman filter. This algorithm will be
described in detail later in the book. In this section, we will derive the Kalman filter
from first principles for the case of a state space model with time invariant system
matrices.

Suppose that the process fYtg follows the state space model (1.37) and (1.38),
where

E

��
ut

vt

� �
u0

s; v
0
s

�� D
�

Q S
S0 R

�
ıts
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and Var.x1/ D …. Then, the Kalman filter is a set of recursions to compute
the linear projections Oxtjt�1 D E�.xtjYt�1; : : : ;Y1/ and the innovations Et D
Yt � E�.YtjYt�1; : : : ;Y1/, as well as the MSE.Oxtjt�1/ and the Var.Et/ D Dt. Given
the data Y D .Y 0

1; : : : ;Y
0
n/

0, the Kalman filter recursively provides the vector of
innovations E D .E0

1; : : : ;E
0
n/

0 in the form E D L�1Y without explicitly computing
the matrix L�1, where L is a lower triangular matrix with ones in the main diagonal
such that Var.Y/ D LDL0 and D D diag.D1;D2; : : : ;Dn/. In addition, the Kalman
filter can also be applied when the state space equations that represent the data
structure are time variant.

In the following, we derive the Kalman filter corresponding to (1.37) and (1.38)
from first principles, where we assume that Var.Y/ is positive definite. As we know,
this implies that the covariance matrices of the innovations are nonsingular.

First note the equality Et D Yt � E�.YtjYt�1; : : : ;Y1/ D Yt � HOxtjt�1, that
follows directly from the observation equation (1.38). By Proposition 1.7, OxtC1jt D
E�.xtC1jYt; : : : ;Y1/ D E�.xtC1jEt;Yt�1; : : : ;Y1/ and, by Proposition 1.5 , OxtC1jt D
E�.xtC1jYt�1; : : : ;Y1/ C E�.xtC1 jEt/ because the innovation Et D Yt � HOxtjt�1 is
orthogonal to the variables Ys, s < t. Then, from the transition equation (1.37) we
have

E�.xtC1jYt�1; : : : ;Y1/ D FE�.xtjYt�1; : : : ;Y1/

D FOxtjt�1;

where Oxtjt�1 D E�.xtjYt�1; : : : ;Y1/. Thus,

OxtC1jt D FOxtjt�1 C KtEt; (1.55)

where Kt D Cov.xtC1;Et/Var�1.Et/. To compute Kt from first principles, consider
the error vector Qxt D xt � Oxtjt�1. Then, subtracting Eq. (1.55) from (1.37) and using
the equality Et D Yt � HOxtjt�1, it is obtained that

QxtC1 D .F � KtH/Qxt C Gut � Ktvt: (1.56)

We set Ox1j0 D 0, Qx1 D x1 and Var.Ox1j0/ D … D Var.x1/. This implies
the correct value for the first innovation, namely E1 D Y1. Equation (1.56)
shows that Qxt can be expressed as a linear combination of the random vectors
fx1; u1; : : : ; ut�1; v1; : : : ; vt�1g. Since both ut and vt are uncorrelated with x1 and
with us and vs for s < t, it follows that

E.Qxtu
0
t/ D 0 and E.Qxtv

0
t/ D 0: (1.57)

According to the definition of orthogonal projection, our aim is to compute Kt so
that tr.PtC1/ is minimum, where PtC1 D E.QxtC1Qx0

tC1/ and we assume that Oxtjt�1 and
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Pt D E.Qxt Qx0
t/ are known. It follows from (1.56) and (1.57) that

PtC1 D .F � KtH/Pt.F � KtH/
0 C ŒG � Kt�

�
Q S
S0 R

� �
G0

�K0
t

�

D ŒI Kt�

�
FPtF0 C GQG0 �.FPtH0 C GS/

�.H0PtF0 C S0G0/ R C HPtH0
� �

I
K0

t

�
:

From Et D Yt � HOxtjt�1, using (1.22), it is obtained that

Et D HQxt C vt and Var.Et/ D HPtH
0 C R:

Since, by assumption, the innovations have nonsingular covariance matrices, the
previous equation shows that HPtH0 C R is nonsingular. Letting

�
FPtF0 C GQG0 �.FPtH0 C GS/

�.H0PtF0 C S0G0/ R C HPtH0
�

D
�

S11 S12
S21 S22

�

and using the block triangular factorization (see Problem 1.10)

�
S11 S12
S21 S22

�
D
�

I S12S�1
22

0 I

� �
S11 � S12S�1

22 S21 0

0 S22

� �
I 0

S�1
22 S21 I

�
;

we get

PtC1 D S11 � S12S
�1
22 S21 C .Kt C S12S

�1
22 /S22.Kt C S12S

�1
22 /

0:

Clearly, tr.PtC1/ is minimized if we set Kt D �S12S�1
22 or

Kt D .FPtH
0 C GS/D�1

t ;

where

Dt D R C HPtH
0:

With this choice, the minimum error covariance matrix PtC1 is

PtC1 D S11 � S12S
�1
22 S21

D FPtF
0 C GQG0 � KtDtK

0
t :
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Summarizing, we have got the following recursions

Et D Yt � HOxtjt�1; Dt D HPtH
0 C R

Kt D .FPtH
0 C GS/D�1

t ; OxtC1jt D FOxtjt�1 C KtEt

PtC1 D FPtF
0 C GQG0 � .FPtH

0 C GS/D�1
t .FPtH

0 C GS/0

D .F � KtH/PtF
0 C .GQ � KtS

0/G0;

initialized with Ox1j0 D 0 and Var.Ox1j0/ D … that correspond to the Kalman filter for
the case in which the system matrices are time invariant. The alert reader will have
noticed that in the previous discussion S11 D Cov.xtC1/, S12 D �Cov.xtC1;Et/ and
S22 D Var.Et/.

Remark 1.8 It is to be noticed that the equations Yt D HOxtjt�1 C Et and (1.55) of
the Kalman filter coincide with the corresponding equations given by Theorem 1.8.
However, the quantities that appear in these last equations are computed using
covariance data only. Þ
Example 1.2 (Continued) One possible set of Eqs. (1.37) and (1.38) is

xtC1 D �At

Yt D xt C At; t D 1; 2; : : : ; n:

Thus, in this case, F D 0, H D 1, G D � , ut D vt D At, � D Var.x1/ D �2�2,
and Q D R D S D �2. Letting the initial conditions be the unconditional mean
and variance of the initial state vector, Ox1j0 D 0 and P1 D �2�2, the Kalman filter
recursions are

Et D Yt � Oxtjt�1; Dt D Pt C �2

Kt D ��2=Dt; OxtC1jt D KtEt

PtC1 D �2�2 � KtDtKt:

Þ

Example 1.3 (Continued) One possible set of Eqs. (1.37) and (1.38) is

xtC1 D �xt C AtC1
Yt D xt; t D 1; 2; : : : ; n:

Thus, F D �, H D 1, G D 1, ut D AtC1, vt D 0, � D Var.x1/ D �2=.1 � �2/,
Q D �2 and R D S D 0. Letting the initial conditions be the unconditional mean
and variance of the initial state vector, Ox1j0 D 0 and P1 D �2=.1 � �2/, the Kalman
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filter recursions give E1 D Y1, D1 D �2=.1 � �2/, K1 D �, Ox2j1 D �Y1, P2 D �2,
and

Et D Yt � Oxtjt�1 D Yt � �Yt�1; Dt D �2

Kt D �; OxtC1jt D � Oxtjt�1 C KtEt D �Yt

PtC1 D �2; t D 2; 3; : : : ; n:

Þ

The matrix Kt given by the Kalman filter corresponding to (1.37) and (1.38) is
called the “Kalman gain” because it represents the improvement in the prediction
of xtC1 when a new observation Yt is incorporated into the sample. For the Exam-
ple 1.2, the Kalman gain coincides with the Kt given by Eqs. (1.21) and (1.22). In
fact, when there is structure in the data, the matrices F, H, Kt, Et, and Dt D Var.Et/

of these last equations coincide with those of the Kalman filter corresponding to
Eqs. (1.37) and (1.38). Thus, in this case the matrices (1.24) and (1.25) given by both
procedures also coincide. However, the Pt matrices given by the Kalman filter do not
coincide even in this case with the †t matrices given by Eqs. (1.21) and (1.22). The
precise relationship is that the xt of Eqs. (1.21) and (1.22) is equal to the Oxtjt�1 given
by the Kalman filter and that the †t of Eqs. (1.21) and (1.22) is equal to Var.Oxtjt�1/,
whereas the Pt given by the Kalman filter is equal to MSE.Oxtjt�1/D Var.xt � Oxtjt�1/,
where xt is the state vector of Eqs. (1.37) and (1.38).

One final point that should be mentioned is the conditions under which the
Kalman filter recursions corresponding to the time invariant state space equa-
tions (1.37) and (1.38), and also the recursions (1.21) and (1.22), reach a steady
state. It will be shown later in the book that under fairly general conditions these
recursions do reach a steady state. In the case of Example 1.2, it can be shown that
D1 � D2 � : : : � Dt � 0, implying Dt ! �2, †t ! 0, and Kt ! � D G as
t ! 1.

1.10 Linear Regression and Ordinary Least Squares

Suppose that y is a random variable and that x is a random vector, both with finite
second moments, and define u D y � E�. yjx/. Then, u is orthogonal to x and we
can write

y D ˇ0x C u; (1.58)

where ˇ0x coincides with the orthogonal projection, E�. yjx/, so that ˇ0 D SyxS�1
xx .

Conversely, if in the model (1.58) we assume that x and u are orthogonal, then
Syx D ˇ0Sxx and ˇ0x D E�. yjx/.
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The model (1.58), under the assumption that ˇ is constant and u is orthogonal to
x, is called linear regression model.

Suppose that we have a random sample . yt; x0
t/, t D 1; : : : ; n, corresponding to

the linear regression model (1.58) and that we want to estimate ˇ. It seems natural
that we use the empirical distribution of the sample, that assigns probability 1=n to
each point . yt; xt/, and that we proceed to compute the best linear predictor as we
have done using population moments. This procedure is what we call the sample
analogue to best linear prediction.

More specifically, according to this sample analogue, we have a random vector
.�; �0/0 that takes values . yt; x0

t/
0, t D 1; : : : ; n, with probability 1=n. The matrix of

noncentered second moments of .�; �0/0 is

E

��
�

�

� �
�; �0�

�
D
�

S�� S��
S�� S��

�
;

where S�� D Pn
tD1 y2t =n, S�� D Pn

tD1 ytx0
t=n, S�� D Pn

tD1 xtyt=n, and S�� DPn
tD1 xtx0

t=n.
By Proposition 1.1, if S�� is nonsingular, the best linear predictor of � based on

� is

E�.�j�/ D S��S�1
���: (1.59)

Letting Ǒ0 D S��S�1
�� , we see that Ǒ satisfies the normal equations

S�� Ǒ D S��

or, equivalently,

 
nX

tD1
xtx

0
t

!
Ǒ D

nX

tD1
xtyt:

Letting X D .x1; : : : ; xn/
0 and y D . y1; : : : ; yn/

0, we can write the sample in a more
compact form as . y;X/ and the normal equations as

.X0X/ Ǒ D X0y:

By Proposition 1.2, this system of linear equations is always consistent, so that
E�.�j�/ exists even if S�� is singular. It is to be noted that S�� is nonsingular if, and
only if, X has full column rank. In this case, the solution is

Ǒ D S�1
��S�� D

 
nX

tD1
xtx

0
t

!�1  nX

tD1
xtyt

!

D .X0X/�1X0y: (1.60)
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The random vector E�.�j�/, given by (1.59), takes values Ǒ0xt, t D 1; : : : ; n, with
probability 1=n. Since Ǒ0xt is scalar, these values satisfy Ǒ0xt D x0

t
Ǒ. Thus, (1.59)

can be expressed as

yt D x0
t
Ǒ C Out; t D 1; : : : ; n;

where the variable ‡ D � � �0 Ǒ, that takes values Out D yt � x0
t
Ǒ with probability

1=n is orthogonal in the sample to �.
The estimator Ǒ, given by (1.60), is called the ordinary least squares (OLS)

estimator of ˇ in the regression model (1.58).

Remark 1.9 According to Proposition 1.1, Ǒ minimizes the sum of squares

E.� � �0ˇ/0.� � �0ˇ/ D
nX

tD1
. yt � x0

tˇ/
2=n

with respect to ˇ. Thus, apart from the factor 1=n, that does not affect the
results, the OLS estimator minimizes the sum of squares

Pn
tD1. yt � x0

tˇ/
2. This

last interpretation is often used to define the OLS estimator without making any
distributional assumption about the variables in the model. Þ

Remark 1.10 The regression model (1.58) often includes a mean term in x0
t D

.x1t; : : : ; xkt/ such that x1t D 1, t D 1; : : : ; n. In this case, by Remark (1.2), we
can work with centered variables without the results being affected by it. Þ

Remark 1.11 The orthogonality conditions implied by the sample analogue are

1

n

nX

tD1
. yt � x0

t
Ǒ/x0

t D 0:

From this, it is concluded that if the mean is included so that x1t D 1, t D 1; : : : ; n,
then

1

n

nX

tD1
. yt � x0

t
Ǒ/ D 1

n

nX

tD1
Out D 0:

That is, the mean of the regression residuals is zero. Þ

Remark 1.12 It is to be noted that the covariance in the sample is, apart from the
factor 1=n, the scalar product in R

n, defined by x�y DPn
iD1 xiyi. Thus, the statements

about covariances in the sample can be interpreted as statements about scalar
products in R

n. With this interpretation, the results in this section provide another
proof of the Projection Theorem in R

n. Namely, if S � R
n is a linear subspace
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generated by the columns of a full column rank n � k matrix X D .x1; : : : ; xn/
0 and

y 2 R
n, then

(i) there exists a unique element Oy 2 S such that

ky � Oyk D inf fky � xk W x 2 Sg

(ii) Oy 2 S and ky � Oyk D inf fky � xk W x 2 Sg if and only if y � Oy is orthogonal to
all the vectors in S.

Here, kxk D p
x � x denotes the distance of the vector x to the origin and Oy is the

vector of the so-called fitted values, Oy D X Ǒ. Þ

1.11 Historical Notes

The selection of a squared error criterion goes back to Gauss. There is a fine
translation of Stewart (1995) of Gauss’s final publications on the topic that is worth
reading. In particular, on pp. 9–11 Gauss argues that the size of the loss assigned to
a given observation error is well represented by the square function for a number of
reasons, among which the fact that the square function is continuous.

The material of this chapter is quite standard and some of the results have been
known for a long time. See, for example, Doob (1953).

The idea of regarding random variables as elements of a vector space seems to
go back to Fréchet, see Fréchet (1937). According to this formulation, the problem
of least squares estimation reduces to a projection onto a linear subspace. This idea
was exploited by Wold (1938) and later by Kolmogorov (1939, 1941) to obtain
fundamental results in the theory of stationary stochastic processes.

Wold noted that it would be convenient to transform a correlated sequence of
random variables into an uncorrelated one using the Gram–Schmidt procedure of
Euclidean spaces. The term innovation was perhaps first used by Wiener and Masani
in the mid-fifties.

1.12 Problems

1.1 Use the innovations algorithm in Example 1.2 with � D 1 to show that

E�.YkC1jYk; : : : ;Y1/ D k

k C 1
Ek
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and

DkC1 D k C 2

k C 1
�2:

1.2 Use the autoregressive representation in Example 1.2 with � D 1 to show that

YkC1 D …kC1;1Y1 C � � � C…kC1;kYk C EkC1;

where

…kC1;j D .�1/k�j j

k C 1
; j D 1; : : : ; k:

By changing the time index appropriately, show that the previous relations can also
be written as

Yt D …t;t�1Yt�1 C � � � C…t;t�kYt�k C Et; t > k � 1;

and

…t;t�j D .�1/jC1


1 � j

t

�
; j D 1; : : : ; k:

1.3 Prove that the ith column of the L matrix (1.13) can be obtained by taking the
inner product of the ith column in Table 1.18 with jjEijj2Ei, i D 1; : : : ; n.

1.4 Consider the modified Gram–Schmidt procedure of Sect. 1.5. Let eY j1 D
.eY 0

2j1; : : : ; eY
0
nj1/

0. Prove that jjeY j1jj2 is the Schur complement of the top leftmost

entry of jjYjj2. That is, partitioning jjYjj2 as

jjYjj2 D
�jjY1jj2 m0

1

m1 M1

�
;

the relation jjeY j1jj2 D M1 � m1jjY1jj�2m0
1 holds.

1.5 Let fYtg follow the VARMA model

Yt Cˆt;1Yt�1 Cˆt;2Yt�2 D ‚t;0At C‚t;1At�1 C‚t;2At�2;

where Var.At/ D †t. Prove that this model can be put into state space form as
follows:

xtC1 D
��ˆtC1;1 I

�ˆtC2;2 0

�
xt C

�
‚tC1;1 �ˆtC1;1‚t;0

‚tC2;2 �ˆtC2;2‚t;0

�
Lt�t

Yt D ŒI; 0�xt C‚t;0Lt�t;

where �t D L�1
t At and †t D LtL0

t is the Cholesky decomposition of †t.
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1.6 Solve the recursions of Example 1.4. To this end, show first that if Rt D
Dt=.Dt � �2/, then

Rt D ��2Rt�1 C 1; t � 2:

Deduce from this that

Rt D ��2.t�1/R1 C 1C ��2 C ��4 C � � � C ��2.t�2/;

where R1 D .1 � 2�� C �2/=.�2 � 2�� C �2/. This allows for the computation of
Dt and ‚t;t�1 as

Dt D Rt

Rt � 1
�2; ‚t;t�1 D �

Rt�1 � 1
Rt�1

:

1.7 Prove Lemma 1.1.

1.8 Prove the formula for the partial autocorrelation coefficient, ˛.k/, when k > 1
in Example 1.2. To this end, apply first the autoregressive representation to the
sequence fYtg to get

YkC1 D …kC1;1Y1 C…kC1;2Y2 C � � � C…kC1;kYk C EkC1; k > 1:

Define X1 D .Y2; : : : ;Yk/
0, X2 D Y1 and X3 D YkC1, and apply the autoregressive

representation to fX1;X2;X3g to get X3 D …x
31X1 C …x

32X2 C Ex
3. Show first that

…x
32 D …kC1;1 and Ex

3 D EkC1. Then, show that the process fYt W t D 1; 2; : : :g is
stationary, that is, the covariances Si;j satisfy Si;j D S.i � j; 0/, i; j D 0; 1; 2; : : :, and
that this implies that the process fYtg can be reversed in time and MSEŒE�.X3jX1/�
D MSEŒE�.X2jX1/� D Dk. Deduce that ˛.k/ D …kC1;1 and obtain the result.

1.9 Consider the formulae (1.7) and (1.8) given by the innovations algorithm. Prove
that

Y 0jjYjj�2Y D
nX

tD1
E0

tD
�1
t Et:

1.10 Consider the symmetric block matrix

�
S11 S12
S21 S22

�
;

such that S22 is nonsingular. Prove that the following decomposition holds:

�
S11 S12
S21 S22

�
D
�

I S12S�1
22

0 I

� �
S11 � S12S�1

22 S21 0

0 S22

� �
I 0

S�1
22 S21 I

�
:
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Appendix

Orthogonal Projection and Orthogonal Subspaces in R
n

A linear operator f W Rn ! R
n is said to be a projection if f 2 D f . The following

proposition characterizes projection operators.

Proposition 1A.1 The linear operator f W Rn ! R
n is a projection if and only if,

for all v 2 R
n, the equality v D f .v/C w holds, where f .w/ D 0.

Proof Suppose that f is a projection and let v 2 R
n. Then, if w D v� f .v/, applying

f to both sides of the previous equality yields f .w/ D f .v/� f 2.v/ D 0. Conversely,
suppose that v D f .v/ C w and f .w/ D 0. Then, applying f to both sides of v D
f .v/C w yields f .v/ D f 2.v/. �

Remember that the kernel and the image of a linear operator f W R
n ! R

n

are the linear subspaces of R
n defined by Ker. f / D fx 2 R

n W f .x/ D 0g and
Img. f / D fx 2 R

n W 9y; x D f . y/g.

Proposition 1A.2 If f W Rn ! R
n is a projection, then R

n D Img. f /˚ Ker. f /. In
addition, I � f is also a projection and Img.I � f / D Ker. f /, Ker.I � f / D Img. f /.

Proof The decomposition R
n D Img. f /C Ker. f / is a consequence of the previous

proposition. Let v 2 Ker. f / \ Img. f /. Then, v D f .w/ for some w 2 R
n and

f .v/ D 0 D f 2.w/ D f .w/ D v.
Since .I � f /2 D I � 2f C f 2 D I � f , I � f is a projection. If v 2 Ker. f /,

then f .v/ D 0 and, since v D v � f .v/, v 2 Img.I � f /. If w 2 Img.I � f /, then
w D v � f .v/ for some v 2 R

n. Thus, by the previous proposition, w 2 Ker. f /.
We have proved that Ker. f / D Img.I � f /. Since I � f is a projection, changing the
roles of f and I � f , we get Ker.I � f / D Img. f /. �

Example 1A.1 Let f W R3 ! R
3 be defined by

2

4
y1
y2
y3

3

5 D
2

4
1 0 0

0 1 �1
0 0 0

3

5

2

4
x1
x2
x3

3

5 :

Then, f is a projection onto the plane generated by Img. f / D f.1; 0; 0/0, .0; 1; 0/0g
along the direction Ker. f / D f.0; 1; 1/0g. The projection I � f is

2

4
y1
y2
y3

3

5 D
2

4
0 0 0

0 0 1

0 0 1

3

5

2

4
x1
x2
x3

3

5 :

Þ
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Given a linear subspace S � R
n, the orthogonal complement space, S?, of S is

defined as

S? D fx 2 R
n W x0y D 0 for all y 2 Sg:

A projection f Rn ! R
n is called an orthogonal projection if Ker. f / D Img. f /?.

Proposition 1A.3 Let P be the matrix that represents the linear operator
f W Rn ! R

n with respect to the canonical basis of Rn. Then, f is an orthogonal
projection if and only if

(i) P2 D P
(ii) P0 D P.

Proof Suppose that f is an orthogonal projection. Then, P2 D P by definition of
projection. Let v 2 R

n. Then, w D .I � P/v satisfies Pw D 0 and w is in the kernel
of f . Since f is an orthogonal projection, letting � denote the scalar product in R

n,
Pv � .I � P/v D 0 holds. This implies v0P0.I � P/v D 0 and P0 D P0P. Transposing
the matrices in the previous equality, it is obtained that P0 D P.

Conversely, suppose that (i) and (ii) are satisfied. Then, f is a projection. To
show that f is orthogonal, we have to prove that, for all v 2 R

n, Pv is orthogonal
to any vector in the kernel. By the previous proposition, Ker. f / D Img.I � f /, so
that we have to prove that, for all v;w 2 R

n, Pv is orthogonal to .I � P/w. Since
Pv � .I � P/w D v0P0.I � P/w D v0.P � P2/w D 0, the claim is proved. �
Proposition 1A.4 (The Matrix of an Orthogonal Projection) Suppose that the
image of the orthogonal projection f W R

n ! R
n consists of linear combinations

x1ˇ1 C � � � C xkˇk of the linearly independent vectors fx1; : : : ; xkg, k � n, and let
X D .x1; : : : ; xk/. Then, the matrix of f with respect to the canonical basis of Rn is
P D X.X0X/�1X0.

Proof Let y 2 R
n and suppose that f . y/ D Xˇ, where ˇ D .ˇ1; : : : ; ˇk/

0. Then, by
Proposition 1A.1, y � Xˇ belongs to the kernel of f and, since f is an orthogonal
projection, it is orthogonal to the columns of X. This implies that X � . y � Xˇ/ D 0,
and X0y � X0Xˇ D 0, where � denotes, as in the previous proof, the scalar product
in R

n. Thus, ˇ D .X0X/�1X0y and f . y/ D Py D X.X0X/�1X0y. �

Remark 1A.1 Under the assumptions and with the notation of the previous proposi-
tion, consider the matrix I � P D I � X.X0X/�1X0. By Proposition 1A.2, I � P is the
matrix of a projection and, because it satisfies .I �P/0 D I �P and .I �P/2 D I �P,
it is an orthogonal projection. Also, since f is orthogonal, the columns of I � P, that
are in Ker. f / by Proposition 1A.2, are orthogonal to the columns of X, that are in
Img. f /. Since P is symmetric, this implies .I � P/X D 0. Þ

Remark 1A.2 In the case of the regression model (1.58), if the sample is . y;X/, the
least squares estimator of ˇ is given by (1.60) and the vector of the so-called fitted
values is Oy D X Ǒ D X.X0X/�1X0y D Py. Thus, we see that Oy is the image of the
orthogonal projection of y onto the space generated by the columns of the matrix X.
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The vector of estimated residuals, Ou, is given by Ou D .I � P/y and is orthogonal to
the columns of the matrix X. Þ

Remark 1A.3 Because the matrix P of a projection f W Rn ! R
n satisfies P2 D P,

the characteristic polynomial is z.z � 1/. Thus, the eigenvalues of P are equal to
zero or one and P is diagonalizable. That is, there exists a nonsingular matrix Q
such that Q�1PQ D D, where D is a diagonal matrix with zeros and ones in the
main diagonal. If f is an orthogonal projection, Q can be taken to be an orthogonal
matrix. Þ
Corollary 1A.1 Given a linear subspace S � R

n, the following decomposition
holds

R
n D S ˚ S?:

Proof Let X D .x1; : : : ; xk/, k � n, be a matrix such that its columns are a basis
of S and consider the orthogonal projection f W R

n ! R
n of R

n onto S. Then,
by Proposition 1A.4, f .x/ D Px, where P D X.X0X/�1X0, and Img. f / D S. By
Proposition 1A.2, I � P is the matrix of ker. f /. Since f is an orthogonal projection,
Ker. f / D Img. f /? and the decomposition

x D P.x/C .I � P/.x/; x 2 R
n

is the required decomposition. �

Given an m�n matrix A, we define the following vector spaces. The range space
of A, R.A/, is the vector space spanned by the columns of A, that is,

R.A/ D fAa W a 2 R
ng:

The nullspace of A, N .A/, is defined as

N .A/ D fa 2 R
n W Aa D 0g:

Note that these spaces can be considered as the image and the kernel of the linear
map f W Rm ! R

n defined by f .x/ D Ax for all x 2 R
m with respect to the canonical

bases of Rm and R
n.

Lemma 1A.1 Given an m � n matrix A, the following properties hold

N .A/ D R.A0/?; N .A0/ D R.A/?; R.A/ D N .A0/?; R.A0/ D N .A/?:

Proof To prove the first property, let a 2 N .A/. Then, Aa D 0 and a0A0b D 0 for
all b 2 R

m. This implies a 2 R.A0/? and, therefore, N .A/ � R.A0/?. To prove
R.A0/? � N .A/, suppose a 2 R.A0/?. Then, a0A0b D 0 for all b 2 R

m and
this implies a0A0 D 0. Therefore, a 2 N .A/. The rest of the properties are proved
similarly. �
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Corollary 1A.2 Given an m � n matrix A, the following properties hold

R
n D N .A/˚ R.A0/; R

m D N .A0/˚ R.A/:

Proof It is a consequence of Corollary 1A.1 and the previous Lemma. �

The Multivariate Normal Distribution

A random variable X is said to have a standard normal distribution if it has the
density

fX.x/ D 1p
2�

e�x2=2:

The characteristic function of a standard normal variable X is

�X.t/ D E.eitX/ D e�t2=2:

This can be proved as follows. Since
ˇ̌
ˇeitx�x2=2

ˇ̌
ˇ � e�x2=2, we can differentiate under

the integral sign to get

�0
X.t/ D 1p

2�

Z 1

�1
ixeitx�x2=2dx:

Since the derivative of e�x2=2 is �xe�x2=2, integrating by parts yields

�0
X.t/ D �t�X.t/:

We can express this equality as Œln�X.t/�
0 D �t. Thus,

ln �X.t/ D � t2

2
C c;

where c is a constant that we can determine from the initial condition �X.0/ D 1.
Therefore,

�X.t/ D e�t2=2:

A random variable Y is said to have a normal distribution if it is of the form
Y D � C cX, where � and c are real numbers. If Y D � C cX has a normal
distribution, then the mean and variance of Y exist and are given by E.Y/ D �,
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Var.Y/ D c2. In addition, the density and the characteristic function of Y can be
easily shown to be

fY.x/ D 1p
2�jcje� .x��/2

2c2

and �Y.t/ D eit��t2c2=2. Thus, the random variable Y depends only on the parameters
� and c2 and is denoted by Y � N.�; c2/.

A k-dimensional random vector X is said to have a multivariate normal
distribution if t0X has a univariate normal distribution for all t 2 R

k. The following
proposition proves that this definition uniquely determines X.

Proposition 1B.1 (The Cramer–Wold Device) The multivariate normal vector X
is completely determined by the one dimensional distributions of linear functions
t0X, for every t 2 R

k.

Proof Let �.t; s/ be the characteristic function of t0X. Then, �.t; s/ D E.eist0X/ and,
letting s D 1, it is obtained that �.t; 1/ D E.eit0X/. This last function, considered
as a function of t, is the characteristic function of X. Thus, the distribution of X is
uniquely determined by the inversion theorem of characteristic functions. �

From the definition of multivariate normal distribution it is not evident whether
the mean and covariance matrix exist. The following proposition proves that they
do exist and gives also the expression for the characteristic function.

Proposition 1B.2 Let Y D .Y1; : : : ;Yk/
0 have a multivariate normal distribution.

Then,

(i) E.Y/ D � and Cov.Y/ D † exist and are finite
(ii) The characteristic function of Y is eit0��t0†t=2

Proof

(i) By definition, the components Yi are univariate normal, so that E.Yi/ and
Var.Yi/ exist and are finite. Thus, Cov.Yi;Yj/ exists and is finite because Var.Yi/

and Var.Yj/ are finite.
(ii) The characteristic function of t0X is by definition that of a univariate normal

distribution with mean t0� and covariance matrix t0†t, �t0X.s/ D eist0��s2t0†t=2.
Letting s D 1, the result is obtained. �

The previous proposition shows that the distribution of a multivariate normal
distribution Y depends on the mean � and covariance matrix † only. We denote it
by Y � N.�;†/.

The following proposition proves that affine transformations of multivariate
normal distributions are also multivariate normal distributions. It also gives a
criterion to know when two multivariate normal distributions are independent.
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Proposition 1B.3 Let X and Y have multivariate normal distributions. Then,

(i) if c is a vector of constants and A is a nonrandom matrix such that Z is a random
vector satisfying Z D c C AX, then Z has a multivariate normal distribution
with mean c C A�x and covariance matrix A†xxA0

(ii) X and Y are independent if and only if †xy D 0.

Proof

(i) Let t0Z be a linear function of Z. Then, t0AX is a linear function of X and
has, by definition, a univariate normal distribution. Thus, t0c C t0AX also has
a univariate normal distribution, with mean t0c C t0A�x and variance t0A†xxA0t.
The characteristic function of t0Z is then �t0Z.s/ D eist0.cCA�x/�s2t0A†xxAt=2.
Letting s D 1, the result is obtained.

(ii) Let Z D .X0;Y 0/0. Then, X and Y are independent if and only if the characteristic
function �Z of Z satisfies �Z D �X�Y , where �X and �Y denote the characteristic
functions of X and Y. It is not difficult to verify that

�Z.t/ D �X.tx/�Y.ty/e
�t0x†xy ty�t0y†yxtx ;

where the partition t D .t0x; t0y/0 is made conformal to Z D .X0;Y 0/0. From this,
the result follows easily. �

Sometimes, the multivariate normal distribution is defined as a k-dimensional
random vector of the form Y D a C AX, where a is a vector of constants, A is a
nonrandom matrix, and X is a p-dimensional random vector whose elements are
independent and have a standard normal distribution. The following proposition
proves that this definition and ours are equivalent. In addition, it also gives the
density of a multivariate normal distribution.

Proposition 1B.4 Let Y be a k-dimensional random vector. Then,

(i) Y has a multivariate normal distribution if and only if it has the form Y D
a C AX, where a is a vector of constants, A is a nonrandom matrix and X is
a p-dimensional random vector whose elements are independent and have a
standard normal distribution.

(ii) if Y has a multivariate normal distribution and †yy is nonsingular, then the
density of Y is

fY.x/ D .2�/�k=2j†yyj�1=2e�.x��y/
0†�1

yy .x��y/=2:

If †yy is singular and †yy D LL0, where L is a full column rank matrix with
rank equal to that of †yy, then the density of Y is

fY.x/ D .2�/�k=2jL0†yyLj�1=2e�.x��y/
0L.L0†yyL/�1L0.x��y/=2:
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Proof

(i) Suppose that X is as in the statement of the proposition and that Y D a C AX
holds. Then, it is not difficult to verify that each linear function t0X of X has
characteristic function e�t0 t=2 and has, therefore, normal distribution. By the
previous proposition, this implies that Y has multivariate normal distribution.
Conversely, suppose that Y has a multivariate normal distribution. Then, the
covariance matrix †yy can be decomposed as †yy D LL0, where L is a full
column rank matrix with rank equal to that of †yy. We will prove that Y
coincides with Z D �y C LX, where X is as in the statement of the proposition.
Clearly, the mean and covariance matrix of Z are equal to those of Y. In addition,
the distribution of Z is normal by the first part of the proof, and the claim is
proved.

(ii) If†yy is nonsingular, with the notation of the first part of the proof, the equality
Y D �y C LX holds, where L is a nonsingular matrix such that †yy D LL0.
Then, the Jacobian of the inverse transformation, X D L�1.Y � �y/, is jLj�1.
Considering that the density of X is fX.x/ D .2�/�k=2e�x0x=2, the result follows.

If †yy is singular and †yy D LL0, where L is a full column rank matrix with
rank equal to that of†yy, then, by the first part of the proof, Y D �yCLX, where
X is a random vector whose elements are independent and have a standard
normal distribution. Thus, the random vector Z D .L0L/X D L0. y � �y/ has a
normal distribution with zero mean and covariance matrix .L0L/.L0L/ D L0†yyL
and the result follows. �

Conditional Distribution

Theorem 1B.1 Suppose that
�

X1
X2

�
� N

��
�1
�2

�
;

�
†11 †12
†21 †22

��
;

where †22 is nonsingular. Then, the conditional distribution X1jX2 �
N
˚
�1 C†12†

�1
22 �.X2 � �2/;†11 �†12†

�1
22 †21

�
, so that the conditional

expectation E.X1jX2/ coincides with the orthogonal projection E�.X1jX2/.
Proof Define Z D X1 � †12†

�1
22 X2. Then, Var.Z/ D †11 �†12†

�1
22 †21 and Z and

X2 are uncorrelated. Thus, by Proposition 1B.3, Z and X2 are independent and, with
an obvious notation, the densities satisfy fZX2 D fZfX2 .

The transformation
�

X1
X2

�
D
�

I †12†�1
22

0 I

� �
Z
X2

�

has unit determinant and, thus, fX1X2 D fZX2 D fZfX2 . This shows that fZ is the density
of X1jX2 and the theorem is proved. �



Chapter 2
Linear Models

2.1 Linear Models and Generalized Least Squares

When computing the best linear predictor of X based on Y, an extremely important
case occurs when X and Y are linearly related as

Y D HX C V; (2.1)

where H is a known n � m matrix, X, Y, and V are zero mean random vectors, and V
is uncorrelated with X. The model (2.1) is called linear model. Let Var.X/ D Sx and
Var.V/ D Sv and assume that Var.Y/ D Sy D HSxH0 C Sv > 0. Then, Cov.X;Y/ D
EX.HX C V/0 D SxH0,

bXjY D SxH0 �HSxH0 C Sv
	�1

Y (2.2)

and

Px D Sx � SxH0 �HSxH0 C Sv
	�1

HSx; (2.3)

wherebXjY D E�.XjY/ and Px D MSE

bXjY

�
.

In many problems it happens that Sx > 0 and Sv > 0, which of course
also ensures that Sy > 0. Then, we can express (2.2) and (2.3) in the so-called
information form that involves the inverses of the covariance matrices rather than
the covariance matrices themselves. The name is due to the fact that the amount of
information obtained by observing a random variable varies inversely as its variance.

Applying the Matrix Inversion Lemma 4.1 yields

S�1
y D .HSxH

0 C Sv/
�1 D S�1

v C S�1
v H.S�1

x C H0S�1
v H/�1H0S�1

v
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and, therefore,

SxH
0ŒHSxH0 C Sv�

�1 D SxH
0S�1
v � SxH0S�1

v H.S�1
x C H0S�1

v H/�1H0S�1
v

D Sx
�
.S�1

x C H0S�1
v H/ � H0S�1

v H
�
.S�1

x C H0S�1
v H/�1H0S�1

v

D .S�1
x C H0S�1

v H/�1H0S�1
v :

Thus,

bXjY D .S�1
x C H0S�1

v H/�1H0S�1
v Y:

In the same way, it can be verified that

Px D Sx � SxH0 �HSxH0 C Sv
	�1

HSx D .S�1
x C H0S�1

v H/�1:

An important consequence of the previous formula is the relation

P�1
x
bXjY D H0S�1

v Y;

which shows that the expression P�1
x
bXjY is independent of the covariance matrix, Sx,

of X. In summary, the information form of (2.2) and (2.3) is

P�1
x
bXjY D H0S�1

v Y (2.4)

P�1
x D S�1

x C H0S�1
v H: (2.5)

It is to be noticed that the estimatorbXjY can be obtained minimizing with respect to
X the function

X0S�1
x X C .Y � HX/0S�1

v .Y � HX/:

In certain problems, one assumes very little a priori knowledge of X, which can
be modeled by setting Sx D kI, with k a very big number. Then, in the limit as
k ! 1, S�1

x ! 0 and

bXjY ! bXjY1 D .H0S�1
v H/�1H0S�1

v Y; Px ! Pxj1 D .H0S�1
v H/�1: (2.6)

The linear model (2.1), when X is assumed to be fixed and Var.V/ D �2I, is
called ordinary least squares regression model or OLS model. To estimate X in an
OLS model, the usual procedure is ordinary least squares. As we saw in the previous
section, this procedure can be interpreted as an orthogonal projection in the sample.
The results in this section offer another interpretation. If X is fixed in (2.1) and we
adopt a Bayesian approach such that X is assumed to have a diffuse prior distribution
(Sx D kI with k ! 1) and Sv D �2I, then we obtain the OLS estimator via (2.6).
An important property of the estimatorbXjY1 is given in the following theorem.
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Theorem 2.1 (Gauss Markov Theorem) If in the linear model (2.1) X is con-
sidered fixed, H has full column rank and Var.V/ D �2I, then the estimator
bXjY1 D .H0H/�1H0Y is optimum in the sense that its covariance matrix, Pxj1 D
�2.H0H/�1, has minimum trace in the class of all unbiased linear estimators of X
based on Y.

Proof Let bZ D AY, with A a nonrandom matrix of appropriate dimensions, be an
unbiased linear estimator of X based on Y. Then, because bZ is unbiased, E.bZ/ D
X D AHX and the equality

AH D I

holds. This implies Var.bZ/ D E
h
.bZ � X/.bZ � X/0

i
D �2AA0. On the other hand,

using AH D I, the covariance matrix Pxj1 can be written as

Pxj1 D �2AH.H0H/�1H0A0:

Therefore,

tr
h
Var.bZ/ � Pxj1

i
D �2tr

˚
A
�
I � H.H0H/�1H0�A0� :

Since the matrix I � H.H0H/�1H0 is a projection matrix, it is nonnegative definite.
This implies that the matrix A

�
I � H.H0H/�1H0�A0 is also nonnegative definite.

Thus, the trace of this last matrix is a nonnegative number that reaches its minimum
value of zero for A D .H0H/�1H0, that is, whenbZ D bXjY1. �

If X is fixed and Var.V/ is general, the model is called generalized least
squares regression model or GLS model. If (2.1) is a GLS model and Sv > 0, to
estimate X, one usually reduces first (2.1) to an OLS model by means of a suitable
transformation and then applies ordinary least squares. More specifically, let L be
any matrix such that Sv D LL0 and premultiply (2.1) by L�1 to get

L�1Y D L�1HX C L�1V:

Then, Var.L�1V/ D I and the transformed model is an OLS model. Applying
ordinary least squares to the transformed model yields

bX D .H0S�1
v H/�1H0S�1

v Y; MSE.bX/ D .H0S�1
v H/�1;

which coincide with bXjY1 and P1. This procedure to estimate X is called
generalized least squares. Note that the GLS estimator, bX, is the solution to the
problem of minimizing with respect to X the weighted sum of squares

.Y � HX/0S�1
v .Y � HX/ D �

L�1.Y � HX/
�0

L�1.Y � HX/:
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2.2 Combined Linear Estimators

Sometimes, we have two different sets of independent observations of the linear
model (2.1). The following theorem gives the details on how the estimators can
be combined in this case to obtain an estimator that uses all of the available
information.

Theorem 2.2 Suppose we have two different sets of observations of X in the linear
model (2.1), for example

Ya D HaX C Va

Yb D HbX C Vb;

where fVa;Vb;Xg are mutually uncorrelated, zero mean random vectors, with
covariance matrices Sa; Sb, and Sx, respectively. Then, letting bXa D E�.XjYa/,

Pa D MSE

bXa

�
, bXb D E�.XjYb/, and Pb D MSE


bXb

�
, and considering the

stacked model

Y D HX C V;

where Y D ŒY 0
a;Y

0
b�

0, H D ŒH0
a;H

0
b�

0 and V D ŒV 0
a;V

0
b�

0, the information form of
bX D E�.XjY/ and P D MSE


bX
�

is given by

P�1bX D P�1
a
bXa C P�1

b
bXb

P�1 D P�1
a C P�1

b � S�1
x :

Proof By (2.4), it holds that

P�1
a
bXa D H0

aS�1
a Ya; P�1

b
bXb D H0

bS�1
b Yb;

and, considering the model Y D HX C V , it also holds that

P�1bX D H0S�1
v

D ŒH0
a;H

0
b�

�
S�1

a 0

0 S�1
b

� �
Ya

Yb

�

D H0
aS�1

a Ya C H0
bS�1

b Yb

D P�1
a
bXa C P�1

b
bXb:
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In a similar way, by (2.5), it is obtained that

P D .S�1
x C H0S�1

v H/�1

D



S�1
x C ŒH0

a;H
0
b�

�
S�1

a 0

0 S�1
b

� �
Ha

Hb

��

D .S�1
x C H0

aS�1
a Ha C H0

bS�1
b Hb/

�1

D .S�1
x C P�1

a � S�1
x C P�1

b � S�1
x /�1:

�

2.3 Likelihood Function Definitions for Linear Models

To define the likelihood of a linear model, it will be convenient to consider linear
models of the form

Y D Rı C !; (2.7)

where ı � N.b;…/, Cov.ı; !/ D 0, ! � N.m!;V!/, and … and V! are
nonsingular. The notation x � N.m;V/ denotes a random vector x normally
distributed with mean m and covariance matrix V .

The log-likelihood of the linear model (2.7) is given by the following theorem.

Theorem 2.3 Under the previous assumptions, the log-likelihood, denoted by �.Y/,
of the linear model (2.7) is given by

�.Y/ D constant � 1

2

n
ln j…j C ln jV! j C ln j…�1 C R0V�1

! Rj C . Oı � b/0…�1. Oı � b/

C .Y � R Oı � m!/
0V�1
! .Y � R Oı � m!/

o
; (2.8)

where Oı D .…�1 C R0V�1
! R/�1Œ…�1b C R0V�1

! .Y � m!/� and MSE. Oı/ D .…�1 C
R0V�1

! R/�1. In addition, Oı and MSE. Oı/ coincide with the conditional expectation
E.ıjY/ and its covariance matrix, Var.ıjY/.
Proof The density p.Y/ satisfies in model (2.7) the relation p.ıjY/p.Y/ D
p.Yjı/p.ı/, where the vertical bar denotes conditional distribution. The maximum
likelihood estimator, Oı, of ı in the right-hand side of this equation should coincide
with that of the left-hand side. Equating exponents in the previous equality yields

Œı � E.ıjY/�0��1
ıjY Œı � E.ıjY/�C .Y � Rb � m!/

0��1
Y .Y � Rb � m!/

D .Y � Rı � m!/
0V�1
! .Y � Rı � m!/C .ı � b/0…�1.ı � b/;
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where �ıjY and �Y are the covariance matrices of p.ıjY/ and p.Y/. The value of ı
that minimizes the left-hand side of the previous equation is E.ıjY/. To minimize
the right-hand side, consider the regression model

�
b

Y � m!

�
D
�

I
R

�
ı C �; � � N.0; diag.…;V!//; (2.9)

and the theorem follows. �

Remark 2.1 Clearly, the expressions given in the theorem for Oı and MSE. Oı/
coincide with the GLS estimator of ı and its MSE in the linear model (2.7),
considering ı fixed. Taking into account that the residual sum of squares in a GLS
model Z D Xˇ C a, where Var.a/ D †, is Z0†�1Z � Ǒ0.X0†�1X/ Ǒ, we get the
following alternative expression for the residual sum of squares in model (2.9)

. Oı � b/0…�1. Oı � b/C .Y � R Oı � m!/
0V�1
! .Y � R Oı � m!/

D b0…�1b C .Y � m!/
0V�1
! .Y � m!/ � Oı0 �…�1 C R0V�1

! R
	 Oı:

Þ
We can consider two vectors of parameters of interest in model (2.7), the vector

�, that contains the parameters on which the matrix R depends, and the vector
 , that contains the parameters on which m! and V! depend. The vector ı will
often be considered as a vector of nuisance random variables. In the case of the
state space model (4.82) and (4.83) defined in Chap. 4, the parameters in � and  
are determined by those of the system matrices and initial conditions through the
relations of Theorem 4.34.

In practice, it is very often the case that the matrix R does not depend on any
parameters and so the vector � is empty. This happens, for example, in ARIMA
models, in which the elements of the matrix R are given by recursions defined in
terms of the differencing operators used to induce stationarity (see Example 4.4).
This situation will be summarized by the following assumption.

Assumption 2.1 The matrix R in model (2.7) does not depend on any parameters
and is assumed to be known.

When ı is assumed to be a vector of nuisance random variables, the problem of
defining the likelihood of model (2.7) is similar to that considered by Kalbfleisch &
Sprott (1970), henceforth KS. These authors consider several possible definitions
of the likelihood in the presence of nuisance parameters. The difference with
model (2.7) is that in this model we have a vector of nuisance random variables,
ı, instead of a vector of nuisance parameters. However, we can still apply the same
methods considered by KS to define the likelihood of model (2.7).
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2.3.1 The Diffuse Likelihood

The first approach considered by KS is a Bayesian one. According to this approach,
a prior distribution is first selected for the nuisance random vector, ı, and then this
random vector is integrated out of the likelihood to obtain the marginal likelihood
of the data, p.Y/. In model (2.7), we should use an improper prior distribution for ı
such as p.ı/ D 1. The marginal likelihood corresponding to this improper prior is
given by the following theorem.

Theorem 2.4 Suppose the linear model (2.7), where ! � N.m!;V!/ with V!
nonsingular and p.ı/ D 1. Then, the marginal log-likelihood, denoted by �D.Y/,
is, apart from a constant,

�D.Y/ D �1
2

n
ln jV!j C ln jR0V�1

! Rj C .Y � R Oı � m!/
0V�1
! .Y � R Oı � m!/

o
;

(2.10)

where Oı D .R0V�1
! R/�1R0V�1

! .Y �m!/ and MSE. Oı/ D .R0V�1
! R/�1. In addition, the

density of the posterior distribution, p.ıjY/, is that of a random vector distributed
as N. Oı; .R0V�1

! R/�1/.

Proof Under the assumptions of the theorem, the marginal likelihood, p.Y/, is given
by p.Y/ D R

p.Yjı/p.ı/, where the exponent of p.Yjı/ is

.Y�Rı�m!/
0V�1
! .Y�Rı�m!/ D .Y�R Oı�m!/

0V�1
! .Y�R Oı�m!/C. Oı�ı/0R0V�1

! R. Oı�ı/;

and the determinant is jV!j. Therefore,

p.Y/ D .2�/�pn=2jV!j�1=2e�.Y�ROı�m!/0V�1
! .Y�ROı�m!/=2

�
Z

e�.ı�Oı/0R0V�1
! R.ı�Oı/=2dı;

and the integral of the right-hand side of the previous expression is .2�/nı=2

jR0V�1
! Rj�1=2, where nı is dimension of ı. The other statements of the theorem can

be proved similarly. �

The marginal likelihood of the previous theorem is called the diffuse likelihood.

Remark 2.2 It is easy to see that the diffuse log-likelihood can also be obtained by
taking the limit when…�1 ! 0 of the log-likelihood of Y in the linear model (2.7),
suitably normalized to avoid degeneracy. More specifically, �D.Y/ is the limit of
�.Y/ C 1

2
ln j…j in (2.8) when …�1 ! 0. This is usually the form in which the

diffuse likelihood is introduced in the literature. Þ

Remark 2.3 The estimator Oı that appears in (2.10) is the generalized least squares
(GLS) estimator of ı in the linear model (2.7) that results from considering ı fixed
in that model. Þ
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2.3.2 The Transformation Approach and the Marginal
Likelihood

The second approach considered by KS is to transform the data so that the
transformed data no longer depend on the nuisance random vector, ı. This is imple-
mented by selecting a matrix, J, with unit determinant so that, premultiplying (2.7)
by J, it is obtained that

JY D
�

R1
0

�
ı C J!; (2.11)

where R1 is a square nonsingular matrix conformable with ı. Letting J D ŒJ0
1; J

0
2�

0
so that J1 and J2 are conformable with (2.11), the likelihood of J2Y D J2! does
not depend on ı. This likelihood is called the marginal likelihood. The relation
between the diffuse log-likelihood, �D.Y/, and the marginal log-likelihood, denoted
by �M.Y/, is given by the following theorem.

Theorem 2.5 Suppose the linear model (2.7), where ! � N.m!;V!/ with V!
nonsingular, and let J D ŒJ0

1; J
0
2�

0 be a matrix with jJj D 1 such that (2.11) holds
with R1 nonsingular. Then, the marginal log-likelihood, �M.Y/, is

�M.Y/ D �D.Y/ � ln jR0Rj; (2.12)

where �D.Y/ is the diffuse log-likelihood.

Proof Let J be as specified in the theorem. Then, p.Y/ D p.JY/ because jJj D 1

and jR0Rj D jR0
1R1j. Let VJ D JV!J0 and partition VJ D Vij, V�1

J D Vij, i; j D 1; 2

conforming to J D ŒJ0
1; J

0
2�

0. Then, by Theorem 2.4, �D.Y/ is, apart from a constant

�D.Y/ D �1
2

˚
ln jV22.V11/�1j C ln jR0

1V
11R1j C .J2Y � J2m!/

0V�1
22 .J2Y � J2m!/

�
;

and, because V11, V22, and R1 are nonsingular, the theorem is proved. �

Remark 2.4 Under Assumption 2.1, the diffuse likelihood coincides with the
marginal likelihood. Þ

2.3.3 The Conditional Likelihood

The third approach considered by KS is that of the conditional likelihood, denoted
by �C.Y/. According to this approach, the vector ı is considered fixed and the
likelihood is defined as the likelihood of the observations conditional to the
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maximum likelihood estimator, Oı, of ı in the linear model (2.7). That is,

�C.Y/ D p.Yjı/
p. Oıjı/ ;

where Oı D .R0V�1
! R/�1R0V�1

! .Y � m!/ is the GLS estimator of ı in the linear
model (2.7), where ı is considered fixed.

It is easy to prove that the conditional likelihood coincides with the diffuse
likelihood. We state this in a theorem which summarizes the relation between the
conditional, the diffuse, and the marginal log-likelihoods. We omit its proof.

Theorem 2.6 The diffuse, marginal, and conditional log-likelihoods of the linear
model (2.7) are related by the formula

�D.Y/ D �C.Y/ D �M.Y/C ln jR0Rj:
Under Assumption 2.1, the three log-likelihoods coincide.

Remark 2.5 The conditional likelihood has received less attention in the literature
than the marginal likelihood or the diffuse likelihood. We present it here merely for
completeness. As the previous theorem shows, the conditional likelihood leads to
the same definition of the likelihood as the diffuse likelihood. Þ

2.3.4 The Profile Likelihood

An alternative to using any of the likelihoods considered earlier in this section
consists of assuming the random vector ı is fixed in the linear model (2.7). Under
this assumption, model (2.7) becomes a generalized least squares model and ı can
be concentrated out of the likelihood. This concentrated likelihood is called profile
likelihood. The profile log-likelihood is given by the following theorem. The simple
proof is omitted.

Theorem 2.7 Suppose the linear model (2.7), where ! � N.m!;V!/, V! is
nonsingular, and ı is considered fixed. Then, the profile log-likelihood, denoted by
�P.Y/, is, apart from a constant,

�P.Y/ D �1
2

n
ln jV!j C .Y � R Oı � m!/

0V�1
! .Y � R Oı � m!/

o
; (2.13)

where Oı D .R0V�1
! R/�1R0V�1

! .Y � m!/ and MSE. Oı/ D .R0V�1
! R/�1.

Remark 2.6 The diffuse log-likelihood differs from the profile log-likelihood in the
term ln jR0V�1

! Rj. The influence of this term can have important adverse effects,
especially in small samples. Therefore, the diffuse log-likelihood is preferable in
small samples. Þ
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2.4 Introduction to Signal Extraction

Suppose we are dealing with two sequences of zero mean random vectors, fStg
and fYtg, 1 � t � n, and assume that we know the cross-covariance and covariance
matrix sequences, 
SY.i; j/ D E.SiY 0

j / and 
Y.i; j/ D E.YiY 0
j /. The sequence fStg will

be referred to as the signal and is not supposed to be observable, while fYtg is the
observable sequence. The signal extraction problem consists of estimating St given
all or part of the Yt. More specifically, we can consider three types of problems.

(i) Smoothing: For each t, 1 � t � n, given the vector of observations Y D
.Y 0
1; : : : ;Y

0
n/

0, obtain the estimator of St based on Y, that is

bStjn D E�.StjY/:

(ii) Filtering: For each t, 1 � t � n, given the vector of observations Y1Wt D
.Y 0
1; : : : ;Y

0
t /

0, obtain the estimator of St based on Y1Wt, that is

bStjt D E�.StjY1Wt/:

(iii) Prediction: Given the vector of observations Y D .Y 0
1; : : : ;Y

0
n/

0 and given and
integer j > 0, obtain the estimator of SnCj based on Y, that is

bSnCjjn D E�.SnCjjY/:

2.4.1 Smoothing

LetbS D .bS0
1jn; : : : ;bS

0
njn/

0, wherebStjn D E�.StjY1; : : : ;Yn/, be the vector of smoothed
estimators of St, t D 1; : : : ; n, and let Y D .Y 0

1; : : : ;Y
0
n/

0, S D .S0
1; : : : ; S

0
n/

0, 	SY =
Cov.S;Y/, 	S = Var.S/ and 	Y = Var.Y/. Then,bS is the orthogonal projection of S
onto Y, that is,

bS D 	SY	
�1
Y Y;

and

MSE.bS/ D 	S � 	SY	
�1
Y 	YS:

Suppose that we want to estimate the signal, S, in the signal plus noise model

Y D S C N; (2.14)
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where Y, S, and N are random vectors such that S and N are orthogonal. If we
assume that Y, S, and N have zero mean and covariance matrices �Y , �S, and �N

such that �S and �N are nonsingular, the smoothed estimator of the signal and its
MSE are, according to (2.2) and (2.3),

bS D �S.�S C�N/
�1Y

and

PS D MSE.bS/ D �S ��S.�S C�N/
�1�S:

The information form of the previous estimator and its MSE are

P�1
S
bS D ��1

N Y

P�1
S D ��1

S C��1
N :

In an analogous way, it is obtained that the estimator of N and its MSE are

bN D �N.�S C�N/
�1Y

and

PN D MSE.bN/ D �N ��N.�S C�N/
�1�N :

Also, the information form of these expressions is

P�1
N
bN D ��1

S Y

P�1
N D ��1

S C��1
N D P�1

S :

Example 2.1 Let the scalar process fYt W t � 1g follow the signal plus noise model

Yt D St C Nt;

where St satisfies St D �St�1 C At, At � WN.0; �2A/, Nt � WN.0; �2N/ and
the processes fAtg and fNtg are mutually uncorrelated. In addition, E.S1/ D 0,
Var.S1/ D �2A=.1 � �2/ and fAt W t � 2g and fNt W t � 1g are uncorrelated with S1.
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Then, the information form of the estimatorbS and its MSE, PS, are

P�1
S
bS D 1

�2N
Y

P�1
S D 1

�2A

2

6
66
6
6
6
66
4

1 ��
�� 1C �2 ��

: : :
: : :

: : :

��
�� 1C �2 ��

�� 1

3

7
77
7
7
7
77
5

C 1

�2N
I:

See Problem 2.1. Þ

2.4.2 Smoothing with Incompletely Specified Initial Conditions

Sometimes, given a scalar signal plus noise model (2.14), the signal, the noise or
both have a distribution that is not completely specified. Consider, for example, the
case in which the signal, S D .S1; S2 : : : ; Sn/

0, follows the random walk model

St D St�1 C At; (2.15)

where fAtg is an orthogonal sequence of random variables with zero mean and
common variance Var.At/ D �2A , and the noise, N D .N1;N2 : : : ;Nn/

0, is a zero
mean random vector orthogonal to S with covariance matrix �N . To start the
recursion (2.15), it is usually assumed that S1 is a random variable orthogonal to
the At and Nt and such that its distribution is unknown. Under this assumption, we
can write model (2.14) in the form

Y D Aı C BV C N; (2.16)

where S D Aı C BV , A D .1; 1; : : : ; 1/0, ı D S1, V D .A2;A3; : : : ;An/
0 and

B D

2

6
6
66
6
4

0 0 0 � � � 0
1 0 0 � � � 0
1 1 0 � � � 0
:::
:::
:::
: : :

:::

1 1 1 � � � 1

3

7
7
77
7
5
:
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2.4.2.1 Only the Signal has Incompletely Specified Initial Conditions

In this section, we will first consider a signal plus noise model (2.14) in which the
noise, N, is a zero mean random vector with nonsingular covariance matrix�N and
the signal, S, can be transformed in the following way. It is assumed that there exists
a lower triangular matrix

� D
�
��
�S

�

with ones in the diagonal such that

�S D
�
ı

V

�
;

where ı and V are mutually orthogonal random vectors, both orthogonal to N, such
that V has zero mean and nonsingular covariance matrix �V and the distribution
of ı is unknown. In the signal plus noise model (2.14) where St follows (2.15), the
matrix� is

� D

2

6
6
66
6
4

1 0 0 � � � 0 0

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � �1 1

3

7
7
77
7
5

(2.17)

and �� and �S are the first row of � and the matrix formed with the rest of the
rows, respectively. Premultiplying S with � is equivalent to “differencing” the data
to get rid of the unspecified part of the distribution of S. This is a standard procedure
when dealing with time series whose level increases over time.

Let

��1 D ŒA;B� :

Then, we can write

S D Aı C BV: (2.18)

As in Sect. 2.1, we will model ı as a zero mean random vector with covariance
matrix �ı D kI such that k ! 1 or, equivalently, ��1

ı D 0. As mentioned in that
section, this corresponds to making ı diffuse because we have very little knowledge
about it.

We are interested in obtaining the smoothed estimators of S and N under the
previous assumptions. Since we are dealing with a diffuse ı, it will be more
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convenient to work with the information form of the estimators. However, we
will also obtain the estimators in other forms, for completeness and to show some
highlights about the signal extraction problem.

Letting Var.S/ D �S D kAA0 C B�VB0, where�V = Var.V/, the estimator,bS, of
S and its MSE, PS, are

bS D .��1
S C��1

N /�1��1
N Y

and

PS D .��1
S C��1

N /�1:

Since

S D Aı C BV D ��1
�
ı

V

�
;

we have

��1
S D

�
��1Var



ı

V

�
��10

��1

D �0
�

k�1I 0

0 ��1
V

�
�

! �0
S�

�1
V �S:

Thus,

bS !bSj1 D .�0
S�

�1
V �S C��1

N /�1��1
N Y (2.19)

PS ! PSj1 D .�0
S�

�1
V �S C��1

N /�1: (2.20)

In a similar way, it is obtained for the estimator,bN, of N and its MSE, PN , that

bN ! bNj1 D .�0
S�

�1
V �S C��1

N /�1�0
S�

�1
V �SY

PN ! PNj1 D .�0
S�

�1
V �S C��1

N /�1:

In summary, the information form estimators of S and N and their MSE are

P�1
Sj1bSj1 D ��1

N Y

P�1
Sj1 D �0

S�
�1
V �S C��1

N

P�1
Nj1bNj1 D �0

S�
�1
V �SY

P�1
Nj1 D �0

S�
�1
V �S C��1

N D P�1
Sj1:
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Similar expressions were obtained in Gómez (1999) for bSj1, together with two
equivalent formulae. We will deal with the equivalence of the different approaches
considered in that article later in Chap. 7.

It is seen that the information form expressions forbSj1, PSj1,bNj1, and PNj1 are
rather simple. Only �S, �V , and �N are needed. Thus, to compute the information
form estimator of S and its MSE, there is no need to care about the initial conditions.
The information form estimator of N is also the information form estimator of N in
the transformed linear model �SY D V C �SN, that does not depend on ı. In
addition,bN j1 D Y �bSj1.

It is to be noticed that the series V D �SS is the result of differencing the series S,
and it is to be further noticed that the estimatorbSj1 can be obtained by minimizing
the function

S0�0
S�

�1
V �SS C .Y � S/0��1

N .Y � S/

with respect to S. In a similar way, the estimatorbNj1 can be obtained by minimizing
the expression

.Y � N/0�0
S�

�1
V �S.Y � N/C N0��1

N N

with respect to N.
Alternative expressions forbSj1, PSj1,bNj1, and PNj1 that are not in information

form can be derived by applying the Matrix Inversion Lemma 4.1 to the matrix
.�0

S�
�1
V �S C��1

N /�1. Thus,

PSj1 D PNj1 D .�0
S�

�1
V �S C��1

N /�1 D �N ��N�
0
S

�
�V C�S�N�

0
S

	�1
�S�N

(2.21)

and, using this expression, we further get

.�0

S�
�1
V �S C��1

N /�1�0

S�
�1
V �S D .�0

S�
�1
V �S C��1

N /�1
�
�0

S�
�1
V �S C��1

N ���1
N

	

D I � .�0

S�
�1
V �S C��1

N /�1��1
N

D �N�
0

S

�
�V C�S�N�

0

S

	
�1
�S:

This implies

bN j1 D �N�
0
S

�
�V C�S�N�

0
S

	�1
�SY (2.22)

bSj1 D Y �bN j1

D
h
I ��N�

0
S

�
�V C�S�N�

0
S

	�1
�S

i
Y: (2.23)
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Example 2.2 Let the scalar process fYt W t � 1g follow the signal plus noise model

Yt D St C Nt;

where St satisfies St � St�1 D At, At � WN.0; �2A/, Nt � WN.0; �2N/, the
processes fAtg and fNtg are mutually uncorrelated and S1 is a diffuse random
variable orthogonal to At and Nt for all t. Then, the information form of the estimator
bSj1 and its MSE, PSj1, are

P�1
Sj1bSj1 D 1

�2N
Y

P�1
Sj1 D 1

�2A
�0

S�S C 1

�2N
I

D 1

�2A

2

6
6
66
6
6
6
6
4

1 �1
�1 2 �1

: : :
: : :

: : :

�1
�1 2 �1

�1 1

3

7
7
77
7
7
7
7
5

C 1

�2N
I;

where �S is the submatrix of �, given by (2.17), formed with all the rows of �
except the first. Þ

2.4.2.2 Transformation Approach to Obtain the Estimators

It follows from (2.21) and (2.22) that bN j1 D E�.Nj�SY/ and PNj1 D MSE.bNj1/.
Thus, as far as the estimation of N is concerned, making ı diffuse in the signal
plus noise model (2.14) with S given by (2.32) is equivalent to estimate N in the
transformed linear model�SY D V C�SN, that does not depend on ı. However, the
estimatorbSj1 cannot be obtained from the transformed model�SY D V C�SN D
�SS C�SN because S depends on the diffuse part, ı.

Since S D Aı C BV D ��1.ı0;V 0/0, we can obtain the estimators, Oıj1 and bV j1,
of ı and V as

" Oıj1
bV j1

#

D �bSj1 (2.24)

and

MSE

 " Oıj1
bV j1

#!

D � MSE

bSj1

�
�0: (2.25)
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Substituting (2.19) and (2.20) into (2.24) and (2.25) yields

" Oıj1
bV j1

#

D �.�0
S�

�1
V �S C��1

N /�1��1
N Y

and

MSE

 " Oıj1
bV j1

#!

D � .�0
S�

�1
V �S C��1

N /�1 �0:

Therefore, the information form of Oıj1 andbV j1 and their MSE are

MSE

 " Oıj1
bV j1

#!�1 " Oıj1
bV j1

#

D
�

A0
B0
�
��1

N Y

and

MSE

 " Oıj1
bV j1

#!�1
D
�

A0
B0
�
.�0

S�
�1
V �S C��1

N /ŒA;B�:

To obtain expressions for Oıj1 and bV j1 and their MSE that are not in information
form, we can substitute (2.23) and (2.21) into (2.24) and (2.25) to get

" Oıj1
bV j1

#

D
"
��Y ���bN j1
�SY ��SbNj1

#

D �
h
I ��N�

0
S

�
�V C�S�N�

0
S

	�1
�S

i
Y

and

MSE

 " Oıj1
bV j1

#!

D �
h
�N ��N�

0
S

�
�V C�S�N�

0
S

	�1
�S�N

i
�0:

Thus,

Oıj1 D ��
h
I ��N�

0
S

�
�V C�S�N�

0
S

	�1
�S

i
Y (2.26)

MSE. Oıj1/ D ��
h
�N ��N�

0
S

�
�V C�S�N�

0
S

	�1
�S�N

i
�0�



78 2 Linear Models

bV j1 D �SY ��S�N�
0
S

�
�V C�S�N�

0
S

	�1
�SY

D �
�V C�S�N�

0
S ��S�N�

0
S

� �
�V C�S�N�

0
S

	�1
�SY

D �V
�
�V C�S�N�

0
S

	�1
�SY (2.27)

and

MSE

bV j1

�
D �S�N�

0
S ��S�N�

0
S

�
�V C�S�N�

0
S

	�1
�S�N�

0
S

D �S�N�
0
S

h
I � �

�V C�S�N�
0
S

	�1 �
�V ��V C�S�N�

0
S

	i

D �S�N�
0
S

�
�V C�S�N�

0
S

	�1
�V

D �
�V ��V C�S�N�

0
S

	 �
�V C�S�N�

0
S

	�1
�V

D �V ��V
�
�V C�S�N�

0
S

	�1
�V :

It is to be noticed that bV j1 D E�.Vj�SY/ and MSE

bV j1

�
D MSE ŒE�.Vj�SY/�.

Therefore, bV j1 and MSE

bV j1

�
are the estimator of V and its MSE in the

transformed linear model �SY D V C �SN, that, as mentioned earlier, does not
depend on ı.

2.4.2.3 Conditional Likelihood Approach to Obtain the Estimators

Another way to estimate ı and V and, therefore, S, is the following. Since, as we
saw earlier in this section,bSj1 can be obtained by minimizing with respect to S the
function

S0�0
S�

�1
V �SS C .Y � S/0��1

N .Y � S/;

and S D Aı C BV D ��1.ı0;V 0/0, we can estimate ı and V by minimizing with
respect to these vectors the function

V 0��1
V V C .Y � Aı � BV/0��1

N .Y � Aı � BV/: (2.28)

This minimization can be done in two steps. In the first step, we consider ı fixed
and we minimize (2.28) with respect to V . The result can be easily shown to be

bV jı D �
��1

V C B0��1
N B

	�1
B0��1

N .Y � Aı/:
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Using the Matrix Inversion Lemma 4.1, we get

�
��1

V C B0��1
N B

	�1 D �V ��VB0 ��N C B�VB0	�1 B�V

and

�
��1

V C B0��1
N B

	�1
B0 D �VB0 ��VB0 ��N C B�VB0	�1 B�VB0

D �VB0 ��VB0 ��N C B�VB0	�1 �B�VB0 C�N ��N
	

D �VB0 �B�VB0 C�N
	�1

�N :

Thus,bV jı can be expressed in noninformation form as

bV jı D �VB0 �B�VB0 C�N
	�1

.Y � Aı/: (2.29)

It is seen that bV jı is the orthogonal projection of V onto Y in the model Y � Aı D
BV C N when ı is considered fixed. Let us denote this orthogonal projection by
bV jı D E�.VjY; ı/:

In the second step, to obtain the estimator, Oıj1, of ı, we can first substitute bV jı
into (2.28) and then minimize the resulting expression with respect to ı. However,
according to the result (2.6), the estimator Oıj1 is also the GLS estimator of ı when
ı is considered fixed in the linear model Y D Aı C BV C N. Thus,

Oıj1 D
h
A0 �B�VB0 C�N

	�1
A
i�1

A0 �B�VB0 C�N
	�1

Y; (2.30)

and the estimatorbV j1 is obtained plugging this expression into (2.29). That is,

bV j1 D �VB0 �B�VB0 C�N
	�1

.Y � A Oıj1/: (2.31)

We will denote the estimator obtained in this way bybV j1 D E�.VjY; Oıj1/;meaning

that we have replaced ı with Oıj1 in the orthogonal projection E�.VjY; ı/.
Using this approach, the estimator of S is

bSj1 D A Oıj1 C B
h
E�.VjY; Oıj1/

i
;

where Oıj1 and E�.VjY; Oıj1/ D bV j1 are given by (2.30) and (2.31).

The MSE of Oıj1 is, according to (2.6),

MSE
 Oıj1

�
D
h
A0 �B�VB0 C�N

	�1
A
i�1

:
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Letting bSjı D Aı C B ŒE�.VjY; ı/�, the MSE of bSj1 can be obtained as follows.
Since S �bSjı is orthogonal tobSjı �bSj1, we have

MSE.bSj1/ D Var.S �bSj1/

D Var.S �bSjı CbSjı �bSj1/

D Var.S �bSjı/C Var.bSjı �bSj1/

D B
˚
MSE

�
E�.VjY; ı/��B0 C .A C BD/

h
MSE

 Oıj1
�i
.A C BD/0;

where

MSE
�
E�.VjY; ı/� D �V ��VB0 �B�VB0 C�N

	�1
B�V

and

D D �VB0 �B�VB0 C�N
	�1

A:

Using (2.30) and (2.31) and the fact that bN j1 D Y �bSj1, we can estimate N as

bNj1 D Y � A Oıj1 � BbV j1

D
h
I � B�VB0 �B�VB0 C�N

	�1i 
Y � A Oıj1

�

D �
B�VB0 C�N � B�VB0	 �B�VB0 C�N

	�1 
Y � A Oıj1

�

D �N
�
B�VB0 C�N

	�1 
Y � A Oıj1

�
:

As in the case of bV j1, the previous expression shows that bNj1 can be obtained by
means of a two-step process. In the first step, the orthogonal projection, bNjı , of N
onto Y is obtained in the model Y � Aı D BV C N, where ı is considered fixed. In
the second step, ı is replaced with Oıj1, the GLS estimator of ı in the linear model
Y D Aı C BV C N when ı is considered fixed.

Finally, the MSE of bNj1 can be obtained in a way similar to that used to obtain
MSE.bSj1/. More specifically, we have

MSE.bNj1/ D Var


N �bN j1
�

D Var


N �bN jı CbNjı �bNj1
�

D Var


N �bN jı
�

C Var

bN jı �bNj1

�

D MSE

bN jı
�

C E
h
MSE

 Oıj1
�i

E0;
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where

MSE

bNjı
�

D �N ��N
�
B�VB0 C�N

	�1
�N

and

E D �N
�
B�VB0 C�N

	�1
A:

2.4.2.4 Both Signal and Noise Have Incompletely Specified Initial
Conditions

In this section, we consider the scalar signal plus noise model

Yt D St C Nt;

where both the signal and the noise have incompletely specified initial conditions.
More specifically, we assume that there exist two lower triangular matrices with
ones in the diagonal,

�S D
�
��S

�S

�
; �N D

�
��N

�N

�
;

such that

�SS D
�
ıS

VS

�
; �NN D

�
ıN

VN

�
;

and

�
�1
S D ŒAS;BS�; �

�1
N D ŒAN ;BN �:

Here, Œı0
S; ı

0
N � and ŒV 0

S;V
0
N � are assumed to be orthogonal random vectors and the

distribution of Œı0
S; ı

0
N � is unknown. In addition, VS and VN are orthogonal, zero mean,

random vectors with nonsingular covariance matrices, �VS and �VN . Thus, it holds
that

S D ASıS C BSVS; N D ANıN C BNVN :

Premultiplying S with �S is equivalent to “differencing” the signal, St, to get
rid of the unspecified part, ıS, of the distribution of St, and analogously for the
other component, Nt. For example, suppose fYtg is a quarterly series such that
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Yt D St C Nt, where St and Nt follow the models

.1C B C B2 C B3/St D .1C ˛1B C ˛2B
2 C ˛3B

3/Bt

.1 � B/Nt D .1C ˇB/Ct;

B is the backshift operator, BYt D Yt�1, fBtg and fCtg are mutually orthogonal white
noise sequences, and all the roots of the polynomials 1 C ˛1z C ˛2z2 C ˛3z3 and
1C ˇz are on or outside the unit circle. In this case, St and Nt are the seasonal and
the nonseasonal components. The matrices �S and �N can be

�S D

2

6
6
6
6
66
6
6
4

1 0 0 0 � � � 0 0 0 0
0 1 0 0 � � � 0 0 0 0
0 0 1 0 � � � 0 0 0 0
1 1 1 1 � � � 0 0 0 0
:::
:::
:::
:::
: : :

:::
:::
:::
:::

0 0 0 0 � � � 1 1 1 1

3

7
7
7
7
77
7
7
5

; �N D

2

6
6
6
66
4

1 0 0 � � � 0 0

�1 1 0 � � � 0 0

0 �1 1 � � � 0 0
:::

:::
:::
: : :

:::
:::

0 0 0 � � � �1 1

3

7
7
7
77
5
:

With this choice, ıS D .S1; S2; S3/0 and ıN D N1.
In the rest of this section, it is assumed that the differencing polynomials that

are involved in the definition of the matrices �S and �N have no common factors.
Then, proceeding similarly as we did previously in this section, we will model ıS

and ıN as zero mean random vectors with covariance matrices kSIa and kNIb such
that kS ! 1 and kN ! 1, where a and b are the dimensions of ıS and ıN . As
mentioned earlier in this section, this corresponds to making both ıS and ıN diffuse
because we have very little knowledge about them. Thus,

�S D kSASA0
S C BS�VSB0

S; �N D kNANA0
N C BN�VNB0

N ;

where Var.S/ D �S and Var.N/ D �N , and the information form estimates of S and
N are

P�1
S
bS D ��1

N Y; P�1
N
bN D ��1

S Y;

with

P�1
S D ��1

S C��1
N D P�1

N :

Letting kS ! 1 and kN ! 1, it is obtained that

bS !bSj1 D .�0
S�

�1
VS�S C�0

N�
�1
VN�N/

�1�0
N�

�1
VN�NY

PS ! PSj1 D .�0
S�

�1
VS�S C�0

N�
�1
VN�N/

�1
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and

bN ! bN j1 D .�0
S�

�1
VS�S C�0

N�
�1
VN�N/

�1�0
S�

�1
VS�SY

PN ! PNj1 D .�0
S�

�1
VS�S C�0

N�
�1
VN�N/

�1:

To obtain the estimatorsbSj1 andbNj1, as well as PSj1 and PNj1, in noninforma-
tion form, we can proceed as in the case in which only the signal has incompletely
specified initial conditions. However, the computations are more complicated. See
Problems 2.3, 2.4, and 2.5.

2.4.3 Filtering

Let, as before, fStg and fYtg, 1 � t � n, be two sequences of zero mean random
vectors and suppose that we know the cross-covariance and covariance matrix
sequences, 
SY.i; j/ D E.SiY 0

j / and 
Y.i; j/ D E.YiY 0
j /. If bSf D .bS0

1j1; : : : ;bS
0
njn/

0,
wherebStjt D E�.StjY1; : : : ;Yt/, is the vector of filtered estimators of St, t D 1; : : : ; n,
then

bSf D Kf Y;

where Kf is a lower triangular matrix.
To obtain the matrix Kf , we can use the innovations and the Law of iterated

orthogonal projection, Theorem 1.10. To this end, let Y D .Y 0
1; : : : ;Y

0
N/

0, S D
.S0
1; : : : ; S

0
N/

0, 	SY D Cov.S;Y/ and 	Y = Var.Y/. Then, the smoothed estimator,
bS, of S based on Y is the orthogonal projection of S onto Y, that is,

bS D 	SY	
�1
Y Y:

Let 	Y D LDL0 the block Cholesky decomposition of 	Y , such that E D L�1Y is
the vector of innovations and D is a block diagonal matrix containing the covariance
matrices of E, D = Var.E/. Using this decomposition, we can expressbS as

bS D 	SYL
0�1D�1E:

Projecting each element, bStjn, in bS D .bS0
1jn; : : : ;bS

0
njn/

0 onto .E0
1; : : : ;E

0
t/

0, t D
1; : : : ; n, we obtain bStjt by the Law of iterated orthogonal projection 1.10 and
Proposition 1.7. Thus, we conclude that

bSf D
h
	SYL

0�1D�1
i

C E;

where if A is a square matrix, the notation B D ŒA�C means that B has the same
lower triangular part as A and all its other elements (the strictly upper triangular



84 2 Linear Models

part) are zero. Finally, we get

bSf D
h
	SYL

0�1D�1i

C L�1Y;

and

Kf D
h
	SYL

0�1D�1
i

C L�1:

To see the relation between the smoothed estimator,bS, and the filtered estimator,
bSf , consider the decomposition

	SY	
�1
Y D 	SYL

0�1D�1L�1

D
nh
	SYL

0�1D�1
i

C C
h
	SYL

0�1D�1
i

�

o
L�1

D Kf C
h
	SYL

0�1D�1
i

� L�1;

where if A is a square matrix, the notation B D ŒA�� means that B has the same
strictly upper triangular part as A and all its other elements (the lower triangular
part) are zero. Thus, we get the relation

bS DbSf C
h
	SYL

0�1D�1i

� L�1Y:

The mean squared error ofbSf is

MSE.bSf / D Var.S �bSf / D Var.S �bS CbS �bSf /

D MSE.bS/C
h
	SY L

0�1D�1i

� D
h
	SYL

0�1D�1i0
� ;

because S �bS andbS �bSf are uncorrelated.

Example 2.3 Suppose the signal plus noise model (2.14) and assume that S and N
are orthogonal and Var.N/ is block diagonal. Then, if Y, S, and N have zero mean
and covariance matrices 	Y , �S, and �N such that �S and �N are nonsingular, the
relations 	SY D �S and 	Y D �S C�N D LDL0 hold. Thus, the filtered estimator
isbSf D Kf Y, where

Kf D
h
.	Y ��N/L

0�1D�1i

C L�1

D
h
L ��NL

0�1D�1
i

C L�1

D I �
h
�NL

0�1D�1
i

C L�1:
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Since L
0�1 is upper triangular with blocks of ones in the diagonal and�N and D are

block diagonal, it is obtained that

h
�NL

0�1D�1
i

C D �ND�1:

Therefore,

Kf D I ��ND�1L�1:

Þ

2.4.4 Filtering with Incompletely Specified Initial Conditions

We will start by assuming a scalar signal plus noise model (2.14) in which the noise,
N, is a zero mean random vector with nonsingular covariance matrix �N and the
signal, S, has incompletely specified initial conditions. As we saw earlier in this
chapter, this can be modeled by assuming that there exists a lower triangular matrix

� D
�
��
�S

�

with ones in the diagonal such that

�S D
�
ı

V

�
;

where ı and V are mutually orthogonal random vectors, both orthogonal to N, such
that V has zero mean and nonsingular covariance matrix �V and the distribution of
ı is unknown. Let

��1 D ŒA;B� ;

so that we can write

S D Aı C BV: (2.32)

As in Sect. 2.1, we will model ı as a zero mean random vector with covariance
matrix�ı D kI such that k ! 1 or, equivalently,��1

ı D 0.
To obtain the filtered estimator of S, we will use the smoothed estimator obtained

using the transformation approach. That is,

bSj1 D A Oıj1 C BbV j1;



86 2 Linear Models

where Oıj1 and bV j1 are given by (2.26) and (2.27). The estimator Oıj1 can be
rewritten as

Oıj1 D OıIj1 ����N�
0
S�

�1
W �SY; (2.33)

where�W D �V C�S�N�
0
S = Var.�SY/ and OıIj1 is the GLS estimator of ı in the

model formed with the first d equations of the model Y D Aı C BV C N and d is
the dimension of ı. This can be seen by first premultiplying the previous equation
with the matrix �� to get ��Y D ı C��N and then considering that Var.��N/ is
nonsingular. Thus, OıIj1 D ��Y.

Using (2.27) and (2.33), we can write

bSj1 D A OıIj1 C �
B�V � A���N�

0
S

	
��1

W �SY; (2.34)

where OıIj1 D ��Y and �SY are uncorrelated when k ! 1 in �ı D kI. To prove
this, let X D ��Y, W D �SY and

Var

�
X
W

�
D
�

Sxx Sxw

Swx Sww

�
D
�

I 0

SwxS�1
xx I

� �
Sxx 0

0 Sww � SwxS�1
xx Sxw

� �
I S�1

xx Sxw

0 I

�
:

Since Sxx D Var.ı C ��N/ D kIC Var.��N/, it holds that S�1
xx ! 0 if k ! 1.

Thus, if k ! 1, then

Var

�
X
W

�
!
�1 0

0 Sww

�
:

To obtain the filtered estimator,bSf j1, we can use, as in the previous section, the
innovations and the Law of iterated orthogonal projection, Theorem 1.10. Let 	W D
LDL0 be the Cholesky decomposition of 	W , such that E D L�1W is the vector of
innovations and D is a diagonal matrix containing the covariance matrices of E, D
= Var.E/. Using this decomposition, we can expressbSj1 in (2.34) as

bSj1 D
h
A;
�
B�V � A���N�

0
S

	
L

0�1D�1i
" OıIj1

E

#

D K

" OıIj1
E

#

:

From this, it is easy to obtain the filtered estimator as

bSf j1 D Kf

" OıIj1
L�1�SY

#

;

where Kf D
h
A;
�
B�V � A���N�

0
S

	
L

0�1D�1
i

C.
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It is to be noticed that the first d elements of bSf j1 are more or less arbitrary
because in order to estimate ı we need at least d observations. The filtered estimator
of the noise, bNf j1 can be obtained in a similar way. The case in which both the
signal and the noise have incompletely specified initial conditions in (2.14) is more
complicated. See Problem 2.6.

2.4.5 Prediction

The prediction problem can be considered as a special case of filtering. To see this,
let fYt W t D 1; : : : ; ng be a finite sequence of zero mean random vectors and suppose
that we know the covariance matrix sequence, Sij D E.YiY 0

j /. If we are interested
in predicting YnCh, h � 1, and we define SN D YnCh, then the desired predictor,
bYnChjn, is the filtered estimatebSnjn. Thus,

bYnChjn D
h
	SYL

0�1D�1i

C L�1Y;

where Y D .Y 0
1; : : : ;Y

0
n/

0, 	SY = Cov.YnCh;Y/, Var.Y/ D LDL0, L is a block lower
triangular matrix with ones in the main diagonal and D is a block diagonal matrix.

Example 2.4 Consider Example 1.3, where Stt D �2=.1� �2/ and St;t�k D �kStt if
t � 1, k D 1; : : : ; t � 1, and the matrices L�1 and D�1 are given by (1.17). Then, it
can be shown (see Problem 2.2) that

bYnChjn D �hYt:

Þ

2.5 Recursive Least Squares

Suppose that we have the linear model

Y D Hˇ C V; (2.35)

where Y D .Y1;Y2; : : : ;Yn/
0, V D .V1;V2; : : : ;Vn/

0, H is a known n � m matrix
whose rows are denoted by Ht, t D 1; 2; : : : ; n, and ˇ is a constant vector that
we want to estimate. We will use a Bayesian approach, according to which, ˇ is
assumed to have a diffuse prior distribution, that is, Var.ˇ/ D … with …�1 ! 0,
and Var.V/ D �2I. Then, by (2.6), we get

Ǒ
n D .H0H/�1H0Y; MSE. Ǒ

n/ D .H0H/�1�2;
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where we use the subscript n to emphasize that the estimation is based on n obser-
vations. If a new observation becomes available, we would augment model (2.35)
with one row to get

�
Y

YnC1

�
D
�

H
HnC1

�
ˇ C

�
V

VnC1

�
: (2.36)

Letting Ǒ
nC1 be the OLS estimator of (2.36) and PnC1 = MSE. Ǒ

nC1/, by (2.6), we
have

Ǒ
nC1 D .H0H C H0

nC1HnC1/�1
�
H0Y C H0

nC1YnC1
�

and

MSE. Ǒ
nC1/ D .H0H C H0

nC1HnC1/�1�2:

These last two equations suggest that we define

Pn D .H0H/�1; PnC1 D .H0H C H0
nC1HnC1/�1;

so that

P�1
nC1 D P�1

n C H0
nC1HnC1:

This last relation in turn implies

P�1
nC1 Ǒ

nC1 D P�1
n

Ǒ
n C H0

nC1YnC1: (2.37)

We have thus obtained the recursive relation


P�1
nC1;P�1

nC1 Ǒ
nC1
�

D


P�1
n ;P�1

n
Ǒ
n

�
C H0

nC1 .HnC1;YnC1/ :

Evidently, these recursions are valid for n D 0; 1; 2; : : : and can be initialized with
P�1
0 D 0 and P�1

0
Ǒ
0 D 0. Note that it is the inverses of the MSE matrices that

are propagated, instead of the MSE themselves. We summarize this result in the
following theorem.

Theorem 2.8 (Recursive Least Squares in Information Form) Given the OLS
regression model Yt D Htˇ C Vt with Var.Vt/ D �2, if Ǒ

n and �2Pn are the OLS
estimator of ˇ and its MSE based on n observations, then the matrices P�1

nC1 and

P�1
nC1 Ǒ

nC1 satisfy the recursions


P�1

nC1;P�1
nC1 Ǒ

nC1
�

D


P�1
n ;P�1

n
Ǒ
n

�
C H0

nC1 .HnC1;YnC1/ ; (2.38)

initialized with


P�1
0 ;P

�1
0

Ǒ
0

�
D .0; 0/.
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If we adopt a Bayesian approach and consider that ˇ is a random variable
with zero mean and Var.ˇ/ D �2…, where … is a nonsingular matrix such that
…�1 expresses the amount of information that we have about ˇ, we can modify
the previous recursions so that the MSE instead of the inverses of the MSE are
propagated. Applying the Matrix Inversion Lemma 4.1 with A D P�1

n , B D H0
nC1,

C= 1 and D D HnC1, we obtain a recursive formula for Pn,

PnC1 D Pn � PnH0
nC1.1C HnC1PnH0

nC1/�1HnC1Pn; (2.39)

initialized with P0 D …. Also, it follows from (2.37) and (2.39) that Ǒ
n can be

obtained using the following recursion

Ǒ
nC1 D PnC1


P�1

n
Ǒ
n C H0

nC1YnC1
�

D Ǒ
n � PnH0

nC1.1C HnC1PnH0
nC1/�1HnC1 Ǒ

n

C �
PnH0

nC1 � PnH0
nC1.1C HnC1PnH0

nC1/�1HnC1PnH0
nC1
�

YnC1

D Ǒ
n � PnH0

nC1.1C HnC1PnH0
nC1/�1HnC1 Ǒ

n

CPnH0
nC1

�
1 � .1C HnC1PnH0

nC1/�1HnC1PnH0
nC1
�

YnC1

D Ǒ
n C PnH0

nC1.1C HnC1PnH0
nC1/�1


YnC1 � HnC1 Ǒ

n

�
; (2.40)

initialized with Ǒ
0 D 0. Note that

EnC1 D YnC1 � HnC1 Ǒ
n (2.41)

is the one step ahead forecast error. To compute its variance, †nC1, first consider
that EnC1 D VnC1 � HnC1.HH0/�1HV . Then, Var.EnC1/ D �2†nC1, where

†nC1 D 1C HnC1PnH0
nC1: (2.42)

We have thus obtained the following theorem.

Theorem 2.9 (Recursive Least Squares) Suppose the OLS regression model Yt D
Htˇ C Vt with Var.Vt/ D �2 and assume Var.ˇ/ D �2… with … nonsingular. If Ǒ

n

and �2Pn are the OLS estimator of ˇ and its MSE based on n observations, then
Ǒ
nC1 and PnC1 satisfy the recursions

Ǒ
nC1 D Ǒ

n C KnC1EnC1
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and

PnC1 D Pn � PnH0
nC1†�1

nC1HnC1Pn;

where KnC1 D PnH0
nC1†�1

nC1 and EnC1 and †nC1 are given by (2.41) and (2.42),

initialized with Ǒ
0 D 0 and P0 D ….

The recursions of the last theorem are another example of the Kalman filter. They
can be obtained by applying the Kalman filter to the model

xtC1 D xt (2.43)

Yt D Htxt C Vt; (2.44)

where xt D ˇ. The Kalman filter will be described in detail in Chap. 4.
The following lemma will be useful to obtain a formula for the residual sum of

squares. It will also be used to obtain the square root information form of recursive
least squares (RLS) in the next section.

Lemma 2.1 Under the assumptions and with the notation of Theorem 2.9, the
following relations hold

†�1
n En D Yn � Hn

Ǒ
n (2.45)

E0
n†

�1
n En D Y 0

nYn C Ǒ0
n�1P�1

n�1 Ǒ
n�1 � Ǒ0

nP�1
n

Ǒ
n: (2.46)

Proof By the Matrix Inversion Lemma 4.1 applied to (2.42), it holds that †�1
n D

1 � HnPnH0
n and, using (2.41) and (2.38), it is obtained that

†�1
n En D �

1 � HnPnH0
n

	
En D En � Hn

Ǒ
n C Hn

Ǒ
n � HnPnH0

nEn

D En � Hn
Ǒ
n C Hn

 Ǒ
n � PnH0

nEn

�
D En � Hn

Ǒ
n C HnPn


P�1

n
Ǒ
n � H0

nEn

�

D En � Hn
Ǒ
n C HnPn


P�1

n�1 Ǒ
n�1 C H0

nYn � H0
nYn C H0

nHn
Ǒ
n�1
�

D En � Hn
Ǒ
n C HnPnP�1

n
Ǒ
n�1

D Yn � Hn
Ǒ
n:

To prove (2.46), use (2.45) and (2.38) to get

E0
n†

�1
n En D E0

t


Yn � Hn

Ǒ
n

�
D


Yn � Hn
Ǒ
n�1
�0

Yn � E0
nHn

Ǒ
n

D Y 0
nYn � Ǒ0

n�1


P�1
n

Ǒ
n � P�1

n�1 Ǒ
n�1
�

� E0
nHn

Ǒ
n



2.5 Recursive Least Squares 91

D Y 0
nYn C Ǒ0

n�1P�1
n�1 Ǒ

n�1 �
�

Ǒ0
n�1P�1

n C


Yn � Hn
Ǒ
n�1
�0

Hn

�
Ǒ
n

D Y 0
nYn C Ǒ0

n�1P�1
n�1 Ǒ

n�1

�
 Ǒ0

n�1P�1
n C Ǒ0

nP�1
n � Ǒ0

n�1P�1
n�1 � Ǒ0

n�1P�1
n C Ǒ0

n�1P�1
n�1
� Ǒ

n

D Y 0
nYn C Ǒ0

n�1P�1
n�1 Ǒ

n�1 � Ǒ0
nP�1

n
Ǒ
n:

�

The following theorem gives a formula for the recursive computation of the
residual sum of squares. We omit its proof because it is an immediate consequence
of the previous lemma.

Theorem 2.10 (Residual Sum of Squares) Under the assumptions and with the
notation of Theorem 2.9, the following formula holds for the residual sum of squares

nX

tD1
E0

t†
�1
t Et D

nX

tD1
Y 0

t Yt � Ǒ0
nP�1

n
Ǒ
n D Y 0Y � Ǒ0

nP�1
n

Ǒ
n: (2.47)

Remark 2.7 Since Ǒ0
nP�1

n
Ǒ
n D


P�1

n
Ǒ
n

�0
Pn


P�1

n
Ǒ
n

�
, this quantity can be com-

puted using the recursion (2.38). Thus, to compute (2.47), we can add to (2.38) the
recursion

SSt D SSt�1 C Y 0
t Yt; (2.48)

initialized with SS0 D 0, that computes the sum of squares of the observations. Þ

Remark 2.8 The residual sum of squares (2.47) is also equal to .Y � H Ǒ
n/

0
.Y � H Ǒ

n/. Þ

2.5.1 Square Root Form of RLS

The square root form of RLS is basically an algorithm to compute the OLS estimator
and its MSE in a regression model in a numerically safe way. It is well known that
it is important to have a stable numerical procedure to compute these quantities.
One of such procedures consists of using Householder transformations and the QR
decomposition of a matrix, described in the Appendix. This is what the square root
form of RLS does.

The square root form of RLS propagates the square roots of the MSE matrices
instead of the MSE matrices themselves, where for any square matrix A a square
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root of A, denoted by A1=2, is any matrix such that A D A1=2A1=2
0

. The square root
form of RLS is given by the following theorem.

Theorem 2.11 Suppose that the process fYtg follows the state space model (2.43)
and (2.44) corresponding to the regression model Yt D Htˇ C Vt with Var.Vt/ D
�2 and assume Var.ˇ/ D �2… with … nonsingular. Then, with the notation of
Theorem 2.9, the application of the QR algorithm yields an orthogonal matrix Ut

such that

U0
t

"
1 0

P1=2
0

t H0
t P1=2

0

t

#

D
"
†
1=20

t
bK0

t

0 P1=2
0

tC1

#

; (2.49)

where bKt = PtH0
t†

�1=20

t D Kt†
1=2
t . Thus, letting bEt D †

�1=2
t Et, Ǒ

tC1 can be
obtained as Ǒ

tC1 D Ǒ
t CbKtbEt. In addition, the same matrix Ut satisfies

U0
t

"
1 0 �Yt

P1=2
0

t H0
t P1=2

0

t P�1=2
t

Ǒ
t

#

D
"
†
1=20

t
bK0

t �bEt

0 P1=2
0

tC1 P�1=2
tC1 Ǒ

tC1

#

: (2.50)

In this case, Ǒ
tC1 is obtained as Ǒ

tC1 D P1=2tC1
h
P�1=2

tC1 Ǒ
tC1
i
.

Proof The matrix Ut satisfies

U0
t

"
1 0

P1=2
0

t H0
t P1=2

0

t

#

D
�
†0 K0
0 P0

�
:

Premultiplying the matrices in (2.49) by their respective transposes yields

1C HtP
1=2
t P1=2

0

t H0
t D ††0

HtP
1=2
t P1=2

0

t D †K0;

P1=2t P1=2
0

t D KK0 C PP0;

and the first part of the theorem follows. To prove the second part, consider the
first and the third and the second and the third block columns of (2.50). Then, it is
obtained that

�Yt C HtP
1=2
t P�1=2

t
Ǒ
t D �†1=2t

bEt;

P1=2t P�1=2
t

Ǒ
t D P1=2tC1P

�1=2
tC1 Ǒ

tC1 �bKtbEt:

�
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2.5.2 Fast Square Root Algorithms for RLS: The UD Filter

Using square root free fast Givens rotations, described in the Appendix to this
chapter, it is possible to substantially reduce the amount of computation needed
for the square root form of RLS, as shown by Jover & Kailath (1986). The idea
is to put first Pt into the form Pt D LtDtL0

t, where Lt is a lower triangular matrix
with ones in the main diagonal and Dt is a diagonal matrix with positive elements
in the main diagonal, and then to update Lt and Dt using the QDU decomposition,
described in the Appendix to this chapter. Using this decomposition, we can write
expression (2.49) of Theorem 2.11 as

U0
"
1 0

0 D1=2
t

#�
1 0

L0
tH

0
t L0

t

�
D
"
†
1=20

t 0

0 D1=2
tC1

#�
1 K0

t

0 L0
tC1

�
: (2.51)

Then, it is clear that we can use fast Givens rotations, as described in the Appendix
to this chapter, to obtain the QDU decomposition, to update Lt and Dt.

Another fast algorithm that can be used for the square root form of RLS is the so-
called UD filter, due to Bierman (1977). This algorithm assumes that the covariance
matrix Pt is factored in the form Pt D UtDtU0

t , where Ut is an upper triangular
matrix with ones in the main diagonal and Dt is a diagonal matrix with positive
elements in the main diagonal. We will describe the algorithm for the decomposition
in terms of lower triangular matrices instead, for coherence with the rest of the book.
However, this amounts to a small change in the algorithm.

Let Pt D P D LDL0 and PtC1 D PC D LCDCL0C. Then, we have to factor

LCDCL0C D L.D � L0h0†�1hLD/L0;

where h D Ht and † D †t. Since L0h0†�1hLD has rank one, Bierman uses a rank
one downdating formula due to Agee & Turner (1972) for the factorization of the
term in parenthesis in the previous expression. The whole procedure is described in
Bierman (1977). Letting hL D f D Œf1; : : : ; fn�, L D Œl1; : : : ; ln�, LC D ŒlC1 ; : : : ; lCn �,
D = diag.di/ and DC = diag.dC

i /, the algorithm is as follows.

˛nC1 D 1

knC1 D 0

for i D n; n � 1; : : : ; 1

˛i D ˛iC1 C dif 2i
dC

i D di.˛iC1=˛i/

Œki lCi � D ŒkiC1 li�

�
1 �fi=˛iC1

difi 1

�

end

On completion of the algorithm, ˛1 D † D 1 C hPh0, k1 D Ph0 and Kt D k1=˛1,
where we have omitted the time index for simplicity.
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As noted by Jover & Kailath (1986), the UD filter is equivalent to the updat-
ing (2.51), that uses fast Givens rotations.

It is to be noted that Bierman (1977) emphasized that, with careful programming,
the number of computations of the UD filter is approximately the same as that of
ordinary RLS.

2.5.3 Square Root Information Form of RLS

Suppose the regression model (2.35) with H of full column rank. If we apply the
QR algorithm to the matrix H, an orthogonal matrix Q is obtained such that

Q0H D
�

R
0

�
; (2.52)

where R is nonsingular upper triangular. If we extend the matrix H to ŒH Y�, then

Q0ŒH Y� D
�

R u
0 v

�

and the model (2.35) is transformed into the model

u D Rˇ C w1
v D w2;

where w D Œw0
1;w

0
2� D Q0V and the partition is conformal with (2.52). Since

Var.w/ D �2Q0Q D �2I, the OLS estimator of ˇ in the previous model is

Ǒ
n D .R0R/�1R0u D R�1u

and MSE. Ǒ
n/ D �2.R0R/�1. Thus, P�1

n D R0R,

u D P�1=2
n

Ǒ
n (2.53)

R D P�1=2
n ; (2.54)

and, since Y 0Y D u0u C v0v D Ǒ0
nP�1

n
Ǒ
n C v0v, by Theorem 2.10,

v0v D
nX

tD1
E0

t†
�1
t Et: (2.55)

If a new observation becomes available, we can apply the QR algorithm to the
augmented matrix of model (2.36) and compute the estimator of ˇ and its MSE
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corresponding to the new model. However, it is better to proceed recursively and
apply the QR algorithm to the matrix

�
R u

HnC1 YnC1

�

to get an orthogonal matrix Qn such that

Q0
n

�
R u

HnC1 YnC1

�
D
�

RnC1 unC1
0 vnC1

�
:

Then, premultiplying the previous matrix by its transpose and considering (2.53),
(2.54) and (2.55), it is obtained that

P�1=20

n P�1=2
n C H0

nC1HnC1 D R0
nC1RnC1

Ǒ0
nP�1=20

n P�1=2
n

Ǒ
n C Y 0

nC1YnC1 D u0
nC1unC1 C v0

nC1vnC1
Ǒ0
nP�1=20

n P�1=2
n C Y 0

nC1HnC1 D u0
nC1RnC1:

The following theorem gives a precise meaning to RnC1, unC1 and vnC1. It turns out
that these last quantities allow for the recursive propagation of the square root of the
inverses of the MSE matrices.

Theorem 2.12 (Square Root Information Form of RLS) Under the assumptions
and with the notation of Theorem 2.9, the QR algorithm produces an orthogonal
matrix Qn�1 such that

Q0
n�1

"
P�1=2

n�1
Hn

#

D
"

P�1=2
n

0

#

; (2.56)

where P�1=2
n is upper triangular or upper trapezoidal and .P�1=2

0 , P�1=2
0

Ǒ
0/ D

.0; 0/. In addition,

Q0
n�1

"
P�1=2

n�1 P�1=2
n�1 Ǒ

n�1
Hn Yn

#

D
"

P�1=2
n P�1=2

n
Ǒ
n

0 †
�1=2
n En

#

; (2.57)

and if we add to the second matrix in the left-hand side an extra block column of the
form Œ0; 1�0, then the same matrix Qn�1 satisfies

Q0
n�1

"
P�1=2

n�1 P�1=2
n�1 Ǒ

n�1 0
Hn Yn 1

#

D
"

P�1=2
n P�1=2

n
Ǒ
n P1=2

0

n H0
n

0 †
�1=2
n En †

�1=2
n

#

: (2.58)
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Proof Since Qn�1 is orthogonal, we get from the left-hand side of (2.57),
using (2.46) and (2.38),

"
P�1=2

n�1 P�1=2
n�1 Ǒ

n�1
Hn Yn

#0
Qn�1Q0

n�1

"
P�1=2

n�1 P�1=2
n�1 Ǒ

n�1
Hn Yn

#

D
"

P�1=20

n�1 P�1=2
n�1 C H0

nHn P�1=20

n P�1=2
n�1 Ǒ

n�1 C H0
nYn

Ǒ0
n�1P

�1=20

n�1 P�1=2
n�1 C Y 0

nHn
Ǒ0
n�1P

�1=20

n�1 P�1=2
n�1 Ǒ

n�1 C Y 0
nYn

#

D
"

P�1=20

n P�1=2
n P�1=20

n P�1=2
n

Ǒ
n

Ǒ0
nP�1=20

n P�1=2
n

Ǒ0
nP�1=20

n P�1=2
n

Ǒ
n C E0

n†
�1=20

n †
�1=2
n En

#

D
"

P�1=2
n P�1=2

n Ǒ
n

0 †
�1=2
n En

#0 "
P�1=2

n P�1=2
n Ǒ

n

0 †
�1=2
n En

#

:

The rest of the theorem can be proved similarly. �

Remark 2.9 The vectors †
�1=2
t Et have zero mean and unit variance. Thus,

they constitute a sequence of “standardized residuals” and can be used for
inference. Þ

Remark 2.10 To compute Ǒ
n in the square root algorithm of the previous theorem,

we have to solve the system


P�1=2
n

� Ǒ
n D P�1=2

n
Ǒ
n, where P�1=2

n is an upper

triangular matrix. This computation, based on back substitution, can be avoided by
including in the second matrix in the left-hand side of (2.58) an extra block column
of the form Œ0;P1=2n�1�0 because

Q0
n�1

"
0

P1=2
0

n�1

#

D
"

P1=2
0

n

†
�1=2
n EnPn�1

#

:

The validity of this formula can be verified using (2.39) and (2.42). Þ

2.5.4 Fast Square Root Information Algorithm for RLS

As in the case of the square root form of RLS, it is possible to use square root free
fast Givens rotations, described in the Appendix, to substantially reduce the amount
of computation needed for the square root information form of RLS. To this end,
assume first that P�1

t is nonsingular and put P�1
t into the form P�1

t D LtDtL0
t D

P�1=20

t P�1=2
t , where Lt is a lower triangular matrix with ones in the main diagonal
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and Dt is a diagonal matrix with positive elements in the main diagonal. Then, we
can write expression (2.56) of Theorem 2.12 as

Q0
"

D1=2
n�1 0
0 1

#�
L0

n�1
Hn

�
D
"

D1=2
n L0

n

0

#

:

We can thus clearly use fast Givens rotations, as described in the Appendix to obtain
the QDU decomposition, to update Lt and Dt.

2.6 Historical Notes

In a seminal paper, Kalbfleisch & Sprott (1970) proposed several definitions of the
likelihood in the presence of nuisance parameters. A similar approach has been
used in this chapter to deal with the problem of defining the likelihood of a linear
model when a part of this model has an unspecified distribution. In the statistical
literature, this subject has also been considered in the context of state space models
with incompletely specified initial conditions. See, for example, Ansley & Kohn
(1985) and Francke, Koopman, & Vos (2010).

The classical reference for signal extraction with scalar variables is Whittle
(1963b). For the doubly infinite sample in the nonstationary scalar case, Bell (1984)
proposed two Assumptions, that he called A and B. He proved that the usual
Wiener–Kolmogorov formulae (see Chap. 7) are valid under Assumption A but not
under Assumption B. However, it is interesting to note that both assumptions lead to
the same result in the finite sample case. See Gómez (1999, p. 9). Assumption B is
assumed in all the examples of finite nonstationary series considered in Sect. 2.4. For
a derivation of some of these formulae under Assumption A instead of Assumption
B, see McElroy (2008).

The origin of the QR decomposition goes back to Housholder (1953, pp. 72–73),
who is considered to be one of the pioneers of numerical analysis. It seems that this
decomposition first gained attention through a paper by Golub (1965).

2.7 Problems

2.1 Use Example 1.3 and in particular the lower triangular matrix L and diagonal
matrix D obtained in that example such that Var.Y/ D LDL0 to compute ��1

S as
��1

S D L�10

S D�1
S L�1

S in Example 2.1. Since L and D in example 1.3 satisfy
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L�1 D

2

66
6
6
6
6
66
6
4

1

�� 1

0 �� 1
:::

:::
:::
: : :

0 0
::: �� 1

0 0
::: 0 �� 1

3

77
7
7
7
7
77
7
5

; D�1 D

2

6
6
6
6
6
4

.1 � �2/=�2
1=�2

1=�2

: : :

1=�2

3

7
7
7
7
7
5
;

show that

��1
S D 1

�2a

2

6
6
66
6
6
6
6
4

1 ��
�� 1C �2 ��

:: :
: : :

: : :

��
�� 1C �2 ��

�� 1

3

7
7
77
7
7
7
7
5

:

2.2 Prove the result of Example 2.4. That is, given Example 1.3, where Stt D
�2=.1 � �2/, St;t�k D �kStt, t � 1, k D 1; : : : ; t � 1, and the matrices L�1 and
D�1 are given by (1.17), show that

bYnChjn D �hYt:

2.3 Suppose the scalar signal plus noise model

Yt D St C Nt;

where both the signal and the noise have incompletely specified initial conditions,
and let Y D .Y1; : : : ;Yn/

0, S D .S1; : : : ; Sn/
0 and N D .N1; : : : ;Nn/

0. Assume further
that there exist two lower triangular matrices with ones in the diagonal,

�S D
�
��S

�S

�
; �N D

�
��N

�N

�
;

such that

�SS D
�
ıS

VS

�
; �NN D

�
ıN

VN

�
;

where Œı0
S; ı

0
N � and ŒV 0

S;V
0
N � are orthogonal random vectors and the distribution of

Œı0
S; ı

0
N � is unknown. Then, multiplying the two “differencing” polynomials involved

in the definition of �S and �N , that are assumed to have no common factors,
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construct in a way similar to that used to construct these last two matrices a new
lower triangular matrix with ones in the diagonal,

� D
�
��
�

�
;

such that

�Y D
�
ı

W

�
;

where ı has an unspecified and W has a known distribution. For example, if St and Nt

follow the models StCSt�1 D Bt and Nt �Nt�1 D Ct and there are four observations,
the differencing polynomials are pS.z/ D 1 C z and pN.z/ D 1 � z, the product is
p.z/ D 1 � z2, and the previous matrices could be

�S D

2

66
4

1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

3

77
5 ; �N D

2

66
4

1 0 0 0

�1 1 0 0

0 �1 1 0

0 0 �1 1

3

77
5 ; � D

2

66
4

1 0 0 0

0 1 0 0

�1 0 1 0

0 �1 0 1

3

77
5 :

Let dS and dN be the dimensions of ıS and ıN , respectively, and let d D dS C dN be
the dimension of ı. Define Q�S as the .n � d/� .n � dN/ matrix formed with the last
n �d rows and the last n �dN columns of�S and define Q�N as the .n �d/� .n �dS/

matrix formed similarly using �N . For the previous example, these matrices are

Q�S D
�
1 1 0

0 1 1

�
; Q�N D

��1 1 0

0 �1 1
�
:

Prove that

� D Q�S�N D Q�N�S: (2.59)

2.4 With the assumptions and notation of Problem 2.3, let

�
�1
S D ŒAS;BS�; �

�1
N D ŒAN ;BN �;

so that

S D ASıS C BSVS; N D ANıN C BNVN :

Estimate VS and VN as follows. Use first (2.59) in Problem 2.3 to get

�Y D W D Q�NVS C Q�SVN :
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Then, show that

bVSj1 D �VS Q�0
N�

�1
W �Y; bVNj1 D �VNe�0

S�
�1
W �Y

and

PSj1 D �VS ��VSe�0
N�

�1
W
e�N�VS; PNj1 D �VN ��VNe�0

S�
�1
W
e�S�VN;

where Var.W/ D �W D e�N�VSe�0
N C e�S�VNe�0

S, Var.VS/ D �VS and Var.VN/ D
�VN .

InsertingbVSj1,bVNj1 in the model

�NY D �NS C VN

D �NASıS C�NBSVS C VN ; (2.60)

obtain first the equation

�NAS
OıSj1 D �NY ��NBSbVSj1 �bVNj1:

Then, letting �N;dS be the submatrix of �N formed with the first dS rows, prove
that under the assumption that the two differencing polynomials have no common
factors�N;dSAS is invertible. Letting MS D Œ�N;dSAS�

�1, conclude that

OıSj1 D MS�N;dS


Y � BSbVSj1 � BNbVNj1

�

D MS�N;dS
�
I � �

BS�VSe�0
N C BN�VNe�0

S

	
��1

W �
�

Y:

Obtain MSE. OıSj1/.

2.5 With the assumptions and notation of Problem 2.3, obtain OıSj1 and bVSj1 in
model (2.60) in two steps. First, considering ıS fixed, estimate VS. Then, in the
second step, estimate ıS by GLS in (2.60). Finally, plug this last estimator in the
estimator of VS obtained in the first step.

2.6 With the assumptions and notation of Problem 2.3, obtain the filtered estimator,
bSf j1, of S as follows. Use first Problem 2.4 to get the smoothed estimator,bSj1, of
S as

bSj1 D AS
OıSj1 C BSbVSj1:

Prove that OıSj1 can be rewritten as

OıSj1 D OıS;Ij1 � MS�N;dS
�
BS�VSe�0

N C BN�VNe�0
S

	
��1

W �Y;
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where OıS;Ij1 D MS�N;dSY is the GLS estimator of ıS in the first dS equations of the
model�NY D �NASıS C�NBSVS C VN , so thatbSj1 can be expressed as

bSj1 D AS
OıS;Ij1 C �

BS�VSe�0
N � MS�N;dS

�
BS�VSe�0

N C BN�VNe�0
S

	�
��1

W �Y:

Prove as in Sect. 2.4.4 that OıS;Ij1 and �Y are uncorrelated, let �W D LDL0 be the
Cholesky decomposition of�W , define the innovations of W D �Y as E D L�1�Y
and conclude that

bSf j1 D KS;f

" OıS;Ij1
L�1�Y

#

;

where

KS;f D
h
AS;

˚
BS�VSe�0

N � MS�N;dS
�
BS�VSe�0

N C BN�VNe�0
S

	�
L�10

D�1i

C :

2.7 Given a square matrix A, we can always write for m � 0

A D ŒA�Cm C ŒA��m;

where the .i; j/-th elements of ŒA�Cm and ŒA��m are

ŒA�Cm.ij/ D
�

Aij i � j C m
0 i > j C m;

ŒA��m.ij/ D
�
0 i � j C m
Aij i > j C m:

Note that if m D 0, we obtain ŒA�C0 D ŒA�C and ŒA��0 D ŒA��, where ŒA�C and
ŒA�� are the matrices defined in Sect. 2.4.3. Let fStg and fYtg, 1 � t � n, be two
sequences of zero mean random vectors and let 	SY and 	Y be the cross-covariance
and covariance matrices, that is 	SY.i; j/ D E.SiY 0

j / and 	Y.i; j/ D E.YiY 0
j /.

(a) Prove that if bSm D .bS0
1j1�m; : : : ;

bS0
njn�m/

0 and m > 0, wherebSijj D E�.SijY1,
: : : ;Yj/ and it is understood that Yj D 0 if j < 0, then bSm D KmY, where
Km is a lower triangular matrix with zeros on its diagonal and first .m � 1/

subdiagonals. If m D 0, then K0 D Kf is just a lower triangular matrix, as we
know from Sect. 2.4.3.

(b) Show that Km D
h
	SYL�10

D�1
i

Cm
L�1, where 	Y D LDL0 is the block

Cholesky decomposition of 	Y .

(c) Define U D Km	Y � 	SY . Show that U D �
h
	SYL�10

D�1
i

�m
DL0.

(d) Show that Km D 	SY	
�1
Y C U	�1

Y D .	SY C U/ 	�1
Y .

(e) Prove that MSE.bSm/ D 	S � 	SY	
�1
Y 	YS C U	�1

Y U0.

2.8 Let Y D SCN, where S and N are uncorrelated random vectors with covariance
matrices�S and �N such that �N is block diagonal.
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(a) Prove using Problem 2.7 that U D
h
�NL�10

D�1 � L
i

�m
DL0.

(b) When m D 1 (prediction), show that K1 D I � L�1 and U D �N � DL0.
(c) RelatebS1 withbS0 DbSf . Relate alsobStjt withbStjt�1.

2.9 Consider Example 2.2 with fYt W t D 1; 2; 3g, �2A D 1 and �2N D 2.

(a) ComputebSj1 and Pj1 using the information form formulas (2.19) and (2.20).
(b) Compute bSj1 and Pj1 using the noninformation form formulas (2.23)

and (2.21).

(c) Compute
h Oıj1;bV 0

j1
i0

and its MSE using formulas (2.24) and (2.25).

2.10 Consider Example 2.1 with fYt W t D 1; 2; 3g, � D p
2=2, �2A D 1 and

�2N D 2. Compute the filtered estimator,bSf , as in Example 2.3. To this end, compute
the matrices L�1 and D�1 corresponding to the Cholesky decomposition	Y D LDL0
using first the covariance based filter (1.43) corresponding to the state space model

xtC1 D �xt C At

Yt D xt C Nt;

where 
.0/ D �2N C…, … D �2A=.1� �2/ and N D �…, and then formula

L�1 D
2

4
1

�K1 1

�F3p;2K1 �K2 1

3

5 ;

where Fp;2 D � � K2, based on Corollary 1.3.

Appendix

Orthogonal Transformations and the QR and QDU
Decompositions

2.A.1 Householder Transformations

Let x D Œx1; : : : ; xn�
0 be an n-dimensional real valued vector and suppose that

we wish to simultaneously annihilate several entries in it by using an orthogonal
involutory matrix‚ (i.e., a transformation‚ that satisfies‚‚0 D I D ‚0‚ and‚2

= I). More specifically, let e1 D Œ1; 0; : : : ; 0�0 and suppose that we want‚ to satisfy

‚Œx1; x2; : : : ; xn�
0 D ˛e1 D ˛Œ1; 0; : : : ; 0�0 (2A.1)
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for some real scalar ˛. Then,

x0‚0‚x D ˛2e0
1e1 D ˛2;

x0x D ˛2, and ˛ D ˙p
x0x D ˙jjxjj: Define

˛ D
� jjxjj if x1 > 0

�jjxjj if x1 < 0;

v D 1

˛
x C e1;

and

‚ D I � 1

v1
vv0; (2A.2)

where v D Œv1; : : : ; vn�
0. Then,‚ D ‚0 and

‚0‚ D I � 2

v1
vv0 C 1

v21
vv0vv0

D I � 2

v1
vv0 C 1

v21
vv0



1

˛
x0 C e0

1

�

1

˛
x C e1

�

D I � 2

v1
vv0 C 1

v21
vv02v1

D I:

Thus,‚ is orthogonal and involutory. In addition,

‚x D x � 1

v1
vv0x

D x � 1

v1
v.˛ C x1/

D x � 1

v1
v˛v1

D �˛e1;

and‚, as defined in (2A.2), satisfies (2A.1) with ˛ D 	p
x0x.

Note that v0v D 2v1 and, therefore,‚ can also be written as

‚ D I � ˇvv0;

where ˇ D 2=v0v.
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2.A.2 The QR Decomposition

Let A be an m � n matrix with m � n and full column rank, and suppose that we
want to triangularize A in the sense that we look for an orthogonal matrix Q such
that

Q0A D
�

R
0

�
;

where R is a nonsingular upper triangular matrix.
To prove that this is always possible, we will use Householder transformations,

defined in the previous section. Let Q1 be a Householder transformation such that if
a1 is the first column of A, then

Q1a1 D r1Œ1; 0; : : : ; 0�
0:

From this, it is obtained that

Q1A D
�

r1 s1
0 A2

�
;

where A2 is an .n � 1/� .n � 1/matrix and s1 is a 1 � .n � 1/ vector. Applying the
same procedure to the matrix A2, let Q2 be a Householder transformation such that

Q2A2 D
�

r2 s2
0 A3

�
;

where r2 is a number, A3 is an .n � 2/ � .n � 2/ matrix and s2 is a 1 � .n � 2/

vector. Proceeding in this way, it is clear that, after n steps we will have obtained an
orthogonal matrix Qn such that

QnAn D
�

rn

0

�
;

where rn is a scalar and 0 is an .m � n/ � 1 dimensional vector. If we set

Q0 D
�

In�1 0

0 Qn

�
� � �
�

I1 0

0 Q2

�
Q1;
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then,

Q0A D

2

6
66
6
6
6
66
6
6
6
4

r1 
 
 

0 r1 
 

:::
:::
: : :

:::

0 0 0 rn

0 0 0 0
:::
:::
:::
:::

0 0 0 0

3

7
77
7
7
7
77
7
7
7
5

D
�

R
0

�
;

where R is a nonsingular upper triangular matrix. Thus,

A D Q

�
R
0

�

and that is why the previous procedure is called the QR algorithm.
We want to emphasize that we can also use other transformations instead of

Householder transformations to triangularize a matrix in the previous QR algorithm.
Two popular alternative choices are Givens rotations and fast Givens rotations.

2.A.3 Givens Rotations

A Givens rotation matrix is an orthogonal matrix of the form

Q D
�

c s
�s c

�
;

where c D cos.�/ and s D sin.�/. Clearly, this matrix corresponds to a rotation
in the plane of an angle � . To understand how these matrices can be used to make
certain zeros in a given matrix, suppose that we have a two-row matrix

A D
�
˛1 ˛2 � � � ˛n

ˇ1 ˇ2 � � � ˇn

�

and we want to annihilate the .2; 1/ element. This can be achieved if we choose

c D ˛1=

q
˛21 C ˇ21 and s D ˇ1=

q
˛21 C ˇ21 , since with these values for c and s,

we get

QA D
�
˛0
1 ˛

0
2 � � � ˛0

n

0 ˇ0
2 � � � ˇ0

n

�
;
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where ˛0
1 D

q
˛21 C ˇ21 and

˛0
i D c˛i C sˇi

ˇ0
i D �s˛i C cˇi; i D 2; : : : ; n:

We say that we have annihilated the .2; 1/ element using as pivot the .1; 1/ element.
In order to triangularize an m �n matrix, A, with m � n and full column rank, we

can use m � m orthogonal matrices that correspond to Givens rotations of the form

Qij D

2

6
6
6
66
6
6
6
66
6
6
4

1 � � � 0 � � � 0 � � � 0
:::
: : :

:::
:::

:::

0 � � � c � � � s � � � 0
:::

:::
: : :

:::
:::

0 � � � �s � � � c � � � 0
:::

:::
:::
: : :

:::

0 � � � 0 � � � 0 � � � 1

3

7
7
7
77
7
7
7
77
7
7
5

;

where c and s appear at the intersections of the i-th and j-th rows and columns, i < j,
j D 2; : : : ;m. Clearly, if we premultiply an m-dimensional vector, a, by Qij, the j-th
element of a is annihilated using as pivot the i-th element.

Using a sequence of Givens rotations, Qi, i D 1; 2; : : : ; p, as we used House-
holder transformations in the previous section to make zeros first in the first column,
then in the second column, etc., it is obtained that

A D Q

�
R
0

�
;

where Q D QpQp�1 � � � ;Q1 and R is a nonsingular upper triangular matrix.

2.A.4 Fast Givens Rotations

Householder and Givens rotations use square roots. One way to avoid the calculation
of square roots in Givens rotations that leads to a substantial reduction in the
computational burden is as follows. Suppose that we have a two-row matrix

A D
�
˛1 ˛2 � � � ˛n

ˇ1 ˇ2 � � � ˇn

�
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and we apply a Givens rotation,

Q D
�

c s
�s c

�
;

with c D ˛1=

q
˛21 C ˇ21 and s D ˇ1=

q
˛21 C ˇ21 , to get

QA D
�
˛0
1 ˛

0
2 � � � ˛0

n

0 ˇ0
2 � � � ˇ0

n

�
;

where ˛0
1 D

q
˛21 C ˇ21 and

˛0
i D c˛i C sˇi (2A.3)

ˇ0
i D �s˛i C cˇi; i D 2; : : : ; n: (2A.4)

If we take out a positive scaling factor from each row in both matrices, A and QA,
so that

�
˛1 ˛2 � � � ˛n

ˇ1 ˇ2 � � � ˇn

�
D
�p

˛ 0

0
p
ˇ

� �
a1 a2 � � � an

b1 b2 � � � bn

�

and

�
˛0
1 ˛

0
2 � � � ˛0

n

0 ˇ0
2 � � � ˇ0

n

�
D
�p

˛0 0

0
p
ˇ0

� �
a0
1 ˛

0
2 � � � a0

n

0 b0
2 � � � b0

n

�
;

and we replace ˛i D p
˛ai, ˇi D p

ˇbi, ˛0
i D p

˛0a0
i, ˇ

0
i D p

ˇ0b0
i, i D 1; : : : ; n,

in (2A.3) and (2A.4), it is obtained that

c D
p
˛a1q

˛a21 C ˇb21

; s D
p
ˇb1q

˛a21 C ˇb21

;

a0
1 D

q
.˛a21 C ˇb21/=˛

0

a0
i D 1

p
˛0
q
˛a21 C ˇb21

Œ˛a1ai C ˇb1bi�

b0
i D

p
˛ˇ

p
ˇ0
q
˛a21 C ˇb21

Œ�b1ai C a1bi�; i D 2; : : : ; n:
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If we want to avoid square roots, we should select ˛0 and ˇ0 such that a0
1, a0

i, and
b0

i do not require any square root calculations. This can be achieved in a number of
ways. One general formulation due to Hsieh, Liu, & Yao (1993) is

˛0 D ˛a21 C ˇb21
�2

ˇ0 D ˛ˇ

�2.˛a21 C ˇb21/
;

where � and � are parameters to be determined. For example, if � D 1 and � D 1,
we get the algorithm proposed by Gentleman (1973), given by

˛0 D ˛a21 C ˇb21

ˇ0 D ˛ˇ=˛0

a0
1 D 1

a0
i D .˛a1ai C ˇb1bi/=˛

0

b0
i D �b1ai C a1bi; i D 2; : : : ; n:

If we define the generalized rotational parameters

Nc D ˛a1=˛
0; Ns D ˇb1=˛

0;

the previous recursions can be written as

a0
1 D 1

a0
i D Ncai C Nsbi

b0
i D �b1ai C a1bi; i D 2; : : : ; n:

If a1 D 1, the recursions are simplified to

˛0 D ˛ C ˇb21; ˇ0 D ˛ˇ=˛0

a0
1 D 1

a0
i D ai C Nsb0

i

b0
i D �b1ai C bi; i D 2; : : : ; n:

To see this, note that

a0
i D Ncai C Nsbi

D ˛

˛0 ai C Ns.b0
i C b1ai/
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D ˛ C ˇb21
˛0 ai C Nsb0

i

D ai C Nsb0
i:

It is not difficult to show that the transformation Œa0
1; b

0
1�

0 D TŒa1; b1�0 corresponding
to the previous algorithm is such that

T D
� Nc Ns
�b1 a1

�
D
�
1=

p
˛0 0

0 1=
p
ˇ0

�
‚

�p
˛ 0

0
p
ˇ

�
;

where‚ is the orthogonal matrix

‚ D
�

c s
�s c

�
;

such that

c D
p
˛p
˛0 a1; s D

p
ˇ0

p
˛

b1 D
p
ˇp
˛0 b1:

2.A.5 The QDU Decomposition

Given an m � n matrix A with m � n and full column rank, sometimes it is
advantageous to look for an orthogonal matrix Q such that

Q0A D
�

DU
0

�
;

where U is a nonsingular upper triangular matrix with ones in the main diagonal
and D is a diagonal matrix with positive elements in the main diagonal. Note that,
multiplying by its transpose both matrices in the previous equality, it is obtained that

A0A D U0D2U:

This decomposition can be achieved using fast Givens rotations, described in the
previous section. To see this, suppose that we take out a positive scaling factor from
each row of A, so that we can write

A D �X

where� is diagonal matrix of order m with positive elements in the main diagonal.
Then, we can apply a sequence of fast Givens rotations to the product�X similarly
to the application of a sequence of Givens rotations to obtain the QR decomposition
of A. In this way, we would end up with the desired QDU decomposition.
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If the rows of X are denoted by xi, i D 1; : : : ;m, and � = diag.
p

di/, i D
1; : : : ;m, the following algorithm can be used to obtain the QDU decomposition
of A. When the algorithm stops, the U and D2 matrices are stored in X and �,
respectively. On entry, diag.di/, i D 1; : : : ;m, is stored in �.

for j D 1; 2; : : : ; n

for i D j C 1; : : : ;m
d D djx2j .j/C dix2i .j/
Ns D dixi.j/=d
di D didj=d
if i D j C 1

Nc D djxj.j/=d
end
v D xi

xi D xj.j/xi � xi.j/xj

if i D j C 1

xj D Ncxj C Nsv
else

xj D xj C Nsxi

end
dj D d

end

end

if m D n

d D xn.n/
dn D dndd
xn.n/ D 1

end

The previous algorithm is useful when we have a symmetric n � n matrix, A, such
that

A D B�B0;

where B0 is an m � n matrix with m � n and � is an m � m diagonal matrix with
positive elements in the main diagonal, and we want to obtain a decomposition of
the form A D U0DU, where U is an upper triangular matrix with ones in the main
diagonal and D is a diagonal matrix with positive elements in the main diagonal.
Applying the previous algorithm to �1=2B0, we obtain an orthogonal matrix Q such
that

Q0�1=2B0 D
�

D1=2U
0

�
;
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where D and U have the required characteristics and the following unique decom-
position holds

A D U0DU:

We finally mention that the previous algorithm tends to suffer from possible over-
flow or underflow problems. For this reason, self-scaling fast Givens transformations
have been proposed by Anda & Park (1994).



Chapter 3
Stationarity and Linear Time Series Models

3.1 Stochastic Processes

In time series analysis, the first task is to select a mathematical model that suits the
data adequately. Models are used, among other things, to interpret the data and to
forecast future observations. Given that the phenomena that we usually observe in
the form of time series data cannot be completely predictable, it is natural to suppose
that the observation yt at time t is the value taken by a certain random vector Yt. A
time series y is a finite set of values fy1 : : : ; yng taken by certain random vectors
fY1 : : : ;Yng. The proper framework in which to study time series is that of stochastic
processes.

A stochastic process is a family of random vectors fYt; t 2 Tg defined on
a probability space .�;S;P/, where the index set T is usually a discrete set,
like the set of positive integers T D f1; 2; : : :g or the set of integer numbers
T D f0;˙1;˙2; : : :g, or a continuous set, like the set of nonnegative real numbers
T D Œ0;1/ or the set of real numbers T D .�1;1/. Notice that Yt is in fact
a function of two arguments Yt.!/. The first one t is the time index, whereas the
second is the event ! 2 �.

A realization of a stochastic process fYt; t 2 Tg is the collection of values
fYt.!/; t 2 Tg, where ! 2 � is considered fixed. Thus, a time series is part of
a realization of a discrete stochastic process. We usually write yt or Yt instead of
Yt.!/ when the context is clear.

The main difference between time series analysis and classical statistical infer-
ence is that in the latter case we have a sample of independent observations of the
same variable, whereas in time series analysis the sample (the time series) is formed
by observations of different variables which are usually not independent. This is

© Springer International Publishing Switzerland 2016
V. Gómez, Multivariate Time Series With Linear State Space Structure,
DOI 10.1007/978-3-319-28599-3_3
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illustrated by the following table.

Y1.!1/ Y2.!1/ Y3.!1/ : : :
Y1.!2/ Y2.!2/ Y3.!2/ : : :
:::

:::
:::

:::

Y1.!n/ Y2.!n/ Y3.!n/ : : :

(3.1)

The rows in the table represent n independent realizations of the process fYt; t D
1; 2; : : :g. In classical inference, we work with one column of the table, whereas
a time series is part of a row of the table. We can think of the rows of the table
as the output of n different computers which generate the observations at times
t D 1; 2; : : : according to the same random mechanism. In this context, if the time
series have length M, the ith time series fY1.!i/; : : : ;YM.!i/g would be part of the
output fY1.!i/;Y2.!i/; : : :g of the ith computer, i D 1; : : : ; n.

In practice, it is not possible to observe several independent realizations and
we only have at our disposal part of one realization, which is the time series.
For this reason, to simplify the notation, we simply write fy1; : : : ; yMg instead of
fY1.!/; : : : ;YM.!/g

3.2 Stationary Time Series

Given a time series fy1; : : : ; yng, it is useful to compute the covariance matrix of the
random variables fY1; : : : ;Yng to gain some insight into the dependence between
them.

The autocovariance function of a stochastic process fYt; t 2 Tg such that all
components of Yt have finite variance for each t 2 T is defined by


Y.r; s/ D Cov.Yr;Ys/ D EŒ.Yr � EYr/.Ys � EYs/
0�; r; s;2 T: (3.2)

Definition 3.1 (Stationarity) The stochastic process fYt; t 2 Zg, where Z D
f0;˙1;˙2, : : :g, is said to be stationary if

i) EYt D m for all t 2 Z,
ii) Var.Yt/ D † for all t 2 Z, where † is a nonnegative-definite matrix,

iii) 
Y.r; s/ D 
Y.r C t; s C t/ for all t 2 Z.

Remark 3.1 Stationarity as just defined is frequently referred to in the literature as
weak stationarity, covariance stationarity, stationarity in the wide sense, or second
order stationarity. Unless otherwise stated, the term stationarity will always refer to
the previous definition in what follows. Þ

Remark 3.2 If fYt; t 2 Zg is stationary, then 
Y.r; s/ D 
Y.r � s; 0/ for all r; s 2 Z.
It is therefore convenient to redefine the autocovariance function of a stationary



3.2 Stationary Time Series 115

process as the function of just one variable


Y.h/ D 
Y.h; 0/ D Cov.YtCh;Yt/ for all t; h 2 Z:

The function 
Y will be referred to as the autocovariance function of the process
fYtg and 
Y.h/ as its value at “lag” h. Þ

Many of the stationary processes that we will consider in the sequel will be
defined in terms of the following simple process.

Definition 3.2 (White Noise) The stochastic process fAt; t 2 Zg is said to be white
noise if

i) E.At/ D 0 for all t 2 Z,
ii) Cov.At;As/ D 0 for all t; s 2 Z, t ¤ s,

iii) E.AtA0
t/ D † for all t 2 Z, where † is a positive-definite matrix

A white noise process is usually denoted by fAtg � WN.0;†/.

It is clear from the definition that a white noise WN.0;†/ is a stationary process
with zero mean and covariance matrix †.

Another important and frequently used notion of stationarity is introduced in the
following definition.

Definition 3.3 (Strict Stationarity) The stochastic process fYt; t 2 Zg is said to
be strictly stationary if the joint distribution of .Y 0

t1 ; : : : ;Y
0
tk /

0 and .Y 0
t1Ch; : : : ;Y

0
tkCh/

0
are the same for all positive integers k and for all t1; : : : ; tk, h 2 Z.

Strict stationarity means intuitively that the graphs over two equal-length time
intervals of a realization of the time series should exhibit similar statistical
characteristics. For example, the proportion of ordinates not exceeding a given level
z should be roughly the same for both intervals.

If fYtg is strictly stationary it immediately follows, on taking k D 1 in the
previous definition, that Yt has the same distribution for each t 2 Z. If the covariance
matrix of Yt is finite, this implies in particular that EYt and Var.Yt/ are both constant.
Moreover, taking k D 2 in the previous definition, we find that YtCh and Yt have the
same joint distribution and hence the same covariance for all h 2 Z. Thus a strictly
stationary process with finite second moments is stationary.

The converse of the previous statement is not true. For example, if fYtg is a
sequence of independent random variables such that Yt is exponentially distributed
with mean one when t is odd and normally distributed with mean one and variance
one when t is even, then fYtg is stationary with 
Y.0/ D 1 and 
Y.h/ D 0 for
h ¤ 0. However since Y1 and Y2 have different distributions, fYtg cannot be strictly
stationary.

In the important case of normality, however, stationarity implies strict stationar-
ity. This is so because the distribution of a normal variable is completely determined
by its first two moments.
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Example 3.1 Let fAt W t D 0; 1; : : :g � WN.0; �2/. Define the process fYt W t D
1; 2; : : :g by Yt D At C �At�1. Then the autocovariance function of Yt is given by

Cov.YtCh;Yt/ D Cov.AtCh C �AtCh�1;At C �At�1/

D
8
<

:

.1C �2/�2 if h D 0

��2 if h D ˙1
0 if jhj > 1;

and hence fYtg is stationary. In fact it can be shown that fYtg is strictly stationary. Þ

Example 3.2 Let fAt W t D 1; 2; : : :g � WN.0; �2/. Define the process fYt W t D
1; 2; : : :g by Yt D A1 C A2 C � � � C At. Then Cov.YtCh;Yt/ D �2t if h > 0 and thus
Yt is not stationary. Þ

3.2.1 Ergodicity

When analyzing a stationary process fYtg, one is often interested in estimating the
first two moments of the distribution of the variables Yt. Because each column
.Yt.!1/;Yt.!2/; : : : ;Yt.!n//

0 in table (3.1) constitutes a random sample for the
variable Yt, one can use the sample mean Nyt D Pn

iD1 Yt.!i/=n D Pn
iD1 yi

t=n to
estimate EYt consistently.

In a similar way, we can consider two columns in table (3.1), .Yt.!1/;Yt.!2/; : : : ;

Yt.!n//
0 and .Yt�j.!1/, Yt�j.!2/; : : : ;Yt�j.!n//

0. Then
Pn

iD1.yi
t � Nyt/.yi

t�j � Nyt/
0=n is

a consistent estimator of Cov.Yt;Yt�j/.
In practice we only have at our disposal one realization and we cannot use the

sample mean Nyt D Pn
iD1 yi

t=n, that is an ensemble average, to estimate EYt. We
consider instead a time average Nz D PM

tD1 Yt.!1/=M D PM
tD1 yt=M. A stationary

process fYtg is said to be ergodic for the mean if Nz converges in probability to EYt

when M ! 1.
It can be shown that a stationary process fYtg is ergodic for the mean if the

autocovariance matrices 
. j/ tend to zero quickly enough when j increases, that
is if 
. j/ ! 0 when j ! 1. A sufficient condition for that is

P1
jD0 j
lm. j/j < 1

for all l;m D 1; : : : ; k, where k is the dimension of Yt and 
. j/ D Œ
lm. j/�kl;mD1.
A stationary process fYtg is said to be ergodic for second moments if

PM
iD1.yt �

m/.yt�j � m/0=M converges in probability to 
. j/ for all j when M ! 1, where
m D EYt.

The processes usually encountered in practice are both stationary and ergodic
and we will not have to worry about ergodicity in the rest of the book. To clarify the
concepts of stationarity and ergodicity, however, we present an example of a process
that is stationary but not ergodic.
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Example 3.3 Define Yt D X C At, where fAt W t D 1; 2; : : :g is a sequence of
independent N.0; �2/ variables and X is an N.0; �2/ variable that is independent
of the At. Then, EYt D E.X C At/ D 0, Var.Yt/ D E.X C At/

2 D �2 C �2 and
Cov.Yt;Yt�j/ D E.X C At/.X C At�j/ D �2 if j ¤ 0. Thus, fYtg is stationary.
However,

PM
tD1 yt=M D PM

tD1 Yt.!/=M D PM
tD1.xCat/=M D xC.PM

tD1 at=M/ !
x. Þ

The definitions of ergodicity given previously in this section are for wide sense
stationary processes. A strict sense stationary vector process fYtg is ergodic if the
so-called shift transformation

T W Yt ! YtC1; t 2 Z;

is such that every Borel set, S, in the sigma-algebra generated by the cylinder sets,
for which S D T.S/ almost surely, has probability zero or one.

Theorem 3.1 (Ergodic Theorem) Let fYtg be a vector process that is strict sense
stationary and ergodic with E.Yt/ D �. Then,

1

n

nX

tD1
Yt

a:s:�! �:

Proof See, for example, Rozanov (1967). �

The ergodic theorem constitutes a substantial generalization of Kolmogorov’s
Law of Large Numbers. In the ergodic theorem, serial dependence is allowed, albeit
one that vanishes in the long term. However, the i.i.d. hypothesis in Kolmogorov’s
Law of Large Numbers excludes any form of serial dependence.

Remark 3.3 The property of ergodicity is not observationally verifiable from a
single history. An example is given in (Hannan, 1970, p. 201). For this reason,
ergodicity is just assumed when needed. Þ

3.2.2 The Autocovariance and Autocorrelation Functions
and Their Properties

The autocovariance function f
Y.h/ W h 2 Zg of a stationary process fYt W t 2 Zg
was defined in Remark 3.2. The autocorrelation function of a scalar stationary
process fYt W t 2 Zg is defined as the function whose value at lag h is

Y.h/ D 
Y.h/=
Y.0/ D Corr.YtCh;Yt/ for all t; h 2 Z:

If fYtg D f.Y 0
t1; : : : ;Y

0
tk/

0g is a vector stationary process, then the autocorrelation
function is defined as .h/ D Œij.h/�ki;jD1, where ij.h/ is the autocorrelation
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function of Yti and Ytj, ij.h/ D 
ij.h/=
p

ii.0/
jj.0/. Note that .h/ D V
.h/V ,

where V D diag.
11.0/�1=2; : : :, 
kk.0/
�1=2/.

Remark 3.4 It will be noticed that we have defined stationarity only in the case
when T D Z. It is not difficult to define stationarity using a more general index set,
but for our purposes this will not be necessary. If we wish to model a set of data
fyt; t 2 T � Zg as a realization of a stationary process, we can always consider it to
be part of a realization of a stationary process fYtg. Þ

In this section we will see some properties of the autocovariance function of a
stationary process.

Proposition 3.1 The autocovariance function 
.h/ of a scalar stationary process
fYt W t 2 Zg satisfies


.0/ � 0

j
.h/j � 
.0/ for all h 2 Z


.h/ D 
.�h/ for all h 2 Z

Proof The first property follows from the fact that Var.Yt/ � 0. The second is an
immediate consequence of the Cauchy–Schwarz inequality

jCov.YtCh;Yt/j �
p

Var.YtCh/Var.Yt/:

The third follows by observing that


.�h/ D Cov.Yt�h;Yt/ D Cov.Yt;YtCh/ D 
.h/:

The fourth is a statement of the fact that E.
Pn

jD1 aj
�
Yj � �/

	2 � 0. �

Proposition 3.2 The autocovariance function 
.h/ of a scalar stationary process
fYt W t 2 Zg is nonnegative definite, that is,

nX

i;jD1
aiaj
.i � j/ � 0 for all n 2 f1; 2; : : :g and .a1; : : : ; an/

0 2 R
n:

Proof This is simply a statement of the fact that Var.
Pn

jD1 ajYj/
2 � 0. �

Remark 3.5 According to Herglotz’s Theorem (Brockwell & Davis, 1991, pp. 117–
119), a complex valued function 
.�/ defined on the integers is nonnegative definite
if, and only if,


.h/ D
Z

.��;��
eihxdF.x/;
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where F.�/ is a right-continuous, non-decreasing, bounded function on Œ��; �� and
F.��/ D 0. (The function F is called the spectral distribution function of 
 ) Þ

Example 3.4 Define the process fYt W t D �1; 0; 1; 2; : : :g by YtC�1Yt�1C�2Yt�2 D
At, where fAt W t D 1; 2; : : :g � WN.0; �2/ and the roots of the polynomial 1C�1zC
�2z2 are all outside the unit circle. Assuming that the process is stationary and At is
uncorrelated with Ys for s < t, we get


Y.0/C �1
Y.1/C �2
Y.2/ D �2


Y.l/C �1
Y.l � 1/C �2
Y.l � 2/ D 0; l > 0:
(3.3)

Thus, if the initial conditions, fY�1;Y0g, are chosen such that they are uncorrelated
with fAt W t � 1g, have zero mean and covariance matrix

E

��
Y�1
Y0

�
ŒY�1;Y0�

�
D
�

Y.0/ 
Y.1/


Y.1/ 
Y.0/

�
;

where 
Y.0/ and 
Y.1/ satisfy (3.3), then the process fYtg is stationary. Notice that
the covariances can be obtained recursively for l � 2 and that we can solve the
following system of equations

�
1C �22 �1.1C �2/

1C �2 �1

� �

Y.0/


Y.1/

�
D
�
�2

0

�

to compute 
Y.0/ and 
Y.1/ in terms of �1, �2 and �2.
The previous system is obtained by replacing 
Y.2/ in 
Y.0/ C �1
Y.1/ C

�2
Y.2/ D �2 by 
Y.2/ D ��1
Y.1/ � �2
Y.0/ and using the resulting equation
plus the equation 
Y.1/C �1
Y.0/C �2
Y.1/ D 0.

The autocorrelation function is the solution of the following linear difference
equation of order two

Y.l/C �1Y.l � 1/C �2Y.l � 2/ D 0; l � 2:

According to the results of Sect. 3.13, the pattern followed by the autocorrelation
function depends on the roots of the polynomial 1 C �1z C �2z2. For example, if
1C �1z C �2z2 D .1� �z/.1� N�z/, where � D rei� and N� D re�i� , the solution has
the form

Y.h/ D a1r
h cos.h�/C a2r

h sin.h�/; h � 2;

where a1 and a2 are determined by the initial conditions, Y .0/ D 1 and Y .1/. Þ

For vector stationary processes, we can mention the following properties.
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Proposition 3.3 The autocovariance function 
.h/ of a vector stationary process
fYt W t 2 Zg, fYtg D f.Y 0

t1; : : : ;Y
0
tk/

0g, satisfies

i) 
.0/ is a nonnegative-definite matrix
ii) j
ij.h/j � p


ii.0/
jj.0/ for all i,j=1,. . . ,k
iii) 
.h/ D 
 0.�h/
iv) 
ii.h/ is a scalar autocovariance function, i D 1; : : : ; k
v)
Pn

i;jD1 a0
i
.i � j/aj � 0 for all n 2 f1; 2; : : :g and a1; : : : ; an 2 R

k.

Proof We will only prove i) and v). The rest will be left as an exercise. Let a D
.a1; : : : ; ak/

0 be an arbitrary real vector. Then, Var.a0Yt/ D a0
.0/a � 0. In a similar
way, v) is a statement of the fact that E.

Pn
jD1 a0

j

�
Yj � �/	2 � 0, where E.Yt/ D �.

�

3.3 Linear Time Invariant Filters

Many stochastic processes found in practice can be rationalized as the output of a
linear filter applied to some, often simpler, stochastic process. This is, for example,
the case of VARMA models, that will be considered later in this chapter.

Definition 3.4 A linear time invariant filter relating an r-dimensional input
process fXtg to a k-dimensional output process fYtg is given by the expression

Yt D
1X

iD�1
‰iXt�i; (3.4)

where the ‰j are k � r matrices. The function ‰.z/ D P1
iD�1 ‰izi is called the

transfer function of the filter. The filter is symmetric if ‰j D ‰�j for j ¤ 0.
The filter is physically realizable or causal when ‰j D 0 for j < 0, so that Yt DP1

iD0 ‰iXt�i. The filter is said to be stable if
P1

iD�1 k‰ik < 1, where kAk denotes
a norm for the matrix A such as the Frobenius norm, kAk =

p
tr.A0A/.

Remark 3.6 For the process fYtg in (3.4) to be well defined the sum must converge.
The convergence, however, can be of several types. For example, it can converge
almost surely, in probability, in mean square, etc. We will give criteria for some
types of convergence later in this chapter.

Remark 3.7 Given a matrix A of dimension m � n, by the singular value decom-
position, there exist orthogonal matrices U and V of dimensions m � m and n � n
such that U0AV D diag.�1; : : : ; �p/, where p D minfm; ng and �1 � �2 � : : : �
�p � 0 are the singular values. This implies that the Frobenius norm satisfies
kAk2 D �21 C � � � C �2p D kA0k. It also satisfies the submultiplicative property,
kABk � kAkkBk.
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Example 3.5 The filter Yt D aX�t�1, t D 0;˙1;˙2; : : : ; is not linear time invariant
because the weights, ‰j, in Yt D P1

iD�1‰iXt�i are not time invariant. Þ

Example 3.6 A univariate causal filter is called a unilateral ARMA filter if its
transfer function is given by a rational function

‰.z/ D a0 C a1z C � � � C apzp

1C b1z C � � � C bqzq
;

where the roots 1C b1z C � � � C bqzq are all outside of the unit circle. These filters
are causal and stable but not symmetric. Þ

Example 3.7 A univariate filter is called a bilateral ARMA filter if its transfer
function is given by

‰.z/ D k
a.z/a.z�1/
b.z/b.z�1/

;

where k > 0, a.z/ D 1C a1z C � � � C apzp, b.z/ D 1C b1z C � � � C bqzq and the roots
of b.z/ are all outside of the unit circle. These filters are stable and symmetric but
not causal. Þ

Example 3.8 The filter Yt D Xt�1=2C Xt C XtC1 is not physically realizable. Þ

Example 3.9 The filter Yt D P1
iD0 ‰iXt�i, where ‰j D 1:5 j, is causal but not

stable. Þ

3.4 Frequency Domain

In the frequency domain approach to time series analysis, each process fYtg, scalar
or multivariate, is considered as the sum of certain oscillatory stochastic components
associated with some frequency band in the interval Œ��; ��. For example, it is
customary to consider that an economic series is the sum of a trend, a seasonal, and
an irregular component. The trend is associated with a band of low frequencies of
the form Œ0; !�, the seasonal component is associated with the seasonal frequencies,
defined as 2�k=s, k D 1; 2; : : : ; Œs=2�, where s is the number of seasons and Œs=2�
denotes the integer part of s=2, and the irregular component is associated with a
band of high frequencies of the form Œ!; ��.

To gain some insight into the properties of stationary processes in the frequency
domain, consider first a deterministic function of the form

f .t/ D A cos.!t C '/:

This function is periodic with period � D 2�=!. That is, f .t C �/ D f .t/. Also,
A is the amplitude, ! is the frequency, and ' is the phase. The function f .t/ can
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alternatively be expressed as

f .t/ D a cos.!t/C b sin.!t/:

To see this, use the formula cos.a C b/ D cos.a/ cos.b/� sin.a/ sin.b/ in f .t/ to get

f .t/ D A cos.!t C '/

D A Œcos.!t/ cos.'/ � sin.!t/ sin.'/�

D A cos.'/ cos.!t/ � A sin.'/ sin.!t/

D a cos.!t/C b sin.!t/;

where a D A cos.'/ and b D �A sin.'/.
It is well known in Mathematical Analysis that every well-behaved real function

can be developed as a convergent series of functions each one having the form of
f .t/. In fact, this result, known as Fourier series expansion, is at the center of the
part of Mathematical Analysis known as Harmonic Analysis.

Instead of using functions like f .t/, it is often convenient to use complex-valued
functions of the form

g.t/ D Aeit!;

where A is a complex number, A D a C bi. Substituting in g.t/, we get

g.t/ D Aeit!

D .a C bi/.cos.!t/C i sin.!t/

D Œa cos.!t/ � b sin.!t/�C i Œa sin.!t/C b cos.!t/� ;

and it is seen that f .t/ can be considered as the real part of a certain function having
the same form as g.t/.

Suppose now that we have two functions, g1.t/ D A1eit!1 and g2.t/ D A2eit!2 ,
such that A1 and A2 are zero mean, uncorrelated, complex-valued random variables
with Var.Ak/ D �2k , k D 1; 2. Here, it is understood that we extend the definition
of mean and scalar product of real-valued random variables to complex-valued
random variables in the following way. If Ak D ak C bki, k D 1; 2, then E.Ak/ D
E.ak/CiE.bk/ and< Ak;Aj >D E.AkAj/, k; j D 1; 2, where the bar denotes complex
conjugation. With these definitions, the process Yt D g1.t/Cg2.t/ is stationary. This
can be seen as follows. Clearly, the mean of g.t/ is zero. In addition,

Cov.Yt;Yt�h/ D E
�
YtYt�h

�

D
2X

kD1
�2k eit!k e�i.t�h/!k

D
2X

kD1
�2k eih!k ;
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and the covariance depends on h only. We can generalize this to a finite number of
components. Let

Yt D
nX

kD1
Akeit!k ; (3.5)

where the Ak, k D 1; : : : ; n, are zero mean uncorrelated complex-valued random
variables with E.AkAk/ D �2k and �� < !1 < !2 < � � � < !n � � . In this case,
it is not difficult to verify that E.Yt/= 0 and Cov.Yt;Yt�h/ D Pn

kD1 �2k eih!k and,
therefore, the process is stationary. If we define the distribution function

F.x/ D
X

fkW !k� xg
�2k ; x 2 .��; ��;

we can express the covariances, 
.h/, as the Stieltjes integral


.h/ D
Z

.��;��
eihxdF.x/:

It is to be noticed that, since 
.0/ D Pn
kD1 �2k , each frequency !k contributes with

�2k to the variance. The function F.x/ is known as the spectral distribution function
of fYtg.

It is remarkable that every zero-mean stationary process can be interpreted as
the limit in mean square of processes of the form (3.5). In fact, it can be shown
(Brockwell & Davis, 1991, pp. 145–146) that, for every scalar stationary process
fYtg, the so-called spectral representation of the process

Yt D
Z �

��
eitxdZ.x/ (3.6)

holds, where fZ.x/ W x 2 Œ��; ��g is a stochastic process with independent
increments, continuous on the right. In addition, the autocovariance function, 
.h/,
can be expressed as


.h/ D
Z

.��;��
eihxdF.x/; (3.7)

where F is a distribution function with F.��/ D 0, F.�/ D E.YtY 0
t / and

F.x2/ � F.x1/ D EjZ.x2/� Z.x1/j2; �� � x1 < x2 � �:
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Equation (3.7) is called the spectral representation of the autocovariance func-
tion. For example, for the process (3.5), the process fZ.x/ W x 2 Œ��; ��g in (3.6) is

Z.x/ D
X

fkW !k� xg
Ak; x 2 Œ��; ��;

and satisfies

F.x2/ � F.x1/ D
X

fkW x1< !k� x2g
�2k ; �� � x1 < x2 � �:

It is also shown in (Brockwell & Davis, 1991, p. 144), that the so-called
Kolmogorov’s isomorphism theorem holds. Let H be the Hilbert space spanned
by fYtg and let L2.F/ be the Hilbert space of square integrable complex functions
with respect to the measure induced by the spectral distribution function F. Then,
the theorem states that there is a unique Hilbert space isomorphism, T, of H onto
L2.F/ such that

T.Yt/ D eit::

This isomorphism establishes the link between the time domain and the frequency
domain. So, for example,

hT .a1Yt1 C a2Yt2 / ;T .bYs/iL2.F/ D
2X

iD1
aib

˝
eiti:; eis:

˛
L2.F/

D
2X

iD1
aib

Z

.��;��
ei.ti�s/xdF.x/

D
2X

iD1
aib hYti ;Ysi

D ha1Yt1 C a2Yt2 ; bYsi ;
where, as usual, hYti ;Ysi D E

�
Yti Ys

�
and the bar denotes complex conjugation.

The integral (3.6) is a stochastic integral with respect to an orthogonal-increment
process. Heuristically, this integral can be interpreted as the limit in mean square of
finite sums of complex exponentials with stochastic coefficients.

To see the effect of a linear filter ‰.z/ D P1
iD�1 ‰izi on these components, let

us suppose that the ‰j weights are scalar and the elementary complex exponential
function eitx is passed through the filter. Then, the output fYtg of the filter is

Yt D
1X

jD�1
‰je

i.t�j/x D
0

@
1X

jD�1
‰je

�ijx

1

A eitx:
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Thus, the effects of the filter are summarized by the complex-valued function

O‰.x/ D
1X

jD�1
‰je

�ijx;

which is the Fourier transform of the sequence f: : : ; ‰�1; ‰0;‰1; : : :g.
The spectral representation theorem and Kolmogorov’s isomorphism are also

valid for multivariate series. See Sect. 11.8 in Brockwell & Davis (1991).

Definition 3.5 Given a linear time invariant filter with transfer function ‰.z/ DP1
iD�1‰izi, the function

O‰.x/ D ‰.e�ix/ D
1X

jD�1
‰je

�ijx;

is called the frequency response function of the filter. For a univariate filter, the
gain, G.x/, and phase, �.x/, functions of the filter are defined as

G.x/ D j O‰.x/j; �.x/ D argŒ O‰.x/�; x 2 Œ��; ��:

If a scalar or multivariate stationary process fYtg is passed through a stable filter
‰.z/ D P1

iD�1‰izi and the spectral representation of fYtg is given by (3.6), it
can be shown (Brockwell & Davis, 1991) that the spectral representation of the
transformed process fXtg is

Xt D
Z �

��
O‰.x/eitxdZ.x/:

The previous equation shows intuitively the effect of the filter‰.z/ on a scalar input
process fYtg. The effect is twofold on the sinusoids at frequency x 2 Œ��; ��. First,
the amplitudes are multiplied by the modulus G.x/ D j O‰.x/j of the complex number
O‰.x/ and second, there is a shift effect measured by the argument�.x/ of O‰.x/. Note
that if the filter is symmetric, there is no phase effect because the number O‰.x/ is a
real number. Thus, a unilateral ARMA filter has a shift effect but a bilateral ARMA
filter has not.

Example 3.10 (Low Pass Filters) In electrical engineering, a low pass filter is a
unilateral filter that passes signals with a frequency lower than a certain cutoff
frequency and attenuates signals with frequencies higher than the cutoff frequency.
An important example of low pass filters are Butterworth filters, first proposed
by Butterworth (1930). These filters are usually referred to as maximally flat
magnitude filters. The squared gain of Butterworth filters is given by

jG.x/j2 D 1

1C


sin.x=2/
sin.xc=2/

�2d
;

and d D 1; 2; : : :, or by the same function but replacing sin with tan.
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When one is working with economic series, low pass filters are appropriate to
estimate trends, for example. However, in economics one is often more interested in
bilateral than in unilateral filters. The gain function of bilateral Butterworth filters
based on the sin function is given by

G.x/ D 1

1C


sin.x=2/
sin.xc=2/

�2d
;

and d D 1; 2; : : :. The transfer function of these filters is

‰.z/ D 1

1C �Œ.1 � z/.1 � z�1/�d
;

where � D Œ2 sin.xc=2/�
�2d and thus the filter depends on two parameters only, d

and �. Increasing d, the filter gain becomes flatter in the origin and its fall towards
zero gets steeper. Increasing �, the pass band, which is the part of the gain function
different from zero, gets narrower and the output gets less volatile because only very
low frequency components can pass through the filter. More details about bilateral
Butterworth filters are given in Gómez (2001) and Gómez & Maravall (2001b). Þ

In the following, we will study some properties of linear time invariant filters.

Proposition 3.4 Let fXt D .Xt1; : : : ;Xtk/
0 W t 2 Zg be a sequence of random vectors

such that supfEjXtij2 W t 2 Z; i D 1; : : : ; kg < 1 and
P1

iD�1 k‰ik < 1. Then, the
series

1X

iD�1
‰iXt�i

converges in mean square, that is EŒ.Yt �Pn
iD�m‰iXt�i/.Yt �Pn

iD�m‰iXt�i/
0� ! 0

as m; n ! 1.

Proof Let N D supfEjXtij2 W t 2 Z; i D 1; : : : ; kg < 1 and n > m > 0. Then, we
can write

��
�
�
�
�

E.
X

m<j jj�n

‰jXt�j/.
X

m<jpj�n

‰pXt�p/
0
��
�
�
�
�

2

�
X

m<j jj�n

X

m<jpj�n

k‰jE.Xt�jX
0
t�p/‰

0
pk2

�
0

@
X

m<j jj�n

k‰jk2
1

A

0

@
X

m<jpj�n

k‰pk2
1

ANkr

! 0 as m; n ! 1:

By the Cauchy criterion, the series
P1

iD�1 ‰iXt�i converges in mean square. �
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Corollary 3.1 Under the assumptions of Proposition 3.4, if Xt is a stationary
process with covariance matrices 
X.h/, then the output, Yt D P1

iD�1 ‰iXt�i, is
a stationary process with covariance matrices


Y.h/ D
1X

iD�1

1X

jD�1
‰i
X.h � i C j/‰0

j :

Proof By the mean square convergence and continuity of the inner product <
X;Y >D E.XY 0/, we can write

< Yt; 1 >D lim
n!1 <

nX

jD�n

‰jXt�j; 1 > D E.Yt/

D lim
n!1

nX

jD�n

‰jE.Xt�j/ D
 1X

iD�1
‰i

!

E.Xt/;

and

< YtCh;Yt >D E.YtChY 0
t / D lim

n!1 E

2

4

0

@
nX

jD�n

‰jXtCh�j

1

A
 

nX

kD�n

‰kXt�k

!03

5

D
1X

j;kD�1
‰j
�

X.h � j C k/C E.Xt/E.X

0
t/
�
‰0

k:

Thus, fYtg is stationary because EYt and E.YtChYt/ are both finite and independent
of t. The autocovariance matrix 
Y.h/ is given by


Y.h/ D E.YtChYt/� E.YtCh/E.Yt/ D
1X

iD�1

1X

jD�1
‰i
X.h � i C j/‰0

j :

�

Proposition 3.5 Let fXt D .Xt1; : : : ;Xtk/
0 W t 2 Zg be a sequence of random vectors

such that supfEjXtij W t 2 Z; i D 1; : : : ; kg < 1 and
P1

iD�1 k‰ik < 1. Then, the
series

1X

iD�1
‰iXt�i

converges absolutely with probability one and thus the output random vector Yt DP1
iD�1 ‰iXt�i exists uniquely. If in addition supfEjXtij2 W t 2 Z; i D 1; : : : ; kg <

1, then the series converges in mean square to the same limit.
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Proof Let M D supfEjXtij W t 2 Z; i D 1; : : : ; kg < 1. Then, by the monotone
convergence theorem we can write

E

 1X

iD�1
k‰iXt�ik

!

D lim
n!1 E

 
nX

iD�n

k‰iXt�ik
!

� lim
n!1

 
nX

iD�n

k‰ik
!

M
p

kr

< 1:

From this it follows that
P1

iD�1 k‰iXt�ik and
P1

iD�1‰iXt�i are both finite with
probability one. Thus, Yt D P1

iD�1‰iXt�i exists and is uniquely determined.
By Proposition 3.4 the series

P1
iD�1‰iXt�i converges in mean square. Let St

denote the mean square limit. Then, by Fatou’s lemma,

E.St � Yt/.St � Yt/
0 D E lim inf

n!1

0

@St �
nX

jD�n

‰jXt�j

1

A

0

@St �
nX

jD�n

‰jXt�j

1

A

0

� lim inf
n!1 E

0

@St �
nX

jD�n

‰jXt�j

1

A

0

@St �
nX

jD�n

‰jXt�j

1

A

0

D 0;

and the limits St and Yt are equal with probability one. �

3.5 Linear Time Series Model Representation
for a Stationary Process

An important class of models in time series analysis is that of linear time series
models. A famous theorem due to Wold states that every stationary model fYtg that
is nondeterministic (i.e., Yt cannot be perfectly predicted from past values) can be
expressed as the sum of a linear time series model plus a deterministic model.

Definition 3.6 (Linear Time Series Model) The k-dimensional stochastic process
fYtg is said to follow a linear time series model if

Yt D
1X

jD0
‰jAt�j;
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where fAtg � WN.0;†/, the ‰j matrices have dimension k � r, and
P1

jD0 k‰jk2 <
1. The function‰.z/ D P1

jD0 ‰jzj is called the transfer function of the process.

Remark 3.8 In a linear time series model Yt D P1
jD0 ‰jAt�j, fYtg is the output

of a causal filter applied to a white noise. The filter is not necessarily stable but
does satisfy the weaker condition

P1
jD0 k‰jk2 < 1. Note that

P1
jD0 k‰jk2 <

P1
jD0 k‰jk

�2
. Þ

Example 3.11 Suppose the scalar stochastic difference equation Yt C �Yt�1 D At

with j � �j < 1 and fAtg � WN.0; �2/. By Corollary 3.1, the process Yt DP1
jD0 ‰jAt�j, where‰j D .��/j, is stationary and it is easy to verify that it satisfies

the previous difference equation. To see that it is the unique stationary solution,
assume that fY�

t g is another stationary solution. Then, Zt D Yt � Y�
t is stationary

and satisfies the homogenous equation Zt D ��Zt�1. Letting V D Var.Zt/, we have
.1 � �2/V D 0 and, since j � �j < 1, this implies V D 0. Thus the difference
equation has a unique stationary solution that follows a linear time series model. Þ

The following proposition shows that every process following a linear time series
model is stationary and gives its covariance function.

Proposition 3.6 Let fAtg � WN.0;†/. Then, the series
P1

jD0 ‰jAt�j converges
in mean square if, and only if,

P1
jD0 k‰jk2 < 1. If Yt is the mean square limit

of
P1

jD0 ‰jAt�j, then the process fYtg is stationary with zero mean and covariance
function 
Y.h/ given by


Y.h/ D
1X

jD0
‰jCh†‰

0
j ; h 2 Z:

Proof Suppose that the series
P1

jD0 ‰jAt�j converges in mean square to Yt and
let LL0 D †, where L is lower triangular, be the Cholesky decomposition of †.
Then, by the continuity of the inner product < X;Y >D E.XY 0/, E.Yt/ D 0 and
Cov.YtCh;Yt/ D P1

jD0 ‰jCh†‰
0
j , showing that Yt is stationary and the covariance

function is as asserted. In addition,

nX

jD0
k‰jk2 D

nX

jD0
k‰jLL�1k2

� kL�1k2
nX

jD0
k‰jLk2 D kL�1k2

nX

jD0
tr.L0‰0

j‰jL/

D kL�1k2
nX

jD0
tr.‰jLL0‰0

j/

� kL�1k2tr .Var.Yt//

< 1:
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Conversely, suppose that
P1

jD0 k‰jk2 < 1. Then, if n > m > 0, we can write

�
�
�
�
��

E.
X

m<j jj�n

‰jAt�j/.
X

m<jkj�n

‰kAt�k/
0
�
�
�
�
��

2

D
X

m<j jj�n

k‰j†‰
0
jk2

� k†k2
X

m<j jj�n

k‰jk2

! 0 as m; n ! 1;

and, by the Cauchy criterion, the series
P1

jD0 ‰jAt�j converges in mean square. �

Definition 3.7 The stationary process fYt W t 2 Zg is nondeterministic if † D
Var.Yt � E�.YtjYt�1, Yt�2; : : :// ¤ 0, and it is purely deterministic if † D 0. If †
is positive definite, we say that the process fYtg is nondeterministic of full rank.

Remark 3.9 The proper framework to deal with projections on infinite
f: : : ;Yt�1;Yt;YtC1, : : :g or semi-infinite samples f: : : ;Yt�1;Ytg is that of Hilbert
spaces. We will deal mainly with finite projections in this book, so that we will use
Hilbert spaces only occasionally. We refer the reader to Rozanov (1967), Hannan
(1970), Gikhman & Skorokhod (1969), Brockwell & Davis (1991), and Pourahmadi
(2001) for the study of stationary processes in Hilbert spaces. Þ

Remark 3.10 Every white noise process is nondeterministic. A process fYtg follow-
ing a linear time series model, Yt D P1

jD0 ‰jAt�j, is nondeterministic if and only if
‰0†‰

0
0 ¤ 0 and this in turn happens if and only if ‰0 has full column rank because

† is positive definite. Þ

Theorem 3.2 (The Wold Decomposition) Let the k-dimensional stationary pro-
cess fYt W t 2 Zg be zero-mean and nondeterministic. Then it can be expressed as

Yt D
1X

jD0
‰jAt�j C Vt;

where the ‰j are k � r matrices with r � k, ‰0 has rank r,
P1

jD0 k‰jk2 < 1, fAtg
� WN.0;†/, E.AtV 0

s/ D 0 for all t; s 2 Z, and Vt is purely deterministic.

Proof See Rozanov (1967) or Hannan (1970). �
Remark 3.11 There is a dual form of the Wold decomposition in which the time
runs backwards instead of forwards. See, for example, Corollary 4.5.9, p. 126, in
Lindquist & Picci (2015). Þ

Example 3.12 An example of a deterministic process is the solution fYt W t D
�1; 0; 1; : : :g of the scalar stochastic difference equation

Yt � 2 cos.'/Yt�1 C 2Yt�2 D 0
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where jj < 1 and ' 2 Œ��; ��. This difference equation can be written in vector
form as

�
Yt�1
Yt

�
D
�
0 1

�2 2 cos.'/

� �
Yt�2
Yt�1

�

and, by the results of Sect. 3.13, the solution has the form

Yt D X1
t cos.t'/C X2

t sin.t'/;

where X1 and X2 are random variables that depend linearly on the initial conditions,
Y�1 and Y0. Thus, for t > 0, E�.YtjYt�1;Yt�2, : : : ;Y�1/ D X1t cos.t'/ C
X2t sin.t'/ D Yt, the innovations are At D Yt � E�.YtjYt�1;Yt�2, : : : ;Y�1/ D 0,
and the process fYtg is purely deterministic. Þ

3.6 The Backshift Operator

Suppose a stationary vector process fYtg D f.Y 0
t1; : : : ;Y

0
tk/

0g defined on a probability
space .�;S;P/ such that Yt 2 L2 and let HY be the closed linear hull generated by
all the random variables Yti, t D 0;˙1;˙2; : : :, i D 1; : : : ; k. Given an element of
HY of the form X D Pn

iD1 ciYtiji , the backshift operator B is defined by

BX D
nX

iD1
ciYti�1;ji :

This operator has an inverse F D B�1, the forward operator,

FX D
nX

iD1
ciYtiC1;ji

and it preserves the scalar product,

E

("

B

 
nX

iD1
ciYti;ji

!#"

B

 
mX

iD1
diYsi;hi

!#)

D
nX

iD1

nX

hD1
cidhE.Yti�1Ysh�1/

D
nX

iD1

nX

hD1
cidhE.Yti Ysh/

D E

" 
nX

iD1
ciYti;ji

! 
mX

iD1
diYsi;hi

!#

:
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By Theorem 1, p. 179, of Gikhman & Skorokhod (1969), the operator B can be
extended as a continuous operator to HY . It then becomes a unitary operator in HY .
This implies

kBk D sup

� kBYtik
kYtik W kYtik ¤ 0

�
D 1;

where kBk is the norm of the operator B and kYtik2 D EjYtij2.
Remark 3.12 The backshift operator is very useful to express many linear relations
in time series analysis. For example, if fYtg has a linear time series model representa-
tion Yt D P1

jD0 ‰jAt�j, then we can write Yt D ‰.B/At, where ‰.B/ D P1
jD0 ‰jBj

is an operator defined as the sum of an operator series. From the previous discussion,
the norm of this operator satisfies k‰.B/k � kP1

jD0 ‰jBjk � P1
jD0 k‰jk and thus

the operator series converges if
P1

jD0 k‰jk < 1. Þ

Remark 3.13 Recall that, according to Kolmogorov’s isomorphism theorem, letting
H be the Hilbert space spanned by a scalar stationary process fYtg, there is a unique
Hilbert space isomorphism, T, of H onto L2.FY/ such that

T.Yt/ D eit:;

where FY is the spectral distribution function of the process. Multiplication by the
backshift operator in the time domain corresponds to multiplication by the function
e�ix in the frequency domain. For example, if X D aYt C bYt�1, then

T.BX/ D T.aYt�1 C bYt�2/ D e�ix
�
aeitx C bei.t�1/x	 D e�ixT.X/:

Þ

3.7 VARMA Models and Innovations State Space Models

Suppose a stationary vector process fYtg that has the linear time series model
representation Yt D P1

jD0 ‰jAt�j D ‰.B/At, where‰.B/ D P1
jD0 ‰jBj and B is the

backshift operator, BAt D At�1. If one is interested in estimating this model using
an observed sample, fY1; : : : ;Yng, the situation seems hopeless because there is an
infinite number of parameters in the model. This consideration and the fact that there
are theorems in functional analysis, like the Stone–Weierstrass theorem, that asserts
that every continuous function can be uniformly approximated by polynomials,
motivates the search for an approximation to ‰.z/ of the form ˆ.z/�1‚.z/, where
ˆ.z/ and‚.z/ are polynomial matrices in the variable z. Thus, we are led to consider
the following definition.
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Definition 3.8 A vector processes fYtg is said to follow a vector ARMA. p; q/ or
VARMA. p; q/ model if it satisfies a linear stochastic difference equation of the
form

Yt Cˆ1Yt�1 C � � � CˆpYt�p D At C‚1At�1 C � � � C‚qAt�q; (3.8)

or, more compactly,

ˆ.B/Yt D ‚.B/At;

where ˆ.B/ D I C ˆ1B C � � � C ˆpBp, ‚.B/ D I C ‚1B C � � � C ‚qBq and
fAtg � WN.0;†/. The function ‰.z/ D P1

jD0 ‰jzj D ˆ�1.z/‚.z/ is called the
transfer function of the process fYtg.

The acronym ARMA stands for Auto–Regressive–Moving–Average and the
polynomial matrices ˆ.B/ and ‚.B/ are called the autoregressive and moving
average polynomial matrices. To gain some insights into the properties of VARMA
models, let us consider the simple scalar process

Yt D Yt�1 C At; (3.9)

where fAtg � WN.0; �2/ and  is a real number. If jj < 1, we can iterate in (3.9)
to get

Yt D kYt�k C At C At�1 C � � � C k�1At�kC1; k D 2; 3; : : :

From this, it is clear that, letting k ! 1, the linear time series model representation

Yt D
1X

jD0
jAt�j

is obtained. By Propositions 3.4 and 3.5 and Corollary 3.1, the series
P1

jD0  jAt�j

converges in mean square and with probability one and the process Yt DP1
jD0 jAt�j is stationary. In addition, it is the only solution of (3.9) for, if fZtg

is another solution, then Xt D Yt � Zt is stationary and satisfies Xt D Xt�1. Thus,
if V D Var.Xt/, we have V= 0.

If  D 1 in (3.9) and we assume that the process starts at some finite point in the
past, for example at t D 1, we can write

Yt D Y1 C At C At�1 C � � � C A2:

For any distribution of Y1 that we may select, it is easy to verify that the process is
not stationary. Thus, if  D 1, we cannot eliminate the effect of the initial condition
and the process is not stationary.
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Finally, suppose that jj > 1 in (3.9). Then, we can divide both terms of (3.9) by
 to get

Yt�1 D 1


Yt C Wt; (3.10)

where Wt D �At= and fWtg � WN.0; �2=2/. Iterating in this equation, we get

Yt D 1

k
YtCk C WtC1 C 1


WtC2 C � � � C 1

k�1WtCk; k D 2; 3; : : :

and, letting k ! 1,

Yt D
1X

kD0

1

k
WtC1Ck:

As in the case jj < 1, the series
P1

kD0 1
k WtC1Ck converges in mean square and

with probability one and is the unique stationary solution of (3.10). However, this
kind of solution is undesirable because it depends on the future, which is unknown.
For this reason, the following definition is important.

Definition 3.9 A VARMA. p; q/ model (3.8) is said to be causal if fYtg can be
represented as a linear time series model, Yt D P1

jD0 ‰jAt�j, for t D 0;˙1;˙2; : : :,
with

P1
jD0 k‰jk < 1, where the transfer function of the model, ‰.z/ D

ˆ�1.z/‚.z/, satisfies ‰.z/ D P1
jD0 ‰jzj.

We will see later in Theorem 3.7 that if the roots of detŒˆ.z/� in (3.8) are all
greater than one in modulus, then there exists a unique stationary solution Yt that is
causal.

When dealing with VARMA models, the question naturally arises as to whether
there exists an infinite autoregressive representation of the process.

Definition 3.10 A VARMA.p; q/ model (3.8) is said to be invertible if fYtg can be
represented as Yt CP1

jD1 …jYt�j D At, for t D 0;˙1;˙2; : : :, with
P1

jD0 k…jk <
1, …0 D I.

We will see later in Proposition 3.11 that if the model (3.8) admits a causal
stationary solution fYtg and the roots of detŒ‚.z/� in (3.8) are all greater than one in
modulus, then Yt is invertible.

There is a close link between VARMA models and the time invariant state
space models (1.37) and (1.38) introduced in Sect. 1.7.2, as we will see later in
Theorem 3.6.

A state space form that is very useful when one is working with VARMA models
is the one proposed by Akaike (1974a) that we now describe. We will call this
representation Akaike’s state space form. Let fYtg be a stationary vector process
that follows a causal VARMA.p; q/model (3.8) such that Yt D P1

jD0 ‰jAt�j, where
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‰.z/ D ˆ�1.z/‚.z/ D P1
jD0 ‰jzj is the transfer function of the process fYtg. Define

r D max.p; q/ and xt;1 D Yt � At, xt;2 D YtC1 � AtC1 � ‰1At; : : : ; xt;r D YtCr�1 �Pr�1
jD0 ‰jAtCr�1�j. Then, taking into account the relationˆ.z/‰.z/ D ‚.z/, it is not

difficult to verify that the following equations hold

xtC1 D Fxt C KAt

Yt D Hxt C At;

where

F D

2

66
6
6
6
4

0 I 0 � � � 0

0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I
�ˆr �ˆr�1 �ˆr�2 � � � �ˆ1

3

77
7
7
7
5
; K D

2

66
6
6
6
4

‰1
‰2
:::

‰r�1
‰r

3

77
7
7
7
5
; (3.11)

ˆi D 0 if i > p, xt D .x0
t;1; : : : ; x

0
t;r/

0 and H D ŒI; 0; : : : ; 0�. By the results in
Sect. 3.A.2, we can express Yt in the previous state space representation as

Yt D .At C‰1At�1 C � � � C‰t�1A1/C htx1; (3.12)

where ‰i D HFi�1K, i D 1; : : : ; t � 1, and ht D HFt�1. This implies that the
transfer function can be expressed in terms of the matrices of the state space model
as ‰.z/ D I C zH.I � Fz/�1K and ht ! 0 as t ! 1. In fact, we will see later
in Proposition 3.10 that the matrix F has as eigenvalues the inverses of the roots of
det Œˆ.z/� and, because the VARMA process (3.8) is stationary, by Theorem 3.7, the
roots of det Œˆ.z/� are all outside the unit circle. Thus, Ft ! 0 as t ! 1.

Remark 3.14 If the process fYtg is stationary and follows a causal VARMA.p; q/
model, the elements of the state vector, xt, are the first r-step ahead predictors of Yt.
This will be seen in more detail in Chaps. 5 and 7. This interpretation is also valid in
the nonstationary case provided the initial conditions are handled appropriately. Þ

Example 3.13 Let fYtg follow the scalar ARMA.2; 1/ process

Yt C �1Yt�1 C �2Yt�2 D At C �1At�1;

where fAtg � WN.0; �2/. Then, Akaike’s state space form is

xtC1 D Fxt C KAt

Yt D Hxt C At;
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where

F D
�
0 1

��2 ��1
�
; K D

�
�1 � �1

�2 � �1�1 C �21

�
;

xt D .xt;1; xt;2/
0 and H D .1; 0/. Þ

It is to be emphasized that Akaike’s representation is by no means the only
state space form that can be used with VARMA models. In fact, there are many
ways to represent a VARMA model in state space form. For example, another valid
representation for the VARMA. p; q/model (3.8) is

xtC1 D Fxt C KAt

Yt D Hxt C At;

where

F D

2

6
6
6
6
6
4

�ˆ1 I 0 � � � 0
�ˆ2 0 I � � � 0
:::

:::
:::
: : :
:::

�ˆr�1 0 0 � � � I
�ˆr 0 0 � � � 0

3

7
7
7
7
7
5
; K D

2

6
6
6
6
6
4

‚1 �ˆ1

‚2 �ˆ2
:::

‚r�1 �ˆr�1
‚r �ˆr

3

7
7
7
7
7
5
;

r D max. p; q/, ˆi D 0 if i > p, ‚i D 0 if i > q, and H D ŒI; 0; : : : ; 0�. The
previous considerations motivate the following definition.

Definition 3.11 A vector processes fYtg is said to be in innovations state space
form if it follows a state space model of the form

xtC1 D Fxt C KAt (3.13)

Yt D Hxt C At; (3.14)

where fAtg � WN.0;†/. The function‰.z/ D P1
jD0 ‰jzj D I C zH.I � Fz/�1K is

called the transfer function of the process fYtg.

An innovations state space model is characterized by the system matrices
.F;K;Z; I/. It is said to be in innovations form because the innovations, At, are
on both equations of the state space model.

Remark 3.15 It is to be noticed that the expression (3.12), where ‰i D HFi�1K,
i D 1; : : : ; t � 1, and ht D HFt�1, is satisfied for every innovations state space
model. Whether or not ht ! 0 depends on the eigenvalues of F. It will be shown
in Chap. 5 that, for stationary processes, the eigenvalues of F are always inside the
unit circle and, therefore, ht ! 0. Þ
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3.8 Minimality, Observability, and Controllability

As we will see later in Example 3.15, Akaike’s state space form has minimal state
vector dimension when the observations are scalar. However, in the multivariate
case, it is usually possible to obtain an innovations state space form with a state
vector of dimension smaller than rk, where r D max. p; q/ and k is the dimension
of Yt. The reason for this is that, given a VARMA.p; q/ model (3.8) or its Akaike’s
state space form (3.13) and (3.14), where H D ŒI; 0; : : : ; 0�, and F and K are given
by (3.11), the Hankel matrix,

Ht D

2

6
6
6
4

‰1 ‰2 ‰3 � � � ‰t

‰2 ‰3 ‰4 � � � ‰tC1
:::

:::
:::

: : :
:::

‰t ‰tC1 ‰tC2 � � � ‰2t�1

3

7
7
7
5
;

corresponding to the transfer function ‰.z/ D ˆ�1.z/‚.z/ D P1
jD0 ‰jzj D I C

zH.I � Fz/�1K has constant rank rH such that rH � rk for t � r, where r D
max. p; q/ and k D dim.Yt/. This is due to the fact that the relation ˆ.z/‰.z/ D
‚.z/ implies

Œ0; : : : ; 0;ˆr; ˆr�1; : : : ; ˆ1; I�Ht D 0; t > r;

and, therefore, all the block rows of Ht beyond the rth block row are linearly
dependent on the preceding block rows. If k D 1, the relation rH D r holds when
ˆ.z/ and ‚.z/ have no common factors, but if k > 1, rH can be much smaller than
rk. This issue has to do with the concept of minimality for state space systems.

Definition 3.12 An innovations state space form (3.13) and (3.14) is said to be
minimal if the state vector has minimal dimension among all innovation forms that
have the same transfer function ‰.z/ D I C zH.I � Fz/�1K.

There is a connection between minimality and the concepts of controllability
and observability.

Definition 3.13 The pair of matrices ŒA;B� such that A and B have dimensions
a � a and a � b is said to be controllable if the controllability matrix, Ca D
ŒB;AB; : : : ;Aa�1B�, has full row rank. The pair ŒA;C� such that A and C have
dimensions a � a and c � a is said to be observable if the observability matrix,
Oa D ŒC0;A0C0; : : : ; .Aa�1/0C0�0, has full column rank.

Given an innovations state space form (3.13) and (3.14), if ŒF;K� is not
controllable and K ¤ 0, by the results in Chap. 5, there exists a nonsingular matrix
P such that

P�1FP D
�

Fc F12
0 FNc

�
; P�1K D

�
Kc

0

�
(3.15)
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and the pair ŒFc;Kc� is controllable. If we premultiply (3.13) by P�1, a new state
space form is obtained where the state vector is Nxt D P�1xt. If we partition Nxt D
.x

0

c;t; x
0Nc;t/0 conformally to (3.15), it is not difficult to verify that xNc;t evolves according

to xNc;tC1 D FNcxNc;t. Thus, the influence of the initial part, xNc;1, will persist unless it is
zero. If the eigenvalues of FNc are all smaller than one in modulus, the influence of xNc;1
will diminish until it eventually disappears. Partitioning P D ŒPc;P2� conforming
to (3.15) and defining Hc D HPc, the state space form

xc;tC1 D Fcxc;t C KcAt (3.16)

Yt D Hcxc;t C At (3.17)

is obtained. It will be shown later in this section that if the pair ŒFc;Hc� is observable,
then (3.16) and (3.17) is minimal. Note that the output process, fYtg, can be different
from the original output process, fYtg. Conditions for the equality of the two
processes will also be given later in this section.

In a similar way, if ŒF;H� is not observable in (3.13) and (3.14), by the results in
Chap. 5, there exists a nonsingular matrix P such that

P�1FP D
�

Fo 0

F21 FNo

�
; P�1K D

�
Ko

K2

�
; HP D ŒHo; 0�; (3.18)

and the pair ŒFo;Ho� is observable. As in the noncontrollable case, using P�1 it is
possible to transform (3.13) and (3.14) into an observable state space form. Letting
Nxt D P�1xt and partitioning Nxt D .x0

o;t; x
0

No;t/0 conformally to (3.18), the following
state space form is obtained

xo;tC1 D Foxo;t C KoAt

Yt D Hoxo;t C At:

Here, the same output process is generated if the initial state satisfies P�1x1 D
.x0

o;1; x
0

No;1/0.
To see the connection of minimality to controllability and observability, note that

for the state space form (3.13) and (3.14) the following equality holds

Ht D

2

6
6
6
4

‰1 ‰2 ‰3 � � � ‰t

‰2 ‰3 ‰4 � � � ‰tC1
:::

:::
:::

: : :
:::

‰t ‰tC1 ‰tC2 � � � ‰2t�1

3

7
7
7
5
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D

2

6
66
4

HK HFK HF2K � � � HFt�1K
HFK HF2K HF3K � � � HFtK
:::

:::
:::

: : :
:::

HFt�1K HFtK HFtC1K � � � HF2t�2K

3

7
77
5

D

2

6
6
6
4

H
HF
:::

HFt�1

3

7
7
7
5
�
K;FK; : : : ;Ft�1K

�
: (3.19)

The precise relation is given by the following theorem.

Theorem 3.3 Given an innovations state space form (3.13) and (3.14), a necessary
and sufficient condition for minimality is that the pairs ŒF;K� and ŒF;H� be
controllable and observable.

Proof Let n D dim.xt/. Then, the Hankel matrix of order n, Hn, is

Hn D

2

66
6
4

‰1 ‰2 ‰3 � � � ‰n

‰2 ‰3 ‰4 � � � ‰nC1
:::

:::
:::

: : :
:::

‰n ‰nC1 ‰nC2 � � � ‰2n�1

3

77
7
5

D

2

6
6
6
4

H
HF
:::

HFn�1

3

7
7
7
5
�
K;FK; : : : ;Fn�1K

�

D OnCn:

If ŒF;K� and ŒF;H� are controllable and observable, then the rank of Hn is n and
cannot be reduced. Therefore, the state space form is minimal. Conversely, if the
state space form is minimal and, for example, ŒF;K� is not controllable, there is a
nonsingular matrix P such that (3.15) holds and ŒFc;Kc� is controllable. Then, the
Hankel matrix Hn can be expressed as

Hn D

2

6
6
6
4

H
HF
:::

HFn�1

3

7
7
7
5

PP�1 �K;FK; : : : ;Fn�1K
�
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D

2

6
66
4

Hc 

HcFc 

:::

:::

Hc.Fc/
n�1 


3

7
77
5

�
Kc FcKc � � � .Fc/

n�1Kc

0 0 � � � 0

�

D

2

6
6
6
4

Hc

HcFc
:::

Hc.Fc/
n�1

3

7
7
7
5
�

Kc FcKc � � � .Fc/
n�1Kc

�
;

where the asterisks indicate elements that are not relevant to our discussion.
Therefore, we have found an innovations form, (3.16) and (3.17), with the same
transfer function, ‰.z/ D I C zH.I � Fz/�1K D I C zHc.I � Fcz/�1Kc, and
dim.xc;t/ < n, a contradiction. The case in which ŒF;H� is not observable can be
proved analogously. �

Example 3.14 Let the innovations state space model

xtC1 D axt

Yt D xt C At;

where Yt is scalar and a is a number different from zero. Thus, F D a, K D 0 and
H D 1. It is easy to see that the pair ŒF;H� is observable and the pair ŒF;K� is not
controllable. Therefore, the state space model is not minimal. In fact, according
to (3.19), the Hankel matrices, Ht, are all zero and this means that the transfer
function is ‰.z/ D 1. A minimal state space form is

Yt D At;

where the state vector is zero. If jaj < 1 and the process is assumed to start in the
infinitely remote past, the processes fYtg and fYtg coincide. But if jaj � 1 and the
processes are assumed to start at time t D 1, then Yt D at�1x1 C At and Yt D At,
t � 1. We can eliminate the state in the equations for fYtg as follows. Stack first the
observations Yt and YtC1 to get

�
Yt

YtC1

�
D
�
1

a

�
xt C

�
At

AtC1

�
:

Then, premultiply by the vector Œ�a; 1�. In this way, the following ARMA model is
obtained

.1 � aB/Yt D .1 � aB/At:
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The factor 1 � az can be canceled when jaj < 1 and the process is assumed to start
in the infinitely remote past. However, the initial conditions should be taken into
account when the process is assumed to start at some finite time in the past. Þ

It follows from (3.19) and the Cayley–Hamilton theorem that for an innovations
state space model (3.13) and (3.14) the Hankel matrices, Ht, have finite rank for
t > r, where r is the state dimension. To see this, suppose that P.�/ D det.�I �
F/ D �r C a1�r�1 C � � � C ar is the characteristic polynomial of F. Then, by the
Cayley–Hamilton theorem, we get Fr C a1Fr�1 C � � � C arI D 0 and this implies
that the i-block of rows of the matrix ŒH0;F0H0; : : : ;Ft�10

H0�0 depends linearly on
the previous block rows for t > r. Since, as mentioned earlier, the Hankel matrices
corresponding to VARMA models (3.8) have finite rank, we have proved half of the
following proposition.

Proposition 3.7 The Hankel matrices, Ht, corresponding to VARMA models (3.8)
as well as those corresponding to innovations state space forms (3.13) and (3.14)
have finite rank for t > r, where r is a fixed positive integer. Conversely, let the
linear time series model Yt D P1

jD0 ‰jAt�j D ‰.B/At, where ‰.B/ D P1
jD0 ‰jBj

and B is the backshift operator, BAt D At�1. If there exists a positive integer, r, such
that the Hankel matrices, Ht, corresponding to this model have finite rank for t > r,
then there exist a VARMA model (3.8) and an innovations state space form (3.13)
and (3.14) with the same transfer function, ‰.z/ D P1

jD0 ‰jzj.

Proof Suppose a linear time series model, Yt D ‰.B/At, such that the Hankel
matrices Ht have finite rank for t > r, where r is a fixed positive integer. Since
all the block rows of Ht beyond the rth block row are linearly dependent on the
preceding block rows, by the structure of the Ht matrices, there exist matrices ˆi,
i D 1; : : : ; r satisfying

Œ0; : : : ; 0;ˆr; ˆr�1; : : : ; ˆ1; I�Ht D 0; t > r:

Define
Pi

jD0 ˆj‰i�j D ‚i, i D 0; 1; : : : ; r, where ˆ0 D I. Then,

ˆ.B/Yt D ˆ.B/
�
I C‰1B C � � � C‰t�1Bt�1 C‰tB

t C � � � �At

D ‚.B/At; t > r;

and thus fYtg satisfies the VARMA model ˆ.B/Yt D ‚.B/At. Since a VARMA
model can be put into Akaike’s state space form, the proof is complete. �

Since we are interested in linear time series models with some structure, we will
make the following assumption.

Assumption 3.1 Given a transfer function,‰.z/ D I CP1
iD1 ‰izi, we assume that

the Hankel matrices, Ht, have finite rank for t > r, where r is a fixed positive integer.

For Akaike’s state space form the matrix ŒH0;F0H0; : : : ;Fr�10

H0�0 is the unit
matrix and, therefore, the observability matrix, Ork D ŒH0;F0H0; : : : ;Frk�10

H0�0,
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has full rank. Thus, Akaike’s state space form is always observable. It is minimal
if, and only if, ŒF;K� is controllable. It will be seen in Example 3.15 that if the
observations are scalar (k D 1) andˆ.z/ and‚.z/ have no common factors, the pair
ŒF;K� is controllable, so that in that case Akaike’s state space form is minimal. But
in the multivariate case .k > 1), even if ˆ.z/ and ‚.z/ are left coprime (see later
in this section), ŒF;K� is often not controllable. This leads to the study of echelon
forms, that will be considered later in the book and are defined in terms of certain
algebraic invariants called Kronecker indices and McMillan degree.

Definition 3.14 Under Assumption 3.1, the McMillan degree of the transfer func-
tion ‰.z/ D I CP1

iD1 ‰izi is defined as the rank, rH , of the Hankel matrices Ht for
all t > r.

Remark 3.16 Note that the structure of the Hankel matrices Ht and the fact that
they have finite rank for t > r implies that if ht.i; j/, t > r, is the jth row in the
ith block or rows of Ht and ht.i; j/ depends linearly on ht.i1; j1/; : : : ; ht.im; jm/ with
is < i, s D 1; : : : ;m, then the row htC1.i C 1; j/ depends linearly on htC1.i1 C
1; j1/; : : : ; htC1.im C 1; jm/. Þ

The definition of Kronecker indices has to do with the selection of a basis for the
rows of Ht when Ht has finite rank for t > r.

Definition 3.15 Under Assumption 3.1, the ith Kronecker index, ni, i D 1; 2; : : : ; k,
of the transfer function ‰.z/ D I CP1

iD1 ‰izi is the smallest number such that the
ith row in the .ni C 1/th block of rows in the Hankel matrix Ht, t > r, is linearly
dependent on the previous rows of Ht.

Proposition 3.8 If, for i D 1; 2; : : : ; k, we select the ni linearly independent ith
rows of the first ni blocks of rows in Ht, t > r, we obtain a basis for the space of
rows of Ht. Therefore, the sum of the Kronecker indices is equal to the McMillan
degree,

kX

iD1
ni D rH :

Proof Under the assumption of the proposition, due to the structure of Ht, t > r, all
the ith rows in the jth blocks of rows such that j > ni will also be linearly dependent
on the rows preceding the ith row in the .ni C 1/th block of rows. �

Proposition 3.9 The dimension of the state vector of any minimal state space form
is equal to the McMillan degree.

Proof It is an immediate consequence of Theorem 3.3. �

The issue of echelon forms, Kronecker indices and McMillan degree will be
further addressed in Chap. 5.

Example 3.15 When the observations fYtg are scalar and the polynomialsˆ.z/ and
‚.z/ have no common factors, Akaike’s state space representation is minimal. To
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see this, we have to check that ŒF;H� is observable and ŒF;K� is controllable. The
pair ŒF;H� is observable because ŒH0;F0H0; : : : ;Fr�10

H0�0 is the unit matrix. To see
that ŒF;K� is controllable, by the results in Chap. 5, it suffices to verify that there
does not exist a left eigenvector of F that is orthogonal to K. Assume to the contrary,
that is, there is a nonzero vector v D .v1; : : : ; vr/

0 such that v0F D �v0 and v0K D 0

for some constant �, where r D max.p; q/. Then, 0 D ˆrvr C �v1, v1 D ˆr�1vr C
�v2, : : :, vr�1 D ˆ1vr C �vr. If vr D 0, then v D 0 and we have a contradiction.
Assume then vr ¤ 0. By back substituting in the previous equalities, it is obtained
that vi D .ˆr�i C�ˆr�i�1C� � �C�r�i/vr, i D 1; : : : ; r�1. Taking these expressions
into v0K D 0 and considering the relation ˆ.z/‰.z/ D ‚.z/ yields

v0K D v1‰1 C � � � C vr‰r

D f‰1
�
ˆr�1 C �ˆr�2 C � � � C �r�1	C � � � C‰r�1 .ˆ1 C �/C‰rgvr

D f‚r �ˆr C � .‚r�1 �ˆr�1/C � � � C �r�1 .‚1 �ˆ1/gvr (3.20)

D 0;

where ‚i D 0 if i > q. Because � is an eigenvalue of F and the eigenvalues of F
are the inverse roots of ˆ.z/, the equality ˆr C ˆr�1� C � � � C ˆ1�

r�1 C �r D 0

holds. This, together with vr ¤ 0 and (3.20), implies �r C‚1�
r�1 C � � � C‚r D 0,

but then the polynomials ˆ.z/ and ‚.z/ would have a common factor and we have
found a contradiction. Þ

Example 3.16 Let fYtg follow the ARMA.2; 2/ process

Yt C �1Yt�1 C �2Yt�2 D At C �1At�1 C �2At�2;

where fAtg � WN.0; �2/. This model has the minimal state space representation

xtC1 D Fxt C KAt

Yt D Hxt C At;

where

F D
�
0 1

��2 ��1
�
; K D

�
 1
 2

�
;

 .z/ D P1
jD0  jzj D �.z/=�.z/, �.z/ D 1 C �1z C �2z2, �.z/ D 1 C �1z C �2z2,

xt D .xt;1; xt;2/
0 and H D .1; 0/. Þ

The next theorem gives a necessary and sufficient condition for two innovations
state space forms to be minimal.
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Theorem 3.4 Two minimal state space forms, (3.13) and (3.14) and

NxtC1 D FNxt C KAt (3.21)

Yt D H Nxt C At; (3.22)

have the same transfer function if, and only if, there exists a nonsingular matrix, P,
such that F D P�1FP, K D P�1K and H D HP.

Proof If a nonsingular matrix P exists with F D P�1FP, K D P�1K and H D HP,
then the Hankel matrix, Ht, can be expressed as

Ht D

2

66
6
4

H
HF
:::

HFt�1

3

77
7
5

PP�1 �K;FK; : : : ;Ft�1K
�

D

2

66
6
6
4

H
HF
:::

HF
t�1

3

77
7
7
5

h
K FK � � � F

t�1
K
i

and both state space forms have the same transfer function. Conversely, suppose that
both state space forms have the same transfer function. Let n D dim.xt/ and let On,
Cn, On, and Cn be the observability and controllability matrices of (3.13) and (3.14)
and (3.21) and (3.22), respectively. Then,

Hn D OnCn D OnCn

and thus

Cn D .O0
nOn/

�1O0
nOnCn and Cn D .O

0
nOn/

�1O0
nOnCn:

Letting P D .O0
nOn/

�1O0
nOn and P D .O

0
nOn/

�1O0
nOn, it follows that PP D I. Then,

from the equalities

OnFCn D OnFCn;

Cn D P�1Cn and On D OnP, we get F D P�1FP, K D P�1K and H D HP. �

We now turn to the question of finding solutions to the stochastic difference
equation (3.8). First we note that the polynomial matrices ˆ.z/ and ‚.z/ in (3.8)
should have no left factors other than unimodular polynomial matrices, that
is, polynomial matrices such that their determinants are nonzero constants. Two
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polynomial matrices satisfying this property are called left coprime. The property
of left coprimeness is an extension to the multivariate case of the property of having
no common factors other than constants when considering two scalar polynomials.

The following lemma will be useful later.

Lemma 3.1 Let the matrices A and B have dimensions p � k and k � p. Then,

det.Ip C AB/ D det.Ik C BA/:

Proof Consider the equality

�
Ip A
0 Ik

� �
Ip �A
B Ik

�
D
�

Ip C AB 0

B Ik

�
:

Then, the lemma follows from the identity

det

�
A C
B D

�
D det.A/ det.D � BA�1C/:

�

Suppose the VARMA model (3.8) and consider Akaike’s state space representa-
tion (3.13) and (3.14), where F and K are given by (3.11) and H= ŒI; 0; : : : ; 0�. The
following proposition gives expressions for detŒˆ.z/� and detŒ‚.z/� in terms of the
matrices in (3.13) and (3.14).

Proposition 3.10 Suppose the VARMA model (3.8). Then, detŒˆ.z/� and detŒ‚.z/�
can be expressed as

detŒˆ.z/� D det.I � Fz/ and detŒ‚.z/� D detŒI � .F � KH/z�

in terms of the matrices of Akaike’s innovations state space representation (3.13)
and (3.14), where F and K are as in (3.11) and H D ŒI; 0; : : : ; 0�. Thus, the roots of
ˆ.z/ and‚.z/ coincide with the inverses of the eigenvalues of F and F � KH.

Proof It is a standard exercise in linear algebra to show that detŒˆ.z/� D det.I�Fz/.
To prove the formula for detŒ‚.z/�, consider first the transfer functions xt D z.I �
Fz/�1KAt and Yt D ŒI CzH.I �Fz/�1K�At corresponding to (3.13) and (3.14). Then,
ˆ�1.z/‚.z/ D I C zH.I � Fz/�1K and, using Lemma 3.1, it is obtained that

detŒ‚.z/� D detŒˆ.z/� detŒˆ�1.z/‚.z/�

D det.I � Fz/ detŒI C zH.I � Fz/�1K�

D det.I � Fz/ detŒI C z.I � Fz/�1KH�

D detŒI � .F � KH/z�:

�
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Remark 3.17 For any other innovations form obtained from Akaike’s innovations
state space representation (3.13) and (3.14), where F and K are as in (3.11) and
H D ŒI; 0; : : : ; 0�, by means of a transformation,

x�
tC1 D F�x�

t C K�At

Yt D H�x�
t C At;

where F� D Q�1FQ, K� D Q�1K, H� D HQ and Q is nonsingular, it holds that

detŒˆ.z/� D det.I � F�z/ and detŒ‚.z/� D detŒI � .F� � K�H�/z�:

To see this, consider, for example, that det.I � F�z/ D detŒQ�1.I � Fz/Q�. Þ

Remark 3.18 As mentioned earlier, if Akaike’s state space representation is not
minimal, the pair ŒF;K� is not controllable. In that case, there is a nonsingular matrix
P such that (3.15) holds and ŒFc;Kc� is controllable. Then, proceeding as in the proof
of Theorem 3.3, the Hankel matrix Ht, t � r, can be expressed as

Ht D

2

6
6
6
4

‰1 ‰2 ‰3 � � � ‰t

‰2 ‰3 ‰4 � � � ‰tC1
:::

:::
:::

: : :
:::

‰t ‰tC1 ‰tC2 � � � ‰2t�1

3

7
7
7
5

D

2

6
6
6
4

Hc

HcFc
:::

Hc.Fc/
n�1

3

7
7
7
5

�
Kc FcKc � � � .Fc/

n�1Kc

�
; t � r: (3.23)

Because the matrix ŒH0;F0H0; : : : ;Fr�10

H0�0 is the unit matrix, Irk, where dim.Yt/ D
k, the matrix ŒH0

c;F
0
cH0

c, : : : ; .Fc/
n�10

H0
c�

0 has full rank and the pair ŒFc;Kc� is
observable. Thus, the representation (3.16) and (3.17) so constructed is minimal.
Note that both Akaike’s representation and (3.16) and (3.17) produce exactly the
same ‰i weights of the transfer function ‰.z/ D I CP1

iD1 ‰izi. They generate the
same process fYtg only if the initial conditions are appropriately selected, as we will
see in the following theorem. Þ

Theorem 3.5 Assume that the process fYtg follows a VARMA model (3.8) and
Akaike’s state space model is not minimal. Then, there exists a nonsingular matrix
P such that (3.15) holds with ŒFc;Kc� controllable and (3.16) and (3.17) minimal,

detŒˆ.z/� D det.I � Fcz/det.I � FNcz/ (3.24)
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and

detŒ‚.z/� D detŒI � .Fc � KcHc/z�det.I � FNcz/; (3.25)

where det.I �FNcz/ D 1 if, and only if,ˆ.z/ and‚.z/ are left coprime. In addition, if
the innovations process, fAtg, is given and Y1Wr D .Y 0

1, : : :, Y 0
r/

0 are initial conditions
such that P�1x1 D .x0

c;1; 0/
0, where the partition is conformal to (3.15), then (3.16)

and (3.17), Akaike’s representation, and (3.8) all generate the same process fYtg.

Proof Since Akaike’s state space model is not minimal, we proceed as in
Remark 3.18 to construct the minimal state space model (3.16) and (3.17). If
we take Y1Wr as initial conditions such that P�1x1 D .x0

c;1; x
0Nc;1/0 D .x0

c;1; 0/
0 and

assume that the innovations process, fAtg, is given, we can write

Yt D HFt�1x1 C At C HKAt�1 C � � � C HFt�2KA1

D H.PP�1/Ft�1.PP�1/x1 C At C‰1At�1 C � � � C‰t�1A1
D Hc.Fc/

t�1xc;1 C At C HcKcAt�1 C � � � C Hc.Fc/
t�2KcA1; t D 1; 2; : : : ;

and we see that the same process, fYtg, is generated by Akaike’s representa-
tion, (3.16) and (3.17), and, obviously, (3.8).

Letting P�1xt D .x0
c;t; x

0
;t/

0, we can write

�
xc;tC1
xNc;tC1

�
D
�

Fc F12
0 FNc

� �
xc;t

xNc;t

�
C
�

Kc

0

�
At

Yt D ŒHc;HP2�

�
xc;t

xNc;t

�
C At; t D 1; 2; : : :

Formulas (3.24) and (3.25) follow from this, Proposition 3.10 and Remark 3.17. To
prove the statement about det.I �FNcz/, express first (3.16) as .I �FcB/xc;t D KcAt�1
and premultiply then this expression byƒ.B/ = adj.I � FcB/, where adj.M/ denotes
the adjoint matrix of M, to get det.I�FcB/xc;t D ƒ.B/KcAt�1. Substituting in (3.17),
it is obtained that

det.I � FcB/Yt D Hcƒ.B/KcAt�1 C det.I � FcB/At: (3.26)

Since the previous expression is a VARMA model for fYtg, if ˆ.z/ and‚.z/ are left
coprime in (3.8), we conclude that the autoregressive polynomial matrix in (3.26),
det.I � Fcz/I, must contain all the roots of detŒˆ.z/� and, therefore, det.I � FNcz/ D
1. Conversely, if det.I � FNcz/ D 1 and the polynomial matrices ˆ.z/ and ‚.z/
are not left coprime, we can cancel some nonunimodular common left factor to
get polynomial matrices Q̂ .z/ and Q‚.z/ with degree of detŒ Q̂ .z/� strictly less than
degree of detŒˆ.z/�. By the first part of the proof, we would get another minimal
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representation,

x�
tC1 D F�x�

t C K�At

Yt D H�x�
t C At;

where F� D Q�1FcQ for some matrix Q and, because Q̂ .z/ and Q‚.z/ are left
coprime, det.I � F�z/ = detŒ Q̂ .z/�. This would imply det.I � F�z/ D det.I � Fcz/
and, therefore, detŒ Q̂ .z/� D detŒˆ.z/�, a contradiction. �

Remark 3.19 If the process fYtg is stationary and we assume that the origin is in the
infinitely remote past, then the condition P�1x1 D .x0

c;1; 0/
0 in the last theorem is

automatically satisfied. This is a consequence of the definition of x1 and the relation

2

6
6
6
66
6
4

YtC1jt
YtC2jt
:::

YtCijt
:::

3

7
7
7
77
7
5

D

2

6
6
6
66
6
4

‰1 ‰2 � � � � � �
‰2 ‰3 � � � � � �
:::

:::
:::
:::

‰i ‰iC1 � � � � � �
:::

:::
:::
:::

3

7
7
7
77
7
5

2

6
6
6
66
6
4

At

At�1
:::

At�i
:::

3

7
7
7
77
7
5

;

where YtCijt D YtCi �Pi�1
jD0 ‰jAtCi�j is the predictor of YtCi based on fYs W s � tg.

Thus, relations among the rows of the Hankel matrices are equivalent to relations
among predictors. The expression P�1x1 D .x0

c;1; 0/
0 simply means that there are

relations among the predictors in the initial state vector, x1. More details about these
relations will be given in Chap. 5. Þ

The concept of minimality is similar to left coprimeness for VARMA models
(Hannan & Deistler, 1988; Kailath, 1980). The following theorem states the precise
relationship between both concepts and establishes also the equivalence between
VARMA models and innovations state space forms.

Theorem 3.6 The transfer function, ‰.z/ D ˆ�1.z/‚.z/ , of a VARMA model can
always be represented by a minimal innovations state space model with state vector
dimension equal to the McMillan degree of ‰.z/. Conversely, the transfer function,
‰.z/ D I C zH.I � Fz/�1K, of an innovations state space model can always be
represented by a VARMA model (3.8) with ˆ.z/ and ‚.z/ that are left coprime and
McMillan degree of ‰.z/ D ˆ�1.z/‚.z/ equal to maxfı detŒˆ.z/�, ıdet Œ‚.z/�g,
where, given a polynomial p.z/, ıp.z/ denotes the degree of p.z/.

Proof Suppose a VARMA model (3.8), let r D maxf p; qg, and let ˆ.z/ and ‚.z/
be the autoregressive and moving average polynomial matrices. Consider Akaike’s
state space form. Then, proceeding as in Remark 3.18, we construct a minimal
and, therefore, controllable and observable state space model (3.16) and (3.17) with
transfer function ‰.z/ D I C zH�.I � F�z/�1K� D ˆ�1.z/‚.z/. By (3.23), it is
clear that the rank of the Hankel matrix Ht, t � r, is equal to the dimension of the
state vector x�

t .
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Conversely, suppose that fYtg follows an innovations state space model (3.13)
and (3.14) with transfer function I C zH.I � Fz/�1K D ‰.z/ and let the Kronecker
indices be ni, i D 1; : : : ; k. The definition of the Kronecker indices and the
structure of the Hankel matrices Ht imply that there exists a unique matrix, ˆ D
Œˆr; : : : ; ˆ1; I�, where r D maxfni W i D 1; : : : ; kg, such that ˆHrC1 D 0. The
rows of ˆ simply express each of the rows of the .r C 1/th block of rows of HrC1
as a linear combination of the basis of rows of Proposition 3.8. By (3.19), this
implies ˆOrC1 D 0 where OrC1 D ŒH0;F0H0; : : : ;F0rH0�0. Thus, if we stack the
observations to get

YtWtCr D OrC1xt C O‰rC1AtWtCr (3.27)

where YtWtCr D .Y 0
t ; : : : ;Y

0
tCr/

0, AtWtCr D .A0
t; : : : ;A

0
tCr/

0 and

O‰rC1 D

2

6
6
6
4

I
HK I
:::

:::
: : : I

HFr�1K � � � � � � HK I

3

7
7
7
5

D

2

6
6
6
4

I
‰1 I
:::

:::
: : : I

‰r � � � � � � ‰1 I

3

7
7
7
5
; (3.28)

and we premultiply (3.27) by ˆ, the following VARMA model is obtained

ˆ.B/Yt D ‚.B/At;

where ˆ.z/ D I C ˆ1z C � � � C ˆrzr , ‚.z/ D I C ‚1z C � � � C ‚rzr , and the ‚i,
i D 1; : : : ; r, are given by the product ˆ O‰rC1. This VARMA model must be left
coprime because otherwise we can cancel some common nonunimodular left factor
to get left coprime polynomial matrices, Ô .z/ and O‚.z/, with degrees of detŒ Ô .z/�
and detŒ O‚.z/� strictly less than the degrees of detŒˆ.z/� and detŒ‚.z/�, respectively,
Ô .0/ D I and O‚.0/ D I. Premultiplying (3.27) by the matrix Ô D Œ Ô r; : : : ; Ô

1; I�,
where Ô j D 0 if j > s and Ô .z/ D Ps

iD0 Ô izi, we obtain Ô OrC1 D 0 and, therefore,
Ô HrC1 D 0. Since the degree of detŒ Ô .z/� is less than the degree of detŒˆ.z/�,
the expression Ô HrC1 D 0 implies a simplification in the unique representation,
ˆHrC1 D 0, of the rows of the .r C 1/th block of rows of HrC1 as a linear
combination of the basis of rows of Proposition 3.8, a contradiction.

To prove the last statement of the theorem, assume without loss of generality that
the polynomial matrices ˆ.z/ and ‚.z/ are in echelon form, defined in Sect. 5.9.1.
Thus,ˆ.z/ and‚.z/ are left coprime and are of the form

ˆ.z/ D ˆ0 Cˆ1z C � � � Cˆrz
r; ‚.z/ D ˆ0 C‚1z C � � � C‚rz

r;

whereˆ0 is a lower triangular matrix with ones in the main diagonal and the degree
of each entry of both the ith rows of ˆ.z/ and ‚.z/ is less than or equal to ni,
i D 1; : : : ; k.
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Next, let us express the polynomial matrix ˆ.z/ in the form

ˆ.z/ D diag.zn1 ; : : : ; znk/ˆc Cˆrp.z/;

whereˆc is a constant matrix andˆrp.z/ is a polynomial matrix such that the degree
of each term of its ith row is less than ni, i D 1; : : : ; k. For example, if

ˆ.z/ D
�
3z2 � 2z C 1 �5z2

3z C 2 �z C 1

�
;

then

ˆ.z/ D
�

z2 0
0 z

� �
3 �5
3 �1

�
C
��2z C 1 0

2 1

�
:

Similarly, let

‚.z/ D diag.zn1 ; : : : ; znk /‚c C‚rp.z/;

where‚c and‚rp.z/ are defined analogously to ˆc and ˆrp.z/.
With these definitions, we will now prove that ıdetŒˆ.z/� D n if, and only if, ˆc

is nonsigular, where n D Pk
iD1 ni is the McMillan degree. Once this is proved, we

will also have proved that ıdetŒ‚.z/�= n if, and only if, ‚c is nonsingular because
‚.z/ is also in echelon form. To prove the first proposition, let ˆc D LQ be the
LQ decomposition of ˆc, where L and Q are a lower triangular and an orthogonal
matrix, respectively. Then,

det Œˆ.z/� D det
�
diag.zn1 ; : : : ; znk /L C‚rp.z/Q

0� det.Q/

D det.ˆc/z
Pk

iD1 ni C terms with degree less than n:

Returning to the last statement of the theorem and assuming without loss
of generality that ˆ.z/ and ‚.z/ are in echelon form, if ıdetŒˆ.z/� < n and
ıdetŒ‚.z/� < n, then, by the previous propositions, both ˆc and ‚c are singular
matrices. But this implies that some Kronecker index could be made smaller, a
contradiction. �

Remark 3.20 It will be shown in Theorem 5A.7 of the Appendix to Chap. 5 that
if the transfer function of a VARMA model (3.8) in echelon form, defined in
Sect. 5.9.1, is expressed in terms of the forward operator, then the McMillan degree
coincides with the degree of the determinant of the denominator polynomial matrix.
This is one of the advantages of working with the forward instead of the backshift
operator. More details about VARMA models expressed in terms of the forward
operator will be given in the Appendix to Chap. 5. Þ



3.8 Minimality, Observability, and Controllability 151

Theorem 3.7 Assume that ˆ.z/ and ‚.z/ are left coprime in (3.8). Then, the
stochastic difference equation (3.8) has a unique causal stationary nondeterministic
solution of full rank if, and only if, the roots of the polynomial detŒˆ.z/� are all
greater than one in modulus.

Proof Consider Akaike’s state space representation corresponding to ˆ.z/ and
‚.z/. If it is not minimal, we use the procedure described in Remark 3.18 to
obtain a minimal state space representation from it. Thus, by Theorem 3.5, we can
assume without loss of generality that there is a minimal innovations state space
representation (3.13) and (3.14) such that I C zH.I � Fz/�1K D ˆ�1.z/‚.z/ and
det.I � Fz/ D detŒˆ.z/�.

To prove sufficiency, assume that all the nonzero roots of the polynomial
detŒˆ.z/� are greater than one in modulus. Then, the eigenvalues of F have all
modulus less than one. Let the Schur decomposition of F be F D PUP0, where
P is an orthogonal matrix and U is an upper triangular matrix. Then, kFjk D kUjk
and letting U D D C N, where D is a diagonal matrix with the eigenvalues of F in
the main diagonal and N is upper triangular with zeros in the main diagonal, we can
write .D C N/ j D D j.I C Fj/, where Fj is a matrix such that all of its elements tend
to zero as j ! 1. Thus, for j sufficiently large kUjk �  jK, where  D j�Mj < 1,
�M is the eigenvalue of F with largest modulus and K is a positive constant. From
this it follows that the series

P1
jD0 kFjk converges and, by Propositions 3.4 and 3.5

and Corollary 3.1, the series
P1

jD0 FjKAt�1�j converges in mean square and with
probability one to a unique causal stationary process fxtg. It is easy to see that this
process satisfies the stochastic difference equation (3.13). In addition, fxtg is the
unique causal stationary solution of (3.13). To see this, assume there is another
solution fx�

t g. Then, the difference Ht D xt � x�
t would be stationary and would

satisfy the homogeneous equation HtC1 D FHt. Letting V D Var.Ht/, we would
have .I � F ˝ F/vec.V/ D 0 and since F has eigenvalues with modulus less than
one, the only solution would be V D 0. Thus, the process Yt D Hxt C At is a
stationary solution of (3.8). To see that it is the unique causal stationary solution,
assume that there is another solution fY�

t g. Then, we would get another solution x�
t

of (3.13) and, because it is unique, it would coincide with xt. The solution fYtg is
nondeterministic of full rank because Var.Yt/ D HVH0 C†, where V D Var.xt/ and
† D Var.At/ is positive definite.

To prove necessity, assume that a unique causal stationary nondeterministic
solution of full rank of (3.8) exists. Then, because Hxt D Yt � At is stationary
in (3.14) and the pair ŒF;H� is observable, (3.13) has a causal stationary solution
fxtg such that V D FVF0 C K†K0, where V D Var.xt/. To see this, stack first the
observations,

YtWtCr�1 D Orxt C O‰rAtWtCr�1;

where r is the dimension of xt, YtWtCr�1 D .Y 0
t ;Y

0
tC1; : : : ;Y 0

tCr�1/0, AtWtCr�1 D .A0
t,

A0
tC1, : : : ;A0

tCr�1/0, Or D ŒH0;F0H0; : : : ;F0r�1H0�0 and O‰r is that of (3.28) but with
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r C 1 replaced with r. Then, premultiply by O0
r and .O0

rOr/
�1 in succession to get

xt D .O0
rOr/

�1O0
r.YtWtCr�1 � O‰rAtWtCr�1/;

where it is to be noted that O0
rOr is nonsingular because ŒF;H� is observable and Or

has full rank. If there is an eigenvalue of F with j�j � 1, let v be a left eigenvector
of F associated with �. Then, we have .1 � j�j2/v0V Nv D v0K†K0 Nv, which implies
v0K D 0 and the pair ŒF;K� would not be controllable, contradicting the minimality
of (3.13) and (3.14). �

The following proposition gives a sufficient condition for invertibility of a
VARMA.p; q/model.

Proposition 3.11 Assume that ˆ.z/ and ‚.z/ are left coprime in (3.8) and this
stochastic difference equation has a unique stationary causal solution fYtg. Then,
fYtg is invertible if, and only if, the roots of the polynomial detŒ‚.z/� are all greater
than one in modulus.

Proof The proof is similar to that of Theorem 3.7. �
Example 3.17 Let fYtg follow the MA.2/ process

Yt D At C �1At�1 C �2At�2;

where fAtg � WN.0; �2/. Assuming that the two roots of the polynomial ‚.z/ D
1 C �1z C �2z2 are greater than one in modulus, the invertible model is At DP1

jD0 �jYt�j. The �j can be recursively obtained from the equality �.z/‚.z/ D 1,
where �.z/ D P1

jD0 �jzj. Thus,

�0 D 1

�1 C �1 D 0

�2 C �1�1 C �2 D 0

�k C �k�1�1 C �2 D 0; k > 2:

Þ

The state space form (3.13) and (3.14) will be very useful to obtain the forecasts
of Yt based on the finite sample fYt�1; : : : ;Y1g. This will be seen in more detail when
we describe forecasting using the Kalman filter.
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3.9 Finite Linear Time Series Models

Sometimes, we will consider linear time series models that are not stationary. A
simple example of that kind of model is the univariate random walk, defined by Yt D
Yt�1CAt, fAtg � WN.0; �2/. If we assume that Y1 is a random variable uncorrelated
with the At, t D 1; 2; : : :, we can express Yt as Yt D .Y1 � A1/C Pt�1

jD0 At�j. Then,
Var.Yt/ D Var.Y1/C.t�1/�2 and the process is not stationary. The processes of this
kind all need to start at some finite time in the past because otherwise the variance
would become infinite.

Definition 3.16 (Finite Linear Time Series Model) The k-dimensional stochastic
process fYtg is said to follow a finite linear time series model if

Yt D
t�1X

jD0
‰jAt�j C ht˛1; t D 1; 2; : : : ; (3.29)

where fAtg � WN.0;†/, the ‰j matrices have dimension k � l, ht is a deterministic
k � s matrix, and ˛1 is an s-dimensional stochastic vector that defines the initial
conditions. The vector ˛1 is specified as

˛1 D Aı C x;

where A is a nonstochastic matrix, x is a stochastic vector with a known distri-
bution, and ı is a stochastic vector with an undefined distribution that models the
uncertainty with respect to the initial conditions.

In a finite linear time series model, it is usually assumed that the vectors x and
ı are orthogonal and that ˛1 is orthogonal to the fAtg sequence. However, we will
not make any distributional assumptions on the initial vector, ˛1, in this section. The
vector ı comes into play when there is some unspecified part in ˛1, otherwise it is
zero.

In almost all practical applications the innovations, At, have the same dimension
as the observations, Yt, and thus the ‰j matrices have dimension k � k. The fact that
nonstationary linear time series models may need many parameters to be identified
leads to the search for some structure. Thus, in the previous example of a random
walk the model can be expressed as the stochastic difference equation Yt D Yt�1 C
At, fAtg � WN.0; �2/, and the representation is Yt D Pt�1

jD0 At�j C .Y1 � A1/, where
‰j D 1, ht D 1 and ˛1 D ı C x, ı D Y1 and x D �A1. The difference between this
model and the VARMA models described in the previous section lies in the presence
of unit roots in the autoregressive part of the difference equation. One generalization
of VARMA models to the nonstationary situation are VARMA models with unit
roots. These models are known in the univariate case as ARIMA models, where
the I stands for integrated. The random walk model is said to be integrated because
Yt is obtained by integrating (i.e., summing) the differenced process At D Yt � Yt�1.
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In VARMA models with unit roots, the autoregressive operator has to eliminate
the dependence on the initial conditions and, at the same time, reveal the structure
in the ‰j coefficients. That is, the following relations have to take place

.I Cˆ1z C � � � Cˆpzp/.I C‰1z C‰2z
2 C � � � / D I C‚1z C � � � C‚qzq (3.30)

.I Cˆ1z C � � � Cˆpzp/ht D 0; t > r D maxf p; qg; (3.31)

for some polynomial matrices ˆ.z/ D I C ˆ1z C � � � C ˆpzp and ‚.z/ D I C
‚1z C � � � C‚qzq, where the polynomial detŒˆ.z/� has some roots of unit modulus.
VARMA models with unit roots will be described in more detail later in the book.

In the rest of this section, all VARMA models and innovations state space models
will be assumed to start at some finite time in the past.

The concepts of McMillan degree and Kronecker indices can be extended to finite
linear time series models. To this end, suppose that fYtg follows the model (3.29)
and define the augmented Hankel matrix of order t, Ha

t , by

Ha
t D

2

6
6
6
4

K1 K2 K3 � � � Kt

K2 K3 K4 � � � KtC1
:::
:::

:::
: : :
:::

Kt KtC1 KtC2 � � � K2t�1

3

7
7
7
5
; (3.32)

where Kt D Œ‰t; ht�. We will make the following assumption.

Assumption 3.2 There exists a positive integer, r, such that the augmented Hankel
matrices, Ha

t , of the stochastic process (3.29) have finite rank for all t > r.

Remark 3.21 The structure of the augmented Hankel matrices, Ha
t , and the fact

that they have finite rank for t > r implies that if kt.i; j/, t > r, is the jth row in
the ith block or rows of Ha

t and kt.i; j/ depends linearly on kt.i1; j1/; : : : ; kt.im; jm/
with is < i, s D 1; : : : ;m, then the row ktC1.i C 1; j/ depends linearly on
ktC1.i1 C 1; j1/; : : : ; ktC1.im C 1; jm/. Therefore, the McMillan degree and the
Kronecker indices of finite linear time series models can be defined as in the case
of VARMA and innovations state space models. In fact, it will be shown in Chap. 5
that the initial vector, ˛1, can be chosen to have minimal dimension equal to the
McMillan degree. Þ

Example 3.18 Let the scalar ARMA model

.1C �1B C �2B
2/Yt D .1C �1B C �2B

2/At;

where the roots of the autoregressive polynomial can be anywhere in the complex
plane. One way to put this model into finite linear time series model form is as
follows. Define

˛1 D
�

Y1 � A1
Y2 � A2 �‰1A1

�
;
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where‰.z/ D P1
jD0 ‰jzj D .1C�1zC�2z2/�1.1C�1zC�2z2/, and let h1 D .1; 0/,

h2 D .0; 1/, and ht D ��1ht�1 � �2ht�2 for t > 2. Then, it is not difficult to verify
that Yt D Pt�1

jD0 ‰jAt�j C ht˛1, t D 1; 2; : : :.
If 1C�1zC�2z2 D .1C�z/.1�z/ with j�j < 1, then the process Ut D .1�B/Yt

is stationary. Assuming that Y1 has an unspecified distribution and is orthogonal to
fAtg, and letting ı D Y1, the vector ˛1 can be written as ˛1 D Aı C x with

A D
�
1

1

�
; x D

� �A1
U2 � A2 �‰1A1

�
:

Þ

The following theorem states the equivalence between VARMA models and finite
linear time series models.

Theorem 3.8 Given the innovations process fAtg � .0;†/, † > 0, the k-
dimensional process fYtg follows a VARMA model (3.8) with initial conditions
fY1; : : : ;Yrg, r D maxfp; qg, if, and only if, it follows a finite linear time series
model (3.29) with the same initial conditions and dim.˛1/ D kr that satisfies

rX

jD0
ˆjŒ‰t�j; ht�j� D Œ0; 0�; t > r:

Proof We can assume in the proof without loss of generality that p D q D
r. Suppose that fYtg follows the VARMA model (3.8) with initial conditions
fY1; : : : ;Yrg and define

Yt;P D
t�1X

jD0
‰jAt�j; t D 1; 2; : : : ;

where the ‰j are given by
P1

iD0 ‰izi D ˆ�1.z/‚.z/. Then, fYt;Pg is a solution
of (3.8) with initial conditions fY1;P; : : : ;Yr;Pg. Let ˛1 D Œ.Y1 � Y1;P/0; : : : ; .Yr �
Yr;P/

0�0, ht D .0; : : : ; I; : : : ; 0/, where the I is in the tth position for t D 1; : : : ; r, and
ht D �ˆ1ht�1�� � ��ˆrht�r for t > r. Then,ˆ.B/ht D 0 for t > r by definition of ht

and fYtg D fYt;P C ht˛1g is the solution of (3.8) with initial conditions fY1; : : : ;Yrg
because

ˆ.B/.Yt;P C ht˛1/ D ˆ.B/Yt;P D ‚.B/At; t > r:

Conversely, define
Pi

jD0 ˆj‰i�j D ‚i, i D 0; 1; : : : ; r. Then,

ˆ.B/Yt D ˆ.B/

2

4
t�1X

jD0
‰jAt�j C ht˛1

3

5
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D ˆ.B/
�
I C‰1B C � � � C‰t�1Bt�1�At

D ‚.B/At; t > r;

and thus fYtg is a solution of (3.8) if the same initial conditions, fY1; : : : ;Yrg, are
selected. �

The next theorem establishes the equivalence between finite linear time series
models and innovations state space models.

Theorem 3.9 Given the innovations process fAtg � .0;†/, † > 0, the k-
dimensional process fYtg follows an Akaike’s innovations state space model, where
F and K are as in (3.11) and H D ŒI; 0; : : : ; 0�, with initial conditions fY1; : : : ;Yrg
if, and only if, it follows a finite linear time series model (3.29) with the same initial
conditions and dim.˛1/ D kr that satisfies

rX

jD0
ˆjŒ‰t�j; ht�j� D Œ0; 0�; t > r:

Proof Suppose that fYtg follows an innovations state space model (3.13) and (3.14),
where F and K are as in (3.11) and H D ŒI; 0; : : : ; 0�, with initial conditions
fY1; : : : ;Yrg and stack the observations to get

YtWtCr D OrC1xt C O‰rC1AtWtCr; (3.33)

where YtWtCr D .Y 0
t , : : :, Y 0

tCr/
0, AtWtCr D .A0

t, : : :, A0
tCr/

0, OrC1 D ŒH0;F0H0,
: : : ;F

0rH0�0, and

O‰rC1 D

2

6
6
6
4

I
HK I
:::

:::
: : : I

HFr�1K � � � � � � HK I

3

7
7
7
5
: (3.34)

It is not difficult to verify that HFi D .0; : : : ; I; : : : ; 0/, i D 0; 1; : : : ; r � 1,
where the I is in the .i C 1/th position, and this in turn implies that HFiK D
‰iC1, i D 0; 1; : : : ; r � 1, in (3.34). Thus, if we premultiply (3.33) by Ô D
Œˆr; ˆr�1; : : : ; ˆ1; I�, we get

Yt Cˆ1Yt�1 C � � � CˆrYt�r D At C‚1At�1 C � � � C‚rAt�r; t > r;

where the‚i, i D 1; : : : ; r, are given by the product Ô O‰rC1 and Ô OrC1 D 0. To see
this last equality, consider that, by Proposition 3.10, detŒˆ.z/� D det.I � Fz/; where
ˆ.z/ D I Cˆ1zC� � �Cˆrzr. Then, the equality follows from the Cayley–Hamilton
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theorem. Applying Theorem 3.8, we see that fYtg follows a finite linear time series
model with the desired properties.

Conversely, if fYtg follows a finite linear time series model with the properties
stated in the theorem, then, by Theorem 3.8, it follows a VARMA model. Since this
VARMA model can be put into Akaike’s state space form with F, K, and H as stated
in the theorem and initial conditions fY1; : : : ;Yrg, the theorem is proved. �

Remark 3.22 The previous two theorems have shown the equivalence between
finite linear time series models under Assumption 3.2, innovations state space
models and VARMA models. However, the dimensions of all these models are not
always minimal. In Chap. 5, we will prove similar theorems for the minimal case.
Þ

3.10 Covariance Generating Function and Spectrum

In Sect. 1.4 we showed that, given a sequence of observations fY1; : : : ;Yng, the
evaluation of the sequence of innovations fE1; : : : ;Eng is equivalent to the triangular
factorization of the covariance matrix Var.Y/, where Y D .Y 0

1; : : : ;Y
0
n/

0. In fact,
letting E D .E0

1; : : : ;E
0
n/

0 be the vector of innovations, V D Var.Y/ and D
=diag.D1; : : : ;Dn/, the factorization (1.8) of V can be written as V D LDL0, where
L is the lower triangular matrix with unit diagonal entries given by 1.13. Letting
W D L�1, the decomposition (1.12) becomes V�1 D W 0D�1W. The relation that
links Y with E is

Y D LE; E D WY:

One important fact to note about the L and D matrices is that their entries are
time-variant. However, when fYtg is a stationary process with origin in the infinitely
remote past, the transformation from .Y 0

t ;Y
0
t�1; : : :/0 to .E0

t;E
0
t�1; : : : ; /0 and vice

versa turns out to be time-invariant. This was the setting of the seminal studies
of Wold (1938), Kolmogorov (1939, 1941), and Wiener (1949), and some of their
results will be introduced in this section.

It turns out that there are important differences in the analysis between univariate
and multivariate processes. For this reason, we shall first focus in this section on
univariate stationary processes. Later in the section, we will address the difficulties
in the multivariate case. Some of these difficulties will be resolved later in the book
using state space models.
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3.10.1 Covariance Generating Function

Consider a zero-mean univariate stationary process fYt W t 2 Zg, with covariance
function 
Y.k/ D .YtCkYt/, k D 0; 1; : : :, and assume it has the linear time series
model representation Yt D P1

jD0 ‰jAt�j, where fAtg � WN.0; �2/, ‰0 D 1 and
P1

jD0 j‰jj2 < 1. We will first show that the computation of the innovations process
fAtg can be reduced to the equivalent problem of computing the so-called canonical
factorization of the covariance generating function of fYtg, defined by

GY.z/ D
1X

kD�1

Y.k/z

k:

Then, we will investigate the conditions under which such a factorization exists.
If we consider infinite vectors and matrices, the relation Yt D P1

jD0 ‰jAt�j can
be expressed as

2

6
6
6
66
6
4

:::

Yt�1
Yt

YtC1
:::

3

7
7
7
77
7
5

D

2

6
6
6
66
6
4

: : :
: : :

: : : �
� � � ‰2 ‰1 1

� � � ‰2 ‰1 1
� � � ‰2 ‰1 1

� � � : : : : : : : : :

3

7
7
7
77
7
5

2

6
6
6
66
6
4

:::

At�1
At

AtC1
:::

3

7
7
7
77
7
5

or, more compactly, as

Y D ‰A; (3.35)

where Y D .: : : ;Yt�1;Yt;YtC1; : : :/0, A D .: : : ;At�1;At;AtC1; : : :/0 and ‰ is the
infinite lower triangular matrix with unit diagonal entries

‰ D

2

6
66
6
6
6
4

: : :
: : :

: : : �
� � � ‰2 ‰1 1

� � � ‰2 ‰1 1
� � � ‰2 ‰1 1

� � � : : : : : : : : :

3

7
77
7
7
7
5

: (3.36)

It is not difficult to verify that, by Proposition 3.6, the infinite matrix 	Y D Var.Y/
of covariances 
Y.h/ D E.YtChYt/ satisfies

	Y D ‰†‰0; (3.37)
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where ‰ is given by (3.36),

	Y D

2

6
6
6
66
6
4

: : :
: : :

: : : � � �
� � � 
Y.1/ 
Y.0/ 
Y.1/ � � �

� � � 
Y.1/ 
Y.0/ 
Y.1/ � � �
� � � 
Y.1/ 
Y.0/ 
Y.1/ � � �

� � � : : :
: : :

: : :

3

7
7
7
77
7
5

;

and

† D

2

66
6
6
6
6
4

: : : �
�2

�2

�2

� : : :

3

77
7
7
7
7
5

:

It is convenient to describe the infinite relations (3.35) and (3.37) by means of
generating functions. Given a doubly infinity vector l D .: : : ; lt�1; lt; ltC1; : : :/0, its
generating function is defined as l.z/ D P1

iD�1 lizi: The generating function of a
Toeplitz matrix

T D

2

6
6
66
6
6
4

: : :
: : :

: : : � � �
� � � t1 t0 t�1 � � �

� � � t1 t0 t�1 � � �
� � � t1 t0 t�1 � � �

� � � : : : : : : : : :

3

7
7
77
7
7
5

; (3.38)

is defined by T.z/ D P1
iD�1 tizi:

To obtain the desired relation between generating functions, we introduce the
doubly infinite row vector

�.z/ D �
: : : ; z�2; z�1; 1; z; z1; z2; : : :

�
:

Premultiplying the Toeplitz matrix (3.38) by �.z/ yields

�.z/T D T.z/
�
: : : ; z�2; z�1; 1; z; z1; z2; : : :

� D T.z/�.z/

and, thus, �.z/ is a left eigenvector of T with eigenvalue T.z/.
Using this result, it is not difficult to verify that, premultiplying (3.35) by �.z/,

the following relation is obtained

Y.z/ D ‰.z/A.z/; (3.39)
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where ‰.z/ D P1
jD0 ‰jzj and Y.z/ D P1

jD�1 Yjzj and A.z/ D P1
jD�1 Ajzj are

the generating functions of Y and A. In a similar way, premultiplying (3.37) by �.z/
yields

GY.z/ D ‰.z/�2‰.z�1/; (3.40)

where GY.z/ is the covariance generating function of fYtg. Equation (3.40) provides
the required factorization of the covariance generating function GY.z/. The innova-
tions At can be obtained by inverting (3.39) to get

A.z/ D ‰�1.z/Y.z/; (3.41)

assuming the inverse function ‰�1.z/ exists.
Suppose a function G.z/ of the form G.z/ D P1

kD�1 
kzk, where the sequence
f
kg is a covariance sequence of a stationary process. This means that 
.h/ D 
.�h/
for all h 2 Z, and that the matrix .
.i� j//ni;jD1 is nonnegative definite for all positive
integer n. The following theorem gives a necessary and sufficient condition for a
factorization of G.z/ of the form (3.40) to exist.

Theorem 3.10 Given G.z/ D P1
kD�1 
kzk, where the sequence f
kg is a scalar

covariance sequence of a stationary process, there exists a unique positive number
�2 and a unique function ‰.z/ satisfying G.z/ D ‰.z/�2‰.z�1/ with the following
properties:

i) ‰.z/ and ‰�1.z/ are analytic in D D fz 2 C W jzj < 1g
ii)

P1
iD0 j‰ij2 < 1, where ‰.z/ D P1

iD0 ‰izi and ‰0 D 1,

if, and only if, f .x/ D G.e�ix/, x 2 Œ��; ��, is a nonnegative function that is
Lebesgue-integrable and satisfies the so-called Paley–Wiener condition

Z �

��
ln Œ f .x/� > �1: (3.42)

In this case, the following Kolmogorov–Szegö formula for �2 holds

�2 D e
1
2�

R �
�� lnŒ f .x/�dx: (3.43)

Proof See Doob (1953), Grenander & Rosenblatt (1957), or Gikhman & Skorokhod
(1969). �

The following theorem shows that the stationary processes fYtg that have a linear
time series model representation Yt D P1

jD0 ‰jAt�j with fAtg � WN.0; �2/,
‰0 D 1 and

P1
jD0 j‰jj2 < 1 are precisely the stationary processes whose

covariance generating function admits a factorization (3.40) with the two properties
of the previous theorem.
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Theorem 3.11 For the scalar stationary process fYtg to have a covariance gen-
erating function GY.z/ D P1

kD�1 
Y.k/zk admitting a factorization GY.z/ D
‰.z/�2‰.z�1/ with ‰.z/ unique and satisfying the two properties of the previous
theorem it is necessary and sufficient that fYtg has the linear time series model
representation Yt D P1

jD0 ‰jAt�j with fAtg � WN.0; �2/, ‰.z/ D P1
jD0 ‰jzj,

‰0 D 1 and
P1

jD0 j‰jj2 < 1.

Proof See Gikhman & Skorokhod (1969). �
Remark 3.23 The previous theorem shows that if the stationary process fYtg admits
a linear time series model representation Yt D P1

jD0 ‰jAt�j with fAtg � WN.0; �2/,
‰0 D 1 and

P1
jD0 j‰jj2 < 1, then the function ‰.z/ D P1

jD0 ‰jzj is analytic and
has an analytic inverse function‰�1.z/ in the disk D D fz 2 C W jzj < 1g. However,
this does not guarantee that the function‰�1.z/ is convergent in the unit circle jzj D
1, see Problem 3.2. For this reason, it is usually required that the functions‰.z/ and
‰�1.z/ be analytic in some annulus containing the unit circle, r�1 < jzj < r with
r > 1. For example, these stronger conditions are met if ‰.z/ is a rational function
and all the roots of both the numerator and the denominator polynomials are greater
than one in modulus. Thus, the stationary and invertible ARMA models satisfy these
conditions and, consequently, for these models the innovations fAtg of fYtg can be
obtained using formula (3.41). Þ
Example 3.19 If fYtg is a univariate ARMA process satisfying

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0; �2/ and the roots ofˆ.z/ are all outside of the unit circle, then
the covariance generating function is

GY.z/ D ‚.z/‚.z�1/
ˆ.z/ˆ.z�1/

�2:

In this case, the series GY.z/ D P1
kD�1 
Y.k/zk converges for all z in some

annulus containing the unit circle, r�1 < jzj < r with r > 1, and this impliesP1
kD�1 j
Y.k/j < 1. This is a consequence of the fact that the series

P1
jD0 ‰jzj D

‚.z/=ˆ.z/ D ‰.z/ converges in some annulus, r�1 < jzj < r with r > 1, because
the roots of ˆ.z/ are all outside the unit circle. Note that it follows from this thatP1

jD0 j‰jj < 1 and that this condition is stronger than the square summability
condition in Theorem 3.11. It is further noted that if the model is invertible, the
function ‰�1.z/ D ˆ.z/=‚.z/ is analytic in some annulus r�1 < jzj < r with
r > 1. Þ
Example 3.20 Let fYtg follow the MA.2/ process

Yt D At C �1At�1 C �2At�2;
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where fAtg � WN.0; �2/. Then,

GY.z/ D .1C �1z C �2z
2/.1C �1z

�1 C �2z
�2/�2

D �
.1C �21 C �22 /C .�1 C �1�2/.z C z�1/C �2.z

2 C z�2/
�
�2;

from which it follows that


Y.0/ D .1C �21 C �22 /�
2


Y.˙1/ D �1.1C �2/�
2


Y.˙2/ D �2�
2


Y.k/ D 0; jkj > 2:

Example 3.21 Let fYtg follow the AR.1/ process

Yt C �Yt�1 D At;

where fAtg � WN.0; �2/. Then,

GY.z/ D �2

.1C �z/.1C �z�1/
;

and to find the autocovariances we will perform a partial fraction expansion.
However, we have to be careful with the powers of z�1. One way to proceed is
as follows (see Lemma 7.1 in Sect. 7.1.2 for more details).

GY.z/ D z�1

z�1

�
z�2

.1C �z/.z C �/

�
D z�1

z�1

�
A

1C �z
C B

z C �

�

D z�1

z�1

�
�2

.1 � �2/.1C �z/
C ���2
.1 � �2/.z C �/

�

D �2

.1 � �2/.1C �z/
C z�1 ���2

.1 � �2/.1C �z�1/
:

The first term to the right of the last equality is equal to 
.0/C P1
jD1 
.j/zj. Since

1=.1C �z/ D 1CP1
jD1.��/jzj, we obtain


.0/ D �2

1 � �2


.1/ D ���2
1 � �2


.k/ D .��/k
.0/; k D ˙1;˙2; : : :
Þ
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3.10.2 Spectrum

As in the previous section, consider a zero-mean univariate stationary process
fYt W t 2 Zg with covariance function 
Y.k/ D .YtCkYt/, k 2 Z, and assume it
has the linear time series model representation Yt D P1

jD0 ‰jAt�j, where fAtg �
WN.0; �2/, ‰0 D 1 and

P1
jD0 j‰jj2 < 1. Then, by Theorem 3.11, the covariance

generating function GY.z/ admits the factorization GY.z/ D ‰.z/�2‰.z�1/, where
‰.z/ D P1

jD0 ‰jzj, and the function GY.e�ix/ is nonnegative in x 2 Œ�; ��.
The function fY.x/ D GY.e�ix/=.2�/ plays a fundamental role in the frequency

domain analysis of time series.

Proposition 3.12 The function fY.x/ is nonnegative and integrable in x 2 Œ��; ��.
Proof Consider the space NL2 of square integrable functions defined in Œ��; ��. As
is well known, in this space the set feikx=

p
2� W k 2 Zg constitutes an orthonormal

basis. If we define the functions g.x/ D P1
kD0 ‰ke�ikx D ‰.e�ix/ and gh.x/ D

eihxg.x/ and consider in NL2 the inner product defined by < F;G >D R �
�� F NG, where

F;G 2 NL2 and the bar denotes complex conjugation, using an argument similar to
that in the proof of Proposition 3.6, it is not difficult to verify that g; gh 2 L2 and


Y.h/ D
1X

jD0
‰jCh�

2‰j D �2

2�

Z �

��
eihxjg.x/j2dx: (3.44)

Thus, the function

fY.x/ D 1

2�
GY.e

�ix/ D �2

2�
j‰.e�ix/j2

is nonnegative and integrable in Œ��; ��. �

The function fY.x/ is called the spectrum or the spectral density function of the
process fYt W t 2 Zg. From (3.44), it follows that


Y.h/ D
Z �

��
eihxfY.x/dx: (3.45)

In particular, replacing h by 0 in (3.45), we get


Y.0/ D
Z �

��
fY.x/dx; (3.46)

and thus the area corresponding to the spectrum in a small frequency interval
can be interpreted as the proportion of the variance that can be attributable to
those frequencies, considering that the series can be seen as a sum of random
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oscillatory components associated with different frequencies in the interval Œ��; ��.
This interpretation is basic in the frequency domain approach to time series analysis.

Example 3.22 If fYtg is a univariate ARMA process satisfying

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0; �2/ and the roots of ˆ.z/ are all outside the unit circle, then
the spectrum is

fY.x/ D �2

2�

j‚.e�ix/j2
jˆ.e�ix/j2 :

If the process is invertible, fY.x/ > 0 for all x 2 Œ��; ��. Þ

Example 3.23 Let fYtg follow the MA.1/ process

Yt D At C �At�1;

where fAtg � WN.0; �2/. Then,

fY.x/ D �2

2�
j1C �e�ixj2 D �2

2�
.1C 2� cos.x/C �2/; x 2 Œ��; �� :

Þ

Example 3.24 Let fYtg follow the AR.1/ process

Yt C �Yt�1 D At;

where fAtg � WN.0; �2/. Then,

fY.x/ D �2

2�
j1C �e�ixj�2 D �2

2�
.1C 2� cos.x/C �2/�1; x 2 Œ��; �� :

Þ

3.10.3 Multivariate Processes

Consider a zero-mean multivariate stationary process fYt W t 2 Zg with covariance
function 
Y.k/ D .YtCkY 0

t /, k D 0; 1; : : :, and assume it has the linear time
series model representation Yt D P1

jD0 ‰jAt�j, where fAtg � WN.0;†/ and
P1

jD0 k‰jk2 < 1. As in the univariate case, the covariance generating function
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of fYtg is defined by

GY.z/ D
1X

kD�1

Y.k/z

k:

Using an argument similar to that of the scalar case, it is obtained that

Y.z/ D ‰.z/A.z/; GY.z/ D ‰.z/†‰0.z�1/; (3.47)

where ‰.z/ D P1
jD0 ‰jzj.

Suppose a function G.z/ of the form G.z/ D P1
kD�1 
kzk such that the sequence

f
kg is a covariance sequence of a multivariate stationary process, defined by

i) 
.�h/ D 
.h/0; h 2 Z

ii) the matrix .
.i � j//ni;jD1 is nonnegative definite for all positive integer n.

As in the univariate case, the question arises as to the existence of a factorization
G.z/ D L.z/SL0.z�1/, where S is a positive definite matrix and L.z/ D P1

jD0 Ljzj is
an analytic matrix function in D D fz 2 C W jzj < 1g such that

P1
jD0 kLjk2 < 1. As

mentioned earlier, this problem is considerably more difficult for general processes
fYtg with dim.Yt/ D k > 1 because, as shown by Rozanov (1967), the matrices L.z/
and S can be of dimensions k � r and r � r with r < k.

In the full rank case, k D r, the matrices L.z/ and S of the factorization
G.z/ D L.z/SL0.z�1/ are square and the theory is relatively easier than for general
multivariate processes. The following theorem is a generalization of Theorem 3.10
to the multivariate full rank case.

Theorem 3.12 Given G.z/ D P1
kD�1 
kzk, where the sequence f
kg is a multi-

variate covariance sequence of a stationary process, there exist a unique positive
definite matrix † and a unique square matrix function ‰.z/ satisfying G.z/ D
‰.z/†‰0.z�1/ with the following properties:

i) ‰.z/ and ‰�1.z/ are analytic in D D fz 2 C W jzj < 1g
ii)

P1
iD0 k‰ik2 < 1, where ‰.z/ D P1

iD0 ‰izi and ‰0 D I,

if, and only if, f .x/ D G.e�ix/, x 2 Œ��; ��, is an almost everywhere positive definite
matrix function with Lebesgue-integrable components that satisfies the generalized
Paley–Wiener condition

Z �

��
ln det Œf .x/� > �1:

In this case, the following Kolmogorov–Szegö formula holds

det.†/ D e
1
2�

R �
�� ln detŒ f .x/�:

Proof See Rozanov (1967). �
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It turns out that the stationary processes fYtg that have a linear time series
model representation Yt D P1

jD0 ‰jAt�j with fAtg � WN.0;†/, ‰0 D I and
P1

jD0 k‰jk2 < 1 are precisely the stationary nondeterministic processes of full
rank whose covariance generating function admit a factorization with the two
properties of the previous theorem.

Theorem 3.13 For the stationary nondeterministic process of full rank fYtg to
have a covariance generating function GY.z/ D P1

kD�1 
Y.k/zk admitting a
factorization GY.z/ D ‰.z/†‰0.z�1/ with † unique positive definite and ‰.z/
square, unique and satisfying the two properties of the previous theorem it is
necessary and sufficient that fYtg has the linear time series model representation
Yt D P1

jD0 ‰jAt�j with fAtg � WN.0;†/, ‰.z/ D P1
jD0 ‰jzj, ‰0 D I and

P1
jD0 k‰jk2 < 1.

Proof See Rozanov (1967). �

Remark 3.24 For the less than full rank case, Theorem 3.12 still holds, but replacing
the factorization G.z/ D ‰.z/†‰0.z�1/ with G.z/ D ‰.z/‰

0
.z�1/, where ‰.z/ DP1

jD0 ‰jzj is a non unique k � r matrix with 0 < r < k and ‰0 has rank r, and
replacing the condition

R �
�� ln det Œf .x/� > �1 with

R �
�� ln det ŒF.x/� > �1, where

detF.x/ is a principal minor of f .x/ of order r which is different from zero almost
everywhere.

For a vector stationary nondeterministic process fYtg that is not of full rank,
Theorem 3.13 also holds, but replacing the factorization G.z/ D ‰.z/†‰0.z�1/
with G.z/ D ‰.z/‰

0
.z�1/, where ‰.z/ D P1

jD0 ‰jzj is a not unique k � r matrix

with 0 < r < k and ‰0 has rank r, and replacing the linear time series model
representation of that theorem with the linear time series model representation Yt DP1

jD0 ‰jAt�j, where fAtg � WN.0; I/, ‰.z/ D P1
jD0 ‰jzj, and

P1
jD0 k‰jk2 < 1.

Proofs of these results can be found in Rozanov (1967). Þ
Remark 3.25 It is to be noted that if Yt is a vector stationary process that admits the
linear time series model representation Yt D P1

jD0 ‰jAt�j, where fAtg � WN.0; I/,

‰.z/ D P1
jD0 ‰jzj is a k � r matrix with 0 < r < k, ‰0 has rank r, and

P1
jD0 k‰jk2 < 1, then it is possible to put ‰0 D ‰0L, where L is a submatrix

of ‰0 of rank r and ‰0 D ‰0L�1. Thus, defining ‰j D ‰jL�1, j D 1; 2; : : : and
At D LAt, t 2 Z, the linear time series model representation Yt D P1

jD0 ‰jAt�j

is obtained, where fAtg � WN.0;†/, † D LL0, and
P1

jD0 k‰jk2 < 1. This
implies that the covariance generating function GY.z/ of fYtg can be factorized as
GY.z/ D ‰.z/†‰0.z�1/, where ‰.z/ D P1

jD0 ‰jzj. For this reason, we will always
assume in what follows that all factorizations of covariance generating functions of
stationary nondeterministic processes fYtg are of the form GY.z/ D ‰.z/†‰0.z�1/.

When † has dimension r < k, it is always possible to have a linear time series
model representation of the form Yt D P1

jD0 ‚jEt�j in which Et has dimension k and

‚0� D � D �‚0
0, where Var.Et/ D �. To see this, define ‚i D ‰i

�
‰0
0‰0

	�1
‰0
0,

i D 0; 1; 2; : : :, Et D ‰0At and � D Var.Et/ D ‰0†‰
0
0. Then, ‰iAt�i= ‚iEt�i
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and ‚0� D � D �‚0
0. Note that in this case GY.z/ D ‚.z/�‚0.z�1/, where

‚.z/ D ‚0 C‚1z C‚2z2 C � � � . Þ

Example 3.25 If fYtg is a multivariate ARMA process satisfying

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0;†/ and the roots of detŒˆ.z/� are all outside of the unit circle,
by Theorem 3.7, the process fYtg is causal. Thus, the covariance generating function
is

GY.z/ D ˆ�1.z/‚.z/†‚0.z�1/ˆ0�1.z�1/:

As in the univariate case, the matrix series GY.z/ D P1
kD�1 
Y.k/zk converges for

all z in some annulus containing the unit circle, r�1 < jzj < r with r > 1, and this
implies

P1
kD�1 k
Y.k/k < 1. This is a consequence of the series

P1
jD0 ‰jzj D

ˆ�1.z/‚.z/ D ‰.z/ being convergent in some annulus, r�1 < jzj < r with r > 1,
because the roots of detŒˆ.z/� are all outside the unit circle. Note that, as in the
univariate case, it follows from this that

P1
jD0 k‰jk < 1 and that, if the model is

invertible, the function ‰�1.z/ D ‚�1.z/ˆ.z/ is analytic in some annulus r�1 <
jzj < r with r > 1. Þ
Example 3.26 Suppose a vector process fYtg that follows a VARMA. p; q/
model (3.8) such that the roots of detŒˆ.z/� are all greater than one in modulus.
Then, considering Akaike’s innovations state space representation, where F and
K are as in (3.11) and H D ŒI; 0; : : : ; 0�, the eigenvalues of F are all of modulus
less than one and, as shown in the proof of Theorem 3.7, Eq. (3.13) has a unique
stationary solution given by xt D P1

jD0 FjKAt�1�j, where fAtg � WN.0;†/.
Defining ‰j D FjK, j D 0; 1; 2; : : :, we can write xt D ‰.B/At�1, where
‰.z/ D P1

jD0 ‰jzj and B is the backshift operator, BAt D At�1. Since the series
‰.z/ is convergent in an annulus, r�1 < jzj < r with r > 1, the filter .I � BF/�1K
is well defined and stable and we have‰.z/ D .I � zF/�1K. Thus, the factorization
of the covariance generating function, Gx.z/, of fxtg is

Gx.z/ D .I � zF/�1K†K0.I � z�1F0/�1:

Taking xt D ‰.B/At�1 into (3.13) and considering the decomposition (3.35), if Y.z/
and A.z/ are the generating functions of fYtg and fAtg, it is obtained that Y.z/ D
.ICzH‰.z//A.z/. Since fAtg are the innovations, according to (3.47), the covariance
generating function GY.z/ of fYtg is

GY.z/ D �
I C zH.I � zF/�1K

�
†
�
I C z�1K0.I � z�1F0/�1H0� :

Note that the factorization of GY.z/ is of full rank whereas that of Gx.z/ is not. Þ



168 3 Stationarity and Linear Time Series Models

For a zero-mean vector stationary nondeterministic process fYt W t 2 Zg, with
covariance function 
Y.k/ D .YtCkYt/, k 2 Z, and admitting the linear time
series model representation Yt D P1

jD0 ‰jAt�j, where fAtg � WN.0;†/ and
P1

jD0 k‰jk2 < 1, the spectral density matrix, or spectrum, is defined by

fY.x/ D 1

2�

1X

kD�1

Y.k/e

�ikx D 1

2�
‰.e�ikx/†‰0.eikx/; x 2 Œ��; �� ;

where ‰.z/ D P1
jD0 ‰jzj.

Using arguments similar to those of the univariate case, it can be shown that the
matrix function fY.x/ is nonnegative-definite for almost all x 2 Œ��; �� and that the
components of fY.x/ are integrable in Œ��; ��. Given fY.x/, the covariances 
Y.h/ of
fYtg can be obtained from the formula


Y.h/ D
Z �

��
eihxfY.x/dx; h 2 Z: (3.48)

If Yt has dimension two, Yt D .Yt1;Yt2/
0, then

fY.x/ D
�

f11.x/ f12.x/
f21.x/ f22.x/

�
;

and f11.x/ and f22.x/ are the spectrums of the univariate series Yt1 and Yt2. The
functions fij.x/, i ¤ j, i; j D 1; 2, are referred to as the cross spectrums of Yti

and Ytj. Since the autocovariance function 
Y.h/ is in general not symmetric, the
cross spectrum fij.x/ is typically complex valued and the following relation

f21.x/ D f12.x/

holds. The coherence function kij.x/ is defined as

kij.x/ D fij.x/p
f11.x/f22.x/

:

By the Cauchy–Schwarz inequality, the following inequality

0 � jkij.x/j2 � 1; x 2 Œ��; �� ;

holds. A value of jkij.x/j2 close to one indicates a strong linear relationship between
the components of Yti and Ytj associated with the frequency x. The cross spectrum
and the coherence can be easily generalized to a multivariate process of dimension
greater than two.
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Example 3.27 If fYtg is a VARMA process satisfying

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0;†/ and the roots of detŒˆ.z/� are all outside of the unit circle,
by Theorem 3.7, the process fYtg is causal and the spectrum is

fY.z/ D 1

2�
ˆ�1.e�ix/‚.e�ix/†‚0.eix/ˆ�10

.eix/:

Þ

Proposition 3.13 Suppose that the scalar stationary process fYtg can be repre-
sented in state space innovations form

xtC1 D Fxt C KAt

Yt D Hxt C At;

where fAtg � WN.0;†/. Then, the following conditions are equivalent

i) the ARMA process followed by fYtg is invertible
ii) the matrix F � KH has eigenvalues with modulus less than one

iii) the spectrum density of fYtg, fY.z/, satisfies fY.z/ > 0 almost surely for x 2
Œ��; ��.

Proof By Propositions 3.11 and 3.10, i) and ii) are equivalent. Given that the
spectrum of fYtg is

fY.z/ D 1

2�
ˆ�1.e�ix/‚.e�ix/†‚0.eix/ˆ�10

.eix/:

in terms of an equivalent ARMA model, it is clear that the spectrum satisfies fY.z/ >
0 if, and only if, the polynomial detŒ‚.z/� has no roots equal to one. �

3.10.4 Linear Operations on Stationary Processes

In many applications, stochastic processes are considered that are the output of
stable linear time invariant filters applied to some input stationary processes. By
Corollary 3.1, these output processes are stationary and the question arises as to
the relation between the covariance generating functions of the input and output
processes. First, however, given two vector stationary processes, fYtg and fXtg, we
define their cross covariance generating function as

GYX.z/ D
1X

kD�1

YX.k/z

k;

where 
YX.k/ D Cov.YtCk;Xt/.
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Proposition 3.14 Let fYtg be the vector stationary process that is obtained by
passing a zero-mean vector stationary process fXtg through a stable linear time
invariant filter with transfer function‰.z/. Then the following relations hold

GY.z/ D ‰.z/GX.z/‰
0.z�1/; GYX.z/ D ‰.z/GX.z/;

and

fY.x/ D ‰.e�ix/fX.x/‰
0.eix/; fYX.x/ D ‰.e�ix/fX.e

�ix/:

Finally, if fZtg is jointly stationary with fYt;Xtg as just defined, then

GZY.z/ D GZX.z/‰
0.z�1/:

Proof By Corollary 3.1, the process fYtg is stationary and its covariance function is
given by


Y.h/ D
1X

iD�1

1X

jD�1
‰i
X.h � i C j/‰0

j :

From this it follows that

GY.z/ D
1X

hD�1

1X

iD�1

1X

jD�1
‰i
X.h � i C j/‰0

j z
h

D
1X

lD�1

1X

iD�1

1X

jD�1
‰i
X.l/‰

0
j z

lCi�j

D
 1X

iD�1
‰iz

i

! 1X

lD�1

X.l/z

l

!0

@
1X

jD�1
‰0

j z
�j

1

A

D ‰.z/GX.z/‰
0.z�1/:

The other formulae can be obtained similarly. �

3.10.5 Computation of the Autocovariance Function
of a Stationary VARMA Model

There are several methods to compute the autocovariance function, 
Y.h/, of a
stationary VARMA model, fYtg. Since VARMA models can be put into state space
form, we can consider two types of methods, polynomial and state space methods.
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The computation of covariance matrices when the model is in state space form will
be considered in Chap. 5. In this section, we will present a polynomial method based
on the decomposition of the autocovariance generating function GY.z/ into the sum
of two rational functions from which the computation of the covariance matrices

Y.h/ is easy. First, we will consider the univariate case and later we will consider
the multivariate, more demanding, case.

Let fYtg be a scalar ARMA.p; q/ process satisfying

ˆ.B/Yt D ‚.B/At;

whereˆ.z/ D 1C�1zC� � �C�pzp,‚.z/ D 1C�1zC� � �C�qzq, fAtg � WN.0; �2/
and the roots of detŒˆ.z/� are all outside of the unit circle. By Theorem 3.7, the pro-
cess fYtg is causal and the covariance generating function GY.z/ D P1

jD�1 
Y.j/zj

is well defined and equal to

GY.z/ D ‚.z/‚.z�1/
ˆ.z/ˆ.z�1/

�2:

Considering the Wold decomposition of fYtg, it is not difficult to check that the
covariances satisfy


Y.l/CPp
jD1 �j
Y.l � j/ D Pq

jDl �j�
2 j�l; 0 � l � q


Y.l/CPp
jD1 �j
Y.l � j/ D 0; l > q;

(3.49)

where �0 D 1 and the  j weights can be recursively computed from
ˆ.z/.

P1
jD0  jzj/ D ‚.z/. This constitutes the first method to compute the

covariances.
Another, more efficient, method is the following. It can be called the polynomial

method. The covariance generating function, GY.z/, can be written as

GY.z/ D A.z/C A0.z�1/; (3.50)

where

A.z/ D 1

2

Y.0/C 
Y.1/z C 
Y.2/z

2 C � � � :

If we know the function A.z/, the covariances can be easily computed. If we
premultiply and postmultiply (3.50) by ˆ.z/ and ˆ.z�1/, it is obtained that

‚.z/�2‚.z�1/ D B.z/ˆ.z�1/Cˆ.z/B.z�1/; (3.51)
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where B.z/ D ˆ.z/A.z/ D P1
jD0 bjzj satisfies

1
2

Y.0/ D b0

Y.1/C 1

2
�1
Y.0/ D b1


Y.2/C �1
Y.1/C 1
2
�2
Y.0/ D b2

� � � D � � �

Y.p/C �1
Y.p � 1/C � � � C 1

2
�p
Y.0/ D bp


Y.l/C �1
Y.l � 1/C � � � C �p
Y.l � p/ D bl; l > p :

(3.52)

Since the covariances satisfy (3.49), the relation bl D 0 holds for l > r D max.p; q/,
and it turns out that B.z/ is a polynomial, B.z/ D b0 C b1z C � � � C brzr .

Given the coefficients b0; b1; : : : ; br, the covariances can be recursively computed
from (3.52). However, if p < q, by (3.49) and (3.52), only b0; b1; : : : ; bp need to be
computed because bpC1; : : : ; br are given by

bl D Pq
jDl �j�

2 j�l; l D p C 1; : : : ; q: (3.53)

To compute b0; b1; : : : ; bp from Eq. (3.51), first let

‚.z/�2‚.z�1/ D ˛0 C ˛1.z C z�1/C � � � C ˛q.z
q C z�q/:

Then, equating coefficients of zj for j D 0; 1; : : : ; r in (3.51), the following system
of linear equations in b0; b1; : : : ; br, is obtained

.Tr C Hr/Xr D Ar; (3.54)

where

Tr D

2

6
6
6
4

1 �
�1 1
:::
:::

: : :

�r �r�1 � � � 1

3

7
7
7
5
; Hr D

2

6
6
6
4

� �r

�r �r�1
:::

:::

�r � � � �1 1

3

7
7
7
5
;

Xr D .br; br�1; : : : ; b0/0, Ar D .˛r; ˛r�1; : : : ; ˛0/0, and ˛j D 0 if j > q. If p <

q D r, we can compute bpC1; : : : ; br according to (3.53) and reduce the number of
equations in (3.54) so that the following linear system is obtained

.Tp C Hp/Xp D Ap; (3.55)
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where

Tp D

2

66
6
4

1 �
�1 1
:::
:::

: : :

�p �p�1 � � � 1

3

77
7
5
; Hp D

2

66
6
4

� �p

�p �p�1
:::

:::

�p � � � �1 1

3

77
7
5
;

Xp D .bp; bp�1; : : : ; b0/0, Ap D .ap; ap�1; : : : ; a0/0, a0 D ˛0, ai D ˛i �Pr
jDpC1 �j�ibj, i D 1; : : : ; p, and �i D 0 if i > p. Note that the system (3.55)

corresponds to the polynomial equation

B.z/ˆ.z�1/Cˆ.z/B.z�1/ D apz�p C � � � C a1z
�1 C a0 C a1z C � � � C apzp;

where B.z/ D b0 C b1z C � � � C bpzp is the polynomial B.z/ truncated to degree
p. Thus, we have reduced the original polynomial equation (3.51) by reducing the
degree from q > p to p.

To solve (3.55), first note that Tp is a Toeplitz matrix, Hp is a Hankel matrix and

T�1
p D

2

6
6
6
4

1 �
�1 1
:::
:::

: : :

�p �p�1 � � � 1

3

7
7
7
5
;

where the �j weights can be obtained from �.z/�.z/ D 1, �.z/ D P1
jD0 �jzj. Then,

partition Xp D .X0
1;X

0
2/

0 and Ap D .A0
1;A

0
2/

0, where X1 D .bp; : : : ; bnC1/0, X2 D
.bn; : : : ; b0/0, A1 D .ap; : : : ; anC1/0, A2 D .an; : : : ; a0/0, n D Œp=2�, and Œm� denotes
the integer part of m 2 R. If we partition Tp and Hp conforming to the previous
partition, we can write (3.55) as


�
T11
T21 T22

�
C
�

H12

H21 H22

���
X1
X2

�
D
�

A1
A2

�
: (3.56)

Partitioning also T�1
p conforming to Xp D .X0

1;X
0
2/

0,

T�1
p D

�
T11

T21 T22

�
;

and premultiplying (3.56) by T�1
p yields


�
I 0
0 I

�
C
�

0 T11H12

T22H21 T21H12 C T22H22

���
X1
X2

�
D
�

T11A1
T21A1 C T22A2

�
:

(3.57)
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Letting D12 D T11H12, D21 D T22H21, D22 D T21H12 C T22H22, C1 D T11A1 and
C2 D T21A1 C T22A2, we can write (3.57) as


�
I 0
0 I

�
C
�
0 D12

D21 D22

���
X1
X2

�
D
�

C1
C2

�
: (3.58)

From the first equation in (3.58), we get X1 D C1 � D12X2. Replacing X1 in the
second equation of (3.58) with this expression yields

.I C D22 � D21D12/X2 D C2 � D21C1: (3.59)

We first compute X2 in (3.59) and then compute X1 as X1 D C1 � D12X2. This,
together with (3.53), allows us to recursively compute the covariances using (3.52).

Example 3.28 (The Autocovariance Function of an MA.q/ Process) Assume fYtg is
the MA.q/ process

Yt D ‚.B/At;

where fAtg � WN.0; �2/ and ‚.z/ D 1C �1z C � � � C �qzq has all its roots outside
the unit circle. Then, by (3.49),


Y.l/ D �2
Pq

jDl �j�j�l; 0 � l � q

Y.l/ D 0; l > q;

where �0 D 1. Þ

Let fYtg be a k-dimensional stationary VARMA. p; q/ process satisfying

ˆ.B/Yt D ‚.B/At;

whereˆ.z/ D ˆ0 Cˆ1z C � � � Cˆpzp, ‚.z/ D ‚0 C‚1z C � � � C‚qzq, ˆ0 D ‚0

is a lower triangular matrix with ones in the main diagonal, and fAtg � WN.0;†/.
Then, the autocovariance generating function GY.z/ D P1

jD�1 
Y. j/zj is

GY.z/ D ˆ�1.z/‚.z/†‚0.z�1/ˆ0�1.z�1/:

We consider this more general form of VARMA.p; q/ models to allow for the so-
called VARMA echelon forms, that will be described in detail in Chap. 5.

Similarly to the univariate case, the autocovariance matrices satisfy

ˆ0
Y.l/CPp
jD1 ˆj
Y.l � j/ D Pq

jDl‚j†‰
0
j�l 0 � l � q

ˆ0
Y.l/CPp
jD1 ˆj
Y.l � j/ D 0 l > q;

(3.60)
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where the ‰j weights can be recursively computed from ˆ.z/.
P1

jD0 ‰jzj/ D ‚.z/.
Solving these equations constitutes the first method to compute the autocovariance
matrices.

We can use the polynomial method as in the univariate case to compute the
autocovariance matrices. This method is more efficient than the previous one and
is as follows. The autocovariance generating function, GY.z/, can be written as

GY.z/ D A.z/C A0.z�1/ (3.61)

where

A.z/ D 1

2
A0 C 
Y.1/z C 
Y.2/z

2 C � � � ;

and


Y.0/ D 1

2

�
A0 C A0

0

	
: (3.62)

The matrix A0 can be any matrix depending on k.kC1/=2 parameters because 
Y.0/

is symmetric. If we premultiply and postmultiply (3.61) by ˆ.z/ and ˆ0.z�1/, it is
obtained that

‚.z/†‚0.z�1/ D B.z/ˆ0.z�1/Cˆ.z/B0.z�1/; (3.63)

where B.z/ D ˆ.z/A.z/ D P1
jD0 Bjzj satisfies

1
2
ˆ0A0 D B0
ˆ0
Y.1/C 1

2
ˆ1A0 D B1

ˆ0
Y.2/Cˆ1
Y.1/C 1
2
ˆ2A0 D B2

� � � D � � �
ˆ0
Y.p/Cˆ1
Y.p � 1/C � � � C 1

2
ˆpA0 D Bp

ˆ0
Y.l/Cˆ1
Y.l � 1/C � � � Cˆp
Y.l � p/ D Bl; l > p :

(3.64)

As in the univariate case, since the autocovariance matrices satisfy (3.60), the
relation Bl D 0 holds for l > r D max.p; q/, and B.z/ is a polynomial matrix,
B.z/ D B0CB1zC� � �CBrzr , where the Bj coefficients are now k�k matrices. Since
the matrix B0 depends on k.k C 1/=2 parameters, we can take B0 to be symmetric
and this will be assumed in the following.

Given the matrix coefficients B0;B1; : : : ;Br, first the matrix A0 and the autoco-
variance matrices 
Y.i/, i D 1; 2; : : :, can be recursively computed from (3.64).
Then, 
Y.0/ can be obtained using (3.62). However, if p < q, by (3.60) and (3.64),
only B0;B1; : : : ;Bp need to be computed because BpC1; : : : ;Br are given by

Bl D Pq
jDl‚j†‰

0
j�l; l D p C 1; : : : ; q: (3.65)
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To compute B0;B1; : : : ;Bp from Eq. (3.63), first let

‚.z/†‚.z�1/ D 	0 C .	�1z�1 C 	1z/C � � � C .	�qz�q C 	qzq/;

where 	�j D 	 0
j . Then, equating coefficients of zj for j D 0; 1; : : : ; r in (3.63) and

letting bj D vec.Bj/, vec.B0
j/ D Wbj, ˛j D vec.	j/, j D 0; 1; : : : ; r, where W D

.Ik ˝ e1; Ik ˝ e2; : : : ; Ik ˝ ek/ and ei is a column vector with a one in the ith position
and zeros elsewhere, the following system of linear equations in b0; b1; : : : ; br, is
obtained

.Tr C Hr/Xr D Ar; (3.66)

where

Tr D

2

6
6
6
4

.ˆ0 ˝ Ik/ �

.ˆ1 ˝ Ik/ .ˆ0 ˝ Ik/
:::

:::
: : :

.ˆr ˝ Ik/ .ˆr�1 ˝ Ik/ � � � .ˆ0 ˝ Ik/

3

7
7
7
5
;

Hr D

2

66
6
4

� .Ik ˝ˆr/W
.Ik ˝ˆr/W .Ik ˝ˆr�1/W

:::
:::

.Ik ˝ˆr/W � � � .Ik ˝ˆ1/W .Ik ˝ˆ0/W

3

77
7
5
;

Xr D .b0
r; b

0
r�1; : : : ; b0

0/
0, Ar D .˛0

r; ˛
0
r�1; : : : ; ˛0

0/
0, and ˛j D 0 if j > q. As in

the univariate case, if p < q D r, we compute BpC1; : : : ;Br according to (3.65)
and reduce the number of equations in (3.66) so that the following linear system is
obtained

.Tp C Hp/Xp D Ap; (3.67)

where Tp and Hp are like Tr and Hr but with r replaced with p, Xp D
.b0

p; b
0
p�1; : : : ; b0

0/
0, Ap D .a0

p; a
0
p�1; : : : ; a0

0/
0, a0 D ˛0, ai D ˛i �Pr

jDpC1
�
I ˝ˆj�i

	

bj, i D 1; : : : ; p, and ˆi D 0 if i > p. As in the univariate case, we have reduced
the original symmetric polynomial matrix equation (3.63) of degree q > p to the
equation

B.z/ˆ0.z�1/Cˆ.z/B
0
.z�1/ D �0

pz�p C � � � C�0
1z

�1 C�0 C�1z C � � � C�pzp;

of degree p, where vec.�i/ D ai, i D 0; 1; : : : ; p, and B.z/ D B0CB1zC� � �CBpzp.
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To solve (3.67), note that Tp is a block Toeplitz matrix, Hp is a block Hankel
matrix,

T�1
p D

2

6
66
4

.„0 ˝ Ik/ �

.„1 ˝ Ik/ .„0 ˝ Ik/
:::

:::
: : :

.„p ˝ Ik/ .„p�1 ˝ Ik/ � � � .„0 ˝ Ik/

3

7
77
5
;

where the „j weights can be obtained from
P1

jD0 „jzj
�
ˆ.z/ D I, and partition

Xp D .X0
1;X

0
2/

0 and Ap D .A0
1;A

0
2/

0, where X1 D .b0
p; : : : ; b

0
nC1/0, X2 D .b0

n; : : :, b0
0/

0,
A1 D .a0

p; : : : ; a
0
nC1/0, A2 D .a0

n; : : : ; a
0
0/

0, and n D Œ p=2�. If we partition Tp and Hp

conforming to the previous partition, we can write (3.67) as


�
T11
T21 T22

�
C
�

H12

H21 H22

���
X1
X2

�
D
�

A1
A2

�
;

which is analogous to (3.56). We can proceed then as in the univariate case,
partitioning also T�1

p conforming to Xp D .X0
1;X

0
2/

0,

T�1
p D

�
T11

T21 T22

�
;

and solving for X1 and X2 to get B0;B1; : : : ;Bp. As mentioned earlier, if r D
q > p, BpC1; : : : ;Br are obtained using (3.65). The autocovariance matrices can
be recursively computed using (3.64) and (3.62). It is to be noted that, since B0
is symmetric, b0 = vec.B0/ can be expressed in terms of vec.B0/ in the previous
equations.

Finally, it is to be further noted that it is possible to proceed as suggested by
Mittnik (1993), converting first (3.67) into a block Toeplitz system and applying
then the method of Akaike (1973). However, the gain seems marginal because the
matrix T�1

p is available without further computation.

3.10.6 Algorithms for the Factorization of a Scalar Covariance
Generating Function

In this section, we will address the problem of finding the factorization of a scalar
covariance generating function G.z/ D P1

kD�1 
.k/zk of a stationary process
fYtg. That is, given the sequence f
kg of covariances of fYtg, we are interested in
finding a unique positive number �2 and a unique function ‰.z/ D P1

iD0 ‰izi,
‰0 D 1, satisfying G.z/ D ‰.z/�2‰.z�1/. According to Theorems 3.10 and 3.11,
the factorization exists and is unique for a linear time series model.
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The first method we will consider is the cepstral method, which goes back to
Kolmogorov (1939). This method is based on the development of the function

g.z/ D lnŒG.z/� D
1X

jD�1
cjz

j; z 2 C;

as a Laurent series in an annulus containing the unit circle. Because the Paley–
Wiener condition of Theorem 3.10 is satisfied, the function G.z/ cannot be zero in
a set of positive Lebesgue measure in the unit circle. That is, it cannot be zero too
often in the unit circle. In addition, it can be shown (Gikhman & Skorokhod, 1969,
pp. 219–222; Pourahmadi 2001, p. 68) that

�‰.z/ D exp

0

@c0
2

C
1X

jD1
cjz

j

1

A

and

�2 D ec0 D 2�exp



1

2�

Z �

��
lnŒ f .x/�dx

�
; ‰.z/ D exp

0

@
1X

jD1
cjz

j

1

A ;

(3.68)

where f .x/ D G.e�ix/=.2�/, x 2 Œ��; ��, is the spectrum of fYtg, and ‰.z/ DP1
jD0 ‰jzj is such that

P1
jD0 j‰jj2 < 1. The ‰j coefficients can be obtained

recursively in terms of the cj as follows. Differentiating in (3.68) with respect to
z gives

‰0.z/ D .c1 C 2c2z C 3c3z
2 C � � � /‰.z/

and equating coefficients on both sides yields

k‰k D c1‰k�1 C 2c2‰k�2 C � � � C kck‰0 D
kX

jD1
jcj‰k�j; k D 1; 2; : : : (3.69)

In the cepstral method, first, the coefficients cj are approximately computed using
the discrete Fourier transform and its inverse, described later in this section. Then,
the relations (3.69) are used to compute the ‰j weights. The procedure will be
illustrated at the end of this section for the particular case of a moving average
process.

Other algorithms that can be used to compute the factor ‰.z/ and �2 are the
Bauer algorithm, the Schur algorithm, and the Levinson–Durbin algorithm. The
Bauer algorithm consists of iterating in the innovations algorithm until‚t;t�k ! ‰k

and Dt ! �2 as t ! 1 in the innovations representation Yt D ‚t;1E1 C � � � C
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‚t;t�1Et�1 C Et. This can be shown to happen if the process fYtg follows a linear
time series model, Yt D At CP1

kD1 ‰kAt�k, fAtg � WN.0; �2/. Assuming that the
autoregressive representation Yt D Yt CP1

kD1 …kYt�k of fYtg exists and computing
the coefficients �jk in Yt D �j1Yt�1 C � � � C �jjYt�j C Et;j and Dj D Var.Et;j/ for
j D 1; 2; : : : using the Levinson–Durbin algorithm, it can be shown that �j;k ! …k

and Dj ! �2 as j ! 1. Thus, the Levinson–Durbin algorithm gives in fact the
inverse factor ….z/ D ‰�1.z/. The Levinson–Durbin algorithm will be described
in the next section. The Schur algorithm is more involved and will not be described
in this book. The interested reader can consult Sayed & Kailath (2001) for more
details on covariance function factorization methods.

In the rest of the section we will consider ARMA models because, as mentioned
earlier, every linear model can be approximated by an ARMA model with any
degree of accuracy. Let fYtg be a univariate ARMA process satisfying

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0; �2/ and the roots of ˆ.z/ are all outside of the unit circle.
Then the covariance generating function is

G.z/ D ‰.z/�2‰.z�1/ D ‚.z/‚.z�1/
ˆ.z/ˆ.z�1/

�2

and the series
P1

jD0 ‰jzj D ‚.z/=ˆ.z/ D ‰.z/ converges in some annulus, r�1 <
jzj < r with r > 1, because the roots of ˆ.z/ are all outside the unit circle. This
implies that the series G.z/ D P1

kD�1 
.k/zk converges for all z in some annulus
containing the unit circle, r�1 < jzj < r with r > 1, and

P1
kD�1 j
.k/j < 1.

Assume that we only know the covariance generating function, G.z/, given by
the ratio of two symmetric Laurent polynomials, say

G.z/ D Q.z/

P.z/
;

where P.z/ and Q.z/ have the special form

Q.z/ D
qX

jD�q

Qjz
j; P.z/ D

pX

jD�p

Pjz
j; Qj D Q�j; Pj D P�j;

p is the degree of ˆ.z/, and q is the degree of ‚.z/, and we want to compute the
factor ‰.z/ D ‚.z/=ˆ.z/ and �2. By stationarity, P.e�ix/ > 0 for all x 2 Œ��; ��.
If we assume invertibility, we also have that Q.e�ix/ > 0 for all x 2 Œ��; ��. So, for
stationary and invertible ARMA models, if we can factor P.z/ and Q.z/ into

P.z/ D ˆ.z/ˆ.z�1/; Q.z/ D ‚.z/�2‚.z�1/;
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we have the desired factorization of G.z/. For this reason, we shall focus in the rest
of the section on the factorization of symmetric Laurent polynomials Q.z/ that are
strictly positive on the unit circle and that correspond to invertible moving average
processes.

We will start be describing some of the existing methods to factorize a symmetric
Laurent polynomial

Q.z/ D
qX

jD�q

Qjz
j; Qj D Q�j:

One obvious procedure consists of transforming Q.z/, which is a polynomial in z and
z�1, into a polynomial in z only by defining Q�.z/ D zqQ.z/. The new polynomial,
Q�.z/, has degree 2q and its roots can be grouped in pairs that are symmetric with
respect to the unit circle. Thus, if we find the roots of Q�.z/, ri, i D 1; : : : ; 2q,
and, without loss of generality, we assume jrij � jriC1j, i D 1; : : : ; 2q � 1, we can
compute the factor‚.z/ and the variance �2 as

‚.z/ D .1� r1z/.1 � r2z/ � � � .1 � rqz/; �2 D .�1/qQq=.r1 � � � rq/;

where jrij < 1, i D 1; : : : ; q.
A more sophisticated procedure can be obtained if we take the symmetry of the

roots into account. Define the new variable y D z C z�1 . Then, due to the symmetry,
the polynomial Q.z/ can be rewritten in terms of y as

Q.z/ D R.y/ D R0 C R1y C � � � Rqyq;

which is an ordinary polynomial of degree q. Once we have found the roots of R.y/,
si, i D 1; : : : ; q, the roots of Q.z/ are obtained from si D z C z�1. This is a second
degree equation that gives two roots of Q.z/ that are symmetric with respect to the
unit circle for each root of R.y/. The coefficients of Q.z/ and R.y/ are linearly related
by the equation

.R0;R1; : : : ;Rq/ D .Q0;Q1; : : : ;Qq/S;

where S is a q � q lower triangular sparse matrix whose entries are given by the
recursion

Si;j D Si�1;j�1 � Si�2;j; i D 4; : : : ; q; j D 1; 2; : : : ; i;

Si;j D 0 if i � 0 or j � 0, initialized with S1;1 D 1, S2;2 D 1, S3;1 D �2, and S3;3 D
1. Note that S has ones in the main diagonal and that the odd lower subdiagonals
are zero. This method may be subject to numerical difficulties if there are multiple
roots or there is a great number of roots.
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As mentioned earlier in this section, another method that can be used is the
cepstral method, that we now describe. But first, we need a definition.

Definition 3.17 Given a vector of real or complex numbers y D .y1; y2; : : : ; yn/
0,

the discrete Fourier transform (DFT) of y is the vector Y defined by

Y D �ny;

where

�n D

2

6
6
6
66
4

1 1 1 � � � 1
1 �n �2n � � � �n�1

n

1 �2n �4n � � � �n�2
n

:::
:::

::: � � � :::
1 �n�1

n �n�2
n � � � �n

3

7
7
7
77
5
; �jk;n D � jk

n ; �n D e� 2�i
n :

The following lemma shows how to invert the matrix �n. The proof is simple and
is omitted.

Lemma 3.2 The matrix 1p
n
�n is symmetric and unitary. Thus,



1p
n
�n

��1
D 1p

n
��

n D 1p
n
�n; ��1

n D 1

n
�� D 1

n
�n:

By the previous lemma, the inverse of the DFT (IDFT) is given by

y D ��1
n Y D 1

n
�nY:

For numerical computation of the DFT, the efficient recursive fast Fourier trans-
form (FFT) algorithm was developed by Cooley & Tukey (1965).

In the cepstral method, given Q.z/ D Pq
jD�q Qjzj, Qj D Q�j, we want to

compute the coefficients cj in lnŒQ.z/� D P1
jD�1 cjzj. To this end, we can use

the FFT algorithm as follows. Assume that we know the values of lnŒQ.z/� in
a finite number of Fourier interpolating points, !�k, k D �M; : : : ; 0; : : : ;M,
! D expŒ2�i=.2M C 1/�, in the unit circle and we make the approximation

Ck D
MX

jD�M

cj!
�kj ' lnŒQ.!�k/�:

Then, C D .C0;C1; : : : ;C2M/
0 is the DFT of c D .c0; c1; : : : ; cM; cM; : : : ; c1/0,

C D �2MC1c;
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and we can recover c by computing the IDFT of C. That is,

c D ��1
2MC1C:

The previous considerations suggest that we may compute an approximation to the
cj coefficients using the following algorithm.

Step 1 Using the FFT algorithm, compute the DFT of the vector

b D .Q0;Q1; : : : ;Qq; 0; 0; : : : ; 0;Qq; : : : ;Q1/
0

D .b0; b1; : : : ; b2M/
0;

where M is approximately 50–100 times larger than q. That is, find B such that

B D �2MC1b D .B0;B1; : : : ;B2M/
0

and

Bk D Q.!�k/ D
qX

jD�q

Qj!
�kj; ! D expŒ2�i=.2M C 1/�:

Step 2 Compute the vector

C D .ln.B0/; ln.B1/; : : : ; ln.B2M//
0:

Step 3 Using the FFT algorithm, compute the IDFT of the vector C. That is, find
c D .c0; c1; : : : ; cM; cM; : : : ; c1/0 such that

c D ��1
2MC1C:

Step 4 Select the first n components of c, .c0; c1; : : : ; cn/
0, where n � q and

use (3.68) and the recursions (3.69) to compute �2 and the ‰j coefficients,
j D 1; 2; : : : ; n. The coefficients ‰j with j > q can be used to check whether the
approximation is good by comparing them to a small number since they should
be zero.

Remark 3.26 In practice it is convenient to select 2M C 1 D 2R in the previous
algorithm so that the FFT transform can be applied more efficiently because the
number of points to which it is applied is a power of two. The accuracy of the
approximation in the computation of the cj coefficients depends on the number 2R

of interpolation points. Þ
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3.10.7 Algorithms for the Factorization of a Multivariate
Covariance Generating Function

There are basically two methods for the factorization of a covariance generating
function in the vector case. One is the method proposed by Tunnicliffe-Wilson
(1972), that is valid in principle for general stationary processes. The other is the
method based on solving the DARE, that is valid only for stationary processes
with time invariant state space structure. This last method will be described in full
detail in Chap. 5, where it will be shown that time invariant state space models and
VARMA models are equivalent. Therefore, the method based on the DARE can also
be used with VARMA models. In this section, we will describe Tunnicliffe-Wilson’s
method.

Let fYtg be a stationary nondeterministic vector process and let GY.z/ DP1
kD�1 
Y.k/zk be its covariance generating function. Assuming that the gen-

eralized Paley–Wiener condition of Theorem 3.12 is satisfied, GY.z/ admits a
factorization

GY.z/ D ‰.z/†‰0.z�1/;

with † unique positive definite and ‰.z/ square, unique and satisfying the two
properties of Theorem 3.12. Let † D LL0, with L a lower triangular matrix, be
the Cholesky factorization of † and define ‰.z/ D ‰.z/L. Then, GY.z/ can be
expressed as

GY.z/ D ‰.z/‰
0
.z�1/;

and we seek an iterative sequence, f‰n.z/g, such that each function of the sequence
satisfies the two properties of Theorem 3.12 and limn!1‰n.z/ D ‰.z/.

To derive the method, assume the approximation ‰n.z/ at iteration n is known.
Then, ‰nC1.z/ is found by imposing the requirements:

(i) ‰nC1.z/ D ‰n.z/C ın.z/, for some small correction term ın.z/.
(ii) ‰nC1.z/‰

0
nC1.z�1/ � GY.z/.

Writing (ii) above as

�
‰n.z/C ın.z/

� h
‰

0
n.z

�1/C ı0
n.z

�1/
i

� GY.z/;

and neglecting the second order term ın.z/ı0
n.z

�1/ leads to a recursion relating
‰n.z/, ‰nC1.z/ and GY.z/,

‰nC1.z/‰
0
n.z

�1/C‰n.z/‰
0
nC1.z�1/ D GY.z/C‰n.z/‰

0
n.z

�1/: (3.70)
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Tunnicliffe-Wilson (1972) proved that if one starts the recursion (3.70) with an
initial polynomial matrix ‰0.z/ that is nonsingular for jzj � 1, then all successive
‰n.z/ will also be nonsingular for jzj � 1 and the algorithm will converge to
the unique invertible factor ‰.z/ such that GY.z/ D ‰.z/‰

0
.z�1/. Moreover,

convergence is quadratic in nature. The first term, ‰n0, in the development of
‰n.z/ D P1

iD0 ‰nizi is constrained to be nonsingular lower triangular in all
iterations.

One efficient way to solve (3.70) is to first define Xn.z/ D ‰n.z/C 2ın.z/ so that
‰nC1.z/ becomes

‰nC1.z/ D 1

2

�
‰n.z/C Xn.z/

�
;

and then transform (3.70) into

Xn.z/‰
0
n.z

�1/C‰n.z/X
0
n.z

�1/ D 2GY.z/: (3.71)

This polynomial matrix equation is similar to (3.63) and, when ‰.z/ is a finite
polynomial matrix, that is, GY.z/ is the covariance generating function of a moving
average model, the same technique as that used to compute the autocovariances of a
VARMA model can be applied. In this case, a convenient choice for the initial value
is ‰0 D C, where C is a constant lower triangular matrix such that CC0 D 
Y.0/.
Note that if ‰n.z/ D Pq

iD0 ‰nizi, then ‰00 D C and ‰0i D 0, i D 1; : : : ; q, and
that limn!1 Xn.z/ D ‰n.z/ in (3.70). If GY.z/ D ‚.z/†‚0.z�1/ with ‚.z/ D
I C‚1z C � � � C‚qzq, once the algorithm has converged to ‰.z/ D Pq

iD0 ‰izi, we

set † D ‰0‰
0
0 and ‚i D ‰i‰

�1
0 , i D 1; : : : ; q.

3.11 Recursive Autoregressive Fitting for Stationary
Processes: Partial Autocorrelations

Suppose a zero-mean random vector process fYtg and consider, as in Sect. 1.8.3, for
fixed t and increasing k, the forward and backward innovations (1.50) and (1.51).
As mentioned earlier, these are the forward and backward prediction problems,
respectively. If the process is stationary, the autocovariance matrices are E.YiY 0

j / D

Y.i� j/ and it turns out that the algorithm of Theorem 1.4 can be simplified because
the coefficient matrices in (1.50) and (1.51) do not depend on the index t.

In this section, we will focus on the simplification in the algorithm of Theo-
rem 1.4 when the process fYtg is stationary. In the univariate case, the algorithm is
called the Levinson–Durbin recursions Durbin (1960); Levinson (1947) and in
the multivariate case it is called Whittle’s algorithm Whittle (1963a). We will first
consider the univariate case and then the multivariate case.
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3.11.1 Univariate Processes

Theorem 3.14 (The Levinson–Durbin Recursions) Suppose a zero-mean
scalar stationary process fYtg with covariance generating function GY.z/ DP1

jD�1 
. j/zj satisfying the Paley–Wiener condition of Theorem 3.10. For fixed
t and increasing k, define the forward innovations fEt;kg by

Yt D E�.YtjYt�1; : : : ;Yt�k/C Et;k

D �k1Yt�1 C � � � C �kkYt�k C Et;k

and denote Dk D Var.Et;k/. Let �.k/ D .�k1; : : : ; �kk/, ��
.k/ D .�kk; : : : ; �k1/ and

	.k/ D .
.1/; : : : ; 
.k//. Then, the following recursions hold

�kk D


.k/� 	.k�1/��0

.k�1/
�
=Dk�1

.�k1; : : : ; �k;k�1/ D �.k�1/ � �kk�
�
.k�1/

Dk D .1 � �2kk/Dk�1;

initialized with D0 D 
.0/ and �11 D 
.1/=
.0/. In addition, the coefficient �kk is
the partial autocorrelation coefficient between Yt and Yt�k�1 and satisfies j�kkj < 1.

Proof First note that, by stationarity, the coefficients of the linear projection
E�.YtjYt�1, : : : ;Yt�k/ are the same as those of E�.Yt�k�1jYt�1; : : : ;Yt�k/ but with
the order reversed. Then, to obtain the algorithm, let Z3 D Yt, Z2 D Yt�k and
Z1 D .Y 0

t�1; : : :, Y 0
t�kC1/0. Applying formula (1.44) yields

E�.Z3jZ1;Z2/ D E�.Z3jZ1/C…32.Z2 � E�.Z2jZ1//
D ‚31Z1 C…32.Z2 �‚21Z1/

D …31Z1 C…32Z2;

where…31 D ‚31�‚32‚21,…32 D ‚32 and‚21,‚31 and‚32 are given by (1.45).
The previous relations imply ‚31 D �.k�1/, ‚21 D ��

.k�1/, .…31;…32/ D �.k/,
…31 D .�k1; : : : ; �k;k�1/, and ‚32 D �kk. Thus,

.�k1; : : : ; �k;k�1/ D �.k�1/ � �kk�
�
.k�1/:

Since, by stationarity, Dk�1 D MSEŒE�.Y3jY1/� D MSEŒE�.Y2jY1/�, from (1.46),
we can write

Dk D Dk�1 � �kkDk�1�kk:
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The expression (1.45) for‚32 D �kk yields

�kk D
h

.k/� .
.1/; : : : ; 
.k � 1//��0

.k�1/
i
=Dk�1:

Finally, formula (1.52) applied in the present context shows that �kk is the partial
correlation coefficient between Yt and Yt�k�1. If j�kkj D 1 for some k, then Dk D 0

and Yt would be perfectly predictable using fYt�1; : : : ;Yt�kg, in contradiction with
Theorems 3.2 and 3.11. �

Remark 3.27 Iterating in the Levinson–Durbin recursions, we get the formula

Dk D .1 � �2kk/.1 � �2k�1;k�1/ � � � .1 � �211/
.0/:

If we replace Y2 and Y1 with Yt and .Yt�1; : : : ;Yt�k/ in the definition of the multiple
correlation coefficient r2:1, given by (1.53), we get 1� r22:1 D Dk=
.0/. Thus, letting
Rk be the multiple correlation coefficient of Yt and .Yt�1; : : : ;Yt�k/, we get the
formula

1 � R2k D .1 � �2kk/.1 � �2k�1;k�1/ � � � .1 � �211/:

Þ
Example 3.29 Suppose the MA.1/ model

Yt D At C �At�1;

where fAtg � WN.0; �2/. Then, the Levinson–Durbin recursions are initialized
with D0 D �2.1 C �2/ and �11 D �=.1 C �2/. Given that 	k D .�; 0; : : : ; 0/ for
k > 1, the recursions yield D1 D �2

�
1C �2 C �4

	
=
�
1C �2

	
,

�22 D � �2

1C �2 C �4

�21 D �
�
1C �2

	

1C �2 C �4

D2 D �2.1C �2 C �4 C �6/=.1C �2 C �4/:

Continuing in this way, it is obtained for t � 2 that Yt D �k1Yt�1C� � �C�kkYt�kCEt;k,
where

Dk D 1C �2 C � � � C �2.kC1/

1C �2 C � � � C �2k
�2; �kj D .�1/jC1� j 1C �2 C � � � C �2.k�j/

1C �2 C � � � C �2k
; j D 1; : : : ; k:

Þ

The Levinson–Durbin recursions allow us to establish the following theorem.
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Theorem 3.15 (Equivalence Between Autocorrelations and Partial Autocor-
relations) Suppose a zero-mean scalar stationary process fYtg with covariance
sequence f
.i/g satisfying the Paley–Wiener condition of Theorem 3.10 and let fig
and f�iig be the autocorrelation and partial autocorrelation sequences of fYtg. Then,
there is a bijection between the two sequences and, therefore, the distribution of fYtg
is completely determined by either of the two sequences plus 
.0/.

Proof Since k D 
.k/=
.0/, given 
.0/, there is a bijection between the autocor-
relations and the autocovariances. That the partial autocorrelations are univocally
determined by the autocovariances is clear by the Levinson–Durbin recursions. To
see the converse, first use again these recursions to get


.k/ D �kkDk�1 C .
.1/; : : : ; 
.k � 1//��0

.k�1/:

Then, the result follows by induction on k. �

Remark 3.28 The previous theorem shows that we can parameterize a stationary
process using 
.0/ and the partial autocorrelation sequence, f�iig. This constitutes
an unconstrained parametrization simpler than using the autocovariance sequence,
f
.i/g. Þ

3.11.1.1 The Yule–Walker Estimators

For each k, the coefficients .�k1; : : : ; �kk/ given by the Levinson–Durbin recursions
are equal to the so-called Yule–Walker estimators. Assuming that the process
fYtg follows an AR.k/ model and the autocovariances are known, these estimators
are computed by solving the system of linear equations in the unknowns �kj,
j D 1; 2; : : : ; k,

2

6
66
4


.0/ 
.1/ � � � 
.k � 1/


.1/ 
.0/ � � � 
.k � 2/
:::

:::
: : :

:::


.k � 1/ 
.k � 2/ � � � 
.0/

3

7
77
5

2

6
66
4

�k1

�k2
:::

�kk

3

7
77
5

D

2

6
66
4


.1/


.2/
:::


.k/

3

7
77
5
; (3.72)


.0/� 
.1/�k1 � � � � � 
.k/�kk D Dk; (3.73)

which are given by (3.49). The Levinson–Durbin recursions constitute a far more
efficient approach to computing these coefficients than solving the previous system
of equations for each k D 1; 2; : : :.

3.11.1.2 Reversing the Levinson–Durbin Recursions

Given the scalar autoregressive model

Yt D a1Yt�1 C a2Yt�2 C � � � C akYt�k C At;
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it may be of interest to compute the first k partial autocorrelation coefficients of the
process fYtg. To this end, we can apply the Levinson–Durbin recursions in reversed
order, starting with .�k1; : : : ; �kk/ D .a1; : : : ; ak/. Note first that we can write the
Levinson–Durbin recursions in matrix form as

2

66
6
4

�k1

�k2
:::

�k;k�1

3

77
7
5

D .Ik�1 � �kkJk�1/

2

66
6
4

�k�1;1
�k�1;2
:::

�k�1;k�1

3

77
7
5
;

where Jk�1 is the .k � 1/ � .k � 1/ reversing matrix defined by

Jk�1 D

2

6
6
6
4

0 0 � � � 1
:::
:::
: : :

:::

0 1 � � � 0
1 0 � � � 0

3

7
7
7
5
:

The matrix Jk�1 is orthogonal and satisfies J2k�1 D Ik�1. In addition, it is not difficult
to verify that .Ik�1��kkJk�1/�1 D Œ1=.1��2kk/�.Ik�1C�kkJk�1/. Then, we can write

2

6
6
6
4

�k�1;1
�k�1;2
:::

�k�1;k�1

3

7
7
7
5

D 1

1 � �2kk

.Ik�1 C �kkJk�1/

2

6
6
6
4

�k1

�k2
:::

�k;k�1

3

7
7
7
5

and we can recursively obtain the coefficients of the autoregressive fittings of order
k � 1; : : : ; 1 and thus the partial autocorrelation coefficients, �ii; i D k; : : : ; 1.

3.11.1.3 Checking the Stability of a Polynomial

An immediate application of the algorithm of the previous section is to checking the
stability of a polynomial, p.z/ D 1C a1z C � � � C akzk. If the polynomial is stable,
we can consider the autoregressive process Yt C a1Yt�1 C � � � C akYt�k D At, where
fAtg is a white noise process, and apply the reversed Levinson–Durbin recursions to
obtain the partial autocorrelation coefficients,�ii; i D k; : : : ; 1. The test then consists
of checking that j�iij < 1 for all i D k; k � 1; : : : ; 1. This follows from the easily
established equivalences: (1) fYtg stationary if, and only if, p.z/ is stable, and (2) fYtg
stationary if, and only if, the partial autocorrelation coefficients, �ii; i D k; : : : ; 1,
satisfy j�iij < 1.
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3.11.1.4 Backward Prediction Problem and Lattice Representation

For fixed t and increasing k, define the forward and backward innovations

Et;k D Yt � E�.YtjYt�1; : : : ;Yt�k/

D Yt � �k1Yt�1 � � � � � �kkYt�k (3.74)

Rt�1;k D Yt�k�1 � E�.Yt�k�1jYt�1; : : : ;Yt�k/

D Yt�k�1 � ��
kkYt�1 � � � � � ��

k1Yt�k: (3.75)

These are the so-called forward and backward prediction problems in the stationary
case. As mentioned in the proof of Theorem 3.14, the coefficients of both problems
satisfy the relation ��

kj D �kj, j D 1; : : : ; k, due to stationarity.

Theorem 3.16 (Lattice Representation) Under the assumptions and with the
notation of Theorem 3.14, the forward and backward innovations (3.74) and (3.75)
satisfy the following recursions

�
Et;k

Rt;k

�
D
�

1 ��kk

��kk 1

� �
Et;k�1

Rt�1;k�1

�
(3.76)

Dk D .1 � �2kk/Dk�1
Qk D Dk;

initialized with Et;0 D Yt, Rt�1;0 D Yt�1, �11 D 
.1/
�1.0/, D0 D 
.0/ and
Q0 D 
.0/, where Dk D Var.Et;k/ and Qk D Var.Rt�1;k/.

Proof As in the proof of Theorem 3.14, let Z3 D Yt, Z2 D Yt�k and Z1 D .Y 0
t�1; : : :,

Y 0
t�kC1/0. Applying formula (1.44) yields

E�.Z3jZ1;Z2/ D E�.Z3jZ1/C…32.Z2 � E�.Z2jZ1//
D ‚31Z1 C…32.Z2 �‚21Z1/;

where …32 D ‚32, ‚31 D �.k�1/, ‚21 D ��
.k�1/ and ‚32 D �kk. Subtracting

from Yt D Z3 the previous expression yields the recursion for Et;k. The recursion
for Dk was proved in Theorem 3.14. The recursions for Rt;k and Qk are proved
interchanging the roles of Z3 and Z2 in the previous argument. �

3.11.1.5 Recursive Autoregressive Fitting Based on the Levinson–Durbin
Algorithm

Given a time series, fY1; : : : ;Yng, that is assumed to have zero mean, an obvious
way to fit autoregressive models of increasing order to the data is to compute first
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the sample covariances, c.j/ D .1=n/
Pn

tDjC1 YtYt�j, j D 0; 1; 2; : : :, and then to use
the Levinson–Durbin algorithm with the population covariances replaced with the
sample ones.

3.11.1.6 Recursive Autoregressive Fitting. Burg’s Algorithm

In the early 1960s a geophysicist named John Parker Burg developed a method for
spectral estimation based on autoregressive modeling that he called the “maximum
entropy method.” As a part of this method Burg (1968) developed an algorithm to
estimate the autoregressive parameters “directly from the data” without the interme-
diate step of computing a covariance matrix and solving the Yule–Walker equations.
Burg’s method is based on the Levinson–Durbin algorithm (Theorem 3.14) and the
lattice representation (Theorem 3.16).

Since the forward and backward prediction problems are statistically identical,
Burg suggested to use the recursions (3.76) but estimating at each step the partial
autocorrelation coefficient, �kk, by minimizing the sum of squares

Sf ;p.k/ D
nX

tDkC1
.E2t;k C R2t;k/

D
nX

tDkC1
ŒEt;k�1;Rt�1;k�1�

�
1 ��kk

��kk 1

�2 �
Et;k�1

Rt�1;k�1

�

D
nX

tDkC1
ŒEt;k�1;Rt�1;k�1�

�
1C �2kk �2�kk

�2�kk 1C �2kk

� �
Et;k�1

Rt�1;k�1

�
:

Using standard calculus, it is not difficult to verify that the solution to this
minimization problem is

O�kk D � 2
Pn

tDkC1 Et;k�1Rt�1;k�1Pn
tDkC1 E2t;k�1 CPn

tDkC1 R2t�1;k�1
:

A notable feature of this solution is that j O�kkj � 1. To see this, consider x; y 2 R
n,

where x D .x1; : : : ; xn/
0, y D .y1; : : : ; yn/

0 and R
n is the standard Euclidean space

with scalar product and norm defined by x � y D Pn
iD1 xiyi and jjxjj D p

x � x. Then,

.x C y/ � .x C y/ D jjxjj2 C jjyjj2 C 2x � y � 0

and

�2x � y

jjxjj2 C jjyjj2 � 1:

We summarize Burg’s algorithm in the following theorem.
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Theorem 3.17 (Burg’s Algorithm) Suppose a time series fY1; : : : ;Yng that is
assumed to have zero mean. Then, the following recursions

�kk D � 2
Pn

tDkC1 Et;k�1Rt�1;k�1
Pn

tDkC1 E2t;k�1 CPn
tDkC1 R2t�1;k�1

�
Et;k

Rt;k

�
D
�

1 ��kk

��kk 1

� �
Et;k�1

Rt�1;k�1

�
;

initialized with Et;0 D Yt and Rt�1;0 D Yt�1, estimate the partial autocorrelation
coefficients, �kk, k D 1; 2; : : :, where the procedure ensures that j�kkj � 1 for all k.
In addition, the autoregressive coefficients, .�k1; : : : ; �kk/, and the variances Dk D
Var.Et;k/ and Qk D Var.Rt�1;k/ can be computed with the supplementary recursions

.�k1; : : : ; �k;k�1/ D �.k�1/ � �kk�
�
.k�1/

Dk D .1 � �2kk/Dk�1
Qk D Dk;

initialized with D0 D Q0 D .1=n/
Pn

tD1 Y2t , where �.k/ D .�k1; : : : ; �kk/ and ��
.k/ D

.�kk, : : : ; �k1/.

Proof The only thing that requires proof are the supplementary recursions. But
these are an immediate consequence of Theorems 3.14 and 3.16. �

3.11.1.7 Recursive Autoregressive Fitting. Modified Burg’s Algorithm

An alternative procedure to Burg’s algorithm that, as we will see, can be easily
extended to the multivariate case consists of using the recursions (3.76) but estimat-
ing the partial autocorrelation coefficients, �kk, in a different way. By Theorem 3.16,
�kk is the partial autocorrelation coefficient between Yt and Yt�k. Thus,

�kk D Cov.Et;k�1;Rt�1;k�1/p
Dk�1

p
Qk�1

;

where Et;k�1 and Rt�1;k�1 are given by (3.74) and (3.75), Dk�1 D Var.Et;k�1/ and
Qk�1 = Var.Rt�1;k�1/, and, by stationarity, �kk minimizes both

E.Et;k�1 � �kkRt�1;k�1/2

and

E.Rt�1;k�1 � �kkEt;k�1/2:
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Therefore, we can estimate �kk at each step in the Levinson–Durbin algorithm by

O�kk D
Pn

tDkC1 Et;k�1Rt�1;k�1
qPn

tDkC1 E2t;k�1
qPn

tDkC1 R2t�1;k�1
;

where Et;k�1 and Rt�1;k�1 can be computed using the recursions (3.76), initialized
with Et;0 D Yt and Rt�1;0 D Yt�1. Note that j O�kkj � 1 because O�kk is the sample
autocorrelation coefficient between Et;k�1 and Rt�1;k�1. We summarize this result in
the following theorem.

Theorem 3.18 (Modified Burg’s Algorithm) Suppose a time series fY1; : : : ;Yng
that is assumed to have zero mean. Then, the following recursions

�kk D
Pn

tDkC1 Et;k�1Rt�1;k�1
qPn

tDkC1 E2t;k�1
qPn

tDkC1 R2t�1;k�1
�

Et;k

Rt;k

�
D
�

1 ��kk

��kk 1

� �
Et;k�1

Rt�1;k�1

�
;

initialized with Et;0 D Yt and Rt�1;0 D Yt�1, estimate the partial autocorrelation
coefficients, �kk, k D 1; 2; : : :, where the procedure ensures that j�kkj � 1 for all k.
In addition, the autoregressive coefficients, .�k1; : : : ; �kk/, and the variances Dk D
Var.Et;k/ and Qk D Var.Rt�1;k/ can be computed with the supplementary recursions

.�k1; : : : ; �k;k�1/ D �.k�1/ � �kk�
�
.k�1/

Dk D .1 � �2kk/Dk�1
Qk D Dk;

initialized with D0 D Q0 D .1=n/
Pn

tD1 Y2t , where �.k/ D .�k1; : : : ; �kk/ and ��
.k/ D

.�kk, : : : ; �k1/.

3.11.2 Multivariate Processes

In the multivariate case, two recursions are necessary in the generalization of the
Levinson–Durbin algorithm because of the lack of symmetry of the autocovariance
sequence, that is, 
.�h/ D 
 0.h/. The generalization is called Whittle’s algorithm
and is described in the next theorem.

Theorem 3.19 (Whittle’s Algorithm Whittle 1963a) Suppose a zero-mean mul-
tivariate stationary process fYtg with covariance generating function GY.z/ DP1

jD�1 
.j/zj satisfying the Paley–Wiener condition of Theorem 3.12. For fixed t
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and increasing k, define the forward and backward innovations

Et;k D Yt � E�.YtjYt�1; : : : ;Yt�k/

D Yt �ˆk1Yt�1 � � � � �ˆkkYt�k

Rt�1;k D Yt�k�1 � E�.Yt�k�1jYt�1; : : : ;Yt�k/

D Yt�k�1 �ˆ�
kkYt�1 � � � � �ˆ�

k1Yt�k;

and denote Dk D Var.Et;k/, Qk D Var.Rt�1;k/ and �k = Cov.Et;k;Rt�1;k/. Let
ˆ.k/ D .ˆk1; : : : ; ˆkk/, ˆ�

.k/ D .ˆ�
kk; : : : ; ˆ

�
k1/, 	.k/ D .
.1/; : : : ; 
.k//, and

	�
.k/ D .
 0.k/; : : : ; 
 0.1//. Then, the following recursions hold

ˆkk D �k�1Q�1
k�1 D



.k/� 	.k�1/ˆ�0

.k�1/
�

Q�1
k�1

D


.k/�ˆ.k�1/	�0

.k�1/
�

Q�1
k�1

.ˆk1; : : : ; ˆk;k�1/ D ˆ.k�1/ �ˆkkˆ
�
.k�1/

ˆ�
kk D �0

k�1D�1
k�1 D



 0.k/� 	�

.k�1/ˆ0
.k�1/

�
D�1

k�1

D


 0.k/�ˆ�

.k�1/	 0
.k�1/

�
D�1

k�1

.ˆ�
k;k�1; : : : ; ˆ�

k1/ D ˆ�
.k�1/ �ˆ�

kkˆ.k�1/

Dk D Dk�1 ��k�1Q�1
k�1�0

k�1 D .I �ˆkkˆ
�
kk/Dk�1

Qk D Qk�1 ��0
k�1D�1

k�1�k�1 D .I �ˆ�
kkˆkk/Qk�1;

initialized with Et;0 D Yt, Rt�1;0 D Yt�1, ˆ11 D 
.1/
�1.0/, D0 D 
.0/,
ˆ�
11 D 
 0.1/
�1.0/, �0 D 
.1/ and Q0 D 
.0/. In addition, ˆkk is the partial

autoregression matrix of order k,

k D D�1=2
k�1 �k�1Q�1=20

k�1 D D�1=2
k�1 ˆkkQ1=2

k�1 D D1=20

k�1ˆ
�0

kk Q�1=20

k�1

is the partial cross-correlation matrix of order k, and the following lattice
representation holds

�
Et;k

Rt;k

�
D
�

I �ˆkk

�ˆ�
kk I

� �
Et;k�1

Rt�1;k�1

�
:
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Proof Let Z3 D Yt, Z2 D Yt�k and Z1 D .Y 0
t�1; : : :, Y 0

t�kC1/0 and apply
formula (1.44). Then,

E�.Z3jZ1;Z2/ D E�.Z3jZ1/C…32.Z2 � E�.Z2jZ1//
D ‚31Z1 C…32.Z2 �‚21Z1/

D …31Z1 C…32Z2;

where…31 D ‚31�‚32‚21,…32 D ‚32 and‚21,‚31 and‚32 are given by (1.45).
From this, it is obtained that ‚31 D ˆ.k�1/, ‚21 D ˆ�

.k�1/, .…31;…32/ D ˆ.k/,
…31 D .ˆk1; : : : ; ˆk;k�1/, and‚32 D ˆkk. Thus,

.ˆk1; : : : ; ˆk;k�1/ D ˆ.k�1/ �ˆkkˆ
�
.k�1/:

By Proposition 1.8,

…32 D ˆkk D �k�1Q�1
k�1

and, from (1.46), we can write

Dk D Dk�1 ��k�1Q�1
k�1�0

k�1:

The expression (1.45) for‚32 D ˆkk yields

ˆkk D
h

.k/� .
.1/; : : : ; 
.k � 1//ˆ�0

.k�1/
i

Q�1
k�1:

Interchanging the roles of Z3 and Z2 in the previous argument, by stationarity, the
other recursions follow. The only thing that remains to be proved is the formula
Dk D Dk�1 � �k�1Q�1

k�1�0
k�1 D .I � ˆkkˆ

�
kk/Dk�1 and its analogue for Qk. But,

becauseˆkk D �k�1Q�1
k�1 andˆ�

kkDk�1 D �0
k�1, we have Dk D Dk�1 �ˆkk�

0
k�1 D

Dk�1 �ˆkkˆ
�
kkDk�1 and the theorem is proved. �

Corollary 3.2 Under the assumptions and with the notation of the previous theo-
rem, the eigenvalues of the matrix ˆkkˆ

�
kk are the squared canonical correlations

between the residuals Et;k�1 and Rt�1;k�1. Thus, they are the squared partial
canonical correlations between Yt and Yt�k with respect to fYt�1; : : : ;Yt�kC1g.
Moreover, these partial canonical correlations are the singular values of k D
Cov.Et;k�1;Rt�1;k�1/ D D�1=2

k�1 �k�1Q�1=20

k�1 , where Et;k�1 and Rt�1;k�1 are the

standardized residuals Et;k�1 D D�1=2
k�1 Et;k�1 and Rt�1;k�1 D Q�1=2

k�1 Rt�1;k�1.

Proof The first part of the corollary follows from the formula

ˆkkˆ
�
kk D �k�1Q�1

k�1�0
k�1D�1

k�1
D †ER†

�1
RR†RE†

�1
EE ;
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where †ER D Cov.Et;k�1;Rt�1;k�1/, †RE D †0
ER, †RR D Var.Rt�1;k�1/, and †EE =

Var.Et;k�1/. To prove the second part, consider that det.ˆkkˆ
�
kk � �I/ D det.k

0
k �

�I/, where k D D�1=2
k�1 �k�1Q�1=20

k�1 . �

Theorem 3.20 (Normalized Whittle’s Algorithm Morf, Vieira, & Kailath 1978)
Suppose a zero-mean multivariate stationary process fYtg with covariance generat-
ing function GY.z/ D P1

jD�1 
.j/zj. With the notation of Theorem 3.19, for fixed t
and increasing k define the forward and backward standardized innovations

Et;k D D�1=2
k Et;k

Rt�1;k D Q�1=2
k Rt�1;k

and denote k D Cov.Et;k�1;Rt�1;k�1/ D D�1=2
k�1 �k�1Q�1=20

k�1 and Q�k D �kQ�1=20

k .

Let Q̂
.k/ D D�1=2

k

�
I;�ˆ.k/

�
and Q̂ �

.k/ D Q�1=2
k

h
�ˆ�

.k/; I
i
. Then, the following

recursions hold

k D D�1=2
k�1 Q�k�1

Q̂
.k/ D .I � k

0
k/

�1=2 n� Q̂
.k�1/; 0

�� k

h
0; Q̂ �

.k�1/
io

Q̂ �
.k/ D .I � 0

kk/
�1=2

nh
0; Q̂ �

.k�1/
i

� 0
k

� Q̂
.k�1/; 0

�o

D�1=2
k D .I � k

0
k/

�1=2D�1=2
k�1

Q�1=2
k D .I � 0

kk/
�1=2Q�1=2

k�1
Q�k D 	.kC1/ Q̂ �0

.k/

Et;k D .I � k
0
k/

�1=2 �Et;k�1 � kRt�1;k�1
	

Rt;k D .I � 0
kk/

�1=2 �Rt�1;k�1 � 0
kEt;k�1

	
;

initialized with .I � 0
0
0/
1=2 D 
.0/1=2 D .I � 0

00/
1=2, D�1=2

0 D Q�1=2
0 D Q̂

.0/

= Q̂ �
.0/ D 
.0/�1=2, Q�0 D 
.1/
.0/�1=20

, Et;0 D 
.0/�1=2Yt and Rt�1;0 D

.0/�1=2Yt�1.

Proof One can express the recursion of Theorem 3.19

Dk D Dk�1 ��k�1Q�1
k�1�0

k�1

in the form

D1=2
k D1=20

k D D1=2
k�1D

1=20

k�1 ��k�1Q�1=20

k�1 Q�1=2
k�1 �

0
k�1:
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It follows from this that

D�1=2
k�1 D1=2

k D1=20

k D�1=20

k�1 D I � D�1=2
k�1 �k�1Q�1=20

k�1 Q�1=2
k�1 �

0
k�1D

�1=20

k�1
D I � k

0
k:

Therefore,

.I � k
0
k/
1=2 D D�1=2

k�1 D1=2
k : (3.77)

Premultiplying the recursion of Theorem 3.19,

Et;k D Et;k�1 ��k�1Q�1
k�1Rt�1;k�1;

by D�1=2
k , it is obtained that

Et;k D D�1=2
k D1=2

k�1Et;k�1 � D�1=2
k D1=2

k�1D
�1=2
k�1 �k�1Q�1=20

k�1 Q�1=2
k�1 Rt�1;k�1

D D�1=2
k D1=2

k�1
�
Et;k�1 � kRt�1;k�1

	

D .I � k
0
k/

�1=2 �Et;k�1 � kRt�1;k�1
	
:

The formula

.I � 0
kk/

1=2 D Q�1=2
k�1 Q1=2

k

and the recursion for Rt;k are proved similarly.
It follows from (3.77) that

D1=2
k D D1=2

k�1.I � k
0
k/
1=2

D .I � 00
0/
1=2 � � � .I � k

0
k/
1=2

and, given the definitions of k and Q�k, that

k D .I � k�10
k�1/�1=2 � � � .I � 0

0
0/

�1=2 Q�k�1:

Also, D�1=2
k D .I � k

0
k/

�1=2D�1=2
k�1 and

Q̂
.k/ D .I � k

0
k/

�1=2D�1=2
k�1

�
I;�ˆ.k/

�

D .I � k
0
k/

�1=2 hD�1=2
k�1 ;�D�1=2

k�1

ˆ.k�1/ �ˆkkˆ

�
.k�1/; ˆkk

�i

D .I � k
0
k/

�1=2
n
D�1=2

k�1
�
I;�ˆ.k�1/; 0

� � D�1=2
k�1

h
0;�ˆkkˆ

�
.k�1/; ˆkk

io

D .I � k
0
k/

�1=2 n� Q̂
.k�1/; 0

� � k

h
0; Q̂ �

.k�1/
io
;
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where we have used the formula k D D�1=2
k�1 ˆkkQ1=2

k�1 from Theorem 3.19. The
recursion for Q̂ �

.k/ can be proved similarly.
Finally, using the first recursion of Theorem 3.19, we can write

Q�k D �kQ�1=20

k

D
h

.k C 1/� 	.k/ˆ

�0

.k/

i
Q�1=20

k

D 	.kC1/ Q̂ �0

.k/:

�
Theorem 3.21 (Modified Burg’s Algorithm Morf, Vieira, Lee, & Kailath 1978)
Suppose a vector time series fY1; : : : ;Yng that is assumed to have zero mean. With
the notation of Theorem 3.19, define

†EE;k�1 D
nX

tDkC1
Et;k�1E0

t;k�1; †ER;k�1 D
nX

tDkC1
Et;k�1R0

t�1;k�1

and †RR;k�1 D Pn
tDkC1 Rt�1;k�1R0

t�1;k�1. Then, the following recursions

k D †
�1=2
EE;k�1†ER;k�1†�1=20

RR;k�1

ˆkk D D1=2
k�1kQ�1=2

k�1
ˆ�

kk D Q1=2
k�1

0
kD�1=2

k�1
�

Et;k

Rt;k

�
D
�

I �ˆkk

�ˆ�
kk I

� �
Et;k�1

Rt�1;k�1

�

.ˆk1; : : : ; ˆk;k�1/ D ˆ.k�1/ �ˆkkˆ
�
.k�1/

.ˆ�
k;k�1; : : : ; ˆ�

k1/ D ˆ�
.k�1/ �ˆ�

kkˆ.k�1/
Dk D .I �ˆkkˆ

�
kk/Dk�1

Qk D .I �ˆ�
kkˆkk/Qk�1;

initialized with Et;0 D Yt, Rt�1;0 D Yt�1, and D0 D Q0 D .1=n/
Pn

tD1 Y2t , estimate
the partial cross-correlation matrices, k, k D 1; 2; : : :, the autoregressive coef-
ficient matrices, .ˆk1; : : : ; ˆkk/ and .ˆ�

kk; : : : ; ˆ
�
k1/, and the covariance matrices

Dk D Var.Et;k/ and Qk D Var.Rt�1;k/.
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3.12 Historical Notes

The problem of finding innovations for stationary discrete time scalar valued
processes was first studied by Wold (1938) in a famous dissertation and then in
greater generality by Kolmogorov (1939, 1941). The theory in all generality was
presented by Doob (1953) and Grenander & Rosenblatt (1957) for the scalar and by
Rozanov (1967) and Hannan (1970) for the vector case. More recent monographs
are Caines (1988) and Lindquist & Picci (2015).

The spectral representation theorem is due to Cramér (1940). See also Kol-
mogorov (1939).

The use of scalar ARMA and ARIMA models was popularized by Box and
Jenkins in the 1970s. See Box & Jenkins (1976) and also Granger & Newbold
(1977). VARMA models were considered early on by Quenouille (1957). Two
standard references on VARMA models are Reinsel (1997) and Lütkepohl (2007).
See also the references therein.

The concepts of observability and controllability were introduced in the 1960s
by R. E. Kalman in deterministic realization theory in relation to minimality. The
standard reference for deterministic realization theory is Kalman, Falb, & Arbib
(1969). Another classical reference is Brockett (1970).

VARMA models and innovations state space forms are studied from a statistical
point of view in Hannan & Deistler (1988). See also Kailath (1980) and Chen (1984)
for an engineering perspective.

The algorithms for autoregressive fitting for stationary series were proposed by
Levinson (1947) and Durbin (1960) in the scalar and by Whittle (1963a) in the
multivariate case. The forward and backward predictor spaces were introduced by
Akaike (1974a) in the context of canonical correlation analysis.

3.13 Problems

3.1 Consider the covariance generating function G.z/ D .1C z/.1C z�1/�2.

(a) Prove that f .x/ D G.e�ix/ D 2�2 .1C cos.x// D 4�2 cos2 .x=2/ and

Z �

��
ln f .x/ D 2� ln.4�2/C 8

Z �=2

0

ln cos.t/:

(b) Let �.x/ D � R x
0

ln cos.t/, x 2 Œ0; �=2�. Prove that

�.x/ D 2�
�
4

C x

2

�
� 2�

�
4

� x

2

�
� x ln.2/:
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Hint: First make the change t D �=2 � w to get �.x/ D � R x
0

ln cos.t/ D
R �=2�x
�=2

ln sin.w/. Then, substitute sin.w/ D 2 sin.w=2/ cos.w=2/ in the last
integral and express it as the sum of three integrals. One of them is easy to
compute and the sum of the other two can be put in terms of the function �.x/
by means of a change of variable in each one.

(c) Conclude that

�
�
2

�
D �

Z �=2

0

ln cos.t/ D �

2
ln.2/;

so that the Paley–Wiener condition (3.42) is satisfied and

Z �

��
ln f .x/ D 2� ln.�2/:

(d) Prove that (3.46) and the Kolmogorov–Szegö formula (3.43) hold, that is,


.0/ D 1

2�

Z �

��
f .x/ D 2�2; �2 D e

1
2�

R �
�� ln f .x/:

3.2 Let Yt D At C At�1, where At � WN.0; �2/, be a stationary process.

(a) Prove that its covariance generating function, G.z/, coincides with that of
Problem 3.1.

(b) Letting ‰.z/ D 1 C z such that G.z/ D ‰.z/‰.z�1/�2, verify that ‰.z/
and ‰�1.z/ are analytic for jzj > 1. In addition, show that the power series
expansions ‰.z/ D P1

iD0 ‰izi and ‰�1.z/ D P1
iD0 ‰izi are such thatP1

iD0 ‰izi is square summable while
P1

iD0 ‰izi is not.
(c) Use Example 3.29 to show that E�.YtjYt�1; : : : ;Yt�k/ D �k1Yt�1C� � �C�kkYt�k

with

�kj D .�1/jC1 k � j C 1

k C 1
; Dk D k C 2

k C 1
�2; j D 1; : : : ; k;

where Dk D Var ŒYt � E�.YtjYt�1; : : : ;Yt�k/�. Obtain limk!1 Dk and conclude
that

lim
k!1

�
E�.YtjYt�1; : : : ;Yt�k/

� D
1X

iD1
�iYt�i

converges in mean square and At D Yt �P1
iD1 �iYt�i. However,

P1
iD0 ‰izi in c)

does not converge in mean square and cannot be used to describe the innovations
as At D P1

iD0 ‰iYt�i.
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3.3 Let a 2 C such that jaj < 1. Prove that

Z �

��
ln
ˇ
ˇ1 � ae�ix

ˇ
ˇ2 dx D 0:

Hint: Use the Taylor series expansion of ln.1 � z/ for jzj < 1 and the fact thatR �
�� eikxdx D 0 for all k ¤ 0.

3.4 Let

G.z/ D ‚.z/‚.z�1/
ˆ.z/ˆ.z�1/

�2

be the covariance generating function of a univariate ARMA process, fYtg, satisfy-
ing

ˆ.B/Yt D ‚.B/At;

where fAtg � WN.0; �2/ and the roots of ˆ.z/ and ‚.z/ are all outside of the unit
circle.

(a) Using Problem 3.3, prove that

Z �

��
ln
ˇ
ˇˆ.e�ix/

ˇ
ˇ2 dx D

Z �

��
ln
ˇ
ˇ‚.e�ix/

ˇ
ˇ2 dx D 0

(b) Conclude that the Kolmogorov–Szegö formula (3.43) holds, that is,

�2 D e
1
2�

R �
�� ln G.e�ix/:

3.5 Let a zero-mean scalar stationary process fYtg with covariance generating
function G.z/ D P1

jD�1 
.j/zj. For fixed t and increasing k, define the forward
innovations fEt;kg by

Yt D E�.YtjYt�1; : : : ;Yt�k/C Et;k

D �k1Yt�1 C � � � C �kkYt�k C Et;k

and denote Dk D Var.Et;k/.

(a) Prove that

D1 � D2 � � � � � 0

and conclude that limk!1 Dk D D � 0.
(b) Prove that if Dk D 0 for some k � 0, then Dn D 0 for all n � k.
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(c) Prove that Dk > 0 if and only if 	kC1 is invertible, where

	kC1 D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ


.0/ 
.1/ � � � 
k�1

.1/ 
.0/ � � � 
.k � 2/
:::

:::
: : :

:::


.k � 1/ 
.k � 2/ � � � 
.0/

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

:

In this case,

Dk D 
.0/� g0
k	

�1
k gk D j	kC1j

j	kj ;

where gk D .
.1/; : : : ; 
.k//.
Hint: Use the Yule–Walker equations (3.72) and (3.73).

(d) Prove that if fYtg is nondeterministic (that is, D > 0), then Dk > 0 and 	k is
invertible for all k � 1. Moreover,

D D exp



lim

k!1
ln j	kj

k

�
:

Hint: To prove the last equality, consider that ln.x/ is a continuous function and
that if fakg is a sequence of positive numbers such that limk!1 ak D a, then

lim
k!1

a1 C a2 C � � � C ak

k
D a:

Remark: According to a limit theorem by Szegö , if D > 0, then

lim
k!1

ln j	kj
k

D
Z �

��
ln G.e�ix/:

(e) Prove that the following inequalities hold for k � 1

�max	kC1 � �max	k; �min	kC1 � �min	k;

where, given a symmetric nonnegative matrix A, �max.A/ and �min.A/ refer to
the maximum and the minimum eigenvalue, respectively.
Hint: For any n � n symmetric nonnegative matrix A, the following equalities
hold

�max.A/ D sup
�

x0Ax

x0x
W x 2 R

n; x ¤ 0

�
; �min.A/ D inf

�
x0Ax

x0x
W x 2 R

n; x ¤ 0

�
:

3.6 Let fang a sequence of real numbers such that 0 � an < 1, n 0 1; 2; : : :. Prove
that

Q1
nD1.1 � an/ < 1 if and only if

P1
nD1 an < 1.
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Hint: First, note that we can assume that 0 < an < 1. Then, letting f .x/ D
� Œln.1 � x/� =x, x > 0, obtain limx!0 f .x/ and use it to compare the series

P
an

and �P ln.1 � an/.

3.7 Under the assumptions and with the notation of Problem 3.5, use Problem 3.6
to prove that D > 0 if and only if

P1
kD1 �2kk < 1.

Hint: Note that by iterating in the Levinson–Durbin recursions, the following
formula is obtained

Dk D .1 � �2kk/.1 � �2k�1;k�1/ � � � .1 � �211/
.0/:

3.8 Let fYtg follow the ARMA.2; 1/ model

Yt � Yt�1 C .1=4/Yt�2 D At C At�1;

where At � WN.0; �2/. Prove, using the method described in Sect. 3.10.5, that the
autocovariances are given by the formula


.k/ D �22�k

�
32

3
C 8k

�
; k � 0:

3.9 Consider a zero mean stationary scalar random process fYtg that follows the
ARMA .2,1/model

Yt C �1Yt�1 C �2Yt�2 D At C �1At�1;

where the polynomials �.z/ D 1C �1z C �2z2 and �.z/ D 1C �1z are coprime and
have all their roots outside the unit circle and At � WN.0; �2/. Verify the validity
of the following two dimensional state space model for the process fYtg:

xtC1 D Fxt C GAtC1
Yt D Hxt;

where

F D
���1 ��2
1 0

�
; G D

�
1

0

�
;

and H D Œ1; �1�. Show that ŒF;G� is controllable and ŒF;H� is observable.

3.10 Let fYtg follow the ARMA.1; 1/ model

.1C �B/Yt D .1C �B/At;
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where j�j < 1, j� j < 1, � ¤ � , and At � WN.0; �2/. Determine the coefficients
f‰ig of the transfer function‰.z/ D P1

iD0 ‰izi D .1C �z/=.1C�z/ and, using the
method described in Sect. 3.10.5, prove that the autocovariances are given by


.k/ D
(
1C�2�2��
1��2 ; k D 0

.1���/.���/
1��2 .��/k�1; k � 1:

Show that the autocorrelation coefficients of fYtg are .1/ D .1� ��/.� ��/=.1C
�2 � 2��/, .k/ D .��/k�1.1/ for k � 1.

Appendix

Difference Equations

In this section, we will consider difference equations with constant coefficients of
the form

Yt Cˆ1Yt�1 C � � �ˆpYt�p D At; (3A.1)

where the ˆi are k � k matrices and fAtg is a known sequence of k � 1 vectors.
We are interested in finding a sequence of k � 1 vectors fYt W t D 1; 2; : : :g that
satisfies (3A.1). It is convenient to transform (3A.1) into state space form

xtC1 D Fxt C GEt

Yt D Hxt;

where xt D .Y 0
t ;Y

0
tC1; : : : ;Y 0

tCp�1/0, G D .0; 0; : : : ; 0; I/0, Et D AtCp�1, H D
.I; 0; : : : ; 0; 0/, and

F D

2

66
6
6
6
4

0 I 0 � � � 0

0 0 I � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � I
�Ap �Ap�1 �Ap�2 � � � �A1

3

77
7
7
7
5
:

Notice that the nonzero eigenvalues of F coincide with the inverse of the roots of
the polynomial detŒA.z/�, where A.z/ D I C A1z C � � � C Apzp.
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First, we will consider the homogeneous equation, which is Eq. (3A.1) with
At D 0. Given an initial condition, x1 D c, the sequence of solution vectors fxt W t D
1; 2; : : :g of the homogeneous equation satisfies

xtC1 D Fxt (3A.2)

x1 D c; (3A.3)

and, therefore, this sequence is of the form fFt�1c W t D 1; 2; : : :g.
In the rest of the section, unless otherwise specified, we will consider the case

in which Yt is scalar. Most of the results we will obtain can be extended to the
multivariate case in a straight forward manner.

Proposition 3A.1 The set of solutions fxt W t D 1; 2; : : :g of (3A.2) and (3A.3) is a
vector space of dimension p.

Proof Let fx1t W t D 1; 2; : : :g and fx2t W t D 1; 2; : : :g be two solutions of (3A.2)
and (3A.3). Then, it is not difficult to verify that fx1t C rx2t W t D 1; 2; : : :g, where
r is a real number, is also a solution. Thus, the set of solutions is a vector space. To
see that this vector space has dimension p, define the mapping

f W x 2 R
p 7�! fFt�1x W t D 1; 2; : : :g:

Then, it is not hard to prove that f is linear and that it is in fact a bijection. Thus, the
dimension of the image of f is p. �

Corollary 3A.1 A base of the solution space of (3A.2) and (3A.3) is given by the
sequences fFt�1ej W j D 1; : : : ; p; t D 1; 2; : : :g, where ej is a unit p � 1 vector with
a one in the jth position. Such a base is called a fundamental system of solutions.

Proof Letting f be the mapping defined in the proof of Proposition 3A.1, it is clear
that a base of the space of solutions will be the image under f of the canonical base
fe1; : : : ; epg of Rp. But f .ej/ D fFt�1ej W s D 1; 2; : : :g. �
Remark 3A.1 It is easy to see that the vector Ft�1ej is the jth column of Ft�1. Thus,
the fundamental system of solutions of Corollary 3A.1 can be compactly represented
as fFt�1 W t D 1; 2; : : :g and any solution of (3A.2) and (3A.2) is of the form fFt�1c W
t D 1; 2; : : :g for some real number c. This number is determined by the initial
condition x1 D c. Þ

According to Remark 3A.1, the solutions of (3A.2) and (3A.3) depend on the
powers of the matrix F. Let P be a nonsingular matrix such that

F D PJP�1;
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and J is the Jordan form of P. The matrix J is given by

J D

2

6
4

J1
: : :

JM

3

7
5 ;

where each block Jj has the form

Jj D

2

6
6
6
6
4

�j ıj

: : :
: : :

: : : ıj

�j

3

7
7
7
7
5

(3A.4)

with all ıj D 1 or all ıj D 0. Then, the powers of F can be expressed in terms of
those of J as follows:

Ft D PJtP�1: (3A.5)

If all ıj D 0 in (3A.4), the powers of Jj are Jt
j D diag.�t

j; : : : ; �
t
j/. If, on the contrary,

all ıj D 1, then

Jt
j D

2

6
6
6
6
66
6
4

�t
j t�t�1

j � � �



t
kj � 1

�
�

t�kjC1
j

: : :
: : :

:::

: : : t�t�1
j

�t
j

3

7
7
7
7
77
7
5

;

where kj is the dimension of Jj. This can be seen by expressing Jj as Jj D Dj C Nj,
where Dj is a diagonal matrix and Nj is an upper triangular matrix with ones in the
first superdiagonal. Then,

Jt
j D .Dj C Nj/

t D
kj�1X

kD0



t
k

�
Dt�k

j Nk
j ;

because the matrices Dj and Nj commute, that is, DjNj D NjDj, and N
kj

j D 0. Taking
these relations into consideration, by (3A.5), we get

Ft D
MX

jD1

kj�1X

kD0
Bjk



t
k

�
�t�k

j

D
MX

jD1

kj�1X

kD0
Cjktk�t

j (3A.6)
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where the coefficient p � p matrices Cjk depend on P and �j. Since F is a matrix
of real numbers, if �j D rjei�j D rj.cos �j C i sin �j/ is a complex eigenvalue of
F, then there exists another eigenvalue that is the complex conjugate of �j, N�j D
rje�i�j D rj.cos �j � i sin �j/. In addition, for each matrix Cjk associated with �j there
exists another matrix associated with N�j equal to the complex conjugate of Cjk, Cjk.
Grouping the terms in �j and N�j yields

Pkj�1
kD0 Cjktk�t

j CPkj�1
kD0 Cjktk N�t

j D Pkj�1
kD0

�
Djk cos.t�j/C Ejk sin.t�j/

�
tkrt

j;

where Djk and Ejk are real coefficient matrices that depend on Cjk. Thus, (3A.6) can
be expressed as

Ft D
M1X

jD1

kj�1X

kD0
Cjktk�t

j C
M2X

jD1

kj�1X

kD0

�
Djk cos.t�j/C Ejk sin.t�j/

�
tkrtk

j ;

where M1 C M2 D M and the �j in the first term on the right-hand side of the
previous equality are real. By Remark 3A.1, the solutions of (3A.2) and (3A.3) are
of the form fFt�1c W t D 1; 2; : : :g for some real number c. Since Yt D Hxt, the
solutions of (3A.1) with At D 0 (the homogeneous difference equation) are of the
form fHFt�1c W t D 1; 2; : : :g, where c D .Y1; : : : ;Yp/

0. We summarize these results
in the following theorem.

Theorem 3A.1 The solutions fYt W t D 1; 2; : : :g of the homogenous equation

Yt Cˆ1Yt�1 C � � �ˆpYt�p D 0;

are of the form

Yt D
M1X

jD1

kj�1X

kD0
cjktk�t

j C
M2X

jD1

kj�1X

kD0

�
djk cos.t�j/C ejk sin.t�j/

�
tkrt

j

D
M1X

jD1

kj�1X

kD0
cjktk�t

j C
M2X

jD1

kj�1X

kD0
ajk cos

�
t�j C bjk

�
tkrt

j;

where the cjk, djk, ejk, ajk, and bjk are real numbers that are determined by the initial
conditions fY1; : : : ;Ypg.

Proof The only thing that has not been proved is the formula

djk cos.t�j/C ejk sin.t�j/ D ajk cos
�
t�j C bjk

�
:

But it is an immediate consequence of standard trigonometric identities that

ajk D
q

d2jk C e2jk; bjk D arctan.�djk=ejk/:

�
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Example 3A.1 Let fYtg be the solution of

r4Yt D 0

where r4 D 1 � B4 and B is the backshift operator, BYt D Yt�1. Then, the equation
in state space form is xtC1 D Fxt, where

F D

2

6
6
4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

3

7
7
5 :

The eigenvalues of F are the inverses of the roots of the polynomial 1 � z4. Since
1 � z4 D .1 � z/.1C z/.1C z2/, the eigenvalues are 1;�1; ei�=2; e�i�=2. According
to Theorem 3A.1, the general solution is

Yt D c1 C c2.�1/t C c3 cos.t�=2/C c4 sin.t�=2/;

where c1, c2, c3, and c4 are determined by the initial conditions.
Þ

Example 3A.2 (The Autocorrelation Function of a Scalar ARMA Model) Let the
scalar process fYtg follow the ARMA.p; q/ model

ˆ.B/Yt D ‚.B/At;

whereˆ.z/ D 1C�1zC� � �C�pzp,‚.z/ D 1C�1zC� � �C�qzq, fAtg � WN.0; �2/
and the roots of ˆ.z/ are all outside of the unit circle. Then, the autocovariances
satisfy


Y.l/CPp
jD1 �j
Y.l � j/ D Pq

jDl �j�
2 j�l; 0 � l � q


Y.l/CPp
jD1 �j
Y.l � j/ D 0; l > q:

Thus, dividing by 
Y.0/ the last equation, we get

Y.h/C
pX

jD1
�jY.h � j/ D 0; h > max.p; q/;

and the autocorrelations .h/ satisfy a difference equation of order p for
h >max.p; q/. The pattern of the autocorrelations will be determined by the roots
of the polynomialˆ.z/. Þ
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3.A.1 The Nonhomogeneous Case

Returning to the nonhomogeneous equation (3A.1), consider the equation in vector
form, xtC1 D Fxt C GEt. Iterating in this equation, we get

xt D Ft�1x1 C �
GEt�1 C FGEt�2 C � � � C Ft�2GE1

	
:

and it is seen that the general solution is the sum of the solution of the homogeneous
equation plus the term

�
GEt�1 C FGEt�2 C � � � C Ft�2GE1

	
, which is sometimes

called the particular solution. Since Yt D Hxt, the general solution of (3A.1) is

Yt D HFt�1x1 C �
HGEt�1 C HFGEt�2 C � � � C HFt�2GE1

	
:

3.A.2 Stochastic Difference Equations

Until now we have considered nonstochastic difference equations. Let fYtg be a
vector process that follows a VARMA model

Yt Cˆ1Yt�1 C � � � CˆpYt�p D At C‚3At�1 C � � � C‚qAt�q; (3A.7)

or, more compactly, ˆ.B/Yt D ‚.B/At, where B is the backshift operator, BYt D
Yt�1. Using, for example, Akaike’s representation (3.13) and (3.14), where F and K
are given by (3.11) and H= ŒI; 0; : : : ; 0�, this model can be put into innovations state
space form

xtC1 D Fxt C KAt

Yt D Hxt C At:

Then, iterating in the transition equation, it is obtained that

xt D �
KAt�1 C FKAt�2 C � � � C Ft�2KA1

	C Ft�1x1

and

Yt D �
At C HKAt�1 C HFKAt�2 C � � � C HFt�2KA1

	C HFt�1x1
D .At C‰1At�1 C � � � C‰t�1A1/C htx1; (3A.8)

where
P1

iD0 ‰izi D ˆ�1.z/‚.z/ D I C zH.I � Fz/�1K and ht D HFt�1.
It is to be noticed that fxtg satisfies the difference equation xtC1 D Fxt C KAt

and that, therefore, fFt�1x1g is a solution of the homogenous equation xtC1 D Fxt

and fKAt�1 CFKAt�2 C � � � C Ft�2KA1g is a particular solution. And it is to be
further noticed that, because ˆ.z/

�P1
iD0 ‰izi

	 D ‚.z/, if we apply the operator
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ˆ.B/ to (3A.8), then

ˆ.B/Yt D ‚.B/At Cˆ.B/htx1; t > r;

and, therefore,

ˆ.B/ht D 0; t > r;

where r D maxfp; qg. The dimension of x1 depends on the properties of the state
space form. If the state space form is minimal, the dimension of x1 is equal to the
McMillan degree.

If only polynomial methods are used, one possible way to generate the solution,
Yt, of (3A.7) in the form (3A.8) is to set ht D .0; : : : ; I; : : : ; 0/, t D 1; 2; : : : ; r,
where the I is in the tth position, and ht D �ˆ1ht�1 � � � � �ˆ1ht�p for t > r, and to
obtain the ‰i weights from the relation ˆ.z/

�P1
iD0 ‰izi

	 D ‚.z/. However, in this
procedure the dimension of x1 will not be minimal in general. In fact,

x1 D

2

6
66
4

Y1 � A1
Y2 � A2 �‰1A1

:::

Yr � Ar �‰1Ar�1 � � � � �‰r�1A1

3

7
77
5
:

To obtain a minimal x1, we need to first put the VARMA model (3A.7) into echelon
form,ˆE.B/Yt D ‚E.B/At, that will be described in Chap. 4. Let ‰i;j denote the ith
row of the matrix ‰j, i D 1; 2; : : :, Yt D .Y1t; : : : ;Ykt/

0 and At D .A1t; : : : ;Akt/
0, and

let ni be the ith Kronecker index, i D 1; : : : ; k. Define

Yp
ij0 D Ypi � Api �‰p;1Ai�1 C � � � C‰p;i�1A1; i D 1; : : : ; ni; p D 1; : : : ; k;

and

x1 D
h
Y11j0; : : : ;Y

1
n1j0;Y

2
1j0; : : : ;Y

2
n2j0; : : : ;Y

k
1j0; : : : ;Y

k
nkj0
i0
:

Then, as shown in Chap. 4, the elements of x1 constitute a basis of the space of
predictors and there exists a selector matrix, Jn, where n D Pk

iD1 ni is the McMillan
degree, formed with zeros and ones such that

x1 D Jn

2

6
66
4

Y1 � A1
Y2 � A2 �‰1A1

:::

Yr � Ar �‰1Ar�1 � � � � �‰r�1A1

3

7
77
5
;
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where r D maxfni W i D 1; : : : ; kg. Since the elements of x1 form a basis, Jn has
rank n and we can define ht, t D 1; : : : ; r, as

.J0
nJn/

�1J0
nx1 D

2

6
66
4

h1
h2
:::

hr

3

7
77
5

x1 D

2

6
66
4

Y1 � A1
Y2 � A2 �‰1A1

:::

Yr � Ar �‰1Ar�1 � � � � �‰r�1A1

3

7
77
5
: (3A.9)

Then, we define ht for t > r recursively so that they satisfy

ˆE.B/ht D 0; t > r:

As we will see in Chap. 4, the elements of x1 are simply the first linearly
independent rows of the right-hand side matrix in (3A.9), and these rows are
determined by the Kronecker indices, as are the first linearly independent rows of
the Hankel matrices, Ht, for t > r.

3.A.3 Generating Functions and State Space Models

Consider the state space model

xtC1 D Fxt C Gut

Yt D Hxt C Jut; t � 0;

where Var.ut/ D I and we assume that the time starts at zero for simplicity in what
follows. Define the generating functions Gx.z/ D P1

iD0 xizi, Gu.z/ D P1
iD0 uizi and

GY.z/ D P1
iD0 Yizi. Then, we have

x1 C x2z C x3z
2 C � � � D F.x0 C x1z C x2z

2 C � � � /C G.u0 C u1z C u2z
2 C � � � /;

that can be abbreviated to

z�1.Gx.z/� x0/ D FGx.z/C GGu.z/:

It follows from this that

.z�1I � F/Gx.z/ D z�1x0 C GGu.z/

and

Gx.z/ D .I � zF/�1 Œx0 C zGGu.z/� :
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Using this last expression, we finally get

GY.z/ D HGx.z/C JGu.z/

D H.I � zF/�1x0 C �
J C zH.I � zF/�1G

�
Gu.z/:

If x0 D 0, then

GY.z/ D �
J C zH.I � zF/�1G

�
Gu.z/

D ‰.z/Gu.z/;

where ‰.z/ D J C zH.I � zF/�1G is the transfer function of the state space model.



Chapter 4
The State Space Model

4.1 The State Space Model

Suppose that fYtg is a multivariate process with Yt 2 R
p that admits the state space

representation

xtC1 D Ftxt C Gtut (4.1)

Yt D Htxt C vt; t D 1; 2; 3; : : : ; (4.2)

where xt 2 R
r is the state vector,

E

��
ut

vt

� �
u0

s; v
0
s

�� D �2
�

Qt St

S0
t Rt

�
ıts;

ut 2 R
s; vt 2 R

p;E.ut/ D 0;E.vt/ D 0, the “initial state vector,” x1, is orthogonal
to ut and vt for all t;E.x1/ D a and Var.x1/ D �2�. Equations (4.1) and (4.2) are
called the “transition equation” and the “measurement equation,” respectively.
As we shall see, the parameter �2 can be concentrated out of the likelihood. In the
following we will usually assume �2 D 1 unless otherwise specified.

The first two moments of the distribution of fYtg are completely defined by
the state space model equations (4.1) and (4.2). If the covariance matrix of the
sample Y D .Y 0

1; : : : ;Y
0
n/

0 is singular, there are linear combinations of Y that
are deterministic. For this reason, we will make the assumption that Var.Y/ is
nonsingular unless otherwise specified.

© Springer International Publishing Switzerland 2016
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214 4 The State Space Model

4.2 The Kalman Filter

When the variables ut; vt, and x1 in the state space model (4.1) and (4.2) have
a Gaussian distribution, the Kalman filter recursions produce the conditional
expectation OxtC1jt D E.xtC1jY1Wt/ and the conditional variance PtC1 D Var.xtC1jY1Wt/
for t D 1; : : : ; n, where Y1Wt D fY1; : : : ;Ytg. If the Gaussian assumption is dropped,
the Kalman filter can still be applied, but then the Oxtjt�1 are only minimum mean
squared estimators of xt based on Y1Wt in the class of linear estimators.

Theorem 4.1 (The Kalman Filter (Kalman, 1960b)) The Kalman filter corre-
sponding to the sample fYt W 1 � t � ng of the state space model (4.1) and (4.2) is
given for t D 1; : : : ; n by the recursions

Et D Yt � Ht Oxtjt�1; †t D HtPtH
0
t C Rt

Kt D .FtPtH
0
t C GtSt/†

�1
t ; OxtC1jt D Ft Oxtjt�1 C KtEt (4.3)

PtC1 D FtPtF
0
t C GtQtG

0
t � .FtPtH

0
t C GtSt/†

�1
t .FtPtH

0
t C GtSt/

0

D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t;

initialized with Ox1j0 D a and P1 D �. In the previous recursions, the Et are the
innovations, Var.Et/ D †t , the quantity Kt is called the Kalman gain, Oxtjt�1 is the
orthogonal projection of xt on fY1; : : : ;Yt�1g, and MSE. Oxtjt�1/ D Pt.

Proof By the properties of orthogonal projection, the estimator of xtC1 based on Y1Wt
can be obtained by projecting xtC1 onto fY1; : : : ;Yt�1;Etg D fY1Wt�1;Etg, where Et

is the innovation, Et D Yt � E�.YtjY1Wt�1/. Since Y1Wt�1 and fEtg are orthogonal and
fEtg and futg are orthogonal to Y1Wt�1, it is obtained that

OxtC1jt D E�.xtC1jY1Wt�1/C Cov.xtC1;Et/Var�1.Et/Et

D E�.Ftxt C GtutjY1Wt�1/C KtEt

D Ft Oxtjt�1 C KtEt;

where Kt D Cov.xtC1;Et/Var�1.Et/.
Since fvtg is orthogonal to Y1Wt�1, we have that E�.YtjY1Wt�1/ D E�.Htxt C

vtjY1Wt�1/ D Ht Oxtjt�1 and Et D Yt � Ht Oxtjt�1. Since Et and Oxtjt�1 are orthogonal,
letting Var.Et/ D †t, it follows from this that Et D Ht Qxt Cvt, where Qxt D xt � Oxtjt�1,
and †t D HtPtH0

t C Rt. In addition, since vt is orthogonal to Qxt and Oxtjt�1 and Qxt is
orthogonal to ut and Oxtjt�1,we get

Cov.xtC1;Et/ D Cov.xtC1;Ht Qxt C vt/

D Cov.Ftxt C Gtut;Ht Qxt C vt/

D Cov.Ft Qxt C Gtut C Ft Oxtjt�1;Ht Qxt C vt/

D FtPtH
0
t C GtSt;

and the formula for Kt follows.
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To obtain the formula for MSE. OxtC1jt/ D PtC1, consider that

QxtC1 C KtEt D xtC1 � Ft Oxtjt�1
D Ft Qxt C Gut

and that QxtC1 and Qxt are orthogonal to Et and ut, respectively. �

In the rest of the chapter, unless otherwise stated, we will assume for simplicity
and without loss of generality that E.x1/ D 0. Therefore, the initial condition for
the Kalman filter will be Ox1j0 D 0.

4.2.1 Innovations Model for the Output Process

If fYtg follows the state space model (4.1) and (4.2), an immediate consequence of
the Kalman filter is the following causal and causally invertible state space model
for the output process fYtg

OxtC1jt D Ft Oxtjt�1 C KtEt

Yt D Ht Oxtjt�1 C Et;

where Var.Et/ D †t and Ox1j0 D 0. Note that the model is invertible because we can
obtain Et from Yt using the recursions

OxtC1jt D .Ft � KtHt/ Oxtjt�1 C KtYt

Et D �Ht Oxtjt�1 C Yt;

where Ox1j0 D 0.

4.2.2 Triangular Factorizations of Var.Yt/ and Var�1.Yt/

If fYtg follows the state space model (4.1) and (4.2) and the Kalman filter is
applied, the innovations, Et; t D 1; : : : ; n, are serially orthogonal by the properties
of orthogonal projection discussed in Chap. 1. Also, if Y D .Y 0

1; : : : ;Y
0
n/

0;E D
.E0

1; : : : ;E
0
n/

0; † D diag.†1; : : : ; †n/, and Var.Y/ D †Y , then E D L�1Y,
Var.E/ D † and †Y D L†L0, where L is a lower block triangular matrix with
blocks of unit matrices in the main diagonal.

The elements of the L and L�1 matrices can be obtained by iterating in the
Kalman filter. Using Et D Yt � Ht Oxtjt�1 and OxtC1jt D .Ft � KtHt/ Oxtjt�1 C KtYt, it
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is not difficult to show that

L D

2

6
6
66
6
4

I 0 � � � 0 0

H2K1 I � � � 0 0

H3F32K1 H3K2 � � � 0 0
:::

:::
: : :

:::
:::

HnFn
2K1 HnFn

3K2 � � � HnKn�1 I

3

7
7
77
7
5
; (4.4)

where Fj
i D Fj�1Fj�2 � � � Fi if i < j;Fi

i D I, and

L�1 D

2

6
66
6
6
6
4

I 0 � � � 0 0

�H2K1 I � � � 0 0

�H3F3p;2K1 �H3K2 � � � 0 0
:::

:::
: : :

:::
:::

�HnFn
p;2K1 �HnFn

p;3K2 � � � �HnKn�1 I

3

7
77
7
7
7
5

; (4.5)

where Fj
p;i D Fp;j�1Fp;j�2 � � � Fp;i if i < j;Fi

p;i D I, and Fp;t D Ft � KtHt. Clearly,

†�1
Y D L

0�1†�1L�1.

Example 4.1 Assuming the set up of Example 1.3, one possible set of Eqs. (4.1)
and (4.2) is

xtC1 D �xt C �ut

Yt D xt; t D 1; 2; : : : ; n:

Thus, Ft D �;Ht D 1;Gt D �; vt D 0; ut D AtC1=�;Qt D 1;Rt D 0; St D 0, and
� D Var.x1/ D �2=.1� �2/. The Kalman filter is initialized with

Ox1j0 D 0; P1 D �;

and produces the output E1 D Y1; †1 D P1;K1 D �; Ox2j1 D �Y1;P2 D �2, and, for
t > 1,

Et D Yt � �Yt�1; †t D �2; Kt D �; OxtC1jt D �Yt; PtC1 D �2:

Þ

4.2.3 Measurement and Time Updates

There are applications where the measurements are made at irregular intervals, for
example in tracking satellites using data from stations around the world. To address
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this issue, Dr. S.F. Schmidt at the NASA Ames Research Center developed in the late
1960s a decomposition of the original Kalman filter problem into a measurement-
update problem of going from the predicted estimator, Oxtjt�1, to the so-called filtered
estimator, Oxtjt D E�.YtjY1Wt/, and a separate time-update problem of going from Oxtjt
to OxtC1jt.

Theorem 4.2 (Measurement Update) Consider the state space model (4.1)
and (4.2) and suppose that we have computed the estimator of xt based on
Y1Wt�1; Oxtjt�1, and its MSE, Pt, and a new measurement, Yt, becomes available.
Then, we can update the estimator Oxtjt�1 and Pt, using the formulae

Oxtjt D Oxtjt�1 C Kf ;tEt (4.6)

MSE. Oxtjt/ D Ptjt D Pt � Kf ;t†tK
0
f ;t D Pt � PtH

0
t†

�1
t HtPt;

where Kf ;t D PtH0
t†

�1
t .

Proof The estimator of xt based on Y1Wt can be obtained by projecting xt onto
fY1; : : : ;Yt�1;Etg D fY1Wt�1;Etg. Since Y1Wt�1 and fEtg are orthogonal, it is obtained
that

Oxtjt D Oxtjt�1 C Cov.xt;Et/Var�1.Et/Et

D Oxtjt�1 C Kf ;tEt;

where Kf ;t D Cov.xt;Et/Var�1.Et/. Let Qxt D xt � Oxtjt�1. Then, Et D Yt � Ht Oxtjt�1 D
Ht Qxt Cvt; vt is orthogonal to Qxt and Oxtjt�1, and Qxt is orthogonal to Oxtjt�1. Thus, we get

Cov.xt;Et/ D Cov.xt;Ht Qxt C vt/ D Cov. Qxt C Oxtjt�1;Ht Qxt C vt/ D PtH
0
t

and the formula for Oxtjt follows because Var.Et/ D †t.
To obtain the formula for MSE. Oxtjt/ D Ptjt, consider that xt � Oxtjt C Kf ;tEt D

xt � Oxtjt�1 and that xt � Oxtjt and Et are orthogonal. �

Theorem 4.3 (Time Update) Consider the state space model (4.1) and (4.2) and
suppose that we have computed the estimator of xt based on Y1Wt; Oxtjt , and its MSE,
Ptjt , and without any further measurements wish to find OxtC1jt and PtC1. This can be
done using the formulae

OxtC1jt D Ft Oxtjt C Gt Outjt; Outjt D St†
�1
t Et;

PtC1 D FtPtjtF0
t C Gt.Qt � St†

�1
t S0

t/G
0
t � FtKf ;tS0

tG
0
t � GtStK0

f ;tF
0
t ;

where Kf ;t D PtH0
t†

�1
t .

Proof The state equation (4.1) allows us to write OxtC1jt D Ft Oxtjt C Gt Outjt, where
Outjt D E�.utjY1Wt/ and the estimator of ut based on Y1Wt can be obtained by projecting
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ut onto fE1; : : : ;Et�1;Etg. Since ut is orthogonal to Es if s � t �1, it is obtained that

Outjt D Cov.ut;Et/Var�1.Et/Et:

Let Qxt D xt � Oxtjt�1. Then, Et D Yt � Ht Oxtjt�1 D Ht Qxt C vt and ut is orthogonal to Qxt.
From this, we get

Cov.ut;Et/ D Cov.ut;Ht Qxt C vt/ D St

and the formula for Outjt follows because Var.Et/ D †t. The formula for PtC1 follows
by a straightforward calculation. �

4.2.4 Updating of the Filtered Estimator

An immediate consequence of the measurement and time updates is the following
formula to update the filtered estimator

OxtC1jtC1 D OxtC1jt C Kf ;tC1EtC1
D Ft Oxtjt C GtSt†

�1
t Et C Kf ;tC1EtC1:

4.2.5 Sequential Processing

An important application of the measurement and time updates of the Kalman
filter is the so-called sequential processing to handle the case of multivariate
observations. Assume the state space model (4.1) and (4.2) in which p > 1 and let
Yt D .Y1t; : : : ;Ypt/

0;Ht D .h0
1t; : : : ; h

0
pt/

0 and vt D .v1t; : : : ; vpt/
0. Suppose that the

matrix Rt is diagonal, Rt D diag.r1t; : : : ; rpt/, and that we have obtained Oxtjt�1 and
its MSE, Pt. To update these estimators when the new measurement, Yt, is available,
the idea is to proceed sequentially, replacing the Eqs. (4.1) and (4.2) with

xiC1
t D xi

t

Yit D hitxi
t C vit; i D 1; : : : ; p;

(4.7)

where x1t D xt. This is possible because the variables vit in the state space
model (4.7) are orthogonal. If we apply the measurement update corresponding to
i D 1 in the state space model (4.7), starting with Ox1j0t D Oxtjt�1 and P1j0t D Pt, we
get

Ox1j1t D Ox1j0t C K1
f ;tE1t; P1j1t D P1j0t � P1j0t h0

1t†
�1
1t h1tP

1j0
t ; (4.8)
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where E1t D Y1t � h1t Ox1j0t ;K1
f ;t D P1j0t h0

1t†
�1
1t and †1t D h1tP

1j0
t h0

1t C r1t. Applying
now the time update to the state space model (4.7), it is obtained that

Ox2j1t D Ox1j1t ; P2j1t D P1j1t :

Continuing in this way, we see that we can process Yt using the state space
model (4.7) with the measurement updates

Oxiji
t D Oxi�1ji�1

t CKi
f ;tEit; Piji

t D Pi�1ji�1
t �Pi�1ji�1

t h0
it†

�1
it hitP

i�1ji�1
t ; i D 2; : : : ; p;

where

Eit D Yit � hit Oxi�1ji�1
t ; Ki

f ;t D Pi�1ji�1
t h0

it†
�1
it ; †it D hitP

i�1ji�1
t h0

it C rit;

initialized with (4.8). At the end of this process, clearly Oxtjt D Ox pjp
t and Ptjt D Ppjp

t .
That is, we have performed the multivariate measurement update of Oxtjt�1 and its
MSE, Pt, by means of p univariate measurement updates.

If the matrix Rt is not diagonal, we can first perform the decomposition UtRtU0
t D

Dt, where Ut is an orthogonal and Dt is a diagonal matrix, and then premultiply the
observation equation (4.2) by Ut. After this, the previous procedure can be applied
to the transformed observation equation, Y�

t D H�
t xt Cv�

t , where Y�
t D UtYt;H�

t D
UtHt and v�

t D Utvt, because Var.v�
t / D Dt.

4.3 Single Disturbance State Space Representation

In Chap. 1 we introduced the state space model representation

xtC1 D Ftxt C Gt�t (4.9)

Yt D Htxt C Jt�t; (4.10)

where f�tg is an uncorrelated sequence, �t � .0; �2I/; x1 � .0; �2�/, and the
notation c � .m;V/ denotes a random vector c with mean m and covariance matrix
V . It is assumed that x1 is orthogonal to the f�tg sequence and it is further assumed
that �2 D 1 unless otherwise stated. As mentioned in Sect. 1.7, the fact that the
same error term appears in both (4.9) and (4.10) does not imply loss of generality in
the state space model.

It is not difficult to verify that the Kalman filter corresponding to (4.9) and (4.10)
is given for t D 1; : : : ; n by the recursions

Et D Yt � Ht Oxtjt�1; †t D HtPtH
0
t C JtJ

0
t ;

Kt D .FtPtH
0
t C GtJ

0
t/†

�1
t ; OxtC1jt D Ft Oxtjt�1 C KtEt; (4.11)

PtC1 D .Ft � KtHt/PtF
0
t C .Gt � KtJt/G

0
t;

initialized with Ox1j0 D 0 and P1 D �.
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4.4 Square Root Covariance Filter

Sometimes, the propagation of the covariance matrices Pt in the Kalman filter is not
numerically stable. For this reason, it is desirable to propagate square roots of these
matrices. Given a nonnegative definite matrix, A, a square root of A is any matrix,
A1=2, such that

A D A1=2A1=2
0

:

The Kalman filter obtained by propagating the square roots of Pt is called the square
root covariance filter. It turns out that the square root covariance filter is simpler
with the single disturbance state space model (4.9) and (4.10) than if we use (4.1)
and (4.2).

4.4.1 Square Root Filter for the Single Disturbance State
Space Model

Theorem 4.4 Suppose that the process fYtg follows the state space model (4.9)
and (4.10). Then, the application of the QR algorithm produces an orthogonal
matrix Ut such that

U0
t

"
P1=2

0

t H0
t P1=2

0

t F0
t

J0
t G0

t

#

D
"
†
1=20

t
bK0

t

0 P1=2
0

tC1

#

; (4.12)

where bKt D .FtPtH0
t C GtJ0

t/†
�1=20

t D Kt†
1=2
t . Thus, letting bEt D †

�1=2
t Et; OxtC1jt

can be obtained as OxtC1jt D Ft Oxtjt�1 C bKtbEt.

Proof The matrix Ut satisfies

U0
t

"
P1=2

0

t H0
t P1=2

0

t F0
t

J0
t G0

t

#

D
�
†0 K0
0 P0

�
:

Premultiplying the matrices in (4.12) by their respective transposes yields

HtP
1=2
t P1=2

0

t H0
t C JtJ

0
t D ††0; HtP

1=2
t P1=2

0

t F0
t C JtG

0
t D †K0

FtP
1=2
t P1=2

0

t F0
t C GtG

0
t D KK0 C PP0;

and the theorem follows. �
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4.4.2 Fast Square Root Filter for the Single Disturbance State
Space Model

Letting Pt D LtDtL0
t and†t D ltdtl0t, where Dt and dt are diagonal matrices with non

negative elements in the main diagonal and Lt and lt are lower triangular matrices
with ones in the main diagonal, we can use fast Givens rotations in Theorem 4.4 to
get

U0
t

"
D1=2

t

I

#�
L0

tH
0
t L0

tF
0
t

J0
t G0

t

�
D
"

d1=2t

D1=2
tC1

#"
l0t d�1=2

t
bK0

t

0 L0
tC1

#

:

4.4.3 Square Root Filter for the Several Sources of Error State
Space Model

It is possible to derive a square root covariance filter when the process fYtg follows
the state space model (4.1) and (4.2). We will derive this filter under the assumption
that Qt is nonsingular. This does not imply any loss of generality however because
of the presence of the matrix Gt. To see this, assume that Qt is singular and let Ot

be an orthogonal matrix such that O0
tQtOt D Dt, where Dt is a diagonal matrix

with the diagonal elements in decreasing order of absolute value so that the last
elements are zero. Let Dt D diag.Dt; 0/, where Dt contains all the nonzero elements
of D, and define Nut D Utut, where Var.Nut/ D Dt and Ut is the submatrix of Ot

that contains the first rank.Dt/ columns of this matrix. Then, ut D U0
t Nut and we can

redefine ut;Gt;Qt and St as Nut;GtU0
t ;Dt and UtSt, respectively. In the following, for

a symmetric matrix, S, the notation S > 0 means that this matrix is positive definite.

Theorem 4.5 Suppose that the process fYtg follows the state space model (4.1)
and (4.2) and that Qt > 0, and define Rs

t D Rt � S0
tQ

�1
t St. Then, the application of

the QR algorithm yields an orthogonal matrix Ut such that

U0
t

2

6
4
.Rs

t /
1=20

0

P1=2
0

t H0
t P1=2

0

t F0
t

Q�1=2
t St Q1=20

t G0
t

3

7
5 D

2

6
4
†
1=20

t
bK0

t

0 P1=2
0

tC1
0 0

3

7
5 ; (4.13)

where bKt D .FtPtH0
t C GtSt/†

�1=20

t D Kt†
1=2
t . Thus, letting bEt D †

�1=2
t Et; OxtC1jt

can be obtained as OxtC1jt D Ft Oxtjt�1CbKtbEt. In addition, if Rs
t and Pt are nonsingular,

the same matrix Ut satisfies

U0
t

2

6
4
.Rs

t /
1=20

0 �.Rs
t /

�1=2Yt

P1=2
0

t H0
t P1=2

0

t F0
t P�1=2

t Oxtjt�1
Q�1=2

t St Q1=20

t G0
t 0

3

7
5 D

2

6
4
†
1=20

t
bK0

t �bEt

0 P1=2
0

tC1 P�1=2
tC1 OxtC1jt

0 0 


3

7
5 ; (4.14)
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where the asterisk indicates an element that is not relevant to our purposes. In this

case, OxtC1jt is obtained as OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.

Proof The matrix Ut satisfies

U0
t

2

6
4
.Rs

t /
1=20

0

P1=2
0

t H0
t P1=2

0

t F0
t

Q�1=2
t St Q1=20

t G0
t

3

7
5 D

2

4
†0 K0
0 P0
0 0

3

5 :

Premultiplying the matrices in (4.13) by their respective transposes yields

.Rs
t /
1=2.Rs

t /
1=20 C HtP

1=2
t P1=2

0

t H0
t C S0

tQ
�1=20

t Q�1=2
t St D ††0

HtP
1=2
t P1=2

0

t F0
t C S0

tQ
�1=2
t Q1=20

t G0
t D †K0;

FtP
1=2
t P1=2

0

t F0
t C GtQ

1=2
t Q1=20

t G0
t D KK0 C PP0;

and the first part of the theorem follows. To prove the second part, consider the
first and the third and the second and the third block columns of (4.14). Then, it is
obtained that

�.Rs
t /
1=2.Rs

t /
�1=2Yt C HtP

1=2
t P�1=2

t Oxtjt�1 D �†1=2t
bEt;

FtP
1=2
t P�1=2

t Oxtjt�1 D P1=2tC1P
�1=2
tC1 OxtC1jt � bKtbEt:

�

4.4.4 Measurement Update in Square Root Form

We will first develop the equations for the several sources of error state space
model (4.1) and (4.2). The equations for the single disturbance state space
model (4.9) and (4.10) follow easily from these.

4.4.4.1 Several Sources of Error State Space Model

Theorem 4.6 Suppose that the process fYtg follows the state space model (4.1)
and (4.2). Then, the application of the QR algorithm produces an orthogonal matrix
Ut such that

U0
t

"
P1=2

0

t H0
t P1=2

0

t

R1=2
0

t 0

#

D
"
†
1=20

t
bK0

f ;t

0 P1=2
0

tjt

#

; (4.15)
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where bKf ;t D PtH0
t†

�1=20

t D Kf ;t†
1=2
t . Thus, letting bEt D †

�1=2
t Et; Oxtjt can be

obtained as Oxtjt D Oxtjt�1 C bKf ;tbEt. In addition, if Rt and Pt are nonsingular, the
same matrix Ut satisfies

U0
t

"
P1=2

0

t H0
t P1=2

0

t P�1=2
t Oxtjt�1

R1=2
0

t 0 �R�1=2
t Yt

#

D
"
†
1=20

t
bK0

f ;t �bEt

0 P1=2
0

tjt P�1=2
tjt Oxtjt

#

:

In this case, Oxtjt is obtained as Oxtjt D P1=2tjt
h
P�1=2

tjt Oxtjt
i
.

Proof The matrix Ut satisfies

U0
t

"
P1=2

0

t H0
t P1=2

0

t

R1=2
0

t 0

#

D
�
†0 K0
0 P0

�
:

Premultiplying the matrices in the previous equality by their respective transposes
yields

R1=2t R1=2
0

t C HtP
1=2
t P1=2

0

t H0
t D ††0; HtP

1=2
t P1=2

0

t D †K0

P1=2t P1=2
0

t D KK0 C PP0;

and the first part of the theorem follows. The rest is proved similarly. �

4.4.4.2 Single Disturbance State Space Model

The following theorem is an immediate consequence of Theorem 4.6.

Theorem 4.7 Suppose that the process fYtg follows the state space model (4.9)
and (4.10). Then, the application of the QR algorithm produces an orthogonal
matrix Ut such that

U0
t

"
P1=2

0

t H0
t P1=2

0

t

J
0

t 0

#

D
"
†
1=20

t
bK0

f ;t

0 P1=2
0

tjt

#

; (4.16)

where bKf ;t D PtH0
t†

�1=20

t D Kf ;t†
1=2
t . Thus, letting bEt D †

�1=2
t Et; Oxtjt can be

obtained as Oxtjt D Oxtjt�1 C bKf ;tbEt. In addition, if Rt and Pt are nonsingular, the
same matrix Ut satisfies

U0
t

"
P1=2

0

t H0
t P1=2

0

t P�1=2
t Oxtjt�1

J1=2t 0 �R�1=2
t Yt

#

D
"
†
1=20

t
bK0

f ;t �bEt

0 P1=2
0

tjt P�1=2
tjt Oxtjt

#

:

In this case, Oxtjt is obtained as Oxtjt D P1=2tjt
h
P�1=2

tjt Oxtjt
i
.
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4.4.5 Fast Square Root Algorithms for Measurement Update:
The UD Filter

We will consider first the case in which the observations are scalar. The general case
can be reduced to this by using sequential processing.

The equations for the measurement update,

†t D Rt C HtPtH
0
t

Ptjt D Pt � PtH
0
t†

�1
t HtPt;

are practically identical to the update of the Pt matrix in RLS. Thus, we can proceed
as in Chap. 2 to obtain fast square root algorithms for measurement update. Let
Pt D LtDtL0

t, where Lt is a lower triangular matrix with ones in the main diagonal
and Dt is a diagonal matrix with positive elements in the main diagonal and let
Ptjt D LtjtDtjtL0

tjt, where Ltjt and Dtjt are defined similarly. Then, we can write
expression (4.16) of Theorem 4.6 as

U0
t

"
0 D1=2

t

R1=2
0

t 0

#�
1 0

L0
tH

0
t L0

t

�
D
"
†
1=20

t 0

0 D1=2

tjt

#"
1 K0

f ;t

0 L0
tjt

#

: (4.17)

Then, it is clear that we can use square root free fast Givens rotations, as described
in the Appendix of Chap. 2 to obtain the QDU decomposition, to perform the
measurement update.

Another fast algorithm that can be used for the square root form of measurement
update is the so-called UD filter, due to Bierman (1977). As mentioned in Chap. 2,
this algorithm assumes that the covariance matrix Pt is factored in the form Pt D
UtDtU0

t , where Ut is an upper triangular matrix with ones in the main diagonal and
Dt is a diagonal matrix with positive elements in the main diagonal. We will describe
the algorithm for the decomposition in terms of lower triangular matrices instead,
for coherence with the rest of the book. However, this amounts to a small change in
the algorithm.

Let Pt D P D LDL0 and Ptjt D PC D LCDCL0C. Then, as in the case of RLS,
we have to factor

LCDCL0C D L.D � L0h0†�1hLD/L0;

where h D Ht and † D †t. Since L0h0†�1hLD has rank one, Bierman uses a
rank one downdating formula due to Agee & Turner (1972) for the factorization
of the term in parenthesis in the previous expression. The whole procedure is
described in Bierman (1977). Letting hL D f D Œ f1; : : : ; fn�;L D Œl1; : : : ; ln�;LC D
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ŒlC1 ; : : : ; lCn �;R D Rt;D D diag.di/ and DC D diag.dC
i /, the algorithm is as follows.

˛nC1 D R
knC1 D 0

for i D n; n � 1; : : : ; 1

˛i D ˛iC1 C di f 2i
dC

i D di.˛iC1=˛i/

Œki lCi � D ŒkiC1 li�

�
1 �fi=˛iC1

di fi 1

�

end

On completion of the algorithm, ˛1 D † D R C hPh0; k1 D Ph0 and Kt D k1=˛1.
As noted by Jover & Kailath (1986), the UD filter is equivalent to the updat-

ing (4.17), that uses square root free fast Givens rotations.
It is to be noted that Bierman (1977) emphasized that, with careful programming,

the number of computations of the UD filter is approximately the same as that of
the measurement update.

In the case of vector observations, we can still use fast Givens rotations as
follows. Let Pt D LtDtL0

t, where Lt and Dt are as described earlier, and let
Rt D LR;tDR;tL0

R;t and †t D L†;tD†;tL0
†;t, where LR;t;DR;t;L†;t, and D†;t are defined

similarly to Lt and Dt. Then, we can write expression (4.16) of Theorem 4.6 as

U0
t

"
0 D1=2

t

D1=2
R;t 0

#�
L0

R;t 0

L0
tH

0
t L0

t

�
D
"

D1=2
†;t 0

0 D1=2

tjt

#"
L0
†;t K0

f ;t

0 L0
tjt

#

:

It is clear from this that we can use square root free fast Givens rotations, as
described in the Appendix of Chap. 2 to obtain the QDU decomposition, to perform
the measurement update.

4.4.6 Time Update in Square Root Form

Time updates in square root form are available only in the special case St D 0.
However, this implies no loss of generality as we shall see later in Sect. 4.5.

Theorem 4.8 Suppose that the process fYtg follows the state space model (4.1)
and (4.2) and that St D 0. Then, the application of the QR algorithm produces an
orthogonal matrix Ut such that

U0
t

"
P1=2

0

tjt F0
t

Q1=20

t G0
t

#

D
"

P1=2
0

tC1jt
0

#

(4.18)
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and OxtC1jt can be obtained as OxtC1jt D Ft Oxtjt . In addition, if Pt is nonsingular, the
same matrix Ut satisfies

U0
t

"
P1=2

0

tjt F0
t P�1=2

tjt Oxtjt
Q1=20

t G0
t 0

#

D
"

P1=2
0

tC1 P�1=2
tC1 OxtC1jt

0 


#

;

where the asterisk indicates an element that is not relevant to our purposes. In this

case, OxtC1jt is obtained as OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.

Proof The matrix Ut satisfies

U0
t

"
P1=2

0

tjt F0
t

Q1=20

t G0
t

#

D
�

P0
0

�
:

Premultiplying the matrices in the previous equality by their respective transposes
yields

FtP
1=2
t P1=2

0

t F0
t C GtQ

1=2
t Q1=20

t G0
t D PP0;

and the first part of the theorem follows. The rest is proved similarly. �

4.4.7 Fast Square Root Algorithms for Time Update

As in the previous section, suppose that St D 0 in the state space model (4.1)
and (4.2). Then, the time update formula for Pt is

PtC1 D FtPtjtF0
t C GtQtG

0
t:

Without loss of generality, suppose also that Qt is nonsingular. Let Pt D LtDtL0
t,

where Lt is a lower triangular matrix with ones in the main diagonal and Dt is a
diagonal matrix with positive elements in the main diagonal, and let Ptjt D LtjtDtjtL0

tjt
and Qt D LQ;tDQ;tL0

Q;t, where Ltjt;Dtjt;LQ;t, and DQ;t are defined similarly to Lt and
Dt. Then, we can write expression (4.18) of Theorem 4.8 as

U0
t

"
D1=2

tjt 0

0 D1=2
Q;t

#"
L0

tjtF
0
t

L0
Q;tG

0
t

#

D
"

D1=2
tC1L0

tC1
0

#

:

It is clear from this that we can use square root free fast Givens rotations, as
described in the Appendix of Chap. 2 to obtain the QDU decomposition, to perform
the measurement update.
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Another fast algorithm that can be used for the square root form of time update
is the fast weighted Gram–Schmidt procedure due to C. Thornton, described in, for
example, Bierman (1977).

4.5 A Transformation to get St D 0

In this section, we will see that it is possible to make a transformation in the state
space model (4.1) and (4.2) so that we can work with an equivalent state space model
in which the disturbance variables are uncorrelated. More specifically, we can pass
from the variables fvt; utg to the variables fvt; us

t g such that vt is uncorrelated to us
t

and such that the corresponding state space model is equivalent to the original one.
If Rt > 0, this can be achieved by applying the Gram–Schmidt procedure. Thus, if
we define

us
t D ut � Cov.ut; vt/Var�1.vt/vt D ut � StR

�1
t vt;

then

Cov.us
t ; vt/ D 0; Var.us

t / D Qt � StR
�1
t S0

t D Qs
t :

If Rt is singular, by Proposition 1.2, the orthogonal projection E�.utjvt/ exists, is
unique, and is given by E�.utjvt/ D StR�

t vt, where R�
t is a generalized inverse

of Rt. Thus, in this case the transformation is

us
t D ut � StR

�
t vt;

and us
t satisfies

Cov.us
t ; vt/ D 0; Var.us

t / D Qt � StR
�
t S0

t D Qs
t : (4.19)

Using us
t , we can rewrite the state space model (4.1) and (4.2) as

xtC1 D Ftxt C Gt.u
s
t C StR

�
t vt/;

Yt D Htxt C vt:

Since vt D Yt � Htxt, we can further transform it into

xtC1 D Fs
t xt C Gtu

s
t C GtStR

�
t Yt; (4.20)

Yt D Htxt C vt; (4.21)

where

Fs
t D Ft � GtStR

�
t Ht: (4.22)
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The notable feature of the state space model (4.20) and (4.21) is that the dis-
turbances, us

t and vt, are uncorrelated. The presence of the term GtStR�
t Yt in the

transition equation (4.20) causes no problem for prediction and filtering of the state
vector because this term is a known function of the observations. In fact, it can be
easily shown that the Kalman filter corresponding to (4.20) and (4.21) is given by
the recursions

Et D Yt � Ht Oxtjt�1; †t D HtPtH
0
t C Rt

Ks
t D Fs

t PtH
0
t†

�1
t ; OxtC1jt D Fs

t Oxtjt�1 C Ks
t Et C GtStR

�
t Yt (4.23)

PtC1 D Fs
t PtF

s0

t C GtQ
s
t G

0
t � Fs

t PtH
0
t†

�1
t HtPtF

s0

t ;

where Qs
t and Fs

t are given by (4.19) and (4.22). In addition, it is not difficult to show
that the measurement update corresponding to (4.20) and (4.21) coincides with that
of (4.1) and (4.2), whereas the time update is

OxtC1jt D Fs
t Oxtjt C GtStR

�
t Yt (4.24)

PtC1 D Fs
t PtjtFs0

t C GtQ
s
t G

0
t: (4.25)

4.5.1 Another Expression for the Square Root Covariance
Filter

Theorem 4.9 Suppose that the process fYtg follows the state space model (4.1)
and (4.2). Then, the application of the QR algorithm produces an orthogonal matrix
Ut such that
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5 ; (4.26)

where bKs
t D Fs

t PtH0
t†

�1=20

t D Ks
t†

1=2
t ;Ks

t D Fs
t PtH0

t , and Qs
t and Fs

t are given

by (4.19) and (4.22). Thus, letting bEt D †
�1=2
t Et; OxtC1jt can be obtained as OxtC1jt D
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t Oxtjt�1 C bKs

t
bEt CGtStR�1

t Yt. In addition, if Rt;Qs
t , and Pt are nonsingular, the same

matrix Ut satisfies
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In this case, OxtC1jt can be obtained as OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.



4.5 A Transformation to get St D 0 229

Proof The matrix Ut satisfies

U0
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5 :

Premultiplying the matrices in (4.26) by their respective transposes yields

R1=2t R1=2
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t D ††0; HtP
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FtP
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t P1=2
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t C GtQ
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t Q1=20

t G0
t D KK0 C PP0;

and the first part of the theorem follows. The rest is proved similarly. �

4.5.2 Measurement and Time Updates in Square Root Form
When St ¤ 0

When St D 0, it is possible to separate the square root covariance filter into
measurement and time update steps. However, as noted earlier, the general case
in which St ¤ 0 can be reduced to this case by using the transformation that passes
from the state space model (4.1) and (4.2)–(4.20) and (4.21). When St ¤ 0, the
measurement update is as in Sect. 4.4.4 and the time update is given by the following
theorem.

Theorem 4.10 Suppose that the process fYtg follows the state space model (4.1)
and (4.2). Then, the application of the QR algorithm produces an orthogonal matrix
Ut such that
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and OxtC1jt can be obtained as OxtC1jt D Fs
t Oxtjt C GtStR�

t Yt. In addition, if Qs
t and Pt

are nonsingular, the same matrix Ut satisfies
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;

where the asterisk indicates an element that is not relevant to our purposes. In this

case, OxtC1jt can be obtained as OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.
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Proof The matrix Ut satisfies

U0
t

"
P1=2

0

tjt Fs0

t

.Qs
t /
1=20

G0
t

#

D
�

P0
0

�
:

Premultiplying the matrices in the previous equality by their respective transposes
yields

Fs
t P
1=2
t P1=2

0

t Fs0

t C Gt.Qs
t /
1=2.Qs

t /
1=20

G0
t D PP0;

and the first part of the theorem follows. The rest is proved similarly. �

4.6 Information Filter

When the initial covariance matrix,�, of the Kalman filter has very large entries, it
is often preferable to propagate P�1

t , which can be done if � > 0;Rt > 0, and the
Ft are invertible as we shall see in this section. Since the inverse of the variance
of a parameter is usually considered as a measure of the information contained
in the parameter because a large variance means high uncertainty, the filter that is
obtained by propagating P�1

t is usually called the information filter. The information
filter formulae are rather complicated in the general case, so they are generally
represented separately in terms of measurement and time updates.

To obtain the information filter, the following lemma will be needed. We leave
the proof as an exercise. See Problem 4.1.

Lemma 4.1 (The Matrix Inversion Lemma) If A and C are nonsingular matrices
and A;B;C, and D are matrices of appropriate dimensions, then

.A C BCD/�1 D A�1 � A�1B.C�1 C DA�1B/�1DA�1:

The following lemma gives a sufficient condition for the existence of P�1
t .

Lemma 4.2 (Sufficient Condition for the Existence of P�1
t ) Consider the state

space model (4.1) and (4.2) and suppose that � > 0; St D 0;Rt > 0 and the Ft are
nonsingular. Then, Pt > 0 and, hence, it is invertible.

Proof Using the Matrix Inversion Lemma 4.1, we can rearrange the recursion for
Pt in the Kalman filter as follows

PtC1 D GtQtG
0
t C Ft.P

�1
t C H0

t R
�1
t Ht/

�1F0
t ;

which shows that PtC1 � Ft.P�1
t C H0

t R
�1
t Ht/

�1F0
t > 0, where the last inequality

depends on the nonsingularity of Ft. Since P1 D �, we lemma is proved by
induction. �
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4.6.1 Measurement Update in Information Form

The measurement update equations are based on the propagation of the inverse
of Ptjt.

Theorem 4.11 (Measurement Update in Information Form) Consider the state
space model (4.1) and (4.2) and suppose that we have computed the estimator of
xt based on Y1Wt�1; Oxtjt�1, and its MSE, Pt, and a new measurement, Yt, becomes
available. Then, if Rt > 0 and P�1

t exists, we can write

P�1
tjt Oxtjt D P�1

t Oxtjt�1 C H0
t R

�1
t Yt (4.27)

P�1
tjt D P�1

t C H0
t R

�1
t Ht: (4.28)

Proof By applying the Matrix Inversion Lemma 4.1 to the measurement update
formula for Ptjt, it is obtained that

Ptjt D Pt � PtH
0
t.Rt C HtPtH

0
t/

�1HtPt D .P�1
t C H0

t R
�1
t Ht/

�1:

Using this formula and the Matrix Inversion Lemma again, we can write

Kf ;t D PtH
0
t.Rt C HtPtH

0
t/

�1

D PtH
0
t

�
R�1

t � R�1
t Ht.P

�1
t C H0

t R
�1
t Ht/

�1H0
t R

�1
t

�

D Pt
�
I � H0

t R
�1
t HtPtjt

�
H0

t R
�1
t

D Pt

h
I � .P�1

tjt � P�1
t /Ptjt

i
H0

t R
�1
t D PtjtH0

t R
�1
t : (4.29)

It follows from this that

P�1
tjt Oxtjt D P�1

tjt
�
.I � Kf ;tHt/ Oxtjt�1 C Kf ;tYt

� D P�1
t Oxtjt�1 C H0

t R
�1
t Yt:

�

4.6.2 Time Update in Information Form

Theorem 4.12 (Time Update in Information Form) Consider the state space
model (4.1) and (4.2) and suppose that we have computed the estimator of xt based
on Y1Wt; Oxtjt , and its MSE, Ptjt , and without any further measurements wish to find
OxtC1jt and PtC1. Then, if Rt > 0 and .Fs

t /
�1; .Qs

t /
�1 and P�1

tjt exist, the following
relations hold

P�1
tC1 OxtC1jt D �

I � AtGtQ
r
t G

0
t

	 h
.Fs

t /
�10

P�1
tjt Oxtjt C AtGtStR

�1
t Yt

i
(4.30)

P�1
tC1 D At � AtGtQ

r
t G

0
tAt; (4.31)
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where

At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

and Qs
t and Fs

t are given by (4.19) and (4.22).

Proof By applying the Matrix Inversion Lemma 4.1 to the measurement update
formula (4.25), it is obtained that

P�1
tC1 D .Fs

t /
�10

P�1
tjt .F

s
t /

�1 � .Fs
t /

�10

P�1
tjt .F

s
t /

�1GtQ
r
t G

0
t.F

s
t /

�10

P�1
tjt .F

s
t /

�1:

Using this formula, the Matrix Inversion Lemma 4.1 and (4.24), we can write

P�1
tC1 OxtC1jt D �

I � AtGtQ
r
t G

0
t

	
AtF

s
t Oxtjt C �

At � AtGtQ
r
t G

0
tAt
	

GtStR
�1
t Yt

D �
I � AtGtQ

r
t G

0
t

	
.Fs

t /
�10

P�1
tjt Oxtjt C �

At � AtGtQ
r
t G

0
tAt
	

GtStR
�1
t Yt:

�

4.6.3 Further Results in Information Form

The following theorems give some further results that follow from the measurement
and time updates in information form.

Theorem 4.13 (Information Filter) Consider the state space model (4.1)
and (4.2). Then, if Rt > 0 and .Fs

t /
�1; .Qs

t /
�1 and P�1

t exist, the following recursions
hold

P�1
tC1 OxtC1jt D �

I � AtGtQ
r
t G

0
t

	
.Fs

t /
�10

P�1
t Oxtjt�1

C �
I � AtGtQ

r
t G

0
t

	 h
.Fs

t /
�10

H0
t C AtGtSt

i
R�1

t Yt

P�1
tC1 D At � AtGtQ

r
t G

0
tAt;

where

At D .Fs
t /

�10

.P�1
t C H0

t R
�1
t Ht/.F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

and Qs
t and Fs

t are given by (4.19) and (4.22).

Proof The first recursion follows from (4.27) and (4.30) and the second from (4.28)
and (4.31). �

Theorem 4.14 (Information Form for the Filtered Estimators) Consider the
state space model (4.1) and (4.2) and suppose that we have computed the estimator
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of xt based on Y1Wt; Oxtjt , and its MSE, Ptjt . Then, if Rt > 0 and .Fs
t /

�1; .Qs
t /

�1 and
P�1

tjt exist, the following recursions hold

P�1
tC1jtC1 OxtC1jtC1 D �

I � AtGtQ
r
t G

0

t

	 h
.Fs

t /
�10

P�1
tjt Oxtjt C AtGtStR

�1
t Yt

i
C H0

tC1R
�1
tC1YtC1

P�1
tC1jtC1 D At � AtGtQ

r
t G

0

tAt C H0

tC1R
�1
tC1HtC1;

where

At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

and Qs
t and Fs

t are given by (4.19) and (4.22).

Proof The first recursion follows from (4.27) and (4.30) and the second from (4.28)
and (4.31). �

4.7 Square Root Covariance and Information Filter

As mentioned earlier, there are situations in which it is desirable to propagate
the inverse quantities P�1

t . To avoid the accumulation of numerical errors, it is

sometimes preferable to propagate the square root factors, P�1=2
t . The resulting

algorithms are said to be in square root information form. One convenient way of
obtaining such algorithms is to augment the square root covariance filters to con-
struct nonsingular matrices that can be inverted. For example, take algorithm (4.13)
and form the augmented matrices

U0
t

2

6
4
.Rs

t /
1=20

0 0

P1=2
0

t H0
t P1=2

0

t F0
t 0

Q�1=2
t St Q1=20

t G0
t Q1=20

t

3

7
5 D

2

6
4
†
1=20

t
bK0

t X1
0 P1=2

0

tC1 X2
0 0 X3

3

7
5 ;

where the matrices X1;X2, and X3 can be obtained as usual by premultiplying the
previous matrices by their transposes and equating entries. Assuming that Rs

t >

0;Qt > 0;� > 0 and the Ft are nonsingular, by Lemma 4.2, we can invert the
matrices in the previous equality to get

2

6
4

.Rs
t /

�1=20

0 0

�F�10

t H0
t.R

s
t /

�1=20

F�10

t P�1=20

t 0

L0
t.R

s
t /

�1=20 �G0
tF

�10

t P�1=20

t Q�1=20

t

3

7
5Ut D

2

6
4
†

�1=20

t �K0
t P

�1=20

tC1 

0 P�1=20

tC1 

0 0 


3

7
5 ;

where Lt D HtF�1
t Gt �S0

tQ
�1
t and the asterisks denote elements that are not relevant

to our purposes. Transposing the matrices in the previous equality, we see that the
same orthogonal matrix, Ut, that is used in the square root covariance filter also
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satisfies

U0
t

2

6
4
.Rs

t /
�1=2 �.Rs

t /
�1=2HtF�1

t .Rs
t /

�1=2Lt

0 P�1=2
t F�1

t �P�1=2
t F�1

t Gt

0 0 Q�1=2
t

3

7
5 D

2

6
4

†
�1=2
t 0 0

�P�1=2
tC1 Kt P�1=2

tC1 0


 
 


3

7
5 :

We have thus proved most of the following theorem. We leave the rest of the proof
to the reader.

Theorem 4.15 (Square Root Covariance and Information Filter When Qt > 0)
Suppose that the process fYtg follows the state space model (4.1) and (4.2) and that
Qt > 0, and define Rs

t D Rt � S0
tQ

�1
t St. Then, if Rs

t > 0;� > 0 and the Ft are
nonsingular, the application of the QR algorithm yields an orthogonal matrix Ut

such that

U0
t

2

6
4
.Rs

t /
1=20

0 �.Rs
t /

�1=2HtF�1
t .Rs

t /
�1=2Lt �.Rs

t /
�1=2Yt

P1=2
0

t H0
t P1=2

0

t F0
t P�1=2

t F�1
t �P�1=2

t F�1
t Gt P�1=2

t Oxtjt�1
Q�1=2

t St Q1=20

t G0
t 0 Q�1=2

t 0

3

7
5

D

2

6
4
†
1=20

t
bK0

t 0 0 �bEt

0 P1=2
0

tC1 P�1=2
tC1 0 P�1=2

tC1 OxtC1jt
0 0 
 
 


3

7
5 ;

where Lt D HtF�1
t Gt � S0

tQ
�1
t ; bKt D .FtPtH0

t C GtSt/†
�1=20

t D Kt†
1=2
t ; bEt D

†
�1=2
t Et and the asterisks denote elements that are not relevant to our pur-

poses. Here it is understood that Ut is an orthogonal matrix that either upper-
triangularizes the first two block columns or lower-triangularizes the middle two
block columns of the left-hand side matrix. The predicted estimates, OxtC1jt, can be

obtained as either OxtC1jt D Ft Oxtjt�1 C bKtbEt or OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.

The following theorem is analogous to Theorem 4.15. We omit its proof.

Theorem 4.16 (Square Root Covariance and Information Filter When Rt > 0)
Suppose that the process fYtg follows the state space model (4.1) and (4.2) and that
Rt > 0. Then, if Qs

t > 0;� > 0 and the Fs
t are nonsingular, where Qs

t and Fs
t are

given by (4.19) and (4.22), the application of the QR algorithm yields an orthogonal
matrix Ut such that

U0
t

2

6
4

R1=2
0

t 0 �R�1=2
t Ht.Fs

t /
�1 R�1=2

t Ht.Fs
t /

�1Gt �R�1=2
t Yt

P1=2
0

t H0
t P1=2

0

t Fs0

t P�1=2
t .Fs

t /
�1 �P�1=2

t .Fs
t /

�1Gt P�1=2
t Oxtjt�1

0 .Qs
t /
1=20

G0
t 0 .Qs

t /
�1=2 .Qs

t /
�1=2StR�1

t Yt

3

7
5

D

2

6
4
†
1=20

t
bK0

t 0 0 �bEt

0 P1=2
0

tC1 P�1=2
tC1 0 P�1=2

tC1 OxtC1jt
0 0 
 
 


3

7
5 ;
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where bKt D .FtPtH0
t C GtSt/†

�1=20

t D Kt†
1=2
t ; bEt D †

�1=2
t Et and the asterisks

denote elements that are not relevant to our purposes. Here it is understood that Ut

is an orthogonal matrix that either upper-triangularizes the first two block columns
or lower-triangularizes the middle two block columns of the left-hand side matrix.
The predicted estimates, OxtC1jt , can be obtained as either OxtC1jt D Ft Oxtjt�1 C bKtbEt C
GtStR�1

t Yt or OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.

In the following theorem, more details are given of the square root information
filter when Rt > 0. This result will be useful later in the development of some
smoothing results.

Theorem 4.17 (Square Root Information Filter When Rt > 0) Suppose that the
process fYtg follows the state space model (4.1) and (4.2) and that Rt > 0. Then,
if Qs

t > 0;� > 0 and the Fs
t are nonsingular, where Qs

t and Fs
t are given by (4.19)

and (4.22), the application of the QR algorithm yields an orthogonal matrix Ut such
that

U0
t

2

6
4

.Qs
t /

�1=2 0 .Qs
t /

�1=2StR�1
t Yt

�P�1=2
t .Fs

t /
�1Gt P�1=2

t .Fs
t /

�1 P�1=2
t Oxtjt�1

R�1=2
t Ht.Fs

t /
�1Gt �R�1=2

t Ht.Fs
t /

�1 �R�1=2
t Yt

3

7
5

D

2

6
4
.Qr

t /
�1=2 �bKb;t �bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

0 P�1=2
tC1 P�1=2

tC1 OxtC1jt
0 0 �bEt

3

7
5 ;

where

Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
; At D .Fs

t /
�10

.P�1
t C H0

t R
�1
t Ht/.F

s
t /

�1;

bEt D †
�1=2
t Et and bKb;t D .Qr

t /
1=20

G0
tAt.

Proof The theorem can be proved multiplying first both terms in the equality of
the theorem by their respective transposes and equating then the respective matrix
entries. Thus, letting L and R be the (1,2) elements in the left- and right-hand sides,
respectively, it is obtained that

L D �G0
t.F

s
t /

�10

P�1=20

t P�1=2
t .Fs

t /
�1 � G0

t.F
s
t /

�10

H0
t R

�1=20

t R�1=2
t Ht.Fs

t /
�1

D �G0
t.F

s
t /

�10
�
P�1

t C H0
t R

�1
t Ht

�
.Fs

t /
�1

D �G0
tAt;

and

R D �.Qr
t /

�1=20bKb;t:
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From this, it follows that L D R. In a similar way, letting now L and R be the (1,3)
elements in the left- and right-hand sides, respectively, we get

L D .Qs
t /

�1=20

.Qs
t /

�1=2StR�1
t Yt � G0

t.F
s
t /

�10

h
P�1=20

t P�1=2
t Oxtjt�1 C H0

t R
�1=20

t R�1=2
t Yt

i

D .Qs
t /

�1StR�1
t Yt � G0

t.F
s
t /

�10
�
P�1

t Oxtjt�1 C H0
t R

�1
t Yt

�

D �
.Qr

t /
�1 � G0

tAtGt
�

StR�1
t Yt � G0

t.F
s
t /

�10

P�1
tjt Oxtjt

D .Qr
t /

�1StR�1
t Yt � G0

tAt
�
GtStR�1

t Yt C Fs
t Oxtjt

�

D .Qr
t /

�1StR�1
t Yt � G0

tAt OxtC1jt
D .Qr

t /
�1=20

h
.Qr

t /
�1=2StR�1

t Yt � .Qr
t /
1=20

G0
tAt OxtC1jt

i
;

where we have used the equality .Qs
t /

�1 D .Qr
t /

�1 � G0
tAtGt, the measure-

ment update formula (4.27), the equality At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1, that follows
from (4.28), and the time update formula (4.24). On the other hand,

R D .Qr
t /

�1=20

h
�bKb;t OxtC1jt C .Qr

t /
�1=2StR

�1
t Yt

i
;

and, clearly, L D R. The rest of the theorem follows from Theorem 4.16. �

An interesting distinction between the algorithms of Theorems 4.15 and 4.16
when Qt > 0 and Rt > 0 is that only the second one can be separated into
measurement and time update steps.

4.7.1 Square Root Covariance and Information Form
for Measurement Update

Theorem 4.18 (Square Root Covariance and Information Filter for Measure-
ment Update When Rt > 0) Consider the state space model (4.1) and (4.2) and
suppose that we have computed the estimator of xt based on Y1Wt�1; Oxtjt�1, and its
MSE, Pt, and a new measurement, Yt, becomes available. Then, if Rt > 0 and P�1

t
exists, the QR algorithm produces an orthogonal matrix Ut such that

U0
t

"
R1=2

0

t 0 R�1=2
t �R�1=2

t Ht �R�1=2
t Yt

P1=2
0

t H0
t P1=2

0

t 0 P�1=2
t P�1=2

t Oxtjt�1

#

D
"
†
1=20

t
bK0

f ;t †
�1=2
t 0 �bEt

0 P1=2
0

tjt �P�1=2
tjt Kf ;t P�1=2

tjt P�1=2
tjt Oxtjt

#

;

where bKf ;t D PtH0
t†

�1=20

t D Kf ;t†
1=2
t and bEt D †

�1=2
t Et. Here it is understood that

Ut is an orthogonal matrix that either upper-triangularizes the first block column
or lower-triangularizes the fourth block column of the left-hand side matrix. The
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filtered estimates, Oxtjt , can be obtained as either Oxtjt D Oxtjt�1 C bKf ;tbEt or Oxtjt D
P1=2tjt

h
P�1=2

tjt Oxtjt
i
.

Proof Consider the algorithm for measurement update of Theorem 4.6

U0
t

"
R1=2

0

t 0

P1=2
0

t H0
t P1=2

0

t

#

D
"
†
1=20

t
bK0

f ;t

0 P1=2
0

tjt

#

;

Inverting the previous matrices, it is obtained that

"
R�1=20

t 0

�H0
t R

�1=20

t P�1=20

t

#

Ut D
"
†

�1=20

t �K0
f ;tP

�1=20

tjt
0 P�1=20

tjt

#

:

Transposing the previous matrices and using again Theorem 4.4.4, we can write

U0
t

"
R�1=2

t �R�1=2
t Ht

0 P�1=2
t

#

D
"

†
�1=2
t 0

�P�1=2
tjt Kf ;t P�1=2

tjt

#

:

�

Remark 4.1 The vectors bEt have zero mean and unit covariance matrix. Thus, they
constitute a sequence of “standardized residuals” and can be used for inference. Þ

We state the square root information form for measurement update alone as a
corollary.

Corollary 4.1 (Square Root Information Filter for Measurement Update When
Rt > 0) Consider the state space model (4.1) and (4.2) and suppose that we have
computed the estimator of xt based on Y1Wt�1; Oxtjt�1, and its MSE, Pt, and a new
measurement, Yt, becomes available. Then, if Rt > 0 and P�1

t exists, the QR
algorithm produces an orthogonal matrix Ut such that

U0
t

"
P�1=2

t P�1=2
t Oxtjt�1 0

�R�1=2
t Ht �R�1=2

t Yt R�1=2
t

#

D
"

P�1=2
tjt P�1=2

tjt Oxtjt �P�1=2
tjt Kf ;t

0 �bEt †
�1=2
t

#

;

where bEt D †
�1=2
t Et. The filtered estimates, Oxtjt , can be obtained as Oxtjt D

P1=2tjt
h
P�1=2

tjt Oxtjt
i
.
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4.7.2 Square Root Covariance and Information Form for Time
Update

Theorem 4.19 (Square Root Covariance and Information Filter for Time
Update When Rt > 0) Consider the state space model (4.1) and (4.2) and suppose
that we have computed the estimator of xt based on Y1Wt; Oxtjt , and its MSE, Ptjt, and
without any further measurements wish to find OxtC1jt and PtC1. Then, if Rt > 0 and
.Fs

t /
�1; .Qs

t /
�1 and P�1

t exist, the QR algorithm produces an orthogonal matrix Ut

such that

U0
t

"
P1=2

0

tjt Fs0

t 0 P�1=2
tjt .Fs

t /
�1 �P�1=2

tjt .Fs
t /

�1Gt P�1=2
tjt Oxtjt

.Qs
t /
1=20

G0
t .Q

s
t /
1=20

0 .Qs
t /

�1=2 .Qs
t /

�1=2StR�1
t Yt

#

D
"

P1=2
0

tC1 P1=2
0

tC1AtGtQr
t P�1=2

tC1 0 P�1=2
tC1 OxtC1jt

0 .Qr
t /
1=20 �bKb;t .Qr

t /
�1=2 �bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

#

;

where

At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

bKb;t D .Qr
t /
1=20

G0
tAt, and Qs

t and Fs
t are given by (4.19) and (4.22). Here it is

understood that Ut is an orthogonal matrix that either upper-triangularizes the
first block column or lower-triangularizes the fourth block column of the left-hand
side matrix. The predicted estimates, OxtC1jt , can be obtained as either OxtC1jt D
Fs

t Oxtjt�1 C GtStR�1
t Yt or OxtC1jt D P1=2tC1

h
P�1=2

tC1 OxtC1jt
i

Proof We proceed as in the proof of Theorem 4.15, augmenting the square root
covariance filter to construct nonsingular matrices that can be inverted. Since Qs

t is
nonsingular, this can be achieved in the algorithm of Theorem 4.10 by forming the
augmented matrices

U0
t

"
P1=2

0

tjt Fs0

t 0

.Qs
t /
1=20

G0
t .Q

s
t /
1=20

#

D
"

P1=2
0

tC1 X1
0 X2

#

;

where X1 and X2 are to be determined. By inverting both sides of the equality, it is
obtained that

"
.Fs

t /
�10

P�1=20

tjt 0

�G0
t.F

s
t /

�10

P�1=20

tjt .Qs
t /

�1=20

#

Ut D
"

P�1=20

tC1 Y1
0 Y2

#

;
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Postmultiplying the matrices in the previous equality by their respective transposes
yields

"
.Fs

t /
�10

P�1=20

tjt 0

�G0
t.F

s
t /

�10

P�1=20

tjt .Qs
t /

�1=20

#

UtU
0
t

"
P�1=2

tjt .Fs
t /

�1 �P�1=2
tjt .Fs

t /
�1Gt

0 .Qs
t /

�1=2

#

D
�

At �AtGt

�G0
tAt G0

tAtGt C .Qs
t /

�1
�

D
�

P�1
tC1 C Y1Y 0

2 Y1Y 0
2

Y2Y 0
1 Y2Y 0

2

�
:

Thus, Y1 D �AtGt.Qr
t /
1=2;Y2 D .Qr

t /
�1=20

and X1 and X1 can be obtained from

"
P1=2

0

tC1 X1
0 X2

#

D
"

P�1=20

tC1 �.Qr
t /

�1=2AtGt

0 .Qr
t /

�1=20

#�1

D
"

P�1=20

tC1 P1=2
0

tC1AtGtQr
t

0 .Qr
t /
1=20

#

:

The rest of the theorem can be proved as in the proof of Theorem 4.17. More
specifically, by Theorem 4.10 and what has just been proved,

U0
t

"
P�1=2

tjt .Fs
t /

�1 �P�1=2
tjt .Fs

t /
�1Gt P�1=2

tjt Oxtjt
0 .Qs

t /
�1=2 .Qs

t /
�1=2StR�1

t Yt

#

D
"

P�1=2
tC1 0 P�1=2

tC1 OxtC1jt
�bKb;t .Qr

t /
�1=2 X

#

;

where X has to be determined. Multiplying both terms of the previous equality by
their transposes and equating the (2,3) element of each of the resulting matrices
yields the result after using an argument similar to that in the proof of Theorem 4.17.

�
We state the square root information form alone for time update as a corollary.

Corollary 4.2 (Square Root Information Filter for Time Update When Rt > 0)
Consider the state space model (4.1) and (4.2) and suppose that we have computed
the estimator of xt based on Y1Wt; Oxtjt , and its MSE, Ptjt , and without any further
measurements wish to find OxtC1jt and PtC1. Then, if Rt > 0 and .Fs

t /
�1; .Qs

t /
�1 and

P�1
t exist, the QR algorithm produces an orthogonal matrix Ut such that

U0
t

"
.Qs

t /
�1=2 0 .Qs

t /
�1=2StR�1

t Yt

�P�1=2
tjt .Fs

t /
�1Gt P�1=2

tjt .Fs
t /

�1 P�1=2
tjt Oxtjt

#

D
"
.Qr

t /
�1=2 �bKb;t �bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

0 P�1=2
tC1 P�1=2

tC1 OxtC1jt

#

;
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where

At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

bKb;t D .Qr
t /
1=20

G0
tAt, and Qs

t and Fs
t are given by (4.19) and (4.22). The predicted

estimates, OxtC1jt , can be obtained as OxtC1jt D P1=2tC1
h
P�1=2

tC1 OxtC1jt
i
.

4.8 Likelihood Evaluation

Assuming �2 ¤ 1 and using the output of the Kalman filter, the log-likelihood of
Y D .Y 0

1; : : : ;Y
0
n/

0, where fYtg follows the state space model (4.1) and (4.2), is

l.Y/ D constant � 1

2

(
1

�2

nX

tD1
E0

t†
�1
t Et C

nX

tD1
ln j�2†tj

)

:

Differentiating with respect to �2 in the previous expression and equating to zero
yields the maximum likelihood estimator of �2; O�2 D Pn

tD1 E0
t†

�1
t Et=.np/. Thus,

�2 can be concentrated out of the likelihood and the �2-maximized log-likelihood is

c.Y/ D constant � 1

2

(

.np/ ln

 
nX

tD1
E0

t†
�1
t Et

!

C
nX

tD1
ln j†tj

)

D constant � np

2
ln.S/; (4.32)

where S D .
Pn

tD1 E0
t†

�1
t Et/

Qn
tD1 j†tj1=.np/. Using the Cholesky decomposition

†t D †
1=2
t †

1=20

t , where †1=2t is a lower triangular matrix, and defining et D
†

�1=2
t Et; S can be written as the nonlinear sum of squares

S D
 

nY

tD1
j†tj1=.2np/

! 
nX

tD1
e0

tet

! 
nY

tD1
j†tj1=.2np/

!

:

Thus, maximizing (4.32) is equivalent to minimizing S, for which specialized
software exists that takes advantage of the special form of S.
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4.9 Forecasting

Suppose that fYtg follows the state space model (4.1) and (4.2) and that the Kalman
filter is applied. Then, one-period-ahead forecasts are given by the Kalman filter
recursions.

Denoting by OxnChjn, where h > 1, the orthogonal projection of xnCh onto
the sample Y1Wn and assuming for simplicity �2 D 1, it can be easily shown
that h-period-ahead forecasts and their mean squared error PnCh are obtained
recursively by

OxnChjn D FnCh�1 OxnCh�1jn
PnCh D FnCh�1PnCh�1F0

nCh�1 C GnCh�1QnCh�1G0
nCh�1:

The forecasts for YnCh, where h � 1, and the corresponding mean squared error
matrices are given by

bYnChjn D HnCh OxnChjn
MSE.bYnChjn/ D HnChPnChH0

nCh C RnCh:

4.10 Smoothing

Suppose that fYtg follows the state space model (4.1) and (4.2) and assume for
simplicity that �2 D 1. In this section, we will consider the smoothing problem,
that is related to the Kalman filter corresponding to the sample Y1Wn. The smoothing
problem consists of computing the estimators of random vectors, such as the state
or the disturbance vectors, and their MSE based on the whole sample Y1Wn.

4.10.1 Smoothing Based on the Bryson–Frazier Formulae

Theorem 4.20 (The Bryson–Frazier Formulae (Bryson & Frazier, 1963) for the
Fixed-Interval Smoother) Consider the state space model (4.1) and (4.2). For
t D n; n � 1; : : : ; 1, define the so-called adjoint variable, �t, and its covariance
matrix, ƒt , by the recursions

�t D F0
p;t�tC1 C H0

t†
�1
t Et; ƒt D F0

p;tƒtC1Fp;t C H0
t†

�1
t Ht; (4.33)

initialized with �nC1 D 0 and ƒnC1 D 0. Then, for t D n; n � 1; : : : ; 1, the
projection, Oxtjn, of xt onto the whole sample fYt W 1 � t � ng and its MSE, Ptjn,
satisfy the recursions

Oxtjn D Oxtjt�1 C Pt�t; Ptjn D Pt � PtƒtPt: (4.34)
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Proof With the notation of the Kalman filter, by Proposition 1.5, we can write

Oxtjn D E�.xtjY1Wt�1;Et; : : : ;En/ D E�.xtjY1Wt�1/C
nX

sDt

E�.xtjEs/

D Oxtjt�1 C
nX

sDt

Cov.xtjEs/†
�1
s Es:

Letting Qxs D xs � Oxsjs�1; s � t, since vs is orthogonal to xt and Es D Hs Qxs C vs, we
get

Cov.xt;Es/ D Cov.xt;Hs Qxs C vs/

D Cov.xt;Hs Qxs/

D Cov. Qxt; Qxs/H
0
s; s � t:

From the Kalman filter equation OxtC1jt D Ft Oxtjt�1 C KtEt, it is obtained after a little
algebra that QxtC1 D .Ft � KtHt/ Qxt � Ktvt C Gtut D Fp;t Qxt � Ktvt C Gtut. Since Qxt is
uncorrelated with vt and ut, it follows that

Cov.xt;Es/ D
(

PtH0
t for s D t

PtF0
p;t � � � F0

p;s�1H0
s for s > t;

(4.35)

and we get the formula

Oxtjn D Oxtjt�1 C Pt

nX

sDt

Ft0
p;sH

0
s†

�1
s Es

D Oxtjt�1 C Pt�t;

where �t D Pn
sDt Ft0

p;sH
0
s†

�1
s Es;F

j
p;i D Fp;j�1Fp;j�2 � � � Fp;i if i < j, and Fi

p;i =I. From
the previous formula, it is obtained that

xt � Oxtjt�1 D xt � Oxtjn C Pt�t;

and, since xt � Oxtjn is orthogonal to �t, also that

Pt D Ptjn C PtƒtPt;

where ƒt D Var.�t/. Finally, the formula (4.35) immediately suggests that �t and
ƒt can be computed with the recursion (4.33). �

The previous theorem was proved by Bryson & Frazier (1963) for the continuous
case as a two-point boundary value problem using calculus of variations. Derivation
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of the Bryson–Frazier formulae for the discrete case was given by Bryson & Ho
(1969).

Corollary 4.3 The fixed interval smoother can be alternatively expressed in terms
of filtered estimates as

Oxtjn D Oxtjt C PtF
0
p;t�tC1; Ptjn D Ptjt � PtF

0
p;tƒtC1Fp;tPt: (4.36)

Proof The corollary follows from Theorem 4.20 and formulae (4.6). �

The following corollary is a direct consequence of Theorem 4.20. It can be used
to prove other smoothing formulae.

Corollary 4.4 Let t and m be positive integers such that 1 � t < t C m � 1 � n
and define for s D t C m � 1; t C m � 2; : : : ; t the auxiliary variable, �sjtCm�1, and
its MSE, ƒsjtCm�1, by the recursions

�sjtCm�1 D F0
p;s�sC1jtCm�1 C H0

s†
�1
s Es; (4.37)

ƒsjtCm�1 D F0
p;sƒsC1jtCm�1Fp;s C H0

s†
�1
s Hs; (4.38)

initialized with �tCmjtCm�1 D 0 andƒtCmjtCm�1 D 0. Then, the projection, OxtjtCm�1,
of xt onto the sample fYs W 1 � s � t C m � 1g and its MSE, PtjtCm�1, satisfy the
relations

OxtjtCm�1 D Oxtjt�1 C Pt�tjtCm�1; PtjtCm�1 D Pt � PtƒtjtCm�1Pt: (4.39)

Using the previous corollary, since �tjtCm � �tjtCm�1 D F
0tCm�1
p;t H0

tCm†
�1
tCmEtCm,

where Fj
p;i D Fp;j�1Fp;j�2 � � � Fp;i if i < j, and Fi

p;i D I, we get the following
corollary.

Corollary 4.5 (The Fixed-Point Smoother) Under the assumptions of the previ-
ous corollary, if we fix t and let m increase in time, the projection, OxtjtCm, of xt onto
the sample fYs W 1 � s � t C mg and its MSE, PtjtCm, satisfy the recursions

OxtjtCm D OxtjtCm�1 C PtF
0tCm�1
p;t H0

tCm†
�1
tCmEtCm;

PtjtCm D PtjtCm�1 � PtF
0tCm�1
p;t H0

tCm†
�1
tCmHtCmFtCm�1

p;t Pt:

These recursions can be expressed in a more compact form as

Oxtj j D Oxtj j�1 C Kj
t Ej

Ptj j D Ptj j�1 � Kj
t HjP

j0
t ; j D t; t C 1; : : : ; n;

where Kj
t D P j

t H
0
j†

�1
j and P j

t D P j�1
t F0

p;j�1, initialized with Pt
t D Pt and Ptjt�1 D

Pt.
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Combining Theorem 4.20 and the previous Corollary, we obtain the following
result. The proof is omitted.

Corollary 4.6 (Combining the Fixed-Point with the Fixed-Interval Smoother)
Under the assumptions and with the notation of Theorem 4.20 and the previous
corollary, the following recursions hold for fixed k � n and t D k; k � 1; : : : ; 1.

Oxtjn D Oxtjk C PkC1
t �kC1

Ptjn D Ptjk � PkC1
t ƒkC1PkC10

t :

From Corollary 4.4, we get the following corollary.

Corollary 4.7 (The Fixed-Lag Smoother) Under the assumptions and with the
notation of Corollary 4.4, if we fix m and let t increase in time, the projection,
OxtjtCm�1, of xt onto the sample fYs W 1 � s � t C m � 1g and its MSE, PtjtCm�1,
can be recursively obtained using (4.39), where �tjtCm�1 and ƒtjtCm�1 satisfy the
recursions

�tjtCm�1 D F0
p;t�tC1jtCm C H0

t†
�1
t Et � F

0tCm�1
p;t H0

tCm†
�1
tCmEtCm; (4.40)

ƒtjtCm�1 D F0
p;tƒtC1jtCmFp;t C H0

t†
�1
t Ht � F

0tCm�1
p;t H0

tCm†
�1
tCmHtCmFtCm�1

p;t :

(4.41)

The recursions (4.40) and (4.41) are run backwards for t D n �m C1; n �m; : : : ; 1,
initialized with �n�mC1jn computed using (4.37) and (4.38).

Proof The recursions (4.40) and (4.41) are deduced from (4.37) and (4.38) and the
relation �tjtCm � �tjtCm�1 D F

0tCm�1
p;t H0

tCm†
�1
tCmEtCm. �

The following theorem introduces the so-called inverse process. This process has
numerous applications in smoothing. First, we will need a lemma.

Lemma 4.3 Let Y D .Y 0
1 : : : ;Y

0
n/

0 be a sequence of zero mean random vectors such
that Var.Y/ D †Y is positive definite and suppose that the subvector Ym D JY is
missing, where J is a selector matrix formed with zeros and ones. Suppose that we
replace the missing values with tentative ones and let Y

m
and Y be the vector of

tentative values and the filled-in sequence, respectively. Then, if Yo is the subvector
of observed values, the following relations hold

E�.YmjYo/ D Y
m � .J†�1

Y J0/�1J†�1
Y Y

MSE
�
E�.YmjYo/

� D .J†�1
Y J0/�1:

Proof Let P D ŒJ0;K0�0 be an orthogonal selection matrix formed with zeros and
ones such that ŒYm0

;Yo0

�0 D PY. Then,

Y 0†�1
Y Y D ŒYm0

;Yo0

�P†�1
Y P0ŒYm0

;Yo0

�0 D ŒYm0

;Yo0

�
�
P†YP0	�1 ŒYm0

;Yo0

�0;
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where P†YP0 is the covariance matrix of ŒYm0

;Yo0

�0. Thus, using (1.4) and (1.5), we
can write

Y 0†�1
Y Y D �

Ym � E�.YmjYo/
�0
†�1

YmjYo

�
Ym � E�.YmjYo/

�C Yo0

†�1
Yo Yo; (4.42)

where †YmjYo D MSE ŒE�.YmjYo/� and Var.Yo/ D †Yo . Let ! D Y
m � Ym. Then,

Y D J0! C Y and, substituting this expression in (4.42), it is obtained that

.Y � J0!/0†�1
Y .Y � J0!/ D

h
Y

m � E�.YmjYo/� !
i0

�†�1
YmjYo

h
Y

m � E�.YmjYo/� !
i

C Yo0

†�1
Yo Yo:

Minimizing both sides of the previous equality with respect to ! and equating the
estimators, the lemma is proved. �

Theorem 4.21 (The Inverse Process and Interpolation) For t D n; n � 1; : : : ; 1,
define the inverse process fYi

t g and its MSE, Mt, by the recursions

Yi
t D †�1

t Et � K0
t�tC1; Mt D †�1

t C K0
tƒtC1Kt: (4.43)

Then, letting Yi D .Yi0
1 ; : : : ;Y

i0
n /

0;Y D .Y 0
1; : : : ;Y

0
n/

0;E D .E0
1; : : : ;E

0
n/

0; † D
diag.†1; : : : ; †n/, Var.Y/ D †Y , and‰ be the matrix defined by (4.4), the equalities
Yi D ‰

0�1†�1E and Var.Yi/ D †�1
Y hold. In addition, the inverse process is

related to interpolation as follows. Suppose that there is a missing observation
Yt in the sample, that we replace it with a tentative value Ym

t , and that we apply
the Kalman filter to the filled-in series. Then, the projection Ytjs¤t of Yt onto
fYs W 1 � s � n; s ¤ tg and its MSE are given by the formulae

Ytjs¤t D Ym
t � M�1

t Yi
t ; MSE.Ytjs¤t/ D M�1

t ;

where fYi
t g is the inverse process corresponding also to the filled-in series.

Proof Transposing (4.5) and considering the backwards recursions (4.33)
and (4.43), it follows that Yi D ‰

0�1†�1E and Var.Yi/ D †�1
Y . Also, it is evident

that Mt D Var.Yi
t / D †�1

t C K0
tƒtC1Kt because Et and �tC1 are uncorrelated. The

rest of the theorem can be proved easily using Lemma 4.3. �
Note that the covariance matrix of Yi is the inverse of the covariance matrix of

the vector of observations, Y, thus justifying the name of inverse process for fYi
t g.

However, the quantities Yi
t are sometimes called “smoothations” in the statistical

literature instead of inverse process. See, for example, Jong & Penzer (1998). Using
the inverse process, it is possible to define the so-called inverse state space model
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in which the time runs backwards

�t D F0
p;t�tC1 C H0

t†
�1
t Et (4.44)

Yi
t D �K0

t�tC1 C†�1
t Et; t D n; n � 1; : : : ; 1; (4.45)

initialized with �nC1 D 0 and Var.�nC1/ D ƒnC1 D 0.
Using (4.44) and (4.45), it is possible to easily obtain the covariances of the

inverse process and, therefore, the matrix Var.Yi/ D †�1
Y . We do this in the

following lemma. The proof is left as an exercise. See Problem 4.2.

Lemma 4.4 (Covariances of the Inverse Process) Consider the inverse state
space model (4.44) and (4.45). Then, the covariances of the adjoint variables, �t,
can be written as


�.r; s/ D E.�r�
0
s/ D

(
ƒrFr

p;s r � s
Fs0

p;rƒs r � s;

and the covariances of the inverse process fYi
t g as


Yi.r; s/ D E.Yi
rY

i0
s / D

8
<̂

:̂

�Ni0
r Fr

p;sC1Ks r > s
†�1

r C KrƒrC1K0
r r D s

�K0
rF

s0

p;rC1Ni
s r < s;

(4.46)

where Fj
p;k D Fp;j�1Fp;j�2 � � � Fp;k if k < j;Fk

p;k =I, and Ni
r D �F0

p;rƒrC1Kr C
H0

r†
�1
r D Cov.�r;Yi

r/.

Remark 4.2 Using the previous lemma and Lemma 4.3, it is possible to interpolate
a vector of missing values, Ym, and compute the MSE of this interpolator. More
specifically, we can first compute the necessary elements of Var.Yi/ D †�1

Y
using (4.46). Then, using the notation and the formulas of Lemma 4.3, we can
compute E�.YmjYo/ and its MSE. This procedure was used in Gómez, Maravall,
& Peña (1999). Þ

The following theorem is a direct consequence of the Bryson–Frazier formulae.

Theorem 4.22 (The Disturbance Smoothers) For t D n; n � 1; : : : ; 1, the
projection vtjn of vt onto the whole sample fYt W 1 � t � ng and its MSE satisfy
the recursions

Ovtjn D Rt†
�1
t Et C .S0

tG
0
t � RtK

0
t /�tC1 D RtY

i
t C S0

tG
0
t�tC1:

MSE. Ovtjn/ D Rt � �
Rt†

�1
t R0

t C .S0
tG

0
t � RtK

0
t /ƒtC1.S0

tG
0
t � RtK

0
t /

0� :
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Similarly, the projection utjn of ut onto the whole sample fYt W 1 � t � ng and its
MSE satisfy for t D n; n � 1; : : : ; 1, the recursions

Outjn D St†
�1
t Et C .QtG

0
t � StK

0
t /�tC1 D StY

i
t C QtG

0
t�tC1:

MSE.Outjn/ D Qt � �
St†

�1
t S0

t C .QtG
0
t � StK

0
t /ƒtC1.QtG

0
t � StK

0
t /

0� :

Proof Projecting onto the whole sample in vt D Yt � Hxt yields

Ovtjn D Yt � Ht Oxtjn D Yt � Ht. Oxtjt�1 C Pt�t/

D Et � HtPt�t D Et � HtPt.Ht†
�1
t Et C F0

p;t�tC1/

D Et � .†t � Rt/†
�1
t Et � HtPtF

0
p;t�tC1

D Rt†
�1
t Et � HtPt.F

0
t � H0

t K
0
t /�tC1

D Rt†
�1
t Et � �

HtPtF
0
t � .†t � Rt/K

0
t

�
�tC1

D Rt†
�1
t Et � �

HtPtF
0
t � HtPtF

0
t � S0

tG
0
t C RtK

0
t

�
�tC1

D Rt†
�1
t Et C .S0

tG
0
t � RtK

0
t /�tC1:

To prove the formula for the MSE, consider that .vt � Ovtjn/C Ovtjn D vt and that the
two terms to the left of the equality are uncorrelated. Then, taking expectations and
considering that Et and �tC1 are uncorrelated, the formula for the MSE follows.

To prove the formula for Outjn, note that, by Proposition 1.5, we can write

Outjn D E�.utjE1;E2; : : : ;En/ D
nX

sD1
E�.utjEs/

D
nX

sD1
Cov.utjEs/†

�1
s Es:

Let Qxs D xs � Oxsjs�1 and note, as in the proof of Theorem 4.20, that Es D Hs Qxs C vs

and QxtC1 D .Ft�KtHt/ Qxt�KtvtCGtut D Fp;t Qxt�KtvtCGtut. Then, ut is uncorrelated
with Es for s < t,

Outjn D
nX

sDt

Cov.utjEs/†
�1
s Es;

and

Cov.ut;Es/ D Cov.ut;Hs Qxs C vs/

D
(

St for s D t

.QtG0
t � StK0

t /


Fs
p;tC1

�0
H0

s for s > t;
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where Fj
p;i D Fp;j�1Fp;j�2 � � � Fp;i if i < j;Fi

p;i D I, and Fp;t D Ft � KtHt. Thus, we
get the formula

Outjn D St†
�1
t Et C .QtG

0
t � StK

0
t /

nX

sDtC1

�
Fs

p;tC1
	0

H0
s†

�1
s Es

D St†
�1
t Et C .QtG

0
t � StK

0
t /�tC1:

As for its MSE, consider again that .ut � Outjn/C Outjn D ut and that the two terms to
the left of the equality are uncorrelated. �

4.10.2 Smoothing With the Single Disturbance State Space
Model

As regards smoothing with the representation (4.9) and (4.10), the recursions for
the adjoint variable, �t, and its MSE, ƒt, coincide with (4.33) for t D n; : : : ; 1,
initialized with �nC1 D 0 and ƒnC1 D 0. The formulae for smoothing the
state vector also coincide. For example, the fixed interval smoother is given for
t D n; : : : ; 1 by the recursions (4.34).

To smooth the disturbances �t, the following recursions can be used for t D
n; : : : ; 1

O�tjn D J0
t†

�1
t Et C M0

t�tC1; MSE.O�tjn/ D I � .J0
t†

�1
t Jt C M0

tƒtC1Mt/;

where Mt D Gt � KtJt and O�tjn D E.�tjY1Wn/ is the orthogonal projection of � onto
Y1Wn.

Sometimes, if the MSE in the fixed interval smoother are not desired, it is
advantageous to use the following fast forward recursion to compute Oxtjn

OxtC1jn D Ft Oxtjn C Gt O�tjn;

initialized with Ox1jn D Ox1j0 C P1�1. If the state space model is (4.1) and (4.2), the
recursion is

OxtC1jn D Ft Oxtjn C Gt Outjn;

with the same initialization.
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4.10.3 The Rauch–Tung–Striebel Recursions

There are two versions of the Rauch–Tung–Striebel formulae (Rauch, Tung, &
Striebel, 1965) for smoothing. Letting Fs

t be defined as in (4.22) for the state space
model (4.1) and (4.2), the first one assumes that Fs

t is nonsingular, whereas in the
second one Ft can be singular. The following theorem gives the recursions for the
first case.

Theorem 4.23 Suppose that the process fYtg follows the state space model (4.1)
and (4.2) and assume that

1. Fs
t is nonsingular

2. Pt > 0;Rt > 0 and Qs
t > 0,

where Qs
t and Fs

t are given by (4.19) and (4.22). Then,

Oxtjn D Fs;t OxtC1jn C �
Fs

t

	�1
GtQ

s
t G

0
tP

�1
tC1 OxtC1jt C �

Fs
t

	�1
GtStR

�1
t Yt

Ptjn D Fs;tPtC1jnF0
s;t C �

Fs
t

	�1
GtQ

r
t G

0
t

�
Fs

t

	�10

;

where

Fs;t D �
Fs

t

	�1 �
I � GtQ

s
t G

0
tP

�1
tC1
	 D PtF

s0

p;tP
�1
tC1 D PtjtFs0

t P�1
tC1; (4.47)

Fs
p;t D Fs

t � Ks
t Ht;Ks

t is given by (4.23), and Qr
t D Qs

t � Qs
t G

0
tP

�1
tC1GtQs

t .

Proof Using (4.20), it is obtained that

xtC1 D Fs
t xt C Gtu

s
t C GtStR

�1
t Yt: (4.48)

Projecting onto the whole sample, we get

OxtC1jn D Fs
t Oxtjn C Gt Ous

tjn C GtStR
�1
t Yt;

where, according to the definition of us
tjn and Theorem 4.22, the following equality

holds

Ous
tjn D Outjn � StR

�1
t Ovtjn

D StY
i
t C QtG

0
t�tC1 � StR

�1
t

�
RtY

i
t C S0

tG
0
t�tC1

	

D Qs
t G

0
t�tC1:

Since PtC1 is nonsingular, we get from (4.36) the following equality

�tC1 D P�1
tC1

� OxtC1jn � OxtC1jt
	
:
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Thus,

OxtC1jn D Fs
t Oxtjn C GtQ

s
t G

0
tP

�1
tC1

� OxtC1jn � OxtC1jt
	C GtStR

�1
t Yt; (4.49)

Multiplying (4.48) and (4.49) by the inverse of Fs
t and reordering terms, it is

obtained that

xt D �
Fs

t

	�1
xtC1 � �

Fs
t

	�1
Gtu

s
t � �

Fs
t

	�1
GtStR

�1
t Yt

D Fs;txtC1 � �
Fs

t

	�1
Gt
�
us

t � Qs
t G

0
tP

�1
tC1xtC1 C StR

�1
t Yt

�
(4.50)

and

Oxtjn D �
Fs

t

	�1 �
I � GtQ

s
t G

0
tP

�1
tC1
	 OxtC1jn C �

Fs
t

	�1
Gt
�
Qs

t G
0
tP

�1
tC1 OxtC1jt � StR

�1
t Yt

�

D Fs;t OxtC1jn C �
Fs

t

	�1
Gt
�
Qs

t G
0
tP

�1
tC1 OxtC1jt � StR

�1
t Yt

�
: (4.51)

Thus, the recursion for Oxtjn is proved. To prove the recursion for Ptjn, subtract (4.51)
from (4.50) to get

Qxtjn D Fs;t QxtC1jn � �
Fs

t

	�1
Gt Qus

t ; (4.52)

where Qxtjn D xt � Oxtjn; Qus
t D us

t � Qs
t G

0
tP

�1
tC1 QxtC1jt and QxtC1jt D xtC1 � OxtC1jt.

The recursion for Ptjn will be proved if we prove that QxtC1jn and Qus
t in (4.52) are

uncorrelated and Var.Qus
t / D Qr

t . To prove the last equality, consider first that

QxtC1jt D Gtu
s
t C Fs

t Qxtjt�1 � Ks
t

�
vt C Ht Qxtjt�1

	

D Fs
p;t Qxtjt�1 C Gtu

s
t � Ks

t vt; (4.53)

and, therefore, Cov.us
t ; QxtC1jt/ D Qs

t G
0
t since the three terms in the right-hand

side of (4.53) are mutually orthogonal. Then, by the definition of Qus
t , it holds that

Var.Qus
t/ D Qs

t � Qs
t G

0
tP

�1
tC1GtQs

t D Qr
t .

To prove that QxtC1jn and Qus
t in (4.52) are uncorrelated, use first (4.36) to get

QxtC1jn D QxtC1jt � PtC1�tC1 (4.54)

Qus
t D us

t � Qs
t G

0
tP

�1
tC1 QxtC1jt: (4.55)

Then, by repeated application of (4.53), it is not difficult to verify that for j � t C 1

it holds that

Cov. Qxjj j�1; QxtC1jt/ D Fj
p;tC1 (4.56)
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and

Cov. Qxjj j�1; us
t / D Fj

p;tC1GtQ
s
t ; (4.57)

where Fj
p;i D Fp;j�1Fp;j�2 � � � Fp;i if i < j, and Fi

p;i D I. Also, since

Et D Yt � Ht Oxtjt�1
D Ht Qxtjt�1 C vt; (4.58)

clearly

Cov.Ej; u
s
t / D HjF

j
p;tC1GtQ

s
t : (4.59)

Given that �tC1 D Pn
jDtC1 FtC10

p;j H0
j†

�1
j Ej in (4.54), if follows from (4.56)–(4.59)

that

Cov. QxtC1jn; QxtC1jt/ D PtC1 � PtC1
nX

jDtC1
FtC10

p;j H0
j†

�1
j FtC1

p;j PtC1 (4.60)

and

Cov. QxtC1jn; us
t / D GtQ

s
t � PtC1

nX

jDtC1
FtC10

p;j H0
j†

�1
j FtC1

p;j GtQ
s
t : (4.61)

Letting Bt D Pn
jDtC1 FtC10

p;j H0
j†

�1
j FtC1

p;j , it follows from (4.60) and (4.61) that the
covariance between QxtC1jn and Qus

t , given by (4.54) and (4.55), is

Cov. QxtC1jn; Qus
t / D Cov. QxtC1jn; us

t /� Cov. QxtC1jn; QxtC1jt/P�1
tC1GtQ

s
t

D GtQ
s
t � PtC1BtGtQ

s
t � .PtC1 � PtC1BtPtC1/P�1

tC1GtQ
s
t

D 0:

Finally, to prove the formulae (4.47), first take into account the equality

PtC1 D Fs
t PtF

s0

p;t C GtQ
s
t G

0
t:

Then, it follows that

�
Fs

t

	�1 �
PtC1 � GtQ

s
t G

0
t

	 D PtF
s0

p;t;

and the first equality in (4.47) is proved. The second equality in (4.47) can be proved
similarly considering the formula PtC1 D Fs

t PtjtFs0

t C GtQs
t G

0
t. �
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The following theorem gives the original formulation of the Rauch–Tung–
Striebel formulae, where the matrix Ft can be singular.

Theorem 4.24 (Original Formulation of the Rauch–Tung–Striebel Formulae)
Suppose that the process fYtg follows the state space model (4.1) and (4.2) and
assume that Pt > 0. Then,

Oxtjn D Oxtjt�1 C PtH
0
t†

�1
t Et C Fo;t

� OxtC1jn � OxtC1jt
	

(4.62)

Ptjn D Pt � PtH
0
t†

�1
t HtPt � Fo;t

�
PtC1 � PtC1jn

	
F0

o;t; (4.63)

where Fo;t D P0
tFp;tP�1

tC1 and Fp;t D Ft � KtHt.

Proof Using (4.33) and (4.34), it is obtained that

Oxtjn D Oxtjt�1 C Pt
�
F0

p;t�tC1 C H0
t†

�1
t Et

	

D Oxtjt�1 C PtH
0
t†

�1
t Et C PtF

0
p;t�tC1: (4.64)

Since Pt is nonsingular, it follows from (4.34) that

�tC1 D P�1
tC1

� OxtC1jn � OxtC1jt
	
:

Substituting the previous equality into (4.64), we get (4.62). To prove (4.63), use
first (4.64) to obtain

xt � Oxtjt�n C PtH
0
t†

�1
t Et C PtF

0
p;t�tC1 D xt � Oxtjt�1:

Then, since the terms on the left-hand side of the previous equality are uncorrelated,
it holds that

Ptjn C PtH
0
t†

�1
t HtPt C PtF

0
p;tƒtC1Fp;tPt D Pt: (4.65)

Since Pt is nonsingular, it follows from (4.34) that

ƒtC1 D P�1
tC1

�
PtC1 � PtC1jn

	
P�1

tC1:

Substituting the previous equality into (4.65) yields (4.63). �

4.10.4 Square Root Smoothing

We will consider in the following the square root form of the Bryson–Frazier
formulae.
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Theorem 4.25 Suppose that the process fYtg follows the state space model (4.9)
and (4.10) or the state space model (4.1) and (4.2) and let bEt D †

�1=2
t Et; bHt D

†
�1=2
t Ht; bKt D Kt†

1=2
t and Fp;t D Ft � bKtbHt. Then, the QR algorithm produces an

orthogonal matrix Ut such that

U0
t

"
bHt bEt

ƒ
1=20

tC1Fp;t ƒ
�1=2
tC1 �tC1

#

D
"
ƒ
1=20

t ƒ
�1=2
t �t

0 


#

;

where ƒ1=2
nC1 D 0 and ƒ�1=2

nC1 �nC1 D 0.

Proof Let

U0
t

"
bHt bEt

ƒ
1=20

tC1Fp;t ƒ
�1=2
tC1 �tC1

#

D
�

X Y
0 


�

Then, premultiplying the previous matrices by their respective transposes and
equating entries, it is obtained that

bE0
t
bHt C


ƒ

�1=2
tC1 �tC1

�0
ƒ
1=20

tC1Fp;t D Y 0X; bH0
t
bHt C


ƒ
1=20

tC1Fp;t

�0
ƒ
1=20

tC1Fp;t D X0X:

By (4.33), the theorem follows. �

If the process fYtg follows the state space model (4.9) and (4.10) or the state
space model (4.1) and (4.2), using the previous theorem it is possible to obtain a
square root form of the fixed interval smoother as follows.

Step 1 In the forward pass, use Theorem 4.4 or Theorem 4.5 to compute and
store the quantities bEt; bKt; bHt;Fp;t D Ft � bKtbHt; Oxtjt�1, and P1=2t .

Step 2 In the backward pass, use Theorem 4.25 to compute ƒ1=20

t P1=2t and
ƒ

�1=2
t �t, where ƒ1=2

nC1 D 0 and ƒ�1=2
nC1 �nC1 D 0. Finally, at the same time,

compute recursively the fixed interval smoothing quantities

Oxtjn D Oxtjt�1 C P1=2t


ƒ
1=20

t P1=2t

�0 
ƒ

�1=2
t �t

�

Ptjn D P1=2t

�
I �


ƒ
1=20

t P1=2t

�0 
ƒ
1=20

t P1=2t

��
P1=2

0

t :

The following theorem gives another version of the square root form of the
Bryson–Frazier formulae corresponding to the situation in which the process fYtg
follows the state space model (4.1) and (4.2) under additional assumptions.

Theorem 4.26 Suppose that the process fYtg follows the state space model (4.1)
and (4.2), where it is assumed that Qt > 0, and let Rs

t D Rt � S0
tQ

�1
t St. Then, if Rs

t
and Pt are nonsingular, the application of the QR algorithm in a forward pass yields
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an orthogonal matrix Ut such that

U0
t

2

6
4
.Rs

t /
1=20

0 0 �.Rs
t /

�1=2Yt

P1=2
0

t H0
t P1=2

0

t F0
t I P�1=2

t Oxtjt�1
Q�1=2

t St Q1=20

t G0
t 0 0

3

7
5 D

2

6
4
†
1=20

t
bK0

t Xt �bEt

0 P1=2
0

tC1 Zt P�1=2
tC1 OxtC1jt

0 0 
 


3

7
5 ;

where bKt D .FtPtH0
t C GtSt/†

�1=20

t D Kt†
1=2
t ; bEt D †

�1=2
t Et,

Xt D †
�1=2
t HtP

1=2
t ; Zt D P�1=2

tC1 Fp;tP
1=2
t ;

Fp;t D Ft � KtHt, and the asterisk indicates an element that is not relevant to our
purposes. Here it is understood that Ut upper-triangularizes the first two block
columns of the left-hand side matrix. Using Xt and Zt, the application of the QR
algorithm in a backward pass yields an orthogonal matrix Vt such that

V 0
t

"
Xt bEt

ƒ
1=20

tC1P1=2tC1
�

Zt ƒ
�1=2
tC1 �tC1

#

D
"
ƒ
1=20

t P1=2t ƒ
�1=2
t �t

0 


#

;

where Vt upper-triangularizes the first two block columns of the left-hand side
matrix and the asterisk indicates an element that is not relevant to our purposes.

Proof Most of the results for the forward pass have been proved in Theorem 4.5. To
complete the proof for the forward pass, premultiply the matrices on both sides by
their respective transposes and equate entries to get

HtP
1=2
t D †

1=2
t Xt; FtP

1=2
t D bKtXt C P1=2tC1Yt:

The result for the backward pass is proved using an argument similar to that of the
proof of Theorem 4.25. �

Using Theorem 4.26, the square root form of the fixed interval smoother is as
follows.

Step 1 In the forward pass, compute and store the quantities bEt;Xt;Zt;P
�1=2
t Oxtjt�1

and P1=2t .
Step 2 In the backward pass, compute ƒ

1=20

t P1=2t and ƒ
�1=2
t �t, where

ƒ
1=20

nC1P
1=2
nC1 D 0 and ƒ

�1=2
nC1 �nC1 D 0. Finally, at the same time, compute

recursively the fixed interval smoothing quantities

Oxtjn D P1=2t

�
P�1=2

t Oxtjt�1
�

C

ƒ
1=20

t P1=2t

�0 
ƒ

�1=2
t �t

��

Ptjn D P1=2t

�
I �


ƒ
1=20

t P1=2t

�0 
ƒ
1=20

t P1=2t

��
P1=2

0

t :
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4.10.5 Square Root Information Smoothing

It is possible to obtain a square root information smoother by first using the square
root information filter of Theorem 4.17 in a forward pass and then putting the
Rauch–Tung–Striebel smoothing formulae into square root form. The next theorem
gives the details, but first we need a lemma.

Lemma 4.5 Under the assumptions and with the notation of Theorem 4.17, the
following equality holds

bKb;t D .Qr
t /

�1=20

Qs
t G

0
tP

�1
tC1:

Proof We will prove that P�1
tC1GtQs

t

�
Qr

t

	�1 D AtGt. Using that
�
Qr

t

	�1 D �
Qs

t

	�1 C
G0

tAtGt, it is obtained that

P�1
tC1GtQ

s
t

�
Qr

t

	�1 D P�1
tC1GtQ

s
t

h�
Qs

t

	�1 C G0
tAtGt

i

D P�1
tC1Gt

�
I C Qs

t G
0
tAtGt

	

D �
At � AtGtQ

r
t G

0
tAt
	 �

I C GtQ
s
t G

0
tAt
	

Gt

D �
At � AtGt

��Qr
t C Qs

t � Qr
t G

0
tAtGtQ

s
t

	
G0

tAt
�

Gt

D


At � AtGt

n
�Qr

t C Qs
t � Qr

t

h�
Qr

t

	�1 � �
Qs

t

	�1i
Qs

t

o
G0

tAt

�
Gt

D �
At � AtGt

˚�Qr
t C Qs

t � Qs
t C Qr

t

�
G0

tAt
	

Gt

D AtGt:

�

Theorem 4.27 Under the assumptions and with the notation of Theorem 4.17,
suppose we apply the algorithm of that theorem in a forward pass. Then, the
application of the QR algorithm in a backward pass yields an orthogonal matrix
Vt such that

V 0
t

"
P1=2

0

tC1jn
h
I � Gt.Qr

t /
1=2bKb;t

i
.Fs

t /
�10

P�1=2
tC1jn OxtC1jn

.Qr
t /
1=20

G0
t.F

s
t /

�10 bKb;t OxtC1jt C .Qr
t /

�1=2StR�1
t Yt

#

D
"

P1=2
0

tjn P�1=2
tjn Oxtjn

0 


#

;

initialized with P1=2nC1jn D P1=2nC1 and P�1=2
nC1jn OxnC1jn D


P�1=2

nC1
�

OxnC1jn. In addition, the

computation of .Qr
t /
1=2 in the backward pass by inverting .Qr

t /
�1=2, given by the

forward pass, can be avoided if we incorporate a block column in the algorithm of
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Theorem 4.17 as follows

U0
t

2

6
4

.Qs
t /

�1=2 0 .Qs
t /
1=20

.Qs
t /

�1=2StR�1
t Yt

�P�1=2
t .Fs

t /
�1Gt P�1=2

t .Fs
t /

�1 0 P�1=2
t Oxtjt�1

R�1=2
t Ht.Fs

t /
�1Gt �R�1=2

t Ht.Fs
t /

�1 0 �R�1=2
t Yt

3

7
5

D

2

6
4
.Qr

t /
�1=2 �bKb;t .Qr

t /
1=20 �bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

0 P�1=2
tC1 P1=2

0

tC1AtGtQr
t P�1=2

tC1 OxtC1jt
0 0 
 �bEt

3

7
5 :

Proof Let

V 0
t

"
P1=2

0

tC1jn
h
I � Gt.Qr

t /
1=2bKb;t

i
.Fs

t /
�10

P�1=2
tC1jn OxtC1jn

.Qr
t /
1=20

G0
t.F

s
t /

�10 bKb;t OxtC1jt C .Qr
t /

�1=2StR�1
t Yt

#

D
�

X ˛

0 ˇ

�
:

Then, premultiplying both sides of the previous equality by their respective
transposes, using the Rauch–Tung–Striebel recursions and Lemma 4.5, and equating
entries, it is obtained that

.Fs
t /

�1
h
I � Gt.Q

r
t /
1=2bKb;t

i
0

PtC1jn

h
I � Gt.Q

r
t /
1=2bKb;t

i
.Fs

t /
�10 C .Fs

t /
�1GtQ

r
t G

0

t .F
s
t /

�10

D Fs;tPtC1jnF0

s;t C .Fs
t /

�1GtQ
r
t G

0

t.F
s
t /

�10

D Ptjn

D X0X

and

.Fs
t /

�1

�h
I � Gt.Qr

t /
1=2bKb;t

i
0

PtC1jn OxtC1jt C Gt.Qr
t /
1=2
h
bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

i�

D Fs;t OxtC1jt C .Fs
t /

�1Gt
�
Qr

t

	1=2 hbKb;t OxtC1jt C �
Qr

t

	
�1=2

StR�1
t Yt

i

D xtjn

D X0˛:

The last part of the theorem can be proved by inverting the equality

U0
t

2

6
4

.Qs
t /

�1=2 0 0

�P�1=2
t .Fs

t /
�1Gt P�1=2

t .Fs
t /

�1 0

R�1=2
t Ht.Fs

t /
�1Gt �R�1=2

t Ht.Fs
t /

�1 I

3

7
5 D

2

6
4
.Qr

t /
�1=2 �bKb;t 

0 P�1=2

tC1 

0 0 


3

7
5 :

�
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Using Theorem 4.27, the square root form of the fixed interval smoother is as
follows.

Step 1 In the forward pass, use the algorithm of Theorem 4.17, modified as in
Theorem 4.27, to compute and store the quantities .Qr

t /
1=2; bKb;t; .Qr

t /
�1=2StR�1

t Yt,

and bKb;t OxtC1jt D �

�bKb;t OxtC1jt C .Qr

t /
�1=2StR�1

t Yt

�
C .Qr

t /
�1=2StR�1

t Yt.

Step 2 In the backward pass, compute P1=2
0

tjn and P�1=2
tjn Oxtjn by means of the

algorithm of Theorem 4.27. Finally, at the same time, compute recursively the
fixed interval smoothing quantities

Oxtjn D P1=2tjn


P�1=2
tjn Oxtjn

�

Ptjn D P1=2tjn P1=2
0

tjn :

4.11 Covariance-Based Filters

Assume the state space model (4.1) and (4.2). The following theorem was proved in
Chap. 1 using results connected with the Innovations Algorithm. Here we provide a
more direct proof.

Theorem 4.28 Suppose that the process fYtg follows the state space model (4.1)
and (4.2) so that the covariances, 
Y.r; s/ D E.YrY 0

s/, are generated by (1.34).
Then, fYtg admits the following innovations state space representation

OxtC1jt D Ft Oxtjt�1 C KtEt

Yt D Ht Oxtjt�1 C Et;

where Oxtjt�1;Kt and Et have the same interpretation as in the Kalman filter and the
quantities Var.Et/ D †t , Var. Oxtjt�1/ D b†t and Kt are obtained by means of the
recursions based on covariance data only

†t D 
Y.t; t/ � Htb†tH
0
t

Kt D .Nt � Ftb†tH
0
t/†

�1
t (4.66)

b†tC1 D Ftb†tF
0
t C Kt†tK

0
t ;

initialized with Ox1j0 D 0 and b†1 D 0.
The whitening filter for fYtg is further given by

OxtC1jt D .Ft � KtHt/ Oxtjt�1 C KtYt

Et D Ht Oxtjt�1 � Yt:
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Proof The problem is to determine the innovations, fEtg, using only knowledge of
the covariance parameters, fFt;Ht;Nt; 
Y.t; t/g, where Nt D Ft…tH0

t C GtSt. The
problem will be solved if we can re-express fKt; †tg in terms of the covariance data.
To this end, define first Var. Oxtjt�1/ D b†t. Then, use the following equality

xt D xt � Oxtjt�1 C Oxtjt�1

to get

…t D Pt C b†t;

because xt� Oxtjt�1 is orthogonal to Oxtjt�1. In addition, using the Kalman filter equation

OxtC1jt D Ft Oxtjt�1 C KtEt;

we get the covariance equation

b†tC1 D Ftb†tF
0
t C Kt†tK

0
t ;

because fEtg is a white noise process. Hence, we have

†t D Rt C HtPtH
0
t D Rt C Ht.…t � b†t/H

0
t

D 
Y.t; t/ � Htb†tH
0
t

Kt D .FtPtH
0
t C GtSt/†

�1
t D .Ft…tH

0
t C GtSt � Ftb†tH

0
t /†

�1
t

D .Nt � Ftb†tH
0
t/†

�1
t :

�

4.12 Markov Processes

A stochastic vector process fYt W t 2 Zg is said to be strictly Markovian or a strict
sense Markov process if the conditional distribution functions satisfy

F.Yik jYik�1 ; : : : ;Yi1 /D F.Yik jYik�1 /; ik > ik�1 > : : : > i1; ij 2Z; j D 1; 2; : : : ; k:

An example of these processes is the scalar normal AR(1) process fYt W t 2 Zg,
defined by

Yt D Yt�1 C At; (4.67)
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where 0 <  < 1 and fAtg is a sequence of independent normal variables with zero
mean and common variance �2.

As it happens with stationarity, if we are only using first and second order
statistical information, we may define, following Doob (1953), a wide sense
Markov process as a process fYt W t 2 Zg such that

E�.Yik jYik�1 ; : : : ;Yi1 / D E�.Yik jYik�1 /; ik > ik�1 > : : : > i1;

ij 2 Z; j D 1; 2; : : : ; k:

The following lemma gives a characterization of wide sense Markov processes in
terms of an equivalent but simpler definition.

Lemma 4.6 A stochastic process fYt W t 2 Zg is wide sense Markov if, and only if,

E�.YijYj;Yk/ D E�.YijYj/; i > j > k; i; j; k 2 Z:

Proof If fYt W t 2 Zg is wide sense Markov, the condition clearly holds. To prove
the converse, suppose the condition applies and let ij 2 Z; j D 1; 2; : : : ; k, such
that ik > ik�1 > : : : > i1. Define Z2 D .Yik�1 ; : : : ;Yi3 / and Z1 D .Yi2 ;Yi1 /.
Then, by formula (1.44), that corresponds to the sequential update of an orthogonal
projection, it is obtained that

E�.Yik jYik�1 ; : : : ;Yi1 / D E�.Yik jZ2;Z1/
D E�.Yik jZ1/C…

�
Z2 � E�.Z2jZ1/

�

D E�.Yik jYi2 /C…
�
Z2 � E�.Z2jYi2 /

�

D E�.Yik jYik�1 ; : : : ;Yi2 /;

where E�.Yik jE2/ D …E2 and E2 D Z2 � E�.Z2jZ1/ D Z2 � E�.Z2jYi2 /. Repeating
this procedure, we finally get E�.Yik jYik�1 ; : : : ;Yi1 / D E�.Yik jYik�1 /. �

Sometimes the following lemma can be useful when checking whether a process
is wide sense Markov.

Lemma 4.7 (Covariance Test for Wide Sense Markov Processes) Assume that
Var.xj/ > 0; j � 1. Then, the process fxj W j D 1; 2; : : :g is wide sense Markov if,
and only if, for any i > j > k

Cov.xi; xk/ D Cov.xi; xj/Var�1.xj/Cov.xj; xk/:

Proof We will first prove the proposition that fxjg is wide sense Markov if, and
only if,

xi � E�.xijxj/ ? xk; i > j > k:
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The condition is evident if fxjg is wide sense Markov. Conversely, if the condition
is true, then, by the properties of orthogonal projection,

0 D E� �xi � E�.xijxj/jxj; xk
�

D E�.xijxj; xk/ � E�.xijxj/;

and the process is wide sense Markov by Lemma 4.6. Using the previous proposi-
tion, we get

0 D Cov.xi � E�.xijxj/; xk/

D Cov.xi; xk/ � Cov.xi; xj/Var�1.xj/Cov.xj; xk/:

�

Remark 4.3 The previous lemma is also valid if the covariance matrices Var.xj/; j �
1, are singular. See Problem 4.3. Þ

4.12.1 Forwards Markovian Models

Given that the previous AR(1) example (4.67) is strict and wide sense Markov, the
question arises as to whether the process fxtg is also wide sense Markov, where xt is
the state vector of the state space model (4.1) and (4.2). This is motivated by the fact
that the transition equation (4.1) resembles the equation of the AR(1) model (4.67).
The answer is affirmative, but what is perhaps surprising is that the converse also
holds, as shown by the following theorem.

Theorem 4.29 A stochastic process fxt W t D 1; 2; : : :g is wide sense Markov if, and
only if, it can be represented in the form

xtC1 D Ftxt C Gtut; t D 1; 2; : : : ; (4.68)

where

E

��
ut

x1

� �
u0

s; x
0
1

�� D
�

Qtıts 0

0 …1

�
:

Proof Suppose fxtg follows the model (4.68). Then, using the properties of orthog-
onal projection, it is obtained that

E�.xijxj; xk/ D Fi�1E�.xi�1jxj; xk/C Gi�1E�.ui�1jxj; xk/

D Fi�1 � � � FjE
�.xjjxj; xk/

D Fi�1 � � � Fjxj

D E�.xijxj/; i > j > k;
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and fxtg is wide sense Markov by Lemma 4.6. Here, we have used the facts that,
by (4.68), xt is a linear combination of the vectors fx1; u1; : : : ; ut�1g and uj is
orthogonal to xk for all j � k � 1.

To prove the converse, suppose that fxt W t D 1; 2; : : :g is wide sense Markov and
define

e1 D x1

etC1 D xtC1 � E�.xtC1jxt/; t � 1:

Then, by definition, E�.xtC1jxt/ D Ftxt, where Ft is any solution of the normal
equations FtVar.xt/ D Cov.xtC1; xt/. Thus, we can write

xtC1 D Ftxt C ut;

where ut D etC1 and Cov.ut; us/ D Cov.etC1; esC1/ D 0; t ¤ s, by the orthogonality
of the innovations since, by the wide sense Markov property, E�.xtC1jxt/ D
E�.xtC1jxt; : : : ; x1/. Letting …t D Var.xt/ and Qt D Var.ut/, we have, by the
properties of orthogonal projection, the relation Qt D Var.etC1/ D …tC1 � Ft…tF0

t .
Finally, notice that ut D etC1 is orthogonal to e1 D x1 and, therefore,

E

��
ut

x1

� �
u0

s; x
0
1

�� D
�

Qtıts 0

0 …1

�
:

�

4.12.2 Backwards Markovian Models

We have seen in the previous section that a wide sense Markov process, fxt W t D
1; 2; : : :g, can always be represented by a forwards time model (4.68). Suppose that
the matrices Ft in (4.68) are invertible. Then, we can reverse time and write

xt D F�1
t xtC1 � F�1

t Gtut; t � n; (4.69)

and the question arises as to whether this model is a backwards time Markovian
model. As it turns out, the assumption in (4.68) that the innovations, fut W t D
1; 2; : : :g, are uncorrelated with the initial state, x1, is a crucial one. It is this
assumption that fails in (4.69). That is, it is not true that Cov.ut; xnC1/ D 0 for
t � n. For this reason, the model (4.69) is not a backwards time Markovian model,
although the sequence fut W t D 1; 2; : : :g continues to be uncorrelated.

The following lemma shows that the properties of a wide sense Markov process
do not change when the time is reversed.
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Lemma 4.8 (Independence from Time Direction) Let fxt W t D 1; 2; : : :g be a
wide sense Markov process. Then,

E�.xkjxi; xj/ D E�.xkjxj/; i > j > k; i; j; k 2 Z:

Proof Suppose first that Var.xj/ > 0; j � 1. Then, by Lemma 4.7,

Cov.xi; xk/ D Cov.xi; xj/Var�1.xj/Cov.xj; xk/:

Transposing in the previous equality, considering the process fxt W t D 1; 2; : : :g
with the time reversed, and applying Lemma 4.7 again, the lemma is proved. In the
general case, we can consider generalized inverses instead of inverses of Var.xj/ in
Lemma 4.7. See Remark 4.3. �

It is in fact true that any wide sense Markov process, fxt W t D 1; 2; : : :g, can
always be represented by a backwards time Markovian model. Here, a backwards
Markovian model for a stochastic process, fxt W t D 1; 2; : : :g, is defined as

xt D Fb
tC1xtC1 C Gb

tC1ub
tC1; t D n; n � 1; : : : ; 1; (4.70)

where

E

��
ub

tC1
xnC1

� h
ub0

sC1; x0
nC1
i�

D
�

Qb
tC1ıts 0

0 …nC1

�
:

Using Lemma 4.8 and proceeding as in the proof of Theorem 4.29 with the time
reversed, it is not difficult to prove the following analogous theorem. We omit its
proof.

Theorem 4.30 A stochastic process fxt W t D n C 1; n; : : :g is wide sense Markov if,
and only if, it can be represented in the form

xt D Fb
tC1xtC1 C Gb

tC1ub
tC1; t D n; n � 1; : : : ;

where

E

��
ub

tC1
xnC1

� h
ub0

sC1; x0
nC1
i�

D
�

Qb
tC1ıts 0

0 …nC1

�
:

4.12.3 Backwards Models From Forwards State Space Models

Our aim in this section is to show that it is possible to construct a backwards state
space model given a forwards state space model. Suppose the forwards state space
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model

xtC1 D Ftxt C Gtut (4.71)

Yt D Htxt C vt; t D 1; : : : ; n; (4.72)

where

E

��
ut

vt

� �
u0

s; v
0
s

�� D
�

Qt St

S0
t Rt

�
ıts;

E.ut/ D 0;E.vt/ D 0, the initial state vector, x1, is orthogonal to ut and vt for all
t;E.x1/ D 0 and Var.x1/ D …1.

To obtain a backwards state space model, we first need a lemma.

Lemma 4.9 Given a forwards Markovian model

xtC1 D Ftxt C Gtut; t D 1; 2; : : : ; n; (4.73)

where

E

��
ut

x1

� �
u0

s; x
0
1

�� D
�

Qtıts 0

0 …1

�
;

there exists a backwards Markovian model

xt D Fb
tC1xtC1 C ub

tC1; t D n; n � 1; : : : ; 1;

with

E

��
ub

tC1
xnC1

� h
ub0

sC1; x0
nC1
i�

D
�

Qb
tC1ıts 0

0 …nC1

�
;

where Fb
tC1 is any solution of the equation Fb

tC1…tC1 D …tF0
t ;Q

b
tC1 D …t �

Fb
tC1…tC1Fb0

tC1, and Var.xt/ D …t satisfies …tC1 D Ft…tF0
t C GtQtG0

t.

Proof We could use Theorem 4.30, but we will give a proof from scratch. Define
the backwards innovations as eb

nC1 D xnC1, and, for t D n; : : : ; 1,

eb
t D xt � E�.xtjxtC1; : : : ; xnC1/

D xt � E�.xtjxtC1/

D xt � Kb
tC1xtC1;
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where we have used the independence from time direction (Lemma 4.8) and Kb
tC1

is any solution of the normal equations Kb
tC1…tC1 D Cov.xt; xtC1/. From (4.73), it

is obtained that Cov.xt; xtC1/ D …tF0
t , and the formula Fb

tC1…tC1 D …tF0
t follows.

Also from (4.73), the relation…tC1 D Ft…tF0
t C GtQtG0

t holds.
Defining Fb

tC1 D Kb
tC1;Gb

tC1 D I and ub
tC1 D eb

t , we can write

xt D Fb
tC1xtC1 C ub

tC1; t D n; n � 1; : : : ; 1:

Finally, using Cov.xt; xtC1/ D Fb
tC1…tC1, it is obtained that

Qb
tC1 D Var.eb

t /

D Var.xt � Fb
tC1xtC1/

D …t � Cov.xt; xtC1/Fb0

tC1 � Fb
tC1Cov.xtC1; xt/C Fb

tC1…tC1Fb0

tC1
D …t � Fb

tC1…tC1Fb0

tC1:

�

It is to be noticed that the backwards Markovian model of the previous lemma
can be made more explicit if the matrices f…t W t D 1; 2; : : : ; ng are nonsingular. In
this case, the formulae

Fb
tC1 D …tF

0
t…

�1
tC1; Qb

tC1 D …t �…tF
0
t…

�1
tC1Ft…t

hold. Sufficient conditions for f…t W t D 1; 2; : : : ; ng to be nonsingular are

1. …1 > 0 and fFtg nonsingular, t D 1; : : : ; n � 1.
2. …1 > 0 and .Ft;GtQ

1=2
t / controllable, t D 1; : : : ; n � 1.

Lemma 4.9 provides the backwards model corresponding to the forwards
model (4.71). To obtain the backwards version of (4.72), we need two more lemmas.

Lemma 4.10 The process
n�

x0
t;Y

0
t

�0o
is wide sense Markov, where xt and Yt are

the state and the observation vector, respectively, of the state space model (4.71)
and (4.72).

Proof Using (4.71) and (4.72), we can write

�
xtC1
YtC1

�
D
�

Ft 0

HtC1Ft 0

� �
xt

Yt

�
C
�

Gt 0

HtC1Gt I

� �
ut

vtC1

�
:
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Projecting onto
n�

x0
t;Y

0
t

�0
; : : : ;

�
x0
1;Y

0
1

�0o
and using the properties of orthogonal

projection, it is obtained that

E�
��

xtC1
YtC1

� ˇˇ
ˇ
ˇ

�
xt

Yt

�
; : : : ;

�
x1
Y1

��
D
�

Ft 0

HtC1Ft 0

� �
xt

Yt

�
C
�

Gt 0

HtC1Gt I

�

�E�
��

ut

vtC1

� ˇˇ
ˇ̌
�

xt

Yt

�
; : : : ;

�
x1
Y1

��

D
�

Ft 0

HtC1Ft 0

� �
xt

Yt

�
C
�

Gt 0

HtC1Gt I

�

�E�
��

ut

vtC1

� ˇˇ
ˇ
ˇ

�
xt

Yt

��

D E�
��

xtC1
YtC1

� ˇˇ
ˇ
ˇ

�
xt

Yt

��
;

where we have used the fact that Cov.ut; yt/ D St, Cov.ut; ys/ D 0; s < t, and
Cov.vtC1; ys/ D 0, Cov.vtC1; xs/ D 0; s � t.

Finally, letting Zj D Œx0
j;Y

0
j �

0 and using the law of iterated orthogonal projection,
if i > j > k, then

E�.ZijZj;Zk/ D E� �E�.ZijZi�1;Zi�2; : : : ;Z1/
ˇ
ˇZj;Zk

�

D E� �E�.ZijZi�1/
ˇ
ˇZj;Zk

�

D …i�1E�.Zi�1jZj;Zk/

D …i�1 � � �…jE
�.ZjjZj;Zk/

D …i�1 � � �…jZj

D E�.ZijZj/;

where E�.ZrjZr�1/ D …r�1Zr�1; r D i; i � 1; : : : ; j C 1. Thus,
n�

x0
t;Y

0
t

�0o
is wide

sense Markov by Lemma 4.6. �

Lemma 4.11 Let
n�

x0
t;Y

0
t

�0o
be the process such that xt and Yt are the state and the

observation vector, respectively, of the state space model (4.71) and (4.72). Then,

E�
��

xt

Yt

� ˇˇ
ˇ̌
�

xtC1
YtC1

��
D
�

Fb
tC1

Hb
tC1

�
xtC1;

where Fb
tC1 is given by Lemma 4.9 and Hb

tC1 is any solution of the normal equations
Hb

tC1Var.xtC1/ D Cov.Yt; xtC1/.
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Proof Given that YtC1 D HtC1xtC1 C vtC1 and considering that vtC1 is orthogonal
to both xt and Yt, we can write

E�
��

xt

Yt

� ˇˇ̌
ˇ

�
xtC1
YtC1

��
D E�

��
xt

Yt

� ˇˇ̌
ˇ

�
xtC1

HtC1xtC1

��

D E�
��

xt

Yt

�
jxtC1

�
;

where the last equality follows from Proposition 1.7 if we take a nonsingular matrix
M such that

M

�
xtC1

HtC1xtC1

�
D
�

xtC1
0

�
:

This can always be achieved by annihilating the rows corresponding to HtC1xtC1 in
the matrix

�
xtC1

HtC1xtC1

�

using elementary row operations. The matrix M is then the matrix obtained from the
unit matrix by performing the same row operations. �

We are now in a position to obtain the backwards state space model correspond-
ing to the forwards model (4.71) and (4.72).

Theorem 4.31 Given the forwards state space model (4.71) and (4.72), there exists
a backwards model

xt D Fb
tC1xtC1 C ub

tC1 (4.74)

Yt D Hb
tC1xtC1 C vb

tC1; t D n; n � 1; : : : ; 1; (4.75)

where

E

��
ub

tC1
vb

tC1

� h
ub0

sC1; vb0

sC1
i�

D
�

Qb
tC1 Sb

tC1
Sb0

tC1 Rb
tC1

�
ıts;

E.ub
tC1/ D 0;E.vb

tC1/ D 0, the initial state vector, xnC1, is orthogonal to ub
tC1 and

vb
tC1 for all t;E.xnC1/ D 0 and, letting Var.xt/ D …t; t D n C 1; n; : : : ; 1;Fb

tC1 and
Hb

tC1 are any solutions of the equations

Fb
tC1…tC1 D …tF

0
t ; Hb

tC1…tC1 D N0
t ;
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and Qb
tC1; Sb

tC1 and Rb
tC1 are given by

Qb
tC1 D …t � Fb

tC1…tC1Fb0

tC1; Sb
tC1 D …tH

0
t � Fb

tC1Nt;

Rb
tC1 D Dt � Hb

tC1…tC1Hb0

tC1;

where Nt D Ft…tH0
t C GtSt and Dt D Ht…tH0

t C Rt. In addition, the following
alternative expressions hold

Sb
tC1 D Qb

tC1H0
t � Fb

tC1GtSt (4.76)

Rb
tC1 D Rt C HtS

b
tC1 � S0

tG
0
tH

b0

tC1: (4.77)

Proof By Lemma 4.10, the process
n�

x0
t;Y

0
t

�0o
is wide sense Markov. Then, by

Theorem 4.30, this process can be represented as a backwards Markovian model

�
xt

Yt

�
D
�

F11tC1 F12tC1
F21tC1 F22tC1

� �
xtC1
YtC1

�
C
�

G11
tC1 G12

tC1
G21

tC1 G22
tC1

� �
ub

tC1
vb

tC1

�
;

where, by the wide sense Markov property and Lemma 4.11,

E�
��

xt

Yt

� ˇˇ̌
ˇ

�
xtC1
YtC1

�
; : : : ;

�
xnC1
YnC1

��
D E�

��
xt

Yt

� ˇˇ̌
ˇ

�
xtC1
YtC1

��

D
�

F11tC1 F12tC1
F21tC1 F22tC1

� �
xtC1
YtC1

�

D
�

Fb
tC1 0

Hb
tC1 0

� �
xtC1
YtC1

�
;

with Fb
tC1 and Hb

tC1 being the solutions of the normal equations

Fb
tC1Var.xtC1/ D Cov.xt; xtC1/; Hb

tC1Var.xtC1/ D Cov.Yt; xtC1/;

that give the formulae of the theorem. Letting

�
G11

tC1 G12
tC1

G21
tC1 G22

tC1

�
D
�

I 0
0 I

�
;

we see that

�
ub

tC1
vb

tC1

�
D
�

xt

Yt

�
� E�

��
xt

Yt

� ˇˇ̌
ˇ

�
xtC1
YtC1

�
; : : : ;

�
xnC1
YnC1

��
;
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and
n
Œub0

tC1; vb0

tC1�0
o

is an innovation sequence with the required orthogonality

properties. By Lemma 4.9, Qb
tC1 is given by the formula of the theorem. On the

other hand, vb
tC1 D Yt � Hb

tC1xtC1 and, therefore,

Var.vb
tC1/ D Var.Yt/ � Hb

tC1…tC1Hb0

tC1
D Ht…tH

0
t C Rt � Hb

tC1…tC1Hb0

tC1:

Finally,

Cov.ub
tC1; vb

tC1/ D Cov.xt � Fb
tC1xtC1;Yt � Hb

tC1xtC1/

D Cov.xt;Yt/� Cov.xt; xtC1/Hb0

tC1
�Fb

tC1Cov.xtC1;Yt/C Fb
tC1…tC1Fb0

tC1
D Cov.xt;Htxt C vt/ �…tF

0
tH

b0

tC1 � Fb
tC1Nt C Fb

tC1…tC1Hb0

tC1
D …tH

0
t � Fb

tC1Nt C ��…tF
0
t C Fb

tC1…tC1
�

Hb0

tC1
D …tH

0
t � Fb

tC1Nt:

To prove (4.76), substitute Nt D Ft…tH0
t C GtSt and use Ft…t D …tC1Fb0

tC1 in the
formula for Sb

tC1 to give

Sb
tC1 D …tH

0
t � Fb

tC1

…tC1Fb0

tC1H0
t C GtSt

�

D Qb
tC1H0

t � Fb
tC1GtSt:

To prove (4.76), use first Hb
tC1…tC1 D N0

t ;Ft…t D …tC1Fb0

tC1 and Nt D Ft…tH0
t C

GtSt to get

Hb
tC1…tC1Hb0

tC1 D �
Ft…tH

0
t C GtSt

	0
Hb0

tC1

D HtF
b
tC1…tC1Hb0

tC1 C S0
tG

0
tH

b0

tC1
D HtF

b
tC1

�
Ft…tH

0
t C GtSt

	C S0
tG

0
tH

b0

tC1

D HtF
b
tC1…tC1Fb0

tC1H0
t C HtF

b
tC1GtSt C S0

tG
0
tH

b0

tC1:

Then, substituting the previous expression in the formula for Rb
tC1, it is obtained that

Rb
tC1 D Rt C Ht

�
…t � Fb

tC1…tC1Fb
tC1
	

H0
t � HtF

b
tC1GtSt � S0

tG
0
tH

b0

tC1

D Rt C HtQ
b
tC1H0

t � HtF
b
tC1GtSt � S0

tG
0
tH

b0

tC1:

�
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4.12.4 Backwards State Space Model When the …t

are Nonsingular

If the …t matrices are nonsingular, the backwards model (4.74) and (4.75) can be
simplified. Since

Fb
tC1 D …tF

0
t…

�1
tC1; Qb

tC1 D …t �…tF
0
t…

�1
tC1Ft…t;

we can define

Nxt D …�1
t xt; Nub

tC1 D …�1
t ub

tC1

to get the backwards state space model

Nxt D F
0

t NxtC1 C Nub
tC1 (4.78)

Yt D N
0

t NxtC1 C vb
tC1; t D n; n � 1; : : : ; 1; (4.79)

where

E

��Nub
tC1
vb

tC1

� h
Nub0

sC1; vb0

sC1
i�

D
"

Q
b
tC1 S

b
tC1

S
b0

tC1 Rb
tC1

#

ıts;

E.Nub
tC1/ D 0;E.vb

tC1/ D 0;Nt D Ft…tH0
t C GtSt;Q

b
tC1 D …�1

t � F0
t…

�1
tC1Ft; S

b
tC1 D

H0
t � F0

t…
�1
tC1Nt, and Rb

tC1 D Rt C Ht…tH0
t � N0

t…
�1
tC1Nt. The initial state satisfies

E. Nx1/ D 0 and Var. Nx1/ D …�1
1 . The matrices…t are recursively generated according

to the formula…tC1 D Ft…tF0
t C GtQtG0

t with …1 > 0.

Example 4.2 Suppose that the model (4.71) and (4.72) is time invariant and
stationary (see Sect. 5.2), that is,

xtC1 D Fxt C Gut

Yt D Hxt C vt; t D 1; : : : ; n;

where

E

��
ut

vt

� �
u0

s; v
0
s

�� D
�

Q S
S0 R

�
ıts;

E.ut/ D 0;E.vt/ D 0, the initial state vector, x1, is orthogonal to ut and vt for all
t;E.x1/ D 0 and Var.x1/ D … > 0 satisfies the Lyapunov equation … D F…F0 C
GQG0. Then, because the model is stationary (see again Sect. 5.2), Var.xt/ D … for
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t D 1; 2; : : : ; n, and it follows from this that the backwards model

Nxt D F0 NxtC1 C Nub
tC1

Yt D N0 NxtC1 C vb
tC1; t D n; n � 1; : : : ; 1;

where Nxt D …�1xt;N D F…H0 C GS, Var.Nub
tC1/ D …�1 � F0…�1F;E.Nub

tC1vb0

tC1/ D
H0 � F0…�1N and Var.vb

tC1/ D R C H…H0 � N0…�1N, is also time invariant and
stationary. Þ

4.12.5 The Backwards Kalman Filter

Given the forwards state space model (4.71) and (4.72), we have seen in Theo-
rem 4.31 that there exists a backwards state space model (4.74) and (4.75) with
the properties specified in that theorem. It is straightforward to derive the Kalman
filter corresponding to this backwards model. One only needs to let the time run
backwards in the Kalman filter recursions. We give the result in the following
theorem. The proof is left as an exercise. See Problem 4.4.

Theorem 4.32 The backwards Kalman filter is given by the following recursions

Eb
t D Yt � Hb

tC1 Oxb
tC1jtC1; †b

t D Hb
tC1Pb

tC1jtC1H
b0

tC1 C Rb
tC1

Kb
t D .Fb

tC1Pb
tC1jtC1H

b0

tC1 C Sb
tC1/†�b

t ; Oxb
tjt D Fb

tC1 Oxb
tC1jtC1 C Kb

t Eb
t

Pb
tjt D Fb

tC1Pb
tC1jtC1F

b0

tC1 C Qb
tC1 � Kb

t †
b
t Kb0

t

D .Fb
tC1 � Kb

t Hb
tC1/Pb

tC1jtC1F
b0

tC1 C Qb
tC1 � Kb

t Sb0

tC1;

initialized with Oxb
nC1jnC1 D 0 and Pb

nC1jnC1 D …nC1, where Oxb
tjt D E�.xtjYtWn/ and

Pb
tjt is its MSE.

It is to be noted that the backwards Kalman recursions are in fact recursions for the
filtered estimator of the state.

It is also easy to derive measurement and time updates for the backwards model.
We leave the development of the corresponding equations as an exercise for the
reader.

4.13 Application of Backwards State Space Models
to Smoothing

In Sect. 4.10, we have used the forwards state space model (4.71) and (4.72) to
derive the formulae to compute the estimator Oxtjn based on the sample fY1; : : : ;Yng
and its MSE. However, for fixed-interval smoothing problems the direction of time
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is not important, and it should be possible to also obtain the estimator Oxtjn processing
the data backwards starting with Yn and ending with Y1. In this section, we will
present some results in this connection.

4.13.1 Two-Filter Formulae

Theorem 4.33 (The General Two-Filter Smoothing Formulae) Given the state
space model (4.71) and (4.72), where the …t are nonsingular, we can write

Oxtjn D Ptjn


P�1
t Oxtjt�1 C P�b

tjt Oxb
tjt
�

(4.80)

Ptjn D


P�1
t C P�b

tjt C…�1
t

��1
; (4.81)

where P�b
tjt is the inverse of Pb

tjt and Oxb
tjt and Pb

tjt are given by the backwards Kalman
filter.

Proof We will prove the theorem using the combined linear estimators formula
given by Theorem 2.2. To this end, we use the forwards model (4.71) and (4.72)
to generate Yb D .Y 0

t ;Y
0
tC1; : : : ;Y 0

n/
0 and the backwards model (4.74) and (4.75) to

generate Ya D .Y 0
1; : : : ;Y

0
t�2;Y 0

t�1/0, both models using xt as initial condition. Then,
we can write

2

66
6
4

Y1
:::

Yt�2
Yt�1

3

77
7
5

D

2

66
6
4

Hb
2Fb.2; t/
:::

Hb
t�1Fb.t � 1; t/

Hb
t

3

77
7
5

xt C

2

66
6
4

Pt�1
iD2 Hb

2Fb.1; i/ub
i C vb

2
:::

Hb
t�1ub

t C vb
tC1

vb
t

3

77
7
5

and

2

66
6
4

Yt

YtC1
:::

Yn

3

77
7
5

D

2

66
6
4

Ht

HtC1F.t C 1; t/
:::

HnF.n; t/

3

77
7
5

xt C

2

66
6
4

vt

HtC1Gtut C vtC1
:::Pn�1

iDt HnF.n; i C 1/Giui C vn

3

77
7
5
;

where Fb.i; j/ D Fb
iC1 � � � Fb

j if i < j and Fb.i; i/ D I, and F.i; j/ D Fi�1Fi�2 � � � Fj

if i > j and F.i; i/ D I. Using an obvious notation, we can write the previous
expression in a more concise way as

ya D Haxt C va; yb D Hbxt C vb:
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By the properties of the forwards and the backwards models, it is easy to verify that
fva; vb; xtg are mutually uncorrelated random variables with zero mean. The result
now follows if we identify Oxa D Oxtjt�1; Oxb D Oxb

tjt and apply Theorem 2.2. �

4.13.2 Backwards Model When …�1
nC1 D 0 and the Ft

are Nonsingular

In the special case in which …�1
nC1 D 0 and the Ft are nonsingular, it follows from

…tC1 D Ft…tF0
t C GtQtG0

t that

…t D F�1
t …tC1F�10

t � F�1
t GtQtG

0
tF

�10

t :

Letting …nC1 D kI and k ! 1 and proceeding recursively, it follows from the
previous equality and the fact that the matrices F�1

t are nonsingular that …�1
t D 0

for 1 � t � n C 1. Based on this, we get

Fb
tC1 D …tF

0
t…

�1
tC1

D �
F�1

t …tC1 � F�1
t GtQtG

0
t

	
…�1

tC1
D F�1

t � F�1
t GtQtG

0
t…

�1
tC1

D F�1
t :

Using the equality Ft…t D …tC1F�10

t � GtQtG0
tF

�10

t , it is obtained that

Hb
tC1 D N0

t…
�1
tC1

D �
HtF

�1
t …tC1 � HtF

�1
t GtQtG

0
t C S0

tG
0
t

	
…�1

tC1
D HtF

�1
t :

Thus, the transition equation is in this case

xt D F�1
t xtC1 C ub

tC1:

From this, we get

xtC1 D Ftxt � Ftu
b
tC1

D Ftxt C Gtut

and, therefore,

ub
tC1 D �F�1

t Gtut:
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In a similar way, it is obtained that

Yt D HtF
�1
t

�
Ftxt � Ftu

b
tC1
	C vb

tC1
D Htxt C vb

tC1 � Htu
b
tC1

D Htxt C vt

and

vb
tC1 D vt � HtF

�1
t Gtut:

It easily follows from this that

Qb
tC1 D F�1

t GtQtG
0
tF

�10

t ;

Sb
tC1 D F�1

t


GtQtG

0
tF

�10

t H0
t � GtSt

�
;

and

Rb
tC1 D Rt C HtF

�1
t GtQtG

0
tF

�10

t H0
t � HtF

�1
t GtSt � S0

tG
0
tF

�10

t H0
t :

However, instead of the backwards model (4.74) and (4.75), it is easier in this case
to use the backwards model

xt D F�1
t xtC1 C ub

tC1
Yt D Htxt C vt; t D n; n � 1; : : : ; 1;

where

E

��
ub

tC1
vt

� h
ub0

sC1; vs

i�
D
�

F�1
t GtQtG0

tF
�10

t �F�1
t GtSt

�S0
tG

0
tF

�10

t Rt

�
ıts:

Note that the assumption …�1
nC1 D 0 is crucial for the previous backwards state

space model to be valid because it ensures that xnC1 is orthogonal to ub
tC1 and vb

tC1
for all t. Otherwise, it would suffice to assume only that Ft is nonsingular to obtain
the same state space model.

The assumption that …�1
nC1 D 0 and the Ft are nonsingular simplifies the two-

filter formulae of Theorem 4.33 because …�1
t D 0 for all t and the backwards

Kalman filter recursions are simpler.
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4.14 The State Space Model With Constant Bias
and Incompletely Specified Initial Conditions

Given a time series Y D .Y 0
1; : : : ;Y

0
n/

0 with Yt 2 R
p, the state space model with

constant bias and incompletely specified initial conditions is defined by

xtC1 D Wtˇ C Ftxt C Gtut; (4.82)

Yt D Vtˇ C Htxt C vt; t D 1; : : : ; n; (4.83)

where Wt;Ft;Gt;Vt, and Ht are time-varying deterministic matrices, ˇ 2 R
k is the

constant bias vector, xt 2 R
r is the state vector,

E

��
ut

vt

� �
u0

s; v
0
s

�� D �2
�

Qt St

S0
t Rt

�
ıts;

ut 2 R
s; vt 2 R

p;E.ut/ D 0 and E.vt/ D 0. The initial state vector x1 is specified as

x1 D Wˇ C Aı C x; (4.84)

where x � .a; �2�/, the matrices W;A, and� are fixed and known, and ı 2 R
d; ı �

.b; �2…/ is a random vector that models the unknown initial conditions. Here, the
notation v � .m; †/ means that the vector v has mean m and covariance matrix†.

It is assumed that the vectors x and ı are mutually orthogonal and that x1 is
orthogonal to the futg and fvtg sequences. As in Sect. 4.1, we will usually assume
�2 D 1 unless otherwise specified. Finally, we will further assume that if ı and ˇ
are zero in the state space model (4.82) and (4.83), then the generated data have a
covariance matrix that is nonsingular. That is, if the model reduces to (4.1) and (4.2)
with x1 D x and if Y D .Y 0

1; : : : ;Y
0
n/

0, then Var.Y/ is nonsingular.
Equations (4.82) and (4.83) are called the “transition equation” and the “mea-

surement equation,” respectively.
Instead of the model (4.82) and (4.83), the following alternative single distur-

bance state space model can be used

xtC1 D Wtˇ C Ftxt C Gt�t; (4.85)

Yt D Vtˇ C Htxt C Jt�t; t D 1; : : : ; n; (4.86)

where �t � .0; �2I/ and the f�tg sequence is serially uncorrelated and uncorrelated
with x1.

There are several approaches to handle the problem of unspecified initial
conditions. The most popular one is the Bayesian approach, in which ı is assumed
to be “diffuse” with …�1 D 0. The second approach, that we will call the
“transformation approach,” consists of making a transformation of the data so
that the transformed data does not depend on ı. The third approach, that we will
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call the “conditional likelihood approach,” consists of considering ı fixed and
conditioning on the maximum likelihood estimator of ı. Finally, in the fourth
approach, called the “profile likelihood approach,” ı is considered fixed instead
of a random variable. These four approaches were described in detail in Sect. 2.3
for linear models. In the next theorem, we will see that the data generated by the
state space model (4.82) and (4.83) are in fact also generated by a linear model.
Thus, the previous approaches apply to (4.82) and (4.83).

Define the vector 
 D .ı0; ˇ0/0, the stack of the vectors that model the diffuse
and bias effects. Then, it can be shown by iterating in the state space model
equations (4.82) and (4.83) that the stack of the observations, Y, depends linearly
on 
 . That is,

Y D X
 C "; (4.87)

where the matrix X depends on the system matrices and the error term " is a linear
combination of the ut; vt, and x with coefficients that depend in turn on the system
matrices. The following theorem gives the details. The simple proof is omitted.

Theorem 4.34 If Y D .Y 0
1; : : : ;Y

0
n/

0 is generated by the state space model (4.82)
and (4.83), where we assume without loss of generality that x � .0; �2�/,
then (4.87) holds, where X D .R; S/ and the rows, St;Rt and �t, of S;R and � can be
obtained from the recursions

.Rt; St/ D .0;Vt/C HtAt

AtC1 D .0;Wt/C FtAt;

with the initial condition A1 D .A;W/, and

�t D vt C Ht�t

�tC1 D Ft�t C Gtut;

with the initial condition �1 D x. In addition, " � .0; �2†/ with† nonsingular and
Cov.ı; "/ D 0.

4.14.1 Examples

Example 4.3 Consider the signal plus noise model Yt D StCNt , where the signal, St,
follows the model rSt D bt;r D 1�B, and B is the backshift operator BjYt D Yt�j.
The processes fbtg and fNtg are mutually and serially uncorrelated with zero mean,
Var.bt/ D 1 and Var.Nt/ D 2.

The model can be easily put into state space form (4.85) and (4.86) by defining
xt D St; �t D .btC1;Nt=

p
2/0;Vt D 0;Ht D 1; Jt D .0;

p
2/;Gt D .1; 0/;Wt D 0,
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and Ft D 1. The initial state vector is x1 D x C Aı, where x D b1;A D 1, and
ı D S0. Þ

Example 4.4 Suppose the signal plus noise model of Example 4.3, but with the sig-
nal following the model r2St D bt and Var.Nt/ D �. This is the model underlying
the famous Hodrick–Prescott filter (Gómez, 2001) used by econometricians.

The model can be cast into state space form (4.85) and (4.86) as follows. Define
�t D .btC1;Nt=

p
�/0; xt D .St; StC1jt/0; StC1jt D StC1 � btC1;Vt D 0;Wt D 0,

Ft D
�
0 1

�1 2
�
; Gt D

�
1 0

2 0

�
;

Ht D .1; 0/ and Jt D .0;
p
�/. Then, the representation is correct because StC2jtC1C

St �2StC1jt D StC2�2StC1CSt �btC2C2btC1 D 2btC1. Note that the first column of
Gt is formed with the first two coefficients obtained from the expansion of 1=.1�B/2

and that StC1jt can be interpreted as the forecast of St based on fSs W s D 1; : : : ; tg
and the starting values S�1 and S0.

Since the process fStg follows an ARIMA model, it can be generated as linear
combinations of some starting values and elements of the differenced process, bt D
r2St. Let the starting values be ı D .S�1; S0/0. Then, following Bell (1984), the St

can be generated from St D D0
tıCPt�1

iD0 �ibt�i, where t > 0; 1=.1�B/2 D P1
iD0 �iBi

and the Dt D .D1t;D2t/
0 can be recursively generated from

D�1 D .1; 0/; D0 D .0; 1/

Dt D 2Dt�1 � Dt�2; t > 0:

The previous recursions imply S1 D .�1; 2/ıCb1 and S2j1 D .�2; 3/ıC2b1. Thus,
the initial state is x1 D x C Aı, where x D .b1; 2b1/0 and A D .A0

11;A
0
12/

0;A11 D
.�1; 2/;A12 D .�2; 3/. Þ

Example 4.5 Consider the model .1C �B/.rYt � �/ D At, where B and r are as
in Example 1, j�j < 1;� is a constant and fAtg is an uncorrelated sequence with
zero mean and Var.At/ D 1. Define the variable Zt D t � 1; t D 1; : : : ; n. Then, we
can write Yt D Zt�C Ut, where Ut follows the model .1C �B/rUt D At.

To put the model into state space form (4.85) and (4.86), we can use the
representation of Example 4.4 with one component and no observational noise.
Define �t D AtC1; xt D .Ut;UtC1jt/0;UtC1jt D UtC1 � AtC1;Vt D Zt; ˇ D �;Ht D
.1; 0/;Wt D 0; Jt D 0;Gt D .1; 1� �/0, and

Ft D
�
0 1

� 1� �

�
:

Let ut D Ut � Ut�1 and ı D U0. Then, it is not difficult to verify that Ut D
U0 C Pt

sD1 us;U1 D ı C u1, and U2j1 D ı C .1 � �/u1. Thus, the initial state is
x1 D x C Aı, where x D .u1; .1 � �/u1/0 and A D .1; 1/0. Þ
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4.14.2 Initial Conditions in the Time Invariant Case

In the previous section, we have considered several examples of state space models
in which the system matrices did not depend on time and the initial conditions were
obtained in more or less ad-hoc manner. In this section, we will address the issue of
constructing initial conditions for time invariant state space models in an automatic
way. In these models, the distribution of the initial state vector often depends on
the eigenvalues of the matrix F in the transition equation. More specifically, if the
eigenvalues of F are inside the unit circle, the distribution of x1 can usually be
completely specified. But if F has some eigenvalues on the unit circle, this will not
be the case and x1 will depend on the unspecified part, ı. We will make the derivation
for the state space model with a single disturbance (4.85) and (4.86). The case of
the state space model (4.82) and (4.83) can be reduced to this easily.

We will assume first that there is no bias. Thus, suppose the single disturbance
time invariant state space model

xtC1 D Fxt C G�t (4.88)

Yt D Hxt C J�t; (4.89)

where Var.�/ D �2I. Then, the initial state vector can be specified as follows.
According to the Schur decomposition (Golub & Van Loan, 1996), there exists an
orthogonal matrix, P, such that P0FP D U, where U is an upper block triangular
matrix. By reordering the eigenvalues if necessary, we can assume without loss of
generality that

U D
�

UN U12

0 US

�
; (4.90)

where the eigenvalues of UN have unit modulus and the eigenvalues of US have
modulus strictly less than one. If U12 is not zero, we can make an additional
transformation in (4.88) and (4.89) to eliminate U12. The details are given by the
following lemma.

Lemma 4.12 Let U be as in (4.90), where UN ;U12, and US are arbitrary matrices.
If the Lyapunov equation

UNX � XUS D U12 (4.91)

has a solution and we define Q D
�

I X
0 I

�
, then QUQ�1 D

�
UN 0

0 US

�
. Moreover,

Eq. (4.91) has a unique solution if, and only if, UN and US have no common
eigenvalues.

Proof This is Lemma 7.1.4, pp. 314–315 of Golub & Van Loan (1996). �
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If we define the transformation Œx0
N;t; x

0
S;t�

0 D Rxt, where the partition is conformal
to (4.90), R D QP0 and Q is the unique matrix given by Lemma 4.12, then

RFR�1 D
�

UN 0

0 US

�
; RG D

�
GN

GS

�
; HR�1 D ŒHN ;HS�; (4.92)

and all partitions are conformal to (4.90). We see that the state space model (4.88)
and (4.89) is transformed into

xN;tC1 D UNxN;t C GN�t; xS;tC1 D USxS;t C GS�t

Yt D HNxN;t C HSxS;t C J�t; t D 1; : : : n;

where fxN;tg is purely nonstationary and fxS;tg is purely stationary. This motivates
that we define xN;1 D ı, where ı is a diffuse vector, and xS;1 D cS, where cS is a
zero-mean stationary random vector with Var.cS/ D V satisfying the discrete-time
Lyapunov equation

V D USVU0
S C GSG0

S: (4.93)

Letting R�1 D .RN ;RS/ and P D .PN ;PS/, where the partitions are conformal
to (4.90), we finally obtain the initial state in the form (4.84), x1 D Aı C x, where

A D RN ; x D RScS and .RN ;RS/ D P

�
I �X
0 I

�
D .PN ;PS � PNX/.

If the state space model is (4.85) and (4.86), we can consider the same
transformation, Œx0

N;t; x
0
S;t�

0 D Rxt, and the transformed model is

xN;tC1 D WN;tˇ C UNxN;t C GN�t; xS;tC1 D WS;tˇ C USxS;t C GS�t

Yt D Vtˇ C HNxN;t C HSxS;t C J�t; t D 1; : : : n;

where RWt D ŒW 0
N;t;W

0
S;t�

0 and the partition is conformal to (4.90). Clearly, fxN;tg is
again purely nonstationary. As for fxS;tg, we can write

xS;t D .I � USB/�1WS;t�1ˇ C .I � USB/�1GS�t�1
D mS;t C vS;t;

where B is the backshift operator, BYt D Yt�1; vS;t is a zero mean stationary random
vector, Var.vS;t/ D V satisfies (4.93) and mS;t is the mean of xS;t, usually unknown
because in the majority of cases there is no information about the infinite past of
WS;t. However, it may happen that fWS;tg is a stationary process, in which case we
can take mS;t D .I � US/

�1�Wˇ, where �W is the mean of fWS;tg.
If we have some guess about mS;1 of the form mS;1 D WSˇ, where WS is a known

fixed matrix, then we can set x1 D Wˇ C Aı C x, where W D RSWS;A D RN ; x D
RScS; ı is diffuse and cS is a zero mean stationary random vector such that Var.cS/ D
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V satisfies (4.93). If mS;1 is unknown, it has to be estimated along with the other
unknown parameters in the model.

Another possibility, less rigorous from a statistical point of view and similar
to the procedure used in subspace methods, is to estimate first x1 and ˇ using
the observation equation, Yt D Vtˇ C Hxt C J�t, and then to estimate mS;1 from
Œ Ox0

N;1; Om0
S;1�

0 D R Ox1, where Ox1 is the estimate of x1. In this case, we set x1 D Aı C x,
where ı is diffuse, A D RN ; x D RS. OmS;1 C cS/ and cS is as before.

The vectors ˇ and x1 can be estimated by regression using the equation

Yt D �
H.z�1I � F/�1t Wt C Vt

�
ˇ C HFt�1x1 C vt;

where z�1 is the forward operator, z�1Yt D YtC1; .z�1I � F/�1t D Pt�1
jD1 zjFj�1, and

vt D �
H.z�1I � F/�1t G C J

�
�t.

4.14.3 The Diffuse Likelihood

The linear model corresponding to the state space model (4.82) and (4.83) is,
according to Theorem 4.34,

Y D Rı C !; (4.94)

where, assuming without loss of generality x � .0; �2�/ in (4.84), ! � .Sˇ; �2†/
and Cov.ı; !/ D 0. Thus, by Theorem 2.4, the diffuse log-likelihood is, apart from
a constant,

�D.Y/ D �1
2

n
ln j�2†j C ln jR0.�2†/�1Rj C .Y � R Oı � Sˇ/0

�†�1.Y � R Oı � Sˇ/=�2
o
;

where Oı D .R0V�1
! R/�1R0V�1

! .Y � m!/;m! D Sˇ and V! D �2†. It turns out that
we can concentrate ˇ and �2 out of the diffuse log-likelihood. The next proposition
gives the details. The proof is left as an exercise. See Problem 4.5.

Proposition 4.1 The parameters ˇ and �2 can be concentrated out of the dif-
fuse log-likelihood and the .ˇ; �2/-maximized diffuse log-likelihood, denoted by
�D.YI Ǒ; O�2/, is

�D.YI Ǒ; O�2/ D constant � 1

2

˚
.np � nı/ ln

�
.Y � X O
/0†�1.Y � X O
/�

C ln j†j C ln jR0†�1Rj� ; (4.95)
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where nı is the dimension of ı;X D ŒR; S�; 
 D .ı0; ˇ0/0 and O
 and O�2 are the GLS
estimators of 
 and �2 in the linear model (4.87), assuming 
 fixed and, without
loss of generality, x � .0; �2�/ in (4.84).

Remark 4.4 In the case of the state space model (4.82) and (4.83) the parameters
in ˇ are parameters of interest and are treated differently to the elements of ı, that
are nuisance random variables. In addition, Assumption 2.1 in Chap. 2 is usually
satisfied in the state space model (4.82) and (4.83). Þ

Remark 4.5 If in the linear model (4.87) we assume that 
 is fixed and all
of its elements are parameters of interest, it is not difficult to verify that
the .ˇ; �2/-maximized log-likelihood of this model is equal to constant �˚
.np/ ln

�
.Y � X O
/0†�1.Y � X O
/�C ln j†j� =2 and thus differs from the .ˇ; �2/-

maximized diffuse log-likelihood, given by the previous proposition, in the term
ln jR0†�1Rj and in the number of degrees of freedom. The log-likelihood obtained
in this way is called the .ˇ; �2/-maximized profile log-likelihood and will be
considered in the next section. As mentioned earlier, in the diffuse likelihood
approach the parameters in ˇ are parameters of interest and are treated differently
to the elements of ı, that are nuisance random variables. Þ

4.14.4 The Profile Likelihood

Consider the linear model (4.94) corresponding to the state space model (4.82)
and (4.83), where, without loss of generality, x � .0; �2�/ in (4.84),! � .Sˇ; �2†/
and ı is assumed fixed. Then, by Theorem 2.7, the profile log-likelihood is, apart
from a constant,

�P.Y/ D �1
2

n
ln j�2†j C .Y � R Oı � Sˇ/0†�1.Y � R Oı � Sˇ/=�2

o
;

where Oı D .R0V�1
! R/�1R0V�1

! .Y � m!/;m! D Sˇ and V! D �2†. As with the
diffuse log-likelihood, we can concentrate ˇ and �2 out of the profile log-likelihood.
The next proposition gives the details. The simple proof is omitted.

Proposition 4.2 The parameters ˇ and �2 can be concentrated out of the pro-
file log-likelihood and the .ˇ; �2/-maximized profile log-likelihood, denoted by
�P.YI Ǒ; O�2/, is

�P.YI Ǒ; O�2/ D constant � 1

2

˚
.np/ ln

�
.Y � X O
/0†�1.Y � X O
/�

C ln j†jg ; (4.96)
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where X D ŒR; S�; 
 D .ı0; ˇ0/0 and O
 and O�2 are the GLS estimators of 
 and
�2 in the linear model (4.87), assuming 
 fixed and, without loss of generality,
x � .0; �2�/ in (4.84).

Remark 4.6 The .ˇ; �2/-maximized diffuse log-likelihood differs from the .ˇ; �2/-
maximized profile log-likelihood in the term ln jR0†�1Rj and in the number of
degrees of freedom. The influence of the term ln jR0†�1Rj can be important in small
samples and, therefore, the diffuse log-likelihood is preferable in this case. Þ

Remark 4.7 The profile log-likelihood usually arises when the whole initial state,
x1, is considered fixed. In this case, it is often assumed that x1 D ı with Var.ı/ D 0.
This simplification can have important adverse effects in small samples. Þ

4.14.5 The Marginal and Conditional Likelihoods

Apart from the diffuse and the profile likelihoods, described in the previous two
sections for the linear model (4.94) corresponding to the state space model (4.82)
and (4.83), we can consider the marginal and the conditional likelihoods, introduced
in Sect. 2.3. The precise relationship between the different likelihoods is given by
Theorem 2.6.

An example of the use of the transformation approach and the marginal likeli-
hood is provided by the likelihood function defined for ARIMA models in Box &
Jenkins (1976). In this book, the likelihood function of an ARIMA model is defined
as the likelihood of the differenced series. Thus, the transformation is given by the
differencing operator and the marginal likelihood coincides with the likelihood of
the differenced series.

The conditional likelihood was used in Gómez & Maravall (1994a) to define the
likelihood of a nonstationary ARIMA model. These authors also proved that the
conditional likelihood was in this case equal to the likelihood of the differenced
series, that, as mentioned in the previous paragraph, is equal to the marginal
likelihood.

In Gómez & Maravall (1994b), the previously mentioned different likelihoods
defined for the linear model (4.94) corresponding to the state space model (4.82)
and (4.83) are discussed and some examples are provided of their computation.

4.15 The Augmented-State Kalman Filter and the Two-Stage
Kalman Filter

For algorithmic reasons, the approach used in this book to evaluate the log-
likelihood and to compute the state estimators for prediction and smoothing is that
of the diffuse likelihood. The reason for this is that the Kalman filter is well suited
for a Bayesian approach, as the following example illustrates.
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Example 4.6 Consider the regression model Yt D Htˇ C vt; t D 1; : : : ; n, where
Var.vt/ � N.0; 1/ and the k-dimensional vector ˇ is assumed to have the prior
distribution N.0;…/ with … nonsingular. This model can be put into state space
form (4.1) and (4.2) by defining xt D ˇ;Ft D Ik;Gt D 0 and ut D 0. That is,

xtC1 D xt

Yt D Htxt C vt:

The usual Kalman filter can be applied to obtain the state estimator, which in this
case is the posterior mean of ˇ. Note that if we assume ˇ diffuse, as is usually the
case when we want to obtain the classical OLS estimator of ˇ, then, by Remarks 2.2
and 2.3, …�1 ! 0 and the ordinary Kalman filter cannot be applied. In this case,
we need the information form of the Kalman filter described in Sect. 4.6.

Since Gt D 0 and Fs
t D 1, by Theorem 4.13, we get the recursions

P�1
tC1 OxtC1jt D P�1

t Oxtjt�1 C H0
t Yt

P�1
tC1 D P�1

t C H0
t Ht;

where OxtC1jt D Ǒ
tC1jt is the OLS estimator of ˇ based on .Y 0

1; : : : ;Y
0
t /

0 and PtC1 is
its MSE. Assuming …�1 ! 0, we can initialize the recursions with Ǒ

1j0 D 0 and
P�1
1 D 0 to get the ordinary OLS estimator of ˇ and its MSE recursively. Þ

The augmented-state Kalman filter is a device that is usually applied to
evaluate the log-likelihood and to compute the state estimators for prediction and
smoothing when dealing with the state space model (4.82) and (4.83). It consists
simply of first appending the vector 
 D .ı0; ˇ0/0 to the state vector, xt, to get the
augmented state space model

xa
tC1 D Fa

t xa
t C Ga

t ut; (4.97)

Yt D Ha
t xa

t C vt; t D 1; : : : ; n; (4.98)

where

Fa
t D

�
Ft .0;Wt/

0 I

�
; Ga

t D
�

Gt

0

�
;

Ha
t D ŒHt; .0;Vt/� and xa

t D .x0
t; 


0/0. Then, some extra (Bayesian) assumption
is made about 
 , for example 
 � Œ.b0; c0/0;…1� with …1 nonsingular and 


uncorrelated with x and the futg and fvtg sequences, and the ordinary Kalman filter
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is applied to (4.97) and (4.98). The output of this Kalman filter will be denoted by

bEt D Yt � Ha
t Oxa

tjt�1; b†t D Ha
t
bPa

t Ha0

t C Rt (4.99)

bKa
t D .Fa

t
bPa

t Ha0

t C Ga
t St/b†�1

t ; Oxa
tC1jt D Fa

t Oxa
tjt�1 C bKa

t
bEt (4.100)

bPa
tC1 D .Fa

t � bKa
t Ha

t /
bPa

t Fa0

t C .Ga
t Qt � bKa

t S0
t/G

a0

t ; (4.101)

where

bPa
t D

"
bPt P
t

P

0

t …t

#

; Oxa
tjt�1 D

� Oxtjt�1
O
t

�
; bKa

t D
� bKt

K

t

�
; (4.102)

and the initial conditions are Oxa
1j0 D .b0A0 C c0W 0 C a0; b0; c0/0 and

bPa
1 D

"
bP1 P
1
P


0

1 …1

#

D
"
.A;W/…1.A;W/0 C� .A;W/…1

…1.A;W/0 …1

#

: (4.103)

The two-stage Kalman filter (TSKF) was originally proposed by Friedland
(1969) and later developed by other authors, see Ignagni (1981) and the references
therein, to address the problem of handling 
 in the state space model (4.82)
and (4.83) with the aim of simplifying the augmented-state Kalman filter. These
results seem to have passed unnoticed in the statistical literature and, in fact, some
of them have been reinvented by several authors, like Rosenberg (1973) and Jong
(1991).

The TSKF consists of two decoupled Kalman filters that produce the same output
as the augmented-state Kalman filter but with less computational effort as we will
see later in this chapter. The first filter is called the modified bias-free filter and is
given by the recursions

.Et; et/ D .0;Vt;Yt/ � Ht.�Ut; xtjt�1/ (4.104)

†t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t (4.105)

.�UtC1; xtC1jt/ D .0;�Wt; 0/C Ft.�Ut; xtjt�1/C Kt.Et; et/ (4.106)

PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t; (4.107)

with initial conditions .�U1; x1j0/ D .�A;�W; a/ and P1 D �. The second filter is
called the bias filter and is given by the recursions

bEt D et � Et O
t; b†t D †t C Et…tE
0
t (4.108)

K

t D …tE

0
t
b†�1

t ; O
tC1 D O
t C K

t
bEt (4.109)

…tC1 D …t � K

t
b†tK


 0

t D …t � K

t Et…t; (4.110)
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initialized with O
1 D .b0; c0/0 and MSE. O
1/ D …1. Note that this filter is the
Kalman filter corresponding to the regression model et D Et
 C at, where fatg
is an uncorrelated sequence of zero mean random vectors with Var.at/ D †t and
the state space form is

x
tC1 D x
t (4.111)

et D Etx


t C at; (4.112)

where x
t D 
 .
In the proof of the next theorem we will show that the modified bias-free filter

is equal to the so-called bias-free filter with the addition of two recursions for the
so-called blending matrices, Et and Ut. The bias-free filter is the Kalman filter for
the state space model (4.82) and (4.83) under the assumption 
 D 0, and is given
by the recursions

et D Yt � Htxtjt�1; †t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t
(4.113)

xtC1jt D Ftxtjt�1 C Ktet; PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t;

(4.114)

with the initialization x1j0 D a and P1 D �. If in (4.104)–(4.107) we postmultiply
Eqs. (4.104) and (4.106) by .�
 0; 1/0, we obtain the so-called perfectly known bias
filter,

et � Et
 D Yt � .0;Vt/
 � Ht.xtjt�1 C Ut
/

†t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t

xtC1jt C UtC1
 D .0;Wt/
 C Ft.xtjt�1 C Ut
/C Kt.et � Et
/

PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t;

initialized with x1j0 C U1
 D a C .A;W/
 and P1 D �. In the proof of the next
theorem we will show that this filter is the Kalman filter for (4.82) and (4.83) when

 is assumed to be fixed and known.

The intuition behind the TSKF is that if we assume 
 to be fixed and known
in (4.82) and (4.83) and we apply the modified bias-free Kalman filter to this
model, we transform the GLS model (4.87) into the model e D E
 C a, where
e D .e0

1; : : : ; e
0
n/

0;E D .E0
1; : : : ;E

0
n/

0 and Var.a/ D diag.†1; : : : ; †n/. We can,
at the same time, apply the Kalman filter to this transformed model to recursively
obtain the estimator of 
 and its mean squared error and this is precisely what the
bias-filter does.

Note that, if we assume � � .0;†/ in the model (4.87), the application of the
modified bias-free Kalman filter to this model produces a triangular factorization of
† of the form † D LDL0, where L is a lower triangular matrix with ones in the
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main diagonal and D is a block diagonal matrix, such that e D L�1Y;E D L�1X
and D D Var.a/. In the following examples, we will illustrate how the application
of the modified bias-free Kalman filter to some state space models (4.82) and (4.83)
produces automatically the matrices .e;E/ and D corresponding to the regression
model e D E
 C a, without explicitly constructing the matrix L�1 such that e D
L�1Y and E D L�1X.

Example 4.7 Suppose the regression model Yt D Vtˇ C St, where St follows the
model .1 � B/St D At;B is the backshift operator, BjYt D Yt�j, and the process
fAtg is serially uncorrelated with zero mean and Var.At/ D �2.

The model can be easily put into state space form (4.85) and (4.86) by defining
xt D St; �t D AtC1;Ht D 1; Jt D 0;Gt D 1;Wt D 0, and Ft D . The initial state
vector is x1 D x, where x D S1 � .0; �2�/ and � D 1=.1� 2/.

The modified bias-free filter is initialized with .�U1; x1j0/ D .0; 0/ and P1 D �.
The recursions yield .E1; e1/ D .V1;Y1/; †1 D 1=.1 � 2/;K1 D ; .�U2; x2j1/ D
.V1;Y1/;P2 D 1 and

.Et; et/ D .Vt � Vt�1;Yt � Yt�1/; †t D 1

Kt D ; .�UtC1; OxtC1jt/ D .�Ut; Oxtjt�1/C Kt.Et; et/ D .0;Vt;Yt/

PtC1 D 1; t D 2; 3; : : : ; n:

It is easy to see that in this case the matrices L�1 and D are

L�1 D

2

6
6
6
6
6
4

1

� 1
� 1

: : :
: : :

� 1

3

7
7
7
7
7
5
; D D

2

6
6
6
6
6
4

1=.1� �2/

1

1
: : :

1

3

7
7
7
7
7
5
:

Þ

Example 4.8 Assume the regression model Yt D Vtˇ C St, where St follows the
model .1� B/St D At;B is the backshift operator, BjYt D Yt�j, and the process fAtg
is serially uncorrelated with zero mean and Var.At/ D �2.

The model can be cast into state space form (4.85) and (4.86) by defining xt D
St; �t D AtC1;Ht D 1; Jt D 0;Gt D 1;Wt D 0, and Ft D 1. The initial state vector
is x1 D x C Aı, where x D A1;A D 1 and ı D S0.

The modified bias-free filter is initialized with .�U1; x1j0/ D .�1; 0; 0/ and
P1 D 1. The recursions yield .E1; e1/ D .1;V1;Y1/; †1 D 1;K1 D 1; .�U2; x2j1/ D
.0;V1;Y1/;P2 D 1 and

.Et; et/ D .0;Vt � Vt�1;Yt � Yt�1/; †t D 1

Kt D 1; .�UtC1; OxtC1jt/ D .�Ut; Oxtjt�1/C .Et; et/ D .0;Vt;Yt/

PtC1 D 1; t D 2; 3; : : : ; n:
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It is not difficult to verify that in this case the matrices L�1 and D are

L�1 D

2

6
6
6
6
6
4

1

�1 1
�1 1

: : :
: : :

�1 1

3

7
7
7
7
7
5
; D D

2

6
6
6
6
6
4

1

1

1
: : :

1

3

7
7
7
7
7
5
:

Þ

Example 4.9 Consider the model .1C�B/.1� B/Yt D At; where B is the backshift
operator, BjYt D Yt�j, and the process fAtg is serially uncorrelated with zero mean
and Var.At/ D �2.

The model can be put into state space form (4.85) and (4.86) by defining xt D
.Yt;YtC1jt/0;YtC1jt D YtC1 � AtC1; �t D AtC1;Vt D 0;Ht D .1; 0/; Jt D 0;Gt D
.1; 1� �/0;Wt D 0, and

Ft D
�
0 1

� 1� �

�
:

Let Ut D Yt � Yt�1 and ı D Y0. Then, Y1 D U1 C ı and Y2j1 D U1 C ı C U2 � A2.
Since Ut follows the model .1C�B/Ut D At, the initial state vector is x1 D x C Aı,
where A D .1; 1/0; x D .U1; .1 � �/U1/

0 � .0; �2�/ and

� D 1

1 � �2

�
1 1 � �

1 � � .1 � �/2

�
:

It is shown in Problem 4.6 that the matrices L�1 and D are in this case

L�1 D

2

6
6
6
66
4

1

� 1

� 1
: : :

: : :

� 1

3

7
7
7
77
5

�

2

6
6
6
66
4

1

�1 1
�1 1

: : :
: : :

�1 1

3

7
7
7
77
5

and

D D

2

6
6
6
6
6
4

1=.1� �2/
1

1
: : :

1

3

7
7
7
7
7
5
:

Þ
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The modified bias-free filter coincides with the first part of the diffuse Kalman
filter of Jong (1991). We will see later in this chapter that the second part of de Jong’s
filter, the so-called Qt recursion, is an information form of the bias-filter adapted to
the diffuse situation, in which the covariance matrices of the estimator O
t are infinite
at the start of filtering.

The relation of the TSKF with the augmented-state Kalman filter is given by
the following theorem. This result does not seem to have appeared in the statistical
literature before. We will prove the theorem in a more general setting than that
assumed by Ignagni (1981).

Theorem 4.35 The quantities bEt;b†t;K


t ; O
t, and …t given by the TSKF coincide

with the corresponding ones of the augmented-state Kalman filter, given by (4.99)–
(4.101). In addition, the following relations between the two filters hold.

OxtC1jt D xtC1jt C UtC1 O
tC1; bPtC1 D PtC1 C UtC1…tC1U0
tC1 (4.115)

bKt D Kt C UtC1K

t ; P
t D Ut…t: (4.116)

Proof If 
 D 0 in the state space model (4.82) and (4.83), this state space model is
equal to (4.1) and (4.2) and its Kalman filter is (4.3), that coincides with the bias-free
Kalman filter (4.113) and (4.114). If we assume 
 to be fixed and known in (4.94),
we should modify (4.113) and (4.114) to get the perfectly known bias filter

Net D Yt � .0;Vt/
 � Ht Nxt; †t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t

NxtC1 D .0;Wt/
 C Ft Nxt C Kt Net; PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t;

with initial conditions Nx1 D a C .A;W/
 and P1 D �.
It is clear from the previous recursions that Net and Nxt are of the form Net D et �Et


and Nxt D xtjt�1 C Ut
 , where Et and Ut are matrices to be determined. A simple
inspection of the previous recursions shows that Ut is given by the recursion UtC1 D
.0;Wt/CFtUt�KtEt, initialized with U1 D .A;W/, and that Et D .0;Vt/CHtUt; t D
1; : : : ; n. Therefore, the bias-free filter with the addition of these last two recursions
coincides with the modified bias-free filter (4.104)–(4.107).

To see the relation between the augmented-state Kalman filter and the two-
stage Kalman filter, we will make a transformation of the augmented-state Kalman
filter equations (4.99)–(4.101) so that the MSE matrices of the transformed state
estimators are block diagonal. To this end, consider the Schur decomposition of bPa

t ,

bPa
t D

"
bPt P
t

P

0

t …t

#

D
�

I P
t …
�1
t

0 I

�"
bPt � P
t …

�1
t P


0

t 0

0 …t

#"
I 0

…�1
t P


0

t I

#

:
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This relation can be written as bPa
t D T.Ut/diag.Pt;…t/T.Ut/

0, where Ut D
P
t …

�1
t ;Pt D bPt � P
t …

�1
t P


0

t and

T.Ut/ D
�

I Ut

0 I

�
:

Since T�1.Ut/ D T.�Ut/, if we define Nxa
tjt�1 D .x0

tjt�1; O
 0
t /

0 D T.�Ut/ Oxa
tjt�1,

Eqs. (4.99)–(4.101) are transformed into

bEt D Yt � H
a
t xa

tjt�1; b†t D H
a
t P

a
t H

a0

t C Rt (4.117)

K
a
t D .F

a
t P

a
t H

a0

t C G
a
t St/b†�1

t ; Nxa
tC1jt D F

a
t Nxa

tjt�1 C K
a
t
bEt (4.118)

P
a
tC1 D .F

a
t � K

a
t H

a
t /P

a
t F

a0

t C .G
a
t Qt � K

a
t S0

t/G
a0

t ; (4.119)

where P
a
t D T.�Ut/bPa

t T.�Ut/
0 D diag.Pt;…t/;F

a
t D T.�UtC1/Fa

t T.Ut/;H
a
t D

Ha
t T.Ut/;G

a
t D T.�UtC1/Ga

t and K
a
t D T.�UtC1/bKa

t .

Letting K
a
t D

h
K0

t ;K

 0

t

i0
and H

a
t D ŒHt;Et�, our aim is to show that the quantities

xtjt�1;Ut;Et;Pt;Kt, and K

t , defined in the transformed filter, coincide with those

of the modified bias-free filter. We will prove this by verifying that these quantities
satisfy the same recursions and initial conditions as those of the modified bias-free
filter. By definition of H

a
t ,

Et D .0;Vt/ � HtUt; (4.120)

and substituting H
a
t D ŒHt;Et� into (4.117), it is obtained that

bEt D et � Et O
t; b†t D †t C Et…tE
0
t; (4.121)

where

et D Yt � Htxtjt�1; †t D HtPtH
0
t C Rt: (4.122)

Thus, assuming, as we will show later, that xtjt�1 and †t are those of the bias-free
filter, Eq. (4.121) is Eq. (4.108) of the bias filter.

From the definitions of F
a
t ;K

a
t ; Nxa

tC1jt and P
a
t , it is obtained that

F
a
t D

�
Ft At

0 I

�
; K

a
t D

�
Kt

K

t

�
D
�

FtPtH0
t C At…tE0

t C GtSt

…tE0
t

�
b†�1

t ;

(4.123)

Nxa
tC1jt D

�
xtC1jt
O
tC1

�
D
"

Ftxtjt�1 C At O
t C KtbEt

O
t C K

t
bEt

#

; (4.124)
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and

P
a
tC1 D

�
.Ft � KtHt/PtF0

t C Ut…tA0
t Ut…t


 …t � K

t Et…t

�
C
�
.GtQt � KtS0

t/G
0
t 0


 0

�

D
�

PtC1 0

0 …tC1

�
; (4.125)

where At D �UtC1C Wt C FtUt;Ut D At � KtEt and the asterisk indicates elements
that are not relevant to our purposes. Thus, by (4.123)–(4.125), (4.109) and (4.110)
of the bias filter are satisfied and, since P

a
tC1 is block diagonal, (4.125) implies

Ut…t D 0. Because…t is nonsingular, this in turn implies Ut D 0. Thus, At D KtEt

and, by (4.125),

PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t: (4.126)

From the equality At D KtEt and the definition of At, we obtain the recursion

UtC1 D Wt C FtUt � KtEt: (4.127)

In addition, substituting At D KtEt in (4.124) and (4.123) yields

xtC1jt D Ftxtjt�1 C Ktet (4.128)

and Kt D �
FtPtH0

t C KtEt…tE0
t C GtSt

	 b†�1
t . This last expression implies Kt.b†t �

Et…tE0
t/ D FtPtH0

t C GtSt and, because b†t D †t C Et…tE0
t ,

Kt D �
FtPtH

0
t C GtSt

	
†�1

t : (4.129)

The recursions (4.120), (4.122), (4.126)–(4.129) coincide with those of the modified
bias-free filter, (4.104)–(4.107). To check that the initial conditions also coincide,
consider first that .x0

1j0; O
 0
1/

0 D T.�U1/ Oxa
1 and diag.P1;…1/ D T.�U1/bPa

1T.�U1/
0.

Then, by (4.103), U1 D P
1…
�1
1 D .A;W/; x1j0 D a; O
1 D .b0; c0/0 and P1 D �.

It remains to prove the relations (4.115) and (4.116). From the definitions of
Ut and Pt it follows that bPtC1 D PtC1 C UtC1…tC1U0

tC1 and P
t D Ut…t. The

expressions for OxtC1jt and bKt follow from Oxa
t D T.Ut/ Nxa

t and bKa
t D T.UtC1/K

a
t . �

Remark 4.8 From the previous theorem, we see that the extra computations of the
augmented-state Kalman filter with respect to the TSKF are the recursions (4.115)
and (4.116). These recursions are not needed for likelihood evaluation and the recur-
sions (4.115) are only needed for prediction and smoothing. The recursions (4.116)
are never needed in normal applications. We conclude that the augmented-state
Kalman filter should not be used in current applications. One should use the two-
stage Kalman filter because it requires less computational effort, and if one needs
any of the recursions (4.115) and (4.116), one can obtain them using the output of
this filter. Þ
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Remark 4.9 We can give a statistical meaning to the recursions (4.115). They are
the result of replacing the unknown 
 in the perfectly known bias filter with its
estimator O
t, based on the sample Y1Wt�1 D fY1; : : : ;Yt�1g. More specifically, if
Nxt D xtjt�1 C Ut
 is the estimator of xt based on fY1Wt�1; 
g, then the estimator,
Oxtjt�1, of xt based on Y1Wt�1 is obtained by replacing 
 with O
t in Nxt. This gives
Oxtjt�1 D xtjt�1 C Ut O
t. To obtain its MSE, consider that MSE. Oxtjt�1/ D MSE. Nxt/C
Var ŒUt. O
t � 
/� because xt � Nxt and O
t are uncorrelated. Þ

Remark 4.10 Instead of using the bias filter to recursively compute the estimator of

 and its mean square error in the model e D E
 C a, where e D .e0

1; : : : ; e
0
n/

0;E D
.E0

1; : : : ;E
0
n/

0 and Var.a/ D diag.†1; : : : ; †n/, it is possible not to use this filter
and to proceed in two steps. In the first step, the modified bias-free filter is run and
the quantities et;Et, and †t are stored. In the second step, 
 is estimated in the
regression model e D E
 C a. This procedure was used in, for example, Doménech
& Gómez (2006) when dealing with a state space model for the U.S. economy. Þ

Remark 4.11 The TSKF cannot handle diffuse situations, in which the covariance
matrices of the bias filter are infinite. For this reason, the information form of this
filter should be used in this case. Þ

4.16 Information Form and Square Root Information Form
of the Bias Filter

As mentioned in the previous section, the bias filter (4.108)–(4.110), initialized
with O
1 D .b0; c0/0 and MSE. O
1/ D …1, is the Kalman filter corresponding to
the regression model et D Et
 C at; t D 1; : : : ; n, where fatg is an uncorrelated
sequence with zero mean and Var.at/ D †t, the state space form is given by (4.111)
and (4.112), and et;Et, and †t are given by the modified bias-free filter.

The bias filter cannot be used when …1 is infinite and, therefore, 
 is diffuse,
which is what is usually assumed when one wants to recursively compute the
estimator of 
 and its MSE. For this reason, it is important to use an information
form of the Kalman filter for the previous regression model. In the information form,
it is the inverses of the covariance matrices, …�1

t , that are propagated instead of the
covariance matrices themselves,…t.

Using the Matrix Inversion Lemma 4.1, we can prove the following theorem.

Theorem 4.36 (Information Form of the Bias Filter) Under the assumptions
and with the notation of the bias filter (4.108)–(4.110) for the regression model
et D Et
 C at and assuming 
 diffuse, the matrices …�1

tC1 and …�1
tC1 O
tC1 satisfy the

recursions

�
…�1

tC1;…�1
tC1 O
tC1

	 D �
…�1

t ;…�1
t O
t

	C E0
t†

�1
t .Et; et/ ; (4.130)

initialized with
�
…�1
1 ;…

�1
1 O
1

	 D .0; 0/.
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Proof The Theorem follows from a direct application of Theorem 4.13. However,
we give a proof from scratch. Applying Lemma 4.1 to …tC1 D …t � …tE0

t.†t C
Et…tE0

t/
�1Et…t, we get

…�1
tC1 D …�1

t C E0
t†

�1
t Et: (4.131)

On the other hand,

K

t D …tE

0
t
b†�1

t D …tE
0
t†

�1
t �…tE

0
t
b†�1

t


b†t �†t

�
†�1

t

D

…t �…tE

0
t
b†�1

t Et…t

�
E0

t†
�1
t D …tC1E0

t†
�1
t ; (4.132)

and thus, using (4.131), it is obtained that

…�1
tC1 O
tC1 D …�1

tC1
h

O
t C K

t
bEt

i
D …�1

tC1
��

I �…tC1E0
t†

�1
t Et

	 O
t C…tC1E0
t†

�1
t et

�

D …�1
tC1

�
…tC1…�1

t O
t C…tC1E0
t†

�1
t et

�

D …�1
t O
t C E0

t†
�1
t et: (4.133)

If we put (4.131) and (4.133) together, we get (4.130). �

Remark 4.12 Using (4.130) to get O
tC1 and…tC1 requires less computational effort
than (4.108)–(4.110) because (4.108) and K


t D …tE0
t
b†�1

t are not needed. If the
orthogonal residuals, bEt, and their MSE, b†t, are needed for inference or for other
purposes, they can be computed along with (4.130). Þ

Remark 4.13 The recursion (4.130) allows for the computation of ln jR0†�1Rj in
the concentrated diffuse log-likelihood (4.95) because R0†�1R is the submatrix
of …�1

nC1 formed with the first nı rows and the first nı columns. This can be
seen first by considering that, by Theorem 4.34, the first nı columns of the X
matrix constitute the R. Then, the modified bias-free filter transforms the GLS
model (4.87), where X D ŒR; S� and � � .0;†/, into the model e D E
 C a, where
e D .e0

1; : : : ; e
0
n/

0;E D .E0
1; : : : ;E

0
n/

0 and Var.a/ D diag.†1; : : : ; †n/. Finally, since
…nC1 D MSE.
nC1/ D .X0†�1X/�1, we can write

…�1
nC1 D

�
R0†�1R R0†�1S
S0†�1R S0†�1S

�
D
�
…11

nC1 …12
nC1

…21
nC1 …22

nC1

�
: (4.134)

Þ

The following lemma will be useful to obtain the square root information form
of the bias filter.

Lemma 4.13 Under the assumptions and with the notation of the bias
filter (4.108)–(4.110) for the regression model et D Et
Cat, the following relations
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hold

b†�1
t
bEt D †�1

t .et � Et O
tC1/ (4.135)

bE0
t
b†�1

t
bEt D e0

t†
�1
t et C O
 0

t…
�1
t O
t � O
 0

tC1…�1
tC1 O
tC1: (4.136)

Proof By the Matrix Inversion Lemma 4.1, it holds that b†�1
t D †�1

t �
†�1

t Et…tC1E0
t†

�1
t and, using (4.108)–(4.110) and (4.132), it is obtained that

b†�1
t
bEt D �

†�1
t �†�1

t Et…tC1E0
t†

�1
t

	
bEt D †�1

t .et � Et O
t/ �†�1
t Et…tC1E0

t†
�1
t
bEt

D †�1
t

h
et � Et


O
t C…tC1E0

t†
�1
t
bEt

�i
D †�1

t

h
et � Et


O
t C K


t
bEt

�i

D †�1
t .et � Et O
tC1/ :

Using (4.135) and (4.130), it is obtained that

bE0
t
b†�1

t
bEt D bE0

t†
�1
t .et � Et O
tC1/ D .et � Et O
t/

0
†�1

t et � bE0
t†

�1
t Et O
tC1

D e0
t†

�1
t et � O
 0

t

�
…�1

tC1 O
tC1 �…�1
t O
t

	 � bE0
t†

�1
t Et O
tC1

D e0
t†

�1
t et C O
 0

t…
�1
t O
t � � O
 0

t…
�1
tC1 C .et � Et O
t/

0
†�1

t Et
� O
tC1

D e0
t†

�1
t et C O
 0

t…
�1
t O
t � � O
 0

t…
�1
tC1 C O
 0

tC1…�1
tC1 � O
 0

t…
�1
t

� O
 0
t…

�1
tC1 C O
 0

t…
�1
t

	 O
tC1

D e0
t†

�1
t et C O
 0

t…
�1
t O
t � O
 0

tC1…�1
tC1 O
tC1:

�

The following theorem gives a formula for the recursive computation of the
residual sum of squares of the regression model et D Et
 C at. We omit its proof
because it is an immediate consequence of the previous lemma.

Theorem 4.37 (Residual Sum of Squares) Under the assumptions and with the
notation of the bias filter (4.108)–(4.110) for the regression model et D Et
 C at

and assuming 
 diffuse, the following formula holds for the residual sum of squares

nX

tD1
bE0

t
b†�1

t
bEt D

nX

tD1
e0

t†
�1
t et � O
 0

nC1…�1
nC1 O
nC1: (4.137)

Remark 4.14 Since O
 0
nC1…�1

nC1 O
nC1 D �
…�1

nC1 O
nC1
	0
…nC1

�
…�1

nC1 O
nC1
	
, this quan-

tity can be computed with the recursion (4.130). Thus, to compute (4.137), we can
add to (4.130) the recursion

RSSBFF
tC1 D RSSBFF

t C e0
t†

�1
t et; (4.138)
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initialized with RSSBFF
1 D 0, that computes the residual sum of squares of the bias-

free filter. Þ

Remark 4.15 The residual sum of squares (4.137) is also equal to .Y�X O
/0†�1.Y�
X O
/ in the concentrated diffuse log-likelihood (4.95). This is so because, as
mentioned in the previous section, the modified bias-free filter transforms the
GLS model (4.87), where � � .0;†/, into the model e D E
 C a, where
e D .e0

1; : : : ; e
0
n/

0;E D .E0
1; : : : ;E

0
n/

0, Var.a/ D diag.†1; : : : ; †n/; e D L�1Y;E D
L�1X and L is a lower triangular matrix with ones in the main diagonal such that
† D LVar(a)L0. Thus,

.Y � X O
nC1/0†�1.Y � X O
nC1/ D
nX

tD1
.et � Et O
nC1/0†�1

t .et � Et O
nC1/

D
nX

tD1
e0

t†
�1
t et � O
 0

nC1…�1
nC1 O
nC1

and the concentrated diffuse log-likelihood (4.95) can be computed using the TSKF
and the information form of the bias filter as

�D.YI Ǒ; O�2/ D constant � 1

2

n
.np � nı/ ln

h
RSSBFF

nC1 � �
…�1

nC1 O
nC1
	0

�…nC1
�
…�1

nC1 O
nC1
	�C

nX

tD1
ln j†tj C ln j…11

nC1j
)

; (4.139)

where RSSBFF
nC1 can be obtained with the recursion (4.138), nı is the dimension of ı,

and…11
nC1 is the nı � nı submatrix of …�1

nC1 given in (4.134). Þ
The information form of the bias filter is basically an algorithm to compute

the estimator and its MSE of the vector of parameters of a regression model. It
is well known that it is important to have a stable numerical procedure to compute
these quantities in a regression model. One of such procedures consists of using
Householder transformations and the QR decomposition of a matrix. This is what
the square root information form of the bias filter does.

In general, the information form of the Kalman filter propagates the square roots
of the inverses of the covariance matrices of the filter instead of the covariance
matrices themselves, where for any square matrix A a square root of A, denoted by
A1=2, is any matrix such that A D A1=2A1=2

0

. The square root information form of
the bias filter is given by the following theorem.

Theorem 4.38 (Square Root Information Form of the Bias Filter) Under the
assumptions and with the notation of the bias filter (4.108)–(4.110) for the
regression model et D Et
 C at and assuming 
 diffuse, the QR algorithm produces
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an orthogonal matrix Qt such that

Q0
t

"
…

�1=2
t

†
�1=2
t Et

#

D
"
…

�1=2
tC1
0

#

; (4.140)

where …�1=2
tC1 is upper triangular or upper trapezoidal and .…�1=2

1 ;…
�1=2
1 O
1/ D

.0; 0/. In addition,

Q0
t

"
…

�1=2
t …

�1=2
t O
t

†
�1=2
t Et †

�1=2
t et

#

D
"
…

�1=2
tC1 …

�1=2
tC1 O
tC1

0 b†�1=2
t

bEt

#

; (4.141)

and if we add to the second matrix in the left-hand side an extra block column of the

form Œ0;†
�1=20

t �0, then the same matrix Qt satisfies

Q0
t

"
…

�1=2
t …

�1=2
t O
t 0

†
�1=2
t Et †

�1=2
t et †

�1=2
t

#

D
"
…

�1=2
tC1 …

�1=2
tC1 O
tC1 …1=20

tC1E0
t†

�1
t

0 b†�1=2
t

bEt b†�1=2
t

#

: (4.142)

Proof The theorem follows from Theorem 4.15 if we consider the model

xtC1 D xt

et D Etxt C at;

where xt D 
 . However, we give a proof from scratch. Since Qt is orthogonal, we
get from the left-hand side of (4.141), using (4.136) and (4.130),

"
…

�1=2
t …

�1=2
t O
t

†
�1=2
t Et †

�1=2
t et

#0
QtQ

0
t

"
…

�1=2
t …

�1=2
t O
t

†
�1=2
t Et †

�1=2
t et

#

D
"
…

�1=20

t …
�1=2
t C E0

t†
�1=20

t †
�1=2
t Et …

�1=20

t …
�1=2
t O
t C E0

t†
�1=20

t †
�1=2
t et

O
 0
t…

�1=20

t …
�1=2
t C e0

t†
�1=20

t †
�1=2
t Et O
 0

t…
�1=20

t …
�1=2
t O
t C e0

t†
�1=20

t †
�1=2
t et

#

D
"

…
�1=20

tC1 …
�1=2
tC1 …

�1=20

tC1 …
�1=2
tC1 O
tC1

O
 0
tC1…

�1=20

tC1 …
�1=2
tC1 O
 0

tC1…
�1=20

tC1 …
�1=2
tC1 O
tC1 C bE0

t
b†�1=20

t
b†�1=2

t
bEt

#

D
"
…

�1=2
tC1 …

�1=2
tC1 O
tC1

0 b†�1=2
t

bEt

#0 "
…

�1=2
tC1 …

�1=2
tC1 O
tC1

0 b†�1=2
t

bEt

#

:

The rest of the theorem is proved similarly. �

Remark 4.16 The vectors b†�1=2
t

bEt have zero mean and unit covariance matrix.
Thus, they constitute a sequence of “standardized residuals” and can be used for
inference. Þ
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Remark 4.17 To compute O
tC1 in the square root algorithm of the previous theorem,

we have to solve the system

…

�1=2
tC1

�
O
tC1 D …

�1=2
tC1 O
tC1, where …�1=2

tC1 is an upper

triangular matrix. This computation, based on back substitution, can be avoided by
including in the second matrix in the left-hand side of (4.142) an extra block column
of the form Œ0;…

1=2
t �0 because

Q0
t

"
0

…
1=20

t

#

D
"

…
1=20

tC1
b†�1=2

t Et…t

#

:

The validity of this formula can be verified using (4.110). Þ

4.17 Fast Square Root Information Form of the Bias Filter

As in the case of the information square root form of RLS, it is possible to use square
root free fast Givens rotations, described in the Appendix of Chap. 2, to substantially
reduce the amount of computation needed for the square root information form of
the bias filter. To see this, assume first that …�1

t is nonsingular and put …�1
t into

the form…�1
t D LtDtL0

t D …
�1=20

t …
�1=2
t , where Lt is a lower triangular matrix with

ones in the main diagonal and Dt is a diagonal matrix with positive elements in the
main diagonal. Then, we can write expression (4.140) of Theorem 4.38 as

Q0
t

"
D1=2

t 0

0 Ip

#"
L0

t

†
�1=2
t Et

#

D
"

D1=2
tC1L0

tC1
0

#

: (4.143)

We can thus clearly use fast Givens rotations, as described in the Appendix of
Chap. 2 to obtain the QDU decomposition, to update Lt and Dt.

The previous update is equivalent, although more numerically stable, to use
sequential processing in the model et D Et
 C at of the bias filter. To verify this,
premultiply the previous equation by †�1=2

t to get †�1=2
t et D †

�1=2
t Et
 C†

�1=2
t at.

Then, the new error terms have covariance matrices equal to the identity matrix and
one can apply sequential processing and perform the update (4.141) using scalar
observations one by one instead of one update using a vector of observations.

4.18 Evaluation of the Concentrated Diffuse Log-likelihood
with the TSKF and the Information Form Bias Filter

As described in Remark 4.15, the TSKF with the information form of the bias
filter can be used to evaluate the concentrated diffuse log-likelihood (4.95). This
follows first from .Y � X O
/0†�1.Y � X O
/ D Pn

tD1 bE0
t
b†�1

t
bEt. Then, by (4.134) in
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Remark 4.13, R0†�1R is the submatrix of …�1
nC1 formed with the first nı rows and

the first nı columns. Putting it all together, we get the following expression for the
concentrated diffuse log-likelihood (4.95),

�D.YI Ǒ;b�2/ D constant � 1

2

(

.np � nı/ ln

 
nX

tD1
bE0

t
b†�1

t
bEt

!

C
nX

tD1
ln j†tj C ln j…11

nC1j
)

;

where…11
nC1 is the nı � nı submatrix of …�1

nC1 given in (4.134).

4.19 Square Root Information Form of the Modified
Bias-free Filter

The modified bias-free filter (4.104)–(4.107) uses the blending matrices Et and Ut

to handle the vector 
 D .ı0; ˇ0/0, where ı is a diffuse random vector with Var.ı/ D
�2… that models the unknown initial conditions and ˇ is the bias vector. Assuming
without loss of generality �2 D 1, the covariance matrix, P1, of the initial state
vector, x1 D Wˇ C Aı C x, is

P1 D A…A0 C�: (4.144)

If A has full column rank and the matrices … and � are nonsingular, we can apply
the matrix inversion lemma to get

P�1
1 D ��1 ���1A

�
…�1 C A0��1A

	�1
A0��1:

Also, if

P1 D A…A0 C B�sB
0

D R

�
… 0

0 �s

�
R0;

(4.145)

where the matrices R D ŒA;B� and �s are nonsingular, then

P�1
1 D R�10

�
…�1 0

0 ��1
s

�
R�1:

If ı is diffuse, then …�1 D 0 and the previous formulae simplify. If, in addition,
the information filter or the square root information filter can be applied, there is no
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need for the blending matrices in the modified bias-free filter to accommodate for
ı. Only the regression vector, ˇ, has to be taken care of. This means that there will
be no need for collapsing, a term that will be defined later in Sect. 4.21. Collapsing
refers to getting rid of the diffuse part, ı, in the modified bias-free filter recursions.
It turns out that, after some iterations, collapsing is usually possible. That is, we can
re-initialize the modified bias-free filter so that the new equations do not depend
on ı.

In this section, we will derive the square root information filter of the modified
bias-free filter (4.104)–(4.107). The following theorems give the details. We omit
the proofs because they are similar to the corresponding ones in Sect. 4.7.

Theorem 4.39 (Square Root Information Filter for Measurement Update)
Consider the state space model (4.82) and (4.83), where P�1

1 exists as in (4.144) or
in (4.145). Suppose that we have computed the modified bias-free filter quantities��Ut; xtjt�1

	
and Pt. If a new measurement, Yt, becomes available, then, if Rt > 0

and P�1
t exists, the QR algorithm produces an orthogonal matrix Qt such that

Q0
t

"
P�1=2

t P�1=2
t

��Ut; xtjt�1
	

0

�R�1=2
t Ht �R�1=2

t .Vt;Yt/ R�1=2
t

#

D
"

P�1=2
tjt P�1=2

tjt
��Utjt; xtjt

	 �P�1=2
tjt Kf ;t

0 �†�1=2
t .Et; et/ †

�1=2
t

#

;

where Kf ;t D PtH0
t†

�1
t . Here, the blending matrix Ut refers to ˇ only, not to ı.

That is, 
 D ˇ. Also,
��Utjt; xtjt

	
satisfies the modified bias-free filter recursion��Utjt; xtjt

	 D ��Ut; xtjt�1
	 C Kf ;t .Et; et/ and can be obtained as

��Utjt; xtjt
	 D

P1=2tjt
h
P�1=2

tjt
��Utjt; xtjt

	i
.

Theorem 4.40 (Square Root Information Filter for Time Update) Consider the
state space model (4.82) and (4.83), where P�1

1 exists as in (4.144) or in (4.145).
Suppose that we have computed the modified bias-free filter quantities

��Utjt; xtjt
	

and Ptjt . If, without any further measurements, we wish to find
��UtC1; xtC1jt

	
and

PtC1, then, if Rt > 0 and .Fs
t /

�1; .Qs
t /

�1 and P�1
t exist, the QR algorithm produces

an orthogonal matrix Qt such that

Q0
t

"
.Qs

t /
�1=2 0 .Qs

t /
�1=2StR�1

t .Vt;Yt/

�P�1=2
tjt .Fs

t /
�1Gt P�1=2

tjt .Fs
t /

�1 P�1=2
tjt

˚�Utjt � .Fs
t /

�1Wt; xtjt
�

#

D
"
.Qr

t /
�1=2 �bKb;t �bKb;t

��UtC1; xtC1jt
	C .Qr

t /
�1=2StR�1

t .Vt;Yt/

0 P�1=2
tC1 P�1=2

tC1
��UtC1; xtC1jt

	

#

;
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where

At D .Fs
t /

�10

P�1
tjt .F

s
t /

�1; Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
;

bKb;t D .Qr
t /
1=20

G0
tAt, and Qs

t and Fs
t are given by (4.19) and (4.22). Here,

the blending matrix Ut refers to ˇ only, not to ı. That is, 
 D ˇ. Also,��UtC1; xtC1jt
	

satisfies the modified bias-free filter recursion
��UtC1; xtC1jt

	 D
.Wt; 0/CFt

��Utjt; xtjt
	CGtSt†

�1
t .Et; et/ and can be obtained as

��UtC1; xtC1jt
	 D

P1=2tC1
h
P�1=2

tC1
��UtC1; xtC1jt

	i
.

The following theorem gives the combined measurement and time updates.

Theorem 4.41 (Square Root Information Filter for the Combined Measure-
ment and Time Updates) Suppose that the process fYtg follows the state space
model (4.82) and (4.83), where P�1

1 exists as in (4.144) or in (4.145). Then, if
Rt > 0;Qs

t > 0 and the Fs
t are nonsingular, where Qs

t and Fs
t are given by (4.19)

and (4.22), the application of the QR algorithm yields an orthogonal matrix Ot such
that

O0
t

2

6
4

.Qs
t /

�1=2 0 .Qs
t /

�1=2StR�1
t .Vt;Yt/

�P�1=2
t .Fs

t /
�1Gt P�1=2

t .Fs
t /

�1 P�1=2
t

˚�Ut � .Fs
t /

�1Wt; xtjt�1
�

R�1=2
t Ht.Fs

t /
�1Gt �R�1=2

t Ht.Fs
t /

�1 �R�1=2
t .Vt;Yt/

3

7
5

D

2

6
4
.Qr

t /
�1=2 �bKb;t �bKb;t

��UtC1; xtC1jt
	C .Qr

t /
�1=2StR�1

t .Vt;Yt/

0 P�1=2
tC1 P�1=2

tC1
��UtC1; xtC1jt

	

0 0 �†�1=2
t .Et; et/

3

7
5 ;

where

Qr
t D �

.Qs
t /

�1 C G0
tAtGt

��1
; At D .Fs

t /
�10

.P�1
t C H0

t R
�1
t Ht/.F

s
t /

�1;

and bKb;t D .Qr
t /
1=20

G0
tAt. Here, the blending matrix Ut refers to ˇ only, not to ı.

That is, 
 D ˇ.

4.20 The Two-stage Kalman Filter With Square Root
Information Bias Filter

The TSKF consists of two decoupled filters, the modified bias-free filter (4.104)–
(4.107) and the bias filter (4.108)–(4.110). The bias filter is the Kalman filter
associated with the regression model e D E
 C a, where e D .e0

1; : : : ; e
0
n/

0;E D
.E0

1; : : : ;E
0
n/

0, Var.a/ D diag.†1; : : : ; †n/, the state space form is given by (4.111)
and (4.112), and the et;Et, and †t are given by the modified bias-free filter.
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There are two aspects of the bias filter that deserve mention. The first one is that it
cannot handle diffuse situations, in which it is assumed that …�1

1 D 0, where …1 is
the initial covariance matrix of 
 . To incorporate this possibility into the bias filter,
one should consider some information form for the filter. The second aspect has
to do with numerical stability. It is standard practice to solve regression problems
by using some numerically stable procedure, such as Householder transformations
or Givens rotations (Kailath, Sayed, and Hassibi, 2000, pp. 53–54). For these
reasons, we propose the use of the TSKF with square root information bias filter
(hereafter TSKF–SRIBF), given by (4.104)–(4.107) and (4.141), that is,

.Et; et/ D .0;Vt;Yt/� Ht.�Ut; xtjt�1/

†t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t

.�UtC1; xtC1jt/ D .0;�Wt; 0/C Ft.�Ut; xtjt�1/C Kt.Et; et/

PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t

Q0
t

"
…

�1=2
t …

�1=2
t O
t

†
�1=2
t Et †

�1=2
t et

#

D
"
…

�1=2
tC1 …

�1=2
tC1 O
tC1

0 b†�1=2
t

bEt
:

#

;

initialized with .�U1; x1j0/ D .�A;�W; a/;P1 D � and .…�1=2
1 ;…

�1=2
1 O
1/ D

.0; 0/. Of course, we can use the fast recursions (4.143) instead of (4.141) to speed
up the computations.

If there are reasons to believe that the covariances matrices of the modified bias-
free filter are ill-conditioned, then a square root covariance implementation of this
filter should be used. But this is something that depends on the nature of the problem
at hand.

The TSKF with information form bias filter, given by (4.104)–(4.107)
and (4.130), with the additional recursion (4.138), that is,

.Et; et/ D .0;Vt;Yt/ � Ht.�Ut; xtjt�1/

†t D HtPtH
0
t C Rt; Kt D .FtPtH

0
t C GtSt/†

�1
t

.�UtC1; xtC1jt/ D .0;�Wt; 0/C Ft.�Ut; xtjt�1/C Kt.Et; et/

PtC1 D .Ft � KtHt/PtF
0
t C .GtQt � KtS

0
t/G

0
t

�
…�1

tC1;…�1
tC1 O
tC1

	 D �
…�1

t ;…�1
t O
t

	C E0
t†

�1
t .Et; et/

RSSBFF
tC1 D RSSBFF

t C e0
t†

�1
t et;

initialized with .�U1; x1j0/ D .�A;�W; a/;P1 D �;
�
…�1
1 ;…

�1
1 O
1

	 D .0; 0/ and
RSSBFF

1 D 0, was proposed by Jong (1991) and called by him the “Diffuse Kalman
Filter.” The concentrated diffuse log-likelihood (4.95) can be computed using the
Diffuse Kalman Filter as (4.139) in Remark 4.15.
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Apparently, in Jong (1991) and other subsequent publications by this and other
authors (de Jong & Chu Chun Lin, 1994; Durbin & Koopman, 2012; Harvey, 1989;
Jong & Chu Chun Lin, 2003) on Kalman filtering and smoothing under diffuse
situations in the statistical literature these authors were not aware of Friedland
(1969) and Ignagni (1981), or other articles about the same subject appeared in the
engineering literature. In particular, nothing is mentioned in the previous references
about the equivalence about the augmented-state Kalman filter and the TSKF and
the precise relation between the two filters, something that, as we have seen, is vital
for a full understanding of the issue of Kalman filtering under diffuse situations.

A square root information form for the TSKF was proposed by Bierman (1975).
However, the state space model considered by this author is less general than (4.82)
and (4.83) and the square root information form is used for both filters, the modified
bias-free filter and the bias filter. Moreover, there is no mention in the previous
article about the fact that these two filters can be decoupled.

4.20.1 Evaluation of the Concentrated Diffuse Log-likelihood
with the TSKF–SRIBF

The TSKF–SRIBF can be used to evaluate the concentrated diffuse log-
likelihood (4.95). By Remark 4.15, .Y � X O
/0†�1.Y � X O
/ D Pn

tD1 bE0
t
b†�1

t
bEt.

This last expression can be computed by the TSKF–SRIBF as
Pn

tD1

b†�1=2

t
bEt

�0

b†�1=2

t
bEt

�
.

On the other hand, by (4.134) in Remark 4.13, R0†�1R is the submatrix of…�1
nC1

formed with the first nı rows and the first nı columns. Letting

…
�1=2
nC1 D

�
Rdd;nC1 Rdb;nC1

Rbb;nC1

�
;

be the matrix given by (4.141) at the end of filtering (t D n), we see that R0†�1R D
R0

dd;nC1Rdd;nC1, where Rdd;nC1 is a square upper triangular matrix with dimension
nı.

Putting it all together, we get the following expression for the concentrated
diffuse log-likelihood (4.95),

�D.YI Ǒ;b�2/ D constant � 1

2

(

.np � nı/ ln

"
nX

tD1


b†�1=2

t
bEt

�0 
b†�1=2

t
bEt

�
#

C
nX

tD1
ln j†tj C ln jRdd;nC1j2

)

:
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4.20.2 The Diffuse Likelihood When the Square Root
Information Form of the Modified Bias-free Filter
is Used

When the square root information form of the modified bias-free filter is used, the
effect of the diffuse part, ı, is absorbed into the state vector from the beginning.
Therefore, the square root information filter depends on ˇ only and the concentrated
diffuse log-likelihood (4.95) is

�D.YI Ǒ;b�2/ D constant � 1

2

(

.np � nı/ ln

"
nX

tD1


b†�1=2

t
bEt

�0 
b†�1=2

t
bEt

�
#

C
nX

tD1
ln j†tj

)

;

where, by remark (4.15), .Y � X Ǒ/0†�1.Y � X Ǒ/ D Pn
tD1 bE0

t
b†�1

t
bEt. This

last expression can be computed by the square root information filter as
Pn

tD1

b†�1=2

t
bEt

�0 
b†�1=2

t
bEt

�
.

4.20.3 Forecasting With the TSKF–SRIBF

Denoting by OxnChjn, where h � 1, the orthogonal projection of xnCh onto the sample
Y1Wn, it is not difficult to show that h-period-ahead forecasts and their mean squared
error, bPnCh, can be recursively obtained by

OxnChjn D xnChjn C UnCh O
nC1
bPnCh D PnCh C UnCh…nC1U0

nCh;

where O
nC1 and…nC1 are the GLS estimator of 
 based on Y1Wn and its MSE and for
h > 1

.�UnCh; xnChjn/ D .0;�WnCh�1; 0/C FnCh�1.�UnCh�1; xnCh�1jn/

PnCh D FnCh�1PnCh�1F0
nCh�1 C GnCh�1QnCh�1G0

nCh�1;

initialized with OxnC1jn D xnC1jn C UnC1 O
nC1 and bPnC1 D PnC1 C UnC1…nC1U0
nC1.
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The forecasts for YnCh, where h � 1, and the corresponding mean squared error
matrices are given by

bYnChjn D XnCh O
nC1 C HnChxnChjn
MSE.bYnChjn/ D SnCh C XnCh…nC1X0

nCh;

where for h > 1

XnCh D .0;VnCh/C HnChUnCh

SnCh D HnChPnChH0
nCh C RnCh:

4.20.4 Smoothing With the TSKF–SRIBF Without Collapsing

When the TSKF–SRIBF is used without collapsing, the adjoint variable, �t, of the
Bryson–Frazier formulae is augmented with a matrix, Lt, to get for t D n; : : : ; 1,

.Lt; �t/ D H0
t†

�1
t .Et; et/C F0

p;t.LtC1; �tC1/; ƒt D H0
t†

�1
t Ht C F0

p;tƒtC1Fp;t;

where Fp;t D Ft � KtHt, initialized with .LnC1; �nC1/ D .0; 0/ and ƒnC1 D 0.
Letting Oxtjn D E.xtjY1Wn/ be the orthogonal projection of xt onto Y1Wn and bPtjn D
MSE. Oxtjn/ for t D n; : : : ; 1, the fixed interval smoother is given by

Oxtjn D �
.�Ut; xtjt�1/C Pt.Lt; �t/

� 
� O
nC1
1

�

bPtjn D Ptjn C .PtLt � Ut/…nC1.PtLt � Ut/
0

Ptjn D Pt � PtƒtPt;

(4.146)

where O
nC1 and …nC1 are the GLS estimator of 
 based on Y1Wn and its MSE.
To smooth the disturbances of the state space model (4.85) and (4.86), the

following recursions are used.

E.�tjY1Wn/ D �
J0

t†
�1
t .Et; et/C M0

t.LtC1; �tC1/
�

� O
nC1

1

�

Var.�tjY1Wn/ D �
I � .J0

t†
�1
t Jt C M0

tƒtC1Mt/
�

C.J0
t†

�1
t Et C M0

t LtC1/…nC1.J0
t†

�1
t Et C M0

t LtC1/0;

where Mt D Gt � KtJt.
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4.20.5 Square Root Information Smoothing With the Modified
Bias-Free Filter

The following theorem gives the details of square root information smoothing for
the modified bias-free filter. The proof is similar to that of Theorem 4.27 and is left
as an exercise. See Problem 4.7.

Theorem 4.42 Under the assumptions and with the notation of Theorem 4.41,
suppose we apply the algorithm of that theorem in a forward pass. Then, the
application of the QR algorithm in a backward pass yields an orthogonal matrix
Ot such that

O0
t

"
P1=2

0

tC1jn
h
I � Gt.Qr

t /
1=2bKb;t

i
.Fs

t /
�10

P�1=2
tC1jn

��UtC1jn; xtC1jn
	

.Qr
t /
1=20

G0
t.F

s
t /

�10 bKb;t
��UtC1jn; xtC1jn

	C .Qr
t /

�1=2StR�1
t .Vt; Yt/

#

D
"

P1=2
0

tjn P�1=2
tjn

��Utjn; Oxtjn
	

0 


#

;

initialized with P1=2nC1jn D P1=2nC1 and P�1=2
nC1jn

��UnC1jn; xnC1jn
	 D


P�1=2

nC1
�

��UnC1; xnC1jn
	
. In addition, the computation of .Qr

t /
1=2 in the backward pass

by inverting .Qr
t /

�1=2, given by the forward pass, can be avoided if we incorporate
a block column in the algorithm of Theorem 4.41 as follows

O0

t

2

6
4

.Qs
t /

�1=2 0 .Qs
t /
1=20

.Qs
t /

�1=2StR�1
t .Vt; Yt/

�P�1=2
t .Fs

t /
�1Gt P�1=2

t .Fs
t /

�1 0 P�1=2
t

˚�Ut � .Fs
t /

�1Wt; xtjt�1

�

R�1=2
t Ht.Fs

t /
�1Gt �R�1=2

t Ht.Fs
t /

�1 0 �R�1=2
t .Vt;Yt/

3

7
5

D

2

6
4
.Qr

t /
�1=2 �bKb;t .Qr

t /
1=20 �bKb;t

��UtC1; xtC1jt

	C .Qr
t /

�1=2StR�1
t .Vt;Yt/

0 P�1=2

tC1
P1=2

0

tC1
AtGtQr

t P�1=2

tC1

��UtC1; xtC1jt

	

0 0 
 �†�1=2
t .Et; et/

3

7
5 :

Using Theorem 4.42, the square root form of the fixed interval smoother is as
follows.

Step 1 In the forward pass, use the algorithm of Theorem 4.41, modified
as in Theorem 4.42, to compute and store the quantities .Qr

t /
1=2; bKb;t;

.Qr
t /

�1=2StR�1
t .Vt;Yt/, and bKb;t

��UtC1; xtC1jt
	 D �

h
� bKb;t

��UtC1; xtC1jt
	 C

.Qr
t /

�1=2
t R�1

t .Vt;Yt/
i

C .Qr
t /

�1=2StR�1
t .Vt;Yt/.

Step 2 In the backward pass, compute P1=2
0

tjn and P�1=2
tjn

��Utjn; xtjn
	

by means of
the algorithm of Theorem 4.42. Finally, at the same time, compute recursively
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the fixed interval smoothing quantities

��Utjn; xtjn
	 D P1=2tjn

h
P�1=2

tjn
��Utjn; xtjn

	i

Ptjn D P1=2tjn P1=2
0

tjn

and

Oxtjn D .�Utjn; xtjn/
 

� Ǒ
nC1
1

!

bPtjn D Ptjn C Ut…nC1U0
t :

4.21 Collapsing in the TSKF–SRIBF to Get Rid
of the Nuisance Random Variables

The vector ı in (4.84) models the uncertainty in the initial conditions and can be
considered as a vector of nuisance random variables. For this reason, it is convenient
to get rid of it in the most efficient manner. It is to be stressed that the elements of ˇ
are parameters of interest and, therefore, they should be treated differently to those
of ı.

Assume that ˇ is fixed and known, that is Var.ˇ/ D 0, in the state space
model (4.82) and (4.83) and suppose that we apply the TSKF filter. Then, since
ˇ is not stochastic, it is easy to see that the …t matrices are of the form

…t D
�
…d;t 0

0 0

�
;

where…d;t is a square matrix of dimension nı that will depend on the initial matrix,
…d;1. Since ı is assumed to be diffuse, …d;1 is infinite and we should apply the
TSKF–SRIBF. This filter uses the same modified bias-free filter as in the case in
which both ı and ˇ are unknown, but a simplified square root information bias filter
that propagates…�1=2

d;t only because ˇ is not stochastic.
Assume that after a few iterations, t D 1; 2; : : : ; k, in this TSKF–SRIBF we get
…

�1=2
d;kC1 ; …

�1=2
d;kC1 QıkC1

�
D .Rdd;kC1; rd;kC1/, where QıkC1 denotes the estimator of ı

assuming ˇ fixed and known, MSE. QıkC1/ D …d;kC1 and Rdd;kC1 is nonsingular
upper triangular. Then, according to (4.115) and (4.116) of Theorem 4.35, we can
write

OxkC1jt D xkC1jt C Ud;kC1 QıkC1 C Ub;kC1ˇ; bPkC1 D PkC1 C Ud;kC1…d;kC1U0
d;kC1;

(4.147)
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where QıkC1 D R�1
dd;kC1rd;kC1 and…d;kC1 D R�1

dd;kC1R�10

dd;kC1 are given by the algorithm
of Theorem 4.38, UkC1 D .Ud;kC1;Ub;kC1/ is given by the modified bias-free filter,
and the partition is made according to 
 D .ı0; ˇ0/0. It follows from this that we can
use a perfectly known bias filter for t D k C 1; : : : ; n,

Et D Yt � Vtˇ � Ht Oxtjt�1; †t D HtbPtH
0
t C Rt; Kt D .FtbPtH

0
t C GtSt/†

�1
t

OxtC1jt D Wtˇ C Ft Oxtjt�1 C KtEt; bPtC1 D .Ft � KtHt/bPtF
0
t C .GtQt � KtS

0
t/G

0
t;

with (4.147) as initial conditions because there is no unspecified part in (4.147). That
is, we have eliminated the nuisance random vector ı in the new filter. This process
is known as a collapse of the TSKF–SRIBF. We will not need to update QıkC1 in
the new filter because the equations (4.82) and (4.83) do not depend on ı when the
initial conditions are completely specified. We can see the application of the TSKF–
SRIBF for t D 1; 2; : : : ; k and the subsequent collapse as a way to construct initial
conditions for a Kalman filter that does not depend on the unspecified part ı.

If ˇ is unknown in the previous situation, we can proceed in a similar manner.
However, the collapsed filter will not be a perfectly known bias filter in this case,
but a TSKF–SRIBF of reduced dimension. More specifically, suppose that we apply
the TSKF–SRIBF for t D 1; : : : ; k assuming that both ı and ˇ are unknown and let

…
�1=2
kC1 D

�
Rdd;kC1 Rdb;kC1

Rbb;kC1

�
; …

�1=2
kC1 O
kC1 D

�
rd;kC1
rb;kC1

�
; (4.148)

where, defining Et D .Ed;t;Eb;t/ conforming to 
 D .ı0; ˇ0/0 and consider-
ing (4.141), we see that Rdd;kC1 and rd;kC1 coincide with those considered earlier
in this section when ˇ was assumed to be fixed and known. Then,

O
kC1 D
" OıkC1

Ǒ
kC1

#

D
"

R�1
dd;kC1 �R�1

dd;kC1Rdb;kC1R�
bb;kC1

R�
bb;kC1

#�
rd;kC1
rb;kC1

�
;

…kC1 D
"

R�1
dd;kC1 �R�1

dd;kC1Rdb;kC1R�
bb;kC1

R�
bb;kC1

#"
R�10

dd;kC1
�R�0

bb;kC1R0
db;kC1R�10

dd;kC1 R�0

bb;kC1

#

and

OıkC1 D QıkC1 � Sdb;kC1 Ǒ
kC1; Ǒ

kC1 D R�
bb;kC1rb;kC1 (4.149)

MSE. OıkC1/ D …d;kC1 C Sdb;kC1MSE. Ǒ
kC1/S0

db;kC1; (4.150)

where QıkC1 and…d;kC1 are those of (4.147), Sdb;kC1 D R�1
dd;kC1Rdb;kC1;MSE. Ǒ

kC1/ D
R�

bb;kC1R�0

bb;kC1 and R�
bb;kC1 is a generalized inverse of Rbb;kC1. By (4.115) and (4.116)
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of Theorem 4.35, if we use (4.149) and (4.150), it is obtained that

OxkC1jk D xkC1jk C Ud;kC1 QıkC1 C Udb;kC1 Ǒ
kC1

bPkC1 D PkC1 C Ud;kC1…d;kC1U0
d;kC1 C Udb;kC1MSE. Ǒ

kC1/U0
db;kC1;

where Udb;kC1 D Ub;kC1 � Ud;kC1Sdb;kC1;UkC1 D .Ud;kC1;Ub;kC1/ and the partition
is as in (4.147). This will allow us to define for t D kC1; : : : ; n a new TSKF–SRIBF
of reduced dimension. We summarize the result in the following theorem.

Theorem 4.43 (Collapsing of the TSKF–SRIBF) Assume that after applying the
TSKF–SRIBF for t D 1; : : : ; k; k < n, the matrix Rdd;kC1 in (4.148) is nonsingular.
Then, a new TSKF–SRIBF of reduced dimension can be used for t D k C 1; : : : ; n
in which 
 is redefined as 
 D ˇ, the modified bias-free Kalman filter is initialized
with .�UkC1; xkC1jk/ and PkC1 redefined to

.�UkC1; xkC1jk/ D .�Udb;kC1; xkC1jk C Ud;kC1 QıkC1/ (4.151)

PkC1 D PkC1 C Ud;kC1…d;kC1U0
d;kC1; (4.152)

and the square root information bias filter is initialized with

…

�1=2
kC1 ;…

�1=2
kC1 O
kC1

�

redefined to

…

�1=2
kC1 ;…

�1=2
kC1 Ǒ

kC1
�

D .Rbb;kC1; rb;kC1/ ; (4.153)

where QıkC1 D R�1
dd;kC1rd;kC1 is the estimator of ı assuming ˇ fixed and

known, MSE. QıkC1/ D …d;kC1 D R�1
dd;kC1R�10

dd;kC1;Udb;kC1 D Ub;kC1 �
Ud;kC1Sdb;kC1; Sdb;kC1 D R�1

dd;kC1Rdb;kC1;UkC1 D .Ud;kC1;Ub;kC1/ and the partition
is made conforming to 
 D .ı0; ˇ0/0.

Remark 4.18 Instead of collapsing ı completely as in Theorem 4.43, we can apply
this theorem sequentially, collapsing some part of ı each time, until ı disappears.
In this way, the calculations involved in collapsing are simplified. This procedure is
illustrated in Example 4.2 in the next section. Þ

4.21.1 Examples of Collapsing

Example 4.1 (Continued) Suppose the observed series is Y D .Y1;Y2;Y3/0. The
TSKF–SRIBF is initialized with .�U1; x1j0/ D .�1; 0/ and P1 D 1. The first
iteration yields

.E1; e1/ D .1;Y1/; †1 D 3; K1 D 1=3

.�U2; x2j1/ D .�2=3;Y1=3/; P2 D 5=3;
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and

…

�1=2
2 ;…

�1=2
2

Oı2
�

D

1=

p
3;Y1=

p
3
�

. Then, Oı2 D Y1 and …2 D MSE. Oı2/ D
3, and there is a collapse to the Kalman filter at t D 2 with Ox2j1 D Y1 and P2 D 3.
The second iteration yields

e2 D Y2 � Y1; †2 D 5; K2 D 3=5

Ox3j2 D 3Y2=5C 2Y1=5; P3 D 11=5:

Finally, the third iteration produces

e3 D Y3 � 3Y2=5 � 2Y1=5; †3 D 21=5; K3 D 11=21:

Þ

Example 4.2 (Continued) The TSKF–SRIBF is initialized with

.�U1; x1j0/ D
�
1 �2 0
2 �3 0

�
; P1 D

�
1 2

2 4

�
:

The first update yields

.E1; e1/ D .�1; 2;Y1/; †1 D 1C �; K1 D .2; 3/0†�1
1 ;

and


…

�1=2
2 ;…

�1=2
2

Oı2
�

D
��1 2 Y1
0 0 0

�
1p
1C �

: (4.154)

We can proceed sequentially in collapsing. That is, instead of collapsing the whole
of ı D .ı1; ı2/

0, we collapse first ı1 and then ı2. To this end, we first redefine

 D .ı; ˇ/0 D .ı1; ı2/

0 and apply Theorem 4.43 to collapse ı D ı1. Then, we
redefine ı D ˇ and apply Theorem 4.43 again to collapse ı D ı2. According to this
approach, it follows from (4.154) that Qı2 D �Y1;…d;2 D MSE. Qı2/ D †1, and there
is a collapse at t D 2 with

.�U2; x2j1/ D
�
1 2Y1
2 3Y1

�
; P2 D

�
1C 4� 2C 6�

2C 6� 4C 9�

�
:

We can consider that a new TSKF–SRIBF is initialized by these equations. Thus,
the second update of the former filter coincides with the first update of the latter and
gives

.E2; e2/ D .�1;Y2 � 2Y1/; †2 D 1C 5�; K2 D .6�C 2; 8�C 3/0†�1
2 ;
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and

…

�1=2
3 ;…

�1=2
3

Oı3
�

D .�1;Y2 � 2Y1/=
p
1C 5�. Then, applying again Theo-

rem 4.43 yields Oı3 D �Y2 C 2Y1 and …3 D MSE. Oı3/ D †2, and a complete
collapse to the Kalman filter is possible at t D 3. The Kalman filter is initialized
with

Ox3j2 D
�
2Y2 � Y1
3Y2 � 2Y1

�
; P3 D

�
1C 5� 2C 8�

2C 8� 4C 13�

�
:

Þ
Example 4.3 (Continued) The TSKF–SRIBF is initialized with

.�U1; x1j0/ D
��1 0 0
�1 0 0

�
; P1 D 1

1 � �2

�
1 1 � �

1 � � .1 � �/2
�
:

The first update yields

.E1; e1/ D .1; 0;Y1/; †1 D 1=.1� �2/; K1 D �
1 � �; � C .1 � �/2

	0
;

and


…

�1=2
2 ;…

�1=2
2

Oı2
�

D
�
1 0 Y1
0 0 0

�p
1 � �2:

Then,

…

�1=2
d;2 ;…

�1=2
d;2

Qı2
�

D .1;Y1/
p
1 � �2; Qı2 D Y1;…d;2 D MSE. Qı2/ D †1, and

there is a collapse at t D 2 with

.�U2; x2j1/ D
�
0 Y1
0 Y1

�
; P2 D 1

1 � �2
�

1 1 � �

1 � � .1 � �/2
�
:

The TSKF–SRIBF does not depend on ı for t � 2. A total collapse to the Kalman
filter cannot be done because there is a ˇ part in the model. It is not difficult to verify
that

.E2; e2/ D .1;Y2 � Y1/; †2 D 1=.1� �2/; K2 D �
1� �; � C .1 � �/2

	0
;

and, for t > 2,

.Et; et/ D .1C �;rYt C �rYt�1/; †t D 1; Kt D �
1 � �; � C .1 � �/2

	0
:

Þ
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4.21.2 Evaluation of the Concentrated Diffuse Log-likelihood
With the TSKF–SRIBF Under Collapsing

Under the assumptions and with the notation of the previous theorem, if the TSKF–
SRIBF is applied and a collapse takes place at t D k, the concentrated diffuse log-
likelihood (4.95) is

�D.YI Ǒ;b�2/ D constant � 1

2

(

.np � nı/ ln

"
nX

tD1


b†�1=2

t
bEt

�0 
b†�1=2

t
bEt

�
#

C
nX

tD1
ln j†tj C ln jRdd;kC1j2

)

:

To see this, consider that the concentrated log-likelihood can be expressed as

�D.YI Ǒ;b�2/ D �D.Y1;Y2; : : : ;YkI Ǒ
kC1;b�2kC1/

C �D.YkC1; : : : ;YnjY1; : : : ;YkI Ǒ
nC1;b�2nC1/:

4.21.3 Smoothing with the TSKF–SRIBF Under Collapsing

If the TSKF–SRIBF is used for t D 1; : : : ; n and a collapse takes place at t D
k; k < n, the augmented part is reduced or eliminated at t D k C 1. If ˇ ¤ 0, for
t D n; : : : ; k C 1 the augmented Bryson–Frazier recursions can be used

.Lb;t; �t/ D H0
t†

�1
t .Et; et/C F0

p;t.Lb;tC1; �tC1/; ƒt D H0
t†

�1
t Ht C F0

p;tƒtC1Fp;t;

(4.155)

where Fp;t D Ft � KtHt, initialized with .Lb;nC1; �nC1/ D .0; 0/ and ƒnC1 D 0.
If ˇ D 0, the augmented part, Lb;t disappears completely after collapsing and we
would obtain the usual Bryson–Frazier formulae for smoothing for t D n; : : : ; kC1.

4.21.3.1 The Fixed-Point Smoother Under Collapsing

The details of the fixed point smoother under collapsing are given by the following
theorem.

Theorem 4.44 Suppose that the TSKF–SRIBF is applied for t D 1; : : : ; n and let
j � n. Then, the recursion for xjjt in the fixed point smoother is augmented with a



310 4 The State Space Model

matrix, Ct, for t D j; j C 1; : : : ; n to get

Kt
j D Pt

jH
0
t†

�1
t ; .�Ct; xjjt/ D .�Ct�1; xjjt�1/C Kt

j .Et; et/

Pjjt D Pjjt�1 � Kt
j HtP

t0
j ; PtC1

j D Pt
jF

0
p;t;

initialized with Pj
j D Pj;Pjj j�1 D Pj and .�Cj�1; xjj j�1/ D .�Uj; xjj j�1/.

If there is a collapse at time k and j � k, then, with the notation of Theorem 4.43,
.�Ck; xjjk/;Pjjk, and PkC1

j are redefined to

.�Ck; xjjk/ D .�Cdb;k; xjjk C Cd;k
QıkC1/; Pjjk D Pjjk C Cd;k…d;kC1C0

d;k

PkC1
j D PkC1

j C Cd;k…d;kC1U0
d;kC1

D PjF
k0

p;j C Cd;k…d;kC1U0
d;kC1;

respectively, where Fk0

p;j D F0
p;j � � � F0

p;k,Cdb;k D Cb;k � Cd;kSdb;kC1;Ck D .Cd;k;Cb;k/

before collapsing and the partition is made conforming to 
 D .ı0,ˇ0/0.
If ˇ ¤ 0, the estimator Oxjjn of xj; j � n; n > k, based on Y1Wn and its mean squared

error, bPjjn, are given by

Oxjjn D xjjn C Cn
Ǒ
nC1; bPjjn D Pjjn C Cn…nC1C0

n;

where Ǒ
nC1 and …nC1 are the GLS estimator of ˇ based on Y1Wn and its MSE. If

ˇ D 0, the augmented part disappears after collapsing and Oxjjn and bPjjn are given

by the ordinary fixed point smoother, where Pjjn D bPjjn.

Proof We proceed as Anderson & Moore (2012) do to prove the fixed point
smoother. To smooth xj; 1 � j � k � n, define for t � j an augmented state
vector xa

t D .x0
t; x

0
j/

0 so that the associated state space model is

xa
tC1 D

�
Ft

I

�
xa

t C
�

Gt

0

�
�t

Yt D .Ht; 0/x
a
t C Jt�t;

where we assume ˇ D 0 for simplicity. The proof for the general case is similar.
Instead of using the notation .�Ut; xtjt�1/ in the TSKF–SRIBF, we use the simpler
notation Xt. Applying the TSKF–SRIBF to the previous augmented state space
model for t D j; j C 1; : : : ; n with starting conditions

Xa
j D

�
Xj

Xj

�
; Pa

j D
�

Pj Pj

Pj Pj

�
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yields in the first iteration .Ej; ej/;†j and

Ka
j D

"
Kj

Kj
j

#

; Xa
jC1 D

�
XjC1
Xjj j

�
; Pa

jC1 D
"

PjC1 P jC10

j

P jC1
j Pjj j

#

;

where Kj
j D PjH0

j†
�1
j ;Xjj j D Xj C Kj

j.Ej; ej/ D .�Cj; xjj j/;P
jC1
j D PjF0

p;j;Pjj j D
Pj � Kj

j HjPj. For t D j C 1; : : : ; n, the TSKF–SRIBF produces .Et; et/;†t and

Ka
t D

"
Kt

Kt
j

#

; Xa
tC1 D

�
XtC1
Xjjt

�
; Pa

tC1 D
"

PtC1 PtC10

j

PtC1
j Pjjt

#

;

where Kt
j D Pt

jH
0
t†

�1
t ;Xjjt D Xjjt�1 CKt

j .Et; et/;Pjjt D Pjjt�1 �Kt
j HtPt0

j , and PtC1
j D

Pt
jF

0
p;t. If there is a collapse at t D k and j � k � n, then Xjjk;Pjjk and PkC1

j are

redefined as Xjjk D .�Cdb;k; xjjk C Cd;k
QıkC1/;Pjjk D Pjjk C Cd;kMSE. QıkC1/C0

d;k and

PkC1
j D PkC1

j C Cd;kMSE. QıkC1/U0
d;kC1, where Cdb;k D Cb;k � Cd;kSdb;k and Ck D

.Cd;k;Cb;k/. The result now follows from Theorem 4.43 by letting j � k fixed and
iterating for t D j; : : : ; n. �
Remark 4.19 It is to be noted that in the fixed point smoother only the matrix Pt

j has
to be stored in addition to the usual quantities required for fixed interval smoothing.
If we are interested in estimating lxt, where l is some r � p matrix with r < p, then
only lPt

j has to be stored. Þ

The following theorem gives the relation between the fixed point and the fixed
interval smoother. We omit its proof because it is similar to that of the previous
theorem.

Theorem 4.45 Under the assumptions and with the notation of Theorem 4.44,
suppose that ˇ ¤ 0 and there is a collapse at time t D k; k < n. Then, the estimator,
Oxjjn, of xj; j � k, based on Y1Wn and its mean squared error, bPjjn, can be computed as

Oxjjn D
h
.�Ck; xjjk/C PkC1

j .Lb;kC1; �kC1/
i
"

� Ǒ
nC1
1

#

(4.156)

bPjjn D Pjjk � PkC1
j ƒkC1PkC10

j C
h
PkC1

j Lb;kC1 � Ck

i
…nC1

h
PkC1

j Lb;kC1 � Ck

i0
;

(4.157)

where PkC1
j ; .�Ck; xjjk/ and Pjjk are given by the fixed point smoother applied for

t D j; j C 1; : : : ; k, ƒkC1 are given by (4.155) and Ǒ
nC1 and …nC1 are the GLS

estimator of ˇ based on Y1Wn and its MSE. If ˇ D 0, the augmented part disappears
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after collapsing and the recursions simplify to

Oxjjn D Oxjjk C PkC1
j �kC1; (4.158)

bPjjn D Pjjk � PkC1
j ƒkC1PkC10

j ; (4.159)

4.21.3.2 The Fixed-Interval Smoother Under Collapsing

The following theorem gives the details of the fixed interval smoothing under
collapsing.

Theorem 4.46 Suppose that the TSKF–SRIBF is applied for t D 1; : : : ; n and
that a collapse takes place at t D k; k < n. If ˇ ¤ 0, for t D n; : : : ; k C 1

the augmented Bryson–Frazier recursions (4.155) are used and the fixed interval
smoother is given by

Oxtjn D �
.�Ub;t; xtjt�1/C Pt.Lb;t; �t/

�
"

� Ǒ
nC1
1

#

bPtjn D Pt � PtƒtPt C .PtLb;t � Ub;t/…nC1.PtLb;t � Ub;t/
0;

where Ǒ
nC1 and …nC1 are the GLS estimator of ˇ based on Y1Wn and its MSE. If

ˇ D 0, the Bryson–Frazier recursions (4.33) and the fixed interval smoother (4.34)
are used for t D n; : : : ; k C 1.

For t D k; : : : ; 1, the recursions for ƒt are continued and the recursions for
.Lb;t; �t/ if ˇ ¤ 0 or �t if ˇ D 0 are also continued, augmented with Ld;t, to get

.Lt; �t/ D H0
t†

�1
t .Et; et/C F0

p;t.LtC1; �tC1/; (4.160)

where Lt D .Ld;t;Lb;t/ or Lt D Ld;t, respectively, and Ld;kC1 D 0. Let At D PtLt �Ut

and Bt D Lt �ƒtUt, where .Lt; �t/ and ƒt are given by (4.160) and Ut is given by
the TSKF–SRIBF before collapsing, and let O
nC1 D . Oı0

nC1; Ǒ0
nC1/0 and ‰nC1 be the

GLS estimator of 
 based on Y1Wn and its MSE. If ˇ ¤ 0, the fixed interval smoothing
is given for t D k; : : : ; 1 by the recursions

Oxtjn D xtjt�1 C Pt�t � At O
nC1
bPtjn D Pt � PtƒtPt � AtˆkC1B0

tPt � PtBtˆ
0
kC1A0

t C At‰nC1A0
t;

where, with the notation of Theorem 4.43,

OınC1 D QıkC1 C…d;kC1U0
d;kC1�kC1 � Tdb;kC1 Ǒ

nC1

Tdb;kC1 D Sdb;kC1 C…d;kC1U0
d;kC1Lb;kC1
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ˆkC1 D
�
…d;kC1 0
0 0

�

‰nC1 D
"

ZkC1 C Tdb;kC1…nC1T 0
db;kC1 �Tdb;klC1…nC1

�…nC1T 0
db;klC1 …nC1

#

and ZkC1 D …d;kC1 �…d;kC1U0
d;kC1ƒkC1Ud;kC1…d;kC1. If ˇ D 0, the fixed interval

smoothing is given for t D k; : : : ; 1 by the recursions

Oxtjn D xtjt�1 C Pt�t � At
OınC1

bPtjn D Pt � PtƒtPt � At…kC1B0
tPt � PtBt…kC1A0

t C At‰nC1A0
t;

where

OınC1 D QıkC1 C…kC1U0
kC1�kC1

‰nC1 D …kC1 �…kC1U0
kC1ƒkC1UkC1…kC1:

Proof Suppose first that ˇ D 0. To prove the formula for OınC1 and ‰nC1, define an
augmented state vector xa

t D .x0
t; ı

0/0 so that the associated state space model is

xa
tC1 D

�
Ft

I

�
xa

t C
�

Gt

0

�
�t

Yt D .Ht; 0/x
a
t C Jt�t;

where we assume that a D 0 for simplicity. As in the proof of Theorem 4.44, instead
of using the notation .�Ut; xtjt�1/ in the TSKF–SRIBF, we use the simpler notation
Xt. Applying the TSKF–SRIBF to the previous augmented state space model for
t D 1; 2; : : : ; n with starting conditions

Xa
1 D

��A 0
�I 0

�
; Pa

1 D
�
� 0

0 0

�

yields .Et; et/;†t and

Ka
t D

�
Kt

Kt
1

�
; Xa

tC1 D
�

XtC1
X1jt

�
; Pa

tC1 D
�

PtC1 PtC10

1

PtC1
1 P1jt

�
;

where, proceeding as in the proof of Theorem 4.44, it is not difficult to show that
the following fixed point smoothing algorithm holds for t D 1; 2; : : : ; n

Kt
1 D Pt

1H
0
t†

�1
t ; X1jt D X1jt�1 C Kt

1.Et; et/

P1jt D P1jt�1 � Kt
1HtP

t0
1 ; PtC1

1 D Pt
1F

0
p;t;
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initialized with P11 D 0;P1j0 D 0 and X1j0 D .�I; 0/. Since Pt
1 D 0;P1jt D 0 and

X1jt D .�I; 0/ for t D 1; : : : ; n, if there is a collapse at time k;X1jk;P1jk and PkC1
1

are redefined to

X1jk D QıkC1; P1jk D …kC1
PkC1
1 D …kC1U0

kC1:

Iterating and using (4.158) and (4.159), the result for OınC1 and ‰nC1 is obtained.
To prove the formula for the fixed interval smoother, consider that, by (4.158)

and (4.159), we can write

Oxtjn D Oxtjk C PkC1
t �kC1;

bPtjn D Ptjk � PkC1
t ƒkC1PkC10

t ;

where PkC1
t D PtFk0

p;t C Ck…kC1U0
kC1. If we define for t D k; : : : ; 1 the backwards

recursion

.Lt; N�t/ D H0
t†

�1
t .Et; et/C F0

p;t.LtC1; N�tC1/; Nƒt D H0
t†

�1
t Ht C F0

p;t
NƒtC1Fp;t;

(4.161)

where Lt coincides with that of (4.160), initialized with .LkC1; N�kC1/ D .0; 0/ and
NƒkC1 D 0, then, according to the formula for the fixed interval smoother without
collapsing (4.146), it holds that

Oxtjk D xtjt�1 C Pt
N�t C .Ut � PtLt/ QıkC1

bPtjk D Pt � Pt NƒtPt C .Ut � PtLt/…kC1.Ut � PtLt/
0

It is not difficult to verify that �t in (4.160) satisfies �t D N�t C Fk0

p;t�kC1.
Using the recursion (4.161), the formula for the fixed interval smoother without
collapsing (4.146) and Theorem 4.44, it holds that

��Ck; xtjk
	 D .�Ut; xtjt�1/C Pt.Lt; N�t/

and thus Ck D Ut � PtLt D �At. Then, putting it all together we have

Oxtjn D xtjt�1 C Pt�t � At

 QıkC1 C…kC1U0
kC1�kC1

�

bPtjn D Pt � Pt NƒtPt C At…kC1A0
t � .PtF

k0

p;t � At…kC1U0
kC1/

�ƒkC1.PtF
k0

p;t � At…kC1U0
kC1/0

D Pt � Pt
� Nƒt C Fk

p;tƒkC1Fk
p;t

	
Pt C At

�
…kC1 �…kC1U0

kC1ƒkC1UkC1…kC1
	

A0
t

CAt…kC1U0
kC1ƒkC1Fk

p;tPt C PtF
k0

p;tƒkC1UkC1…kC1A0
t:
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It is easy to show that Nƒt C Fk
p;tƒkC1Fk

p;t D ƒt. It remains to prove that Bt D
�Fk0

p;tƒkC1UkC1. To this end, consider first that UtC1 is given for t � k by the
modified bias-free filter as UtC1 D FtUt � KtEt D Fp;tUt. Then, we can write

�F0
p;tƒtC1UtC1 D �F0

p;tƒtC1Fp;tUt

D �.ƒt � H0
t†

�1
t Ht/Ut

D H0
t†

�1
t Et �ƒtUt:

It follows from this that �F0
p;kƒkC1UkC1 D Lk �ƒkUk and

�Fk0

p;tƒkC1UkC1 D �F0
p;t � � � F0

p;kƒkC1UkC1

D F0
p;t � � � F0

p;k�1 .Lk �ƒkUk/

D F0
p;t � � � F0

p;k�2
�
F0

p;k�1Lk C H0
k�1†�1

k�1Ek�1 �ƒk�1Uk�1
	

D F0
p;t � � � F0

p;k�2 .Lk�1 �ƒk�1Uk�1/

D Lt �ƒtUt:

If ˇ ¤ 0, we can prove the formula for O
nC1 and ‰nC1 as in the first part of
the proof, by defining an augmented state vector xa

t D .x0
t; 


0/0 and considering its
associated state space model. In this way, we obtain the same fixed point smoother
as before, with the appropriate initial conditions. However, if there is a collapse at
time k, this time X1jk;P1jk and PkC1

1 are redefined to

X1jk D
�

Sdb;kC1 Qıd;kC1
�I 0

�
; P1jk D

�
…d;kC1 0
0 0

�
; PkC1

1 D
�
…d;kC1U0

d;kC1
0

�
:

Iterating and using (4.156) and (4.157), the result for O
nC1 and ‰nC1 is obtained.
More specifically,

O
nC1 D �
X1jk C PkC1

1 .Lb;kC1; �kC1/
�
"

� Ǒ
nC1
1

#

‰nC1 D P1jk � PkC1
1 ƒkC1PkC10

1 C
�

Tdb;kC1
�I

�
…nC1

h
T 0

db;kC1 �I
i
:

The proof of the fixed interval smoother formula runs parallel to the previous one
for the case ˇ D 0. By (4.156) and (4.157), we can write

Oxtjn D �
.�Ck; xtjk/C PkC1

t .Lb;kC1; �kC1/
�
"

� Ǒ
nC1
1

#

bPtjn D Ptjk � PkC1
t ƒkC1PkC10

t C �
PkC1

t Lb;kC1 � Ck
�
…nC1

�
PkC1

t Lb;kC1 � Ck
�0
;
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where PkC1
t D PtFk0

p;t C Cd;k…d;kC1U0
d;kC1. Define for t D k : : : ; 1 the backwards

recursion

. NLt; N�t/ D H0
t†

�1
t .Et; et/C F0

p;t.
NLtC1; N�tC1/; Nƒt D H0

t†
�1
t Ht C F0

p;t
NƒtC1Fp;t;

(4.162)

where NLt D .Ld;t; NLb;t/, initialized with . NLkC1; N�kC1/ D .0; 0/ and NƒkC1 D 0. Then,
using (4.162), the formula for the fixed interval smoother without collapsing (4.146)
and Theorem 4.44, it holds that

�
.�Cd;k;�Cb;k/; xtjk

� D .�Ut; xtjt�1/C Pt. NLt; N�t/

Ptjk D Pt � Pt NƒtPt:

It follows from this that, before collapsing in the fixed point smoother,

Ck D .Cd;k;Cb;k/; Cb;k D Pt NLb;t � Ub;t; Cd;k D �At

�
I
0

�
; xtjk D xtjt�1 C Pt

N�t:

According to Theorem 4.44, after collapsing, Ck; xtjk and Ptjk are redefined to

Ck D At

�
Sdb;kC1
0

�
C Pt NLb;t � Ub;t; xtjk D xtjt�1 C Pt

N�t � At

� Qıd;kC1/
0

�
;

and

Ptjk D Pt � Pt NƒtPt C At

�
…d;kC1 0
0 0

�
A0

t:

On the other hand,

PkC1
t .Lb;kC1; �kC1/ D PtF

k0

p;t.Lb;kC1; �kC1/ � At

�
…d;kC1U0

d;kC1
0

�
.Lb;kC1; �kC1/:

It is not difficult to verify that .Lb;t; �t/ in (4.160) satisfies

.Lb;t; �t/ D . NLb;t; N�t/C Fk0

p;t.Lb;t; �t/

and thus

Pt. NLb;t; N�t/C PtF
k0

p;t.Lb;kC1; �kC1/ D Pt.Lb;t; �t/:



4.21 Collapsing in the TSKF–SRIBF to Get Rid of the Nuisance Random. . . 317

Putting it all together, we get

Oxtjn D xtjt�1 C Pt�t � At

" QıkC1 C…d;kC1U0
d;kC1�kC1 � Tdb;kC1 Ǒ

nC1
Ǒ
nC1

#

bPtjn D Ptjk � PkC1
t ƒkC1PkC10

t C �
PkC1

t Lb;kC1 � Ck
�
…nC1

�
PkC1

t Lb;kC1 � Ck
�0

D Pt � PtƒtPt � AtˆkC1B0
tPt � PtBtˆ

0
kC1A0

t C At

�
ZkC1 0
0 0

�
A0

t

C �
PkC1

t Lb;kC1 � Ck
�
…nC1

�
PkC1

t Lb;kC1 � Ck
�0

D Pt � PtƒtPt � AtˆkC1B0
tPt � PtBtˆ

0
kC1A0

t C At

�
ZkC1 0
0 0

�
A0

t

C At

�
Tdb;kC1

�I

�
…nC1

h
T 0

db;kC1 �I
i

A0
t:

�

4.21.3.3 Interpolation and Disturbance Smoothing Under Collapsing

Suppose that in the state space model (4.85) and (4.86) we want to smooth the vector
Zt D XtˇCCtxt CDt"t. If there are missing observations and only part of the vector
Yt is observed for t D 1; 2; : : : ; n, then setting Xt D Vt;Ct D Ht and Dt D Jt in the
expression for Zt will allow us to interpolate Yt. Setting Xt D 0;Ct D 0 and Dt D I
will give us the disturbance smoother and, finally, setting Xt D 0;Ct D I, and
Dt D 0 will provide the state smoother. Thus, smoothing the vector Zt is important.

As before, suppose that the TSKF–SRIBF is used for t D 1; : : : ; n and a collapse
takes place at t D k; k < n, after which the augmented part is reduced or eliminated
at t D k C 1. If ˇ D 0 in (4.85) and (4.86), then Xt D 0 in Zt.

The following theorem gives the details for the smoothing of Zt when the TSKF–
SRIBF is used under collapsing. The proof is similar to that of Theorem 4.46 and is
omitted.

Theorem 4.47 Suppose that we want to smooth Zt D XtˇC Ctxt C Dt"t with t � n
in the state space model (4.85) and (4.86) when the TSKF–SRIBF is used and a
collapse takes place at t D k; k < n. Let bZtjn and bNtjn be the estimator of Zt based
on Y1Wn and its mean squared error. If ˇ ¤ 0, for t D n; : : : ; k C 1 the augmented
Bryson–Frazier recursions (4.155) are used and the following recursions hold

bZtjn D �
Ct.�Ub;t; xtjt�1/C KZ

t .Eb;t; et/C Nt.Lb;tC1; �tC1/� .Xt; 0/
�
"

� Ǒ
nC1
1

#

bNtjn D Ntjt � NtƒtC1N0
t C Ab;t…nC1A0

b;t;
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where KZ
t D .CtPtH0

t C DtJ0
t/†

�1
t ;Nt D .Ct � KZ

t Ht/PtF0
t C .Dt � KZ

t Jt/G0
t;Ntjt D

.Ct � KZ
t Ht/PtC0

t C .Dt � KZ
t Jt/D0

t;Ab;t D �CtUb;t C KZ
t Eb;t C NtLb;tC1 � Xt and

Ǒ
nC1 and …nC1 are the GLS estimator of ˇ based on Y1Wn and its MSE. If ˇ D 0,

the Bryson–Frazier recursions (4.33) and the following recursions are used for t D
n; : : : ; k C 1

bZtjn D Ct Oxtjt�1 C KZ
t et C Nt�tC1

bNtjn D Ntjt � NtƒtC1N0
t :

For t D k; : : : ; 1, the recursions for ƒt are continued and the recursions for
.Lb;t; �t/ if ˇ ¤ 0 or �t if ˇ D 0 are also continued, augmented with Ld;t, to
get (4.160), where Lt D .Ld;t;Lb;t/ or Lt D Ld;t, respectively, and Ld;kC1 D 0. Let
At D �CtUt C KZ

t Et C NtLtC1 � .0;Xt/ and Bt D Lt �ƒtUt, where .Lt; �t/ andƒt

are given by (4.160) and Ut and Et are given by the TSKF–SRIBF before collapsing,
and let O
nC1 D . Oı0

nC1; Ǒ0
nC1/0 and‰nC1 be the GLS estimator of 
 based on Y1Wn and

its MSE. For t D k; : : : ; 1, the following recursions hold

bZtjn D Ct Oxtjt�1 C KZ
t et C Nt�tC1 � At O
nC1

bNtjn D Ntjt � NtƒtC1N0
t � At	kC1B0

tC1N0
t � NtBtC1	 0

kC1A0
t C At‰nC1A0

t;

where 	kC1 D ˆkC1 if ˇ ¤ 0 or 	kC1 D …kC1 if ˇ D 0, andˆkC1;…kC1; O
nC1 and
‰nC1 are as in Theorem 4.46.

The following theorem gives the formulae for smoothing the disturbances in the
state space model (4.85) and (4.86). We omit its proof because, as mentioned earlier
in this section, it is a direct consequence of the previous theorem.

Theorem 4.48 (Disturbance Smoother) The disturbance smoother is obtained
by setting in Theorem 4.47 Xt D 0;Ct D 0 and Dt D I. This yields KZ

t D
J0†�1

t ;Nt D .Gt � KtJt/
0;Ntjt D I � J0

t†
�1
t Jt;Ab;t D J0

t†
�1
t Eb;t C NtLb;tC1 and

At D J0
t†

�1
t Et C NtLtC1. Thus, if ˇ ¤ 0, for t D n; : : : ; k C 1 the augmented

Bryson–Frazier recursions (4.155) are used and the following recursions hold

E.�tjy/ D �
J0†�1

t .Eb;t; et/C .Gt � KtJt/
0.Lb;tC1; �tC1/

�
"

� Ǒ
nC1
1

#

MSE.�tjy/ D I � J0
t†

�1
t Jt � .Gt � KtJt/

0ƒtC1.Gt � KtJt/C Ab;t…nC1A0
b;t:

If ˇ D 0, the Bryson–Frazier recursions (4.33) and the following recursions are
used for t D n; : : : ; k C 1

E.�tjy/ D J0
t†

�1
t et C .Gt � KtJt/

0�tC1

MSE.�tjy/ D I � .J0
t†

�1
t Jt C .Gt � KtJt/

0ƒtC1.Gt � KtJt/:
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For t D k; : : : ; 1, the following recursions hold

E.�tjy/ D J0
t†

�1
t et C Nt�tC1 � At O
nC1

MSE.�tjy/ D I � .J0
t†

�1
t Jt C NtƒtC1N0

t / � At	kC1B0
tC1N0

t

�NtBtC1	 0
kC1A0

t C At‰nC1A0
t;

where .Lt; �t/ and ƒt are given by (4.160) and 	kC1;Bt; O
nC1 and ‰nC1 are as in
Theorem 4.47.

4.22 Historical Notes

The use of what engineers call state space models or descriptions of systems
described by high-order differential or difference equations is well known in books
on differential equations. These representations were used by physicists in studying
Markov processes, see, for example, Wang & Uhlenbeck (1945). A detailed study
of stationary Gaussian processes having the Markov property was given by Doob
(1944), but this paper was not cited in his famous 1953 textbook (Doob, 1953).
Had he done so, development of state space estimation results might have occurred
much earlier.

During the mid-fifties, some scientists and engineers in both the USA and
the USSR began to reemphasize the value of state space descriptions in control
problems, switching circuits and automata theory and even classical circuit theory.
However, it was undoubtedly Kalman, through his outstanding research who
brought the state space point of view into the center stage in system theory. See,
for example, Kalman (1960a, 1960c) and Kalman et al. (1969).

The fact that the state space model (4.1) and (4.2) has the properties that make it
wide sense Markov is critical in the derivations. If, for example, x1 were correlated
with futg; t � 1, or if fvtg were not a white process, then the Kalman filter arguments
would break down. The Markov property is not mentioned explicitly in Kalman
(1960b). However, it is made explicit in Kalman (1963). Verghese & Kailath (1979)
gave a physical argument to show that, given a forwards Markovian model, this
model can also be represented by a backwards Markovian model.

The idea of propagating square root factors, rather than the matrices themselves,
was first introduced by Potter for the measurement update step of the Kalman
filter recursions. See Potter & Stern (1963). However, Potter’s method was not
applicable to the time update problem, which requires an array formulation. The
time update formulation was proposed by Schmidt (1970), who combined it with
Potter’s measurement update for application in an airborne navigation system for
precision approach and landing.

Independently of these developments, Golub (1965) and Businger & Golub
(1965) proposed the method of orthogonal triangularization suggested by Housh-
older (1953) to solve the recursive least square problem.
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The fact that smoothing problems were left unsolved in the original papers of
Kalman Kalman (1960b, 1963) triggered a cascade of efforts to solve the problem.
See Meditch (1973) for a nice survey of the literature up to 1973.

It is ironic that smoothing problems are easier to address in the Wiener–
Kolmogorov theory. See Chap. 7. One reason is that recursive implementations of
the Wiener–Kolmogorov smoother were not pursued. Doing so would have required
not only the need for properly defining backwards Markovian models but also the
introduction of state space models.

Nerlove (1967) proposed for economic series the unobserved components
hypothesis, according to which the underlying economic variables are not directly
observable by agents. It is assumed that the observed economic variables are the sum
or product of unobserved components, such as trend, cycle, seasonal component,
etc. The unobserved components hypothesis gave rise to the so-called structural
time series models, in which it is assumed from the beginning that the observed
series is the sum of several unobserved components. These models are easily put
into state space form. See, for example, Harrison & Stevens (1976), Harvey (1989),
and Kitagawa & Gersch (1996) and the references therein.

Standard texts in the statistical and econometric literature regarding state space
models and the Kalman filter are Harvey (1989) and Durbin & Koopman (2012).
However, these books do not treat the theory of linear state space models in all
generality, but focus from the beginning on structural time series models.

The TSKF filter was originally proposed by Friedland (1969). See also Ignagni
(1981) and the references therein. These results seem to have passed unnoticed in
the statistical literature and, in fact, some of them have been reinvented by several
authors, like Rosenberg (1973) and Jong (1991). A different approach was taken
by Ansley & Kohn (1985) to tackle the problem of defining the likelihood of a state
space problem with incompletely specified initial conditions. This approach has also
been used by other authors, like Koopman (1997) and Durbin & Koopman (2012).

4.23 Problems

4.1 With the notation of Theorem 4.17, prove that

Qr
t D Qs

t � Qs
t G

0
tP

�1
tC1GtQ

s
t

and

�
I C AtGtQ

s
t G

0
t

	�1 D I � AtGtQ
r
t G

0
t:

Hint: Use the Matrix Inversion Lemma 4.1 and the relation PtC1 D Fs
t PtjtFs0

t C
GtQs

t G
0
t to prove the first equality. To prove the second one, use Lemma 4.1 again

and the definition of Qr
t in Theorem 4.17.
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4.2 Prove Lemma 4.4.

4.3 Using Proposition 1.2, prove Lemma 4.7.

4.4 Prove Theorem 4.32.

4.5 Prove Proposition 4.1.

4.6 Prove that the modified bias-free filter corresponding to Example 4.9 produces
the L�1 and D matrices stated in that example.

4.7 Prove Theorem 4.42.

4.8 After running the TSKF–SRIBF with collapsing using the state space model of
Example 4.3 and the sample Y D .Y1;Y2;Y3/0, apply the fixed interval smoother of
Theorem 4.45 and show that

2

4
Ox1j3
Ox2j3
Ox3j3

3

5 D
2

4
11=21 6=21 4=21

2=7 3=7 2=7

4=21 2=7 11=21

3

5 Y;

2

4
P1j3
P2j3
P3j3

3

5 D
2

4
22=21

6=7

22=21

3

5 :

4.9 Suppose that the process fYt W t D 1; : : : ; ng follows the model

Yt � Yt�4 D At C �At�1;

where the At are uncorrelated random variables with zero mean and common
variance �2. Let ˆ.z/ D 1 � z4;‚.z/ D 1 C �z and ‰.z/ D ˆ.z/�1‚.z/ DP1

jD0 ‰jzj and define xt;i D YtCi�1 � Pi�1
jD0 ‰jAtCi�1�j; j D 1; 2; 3; 4, and xt D

.xt;1; : : : ; xt;4/
0. Show that Akaike’s representation

xtC1 D Fxt C KAt

Yt D Hxt C At; t D 1; 2; : : : ; n;

where

F D

2

6
6
4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

3

7
7
5 ; K D

2

6
6
4

�

0

0

1

3

7
7
5 ; H D Œ1; 0; 0; 0�;

is correct also in this case in spite of the fact that the process fYt W t D 1; : : : ; ng is
not stationary. Justify, using the results of Sect. 4.14.2, why we should take x1 D ı,
where ı is diffuse. Show that, if this initial state vector is used and no collapsing is
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performed, the equations of the modified bias-free filter reduce to

.Et; et/ D .0;Yt/� H.�Ut; xtjt�1/

.�UtC1; xtC1jt/ D F.�Ut; xtjt�1/C K.Et; et/

with initial conditions .�U1; x1j0/ D .�I; 0/ and P1 D 0, because for all t;Pt D
0;†t D �2, and Kt D K.

4.10 Using the results of Sect. 4.14.2, show that we can also take in Example 4.4
x1 D ı, where ı is diffuse, as initial state vector. Prove that, using this initial state
vector, we obtain the same Kalman filter initialization after collapsing the TSKF–
SRIBF at t D 3 as with the original initial state vector.



Chapter 5
Time Invariant State Space Models

Given a time series Y D .Y 0
1; : : : ;Y

0
n/

0 with k-dimensional observations Yt, we say
that it follows a time invariant state space model if we can write

xtC1 D Fxt C G�t; (5.1)

Yt D Hxt C J�t; t D 1; : : : ; n; (5.2)

where f�tg is a zero mean serially uncorrelated sequence of dimension q, Var.�t/ D
�2Iq, and xt has dimension r. The initial state vector x1 is specified as

x1 D Aı C x; (5.3)

where x is a zero mean stochastic vector with Var.x/ D �2�, the matrix A is fixed
and known, and ı is a zero mean stochastic vector with Var.ı/ D �2… that models
the uncertainty about the initial conditions. If …�1 D 0, ı is a “diffuse” random
vector, see Examples 4.3, 4.4 and 4.9. If there are no diffuse effects, then ı is zero
in (5.3) and x1 D x. If … D 0, ı is fixed and x1 has mean Aı and variance �2�. The
notable feature of Eqs. (5.1) and (5.2) is that the system matrices F, G, H, and J do
not depend on the time index t.

In most of this chapter, it will be more convenient to use instead of (5.1) and (5.2)
the following state space form

xtC1 D Fxt C Gut (5.4)

Yt D Hxt C vt; t D 1; : : : ; n; (5.5)
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where

E

��
ut

vt

� �
u0

s; v
0
s

�� D �2
�

Q S
S0 R

�
ıts;

x1 is as in (5.3), and x1 is orthogonal to the zero mean futg and fvtg sequences.

5.1 Covariance Function of a Time Invariant Model

In this section we assume that ı in (5.3) is zero and thus there is no diffuse part in
the initial state vector. Without loss of generality, we also assume that �2 D 1.

The covariances of the state vectors and the observations in (5.4) and (5.5) are
given by the following lemma.

Lemma 5.1 Consider the time invariant state space model (5.4) and (5.5) and let
…t D E.xtx0

t/. Then, …t satisfies …1 D � D E.x1x0
1/ and

…tC1 D F…tF
0 C GQG0; t � 1: (5.6)

The covariances of the state variables can be written as


X.r; s/ D E.xrx
0
s/ D

�
Fr�s…s r � s
…rF.s�r/0 r � s;

and the covariances of the output process fYtg as


Y.r; s/ D E.YrY
0
s/ D

8
<

:

HFr�s�1Ns r > s
R C H…rH0 r D s
N0

rF
.s�r�1/0H0 r < s;

where Nr D F…rH0 C GS D Cov.xrC1;Yr/.

Proof A straightforward direct calculation gives the results. �

5.2 Stationary State Space Models

An important consequence of Lemma 5.1 is that although the underlying state space
model is time invariant, and although the disturbance processes futg and fvtg are
stationary, when we start at t D 1 neither the state process fxt W t � 1g nor the output
process fYt W t � 1g is in general stationary. The reason is that the state covariance
matrix …t is in general time dependent. However, the processes fxt W t � 1g and
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fYt W t � 1g can be made stationary if …t is time invariant, as the following lemma
shows.

Lemma 5.2 The processes fxt W t � 1g and fYt W t � 1g in (5.4) and (5.5) are
stationary if, and only if, E.xrx0

r/ D …r is time invariant,…r D …, for r � 1.

Proof The condition is obviously necessary. By Lemma 5.1, if…r is time invariant,
then Nr is also time invariant, Nr D N, and the condition is also sufficient. �

By Lemma 5.2 and (5.6), if the process fxt W t � 1g is stationary, then E.xrx0
r/ D

… for r � 1 and … satisfies

… D F…F0 C GQG0: (5.7)

This equation is the celebrated discrete-time Lyapunov equation. We will see later
in this chapter that if F has all its eigenvalues inside the unit circle and Q is
positive semi-definite, there is a unique solution … of (5.7) that is positive semi-
definite. Assuming that this condition on F is satisfied, the following theorem gives
a necessary and sufficient condition on the initial state vector x1 for the processes
fxt W t � 1g and fYt W t � 1g to be stationary. It also gives the covariances of these
last two processes when they are stationary.

Theorem 5.1 Consider the time invariant state space model (5.4) and (5.5) and
suppose that F has all its eigenvalues inside the unit circle and that… is the unique
solution of the Lyapunov equation (5.7). Then, the processes fxt W t � 1g and fYt W
t � 1g are stationary with covariances given by


X.r � s/ D E.xrx
0
s/ D

�
Fr�s… r � s
…F.s�r/0 r � s;

and


Y.r � s/ D E.YrY
0
s/ D

8
<

:

HFr�s�1N r > s
R C H…H0 r D s
N0F.s�r�1/0H0 r < s;

where N D F…H0 C GS D Cov.xtC1;Yt/, if, and only if, x1 D x with x � .0;…/.

Proof By Lemma 5.2 and (5.6), the condition is necessary. To see that it is also
sufficient, let x1 D x with x � .0;…/, where… is a solution of (5.7). Then, it follows
from (5.6) that…t D … for t � 1. This in turn implies that Nt D F…H0 CGS is time
invariant, Nt D N, and the processes fxt W t � 1g and fYt W t � 1g are stationary.
The formulae for the covariances are a straightforward consequence of those of
Lemma 5.1. �
Example 5.1 Consider the process fYtg following the autoregressive model Yt D
�Yt�1CAt, where j�j < 1 and fAtg is an uncorrelated sequence of random variables
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with zero mean and common variance �2. This model can be put into state space
form (5.4) and (5.5) as

xtC1 D Fxt C Gut

Yt D Hxt; t D 1; 2; : : : ; n;

where F D �, H D 1, G D 1, vt D 0, ut D AtC1, Q D �2, and x1 � .0; �2…/. For
the process to be stationary, the matrix �2… should satisfy (5.7) or

… D �2…C 1:

Thus,… D 1=.1� �2/ and, using Theorem 5.1, it is obtained that

Var.Y/ D �2

1 � �2

2

6
6
6
4

1 � �2 � � � �n�1
� 1 � � � � �n�2
:::

:::
:::

: : :
:::

�n�1 �n�2 �n�3 � � � 1

3

7
7
7
5
:

Þ

Example 5.2 Let the process fYtg follow the model Yt C�Yt�1 D At C�At�1, where
j�j < 1, j� j < 1 and fAtg is an uncorrelated sequence of random variables with zero
mean and common variance �2. This model can be put into state space form (5.4)
and (5.5) by defining F D ��, G D � ��, H D 1, ut D vt D At, Q D R D S D �2,
and x1 � .0; �2…/. According to (5.7), the process is stationary if, and only if,

… D �2…C .� � �/2;

or… D .���/2=.1��2/. The covariances of xt and Yt can be obtained easily using
Theorem 5.1. See Problem 5.3. Þ

5.3 The Lyapunov Equation

Given the n � n matrices F, … and Q, the Lyapunov equation is defined as

… D F…F0 C Q; (5.8)

where we assume that the matrix Q is symmetric and positive semi-definite. Let �i,
i D 1; : : : ; n, be the eigenvalues of F. The following lemma gives a necessary and
sufficient condition for (5.8) to have a symmetric solution….
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Lemma 5.3 The Lyapunov equation (5.8) has a unique symmetric solution … if,
and only if,

�i�j ¤ 1; i; j D 1; : : : ; n: (5.9)

Proof Using the properties of the Kronecker product, if we apply the vec operator
to (5.8), we get .I �F ˝F/vec.…/ D vec.Q/. Thus, a unique solution vec.…/ exists
if, and only if, the matrix .I � F ˝ F/ is nonsingular. Since the eigenvalues of this
last matrix are given by 1 � �i�j, i; j D 1; : : : ; n, the nonsingularity of .I � F ˝ F/
is equivalent to (5.9). To see that the solution… of (5.8) is symmetric, consider that
…0 also satisfies (5.8). �

It may be the case that the Lyapunov equation (5.8) has a unique solution… that
is not positive semi-definite. The following lemma gives a necessary and sufficient
condition for a solution to be positive semi-definite.

Lemma 5.4 Equation (5.8) has a positive semi-definite solution … if, and only if,
the series

P1
jD0 FjQF0j converges and its sum is equal to …, where F0 D I.

Proof To see that the condition is necessary, iterate in … D F…F0 C Q to get

… D F.F…F0 C Q/F0 C Q

D
n�1X

jD0
FjQF0j C Fn…F0n; n D 1; 2; : : : : (5.10)

Let …n D Pn
jD0 FjQF0j. Then, (5.10) shows that, for any vector v, the sequence

fv0…nvg is nondecreasing and bounded by v0…v. Thus, it has a finite limit. Letting
v D e.i/, where e.i/ is a vector with a one in the i-th position and zeros otherwise,
it is obtained that the i-th element of …n converges. The convergence of .e.i/ C
e. j//

0…n.e.i/ C e. j// shows in turn that the .i; j/ element of …n converges.
To verify the sufficiency of the condition, consider that if the limit … of f…ng

exists, then

… D �
Q C FQF0 C � � � 	

D Q C F
�
Q C FQF0 C � � � 	F0

D Q C F…F0:

�

The following lemma gives a necessary and sufficient condition for the conver-
gence of the series

P1
jD0 FjQF0j.

Lemma 5.5 The series
P1

jD0 FjQF0j converges if, and only if, v0Q1=2 D 0 for all
the vectors v in a Jordan base of F0 corresponding to the eigenvalues � with j�j � 1,
where Q1=2 is any matrix satisfying Q D Q1=2Q1=20

.
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Proof To show that the condition is necessary, let …n D Pn
jD0 FjQF0j and let R

be a nonsingular matrix such that R�1FR D J D D C N, where J is a Jordan
canonical matrix corresponding to F, D is a diagonal matrix, and N is a matrix with
zeros except possibly in the first superdiagonal where it may have ones. Defining
P D R0�1, we get P�1F0P D J0 D D C N0 and the columns of P constitute a Jordan
base for F0, but ordered in such a way that all of the possible ones are located in
the first diagonal under the main diagonal instead of on the first superdiagonal. In
addition, it is easy to verify that F D P0�1JP0, F0 D PJ0P�1 D NP NJ0 NP�1, where
the bar denotes complex conjugation, and P0…n NP D Pn

jD0 JjP0Q NP NJ0j: We can also
assume without loss of generality that

J D
�

JN 0

0 JS

�
; (5.11)

where JN contains the eigenvalues � of F0 with j�j � 1 and JS contains all the other
eigenvalues. Partitioning P D ŒPN ;PS� conforming to (5.11) and defining GN D
P0

NQ1=2 and GS D P0
SQ1=2, we obtain that the submatrix Wn D Pn

jD0 Jj
NGN NG0

N
NJ0j
N of

P0…n NP converges when n ! 1 if, and only if, vec.Wn/ converges. Since

vec.Wn/ D
nX

jD0
. NJj

N ˝ Jj
N/vec.GN NG0

N/

D
nX

jD0
. NJN ˝ JN/

jvec.GN NG0
N/ (5.12)

and
P1

jD0. NJN ˝ JN/
j diverges, for the convergence of vec.Wn/ one must have

vec.GN NG0
N/ D 0, which implies GN D 0. To see this, consider first that NJN ˝ JN is

an upper triangular matrix whose eigenvalues, by the properties of the Kronecker
product, have all modulus greater than or equal to one. Then, proceeding from
bottom to top in (5.12) we get that P0

NQ1=2 D 0.
To prove the sufficiency of the condition, suppose that P0

NQ1=2 D 0. Then,

…n D P0�1
�
0 0

0 Un

�
NP�1;

where Un D Pn
jD0 Jj

SGS NG0
S

NJ0j
S . By an argument similar to that used in the first part

of the proof, it is easy to verify that vec.Un/ converges to .I � NJS ˝ JS/
�1vec.GS NG0

S/

when n ! 1 because the eigenvalues of JS, and thus those of NJS ˝ JS, have all
modulus less than 1. �

The previous lemmas allow us to give a necessary and sufficient condition
for the existence of a unique, positive semi-definite, solution of the Lyapunov
equation (5.8). This is summarized in the following theorem.
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Theorem 5.2 The Lyapunov equation (5.8) has a unique positive semi-definite
solution … if, and only if, the condition of Lemma 5.5 is satisfied and �i�j ¤ 1,
i; j D 1; : : : ; n. The unique solution …, if it exists, is given by vec.…/ D .I � F ˝
F/�1vec.Q/.

Proof Applying the vec operator in … D F…F0 C Q, it is obtained that .I � F ˝
F/vec.…/ D vec.Q/. If a unique, positive, semi-definite, solution… exists, then the
condition of Lemma 5.5 is satisfied and the system .I � F ˝ F/vec.…/ D vec.Q/
has a unique solution. Thus, the matrix .I � F ˝ F/ is nonsingular and F ˝ F cannot
have eigenvalues equal to 1.

Conversely, if the condition of Lemma 5.5 is satisfied and the matrix F ˝ F
has eigenvalues different from 1, then the system .I � F ˝ F/vec.…/ D vec.Q/
has a unique solution and the Lemmas 5.4 and 5.5 show that … is positive
semi-definite. �

Corollary 5.1 Suppose that F in the Lyapunov equation (5.8) has all its eigenvalues
inside the unit circle. Then, (5.8) has a unique positive semi-definite solution …
given by vec.…/ D .I � F ˝ F/�1vec.Q/.

Proof The conditions of Theorem 5.2 are trivially satisfied. �

When the pair ŒF;Q1=2� is stabilizable (see Sect. 5.12), where Q1=2 is any matrix
satisfying Q D Q1=2Q1=20

, the following theorem gives a necessary and sufficient
condition for the convergence of the series

P1
jD0 FjQF0j.

Theorem 5.3 If ŒF;Q1=2� is stabilizable, then the series
P1

jD0 FjQF0j converges if,
and only if, F is stable.

Proof Suppose that the series converges and F is not stable. Then, because the
pair ŒF;Q1=2� is stabilizable, there exists a left eigenvector, v, corresponding to an
eigenvalue, �, with j�j � 1 such that v0Q1=2 ¤ 0. But this contradicts Lemma 5.5.
Conversely, if F is stable, by Lemma 5.5, the series converges. �

Remark 5.1 Consider the state space model (5.4) and (5.5) and replace Q by
GQG0 in the Lyapunov equation (5.8). Then, we can replace in Lemma 5.1 the
condition that F has all its eigenvalues inside the unit circle by the two conditions
of Theorem 5.2 and the lemma still holds. However, with the notation in the proof
of Lemma 5.5, if VN D Var.P0

Nxt/ and fP0
Nxtg is the process corresponding to the

partitioning (5.11), we have VN D 0. Þ

The most important solutions… of the Lyapunov equation (5.8) are those that are
positive definite, to avoid situations like those of the previous remark, in which there
are linear combinations of the state vector that are perfectly linearly predictable. The
following theorem gives a necessary and sufficient condition for the solution … to
be unique and positive definite.

Theorem 5.4 The Lyapunov equation (5.8) has a unique, positive definite, solution
… if, and only if, the pair .F;Q1=2/ is controllable and all the eigenvalues of F are
inside the unit circle, where Q1=2 is any matrix satisfying Q D Q1=2Q1=20

.
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Proof We show first that the condition is necessary. By Lemma 5.4,
Pn

jD0 FjQF0j
converges and

P1
jD0 FjQF0j D …. If F has eigenvalues � with j�j � 1, we saw in

the proof of Lemma 5.5 that det.…/ D 0, a contradiction. This shows that all the
eigenvalues of F are inside the unit circle.

By the properties of the Kronecker product, F ˝ F also has its eigenvalues inside
the unit circle. If the pair .F;Q1=2/ is not controllable, there is a vector v ¤ 0

orthogonal to Q1=2;FQ1=2; : : : ;Fr�1Q1=2. Then, by the Cayley–Hamilton theorem,
v is also orthogonal to any matrix of the form FnQ1=2, where n � r. Because F ˝ F
has all its eigenvalues inside the unit circle, the series

P1
jD0.F ˝ F/j converges to

.I � F ˝ F/�1 and there exists a unique solution given by vec.…/ D .I � F ˝
F/�1vec.Q/. Thus, … D P1

jD0 FjQF0j, v satisfies v0…v D 0 and … is not positive
definite, a contradiction.

To prove sufficiency, consider first that there exists a unique solution because
F has all its eigenvalues inside the unit circle. Then, as we saw in the first part of
the proof, this solution is … D P1

jD0 FjQF0j. In addition, if v is any vector, then

v0…v � v0…r�1v, where …r�1 D Pr�1
jD0 FjQF0j is positive definite because the pair

.F;G1=2/ is controllable. �

The following corollary is an immediate consequence of Theorem 5.4.

Corollary 5.2 There exists a unique causal nondeterministic solution fxtg of (5.5)
with Var.xt/ > 0 if, and only if, .F;GQ1=2/ is controllable and all the eigenvalues
of F are inside the unit circle.

5.4 Covariance Generating Function

Consider the time invariant state space model (5.4) and (5.5) and suppose that F
has all its eigenvalues inside the unit circle and x1 � .0;…/, where … is the unique
solution of the Lyapunov equation (5.7). Then, by Lemma 5.1, the processes fxt W
t � 1g and fYt W t � 1g are stationary with covariances given by


X.r � s/ D E.xrx
0
s/ D

�
Fr�s… r � s
…F.s�r/0 r � s;

and


Y.r � s/ D E.YrY
0
s/ D

8
<

:

HFr�s�1N r > s
R C H…H0 r D s
N0F.s�r�1/0H0 r < s;

(5.13)
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where N D F…H0 C GS D Cov.xtC1;Yt/. Thus, the covariance generating
function of fYtg, GY.z/ D P1

kD�1 
Y.k/zk; is given by

GY.z/ D .R C H…H0/C
1X

kD1
HFk�1Nzk C

1X

kD1
N0.F0/�k�1H0zk

D .R C H…H0/C zH.I � Fz/�1N C z�1N0.I � F0z�1/�1H0: (5.14)

This can be written in matrix form as

GY.z/ D ŒzH.I � Fz/�1 I�

�
0 N

N0 R C H…H0
� �

z�1.I � F0z�1/�1H0
I

�
: (5.15)

Note that if we use generating functions in (5.4) and (5.5), we get

GY.z/ D ŒzH.I � Fz/�1 I�

�
GQG0 GS
S0G0 R

� �
z�1.I � F0z�1/�1H0

I

�
: (5.16)

Remark 5.2 The formula (5.14) for GY.z/ implies that the covariance Hankel matrix
of order r,

Gr D

2

66
6
4


.1/ 
.2/ 
.3/ � � � 
.r/

.2/ 
.3/ 
.4/ � � � 
.r C 1/
:::

:::
:::

: : :
:::


.r/ 
.r C 1/ 
.t C 2/ � � � 
.2r � 1/

3

77
7
5
;

can be expressed as

Gr D

2

66
6
4

H
HF
:::

HFr�1

3

77
7
5

�
N;FN; : : : ;Fr�1N

�
: (5.17)

Consider the VARMA. p; q/ model (3.8) and its Akaike’s state space form (3.13)
and (3.14), where F and K are given by (3.11) and H D ŒI; 0; : : : ; 0�. Then, it is not
difficult to verify that the observability matrix, ŒH0;F0H0; : : : ; .F0/r�1H0�0, where
r D maxf p; qg, is the unit matrix and thus from the definition of Gr and (5.17) it
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follows that

N D Cov.xtC1;Yt/

D F…H0 C GS

D

2

6
4


.1/
:::


.r/

3

7
5

in this case. Þ

5.5 Computation of the Covariance Function

To compute the covariance function of (5.4) and (5.5), assuming that the processes
fxt W t � 1g and fYt W t � 1g are stationary, according to Lemma 5.2, we must first
solve the Lyapunov equation

… D F…F0 C GQG0:

Then, we compute N D F…H0 C GS and the covariances according to (5.13).
A numerically efficient procedure to solve any Lyapunov equation of the form

… D F…F0 C Q consists of first finding the Schur form of F, i.e. an orthogonal
matrix O such that OFO0 D T, where T is a block upper triangular matrix, and then
solving M D TMT 0 C OQO0 for M D O…O0 using a procedure similar to back
substitution. See, e.g., Hammarling (1991).

5.6 Factorization of the Covariance Generating Function

Consider again the time invariant state space model (5.4) and (5.5) and suppose that
F has all its eigenvalues inside the unit circle (F is stable) and x1 � .0;…/, where
… is the unique solution of the Lyapunov equation (5.7). Then, by Lemma 5.1, the
processes fxt W t � 1g and fYt W t � 1g are stationary.

The covariance generating function of fYtg, GY.z/ D P1
kD�1 
Y.k/zk, is given

by (5.16). The covariance factorization problem consists of finding a unique positive
definite matrix † and a unique square matrix function ‰.z/ satisfying G.z/ D
‰.z/†‰0.z�1/ and the two properties of Theorem 3.12.
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To gain some insight into this problem, suppose that we can find matrices † and
K such that (5.16) factorizes as

GY.z/ D ŒzH.I � Fz/�1 I�

�
K
I

�
† ŒK0 I�

�
z�1.I � F0z�1/�1H0

I

�

D ŒI C zH.I � Fz/�1K�† ŒI C z�1K0.I � F0z�1/�1H0�: (5.18)

Then, we can obtain the desired covariance factorization by defining ‰.z/ D I C
zH.I � Fz/�1K. By the matrix inversion lemma, the inverse of ‰.z/, if it exists, is
given by

‰�1.z/ D I � zH.I � Fpz/�1K; (5.19)

where Fp D F � KH. It is not difficult to see that the inverse exists if, and only if,
Fp is stable.

The following lemma will be useful to obtain the factorization.

Lemma 5.6 For any symmetric matrix V, the generating function (5.16) is invari-
ant under transformations of the form

�
GQG0 GS
S0G0 R

�
�!

�
GQG0 � V C FVF0 GS C FVH0

S0G0 C HVF0 R C HVH0
�
:

Proof Given a symmetric matrix V , the lemma will be proved if we prove

ŒH.z�1I � F/�1 I�

��V C FVF0 FVH0
HVF0 HVH0

� �
.zI � F0/�1H0

I

�
D 0:

The left-hand side of the previous equality can be written as

�
H.z�1I � F/�1.�V C FVF0/C HVF0;H.z�1I � F/�1FVH0 C HVH0�

�
�
.zI � F0/�1H0

I

�

D �
H.z�1I � F/�1.�V C FVF0/C HVF0� .zI � F0/�1H0 C H.z�1I � F/�1FVH0

CHVH0

D H.z�1I � F/�1
�
.�V C FVF0/.zI � F0/�1H0

C.z�1I � F/VF0.zI � F0/�1H0 C FVH0�C H.z�1I � F/�1.z�1I � F/VH0

D H.z�1I � F/�1
��V.zI � F0/�1H0 C FVF0.zI � F0/�1H0

C.z�1I � F/VF0.zI � F0/�1H0 C FVH0 C .z�1I � F/VH0�
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D H.z�1I � F/�1
��V.zI � F0/�1H0 C FVF0.zI � F0/�1H0 C z�1VF0.zI � F0/�1H0

�FVF0.zI � F0/�1H0 C FVH0 C z�1VH0 � FVH0�

D H.z�1I � F/�1
��V C z�1VF0 C z�1V.zI � F0/

�
.zI � F0/�1H0

D 0:

�

By Lemma 5.6, it seems natural to try to select a matrix P such that

��P C FPF0 C GQG0 FPH0 C GS
HPF0 C S0G0 R C HPH0

�
D
�

K
I

�
† ŒK0 I�; (5.20)

and Fp D F � KH is stable. Equating terms in (5.20), it is seen that the matrices K
and † should satisfy

† D R C HPH0

K D .FPH0 C GS/†�1 (5.21)

P D FPF0 C GQG0 � K†K0

and that the selected matrix, P, should satisfy the discrete algebraic Riccati equation
(DARE)

P D FPF0 C GQG0 � .FPH0 C GS/.R C HPH0/�1.FPH0 C GS/0: (5.22)

It turns out that, under some rather general assumptions specified in Sect. 5.12.1,
there exists a unique positive semidefinite solution, P, of the DARE (5.22) such that
† is nonsingular and Fp is stable. Such a solution is called a stabilizing solution. If
M is a real symmetric matrix, we will sometimes use in the following the notation
M � 0 to indicate that M is positive semidefinite.

As we will see later in Theorem 7.4, the matrix P in (5.22) is the MSE matrix
of the estimated state in the steady state Kalman filter of (5.4) and (5.5). That is,
if OxtC1jt is the one-period-ahead predictor of xtC1 based on the semi-infinite sample
fYs W s � tg, the following recursion holds

OxtC1jt D FOxtjt�1 C KAt; (5.23)

Yt D HOxtjt�1 C At; t > �1; (5.24)

and the solution P of the DARE (5.22) satisfies P D Var.xt�Oxtjt�1/. Note the relation

E.xtx
0
t/ D EŒ.xt � Oxtjt�1/.xt � Oxtjt�1/0�C E.Oxtjt�1 Ox0

tjt�1/
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that in turn follows from the fact that xt � Oxtjt�1 is orthogonal to Oxtjt�1. Then, letting
Var.Oxtjt�1/ D †, it holds that

… D P C†: (5.25)

If we select the matrix V D … � † D P in Lemma 5.6, we get, by (5.20), the
relation

�
† � F†F0 �F†H0 C N

�H†F0 C N0 R C H…H0 � H†H0
�

D
�

K
I

�
† ŒK0 I�: (5.26)

Equating terms and considering that 
.0/ D R C H…H0 yields

† D 
.0/� H†H0

K D .N � F†H0/†�1 (5.27)

† D F†F0 C K†K0:

Thus, the matrix† satisfies the DARE

† D F†F0 C .N � F†H0/Œ
.0/� H†H0��1.N � F†H0/0: (5.28)

It follows from (5.25), (5.21), and (5.27) that the DARE (5.22) has a solution P if,
and only if, the DARE (5.28) has a solution †.

Finally, if we set V D … in Lemma 5.6, we get the center in (5.15), that is,

��…C F…F0 C GQG0 F…H0 C GS
H…F0 C S0G0 R C HPH0

�
D
�
0 N
N0 R C H…H0

�
; (5.29)

because… satisfies the Lyapunov equation (5.7).
Conditions for the convergence of the Kalman filter recursions to the steady state

recursions (5.23) and (5.24) will be given in Sect. 5.12. By the previous results,
these conditions will also apply for the convergence to the steady state of the
recursions (1.41), (1.42) and (1.43) of Corollary 1.4 when the covariances are those
of the state space model (5.4) and (5.5), given by (5.13).

Consider the VARMA. p; q/model (3.8) and its Akaike’s state space form (3.13)
and (3.14), where F and K are given by (3.11) and H D ŒI; 0; : : : ; 0�. This
corresponds to setting ut D vt D At, K D G, and R D S D Q D Var.At/

in (5.4) and (5.5). Therefore, if we define† D Var.At/, we see that (5.20) holds with
P D 0 and the factorization (5.18) obtains. Since ‰.z/ D I C zH.I � Fz/�1K D
ˆ�1.z/‚.z/ D P1

iD0 ‰izi, GY.z/ can be written as GY.z/ D ‰.z/†‰0.z�1/. In
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addition, by Remark 5.2, it holds that 
. j/ D HFj�1N and

N D Cov.xtC1;Yt/

D

2

6
4


.1/
:::


.r/

3

7
5 :

If we only knew the covariance sequence, f
. j/g, and the autoregressive polyno-
mial, ˆ.z/, of Yt we could obtain the vector K and † D Var.At/ by first solving the
DARE (5.28) and then using (5.27).

Example 5.3 Suppose that fYtg follows the MA.q/ process

Yt D ‚.B/At;

where ‚.z/ D I C ‚1z C � � � C ‚qzq and Var.At/ D †, and we are interested in
obtaining the moving average polynomial matrix, ‚.z/, and the covariance matrix
of the innovations,†, using the covariances, 
.0/,
.1/; : : : ; 
.q/, only. In this case,
the system matrices are given by

F D

2

66
6
6
6
4

0 I 0 � � � 0
0 0 I � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � I
0 0 0 � � � 0

3

77
7
7
7
5
; N D

2

6
4


.1/
:::


.q/

3

7
5 ;

and H D ŒI; 0; : : : ; 0�. Solving the DARE (5.28), we get † D 
.0/� F†F0 and

K D .N � F†H0/†�1 D

2

6
66
4

‚1

‚2

:::

‚q

3

7
77
5
:

From this, we obtain the covariance factorization

GY.z/ D ‚.z/†‚0.z�1/:

By the properties of the DARE, that we will see in Sect. 5.12, the procedure
guarantees that all the roots of the polynomial detŒ‚.z/� are on or outside the unit
circle and † is positive definite. Þ

Remark 5.3 There has been a lot of research in connection with the DARE (5.22)
and efficient and reliable software exists to solve this equation. As just mentioned,
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the solution to the factorization problem of an MA.q/ process can be obtained by
solving the DARE (5.28). It is easy to verify that this can be achieved by reducing
the Eq. (5.28) to the form (5.22) by defining Q D 0, S D �I, R D 
.0/ and G D
Œ
.1/0; : : : ; 
.r/0�0. Þ

5.7 Cointegrated VARMA Models

Let the k-dimensional process fYtg follow the VARMA model

ˆ.B/Yt D ‚.B/At; (5.30)

where ˆ.z/ D ˆ0 Cˆ1z C � � � C ˆlzl, ‚.z/ D ‚0 C‚1z C � � � C‚lzl, ‚0 D ˆ0,
ˆ0 is lower triangular with ones in the main diagonal, the roots of detŒ‚.z/� are all
outside the unit circle, and detŒˆ.z/� D 0 implies jzj > 1 or z D 1. The fact that
both ˆ.z/ and ‚.z/ are supposed to be matrix polynomials with the same degree
does not imply loss of generality because we can always complete one of the matrix
polynomials with zero matrices if that is not the case. The model (5.30) can be in
echelon form, to be described later in this chapter, or not. The following discussion
is not affected by this.

We assume that the matrix …, defined by

… D �ˆ.1/;

has rank r such that 0 < r < k and that there are exactly k � r roots in the model
equal to one. When the model (5.30) satisfies these two conditions, it is called a
cointegrated VARMA model with cointegration rank equal to r.

Under the previous assumptions, the … matrix can be expressed (non
uniquely) as

… D ˛ˇ0;

where ˛ and ˇ are k � r of rank r. Let ˇ? be a k � .k � r/ matrix of rank k � r such
that

ˇ0ˇ? D 0r�.k�r/

and define the matrix P as

P D ŒP1;P2� D Œˇ?; ˇ�:
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Then, it is not difficult to verify that Q D P�1 is given by

Q D
�

Q1

Q2

�
D
�
.ˇ0?ˇ?/�1ˇ0?
.ˇ0ˇ/�1ˇ0

�

and that if we further define U1 D P1Q1 and U2 D P2Q2, the following relations
hold

U1 C U2 D Ik; U1U2 D U2U1 D 0: (5.31)

Thus, we can write

Ik � zIk D .Ik � U1z/.Ik � U2z/ D .Ik � U2z/.Ik � U1z/: (5.32)

The so-called error correction form corresponding to model (5.30) is

	.B/rYt D …Yt�1 C‚.B/At; (5.33)

where r D Ik � BIk, 	.z/ D 	0 C Pl�1
iD1 	izi, and the 	i matrices are defined by

	0 D ˆ0 and

	i D �
lX

jDiC1
ˆj; i D 1; : : : ; l � 1:

It follows from (5.33) that ˇ0Yt�1 is stationary because all the terms in this equation
different from …Yt�1 D ˛ˇ0Yt�1 are stationary. Therefore, there are r so-called
cointegration relations in the model given by ˇ0Yt.

Considering (5.31) and (5.32), the following relation between the autoregressive
polynomials in (5.30) and (5.33) holds

ˆ.z/ D 	.z/.Ik � zIk/�…z

D Œ	.z/.Ik � U2z/�…z� .Ik � U1z/

because…U1 D 0. Thus, definingˆ�.z/ D 	.z/.Ik�U2z/�…z and D.z/ D Ik�U1z,
we can write ˆ.z/ as

ˆ.z/ D ˆ�.z/D.z/ (5.34)

and the model (5.30) as

ˆ�.B/D.B/Yt D ‚.B/At: (5.35)
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Since both U1 D ˇ?.ˇ0?ˇ?/�1ˇ0? and U2 D ˇ.ˇ0ˇ/�1ˇ0 are idempotent and
symmetric matrices of rank k � r and r, respectively, the eigenvalues of these two
matrices are all equal to one or zero. In particular,

det.Ik � U1z/ D .1 � z/k�r

and therefore, the matrix polynomial D.z/ D Ik � U1z in (5.34) is a “differencing”
matrix polynomial because it contains all the unit roots in the model. This implies
in turn that the matrix polynomial ˆ�.z/ in (5.34) has all its roots outside the unit
circle and the series fD.B/Ytg in (5.35) is stationary. Thus, the matrix polynomial
ˆ�.z/ can be inverted so that the following relation holds

D.B/Yt D �
ˆ�.B/

��1
‚.B/At:

Premultiplying the previous expression by ˇ0?, we can see that there are k � r linear
combinations of Yt that are I.1/ given by ˇ0?Yt. In a similar way, premultiplying by
ˇ0, it follows as before that there are r linear combinations of Yt that are I.0/ given
by ˇ0Yt.

The series fD.B/Ytg can be considered as the “differenced series,” and the
notable feature of (5.35) is that the model followed by fD.B/Ytg is stationary.
Therefore, we can specify and estimate a stationary VARMA model if we know
the series fD.B/Ytg.

The matrix U1 can be parameterized as follows. Let

ˇ? D
�
ˇ1
ˇ2

�
;

where ˇ1 is a .k � r/ � .k � r/ matrix and suppose that ˇ1 is nonsingular. Then, we
can write

ˇ? D
�

Ik�r

ˇ2ˇ
�1
1

�
ˇ1

and U1 D ˇ?.ˇ
0
?ˇ?/�1ˇ

0
?, where

ˇ? D
�

Ik�r

ˇ2ˇ
�1
1

�
:

This means that U1 can be parameterized in terms of the k � .k � r/ matrix ˇ2ˇ�1
1 .

In practice, it may happen that the matrix ˇ1 is singular. However, since ˇ? has full
column rank, there is always a nonsingular .k � r/ � .k � r/ submatrix of ˇ? and
we would proceed with this submatrix in a way similar to the one just described in
terms of ˇ1 to parameterize U1.



340 5 Time Invariant State Space Models

5.7.1 Parametrizations and State Space Forms

We can consider two ways to handle cointegrated VARMA models. The first one
parameterizes model (5.33) in terms of the matrix polynomials 	.z/ and ‚.z/ and
the matrices ˛ and ˇ?, where this latter matrix is parameterized as described in
the previous paragraph. The second one parameterizes model (5.35) in terms of the
matrix polynomials ˆ�.z/ and ‚.z/ and the matrix ˇ?. The advantage of the latter
parametrization is that we can specify a stationary VARMA model in echelon form
for the “differenced” series by directly specifyingˆ�.z/ and‚.z/. There is no need
for a reverse echelon form considered by some authors (Lütkepohl, 2007).

If a model is parameterized in terms of the matrix polynomials 	.z/ and ‚.z/
and the matrices ˛ and ˇ? corresponding to the error correction model (5.33), one
can first obtain the matrix polynomialˆ.z/ as ˆ.z/ D 	.z/.Ik � zIk/�…z and then
set up a state space model corresponding to (5.30). The initial conditions can be
obtained following the procedure described in Sect. 4.14.2 and taking into account
that the number of unit roots is known.

On the other hand, if the model is parameterized in terms of the matrix
polynomials ˆ�.z/ and ‚.z/ and the matrix ˇ? corresponding to the model for
the “differenced” series (5.35), the state space model can be set up directly in terms
of (5.35). That is, the data are fD.B/Ytg in the observation equation and the system
matrices correspond to the VARMA model (5.35).

5.7.2 Forecasting

Once a cointegrated VARMA model has been estimated, one can obtain forecasts
with this model as described in Sect. 5.18. To this end, it is advantageous to
use the state space model corresponding to the model (5.33), where the matrix
polynomialˆ.z/ is given byˆ.z/ D 	.z/.Ik � zIk/�…z or (5.34), depending on the
parametrization used. As mentioned earlier, the initial conditions can be obtained
following the procedure described in Sect. 4.14.2 and taking into account that the
number of unit roots is known.

5.8 The Likelihood of a Time Invariant State Space Model

Suppose the state space model (5.4) and (5.5), where the processes fxtg and fYtg
can be stationary or not. As described in Sect. 4.14.2, whether these processes are
stationary or not depends on the eigenvalues of the F matrix. If the eigenvalues of F
are all inside the unit circle, by Lemma 5.2, the processes are stationary if, and only
if, the Lyapunov equation (5.7) is satisfied.
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Letting x1 be given by (5.3), we can use the TSKF-SRIBF to evaluate the
likelihood. According to Sect. 4.20.1 and with the notation of that section, the
concentrated diffuse log-likelihood (4.95) is given by

�D.YIb�2/ D constant � 1

2

(

.np � nı/ ln

"
nX

tD1


b†�1=2

t
bEt

�0 
b†�1=2

t
bEt

�
#

C
nX

tD1
ln j†tj C ln jRdd;nC1j2

)

:

5.9 Canonical Forms for VARMA and State Space Models

In this section we will suppose a process fYtg that follows a finite linear time series
model (3.29) such that ‰0 D I and the rank of the augmented Hankel matrices, Ha

t ,
given by (3.32), is constant for t > r, where r is a fixed positive integer. The process
can be stationary or not. The following development will not be affected by this. Let
fni W i D 1; : : : ; kg be the Kronecker indices and n D Pk

iD1 ni the McMillan degree
corresponding to this model.

5.9.1 VARMA Echelon Form

By the definition of the i-th Kronecker index and the structure of the augmented
Hankel matrices, there exists a vector �i D Œ�i;ni ; : : : ; �i;1; �i;0�, where the �i;j have
dimension 1 � k, j D 0; 1; : : : ; ni, and �i;0 has a one in the i-th position and zeros
thereafter, such that

Œ01�k; : : : ; 01�k; �i;ni ; : : : ; �i;1; �i;0; 01�k; : : : ; 01�k�H
a
t D 0; t > ni: (5.36)

Note that the vector �i can be moved either to the left or to right in the previous
expression without altering the relation due to the structure of Ha

t , t > ni. This
implies that if l D maxfni W i D 1; : : : ; kg, there exists a block vector ˆ D
Œˆl; : : : ; ˆ1, ˆ0� with ˆ0 a lower triangular matrix with ones in the main diagonal
such that

ˆHa
lC1 D 0: (5.37)

In fact, the i-th row of ˆ is Œ0; �i� if ni < l and �i if ni D l, i D 1 : : : ; k. It follows
from (5.37) that if we stack the observations to get

YtWtCl D bHlC1˛1 C b‰lC1AtWtCl; (5.38)
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where YtWtCl D .Y 0
t ; : : : ;Y

0
tCl/

0, AtWtCl D .A0
1; : : : ;A

0
tCl/

0,

bHlC1 D

2

6
6
6
4

ht

htC1
:::

htCl

3

7
7
7
5
; and b‰lC1 D

2

6
6
6
4

‰t�1 � � � ‰1 I
‰t � � � ‰2 ‰1 I
::: � � � :::

:::
:::

: : : I
‰tCl�1 � � � ‰lC1 ‰l ‰l�1 � � � ‰1 I

3

7
7
7
5
;

and we premultiply (5.38) by ˆ, the following VARMA model is obtained

ˆ.B/Yt D ‚.B/At; (5.39)

where ˆ.z/ D ˆ0 Cˆ1z C � � � C ˆlzl, ‚.z/ D ‚0 C‚1z C � � � C‚lzl, ‚0 D ˆ0,
and the ‚i, i D 0; 1; : : : ; l, are given by the product of ˆ and the last l C 1 blocks
of columns of b‰lC1. More specifically,

‚j D ˆj Cˆj�1‰1 C � � � Cˆ0‰j; j D 0; 1; : : : ; l: (5.40)

The VARMA model (5.39) is called the VARMA canonical form or the VARMA
echelon form.

Given the structure of the rows of the matrix ˆ, if j > ni, the i-th row of ˆj

is zero, and if j � ni, the i-th row of ˆj is �i;j. Since, by (5.36), the i-th row of
ˆj�1‰1 C � � � C ˆ0‰j is zero if j > ni, it follows that, by (5.40), the i-th row of ‚j

is zero if j > ni.
The relation (5.36) expresses the fact that the i-th row of the .ni C 1/-th block

of rows depends linearly on the rows of the basis of Proposition 3.8. If any of the
rows preceding the i-th row of the .ni C 1/-th block of rows depends linearly on
the rows of the basis, this row can be eliminated and the corresponding coefficient
in �i can be made zero. Thus, if p < i and np � ni, all of the p-th elements of
�i;0, �i;1; : : : ; �i;ni�np are zero. If p > i and np < ni, all of the p-th elements of
�i;1; : : : ; �i;ni�np are zero. Also, by the structure of �i;0, if p > i, the p-th element of
�i;0 is zero.

Letting �ip;j and �ip;j be the .i; p/-th elements in the matrices ˆj and ‚j, i; p D
1; : : : ; k, j D 0; 1; : : : ; l, and taking into account all the previous relations among
the coefficients in ˆj and ‚j, we can express the matrix polynomials

ˆ.z/ D

2

6
6
66
6
6
6
4

�11.z/ � � � �1i.z/ � � � �1k.z/
:::

: : :
:::

: : :
:::

�i1.z/ � � � �ii.z/ � � � �ik.z/
:::

: : :
:::

: : :
:::

�k1.z/ � � � �ki.z/ � � � �kk.z/

3

7
7
77
7
7
7
5

D ˆ0 Cˆ1z C � � � Cˆlz
l
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and

‚.z/ D

2

6
6
6
66
6
6
4

�11.z/ � � � �1i.z/ � � � �1k.z/
:::

: : :
:::

: : :
:::

�i1.z/ � � � �ii.z/ � � � �ik.z/
:::

: : :
:::

: : :
:::

�k1.z/ � � � �ki.z/ � � � �kk.z/

3

7
7
7
77
7
7
5

D ‚0 C‚1z C � � � C‚lz
l

as follows

�ii.z/ D 1C
niX

jD1
�ii;jz

j; i D 1; : : : ; k; (5.41)

�ip.z/ D
niX

jDni�nipC1
�ip;jz

j; i ¤ p (5.42)

�ip.z/ D
niX

jD0
�ip;jz

j; i; p D 1; : : : ; k; (5.43)

where‚0 D ˆ0 and

nip D
�

minfni C 1; npg for i > p
minfni; npg for i < p

i; p D 1; : : : ; k:

Note that nip specifies the number of free coefficients in the polynomial �ip.z/ for
i ¤ p.

Proposition 5.1 The VARMA echelon form (5.39) is left coprime.

Proof Assume that (5.39) is not left coprime and premultiply (5.39) by ˆ�1
0 to get

ê.B/Yt D e‚.B/At;

where ê.0/ D I and e‚.0/ D I. Then, we can cancel some common nonunimodular
left factor to get left coprime matrix polynomials b̂.z/ and b‚.z/ with degrees
of detŒb̂.z/� and detŒb‚.z/� strictly less than degrees of detŒˆ.z/� and detŒ‚.z/�,
respectively, b̂.0/ D I and b‚.0/ D I. Premultiplying (5.38) by the matrix
b̂ D Œˆ0b̂l; : : : ; ˆ0b̂1; ˆ0�, where b̂j D 0 if j > s and b̂.z/ D Ps

iD0 b̂izi, we
obtain b̂HlC1 D 0 and b̂Ha

lC1 D 0. Since the degree of detŒb̂.z/� is less than the

degree of detŒˆ.z/�, the expression b̂Ha
lC1 D 0 implies a simplification in the unique

representation,ˆHa
lC1 D 0, of the rows of the .l C 1/-th block of rows of Ha

lC1 as a
linear combination of the previous rows implied by the Kronecker indices, and this
is a contradiction. �
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Remark 5.4 It has become customary in the statistical and econometric literature
to use the term VARMA echelon form (Lütkepohl, 2007; Reinsel, 1997) when
referring to the canonical form of a VARMA model expressed in terms of the
backshift operator. This canonical form has been sometimes called reversed echelon
form in the engineering literature. See, for example, Hannan & Deistler (1988).
However, these forms are best suited for forecasting purposes and have not been
used predominantly in the engineering literature. Instead, engineers often prefer to
work with the forward operator and the corresponding so-called canonical matrix
fraction descriptions (MFDs), see the Appendix to this chapter. These canonical
MFDs have some advantages with respect to VARMA echelon forms. For example,
as shown in the Appendix to this chapter, the McMillan degree is always the
determinantal degree of the denominator matrix of the canonical MFD. See also
Kailath (1980) and Hannan & Deistler (1988). Þ

5.9.2 State Space Echelon Form

Suppose that fYtg follows the finite linear time series model (3.29) and define the
forecasts as

YtCijt D YtCi � AtCi �‰1AtCi�1 C � � � C‰i�1AtC1; i D 1; 2; : : : : (5.44)

Then, we can write

2

6
6
6
4

YtC1jt
YtC2jt
:::

YtCijt

3

7
7
7
5

D

2

6
6
6
4

‰1 ‰2 � � � ‰t htC1
‰2 ‰3 � � � ‰tC1 htC2
:::

:::
: : :

:::
:::

‰i ‰iC1 � � � ‰tCi�1 htCi

3

7
7
7
5

2

6
6
6
66
6
4

At

At�1
:::

A1
˛1

3

7
7
7
77
7
5

; (5.45)

and, in particular, for i D t

2

6
4

YtC1jt
:::

Y2tjt

3

7
5 D

2

6
4

htC1
Ht

:::

h2t

3

7
5

2

6
6
6
4

At
:::

A1
˛1

3

7
7
7
5
:

Thus, we see that relations among rows of the augmented Hankel matrices, Ha
t , are

equivalent to relations among forecasts. The following expression, that is a direct
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consequence of (5.44) and (5.45), is also useful.

2

6
6
6
66
4

Yt

YtC1jt
YtC2jt
:::

YtCijt

3

7
7
7
77
5

D

2

6
6
6
66
4

I
‰1
‰2
:::

‰i

3

7
7
7
77
5

At C

2

6
6
6
66
4

Ytjt�1
YtC1jt�1
YtC2jt�1

:::

YtCijt�1

3

7
7
7
77
5
: (5.46)

Let us assume first that the Kronecker indices satisfy ni � 1, i D 1; : : : ; k. Then,
it follows from (5.36) and (5.45) that

�i;0YtCniC1jt C �i;1YtCnijt C � � � C �i;ni YtC1jt D 0:

This in turn implies, by (5.41) and (5.42), that

Yi
tCniC1jt C

niX

jD1
�ii;jY

i
tCniC1�jjt C

X

i¤p

niX

jDni�nipC1
�ip;jY

p
tCniC1�jjt D 0; (5.47)

where Yp
tCjjt denotes the p-th element of YtCjjt, p D 1; : : : ; k, j D 1; 2; : : :.

From (5.46) and (5.47), the following relations are obtained

Yi
tCjjt D Yi

tCjjt�1 C‰i;jAt; j D 1; 2 : : : ; ni � 1 (5.48)

Yi
tCnijt D �

niX

jD1
�ii;jY

i
tCni�jjt�1 �

X

i¤p

niX

jDni�nipC1
�ip;jY

p
tCni�jjt�1 C‰i;ni At;

(5.49)

where ‰i;j denotes the i-th row of the matrix ‰j, i D 1; 2; : : :.
By (5.45), to the basis of rows of the augmented Hankel matrices implied by the

Kronecker indices and specified in Proposition 3.8 corresponds a basis of the space
of forecasts. If we stack the elements of this basis of forecasts in the vector

xtC1 D
h
Y1tC1jt; : : : ;Y

1
tCn1jt;Y

2
tC1jt; : : : ;Y

2
tCn2jt; : : : ;Y

k
tC1jt; : : : ;Y

k
tCnkjt

i0
; (5.50)

where dim.xtC1/ D Pk
iD1 ni, by (5.46), (5.48) and (5.49), it is obtained that

xtC1 D Fxt C KAt (5.51)

Yt D Hxt C At; (5.52)
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where

F D

2

6
6
6
66
6
6
4

F11 � � � F1i � � � F1k

:::
: : :

:::
: : :

:::

Fi1 � � � Fii � � � Fik
:::
: : :

:::
: : :

:::

Fk1 � � � Fki � � � Fkk

3

7
7
7
77
7
7
5

; K D

2

6
6
6
66
6
6
4

K1
:::

Ki
:::

Kk

3

7
7
7
77
7
7
5

; Ki D

2

6
4

‰i;1
:::

‰i;ni

3

7
5 ;

Fii D

2

6
6
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

��ii;ni � � � � � � ��ii;1

3

7
7
7
5
; Fip D

2

6
6
6
4

0 � � � 0 0 � � � 0
:::

: : :
:::

:::
: : :

:::

0 � � � 0 0 � � � 0
��ip;ni � � � ��ip;ni�nipC1 0 � � � 0

3

7
7
7
5
;

H D

2

6
66
4

1 � � � 0 0 0 � � � 0 0 � � � 0 � � � 0 0
0 � � � 0 0 1 � � � 0 0 � � � 0 � � � 0 0
:::
: : :

:::
:::
:::
: : :

:::
:::
:::
:::
: : :

:::
:::

0 � � � 0 0 0 � � � 0 0 � � � 1 � � � 0 0

3

7
77
5
;

Fii is ni � ni, Fip is ni � np, and H is k � .n1 C � � � C nk/. The state space form (5.51)
and (5.52) is called the state space echelon form.

Proposition 5.2 The state space echelon form (5.51) and (5.52) is minimal.

Proof The result is a consequence of Proposition 3.9, since the dimension of xt is
equal to the McMillan degree. �

When some of the Kronecker indices are zero, the echelon form is different from
the one we have just described. The situation is best illustrated with an example. Let
Œ3; 0; 2; 0� be the vector of Kronecker indices. Thus, k D 4 and the McMillan degree
is n D 5. Letting Yt D .Y1t; : : : ;Y4t/

0 and considering the second and fourth rows of
the VARMA echelon form given by (5.41), (5.42), and (5.43), we get the equations

Y2t C �21;0Y1t D A2t C �21;0A1t

Y4t C �41;0Y1t C �43;0Y3t D A4t C �41;0A1t C �43;0A3t:

It follows from this that

Y2t D A2t � �21;0.Y1t � A1t/

D A2t � �21;0Y
1
tjt�1

Y4t D A4t � �41;0.Y1t � A1t/ � �43;0.Y3t � A3t/

D A4t � �41;0Y
1
tjt�1 � �43;0Y

3
tjt�1:
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Since the state vector is

xtC1 D
h
Y1tC1jt;Y

1
tC2jt; ;Y

1
tC3jt;Y

3
tC1jt;Y

3
tC2jt

i0
;

we have to modify the H matrix of the echelon form so that it becomes

H D

2

6
6
4

1 0 0 0 0

��21;0 0 0 0 0

0 0 0 1 0

��41;0 0 0 ��43;0 0

3

7
7
5 :

The F and K matrices of the echelon form are

F D
"

F11 F13
F31 F33

#

; K D
"

K1
K3

#

; Ki D

2

6
4

‰i;1
:::

‰i;ni

3

7
5 ;

Fii D

2

66
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

��ii;ni � � � � � � ��ii;1

3

77
7
5
; Fip D

2

66
6
4

0 � � � 0 0 � � � 0
:::

: : :
:::

:::
: : :

:::

0 � � � 0 0 � � � 0
��ip;ni � � � ��ip;ni�nipC1 0 � � � 0

3

77
7
5
;

i; p D 1; 3I n1 D 3; n2 D 0; n3 D 2; n4 D 0:

5.9.3 Relation Between VARMA and State Space Echelon
Forms

Theorem 5.5 Given the innovations process fAtg � .0;†/, † > 0, and the
initial conditions, I D fY11; : : : ;Y1n1 ; : : : ;Yk1; : : : ;Yknk g, of the process fYtg, Yt D
.Y1t; : : : ;Ykt/

0, the following statements are equivalent

i) fYtg follows a finite linear time series model (3.29) such that the rank of the
augmented Hankel matrices, Ha

t , is constant for t > r, the Kronecker indices
are fni W i D 1; : : : ; kg, dim.˛1/ D Pk

iD1 ni, and the initial conditions are I.
ii) fYtg follows a VARMA echelon form (5.39) such that the Kronecker indices are

fni W i D 1; : : : ; kg, and the initial conditions are I.
iii) fYtg follows a state space echelon form (5.51) and (5.52) such that the

Kronecker indices are fni W i D 1; : : : ; kg, and the initial conditions are I.

Proof Let, as before, ‰i;j denote the i-th row of the matrix ‰j, i D 1; 2; : : :.
We will first prove that i) implies iii). It has been proved in Sect. 5.9.2 that fYtg
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satisfies (5.51) and (5.52). Given the definition (5.50), if we select

x1 D
h
Y11j0; : : : ;Y

1
n1j0;Y

2
1j0; : : : ;Y

2
n2j0; : : : ;Y

k
1j0; : : : ;Y

k
nk j0
i0
;

where

Yp
ij0 D Ypi � Api �‰p;1Ai�1 C � � � C‰p;i�1A1; i D 1; : : : ; ni; p D 1; : : : ; k;

and At D .A1t; : : : ;Akt/
0, it is clear that fYtg is a solution of (5.51) and (5.52) with

initial conditions I.
To prove that iii) implies ii), iterate first in (5.51) and (5.52) to get

Yt D HFt�1x1 C At C HKAt�1 C � � � C HFt�2KA1

D htx1 C At C‰1At�1 C � � � C‰t�1A1; t D 1; 2; : : : :

Thus, fYtg follows a finite linear time series model (3.29) with ht D HFt�1, ‰t D
HFt�1K, Kronecker indices fni W i D 1; : : : ; kg, ˛1 D x1, dim.x1/ D Pk

iD1 ni, and
initial conditions I. Then, it has been proved in Sect. 5.9.1 that fYtg satisfies (5.39).
Given the structure (5.41)–(5.43), it is easy to verify that fYtg is a solution of (5.39)
if the same initial conditions, I, are selected.

We finally prove that ii) implies i). Let l D maxfni W i D 1; : : : ; kg, ‰.z/ DP1
jD0 ‰jzj D ˆ�1.z/‚.z/ and ˛1 D x1, where x1 has been defined in the first part of

the proof. Define ht D HFt�1, t D 1; : : : ; l, where F and H are as in Sect. 5.9.2, Fii

is ni �ni, Fip is ni �np, H is k �.n1C� � �Cnk/ and the �ip;j parameters of F are equal
to the corresponding ones in ˆ.z/. Define furtherˆ0ht D �ˆ1ht�1 � � � � � �ˆlht�l

for t > l. We will prove that the process fYt;Pg, where

Yt;P D ht˛1 C At C‰1At�1 C � � � C‰t�1A1; t D 1; 2; : : : ;

has the required properties and thus coincides with fYtg. It is not difficult but
somewhat tedious to verify that the initial conditions of fYt;Pg are I and that its
Kronecker indices are fni W i D 1; : : : ; kg. On the other hand, by the definition of ht,
it follows that

ˆ.B/Yt;P D ˆ.B/

2

4
t�1X

jD0
‰jAt�j C ht˛1

3

5

D ˆ.B/
�
I C‰1B C � � � C‰t�1Bt�1�At

D ‚.B/At; t > l;

and the theorem is proved. �
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5.9.4 Echelon and Overlapping Parametrizations

Suppose we have a time series that is a sample of a process, fYtg, following a
finite linear time series model (3.29) under the assumptions in i) of Theorem 5.5.
According to this theorem, we can use the state space or the VARMA echelon
form to represent the process. These echelon forms are unique and we can use the
parameters different from one or zero in them to parameterize the process. These
parameters constitute the echelon parametrization. Once we have identified the
state space or the VARMA echelon form, we can estimate the parameters using
the observed time series. However, if the echelon form is incorrectly identified, the
estimation algorithm will encounter numerical difficulties.

The previous consideration is at the root of the so-called overlapping
parametrizations for state space models that have a fixed McMillan degree. The idea
behind the overlapping parametrizations is to use a finite set of parametrizations in
the estimation algorithm that we know can represent the process in a neighborhood
of the true parameter values. We also know that the process can be represented by
some subset of these parametrizations at the true parameter values. Thus, when we
are approaching the true values, any parametrization in the set can be used, but as we
get closer and closer to the true values those parametrizations that do not represent
the process at these values will turn numerically unstable. We can detect using some
test when this situation occurs and in this case we change the parametrizations
until we find some alternative one that is numerically stable and thus represents
the process at the true values. The optimization algorithm is not affected by the
changes in the parametrizations because, as mentioned earlier, all parametrizations
can represent the process when the parameter values are not sufficiently close to the
true ones. Therefore, the gains in the optimization process are maintained when we
change the parametrization.

To make the previous idea mathematically rigorous, we start with the following
definition.

Definition 5.1 Suppose a finite linear time series model (3.29) such that the rank
of the augmented Hankel matrices, Ha

t , is constant for t > r, the Kronecker indices
are fni W i D 1; : : : ; kg and the McMillan degree is n D Pk

iD1 ni. A selection,
.i1; : : : ; in/, of n rows of Ha

t , t > r, is called “nice” if the following two conditions
are satisfied.

i) 1; 2; : : : ; k 2 .i1; : : : ; in/
ii) if j 2 .i1; : : : ; in/ and j > k, then j � k 2 .i1; : : : ; in/
Given the structure of the nice selections, to any nice selection there corresponds a
set of integers, fm1; : : : ;mkg, such that

n D m1 C � � � C mk; mi � 1; i D 1; : : : ; k;

called the set of intrinsic invariants. To each number mi, i D 1; : : : ; k, the rows
kp C i, p D 0; 1; : : : ;mi � 1, are in the nice selection.
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It can be shown that the number of nice selections is equal to



n � 1
k � 1

�
. It is to be

noted that the rows of the basis implied by the Kronecker indices, ni, i D 1; : : : ; k, of
Proposition 3.8 constitute a nice selection when ni � 1 for all i. Another selection
that is also nice is that formed with the first n rows. This selection is called the
generic selection. If the McMillan degree is n D Pk

iD1 mi, the intrinsic invariants
of the generic selection are given by

m1 D m2 D � � � D ms D
hn

k

i
C 1

and

msC1 D � � � D mk D
hn

k

i

for some s, where Œx� denotes the integer part of x. In the case in which the first n
rows are a basis of the space of rows of the augmented Hankel matrix, Ha

t , t > r,
the intrinsic invariants of the generic selection coincide with the Kronecker indices.

Suppose that a nice selection with intrinsic invariants fm1; : : : ;mkg and McMillan
degree n D Pk

iD1 mi is a basis of the space of rows of the augmented Hankel matrix,
Ha

t , t > r. Then, we can derive a canonical form similar to the echelon form. This
canonical form has 2nk parameters and can be obtained as follows.

As mentioned earlier, to the basis of the rows of the augmented Hankel matrices
corresponds a basis of forecasts. Given the structure of the nice selection, this basis
is fY1tC1jt; : : : ;Y

1
tCm1jt;Y

2
tC1jt; : : : ;Y

2
tCm2jt; : : :, Yk

tC1jt; : : :, Yk
tCmk jtg. By the definition

of nice selection, the .mik C i/-th row of the augmented Hankel matrices depends
linearly on all the rows in the basis, i D 1; : : : ; k. This in turn implies that there exist
unique numbers �ip;j, i; p D 1; : : : ; k, j D 1; : : : ;mp, such that

Yi
tCmiC1jt C

kX

pD1

mpX

jD1
�ip;jY

p
tCmpC1�jjt D 0: (5.53)

From (5.46) and (5.53), the following relations are obtained

Yi
tCjjt D Yi

tCjjt�1 C‰i;jAt; j D 1; 2 : : : ;mi � 1 (5.54)

Yi
tCmijt D �

kX

pD1

mpX

jD1
�ip;jY

p
tCmp�jjt�1 C‰i;mi At: (5.55)

If we stack the elements of the basis of forecasts in the vector

xtC1 D
h
Y1tC1jt; : : : ;Y

1
tCm1jt;Y

2
tC1jt; : : : ;Y

2
tCm2jt; : : : ;Y

k
tC1jt; : : : ;Y

k
tCmk jt

i0
; (5.56)
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where dim.xtC1/ D Pk
iD1 mi, by (5.46), (5.54), and (5.55), it is obtained that

xtC1 D Fxt C KAt (5.57)

Yt D Hxt C At; (5.58)

where

F D

2

6
6
66
6
6
6
4

F11 � � � F1i � � � F1k
:::
: : :

:::
: : :

:::

Fi1 � � � Fii � � � Fik

:::
: : :

:::
: : :

:::

Fk1 � � � Fki � � � Fkk

3

7
7
77
7
7
7
5

; K D

2

6
6
66
6
6
6
4

K11
:::

Ki1

:::

Kk1

3

7
7
77
7
7
7
5

; Ki1 D

2

6
4

‰i;1
:::

‰i;mi

3

7
5 ;

Fii D

2

6
6
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

��ii;mi � � � � � � ��ii;1

3

7
7
7
5
; Fip D

2

6
6
6
4

0 � � � 0
:::

: : :
:::

0 � � � 0

��ip;mp � � � ��ip;1

3

7
7
7
5
;

H D

2

66
6
4

1 � � � 0 0 0 � � � 0 0 � � � 0 � � � 0 0
0 � � � 0 0 1 � � � 0 0 � � � 0 � � � 0 0
:::
: : :

:::
:::
:::
: : :

:::
:::
:::
:::
: : :

:::
:::

0 � � � 0 0 0 � � � 0 0 � � � 1 � � � 0 0

3

77
7
5
;

Fii is mi �mi, Fip is mi �mp, and H is k�.m1C� � �Cmk/. The state space form (5.57)
and (5.58) is called the state space canonical form corresponding to the intrinsic
invariants fmi W i D 1; : : : ; kg and McMillan degree n D Pk

iD1 mi. To each canonical
form corresponding to the intrinsic invariants fmi W i D 1; : : : ; kg and McMillan
degree n D Pk

iD1 mi we can associate a parameter vector, �nWm1;:::;mk D Œ�11;1; : : :,
�kk;mk ;  11;1; : : :,  kk;mk �

0 2 R
2nk, where  ip;j is the element .i; p/ in ‰j.

Proposition 5.3 The canonical form (5.57) and (5.58) corresponding to a nice
selection with intrinsic invariants fm1; : : : ;mkg and McMillan degree n D Pk

iD1 mi

that is a basis of the space of rows of the augmented Hankel matrix, Ha
t , t > r, is

minimal.

Proof The result is a consequence of Proposition 3.9, since the dimension of xt is
equal to the McMillan degree. �

Proposition 5.4 The canonical form (5.57) and (5.58) corresponding to a nice
selection with intrinsic invariants fm1; : : : ;mkg and McMillan degree n D Pk

iD1 mi

is observable but not necessarily controllable.
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Proof Let OnWm1;:::;mk D ŒH0;F0H0, : : : ;F0n�1H0�0 be the observability matrix. Then,
stack the observations to get

YtC1WtCn D OnWm1;:::;mk Fxt C b‰nC1AtWtCn (5.59)

where YtC1WtCn D .Y 0
tC1; : : : ;Y 0

tCn/
0, AtWtCn D .A0

t; : : : ;A
0
tCn/

0,

b‰nC1 D

2

6
6
6
4

‰1 I
‰2 ‰1 I
:::

:::
:::
: : : I

‰n ‰n�1 � � � � � � ‰1 I

3

7
7
7
5
;

and ‰i D HFi�1K, i D 1; : : : ; n. Considering the definition of the forecasts (5.44),
it follows from (5.59) that

2

66
6
4

YtC1jt
YtC2jt
:::

YtCnjt

3

77
7
5

D OnWm1;:::;mk Fxt C

2

66
6
4

‰1
‰2
:::

‰n

3

77
7
5

At: (5.60)

Let JnWm1;:::;mk be a selection matrix formed with zeros and ones such that

xtC1 D JnWm1;:::;mk ŒY
0
tC1jt; : : : ;Y

0
tCnjt�

0:

Then, premultiplying (5.60) by JnWm1;:::;mk , it is obtained that JnWm1;:::;mk OnWm1;:::;mk is
the unit matrix, In, and, therefore, (5.57) and (5.58) are observable. �

Remark 5.5 It follows from Proposition 5.4 that the echelon form (5.51) and (5.52)
is observable because the Kronecker indices are a special case of intrinsic
invariants. Þ

Proposition 5.5 The set, SnWm1;:::;mk � R
2nk, of parameter vectors of canonical

forms (5.57) and (5.58) corresponding to a nice selection with intrinsic invariants
fmi W i D 1; : : : ; kg and McMillan degree n D Pk

iD1 mi that is a basis of the space
of rows of the augmented Hankel matrix, Ha

t , t > r, is a dense open subset of R2nk.

Proof We will first prove that SnWm1;:::;mk is open. By Proposition 5.4, (5.57)
and (5.58) are always observable. By Proposition 5.3, (5.57) and (5.58) are minimal
and, therefore, controllable, for parameter vectors � 2 SnWm1;:::;mk . Let CnWm1;:::;mk .�/

be the controllability matrix, defined in Sect. 5.12, for � 2 SnWm1;:::;mk and let

A.�/ D max fjAi.�/j W Ai.�/ is a minor of order n of CnWm1;:::;mk .�/g :
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Then,

SnWm1;:::;mk D f˛ 2 R
2nk W A.˛/ > 0g

and SnWm1;:::;mk is open because it is the inverse image of an open set under a
continuous function.

To prove that SnWm1;:::;mk is dense, we have to prove that for all ˛ 2 R
2nk there

is a neighborhood of ˛ that contains a point in SnWm1;:::;mk . If ˛ 2 SnWm1;:::;mk , the
theorem is proved. Suppose otherwise. Then, the rows of the nice selection do not
constitute a basis of the space of rows of the augmented Hankel matrix, Ha

t .˛/,
t > r, and, therefore, (5.57) and (5.58) are not minimal. By Theorem 3.3 and
Proposition 5.4, the controllability matrix does not have rank n. However, in any
neighborhood of ˛ it is easy to see that it is possible to find a state space model (5.57)
and (5.58) in which the controllability matrix has rank n. This model is thus minimal
and its parameter vector is in SnWm1;:::;mk because otherwise the model would not be
minimal. �

The overlapping parametrizations are defined for the augmented Hankel
matrices, Ha

t , of McMillan degree n as the parameter vectors, �nWm1;:::;mk 2 R
2nk,

of the canonical forms (5.57) and (5.58) that correspond to the different intrinsic
invariants fmi W i D 1; : : : ; kg such that n D Pk

iD1 mi. Note that it is not assumed
that the rows corresponding to the different intrinsic invariants form a basis of the
space of rows of the augmented Hankel matrices.

To estimate a state space model of McMillan degree n using overlapping
parametrizations, we start with a set of intrinsic invariants, fmi W i D 1; : : : ; kg, and
a parameter vector, �nWm1;:::;mk , corresponding to a canonical form (5.57) and (5.58).
We will iterate in the optimization algorithm using this set of intrinsic invariants
unless we encounter numerical difficulties that we measure with some kind of test.
If this is the case, we change the set of intrinsic invariants and the corresponding
vector of parameters until we find some suitable parametrization to continue with
the optimization. This process is repeated until convergence has been achieved.
Proposition 5.5 guarantees that any overlapping parametrization that we use in the
neighborhood of the true parameter values will be a valid one. It is only when we
get close to these values that some parametrizations may become unstable. In this
case, we replace the unstable parametrization with a stable one and proceed with the
optimization. Note that the intrinsic invariants are not part of the parameter vector
when using this estimation method. This is in contrast with the method that uses the
echelon parametrizations, where the Kronecker indices are assumed to be known at
the start of the optimization process.

To find the matrix that transforms a state vector, xt, corresponding to the intrinsic
invariants fmi W i D 1; : : : ; kg to another state vector, Nxt, corresponding to the
intrinsic invariants fmi W i D 1; : : : ; kg, consider (5.60). Letting JnWm1;:::;mk a selection
matrix formed with zeros and ones such that NxtC1 D JnWm1;:::;mk ŒY

0
tC1jt; : : :, Y 0

tCnjt�
0,
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we see that the matrix T such that NxtC1 D TxtC1 is

T D JnWm1;:::;mk OnWm1;:::;mk :

5.10 Covariance Factorization for State Space Echelon
Forms

Consider a multivariate stationary process fYtg that follows the VARMA. p; q/
model (5.39) in echelon form and the state space echelon form (5.51) and (5.52).
As mentioned in Sect. 5.6, this corresponds to setting ut D vt D At, R D S D
Q D Var.At/ and K D G in (5.4) and (5.5). Defining † D Var.At/, we see
that (5.20) holds with P D 0 and the factorization (5.18) holds. If we further define
‰.z/ D I C zH.I � Fz/�1K, then ‰.z/ D ˆ�1.z/‚.z/ D P1

iD0 ‰izi and GY.z/ can
be written as GY.z/ D ‰.z/†‰0.z�1/. In addition,

K D

2

6
6
66
6
6
6
4

K1
:::

Ki

:::

Kk

3

7
7
77
7
7
7
5

; Ki D

2

6
4

‰i;1
:::

‰i;ni

3

7
5 ;

where‰i;j denotes the i-th row of the matrix‰j, i D 1; 2; : : :, and fni W i D 1; : : : ; kg
are the Kronecker indices, and, by Remark 5.2, 
. j/ D HFj�1N and

2

6
4


.1/
:::


.n/

3

7
5 D

2

6
66
4

H
HF
:::

HFn�1

3

7
77
5

N

D OnN; (5.61)

where N D Cov.xtC1;Yt/, n D Pk
iD1 ni is the McMillan degree and On is the

observability matrix.
Stacking the observations in (5.51) and (5.52), we get

YtC1WtCn D OnFxt C b‰nC1AtWtCn (5.62)



5.10 Covariance Factorization for State Space Echelon Forms 355

where YtC1WtCn D .Y 0
tC1; : : : ;Y 0

tCn/
0, AtWtCn D .A0

t; : : : ;A
0
tCn/

0,

b‰nC1 D

2

66
6
4

‰1 I
‰2 ‰1 I
:::

:::
:::
: : : I

‰n ‰n�1 � � � � � � ‰1 I

3

77
7
5
;

and ‰i D HFi�1K, i D 1; : : : ; n. Considering the definition of the forecasts (5.44),
it follows from (5.62) that

2

6
6
6
4

YtC1jt
YtC2jt
:::

YtCnjt

3

7
7
7
5

D OnFxt C

2

6
6
6
4

‰1

‰2
:::

‰n

3

7
7
7
5

At:

Let Jn be a selection matrix formed with zeros and ones such that

xtC1 D JnŒY
0
tC1jt; : : : ;Y

0
tCnjt�

0

D
h
Y1tC1jt; : : : ;Y

1
tCn1jt;Y

2
tC1jt; : : : ;Y

2
tCn2jt; : : : ;Y

k
tC1jt; : : : ;Y

k
tCnkjt

i0
:

Then, premultiplying (5.62) by Jn, it is obtained that JnOn is the unit matrix, In, and,
by (5.61),

N D Jn

2

6
4


.1/
:::


.n/

3

7
5 : (5.63)

In fact, it can be verified that the rows f.r � 1/p C i W 1 � r � niI 1 � i � kg of On

are equal to In. Therefore, these same rows of the matrices

2

6
4


.1/
:::


.n/

3

7
5 and

2

6
66
4

‰1

‰2
:::

‰n

3

7
77
5

are equal to the matrices N and K, respectively.
If we only knew the covariance sequence, f
. j/g, and the autoregressive polyno-

mial, ˆ.z/, of Yt, we could estimate the vector K and † D Var.At/ by first solving
the DARE (5.28) and then using (5.27). The moving average polynomial, ‚.B/At,
could be obtained using the relations (5.40). Note that, because ‰i D HFi�1K,
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i D 1; : : : ; n, only the rows of the ‰i matrices contained in K are needed for the
calculations in (5.40).

5.11 Observability and Controllability

Let A and B be matrices with dimensions a � a and a � b. The following definitions
are important regarding (5.4) and (5.5) or (5.67) in the next section and (5.5).

• The pair of matrices .A;B/ is controllable if there does not exist a left
eigenvector of A that is orthogonal to B. That is, for all vector v ¤ 0 and scalar
� such that vA D �v, the relation vB ¤ 0 holds. A necessary and sufficient
condition for the pair .A;B/ to be controllable is that the controllability matrix,
ŒB;AB; : : : ;Aa�1B�, has full row rank.

• The pair of matrices .A;B/ is stabilizable if there does not exist a left eigenvector
of A corresponding to an unstable eigenvalue that is orthogonal to B. That is, for
all vector v ¤ 0 and scalar � such that vA D �v and j�j � 1, the relation vB ¤ 0

holds.
• The pair of matrices .A;B/ is observable if and only if the pair .A0;B0/ is

controllable. A necessary and sufficient condition for the pair .A;B/ to be
observable is that the observability matrix, ŒB0;A0B0; : : : ; .A0/a�1B0�0, has full
column rank.

• The pair of matrices .A;B/ is detectable if and only if the pair .A0;B0/ is
stabilizable.

• A real symmetric positive semidefinite solution P of the DARE (5.22) is said to
be a strong solution if the corresponding matrix Fp D F � KH, where K D
.FPH0 C GS/.R C HPH0/�1, has all its eigenvalues inside or on the unit circle. If
Fp has all its eigenvalues inside the unit circle, the solution is called a stabilizing
solution.

The following two lemmas are important in connection with Observability and
Controllability.

Lemma 5.7 (Controllability Staircase Form) Given a pair of matrices, .F;G/,
with F 2 R

.r;r/ and G 2 R
.r;q/, G ¤ 0, there always exists an orthogonal matrix

U 2 R
.r;r/ such that

�
U0G k U0FU

� D

2

6
6
66
6
6
6
4

X1 F1;1 F1;2 � � � F1;l F1;lC1
0 X2 F2;2

:::
:::

:::
: : :

: : :
: : :

:::
:::

:::
: : : Xl Fl;l Fl;lC1

0 � � � � � � 0 0 FlC1;lC1

3

7
7
77
7
7
7
5

; (5.64)
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where the Fi;i, i D 1; : : : ; l, are i �i matrices and the Xi, i D 1; : : : ; l, are i �i�1
matrices of full row rank (with 0 D q). As a consequence, q D 0 � i � � � � �
l > 0 and FlC1;lC1 is a square matrix of dimension .r � �l/ � .r � �l/ with �l DPl

iD1 i.

Proof We will illustrate the process first for q D 1. The general case will be proved
later. It is easy to see that one can find an orthogonal matrix, U1, such that

U0
1G D

2

6
6
6
4

X1
0
:::

0

3

7
7
7
5
; U0

1FU1 D

2

6
6
6
4

� � � � � �
� � � � � �
:::
:::
: : :

:::

� � � � � �

3

7
7
7
5
;

where X1 is a nonzero number and the symbol � indicates a number that can
be different from zero. In fact U1 is the matrix of a Householder transformation
that puts G in the required form. If one now redefines the matrices G and F
as G1 and F1 and the bottom two blocks of U0

1FU1 as G2 and F2, then the

additional transformation U0
2 D

"
1

H0
2

#

; where H0
2 is the matrix of a Householder

transformation, is such that

U0
2U

0
1G1 D

2

66
6
4

X1
0
:::

0

3

77
7
5
; U0

2U
0
1F1U1U2 D

"
� � : : : �

H0
2G2 H0

2F2H2

#

:

Thus, U0
2 in fact applies H0

2 to G2 and F2 in a similar manner as U0
1 was applied to

G1 and F1, but leaving the previously created zeros in U0
1G1 unaffected. So, we can

choose H2 such that

U0
2U

0
1G1 D

2

6
6
6
4

X1
0
:::

0

3

7
7
7
5
; U0

2U
0
1F1U1U2 D

2

66
6
6
6
6
4

� � � � � � � � �
X2 � � � � � �
0
::: G3 F3
0

3

77
7
7
7
7
5

;

where X2 is a nonzero number. We can continue the process with G3 and F3 using

U0
3 D

"
I2

H0
3

#

; and so on until we get the desired form. Note that 0 D i D 1,

i D 1; : : : ; l, in this case.
The general case is a block version of the previous procedure, stopping as soon

as a “zero” Xi is encountered, at step lC1 in this case. The proof is thus constructive.
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At each step i D 1; : : : ; l a QR factorization is performed of the current Gi matrix
yielding Xi of full row rank. If a zero rank matrix Gi is encountered (at step l C 1),
then we obtain the form (5.64). If not, then the method terminates with r D �l and
the bottom matrix FlC1;lC1 is empty. �

Lemma 5.8 (Observability Staircase Form) Given a pair of matrices, .F;H/,
with F 2 R

.r;r/ and H 2 R
.k;r/, H ¤ 0, there always exist an orthogonal matrix

U 2 R
.r;r/ such that

"
U0FU

HU

#

D

2

6
6
6
6
66
4

FlC1;lC1 Fl;lC1 � � � F1;lC1
0 Fl;l � � � F1;l
0 Yl � � � F1;l�1
:::

: : : Y2 F1;1

0 � � � 0 Y1

3

7
7
7
7
77
5

; (5.65)

where the Fi;i, i D 1; : : : ; l, are i �i matrices and the Yi, i D 1; : : : ; l, are i�1�i

matrices of full column rank (with 0 D k). As a consequence, k D 0 � i �
� � � � l > 0 and FlC1;lC1 is a square matrix of dimension .r � �l/ � .r � �l/ with
�l D Pl

iD1 i.

Proof The lemma follows by applying Lemma 5.7 to the pair .F0;H0/, transposing,
and then interchanging the columns in HU and interchanging the rows and columns
in UtFU. Note that interchanging the rows or columns in a matrix is equivalent to
multiplying by an orthogonal matrix. �
Remark 5.6 The proof of Lemma 5.7 is based on a result in Van Dooren (1979)
and follows Van Dooren (2003), where an algorithm in MATLAB code can also be
found to compute the orthogonal matrix U. Þ

The following two theorems give procedures to obtain the rank of the controlla-
bility and the observability matrices based on Lemmas 5.7 and 5.8.

Theorem 5.6 Under the assumptions and with the notation of Lemma 5.7, the rank
of the controllability matrix, ŒG;FG; : : : ;Fr�1G�, is �l.

Theorem 5.7 Under the assumptions and with the notation of Lemma 5.8, the rank
of the observability matrix, ŒH0;F0H0; : : : ; .F0/r�1H0�0, is �l.

Proof of Theorems 5.6 and 5.7 To prove Theorem 5.6, consider first that the
rank, rc, of the matrix ŒG;FG; : : : ;Fr�1G� is the same as that of the matrix
ŒU0G;U0FG; : : :, U0Fr�1G� D ŒU0G,.U0FU/U0G; : : : ; .U0FU/r�1U0G� for any
orthogonal matrix U. Thus, if U is the transformation of Lemma 5.7, then rc is the
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rank of the matrix

2

6
66
6
6
4

X1;1 � : : : � � � � � �
0 X2;1

: : :
:::
:::

:::
:::

: : : Xl;1 � � � � � �
0 � � � 0 0 � � � � � � 0

3

7
77
7
7
5

g1
:::

gl

(5.66)

where the matrices Xi;1 D Xi � Xi�1 � � � X1 are of full row rank since they are the
product of full row rank matrices. But the form of the matrix (5.66) indicates that
rc D �l D Pl

iD1 i. The proof of Theorem 5.7 is similar. �

The following corollary is a direct consequence of Lemma 5.7 and Theorem 5.6.
The proof is left to the reader.

Corollary 5.3 Let the state space model (5.1) and (5.2), where F 2 R
.r;r/,

G 2 R
.r;q/, H 2 R

. p;r/ and J 2 R
. p;q/. If the rank of the controllability matrix,

ŒG;FG; : : : ;Fr�1G�, is r1 < r, then there exists an orthogonal matrix U such that

U0FU D
�

Fc F12
0 F Nc

�
; U0G D

�
Gc

0

�

Fc is r1� r1, F Nc is .r � r1/� .r � r1/ and the pair ŒFc;Gc� is controllable. In addition,
the transfer function, ‰.z/, of the system

NxtC1 D Fc Nxt C Gc�t;

Yt D Hc Nxt C J�t;

where HU D ŒHc;H12� and Hc is p � r1, coincides with that of (5.1) and (5.2). That
is, ‰.z/ D J C zH.I � zF/�1G D J C zHc.I � zFc/

�1Gc.

Corollary 5.4 Let the state space model (5.1) and (5.2), where F 2 R
.r;r/,

G 2 R
.r;q/, H 2 R

. p;r/ and J 2 R
. p;q/. If the rank of the observability matrix,

ŒH0;F0H0; : : : ; .F0/r�1H0�0, is r2 < r, then there exists an orthogonal matrix U such
that

U0FU D
�

Fo 0

F21 F No

�
; HU D ŒHo; 0�

Fo is r2 � r2, F No is .r � r2/� .r � r2/ and the pair ŒFo;Ho� is observable. In addition,
the transfer function, ‰.z/, of the system

NxtC1 D Fo Nxt C Go�t;

Yt D Ho Nxt C J�t;
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where G0U D ŒG0
o;G

0
2�

0 and Ho is p � r2, coincides with that of (5.1) and (5.2). That
is, ‰.z/ D J C zH.I � zF/�1G D J C zHo.I � zFo/

�1Go.

Proof Letting U be the orthogonal matrix of Lemma 5.8, by Theorem 5.7, we can
write

U0FU D
�

F No F21
0 Fo

�
; HU D Œ0;Ho� ;

where Fo is r2�r2, F No is .r�r2/�.r�r2/ and the pair ŒFo;Ho� is observable. Define
the orthogonal matrix

P0 D
�
0 Ir�r2

Ir2 0

�
:

Then, it holds that

.P0U0/F.UP/ D
�

Fo 0

F21 F No

�
; H.UP/ D ŒHo; 0� :

The rest of the proof is left to the reader. �

Combining the two previous corollaries, we have the following Kalman decom-
position theorem.

Theorem 5.8 (Kalman Decomposition Theorem) Let the state space model (5.1)
and (5.2), where F 2 R

.r;r/, G 2 R
.r;q/, H 2 R

. p;r/ and J 2 R
. p;q/. Then, there exists

an orthogonal matrix U such that the transformed state Œx0
co;t; x

0
c No;t; x0Nco;t; x

0Nc No;t�0 D
U0xt satisfies the following state space model

2

6
6
4

xco;tC1
xc No;tC1
x Nco;tC1
x Nc No;tC1

3

7
7
5 D

2

6
6
4

Fco 0 F13 0

F21 Fc No F23 F24
0 0 F Nco 0

0 0 F43 F Nc No

3

7
7
5

2

6
6
4

xco;t

xc No;t
x Nco;t

x Nc No;t

3

7
7
5C

2

6
6
4

Gco

Gc No
0

0

3

7
7
5 �t

Yt D �
Hco 0 H Nco 0

�C J�t;

where the pair ŒFco;Gco� is controllable and the pair ŒFco;Hco� observable. Further-
more, the transfer function,‰.z/, of the system

xco;tC1 D Fcoxco;t C Gco�t;

Yt D Hcoxco;t C J�t

coincides with that of (5.1) and (5.2). That is, ‰.z/ D J C zH.I � zF/�1G D
J C zHco.I � zFco/

�1Gco.
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5.12 Limit Theorems for the Kalman Filter
and the Smoothing Recursions

To study the asymptotic behavior of the Kalman filtering and smoothing recursions,
it is convenient to transform the state space equations (5.4) and (5.5) so that in
the new equations the covariance between the disturbances ut and vt is zero. The
transformation was introduced in Sect. 4.5. Assume R > 0 and define Fs D F �
GSR�1H and Qs D Q � SR�1S0. Then,

xtC1 D Fsxt C GSR�1Hxt C Gut D Fsxt C G
�
SR�1.Yt � vt/C ut

�

D GSR�1Yt C Fsxt C Gus
t ; (5.67)

where us
t D ut � SR�1vt is orthogonal to vt and Var.us

t/ D Qs. Since at time t C 1,
Yt is known, it is possible to replace (5.4) and (5.5) with (5.67) and (5.5), where us

t
and vt are orthogonal, to study the asymptotic properties of the Kalman filtering and
smoothing recursions. If R is singular, it is possible to replace R�1 in the previous
formulae with R�, where R� is a generalized inverse of R.

When running the Kalman filter (4.3) corresponding to (5.4) and (5.5), if Pt

converges as t ! 1, then the limiting solution P will satisfy the DARE (5.22),
obtained from (4.3) by putting PtC1 D Pt D P. In this case, Kt in (4.3) and Fp;t D
F � KtH converge to the steady state quantities K D .FPH0 C GS/.R C HPH0/�1
and Fp D F � KH.

5.12.1 Solutions of the DARE

There is an extensive literature on the solutions of the DARE. Since in this chapter
we are concerned with the stabilizing solution, we will only consider those results
that are relevant in this respect. The following two theorems give the details.

Theorem 5.9 (Theorem 3.1 of Chan, Goodwin, & Sin (1984)) If R > 0,�
Q S
S0 R

�
� 0; and .F;H/ is detectable, then

i) the strong solution of the DARE exists and is unique.
ii) if .Fs;GQs=2/ is stabilizable, then the strong solution is the only positive

semidefinite solution of the DARE.
iii) if .Fs;GQs=2/ has no uncontrollable eigenvalue on the unit circle, then the

strong solution coincides with the stabilizing solution.
iv) if .Fs;GQs=2/ has an uncontrollable eigenvalue on the unit circle, then,

although the strong solution exists, there is no stabilizing solution.
v) if .Fs;GQs=2/ has an uncontrollable eigenvalue inside or on the unit circle, then

the strong solution is not positive definite.
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vi) if .Fs;GQs=2/ has an uncontrollable eigenvalue outside the unit circle, then
as well as the strong solution, there is at least one other positive semidefinite
solution of the DARE.

Theorem 5.10 (Theorem 3.2 of de Souza, Gevers, & Goodwin (1986)) If R > 0

and

�
Q S
S0 R

�
� 0; then

A) the strong solution of the DARE exists and is unique if and only if .F;H/ is
detectable.

B) the strong solution is the only positive semidefinite solution of the DARE if and
only if .F;H/ is detectable and .Fs;GQs=2/ has no uncontrollable eigenvalue
outside the unit circle.

C) the strong solution coincides with the stabilizing solution if and only if .F;H/ is
detectable and .Fs;GQs=2/ has no uncontrollable eigenvalue on the unit circle.

D) the stabilizing solution is positive definite if and only if .F;H/ is detectable and
.Fs;GQs=2/ has no uncontrollable eigenvalue inside or on the unit circle.

Remark 5 According to the previous two theorems, sufficient conditions for the
existence of a unique stabilizing solution of the DARE are that .F;H/ be detectable
and .Fs;GQs=2/ be stabilizable. Under these conditions, it is possible to obtain the
covariance factorization GY.z/ D ‰.z/†‰0.z�1/, where‰.z/ D I CzH.I �Fz/�1K,
K D .FPH0 C GS/†�1 and † D R C HPH0, described in Sect. 5.6 and needed
for the Wiener–Kolmogorov formulae in Chap. 7. Note that, as mentioned earlier,
‰�1.z/ D I � zH.I � Fpz/�1K, where Fp D F � KH is stable. Þ

Remark 6 The proofs of the previous two theorems are algebraic in nature and do
not require that F be stable. This will allow for the extension of the Kalman filtering
and smoothing results to the nonstationary case in Chap. 7. Þ
Remark 7 Assuming the strong solution exists and is unique, .Fs;GQs=2/ has an
uncontrollable eigenvalue on the unit circle if and only if the moving average part
in the VARMA representation has a root of unit modulus. To see this, consider
that, because a strong solution exists and is unique, there exists an innovations
representation (3.13) and (3.14). Then, Fs D Fp and Qs D 0 for this representation
and, as mentioned earlier, the process fYtg in (3.13) and (3.14) admits a VARMA
representation,ˆ.B/Yt D ‚.B/At, and det.I � Fpz/ D detŒ‚.z/�. Þ

Remark 8 The assumption R > 0 in the previous two theorems is made to ensure
that R C HPH0 > 0 for any P and that, therefore, R C HPH0 can be inverted. Thus,
this assumption can be replaced with R C HPH0 > 0, where R may be singular. A
numerically efficient procedure to compute the unique stabilizing or strong solution
of the DARE, assuming it exists under the assumption R C HPH0 > 0, is based
on solving the generalized eigenvalue problem corresponding to the matrix pencil
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A � �B, where

A D
2

4
F0 0 H0

GQG0 �I GS
S0G0 0

3

5 and B D
2

4
I 0 0

0 �F 0

0 �H 0

3

5 :

The interested reader can consult Ionescu, Oarǎ, & Weiss (1997) for details. Þ

The following two lemmas give criteria for the pair .F;H/ to be detectable and
the pair .Fs;GQs=2/ to be stabilizable in the important practical case of multivariate
unobserved VARMA components models. The proofs are straightforward general-
izations to the multivariate case of the ones given by Burridge & Wallis (1988) for
the univariate case.

Lemma 5.9 Let Yt D StCNtCUt, where fStg and fNtg follow multivariate, possibly
nonstationary, VARMA models, ˆS.B/St D ‚S.B/Ast and ˆN.B/Nt D ‚N.B/Ant,
and fUtg is a white noise sequence such that fAstg, fAntg, and fUtg are mutually
and serially uncorrelated, and let (5.4) and (5.5) be a state space representation of
Yt with vt D Ut. Then, the pair .F;H/ is detectable if and only if the polynomials
detŒˆS.z/� and detŒˆN.z/� do not contain common factors of the form 1 � �z with
j�j � 1.

Lemma 5.10 Under the same assumptions of Lemma 5.9, the pair .F;GQ1=2/ is
controllable if and only if the polynomials detŒˆS.z/� and detŒ‚S.z/�, as well as the
polynomials detŒˆN.z/� and detŒ‚N.z/�, do not contain common factors of the form
1 � �z with � ¤ 0.

5.12.2 Convergence of the DARE

The following theorem gives sufficient conditions for the convergence of the
sequence of covariance matrices fPtg given by the Kalman filter (4.3) to the
stabilizing solution. A proof can be found in, for example, Anderson & Moore
(2012).

Theorem 5.11 If R > 0,

�
Q S
S0 R

�
� 0; .Fs;GQs=2/ is stabilizable and .F;H/ is

detectable, then fPtg converges (exponentially fast) to the unique stabilizing solution
P of the DARE from all initial conditions P1 � 0.

The following theorem gives sufficient conditions for the sequence fPtg to
converge to the strong solution of the DARE, even when there is no stabilizing
solution.
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Theorem 5.12 (Theorem 4.2 of de Souza et al. (1986)) If R > 0,

�
Q S
S0 R

�
� 0; and

P1 � P � 0, then fPtg converges to the unique strong solution P of the DARE if and
only if .F;H/ is detectable.

5.13 Fast Kalman Filter Algorithm: The CKMS Recursions

If the process fYtg follows the state space model (5.4) and (5.5), with initial
conditions E.x1/ D 0 and Var.x1/ D …, the Kalman filter corresponding to the
sample fYt W 1 � t � ng is given for t D 1; : : : ; n by the recursions

Et D Yt � HOxtjt�1; †t D HPtH
0 C R (5.68)

Kt D .FPtH
0 C GS/†�1

t ; OxtC1jt D FOxtjt�1 C KtEt

PtC1 D FPtF
0 C GQG0 � .FPtH

0 C GS/†�1
t .FPtH

0 C GS/0

D .F � KtH/PtF
0 C .GQ � KtS

0/G0;

initialized with Ox1j0 D 0 and P1 D …. In the Kalman filter recursions, even if
the system matrices, fF;G;H;R;Q; Sg, are time-varying, the updating of the MSE
matrix Pt requires the greatest computational effort. More specifically, it takes O.n3/
operations (additions and multiplications of real numbers), where n is the dimension
of the state vector, to update Pt to PtC1, whether the matrices fFt;Gt;Ht;Rt; St;Qtg
are constant or not.

One would expect that constant-parameter problems should be easier to handle
than similar time-varying problems. In fact, it turns out that the Kalman filter
recursions for a constant-parameter state space model can be simplified by replacing
the updating of Pt with a different recursion. As we shall see, the updating of the new
recursion requires O.n2/ rather than O.n3/ flops for each update, a great reduction
if n is large.

The new recursion is based on the increments

ıPt D PtC1 � Pt; t � 1; (5.69)

and the matrices Fp;t D F � KtH and

Kt D FPtH
0 C GS: (5.70)

First we need a lemma.
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Lemma 5.11 The increments of †t , Kt, Kt, and Fp;t can be written as

†tC1 �†t D HıPtH
0 (5.71)

KtC1 � Kt D FıPtH
0 (5.72)

KtC1 � Kt D Fp;tıPtH
0†�1

tC1 (5.73)

Fp;tC1 D Fp;t
�
I � ıPtH

0†�1
tC1H

	
: (5.74)

Proof The proof of the first two equalities is straightforward.

†tC1 D R C HPtC1H0 D R C HPtH
0 C HıPtH

0 D †t C HıPtH
0

KtC1 D FPtC1H0 C GS D FPtH
0 C GS C FıPtH

0 D Kt C FıPtH
0:

The third requires a little more effort.

KtC1 D �
FPtC1H0 C GS

	
†�1

tC1 D �
FPtH

0 C GS C FıPtH
0	†�1

tC1
D Kt†t†

�1
tC1 C FıPtH

0†�1
tC1

D Kt
�
†tC1 � HıPtH

0	†�1
tC1 C FıPtH

0†�1
tC1

D Kt C .F � KtH/ ıPtH
0†�1

tC1
D Kt C Fp;tıPtH

0†�1
tC1:

Finally, the increment for Fp;t follows from the following identities.

Fp;tC1 D F � KtC1H D F � KtH � Fp;tıPtH
0†�1

tC1H

D Fp;t
�
I � ıPtH

0†�1
tC1H

	
:

�

With the help of this lemma, it is not difficult to prove the following theorem.

Theorem 5.13 (A Generalized Stokes Identity)

ıPtC1 D Fp;t
�
ıPt � ıPtH

0†�1
tC1HıPt

�
F0

p;t: (5.75)
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Proof Using Lemma 5.11, we can write

ıPtC1 D PtC2 � PtC1 D FıPtF
0 � KtC1†tC1K0

tC1 C Kt†tK
0
t

D �
Fp;t C KtH

	
ıPt

�
F0

p;t C H0K0
t

	

� �Kt C Fp;tıPtH
0†�1

tC1
	
†tC1

�
Kt C Fp;tıPtH

0†�1
tC1
	0

CKt
�
†tC1 � HıPtH

0	K0
t

D Fp;t
�
ıPt � ıPtH

0†�1
tC1HıPt

�
F0

p;t:

�

Remark 5.7 Applying the matrix inversion lemma to the matrix I C H0†�1
t HıPt,

we obtain the following alternative formula

ıPtC1 D Fp;tPt
�
I C H0†�1

t HıPt
	

F0
p;t:

Þ

An immediate consequence of Eq. (5.75) is that the rank of ıPt will never exceed
the rank of ıP1. Hence, although the matrices Pt may have full rank, the matrices
ıPt can have low rank. This is the key to developing the fast recursions.

Since Pt is symmetric, so are ıPt, t D 1; 2; : : : ; n. Therefore, we can always
express ıP1 as

ıP1 D L1M1L
0
1;

where M1 has dimension a�a, L1 is k�a and a is the rank of ıP1. More specifically,
a is the rank of the matrix

F…F0 C GQG0 � K1†
�1
1 K

0
1 �…:

Lemma 5.12 (Factorization of ıPt) Assume that ıP1 D L1M1L0
1, where M1 is

symmetric, nonsingular of dimension a � a. Then,

ıPt D LtMtL
0
t; t � 1; (5.76)

where Mt is symmetric, nonsingular of size a � a. It can be defined, along with Lt,
by the recursions

LtC1 D Fp;tLt (5.77)

MtC1 D Mt � MtL
0
tH

0†�1
tC1HLtMt: (5.78)
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Proof By induction. If ıPt D LtMtL0
t holds, then substituting into (5.75) yields

ıPt D Fp;t
�
LtMtL

0
t � LtMtL

0
tH

0†�1
tC1HLtMtL

0
t

�
F0

p;t

D Fp;tLt
�
Mt � MtL

0
tH

0†�1
tC1HLtMt

�
L0

tF
0
p;t;

which can be rewritten as ıPtC1 D LtC1MtC1L0
tC1 by defining LtC1 and MtC1 as

in (5.77) and (5.78). The matrix Mt is clearly symmetric. For the nonsingularity of
MtC1 note that if Mt is nonsingular, then so is MtC1 since, by the matrix inversion
lemma,

M�1
tC1 D M�1

t C L0
tH

0 �†tC1 � HLtMtL
0
tH

0��1 HLt

D M�1
t C L0

tH
0 �R C HPtC1H0 � H.PtC1 � Pt/H

0��1 HLt

D M�1
t C L0

tH
0†�1

t HLt; (5.79)

which shows that the inverse of MtC1 is well defined in terms of the inverses of
fMt; †tg. �

The factorization (5.76) leads immediately to the following fast algorithm,
which we will call the Chandrasekhar–Kailath–Morf–Sidhu (CKMS) recursions
(Chandrasekhar 1947a, 1947b; Morf, Sidhu, & Kailath 1974).

Theorem 5.14 (The CKMS Recursions) The quantities Kt and†t, given by (5.68)
and (5.70), can be recursively computed by the following set of coupled recursions

KtC1 D Kt � FLtR
�1
r;t L0

tH
0 (5.80)

LtC1 D FLt � Kt†
�1
t HLt D Fp;tLt (5.81)

†tC1 D †t � HLtR
�1
r;t L0

tH
0

Rr;tC1 D Rr;t � L0
tH

0†�1
t HLt; (5.82)

where Fp;t D F � KtH. If desired, the Pt matrices of the Kalman filter can be
computed as

PtC1 D … �
tX

jD1
LjR

�1
r;j L0

j:

The initial conditions are computed as follows. K1 D F…H0 C GS and †1 D
R C H…H0. Factor (nonuniquely)

ıP1 D F…F0 C GQG0 � K1†
�1
1 K

0
1 �…
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as ıP1 D �L1R�1
r;1L0

1, where L1 has rank k � a and Rr;1 is symmetric, nonsingular
and of dimension a � a, to obtain the initial conditions fL1;Rr;1g.

Proof First, define Rr;t D �M�1
t . Then, (5.79) is exactly the recursion (5.82).

Moreover, combining (5.72) and (5.76) yields

KtC1 D Kt � FLtMtL
0
tH

0 D Kt � FLtR
�1
r;t L0

tH
0;

which is just (5.80). Next note that (5.77) is just (5.81). To calculate the error
covariance matrices, just consider that, by (5.76),

PtC1 D P1 �
tX

jD1
ıPj D … �

tX

jD1
LjR

�1
r;j L0

j:

�

Remark 5.8 (Stationary Processes) If the process fYtg is stationary, then

… D F…F0 C GQG0

and ıP1 D �K1†
�1
1 K

0
1. Therefore, the initial conditions are

L1 D K1 D N; Rr;1 D †1 D 
Y.0/:

Note that, by formula (5.17), N can be obtained directly from covariance data using
the equation

2

6
6
6
4


Y.1/


Y.2/
:::


Y.n/

3

7
7
7
5

D

2

6
6
6
4

H
HF
:::

HFn�1

3

7
7
7
5

N:

In the case in which the model is in echelon form, N can be obtained as in (5.63). Þ

Lemma 5.13 (The Rr;t Matrices Have Constant Inertia) Assume R > 0 and
… D P1 � 0. Then, the matrices Rr;t have the same inertia for all t. More
specifically,

InfRr;tg D InfıP1g (5.83)

where ıP1 D P2 �… D F…F0 C GQG0 � K1†1K0
1 �….
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Proof Consider the block matrix

�
†t HLt

L0
tH

0 Rr;t

�

and note that Rr;tC1 is its Schur complement with respect to †t, while †tC1 is its
Schur complement with respect to Rr;t. Hence, the lower–upper and upper–lower
block triangular factorizations of the above matrix would lead to the following
equalities

�
†t HLt

L0
tH

0 Rr;t

�
D
�

I
L0

tH
0†t I

� �
†t

Rr;tC1

� �
I

L0
tH

0†t I

�0

D
�

I HLtR�1
r;t

I

� �
†tC1

Rr;t

� �
I HLtR�1

r;t

I

�0
:

It then follows from Sylverster’s law of inertia that the matrices diag.†t;Rr;tC1/
and diag.†tC1;Rr;t/ have the same inertia. But since both †t and †tC1 are positive
definite (in view of the assumptions R > 0 and P1 � 0), we conclude that Rr;tC1 and
Rr;t should have the same inertia. �

Remark 5.9 (fPtg is Monotone Nonincreasing in the Stationary Case) Since L1 D
K1 and Rr;1 D †1 > 0, by Lemma 5.13, Rr;t > 0 for all t. Using this fact and

Pt D … �
t�1X

jD1
LjR

�1
r;j L0

j;

we note that in the stationary case PtC1 � Pt when P1 D … � 0 and R > 0. Also,
†tC1 � †t. Þ

5.14 CKMS Recursions Given Covariance Data

The process fYtg is defined by covariance data given by the matrices fF;H;Ntg and

Y.t; t/, where Nt D F…tH0 C GS D Cov.xtC1;Yt/, …t D E.xtx0

t/ and 
Y.t; s/ D
E.YtY 0

s/ is given by the formulae of Theorem 5.1. The initial conditions that are
needed for the CKMS recursions are

†1 D 
Y.1; 1/; K1 D N1:
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To obtain fL1;Rr;1g we need to factor

P2 � P1 D FP1F
0 C GQG0 � K1†

�1
1 K

0
1 � P1

D FP1F
0 C GQG0 � N1


�1
Y .1; 1/N0

1 � P1

D …2 � N1

�1
Y .1; 1/N0

1 �…1:

This means that we still need to identify the difference matrix …2 � …1 from the
given covariance data. To this end, consider the matrices

R1 D

2

66
6
4


Y.1; 1/ 
Y.1; 2/ � � � 
Y.1; n/

Y.2; 1/ 
Y.2; 2/ � � � 
Y.1; n/

:::
:::

: : :
:::


Y.n; 1/ 
Y.n; 2/ � � � 
Y.n; n/

3

77
7
5

and

R2 D

2

6
6
6
4


Y.2; 2/ 
Y.2; 3/ � � � 
Y.2; n C 1/


Y.3; 2/ 
Y.3; 3/ � � � 
Y.3; n C 1/
:::

:::
: : :

:::


Y.n C 1; 2/ 
Y.n C 1; 3/ � � � 
Y.n C 1; n C 1/

3

7
7
7
5
:

Then, it is not difficult to verify that

R2 � R1 D

2

66
6
4

H
HF
:::

HFn�1

3

77
7
5
.…2 �…1/

�
H0 F0H0 � � � .HFn�1/0

�

D On.…2 �…1/O
0
n;

where On is the observability matrix. For example,


Y.3; 2/ � 
Y.2; 1/ D HN2 � HN1 D H.F…2H
0 C GS/� H.F…1H

0 C GS/

D HF.…2 �…1/H
0:

If fF;Hg is observable, On is of full rank and we can obtain…2 �…1 as

…2 �…1 D O#
n.R2 � R1/O

#0

n ;
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where O#
n D .O0

nOn/
�1O0

n. Once…2�…1 is known, P2�P1 D �L1R�1
r;1L0

1. With the

initial conditions fK1;L1; †1;Rr;tg so determined, we can proceed with the CKMS
recursions.

Remark 5.10 (Stationary Processes) If the process fYtg is stationary, then

P2 � P1 D �N1

�1
Y .0/N0

1

because …2 D …1 D …. Then, K1 D N1 D N and Rr;1 D 
Y.0/ D †1. Note
that, by formula (5.17), N can be obtained directly from covariance data using the
equation

2

66
6
4


Y.1/


Y.2/
:::


Y.n/

3

77
7
5

D

2

66
6
4

H
HF
:::

HFn�1

3

77
7
5

N D OnN:

In the case in which the model is in echelon form, N can be obtained as in (5.63). Þ

5.15 Fast Covariance Square Root Filter

Define a signature matrix J as a matrix of the form

J D
�

Ip

�Iq

�
;

and, given a signature matrix J, define a J-orthogonal matrix ‚ as a matrix that
satisfies

‚J‚0 D ‚0J‚ D J:

We will often write J as J D .Ip ˚ �Iq/.
At any time instant, t, we introduce a (nonunique) factorization of the form

PtC1 � Pt D LtJtL
0
t;

where Lt is an n � ˛t matrix, Jt is an ˛t � ˛t signature matrix with as many ˙1’s as
(PtC1 � Pt) has positive and negative eigenvalues, and ˛t D rank.PtC1 � Pt/. The
time subscript, t, is used in both Jt and ˛t for generality but in fact it turns out that
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they are constant. To show this, form the pre-array

A D
"
†
1=2
t HLt

Kp;t FLt

#

; Kp;t D Kt†
�1=20

t ; Kt D FPtH
0 C GS;

and triangularize it via an .I ˚ Jt/-orthogonal matrix‚, that is,

A‚ D
"
†
1=2
t HLt

Kp;t FLt

#

‚ D
�

X
Y Z

�
(5.84)

for some ‚ such that

‚

�
I

Jt

�
‚0 D

�
I

Jt

�
D ‚0

�
I

Jt

�
‚:

To prove that such a ‚ exists, consider first the equality

†tC1 D R C HPtC1H0 D †t C HLtJtL
0
tH

0

or, equivalently,

h
†
1=2
t HLt

i � I
Jt

�"
†
1=20

t

L
0
tH

0

#

D
h
†
1=2
tC1 0

i � I
Jt

� "
†
1=20

tC1
0

#

:

To proceed further, we need a lemma.

Lemma 5.14 Let A and B be n � m matrices (n � m) and let J D .Ip ˚ �Iq/ be
a signature matrix with p C q D m. If AJA0 D BJB0 is full rank, then there exists a
J-orthogonal matrix ‚ such that A D B‚.

Proof Since AJA0 is symmetric and invertible, we can factor it as AJA0 D RSR0,
where R is invertible and S D .I˛˚�Iˇ/ is a signature matrix (with ˛Cˇ D n). We

normalize A and B by defining A D R�1A and B D R�1B. Then, AJA
0 D BJB

0 D S.
Now consider the block triangular factorizations

"
S A
A

0
J

#

D
"

I
A

0
S I

#"
S

J � A
0
SA

#"
I

A
0
S I

#0

D
�

I AJ
I

�"
S � AJA

0

J

#�
I AJ

I

�0
;
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where S � AJA
0 D 0. Using the fact that the central matrices must have the same

inertia we conclude that In.J �A
0
SA/ D In.J/�In.S/D f p�˛; q�ˇ; ng. Similarly,

we can show that In.J � B
0
SB/ D f p � ˛; q � ˇ; ng.

Define the signature matrix J1 D .Ip�˛ ˚ �Iq�ˇ/. The above inertia conditions

then mean that we can factor J � A
0
SA and J � B

0
SB as

J � A
0
SA D XJ1X

0; J � B
0
SB D YJ1Y

0:

Finally, introduce the square matrices

†1 D
�

A
X0
�
; †2 D

�
B
Y 0
�
:

It is easy to verify that these matrices satisfy†0
1.S˚J1/†1 D J and†0

2.S˚J1/†2 D
J, which further shows that†1 and †2 are invertible. Therefore, we also obtain that
†1J†0

1 D S ˚ J1 and †2J†0
2 D S ˚ J1. These relations allow us to relate †1

and †2 as †1 D †2
�
J†0

2.S ˚ J1/†1
�
. If we set ‚ D �

J†0
2.S ˚ J1/†1

�
, then it is

immediate to check that ‚ is J-orthogonal and, from the equality of the first block
row of †1 D †2‚, that A D B�. Hence, A D B‚. �

By the previous lemma, there exists a .I ˚ Jt/-orthogonal rotation‚ relating the
following arrays

h
†
1=2
t HLt

i
‚ D

h
†
1=2
tC1 0

i
:

This proves (5.84). To identify X;Y;Z, form

"
†
1=2
t HLt

Kp;t FLt

#

‚

�
I

Jt

�
‚0
"
†
1=2
t HLt

Kp;t FLt

#0
D
�

X
Y Z

� �
I

Jt

� �
X
Y Z

�0
:

Then,

XX0 D †t C HLtJtL
0
tH

0 D †t C H.PtC1 � Pt/H
0

D R C HPtH
0 C HPtC1H0 � HPtH

0 D R C HPtC1H0

D †tC1;

XY 0 D Kt C FLtJtL
0
tH

0 D Kt C F.PtC1 � Pt/H
0

D .FPtH
0 C GS/C FPtC1H0 � FPtH

0 D GS C FPtC1H0

D KtC1;
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and

YY 0 C ZJtZ
0 D Kt†

�1
t K

0
t C FLtJtL

0
tH

0

D Kt†
�1
t K

0
t C FPtC1F0 � FPtF

0:

Therefore, X D †
1=2
tC1, Y D KtC1†�1=20

tC1 D Kp;tC1, ZJtZ0 D PtC2 � PtC1, and
Z D LtC1.

We can set JtC1 D Jt since, by definition, PtC2 � PtC1 D LtC1JtC1L
0
tC1. So,

in fact, we can choose JtC1 to be equal to the first inertia matrix J, defined by the
factorization

P2 � P1 D .F…F0 C GQG0 � K1†
�1
1 K

0
1/ �… D L1JL

0
1: (5.85)

Likewise, ˛i can be chosen to be equal to the size, ˛, of J. In summary, the above
derivation shows that fKp;t; †

1=2
t g can be recursively updated via the array algorithm

‚

"
†
1=20

t K
0
p;t

.HLt/
0 .FLt/

0

#

D
"
†
1=20

tC1 K
0
p;tC1

0 L
0
tC1

#

;

where ‚ is any .I ˚ J/-orthogonal matrix that produces the block zero entry in
the post-array. Moreover, the initial conditions are †1 D R C H…H0 and K1 D
F…H0 C GS, with .L1; J/ obtained via the factorization (5.85).

We should note that the .I ˚J/-orthogonal transformation‚ can be implemented
in several ways, especially by a sequence of elementary J-orthogonal Householder
transformations.

Remark 5.11 (Stationary Processes) If the process fYtg is stationary, from (5.85)
we get

P2 � P1 D �K1†
�1
1 K

0
1 D L1JL

0
1;

where †1 D R C H…H0 and K1 D F…H0 C GS. Then, L1 D K1†
�1=20

1 D Kp;1

and J D �I. Note that, in terms of the autocovariance matrices of the process,
K1 D N and †1 D 
Y.0/. Thus, by formula (5.17), N can be obtained directly from
covariance data using the equation

2

66
6
4


Y.1/


Y.2/
:::


Y.n/

3

77
7
5

D

2

66
6
4

H
HF
:::

HFn�1

3

77
7
5

N D OnN:

In the case in which the model is in echelon form, N can be obtained as in (5.63).
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The .I ˚ �I/-orthogonal matrix ‚ has dimension 2k � 2k, where k D dim.Yt/,
so that if fYtg is univariate,‚ is 2 � 2. It seems that the fast square root covariance
filter described in this section is easier and stabler than the CKMS recursions. Þ

5.15.1 J-Orthogonal Householder Transformations

Assume a signature matrix J D .Ip ˚ �Iq/ with p; q � 1 . A J-orthogonal
transformation‚ is a matrix that satisfies

‚J‚0 D ‚0J‚ D J:

If J D I, ‚ is orthogonal.
Given two column vectors, x and y, define the “J-product” as

hx; yiJ D x0Jy:

This is not a scalar product. However, for our purposes we can define the squared
“J-norm” of a column vector x as

jjxjj2J D x0Jx:

Note that we use the term J-norm loosely because, strictly speaking, the quantity
x0Jx does not define a norm.

J-orthogonal transformations preserve the squared J-norm of a vector. That is, if
y D ‚x, then

jjyjj2J D y0Jy D x0‚0J‚x D x0Jx D jjxjj2J:

Consider an n-dimensional real valued vector x D Œx1; : : : ; xn�
0 and suppose that

we wish to simultaneously annihilate several entries in it by using a J-orthogonal
involutory matrix ‚ (i.e., a transformation‚ that satisfies ‚J‚0 D J D ‚0J‚ and
‚2 D I), say

‚Œx1; x2; : : : ; xn�
0 D ˛e1 D ˛Œ1; 0; : : : ; 0�0 (5.86)

for some real scalar ˛. Clearly, the transformation (5.86) is only possible if
the vector x has positive squared J-norm because jje1jj2J D 1 and jj‚xjj2J D
jjxjj2J D j˛j2. Otherwise, when x has negative squared J-norm, we should seek a
transformation‚ that reduces x to the form

‚Œx1; x2; : : : ; xn�
0 D ˛en D ˛Œ0; 0; : : : ; 1�0:
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This is possible because the squared J-norm of ˛en is equal to �j˛j2, which is
negative. We thus consider two cases: jjxjj2J > 0 and jjxjj2J < 0.

(a) Suppose jjxjj2J > 0, choose ˛ D ˙
q

jjxjj2J and let y D x � ˛e1. Using
a geometric argument and proceeding as if the product <;>J replaced the
ordinary scalar product in a Householder transformation, the “projection” of
x onto y is hx; yiJjjyjj�2J y. Then, imposing the symmetry condition of the
Householder transformation, we get

˛e1 D x � 2 < y; x >J jjyjj�2J y

D x � 2y0Jx.y0Jy/�1y

D
�

I � 2

y0Jy
yy0J

�
x:

The matrix‚ D I � .2=y0Jy/ yy0J is called a hyperbolic Householder matrix. It

is both J-orthogonal and involutory. Thus, if y D x ˙
q

jjxjj2Je1, then

‚x D 	
q

jjxjj2Je1; ‚ D I � �
2=y0Jy

	
yy0J:

(b) Suppose jjxjj2J < 0, choose ˛ D ˙
q

�jjxjj2J and let y D x � ˛en. Proceeding as
in the previous case, we are led to the equality

˛en D x � 2y0Jx.y0Jy/�1y

D
�

I � 2

y0Jy
yy0J

�
x:

Thus, if y D x ˙
q

�jjxjj2Jen, then ‚x D 	
q

�jjxjj2Jen, ‚ D I � .2=y0Jy/ yy0J.

Another possibility is to define

˛ D
8
<

:
˙
q

jjxjj2J if jjxjj2J > 0
˙
q

�jjxjj2J if jjxjj2J < 0;

v D ˙


1

˛
x C ei

�
;

and

‚ D I � 1

vi
vv0J;
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where v D Œv1; : : : ; vn�
0, i D 1 if jjxjj2J > 0, and i D n if jjxjj2J < 0. It can be verified

that, with the previous definitions, it holds that‚0J‚ D ‚J‚0 D J and‚x D �˛ei.

5.16 The Likelihood of a Stationary State Space Model

Let Y D .Y 0
1; : : : ;Y

0
n/

0 be a k-dimensional time series generated by a stationary
state space model under the normality assumption. Then, letting Var.Y/ D �2�,
the density of Y is

fY.x/ D .2�/�k=2j�2�j�1=2e�x0��1x=.2�2/:

The innovations Et generated by the Kalman filter are uncorrelated with
Var.Et/ D †t�

2 (notice that in the Kalman filter it is assumed that �2 D 1).
Letting E D .E0

1; : : : ;E
0
n/

0, by the results of Sect. 1.4, we have E D WY and
diag.†t/ D WVar.Y/W 0 =�2, where W is a lower triangular matrix with ones in the
diagonal. Thus, using the prediction error decomposition

fY D fnjn�1 � � � f2j1f1;

where fjj j�1 is the density of the conditional distribution YjjYj�1; : : : ;Y1, the log-
likelihood is

l.Y/ D constant � 1

2

(
1

�2

nX

tD1
E0

t†
�1
t Et C

nX

tD1
ln j�2†tj

)

:

Differentiating with respect to �2 in the previous expression and equating to zero
yields the maximum likelihood estimator O�2 D Pn

tD1 E0
t†

�1
t Et=.nk/ of �2. Thus, �2

can be concentrated out of the likelihood and the �2-maximized log-likelihood is

c.Y/ D constant � 1

2

(

.nk/ ln.
nX

tD1
E0

t†
�1
t Et/C

nX

tD1
ln j†tj

)

: (5.87)

5.17 The Innovations Algorithm Approach for Likelihood
Evaluation

The innovations algorithm can be used as an alternative to the Kalman filter for
likelihood evaluation because it also gives the innovations Et and their covariance
matrices Dt recursively. In the case of a VARMA. p; q/model, a transformation due
to Ansley (1979) simplifies the equations considerably. Let fYtg be a k-dimensional
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stationary process that follows the model

ˆ.B/Yt D ‚.B/At;

where ˆ.B/ D I C ˆ1B C � � � C ˆpBp, ‚.B/ D I C ‚1B C � � � C ‚qBq, and
fAtg �WN.0; �2†/. Assume that we have a sequence of vectors, Y D .Y 0

1; : : : ;Y
0
n/

0,
generated by the previous model and such that Var.Y/ is positive definite. Define

Xt D
�

Yt; if t D 1; : : : ; r;
ˆ.B/Yt; if t > r;

where r D max. p; q/. Then, the Jacobian of the transformation is one. Assuming
that �2 D 1 because this parameter can be concentrated out of the likelihood as
we saw in the derivation of (5.87), and denoting the covariance function of fYtg by

Y.h/ D E.YtChY 0

t /, it is not difficult to verify that the covariance function Sij D
E.XiX0

j/ is given by

Sij D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂̂
:


Y.i � j/ if 1 � i � j � r

Y.i � j/CPp

hD1 ˆh
Y.i C h � j/ if 1 � i � r < j � 2rPq
hD0 ‚h†‚

0
hCj�i if r < i � j � i C q

0 if r < i and i C q < j
S0

ij if j < i;

(5.88)

where ‚0 D I and ‚h D 0 if h > q. The notable feature of the previous
transformation is that Sij D 0 if j j � ij > q, i; j > r. This in turn implies that

Xt D ‚t;t�qEt�q C � � � C‚t;t�1Et�1 C Et; t > r;

when the innovations algorithm is applied to fXt W t D 1; 2; : : : ; ng. More
specifically, the output of this last algorithm in terms of fYt W t D 1; 2; : : : ; ng is
easily shown to be

Yt D ‚t;1E1 C � � � C‚t;t�1Et�1 C Et; t � r;

where

‚tj D
"


Y.t � j/ �
j�1X

iD1
‚tiDi‚

0
ji

#

D�1
j ; j D 1; : : : ; t � 1;

Dt D 
Y.0/�
t�1X

iD1
‚tiDi‚

0
ti;
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and

Yt C
pX

jD1
ˆjYt�j D ‚t;t�qEt�q C � � � C‚t;t�1Et�1 C Et; t > r; (5.89)

where

‚tj D
0

@Stj �
j�1X

iDt�q

‚tiDi‚
0
ji

1

AD�1
j ; j D t � q; : : : ; t � 1;

Dt D Stt �
t�1X

iDt�q

‚tiDi‚
0
ti;

and Sij is given by (5.88). In addition, since the matrix of the transformation
that gives .X0

1; : : : ;X
0
t/

0 in terms of .Y 0
1; : : : ;Y

0
t /

0 is easily seen to be nonsingular
for t D 1; 2; : : : ; n, it follows from Proposition 1.7 that E�.YtjXt�1; : : : ;X1/ D
E�.YtjYt�1; : : : ;Y1/. This implies E�.XtjXt�1; : : : ;X1/ D E�.YtjYt�1; : : : ;Y1/ for
t D 1; : : : ; r, and E�.XtjXt�1; : : : ;X1/ D E�.YtjYt�1; : : : ;Y1/ C Pp

jD1 ˆjYt�j for
t D r C 1; : : : ; n. Therefore,

Et D Xt � E�.XtjXt�1; : : : ;X1/ D Yt � E�.YtjYt�1; : : : ;Y1/; t D 1; 2; : : : ;

and the Et and Dt given by the innovations algorithm applied to fXt W t D 1; 2; : : : ; ng
can be used for likelihood evaluation directly in (5.87).

5.18 Finite Forecasting

One-period-ahead forecasts are given by the Kalman filter. Denoting by xnChjn,
where h > 1, the orthogonal projection of xnCh onto the sample Y D .Y 0

1; : : : ;Y
0
n/

0,
if the one source of error state space model (5.1) and (5.2) is used, it can be shown
that h-period-ahead forecasts and their mean squared error †nChjn are obtained
recursively by

xnChjn D FnCh�1xnCh�1jn
†nChjn D .FnCh�1†nCh�1jnF0

nCh�1 C GnCh�1G0
nCh�1/�2;

where xnC1jn D xnC1 and †nC1jn D †nC1. The forecasts for YnCh D
E�.YnChjYn; : : : ;Y1/, where h � 1, and the corresponding mean squared error
matrices are given by

YnChjn D HnCh�1xnChjn
MSE.YnChjn/ D .HnCh�1†nCh�1jnH0

nCh�1 C JnCh�1J0
nCh�1/�2:
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5.19 Finite Forecasting Using the Innovations Algorithm

If the innovations algorithm is applied and the sample is Y D .Y 0
1; : : : ;Y

0
n/

0, the
forecasts YnChjn D E�.YnChjYn; : : : ;Y1/, h D 1; 2; : : :, and their mean square error
matrices are

YnChjn D ‚nCh;nEn C � � � C‚nCh;1E1;

MSE.YnChjn/ D DnCh C
nCh�1X

jDnC1
‚nCh;jDj‚

0
nCh;j;

where the Et, t D 1; : : : ; n, are the innovations and Var.Et/ D Dt.
In the case of a VARMA. p; q/ model, the equations for the forecasts can be

simplified by using the transformation suggested by Ansley (1979) and described in
Sect. 5.17. Let fYtg be a p-dimensional stationary process that follows the model

ˆ.B/Yt D ‚.B/At;

where ˆ.B/ D I C ˆ1B C � � � C ˆpBp, ‚.B/ D I C ‚1B C � � � C ‚qBq and
fAtg �WN.0;†/. Then, assuming t > r D max. p; q/, as is always the case
for practical prediction, and using (5.89), the forecasts YnChjn can be obtained
recursively from

YnChjn C
pX

jD1
ˆjYnCh�jjn D ‚nCh;nCh�qEnCh�q C � � � C‚nCh;nEn; (5.90)

where YnCh�jjn D YnCh�j if n C h � j � n. Notice that

YnChjn C
pX

jD1
ˆjYnCh�jjn D 0; h > r; (5.91)

because ‚nCh;nCh�j D 0 for j > q. Equation (5.91) is usually called the eventual
forecast function. To obtain the mean square error, consider that

YnCh C
pX

jD1
ˆjYnCh�j D ‚nCh;nCh�qEnCh�q C � � � C‚nCh;nCh�1EnCh�1 C EnCh:

(5.92)
Then, subtracting (5.90) from (5.92), we get

YnCh � YnChjn C
pX

jD1
ˆj.YnCh�j � YnCh�jjn/ D

h�1X

jD1
‚nCh;nCjEnCj C EnCh; h D 1; 2; : : : ;
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where ‚nCh;nCj D 0 if j < h � q. The previous equations can be written in matrix
form as

ˆ.n;h/Y.n;h/ D ‚.n;h/E.n;h/;

where

ˆ.n;h/ D

2

6
6
6
6
6
66
6
6
4

I
ˆ1 I
:::

: : :
: : :

ˆp � � � ˆ1 I
: : :

: : :
: : :

ˆp � � � ˆ1 I

3

7
7
7
7
7
77
7
7
5

; Y.n;h/ D

2

6
6
6
6
6
66
6
6
4

YnC1 � YnC1jn
YnC2 � YnC2jn

:::

YnCp � YnCpjn
:::

YnCh � YnChjn

3

7
7
7
7
7
77
7
7
5

;

‚.n;h/ D

2

66
6
6
6
66
6
6
4

I
‚nC2;nC1 I
:::

: : :
: : :

‚nCqC1;nC1 � � � ‚nCqC1;nCq I
: : :

: : :
: : :

‚nCh;nCh�q � � � ‚nCh;nCh�1 I

3

77
7
7
7
77
7
7
5

; E.n;h/ D

2

66
6
6
6
66
6
6
4

EnC1
EnC2
:::

EnCqC1
:::

EnCh

3

77
7
7
7
77
7
7
5

;

and‚.n;h/ is a band matrix because‚nCi;nCj D 0 if j < i�q. Letting Var.Y.n;h// D V
and Var.E.n;h// D D.n;h/ D diag.DnC1; : : : ;DnCh/, we can write

ˆ.n;h/Vˆ
0
.n;h/ D ‚.n;h/D.n;h/‚

0
.n;h/;

and

V D ˆ�1
.n;h/‚.n;h/D.n;h/‚

0
.n;h/ˆ

0�1
.n;h/:

It is not difficult to verify that

ˆ�1
.n;h/ D

2

6
6
6
4

I
„1 I
:::

: : :
: : :

„h�1 � � � � � �„1 I

3

7
7
7
5
;

where the „j weights are given by ˆ.z/.
P1

jD0 „jzj/ D I, and thus the matrix
‰.n;h/ D ˆ�1

.n;h/‚.n;h/ can be easily computed. Since the block diagonal elements
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of V are the MSE.YnCjjn/, j D 1; 2; : : : ; h, if we define

‰.n;h/ D

2

6
6
6
4

I
‰nC2;1 I
:::

: : :
: : :

‰nCh;1 � � � ‰nCh;h�1 I

3

7
7
7
5
;

we get

MSE.YnChjn/ D DnCh C
h�1X

jD1
‰nCh;jDnCj‰

0
nCh;j:

5.20 Inverse Process

The inverse process, fYi
t g, of a stationary process, fYtg, that follows the linear time

series model Yt D P1
jD0 ‰jAt�j, where fAtg �WN.0;†/, is defined by

Yi
t D ‰�10

.B�1/†�1At; (5.93)

where B is the backshift operator, BYt D Yt�1, ‰.z/ D P1
jD0 ‰jzj and the inverse

of ‰.z/ is assumed to exist. Note that the time runs backwards in (5.93). The name
is justified because the covariance generating function of fYi

t g, GYi .z/, is the inverse
of the covariance generating function of fYtg, GY.z/. That is, GYi .z/ D G�1

Y .z/. To
see this, consider first that GY.z/ D ‰.z/†‰0.z�1/. Then,

GYi.z/ D ‰�10

.z�1/†�1‰�1.z/

D G�1
Y .z/:

If the process has some structure, in particular, if fYtg follows the innovations
state space model in echelon form

xtC1 D Fxt C KAt (5.94)

Yt D Hxt C At; (5.95)

where fAtg �WN.0;†/, then

Yi
t D �

I � B�1K0.I � F0
pB�1/�1H0�†�1At; (5.96)
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where Fp D F � KH. To prove this, let

GY.z/ D ŒzH.I � Fz/�1 I�

�
K
I

�
† ŒK0 I�

�
z�1.I � F0z�1/�1H0

I

�

D ŒI C zH.I � Fz/�1K�† ŒI C z�1K0.I � F0z�1/�1H0�

D ‰.z/†‰0.z�1/;

where ‰.z/ D I C zH.I � Fz/�1K, be the covariance generating function of fYtg.
Then, ‰.z/ satisfies

Yt D ŒI C BH.I � FB/�1K�At

D ‰.B/At;

and is therefore the transfer function of fYtg. By the matrix inversion Lemma (4.1),
the inverse of ‰.z/, if it exists, is given by

‰�1.z/ D I � zH.I � Fpz/�1K:

The inverse exists if, and only if, Fp is stable. It follows from this and (5.96) that
‰�10

.z�1/ is the transfer function of the inverse process, that is

Yi
t D ‰�10

.B�1/†�1At

as claimed. It follows from (5.96) that a state space model that realizes the inverse
process is

�t D F0
p�tC1 C H0Ai

t (5.97)

Yi
t D �K0�tC1 C Ai

t; (5.98)

where Var.Ai
t/ D †�1 and the time runs backwards.

Since state space models and VARMA models are equivalent, if the stationary
process fYtg follows (5.94) and (5.95), it also follows a VARMA process

ˆ.B/Yt D ‚.B/At; (5.99)

and the question arises as to what is the VARMA model followed by the inverse
process. To answer this question, note first that the transfer function of fYtg can be
expressed in terms of (5.99) as

‰.z/ D ˆ�1.z/‚.z/:
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Then, taking inverses, we get

‰�1.z/ D ‚�1.z/ˆ.z/;

and this implies that the inverse process can be expressed as

Yi
t D ˆ0.B�1/‚�10

.B�1/†�1At: (5.100)

By the properties of MFDs (Kailath, 1980), there exist polynomial matrices,
ê0.z�1/ and e‚0.z�1/, with the same eigenvalues as ˆ0.z�1/ and ‚0.z�1/ such that

Yi
t D e‚�10

.B�1/ê0.B�1/Ai
t; (5.101)

where Var.Ai
t/ D †�1. Therefore, the inverse process follows the VARMA

model (5.101), that runs backwards in time and corresponds to the state space
model (5.97) and (5.98).

Another question that naturally arises in connection with the inverse process is
the relation between the McMillan degree and the Kronecker indices of the transfer
function‰.z/ D I CzH.I �Fz/�1K, corresponding to a process fYtg that follows the
innovations state space model (5.94) and (5.95), and those of the transfer function
of its inverse process, ‰�10

.z�1/ D I � z�1K0.I � F0
pz�1/�1H0. The following

proposition addresses this point.

Proposition 5.6 Let fYtg be a process, not necessarily stationary, following the
innovations state space model in echelon form (5.94) and (5.95). Then, the
McMillan degree of the transfer function ‰.z/ D I C zH.I � Fz/�1K coincides
with that of the transfer function of the inverse process, fYi

t g, namely ‰�10

.z/ D
I � zK0.I � F0

pz/�1H0. In addition, the Kronecker indices of‰�10

.z�1/ and‰0.z/ are
the same.

Proof A state space model corresponding to the inverse process, fYi
t g, is (5.97)

and (5.98). If we could find another state space model,

�t D F
0
p�tC1 C H

0
Ai

t

Yi
t D �K

0
�tC1 C Ai

t;

of smaller dimension, then, applying the matrix inversion Lemma (4.1), we could
express the transfer function‰.z/ in the form

‰.z/ D I C zH.I � Fz/�1K;

where F D Fp C KH, a contradiction because (5.94) and (5.95) have minimal
dimension. Thus, the McMillan degrees of ‰.z/ and ‰�10

.z/ coincide.
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Letting (5.99) be the VARMA model in echelon form followed by fYtg, since
‰�10

.z�1/ D ˆ0.z�1/‚�10

.z�1/, the following relation holds

‚.z/‰�1.z/ D ˆ.z/:

Therefore, the Kronecker indices of ‰.z/ and ‰�1.z/ coincide and so do those of
‰0.z/ and ‰�10

.z/. �

5.21 Method of Moments Estimation of VARMA Models

Suppose that the stationary process fYtg follows the identified VARMA. p; q/model

Yt Cˆ1Yt�1 C � � � CˆpYt�p D At C‚1At�1 C � � � C‚qAt�q; (5.102)

and we want to estimate the matrices ˆi, i D 1; : : : ; p, and ‚i, i D
1; : : : ; q, using the method of moments. Then, postmultiplying (5.102) by
Y 0

t�m, m D q C 1; : : : ; q C p, and taking expectations, we get

ˆ1
q C � � � Cˆp
q�pC1 D �
qC1
ˆ1
qC1 C � � � Cˆp
q�pC2 D �
qC2

� � � D � � �
ˆ1
qCp�1 C � � � Cˆp
q D �
qCp;

that are the so-called extended Yule–Walker equations. From these equations, it
is possible to estimate the autoregressive coefficient matrices as

Œˆ1; : : : ; ˆp� D �Œ
qC1; : : : ; 
qCp�

2

6
6
6
4


q 
qC1 : : : 
qCp�1

q�1 
q : : : 
qCp�2
:::

:::
: : :

:::


q�pC1 
q�pC2 : : : 
q

3

7
7
7
5

�1

:

To estimate the moving average coefficient matrices, we can first set the VARMA
model into Akaike’s state space form (3.13) and (3.14), where F and K are given
by (3.11) and H D ŒI; 0; : : : ; 0�, and then solve the DARE (5.28), where, as
mentioned in Sect. 5.6,

N D Cov.xtC1;Yt/

D

2

6
4


.1/
:::


.r/

3

7
5 ;
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and r D maxf p; qg. The coefficient matrices‚i, i D 1; : : : ; q, can be obtained from
the relations

‚j D ˆj Cˆj�1‰1 C � � � C‰j; j D 0; 1; : : : ; q;

where

K D

2

66
6
4

‰1
‰2
:::

‰r

3

77
7
5
:

Instead of using the DARE, it is possible to use polynomial methods to solve an
equivalent spectral factorization problem. In this procedure, first we obtain the
autocovariances of the process Wt D Yt C ˆ1Yt�1 C � � � C ˆpYt�p, and then we
use the method of Sect. 3.10.7 to compute the stable matrix polynomial ‚.z/ and
the positive definite matrix † such that

GW.z/ D ‚.z/†‚0.z�1/;

where GW.z/ is the covariance generating function of fWtg.
Instead of solving the extended Yule–Walker equations to estimate the autore-

gressive coefficient matrices, it is possible to use the recursive procedure proposed
by Akaike (1974a, p. 371). According to this procedure, we recursively compute

Yi
tCi D YtCi C B1.i/YtCi�1 C � � � C Bi.i/Yt; i D 1; : : : ;K;

where K D max. p; q C 1/, such that Yi
tCi is orthogonal to fYt;Yt�1,

Yt�2; : : : ;Yt�iC1g. When i D K, if we premultiply

YK
tCK D YtCK C B1.K/YtCK�1 C � � � C BK.K/Yt

by YtCK�m, m D q C 1; : : : ; q C p, and take expectations, by the orthogonality
condition, we get the extended Yule–Walker equations. Therefore,

Œˆ1; : : : ; ˆp� D ŒB1.K/; : : : ;Bp.K/�

and Bj.K/ D 0 if j > p.
The algorithm is as follows.

i D 1) Y1tC1 D YtC1 C B1.1/Yt, where Y1tC1 is orthogonal to fYtg.
Imposing the condition that Y1tC1 is orthogonal to Yt yields B1.1/ D

�
1
�1
0 .
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i D 2) Y2tC2 D YtC2 C B1.2/YtC1 C B2.2/Yt, where Y2tC2 is orthogonal to fYt;Yt�1g.
Define first Z1tC2 D Y1tC2CB22Yt, such that Z1tC2 is orthogonal to fYtg. This

yields B22 D � .
2 C B1.1/
1/ 
�1
0 . Then, define Y2tC2 D Z1tC2 C B21Y1tC1

such that Y2tC2 is orthogonal to fYt�1g. Imposing the orthogonality condition,
we get B21 D � .
3 C B1.1/
2 C B22
1/ .
2 C B1.1/
1/

�1.
Summing up,

Y2tC2 D Y1tC2 C B22Yt C B21Y
1
tC1

D YtC2 C ŒB1.1/C B21�YtC1 C ŒB21B1.1/C B22�Yt:

i D k) Yk
tCk D YtCk CB1.k/YtCk�1C� � �CBk.k/Yt, where Yk

tCk is orthogonal to fYt,
Yt�1, : : : ;Yt�kC1g.

Define

Zk�1
tCk D Yk�1

tCk C Bk2Y
k�2
tCk�2

D YtCk C B1.k � 1/YtCk�1 C � � � C Bk�1.k � 1/YtC1
CBk2 ŒYtCk�2 C B1.k � 2/YtCk�3 C � � � C Bk�2.k � 2/Yt� ;

orthogonal to fYt�kC2g, and

Yk
tCk D Zk�1

tCk C Bk1Y
k�1
tCk�1

D Zk�1
tCk C Bk1 ŒYtCk�1 C B1.k � 1/YtCk�2 C � � � C Bk�1.k � 1/Yt� ;

orthogonal to fYt�kC1g. Then, imposing the orthogonality conditions yields
the equations


2k�2 C B1.k � 1/
2k�3 C � � � C Bk�1.k � 1/
k�1
D �Bk2 Œ
2k�4 C B1.k � 2/
2k�5 C � � � C Bk�2.k � 2/
k�2�

and


2k�1 C B1.k � 1/
2k�2 C � � � C Bk�1.k � 1/
k

CBk2 Œ
2k�3 C B1.k � 2/
2k�4 C � � � C Bk�2.k � 2/
k�1�

D �Bk1 Œ
2k�2 C B1.k � 1/
2k�3 C � � � C Bk�1.k � 1/
k�1� ;

from which it is possible to compute first Bk2 and then Bk1. Finally,

Yk
tCk D Yk�1

tCk C Bk2Y
k�2
tCk�2 C Bk1Y

k�1
tCk�1:
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If the stationary process fYtg follows the VARMA model in echelon form

ˆ0Yt Cˆ1Yt�1 C � � � CˆpYt�r D ‚0At C‚1At�1 C � � � C‚qAt�r; (5.103)

and we want to estimate the matrices ˆi, i D 0; : : : ; r, and ‚i, i D 1; : : : ; r, using
the method of moments, we can proceed as follows. First, postmultiply (5.103) by
Y 0

t�m, m D r C 1; : : : ; 2r C 1, and take expectations to get

ˆ0
rC1 Cˆ1
r C � � � Cˆr
1 D 0

ˆ0
rC2 Cˆ1
rC1 C � � � Cˆr
2 D 0

� � � D � � �
ˆ0
2rC1 Cˆ1
2r C � � � Cˆr
rC1 D 0:

Then, setting ˆ0 D ˆ0 � Ik C Ik, we can rewrite the previous equations as

.ˆ0 � Ik/ 
rC1 Cˆ1
r C � � � Cˆr
1 D �
rC1
.ˆ0 � Ik/ 
rC2 Cˆ1
rC1 C � � � Cˆr
2 D �
rC2

� � � D � � �
.ˆ0 � Ik/ 
2rC1 Cˆ1
2r C � � � Cˆr
rC1 D �
2rC1;

and applying the vec operator, we have

.
 0

rC1 ˝ Ik/vec .ˆ0 � Ik/C .
 0

r ˝ Ik/vec.ˆ1/C � � � C .
 0

1 ˝ Ik/vec.ˆr/ D �vec.
rC1/

.
 0

rC2 ˝ Ik/vec .ˆ0 � Ik/C .
 0

rC1 ˝ Ik/vec.ˆ1/C � � � C .
 0

2 ˝ Ik/vec.ˆr/ D �vec.
rC2/

� � � D � � �
.
 0

2rC1 ˝ Ik/vec .ˆ0 � Ik/C .
 0

2r ˝ Ik/vec.ˆ1/C � � � C .
 0

rC1 ˝ Ik/vec.ˆr/ D �vec.
2rC1/:

Letting ˛ D .vec0 .ˆ0 � Ik/ , : : :, vec0.ˆr//
0 and Wj D


�
 0

j ˝ Ik , : : :,

� 
 0
j�r ˝ Ik

�
, j D r C 1; : : : ; 2r C 1, we can rewrite the previous equations as

vec.
j/ D Wj˛; j D r C 1; : : : ; 2r C 1:

Finally, we can incorporate the echelon form parameter restrictions in the form

˛ D Rˇ;
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where ˇ is the vector of nonzero parameters and R is a selection matrix formed with
zeros and ones. Thus, letting Xj D WjR, j D r C 1; : : : ; 2r C 1, we get

vec.
j/ D Xjˇ; j D r C 1; : : : ; 2r C 1: (5.104)

We can estimate ˇ in (5.104) using OLS.
To estimate the moving average coefficient matrices, we first put the model into

echelon state space form and solve the DARE (5.28). To obtain the matrix N, we
can proceed as in Sect. 5.10. That is,

N D Jn

2

6
4


1
:::


n

3

7
5 ;

where fni W i D 1; : : : ; kg are the Kronecker indices, n is the McMillan degree, and
Jn is a selection matrix that selects the rows f.r �1/p C i W 1 � r � niI 1 � i � kg of�

 0
1 , : : :, 
 0

n

�0
. Then, the moving average polynomial,‚.B/At, can be obtained using

the relations (5.40). As in Sect. 5.10, note that, because‰i D HFi�1K, i D 1; : : : ; n,
only the rows of the ‰i matrices contained in K are needed for the calculations
in (5.40).

5.22 Historical Notes

Canonical forms for state space and VARMA models were proposed by Luenberger
(1967), Denham (1974), Rissanen (1974), and Guidorzi (1981). The concept of
overlapping parametrizations was first suggested by Glover & Willems (1974).

Standard references for state space and VARMA echelon forms are Kailath
(1980) and Hannan & Deistler (1988).

In the statistical literature, Tsay (1989) gave a lucid account on the use of
McMillan degree and Kronecker indices for identification in VARMA models. In
addition, the article discusses the relationship between echelon forms and the so-
called scalar component models proposed by Tiao & Tsay (1989).

Box & Tiao (1977) proposed a canonical transformation of multivariate time
series so that the components of the transformed process can be ordered from
least to most predictable. The least predictable components can be considered as
stable contemporaneous relationships among the original variables. This type of
relationship is what econometricians would later call cointegration. The concept of
cointegration was introduced by Granger (1981) and Engle & Granger (1987). A
standard reference is Johansen (1995).

The CKMS recursions were first presented in Kailath, Morf, & Sidhu (1973), as
a rather difficult extension to discrete time of results first obtained in continuous
time.
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The fast covariance square root filter was originally derived by Morf & Kailath
(1975).

5.23 Problems

5.1 Given the VARMA process

ˆ0Yt Cˆ1Yt�1 D ‚0At C‚1At�1;

where

ˆ0 D ‚0 D
2

4
1 0 0

0 1 0

�31;0 �32;0 1

3

5 ; ˆ1 D
2

4
�11;1 �12;1 0

�21;1 �22;1 0

0 0 0

3

5

‚1 D
2

4
�11;1 �12;1 �13;1
�21;1 �22;1 �23;1

0 0 0

3

5 ;

and the parameters that are not zero or one vary freely, what are the Kronecker
indices?

5.2 Suppose a 3-dimensional VARMA process fYtg has Kronecker indices .3; 1; 2/.
Specify the echelon form matrices corresponding to this model.

5.3 Compute the covariances of xt and Yt in Example 5.2.

5.4 Suppose that the process fYtg follows the model YtC�Yt�1 D At, where j�j < 1
and fAtg is an uncorrelated sequence with zero mean and common variance �2. Put
this model into Akaike state space form (3.13) and (3.14), where F and K are given
by (3.11) and H D Œ1; 0; : : : ; 0�, and obtain the state space form of the inverse
model, (5.97) and (5.98).

5.5 Suppose fYtg follows the signal plus noise model

Yt D St C Nt;

where St satisfies St C �St�1 D At, j�j < 1, At �WN.0; �2A/, Nt �WN.0; �2N/ and
the processes fAtg and fNtg are mutually uncorrelated.

(i) Show that fYtg can be put into state space form (5.4) and (5.5) by defining
F D ��, G D 1, H D 1, ut D AtC1, vt D Nt, Q D �2A , R D �2N , S D 0, and x1
� .0;�/, � D �2A=.1 � �2/.
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(ii) Prove that the DARE corresponding to the previous state space model is

P2 C P.�2N � �2�2N � �2A/� �2A�
2
N D 0

and that this equation has real solutions of opposite sign such that the positive
solution satisfies P > �2A .

(iii) Obtain K and † as functions of the positive solution, P, of the DARE and the
other parameters of the model so that the generating function, GY.z/, of fYtg
factorizes as (5.18). Show that fYtg follows a model of the form Yt C �Yt�1 D
Ut C �Ut�1, where Ut �WN.0;†/ and find � in terms of P and the other
parameters in the model.

5.6 Consider the following state space model (5.4) and (5.5), where

F D
�
�1 0

0 �2

�
; G D

�
1

0

�
; H D �

1 1
�
;

where Q > 0, S D 0 and R > 0.

(i) If 0 < �1 < 1, �1 ¤ 0:5, and �2 D 2, show that the processes fxt W t � 1g and
fYt W t � 1g are stationary. What is the solution of the Lyapunov equation (5.7)
in this case? Is it of full rank?

(ii) Show that the pair ŒF;GQ1=2� is not controllable for all �1 and �2. For what
values of these parameters, if any, is the pair ŒF;GQ1=2� stabilizable, the pair
ŒF;H� observable, or the pair ŒF;H� detectable?

(iii) If �1 D 1 and j�2j < 1, show that the strong solution of the DARE exists, is
unique, and coincides with the stabilizing solution.

5.7 Write down the likelihood function of the process of Problem 5.4 for the
observations Y1; : : : ;Yn in two ways. First, using the covariance matrix of the data
and then using the Kalman filter and the prediction error decomposition. What is the
�2-maximized log-likelihood (5.87)?

5.8 For the scalar process following the model Yt D At C �1At�1 C � � � C �qAt�q,
where At � WN.0; �2/, �2 > 0, write down its Akaike’s state space form (3.13)
and (3.14), where F and K are given by (3.11) and H D Œ1; 0; : : : ; 0�. Show that the
pair ŒF;H� is always observable and the pair ŒFs;GQs=2� is controllable if �q ¤ 0.
Show that ŒFs;GQs=2� is stabilizable if the roots of the polynomial 1C�1zC� � �C�qzq

are all outside the unit circle.

5.9 Let the VARMA model

Yt �
�
2 2

3 7

�
Yt�1 D At C

��0:4 0

5 �0:6
�

At�1:
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(i) Show that the autoregressive matrix polynomial has one unit root and that there
is exactly one cointegration relation. Prove that … D ˛ˇ0, where

˛ D Œ1; 3�; ˇ D Œ1; 2�:

(ii) Obtain ˇ? and the matrices U1 and U2 in (5.31).
(iii) Obtain the differencing matrix polynomial D.z/ and the autoregressive poly-

nomialˆ� in (5.34).

5.10 For the model of Example 5.2, obtain N D F…H0 C GS and the covariance
Hankel matrix of order r,

Gr D

2

6
6
6
4


.1/ 
.2/ 
.3/ � � � 
.r/

.2/ 
.3/ 
.4/ � � � 
.r C 1/
:::

:::
:::

: : :
:::


.r/ 
.r C 1/ 
.t C 2/ � � � 
.2r � 1/

3

7
7
7
5
;

using (5.17).

Appendix

Matrix Fraction Descriptions

Suppose the state space model

xtC1 D Fxt C Gut (5A.1)

Yt D Hxt C Jut; (5A.2)

where Var.ut/ D I. In Sect. 3.A.3, we used generating functions to obtain the
transfer function, ‰.z/ D J C zH.I � zF/�1G, corresponding to this state space
model. This transfer function is a matrix whose elements are rational functions. All
transfer functions considered in this Appendix will be matrices of this type. Many
of the results in this Appendix are borrowed from Chen (1984). See also Kailath
(1980) and Hannan & Deistler (1988).

Given a transfer function,‰.z/, expressions of the form

‰.z/ D D�1
L .z/NL.z/ or ‰.z/ D NR.z/D

�1
R .z/;
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where NL;DL;NR;DR are polynomial matrices, are called matrix fraction descrip-
tions (MFD). In general, left and right MFDs do not coincide. For example, the
transfer function

‰.z/ D



z

1C z
;

2z

1C 3z

�

has the left MFD

‰.z/ D Œ.1C z/.1C 3z/��1 Œz.1C 3z/; 2z.1C z/�

and the right MFD

‰.z/ D Œz; 2z�

�
1C z 0

0 1C 3z

��1
:

A left MFD is called irreducible if both the numerator and the denominator are left
coprime. In a similar way, a right MFD is called irreducible if both the numerator
and the denominator are right coprime. Recall that two polynomial matrices are
left coprime if they have no left factors other than unimodular matrices, that is,
matrices whose determinant is a nonzero number. A similar definition holds for
right coprime polynomial matrices. The degree of a polynomial matrix, D.z/, is
defined as the degree of the polynomial det ŒD.z/�. Every entry of an MFD is a
ratio of polynomials. An MFD is called proper if for every entry the degree of the
numerator is less than or equal to the degree of the denominator, and it is called
strictly proper if for every entry the degree of the numerator is less than the degree
of the denominator. The definitions of proper and strictly proper MFDs can also be
stated in terms of limits of the MFD when z ! 1. Thus, an MFD ‰.z/ is proper if
‰.1/ is a finite matrix and it is strictly proper if ‰.1/ D 0.

Elementary Operations and Hermite Form

Given a polynomial matrix M.z/, we introduce the following elementary opera-
tions on M.z/:

1. Multiplication of a row or column by a nonzero real or complex number.
2. Interchange any two rows or columns.
3. Addition of the product of one row or column and a polynomial to another row

or column.

A matrix obtained from the unit matrix by performing an elementary operation is
called an elementary matrix. It is easy to see that an elementary row or column
operation on M.z/ can be carried out by premultiplying or postmultiplying M.z/ by
the corresponding elementary matrix.
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In the next theorem, we show that every polynomial matrix M.z/ with indepen-
dent columns can be transformed using exclusively elementary row operations into
a triangular polynomial matrix of the form

H.z/ D

2

6
66
6
6
6
66
6
6
6
6
4

� � � � � �
0 � � � � �
0 0

: : :
:::

:::
::: �

0 0 � � � 0
:::
:::

:::

0 0 � � � 0

3

7
77
7
7
7
77
7
7
7
7
5

;

where the diagonal elements are nonzero monic polynomials of higher degree than
the elements above. This is called Hermite form.

Theorem 5A.1 Every polynomial matrix M.z/ with independent columns can be
transformed into Hermite form by a sequence of elementary row operations.
Furthermore, there exists a unimodular matrix, U.z/, such that

U.z/M.z/ D H.z/;

where H.z/ is in Hermite form.

Proof Using row interchanges, bring to the (1,1) position the element of lowest
degree in the first column and call this element Nm11.z/. By the Euclidean algorithm,
every other element in the first column can be written as a multiple of Nm11.z/ plus a
remainder of lower degree than Nm11.z/. Thus, using elementary row operations, we
can subtract from every other entry the appropriate multiple of Nm11.z/ so that only
remainders of lower degree than Nm11.z/ are left. Repeat the operation with a new
(1,1) element of lower degree than Nm11.z/ and continue until all the elements in the
first column except the (1,1) element are zero.

Consider the second column of the resulting matrix and repeat the previous
procedure with all the elements of this column except the first until all the entries
below the (2,2) element are zero. If the degree of the (1,2) element is not lower than
that of the (2,2) entry, use the Euclidean algorithm and the corresponding elementary
row operation to replace the (1,2) entry with a polynomial of lower degree than the
(2,2) entry. Continuing in this way with the remaining columns, it is clear that after
a finite number of steps the Hermite form is obtained.

Every elementary row operation applied to a polynomial matrix, M.z/, in the
previous procedure can be carried over by premultiplying M.z/ with an appropriate
elementary matrix, U.z/. Since elementary matrices are unimodular and the product
of unimodular matrices is again a unimodular matrix, the previous algorithm yields
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a unimodular matrix, U.z/, such that

U.z/M.z/ D H.z/;

where H.z/ is in Hermite form. �

Column and Row Reduced Polynomial Matrices

Given a polynomial matrix, M.z/, we define the degree of the i-th row of M.z/,
ıriM.z/, as the highest degree of all polynomials in that row. The degree of the i-th
column of M.z/, ıciM.z/, is defined similarly. For example, for

M.z/ D
�

z2 C 1 z3 � 2z C 3 z � 1
0 z3 � 7 z C 1

�

we have ır1 D 3, ır2 D 3, ıc1 D 2, ıc2 D 3 and ıc3 D 1.

Theorem 5A.2 If ‰.z/ is a q � p proper MFD such that ‰.z/ D D�1
L .z/NL.z/ D

NR.z/D�1
R .z/, then

ıriNL.z/ � ıriDL.z/; i D 1; 2; : : : ; q

and

ıcjNR.z/ � ıcjDR.z/; j D 1; 2; : : : ; p:

If ‰.z/ is a strictly proper MFD, then the previous inequalities should be replaced
by strict inequalities.

Proof Since DL.z/‰.z/ D NL.z/, letting Nij.z/, Dij.z/ and ‰ij.z/ denote the ij-th
element of NL.z/, DL.z/ and ‰.z/, we can write the elements of the i-th row of
NL.z/ as

Nij.z/ D
qX

kD1
Dik.z/‰kj.z/; j D 1; 2; : : : ; p:

For each Nij.z/, the summation in the previous formula is carried over the i-th row
of DL.z/. It is not difficult to show that if ‰.z/ is proper, the degree of Nij.z/, j D
1; 2; : : : ; p, is smaller than or equal to the highest degree in Dik, k D 1; 2; : : : ; q.
Thus,

ıriNL.z/ � ıriDL.z/; i D 1; 2; : : : ; q:

The rest of the theorem can be proved similarly. �
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A nonsingular p � p polynomial matrix M.z/ is called row reduced if

ı det ŒM.z/� D
pX

iD1
ıriM.z/;

where ı det ŒM.z/� denotes the degree of det ŒM.z/�. It is called column reduced if

ı det ŒM.z/� D
pX

jD1
ıcjM.z/:

Let ıriM.z/ D ni. Then, the polynomial matrix M.z/ can be written in the form

M.z/ D diag.zn1 ; : : : ; znp/Mrc C Mrp.z/; (5A.3)

where Mrc is a constant matrix and Mrp.z/ is a polynomial matrix such that the
degree of each term of its i-th row is less than ni, i D 1; : : : ; p. For example, if

M.z/ D
�
3z2 � 2z C 1 �5z2

3z C 2 �z C 1

�
;

then

M.z/ D
�

z2 0
0 z

� �
3 �5
3 �1

�
C
��2z C 1 0

2 1

�
:

The constant matrix Hrc is called the row-degree coefficient matrix.

Lemma 5A.1 The polynomial matrix M.z/ is row reduced if, and only if, its row-
degree coefficient matrix, Mrc, is nonsingular.

Proof Let ıriM.z/ D ni, n D Pp
iD1 ni, and let Mrc D LQ be the LQ decomposition

of Mrc, where L and Q are a lower triangular and an orthogonal matrix, respectively.
Then, using (5A.3), it is obtained that

det ŒM.z/� D det
�
diag.zn1 ; : : : ; znp/L C Mrp.z/Q

0� det.Q/

D det.Mrc/z
Pp

iD1 ni C terms with degree less than n:

�

Similar to (5A.3), we can also write M.z/ as

M.z/ D Mccdiag.zm1 ; : : : ; zmp/C Mcp.z/; (5A.4)
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where ıcjM.z/ D mj is the degree of the j-th column, j D 1; 2; : : : ; p. The constant
matrix Hcc is called the column-degree coefficient matrix. The following lemma
follows from (5A.4). The proof is omitted because it is similar to that of the previous
lemma.

Lemma 5A.2 The polynomial matrix M.z/ is column reduced if, and only if, its
column-degree coefficient matrix, Mcc, is nonsingular.

We can now generalize Theorem 5A.2 to the following theorem.

Theorem 5A.3 Let ‰.z/ be a q � p MFD such that ‰.z/ D D�1
L .z/NL.z/ D

NR.z/D�1
R .z/ with DL.z/ row reduced and DR.z/ column reduced. Then, ‰.z/ is

proper if, and only if,

ıriNL.z/ � ıriDL.z/; i D 1; 2; : : : ; q

and

ıcjNR.z/ � ıcjDR.z/; j D 1; 2; : : : ; p:

‰.z/ is strictly proper if, and only if, the previous inequalities hold replaced with
strict inequalities.

Proof The necessity part has been proved in Theorem 5A.2. To prove sufficiency,
use (5A.3) to get

DL.z/ D diag.zn1 ; : : : ; znp/Drc C Drp.z/

NL.z/ D diag.zn1 ; : : : ; znp/Nrc C Nrp.z/;

where ıriDL.z/ D ni > ıriDrp.z/ and, by assumption, ıriNrp.z/ < ni, i D 1; 2; : : : ; p.
Letting H.z/ D diag.zn1 ; : : : ; znp/, we can write

‰.z/ D �
Drc C H�1.z/Drp.z/

��1 �
Nrc C H�1.z/Nrp.z/

�
:

�

The Hermite form, H.z/, of a polynomial matrix M.z/, introduced in Sect. 5.23,
is column reduced. By Theorem 5A.1, there exists a unimodular matrix, U.z/, such
that

U.z/M.z/ D H.z/:

Thus, using elementary row operations, it is possible to obtain a column reduced
matrix from a polynomial matrix that is not column reduced. It turns out that it is
possible to obtain also a row reduced matrix using elementary row operations. In
fact, the following theorem holds.
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Theorem 5A.4 For every nonsingular polynomial matrix M.z/, there exist unimod-
ular matrices U.z/ and V.z/ such that U.z/M.z/ and M.z/V.z/ are row reduced and
column reduced, respectively.

Proof The best way to proceed is by using an example. Let

M.z/ D
�

z C z3 z2 C z C 1

z 1

�
:

The row-degree coefficient matrix is

Hrc D
�
1 0

0 0

�
;

and is singular. Hence, M.z/ is not row reduced. We can subtract the second row of
M.z/ multiplied by z2 from the first row to get

�
1 �z2

0 1

� �
z C z3 z2 C z C 1

z 1

�
D
�

z 1C z
z 1

�
;

which is row reduced. It is clear that we can use this procedure with more
complicated matrices until they are row reduced. The case of polynomial matrices
that are not column reduced is similar. �

Matrix Fraction Descriptions Expressed in Terms of the Forward
Operator: Canonical MFDs

Using z as the backshift operator in (5A.1) and (5A.2), zxt D xt�1, we can write

.I � zF/xtC1 D Gut

and it follows that

Yt D �
J C zH.I � zF/�1G

�
ut:

Thus, the transfer function ‰.z/ D J C zH.I � zF/�1G is expressed in terms of the
backshift operator. However, using the forward operator, z�1, it is obtained that

�
z�1I � F

	
xt D Gut; Yt D

h
J C H

�
z�1I � F

	�1
G
i

ut;



5.23 Problems 399

and ‰.z/ D J C H
�
z�1I � F

	�1
G. For example, the transfer function

‰.z/ D



1

1C z
;

2

3C z

�

can be expressed in terms of the forward operator as

‰.z/ D



z�1

z�1 C 1
;

2z�1

3z�1 C 1

�
:

It turns out that it is sometimes more convenient to use the forward than the backshift
operator when handling MFDs. To see this, consider, for example, the transfer
function of the ARMA model .1C �z/Yt D .1C �1z C �2z2/At, where zYt D Yt�1
is the backshift operator,

‰.z/ D 1C �1z C �2z2

1C �z
:

The McMillan degree of this model is 2, the degree of the numerator. If we pass to
the forward operator, we obtain

‰.z/ D z�2 C �1z�1 C �2

z�2 C �z�1

and now the McMillan degree is the degree of the denominator. It can be shown
that this property also holds for proper and irreducible MFDs of transfer functions
expressed in terms of the forward operator. We will prove this for VARMA models
in echelon form later in this section.

Theorem 5A.5 A transfer function, ‰.z/, expressed in terms of the forward
operator is the transfer function of a state space model (5A.1) and (5A.2) if, and
only if, it is a proper MFD.

Proof Suppose‰.z/ D J C H.z�1I � F/�1G is the transfer function of a state space
model (5A.1) and (5A.2), where k D dim.Yt/. Then, we can write

‰.z/ D J C 1

det .z�1I � F/
H
�
adj

�
z�1I � F

	�
G;

where adj.M/ denotes the adjoint matrix of M. If F is an r � r matrix, then
det
�
z�1I � F

	
has degree r. Since every entry of adj

�
z�1I � F

	
is the determinant

of an .r �1/� .r �1/ submatrix of
�
z�1I � F

	
, all the entries of adj

�
z�1I � F

	
have

degree at most r � 1. Their linear combinations again have at most degree r � 1.
Thus, H.z�1I � F/�1G is a strictly proper and ‰.z/ D J C H.z�1I � F/�1G is a
proper MFD.
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Conversely, suppose that‰.z/, written in terms of the forward operator, is a k �k
proper MFD. Since ‰.z/ is proper, we can decompose it as

‰.z/ D J C‰sp.z/;

where J is a constant matrix that can be zero and‰sp.z/ is the strictly proper part of
‰.z/. For example, if ‰.z/ D .2z�1 C 1/=.z�1 C 3/, then ‰.z/ D 2� 5=.z�1 C 3/,
J D 2, and ‰sp.z/ D �5=.z�1 C 3/. Let

d.z�1/ D z�n C d1z
�nC1 C � � � C dn�1z�1 C dn

be the unique monic least common denominator (lcd) of all entries of ‰sp.z/. That
is, among all lcd we select the one with leading coefficient equal to one. Then, we
can write

‰sp.z/ D 1

d.z�1/
N.z�1/ D 1

d.z�1/
�
N1z

�nC1 C N2z
�nC2 C � � � C Nn

�
;

where Ni, i D 1; : : : ; n, are constant matrices. Passing to the backward operator, it
is obtained that

‰.z/ D J C 1

1C d1z C � � � C dn�1zn�1 C dnzn

�
N1z C N2z

2 C � � � C Nnzn
�
:

This implies that fYtg follows the VARMA model

Yt C d1Yt�1 C � � � C dnYt�n D Jut C .N1 C d1J/ut�1 C � � � C .Nn C dnJ/ut�n:

By Theorem 1.7, fYtg follows a state space model (5A.1) and (5A.2). �

Theorem 5A.6 Let ‰.z/ D ˆ�1.z/‚.z/ be a p � q left MFD, where ˆ.z/ D ˆ0 C
ˆ1z C � � � Cˆpzp, ‚.z/ D ‚0 C‚1z C � � � C‚qzq, and z is the backshift operator.
If ‰.z/ D ê�1.z�1/e‚.z�1/ is the MFD expressed in terms of the forward operator,
then ê�1.z�1/e‚.z�1/ is proper if, and only if,ˆ0 is nonsingular. A similar statement
holds for right MFDs.

Proof Suppose ˆ0 is nonsingular and let ni D max fıriˆ.z/; ıri‚.z/g, i D
1; 2; : : : ; p. Then,

ê.z�1/ D diag.z�n1 ; : : : ; z�np/ˆ0 Cˆrp.z
�1/

e‚.z�1/ D diag.z�n1 ; : : : ; z�np/‚0 C‚rp.z
�1/;

where ıriˆrp.z�1/ < ni and ıri‚rp.z�1/ < ni, i D 1; 2; : : : ; p. By Lemma 5A.1 and
Theorem 5A.3, ê�1.z�1/e‚.z�1/ is proper.
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Conversely, suppose that ê�1.z�1/e‚.z�1/ is proper. If ê�1.z�1/ is not row
reduced, there exists by Theorem 5A.4 a unimodular matrix U.z/ such that

ˆ.z�1/ D U.z/ê.z�1/

is row reduced. Letting ‚.z�1/ D U.z/e‚.z�1/, we can express‰.z/ as

‰.z/ D ˆ
�1
.z�1/‚.z�1/:

Because ˆ.z�1/ is row reduced, we can write

ˆ.z�1/ D diag.z�n1 ; : : : ; z�np/ˆrc Cˆrp.z
�1/;

where the row-degree coefficient matrix,ˆrc, is nonsingular. Premultiplyingˆ.z�1/
and ‚.z�1/ by diag.zn1 ; : : : ; znp/, it is obtained that ‰.z/ D ˆ�1.z/‚.z/, where
ˆ.z/ D diag.zn1 ; : : : ; znp/ˆ.z�1/ and ‚.z/ D diag.zn1 ; : : : ; znp/‚.z�1/. By Theo-
rem 5A.3, ‰.z/ D ˆ�1.z/‚.z/ is the left MFD expressed in terms of the backshift
operator. Since ˆ0 D ˆrc is nonsingular, the theorem is proved. �

Corollary 5A.1 Let ‰.z/ D ˆ�1.z/‚.z/ be a p � q left MFD, where ˆ.z/ D
ˆ0 C ˆ1z C � � � C ˆpzp, ‚.z/ D ‚0 C ‚1z C � � � C ‚qzq, and z is the backshift
operator. Then,‰.z/ is the transfer function of a state space model (5A.1) and (5A.2)
if, and only if, ˆ0 is nonsingular. A similar statement holds for right MFDs.

Proof By the previous theorem and using its notation, ‰.z/ D ê�1.z�1/e‚.z�1/
is proper if, and only if, ˆ0 is nonsingular. By Theorem 5A.5, ê�1.z�1/e‚.z�1/ is
proper if, and only if, ‰.z/ is the transfer function of a state space model (5A.1)
and (5A.2). �

Theorem 5A.7 Suppose a VARMA model in echelon form

ˆ0Yt Cˆ1Yt�1 C � � � CˆrYt�r D ‚0At C‚1At�1 C � � � C‚rAt�r;

where ˆ0 D ‚0 is a lower triangular matrix with ones in the main diagonal. Let
the transfer function be

‰.z/ D ˆ�1.z/‚.z/;

where ˆ.z/ D ˆ0 C ˆ1z C � � � C ˆrzr and ‚.z/ D ‚0 C ‚1z C � � � C ‚rzr. If
‰.z/ D ê�1.z�1/e‚.z�1/ is the transfer function expressed in terms of the forward
operator, then ê�1.z�1/e‚.z�1/ is a proper and irreducible left MFD and the degree
of the denominator, ê.z�1/, coincides with the McMillan degree.
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Proof Since ˆ0 is nonsingular, by Theorem 5A.6, ê�1.z�1/e‚.z�1/ is proper.
By Proposition 5.1, ˆ.z/ and ‚.z/ are left coprime and ‰.z/ is irreducible. To
prove the statement about the McMillan degree, let k D dim.Yt/ and D.z�1/ D
diag .z�n1 ; z�n2 ; : : : ; z�nk /, where n1; n2; : : : ; nk are the Kronecker indices. Then,
ê.z�1/ D D.z�1/ˆ.z/ and e‚.z�1/ D D.z�1/‚.z/. Sinceˆ0 is lower triangular with
ones in the main diagonal, proceeding as in the proof of Lemma 5A.1, we can prove
that the degree of det

�ê.z�1/
�

is
Pk

iD1 ni, the McMillan degree. Finally, if ê.z�1/
and e‚.z�1/were not left coprime, we could cancel a nonunimodular common factor
and the determinantal degree of the resulting denominator would be less than the
McMillan degree, a contradiction. �

Under the assumptions and with the notation of the previous theorem, the MFD
in the forward operator ê�1.z�1/e‚.z�1/ is called in the engineering literature
canonical MFD. It is shown in the proof of the theorem that the canonical MFD is
obtained from the VARMA echelon form, ˆ�1.z/‚.z/, as ê.z�1/ D D.z�1/ˆ.z/
and e‚.z�1/ D D.z�1/‚.z/, where D.z�1/ D diag .z�n1 ; z�n2 ; : : : ; z�nk / and
n1; n2; : : : ; nk are the Kronecker indices. See, for example, Gevers (1986) and
Hannan & Deistler (1988) on the relation between canonical MFDs and VARMA
echelon forms.

Passing Right Matrix Fraction Descriptions to Left Coprime Matrix
Fraction Descriptions

Suppose a q � p proper right MFD expressed in terms of the backshift operator,

‰.z/ D N.z/D�1.z/;

where D.z/ D D0 C D1z C � � � C Dmzm and N.z/ D N0 C N1z C � � � C Nmzm. By
Theorem 5A.6, D0 is nonsingular. But we are not assuming that N.z/ and D.z/ are
right coprime. In this section, we look for a left MFD of ‰.z/ such that

‰.z/ D ˆ�1.z/‚.z/ D N.z/D�1.z/

and ˆ.z/ and ‚.z/ are left coprime. The previous equality can be written as
‚.z/D.z/ D ˆ.z/N.z/ or

��‚.z/ ˆ.z/�
�

D.z/
N.z/

�
D 0: (5A.5)
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Letting ˆ.z/ D ˆ0 Cˆ1z C � � � Cˆrzr and ‚.z/ D ‚0 C‚1z C � � � C‚rzr, if we
equate coefficient matrices in (5A.5), it is obtained that

h
�‚r ˆr

::: �‚r�1 ˆr�1
::: � � � ::: �‚0 ˆ0

i

�

2

66
6
6
6
66
6
6
6
4

Dm Dm�1 � � � D0 0 0 � � � 0
Nm Nm�1 � � � N0 0 0 � � � 0
0 Dm � � � D1 D0 0 � � � 0
0 Nm � � � N1 N0 0 � � � 0
:::

:::
:::

:::

0 0 � � � � � � Dm � � � D1 D0

0 0 � � � � � � Nm � � � N1 N0

3

77
7
7
7
77
7
7
7
5

D 0: (5A.6)

The matrix in the previous equality formed from Di and Ni is called the generalized
resultant of N.z/ and D.z/. Since, by assumption, D0 is nonsingular, it is clear by
inspection that all D block rows in the generalized resultant are linearly independent
of the previous rows.

Searching for r D 0; 1; : : :, the first linearly dependent rows in the corresponding
generalized resultant, we can obtain the left coprime polynomial matrices ˆ.z/ and
‚.z/. Furthermore, in this way we can obtain the Kronecker indices and the echelon
form of ‰.z/.

As an application of the previous procedure, we can obtain a left MFD corre-
sponding to the state space form (5A.1) and (5A.2). Since the transfer function is
‰.z/ D J C zH.I � zF/�1G, we can obtain left coprime polynomial matrices ˆ.z/
and‚.z/ such that

.zH/.I � zF/�1 D ˆ�1.z/‚.z/:

Then,

‰.z/ D ˆ�1.z/ Œˆ.z/J C‚.z/G� :



Chapter 6
Time Invariant State Space Models with Inputs

Given a k-dimensional stochastic process fYtg, we say that it follows a state space
model with strongly exogenous inputs, fZtg, if we can write

xtC1 D Fxt C WZt C Gut (6.1)

Yt D Hxt C VZt C Jut; t D 1; 2; : : : ; n; (6.2)

where the fZtg and the fuvg are orthogonal for all v � t, Zt has dimension s, futg is
a zero mean serially uncorrelated sequence of dimension q, Var.ut/ D �2Iq, and xt

has dimension r. This state space representation is general, and is more convenient
to our purposes than other possible state space forms. The initial state vector is

x1 D Mˇ C Aı C x; (6.3)

where M and A are nonstochastic matrices, ˇ is a constant bias vector, x is a zero
mean stochastic vector with Var.x/ D �2�, and ı is a stochastic vector with an
undefined distribution (diffuse) that models the uncertainty with respect to the initial
conditions.

The definition of strong exogeneity (Harvey, 1989, pp. 374–375) is as follows.
Let Xt D .Yt;Zt/ be a two-dimensional random vector. Then, Zt is weakly
exogenous with respect to Yt if the density functions satisfy

i) f .Yt;ZtjXt�1; : : : ;X1I�/ D f .YtjZt;Xt�1; : : : ;X1I�1/f .ZtjXt�1; : : : ;X1I�2/;
where � D .�1; �2/ is the vector of parameters and �1 and �2 vary freely. Here,
�1 is supposed to be the vector of parameters of interest. Thus, condition i) tells us
that we can estimate �1 using the distribution of Yt conditional on .Zt;Xt�1; : : : ;X1/
only. For forecasting and other purposes, condition i) is not enough and this leads to
the definition of strong exogeneity. Zt is strongly exogenous with respect to Yt if,
in addition to i), the following condition holds.
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ii) f .ZtjXt�1; : : : ;X1I�2/ D f .ZtjZt�1; : : : ;Z1I�2/:
Condition ii) is equivalent to saying that Yt does not Granger-cause Zt (Granger,
1969). This means that there is no feedback from Yt to Zt and we can estimate �2
using the variable Zt only.

By the strong exogeneity assumption, the variable Zt in (6.1) and (6.2) can be
treated as fixed and the parameters in (6.1) and (6.2) can be estimated independently
of the parameters in the model followed by fZtg if fZtg is stochastic. Thus, even
if fZtg is stochastic and follows a well-specified model, the unknown parameters
contained in the initial state vector, x1, must be estimated using the model (6.1)
and (6.2) and not the model followed by fZtg.

The state space model with inputs (6.1) and (6.2) is said to be in innovations
form if

xtC1 D Fxt C WZt C KAt (6.4)

Yt D Hxt C VZt C At; (6.5)

where fAtg �WN.0;†/ and x1 is given by (6.3). The transfer function of the state
space model (6.4) and (6.5) can be defined as follows. Let z be the backshift operator,
zYt D Yt�1. Then, we get from (6.4)

xtC1 D .I � zF/�1ŒW;K�
�

Zt

At

�
:

Substituting in (6.5), it is obtained that

Yt D ˚
ŒV; I�C zH.I � zF/�1ŒW;K�

� �Zt

At

�
:

Thus, the transfer function is defined as

�.z/ D
1X

jD0
�jz

j D ˚
ŒV; I�C zH.I � zF/�1ŒW;K�

� D
1X

jD0
Œ„j; ‰j�z

j:

Since WZt D vec.WZt/ D .Z0
t ˝ Ir/vec.W/ and VZt D vec.VZt/ D .Z0

t ˝
Ik/vec.V/, if we define ˇv D vec.V/, ˇw D vec.W/, ˇ D .ˇ0

v; ˇ
0
w/

0, Wt D .0;Z0
t ˝

Ir/ and Vt D .Z0
t ˝ Ik; 0/, we can write (6.1) and (6.2) in the form

xtC1 D Fxt C Wtˇ C Gut

Yt D Hxt C Vtˇ C Jut; t D 1; 2; : : : ; n:
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It follows from this that, under the strong exogeneity assumption, the model (6.1)
and (6.2) can be considered as a state space model with constant bias of the
form (4.85) and (4.86).

Conversely, given a state space model with constant bias, (4.85) and (4.86), since
Wtˇ D vec.Wtˇ/ D .ˇ0 ˝ Ir/vec.Wt/ and Vtˇ D vec.Vtˇ/ D .ˇ0 ˝ Ik/vec.Vt/, if
we define Zv;t D vec.Vt/, Zw;t D vec.Wt/, Zt D .Z0

v;t;Z
0
w;t/

0, W D .0; ˇ0 ˝ Ir/ and
V D .ˇ0 ˝ Ik; 0/, we can write (4.82) and (4.83) in the form (6.1) and (6.2).

We have thus proved the following theorem.

Theorem 6.1 The k-dimensional process fYtg can be represented by a state space
model with strongly exogenous inputs (6.1) and (6.2) if, and only if, it can be
represented by a state space model with constant bias (4.85) and (4.86).

Remark 6.1 By Theorem 6.1, the initial state vector, x1, of (6.1) and (6.2) can
be modeled using the procedure outlined in Sect. 4.14.2. As mentioned earlier,
the unknown parameters contained in x1 must be estimated using the model (6.1)
and (6.2) and not the model followed by fZtg, assuming that such a model exists. Þ

6.1 Stationary State Space Models with Inputs

Under the strong exogeneity assumption, letting E.xt/ D �t and E.Yt/ D ˛t, t D
1; 2; : : : ; n, and taking expectations in (6.1) and (6.2), it is obtained that

�tC1 D F�t C WZt (6.6)

˛t D H�t C VZt; t D 1; 2; : : : ; n: (6.7)

Subtracting (6.6) and (6.7) from (6.1) and (6.2) yields

xtC1 � �tC1 D F.xt � �t/C Gut

Yt � ˛t D H.xt � �t/C Jut; t D 1; 2; : : : ; n:

Thus, the covariance matrices of fxtg and fYtg are given by the formulae in
Lemma 5.1 and these processes are covariance stationary if, and only if, the matrix
… D Var.x1/ satisfies the Lyapunov equation (5.7).

A sufficient condition for fxtg and fYtg in (6.1) and (6.2) to be covariance
stationary is that all the eigenvalues of F are inside the unit circle, that there is
no diffuse part (ı D 0) in the initial state vector (6.3), and that Var.x1/ satisfies the
Lyapunov equation (5.7).

If the input process, fZtg, is stationary with mean E.Zt/ D �Z , then it follows
from (6.6) and (6.7) that fxtg and fYtg are mean stationary if E.xt/ D .I � F/�1W�Z

and E.Yt/ D �
H.I � F/�1W C V

�
�Z . A sufficient condition for this is that the

matrix I � F be invertible.
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From what we have just seen, the processes fxtg and fYtg are stationary if the
input process, fZtg, is stationary with mean E.Zt/ D �Z , all the eigenvalues of F are
inside the unit circle, and the initial state vector, x1, has mean E.xt/ D .I�F/�1W�Z

and covariance matrix … D Var.x1/ that satisfies the Lyapunov equation (5.7).
It is to be noted that when the mean of the initial state vector, x1, is not known,

we can proceed as in Sect. 4.14.2.

6.2 VARMAX and Finite Linear Models with Inputs

As we will see later in this chapter, state space models with inputs of the form (6.1)
and (6.2) are strongly connected with vector autoregressive moving average models
with exogenous variables or VARMAX models as they are usually called. The
vector random process fYtg is said to follow a VARMAX model with input process
fZtg if it satisfies an equation of the form

ˆ.B/Yt D �.B/Zt C‚.B/At; (6.8)

whereˆ.B/ D I Cˆ1B C � � � CˆpBp, �.B/ D �0 C�1B C � � � C�rBr, ‚.B/ D
I C ‚1B C � � � C ‚qBq, fAtg is a multivariate white noise process and the process
fZtg is strongly exogenous with respect to fYtg. It is assumed that Zt and Av are
orthogonal for all v � t.

The transfer function of the VARMAX model (6.8) is defined as �.z/ DP1
jD0 �jz j D ˆ�1.z/Œ�.z/, ‚.z/� D P1

jD0Œ„j; ‰j�z j. The concepts of McMillan
degree and Kronecker indices are defined as in the VARMA case but using as
Hankel matrices the previous Ht matrices with the ‰j coefficients replaced with �j.
That is,

Ht D

2

6
6
6
4

�1 �2 �3 � � � �t

�2 �3 �4 � � � �tC1
:::

:::
:::

: : :
:::

�t �tC1 �tC2 � � � �2t�1

3

7
7
7
5
;

where�j D Œ„j; ‰j�.
The k-dimensional process fYtg follows a finite linear model with strongly

exogenous inputs if

Yt D
t�1X

jD0
Œ„j; ‰j�

�
Zt�j

At�j

�
C ht˛1; t D 1; 2; : : : ; (6.9)

where fAtg is a multivariate white noise process, the process fZtg has dimension s
and is strongly exogenous with respect to fYtg, the‰j matrices have dimension k� l,
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ht is a deterministic k � p matrix, and ˛1 is a p-dimensional stochastic vector that
defines the initial conditions. The vector ˛1 is usually decomposed as

˛1 D Mˇ C Aı C x;

where M and A are nonstochastic matrices, ˇ is a constant bias vector, x is a zero
mean stochastic vector with a known distribution, and ı is a stochastic vector with a
diffuse distribution that models the uncertainty with respect to the initial conditions.

The transfer function of the model (6.9) is defined as �.z/ D P1
jD0 �jz j D

P1
jD0Œ„j, ‰j�z j. The concepts of McMillan degree and Kronecker indices can

be extended to finite linear models with exogenous inputs defining the augmented
Hankel matrix of order t, Ha

t , by

Ha
t D

2

66
6
4

K1 K2 K3 � � � Kt

K2 K3 K4 � � � KtC1
:::
:::

:::
: : :
:::

Kt KtC1 KtC2 � � � K2t�1

3

77
7
5
; (6.10)

where Kt D Œ„j; ‰t; ht� D Œ�j; ht�. We will make the following assumption.

Assumption 6.1 The augmented Hankel matrices, Ha
t , of the linear process (6.9)

have finite rank for all t > r, where r is a fixed positive integer.

Remark 6.2 Theorems 3.8 and 3.9 can be easily extended to processes with exoge-
nous inputs because the proofs of those theorems are algebraic in nature. Therefore,
there is an equivalence between finite linear models with inputs, innovations state
space models with inputs and VARMAX models. However, in the previous theorems
the dimensions of all these models were not necessarily minimal. Þ

The state space models and the VARMAX models that we will consider in this
chapter can be nonstationary. In this case, we will make the following assumption.

Assumption 6.2 If a process fYtg is nonstationary and its transfer function can be
represented either by a state space model (6.1) and (6.2) or a VARMAX model (6.8),
we will assume that the initial conditions start at some finite point in the past and
that they are selected in such a way that the same process is generated in both cases.

The following theorem establishes the equivalence, under Assumption 6.2,
between state space models (6.1) and (6.2) and left coprime VARMAX models.
The result is important in its own right and will be often used in the rest of the book.

Theorem 6.2 Under Assumption 6.2, a process fYtg can be represented by an iden-
tified, observable, and controllable state space model with exogenous inputs (6.1)
and (6.2) if, and only if, it can be represented by an identified left coprime VARMAX
model of the form

ˆ.B/Yt D 	.B/Zt C‚.B/At; (6.11)
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where B is the backshift operator, BYt D Yt�1,ˆ.z/ D I Cˆ1zC� � �Cˆbzb, 	.z/ D
	0C	1zC� � �C	czc,‚.z/ D ‚0C‚1zC� � �C‚dzd, the McMillan degree is equal
to r D dim.xt/, Var.At/ D † may be singular and satisfies † D ‚0† D †‚0

0,
and the ‚i, i D 0; : : : ; d, may be nonunique. In addition, if † is nonsingular, then
‚0 D I and the ‚i, i D 1; : : : ; d, are unique.

Proof Assume first that fYtg follows (6.1) and (6.2) under Assumption 6.2. We will
first prove that there exists an innovations representation. We will do this without
using standard results about the discrete algebraic Riccati equation (DARE) because
all of them suppose that the covariance matrix of the innovations is positive definite
and we do not make this assumption. Stacking the observations in the usual way
(Harvey 1989, pp. 319–320; Van Dooren 2003, p. 81), it is obtained that

YtWtCr D HrC1xt C VrC1ZtWtCr C JrC1UtWtCr; (6.12)

where YtWtCr D .Y 0
t ;Y

0
tC1; : : : ;Y 0

tCr/
0, UtWtCr D .u0

t, u0
tC1, : : : ; u0

tCr/
0, ZtWtCr D .Z0

t ,
Z0

tC1, : : : ;Z0
tCr/

0, HrC1 D ŒH0; .HF/0; : : : ; .HFr/0�0,

JrC1 D

2

6
6
6
4

J
HG J
:::

:::
: : : J

HFr�1G � � � � � � HG J

3

7
7
7
5

(6.13)

and

VrC1 D

2

6
6
6
4

V
HW V
:::

:::
: : : V

HFr�1W � � � � � � HW V

3

7
7
7
5
:

Since the model (6.1) and (6.2) is observable, the submatrix of HrC1 formed with
its first r blocks (the observability matrix) has rank r and the rows of HFr in
HrC1 depend linearly on the previous rows. Thus, there exists a block matrix,
ˆ D Œˆr; ˆr�1; : : : ; ˆ1; I�, such that ˆHrC1 D 0. Premultiplying (6.12) by ˆ, it
is obtained that

ˆrYtC� � �Cˆ1YtCr�1CYtCr D 	rZtC� � �C	0ZtCrCƒrutC� � �Cƒ0utCr; (6.14)

where the matrices 	i and ƒi are given by the products ˆVrC1 and ˆJrC1. The
sum ƒrut C � � � C ƒ0utCr in (6.14) is a moving average process that has a Wold
decomposition of the form‚.B/At with the properties stated in the theorem (Caines,
1988, pp. 28–29), and thus fYtg follows a VARMAX model of the form (6.11).
Letting Vt D .Z0

t ;A
0
t/

0 and expressing the right-hand side of (6.11) in terms of
Vt, we obtain Yt D ˆ�1.B/Œ	.B/;‚.B/�Vt. This in turn implies that the following
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innovations form

xtC1 D Fxt C ŒW;K�Vt (6.15)

Yt D Hxt C ŒV; ‚0�Vt (6.16)

corresponding to (6.1) and (6.2) exists, where K is given as the solution of
ŒH0; .HF/0; : : :, .HFr�1/0 �0K D Œ‰0

1; ‰
0
2; : : : ; ‰

0
r�

0,
P1

iD0 ‰izi D ˆ�1.z/‚.z/. Let
l D maxfni W i D 1; : : : ; kg, where the ni are the Kronecker indices corresponding
to (6.15) and (6.16), and stack the observations to get

YtWtCl D HlC1xt C KlC1VtWtCl; (6.17)

where YtWtCl D .Y 0
t ;Y

0
tC1; : : : ;Y 0

tCl/
0, VtWtCl D .V 0

t , V 0
tC1, : : : ;V 0

tCl/
0, HlC1 D

ŒH0; .HF/0; : : :, .HFl/0�0 and KlC1 is like JrC1 in (6.13) but with r, J and G replaced
with l, ŒV; ‚0� and ŒW;K�. The definition of Kronecker indices implies that there
exists a unique block matrix ˆ D Œˆl; ˆl�1; : : : ; ˆ1; I� such that ˆHlC1 D 0.
The rows of ˆ simply express each of the rows of the .l C 1/-th block of rows
of HlC1 as a linear combination of the basis of rows given by the Kronecker indices.
Premultiplying (6.17) by ˆ, it is obtained that

ˆlYt C � � � Cˆ1YtCl�1 C YtCl D �lVt C � � � C�0VtCl; (6.18)

where the matrices�i, i D 0; : : : ; l, are given by the productˆKlC1. The VARMAX
model (6.18) has McMillan degree equal to r D Pk

iD1 ni and is left coprime because
otherwise we can cancel some nonunimodular left factor and this implies that we can
get a simplified block matrix Ô such that Ô HlC1 D 0, in contradiction to the fact
that ˆ is unique.

Conversely, if fYtg follows the identified and left coprime VARMAX
model (6.11) with McMillan degree r, letting again Vt D .Z0

t ;A
0
t/

0, we can put this
model into state space form (6.15) and (6.16) with V D 	0 and appropriate matrices
W and K using, for example, Akaike’s (1974) representation for multivariate
series. This representation is observable but may be not controllable. If it is not
controllable, we can apply the algorithm of Lemma 5.7 to obtain an observable and
controllable state space form with dim.xt/ D r.

In the nonstationary case, Assumption 6.2 guarantees that the different processes
considered in the proof are well defined. �

Note that the theorem is algebraic in nature and that, therefore, it is also valid
for nonstationary processes. In most of the cases found in practice the matrix † of
Theorem 6.2 is nonsingular and, therefore, the matrix polynomial ‚.z/ is unique.
A sufficient condition for this, under the conditions of the theorem, is that JJ0 be
nonsingular, where J is that of (6.2). Note also that when † is singular, the model
is degenerate, in the sense that there exist linear combinations of Yt that can be
perfectly predicted.
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In the rest of the chapter, unless otherwise specified, we will assume that † is
nonsingular.

6.3 Kalman Filter and Likelihood Evaluation for the State
Space Model with Inputs

If the process fYtg follows the state space model (6.1) and (6.2) with strongly
exogenous inputs, fZtg, and there is no diffuse part (ı D 0) in the initial state
vector (6.3), the following Kalman filter can be used

Et D Yt � VZt � HOxtjt�1; †t D HPtH0 C JJ0; (6.19)

Kt D .FPtH0 C GJ0/†�1
t ; OxtC1jt D WZt C FOxtjt�1 C KtEt; (6.20)

PtC1 D .F � KtH/PtF0 C .G � KtJ/G0; (6.21)

initialized with Ox1j0 D Mˇ and P1 D �, where M is a nonstochastic matrix, ˇ is a
constant bias vector, and Oxtjt�1 D E�.xtjYt�1; : : : ;Y1/. It is assumed that both M and
ˇ are known and it is to be noticed that the stochastic vectors xt and Yt have nonzero
means given by the recursions (6.6) and (6.7). The Kalman filter recursions (6.19)–
(6.21) can be proved using the properties of orthogonal projection with nonzero
means. See Problem 6.1.

If there is a diffuse part (ı ¤ 0) in x1 or ˇ is not known, a two-stage Kalman filter
corresponding to (6.19)–(6.21) should be used. More specifically, the modified bias-
free filter is given by

.Et; et/ D .0; 0;Yt � VZt/� H.�Ut; xtjt�1/ (6.22)

†t D HPtH
0 C JJ0; Kt D .FPtH

0 C GJ0/†�1
t (6.23)

.�UtC1; xtC1jt/ D .0; 0;WZt/C F.�Ut; xtjt�1/C Kt.Et; et/ (6.24)

PtC1 D .F � KtH/PtF
0 C .G � KtJ/G

0; (6.25)

with initial conditions .�U1; x1j0/ D .�A;�M; 0/ and P1 D �, and the recursions
of the information form bias filter are

�
…�1

tC1;…�1
tC1 O
tC1

	 D �
…�1

t ;…�1
t O
t

	C E0
t†

�1
t .Et; et/ ; (6.26)

initialized with
�
…�1
1 ;…

�1
1 O
1

	 D .0; 0/, where 
 D Œı0; ˇ0�0.
In the case of an innovations model (6.4) and (6.5) such that x D 0 in x1, that

is x1 D Mˇ C Aı, the previous modified bias-free filter can be simplified to (6.22)
and (6.24), where G D K†1=2, J D †1=2, Kt D K, and Var.At/ D † D †1=2†1=2

0

.
This can be proved by checking that Pt D 0 for t D 1; 2; : : : ; n. See Problem 6.2.
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As mentioned earlier, instead of using the previous Kalman filters, one can
first transform the state space model (6.1) and (6.2) into a state space model with
constant bias (4.85) and (4.86) and then use the two-stage Kalman filter described
for this model in Sect. 4.15. This last filter has the advantage of allowing for
more parameters to be concentrated out of the likelihood than with the previously
mentioned filters. But of course, any of these filters can be used for likelihood
evaluation.

For example, when there is no diffuse part (ı D 0) and the initial conditions are
Ox1j0 D Mˇ and P1 D �, where M and ˇ are known, the log-likelihood is

l.Y/ D constant � 1

2

(
1

�2

nX

tD1
E0

t†
�1
t Et C

nX

tD1
ln j�2†tj

)

;

where Et and †t are given by the Kalman filter (6.19)–(6.21).
As another example, one way to evaluate the log-likelihood in the general case, in

which x1 is given by (6.3) with ˇ unknown and ı ¤ 0 diffuse, is to use the previous
modified bias-free filter (6.22)–(6.25) and information bias filter (6.26) as follows.
Suppose for simplicity and without loss of generality that �2 D 1. Then, it is not
difficult to show (see Problem 6.3) that the log-likelihood is, apart from a constant,

l.Y/ D �1
2

(
h
RSSBFF

nC1 � �
…�1

nC1 O
nC1

	
0

…nC1

�
…�1

nC1 O
nC1

	iC
nX

tD1

ln j†tj C ln j…11
nC1j

)

;

where RSSBFF
nC1 can be obtained with the recursion (4.138),

…�1
nC1 D

nX

tD1
E0

t†
�1
t Et D

�
…11

nC1 …12
nC1

…21
nC1 …22

nC1

�
;

and the partition is conformal with 
 D Œı0; ˇ0�0.
An alternative to the previous procedures is to use a decoupled VARMAX model.

To illustrate the method, suppose that fYtg follows the left coprime VARMAX model

ˆ.B/Yt D 	.B/Zt C‚.B/At;

where BYt D Yt�1, ˆ.z/ D I C ˆ1z C � � � C ˆbzb, 	.z/ D 	0 C 	1z C � � � C 	czc

and‚.z/ D I C‚1z C � � � C‚dzd, whose existence is guaranteed by Theorem 6.2.
Then, premultiplying by ˆ�1.B/, it is obtained that

Yt D ˆ�1.B/	.B/Zt Cˆ�1.B/‚.B/At

D .„0 C„1B C C„2B
2 � � � /Zt C .I C‰1B C‰2B

2 C � � � /At;

where the coefficient matrices, Œ„j; ‰j� satisfy the relations

.I Cˆ1z C � � � Cˆbzb/.„0 C„1z C � � � / D 	0 C 	1z C � � � C 	czc

.I Cˆ1z C � � � Cˆbzb/.I C‰1z C � � � / D I C‚1z C � � � C‚dzd :
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The previous relations imply that if we define the processes fWtg and fVtg by Wt DPt�1
jD0 „jZt�j and Vt D Pt�1

jD0 ‰jAt�j, then

Yt D Wt C hW;t˛W;1 C Vt C hV;t˛V;1; (6.27)

where ˆ.B/hV;t D 0 and ˆ.B/hW;t D 0 for t > maxfb; c; dg, and the initial
conditions are ˛W;1 and ˛V;1. Letting QVt D Vt C hV;t˛V;1, we can write

Yt � Wt D hW;t˛W;1 C QVt; (6.28)

and, since QVt follows the VARMA model ˆ.B/ QVt D ‚.B/At, we can perform
likelihood evaluation by applying the two-stage Kalman filter to the VARMA model
with constant bias (6.28) in which the data are fYt � Wtg and the bias is ˛W;1.

To implement this procedure, the weights„i can be obtained from the relation

.I Cˆ1z C � � � Cˆbzb/.„0 C„1z C � � � / D 	0 C 	1z C � � � C 	czc;

and the variables hW;t such thatˆ.B/hW;t D 0 for t > maxfb; c; dg can be computed
using the procedure of Sect. 3.A.1.

It is to be noticed that the vectors ˛W;1 and ˛V;1 in (6.27) will not have in
general minimal dimension. This is because the two pairs of polynomial matrices
Œˆ.z/;‚.z/� and Œˆ.z/; 	.z/� may have common factors. In this case, they can be
replaced with two pairs of left coprime polynomial matrices, ŒˆV.z/;‚V.z/� and
ŒˆW.z/; 	W .z/�, such that

ˆW.B/Wt D 	W.B/Zt; ˆV .B/Vt D ‚V.B/At:

In terms of the state space model (6.1) and (6.2), the previous procedure can
be described as follows. Let z�1 be the forward operator, z�1Yt D YtC1. Then,
rewriting (6.1) as

xt D �
z�1I � F

	�1
.WZt C KAt/ ;

and substituting in (6.2), it is obtained that

Yt D H
�
z�1I � F

	�1
.WZt C KAt/C DZt C At

D
h
DZt C H

�
z�1I � F

	�1
WZt

i
C
h
At C H

�
z�1I � F

	�1
KAt

i

D QWt C QVt:

It is not difficult to verify that f QWtg and f QVtg can be realized with the state space
models

˛tC1 D F˛t C WZt

QWt D H˛t C DZt
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and

ˇtC1 D Fˇt C KAt (6.29)

QVt D Hˇt C At: (6.30)

Defining Wt D
h
DZt C H

�
z�1I � F

	�1
t

WZt

i
and hW;t D HFt�1, where

�
z�1I � F

	�1
t

D
t�1X

jD1
z jFj�1;

we can write QWt D Wt C hW;t˛1 and the following innovations state space model
with constant bias is obtained

Yt � Wt D hW;t˛1 C QVt;

in which the data are fYt � Wtg, the bias is ˛1 and f QVtg follows the model (6.29)
and (6.30).

As it happened with VARMAX models, the state space models corresponding to
f QWtg and f QVtg may not have minimal dimension. In this case, we can replace these
models with state space echelon forms, as described in Sect. 6.5.5.

6.4 The Case of Stochastic Inputs

When working with VARMAX models (6.8) sometimes the input process, fZtg, is
stochastic and follows a VARMA model

ˆZ.B/Zt D ‚Z.B/Ut; (6.31)

where ˆZ.B/ D I C ˆZ1B C � � � C ˆZaBa, ‚Z.B/ D I C‚Z1B C � � � C‚ZbBb and
fUtg is a multivariate white noise process uncorrelated with fAtg. In this case, the
joint process f.Y 0

t ;Z
0
t /

0g follows the model

�
I �	0

I

� �
Yt

Zt

�
C
�
ˆ1 �	1

ˆZ1

� �
Yt�1
Zt�1

�
C � � � C

�
ˆm �	m

ˆZm

� �
Yt�m

Zt�m

�
D

�
I

I

� �
At

Ut

�
C
�
‚1

‚Z1

� �
At�1
Ut�1

�
C � � � C

�
‚m

‚Zm

� �
At�m

Ut�m

�
;

where m D maxfp; q; r; a; bg and the matrices ˆi, ˆZi, 	i, ‚i, ‚Zi are zero for
i > p, i > a, i > r, i > q and i > b, respectively. If 	0 ¤ 0, then, premultiplying
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the previous expression by

�
I �	0

I

��1
;

a VARMA process is obtained in which the covariance matrix of the innovations is
not block diagonal. On the other hand, if 	0 D 0, the process f.Y 0

t ;Z
0
t /

0g follows a
VARMA model such that the covariance matrix of the innovations is block diagonal.
We have thus proved part of the following theorem.

Theorem 6.3 The process .Y 0
t ;Z

0
t /

0 follows a VARMAX model (6.8) in which the
input process fZtg follows a VARMA model (6.31) if, and only if, .Y 0

t ;Z
0
t /

0 follows a
VARMA model in which all the matrices in the autoregressive and moving average
matrix polynomials are block upper triangular and both first matrices in these
matrix polynomials are the unit matrix. In this case, 	0 ¤ 0 if, and only if, the
covariance matrix of the innovations corresponding to the VARMA model followed
by .Y 0

t ;Z
0
t /

0 is not block diagonal.

Proof We have already proved one implication. To prove the other one, suppose that
f.Y 0

t ;Z
0
t /

0g follows the VARMA model

�
ˆ.B/ �	.B/

ˆZ.B/

� �
Yt

Zt

�
D
�
‚.B/ ‚1.B/

‚Z.B/

� �
Ct

Dt

�
: (6.32)

Then, it follows from the second equation that

Dt D ‚�1
Z .B/ˆZ.B/Zt

and substituting this expression into the first equation, it is obtained that

ˆ.B/Yt D �
	.B/C‚1.B/‚

�1
Z .B/ˆZ.B/

�
Zt C‚.B/Ct: (6.33)

The expression ‚1.z/‚�1
Z .z/ is a right matrix fraction description (MFD) that can

be transformed into a left MFD (Chen, 1984; Kailath, 1980), ‚1.z/‚�1
Z .z/ D

Q‚�1
Z .z/ Q‚1.z/. By changing the matrix polynomials if necessary, we may assume

without loss of generality that the first matrix in Q‚Z is the identity matrix.
Then, (6.33) can be rewritten as

ˆ.B/Yt D �
	.B/C Q‚�1

Z .B/ Q‚1.B/ˆZ.B/
�

Zt C‚.B/Ct;

and, premultiplying by Q‚Z.B/, it is obtained that

Q‚Z.B/ˆ.B/Yt D � Q‚Z.B/	.B/C Q‚1.B/ˆZ.B/
�

Zt C Q‚Z.B/‚.B/Ct

D Q	.B/Zt C Q‚Z.B/‚.B/Ct;
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where Q	.z/ D Q‚Z.z/	.z/C Q‚1.z/ˆZ.z/. If Ct and Dt are uncorrelated, we are under
the same assumptions of the first part of the proof and we are done. If not, let

Var


�
Ct

Dt

��
D
�
†11 †12
†21 †22

�

and set
� QCt

Dt

�
D
�

I �†12†�1
22

0 I

� �
Ct

Dt

�
:

Then, . QC0
t ;D

0
t/

0 has a block diagonal covariance matrix and

� Q‚Z.B/ˆ.B/ � Q	.B/
ˆZ.B/

� �
Yt

Zt

�
D
� Q‚Z.B/‚.B/

‚Z.B/

� �
I †12†�1

22

0 I

� � QCt

Dt

�

is a VARMA with uncorrelated innovations such that the autoregressive and moving
average matrix polynomials are block upper triangular and both first matrices in
these matrix polynomials are the unit matrix. Thus, we have reduced this case to the
previous one and this completes the proof. �

Theorem 6.4 The process .Y 0
t ;Z

0
t /

0 follows a VARMAX model (6.8) in which the
input process fZtg follows a VARMA model (6.31) if, and only if, .Y 0

t ;Z
0
t /

0 follows an
innovations state space model

x�
tC1 D F�x�

t C K�A�
t (6.34)

Y�
t D H�x�

t C A�
t ; t D 1; 2; : : : ;m: (6.35)

in which all the matrices F�, K�, and H� are block upper triangular. In this case,
	0 ¤ 0 if, and only if, the covariance matrix of the innovations, fA�

t g, is not block
diagonal.

Proof Suppose .Y 0
t ;Z

0
t/

0 follows a VARMAX model (6.8) in which the input process
fZtg follows a VARMA model (6.31). Then, proceeding as in Sect. 6.3, we get the
representation

Yt D ˆ�1.B/	.B/Zt Cˆ�1.B/‚.B/At

D .„0 C„1B C C„2B
2 � � � /Zt C .I C‰1B C‰2B

2 C � � � /At:

Based on Akaike (1974) or the material later in this chapter regarding canonical
forms, we can find innovations representations for Vt D ˆ�1.B/	.B/Zt and Wt D
ˆ�1.B/‚.B/At. Let these representations be

˛tC1 D FZ˛t C KZZt

Vt D HZ˛t C„0Zt; t D 1; 2; : : : ;m:
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and

ˇtC1 D FAˇt C KAAt

Wt D HAˇt C At; t D 1; 2; : : : ;m:

Letting xt D .˛0
t ; ˇ

0
t/

0, we can write

xtC1 D
�

FZ

FA

�
xt C

�
KZ

0

�
Zt C

�
0

KA

�
At

Yt D ŒHZ;HA�xt C„0Zt C At:

Also, fZtg has an innovations representation


tC1 D FU
t C KUUt

Zt D HU
t C Ut; t D 1; 2; : : : ;m:

Putting all together, we can write

�
xtC1

tC1

�
D
�

F WHU

FU

� �
xt


t

�
C
�

K W
KU

� �
At

Ut

�

�
Yt

Zt

�
D
�

H VHU

HU

� �
xt


t

�
C
�

I V
I

� �
At

Ut

�
;

where

F D
�

FZ

FA

�
; W D

�
KZ

0

�
; K D

�
0

KA

�
;H D ŒHZ ;HA� and V D „0:

Since 	0 D „0 D V and At and Ut are uncorrelated, letting

A�
t D

�
I V

I

� �
At

Ut

�
;

the first part of the theorem follows.
To prove the converse, assume the state space model in innovations form

xtC1 D F�xt C K�A�
t

Y�
t D H�xt C A�

t ; t D 1; 2; : : : ;m;
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where Y�
t D .Y 0

t ;Z
0
t/

0,

F� D
�

F F1z

Fz

�
; K� D

�
K K1z

Kz

�
; and H� D

�
H H1z

Hz

�
:

Letting r be the dimension of xt, Y�
tWtCr D .Y�0

t ;Y
�0

tC1, : : : ;Y�0

tCr/
0, A�

tWtCr D .A�0

t ,
A�0

tC1, : : : ;A�0

tCr/
0 and OrC1 D ŒH�0

; .H�F�/0; : : : ; .H�.F�/r/0�0, and letting O‰rC1 be
like in (3.28) but with H, K, and F replaced with H�, K�, and F�, respectively, we
can write

Y�
tWtCr D OrC1xt C O‰rC1A�

tWtCr:

By the Cayley–Hamilton theorem, if det.�I � F�/ D �r C f1�r�1 C � � � C fr, then
.F�/r C f1.F�/r�1 C � � �C frI D 0. Thus, if we premultiply the previous equation by
ŒfrI; : : : ; f1I; I�, it is obtained that

Y�
tCr C f1Y

�
tCr�1 C � � � C frY

�
t D A�

tCr C‚1A
�
tCr�1 C � � � C‚rA

�
t ;

where the ‚i, i D 1 : : : ; r, are block upper triangular matrices. Therefore, the
previous expression corresponds to a VARMAX model in which all of the matrices
in the autoregressive and moving average matrix polynomials are block upper
triangular and both first matrices in these matrix polynomials are the unit matrix.
We can apply Theorem 6.3 to complete the proof. �

6.5 Canonical Forms for VARMAX and State Space Models
with Inputs

In this section, we will suppose a k-dimensional process fYtg that follows a finite
linear model with strongly exogenous inputs (6.9) such that ‰0 D I, fZtg has
dimension s and the rank of the augmented Hankel matrices, Ha

t , given by (6.10),
is constant for t > r, where r is a fixed positive integer. Let fni W i D 1; : : : ; kg be
the Kronecker indices and n D Pk

iD1 ni the McMillan degree corresponding to this
linear model.

6.5.1 VARMAX Echelon Form

Like in the VARMA case, by the definition of the i-th Kronecker index and
the structure of the augmented Hankel matrices, there exists a vector �i D
Œ�i;ni ; : : : ; �i;1; �i;0�, where the �i;j have dimension 1 � k, j D 0; 1; : : : ; ni, and �i;0
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has a one in the i-th position and zeros thereafter, such that

Œ01�k; : : : ; 01�k; �i;ni ; : : : ; �i;1; �i;0; 01�k; : : : ; 01�k�H
a
t D 0; t > ni: (6.36)

where the vector �i can be moved either to the left or to right in the previous
expression without altering the relation due to the structure of Ha

t , t > ni. This
implies that if l D maxfni W i D 1; : : : ; kg, there exists a block vector ˆ D
Œˆl; : : : ; ˆ1, ˆ0� with ˆ0 a lower triangular matrix with ones in the main diagonal
such that

ˆHa
lC1 D 0: (6.37)

In fact, the i-th row of ˆ is Œ0; �i� if ni < l and �i if ni D l, i D 1 : : : ; k. It follows
from (6.37) that if we stack the observations to get

YtWtCl D bHlC1˛1 C O�lC1UtWtCl (6.38)

where YtWtCl D .Y 0
t , : : :, Y 0

tCl/
0, UtWtCl D .U0

1, : : :, U0
tCl/

0, Ut D ŒZ0
t ;A

0
t�

0,

bHlC1 D

2

6
6
6
4

ht

htC1
:::

htCl

3

7
7
7
5
; and O�lC1 D

2

6
6
6
4

�t�1 � � � �1 �0

�t � � � �2 �1 �0

::: � � � :::
:::

:::
: : : �0

�tCl�1 � � � �lC1 �l �l�1 � � � �1 �0

3

7
7
7
5
;

and we premultiply (6.38) by ˆ, the following VARMAX model is obtained

ˆ.B/Yt D 	.B/Zt C‚.B/At; (6.39)

where ˆ.z/ D ˆ0 C ˆ1z C � � � C ˆlzl, 	.z/ D 	0 C 	1z C � � � C 	lzl, ‚.z/ D
‚0 C ‚1z C � � � C‚lzl, ‚0 D ˆ0, and the 	i; ‚i, i D 0; 1; : : : ; l, are given by the
product of ˆ and the last l C 1 blocks of columns of O�lC1. More specifically,

Œ	j; ‚j� D ˆj�0 Cˆj�1�1 C � � � Cˆ0�j; j D 0; 1; : : : ; l: (6.40)

The VARMAX model (6.39) is called the VARMAX canonical form or the
VARMAX echelon form.

Proceeding as in the VARMA case to obtain the restrictions in the coefficients
of the echelon form, letting �ip;j and �ip;j be the .i; p/-th elements in the matrices
ˆj and ‚j, i; p D 1; : : : ; k, j D 0; 1; : : : ; l, and letting 
ip;j be the .i; p/-th elements
in the matrix 	j, i D 1; : : : ; k, p D 1; : : : ; s, j D 0; 1; : : : ; l, we can express the
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matrix polynomials

ˆ.z/ D

2

6
6
6
6
66
6
4

�11.z/ � � � �1i.z/ � � � �1k.z/
:::

: : :
:::

: : :
:::

�i1.z/ � � � �ii.z/ � � � �ik.z/
:::

: : :
:::

: : :
:::

�k1.z/ � � � �ki.z/ � � � �kk.z/

3

7
7
7
7
77
7
5

D ˆ0 Cˆ1z C � � � Cˆlz
l;

	.z/ D

2

6
6
66
6
6
6
4


11.z/ � � � 
1i.z/ � � � 
1s.z/
:::

: : :
:::

: : :
:::


i1.z/ � � � 
ii.z/ � � � 
is.z/
:::

: : :
:::

: : :
:::


k1.z/ � � � 
ki.z/ � � � 
ks.z/

3

7
7
77
7
7
7
5

D 	0 C 	1z C � � � C 	lz
l

and

‚.z/ D

2

6
6
6
6
66
6
4

�11.z/ � � � �1i.z/ � � � �1k.z/
:::

: : :
:::

: : :
:::

�i1.z/ � � � �ii.z/ � � � �ik.z/
:::

: : :
:::

: : :
:::

�k1.z/ � � � �ki.z/ � � � �kk.z/

3

7
7
7
7
77
7
5

D ‚0 C‚1z C � � � C‚lz
l

as follows

�ii.z/ D 1C
niX

jD1
�ii;jz

j; i D 1; : : : ; k; (6.41)

�ip.z/ D
niX

jDni�nipC1
�ip;jz

j; i ¤ p (6.42)


ip.z/ D
niX

jD0

ip;jz

j; i D 1; : : : ; k; p D 1; : : : ; s; (6.43)

�ip.z/ D
niX

jD0
�ip;jz

j; i; p D 1; : : : ; k; (6.44)

where‚0 D ˆ0 and

nip D
�

minfni C 1; npg for i > p
minfni; npg for i < p

i; p D 1; : : : ; k:
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Note that nip specifies the number of free coefficients in the polynomial �ip.z/ for
i ¤ p.

The following proposition is analogous to Proposition 5.1 and can be proved
similarly.

Proposition 6.1 The VARMAX echelon form (6.39) is left coprime.

6.5.2 State Space Echelon Form

Letting Ut D ŒZ0
t ;A

0
t�

0, define the forecasts of fYtg as

YtCijt D YtCi ��0UtCi � � � � ��i�1UtC1
D YtCi � .AtCi C„0ZtCi/� � � � � .‰i�1AtC1 C„i�1ZtC1/ (6.45)

Then, we can write

2

6
6
6
4

YtC1jt
YtC2jt
:::

YtCijt

3

7
7
7
5

D

2

6
6
6
4

�1 �2 � � � �t htC1
�2 �3 � � � �tC1 htC2
:::

:::
: : :

:::
:::

�i �iC1 � � � �tCi�1 htCi

3

7
7
7
5

2

6
6
6
66
6
4

Ut

Ut�1
:::

U1

˛1

3

7
7
7
77
7
5

; (6.46)

and, in particular, for i D t

2

6
4

YtC1jt
:::

Y2tjt

3

7
5 D

2

6
4

htC1
Ht

:::

h2t

3

7
5

2

6
6
6
4

Ut
:::

U1

˛1

3

7
7
7
5
:

Thus, like in the VARMA case, we see that relations among rows of the augmented
Hankel matrices, Ha

t , are equivalent to relations among forecasts. Also, it follows
from (6.45) and (6.46) that

2

6
6
66
6
4

Yt

YtC1jt
YtC2jt
:::

YtCijt

3

7
7
77
7
5

D

2

6
6
66
6
4

�0

�1

�2

:::

�i

3

7
7
77
7
5

Ut C

2

6
6
66
6
4

Ytjt�1
YtC1jt�1
YtC2jt�1

:::

YtCijt�1

3

7
7
77
7
5
: (6.47)
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Let us assume first that the Kronecker indices satisfy ni � 1, i D 1; : : : ; k. Then,
it follows from (6.36) and (6.46) that

�i;0YtCniC1jt C �i;1YtCnijt C � � � C �i;ni YtC1jt D 0

and this in turn implies, by (6.41) and (6.42), that

Yi
tCniC1jt C

niX

jD1
�ii;jY

i
tCniC1�jjt C

X

i¤p

niX

jDni�nipC1
�ip;jY

p
tCniC1�jjt D 0; (6.48)

where Yp
tCjjt denotes the p-th element of YtCjjt, p D 1; : : : ; k, j D 1; 2; : : :.

From (6.47) and (6.48), the following relations are obtained

Yi
tCjjt D Yi

tCjjt�1 C�i;jUt; j D 1; 2 : : : ; ni � 1 (6.49)

Yi
tCnijt D �

niX

jD1
�ii;jY

i
tCni�jjt�1 �

X

i¤p

niX

jDni�nipC1
�ip;jY

p
tCni�jjt�1 C�i;ni Ut; (6.50)

where�i;j denotes the i-th row of the matrix �j, i D 1; 2; : : :.
By (6.46), to the basis of rows of the augmented Hankel matrices implied by the

Kronecker indices and specified in Proposition 3.8 corresponds a basis of the space
of forecasts. If we stack the elements of this basis of forecasts in the vector

xtC1 D
h
Y1tC1jt; : : : ;Y

1
tCn1jt;Y

2
tC1jt; : : : ;Y

2
tCn2jt; : : : ;Y

k
tC1jt; : : : ;Y

k
tCnkjt

i0
; (6.51)

where dim.xtC1/ D Pk
iD1 ni, by (6.47), (6.49), and (6.50), it is obtained that

xtC1 D Fxt C WZt C KAt (6.52)

Yt D Hxt C VZt C At; (6.53)

where

F D

2

6
6
6
66
6
6
4

F11 � � � F1i � � � F1k

:::
: : :

:::
: : :

:::

Fi1 � � � Fii � � � Fik
:::
: : :

:::
: : :

:::

Fk1 � � � Fki � � � Fkk

3

7
7
7
77
7
7
5

; W D

2

6
6
6
66
6
6
4

W1

:::

Wi
:::

Wk

3

7
7
7
77
7
7
5

; K D

2

6
6
6
66
6
6
4

K1
:::

Ki
:::

Kk

3

7
7
7
77
7
7
5

; ŒWi;Ki� D

2

6
4

�i;1
:::

�i;ni

3

7
5 ;
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Fii D

2

6
6
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

��ii;ni � � � � � � ��ii;1

3

7
7
7
5
; Fip D

2

6
6
6
4

0 � � � 0 0 � � � 0
:::

: : :
:::

:::
: : :

:::

0 � � � 0 0 � � � 0
��ip;ni � � � ��ip;ni�nipC1 0 � � � 0

3

7
7
7
5
;

H D

2

66
6
4

1 � � � 0 0 0 � � � 0 0 � � � 0 � � � 0 0
0 � � � 0 0 1 � � � 0 0 � � � 0 � � � 0 0
:::
: : :

:::
:::
:::
: : :

:::
:::
:::
:::
: : :

:::
:::

0 � � � 0 0 0 � � � 0 0 � � � 1 � � � 0 0

3

77
7
5
; V D 	0;

Fii is ni � ni, Fip is ni � np, and H is k � .n1 C � � � C nk/. The state space form (6.52)
and (6.53) is called the state space echelon form.

The following proposition is analogous to Proposition 5.2. The proof is omitted.

Proposition 6.2 The state space echelon form (6.52) and (6.53) is minimal.

As in the VARMA case, when some of the Kronecker indices are zero, the
echelon form is different from the one we have just described. To illustrate the
situation, suppose the same example as in Sect. 5.9.2 but with two inputs and let
Œ3; 0; 2; 0� be the vector of Kronecker indices. Thus, k D 4, s D 2 and the McMillan
degree is n D 5. Letting Yt D .Y1t; : : : ;Y4t/

0 and considering the second and fourth
rows of the VARMAX echelon form (6.41), (6.42), (6.43), and (6.44), we get the
equations

Y2t C �21;0Y1t D A2t C �21;0A1t C
2X

jD1

2j;0Zjt

Y4t C �41;0Y1t C �43;0Y3t D A4t C �41;0A1t C �43;0A3t C
2X

jD1

4j;0Zjt:

It follows from this and the definition of the forecasts that

Y2t D A2t � �21;0.Y1t � A1t/C
2X

jD1

2j;0Zjt

D A2t � �21;0Y1tjt�1 C
2X

jD1
.
2j;0 � �21;0
1j;0/Zjt

Y4t D A4t � �41;0.Y1t � A1t/ � �43;0.Y3t � A3t/C
2X

jD1

4j;0Zjt

D A4t � �41;0Y1tjt�1 � �43;0Y3tjt�1 C
2X

jD1
.
4j;0 � �41;0
1j;0 � �43;0
3j;0/Zjt:
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Since the state vector is

xtC1 D
h
Y1tC1jt;Y

1
tC2jt;Y

1
tC3jt;Y

3
tC1jt;Y

3
tC2jt

i0
;

we have to modify the H and V matrices of the echelon form so that they become

H D

2

6
6
4

1 0 0 0 0

��21;0 0 0 0 0

0 0 0 1 0

��41;0 0 0 ��43;0 0

3

7
7
5 ;

V D

2

6
6
4


11;0 
12;0


21;0 � �21;0
11;0 
22;0 � �21;0
12;0

31;0 
32;0


41;0 � �41;0
11;0 � �43;0
31;0 
42;0 � �41;0
12;0 � �43;0
32;0

3

7
7
5 :

The F, W, and K matrices of the echelon form are

F D
"

F11 F13
F31 F33

#

; W D
"

W1

W3

#

; K D
"

K1
K3

#

; ŒWi;Ki� D

2

6
4

�i;1
:::

�i;ni

3

7
5 ;

Fii D

2

6
6
6
4

0 1 � � � 0
:::

:::
: : :

:::

0 0 � � � 1

��ii;ni � � � � � � ��ii;1

3

7
7
7
5
; Fip D

2

6
6
6
4

0 � � � 0 0 � � � 0
:::

: : :
:::

:::
: : :

:::

0 � � � 0 0 � � � 0
��ip;ni � � � ��ip;ni�nipC1 0 � � � 0

3

7
7
7
5
;

i; p D 1; 3I n1 D 3; n2 D 0; n3 D 2; n4 D 0:

6.5.3 Relation Between the VARMAX and the State Space
Echelon Forms

The following theorem is analogous to Theorem 5.5 and can be proved similarly.

Theorem 6.5 Given the innovations process fAtg � .0;†/, † > 0, the input
process fZtg, and the initial conditions, I D fY11; : : : ;Y1n1 ; : : : ;Yk1; : : : ;Yknk g, of
the process fYtg, Yt D .Y1t; : : : ;Ykt/

0, the following statements are equivalent

i) fYtg follows a finite linear model (6.9) with strongly exogenous inputs such
that the rank of the augmented Hankel matrices, Ha

t , is constant for t > r,
the Kronecker indices are fni W i D 1; : : : ; kg, dim.˛1/ D Pk

iD1 ni, and the
initial conditions are I.
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ii) fYtg follows a VARMAX echelon form (6.39) such that the Kronecker indices
are fni W i D 1; : : : ; kg, and the initial conditions are I.

iii) fYtg follows a state space echelon form (6.52) and (6.53) such that the
Kronecker indices are fni W i D 1; : : : ; kg, and the initial conditions are I.

6.5.4 Decoupled VARMAX Echelon Form

Suppose that the echelon form of the process fYtg is (6.39). Then, premultiplying
by ˆ�1.B/, it is obtained that

Yt D ˆ�1.B/	.B/Zt Cˆ�1.B/‚.B/At;

and we see that the coefficient matrices, Œ„j; ‰j�, satisfy the relations

.ˆ0 Cˆ1z C � � � Cˆlz
l/.„0 C„1z C � � � / D 	0 C 	1z C � � � C 	lz

l (6.54)

.ˆ0 Cˆ1z C � � � Cˆlz
l/.I C‰1z C � � � / D ‚0 C‚1z C � � � C‚lz

l: (6.55)

In the relations (6.54) and (6.55) there may be common factors, but it is clear
that if we define the processes fWtg and fVtg by Wt D Pt�1

jD0 „jZt�j and Vt D
Pt�1

jD0 ‰jAt�j, (6.54) and (6.55) imply the existence of VARMA echelon forms for
fWtg and fVtg. Denote the echelon form of fVtg by

ˆV .B/Vt D ‚V.B/At: (6.56)

This echelon form is as described in Sect. 5.9.1. However, the echelon form of fWtg
has to be defined because the k � s matrix „0 is not in general the unit matrix. To
this end, consider the Hankel matrix corresponding to fWtg,

HW;t D

2

6
6
6
4

„1 „2 „3 � � � „t

„2 „3 „4 � � � „tC1
:::

:::
:::

: : :
:::

„t „tC1 „tC2 � � � „2t�1

3

7
7
7
5
:

The relation (6.54) implies that there exists a fixed positive integer, u, such that HW;t

has constant rank equal to u for t > u. We can thus proceed as in Sect. 5.9.1 to
find matrix polynomials, ˆW.z/ D ˆW;0 C ˆW;1z C � � � C ˆW;aza and 	W.z/ D
	W;0 C 	W;1z C � � � C 	W;aza, where ˆW;0 is a lower triangular matrix with ones in
the main diagonal, such that

ˆW.B/Wt D 	W.B/Zt: (6.57)

and this is the echelon form of fWtg. The matrix 	W;0 is not, in general, lower
triangular. It can be singular, even zero.
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Note that, ˆW;0 is different in general from 	W;0 and that the two pairs of left
coprime polynomial matrices, ŒˆW .z/; 	W.z/� and ŒˆV .z/;‚V.z/�, satisfy

ˆW.z/.„0 C„1z C � � � / D 	W.z/

ˆV.z/.I C‰1z C � � � / D ‚V.z/:

Since

Yt D Wt C Vt C ht˛1;

if we choose the initial conditions of (6.56) and (6.57) appropriately, the sum of the
new two processes, f QWtg and f QVtg, satisfies

Yt D QWt C QVt: (6.58)

More specifically, the processes fWtg and fVtg have been defined with zero initial
conditions. Let QWt D Wt C hW;t˛W;1 be a solution of (6.57), where ˆW.B/hW;t D 0

for t > a, and let QVt D VtChV;t˛V;1 be a solution of (6.56), whereˆV.B/hV;t D 0 for
t > b and b is the degree of ˆV .z/. By an argument similar to that of Theorem 5.5,
we can choose the initial conditions of fYtg, f QWtg and f QVtg so that (6.58) holds.

6.5.5 Decoupled State Space Echelon Form

Defining as in Sect. 6.5.4 the processes fWtg and fVtg by Wt D Pt�1
jD0 „jZt�j and

Vt D Pt�1
jD0 ‰jAt�j, we saw in that section that both fWtg and fVtg can be expressed

in VARMA echelon form, (6.56) and (6.57). Then, we saw in Sect. 5.9.2 that we can
express fVtg in state space echelon form,

xV;tC1 D FVxV;t C KV At (6.59)

Vt D HVxV;t C At: (6.60)

As for fWtg, we can proceed as in Sect. 5.9.2 to define the echelon form. Define first

WtCijt D WtCi �„0ZtCi �„1ZtCi�1 C � � � C„i�1ZtC1; i D 1; 2; : : : :

Then, define the matrices FW , KW , and HW and the state vector xW;t as in Sect. 5.9.2
with ˆ.z/, ‚.z/ and YtCijt replaced with ˆW.z/, ‚W.z/, and WtCijt to get

xW;tC1 D FWxW;t C KWZt (6.61)

Wt D HWxW;t C„0Zt: (6.62)

This is the state space echelon form of fWtg.
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As in Sect. 6.5.4, if we choose the initial conditions of (6.59) and (6.60)
and (6.61) and (6.62) appropriately, the sum of the new two processes, f QWtg and
f QVtg, satisfies

Yt D QWt C QVt: (6.63)

Using the state space forms (6.59) and (6.60) and (6.61) and (6.62) and the initial
conditions in these forms so that (6.63) is satisfied, we can represent fYtg in the
following decoupled state space echelon form

xtC1 D
�

FW 0

0 FV

�
xt C

�
KW

0

�
Zt C

�
0

KV

�
At

Yt D ŒHW ;HV �xt C„0Zt C At;

where xt D Œx0
W;t; x

0
V;t�

0.

6.6 Estimation of VARMAX Models Using
the Hannan–Rissanen Method

Suppose that the process fYtg follows the VARMAX model in echelon form

ˆ0Yt C � � � CˆrYt�r D �0Zt C � � � C�rZt�r C‚0At C � � � C‚rAt�r; (6.64)

where ˆ0 D ‚0 is a lower triangular matrix with ones in the main diagonal.
Equation (6.64) can be rewritten as

Yt D .Ik �ˆ0/Vt �
rX

jD1
ˆjYt�j C

rX

jD0
�jZt�j C

rX

jD1
‚jAt�j C At; (6.65)

where Vt D Yt � At and At in (6.65) is uncorrelated with Zs, s � t, Yu, Au, u � t � 1,
and

Vt D ˆ�1
0

0

@�
rX

jD1
ˆjYt�j C

rX

jD0
�jZt�j C

rX

jD1
‚jAt�j

1

A :

Applying the vec operator to (6.65), it is obtained that

Yt D �
rX

jD1
.Y 0

t�j ˝ Ik/vec.ˆj/C
rX

jD0
.Z0

t�j ˝ Ik/vec.�j/� .V 0
t ˝ Ik/vec.‚0 � Ik/

C
rX

jD1
.A0

t�j ˝ Ik/vec.‚j/C At
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D ŒW1;t;W2;t;W3;t�

2

4
˛1
˛2

˛3

3

5C At

D Wt˛ C At; (6.66)

where W1;t D Œ�Y 0
t�1 ˝ Ik, : : : ;�Y 0

t�r ˝ Ik�, W2;t D ŒZ0
t ˝ Ik, : : : ;Z0

t�r ˝ Ik�,
W3;t D Œ�V 0

t ˝ Ik;A0
t�1 ˝ Ik; : : : ;A0

t�r ˝ Ik�, ˛1 D Œvec0.ˆ1/, : : : ; vec0.ˆr/�
0,

˛2 D Œvec0.�0/, : : : ; vec0.�r/�
0, ˛3 D Œvec0.‚0 � Ik/; vec0.‚1/, : : : ; vec0.‚r/�

0,
Wt D ŒW1;t;W2;t;W3;t� and ˛ D Œ˛0

1; ˛
0
2; ˛

0
3�

0.
The restrictions in the parameters of the echelon form (6.64) can be incorporated

into Eq. (6.66) by defining a selection matrix, R, containing zeros and ones such that

˛ D Rˇ; (6.67)

where ˇ is the vector of parameters that are not restricted in the matrices ˆi, �i or
‚i, i D 0; 1; : : : ; r. Using (6.67), Eq. (6.66) can be rewritten as

Yt D WtRˇ C At

D Xtˇ C At; (6.68)

where Xt D WtR. Notice that, as mentioned earlier, Xt is uncorrelated with At

in (6.68) and that if we knew Xt, we could estimate ˇ by GLS. To this end, let
Var.At/ D † and let L be a lower triangular matrix such that † D LL0 is the
Cholesky decomposition of †. Then, The GLS estimator of ˇ in (6.68) can be
obtained as the OLS estimator of ˇ in

L�1Yt D L�1Xtˇ C L�1At: (6.69)

The idea behind the Hannan–Rissanen method (Hannan & Kavalieris, 1986; Hannan
and Rissanen, 1982) is to estimate ˇ in (6.69) after we have replaced the unknown
innovations in Xt and Var.At/ D † with those estimated using a long vector
autoregressive model with exogenous inputs (VARX). A VARX model is a model
of the form

Yt D
pX

jD1
…jYt�j C

pX

jD0
	jZt�j C At; (6.70)

and these models are important because every VARMAX model can be approxi-
mated to any degree of accuracy by a VARX model with a sufficiently big order.

VARX models are usually estimated using OLS, but this method of estimation
can give nonstable models. To remedy this, Whittle’s or the modified Burg’s
algorithm can be used instead.
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To apply any of the two previously mentioned algorithms to estimate a VARX
model of order p, define first X0t D Yt, X1t D .Y 0

t�1; : : : ;Y 0
t�p/

0, X2t D
.Z0

t ;Z
0
t�1; : : : ;Z0

t�p/
0, t D p C 1; : : : ; n, … D .…1; : : : ;…p/, 	 D .	0; 	1; : : : ; 	p/

and

Mij D 1

n � p

nX

tDpC1
XitX

0
jt; i; j D 0; 1; 2:

Then, model (6.70) can be written as

X0t D …X1t C 	X2t C At

and, given … and Var.At/, the conditional maximum likelihood estimator of 	 in
the previous model is

O	 D M02M
�1
22 �…M12M

�1
22 :

Therefore, 	 can be concentrated out of the likelihood and, to estimate …, we can
apply Whittle’s or the modified Burg’s algorithm to the model

R0t D …R1t C Ut;

where Var.Ut/ D Var.At/ and R0t and R1t are the residuals

R0t D X0t � M02M
�1
22 X2t

R1t D X1t � M12M
�1
22 X2t:

Once we have the estimate, O…, of …, the estimate of 	 is

O	 D M02M
�1
22 � O…M12M

�1
22 :

After the two steps of the Hannan–Rissanen method described so far, namely first
estimation of the innovations using a VARX model and then estimation of ˇ by GLS
in (6.68) after having replaced the unknown innovations in Xt and Var.At/ D † with
the estimated ones, these authors proposed to perform a third step to correct the bias
of the second step estimator.

This third step is as follows. Using the parameters estimated in the second step,
we compute first new residuals from model equation (6.64),

QAt D Yt Cˆ�1
0

0

@
rX

jD1
ˆjYt�j �

rX

jD0
�jZt�j �

rX

jD1
‚j QAt�j

1

A ; t D r C 1; : : : ; n:
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To initialize the recursion, either QAt D 0 or, preferably, QAt D bAt, t D 1; : : : ; r can
be used, where bAt are the residuals obtained with the initial VARX model. Then, the
third step consists of performing one Gauss–Newton iteration to minimize

f .ˇ/ D
nX

tDrC1
QA0

t
Q†�1 QAt; (6.71)

where Q† has to be estimated and its parameters do not depend on ˇ. Let At D QL�1 QAt

be the standardized residuals, where QL is a lower triangular matrix such that Q† D QL QL0
is the Cholesky decomposition of Q†, and consider the first order Taylor expansion,

At.ˇ/ '
 
@At

@̌ 0

!ˇˇ
ˇ̌
ˇ
ˇD Ǒ

.ˇ � Ǒ/C At. Ǒ/; (6.72)

corresponding to the sum of squares function f .ˇ/ D Pn
tDrC1 A

0
t.ˇ/At.ˇ/, where Ǒ

is the parameter vector estimated in the second step and we write At.ˇ/ to emphasize
the dependence of At on ˇ. Then, substituting the linear approximation (6.72) into
f .ˇ/, it is obtained that

f .ˇ/ '
nX

tDrC1

2

4At. Ǒ/�
 
@At

@̌ 0

!ˇˇ
ˇ
ˇ̌
ˇD Ǒ

. Ǒ � ˇ/
3

5

0 2

4At. Ǒ/�
 
@At

@̌ 0

!ˇˇ
ˇ
ˇ̌
ˇD Ǒ

. Ǒ � ˇ/
3

5 ;

and it is clear that the value of ˇ that minimizes f .ˇ/ is the OLS estimator in the
linear model

At. Ǒ/ �
 
@At

@̌ 0

!ˇˇ
ˇ
ˇ
ˇ
ˇD Ǒ

Ǒ D �
 
@At

@̌ 0

!ˇˇ
ˇ
ˇ
ˇ
ˇD Ǒ

ˇ C At.ˇ/; (6.73)

where VarŒAt.ˇ/� D Ik. To compute the partial derivative @At=@̌
0, consider first the

following rule (Lütkepohl, 2007, p. 666) to derive the vec of the product of two
matrices, A.ˇ/ 2 R

n�p and B.ˇ/ 2 R
p�q, with respect to ˇ0,

@vecŒA.ˇ/B.ˇ/�

@̌ 0 D ŒIq ˝ A.ˇ/�
@vecŒB.ˇ/�

@̌ 0 C ŒB0.ˇ/˝ In�
@vecŒA.ˇ/�

@̌ 0 : (6.74)

Then, since QL�1 does not depend on ˇ, by (6.74) applied to At D QL�1 QAt, we get

@At

@̌ 0 D QL�1 @ QAt

@̌ 0 ;
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and it suffices to compute @ QAt=@̌
0. Since ‚j QAt�j D vec.‚j QAt�j/, by (6.74), we

obtain

@.‚j QAt�j/

@̌ 0 D ‚j
@ QAt�j

@̌ 0 C . QA0
t�j ˝ Ik/

@vec.‚j/

@̌ 0

and, analogously,

@.ˆjYt�j/

@̌ 0 D .Y 0
t�j ˝ Ik/

@vec.ˆj/

@̌ 0 and
@.	jZt�j/

@̌ 0 D .Z0
t�j ˝ Ik/

@vec.	j/

@̌ 0 :

Using these results in

QAt D YtC.‚0�Ik/.Yt� QAt/C
rX

jD1
ˆjYt�j�

rX

jD0
�jZt�j�

rX

jD1
‚j QAt�j; t D rC1; : : : ; n;

it follows that Ct D @ QAt=@̌
0 can be computed using the recursion

Ct D �‚�1
0

rX

jD1
‚jCt�j �‚�1

0 Xt; t D r C 1; : : : ; n; (6.75)

initialized with Cj D 0, j D 1; 2; : : : ; r, where Xt is that of (6.68).
The Gauss–Newton iteration of the third step of the Hannan–Rissanen method

consists of, using the estimation Q† D QL QL0 D Pn
tDrC1 QAt QA0

t=.n � r/ in (6.71),
computing the OLS estimator of ˇ in the regression model (6.73), where Ct D
@ QAt=@̌

0 is computed using the recursion (6.75) with the parameters evaluated at Ǒ.
In summary, the Hannan–Rissanen method consists of the following steps.

Step 1 Estimate a long VARX,

Yt D
pX

jD1
…jYt�j C

pX

jD0
	jZt�j C At;

using OLS, Whittle’s algorithm, or the modified Burg’s algorithm, and obtain
estimates of the residuals, bAt, t D p C 1; : : : ; n, and of the residual covariance
matrix, O† D Pn

tDpC1 bAtbA0
t=.n � p/.

The order of the VARX, p, can be obtained using an information criterion
like AIC, the sequential likelihood ratio procedure, or using a formula like
p D Œln.n/�a, where n is the sample size and 1:5 � a � 2.
To obtain estimated residuals for t D 1; : : : ; p, one possibility is to fit VARX
models of orders 0; 1; : : : ; p � 1 and store the first residual of each of them,
bA1;bA2; : : : ;bAp, before fitting the VARX model of order p.
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Step 2 Using the residuals estimated in the first step, bAt, and the lower triangular
matrix bL such that O† D bLbL0, estimate by OLS the parameter vector, ˇ, in the
model

bL�1Yt D bL�1bXtˇ C Et; (6.76)

where bXt is the matrix obtained from Xt in (6.68) by replacing the

unknown At with bAt, Et D bL�1
h
At C .W3;t � bW3;t/Rˇ

i
and bW3;t D

h
.bAt � Yt/

0 ˝ Ik;bA0
t�1 ˝ Ik , : : : ;bA0

t�r ˝ Ik

i
.

Step 3 Using the parameters estimated in Step 2, compute first new residuals from
model equation (6.64),

QAt D Yt Cˆ�1
0

0

@
rX

jD1
ˆjYt�j �

rX

jD0
�jZt�j �

rX

jD1
‚j QAt�j

1

A ; t D r C 1; : : : ; n:

To initialize the recursion, either QAt D 0 or, preferably, QAt D bAt, t D 1; : : : ; r,
can be used. Then, perform one Gauss–Newton iteration to minimize

f .ˇ/ D
nX

tDrC1
QA0

t
Q†�1 QAt;

where the estimator Q† D Pn
tDrC1 QAt QA0

t=.n � p/ is used. To this end, compute the
OLS estimator of ˇ in the regression model

QL�1
 QAt � Ct

Ǒ� D ��QL�1Ct
	
ˇ C Ut;

where QL is a lower triangular matrix such that Q† D QL QL0, Var.Ut/ D Ik and Ct is
obtained using the recursion (6.75) with the parameters evaluated at Ǒ. The third
step can be iterated until the estimator of ˇ stabilizes.

The Hannan–Rissanen method was successfully used in Gómez & Maravall
(2001a) for the automatic model identification of 35 series. Of the 35 series, 13
were series which had appeared in published articles and for which an ARIMA
model had been identified by some expert in time series analysis. The rest were
simulated series.
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6.7 Estimation of State Space Models with Inputs Using
Subspace Methods

Using a notation borrowed from the engineering literature, let us assume that the
output process fYt W t D 1; 2; : : : ;Ng has dimension k and follows the minimal
innovations state space model

xtC1 D Axt C BZt C KAt; (6.77)

Yt D Cxt C DZt C At; t D 1; 2; : : : ;N (6.78)

where fAtg is the sequence of k-dimensional innovations, which for simplicity are
assumed to be i.i.d. Gaussian random variables with zero mean and covariance
matrix � > 0, fZtg is the m-dimensional input process, which is assumed to be
strongly exogenous, and fxtg is the sequence of n-dimensional unobserved states.
The system matrices, A 2 R

n�n, B 2 R
n�m, C 2 R

k�n, D 2 R
k�m, and K 2 R

n�k are
to be estimated.

Choosing two integers, f and p, that stand for “future” and “past,” we can define
the following vectors

YC
t;f D

2

6
6
6
4

Yt

YtC1
:::

YtCf �1

3

7
7
7
5

2 R
fk; Y�

t;p D

2

6
6
6
4

Yt�1
Yt�2
:::

Yt�p

3

7
7
7
5

2 R
pk and U�

t;p D
"

Z�
t;p

Y�
t;p

#

2 R
p.mCk/;

where Z�
t;p is defined analogously to Y�

t;p using the input vector Zt instead of Yt. In a

similar way, we define ZC
t;f and AC

t;f using the input vector Zt and the innovations At

instead of Yt.
By repeated application of Eqs. (6.77) and (6.78), it is obtained that

YtCi D CAixt C
iX

jD0
LjZtCi�j C

iX

jD0
KjAtCi�j;

where fLjg and fKjg are the impulse response sequences, Lj 2 R
s�m, Kj 2 R

s�s,
given by L0 D D, K0 D I, Lj D CAj�1B, Kj D CAj�1K, j > 0. From this, we get

YC
t;f D Of xt C Zf Z

C
t;f C Af A

C
t;f ; (6.79)
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where Of D ŒC0;A0C0; : : : ; .Af �1/0C0�0 denotes the extended observability matrix,

Zf D

2

6
6
6
4

D
CB D
:::

:::
: : : D

CAf �2B � � � � � � CB D

3

7
7
7
5
; and Af D

2

6
6
6
4

I
CK I
:::

:::
: : : I

CAf �2K � � � � � � CK I

3

7
7
7
5
:

Note that Zf and Af are the Toeplitz matrices of the impulse responses fLjg and fKjg.
From (6.78), we can write At D Yt � Cxt � DZt. Substituting this expression

in (6.77) and iterating, it is obtained that

xt D KpU�
t;p C .A � KC/pxt�p; (6.80)

where Kp D ŒKz;p;Ky;p�, Kz;p D ŒBK ;AKBK , : : : ;Ap�1
K BK �, Ky;p D ŒK;AKK; : : : ;

Ap�1
K K�, AK D A � KC and BK D B � KD.

We can rewrite Eq. (6.79) using (6.80) as

YC
t;f D Of KpU�

t;p C Zf Z
C
t;f C Nt; (6.81)

where Nt D Of .A � KC/pxt�p C Af A
C
t;f . Defining ˇp D Of Kp and ˇf D Zf in

Eq. (6.81), it is obtained that

YC
t;f D ˇpU�

t;p C ˇf Z
C
t;f C Nt; t D p C 1; : : : ;T � f : (6.82)

If the process fYtg satisfies the minimum phase assumption, that is, the eigenvalues
of the matrix A�KC have modulus less than one, then the process admits an infinite
autoregressive representation. Under this assumption, the central equation (6.82) has
the following features:

• The vector Nt is asymptotically uncorrelated with the remaining terms on the
right-hand side of Eq. (6.82) as p ! 1 because .A � KC/p ! 0.

• The matrix ˇp has rank n, the system order.
• Nt ! Af A

C
t;f as p ! 1.

• Af A
C
t;f is an MA.f / process.

The following subspace algorithm is based on the previous observations. It is
known in the literature as the CCA method, proposed in Larimore (1983).

1. Since the rank of ˇp in the regression equation (6.82) is equal to the system order
n, use the results of Anderson (1951) based on partial canonical correlations to
test H0: rank.ˇp/ D n for suitable values of n. After the rank of ˇp has been
determined, estimate ˇp by Ǒ

p D bOf bKp, where bOf and bKp both have rank n. From
this and Eqs. (6.79)–(6.81), an estimate of the state based on past information is
obtained as Oxtjt�1 D bKpZ�

t;p. Also, the matrices C and A can be estimated from the
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observability matrix Of D ŒC0;A0C0; : : : ; .Af �1/0C0�0. The estimate of C is simply
the first s rows of bOf and the estimate of A is obtained by solving the following
overdetermined system in the least squares sense,

4
˙

C
CA
:::

CAf �2

�

A D

4
˙

CA
CA2

:::

CAf �1

�

:

It may be possible at this stage that the estimated A matrix is not stable (not all
of its eigenvalues have modulus less than one). In this case, we should transform
it into a stable matrix.

2. After having estimated the regression equation (6.82), the residuals, ONt, are an
estimator of Af A

C
t;f . If Mt D M1=2

t .M1=2
t /0 is the Cholesky decomposition of the

covariance matrix of ONt, where M1=2
t is a lower triangular matrix, then M1=2

t is an
estimator of

Af diag.�1=2; : : : ;�1=2/ D

2

66
6
4

�1=2 0 � � � 0

CK�1=2 �1=2 � � � 0
:::

:::
: : :

:::

CAf �2K�1=2 CAf �3K�1=2 � � � �1=2

3

77
7
5

and the first block column of the previous matrix is used, together with the
estimated observability matrix, to estimate � and K. If the estimated A � KC
matrix is not stable, we would solve the following DARE

P D APA0 � .APC0 C S/.CPC0 C R/�1.APC0 C S/0 C Q

to get the stabilizing solution P � 0 and the corresponding Kalman gain K D
.APC0 C S/.CPC0 C R/�1 making A � KC stable, where

bW D
�

Q S
S0 R

�

is an estimate of W D Var.A0
tK

0;A0
t/

0 in (6.77) and (6.78).
3. There are two methods to estimate the matrices B and D. In the first method,

the matrices B and D and the initial state vector, x1, are estimated by regression
using the estimated matrices A, C and, possibly, K. If K is not used, the regression
equation is

Yt D �
C.z�1I � A/�1t B C D

�
Zt C CAt�1x1 C vt;
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where z�1 is the forward operator, z�1Yt D YtC1, .z�1I � A/�1t D Pt�1
jD1 z jAj�1,

and vt D �
C.z�1I � A/�1t K C I

�
At. If, on the contrary, K is used, then the

regression equation is

�
I � C.z�1I � AK/

�1
t K

�
Yt D �

C.z�1I � AK/
�1
t BK C D

�
Zt

C CAt�1
K x1 C At; (6.83)

where .z�1I � AK/
�1
t D Pt�1

jD1 z jAj�1
K and, as before, AK D A � KC and

BK D B � KD. Note that in this last equation the residuals are white. The
regression in (6.83) can be efficiently performed using the augmented Kalman
filter corresponding to (6.77) and (6.78) in which the initial state, x1, is considered
fixed and the matrices D and B are to be estimated along with x1. As mentioned
earlier, (6.77) and (6.78) can be first transformed into a state space model with
constant bias. Then, since P1 D 0, the augmented Kalman filter is reduced to a
couple of equations. See Problem 6.2.

Let

Ǒ
f D †fzjp†�1

zzjp;

be the estimator of ˇf in (6.82), where †ff jp, †zzjp, and †fzjp are the covariance
matrices of the residuals of the regression of YC

t;f and ZC
t;f onto U�

t;p. Then,
according to the second method, the estimators of B and D are obtained by least
squares from

2

6
6
6
4

D
CB D
:::

:::
: : : D

CAf �2B � � � � � � CB D

3

7
7
7
5

D Ǒ
f ;

considering that once we know C and A the previous equation is a linear system in
B and D. See Katayama (2005, p. 289) for details. A problem with the previous
estimator is that Ǒ

f may be not block lower triangular. However, this can be
circumvented by using a constrained least squares method to estimate ˇp and ˇf .
See Katayama & Picci (1999, pp. 1643–1644) for details.

4. The matrix � D Var.At/ can be estimated in several ways besides the one
described earlier when estimating K. For example, one can use the regression
equation (6.83) to estimate the residuals At. Another possibility is to use the
observation equation (6.78) with the state xt replaced with the estimated state
Oxtjt�1 to estimate the residuals.

It is to be noted that the test statistic for H0: rank.ˇp/ D n in (6.82), based
on partial canonical correlations (Anderson, 1951), used in step 1 of the previous
algorithm has an asymptotic chi-squared distribution under the assumption that the
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errors are white noise. This is not the case in Eq. (6.82), however, because the
errors are asymptotically a moving average process. For this reason, Tsay (1989)
has proposed a modification of this statistic.

An alternative to use partial canonical correlations to estimate the system order
is to use an information criterion like AIC or BIC. To this end, we would use
the augmented Kalman filter to compute the likelihood corresponding to (6.77)
and (6.78) in which the initial state, x1, is considered fixed and the matrices D and
B are to be estimated along with x1.

As mentioned earlier, the procedure in step 1 of the previous algorithm is based
on the computation of an SVD. More specifically, let †ff jz, †ppjz and †fpjz be the
covariance matrices of the residuals of the regression of YC

t;f and U�
t;p onto ZC

t;f and
let

Ǒ
p D †fpjz†�1

ppjz

be the estimator of ˇp in (6.82). Then, computing the SVD

†
�1=2
ff jz †fpjz.†�1=2

ppjz /
0 D USV 0; (6.84)

one estimates the partial canonical correlations between YC
t;f and U�

t;p, given ZC
t;f ,

as the elements in the diagonal of S, see Problem 6.9. After having tested for the
number of canonical correlations that are nonzero, we have the approximation

†
�1=2
ff jz †fpjz.†�1=2

ppjz /
0 ' bUbSbV 0;

where bS has rank n, the estimated system order. The matrices Of and Kp are
estimated as

bOf D †
1=2

ff jz bUbS
1=2 and bKp D bS1=2bV 0†�1=2

ppjz :

As regards the orders f and p in the previous algorithm, there is no general
consensus. One possibility is to fit a VARX approximation to the data and make
p equal to the number of lags in the fitted autoregression. The number of future
lags, f , should be at least equal to the maximum system order, n, considered. Some
authors simply put f D p. Another possibility is to make f grow with the sample
size according to a formula of the type f D loga.N/ with 1:5 � a � 2 .

The previous algorithm was used in Gómez, Aparicio-Pérez, & Sánchez-Ávila
(2010) for forecasting two time series as an alternative to forecasting with transfer
function methods.
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6.8 Fast Estimation of State Space Models with Inputs

Suppose the following state space representation of the k-dimensional process fYtg
with strongly exogenous inputs, fZtg,

xtC1 D Fxt C WZt C Gut (6.85)

Yt D Hxt C VZt C Jut; t D 1; 2; : : : ; n; (6.86)

where dim.xt/ D r, dim.Zt/ D s, dim.ut/ D q, Var.ut/ D Iq and the processes fxtg
and fYtg can be stationary or not. Solving the DARE (A.3) in the Appendix to this
chapter, we can put (6.85) and (6.86) into innovations form

xtC1 D Fxt C WZt C KAt

Yt D Hxt C VZt C At; t D 1; 2; : : : ; n;

where K D .FPH0 C GJ0/†�1, † D JJ0 C HPH0 and Var.At/ D †.
Assuming that the initial state, x1 D ı, is fixed and unknown in the previous state

space form, we can evaluate the profile likelihood. In order to do that, we can use
the fast TSKF described in Sect. 6.3,

.Et; et/ D .0; 0;Yt � VZt/ � H.�Ut; xtjt�1/

.�UtC1; xtC1jt/ D .0; 0;WZt/C F.�Ut; xtjt�1/C K.Et; et/;

with initial conditions .�U1; x1j0/ D .�I; 0/ and P1 D 0, where Pt D P, Kt D K,
and †t D † for all t D 1; 2; : : : ; n, and the corresponding square root information
form of the bias filter. It is to be noticed that the recursions of the information form
bias filter are given by


…�1

tC1;…�1
tC1 OıtC1

�
D

…�1

t ;…�1
t

Oıt

�
C E0

t†
�1 .Et; et/ ;

initialized with

…�1
1 ;…

�1
1

Oı1
�

D .0; 0/, and that the profile log-likelihood can be

expressed in terms of the fast TSKF and the information bias filter as

l.Y/ D constant � 1

2

��
RSSBFF

nC1 �

…�1

nC1 OınC1
�0
…nC1


…�1

nC1 OınC1
��

C n ln j†j
�
;

where RSSBFF
nC1 can be obtained with the recursion (4.138).

By Theorem 6.1, the k-dimensional process fYtg can be represented by a state
space model with constant bias. Since WZt D vec.WZt/ D .Z0

t ˝ Ir/vec.W/ and
VZt D vec.VZt/ D .Z0

t ˝ Ik/vec.V/, if we define ˇv D vec.V/, ˇw D vec.W/,
ˇ D .ˇ0

v; ˇ
0
w/

0, Wt D .0;Z0
t ˝ Ir/ and Vt D .Z0

t ˝ Ik; 0/, we can write (6.85)
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and (6.86) as

xtC1 D Fxt C Wtˇ C Gut (6.87)

Yt D Hxt C Vtˇ C Jut; t D 1; 2; : : : ; n: (6.88)

If we continue to assume that the initial state, x1 D ı, is fixed and unknown in
the previous state space form, we can now concentrate out of the profile likelihood
the vector ˇ, something that we could not do earlier. To this end, we first solve the
DARE and transform (6.87) and (6.88) into innovations form

xtC1 D Fxt C Wtˇ C KAt (6.89)

Yt D Hxt C Vtˇ C At; t D 1; 2; : : : ; n; (6.90)

where K D .FPH0 C GJ0/†�1, † D JJ0 C HPH0 and Var.At/ D †. Then, we can
use the corresponding fast TSKF and information form bias filter

.Et; et/ D .0;Vt;Yt/� H.�Ut; xtjt�1/

.�UtC1; xtC1jt/ D .0;�Wt; 0/C F.�Ut; xtjt�1/C K.Et; et/;

with initial conditions .�U1; x1j0/ D .�I; 0; 0/ and P1 D 0, where Pt D P, Kt D K
and †t D † for all t D 1; 2; : : : ; n, and

�
…�1

tC1;…�1
tC1 O
tC1

	 D �
…�1

t ;…�1
t O
t

	C E0
t†

�1 .Et; et/ ;

initialized with
�
…�1
1 ;…

�1
1 O
1

	 D .0; 0/, where 
 D Œı0; ˇ0�0. The profile likelihood
is now

l.Y/ D constant � 1

2

nh
RSSBFF

nC1 � �
…�1

nC1 O
nC1
	0
…nC1

�
…�1

nC1 O
nC1
	iC n ln j†j

o
;

where RSSBFF
nC1 can be obtained with the recursion (4.138).

Summing up, the fast estimation procedure to estimate the parameters in the
models (6.85) and (6.86) or (6.87) and (6.88) consists of first passing the model
to innovations form solving the DARE and then evaluating the profile likelihood
using the corresponding fast TSKF and square root information bias filter described
earlier in this section.

If instead of the profile likelihood we want to evaluate the diffuse likelihood,
we can modify the previous procedure to accommodate the diffuse part in the
initial state vector as we now outline. Suppose that the k-dimensional process fYtg,
stationary or not, is represented by the state space model (6.85) and (6.86), where
Var.ut/ D �2Iq. Suppose further that this state space model is first transformed into
the state space model with constant bias (6.87) and (6.88) and then into innovations
form (6.89) and (6.90), as described earlier in this section. Let x1 D W0ˇCAıCBcs,
Var.ı/ D �2… and Var.cs/ D �2�s, and suppose that ı and cs are uncorrelated with
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…�1 ! 0. Define Nı D Aı C Bcs and Var. Nı/ D �2…, where

… D A…A0 C B�sB
0

D M

�
… 0

0 �s

�
M0;

and suppose that the matrices M D ŒA;B� and�s are nonsingular. This specification
of the initial state vector can always be obtained following the procedure of
Sect. 4.14.2, but the matrix�s can be singular. We will consider the case of singular
�s at the end of this section.

Replacing x1 in Theorem 4.34 with x1 D W0ˇC Nı and proceeding as in the proof
of that theorem, we get the following linear model corresponding to the state space
model (6.89) and (6.90)

Y D R Nı C v; (6.91)

where v � .Sˇ; �2V/ and Cov. Nı; v/ D 0. Under the assumption of normality, by
Theorem 2.3, the log-likelihood of the linear model (6.91), denoted by �.Y/, is given
by

�.Y/ D constant � 1

2

n
ln j�2…j C ln j�2Vj C ln j��2


…

�1 C R0V�1R
�

j C ONı0…
�1 ONı=�2

C .Y � R ONı � Sˇ/0V�1.Y � R ONı � Sˇ/=�2
o
;

where ONı D .…
�1 C R0V�1R/�1ŒR0V�1.Y � Sˇ/� and MSE. ONı/ D �2.…

�1 C
R0V�1R/�1.

Since j…j D j…jj�sjjMj2 and, by Remark 2.2, the diffuse log-likelihood,�D.Y/,
can be obtained by taking the limit when…�1 ! 0 of �.Y/C 1

2
ln j�2…j, the diffuse

log-likelihood is, apart from a constant,

�D.Y/ D �1
2

˚
ln j�2�sj C ln jMj2 C ln j�2Vj

C ln j��2 …�1 C R0V�1R
�

j C ONı0…�1 ONı=�2

C .Y � R ONı � Sˇ/0V�1.Y � R ONı � Sˇ/=�2
o
:

Concentrating out of the diffuse log-likelihood ˇ and �2 yields the .ˇ; �2/-
maximized diffuse log-likelihood, denoted by �D.YI Ǒ; O�2/. This log-likelihood is,
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apart from a constant,

�D.YI Ǒ; O�2/ D � 1

2

n
.nk � nı/ ln

h ONı0…�1 ONı C .Y � R ONı � S Ǒ/0V�1.Y � R ONı � S Ǒ/
i

C ln j�sj C ln jMj2 C ln jVj C ln j…�1 C R0V�1Rj
o
; (6.92)

where nı is the dimension of ı. To evaluate the concentrated diffuse log-
likelihood (6.92), we can use the following fast TSKF and information form bias
filter

.Et; et/ D .0;Vt;Yt/� H.�Ut; xtjt�1/

.�UtC1; xtC1jt/ D .0;�Wt; 0/C F.�Ut; xtjt�1/C K.Et; et/;

with initial conditions .�U1; x1j0/ D .�I;�W0; 0/ and P1 D 0, where Pt D P,
Kt D K and †t D † for all t D 1; 2; : : : ; n, and

�
…�1

tC1;…�1
tC1 O
tC1

	 D �
…�1

t ;…�1
t O
t

	C E0
t†

�1 .Et; et/ ;

initialized with
�
…�1
1 ;…

�1
1 O
1

	 D
h
diag


…

�1
; 0
�
; 0
i
, where

…
�1 D .M0/�1

�
0

��1
s

�
M�1

and 
 D Œ Nı0; ˇ0�0. It is to be noticed that in the previous procedure the parameter
�2 is one parameter that has been concentrated out of the covariance matrix of the
innovations, Var.At/, in the state space model (6.89) and (6.90). Thus, Var.At/ D
�2†. To see this, first consider that, by assumption,

E

��
Gut

Jut

� �
u0

sG
0; u0

sJ
0�
�

D �2
�

GG0 GJ0
JG0 JJ0

�
ıts:

Then, by the results in Sect. 5.6 concerning the DARE, the following equality holds

�2
��P C FPF0 C GG0 FPH0 C GJ0

HPF0 C JG0 JJ0 C HPH0
�

D �2
�

K
I

�
† ŒK0 I�;

proving that Var.At/ D �2†.
Using the previous fast TSKF and information form bias filter, we can evaluate

�D.YI Ǒ; O�2/, apart from a constant, as

�D.YI Ǒ; O�2/ D � 1

2

n
.nk � nı/ ln

h
RSSBFF

nC1 � �
…�1

nC1 O
nC1
	0
…nC1

�
…�1

nC1 O
nC1
	i

C ln j�sj C ln jMj2 C n ln j†j C ln j…nC1j;
�
;

where RSSBFF
nC1 can be obtained with the recursion (4.138).
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If�s is singular, let�s D USU0, where U is an orthogonal and S is a nonnegative
diagonal matrix, be the singular value decomposition of �s. Assuming that the
singular values are in the diagonal of S in descending order, let S1 be the submatrix
of S containing all the nonzero diagonal elements of S and let U1 be the submatrix
of U such that �s D U1S1U0

1. Then, the previous procedure remains valid (see
Problem 6.6) if we replace ��1

s with ��
s D U1S�1

1 U�1
1 and j�sj with jS1j in the

previous expressions for …
�1

and �D.YI Ǒ; O�2/, respectively.

6.9 The Information Matrix

Let the process fYtg follow the state space model (6.1) and (6.2) with strongly
exogenous inputs, fZtg. Suppose that �2 D 1 and the initial state vector is x1 D
Mˇ C x, so that there is no diffuse part. Then, applying the Kalman filter (6.19)–
(6.21), initialized with Ox1j0 D Mˇ and P1 D �, to the sample Y D .Y 0

1; : : : ;Y
0
n/

0 to
evaluate the log-likelihood, l.Y/, yields

l.Y/ D �1
2

nX

tD1

�
k ln.2�/C E0

t†
�1
t Et C ln j†tj

�
:

Letting 
 be the vector of parameters in the model (6.1) and (6.2) and applying
the rules for vector and matrix differentiation, it is obtained that the gradient of the
log-likelihood is

@l.Y/

@
 0
D �1

2

nX

tD1

"

vec



@ ln j†tj
@†t

�
0

@vec.†t/

@
 0
C @tr

�
E0

t†
�1
t Et

	

@
 0

#

D �1
2

nX

tD1

�
vec

�
†�1

t

	
0 @vec.†t/

@
 0
C 2E0

t†
�1
t

@Et

@
 0
� vec

�
†�1

t EtE
0

t†
�1
t

	
0 @vec.†t/

@
 0

�

D �1
2

nX

tD1

�
vec

�
†�1

t

�
Ik � EtE

0

t†
�1
t

	�
0 @vec.†t/

@
 0
C 2E0

t†
�1
t

@Et

@
 0

�
:

The information matrix, I.
/, is defined as

I.
/ D E

�
�@

2l.Y/

@ı@ı0

�
:

Using E.Et/ D 0, E.EtE0
t/ D †t and again the rules for vector and matrix

differentiation yields

I.
/ D 1

2

nX

tD1

�
@vec.†t/

0

@


�
†�1

t ˝†�1
t

	 @vec.†t/

@
 0 C 2E



@E0

t

@

†�1

t

@Et

@
 0

��
:
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6.10 Historical Notes

Granger (1963) is a fundamental article on the relation between feedback and
causality that generated a large literature on the study of feedback in stochastic
processes. See, for example, Caines & Chan (1975) and Anderson & Gevers (1982).

Canonical forms for state space models with inputs and VARMAX models can be
obtained in a way similar to that used with VARMA models. Since the argument is
algebraic in nature, it is only the dimensions of the moving average part that change.
The rest of the argument remains the same. Thus, all references given in Sect. 5.22
continue to be valid in this chapter.

The Hannan–Rissanen method was proposed by Hannan & Rissanen (1982) for
the univariate case and extended to the multivariate case by Hannan & Kavalieris
(1984, 1986). The method is also described in Hannan & Deistler (1988).

What is now called the “subspace” approach to time series identification, based
on the predictor space construction and canonical correlation analysis, was proposed
by Akaike (1974a) and Akaike (1974b). Subspace identification has been a very
active area of research in the two decades between 1990 and 2010. See, for example,
Larimore (1983), Van Overschee & De Moor (1994), and Van Overschee & De
Moor (1996).

6.11 Problems

6.1 Prove the Kalman filter recursions (6.19)–(6.21) using the properties of orthog-
onal projection with nonzero means.

6.2 Suppose the innovations model (6.4) and (6.5) with x1 D MˇC Aı, where ˇ is
unknown and ı is diffuse. Prove that the modified bias-free filter corresponding to
this model,

.Et; et/ D .0; 0;Yt � VZt/� H.�Ut; xtjt�1/ (6.93)

†t D HPtH
0 C JJ0; Kt D .FPtH

0 C GJ0/†�1
t (6.94)

.�UtC1; xtC1jt/ D .0; 0;WZt/C F.�Ut; xtjt�1/C Kt.Et; et/ (6.95)

PtC1 D .F � KtH/PtF
0 C .G � KtJ/G

0; (6.96)

with initial conditions .�U1; x1j0/ D .�A;�M; 0/ and P1 D 0, can be simplified
to (6.93) and (6.95), where G D K†1=2, J D †1=2, Kt D K, and Var.At/ D † D
†1=2†1=2

0

. Hint: check that Pt D 0 for t D 1; 2; : : : ; n.

6.3 Suppose the state space model (6.1) and (6.2), in which �2 D 1 and x1 is given
by (6.3) with ˇ unknown and ı ¤ 0 diffuse. Prove that using the modified bias-
free filter (6.22)–(6.25) and information bias filter (6.26) the log-likelihood is, apart
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from a constant,

l.Y/ D �1
2

(
h
RSSBFF

nC1 � �
…�1

nC1 O
nC1

	
0

…nC1

�
…�1

nC1 O
nC1

	iC
nX

tD1

ln j†tj C ln j…11
nC1j

)

;

where RSSBFF
nC1 can be obtained with the recursion (4.138),

…�1
nC1 D

nX

tD1
E0

t†
�1
t Et D

�
…11

nC1 …12
nC1

…21
nC1 …22

nC1

�
;

and the partition is conformal with 
 D Œı0; ˇ0�0.

6.4 Put the following univariate VARMAX model with one input

Yt D 3Zt�1 � 2Zt�2 C At � :7At�1

into innovations state space form (6.4) and (6.5).

6.5 Suppose fYtg follows the signal plus noise model

Yt D �C St C Nt;

where � is a constant, St satisfies St � St�1 D At, At � WN.0; �2A/, Nt � WN.0; �2N/
and the processes fAtg and fNtg are mutually uncorrelated.

i) Show that fYtg can be put into state space form (6.1) and (6.2) by defining
F D 1, G D .�A; 0/, H D 1, J D .0; �N/, V D �, W D 0, Zt D 1, ut D
.AtC1=�A;Nt=�N/

0, and x1 D ı with ı diffuse.
ii) Let �2A D 1 and �2N D 2. Prove that the DARE corresponding to the previous

state space model is

P2 � P � 2 D 0

and that this equation has a positive solution P D 2. Obtain K and † as
functions of the positive solution, P, of the DARE and the other parameters
of the model.

iii) Under the assumptions of ii), obtain the fast TSKF and information form bias
filter corresponding to the innovations state space model.

6.6 Prove the formula for �D.YI Ǒ; O�2/ outlined at the end of Sect. 6.8 correspond-
ing to the case in which �s is singular.

6.7 Given the univariate VARMAX model with two inputs

Yt D .2B3 C 4B4/Z1t C 1:5B2 C 3B3

1 � B C :24B2
Z2t C 1

1 � 1:3B C :4B2
At;
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where B is the backshift operator, BYt D Yt�1, put this model into a decoupled state
space echelon form, as described in Sect. 6.5.5.

6.8 Suppose fYtg follows the signal plus noise model

Yt D �C St C Nt;

where � is a constant, St satisfies St C �St�1 D At, j�j < 1, At � WN.0; 1/,
Nt � WN.0; 2/ and the processes fAtg and fNtg are mutually uncorrelated.

i) Show that fYtg can be put into state space form (6.1) and (6.2) by defining
F D ��, G D .1; 0/, H D 1, J D .0;

p
2/, V D �, W D 0, Zt D 1,

ut D .AtC1;Nt=
p
2/0, and x1 � .0;�/, � D 1=.1� �2/.

ii) Assuming � is known, write down the Kalman filter recursions (6.19)–(6.21)
corresponding to the state space model defined in i).

iii) Assuming� is not known, write down the modified bias-free filter (6.22)–(6.25)
and information bias filter (6.26) corresponding to the state space model defined
in i).

6.9 Prove that the elements in the diagonal of the matrix S in (6.84) are the
canonical correlations between YC

t;f and U�
t;p, given ZC

t;f .

6.10 With the notation of Sect. 6.7, let

1

N

2

6
4

ZC
t;f

U�
t;p

YC
t;f

3

7
5 ŒYC0

t;f ;U
�0

t;p ;Z
C0

t;f � D
2

4
†zz †zp †zf

†pz †pp †pf

†fz †fp †ff

3

5 :

Suppose we perform the following QR decomposition

Q0
�
1p
N
ŒYC0

t;f ;U
�0

t;p ;Z
C0

t;f �

�
D R;

so that the lower triangular matrix L D R0 satisfies, with an obvious notation,

1p
N

2

6
4

ZC
t;f

U�
t;p

YC
t;f

3

7
5 D LQ0 D

2

4
L11 0 0

L21 L22 0

L31 L32 L33

3

5Q0:

Prove that

†ff jz D †ff �†fz†
�1
zz †zf D L32L

0
32 � L33L

0
33

and

†ppjz D L22L
0
22; †fpjz D L32L

0
22:
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Appendix

Observability, Controllability, and the DARE

Let us suppose the following state space representation of the k-dimensional process
fYtg with strongly exogenous inputs, fZtg,

xtC1 D Fxt C WZt C Gut (A.1)

Yt D Hxt C VZt C Jut; t D 1; 2; : : : ; (A.2)

where dim.xt/ D r, dim.Zt/ D s, dim.ut/ D q and Var.ut/ D Iq.
The system (A.1) and (A.2) is controllable if the pair .F; QG/ is controllable, where

QG D .W;G/, and it is observable if the pair .F;H/ is observable.
If the mean squared error matrix, Pt, of the orthogonal projection of the state, xt,

onto fZ1;Y1; : : :, Zt�1;Yt�1;Ztg converges as t ! 1 in the Kalman recursions

Et D Yt � VZt � HOxtjt�1; †t D HPtH0 C JJ0;

Kt D .FPtH0 C GJ0/†�1
t ; OxtC1jt D WZt C FOxtjt�1 C KtEt;

PtC1 D .F � KtH/PtF0 C .G � KtJ/G0;

initialized with Ox1j0 D a and P1 D �, then the limiting solution, P, will satisfy the
DARE

P D FPF0 C GG0 � .FPH0 C GJ0/.JJ0 C HPH0/�1.FPH0 C GJ0/0: (A.3)

In this case, the Kalman gain, Kt, of the Kalman filter converges to the steady
state quantity K D .FPH0 C GJ0/†�1, where † D JJ0 C HPH0. The Kalman
filter recursions corresponding to this steady state yield the so-called innovations
representation of the model (A.1) and (A.2),

OxtC1 D FOxt C WZt C KAt

Yt D HOxt C VZt C At;

where Oxt is the predictor of xt based on the semi-infinite sample, fZt;Zs;Ys W s �
t � 1g, At D Yt � HOxtjt�1 � VZt is the innovation and Var.At/ D †. It is usually
assumed that † is nonsingular. It may happen that Var.Oxtjt�1/ ! 1 as t ! 1
while Pt has a finite limit. In this case, Oxt can be considered as the limit of Oxtjt�1 as
t ! 1.



Chapter 7
Wiener–Kolmogorov Filtering and Smoothing

Thus far in the book, we have mainly considered projection problems involving a
finite number of random vectors. In this chapter, we shall study problems involving
an infinite collection of random vectors.

Projection problems for stochastic processes observed over doubly infinite and
semi-infinite intervals were first considered by N. Wiener and A. N. Kolmogorov
around 1940 in some now celebrated studies that are often regarded as the
foundation of some disciplines such as Statistical Prediction Theory and Signal
Extraction. It is interesting to mention that Wiener argued in the frequency domain
while Kolmogorov did it in the time domain.

These authors developed some closed formulae for filtering and smoothing that
are based on the covariance generating functions of the processes involved.

Bell (1984) extended the classical Wiener–Kolmogorov formulae for univariate
processes with ARMA structure to the nonstationary ARIMA case.

Although the Wiener–Kolmogorov formulae are valid for multivariate stationary
processes without any particular structure, it is important to know what happens
when some structure is assumed. In particular, if the processes under study are
stationary processes with a Hankel matrix of finite rank, they can be represented
by a time invariant state space model or, equivalently, a VARMA model.

7.1 The Classical Wiener–Kolmogorov Formulae

Suppose a zero-mean stationary vector random process f.S0
t;Y

0
t /

0 W t 2 Zg with
covariance function


.h/ D
�

S.h/ 
SY.h/

YS.h/ 
Y.h/

�
;

© Springer International Publishing Switzerland 2016
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where 
.h/ D EŒ.S0
t;Y

0
t /

0.S0
t�h;Y

0
t�h/�, and such that the covariance generating

function

G.z/ D
1X

hD�1

.h/zh D

�
GS.z/ GSY.z/
GYS.z/ GY.z/

�
; (7.1)

converges for all z in some annulus containing the unit circle, r�1 < jzj < r with
r > 1. It follows from this that

P1
hD�1 k
.h/k < 1; where kAk denotes a norm

for the matrix A such as kAk D p
tr.A0A/, and that the covariance factorization

GY.z/ D ‰.z/†‰0.z�1/ exists, where ‰.z/ D P1
hD0 ‰hzh and ‰�1.z/ are analytic

in D D fz 2 C W jzj < 1g.
In addition, we will make the assumption that GY.z/ > 0 for all z in U D fz W

jzj D 1g. This implies that ‰.z/ has an inverse that is analytic in some annulus that
contains the unit circle. Also, the equality Yt D ‰.B/At holds, where fAtg are the
innovations and B is the backshift operator, BAt D At�1.

We want to find the best linear predictor E�.StjYs W s 2 T/ of St based on the
sample fYs W s 2 Tg, where T can be a doubly infinite set, T D Z, or a semi-infinite
set, T D fs � t C m W s 2 Zg, such that t and m � 0 are fixed and t;m 2 Z,
where Z is the set of all integers. We will denote the estimator E�.StjYs W s 2 T/
by OStj1 if T D Z, and by OStjtCm if T D fs � t C m W s 2 Zg. In the special case
in which m D 0, we will write OStjt instead of OStjtC0. In the literature, the problem
of finding OStjt is known as Wiener–Kolmogorov filtering and that of finding OStjtCm

or OStj1 is known as Wiener–Kolmogorov smoothing. Assuming the series have
state space structure, the problem of finite filtering and smoothing, that is, when
T D ft1; t2; : : : ; tng; t1 < t2 < � � � < tn; tn � t, can be solved using the state space
framework and Kalman filtering and smoothing.

7.1.1 Wiener–Kolmogorov Smoothing

We are interested in finding a formula for OStj1, the projection of St onto the Hilbert
space generated by the finite linear combinations of elements of fYtg, and their limits
in mean square. As is well known, this projection is unique and has the form

OStj1 D
1X

jD�1
‰tjYj;

for some set of filter weights, f‰tjg, that need to be determined, where the series is
mean square convergent. Assuming that the filter ‰t.z/ D P1

jD�1 ‰tjz j is stable,
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the orthogonality condition yields

E

2

4

0

@St �
1X

jD�1
‰tjYj

1

A Y 0
l

3

5 D 0; l 2 Z;

or


SY.t � l/ D
1X

jD�1
‰tj
Y. j � l/; l 2 Z; (7.2)

Note that, by the continuity of the inner product< X;Y >D E.XY 0/, we can write

E
 OStj1Y 0

l

�
D lim

n!1

nX

jD�n

‰tjE.YjY
0
l / D

1X

jD�1
‰tj
Y. j � l/;

and (7.2) is justified. If we apply in (7.2) the change of variables t � l D h and
j � l D k, we can write


SY.h/ D
1X

kD�1
‰hCl;kCl
Y.k/; l 2 Z: (7.3)

But since the left-hand side of (7.12) does not depend on l, putting l D �h yields


SY.h/ D
1X

kD�1
‰0;k�h
Y.k/; h � 0:

Since the set of weights f‰tjg in the orthogonal projection OStj1 D P1
jD�1 ‰tjYj is

unique, we conclude that

‰0;k�h D …h�k;

for some sequence f…jg. Thus, we obtain


SY.h/ D
1X

kD�1
…h�k
Y.k/ D

1X

jD�1
…j
Y.h � j/; (7.4)

and, therefore,

OStj1 D
1X

jD�1
…jYt�j:
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Letting ….z/ D P1
jD�1…jz j be the generating function of the sequence

f…j W j 2 Zg, (7.4) implies

GSY.z/ D ….z/GY.z/:

Since, by assumption, GSY.z/ and GY.z/ are convergent for all z in some annulus
containing the unit circle, r�1 < jzj < r with r > 1, and GY.z/ has no unit circle
zeros, we can write

….z/ D GSY.z/G
�1
Y .z/;

where ….z/ is well defined and stable because it is convergent in some annulus
containing the unit circle. We summarize this result in the following theorem.

Theorem 7.1 Given the zero-mean stationary vector random process f.S0
t;Y

0
t /

0 W
t 2 Zg with covariance generating function (7.1) convergent for all z in some
annulus containing the unit circle, r�1 < jzj < r with r > 1, and such that GY.z/
has no unit circle zeros, the estimator OStj1 of St based on the doubly infinite sample
fYs W s D 0;˙1;˙2; : : :g is given by OStj1 D P1

jD�1…jYt�j; where the filter is
stable (

P1
jD�1 k…jk < 1) and its weights, …j, are given by

….z/ D
1X

jD�1
…jz

j D GSY.z/G
�1
Y .z/: (7.5)

In addition, the error Etj1 D St � OStj1 is stationary, has a covariance generating
function, GE1.z/, given by GE1.z/ D GS.z/� GSY.z/G�1

Y .z/GYS.z�1/ and

MSE. OStj1/ D Var.Etj1/ D 1

2�

Z �

��
GE1.e�ix/dx:

Proof The only things that remain to be proved are the statements about the error
Etj1 and the formula for the mean squared error. Since OStj1 is the result of passing
Yt through the stable linear time invariant filter ….z/, by Corollary 3.1, OStj1 is
stationary. In addition, by Proposition 3.14, the covariance generating function,
G OS.z/, of OStj1 is

G OS.z/ D ….z/GY.z/…
0.z�1/ D GSY.z/G

�1
Y .z/GYS.z

�1/:

Since Etj1 is orthogonal to St, we have the decomposition into orthogonal compo-
nents

St D Etj1 C OStj1;
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from which the formula for the covariance generating function of the error follows.
Then, by definition of spectrum and (3.46), we get the desired formula for the mean
square error. �

Remark 7.1 The assumptions we are making to derive the formula for OStj1 and its
mean square error are stronger than needed. See Gohbergh & Fel´dman (1974) for
the general case. Þ

Example 7.1 Suppose the signal-plus-noise model

Yt D St C Nt;

where St follows the model

.1 � B/St D bt;

jj < 1, fbtg �WN.0; �2b /, fNtg �WN.0; �2n / and fbtg and fNtg are mutually
uncorrelated. Then,

OStj1 D 1

1C k.1 � B/.1 � F/
Yt;

where F is the forward operator, FYt D YtC1, and k D �2n=�
2
b .

Applying 1 � B to Yt gives

.1 � B/Yt D bt C .1 � B/Nt: (7.6)

If f
.h/ W h 2 Zg are the covariances of the right-hand side of (7.6), then 
.0/ D
�2b C .1 C 2/�2n , 
.1/ D ��2n , and 
.k/ D 0 for k ¤ 0; 1. It is thus an MA.1/
model and fYtg follows the ARMA.1; 1/ model

.1 � B/Yt D .1 � �B/At;

where � and �2a D Var.At/ are determined from the covariance function factoriza-
tion


.0/C 
.1/.z C z�1/ D .1 � �z/.1 � �z�1/�2a :

Equating coefficients in the previous equation yields

.1C �2/�2a D �2b C .1C 2/�2n

���2a D ��2n :



454 7 Wiener–Kolmogorov Filtering and Smoothing

Notice from these two equations that

�2b
�2a

D 1C �2 � .1C 2/
�2n
�2a

D 1C �2 � .1C 2/
�



D . � �/.1 � �/


: (7.7)

The covariance generating function of the error Etj1 D St � OStj1 is GE1.z/ D
GS.z/ � GSY.z/G�1

Y .z/GYS.z�1/. Since St and Nt are uncorrelated, GSY.z/ D GS.z/
and GY.z/ D GS.z/C GN.z/, where GN.z/ is the covariance generating function of
Nt.Thus,

GE1.z/ D GS.z/
�
1 � G�1

Y .z/GS.z
�1/
�

(7.8)

D GS.z/GN.z/G
�1
Y .z/

D �2b
.1 � z/.1 � z�1/

� �2n .1 � z/.1 � z�1/
�2a .1 � �z/.1 � �z�1/

D . � �/.1 � �/�2n


� 1

.1� �z/.1 � �z�1/
: (7.9)

Þ

7.1.2 Wiener–Kolmogorov Filtering

We are interested in finding a formula for OStjt, the projection of St onto the Hilbert
space generated by the finite linear combinations of elements of fYs W s � tg and
their limits in mean square. As is well known, this projection is unique and has the
form

OStjt D
tX

jD�1
‰tjYj;

for some set of filter weights, f‰tjg, that are to be determined, where the series is
mean square convergent. Assuming that the filter ‰t.z/ D Pt

jD�1 ‰tjz j is stable,
the orthogonality condition yields

E

2

4

0

@St �
tX

jD�1
‰tjYj

1

AY 0
l

3

5 D 0; �1 < l � t;
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or


SY.t � l/ D
tX

jD�1
‰tj
Y. j � l/; �1 < l � t: (7.10)

Note that, as mentioned in the previous section, (7.10) is justified by the continuity
of the inner product < X;Y >D E.XY 0/. Letting t � l D h in (7.10) yields


SY.h/ D
hClX

jD�1
‰hCl;j
Y. j � l/; h � 0: (7.11)

Letting in turn k D j � l in (7.11) leads to the equation


SY.h/ D
hX

kD�1
‰hCl;kCl
Y.k/; h � 0; (7.12)

which should hold for all l. But since the left-hand side of (7.12) does not depend
on l, putting l D �h yields


SY.h/ D
hX

kD�1
‰0;k�h
Y.k/ D

0X

jD�1
‰0;j
Y.h C j/; h � 0:

Since the set of weights f‰tjg in the orthogonal projection OStjt D Pt
jD�1‰tjYj is

unique, we conclude that

‰0;j D …�j;

for some sequence f…j W j D 0; 1; : : :g, which implies


SY.h/ D
1X

jD0
…j
Y.h � j/; h � 0; (7.13)

and, therefore,

OStjt D
1X

jD0
…jYt�j:

Equation (7.13) is hard to solve because the equality holds only for h � 0.
Otherwise, taking generating functions would give the solution in a simple way. To
overcome this difficulty, Wiener & Hopf (1931) used the following clever technique.
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Define the sequence fghg by

gh D 
SY.h/�
1X

jD0
…j
Y.h � j/; h 2 Z; (7.14)

which by (7.13) is strictly anticausal, that is,

gh D 0; h � 0:

Since (7.14) is defined for all h 2 Z, we can take generating functions to get

Gg.z/ D GSY.z/ �….z/GY .z/; (7.15)

where….z/ D P1
jD0 …jz j. Let the covariance function factorization of GY.z/ be

GY.z/ D ‰.z/†‰0.z�1/:

Then, by our assumptions, ‰.z/ and its inverse are analytic in some annulus that
contains the unit circle and ‰.0/ D I. Postmultiplying both sides of (7.15) by
‰

0�1.z�1/†�1, it is obtained that

Gg.z/‰
0�1.z�1/†�1 D GSY.z/‰

0�1.z�1/†�1 �….z/‰.z/: (7.16)

Since Gg.z/ and‰
0�1.z�1/†�1 are generating functions of anticausal sequences and

Gg.z/ D P�1
jD�1 gjz j, its product is the generating function of a strictly anticausal

sequence. On the other hand, ….z/‰.z/ is the generating function of a causal
sequence. Before we proceed, we need to introduce some notation.

Let F.z/ be an analytic function in some annulus that contains the unit circle and
such that F.z/ D P1

jD�1 fjz j is its Laurent expansion. We introduce the operators
Œ:�C and Œ:�� that yield the “causal part” and the “strictly anticausal part” of the
function to which it is applied. That is,

ŒF�C D
1X

jD0
fjz

j and ŒF.z/�� D F.z/� ŒF.z/�C :

Applying the Œ:�C operator to both sides of (7.16) yields

h
Gg.z/‰

0�1.z�1/†�1i

C D
h
GSY.z/‰

0�1.z�1/†�1i

C � Œ….z/‰.z/�C : (7.17)
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Since the generating function in the left-hand side of (7.17) corresponds to a strictly
anticausal sequence, we have

h
Gg.z/‰

0�1.z�1/†�1i

C D 0:

On the other hand, the generating function in the second term on the right-hand side
of (7.17) corresponds to a causal sequence. Thus,

Œ….z/‰.z/�C D ….z/‰.z/;

and we finally obtain

….z/ D
h
GSY.z/‰

0�1.z�1/†�1i

C‰
�1.z/;

where the filter ….z/ is stable because it is convergent in some annulus containing
the unit circle. We summarize the results obtained so far in the following theorem.

Theorem 7.2 Under the same assumptions of Theorem 7.1, if GY.z/ D
‰.z/†‰0.z�1/, then the estimator OStjt of St based on the semi-infinite sample
fYs W s � tg is given by OStjt D P1

jD0 …jYt�j; where the filter is stable and its weights,
…j, are given by

….z/ D
1X

jD0
…jz

j D
h
GSY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/: (7.18)

In addition, the error Etjt D St � OStjt is stationary, has a covariance generating
function, GE0.z/, given by GE0.z/ D GE1.z/ C �0.z/†�1�0

0.z
�1/, where GE1.z/

is that of Theorem 7.1 and�0.z/ D
h
GSY.z/‰

0�1.z�1/
i

�, and

MSE. OStjt/ D Var.Etjt/ D 1

2�

Z �

��
GE0.e

�ix/dx:

Proof The only things that remain to be proved are the statements about the error
and the formula for the mean square error. Since OStjt is the result of passing Yt

through the stable linear time invariant filter….z/, by corollary 3.1, OStjt is stationary.
We can write Etjt as

Etjt D .St � OStj1/C . OStj1 � OStjt/

D Etj1 C Zt;
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where Etj1 D St � OStj1, Zt D OStj1 � OStjt and Etj1 is orthogonal to Zt. By
Theorem 7.1,

OStj1 D GSY.z/G
�1
Y .z/Yt:

On the other hand, Zt D �.B/Yt, where the filter �.z/ is given by

�.z/ D GSY.z/G
�1
Y .z/ �

h
GSY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/

D
h
GSY.z/‰

0�1.z�1/
i

� †
�1‰�1.z/:

By Corollary 3.1, Etj1 and Zt are stationary. In addition, by Proposition 3.14, the
covariance generating function, GZ.z/, of Zt is

GZ.z/ D �.z/GY.z/�.z
�1/ D �0.z/†

�1�0
0.z

�1/;

where �0.z/ D
h
GSY.z/‰

0�1.z�1/
i

�, and that of Etj1 is given in Theorem 7.1.

Then, the formula for the covariance generating function of the error follows. By
definition of spectrum and (3.46), we get the desired formula for the mean square
error. �

Remark 7.2 The assumptions we are making to derive the formula for OStjt and its
mean square error are stronger than needed. See Gohbergh & Fel´dman (1974) for
the general case. Þ

Remark 7.3 So far we have been concerned with finding the estimator OStjt of St

based on fYs W s � tg and its mean square error. Suppose we would like to compute
the estimator OStCkjt of StCk, where k is a fixed positive or negative integer, based
on the same set fYs W s � tg. Then, using the same arguments that led to prove
Theorem 7.2, it can be shown that OStCkjt D P1

jD0 …jYt�j; where the filter is stable
and its weights,…j, are given by

….z/ D
1X

jD0
…jz

j D
h
z�kGSY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/: (7.19)

In addition, EtCkjt D St � OStCkjt is stationary and the covariance generating function,
GE;k.z/, of OStCkjt is given by

GEk.z/ D GE1.z/C�k.z/†
�1�0

k.z
�1/; (7.20)

where�k.z/ D
h
z�kGSY.z/‰

0�1.z�1/
i

�. Þ
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7.1.3 Polynomial Methods

When the covariance generating functions of fStg and fYtg are rational, the use
of polynomial methods can be very advantageous. The following lemma will be
needed in the sequel.

Lemma 7.1 Let

H.z; z�1/ D ˛.z/ˇ.z�1/
'.z/�.z�1/

;

where ˛, ˇ, ', and � are polynomials of degree a, b, c, and d, respectively, and the
roots of ' are different from the inverses of the roots of � . Then,

H.z; z�1/ D d.z/

'.z/
C z�1 c.z�1/

�.z�1/
;

where c.z�1/ D c0 C c1z�1 C � � � C chz�h, h D maxfb; dg � 1, and d.z/ D d0 C
d1z C � � � C dkzk, k D maxfa; c � 1g. In addition, the decomposition is unique and
the coefficients of d.z/ and c.z/ can be obtained by equating coefficients in

˛.z/ˇ.z�1/ D d.z/�.z�1/C z�1c.z�1/'.z/:

Proof

1. Case b D d: If p.z/ is a polynomial in z of degree g, let p0.z/ denote the
polynomial p.z�1/ D z�gp0.z/. Note that the coefficients of p0.z/ are those of
p.z/ in reversed order and that the roots of p0.z/ are the inverses of the roots of
p.z/. Put

H.z; z�1/ D z�b

z�d

�
˛.z/ˇ0.z/
'.z/� 0.z/

�
D z�b

z�d

�
1.z/C 2.z/

'.z/
C 0

3.z/

� 0.z/

�
;

where degf2g D c�1; degf0
3g D d�1, and 1.z/ is not zero only if degf˛ˇ0g D

a C b � c C d D degf'� 0g, that is, if a � c. Then,

H.z; z�1/ D d.z/

'.z/
C z�1 c.z�1/

�.z�1/
;

where d.z/ D 1.z/'.z/C 2.z/ has degree maxfa; c � 1g and c.z�1/ D 3.z�1/
has degree d � 1.
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2. Case b < d: We reduce this case to the previous one by defining Ň0.z/ D
zd�bˇ0.z/. Then,

H.z; z�1/ D z�d

z�d

"
˛.z/ Ň0.z/
'.z/� 0.z/

#

D z�d

z�d

�
1.z/C 2.z/

'.z/
C 0

3.z/

� 0.z/

�
;

where 3.z�1/ has degree d � 1.
3. Case b > d:We reduce this case to the first by defining N� 0.z/ D zb�d� 0.z/. Then,

H.z; z�1/ D z�b

z�b

"
˛.z/ Ň0.z/
'.z/ N� 0.z/

#

D z�b

z�b

�
1.z/C 2.z/

'.z/
C 0

3.z/
N� 0.z/

�
;

3.z�1/ has degree b � 1.

The uniqueness of the decomposition is a consequence of the uniqueness of the
partial fraction expansion. �

Example 7.1 (Continued) Suppose the signal-plus-noise model of Example 7.1,
Yt D St C Nt: The filter to obtain OStjt is

….z/ D
�

GSY.z/

�2a‰.z
�1/

�

C
1

‰.z/
;

where GSY.z/ D GS.z/ and ‰.z/ D .1 � �z/=.1 � z/. Letting �.z/ D 1 � �z and
�.z/ D 1 � z, we have

….z/ D
�

�2b�.z
�1/

�2a�.z/�.z
�1/�.z�1/

�

C
�.z/

�.z/

D �2b
�2a

�
1

�.z/�.z�1/

�

C
�.z/

�.z/
: (7.21)

Using Lemma 7.1, we decompose the term inside the brackets in (7.21) as

1

�.z/�.z�1/
D d

�.z/
C z�1 c

�.z�1/
;

where d D 1=.1� �/ and c D �=.1� �/. Then, using (7.7), we get

….z/ D �2b
�2a

d�.z/

�.z/�.z/

D  � �


� 1

1 � �z
:
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The error Etjt D St � OStjt has a covariance generating function, GE0.z/, given by
GE0.z/ D GE1.z/C�0.z/��2

a �0
0.z

�1/, where GE1.z/ is given by (7.9) and

�0.z/ D
h
GSY.z/‰

0�1.z�1/
i

�

D z�1 �2b c

�.z�1/
:

Thus,

�0.z/�
�2
a �0

0.z
�1/ D �2b

�2a
z�1 c

�.z�1/
z

c

�.z/

D �2. � �/

.1� �/
� 1

.1 � �z/.1 � �z�1/
:

Finally, using this last expression and (7.9) we get

GE0.z/ D . � �/.1 � �/�2n


� 1

.1 � �z/.1 � �z�1/
C �2. � �/
.1� �/

� 1

.1 � �z/.1 � �z�1/
:

Þ

7.1.4 Prediction Based on the Semi-infinite Sample

Consider the special case

St D YtCk;

where k is a positive integer, and assume that fYtg follows the linear model

Yt D
1X

jD0
‰jAt�j;

where fAtg �WN.0;†/ and ‰.z/ D P1
jD0 ‰jz j is analytic in some annulus

containing the unit circle, r�1 < jzj < r with r > 1. In this case, the Wiener–
Kolmogorov estimator OStjt coincides with the predictor, OYtCkjt, of YtCk based on
the semi-infinite sample fYs W s � tg. Notice that GSY.z/ D z�kGY.z/ D
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z�k‰.z/†‰0.z�1/. Then, the filter, ….z/, for the predictor becomes

….z/ D
h
GSY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/ D �

z�k‰.z/
�
C‰

�1.z/:

Since ‰.z/ D I CP1
jD1 ‰jz j, we have

�
z�k‰.z/

�
C D

1X

jDk

‰jz
j�k D z�k‰.z/ � z�k

2

4I C
k�1X

jD1
‰jz

j

3

5 ;

and

….z/ D z�k

2

4I � .I C
k�1X

jD1
‰jz

j/‰�1.z/

3

5 : (7.22)

Thus, the predictor is

OYtCkjt D YtCk � AtCk �
k�1X

jD1
‰jAtCk�j:

By Theorem 7.2, the error Et D YtCk � OYtCkjt is stationary and has a covariance
generating function, GE.z/, given by

GE.z/ D GS.z/ � GSY.z/G
�1
Y .z/GYS.z

�1/C�0.z/†
�1�0

0.z
�1/

where�0.z/ D
h
GSY.z/‰

0�1.z�1/
i

�, GS.z/ D GY.z/;GSY.z/ D z�kGY.z/ and

h
GSY.z/‰

0�1.z�1/
i

� D �
z�k‰.z/†

�
� D z�k

2

4I C
k�1X

jD1
‰jz

j

3

5†:

Thus,

GE.z/ D
2

4I C
k�1X

jD1
‰jz

j

3

5†

2

4I C
k�1X

jD1
‰jz

�j

3

5

0

and

MSE. OYtjtCk/ D †C
k�1X

jD1
‰j†‰

0
j : (7.23)
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Remark 7.4 As in the scalar case, the elements xtC1;j of the state space representa-
tion (6.77) and (6.78) of a vector ARMA. p; q/ process coincide with the predictors
OYtCjjt, j D 1; 2; : : : ; r. To see this, use the state space equations to deduce that

xtC1;j D YtCj � AtCj �Pj�1
hD1 ‰hAtCj�h. Þ

Example 7.2 Suppose that fYtg follows the AR.1/ model

Yt C �Yt�1 D At;

where fAtg �WN.0; �2/ and � is a real number such that j�j < 1. Since ‰.z/ D
1=.1C �z/ D 1CP1

jD1.��/jz j, the filter (7.22) for the predictor OYtCkjt of YtCk is

….z/ D z�k

2

41 �
0

@1C
k�1X

jD1
.��/jz j

1

A .1C �z/

3

5

D z�k

�
1 � 1 � .��/kzk

1C �z
.1C �z/

�

D .��/k:

Thus, the predictor is

OYtCkjt D .��/kYt:

From (7.23), the mean square error is

MSE. OYtCkjt/ D �2a

2

41C
k�1X

jD1
j�j2j

3

5

Þ

7.1.5 Innovations Approach

In this approach, the estimation problem is broken into two parts: (1) finding the
innovations fAtg from the observations fYtg, and (2) finding the estimator, OStj1 or
OStjt, of St from the innovations. Since the innovations are uncorrelated, we may
expect that the estimation problem will be easy.

The innovations approach was originally used by Kolmogorov (1939), as
opposed to Wiener (1949) who worked in the frequency domain.
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To gain some insight into the problem, suppose, for example, that we are
interested in finding

OStjt D
1X

jD0
�jAt�j: (7.24)

Then, the orthogonality condition gives E
h
.St � OStjt/Aj

i
D 0, j � t, and, since

fStg is jointly stationary with fAtg, we can define the cross-autocovariances 
SA.h/
as 
SA.h/ D E.StChAt/: Using these autocovariances, the orthogonality condition
becomes 
SA.h/ D �h†: It follows from this, that the weights �j in (7.24) are
given by

�h D
�

SA.h/†�1 for h � 0

0 for h < 0
(7.25)

Of course, we could have anticipated this result, since the expression (7.24), by
Proposition 3.5 (assuming the filter �.z/ D P1

jD0 �jz j is stable), is equal to the
following limit with probability one

OStjt D lim
n!1 E�.StjAt;At�1; : : : ;At�n/

D lim
n!1

nX

jD0
Cov.St;At�j/Var�1.At�j/At�j

D lim
n!1

nX

jD0

SA. j/†�1At�j:

Given our assumptions on the process fYtg, the filter ‰.z/ in the factorization
GY.z/ D ‰.z/†‰0.z�1/ has an analytic inverse ‰�1.z/. If A.z/ D P1

jD�1 Ajz j

is the generating function of the innovations, fAtg, and Y.z/ D P1
jD�1 Yjz j is the

generating function of the observations, fYtg, then Y.z/ D ‰.z/A.z/ and A.z/ D
‰�1.z/Y.z/. This, together with Lemma 3.14, implies that the cross-covariance
generating function GSA.z/ D P1

jD�1 
SA. j/z j can be expressed as

GSA.z/ D GSY.z/‰
0�1.z�1/: (7.26)

Letting �.z/ D P1
jD0 �jz j and using (7.25), we get �.z/ D ŒGSA.z/�C†�1. Com-

paring this expression with (7.26), it is obtained that �.z/ D
h
GSY.z/‰

0�1.z�1/
i

C
†�1. Letting OStjt D �.z/Yt, it follows that

�.z/ D �.z/‰�1.z/ D
h
GSY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/;

which coincides with (7.18) in Theorem 7.2.
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7.2 Wiener–Kolmogorov Filtering and Smoothing
for Stationary State Space Models

The material in this section follows Gómez (2006) closely. Some of the results are
new in the literature, like the ones regarding the mean squared errors for smoothing
based on the doubly infinite sample, its extension to the nonstationary case, or the
computation of the filter weights.

Let fYt W t 2 Zg be a zero-mean multivariate stationary process with Wold decom-
position Yt D P1

jD0 ‰jAt�j and covariance factorization GY.z/ D ‰.z/†‰0.z�1/,
where Var.At/ D † is positive definite, denoted † > 0. Suppose that fYtg admits a
state space representation

xtC1 D Fxt C Gut; (7.27)

Yt D Hxt C vt; t > �1 (7.28)

where

E

��
ut

vt

� �
u0

s; v
0
s

�� D
�

Q S
S0 R

�
ıts: (7.29)

By Lemma 5.2, a necessary and sufficient condition for xt and Yt in (7.27)
and (7.28) to be jointly stationary is that Var.xt/ D …t be time invariant, …t D ….
In this case, … satisfies the Lyapunov equation

… D F…F0 C GQG0: (7.30)

By Corollary 5.1, a sufficient condition for a unique positive semidefinite… to exist
satisfying (7.30) is that F be stable (i.e., has all its eigenvalues inside the unit circle).
We assume from now on until further notice that F is stable.

Let OxtC1jt and Oxtj1 be the estimators of xtC1 and xt based on fYs W s � tg and
fYs W s D 0;˙1;˙2; : : :g, respectively, and let OxC1j.z/ and Oxj1.z/ be their generating
functions. Then, from (7.5) and (7.19), we can write

OxC1j.z/ D
h
z�1GXY.z/‰

0�1.z�1/
i

C†
�1‰�1.z/Y.z/; (7.31)

and

Oxj1.z/ D GXY.z/‰
0�1.z�1/†�1‰�1.z/Y.z/; (7.32)

where GXY.z/ is the cross-covariance function of fxtg and fYtg, Y.z/ is the generating
function of fYtg, and GY.z/ D ‰.z/†‰0.z�1/ is the covariance factorization of fYtg.

Formulae (7.31) and (7.32) show that the covariance factorization of fYtg plays
a central role in Wiener–Kolmogorov prediction and smoothing. To make some
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progress, we need to express the covariance factorization of fYtg in terms of the
matrices in (7.27), (7.28), and (7.29).

To this end, we proceed as in Sect. 5.6 and apply generating functions in (7.27)
and (7.28) to get

GY.z/ D ŒzH.I � Fz/�1 I�

�
GQG0 GS
S0G0 R

� �
z�1.I � F0z�1/�1H0

I

�
: (7.33)

Clearly, if we can find matrices † and K such that (7.33) factorizes as

GY.z/ D ŒzH.I � Fz/�1 I�

�
K
I

�
† ŒK0 I�

�
z�1.I � F0z�1/�1H0

I

�

D ŒI C zH.I � Fz/�1K�† ŒI C z�1K0.I � F0z�1/�1H0�; (7.34)

then we can obtain the desired covariance factorization by defining ‰.z/ D I C
zH.I � Fz/�1K. By Lemma 4.1 (matrix inversion lemma), the inverse of ‰.z/, if it
exists, is given by

‰�1.z/ D I � zH.I � Fpz/�1K; (7.35)

where Fp D F � KH. It is not difficult to see that the inverse exists if, and only if,
Fp is stable.

By Lemma 5.6, it seems natural to try to select a matrix P such that

��P C FPF0 C GQG0 FPH0 C GS
HPF0 C S0G0 R C HPH0

�
D
�

K
I

�
† ŒK0 I�;

and Fp D F �KH is stable. Equating terms in the previous expression, it is seen that
the matrices K and † should satisfy K D .FPH0 C GS/†�1 and † D R C HPH0,
and that the desired matrix P should satisfy the DARE

� P C FPF0 C GQG0 � .FPH0 C GS/.R C HPH0/�1.FPH0 C GS/0 D 0: (7.36)

Under some rather general assumptions specified in Sect. 5.12.1, there exists a
unique positive semidefinite solution, P, of the DARE (7.36) such that † is
nonsingular and Fp is stable. As noted in Sect. 5.6, such a solution is called a
stabilizing solution. Also as in Sect. 5.6, if M is a real symmetric matrix, we will
sometimes use in the following the notation M � 0 to indicate that M is positive
semidefinite.

In the rest of the section, we will make the following basic assumption.

Assumption 7.1 We assume in the state space model (7.27) and (7.28) that .F;H/
is detectable and .Fs, GQs=2/ is stabilizable, where these terms are defined in
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Sect. 5.12. Thus, by the results of Sect. 5.12.1, the DARE (7.36) has a unique
stabilizing solution P � 0:

The following theorem is a direct consequence of Lemma 5.6 and Assump-
tion 7.1.

Theorem 7.3 Let (7.33) be the covariance generating function of a process fYtg
generated by the state space model (7.27) and (7.28). Then, under Assumption 7.1,
the covariance factorization GY.z/ D ‰.z/†‰0.z�1/ obtains with ‰.z/ D I C
zH.I � Fz/�1K, where K D .FPH0 C GS/†�1, † D R C HPH0 > 0 and P is the
unique stabilizing solution of the DARE (7.36).

The previous theorem is known in the literature (Anderson & Moore, 2012).
However, the proof is usually based on iterating in the Kalman filter recursions,
whereas the proof we have presented is algebraic in nature. Our procedure will allow
for the development of recursive formulae for Wiener–Kolmogorov filtering and
smoothing in the next section without using the Kalman filter. As we will see in
Sect. 7.2.7, these last recursions coincide with those obtained by iterating in the
Kalman filtering and smoothing recursions. This will prove the equivalence of both
approaches.

By Theorem 7.3, if we let Y.z/ and A.z/ be the generating functions of the
observations fYtg and the innovations fAtg and we define

�.z/ D
1X

jD�1
�jz

j

D z.I � zF/�1KA.z/;

we get Y.z/ D ‰.z/A.z/ D H�.z/ C A.z/ and z�1�.z/ D F�.z/ C KA.z/. These
relations imply the following state space representation

�tC1 D F�t C KAt; (7.37)

Yt D H�t C At; t > �1;

where Var.At/ D †. It is to be noticed that the expression

Yt D ‰.B/At D .I C BH.I � FB/�1K/At D
1X

jD0
‰jAt�j

where B is the backshift operator, BYt D Yt�1, constitutes the Wold representation
of fYtg. For this reason, the representation (7.37) is called the innovations repre-
sentation.

By Proposition 3.7, the process fYtg in (7.37) also admits a VARMA representa-
tion, ˆ.B/Yt D ‚.B/At.
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7.2.1 Recursive Wiener–Kolmogorov Filtering and Smoothing

In this section, we will first prove that the state space model (7.37) we obtained
from (7.27) and (7.28) under Assumption 7.1 constitutes a recursive formula for the
Wiener–Kolmogorov one-period-ahead forecast based on the infinitely remote past.
Then, we will obtain some recursions for other Wiener–Kolmogorov prediction and
smoothing problems. All this will be achieved by purely algebraic means, without
iterating in the Kalman filter recursions. In fact, we will see in Sect. 7.2.7 that, under
Assumption 7.1, the same recursions can be obtained by iterating in the Kalman
filter and smoothing recursions. This will establish the equivalence between the two
approaches.

Using (7.26), we can write (7.31) as

OxC1j.z/ D �
z�1GXA.z/

�
C†

�1A.z/; (7.38)

where GXA.z/ is the cross-covariance function of fxtg and the innovations fAtg.
To proceed further, we need to decompose GXA.z/ in (7.38) in such a way that

it becomes easy to select the terms with nonnegative powers of z. The following
lemma provides this decomposition.

Lemma 7.2 The covariance generating function GXA.z/ can be decomposed as

GXA.z/ D z.I � Fz/�1.FPH0 C GS/C PH0 C z�1PF0
p.I � F0

pz�1/�1H0;

where P is the unique positive semidefinite solution of the DARE (7.36), Fp D F �
KH, K D .FPH0 C GS/†�1 and † D R C HPH0.

Proof Using (7.35), we can write A.z/ D ‰�1.z/Y.z/ as

A.z/ D �
I � zH.I � Fpz/�1K

�
Y.z/

D �
I � zH.I � Fpz/�1K

�
ŒHX.z/C V.z/�

D H
�
I � z.I � Fpz/�1KH

�
X.z/C �

I � zH.I � Fpz/�1K
�

V.z/

D H.I � Fpz/�1
�
I � Fpz � zKH

�
X.z/C �

I � zH.I � Fpz/�1K
�

V.z/

D H.I � Fpz/�1 ŒI � Fz� z.I � Fz/�1GU.z/C �
I � zH.I � Fpz/�1K

�
V.z/

D zH.I � Fpz/�1GU.z/C �
I � zH.I � Fpz/�1K

�
V.z/;

where U.z/ and V.z/ are the generating functions of futg and fvtg, respectively.
Since X.z/ D z.I � Fz/�1GU.z/, by Lemma 3.14, the cross-covariance generating
function GXA.z/ can be expressed as GXA.z/ D z.I � Fz/�1GGUA.z/. It follows from
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this, using Lemma 3.14 again, that

GXA.z/ D .I � Fz/�1G
�
QG0.I � F0

pz�1/�1H0 � SK0.I � F0
pz�1/�1H0�

Cz.I � Fz/�1GS

D .I � Fz/�1.GQG0 � GSK0/.I � F0
pz�1/�1H0 C z.I � Fz/�1GS:

Since the DARE can be expressed as P D FPF0
p C GQG0 � GSK0, substituting in

the previous expression, it is obtained that

GXA.z/ D z.I � Fz/�1.P � FPF0
p/.I � F0

pz�1/�1H0z�1 C z.I � Fz/�1GS

D z.I � Fz/�1
�
P.I � F0

pz�1/C .I � zF/P � .I � zF/P.I � F0
pz�1/

�

�.I � F0
pz�1/�1H0z�1 C z.I � Fz/�1GS

D PH0 C z.I � Fz/�1FPH0 C PF0
p.I � F0

pz�1/H0z�1 C z.I � Fz/�1GS

D z.I � Fz/�1.FPH0 C GS/C PH0 C z�1PF0
p.I � F0

pz�1/H0:

�
It follows from Lemma 7.2 that

�
z�1GXA.z/

�
C D .I � Fz/�1.FPH0 C GS/, which

together with (7.38) yields

OxC1j.z/ D .I � Fz/�1KA.z/: (7.39)

With the help of (7.39), it is possible to derive a recursion for the one-period-ahead
predictor OxtC1jt. The following theorem gives the details.

Theorem 7.4 The one-period-ahead predictor OxtC1jt based on the semi-infinite
sample fYs W s � tg satisfies the recursions

OxtC1jt D FOxtjt�1 C KAt; (7.40)

Yt D HOxtjt�1 C At: t > �1:

Moreover, the unique positive semidefinite solution P of the DARE (7.36) is the
MSE of Oxtjt�1, that is, P D Var.xt � Oxtjt�1/, the process fOxtjt�1g is stationary, and if
† D Var.Oxtjt�1/, then the matrix† is the unique positive semidefinite solution of the
Lyapunov equation

† D F†F0 C K†K0: (7.41)

Proof The generating function of f�tg in (7.37) coincides with (7.39). Given that the
predictor OxtC1jt is unique, this shows that OxtC1jt D �tC1. Since the process fOxtjt�1g
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satisfies (7.40) and the matrix F is stable, it is stationary. It follows from this that
the matrix † D Var.Oxtjt�1/ satisfies the Lyapunov equation (7.41).

Let P � 0 be the unique solution of the DARE (7.36). To prove that P is the
MSE of Oxtjt�1, note that, by (7.20), the error xt � Oxtjt�1 is stationary. Letting P D
MSE.Oxtjt�1/, replacing † with … � P in (7.41) and considering that P satisfies the
DARE (7.36), it is obtained that

… � P D F.…� P/F0 C K†K0 D … � GQG0 � FPF0 C K†K0

D … � FPF0 � P C FPF0:

From this we get P � P D F.P � P/F0. Since F is stable, the lemma is proved. �
Using the second equation in (7.40), we get At D Yt � HOxtjt�1. If we substitute

this expression in the first equation in (7.40), we obtain the following corollary.

Corollary 7.1 The filter for the one-period-ahead predictor OxtC1jt is

OxtC1jt D .F � KH/Oxtjt�1 C KYt D Fp Oxtjt�1 C KYt: (7.42)

The following theorem gives a recursion for the fixed interval smoother. More
specifically, it provides a recursion for the estimator Oxtj1 of xt based on the doubly
infinite sample fYs W s D 0;˙1;˙2; : : :g.

Theorem 7.5 The estimator Oxtj1 of xt based on the doubly infinite sample fYs W s D
0;˙1;˙2; : : :g satisfies the recursions

Oxtj1 D Oxtjt�1 C P�tj1; (7.43)

where the adjoint process f�tj1g is stationary, satisfies the backward recursion

�tj1 D F0
p�tC1j1 C H0†�1At; (7.44)

and its covariance matrix, ƒj1 D Var.�tj1/, is the unique positive semidefinite
solution of the Lyapunov equation

ƒj1 D F0
pƒj1Fp C H0†�1H: (7.45)

Moreover, MSE.Oxtj1/ D P � Pƒj1P0.

Proof By (7.5) and (7.26), Oxj1.z/ D GXA.z/†�1A.z/. Then, using Lemma 7.2,
we get

Oxj1.z/ D zOxC1j.z/C P�j1.z/; (7.46)

where �j1.z/ D .I � F0
pz�1/�1H0†�1A.z/. Let f�tj1g be the so-called adjoint

process associated with �j1.z/. Then, it follows from the definition of f�tj1g
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that the backward recursion (7.44) holds and that f�tj1g is stationary because F0
p

is stable. Also, its covariance matrix, ƒj1 D Var.�tj1/, is the unique positive
semidefinite solution of the Lyapunov equation (7.45).

The recursion (7.43) follows from (7.46) and (7.44). To prove the formula for
the MSE, note that xt � Oxtjt�1 D xt � Oxtj1 C P�tj1, where xt � Oxtj1 and �tj1 are
uncorrelated. Then, taking expectations yields the result. �

The recursions (7.44) and (7.43) are known as the Bryson–Frazier formulae
(Bryson & Frazier, 1963) for the fixed–interval smoother based on the doubly
infinite sample.

For any integer k, let OxtCkjt be the estimator of xtCk based on fYs W s � tg and
let OxCkj.z/ be its generating functions. If k D 0, we get the filtering problem. If
k > 0, it is a prediction, and if k < 0, it is a smoothing problem, both based on the
semi-infinite sample.

As regards prediction, the following theorem holds.

Theorem 7.6 The predictor OxtCkjt of xtCk based on the semi-infinite sample fYs W
s � tg, where k � 2, satisfies the recursion OxtCkjt D FOxtCk�1jt: Moreover, its MSE
is given by the recursion MSE.OxtCkjt/ D F

�
MSE.OxtCk�1jt/

�
F0 C GQG0, initialized

with MSE.OxtC2jt/ D FPF0 C GQG0.

Proof Suppose k > 0. Then, by (7.19) and (7.26), OxCkj.z/ D �
z�kGXA.z/

�
C†

�1A.z/.
Then, using Lemma 7.2, we can write

OxCkj.z/ D �
z�kC1.I � Fz/�1.FPH0 C GS/

�
C†

�1A.z/

D �
z�kC1.I C Fz C F2z2 C � � � C Fk�1zk�1 C Fkzk C � � � /�C KA.z/

D Fk�1.I � Fz/�1KA.z/

D Fk�1OxC1j.z/:

To prove the recursion for the MSE, note that xtCk � OxtCkjt D F.xtCk�1 �
OxtCk�1jt/ C GutCk�1 and that the last two terms are uncorrelated. In addition,
MSE.OxtC1jt/ D P. �

As far as smoothing is concerned, we have the following theorem.

Theorem 7.7 The estimator OxtjtCm of xt based on the semi-infinite sample fYs W s �
t C mg, where m � 0, satisfies the relation

OxtjtCm D Oxtjt�1 C P�tjtCm; (7.47)

where �tjtCm is given by the recursion

�sjtCm D F0
p�sC1jtCm C H0†�1As; s D t C m; : : : ; t; (7.48)
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initialized with �tCmC1jtCm D 0. Moreover, MSE.OxtjtCm/ D P � PƒtjtCmP0, where
ƒtjtCm D Var.�tjtCm/, is obtained from the recursion

ƒsjtCm D F0
pƒsC1jtCmFp C H0†�1H; s D t C m; : : : ; t; (7.49)

initialized with ƒtCmC1jtCm D 0.

Proof Suppose k � 0, k D �m with m � 0. Then, by Lemma 7.2, it is obtained that

Ox�mj.z/ D zmC1.I � Fz/�1KA.z/ C zmP
hPm

jD0.F0
pz�1/ j

i
H0†�1A.z/: Multiplying

the previous expression by z�m yields

OxtjtCm D Oxtjt�1 C P

2

4
mX

jD0
.F0

p/
jz�j

3

5H0†�1At D Oxtjt�1 C P

2

4
mX

jD0
.F0

p/
jH0†�1AtCj

3

5 :

(7.50)

To compute the sum in (7.50), the backward recursion (7.48) is defined. From this,
the recursion (7.49) is straightforward. To prove that MSE.OxtjtCm/ D P�PƒtjtCmP0,
note that xt � Oxtjt�1 D xt � OxtjtCm C P�tjtCm, where xt � OxtjtCm and �tjtCm are
uncorrelated. Then, taking expectations yields the result. �

Since �tjtCm � �tjtCm�1 D F
0m
p H0†�1AtCm, the following so-called fixed-point

smoother recursions are an immediate consequence of Theorem 7.7.

Corollary 7.2 For t fixed and increasing m � 0, the estimator OxtjtCm of xt based on
the semi-infinite sample fYs W s � t C mg satisfies the recursions

OxtjtCm D OxtjtCm�1 C PF
0m
p H0†�1AtCm;

MSE.OxtjtCm/ D MSE.OxtjtCm�1/ � PF
0m
p H0†�1HFm

p P:

Remark 7.5 It follows from Theorems 7.5 and 7.7 that Oxtj1 D OxtjtCm + P.�tj1 �
�tjtCm/. This proves that P.�tj1 � �tjtCm/ is the revision from OxtjtCm to Oxtj1. Þ

7.2.2 Covariance Generating Function of the Process

Under Assumption 7.1, the covariance generating function, GY.z/ D P1
hD�1


Y.h/zh, of the stationary process fYtg generated by the state space model (7.27)
and (7.28) is given by (7.34). The following two theorems give alternative expres-
sions. They can be proved using the relations (5.26) and (5.29) obtained in Sect. 5.6.
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Theorem 7.8 Under Assumption 7.1, the covariance generating function, GY.z/, of
fYtg is given by

GY.z/ D †C H†H0 C zH.I � Fz/�1.K†C F†H0/

C z�1.†K0 C H†F0/.I � F0z�1/�1H0:

Theorem 7.9 The covariance generating function of fYtg in terms of the system
matrices of (7.27) and (7.28) is given by

GY.z/ D R C H…H0 C zH.I � Fz/�1.GS C F…H0/

C z�1.S0G0 C H…F0/.I � F0z�1/�1H0:

7.2.3 Covariance Generating Functions of the State Errors

The errors Etjt, Etj1, and EtCkjt were shown to be stationary in Sect. 7.1. However,
the expressions given by Theorem 7.1 or Theorem 7.2 for their generating functions
are not very operational in the case of stationary state space models. In this section,
we will provide operational expressions for the errors �tjt�1 D xt � Oxtjt�1, �tj1 D
xt � Oxtj1 and �tjtCm D xt � OxtjtCm, where m � 0.

As regards the error �tjt�1, we first need a lemma.

Lemma 7.3 The error �tjt�1 is stationary and is given by �tjt�1 D .I �
FpB/�1.Gut�1 � Kvt�1/: Moreover, its covariance generating function, G�;�1.z/, is

G�;�1.z/ D .I � Fpz/�1ŒG � K�

�
Q S
S0 R

� �
G0

�K0
�
.I � F0

pz�1/�1: (7.51)

Proof Using Corollary 7.1, it is obtained that

�tjt�1 D xt � .I � FpB/�1KB.Hxt C vt/

D �
I � .I � FpB/�1KHB

�
xt � .I � FpB/�1KBvt

D .I � FpB/�1
�
I � FpB � .F � Fp/B

�
xt � .I � FpB/�1KBvt

D .I � FpB/�1.I � FB/.I � FB/�1BGut � .I � FpB/�1KBvt

D .I � FpB/�1B.Gut � Kvt/:

Equation (7.51) follows easily from this. In addition, �tjt�1 is stationary because Fp

is stable. �

The following theorem gives an expression for G�;�1.z/ simpler than (7.51).
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Theorem 7.10 The covariance generating function G�;�1.z/ can be written as

G�;�1.z/ D .I � Fpz/�1P C PF0
pz�1.I � F0

pz�1/�1:

Proof To obtain the result, we will make use of the following alternative expression
for the DARE (7.36)

P D FpPF0
p C ŒG � K�

�
Q S
S0 R

� �
G0

�K0
�
: (7.52)

This can be proved by noting the recursion

�tC1jt D F�tjt�1 C Gut � K.H�tjt�1 C vt/ D Fp�tjt�1 C ŒG � K�

�
ut

vt

�
;

that follows by subtracting (7.40) from (7.27). Using (7.52), it is obtained that

G�;�1.z/ D .I � Fpz/�1.P � FpPF0
p/.I � F0

pz�1/�1

D .I � Fpz/�1
�
P.I � F0

pz�1/C .I � Fpz/P

�.I � Fpz/P.I � F0
pz�1/

�
.I � F0

pz�1/�1

D .I � Fpz/�1P C P.I � F0
pz�1/�1 � P:

�

Before obtaining the covariance generating function of the error �tj1, we need
the covariance generating function, G�;1.z/, of �tj1. It follows from (7.44) that

G�;1.z/ D .I � F0
pz�1/�1H0†�1H.I � Fpz/�1: (7.53)

Lemma 7.4 gives a simpler expression for G�;1.z/ than (7.53). The proof is similar
to that of Theorem 7.10 and is omitted.

Lemma 7.4 The covariance generating function, G�;1.z/, of �tj1 can be writ-
ten as

G�;1.z/ D ƒj1.I � Fpz/�1 C .I � F0
pz�1/�1z�1F0

pƒj1;

where ƒj1 is given by (7.45).

As regards the error �tj1, the following theorem holds.
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Theorem 7.11 The error �tj1 is stationary and is given by �tj1 D �tjt�1 � P�tj1.
Its covariance generating function, G�;1.z/, satisfies

G�;1.z/ D P.I �ƒj1P/C z.I � Pƒj1/.I � Fpz/�1FpP

Cz�1PF0
p.I � F0

pz�1/�1.I �ƒj1P/:

Proof First, note the relation

�tj1 D xt � Oxtj1 D xt � Oxtjt�1 � P�tj1
D �tjt�1 � P�tj1:

Since �tjt�1 and �tj1 are stationary, it follows that �tj1 is stationary. Then, �tjt�1 D
�tj1 C P�tj1, where �tj1 and �tj1 are uncorrelated, and it follows that G�;1.z/ D
G�;�1.z/ � PG�;1.z/P. Using Lemmas 7.10 and 7.4, after some manipulation, it is
obtained that

G�;1.z/ D G�;�1.z/� PG�;1.z/P

D .I � Pƒj1/.I � Fpz/�1P C PF0
p.I � F0

pz�1/�1z�1.I �ƒj1P/:

�
As far as the error �tjtCm is concerned, the following theorem holds.

Theorem 7.12 The error �tjtCm is stationary and is given by �tjtCm D �tj1 C
P.�tj1 � �tjtCm/, where �tj1 is the final estimation error and P.�tj1 � �tjtCm/

is the revision from OxtjtCm to Oxtj1. Its covariance generating function, G�;Cm.z/,
satisfies

G�;Cm.z/ D G�;1.z/C PF
0mC1
p G�;1.z/FmC1

p P

D .I � Pƒj1 C PF
0mC1
p ƒj1FmC1

p /.I � Fpz/�1P

CPF0
p.I � F0

pz�1/�1z�1.I �ƒj1P C F
0mC1
p ƒj1FmC1

p P/:

where G�;1.z/ and G�;1.z/ are given in Theorem 7.11 and Lemma 7.4.

Proof First, note that

�tjtCm D xt � OxtjtCm D .xt � Oxtj1/C .xtj1 � OxtjtCm/

D �tj1 C P.�tj1 � �tjtCm/;

where the last two terms in the right-hand side of the previous expression are
uncorrelated. Then, letting !t D �tj1 ��tjtCm and using (7.44) and (7.48), it can be
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easily verified that the generating function, !.z/, of !t is

!.z/ D z�m�1F0mC1
p .I � F0

pz�1/�1H0†�1A.z/ D z�m�1F0mC1
p �j1.z/;

and its covariance generating function, G!.z/, is G!.z/ D F
0mC1
p G�;1.z/FmC1

p : �

Remark 7.6 It is to be noticed that, to compute the covariance matrices of �tj1
and �tjtCm, it is necessary to solve both, the DARE (7.36) and the Lyapunov
equation (7.45). Þ

7.2.4 Computing the Filter Weights

In this section, we will derive some recursions to compute some of the filter weights
for Wiener–Kolmogorov filtering and smoothing.

The weights of the predictor Oxtjt�1 can be obtained from Corollary 7.1. Let
Oxtjt�1 D P1

jD0 …iYt�1�j D ….B/Yt�1. Then, using the equality .I � Fpz/….z/ D K,
it is obtained that

Oxtjt�1 D .I � FpB/�1KYt�1 D
1X

jD0
Fj

pKYt�1�j: (7.54)

Note that, because Fp is stable, the weights will decrease to zero.
The innovations At can be expressed in terms of the observations Yt by inverting

the equation Yt D ‰.B/At D �
I C BH.I � FB/�1K

�
At. Using (7.35), we can write

At D �
I � BH.I � FpB/�1K

�
Yt D Yt C

1X

jD0
HFj

pKYt�1�j: (7.55)

By (7.44) and (7.55), we can express �tj1 in terms of the observations Yt as

�tj1 D .I � F0
pB�1/�1H0†�1 �I � BH.I � FpB/�1K

�
Yt: (7.56)

The following theorem gives the filter weights for the smoother Oxtj1.

Theorem 7.13 Letting the estimator Oxtj1 D P1
jD�1 �jYtCj, its weights �j are

given by

�0 D P.H0†�1 � F0
pƒj1K/;

�j D .I � Pƒj1/F�j�1
p K; j < 0

�j D PF
0j
p .H

0†�1 � F0
pƒj1K/; j > 0;

where ƒj1 can be obtained by solving the Lyapunov equation (7.45).
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Proof By Corollary 7.1 and (7.56), we can rewrite the recursion (7.43) as

Oxtj1 D .I � FpB/�1KYt�1 C P.I � F0
pB�1/�1H0†�1 �I � BH.I � FpB/�1K

�
Yt

D .I � FpB/�1KYt�1 C P.I � F0
pB�1/�1H0†�1Yt

�P.I � F0
pB�1/�1H0†�1H.I � FpB/�1KYt�1:

Since .I � F0
pB�1/�1H0†�1H.I � FpB/�1 D G�;1.z/, by Lemma 7.4, it is obtained

that

Oxtj1 D .I � Pƒj1/.I � FpB/�1KYt�1
CP.I � F0

pB�1/�1.H0†�1 � F0
pƒj1K/Yt:

Rearranging terms in the previous expression, the theorem is proved. �

Before computing the weights of the estimator OxtjtCm, where m � 0, we first need
a lemma.

Lemma 7.5 The following equality holds

mX

jD0
F

0j
p z�jH0†�1H.I � Fpz/�1 D

mX

jD0
F

0j
p z�jƒtCjjtCm CƒtjtCm.I � Fpz/�1 �ƒtjtCm;

where the ƒsjtCm are given by (7.49).

Proof By the recursion (7.49), we can write

mX

jD0

F
0j
p z�jH0†�1H.I � Fpz/�1

D
mX

jD0

F
0j
p z�j.ƒtCjjtCm � F0

pƒtCjC1jtCmFp/.I � Fpz/�1

D
mX

jD0

F
0j
p z�j

�
ƒtCjjtCm.I � Fpz/CƒtCjjtCmFpz � F0

pƒtCjC1jtCmFp
�
.I � Fpz/�1

D
mX

jD0

F
0j
p z�jƒtCjjtCm C

mX

jD0

F
0j
p z�j �ƒtCjjtCmFpz � F0

pƒtCjC1jtCmFp
�
.I � Fpz/�1:
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The lemma will follow if we prove that
Pm

jD0 F
0j
p z�j

�
ƒtCjjtCmFpz�

F0
pƒtCjC1jtCmFp

� D ƒtjtCmFpz. To see this, note the telescoping sum

mX

jD0
F

0j
p z�j

�
ƒtCjjtCmFpz � F0

pƒtCjC1jtCmFp
�

D zƒtjtCmFp �F0
pƒtC1jtCmFp

CF0
pƒtC1jtCmFp �F

02
p z�1ƒtC2jtCmFp

CF
02
p z�1ƒtC2jtCmFp �F

03
p z�2ƒtC2jtCmFp

� � � � � �
CF

0m
p z�mC1ƒtCmjtCmFp �F

0mC1
p z�mƒtCmC1jtCmFp

D ƒtjtCmFpz:

�

The weights of the estimator OxtjtCm are given by the following theorem.

Theorem 7.14 Letting the estimator OxtjtCm D Pm
jD�1…jYtCj, its weights …j are

given by

…0 D P.H0†�1 � F0
pƒtC1jtCmK/;

…j D .I � PƒtjtCm/F�j�1
p K; j < 0

…j D PF
0j
p .H

0†�1 � F0
pƒtC1CjjtCmK/; j D 1; 2; : : : ;m;

where the ƒsjtCm can be computed using the recursions (7.49).

Proof By Corollary 7.1 and (7.55), we can rewrite the recursion (7.47) as

OxtjtCm D .I � FpB/�1KYt�1 C P
mX

jD0
fF

0j
p B�jH0†�1 �I � BH.I � FpB/�1K

�
Ytg

D .I � FpB/�1KYt�1 C P
mX

jD0
fF

0j
p B�jH0†�1Ytg

�P
mX

jD0
fF

0j
p B�jH0†�1H.I � FpB/�1KYt�1g:

Then, using Lemma 7.5, it is obtained that

OxtjtCm D .I � PƒtjtCm/.I � FpB/�1KYt�1

CP
mX

jD0
F

0j
p B�j.H0†�1 � F

0

pƒtC1CjjtCmK/Yt:

Rearranging terms in the previous expression, the theorem is proved. �
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7.2.5 Disturbance Smoothing and Interpolation

Define the inverse process, fYi
t g, of fYtg by

Yi
t D †�1At � K0�tC1j1 D �

I � B�1K0.I � F0
pB�1/�1H0�†�1At:

Then, by (7.35), fYi
t g D ‰

0�1.B�1/†�1At and the name is justified because the
covariance generating function of fYi

t g is the inverse of the covariance generating
function of fYtg, that is, GYi .z/ D G�1

Y .z/ D ‰
0�1.z�1/†�1‰�1.z/: Note the

relation

Yi
t D ‰

0�1.B�1/†�1‰�1.B/Yt D GYi .B/Yt: (7.57)

As we will see, the inverse process plays a fundamental role in interpolation and
is related to the estimators, Outj1 and Ovtj1, of ut and vt in (7.27) and (7.28) based
on the doubly infinite sample fYs W s D 0;˙1;˙2; : : :g. Also, the so-called inverse
model, that goes backward in time, is defined in terms of the inverse process,

�tj1 D F0
p�tC1j1 C H0†�1At

Yi
t D �K0�tC1j1 C†�1At;

where �tj1 is given by the recursions (7.44).
Using (7.26), it is not difficult to see that the generating functions, Ouj1.z/

and Ovj1.z/, of Outj1 and Ovtj1 are Ouj1.z/ D GUA.z/†�1A.z/ and Ovj1.z/ D
GVA.z/†�1A.z/, where GUA.z/ and GVA.z/ are the cross-covariance functions of futg
and fvtg and the innovations fAtg. Proceeding as in the proof of Lemma 7.2, we get
the following lemma. The proof is omitted.

Lemma 7.6 The covariance generating functions, GVA.z/ and GUA.z/, can be
decomposed as

GVA.z/ D R C .S0G0 � RK0/.I � F0
pz�1/�1H0z�1;

GUA.z/ D S C .QG0 � SK0/.I � F0
pz�1/�1H0z�1:

where Fp D F � KH, K D .FPH0 C GS/†�1, † D R C HPH0, and P is the unique
positive semidefinite solution of the DARE (7.36).

The following theorem gives expressions for Outj1 and Ovtj1 and their MSE.

Theorem 7.15 The estimators, Outj1 and Ovtj1, of ut and vt based on the doubly
infinite sample fYs W s D 0;˙1;˙2; : : :g are given by the recursions

Ovtj1 D R†�1At C .S0G0 � RK0/�tC1j1 D RYi
t C S0G0�tC1j1;

Outj1 D S†�1At C .QG0 � SK0/�tC1j1 D SYi
t C QG0�tC1j1;
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where Yi
t is the inverse model and �tj1 is given by the recursions (7.44). In addition,

the MSE of Outj1 and Ovtj1 are given by the formulae

MSE. Ovtj1/ D R � �
R†�1R0 C .S0G0 � RK0/ƒj1.S0G0 � RK0/0

�
;

MSE.Outj1/ D Q � �
S†�1S0 C .QG0 � SK0/ƒj1.QG0 � SK0/0

�
:

Proof Using Lemma 7.6 and �j1.z/ D .I � F0
pz�1/�1H0†�1A.z/, we can express

Ouj1.z/ and Ovj1.z/ as Ouj1.z/ D S†�1A.z/C .QG0 � SK0/z�1�j1.z/ and Ovj1.z/ D
R†�1A.z/C .S0G0 � RK0/z�1�j1.z/. To obtain the MSE, consider that ut � Outj1 C
S†�1At C .QG0 � SK0/�tC1j1 D ut and that ut � Outj1 and S†�1At C .QG0 �
SK0/�tC1j1 are uncorrelated. Since At and �tC1j1 are also uncorrelated, it follows
that

MSE.Outj1/ D Q � �
S†�1S0 C .QG0 � SK0/ƒj1.QG0 � SK0/0

�
:

Proceeding similarly with Ovtj1, the theorem is proved. �
Using (7.55), (7.56) and Lemma 7.4, we can express Outj1 and Ovtj1 in terms of

the observations fYs W s D 0;˙1;˙2; : : :g. The following theorem gives the details.
The proof is omitted.

Theorem 7.16 Letting J0 D S0G0 � RK0 and L0 D QG0 � SK0, the weights for Ovtj1
and Outj1 are given by

Ovtj1 D .R†�1 � J0ƒj1K/Yt � .J0ƒj1Fp C R†�1H/.I � FpB/�1Yt�1
�J0.I � F0

pB�1/�1.F0
pƒj1K � H0†�1/YtC1

Outj1 D .S†�1 � L0ƒj1K/Yt C �.L0ƒj1Fp C S†�1H/.I � FpB/�1Yt�1
�L0.I � F0

pB�1/�1.F0
pƒj1K � H0†�1/YtC1:

The inverse process fYi
t g plays an important role in the interpolation of missing

observations. Let G�1
Y .z/ D GYi .z/ D P1

jD�1 
i. j/z j. The following lemma gives
an expression for GYi .z/ in terms of the system matrices.

Lemma 7.7 The covariance generating function, GYi.z/ D P1
jD�1 
i. j/z j, of the

inverse model can be expressed in terms of the system matrices as

GYi.z/ D †�1 C K0ƒj1K C z.K0ƒj1Fp �†�1H/.I � Fpz/�1K

Cz�1K0.I � F0
pz�1/�1.F0

pƒj1K � H0†�1/:
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Proof Consider first that

GYi .z/ D ‰
0�1.z�1/†�1‰�1.z/

D †�1 � z†�1H.I � Fpz/�1K � z�1K0.I � F0
pz�1/�1H0†�1

CK0.I � F0
pz�1/�1H0†�1H.I � Fpz/�1K:

Then, apply Lemma 7.4. �

Suppose that we want to estimate Yt based on fYs W s ¤ tg and let the desired
estimator be OYtjs¤t D P

j¤0 …jYt�j. The following theorem gives the weights of
OYtjs¤t and its MSE.

Theorem 7.17 The interpolator, OYtjs¤t, of Yt based on fYs W s ¤ tg is given by

OYtjs¤t D Yt � 
�1
i .0/Yi

t D �
�1
i .0/

X

j¤0

i. j/Yt�j

D �.†�1 C K0ƒj1K/�1
�
B.K0ƒj1Fp �†�1H/.I � FpB/�1K

CB�1K0.I � F0
pB�1/�1.F0

pƒj1K � H0†�1/
�

Yt:

where 
i.l/ D E.Yi
t Y

i0
t�l/. In addition, MSE. OYtjs¤t/ D 
i.0/ D †�1 C K0ƒj1K:

Proof The orthogonality conditions to obtain OYtjs¤t D P
j¤0 …jYt�j are

E

2

4.Yt �
X

j¤0
…jYt�j/Y

0
t�l

3

5 D 0; l ¤ 0;

or, equivalently, 
.l/ � P
j¤0 …j
.l � j/ D 0, l ¤ 0, where 
.l/ D E.YtY 0

t�l/. To
use the Wiener–Hopf technique, define G.z/ D P1

jD�1 Gizi, where Gi D 
.l/ �P
j¤0 …j
.l � j/, j D 0;˙1;˙2; : : : Then, if ….z/ is the generating function of the

…j weights, it holds that

G.z/ D GY.z/�….z/GY.z/ D G0;

because Gl D 0 if l ¤ 0. It follows from this that ….z/ D I � G0G�1
Y .z/ and,

therefore, I � G0

i.0/ D 0, where G�1

Y .z/ D GYi .z/ D P1
jD�1 
i. j/z j. That is,

G0 D 
�1
i .0/.
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Using Lemma 7.7, we can write

….z/ D I � 
�1
i .0/

1X

jD�1

i. j/z j D �

X

j¤0

�1

i .0/
i. j/z j

D �.†�1 C K0ƒj1K/�1
�
z.K0ƒj1Fp �†�1H/.I � Fpz/�1K

Cz�1K0.I � F0
pz�1/�1.F0

pƒj1K � H0†�1/
�
:

From this and (7.57), the expression for OYtjs¤t follows. To obtain the MSE, consider
the error Etjs¤t D Yt � OYtjs¤t. Then, Etjs¤t D Yt � �

Yt � 
�1
i .0/G�1

Y .B/Yt
� D


�1
i .0/Yi

t ; and the theorem is proved. �

7.2.6 Covariance Generating Functions of the Disturbance
Errors

In this section, we will complement the results of the previous section by giving
some results on covariance generating functions of the disturbance errors.

Define the disturbance errors �tj1 D vt � Ovtj1 and ıtj1 D ut � Outj1 and let
G�;1.z/, Gı;1.z/, G�ı;1.z/, G��;1.z/, and G�ı;1.z/ be the covariance generating
functions of �tj1 and ıtj1 and the cross-covariance generating functions of �tj1
and ıtj1, �tj1 and �tj1, and �tj1 and ıtj1.

The previous covariance and cross covariance generating functions are given by
the following theorem.

Theorem 7.18 The covariance generating functions, G�;1.z/ and Gı;1.z/, of �tj1
and ıtj1 and the cross-covariance generating functions, G�ı;1.z/, G��;1.z/ and
G�ı;1.z/, of �tj1 and ıtj1, �tj1 and �tj1, and �tj1 and ıtj1 are given by

G�;1.z/ D R � R†�1R � J0ƒj1J

�.R†�1H C J0ƒj1Fp/.I � Fpz/�1Jz

�J0.I � F0
pz�1/�1.H0†�1R C F0

pƒj1J/z�1;

Gı;1.z/ D Q � S†�1S0 � L0ƒj1L

�.S†�1H C L0ƒj1Fp/.I � Fpz/�1Lz

�L0.I � F0
pz�1/�1.H0†�1S0 C F0

pƒj1L/z�1;

G�ı;1.z/ D S0 � R†�1S0 � J0ƒj1L

�.R†�1H C J0ƒj1Fp/.I � Fpz/�1Lz

�J0.I � F0
pz�1/�1.H0†�1S0 C F0

pƒj1L/z�1;
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G��;1.z/ D �P.H0†�1R C F0
pƒj1J/

C.I � Pƒj1/.I � Fpz/�1Jz

�P.I � F0
pz�1/�1F0

p.H
0†�1R C F0

pƒj1J/z�1;

and

G�ı;1.z/ D �P.H0†�1S0 C F0
pƒj1L/

C.I � Pƒj1/.I � Fpz/�1Lz

�P.I � F0
pz�1/�1F0

p.H
0†�1S0 C F0

pƒj1L/z�1;

where L0 D QG0 � SK0 and J0 D S0G0 � RK0.

Proof To obtain the covariance and cross covariance generating functions, we use
the following equality

0

@
ut

vt

�tjt�1

1

A D
0

@
ıtj1
�tj1
�tj1

1

AC
0

@
S†�1At C .QG0 � SK0/�tC1j1
R†�1At C .S0G0 � RK0/�tC1j1

P�tj1

1

A ;

that follows directly from Theorems 7.11 and 7.15. By Lemma 7.3 and (7.44), we
can write

0

@
I 0

0 I
.I � Fpz/�1zG �.I � Fpz/�1zK

1

A



ut

vt

�

D
0

@
ıtj1
�tj1
�tj1

1

AC
8
<

:

0

@
S
R
0

1

AC
2

4
.QG0 � SK0/z�1
.S0G0 � RK0/z�1

P

3

5 .I � F0
pz�1/�1H0

9
=

;
†�1At;

where the last two terms are uncorrelated. It follows from this that the covariance
generating function of the left-hand side is equal to the sum of the covariance
generating functions of the two terms in the right-hand side. Letting

G.z/ D
0

@
Gı;1.z/ Gı�;1.z/ Gı�;1.z/
G�ı;1.z/ G�;1.z/ G��;1.z/
G�ı;1.z/ G��;1.z/ G�;1.z/

1

A
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be the covariance generating function of .ıtj1; �tj1; �tj1/0, L D GQ � KS0 and
J D GS � KR, we get

0

B
@

Q S L0.I � F0
pz�1/�1z�1

S0 R J0.I � F0
pz�1/�1z�1

.I � Fpz/�1zL .I � Fpz/�1zJ G�;�1.z/

1

C
A

D G.z/C
0

@
S†�1S0 S†�1R 0

R†�1S0 R†�1R 0
0 0 0

1

A

C

0

B
@

L0z�1.I � F0
pz�1/�1H0†�1S0 L0z�1.I � F0

pz�1/�1H0†�1R 0
J0z�1.I � F0

pz�1/�1H0†�1S0 J0z�1.I � F0
pz�1/�1H0†�1R 0

P.I � F0
pz�1/�1H0†�1S0 P.I � F0

pz�1/�1H0†�1R 0

1

C
A

C
0

@
S†�1H.I � Fpz/�1Lz S†�1H.I � Fpz/�1Jz S†�1H.I � Fpz/�1P
R†�1H.I � Fpz/�1Lz R†�1H.I � Fpz/�1Jz R†�1H.I � Fpz/�1P

0 0 0

1

A

C
0

@
L0G�;1.z/L L0G�;1.z/J L0G�;1.z/Pz�1
J0G�;1.z/L J0G�;1.z/J J0G�;1.z/Pz�1
PG�;1.z/Lz PG�;1.z/Jz PG�;1.z/P

1

A :

Equating the entries in the left- and right-hand sides and using Lemma 7.4, the
theorem is proved. �

7.2.7 Equivalence Between Wiener–Kolmogorov and Kalman
Filtering

Under the assumptions of Theorem 5.11, the Kalman filtering and smoothing
recursions converge to a steady state that coincides with the recursive Wiener–
Kolmogorov filtering and smoothing recursions of Sect. 7.2. This establishes the
equivalence between the two approaches.

7.2.8 Nonstationary Time Invariant State Space Models

When the processes of interest are nonstationary, for example because the matrix
F in (7.27) is not stable, the Wiener–Kolmogorov formulae do not apply. However,
by the results of Sect. 5.11, under the assumptions that .F;H/ be detectable and
.Fs;GQs=2/ be stabilizable, the Kalman filtering and smoothing recursions continue
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to have a steady state limit in which the resulting recursive formulae are again the
Wiener–Kolmogorov formulae. The reason for this is that, although the state vector
and its estimator have infinite variance, the difference between the state vector
and the estimator is stationary and thus has finite variance. The implication of the
previous results is that the Wiener–Kolmogorov formulae can also be used in the
nonstationary case provided the estimators are interpreted not as minimum mean
squared error estimators but as limits of these.

Remark 7.7 Koopman & Harvey (2003) give an algorithm for computing finite
signal extraction weights for general (possibly time variant) state space models.
Earlier in Sect. 5.11, sufficient conditions were given for the Kalman filtering and
smoothing recursions to converge to the steady state recursions of Sects. 7.2.1
and 7.2.5. Under these conditions, the finite sample weights will converge to the
steady state weights given in Sect. 7.2.4. Þ

7.3 Wiener–Kolmogorov Filtering and Smoothing in Finite
Samples

In the previous sections, we have developed Wiener–Kolmogorov filtering and
smoothing by purely algebraic methods assuming that the sample was either
semi-infinite or doubly infinite. In this section, our purpose will be to develop
Wiener–Kolmogorov filtering and smoothing when the sample is finite.

The approach in this section is new in the literature. It is based on finite
generating functions and certain algebraic rules defined to manipulate them.

7.3.1 Finite Generating Functions

When dealing with finite samples, matrices replace the generating functions of
the time invariant infinite case. The idea to define finite generating functions is to
associate to each row in a matrix a generating function. Suppose that we have two
matrices, M and N, of dimensions m � p and p � n, respectively, and we want to
define the generating functions GM;t.z/ and GN;t.z/ corresponding to the tth rows of
M and N, t D 1; 2; : : : ;m. If

M D

2

6
6
6
4

M.1; 1/ M.1; 2/ � � � M.1; p/
M.2; 1/ M.2; 2/ � � � M.2; p/

:::
:::

: : :
:::

M.m; 1/ M.m; 2/ � � � M.m; p/

3

7
7
7
5
;
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then the tth row is ŒM.t; 1/;M.t; 2/; : : : ;M.t; p/� and we define GM;t.z/ as

GM;t.z/ D M.t; 1/zt�1 C M.t; 2/zt�2 C � � � C M.t; t/z0 C � � � C M.t; p/zt�p:

Similarly, we define

GN;t.z/ D N.t; 1/zt�1 C N.t; 2/zt�2 C � � � C N.t; t/z0 C � � � C N.t; n/zt�n

for the tth row of N. Given the previous definitions, the question arises as to how to
define the algebraic operations with these generating functions so that they conform
to matrix multiplication. That is, if P D MN, then

GP;t.z/ D GM;t.z/GN;t.z/

should hold, where GP;t D Pn
iD1 P.t; i/zt�i. Let

ŒP.t; 1/; : : : ;P.t; n/� D M.t; 1/ ŒN.1; 1/;N.1; 2/; : : : ;N.1; n/�

CM.t; 2/ ŒN.2; 1/;N.2; 2/; : : : ;N.2; n/�

C � � �
CM.t; p/ ŒN. p; 1/;N. p; 2/; : : : ;N. p; n/�

be the tth row of P D MN. If, given a matrix H, H.i; W/ and H.W; j/ denote its ith row
and its jth column, respectively, the previous equality can be written in terms of the
generating function GP;t.z/ as

GP;t.z/ D ŒM.t; W/N.W; 1/� zt�1 C ŒM.t; W/N.W; 2/� zt�2 C � � � C ŒM.t; W/N.W; n/� zt�n;

or

GP;t.z/ D M.t; 1/
�
N.1; 1/zt�1 C N.1; 2/zt�2 C � � � C N.1; n/zt�n

�

CM.t; 2/
�
N.2; 1/zt�1 C N.2; 2/zt�2 C � � � C N.2; n/zt�n

�

C � � �
CM.t; p/

�
N. p; 1/zt�1 C N. p; 2/zt�2 C � � � C N. p; n/zt�n

�
:

If we define zlzk D zlCk, then

GP;t.z/ D M.t; 1/
�
N.1; 1/z0 C N.1; 2/z�1 C � � � C N.1; n/z1�n

�
zt�1

CM.t; 2/
�
N.2; 1/z1 C N.2; 2/z0 C � � � C N.2; n/z2�n

�
zt�2

C � � �
CM.t; p/

�
N. p; 1/zp�1 C N. p; 2/zp�2 C � � � C N. p; n/zp�n

�
zt�p;
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or, equivalently,

GP;t.z/ D M.t; 1/GN;1.z/z
t�1 C M.t; 2/GN;2.z/z

t�2 C � � � C M.t; p/GN;p.z/z
t�p

holds. In addition, if the equality

GP;t.z/ D GM;t.z/GN;t.z/ D
 

pX

iD1
M.t; i/zt�i

!

GN;t.z/

is to be satisfied, we must also define

zkGN;t.z/ D GN;t�k.z/z
k

for all integer k.
The same definitions are valid if M and N are block matrices. Suppose that we

have two stacked vectors of random vectors, X D .X0
1;X

0
2, : : : ;X

0
n/

0 and Y D .Y 0
1;Y

0
2,

: : : ;Y 0
n/

0, and that the following relation exists between these two vectors

Y D AX;

where

A D

2

6
6
6
4

A.1; 1/ A.1; 2/ � � � A.1; n/
A.2; 1/ A.2; 2/ � � � A.2; n/
:::

:::
: : :

:::

A.n; 1/ A.n; 2/ � � � A.n; n/

3

7
7
7
5

is a block nonstochastic matrix. If we want to express the equality Yt D A.t; W/X,
where A.t; W/ is the tth block row of A, in terms of generating functions, we can apply
the previous rules. Letting GY;t.z/, GA;t.z/, and GX;t.z/ be the generating functions
of the tth block rows of Y, A, and X, respectively, it follows from the definition of
generating function that

GY;t.z/ D Ytz
t�1; GX;t.z/ D Xtz

t�1;

and

GA;t.z/ D A.t; 1/zt�1 C A.t; 2/zt�2 C � � � C A.t; n/zt�n:
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Since GY;t.z/ D GA;t.z/GX;t.z/, we can write

Ytz
t�1 D �

A.t; 1/zt�1 C A.t; 2/zt�2 C � � � C A.t; n/zt�n
�

GX;t.z/

D A.t; 1/GX;1.z/z
t�1 C A.t; 2/GX;2.z/z

t�2 C � � � C A.t; n/GX;n.z/z
t�n

D ŒA.t; 1/X1 C A.t; 2/X2 C � � � C A.t; n/Xn� z
t�1

because GX;i.z/ D Xizi�1, i D 1; 2; : : : ; n. Postmultiplying the previous equality by
z1�t and defining z0 D I, we can write

Yt D A.t; 1/X1 C A.t; 2/X2 C � � � C A.t; t/Xt C � � � C A.t; n/Xn

D �
A.t; 1/zt�1 C A.t; 2/zt�2 C � � � C A.t; t/z0 C � � � C A.t; n/zt�n

�
Xt:

If GYt .z/ and GXt.z/ are the generating functions of Yt and Xt, then GYt .z/ D Yt and
GXt.z/ D Xt because Yt and Xt are 1 � 1 block matrices and the following equality
holds

GYt .z/ D GA;t.z/GXt .z/:

We summarize the previous definitions in the following algebraic rule for manipu-
lating finite generating matrices.

Basic Algebraic Rule The equality zlzk D zlCk holds for all integers l and k and
z0 D I. Sums of generating functions and multiplication of a generating function by
a constant are again generating functions. In addition, if GM;t.z/ D M.t; 1/zt�1 C
� � �CM.t; n/zt�n is a generating function that represents the tth block row of an m�n
block matrix M and Xt is a random vector, then

zkGM;t.z/ D GM;t�k.z/z
k

D M.t � k; 1/zt�1 C � � � C M.t � k; n/zt�n

zkXt D Xt�k

for all integer k, where it is understood that zk D 0 if k < t � n or k > t � 1.
Moreover, the previous operations should always be performed from left to right.

We finally note that, instead of writing GM;t.z/ to denote the generating function
corresponding to the tth row of a block matrix M, we will often write Mt.z/ to
abbreviate the notation. Also, we will write M.t; k/ instead of M.t; k/z0, where
M.t; k/ is the .t; k/th entry of a block matrix M.
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7.3.2 Innovations Representation

Suppose that we have a finite sample, fYt W 1 � t � ng, where Yt is a zero mean
random vector, and define Y D .Y 0

1; : : : ;Y
0
n/

0. Then, if Var.Y/ D †Y , let †Y D
‰†‰0 be the block Cholesky decomposition of †Y , where

‰ D

0

BB
B
B
B
@

I
‰12 I
‰23 ‰13 I
:::

:::
:::
: : :

‰n�1;n ‰n�2;n � � � ‰1;n I

1

CC
C
C
C
A

and † D diag.†1; : : : ; †n/. In finite samples, the Cholesky decomposition plays
the role of the covariance generating function in infinite samples. It can also be used
to obtain a representation of the process in terms of the innovations. To see this,
define E D ‰�1Y, where

‰�1 D

0

B
B
B
B
B
@

I
‰12 I
‰23 ‰13 I
:::

:::
:::
: : :

‰n�1;n ‰n�2;n � � � ‰1;n I

1

C
C
C
C
C
A

is the inverse of ‰. Then, E D .E0
1; : : : ;E

0
n/

0 is the vector of innovations because
Var.E/ D ‰�1†Y‰

�10 D †;Var.Et/ D †t; t D 1; : : : ; n, the vectors Et are serially
uncorrelated, and we can write Y D ‰E;Yt D Et C ‰1tEt�1 C � � � C ‰t�1;tE1;
t D 1; : : : ; n.

The innovations representation of Y motivates that we define for each observa-
tion, Yt, the generating functions

‰t.z/ D I C‰1tz C � � � C‰t�1;tzt�1 (7.58)

and

‰�1
t .z/ D I C‰1tz C � � � C‰t�1;tzt�1; (7.59)

that correspond to the tth rows of‰ and‰�1. Then, passing to generating functions
in Y D ‰E and E D ‰�1Y, we can write

Yt D ‰t.z/Et
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and

Et D ‰�1
t .z/Yt:

7.3.3 Covariance Generating Function

Let us return to the Cholesky decomposition,†Y D ‰†‰0, of the previous section
and define 
.t; s/ D E.YtY 0

s/ and the generating functions

‰0
t.z

�1/ D I C‰0
1;tC1z�1 C � � � C‰0

n�t;nzt�n (7.60)

and

GYt .z/ D 
.t; 1/zt�1 C 
.t; 2/zt�2 C � � � C 
.t; t/C � � � C 
.t; n/zt�n; (7.61)

that correspond to the tth rows of ‰0 and †Y . Then, passing to generating functions
in †Y D ‰†‰0 and applying the basic rule, it is obtained that

GYt .z/ D ‰t.z/†t‰
0
t.z

�1/: (7.62)

Example 7.3 Suppose n D 3. Then, to obtain GY2 .z/, we can perform the following
calculation.

GY2 .z/ D ‰2.z/†2‰
0
2.z

�1/

D .I C‰12z/†2‰
0
2.z

�1/

D †2‰
0
2.z

�1/C‰12†1‰
0
1.z

�1/z

D †2.I C‰0
13z

�1/C‰12†1.I C‰0
12z

�1 C‰0
23z

�2/z

D ‰12†1z C .†2 C‰12†1‰
0
12/C .†2‰

0
13 C‰12†1‰

0
23/z

�1:

Thus, 
.2; 1/ D ‰12†1, 
.2; 2/ D †2 C ‰12†1‰
0
12 and 
.2; 3/ D †2‰

0
13 C

‰12†1‰
0
23. Þ

7.3.4 Inverse Process

The inverse process is defined as Yi D .‰0/�1†�1‰�1Y. It is easy to see that
Var.Yi/ D †�1

Y , which justifies the name. The inverse process plays a crucial role
in Wiener–Kolmogorov filtering and smoothing as we will see.
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We can associate with the tth rows of .‰0/�1 and †�1
Y the generating functions

.‰0/�1t .z�1/ D I C‰
0
1;tC1z�1 C � � � C‰

0
n�t;nzt�n

and

GYi
t
.z/ D 
 i.t; 1/zt�1 C 
 i.t; 2/zt�2 C � � � C 
 i.t; t/C � � � C 
 i.t; n/zt�n;

where 
 i.t; s/ D E.Yi
t Y

i0
s /. Then, applying the basic rule, we get

GYi
t
.z/ D .‰0/�1t .z�1/†�1

t ‰�1
t .z/: (7.63)

Note that GYi
t
.z/ D ŒGYt .z/�

�1 and that Yi
t D GYi

t
.z/Yt.

7.3.5 Finite Wiener–Kolmogorov Filtering and Smoothing

Suppose that we have a finite sample, f.S0
t;Y

0
t /

0 W 1 � t � ng, where St and Yt are
zero mean random vectors, and define S D .S0

1; : : : ; S
0
n/

0 and Y D .Y 0
1; : : : ;Y

0
n/

0.
Then, letting

Var



S
Y

�
D


†S †SY

†YS †Y

�
;

if †Y is nonsingular, the orthogonal projection, E�.SjY/, of S onto Y is given by
E�.SjY/ D †SY†

�1
Y Y. In addition, MSEŒE�.SjY/� D †S �†SY†

�1
Y †YS.

Suppose we are interested in the weights of the matrix W D †SY†
�1
Y . If Œ
W.t; 1/,

: : : ; 
W.t; n/� is the tth row of W, that corresponds to the estimator OStjn D E�.StjY/,
we can associate with it the generating function

GW;t.z/ D 
W.t; 1/z
t�1 C � � � C 
W.t; n/z

t�n:

Also, if Œ
SY.t; 1/; : : : ; 
SY.t; n/� is the tth row of †SY , we can associate with it the
generating function

GSY;t.z/ D 
SY.t; 1/z
t�1 C � � � C 
SY.t; n/z

t�n:

On the other hand, as we saw in the previous section, the generating function of the
tth row of†�1

Y is given by ŒGYt .z/�
�1 D GYi

t
.z/ D .‰0/�1t .z�1/†�1

t ‰�1
t .z/.
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Passing to generating functions in W D †SY†
�1
Y and applying the basic rule,

we get

GW;t.z/ D GSY;t.z/GYi
t
.z/

D GSY;t.z/ ŒGYt .z/�
�1 :

Thus,

OStjn D GSY;t.z/ ŒGYt .z/�
�1 Yt: (7.64)

Let †Y D ‰†‰0, as before, be the Cholesky decomposition of †Y and suppose
that we are interested in the estimator OStjt D E�.StjY1; : : : ;Yt/, t D 1; : : : ; n. Then,
since the vector of innovations, E D .E0

1; : : : ;E
0
n/

0, is given by E D ‰�1Y, we
can write E�.SjY/ D †SY‰

0�1†�1‰�1Y D †SY‰
0�1†�1E. Using generating

functions, it follows from this and (7.64) that OStjn D GSY;t.z/.‰0/�1t .z�1/†�1
t Et.

Since the innovations are orthogonal, by the law of iterated orthogonal projections,
we get

OStjt D �
GSY;t.z/.‰

0/�1t .z�1/
�
C†

�1
t Et

D �
GSY;t.z/.‰

0/�1t .z�1/
�
C†

�1
t ‰�1

t .z/Yt;

where if F.z/ D Pt�1
iDt�n fjz j, then ŒF.z/�C D P

i�0 fjz j.
Using similar arguments, it can be shown that the covariance generating func-

tions, GEn.z/ and GEt.z/, of the errors Etjn D St � OStjn and Etjt D St � OStjt are
given by

GEn.z/ D GS;t.z/ � GSY;t.z/ ŒGYt .z/�
�1 GYS;t.z

�1/

and

GEt.z/ D GEn.z/C�t.z/†
�1
t �0

t.z
�1/;

where GS;t.z/ and GYS;t.z/ are the generating functions corresponding to the tth
rows of †S and †YS and �t.z/ D �

GSY;t.z/.‰0/�1t .z�1/
�

C. Here, by the basic rule,
zkGYS;t.z�1/ D GYS;t�k.z�1/zk and zk�t.z�1/ = �t�k.z�1/zk for all integer k and
zk D 0 if k < t � n or k > t � 1.
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7.3.6 Finite Wiener–Kolmogorov Filtering for Multivariate
Processes with State Space Structure

To proceed further, we need to assume that the data have some structure. In
particular, we will assume that the data have been generated by a state space model
to be specified later.

The celebrated Kalman filter (Kalman, 1960b) has become the standard tool to
apply when the sample is finite and the data have state space structure. As we have
shown earlier in this section, the structure of the covariance matrix of the data can
be studied by means of generating functions that, contrary to the infinite sample
case, are time dependent. We will show that we can obtain Wiener–Kolmogorov
formulae for filtering and smoothing in terms of these generating functions and that
the Wiener–Kolmogorov formulae for the infinite sample are limits of the finite
sample formulae. We will also show the equivalence between Wiener–Kolmogorov
filtering and smoothing and Kalman filtering and smoothing.

The Wiener–Kolmogorov approach allows for the possibility of obtaining the
filter weights. It is also more amenable than the Kalman filter approach to analytic
investigation.

As we saw earlier in the book, the Kalman filter can be applied even when the
system matrices are time variant. Suppose that fYtg is a multivariate process that
admits the state space representation (4.1) and (4.2) and assume that E.x1/ D 0 and
Var.x1/ D ….

7.3.6.1 Covariance Generating Function of the Process

Before computing the covariance generating function GYt .z/, given by (7.61), when
fYtg follows the state space model (4.1) and (4.2), we need several definitions.
Iterating in (4.1), we get xt D Nut�1CFt

t�1 Nut�2C� � �CFt
2 Nu1CFt

1x1, where Nut D Gtut

for t D 1; : : : ; n. Thus, if we stack the vectors xt, we get

2

6
6
6
6
6
4

x1
x2
x3
:::

xn

3

7
7
7
7
7
5

D

2

6
6
6
6
6
4

I
F21 I
F31 F32 I
:::
:::
:::
: : :

Fn
1 Fn

2 � � � Fn
n�1 I

3

7
7
7
7
7
5

2

6
6
6
6
6
4

x1
Nu1
Nu2
:::

Nun�1

3

7
7
7
7
7
5

(7.65)

D

2

6
6
6
66
6
6
6
4

I
F21
F31
:::

Fn�1
1

Fn
1

3

7
7
7
77
7
7
7
5

x1 C Z

2

6
6
6
66
6
6
6
4

I
F32 I
F42 F43 I
:::
:::
:::
: : :

Fn
2 Fn

3 � � � Fn
n�1 I

0 0 � � � 0 0 I

3

7
7
7
77
7
7
7
5

2

6
6
6
66
6
6
6
4

Nu1
Nu2
Nu3
:::

Nun�1
Nun

3

7
7
7
77
7
7
7
5

; (7.66)
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where Z is the shift matrix

Z D

2

6
6
66
6
4

0

I 0
0 I 0
:::
:::
:::
: : :

0 0 � � � I 0

3

7
7
77
7
5
;

such that ZY D .0;Y 0
1; : : : ;Y

0
n�1/0. Define

F D

2

6
66
6
6
6
66
4

I
F32 I
F42 F43 I
:::
:::
:::
: : :

Fn
2 Fn

3 � � � Fn
n�1 I

0 0 � � � 0 0 I

3

7
77
7
7
7
77
5

and let Ft.z/ D I CFtC1
t zC� � �CFtC1

2 zt�1 be the generating function that represents
the tth row of F, t D 1; 2; : : : ; n. Then, it is not difficult to verify that

F
�1 D

2

6
6
66
6
6
6
6
4

I
�F32 I

�F43 I
: : :

: : :

�Fn
n�1 I

0 I

3

7
7
77
7
7
7
7
5

and, therefore, F�1
t .z/ D I � FtC1

t z D I � Ftz and

.I � Ftz/
�1 D I C FtC1

t z C � � � C FtC1
2 zt�1; (7.67)

where .I � F1z/�1 D I. Passing to generating functions in (7.66) and using (7.67),
we can write

xt D �
.I � Ft�1z/�1z Ft

1

� �Gtut

x1

�
; (7.68)

where we define .I � F0z/�1 D 0. From this, it is obtained that

Yt D HtF
t
1x1 C Ht.I � Ft�1z/�1zNut C vt

D HtF
t
1x1 C �

Ht.I � Ft�1z/�1z I
� �Gtut

vt

�
:
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Equivalently, stack the observations Yt to get

2

6
6
6
66
4

Y1
Y2
Y3
:::

Yn

3

7
7
7
77
5

D

2

6
6
6
66
4

H1

H2F21
H3F31
:::

HnFn
1

3

7
7
7
77
5

x1 C

2

6
6
6
66
4

0 I
H2 0

H3F32 0
:::

:::

HnFn
2 0

3

7
7
7
77
5

�
G1u1
v1

�
C

2

6
6
6
66
4

0 0

0 I
H3 0
:::

:::

HnFn
3 0

3

7
7
7
77
5

�
G2u2
v2

�

C � � � C

2

6
66
6
6
4

0 0
:::
:::

0 0

0 I
Hn 0

3

7
77
7
7
5

�
Gn�1un�1
vn�1

�
C

2

6
66
6
6
4

0 0
:::
:::

0 0

0 0

0 I

3

7
77
7
7
5

�
Gnun

vn

�

D

2

6
6
6
6
6
4

H1

H2F21
H3F31
:::

HnFn
1

3

7
7
7
7
7
5

x1 C Z0

2

6
6
6
6
6
4

0 I
H2 0

H3F32 0
:::

:::

HnFn
2 0

3

7
7
7
7
7
5

�
G1u1
v1

�
C Z1

2

6
6
6
6
6
4

0 I
H3 0
:::

:::

HnFn
3 0

0 0

3

7
7
7
7
7
5

�
G2u2
v2

�

C � � � C Zn�2

2

6
6
6
66
4

0 I
Hn 0

0 0
:::
:::

0 0

3

7
7
7
77
5

�
Gn�1un�1
vn�1

�
C Zn�1

2

6
6
6
66
4

0 I
0 0
:::
:::

0 0

0 0

3

7
7
7
77
5

�
Gnun

vn

�
:

Letting F0
t.z

�1/ D I C F
0tC2
tC1 z�1 C � � � C F

0n
tC1zt�nC1 represent the tth row of F

0

and proceeding as we did earlier in this section to obtain (7.67), we get F
0�1
t .z�1/ D

I � F
0tC2
tC1 z�1 D I � F0

tC1z�1 and

.I � F0
tC1z�1/�1 D I C F

0tC2
tC1 z�1 C � � � C F

0n
tC1zt�nC1; (7.69)

where .I � F0
nz�1/�1 D I.

To compute a first expression for GYt .z/, define, as in Sect. 1.7.2, …t D Var.xt/.
Then, by Lemma 1.1,…t satisfies the recursion…tC1 D Ft…tF0

tCGtQtG0
t, initialized

with …1 D …. Using this recursion, the following theorem is obtained.
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Theorem 7.19 The covariance generating function, GYt .z/, of Yt, where fYtg
follows the state space model (4.1) and (4.2), is given by

GYt .z/ D Rt C Ht…tH
0
t C Ht.I � Ft�1z/�1Nt�1z C N0

t .I � F0
tC1z�1/�1H0

tC1z�1

D �
Ht.I � Ft�1z/�1z I

�
�
0 Nt

N0
t Rt C Ht…tH0

t

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�
;

where …t D Var.xt/ satisfies the recursion …tC1 D Ft…tF0
t C GtQtG0

t , initialized
with …1 D …, Nt D Ft…tH0

t C GtSt, .I � Ft�1z/�1 D I C Ft
t�1z C � � � C Ft

2z
t�2 and

.I � F0
tC1z�1/�1 D I C F

0tC2
tC1 z�1 C � � � C F

0n
tC1ztC1�n.

Proof Substituting (1.34) in (7.61) yields

GYt .z/ D HtF
t
2N1z

t�1 C HtF
t
3N2z

t�2 C � � � C HtF
t
tNt�1z C Rt C Ht…tH

0
t

CN0
t F

tC10

tC1 H0
tC1z�1 C � � � C N0

t F
n0

tC1H0
nzt�n

D Rt C Ht…tH
0
t C Ht

�
Ft

tzNt C � � � C Ft
3z

t�2Nt C Ft
2z

t�1Nt
�

CN0
t

h
FtC10

tC1 z�1H0
t C � � � C Fn0

tC1zt�nH0
t

i

D Rt C Ht…tH
0
t C Ht.I � Ft�1z/�1Nt�1z C N0

t .I � F0
tC1z�1/�1H0

tC1z�1:

�

To obtain an alternative expression for GYt .z/, we can pass to generating
functions in (7.65). First, note that

F1 D

2

6
6
66
6
4

I
F21 I
F31 F32 I
:::
:::
:::
: : :

Fn
1 Fn

2 � � � Fn
n�1 I

3

7
7
77
7
5

D

2

6
6
66
6
4

I
�F21 I

�F32 I
: : :

: : :

�Fn
n�1 I

3

7
7
77
7
5

�1

:

Then, if we define u0 D x1 and G0 D I, we can write

xt D Nut�1 C Ft
t�1 Nut�2 C � � � C Ft

2 Nu1 C Ft
1 Nu0

D �
I C Ft

t�1z C � � � C Ft
2z

t�2 C Ft
1z

t�1	 Nut�1;

where Nut D Gtut for t D 1; : : : ; n. Letting Ft;1.z/ D I CFt
t�1zC� � �CFt

2z
t�2CFt

1z
t�1

be the generating function that represents the tth row of F1, t D 1; 2; : : : ; n, we get
F�1

t;1 .z/ D I � Ft
t�1z D I � Ft�1z and

.I � Ft�1z/�11 D I C Ft
t�1z C � � � C Ft

2z
t�2 C Ft

1z
t�1; (7.70)
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where we define .I � F0z/�11 D I and we use the subindex 1 to differentiate this
generating function from (7.67). Note that

.I � Ft�1z/�11 D .I � Ft�1z/�1 C Ft
1z

t�1: (7.71)

Using (7.70), we can write

Yt D HtF
t
1x1 C Ht.I � Ft�1z/�1zNut C vt

D �
Ht.I � Ft�1z/�11 z I

� �Gtut

vt

�
:

Letting F0
t;1.z

�1/ D I C F
0tC1
t z�1 C � � � C F

0n
t zt�n represent the tth row of F

0
1 and

proceeding as we did earlier in this section to obtain (7.70), we get F
0�1
t;1 .z

�1/ D
I � F

0tC1
t z�1 D I � F0

t z
�1 for t D 1; 2; : : : ; n. It follows from this that

.I � F0
t z

�1/�1 D I C F
0tC1
t z�1 C � � � C F

0n
t zt�n; t D 2; 3; : : : ; n;

coincides with (7.69) and we get the new expression

.I � F0
1z

�1/�1 D I C F
02
1 z�1 C � � � C F

0n
1 z1�n: (7.72)

The following theorem gives an expression for GYt .z/ different from that of
Theorem 7.19.

Theorem 7.20 The covariance generating function, GYt .z/, of Yt, where fYtg
follows the state space model (4.1) and (4.2), is given by

GYt .z/ D HtF
t
1…

h
H0
1z

t�1 C F2
0

1 H0
2z

t�2 C � � � C Fn0

1 H0
nzt�n

i
(7.73)

C �
Ht.I � Ft�1z/�1z I

� �GtQtG0
t GtSt

S0
tG

0
t Rt

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�
;

where …t D Var.xt/ satisfies the recursion …tC1 D Ft…tF0
t C GtQtG0

t , initialized
with …1 D …, .I � Ft�1z/�1 D I C Ft

t�1z C � � � C Ft
2z

t�2 and .I � F0
tC1z�1/�1 D

I CF
0tC2
tC1 z�1C� � �CF

0n
tC1ztC1�n. Using (7.70) and (7.72), GYt .z/ can be expressed as

GYt .z/ D HtF
t
1…

�
I � F0

1z
�1	�1 H0

1z
t�1

C �
Ht.I � Ft�1z/�1z I

� �GtQtG0
t GtSt

S0
tG

0
t Rt

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�

D �
Ht.I � Ft�1z/�11 z I

� �GtQtG0
t GtSt

S0
tG

0
t Rt

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�
;

where Q0 D …, R0 D 0, S0 D 0, F0 D 0, H0 D 0 and …0 D 0.
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Proof Using the recursion …tC1 D Ft…tF0
t C GtQtG0

t, initialized with …1 D …,
we get

.I � Ft�1z/�11 Gt�1Qt�1G0
t�1 � .I � F0

t z
�1/�1

D .I � Ft�1z/�11 .…t � Ft�1…t�1F0
t�1/.I � F0

t z
�1/�1

D .I � Ft�1z/�11
�
…t.I � F0

t z
�1/C .I � Ft�1z/…t

�.I � Ft�1z/…t.I � F0
t z

�1/
�
.I � F0

t z
�1/�1

D .I � Ft�1z/�11 …t C…t.I � F0
t z

�1/�1 �…t

D .I � Ft�1z/�11 …t C…tF
0
t.I � F0

tC1z�1/�1z�1:

On the other hand,

Ht.I � Ft�1z/�1
1 Gt�1St�1z D Ht.I � Ft�1z/�1

1 .…tH0

t C Gt�1St�1z/

�Ht.I � Ft�1z/�1
1 …tH0

t

D Ht.I � Ft�1z/
�1
1

�
.I � Ft�1z/…tH

0

t C Ft�1…t�1H
0

t�1z

CGt�1St�1z�� Ht.I � Ft�1z/
�1
1 …tH

0

t

D Ht…tH
0

t C Ht.I � Ft�1z/
�1
1 .Ft�1…t�1H

0

t�1 C Gt�1St�1/z

�Ht.I � Ft�1z/�1
1 …tH0

t :

Letting Nt D Ft…tH0
t C GtSt, it follows from this, (7.71), and Theorem 7.19 that

�
Ht.I � Ft�1z/

�1
1 z I

�
"

GtQtG0

t GtSt

S0

t G
0

t Rt

#"
.I � F0

tC1
z�1/�1H0

tC1
z�1

I

#

D Ht…tH
0

t C Rt C Ht.I � Ft�1z/
�1
1 Nt�1z C N0

t .I � F0

tC1z
�1/�1H0

tC1z
�1

D Ht…tH
0

t C Rt C Ht.I � Ft�1z/
�1Nt�1z C HtF

t
1z

tNt C N0

t .I � F0

tC1z
�1/�1H0

tC1z
�1

D Ht…tH
0

t C Rt C Ht.I � Ft�1z/
�1Nt�1z C N0

t .I � F0

tC1z
�1/�1H0

tC1z
�1

D GYt.z/;

where we have used that ztNt D N0zt D 0. �
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The expressions for the covariance generating function, GYt .z/, of Yt in Theo-
rems 7.19 and 7.20 correspond to two decompositions of the covariance matrix†Y ,
namely,

†Y D
nX

tD1
Z t�1

2

6
6
6
6
66
6
6
6
66
6
6
4

0 I
HtC1 0

HtC2FtC2
tC1 0

:::
:::

HnFn
tC1 0

0 0
:::

:::

0 0

3

7
7
7
7
77
7
7
7
77
7
7
5

�
0 Nt

N0
t Rt C Ht…tH0

t

�

2

6
6
6
6
66
6
6
6
66
6
6
4

0 I
HtC1 0

HtC2FtC2
tC1 0

:::
:::

HnFn
tC1 0

0 0
:::

:::

0 0

3

7
7
7
7
77
7
7
7
77
7
7
5

0

Z t�10

and

†Y D O…O0 C
nX

tD1
Z t�1

2

6
6
6
66
6
6
6
66
6
6
6
4

0 I
HtC1 0

HtC2FtC2
tC1 0

:::
:::

HnFn
tC1 0

0 0
:::

:::

0 0

3

7
7
7
77
7
7
7
77
7
7
7
5

�
GtQtG0

t GtSt

S0
tG

0
t Rt

�

2

6
6
6
66
6
6
6
66
6
6
6
4

0 I
HtC1 0

HtC2FtC2
tC1 0

:::
:::

HnFn
tC1 0

0 0
:::

:::

0 0

3

7
7
7
77
7
7
7
77
7
7
7
5

0

Z t�10

;

where

O D

2

6
6
66
6
4

H1

H2F21
H3F31
:::

HnFn
1

3

7
7
77
7
5
:

7.3.6.2 Covariance Factorization

Let fYtg follow the state space model (4.1) and (4.2). The covariance factorization
of the time invariant case has its counterpart in the Cholesky decomposition of the
covariance matrix, †Y D ‰†‰0. As we saw earlier in Sect. 7.3.3, the factorization
of the covariance generating function (7.62) corresponds to this Cholesky decom-
position.
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As in the time invariant case, if we can find matrices †t and Kt such that GYt .z/
factorizes as

GYt .z/ D �
Ht.I � Ft�1z/�1z I

� �Kt

I

�
†t ŒK

0
t I�

�
.I � F0

tC1z�1/�1H0
tC1z�1

I

�

D ŒI C Ht.I � Ft�1z/�1Kt�1z�†t ŒI C K0
t .I � F0

tC1z�1/�1H0
tC1z�1�;

(7.74)

then we can obtain the desired factorization by defining ‰t.z/ D I C Ht.I �
Ft�1z/�1Kt�1z and ‰0

t.z
�1/ D I C K0

t .I � F0
tC1z�1/�1H0

tC1z�1.
The following lemma, that is the exact analog to Lemma 5.6, will be useful to

obtain the factorization.

Lemma 7.8 The covariance matrix, †Y , of Yt, where fYtg follows the state space
model (4.1) and (4.2) is invariant under transformations of the form

… �! … � Z1

and

�
GtQtG0

t GtSt

S0
tG

0
t Rt

�
�!

��ZtC1 C FtZtF0
t C GtQtG0

t FtZtH0
t C GtSt

HtZtF0
t C S0

tG
0
t Rt C HtZtH0

t

�
;

for any sequence of symmetric matrices fZtg.

Proof Given a sequence of symmetric matrices, fZtg, the lemma will be proved
if we prove that the difference, �GYt .z/, between the covariance generating
function (7.73) and the covariance generating function obtained after replacing
in (7.73) GtQtG0

t, GtSt, Rt and …1 by �ZtC1 C FtZtF0
t C GtQtG0

t, FtZtH0
t C GtSt,

HtZtH0
t C Rt and…1 � Z1, respectively, is zero. That is, if we prove that

�GYt.z/

D �
Ht.I � Ft�1z/

�1
1 z I

�
"

�ZtC1 C FtZtF0

t FtZtH0

t

HtZtF0

t HtZtH0

t

#"
.I � F0

tC1
z�1/�1H0

tC1
z�1

I

#

D 0;

where F0 D 0, H0 D 0 and Z0 D 0, for t D 1; 2; : : : ; n. This expression for�GYt.z/
corresponds to the covariance generating function, as given by Theorem 7.19, of a
state space model of the form

xtC1 D Ftxt

Yt D Htxt;
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where Var.xt/ D Zt, t D 1; 2; : : : ; n, because in this model ZtC1 D FtZtF0
t , Nt D

FtZtH0
t and, since N0 D 0, .I � Ft�1z/�11 zNt D .I � Ft�1z/�1zNt. Thus, applying

Theorem 7.20 to the previous state space model,�GYt.z/ can be written as

�GYt .z/ D �
Ht.I � Ft�1z/�11 z I

� �0 0
0 0

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�
D 0

for t D 1; 2; : : : ; n. �

We would like to choose fZtg D fPtg in such a manner that the center matrices

Ct D
��PtC1 C FtPtF0

t C GtQtG0
t FtPtH0

t C GtSt

HtPtF0
t C S0

tG
0
t Rt C HtPtH0

t

�

factorize as

Ct D
�

C1;t
C2;t

� h
C0
1;t C0

2;t

i

for some matrices C1;t and C2;t of appropriate dimensions, t D 1; 2; : : : ; n.
Assuming that Rt C HtPtH0

t is nonsingular, we can consider the Schur decompo-
sition of Ct,

Ct D
�

I Xt

0 I

� �
�t 0

0 Rt C HtPtH0
t

� �
I 0

X0
t I

�
; (7.75)

where

Xt D .FtPtH
0
t C GtSt/.Rt C HtPtH

0
t/

�1

and�t is the Schur complement

�t D �PtC1 C FtPtF
0
t C GtQtG

0
t � Xt.Rt C HtPtH

0
t/X

0
t :

Equation (7.75) shows that if we choose Pt so as to make �t zero, that is,

�PtC1 C FtPtF
0
t C GtQtG

0
t � Xt.Rt C HtPtH

0
t/X

0
t D 0;

then Ct can be expressed as

Ct D
�

FtPtH0
t C GtSt

Rt C HtPtH0
t

�
.Rt C HtPtH

0
t/

�1
�

FtPtH0
t C GtSt

Rt C HtPtH0
t

�0
;

obtaining the required factorization. Note that the recursion for Pt is simply the
Kalman filter recursion for the MSE of the predictor, Oxtjt�1, of xt. We can therefore
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identify

C1;t D †
1=2
t ; C2;t D Kt†

1=2
t ;

where Kt D .FtPtH0
t C GtSt/†

�1
t and †t D Rt C HtPtH0

t are the Kalman gain and
the innovations covariance matrix of the Kalman filter. We have thus the following
result.

Theorem 7.21 If fYtg follows the state space model (4.1) and (4.2) and the
covariance matrix †Y is nonsingular, the covariance generating function, GYt .z/,
of Yt factorizes as

GYt .z/ D ŒI C Ht.I � Ft�1z/�1Kt�1z�†t ŒI C K0
t .I � F0

tC1z�1/�1H0
tC1z�1�;

where Pt, Kt D .FtPtH0
t C GtSt/†

�1
t and †t D Rt C HtPtH0

t are obtained with the
same recursions as those of the Kalman filter.

In terms of the covariance matrix †Y , the factorization of the previous theorem
can be expressed as

†Y D Pn
tD1Z t�1

2

6
66
6
6
6
66
6
6
6
6
6
4

I
HtC1Kt

HtC2FtC2
tC1Kt
:::

HnFn
tC1Kt

0
:::

0

3

7
77
7
7
7
77
7
7
7
7
7
5

†t

2

6
66
6
6
6
66
6
6
6
6
6
4

I
HtC1Kt

HtC2FtC2
tC1Kt
:::

HnFn
tC1Kt

0
:::

0

3

7
77
7
7
7
77
7
7
7
7
7
5

0

Z t�10

:

If in Lemma 7.8 we choose Z1 D … and Zt D …t D Var.xt/, so that Zt D
Pt C †t, where Pt is as earlier in this section, Pt D Var.xt � Oxtjt�1/, and, therefore,
†t D Var.Oxtjt�1/, after a little algebra, the following theorem is obtained. The proof
is omitted.

Theorem 7.22 The covariance generating function, GYt .z/, of Yt, where fYtg
follows the state space model (4.1) and (4.2), is given by

GYt .z/ D †t C Ht†tH
0
t C Ht.I � Ft�1z/�1.Ft�1†t�1H0

t�1 C Kt�1†t�1/z

C.Ht†tF
0
t C†tK

0
t /.I � F0

tC1z�1/�1H0
tC1z�1

D �
Ht.I � Ft�1z/�1z I

� � 0 Nt

N0
t †t C Ht†tH0

t

� �
.I � F0

tC1z�1/�1H0
tC1z�1

I

�
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where †t D Var.Oxtjt�1/ satisfies the recursion †tC1 D Ft†tF0
t C Kt†tK0

t , initialized
with†1 D 0, Nt D Ft†tH0

t C Kt†t and .I � Ft�1z/�1 and .I � F0
tC1z�1/�1 are given

by (7.67) and (7.69).

7.3.6.3 Innovations Representation

Consider the decomposition (7.62) of the generating function GYt .z/ of Yt, where
fYtg follows the state space model (4.1) and (4.2). By Theorem 7.21, it is clear
that, when there is state space structure, the function (7.58) is given by ‰t.z/ D
I C Ht.I � Ft�1z/�1Kt�1z and that this generating function corresponds to the tth
row of the Cholesky factor, ‰, in the Cholesky decomposition†Y D ‰†‰0. Also,
the function ‰0

t.z
�1/ D I C K0

t .I � F0
tC1z�1/�1H0

tC1z�1 corresponds to the tth row
of ‰0.

Letting Y D .Y 0
1; : : : ;Y

0
n/

0 and E D .E0
1; : : : ;E

0
n/

0 be the stacked vectors of
observations and innovations, respectively, from the block Cholesky decomposition
of†Y ,†Y D ‰†‰0, we have the relation Y D ‰E. Passing to generating functions,
this equation implies

Yt D ‰t.z/Et

D �
I C Ht.I � Ft�1z/�1Kt�1z

�
Et

D Ht.I � Ft�1z/�1Kt�1Et�1 C Et:

Letting �t D .I � Ft�1z/�1Kt�1Et�1 and using the definition of .I � Ftz/�1 and
the basic algebraic rule, it is easy to verify that �t satisfies the recursion �tC1 D
Ft�t CKtEt. Thus, by the covariance factorization of Theorem 7.21, we see that fYtg
is generated by the state space model

�tC1 D Ft�t C KtEt (7.76)

Yt D Ht�t C Et; (7.77)

where Et is the tth innovation, �1 D 0 and Pt, Kt D .FtPtH0
t C GtSt/†

�1
t and

†t D Rt C HtPtH0
t are obtained with the same recursions as those of the Kalman

filter. Therefore, (7.76) and (7.77) is the innovations representation of the Kalman
filter!

Note that, from (7.76) and (7.77), the generating function of �t is G�t .z/ D z.I �
Ftz/�1Kt and, therefore, we can write ‰t.z/ D I C HtG�t.z/. Also, from (7.76)
and (7.77) we can obtain the inverse filter

�tC1 D Fp;t�t C KtYt

Et D �Ht�t C Yt;
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where Fp;t D Ft � KtHt. Using this inverse filter, it is not difficult to show that

‰�1
t .z/ D I � Ht.I � Fp;t�1z/�1Kt�1z; (7.78)

where .I � Fp;t�1z/�1 D I C Ft
p;t�1z C � � � C Ft

p;2z
t�2 corresponds to the tth row of

‰�1, and

.‰0/�1t .z�1/ D I � K0
t .I � F0

p;tC1z�1/�1H0
tC1z�1; (7.79)

where .I � F0
p;tC1z�1/�1 D I C F

0tC2
p;tC1z�1 C � � �C F

0n
p;tC1zt�nC1 corresponds to the tth

row of ‰�10

.

7.3.6.4 Recursive Wiener–Kolmogorov Filtering

In this section, we will show that the Kalman filter can be obtained from the finite
Wiener–Kolmogorov filter and that, therefore, the state vector, �t, in the state space
model (7.76) and (7.77) coincides with the estimator, Oxtjt�1, of xt in (4.1) and (4.2)
based on .Y 0

t�1; : : : ;Y 0
1/

0.
To this end, suppose that fYtg follows the state space model (4.1) and (4.2) and

let, as before, Y D .Y 0
1; : : : ;Y

0
n/

0 and E D .E0
1; : : : ;E

0
n/

0 be the stacked vectors
of observations and innovations, respectively. Then, from the block Cholesky
decomposition of†Y ,†Y D ‰†‰0, we have the relations Y D ‰E and E D ‰�1Y.
If X D .x0

1; : : : ; x
0
nC1/0 is the stack of the state vectors and†XE and†XY are the cross

covariance matrices between X and E and X and Y, respectively, it holds that

†XE D †XY‰
�10

:

To see this, consider that

†XE D E.XE0/ D E
h
XY 0‰�10

i
D †XY‰

�10

:

Letting GXE;t.z/ and GXY;t.z/ be the generating functions that represent the tth rows
of †XE and †XY , respectively, it can be proved as earlier in this chapter that the
following relation holds

GXE;t.z/ D GXY;t.z/.‰
0/�1t .z�1/; (7.80)

where the usual rules for multiplication and addition apply (the basic rule) and
.‰0/�1t .z�1/ is given by (7.79).

As in Sect. 7.3.5, it is not difficult to verify that

Oxtjn D GXY;t.z/.‰
0/�1t .z�1/†�1

t ‰�1
t .z/Yt (7.81)
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and

OxtC1jt D �
z�1GXY;t.z/.‰

0/�1t .z�1/
�
C†

�1
t ‰�1

t .z/Yt:

Using (7.80), we get

OxtC1jt D �
z�1GXE;t.z/

�
C†

�1
t Et:

As in the time invariant case, we need a lemma to appropriately decompose GXE;t.z/.
The following lemma is the analog to Lemma 7.2.

Lemma 7.9 The covariance generating function GXE;t.z/ can be decomposed as

GXE;t.z/ D .I � Ft�1z/�1Nt�1z C PtH
0
t C PtF

0
p;t.I � F0

p;tC1z�1/�1H0
tC1z�1

D .I � Ft�1z/�1Nt�1z C Pt.I � F0
p;tz

�1/�1H0
t ;

where Nt D FtPtH0
t CGtSt, Fp;t D Ft �KtHt, and Pt, Kt D .FtPtH0

t CGtSt/†
�1
t and

†t D Rt C HtPtH0
t are obtained with the same recursions as those of the Kalman

filter.

Proof Let

GXE;t.z/ D 
XE.t; 1/z
t�1 C � � � C 
XE.t; t/C � � � C 
XE.t; n/z

t�n; (7.82)

where 
XE.t; s/ D Cov.xt;Es/. Then, subtracting from the Eqs. (4.1) and (4.2) the
Eqs. (7.76) and (7.77), respectively, and letting Qxt D xt � �t, it is obtained that

QxtC1 D Fp;t Qxt C Gtut � Ktvt

Et D Ht Qxt C vt;

where Fp;t D Ft �KtHt. Letting Zt D Var.Qxt/, it is not difficult to see that Zt satisfies
the recursion

ZtC1 D Fp;tZtF
0
p;t C ŒGt � Kt�

�
Qt St

S0
t Rt

� �
G0

t

�K0
t

�
;

initialized with Z1 D … and that this recursion coincides with that of Pt. Therefore,
Zt D Pt.

Since �t in (7.76) and (7.77) is a linear combination of innovations Es, s D t �
1; : : : ; 1, we have Cov.�t;Es/ D 0 for s � t. Thus, if s � t,


XE.t; s/ D Cov.xt;Es/ D Cov.Qxt;Es/

D Cov.Qxt;Hs Qxs C vs/
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D Cov.Qxt; Qxs/H
0
s

D
(

PtH0
t s D t

PtF0
p;t � � � F0

p;s�1H0
s s > t:

Since Es is a linear combination of x1, ut, t D s � 1; : : : ; 1, and vt, t D s; : : : ; 1, if
s < t,


XE.t; s/ D Cov.xt;Es/ D Cov.Ft�1xt�1 C Gt�1ut�1;Es/

D Cov.Ft�1Ft�2 � � � Fsxs C Ft�1Ft�2 � � � FsC1Gsus;Es/

D Cov.Ft
s Qxs C Ft

sC1Gsus;Es/

D Cov.Ft
s Qxs C Ft

sC1Gsus;Hs Qxs C vs/

D Ft
sPsH

0
s C Ft

sC1GsSs

D Ft
sC1

�
FsPsH

0
s C GsSs

	

D Ft
sC1Ns;

where Ns D FsPsH0
s C GsSs. Substituting these expressions for 
XE.t; s/ in (7.82), it

is obtained that

GXE;t.z/ D Ft
2N1z

t�1 C � � � C Ft
tNt�1z C PtH

0

t C PtF
tC10

p;t H0

tC1z
tC1 C � � � C PtF

n0

p;tH
0

nzt�n

D .I � Ft�1z/
�1Nt�1z C PtH

0

t C PtF
0

p;t.I � F0

p;tC1z
�1/�1HtC1z

�1:

�

From Lemma 7.9, we get

OxtC1jt D .I � Ftz/
�1Nt†

�1
t Et D .I � Ftz/

�1KtEt;

where .I � Ftz/�1 D I C FtC1
t z C� � �C FtC1

2 zt�1 and, therefore, OxtC1jt D �tC1, where
�tC1 is the state vector of (7.76) and (7.77).

7.3.6.5 Prediction

As we saw in the previous section, Et D Yt �Ht Oxtjt�1 and OxtC1jt D .Ft �KtHt/Oxtjt�1C
KtYt. From this, it is obtained that

OxtC1jt D .I � Ftz/
�1KtEt D .I � Fp;tz/

�1KtYt; (7.83)

where .I � Ftz/�1 D I C FtC1
t z C � � � C FtC1

2 zt�1 and .I � Fp;tz/�1 D I C FtC1
p;t z C

� � � C FtC1
p;2 zt�1. In addition, it is not difficult to show that the predictor OxtCkjt of xtCk
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based on fYs W 1 � s � ng, where k � 2, and its MSE satisfy the recursions OxtCkjt D
Ft OxtCk�1jt and MSE.OxtCkjt/ D FtMSE.OxtCk�1jt/F0

t C GtQtG0
t, where MSE.OxtC2jt/ D

FtPtC1F0
t C GtQtG0

t.

7.3.6.6 Smoothing

From (7.81), (7.80), (7.78), (7.83), Lemma 7.9 and the basic rule, we get

Oxtjn D GXY;t.z/.‰
0/�1t .z�1/†�1

t ‰�1
t .z/Yt

D GXE;t.z/†
�1
t Et

D .I � Ft�1z/�1Kt�1Et�1 C Pt�t

D Oxtjt�1 C Pt�t; (7.84)

where we define

�t D .I � F0
p;tz

�1/�1H0
t†

�1
t Et (7.85)

D .I � F0
p;tz

�1/�1H0
t†

�1
t

�
I � Ht.I � Fp;t�1z/�1Kt�1z

�
Yt

.I � F0
p;tz

�1/�1 D I C F
0tC1
p;t z�1 C � � � C F

0n
p;tz

t�n and .I � Fp;t�1z/�1 D I C F
0t
p;t�1z C

� � � C Ft
p;2z

t�2. The definition of �t implies that �t follows the backwards recursion

�t D F0
p;t�tC1 C H0

t†
�1
t Et; (7.86)

initialized with �nC1 D 0. Therefore, �t is the adjoint variable and (7.84) is the
formula for the fixed interval smoother of Theorem 4.20. If Var.�t/ D ƒt, it follows
from (7.86) that ƒt satisfies the recursion

ƒt D F0
p;tƒtC1Fp;t C H0

t†
�1
t Ht:

By (7.84), xt � Oxtjt�1 D xt � Oxtjn CPt�t, where xt � Oxtjt�1 and �t are uncorrelated
because, by (7.86), �t is a linear combination of Es, s D t; t C 1; : : : ; n. Thus, if
MSE.Oxtjn/ D Ptjn, Ptjn satisfies the recursion

Ptjn D Pt � PtƒtPt:

To simplify the computation of (7.85), we need the following lemma.

Lemma 7.10 With the previous notation, the following equality holds.

.I�F0

p;tz
�1/�1H0

t†
�1
t Ht.I�Fp;t�1z/

�1 D ƒt.I�Fp;t�1z/
�1C.I�F0

p;tz
�1/�1F0

p;tƒtC1z
�1:
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Proof Using H0
t†

�1
t Ht D ƒt � F0

p;tƒtC1Fp;t and the basic rule, we can write

.I � F0
p;tz

�1/�1H0
t†

�1
t Ht � .I � Fp;t�1z/�1

D .I � F0
p;tz

�1/�1.ƒt � F0
p;tƒtC1Fp;t/.I � Fp;t�1z/�1

D .I � F0
p;tz

�1/�1
�
.I � F0

p;tz
�1/ƒt Cƒt.I � Fp;t�1z/

�.I � F0
p;t/ƒt.I � Fp;t�1z/

�
.I � Fp;t�1z/�1

D ƒt.I � Fp;t�1z/�1 C .I � F0
p;tz

�1/�1ƒt �ƒt

D ƒt.I � Fp;t�1z/�1 C .I � F0
p;tz

�1/�1ƒt

�.I � F0
p;tz

�1/�1.I � Fp;tz
�1/ƒt

D ƒt.I � Fp;t�1z/�1

C.I � F0
p;tz

�1/�1.I � I C F0
p;tz

�1/ƒt

D ƒt.I � Fp;t�1z/�1 C .I � F0
p;tz

�1/�1F0
p;tƒtC1z�1:

�

Using Lemma 7.10, we get the following lemma.

Lemma 7.11 The weights of the adjoint variable, �t , in Theorem 4.20 are given by

�t D .I � F0
p;tz

�1/�1.H0
t†

�1
t � F0

p;tƒtC1Kt/Yt �ƒt.I � Fp;t�1z/�1Kt�1Yt�1:

By Theorem 4.20 or, equivalently, (7.84), the fixed-interval smoother satisfies the
recursion Oxtjn D Oxtjt�1 C Pt�t. Thus, using the previous lemma and (7.83), we can
obtain the filter weights for the fixed-interval smoother. We summarize the result in
the following theorem. We omit its proof.

Theorem 7.23 The weights for the fixed-interval smoother of Theorem 4.20 are
given by

Oxtjn D .I �Ptƒt/.I �Fp;t�1z/�1Kt�1Yt�1CPt.I �F0
p;tz

�1/�1.H0
t†

�1
t �F0

p;tƒtC1Kt/Yt:

More specifically, the weights�j of the estimator Oxtjn D Pt�1
jDt�n�jYt�j are given by

�0 D Pt.H0
t†

�1
t � F0

p;tƒtC1Kt/; �1 D .I � Ptƒt/Kt�1;
�j D .I � Ptƒt/Ft

p;t�jC1Kt�j; j > 1

�j D PtF
0t�j
p;t .H

0
t�j†

�1
t�j � F0

p;t�jƒtC1�jKt�j/; j < 0:

As noted earlier, Koopman & Harvey (2003) give an algorithm for computing
finite signal extraction weights for state space models. However, their computations
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are based on first principles and not on finite covariance generating functions like
ours. This last approach offers the advantage of immediately giving the weights
when, in the time invariant case, the Kalman filter converges to the steady state
recursions and the sample becomes infinite.

In Sect. 7.2.7, sufficient conditions were given for the convergence of the Kalman
filtering and smoothing recursions in the time invariant case to the steady state
recursions.

7.3.6.7 Inverse Process and Interpolation

By Theorem 4.21, the inverse process, Yi
t , satisfies the recursion Yi

t D
†�1

t Et � K0
t�tC1. This result can also be obtained using covariance generating

functions. To see this, consider first that Yi
t D GYi

t
.z/Yt and, by (7.63),

GYi
t
.z/ D .‰0/�1t .z�1/†�1

t ‰�1
t .z/. Then, by (7.79), (7.78), (7.85) and the basic

rule, we can write

Yi
t D .‰0/�1t .z�1/†�1

t ‰�1
t .z/Yt

D �
I � K0

t .I � F0
p;tC1z�1/�1H0

tC1z�1�†�1
t Et

D †�1
t Et � K0

t�tC1:

Using (7.78) and Lemma 7.11, the following theorem is obtained.

Theorem 7.24 The weights of the inverse process Yi
t are given by

Yi
t D .†�1

t C K0
tƒtC1Kt/Yt C .K0

tƒtC1Fp;t �†�1
t Ht/.I � Fp;t�1z/�1Yt�1

CK0
t .I � F0

p;tC1z�1/�1.F0
p;tC1ƒtC2KtC1 � H0

tC1†�1
tC1/YtC1:

This theorem, together with Theorem 4.21, gives the following expression for the
interpolator Ytjs¤t.

Ytjs¤t D �.K0
tƒtC1Fp;t �†�1

t Ht/.I � Fp;t�1z/�1Yt�1
�K0

t .I � F0
p;tC1z�1/�1.F0

p;tC1ƒtC2KtC1 � H0
tC1†�1

tC1/YtC1:

7.3.6.8 Disturbance Smoothers

By Theorem 4.22, the disturbance smoothers satisfy the recursions

Ovtjn D Rt†
�1
t Et C .S0

tG
0
t � RtK

0
t /�tC1 (7.87)

Outjn D St†
�1
t Et C .QtG

0
t � StK

0
t /�tC1: (7.88)
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The recursions (7.87) and (7.88) can also be obtained using generating functions. We
omit the details. Using (7.78) and Lemma 7.11, the following theorem is obtained.

Theorem 7.25 Letting J0
t D S0

tG
0
t � RtK0

t and L0
t D QtG0

t � StK0
t , the weights for Ovtjn

and Outjn are given by

Ovtjn D .Rt†
�1
t � J0

tƒtC1Kt/Yt � .J0
tƒtC1Fp;t C Rt†

�1
t Ht/.I � Fp;t�1z/�1Yt�1

�J0
t.I � F0

p;tC1z�1/�1.F0
p;tC1ƒtC2KtC1 � H0

tC1†�1
tC1/YtC1

Outjn D .St†
�1
t � L0

tƒtC1Kt/Yt � .L0
tƒtC1Fp;t C St†

�1
t Ht/.I � Fp;t�1z/�1Yt�1

�L0
t.I � F0

p;tC1z�1/�1.F0
p;tC1ƒtC2KtC1 � H0

tC1†�1
tC1/YtC1:

7.3.6.9 Covariance Generating Functions of the State Errors

In this section, we will provide operational expressions for the errors �tjt�1 D xt �
Oxtjt�1 and �tjn D xt � Oxtjn in the Kalman filter and smoother.

Subtracting the expression for OxtC1jt given by (4.3) from (4.1), and using Et D
Yt � Ht Oxtjt�1 and (4.2), the following recursions are obtained

�tC1jt D Fp;t�tjt�1 C ŒGt;�Kt�

�
ut

vt

�
; (7.89)

PtC1 D Fp;tPtF
0
p;t C ŒGt;�Kt�

�
Qt St

S0
t Rt

� �
G0

t

�K0
t

�
; (7.90)

initialized with �1j0 D x1 and P1 D …. Iterating, we get �tjt�1 D Nut�1CFt
p;t�1 Nut�2C

� � � C Ft
p;1 Nu0, where Nu0 D x1 and Nut D ŒGt;�Kt�Œu0

t; v
0
t �

0 for t D 1; : : : ; n. Thus, the
generating function of �tjt�1 is ‰�;t.z/ D .I C Ft

p;t�1z C � � � C Ft
p;1z

t�1/z. Since it is
not difficult to verify that

0

B
B
B
BB
B
B
B
@

I
F2p;1 I
F3p;1 F3p;2 I
:::

:::
:::

: : :

Fn
p;1 Fn

p;2 � � � Fn
p;n�1 I

0 0 0 0 0 I

1

C
C
C
CC
C
C
C
A

D

0

B
B
B
BB
B
B
B
@

I
�F2p;1 I

�F3p;2 I
: : :

: : :

�Fn
p;n�1 I

0 I

1

C
C
C
CC
C
C
C
A

�1

;

we can write ‰�;t.z/ D .I � Fp;t�1z/�11 z and �tjt�1 D .I � Fp;t�1z/�11 zNut, where
.I � Fp;t�1z/�11 D I C Ft

p;t�1z C � � � C Ft
p;1z

t�1. It follows from this and (7.90) that
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the covariance generating function, G�tjt�1 .z/, of �tjt�1 is given by

G�tjt�1.z/ D .I � Fp;t�1z/�11 .Pt � Fp;t�1Pt�1F0
p;t�1/.I � F0

p;tz
�1/�1

D .I � Fp;t�1z/�11
�
Pt.I � F0

p;tz
�1/C .I � Fp;t�1z/Pt

�.I � Fp;t�1z/Pt.I � F0
p;tz

�1/
�
.I � F0

p;tz
�1/�1

D .I � Fp;t�1z/�11 Pt C Pt.I � F0
p;tz

�1/�1 � Pt

D .I � Fp;t�1z/�11 Pt C PtF
0
p;t.I � F0

p;tC1z�1/�1z�1:

This proves the following theorem.

Theorem 7.26 The covariance generating function, G�tjt�1.z/, of the error �tjt�1
can be expressed as

G�tjt�1.z/ D .I � Fp;t�1z/�11 Pt C PtF
0
p;t.I � F0

p;tC1z�1/�1z�1;

where .I � F0
p;tz

�1/�1 D I C F
0tC1
p;t z�1 C � � � C F

0n
p;tz

t�n and .I � Fp;t�1z/�11 D I C
Ft

p;t�1z C � � � C Ft
p;1z

t�1.

To obtain the covariance generating function of the error �tjn, first note that

�tjn D xt � Oxtjn D xt � Oxtjt�1 � Pt�t

D �tjt�1 � Pt�t: (7.91)

Then, �tjt�1 D �tjn C Pt�t, where �tjn and �t are uncorrelated, and it holds that
the covariance generating function, G�tjn.z/, of the error �tjn satisfies G�tjn.z/ D
G�tjt�1.z/ � PtG�t .z/Pt, where G�t .z/ is the covariance generating function of �t.
It follows from (7.85) that G�t .z/ D .I � F0

p;tz
�1/�1H0

t†
�1
t Ht.I � Fp;t�1z/�11 ,

where .I � F0
p;tz

�1/�1 D I C F
0tC1
p;t z�1 C � � � C F

0n
p;tz

t�n and .I � Fp;t�1z/�11 D
I CFt

p;t�1zC� � �CFt
p;1z

t�1. Analogously to Lemma 7.10, we can prove the following
lemma.

Lemma 7.12 The covariance generating function, G�t .z/, of �t is given by the
following expression

G�t .z/ D .I � F0
p;tz

�1/�1H0
t†

�1
t Ht.I � Fp;t�1z/�11

D ƒt.I � Fp;t�1z/�11 C .I � F0
p;tz

�1/�1F0
p;tƒtC1z�1;

where .I � F0
p;tz

�1/�1 D I C F
0tC1
p;t z�1 C � � � C F

0n
p;tz

t�n and .I � Fp;t�1z/�11 D I C
Ft

p;t�1z C � � � C Ft
p;1z

t�1.
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By Lemma 7.12 and Theorem 7.26, we can write

G�tjn.z/ D .I � Fp;t�1z/�11 Pt C PtF
0
p;t.I � F0

p;tC1z�1/�1z�1

�Pt
�
ƒt.I � Fp;t�1z/�11 C .I � F0

p;tz
�1/�1F0

p;tƒtC1z�1�Pt

D Pt.I �ƒtPt/C .I � Ptƒt/.I � Fp;t�1z/�11 Fp;t�1Pt�1z

CPtF
0
p;t.I � F0

p;tC1z�1/�1.I �ƒtC1PtC1/z�1:

We summarize this result in the following theorem.

Theorem 7.27 The covariance generating function, G�tjn.z/, of the error �tjn is
given by

G�tjn.z/ D Pt.I �ƒtPt/C .I � Ptƒt/.I � Fp;t�1z/�11 Fp;t�1Pt�1z

CPtF
0
p;t.I � F0

p;tC1z�1/�1.I �ƒtC1PtC1/z�1;

where .I � F0
p;tz

�1/�1 D I C F
0tC1
p;t z�1 C � � � C F

0n
p;tz

t�n and .I � Fp;t�1z/�11 D I C
Ft

p;t�1z C � � � C Ft
p;1z

t�1.

7.3.6.10 Covariance Generating Functions of the Disturbance Errors

Define the disturbance errors �tjn D vt � Ovtjn and ıtjn D ut � Outjn and let
G�tjn.z/, Gıtjn.z/, G�tjn;ıtjn.z/, G�tjn;�tjn.z/, and G�tjn;ıtjn.z/ be the covariance generating
functions of �tjn and ıtjn and the cross-covariance generating functions of �tjn and
ıtjn, �tjn and �tjn, and �tjn and ıtjn.

To obtain the previous covariance and cross covariance generating functions, we
use the following equality

0

@
ut

vt

�tjt�1

1

A D
0

@
ıtjn
�tjn
�tjn

1

AC
0

@
St†

�1
t Et C .QtG0

t � StK0
t /�tC1:

Rt†
�1
t Et C .S0

tG
0
t � RtK0

t /�tC1
Pt�t

1

A ;

that follows directly from (7.87), (7.88), and (7.91). By (7.89) and (7.85), we can
write

0

@
I 0

0 I
.I � Fp;t�1z/�11 zGt �.I � Fp;t�1z/�11 zKt

1

A



ut

vt

�

D
0

@
ıtjn
�tjn
�tjn

1

AC
8
<

:

0

@
St

Rt

0

1

AC
2

4
.QtG0

t � StK0
t /z

�1
.S0

tG
0
t � RtK0

t /z
�1

Pt

3

5 .I � F0
p;tz

�1/�1H0
t

9
=

;
†�1

t Et;
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where the last two terms are uncorrelated. It follows from this that the covariance
generating function of the left-hand side is equal to the sum of the covariance
generating functions of the two terms in the right-hand side. Letting

G.z/ D
0

@
Gıtjn.z/ Gıtjn�tjn.z/ Gıtjn�tjn.z/

G�tjnıtjn.z/ G�tjn.z/ G�tjn�tjn.z/
G�tjnıtjn.z/ G�tjn�tjn.z/ G�tjn.z/

1

A

be the covariance generating function of .ıtjn; �tjn; �tjn/0, L0
t D QtG0

t � StK0
t and

J0
t D S0

tG
0
t � RtK0

t , we get

0

B
@

Qt St L0

t z
�1.I � F0

p;tz
�1/�1

S0

t Rt J0

t z
�1.I � F0

p;tz
�1/�1

.I � Fp;t�1z/�1
1 zLt .I � Fp;t�1z/�1

1 zJt G�tjt�1
.z/

1

C
A

D G.z/C

0

B
@

St†
�1
t S0

t St†
�1
t Rt 0

Rt†
�1
t S0

t Rt†
�1
t Rt 0

0 0 0

1

C
A

C

0

B
@

L0

t z
�1.I � F0

p;tz
�1/�1H0

t†
�1
t S0

t L0

t z
�1.I � F0

p;tz
�1/�1H0

t†
�1
t Rt 0

J0

t z
�1.I � F0

p;tz
�1/�1H0

t†
�1
t S0

t J0

t z
�1.I � F0

p;tz
�1/�1H0

t†
�1
t Rt 0

Pt.I � F0

p;tz
�1/�1H0

t†
�1
t S0

t Pt.I � F0

p;tz
�1/�1H0

t†
�1
t Rt 0

1

C
A

C

0

B
@

St†
�1
t Htz.I � Fp;tz/�1

1 Lt St†
�1
t Htz.I � Fp;tz/�1

1 Jt St†
�1
t Ht.I � Fp;t�1z/�1

1 Pt

Rt†
�1
t Htz.I � Fp;tz/�1

1 Lt Rt†
�1
t Htz.I � Fp;tz/�1

1 Jt Rt†
�1
t Ht.I � Fp;t�1z/�1

1 Pt

0 0 0

1

C
A

C

0

B
@

L0

t G�tC1
.z/Lt L0

t G�tC1
.z/Jt L0

t z
�1G�t .z/Pt

J0

t G�tC1
.z/Lt J0

t G�tC1
.z/Jt J0

t z
�1G�t .z/Pt

PtG�t .z/zLt PtG�t .z/zJt PtG�t .z/Pt

1

C
A ;

where G�t .z/ is given by Lemma 7.12. Equating the entries in the left- and right-
hand sides and using Lemma 7.4, the following theorem is obtained.

Theorem 7.28 The covariance generating functions, G�tjn.z/ and Gıtjn.z/, of �tjn
and ıtjn and the cross-covariance generating functions, G�tjnıtjn.z/, G�tjn�tjn.z/ and
G�tjnıtjn.z/, of �tjn and ıtjn, �tjn and �tjn, and �tjn and ıtjn are given by

G�tjn.z/ D Rt � Rt†
�1
t Rt � J0

tƒtC1Jt

� �Rt†
�1
t Ht C J0

tƒtC1Fp;t
�
.I � Fp;t�1z/�11 Jt�1z

�J0
t.I � F0

p;tC1z�1/�1
�
H0

tC1†�1
tC1RtC1 C F0

p;tC1ƒtC2JtC1
�

z�1;
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Gıtjn.z/ D Qt � St†
�1
t S0

t � L0
tƒtC1Lt

� �St†
�1
t Ht C L0

tƒtC1Fp;t
�
.I � Fp;t�1z/�11 Lt�1z

�L0
t.I � F0

p;tC1z�1/�1
�
H0

tC1†�1
tC1S0

tC1 C F0
p;tC1ƒtC2LtC1

�
z�1;

G�tjnıtjn.z/ D S0
t � Rt†

�1
t S0

t � J0
tƒtC1Lt

� �Rt†
�1
t Ht C J0

tƒtC1Fp;t
�
.I � Fp;t�1z/�11 Lt�1z

�J0
t .I � F0

p;tC1z�1/�1
�
H0

tC1†�1
tC1S0

tC1 C F0
p;tC1ƒtC2LtC1

�
z�1;

G�tjn�tjn.z/ D �Pt.H
0
t†

�1
t Rt C F0

p;tƒtC1Jt/

C.I � Ptƒt/.I � Fp;t�1z/�11 Jt�1z

�Pt.I � F0
p;tz

�1/�1F0
p;t

�
H0

tC1†�1
tC1RtC1 C F0

p;tC1ƒtC1JtC1
�

z�1;

and

G�tjnıtjn.z/ D �Pt.H
0
t†

�1
t S0

t C F0
p;tƒtC1Lt/

C.I � Ptƒt/.I � Fp;t�1z/�11 Lt�1z

�Pt.I � F0
p;tz

�1/�1F0
p;t

�
H0

tC1†�1
tC1S0

tC1 C F0
p;tC1ƒtC1LtC1

�
z�1;

where L0
t D QtG0

t � StK0
t and J0

t D S0
tG

0
t � RtK0

t .

7.4 Historical Notes

Wiener’s solution to the problems of filtering and prediction had a huge impact on
many fields of engineering and mathematics, although it is ironic that it fell short
of its original goal of solving the anti-aircraft-gun control problem. According to
Kalman (1963), “There is no doubt that Wiener’s theory of statistical prediction
and filtering is one of the great contributions to engineering science.” Doob (1953)
devoted the last chapter of his celebrated textbook to Wiener’s theory.

As regards the mathematical side, Wiener’s development even in the scalar case
was not as general as the independent work of Kolmogorov (1939, 1941). A footnote
in Wiener (1949, p. 59) describes well the relationship between Wiener’s work and
that of Kolmogorov’s.

A standard reference in discrete time Wiener–Hopf theory is Whittle (1963b) and
its updated second edition Whittle (1983).

Wiener–Kolmogorov filtering and smoothing has received a lot of attention in
the statistical literature on time series. See, for example, Cleveland & Tiao (1976),
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Burman (1980), Burridge & Wallis (1988), Gómez (2001), Gómez & Maravall
(2001b), Harvey & Trimbur (2003), and the references therein.

In the engineering literature, the monograph by Kailath et al. (2000) contains two
chapters on Wiener–Kolmogorov theory, Chaps. 7 and 8.

Some of the results on recursive Wiener–Kolmogorov filtering and smoothing
presented in Gómez (2006) are new in the literature, like the ones regarding the
mean squared errors for smoothing based on the doubly infinite sample, its extension
to the nonstationary case, or the computation of the filter weights.

For the doubly infinite sample in the nonstationary univariate case, Bell (1984)
proposed two Assumptions, that he called A and B. He proved that the usual
Wiener–Kolmogorov formulae are valid under Assumption A but not under
Assumption B. By the results of this chapter, if we put the ARIMA unobserved
components model considered by Bell (1984) into state space form, make any of
the two Assumptions, and iterate in the Kalman filter and smoother, we obtain
again the previous Wiener–Kolmogorov formulae. The reason for this is that both
Assumptions lead to the same result in the finite sample case (Gómez, 1999, p. 9).
The only difference is that with the limiting method the estimators are interpreted
not as minimum mean squared error estimators but as limits of these. However, this
seems to make more sense because in Assumptions A and B the initial conditions
are in the middle of the infinite sample, which is a little odd, whereas in the Kalman
filter limiting approach they tend to be in the infinitely remote past. If we adopt this
position, we get to the conclusion that the two Assumptions are equivalent both in
the finite and in the infinite sample. This would end a controversy that has been
going on for quite a long time in the statistical literature. See, for example, Burridge
& Wallis (1988), Gómez (1999), and McElroy (2008).

7.5 Problems

7.1 By the results in Sect. 7.2.7, the Wiener–Kolmogorov formulae for smoothing
are also valid for nonstationary series. Consider the signal-plus-noise model

Yt D St C Nt;

where St follows the nonstationary model

.1 � B/St D bt;

fbtg �WN.0; �2b /, fNtg �WN.0; �2n / and fbtg and fNtg are mutually uncorrelated.
Prove that

OStj1 D 1

1C k.1 � B/.1 � F/
Yt; (7.92)
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where F is the forward operator, FYt D YtC1, and k D �2n =�
2
b . Obtain � and �2a D

Var.At/ in the model

.1 � B/Yt D .1 � �B/At;

followed by fYtg.

7.2 Obtain the covariance generating function, GE1.z/ D GS.z/ � GSY.z/G�1
Y .z/

GYS.z�1/, of the error Etj1 D St � OStj1 in Problem 7.1.

7.3 Use Lemma 7.1 in Problem 7.1 to obtain the filter for OStjt, that is,

….z/ D
�

GSY.z/

�2a‰.z
�1/

�

C
1

‰.z/
;

where GSY.z/ D GS.z/ and ‰.z/ D .1 � �z/=.1 � z/.

7.4 In Problem 7.1, obtain the covariance generating function, GE0.z/, of the error
Etjt D St � OStjt, where GE0.z/ D GE1.z/ C �0.z/��2

a �0
0.z

�1/, GE1.z/ is that of
Problem 7.2, and

�0.z/ D
h
GSY.z/‰

0�1.z�1/
i

� :

7.5 Suppose the setting of Problem 7.1.

1. Show that fYtg can be put into state space form (7.27) and (7.28) by defining
xt D St, F D 1, G D 1, H D 1, ut D btC1, vt D Nt, Q D �2b , R D �2n , and S D 0.

2. Prove that the DARE (7.36) corresponding to the previous state space model is

P2 � P�2b � �2b�2n D 0

and that this equation has real solutions of opposite sign such that the positive
solution satisfies P > �2b .

3. Obtain K and † as functions of the positive solution, P, of the DARE and the
other parameters of the model so that the generating function, GY.z/, of fYtg
factorizes as (7.34). Show that fYtg follows a model of the form Yt � Yt�1 D At �
�At�1, where At � WN.0;†/ and find � in terms of P and the other parameters
in the model.

4. Since St D xt in the state space form (7.27) and (7.28) for this model, obtain the
recursions (7.42) and (7.43) corresponding to OStjt�1 and OStj1, respectively.

7.6 In Problem 7.5, use Theorem 7.13 to compute the weights �j of the estimator
OStj1 D P1

jD�1 �jYtCj for j D f0;˙1;˙2g.
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7.7 Under the assumptions and with the notation of Problem 7.1, prove that (7.92)
can be expressed as

OStj1 D �2b =�
2
a

.1 � �B/.1 � �F/
Yt:

Use Lemma 7.1 to decompose the previous filter in the following way

OStj1 D
�

k0
.1 � B/

C k0
.1 � F/

�
Yt;

and compute the weights�j of the estimator OStj1 D P1
jD�1 �jYtCj for j D f0;˙1,

˙2g.

7.8 Suppose the nonstationary bivariate series Yt D .Y1t;Y2t/
0 that follows the trend

plus seasonal model

Yt D Nt C St; (7.93)

where NtC1 D ˆNNt C AN;tC1 and StC1 D ˆSSt C AS;tC1,ˆN D QN Œdiag.1; :8/�Q0
N ,

ˆS D QSŒdiag.�1;�:8/�Q0
S,

QN D
�
1 :5

:8 2

�
; QS D

�
2 �:7
1 :8

�
;

fAN;tg and fAS;tg are mutually and serially uncorrelated sequences, Var.AN;t/ D
LNL0

N , Var.AS;t/ D LSL0
S,

LN D
�

:5 0

�1:2 :7
�

and LS D
�
:8 0

1:1 :4

�
:

The model (7.93) can be cast into state space form (7.27) and (7.28) by defining
F D diag.ˆN ; ˆS/, G D I4, H D .I2; I2/, ut D .A0

N;tC1;A0
S;tC1/0, vt D 0, Q D

diag.LNL0
N ;LSL0

S/, S D 0 and R D 0.

1. Prove that the assumptions in Lemmas 5.9 and 5.10 are satisfied and, therefore,
the pair .F;H/ is detectable and the pair .F;GQ1=2/ is stabilizable.

2. Compute the covariance factorization of fYtg, GY.z/ D ‰.z/†‰0.z�1/, where
‰.z/ D I C zH.I � Fz/�1K, and ‰�1.z/ D I � zH.I � Fpz/�1K. To this end,
solve the DARE (7.36) to get

P D

2

6
6
4

:3178 �:5599 0:0670 0:0354
2:1004 0:0738 0:1875

0:7141 0:9538

1:5775

3

7
7
5 ; K D

2

6
6
4

0:4717 �0:2297
�0:4419 0:4523

�0:6412 �0:2115
�0:6420 �0:3128

3

7
7
5 ;
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† D
�
1:1659 0:5031

4:0529

�
and Fp D

2

66
4

0:5783 0:1672 �0:4717 0:2297

0:6419 0:2977 0:4419 �0:4523
0:6412 0:2115 �0:2979 0:0898

0:6420 0:3128 0:5724 �0:5480

3

77
5 :

Show that the eigenvalues of Fp are 0:6163, �0:5863, 0 and 0, confirming that P
is a stabilizing solution.

7.9 Consider the setting of Problem 7.7.

1. Obtain the MSE of the estimators OxtC1jt and Oxtj1. To this end, compute ƒj1 by
solving the Lyapunov equation (7.45) to get

ƒj1 D

2

6
6
4

3:2314 0:6712 �0:0309 0:1082

0:5407 �0:2919 0:2351

2:4596 �1:0628
0:9127

3

7
7
5 :

2. Use Theorem 7.13 to compute the weights �j of the estimator Oxtj1 =P1
jD�1 �jYtCj for j = f0;˙1;˙2g. Prove that

��2 D

2

66
4

0:0650 0:0041

0:3053 �0:0371
�0:0650 �0:0041
�0:3053 0:0371

3

77
5 ; ��1 D

2

66
4

0:2119 �0:0174
0:0280 0:0456

�0:2119 0:0174

�0:0280 �0:0456

3

77
5 ;

�0 D

2

6
6
4

0:3748 �0:1325
�0:7118 0:6711

0:6252 0:1325

0:7118 0:3289

3

7
7
5 ; �1 D

2

6
6
4

0:0997 0:0275

0:0174 0:1578

�0:0997 �0:0275
�0:0174 �0:1578

3

7
7
5 ;

�2 D

2

6
6
4

0:0294 0:0467

0:1171 �0:0015
�0:0294 �0:0467
�0:1171 0:0015

3

7
7
5 :

7.10 Under the assumptions and with the notation of Problem 7.8, the aim of this
problem is to obtain the model

ˆ.B/Yt D ‚.B/At

followed by fYtg, where B is the backshift operator, BYt D Yt�1 and
fAtg �WN.0;†/, using both polynomial and state space methods.



7.5 Problems 519

1. First, consider the equality

Yt D ˆ�1.B/‚.B/At D .I2 �ˆNB/�1 AN;t C .I2 �ˆSB/�1 AS;t:

Then, pass to covariance generating functions to get

GY.z/ D ˆ�1.z/‚.z/†‚0.z�1/ˆ�10

.z�1/

D ˆ�1
N .z/†Nˆ

�10

N .z�1/Cˆ�1
S .z/†Sˆ

�10

S .z�1/

D ˆ�1
S .z/

h
ˆS.z/ˆ

�1
N .z/†Nˆ

�10

N .z�1/ˆ0
S.z

�1/C†S

i
ˆ�10

S .z�1/;

where ˆN.z/ D I2 � ˆNz, ˆS.z/ D I2 � ˆSz, †N D LNL0
N and †S D LSL0

S. In
addition, using the results in Sect. 5.23, obtain a left coprime MFD, Ô �1

N .z/ Ô S.z/,
such that Ô �1

N .z/ Ô S.z/ D ˆS.z/ˆ�1
N .z/ and

GY.z/ D ˆ�1.z/‚.z/†‚0.z�1/ˆ�10

.z�1/

D ˆ�1
S .z/ Ô �1

N .z/GN;S.z; z
�1/ Ô �10

N .z�1/ˆ�10

S .z�1/;

where ˆ.z/ D Ô N.z/ˆS.z/ and

GN;S.z; z
�1/ D Ô S.z/†N Ô 0

S.z
�1/C Ô N.z/†S Ô 0

N.z
�1/:

To conclude, perform the covariance factorization GN;S.z; z�1/ D ‚.z/†‚0.z�1/
using Wilson’s method described in Sect. 3.10.7.

2. Using the results in Sect. 5.23, obtain a left coprime MFD,ˆ�1.z/ O‚.z/, such that
ˆ�1.z/ O‚.z/ D zH.I � Fz/�1 and

‰.z/ D I C zH.I � Fz/�1K

D I Cˆ�1.z/ O‚.z/K
D ˆ�1.z/

h
ˆ.z/C O‚.z/K

i
:

Conclude by setting ‚.z/ D ˆ.z/C O‚.z/K.



Chapter 8
SSMMATLAB

8.1 Introduction

SSMMATLAB is a set of programs written by the author in MATLAB for the
statistical analysis of state space models. The state space model considered is
very general. It may have univariate or multivariate observations, time-varying
system matrices, exogenous inputs, regression effects, incompletely specified initial
conditions, such as those that arise with nonstationary VARMA models, and missing
values. It has the form

xtC1 D Wtˇ C Ftxt C Gt�t;

Yt D Vtˇ C Htxt C Jt�t; t D 1; : : : ; n;

where �t � .0; �2I/ and the f�tg sequence is serially uncorrelated and uncorrelated
with x1, and thus coincides with (4.85) and (4.86). The initial state vector is as
in (4.84), that is,

x1 D Wˇ C Aı C x;

where x � .a; �2�/, the matrices W, A, and � are fixed and known, and ı 2 R
d,

ı � .b; �2…/ is a random vector that models the unknown initial conditions. As
mentioned previously in Sect. 4.14, the notation v � .m; †/means that the vector v
has mean m and covariance matrix †. It is further assumed that the vectors x and ı
are mutually orthogonal.

There are functions to put frequently used models, such as multiplicative ARIMA
or VARMA models, cointegrated VARMA models, VARMAX models in echelon
form, transfer function models, and univariate structural or ARIMA model-based
unobserved components models, into state space form. Once the model is in state
space form, other functions can be used for likelihood evaluation, model estimation,
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forecasting, and smoothing. Functions for automatic ARIMA and transfer function
identification and automatic outlier detection are also provided. A set of examples
illustrates the use of these functions. SSMMATLAB is described in Gómez (2015).

In this chapter, we will group the more important SSMMATLAB functions into
several categories with regard to the different sections of this book. In this way, the
reader can easily ascertain, for example, whether a specific algorithm described in
this book is implemented in SSMMATLAB.

8.2 Kalman Filter and Likelihood Evaluation

In SSMMATLAB, there are functions to implement the two-stage Kalman filter.
These functions can be used for likelihood evaluation and are described in detail in
the SSMMATLAB documentation. A list of these functions is given in Table 8.1,
together with a short description and reference to the section or sections in this book
where the relevant algorithms are described.

Table 8.1 SSMMATLAB functions

Function Sections Remarks

scakfle2 4.15, 4.21 Two-stage Kalman filter (TSKF), collapsing

scakflesqrt 4.15, 4.4.1, 4.21 TSKF, square root covariance filter, collapsing

scakff 4.15, 4.2.3, 4.16, 4.21 TSKF, state filtering, recursive residuals, collapsing

scakfff 4.15, 4.2.3, 4.16, 4.21 TSKF, state filtering, recursive residuals,

fixed regression parameters, collapsing

8.3 Estimation and Residual Diagnostics

To estimate a state space model in SSMMATLAB, the Levenberg–Marquardt
Levenberg (1944); Marquardt (1963) method is used. This method minimizes a
nonlinear sum of squares. There is also a function to compute sample autocovariance
and autocorrelation matrices that can be used to test model adequacy. These
functions are listed in Table 8.2, together with a short description and reference
to the section in this book where the implemented algorithms are described.

Table 8.2 SSMMATLAB functions

Function Sections Remarks

marqdt 4.8 Method is that of Levenberg–Marquardt

(Levenberg, 1944; Marquardt, 1963)

mautcov 1.1 Computes sample autocovariance and

autocorrelation matrices of residuals
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8.4 Smoothing

In SSMMATLAB, there are functions to implement the two-stage Kalman smoother.
These functions are described in detail in the SSMMATLAB documentation. A list
of these functions is provided in Table 8.3, together with a short description and
reference to the sections in this book where the algorithms used are described.

Table 8.3 SSMMATLAB functions

Function Sections Remarks

scakfs 4.15, 4.10, 4.21 TSKF, smoothing, collapsing

scakfssqrt 4.15, 4.10, 4.4.1, 4.21 TSKF, smoothing, square root covariance

filter, collapsing

smoothgen 4.15, 4.10, 4.21.3, 4.21 TSKF, general vector smoothing, collapsing

8.5 Forecasting

In SSMMATLAB, there is a function for forecasting using the two-stage Kalman
filter. It is described in detail in the SSMMATLAB documentation. This function is
given in Table 8.4, together with a short description and reference to the section in
this book where forecasting is described.

Table 8.4 SSMMATLAB functions

Function Sections Remarks

ssmpred 4.9 TSKF, forecasting

8.6 Time Invariant State Space Models

There are functions in SSMMATLAB to handle some specific questions related to
time invariant state space models. These functions are described in detail in the
SSMMATLAB documentation. A list of these functions is provided in Table 8.5,
together with a short description and reference to the section or sections in this
book where the relevant algorithms are described.

Table 8.5 SSMMATLAB functions

Function Sections Remarks

incossm 4.14.2, 5.8 Initial conditions for the TSKF, time invariant case

dlyapsq 5.3 Solves the discrete time Lyapunov equation

mclyapunov 4.14.2 Solves the continuous time Lyapunov equation

sqrt_ckms 4.15, 5.13, 5.15, 5.8 TSKF, fast CKMS recursions, likelihood evaluation

stair 5.11 Performs the staircase reduction of the pair (A,B)
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8.7 ARIMA and Transfer Function Models

Although ARIMA and transfer function models are not specifically discussed in this
book, all these models can be put into state space form and can be handled using
many of the algorithms described in the previous chapters.

In SSMMATLAB, there are quite a few functions that handle many problems
associated with ARIMA and transfer function models. These include automatic
model identification, model estimation, forecasting, smoothing, signal extraction,
outlier detection, residual diagnostics, etc. These functions are listed in Table 8.6,
together with a short description and reference to the section or sections in this book
where information related to them is given.

Table 8.6 SSMMATLAB functions

Function Sections Remarks

arimam 4.15, 3.7 TSKF, sets up state space model

diferm 5.7 Applies differencing operator to the series

sacspacdif 1.1, 1.8.4 Computes sample autocovariances and autocorrelations

crcreg 5.7 Estimates number of regular and seasonal unit roots

in an ARIMA model (Gómez, 2013)

arimaestos 3.7 Automatic identification, estimation and forecasting of

ARIMA or transfer function models for one or several

series (Gómez, 2009; Gómez & Maravall, 2001a)

cinest 6.6 Estimates parameters in ARIMA model using the

Hannan–Rissanen method

lkhev 4.15, 5.8 TSKF, likelihood evaluation

fstlkhev 4.15, 5.13, 5.8 TSKF, CKMS recursions, likelihood evaluation

arimaopt 4.8 Exact maximum likelihood estimation using the

Levenberg–Marquardt method

(Levenberg, 1944; Marquardt, 1963)

residual2x 4.15, 5.13 TSKF, computes residuals of an ARIMA model using

the CKMS recursions

predt 4.15, 4.9 TSKF, forecasting

dsinbut 3.4 Design of a Butterworth filter based on the sine

function

dtanbut 3.4 Design of a Butterworth filter based on the tangent

function

fasttf 4.15, 5.13, 5.8, 6.3 TSKF, CKMS recursions, likelihood evaluation

pu2ma 3.10.6 Computes the spectral factorization of a

scalar covariance generating function

durlev 3.11.1 Applies the Durbin–Levinson algorithm to fit an AR model,

computes partial autocorrelations

akaikessm1 3.7 Sets up Akaike’s state space representation of minimal

dimension

autcov 1.1 Computes sample autocovariances and autocorrelations
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8.8 Structural Models

As is the case with ARIMA and transfer function models, structural models are
not specifically discussed in this book. However, these models can be easily cast
into state space form and can be handled using many of the algorithms described
previously in the book.

In SSMMATLAB, there are some functions to handle structural models. A list of
these functions is given in Table 8.7, together with a short description and reference
to the section in this book where the algorithms used are described.

Table 8.7 SSMMATLAB functions

Function Sections Remarks

suusm 4.15 TSKF, sets up state space form corresponding

to a structural model

usmestim 4.8 Exact maximum likelihood estimation using the

Levenberg–Marquardt method (Levenberg, 1944; Marquardt, 1963)

pr2usm 4.15 TSKF, sets up state space form given the parameters

of a structural model

8.9 VARMAX Models

In SSMMATLAB, there are functions to handle many aspects of VARMAX models.
These functions are described in detail in the SSMMATLAB documentation. A list
of these functions is provided in Table 8.8, together with a short description and
reference to the section or sections in this book where the implemented algorithms
are described.
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Table 8.8 SSMMATLAB functions

Function Sections Remarks

suvarmapqPQ 4.15 TSKF, sets up state space model

varmapqPQestim 4.8 Exact maximum likelihood estimation using the

Levenberg–Marquardt method (Levenberg, 1944;
Marquardt, 1963)

macgf 3.10.5 Computes the autocovariances of a VARMA model

pmspectfac 3.10.7 Computes the spectral factorization of a

multivariate covariance generating function

pright2leftcmfd 5.23 Computes a left coprime MFD given a right MFD

estvarmaxkro 6.6, 6.5.1 Estimates a VARMAX model in echelon form using the

Hannan–Rissanen method

mhanris 6.6, 6.5.1 Estimates a VARMAX model in echelon form using the

Hannan–Rissanen method after fixing some parameters

estvarmaxpqrPQR 6.6, 6.5.1 Estimates a multiplicative VARMAX model using the

Hannan–Rissanen method

mexactestim 6.6, 5.13, 5.8 Estimates a VARMAX model in echelon form using the

fast CKMS recursions

armaxe2sse 5.9 Passes a VARMAX model in echelon form to state space

echelon form

qarmax2ss2 3.7 Sets up a VARMA model into state space form

8.10 Cointegrated VARMA Models

In SSMMATLAB, there are functions to handle several questions regarding cointe-
grated VARMAX models. These functions are described in detail in the SSMMAT-
LAB documentation and are listed in Table 8.9, together with a short description
and reference to the section or sections in this book where the relevant information
is given.

Table 8.9 SSMMATLAB functions

Function Sections Remarks

mdfestim1r 5.7 Computes differencing polynomial matrix

and differenced series

mid2mecf 5.7, 5.7.1 Computes the error correction form

mecf2mid 5.7, 5.7.1 Given the error correction form, computes

the differencing polynomial matrix

suvarmapqPQe 5.7, 5.7.1 Sets up state space model

varmapqPQestime 5.7, 5.7.1 Estimates a cointegrated VARMA model
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